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Effects related to spacetime foam in particle physics
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It is found that the existence of spacetime foam leads to a situation in which the number of
fundamental quantum bosonic fields is a variable quantity. The general aspects of an exact theory
that allows for a variable number of fields are discussed, and the simplest observable effects
generated by the foam are estimated. It is shown that in the absence of processes related to
variations in the topology of space, the concept of an effective field can be reintroduced
and standard field theory can be restored. However, in the complete theory the ground state is
characterized by a nonvanishing particle number density. From the effective-field
standpoint, such particles are ‘‘dark.’’ It is assumed that they comprise dark matter of the
universe. The properties of this dark matter are discussed, and so is the possibility of measuring
the quantum fluctuation in the field potentials. ©1999 American Institute of Physics.
@S1063-7761~99!00106-7#
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1. INTRODUCTION

In gravitation theory it is assumed that spacetime is a
manifold at scales much greater than the Planck len
while at the Planck scale all geometric properties disapp
and spacetime itself acquires a foamlike structure.1 There are
two basic indications of such behavior of spacetime. The fi
is related to the fact that at the Planck scale the vacu
fluctuations of the metric and curvature are of the same o
as the corresponding average quantities. Not only does
follow from simple estimates—rigorous calculations al
support this idea. In particular, the fact that such fluctuati
exist leads to the absence of a classical background spa
the Planck stage of evolution of the early universe.2 The
second indication is the fact that at small scales the topol
of space also experiences quantum fluctuations.1 The study
of possible observable effects related to changes in the to
ogy of space is attracting ever more attention. In particu
to describe such effects, Hawking3 used wormholes and vir
tual black holes. Another work worth noting is that
Garay,4 who proposed a phenomenological method to
count for spacetime foam.

The absence of a background space at small scales
serious problem in quantum field theory. The possibility
resolving this problem is usually related to the developm
of nonperturbative methods,5 in which the concept of back
ground fields is not used. However, these theories also
on the presence of a coordinate basis space, whose topo
is fixed by the statement of the problem and therefore is
a dynamic characteristic.

This paper elaborates on a possible way to set up a q
tum field theory in the case in which the topology and str
ture of physical space may vary. The main idea of t
method was set forth in Ref. 6 in order to describe the qu
tum birth of the early universe.

The observation forms the basis of the proposed meth
On the one hand, as noted earlier, variations in the topol
1051063-7761/99/88(6)/7/$15.00
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of space can occur at scales where the very concept of a
manifold breaks down, at least due to the presence
vacuum fluctuations. On the other hand, it is believed t
there is no other way to describe the given region but
extrapolate the spatial relationships existing at larger sc
to it. In other words, all possible topologies of physical spa
should be described in terms of a consistent coordinate b
space. We call this space simply a basis. Since measure
instruments, which are classical objects, play a fundame
role in quantum theory,7 it is expected that the properties o
the basis are determined entirely by the measuring devic

If we specify the quantum state corresponding to a fix
topology of physical space and if the topology differs su
stantially from that of the basis, its image in terms of t
basis coordinate cannot be one-to-one. In the same w
when functions defined in physical space and correspond
to different physical observables are mapped to the b
space, they cease to be single-valued and become mult
ued functions of the physical coordinates. Furthermore,
number of images of an arbitrary physical observable is
additional variable quantity, which, generally speaking, d
pends on the position in the basis space.

Thus, we arrive at a situation in which the number
fields corresponding to a physical observable is a varia
quantity. In quantum theory this variable is an opera
whose eigenvalues characterize the topological structur
space. The possible dependence of this quantity on sp
coordinates means that the given quantity is a character
or measure of the number density of the degrees of freed
of the field.

A natural way to describe systems with a variable nu
ber of degrees of freedom is to use second quantization.
fore we begin to describe the method as applied to the p
lem in question, we make the following remark. In th
standard second-quantization method, the number of deg
of freedom characterizes the number of particles or elem
tary excitations~quanta! in the system. Here it is assume
1 © 1999 American Institute of Physics
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that the particles obey the identity principle or, as it is sa
the indistinguishability principle. It can be expected that
measurements at small scales the different images of
same physical observable also obey the identity princi
Indeed, the possibility of distinguishing between the diffe
ent images of observables would mean that physical spac
itself has certain topology and structure, which by assum
tion is impossible~at least in view of the presence of qua
tum fluctuation in the topology!.

Two types of statistics, Bose and Fermi, exist for p
ticles, depending on the symmetry of the wave function
der particle permutations. Accordingly, we must also se
the type of statistics when performing second quantization
the degrees of freedom of the fields. Since second quan
tion reflects the properties and topology of physical spa
this selection must be unique for all types of fields and phy
cal quantities. Here it turns out that the only accepta
choice is Fermi–Dirac statistics, since otherwise in deal
with fermions we immediately confront a violation of th
Pauli principle.

At a fundamental level, the composition of matter is d
termined by a set of fields and their sources. The sources
point particles, which in quantum theory behave like ferm
ons. The need to perform second quantization of the sou
arises already in relativistic theory and hence no change
the description of fermions emerge. A new interpretation
added, however. For instance, pair production correspond
a change in the structure of physical space~it can be said that
processes related to changes in the properties of space
ceed much more easily at isolated points than they do
entire regions!.

When fields are quantized, the idea of particles,
quanta of a field, also emerges. Such particles, howe
obey the Bose–Einstein statistics. Here, generally speak
particle production is not associated with variations in
topology of space. There is a certain similarity between t
aspect and the situation in solid state physics, where ex
tion of vibrations in a crystal lattice~phonon production! is
not associated with variations in the true number of degr
of freedom.

Thus, the variation mentioned above primarily involv
bosonic fields.

2. GENERAL SCHEME OF SECOND QUANTIZATION OF
FIELDS

We consider a setM, which in the future acts like a basi
manifold, and specify an arbitrary fieldw on it. We also
assume that there is a device that can do complete mea
ments of the quantum states of the field. A complete m
surement can always be expanded in a set of elemen
measurements. For instance, to make a complete mea
ment of a field state we must measure the field amplitud
every pointxPM , or equivalently measure the number
particles~or amplitude! in each Fourier mode. Thus, the d
vice can be viewed as a set of elementary detectors.

Let A be the set of possible readings of an element
detector.1! The structure ofA can be described in the follow
ing way. InA we select an arbitrary system of coordinatesj.
,
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Generally, there is a natural projection operatorP (P25P)
that partitions the coordinates into two groups:j5((I
2P)j,Pj)5(h,z), where I denotes the identity operato
The first group,z, refers to the manifoldM and describes the
position in spaceM* at which the elementary measureme
takes place~here and in what followsM* denotes either
spaceM or the mode space!. The second group,h, refers to
the fieldw and describes the position in spaceV. The coor-
dinatehPV denotes either the field amplitude or the numb
of particles corresponding to the field. Thus, the setA ac-
quires the features of a fiber space with basisP(A);M* and
fiber P21(z)5V. The result of a complete measurement
field w is a fibration section, which is the mapw:M*→A.
What is important is that in the usual picture an arbitra
section intersects each fiber only once, i.e., the projection
the section coincides with the spaceM* (P(w)[M* ), which
implies that such sections can be represented by funct
h(z) on M* with values inV.

As noted above, the topology and geometric structure
the setA ~and thus ofM* ) reflects the macroscopic prope
ties of the measurement process. On the other hand, the
physical spaceMph is assumed to have arbitrary topolog
and structure.2! Furthermore, in a general quantum state,
properties of spaceMph* are, generally speaking, not fixed
Thus, a physical field must be defined as an extended sec
of the form w̃:Mph*→A. Here an arbitrary section can inte
sect each fiber an arbitrary number of times. Furthermore
the topology of spaceMph* changes, so does the number
intersections. Thus, the number of images of fieldw̃ in space
M* is variable. An image of spaceMph* is a subset in
M* (P(w̃)5Mph8 ,M* ) that can be represented as a union
distinct pieces,Mph8 5øs j , so that on each pieces j the field
is described by a given number of functionsh i(z), zPs j

( i 51,2, . . . ,m, where m is an integer characterizing th
number of images of spaceMph* in s j ). Note that in general
the dimensionality of the piecess j can differ from the di-
mensionality ofM* .

Thus, if the topology of physical space in an addition
degree of freedom, the result of a complete measuremen
the state of the field will be represented by a definite se
functions $nJ(z)%(J5( i ,s) and zPs). Formally, such
states can be classified in the following way.

We introduce a set of operatorsC†(j) and C(j), the
creation and annihilation operators for an individual e
ments of the setA. For the sake of simplicity we assume th
the measure of each individual pointjPA is finite ~as in the
case in which the coordinatesj take discrete values!. We
require that these operators satisfy the anticommutation r
tions

$C~j!C†~j8!%5C~j!C†~j8!1C†~j8!C~j!5djj8 . ~1!

We define the vacuum stateu0& by the relationship
C(j)u0&50 and build a Fock spaceF in which the basis
consists of the vectors (n51,2, . . . )

uj1 ,j2 , . . . ,jn&5)
i 51

n

C†~j i !u0&. ~2!
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The vacuum state corresponds to complete absence of a
and hence of the observables associated with the field.
stateuj& describes the fieldw with only one degree of free
dom. This can be either a field concentrated at a single p
or a field containing only one mode, and the quantityjPA
describes the intensity~the number of quanta! and the posi-
tion of the field in M* . States described by single-value
functions are constructed in the following way:

uh~z!&5 )
zPM*

C†~h~z!,z!u0&, ~3!

where the direct product is taken over the entire spaceM* ,
and where we have partitioned the coordinatesj into two
groups:j5(h,z). Generally, such states do not belong to
Fock space. Furthermore, when the coordinateszPM* run
through continuous values, this expression requires an ex
sion of its definition and hence can be interpreted only f
mally. However, when the variations of the physical quan
ties in real processes involve only a finite part of the setM* ,
we can stay within a Fock space.

We now examine an arbitrary domainsPM* and de-
fine a set of operators

D†~h~z!,s!5 )
zPs

C†~h~z!,z!, ~4!

where the domain of the functionh(z) is limited to the set
s. Then the states with an arbitrary number of fields can
written

uh1 ,h2 , . . . ,hn&5)
i 51

n

D†~h i~z!,s i !u0&. ~5!

The interpretation of these states is obvious. Suppose tha
functionsh i(z) are specified on a single sets. Then in the
given domain a complete measurement will show the p
ence of a set consisting ofn different fieldsh1(z), h2(z),
. . . , hn(z). It is convenient to introduce the number dens
operator of the fields:

N~z!5 (
hPV

C†~h,z!C~h,z!. ~6!

Then forzPs the states~5! represent the eigenstates of t
operatorN(z) with eigenvalues

N~z!uh1 ,h2 , . . . ,hn&5nuh1 ,h2 , . . . ,hn&. ~7!

Clearly, the states with a fixed number of fields correspo
to a fixed topology of the spaceMph* . Then under certain
conditions ~the requirement that the functionsh i(z) be
smooth at cuts!, instead of the set of functionsh i(z) we can
introduce a single-valued functionh(z) and thus restore the
structure of the setMph* . Conversely, each spaceMph* can be
projected on the basis ofM* by performing the necessar
paste-up, so that the state vector of the field has the form~5!.

The spaceH formed by the vectors~5! and their super-
position lays the basis for building the Hilbert space of t
theory. An arbitrary operatorÔ(j) related to the field~and
symmetrized in the number of the fields! can be expressed i
the standard way in the terms of the set of basis operatoC
andC†:
eld
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~where I ,J5(h i(z),s), and s is an arbitrary domain in
M* ), thus defining the action of this operator inH. The
specific way in which this Hilbert space is built is dete
mined by the physical problem at hand.

3. SCALAR FIELD IN THE SECOND-QUANTIZATION
REPRESENTATION

In Sec. 2 we discussed the general scheme of sec
quantization, irrespective of the dynamics of the field. W
now turn to the example of a real scalar fieldw ~the gener-
alization to the case of arbitrary fields is obvious!. For the
basis space we take ordinary flat Minkowski space.

One idea that is central to particle physics is the rep
sentation in which quantum states of a field are classified
terms of physical particles. Since quantum states of a fi
can in general contain an arbitrary number of the identi
modes, the definition of particles and their relation to fie
operators require certain modifications. We find it more co
venient to operate with discrete indices. To this end we
quire that the field in question be located in a cube with ed
lengthL, and we introduce periodic boundary conditions.
necessary, we can replace sums with integrals~asL→`) via
the usual prescription:(→*(L/2p)3 d3k.

We now examine the expansion of the field operatorw
in plane waves,

w~x!5(
k

~2vkL
3!21/2~akexp$ ikx%1ak

†exp$2 ikx%!,

~8!

wherevk5Ak21m2 , andk52pn/L, with n5(nx ,ny ,nz).
The general expression for the Hamiltonian is

H5H01V, ~9!

whereH0 describes free particles,

H05(
k

vkak
†ak1ek , ~10!

and the potential termV is responsible for the interaction
and can be represented in the normal form:

V5 (
n,$m%,$m8%

V$m%,$m8%
n , ~11!

V$m%,$m8%
n

5 ( 8
k1 , . . . ,kn

V$m%,$m8%
n

~k1 , . . . ,kn!

3)
i 51

n

~aki

† !mi~aki
!mi8. ~12!

Here we assume that the sum with respect to the wave
tors ki contains no terms with equal indices, i.e.,kiÞkj for
any pair of indicesi and j ~the sum is taken over distinc
modes!, and allow for the fact that for different wave num
bers the operatorsaki

andakj

† commute.
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The quantityek in ~10! is the energy of the ground sta
of thekth mode. In a flat space without particles, the ene
must be zero, so we assume thatek50 throughout the
present paper. However, as we show in the sections that
low, the nontrivial nature of the topology of the spacegen
ally leads to a value ofek that is finite. Note that the depen
dence of the zero energy on the topology of space is kno
as the Casimir effect8 and is assumed to be an experimenta
established fact.9

When the number of modes is variable, the set of fi
operators$ak ,ak

†% is replaced by the somewhat expanded
$ak( j ),ak

†( j )%, where j P@1, . . . ,Nk#, andNk is the number
of modes for a given wave numberk. For a free field the
energy is an additive quantity, which can be written

H05(
k

(
j 51

Nk

vkak
†~ j !ak~ j !. ~13!

Since the modes are indistinguishable, the interaction op
tor has the obvious generalization

V$m%,$m8%
n

5 ( 8
k1 , . . . ,kn

(
j 1 , . . . ,j n

V$m%,$m8%
n

~k1 , . . . ,kn!

3)
i 51

n

~aki

† ~ j i !!mi~aki
~ j i !!mi8, ~14!

where the indicesj i run through the corresponding interva
j iP@1, . . . ,N(ki)#. It is convenient to introduce the notatio

Am,n~k!5 (
j 51

N(k)

~ak
†~ j !!m~ak~ j !!n. ~15!

Then the expression for the field Hamiltonian takes the fo

H5(
k

vkA1,1~k!

1 (
n,$m%,$m8%

( 8
k1 , . . . ,kn

V$m%,$m%8~k1 , . . . ,kn!

3)
i 51

n

Ami ,m
i8
~ki !. ~16!

We can now express the main quantities in terms of
fundamental operatorsC†(j) andC(j). For the operatorsa
anda† it is convenient to use the Fock–Bargmann repres
tation, in which operators act in the space of entire anal
functions with a scalar product of the type

~ f ,g!5E f * ~a!g~a* !exp$2a* a%
da* da

2p i
; ~17!

the action of these operators is defined as

a†f ~a* !a* f ~a* !, a f~a* !5
d

da*
f ~a* !. ~18!

Then for the normal field coordinates we can take
complex-valued quantitiesa* ; thus, the setA consists of the
pairs j5(a* ,k). For the fundamental operatorsC†(j) and
C(j) it is convenient to use the representation
y

l-
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n

d
t
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e

-
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e

C~a* ,k!5 (
n50

`

C~n,k!
~a* !n

An!
,

C†~a,k!5 (
n50

`

C†~n,k!
an

An!
. ~19!

Then the anticommutation relations~1! become

$C~n,k!C†~m,k8!%5dn,mdk,k8 . ~20!

The physical meaning of the operatorsC(n,k) andC†(n,k)
is that they create and annihilate modes with a given num
of particles.

Now, to express the Hamiltonian~16! in terms of
C(n,k) andC†(n,k) it suffices to derive the correspondin
expressions for the operators~15!. In the second-quantization
representation, the expressions for the given operators
defined to be

Âm,n~k!5E exp$2a* a%
da* da

2p i

3C†~a,k!~a* !mS d

da*
D n

C~a* ,k! ~21!

or, with allowance for~19!,

Âm1 ,m2
~k!5 (

n50

` A~n1m1!! ~n1m2!!

n!

3C†~n1m1 ,k!C~n1m2 ,k!. ~22!

An expression for the Hamiltonian in terms of the operat
C†(j) andC(j) can be obtained by simply substituting~22!
into ~16!. For a free field, the eigenvalues of the Hamiltoni
take the form

Ĥ05(
k

vkÂ1,1~k!5(
n,k

nvkNn,k , ~23!

whereNn,k is the number of modes for fixed values of th
wave number k and the number of particlesn (Nn,k

5C†(n,k)C(n,k)).
Thus, the field state vectorF is a function of the occu-

pation numbersF(Nk,n ,t), and its evolution is described b
the Schro¨dinger equation

i ] tF5HF. ~24!

Consider the operator

Nk5 (
n50

`

C†~n,k!C~n,k!. ~25!

Physically, this operator characterizes the total number
modes for a fixed wave numberk. One can easily verify tha
for the Hamiltonian~16!, Nk is a constant of the motion,

@Nk ,H#50, ~26!

and in this way Hamiltonians like~16! preserve the topologi-
cal structure of the field. In the course of evolution, the nu
ber of modes for eachk does not change.

We now turn to the problem of representing the parti
creation and annihilation operators in this formalism. Sin
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the individuality of the modes is limited, operators of typ
~22! act like the set of operators$ak( j ),ak

†( j )%. Among the
operators~22! are some that change the number of partic
by one:

bm~k!5Âm,m11~k!, bm
† ~k!5Âm11,m~k!, ~27!

@ n̂,bm
† ~k!#56bm

† ~k!, @H0 ,bm
† ~k!#56vkbm

† ~k!,
~28!

where

n̂5(
k

n̂k5(
n,k

nNn,k . ~29!

Then the ground stateF0 of the field can be defined as
vector satisfying the relationships (m50,1, . . . )

bm~k!F050 ~30!

and corresponding to the minimum energy for a fixed mo
distributionNk . Note that in contrast to standard theory, t
ground state is generally characterized by a nonvanish
particle number densityn̂F05n0F0. Using the vectorF0,
we can build a Fock spaceF whose basis consists of vecto
obtained by cyclic application of the operatorsbm

† (k) to F0.

4. EFFECTIVE FIELD

In the absence of processes related to changes in
topology of space and for a mode distribution of the fo
Nk51 ~there is only one mode for each wave numberk), the
standard field theory is restored. Furthermore, there i
fairly general case in which the concept of an effective fi
can be introduced to restore the standard picture.

Indeed, consider the case in which the interaction ope
tor in ~16! is expressed solely in terms of the set of operat
b0(k) andb0

†(k). Then instead of the complete Fock spaceF
we can limit ourselves to its subspaceF8,F formed by the
cyclic application of the operatorsb0

†(k) to the field ground
stateF0. If the initial state vectorF belongs toF8, then as
the system evolves,F(t)PF8 for all t ~at least as long as th
number of particles created remains finite!.

We define the operators

ak5Nk
21/2b0~k!, ak

†5Nk
21/2b0

†~k!, ~31!

where Nk is the operator defined in~25!, which, when re-
stricted to the Fock spaceF8, is an ordinary number func
tion. For ~20! and ~22! we find that the commutation rela
tions for ak andak

† have the standard form

@ak ,ak8
†

#5dkk8 . ~32!

Thus, if the basic observable objects are particles, i
possible to revert to the usual picture in which the partic
are quanta of an effective fieldw̃ of type ~8!. Note that if the
field potentialsw(x) are measurable quantities, then the tr
expression for the field operators has the same form~8!,
where instead of the operatorsak andak

† we must putb0(k)
andb0

†(k). The expression for the effective-field energy o
erator has the form~9!, but the ground-state energy in thekth
mode,ek , must be assumed not to vanish. The value of t
energy can be found in the complete theory.
s
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Since the operatorsak and ak
† reflect only some of the

information about the state of the system, the auxiliary
ture of the effective field becomes manifest. Indeed, the o
observables related to a given field are particles, and not
any particles, but only those that outnumber the particles
the ground state. For the particle number operator inF8 we
have

ak
†ak5dn̂k5n̂k2n̄k , ~33!

wheren̂k is the operator defined in~29!, andn̄k can be found
by solving n̂kF05n̄kF0. Thus, the properties of the groun
stateF0 remain beyond the scope of the effective field.

5. PROPERTIES OF THE FIELD GROUND STATE

Equations~20! and ~22! imply that a true vacuum stat
has the property that all field modes~and hence all observ
ables related to the field! are absent. A true vacuum state
one in which there are no particles and no zero-point vib
tions related to particles. This situation is similar to the si
ation in solid state physics, where in the absence of a cry
there can be no phonons and no zero-point lattice vibratio
Since the properties of physical space are determined by
properties of material fields, we conclude that in a tr
vacuum state there can be no physical space. Obviously
reality such a state cannot be achieved.

At first glance the most common situation in partic
theory is the one in which physical space is ordinary fl
Minkowski space, and nontrivial topology is manifest at t
Planck scale~this is the conventional view; see Refs. 1 a
4!. But since operating at the Planck scale requires us
energies unattainable with present-day accelerators, and
requires serious consideration of quantum gravity effects
would appear to be impossible to make any sort of direc
measurable predictions with this theory.

In reality, the situation is somewhat different. First, th
stability of the Minkowski space means that probably even
the Planck scale the topology of the space can be assum
be simple~i.e., Nk51 andk>kPl), at least as long as we d
not consider processes in which real particles with Pla
energies are produced~naturally, virtual processes canno
lead to real changes in the topology of space!.

Second, recall that the universe has already passed
quantum stage, in which real processes involving change
spatial topology might occur. After the quantum stage, p
cesses with topology variations are suppressed, and we
say that the topological structure of space has been ‘‘te
pered,’’ so that the structure of the space is preserved as
universe expands. Thus, we expect that at the present
the nontrivial topology of space is most likely manifested
a cosmological scale.

In the foregoing theory, the structure of space is det
mined by the number density of the field modes. The
modes are in turn governed by Fermi statistics, i.e., they
like a Fermi gas. To simplify matters, we examine free fiel
since consistent allowance for the interaction of field w
rants a separate investigation. We assume that the field-m
distribution was thermal in the Planck period of the evoluti
of the universe. As the universe expands, the tempera
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drops and the gas becomes degenerate, with the field w
ing up in the ground state. Thus, the field ground stateF0

can be characterized by occupation numbers of the type

Nk,n5u~mk2nvk!, ~34!

where u(x) is the Heaviside step function andmk is the
chemical potential. Note that when the expansion is ad
batic, we must putmk5m. When the evolution of the uni
verse includes an inflationary period,10,11 the adiabaticity
condition can be violated, which generally leads to additio
dependence of the chemical potential on the wave num
For the mode spectral density we have

Nk5 (
n50

`

u~mk2nvk!511Fmk

vk
G , ~35!

where@x# denotes the integer part of the numberx. Equation
~35! shows, in particular, that atvk.mk we haveNk51, i.e.,
the field structure corresponds to a flat Minkowski spa
with the result thatvk,mk is the range of wave vectors i
which nontrivial field properties are expected to show up

It can easily be verified that from the effective-fie
standpoint, the ground stateF0 is a vacuum state, i.e.
akF050. On the other hand, the given state can be cha
terized by a nonvanishing particle number density. Inde
for any wave number we have

n̄k5 (
n50

`

nu~mk2nvk!5
1

2 S 11Fmk

vk
G D Fmk

vk
G , ~36!

with the result that the spectral density of the ground-s
energy is

ek5vkn̄k5
vk

2 S 11Fmk

vk
G D Fmk

vk
G . ~37!

Since the given particles correspond to the ground s
of the field, in ordinary processes~which do not change the
topology of space! the particles in question are not man
fested explicitly~but they enter into the renormalization o
the parameters of the observed particles indirectly; here
contrast to vacuum fluctuations, the contribution of the p
ticles is naturally finite!. We also note that although the pa
ticles are bosons, in the ground state they behave like fe
ons.

One possible explicit manifestation of a residual parti
number density in the ground state is dark matter. Obse
tions have shown that dark matter accounts for about 90%
visible matter in our universe, and the matter is clearly no
baryonic origin~see, e.g., Ref. 12!. Its existence is usually
related to the presence of various hypothetical partic
~Higgs particles, axions, etc.!, which for various reasons
cease to interact with ordinary matter. But if this mass
ascribed to the ground state, then first it becomes obv
that the matter is truly dark, and second that the minimum
incorporating only the particles known at present is su
cient.

To describe the properties of dark matter, we begin w
massive bosons (mÞ0). For the sake of approximation, w
d-
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ignore the possible dependence of the parameterm on the
wave numberk. In this case, to avoid obtaining too large
value for dark matter, we require that

m22m25z2!m2. ~38!

Then the ground state contains only one particle per mod
the wave-number rangek2<z2, where Nk52. In other
words, massive bosons in the ground state behave like
ordinary degenerate Fermi gas, and we obtain for the ene
density and particle number density

«5
1

L3 (
n,k

nvkN~k,n!

5
g

2p2 S z3m

4
1

m2

8 S zm2m2ln
z1m

m D D , ~39!

n5
1

L3 (
n,k

nN~k,n!5
g

6p2
z3, ~40!

whereg is the number of polarization states. In the limitz
!m, this expression leads to the well-known nonrelativis
relationship

«5nm1
3

2
p, p5

g

30p2

z5

m
, ~41!

wherep is the gas pressure. The principal contribution to t
ground-state energy density is provided by the rest mas
the particle, i.e., in leading order this contribution com
from dust. Note, however, that the particle pressure is n
zero, and it yields a small correction of orderp/«;z2/m2

;n2/3/m2.
We now study particles with zero rest mass~such as

photons and gravitons!. For the ground-state energy densi
we have

«5
g

2p2

m4

4
j~3!. ~42!

The number density of vacuum particles is

n5
g

2p2

m3

3
j~2!, ~43!

where

j~s!5 (
n51

`
1

ns
.

The equation of state in this case is ultrarelativis
(«53p).

Massless particles are especially interesting, since
can also measure the intensity of quantum fluctuations of
field potentials, which for the ground state~34! are

^w~x!,w~x1r !&5
1

~2p!2 E0

` dk

k

sinkr

kr
F2~k!, ~44!

where
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F2~k!5k2Nk5k2S 11Fmk G D .

At long wavelengthsk!m, a substantial increase in the lev
of quantum fluctuations should be observable in compari
with pure vacuum noise (m50).

6. CONCLUDING REMARKS

We see then that the concept of spacetime foam in
duced by Wheeler should lead to a number of observa
effects in particle theory. The simplest are the emergenc
dark matter and an increase in the intensity of quantum n
in the field potentials. In Sec. 5 we calculated such effe
under the assumption that the field is in the ground st
However, the results can easily be generalized to a situa
in which the state of the fields is characterized by nonz
temperatureT* . Since processes associated with change
the topology of space are the first to stop in the early sta
of the evolution of the universe, we expect thatT* !Tg (Tg

is temperature of the microwave background radiation!. On
the other hand, given the value ofm in Eq. ~42!, we can
obtain an upper boundm* ;60Tg . Thus, we expectT* to be
much less thanm, and the temperature corrections to t
ground state~34! to be small. Note, however, that the natu
of the fluctuations of the field potentials in~44! can change
substantially if the temperature is nonzero.6

In addition to the effects studied in this paper, the
clearly remain many phenomena that require additional
vestigation. For example, given the existence of self-act
the ground state~34! can be transformed, which can lead
the emergence of scalar Higgs fields~by analogy with the
well-known Cooper effect in superconductivity!. Such fields
are needed, in turn, to generate particle masses in grand
fication theories. Note that in fields with self-action, a no
vanishing particle number density in the ground state, in
of itself, leads to the emergence of massive excitations,
though the upper bound on masses that can be derived
cosmological constraints on the value ofm is many orders of
magnitude less than the values observed in particle the
n
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Another possibility is that when measuring the Casim
force,8,9 one must expect an anomalous dependence on
tance at scales exceeding the value ofm.
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Within the framework of the cosmological model with cold dark matter we have calculated the
initial mass function of supermassive black holes formed in galactic nuclei. The collapsing
region is modeled by a homogeneous ellipsoid. It is assumed that the accumulation of angular
momentum by the proto-object takes place under the action of external tidal forces, and
that surmounting of the centrifugal barrier with subsequent gravitational collapse occurs as a result
of turbulent viscosity. To determine the mass function, we first find the angular momentum
distribution function of the nascent objects for an arbitrary spectrum of initial density perturbations.
The initial mass function is compared with available observations, and some processes
leading to its transformation are indicated. ©1999 American Institute of Physics.
@S1063-7761~99!00206-1#
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1. INTRODUCTION

Data obtained with the aid of the Hubble telescope an
number of ground-based telescopes1 indicate that the nucle
of ten galaxies contain supermassive black holes~BH! with
massesMh;(10621011)M ( . There are also less definit
indications of the presence of black holes in several d
other galaxies. The technique for determining the masse
black holes is based on a study of the dynamics of stars
gas near the centers of galaxies and on a number of o
approaches. There are reasons to believe that the fractio
the galaxies containing black holes in their nuclei is not l
than 20%~Refs. 1 and 2!, so that the formation of a blac
hole in the nucleus of a galaxy is not an exceptional ev
but rather a regular phenomenon in the history of alm
every galaxy.

Several models of black-hole formation have be
proposed.3–5 These models are not mutually exclusive; the
fore black holes in different mass ranges and even of
same mass have possibly a different origin. According to
model that we will use in the present work, a black ho
arises as the result of collapse of a gas cloud long before
formation of a stellar galaxy.5 The possibility of such a col-
lapse depends on the angular momentum collected unde
action of external tidal forces. At the center of a virialize
halo of dark matter the baryonic matter forms a se
gravitating rotating disk. Compression of the central reg
of this disk before the relativistic state is reached occ
thanks to an outward transfer of angular momentum due
turbulent viscosity. A black hole is formed if the disk is ab
to compress before the moment at which it would otherw
fragment into stars and before its disruption by supern
flareups. Thus, only objects with sufficiently small angu
momentum collapse.

The accumulation of statistical material in recent ye
has made it possible to detect definite correlations betw
the masses of black holes and the characteristics of the
axies containing them. The authors of Ref. 6 obtained
1051063-7761/99/88(6)/8/$15.00
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approximate relationMh.0.003Mb between the mass of
black holeMh and the massMb of the stellar component o
a galaxy. A similar relationMh.0.006Mb was obtained in
Ref. 2 on the basis of a study of 32 galaxies. Correlations
a similar sort~albeit approximate! together with the known
luminosity function of galaxies have made it possible to o
tain an estimate for the mass distribution of black hole7

Any theory of galaxy formation must first address the pro
lem of determining the mass function of the black hole
Efforts to calculate the mass function have been underta
e.g., in Refs. 8 and 9; however, the approaches propose
these works do not take sufficient account of the statist
aspects of black-hole formation. Reference 8 does not t
account of the angular-momentum distribution of the obje
involved. In Ref. 9, within the framework of a linear theor
found only the asymptotic limit of the angular momentu
(L) distribution at largeL and assumed it to be valid in th
limit L→0. Besides, Ref. 9 utilized an inadequate criteri
for the formation of a black hole~black holes are formed
whenL does not exceed the maximum angular momentum
a Kerr black hole!. The goal of the present paper is a mo
accurate calculation of the black-hole mass function by fi
finding the angular-momentum distribution for smallL tak-
ing account of the nonlinear stage of evolution of a dens
perturbation. In contrast to Ref. 9, we employ what is in o
opinion a more likely criterion of black-hole formation.

The model of accretion of matter to a black hole succe
fully explains many observed properties of quasars~their
high luminosity, variability, and emission spectrum!. Accre-
tion in the Eddington regime, as is well known, leads
exponential growth of the black-hole mass. Another sou
of transformation of the mass spectrum is collisions and c
lescence of galaxies with large red shifts.10,11Interacting gal-
axies, and also the remnants of such interactions have b
directly observed. Black holes existing at the centers of g
axies before coalescence should, as a result of dynamic
tion, settle rapidly into the center of the new galaxy and a
coalesce. Both processes—growth of mass during accre
8 © 1999 American Institute of Physics
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and coalescence of black holes—lead to a redistribution
the black-hole mass function toward larger masses. Th
fore, the presently observed black-hole mass spect
should differ from the mass spectrum of nascent black ho
A comparison of the initial black-hole mass function calc
lated by us with the observed mass function, subjected
transformation, can thus be useful in studies of the coa
cence of galaxies and accretion mechanisms in quasars

This paper is organized as follows. Section 2 exami
the time dependence of the moment of the tidal forces
obtains an approximate formula for the integral of this m
ment over time. Section 3 finds the joint probability distrib
tion for quantities characterizing the inner and outer den
distributions. Section 4 carries out a statistical average
obtains the angular-momentum distribution of the objects
interest. Section 5 briefly describes some physical proce
leading to formation of black holes, and estimates the crit
value of the angular momentum. Section 6 calculates
initial mass function and provides an interpretation of t
results obtained. Throughout this article we consider a
cosmological model with cold dark matter without aL term.

2. MODEL OF THE PROTO-OBJECT

Let us consider an individual peak in the density dis
bution of the matter from which a gravitationally bound o
ject is formed after collapse. We divide the region of spa
near the peak into inner and outer regions relative to a sp
of radiusR such that the larger part of the mass that la
falls into the object is found in the inner region. The pote
tial of the outer part, representing the field of tidal forces, c
be expanded in spherical harmonics12

fsh5(
l ,m

4pG

2l 11
almYlmur u l , ~1!

where

alm52rb E
ur u.R

d3rYlm* d~r !ur u2 l 21, ~2!

G is the gravitational constant,r(r ) is the density at the
point r , rb is the mean cosmological density, andd(r )
[@r(r )2rb#/rb . The term with l 50 does not affect the
compression dynamics, and the term withl 51 is responsible
only for motion of the center of mass and does not affect
accumulation of angular momentum. According to Ref. 1
terms with l>3 can be neglected in a treatment of tid
forces.

We model the inner collapsing region by a homogene
ellipsoid. For the accumulation of angular momentum by
proto-object, of decisive importance is the presence o
quadrupole moment interacting with the tidal forces. W
may nominally distinguish two sources of the quadrup
moment: nonsphericity of the proto-object and inhomoge
ity of the inner distribution of matter.14 The model of a ho-
mogeneous ellipsoid to a significant extent takes acco
only of the first of these factors. Despite the indicated sh
coming, the model of a homogeneous ellipsoid is the o
model currently available that allows a detailed analysis
the dynamics of nonlinear compression. We will use it un
of
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the assumption that it gives a reasonable quantitative e
mate at least for the time dependence of the moment of
tidal forces.

Equations for the evolution of a homogeneous ellips
were derived, for example, in Refs. 12 and 15. During
evolution of the ellipsoid the total mass inside the ellipsoid
conserved:M5r iVi5Me1rbV, whereV is the volume of
the ellipsoid andMe is the excess mass in the ellipsoid abo
the background mass. The subscripti here and in subsequen
formulas means that the quantity is taken at some initial ti
t i that can be chosen close to the recombination time.
introduce the following parametrization of the coordinater a

of the mass element of the ellipsoid:

r a5Sab~ t !xb, ~3!

whereuxu<1. The quadratic potential

f5
1

2
Fab~ t !r ar b ~4!

consists of the potential of the homogeneous ellipsoid,
potential of the homogeneous background, and the pote
of the tidal forces:

F5Fel1Fb1Fsh, ~5!

Fb54pGrb~ t !I , ~6!

I is the unit matrix. Let the semi-axes of the ellipsoid
equal toa, b, andc. In the Cartesian coordinate system a
sociated with the principal axes of the ellipsoid, we have

S5I a

b

c
I , Fel52pGreI A1

A2

A3

I , ~7!

where

A15abc E
0

` dl

~a21l!@~a21l!~b21l!~c21l!#1/2
, ~8!

A2 andA3 are written analogously, andre[Me /V.
The equations of evolution of the ellipsoid are

d2Sab

dt2
52FagSgb. ~9!

Formation of a black hole corresponds to a small angu
momentum and correspondingly a small moment of the ti
forces. We assume that they are so weak that their influe
on the dynamics of the halo of dark matter can be neglec
In this case the angular momentum due to the tidal for
becomes a significant factor only in the further compress
of the baryon component. The initial velocities are written

dSab

dt U
i

5FHSab2
2

3H
~Fag2Fb

ag!SgbG
i

, ~10!

whereH is the Hubble constant.
Black holes emerge from relatively high density pea

In this situation the deviation of the shape of the object fro
spherically symmetrical is not large.16 Therefore we seek the
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solution of Eqs.~9! and~10! in the limit of small deviations
of the shape of the ellipsoid from spherically symmetric
i.e., we representSab in the form

Sab5IR1q, ~11!

where

q5I q1

q2

q3

I , ~12!

andq1
21q2

21q3
2!R2. We introduce the notationp[q11q2

1q3. Then the matrixF on the right-hand side of Eq.~9!
takes the form

F52pGH r i

Ri
3

R3 S 11
pi

Ri
D2rb~ t !S 11

p

RD J
3H S 2

3
2

2

5

p

RD I 2
4

5

q

RJ 1
4p

3
Grb~ t !I . ~13!

In the zeroth approximation we neglect nonspheric
settingq50 andp5pi50. The solution in this case is we
known15 and is expressed by the parametric formulas

R5Ri

3

5d i
cos2q,

q1
1

2
sinq5

2

3 S 5d i

3 D 3/2t2ts

t i
, ~14!

wherets is the time of maximum expansion:

ts5t iF11
3p

4 S 5d i

3 D 23/2G , ~15!

d i is the relative density fluctuation at the timet i .
We will consider nonsphericity effects in the followin

approximation which is linear inq. Combining the equations
of system~9! with the initial conditions~10!, we obtain

p̈5a1p1a2pi , ṗ~ t i !5a3pi , p~ t i !5pi , ~16!

where the quantitiesa1 , a2, anda3 depend on the compo
nents ofq. If at the initial time t i we choose a sphere o
radiusR such thatpi50, then it follows from Eqs.~16! that
p(t)50 for any timet. Thenq satisfies the system of equa
tions

q̈5q
4pG

5 S 1

3

Ri
3

R3
r i22rb~ t !D ,

q̇~ t i !5
2

3t i
S 11

d i

15Dqi ,

q~ t i !5qi . ~17!

The relation betweenR and t is given by Eqs.~14!. The
given system of differential equations can be integrated
merically, e.g., by the Runge–Kutta method. We require
solution in order to calculate the angular momentum. W
will now clarify how the momentum of the tidal forces de
pends onq.
,

,

u-
e
e

The moment of forces acting on the ellipsoid is e
pressed by an integral over its volume:

Ka52E d3rrbd~r !@r¹fsh~r !#a

52
Me

5
eabgFgs~ t !Ss«~ t !Sb«~ t !. ~18!

Substituting the expressions forFsh andS, we obtain

Ka52
2A6pGMe

5A5 I ~c22b2! Im a21

~c22a2! Rea21

~a22b2! Im a22

I . ~19!

The time dependence ofa2m in the linear approximation ha
the form14

a2m~ t !5a2m,i S t

t i
D 24/3

. ~20!

Formula ~20! is applicable for sufficiently isolated densit
peaks, as should hold for the majority of cases of black-h
formation.

We have the approximate equalitya22b2'2R(q1

2q2), and analogously forc22b2 and c22a2. Equations
~17! are linear inq; therefore the time dependence ofqi

2qj is the same as that ofq1. We assume that the virializa
tion of the object sets up with its compression to roughly h
its radius, starting at the time of maximum expansion.15 The
virialization time tv depends only ond i and corresponds to
q5p/4. Thus,

La5Ka,i t iE
1

tv /t i R

Ri

q1~ t !

q1,i
S t

t i
D 24/3

3F11d i2S t i

t D
2S R

Ri
D 3GdS t

t i
D5Ka,i t i f ~d i !. ~21!

The expression in brackets is the time dependence ofMe in
formula~19!. By numerical integration with accuracy accep
able for the subsequent calculations, we obtain

f ~d i !'1.931022d i
21 . ~22!

3. JOINT PROBABILITY DISTRIBUTION

Black holes are formed near peaks of the density fie

d~r !5
1

~2p!3E dke
ikrd3k. ~23!

The density perturbations are assumed to be Gaussian,
their statistics are determined by assigning the power sp
trum P(k):

^dk* dk8&5~2p!3P~k!dD
(3)~k2k8!, ~24!

wheredD
(3)(k2k8) is the Dirac delta function, and the angu

lar brackets denote ensemble averaging. The spectral
ments are defined as
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s j
2[E k2dk

2p2
P~k!k2 j . ~25!

We expand the density field~23! in a power series about th
point r p :

d~r p1r !5d~r p!1h i r i1
1

2
z i j r i r j1 . . . . ~26!

If r p is the position vector of the density extremum, thenh
50. The expression for the concentration distribution of
maxima of the density field, obtained in Ref. 16 and gen
alized with the angular momentum taken into account,
the form

n~r ,Lz0 ,n0!dLzdn5udet~z i j !udD
(3)~h!u~l1!u~l2!u~l3!

3dD~n2n0!dD~Lz2Lz0!dLzdn,

~27!

where n[d(r p)/s0 , l i are the eigenvalues of the matr
z i j , andu is the Heaviside step function.

Our immediate goal is to construct the joint probabil
distribution for the quantities characterizing the density fi
inside the sphere of radiusR centered at the pointr p and the
quantities characterizing the tidal forces, i.e., the variab
d(r p), h i , z i j , anda2m or others that are expressed in term
of them. We find the correlator

^z i j a2m&5CE dVkninjY2m* ~Vk!, ~28!

where ni5ki /k and Vk is the solid angle in momentum
space,

C[
rb

16p5 E0

`

dkk4P~k!
kRcos~kR!2sin~kR!

~kR!3
. ~29!

In the course of the calculation we took the Fourier tra
form, used formula~24! to calculate the average, and appli
the relation

E eikrYlm~u,w!dV54pYlm~uk ,wk!i l j l~kr !, ~30!

where j l(x) are the spherical Bessel functions anddV is the
element of solid angle.

If we take some definite linear combinations of the c
relators ~28! with fixed m, then the corresponding linea
combinations of the expressionsninj give the spherical func-
tions Y2n . By virtue of the orthogonality of the spherica
functions it is thus possible to reduce a large subset of
correlators to zero. The form of the necessary linear com
nations can be seen by writing downY2n in Cartesian coor-
dinatesr 1 , r 2, andr 3, substitutingr 1r 1 for z11, r 1r 2 for z12,
etc. Thus we introduce the new variablesjW :
e
r-
s

s

-

-

e
i-

j i5S j3

j2

j1

j0

j21

j22

D 5
1

s2 S 2~z11z21z3!

2~z12z2!/21 i z6

z51 i z4

2~z122z31z2!/2

z52 i z4

~z12z2!/22 i z6

D . ~31!

Here we have changed over to the new notationz i j→zA ,
A51,6: z1[z11, z2[z22, z3[z33, z4[z23, z5[z13, z6

[z12. The choice of the normalized coefficients is made
line with the notation of Ref. 16, from which we will us
some results in what follows. We write the inverse transf
mation in the form

zA5s2 (
n522

3

UA
(n)jn , ~32!

whereUA
(n) is a constant matrix. With the help ofUA

(n) we
expressninj in terms ofY2n :

ninj5S (
n522

2

Ui j
(n)D (n)Y2nD 1Ui j

(3)D (3)Y00, ~33!

where the vector

D (n)5A8p

15S 2A15

2
;1;21;

A6

2
;1;1D . ~34!

We find the correlators

^jma2n&5
CD(n)

s2
dmn , ^jmjn* &5

D ~n!2

4p
dmn ,

^a2ma2n* &5Cdmn , ~35!

where

C[
rb

2

4p4 E0

`

dkk2P~k!FkRcos~kR!2sin~kR!

~kR!3 G 2

. ~36!

To diagonalize the correlator matrix, we introduce
place ofa2m the new variables

vn5a~a2n* 2 f njn!, n522,2. ~37!

It follows from the requirement ^vnjm* &50 that f n

5a^a2njn&/^jnjn* &. For such a choice off n we have

^vmvn* &5a2~C24pC2/s2
2!dmn5dmn , ~38!

if we take a5(C24pC2/s2
2)21/2. We normalizejn : wn

[A4pjn /D (n); then ^wmwn&5dmn . The joint probability
distribution of the quantitiesvn and wn ~for the time being
without w3) has the form

PvPwd 5vd 5w5~2p!25

3expS 2
1

2
vW 1vW 2

1

2
wW 1wW Dd 5vd 5w, ~39!

the cross denotes the Hermitian conjugate, andvW andwW are
vectors with componentsvn andwn , respectively.
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4. ANGULAR MOMENTUM

By virtue of the isotropicity of the density field distribu
tion, the distribution functionF over the components of th
angular momentum depends only on the magnitude of
angular momentumL25Lx

21Ly
21Lz

2 . We denote

F̃~Lz
2![E F~Lx

21Ly
21Lz

2!dLxdLy

52pE
0

`

F~L
*
2 1Lz

2!L* dL* , ~40!

whereL
*
2 5Lx

21Ly
2 . Differentiating with respect toLz

2 , we
obtain

F~L2!52
1

p

dF̃~Lz
2!

dLz
2 U

L
z
25L2

. ~41!

Thus, to find the total distribution functionF(L2) it suffices
to know the distribution inLz .

We introduce the angular momentum opera
l̂ z52 i @r¹#z . The spherical functions are the eigenfunctio
of this operator. Thus, thez component of the moment of th
tidal forces takes the form

Kz52E
ur u,R

d3rrbd~r !@r¹fsh~r !#z

52 irb E
ur u,R

d3rd~r ! l̂ zfsh~r !. ~42!

As was indicated in the previous section, it is sufficient
restrict ourselves to the terms withl 52. Making the neces-
sary substitutions of variables, we obtain

Kz52 i
2pGrb

5 (
m522

2

a2m(
i j

z i j E
ur u,R

d3rr 2r i r j l̂ zY2m~V r !

5 i
2pGrbR7

35 (
m522

2

(
A51

6

(
k522

2

ma2ms2jkUA
(k)UA

(m)* D (m)

52 i
2pGrbR7

35A4p
(

m522

2

(
A51

6

(
k522

2 Fm

a
wkD

(k)UA
(k)UA

(m)*

3D (m)vm* 1
A4p mC

s2
wkD

(k)UA
(k)UA

(m)* D (m)wm* G . ~43!

To calculate the integral over time of this expression,
make use of the results of Sec. 2. Note that in such an
proach, to determine the initial value of the moment of t
tidal forces we employ the quadratic approximation of t
exact peak profile, and to find the time dependence we
ploy the approximation of the homogeneous ellipsoid. Th
we find that the angular momentum is equal toLz

5Kzit i f (d i), wheref (d i) is given by formula~22!. We write
it conditionally in the form

Lz5wk* Ekmvm1wk* Ekm8 wm , ~44!

whereEkm andEkm8 are matrices which are independent ofvW

andwW .
e

r
s

e
p-
e

-
s

In the averaging of expression~27! the following mean
of the delta function arises:

^dD~Lz2Lz~vW ,wW !!&Pv

5E d5v

~2p!5/2
expS 2

1

2
vW 1vW D E ds

2p

3exp@ is~Lz2wk* Ekmvm2wk* Ekm8 wm!#

5E ds

2p
expF is~Lz2wk* Ekm8 wm!2

1

2
s2wkEkm* Elmwl* G

5
1

~2p!1/223/2Xy
expS 2

Lz
2

16X2y2D , ~45!

where

X[
p1/2GrbR7

35 S 8p

15D 2

~s2
2C24pC2!1/2t i f ~d i !. ~46!

After integrating overd5v, the coordinate axes can b
aligned with the eigenvectors of the matrixz i j , which sig-
nificantly simplifies the process of integrating overs. In the
last equality in Eqs.~45! we changed over to the following
notation~see also Ref. 16!:

s2x52~z11z21z3!, s2y52~z12z2!/2,

s2z52~z122z31z2!/2, ~47!

g[s1
2/s2s0 , x* [gn, R* [A3s1 /s2 . ~48!

Further statistical averaging of expression~27!

N~Lz ,n!5^n~r ,Lz ,n!& ~49!

is realized by the following integral overx, y, andz ~a way of
obtaining the normalization factor can be found in Ref. 1!:

N~Lz ,n,x,y,z!dLzdn

5E 55/231/2

~2p!7/223/2S s2

s1
D 3 1

Xy~12g2!1/2

3e2QF~x,y,z!xdLzdndxdydz, ~50!

where

Q[
n2

2
1

~x2x* !2

2~12g2!
1

5

2
~3y21z2!1

Lz
2

16X2y2
, ~51!

F~x,y,z!5y~x22z!@~x1z!2~3y!2#~y22z2!. ~52!

The characteristic functionx assigns the region of integra
tion:

x: y>0, y>z>2y, x1z>3y. ~53!

The integral overy can be done analytically. We will no
write out the result in light of its cumbersomeness.

We are interested in objects with angular moment
much less than the mean value. We introduce the smalln
parameter
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«[
Lz

2

16X2
!1 ~54!

and expand expression~50! integrated overy in a series in«.
The validity of such an expansion is verified by expand
expression~50! in powers ofx andz at the pointx5z50. By
virtue of the additional differentiation in expression~41! the
zeroth term of the expansion~independent of«) does not
contribute. Let us limit ourselves to the term linear in«. We
integrate overz and x numerically and find an approximat
function for the dependence of the result on the variableg
andx* within the ranges of variation of these latter quan
ties of interest. Finally, employing expression~41!, we ob-
tain the expression

N~L,n!dLdn52.431022~12g2!0.17
x
*
2.84

X3R
*
3

e2n2/2L2dLdn.

~55!

The accuracy of approximation formula~55! for the values
of the quantities entering into it used in our calculations
not worse than 20%. In the following sections on the basis
this distribution we investigate the statistics of black holes
galactic nuclei.

5. FORMATION OF BLACK HOLES

The main processes leading to formation of black ho
at the centers of galaxies have been discussed, in partic
in Refs. 5, 17, and 18. Our treatment is similar to that giv
in Ref. 5 except that we have used equations for a s
gravitating disk without predominance of the central ma
Let us consider an object with total massM ~dark matter1
baryons!. Let the baryonic matter make up the fractionf g of
the mass:Mg5 f gM . The gas cloud cools rapidly thanks
inverse Compton scattering by photons of the microwa
background~fossil radiation! and to emission from free–fre
and free–bound transitions. During cooling the baryo
matter falls toward the center of the object and reaches
centrifugal barrier at the radius

r d.
L2

GM3f g

, ~56!

whereL is the total angular momentum of the object wi
massM. It is assumed that the angular-momentumL density
per unit mass is identical for baryons and for dark matte

At the center of the object the baryonic matter forms
self-gravitating rotating disk. Further compression of t
central region of the disk takes place thanks to outward tra
fer of angular momentum. We assume that the main facto
the transfer of angular momentum is turbulent viscosity. T
turbulence is usually characterized by the parametera t

5v t /vs;0.1 ~Ref. 19!, wherev t is the velocity of the tur-
bulent pulsations,vs5(5kBT/3mp)1/2 is the velocity of
sound,kB is the Boltzmann constant, andmp is the mass of
the proton.

The thickness of the self-gravitating disk is
s
f

n

s
lar,
n
lf-
.

e

c
e

s-
in
e

Hd.r d

vs
2

vf
2

, ~57!

wherevf
2 is the angular velocity of rotation of the disk. Th

coefficient of kinematic viscosity and the characteristic co
pression time are equal respectively to

m.
a tr d

2vs
3

GMg
, tvis.

GMg

a tvs
3

. ~58!

In order to findvs it is necessary to consider the process
radiative transfer of the gravitational energy being libera
outward during compression. The rate of liberation of ene
is

dEgrav

dt
.Egravtvis

21.2pr d
2sTs

4 , ~59!

whereEgrav.GMg
2/r d , s is the Stefan–Boltzmann constan

Ts is the temperature on the surface of the disk. The rela
between the effective temperature at the centerTc and the
effective temperature on the surfaceTs has the formTc

4

;tTs
4 ~Ref. 20!, wheret5sTMg/2pr b

2mp@1 is the optical
thickness of the plasma disk andsT is the Thomson cross
section.

From the above relations it is possible to obtain the co
pression timetvis of the disk due to viscous transfer of ang
lar momentum. We assume that a black hole is formed if t
time does not exceed the characteristic time of s
formation.21

t* 5 t̃ S Mc

M (
D 2b

, ~60!

whereMc is the characteristic mass of a star nucleus. In
simplest modelt̃'53107 years andb'2.8 ~Ref. 21!. If the
stars have the standard Salpeter mass function, then we
expectMc;0.5M ( . However, the conditions in a compa
disk are substantially different from those in ordinary st
forming regions in galaxies; thereforeMc at this stage of
development of the theory should be treated as a free pa
eter.

From the conditiontvis,t* we obtainL,J, where

JFg•cm2

s G56.131068S a t

0.1D
4/15S f g

0.03D
2/3S t̃

53107 years
D 1/6

3S Mc

M (
D 2b/6S M

108M (

D 23/15

. ~61!

If the reverse inequality holds, then the disk fragments i
stars and instead of a black hole a star cluster is formed

A second limitation arises from the requirement that t
gas be ionized after the virialization time of the dark halo.
the opposite case cooling and compression of baryons
not take place. Ionization can be a consequence of secon
ionization of the Universe by the first pregalactic generat
of stars.17,18 In this case, however, the concentration of n
scent black holes of small mass significantly exceeds
limits of observation. A second source of ionization is he
ing of the gas during virialization of the object under th
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action of shock waves and vigorous mixing. We take t
ionization source to be defining. We find the temperat
from the relationmpv2/253kBT/2, wherev is the virial ve-
locity. The conditionT.Tion;(125)3104 K yields

d l[d i~11zi !.
27

5A2

kBTion

mp
S t0

GM D 2/3

, ~62!

where Tion is the ionization temperature,t0 is the current
time, and 11zi[(t0 /t i)

2/3.
We have investigated formation of black holes with

the framework of a simple model without a detailed tre
ment of the internal structure or evolution of the disk. T
choice of such a model is based on the absence of det
studies of real models of self-gravitating disks. For examp
the authors of Ref. 22 found a self-similar solution for t
evolution of an isothermal disk in the weak-accretion lim
and under the assumption thatm(r )Hd(r )/r 5const. The so-
lution obtained correctly reflects some qualitative aspect
the evolution of a disk; however, use of the quantitative
sults of Ref. 22 is hardly justified in a real situation. Accura
solution of the problem may require complicated, thre
dimensional hydrodynamic calculations allowing for therm
processes. In any additional calculations what is import
for us is the presence of a maximum value of the angu
momentum. In quantitative estimates we will use results
tained within the framework of the above model.

6. BLACK-HOLE MASS SPECTRUM

In Secs. 3 and 4 the power spectrumP(k) is taken to be
arbitrary. For concrete calculations we will use the spectr
arising in the model with cold dark matter with the Hubb
constantH575 km•s21

•Mpc21 ~Ref. 16!:

P~k!5
a@ ln~114.164k!#2

k~116.947k1828.9k21925.4k3120710k4!1/2
,

~63!

where k is measured in the co-moving coordinates and
units of Mpc21. The normalization constanta'2.133105 is
determined, as usual, from the requirement that the rela
fluctuation of the mass on a scale of 8 Mpc be unity.

We smooth the density field with the help of two filte

dR~r !5E d~r1!W1~r12r2!W2~r22r !d3r 1d3r 2 , ~64!

where

W1~r12r2!5
3

4pR3
uS 12

ur12r2u
R D ,

W2~r22r !5
1

~2pR̃2!3/2
expS 2

ur22r u2

2R̃2
,D . ~65!

Use of the filterW1 allows us to interpretns0 directly as the
density averaged over a sphere of radiusR. It is specifically
this quantity that defines the moment of collapse and is
noted in Sec. 2@formula ~22!# asd i . In the final calculations
we transform to co-moving coordinates and express all qu
tities in terms of quantities at the current timet0. The Gauss-
s
e

-

ed
,

of
-

-
l
nt
r
-

n

e

e-

n-

ian filter W2 with R̃5R/101/3 has only practical significance
and allows us to avoid problems with rapid oscillations in t
integrand during numerical calculation of the quantitiess j .
By virtue of the fact that the filterW2 smooths out masse
M /10!M , the presence of the filterW2 has only a weak
influence on the result.

The smallness parameter« ~54! used in the calculations
does not exceed 531024 for masses varying within the lim
its 107M (,Mh,531011M ( , which justifies the assump
tion of inequality~54!. The angular momentum collected b
the object depends on the orientation of its quadrupole m
ment relative to the outer density distribution. However,
calculation shows, these quantities correlate only weakly.
deed, their mutual correlation is characterized by the exp
sion 4pC2 in relation ~46!. For the masses under conside
ation here, 4pC2/s2

2C,1/700. Thus, the outer densit
distribution can be considered to be statistically independ
of the inner distribution. The explanation of this fact pro
ably lies in the statistical independence of fluctuations
different scales. Evidence in favor of this is provided by t
results of Ref. 13, where it was found that tidal forces ge
erated by spherical shells of radiir and 2r are anticorrelated,
and the main contribution comes from density fluctuation
distance 5R away from the object of radiusR and corre-
sponding to a mass of 53M .

In studies of a hierarchical mechanism of formation
the large-scale structure of the Universe the problem
‘‘cloud within a cloud’’ is well known.23 The statement of
this problem is that an object of massM1 can become incor-
porated in an object of massM2.M1 at a later time. In
connection with this the problem arises of calculating t
concentration of independent objects. It is natural to interp
formula ~55! as the concentration of objects with mass.M .
To calculate the mass (M ) distribution it is necessary to
differentiate formula~55! with respect toM. The dependence
on n in formula~55! has the formn5.84exp(2n2/2); this func-
tion attains its maximum atn'2.4 in line with the fact that
black holes are formed from relatively high density pea
The final distribution is given by the formula

f~M !dM5dM E
0

J

dL
d

dM E
d̃/s0

`

dnN~L,n!, ~66!

where d̃[max$dc ,d l%. The valuedc51.69 corresponds to
collapse at the current time. To transform to the mass dis
bution of the black holesMh5 f gM it is necessary to make
the corresponding change of variables:

f1~Mh!d~ ln Mh!5f~Mh / f g!d~Mh / f g!.

The result of the calculation is shown in Fig. 1. For compa
son, the dashed curve3 depicts the assumed distribution o
tained in Ref. 7 based on observational data. The differe
in the curves can be attributed to inaccuracies in the ob
vations or in the subsequent transformation of the mass fu
tion. The figure demonstrates the possible direction and m
nitude of such a transformation. It is interesting to obse
that for massesMh.108M ( according to formula~66! the
initial black-hole spectrum is close to a power-law:f
}M 21.84.
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Quantity ~66! is proportional to the following combina
tion of parameters of our model:

S a t

0.1D
4/5S f g

0.03D
2S t̃

53107 years
D 1/2S Mc

M (
D 2b/2

. ~67!

For definiteness we set all parameters except forMc to be
equal to their normalized values in expression~67!. Thus,
depending on the mass, the relationship between the in
mass function and the distribution in Ref. 7 can be und
stood as follows. It is clear from the figure that ifMc

'0.3M ( then the calculated mass function reproduces
distribution from Ref. 7 quite well for 53108M (,Mh,5
31010M ( . Note that it is precisely in this mass range th
the largest number of black holes have been recorded.
statistics outside the indicated range are incomplete. The
ference in the distributions may also be due to observatio
selection at small black-hole masses. IfMc.0.3M ( , then
for small masses the initial mass function is also subs
tially greater than its values obtained from the observatio7

but for large masses it is substantially less. Processes tha
lead to such a transformation were indicated in the Introd
tion, these being growth of the mass of black holes as a re
of their coalescence and as a result of accretion. In the h
archical picture of the formation of the large-scale struct
of the Universe every galaxy during its existence can ex
rience up to ten coalescence events with other galaxies.

We obtained a similar picture of the transformation
the mass function on the basis of a comparison of an ob
vational estimate of the black-hole mass distribution and
luminosity and red-shift distributions of quasars. Of fund
mental significance is the question of the durationtq of the

FIG. 1. Mass distributionf1 of black holes in galactic nuclei. Curves1 and
2 plot the results obtained using formula~66! for Mc50.3M ( Mc

50.5M ( , respectively. For comparison, the dashed curve depicts the
tribution obtained in Ref. 7.
ial
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Eddington accretion stage. Fortq!tEd (tEd is the Eddington
time! the masses of black holes remain essentially
changed after their formation. On the contrary, fortq>tEd

the masses grow significantly and the black-hole mass s
trum observed at the current time differs strongly from t
mass spectrum of nascent black holes. Calculations s
that almost all black holes with massesM.33108M ( arose
from less massive black holes as a result of accretion.
concentration of nascent black holes originally formed w
massesM.33108M ( can be neglected in comparison wi
the concentration of black holes that have entered this ra
from below.
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Zh. Éksp. Teor. Fiz.115, 1950–1960~June 1999!

It is shown that the size of the focal spot has a substantial influence on the dynamics of
Mandel’shtam–Brillouin induced scattering~MBIS! for the laser beam power near critical for
striction self-focusing. For small focal spots MBIS suppresses self-focusing. An increase
in the size of the focal spot leads to growth of the MBIS pulsations and the steady-state setup
time. For large enough focal spots MBIS arises in the form of regular intense spikes.
Physical processes shaping the dynamics of MBIS are discussed. ©1999 American Institute of
Physics.@S1063-7761~99!00306-6#
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1. INTRODUCTION

In nonlinear optics one of the most widely known pr
cesses is Mandel’shtam–Brillouin induced scatter
~MBIS!, in which an incident electromagnetic wave, by i
teracting with sound waves, creates scattered electrom
netic waves with shifted frequencies~see, e.g., Refs. 1–3!.
This process is observed in many material media and i
great significance for a number of applications. In particu
it is used for phase conjugation~see, e.g., Refs. 4–6!. It is
also of great significance for laser nuclear fusion, lower
the fraction of radiation absorbed in the target~see, e.g.,
Ref. 7!.

If the laser beam powerP exceeds a certain critical valu
Pcr ~Refs. 8–10!, then self-focusing can also take place alo
with MBIS. It is well known that in steady state either se
focusing ~like filamentation of the laser beam! leads to a
growth of MBIS~see, e.g., Refs. 11–13! or MBIS suppresses
self-focusing~see, e.g., Refs. 14–16!. However, the interac-
tion of MBIS and self-focusing can be most uniquely ma
fested in their simultaneous development in time during
transitory process. Thus, in Ref. 17 it was shown that
cause of self-focusing MBIS acquires the form of period
spikes during which the intensity of the scattered radiat
can exceed the intensity of the incident radiation. A no
monotonic time dependence of MBIS is also indicated
numerical calculations.18

The present paper discusses the possibility of modify
the dynamics of MBIS when the laser beam power exce
the critical power of striction self-focusing by varying th
size of the focal spot. It follows from a numerical solution
the system of nonlinear equations describing the incid
beam and scattered beams and also large-scale perturba
of the density of the medium associated with self-focus
that for relatively large focal spots the development of se
focusing leads to the result that MBIS has the form of pe
1061063-7761/99/88(6)/6/$15.00
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odic intense spikes.17 As the size of the focal spot is reduce
self-focusing is suppressed and the spiking character
MBIS gives way to oscillations about some mean valu
where the amplitude of these oscillations decays with tim
For a fixed focal spot size self-focusing is suppressed
much more effectively, the higher the initial level of scatte
ing. In this case, the setting up of steady state takes p
faster. Under conditions in which the initial MBIS reflectio
coefficient, calculated in the one-dimensional theory negle
ing self-focusing, amounts to several percent, the dynam
of MBIS approaches the dynamics described by the o
dimensional nonlinear theory.19

Numerical calculations of the spatiotemporal variation
the intensity of the incident and scattered radiation, and a
the density of the medium, have made it possible to interp
the physical processes responsible for the above-descr
MBIS dynamics. These questions, and also experiment
which MBIS pulsations have been observed, are discusse
the Conclusion.

2. STATEMENT OF THE PROBLEM, AND BASIC EQUATIONS

Let us consider a planar layer of a nonlinear, transpar
medium, onto which, starting at the timet50, a beam of
electromagnetic radiation having characteristic width 2a ~di-
ameter of the focal spot! is incident. We assume that th
radiation power exceeds its critical value for striction~pon-
deromotive! self-focusing and the thickness of the layer e
ceeds the diffraction length. Together with self-focusing,
consider MBIS in directions close to directly backward.1!

To describe the incident and scattered beams, and
perturbations of the medium density, we use, respectiv
Maxwell’s equations and the equations of acoustics, in wh
we allow for the action of the averaged ponderomotive fo
~see, e.g., Refs. 2 and 3!. We represent the electric fiel
strength in the medium in the form
6 © 1999 American Institute of Physics
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E~r ,t !5
1

2 (
s561

$Es~r ,t !exp@2 ivst1 isksz#1c.c.%,

~1!

whereEs is the complex amplitude of the spatiotempora
slowly varying ~on scales ofks

21 and vs
21 , respectively!

field of the incident (s51) and scattered (s521) beams;
vs and ks are respectively the frequencies and wave nu
bers, which are interrelated by the dispersion relationks

2c2

5vs
2«(vs); «(v) is the linear dielectric constant of the m

dium, which is assumed to be isotropic.
For simultaneous development of self-focusing a

MBIS two types of density perturbations develop. Larg
scale variations in the density of the mediumdr are respon-
sible for self-focusing while small-scale sound waves are
sponsible for MBIS in the directions close to direct
backward, where the density perturbations in these so
waves can be represented in the form

drs5
1

2
$drs0~r ,t !exp@2 ivst1 iksz#1c.c.%, ~2!

where the frequencies of the sound wavesvs5v12v21 and
their wave numbersks5k11k21 are interrelated by the dis
persion relationvs5ksVs (Vs5A]p/]r is the speed of
sound!, anddrs0 is the amplitude of the sound wave.

If the mean free path of sound is small in comparis
with those scales on which the amplitude of the sound w
drs0 varies, then the latter is expressed in terms of the a
plitude Es as follows1–3 2!:

drs05
iks

16pgsVs
S r

]«

]r DE1E21* , ~3!

wheregs is the decay decrement of the sound waves, wh
is assumed to be small in comparison withvs ; r is the
density of the medium; andr(]«/]r) is the electrostriction
coefficient.2

Substituting relations~1!–~3! in the Maxwell equations
and discarding small terms proportional to the second der
tive of the slowly varying amplitudeEs , we obtain

H i S 1

Vg

]

]t
1s

]

]zD1
1

2k
D'1

v

2Vg
S ]«

]r D dr

1 is
v2

32pc2gsVsr
S r

]«

]r D 2

uE2su2J Es50, ~4!

where, taking the inequalityvs!v1 ,v21 into account, we
assume thatv1'v215v and2k21'k15k; the group ve-
locity is equal to

Vg5c@d~vA«~v! !/dv#21,

andD' is the transverse part of the Laplace operator

1

r

]

]r S r
]

]r D .

In Eqs. ~4! self-focusing is taken into account by th
third term inside the braces. The equation for the correspo
ing perturbation of the medium density has the form
-

d
-

-

nd

e
-

h

a-

d-

S ]2

]t2
12G

]

]t
2Vs

2D'D dr

52
1

16p S r
]«

]r DD' (
s561

uEsu2, ~5!

whereG is the attenuation coefficient for the small-scale de
sity perturbations.

Treatments of MBIS do not usually take account of se
focusing, and the term proportional todr in system of equa-
tions ~4! is usually neglected. On the other hand, treatme
of self-focusing neglect MBIS. This corresponds to disca
ing the fourth term in Eq.~4! for s51 and taking accoun
only of the term withs51 on the right-hand side of Eq.~5!.

For the numerical calculations, we represent Eqs.~4! and
~5! in dimensionless form:

H i S ]

]t
1s

]

]j D1D̄'2A1 isGue2su2J es50, ~6!

S 1

b2

]2

]t2
1

2Ḡ

b

]

]t
2D̄'D A5aD̄' (

s561
uesu2, ~7!

where

t5tc/2ka2, j5z/2ka2,

Ḡ5Ga/Vs , es5Es /Em ,

D̄'5
1

h

]

]h S h
]

]h D , h5r /a,

b52ka
Vs

Vg
, G5

kVs

gs
a,

a5
1

2 S av

c D 2 Em
2

8prVs
2 S r

]«

]r D 2

, A52S va

c D 2

dr
]«

]r
,

Em is the maximum amplitude of the electric field of th
incident beam on the axish50, anda is the characteristic
initial size of the focal spot at the boundaryj50.

In the solution of Eqs.~6! and ~7! we assume that the
incident beam at the left-hand boundary of the layerj50
and the scattered ‘‘primer’’ beam at the right-hand bound
j5j0>1 have planar wavefronts and a Gaussian inten
distribution in the radius:

e1~h,j50,t!5 f ~t!exp~2h2!,

e21~j,j5j0!5eb exp~2h2/b2!. ~8!

Here the functionf (t)<1 describes the variation with tim
of the amplitude of the incident beam,b is the dimensionless
width of the scattered ‘‘primer’’ beam. Forb@1 the ampli-
tudee21 is essentially constant over the width of the incide
beam and it is possible to speak of spatially homogene
‘‘priming.’’ The boundary conditions in the radial variabl
corresponded to the symmetry of the fields and the den
perturbations relative to theh50 axis and to their falloff at
infinity ~in reality at somehmax@1). Initial density perturba-
tions dr were assumed to be absent.
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FIG. 1. Variation of the MBIS reflection coefficien
R as a function of the dimensionless timet
52kVs

2t/c for various widths of the focal spot: a —
G515, uebu251027, b51.5 ~1!, b50.5 ~2!; b —
G520, uebu251026, b51.
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3. RESULTS OF NUMERICAL CALCULATIONS

The critical power of self-focusingPcr corresponds to a
definite value of the parametera5acr . This value can be
estimated if we neglect MBIS (e2150), assuming that the
beam is stationary@]/]t50 in Eqs.~6! and ~7!# and homo-
geneous in the longitudinal direction@]/]j50 in Eq. ~6!#.
Employing expression~8!, we find in the limit h→0 that
acr54. A more consistent analysis, correctly taking into a
count the radial dependence of the amplitudee1 inside the
medium, gives the valueacr57.54 ~Ref. 10!. In the calcula-
tions below we used the value of the parametera58.4
.acr .

The quantity Ḡ, characterizing the attenuation of th
large-scale perturbations of the medium density, was take

be equal to 0.25. Earlier it was shown20 that for Ḡ,1 attenu-
ation has a weak effect on the dynamics of self-focusing

In the results obtained below, growth of the amplitude
the incident beam with time was assumed to be instantan
@in formula ~8! the function f (t) is equal to zero fort<0
and unity fort.0#. Calculations with a linearly increasin
function f (t) on the interval 0<t<50 do not differ substan
tially from results obtained for a step function, in line wi
the results obtained in Refs. 20 and 21.

The system of equations~6!, ~7! was solved for various
values of the three parameters: the parameterG, which for a
fixed value ofa is determined by the dissipation of the sho
wavelength sound wavesgs ; the parameteruebu2 character-
izing the ‘‘primer’’ level of the scattered radiation; and th
parameterb proportional to the width of the focal spot. I
the absence of self-focusing (A50) the parametersG and
uebu2 in the steady-state linear theory of MBIS@when ]/]t
50 andG50 for s51 in Eq. ~6!# uniquely determine the
level of the backscattered radiation for a given plasma len
j0:

R05uebu2exp@~G/2!arctan~4j0!#,

where diffraction lowering of the pump field intensity ha
been taken into account. In the calculations we setj051,
which corresponds to the plasma length exceeding the
-

to

f
us

th

if-

fraction length of the laser beamka2/2 by a factor of four.
Note that forj0>1 the scattering level does not depend
the plasma length.

Figure 1 plots the dependence on the dimensionless
(2kVst)(Vs /c) of the total ~integrated over the radial vari
able! MBIS backscattering coefficientR:

R5
1

S0
E

0

`

dh hue21~j50,t,h!u2, ~9!

where the quantity

S05E
0

`

dh he22h2

defines the total energy flux of the incident radiation. In F
1a we used the parameter valuesuebu251027 and G515,
which corresponds togs/2kVs'0.25 and small initial scat-
tering R0'231023. As can be seen from the figure, for
wider beam (b51.5) the scattering coefficient pulsates
time ~the so-called spiking regime of MBIS! and the maxi-
mal values ofR exceed unity. As the width of the focal spo
is decreased (b50.5) the range of variation ofR decreases
and the spiking character of the scattering gives way to
cillations about a mean value. Here the amplitude of
oscillations of the functionR falls off with time.

Similar properties of the MBIS coefficient were also o
tained over a wide range of variation of the parametersG and
uebu2, whereG varied from 10 to 20, anduebu2 varied from
1028 to 1026. In all of these cases the initial scattering lev
was less than or on the order of 0.1%.

A different picture arises when the MBIS level is suffi
ciently high even in the absence of self-focusing. Figure
shows the variation ofR with time for R050.573 (b51, G
520, ueu251026). Clearly, the process has a relaxation
character and after a few oscillations the functionR relaxes
to a steady-state level.

In order to understand the physical processes that de
mine the properties of the reflection coefficientR, we have
constructed isocontours of the amplitude of the radiation
the incident and scattered beams in the (b2t,j) plane for
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FIG. 2. Lines of constant values of the modulus
the amplitude of the incident~a! and scattered~b!
radiation, density of the medium~c! in the
(2kVs

2t/c, z/2ka2) plane forh50 ~beam axis!, G
515, uebu251027 for a wide focal spotb51.5.
r
uc

ith
he

is
ed

t

es
of
te

d

th
e
el
i

ha
n

iu
e-
ish

am
to

cs.

ood
t of
oci-
ial

th
n-
d

ate

e

al to

-

o

h50 ~beam axis!, and also for the large-scale density pe
turbations associated with self-focusing. Figure 2 plots s
results for a relatively wide laser beam (b51.5) for a low
initial level of MBIS. The parametersG anduebu2 were taken
to be the same as in Fig. 1a. It can be seen that deep w
the medium a region is periodically created in which t
intensity of the incident radiation reaches a maximum@Fig.
2a# and the density of the medium, a minimum@Fig. 2c#. The
location of this region varies slightly with time, and it
there mainly that growth of the intensity of the scatter
radiation takes place@Fig. 2b#.

For a narrower beam (b50.5, Fig. 3! the process at firs
resembles what happened for a wide beam~Fig. 2! although
it develops more slowly. Then, however, a state arises
which MBIS occurs mainly near the boundary@Fig. 3b#,
where the intensity of the incident radiation is the high
@Fig. 3a#. The dimensions of the region of amplification
the scattered radiation pulsate with time, and this is reflec
in its intensity.

Note that the time-averaged MBIS coefficient depen
only weakly on the parameterb. It is equal to 0.277 forb
51.5 and 0.226 forb50.5.

Figure 4 plots the same functions as in Fig. 2, but for
parametersG and uebu2 corresponding to Fig. 1c, where th
scattering level is quite high even in the absence of s
focusing. It can be seen that although at the outset of
development the scattering dynamics are similar to w
took place for a low initial MBIS level, the scattering regio
then localizes near the boundary of the nonlinear med
@Fig. 4b# and the variation of all the quantities in time b
comes weaker and weaker and steady state is establ
comparatively rapidly.

As was already noted, switching on the incident be
gradually at the boundary, with characteristic time up
-
h

in

in

t

d

s

e

f-
ts
t

m

ed

t0550, does not alter the character of the MBIS dynami

4. DISCUSSION

The results of numerical calculations can be underst
by comparing the times characterizing the developmen
various nonlinear processes. Striction self-focusing is ass
ated with a redistribution of the medium density in the rad
direction and develops during a characteristic timets f

'a/Vs ~Refs. 20–22!. The transit time of radiation through
the interaction region equal in length to the diffusion leng
ka2/2 coincides in order of magnitude with the time of e
ergy exchange,tNL , between the incident and scattere
waves due to MBIS. According to Ref. 19, a more accur
expression for it has the form

tNL5
4pka2

VgGp9
, ~10!

wherep9 is the imaginary part of the complex solution of th
equation

uebu2expG2p~12p1uebu2!exp~pG!50. ~11!

The steady-state setup time, according to Ref. 19, is equ

t r5
2ka2

VgGup02p8u
, ~12!

wherep0 and p8 are the real root and real part of the com
plex root of Eq.~11!. For the parameteruebu2 varying within
the interval from 1026 to 1028 and the parameterG varying
within the interval from 10 to 20 the quantitiesGp9 and
Gup02p8u vary respectively from 5.3 to 7.8 and from 2 t
24.5.
al
FIG. 3. The same as in Fig. 2, but for a narrow foc
spotb50.5.
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FIG. 4. The same as in Fig. 2, but for a relative hig
initial MBIS level. Parameters the same as in Fi
1~b!.
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We may begin our discussion with a consideration of
case in which the initial MBIS level is quite low (R0

<1023) and the steady-state setup time~12! exceeds the
timests f andtNL . If ts f,tNL and correspondingly, accordin
to relation~10!,

b5
2kaVs

Vg
.b015

Gp9

2p

~wide beam!, then self-focusing develops faster than ene
exchange takes place between the incident and scat
waves due to MBIS. This is the case to which Fig. 2 cor
sponds. In the initial stage of the process, MBIS has alm
no effect on the development of self-focusing, and by
time ts f a region is formed in which the density of the m
dium is lowered while the intensity of the incident radiatio
is increased.20–22However, thanks to the exponential depe
dence onue1u2, starting at some time in this region, there
an abrupt growth in MB induced backscattering. The sc
tered radiation, propagating toward the boundaryj50 is am-
plified and depletes the energy of the incident beam. MB
arises in the form of spikes@Fig. 1a#. During the time it takes
a new portion of laser radiation to reach the self-focus
region the perturbation of the medium density has time
relax. The entire process begins practically anew. As a re
MBIS has the form of almost periodic short spikes of du
tion ts f . This regime was discussed in Ref. 17.

Note that increasing the size of the focal spot leads,
the one hand, to an increase in the self-focusing timets f

}a) and, on the other, to an increase in the length of
region and the characteristic time of the interaction betw
the incident and scattered waves (tNL}a2). Since the latter
time increases more rapidly with growth ofa for sufficiently
wide laser beams, the timets f is smaller thantNL and the
above-described region of pulsating MBIS should arise.

Let us turn now to the casets f>tNL andb,b01 ~narrow
beam! depicted in Fig. 3. Self-focusing does not have time
develop completely during the time it takes MBIS to ampl
to a level sufficient to substantially lower the intensity of t
incident beam in the focal region. It can be said that
sufficiently narrow laser beams MBIS suspends and s
presses the development of self-focusing@Fig. 3c#. Only near
the boundary of the medium@Fig. 3b# does a quasiperiodic
process of energy exchange between the incident and
tered beams arise. The oscillations in the MBIS intensity
Fig. 1a for b50.5 is quite well described by theory.19 In
particular, the mean level of the MBIS reflectionR50.226 is
e

y
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r
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found to be in reasonable agreement with the nonlinear
tionary theory,23 according to whichR50.18 for the param-
eters corresponding to Fig. 1a.

The effect of suppression of self-focusing by MBIS
even more vividly manifested at larger gain coefficientsG or
at a higher primer scattering leveluebu2. Figure 4, which
corresponds to Fig. 1b, depicts the dynamics of the proc
for those parameters for which the initial MBIS level is se
eral percent. It can be seen that self-focusing is suppre
@Fig. 4c# and the functionR has a relaxational character sim
lar to that considered in Ref. 19. However, also in this ca
an increase in the size of the focal spot to a value such
b57 leads to a spiking regime of MBIS.

Let us discuss the possibility of satisfying the conditio

b5b01 or
2kaVs

Vg
5

Gp9

2p
, ~14!

for which the oscillatory regime gives way to the spikin
regime ~see above! in the experiments. For liquids, solids
and gases the ratio of the velocity of light to the sound
locity is on the order of 105. For k51.263105 cm21; ~the
second harmonic of a neodymium-glass laser! it follows
from condition~14! that the diameter of the focal spot shou
exceed one centimeter, and the diffraction length, one k
meter. Under these conditions our assumption that the th
ness of the layer of nonlinear medium exceeds the diffrac
length is difficult to fulfill under laboratory conditions. In
hot, rarefied plasma the situation is different. Thus, at
electron temperatureTe51 keV in a hydrogen plasma th
ratio Vg /Vs'33103 and for the second harmonic of
neodymium laser, condition~14! is fulfilled for the diameter
of the focal spot on the order of 50mm, for which the dif-
fraction length is around 8 mm.

Pulsations of the MBIS intensity have been experime
tally observed more than once in a hot plasma~see, e.g.,
Refs. 24–28!. However, the conditions in which these e
periments were performed did not always correspond to
formulation discussed in this work. In Refs. 24 and 25 t
plasma was inhomogeneous and the incident beam was
tially reflected from the region with critical density. Thi
created additional possibilities for the MBIS pulsation
which are discussed, for example, in Refs. 26 and 27.
other experiments the plasma was transparent to radia
but its dimensions were less than the diffraction leng
which suppressed self-focusing and increased the role
MBIS over a wide range of angles.14,16We know of only one
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experiment28 in which the conditions corresponded to th
formulation under discussion. The main characteristics of
experiment were:v'231014s21 (CO2 laser!, ratio of the
electron densityn to its critical valuenc5mv2/4pe2 equal
to 0.16;a'1022 cm, I 523101121012W/cm2, Te5100 eV;
the length of the plasma was 1.2 cm and exceeded the
fraction length. In the experiment pulsations of MB induc
backscattering were observed at a level of 10–20% w
characteristic period on the order of 150 ps.

According to the definition given above, the quantitya
can be written for a plasma in the form29

a5S vpaVE

2cVT
D 2

, ~15!

wherevp is the plasma frequency,VT and VE are respec-
tively the thermal velocity of the electrons and the veloc
of their oscillations in the laser radiation field (VE

5eEm /mv). Substituting the above values into formu
~15!, we find that for the conditions of the experiment in R
28 a'40.acr for I 5631011W/cm2. In addition, we find
that for the given experimentb'0.04 while the quantityb01

is on the order of 2. Sinceb is much less thanb01, the
spiking regime of MBIS cannot be realized. An estimate
the period of the oscillations according to formula~10! gives
a value on the order of 50 ps forGp955. Thus, the results o
the experiment in Ref. 28 correspond more closely to
MBIS regime considered in Ref. 19.

Note that Ref. 30 investigated experimentally the d
namics of MBIS in a rarefied plasma@(vp /v)2'0.045# as a
function of the means of focusing the radiationk
'105 cm21, a'50270mm, I;1014W/cm2, Te'1 keV!.
The parameterb was equal approximately to 0.2, which vi
ibly corresponds to the oscillatory regime of MBIS. How
ever, the short duration of the laser pulse (;1.6 ns! did not
allow the authors of Ref. 30 to observe variations in MB
with time.

To realize the spiking regime of MBIS in a hot plasm
with Vs /c'331024 andP/Pcr>1 the ratio of the length of
the plasmaL to the radius of the focal spota should exceed
1.53103. If we assume thata'20mm, we obtain a lower
bound on the length of the plasma:L>3 cm. An experiment
with this goal, employing the scheme under discuss
would make it possible, on the one hand, to check the va
ity of our picture of the dynamics of MBIS under condition
of self-focusing and, on the other, in the case of the spi
MBIS regime, to obtain short, intense pulses of backsc
tered radiation.

This work was carried out with partial financial suppo
of the Russian Fund for Fundamental Research~Projects No.
97-02-16537 and 96-02-00021c!.
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Field splitting of a nonabsorbing state
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This paper analyzes a four-level system interacting with four strong fields with frequencies
combining into a cycle. The conditions for coherent population trapping, when a nonabsorbing
superposition of states forms, are calculated. It is found that, in contrast to a three-level
system, the nonabsorbing state splits, i.e., is realized at two values of the detuning. Such splitting
manifests itself as narrow dips in the frequency dependence of the upper-level population.
Similar dips are found in the spectrum of the nonlinear susceptibility, which is responsible for the
conversion efficiency in the process of four-wave mixing. ©1999 American Institute of
Physics.@S1063-7761~99!00406-0#
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1. INTRODUCTION

Nonlinear optics has three basic ways to change the
quency of coherent radiation: stimulated Raman scatter
parametric mixing, and higher harmonics generation.
achieve highly efficient conversion of radiation in the c
mode by any of these methods, the frequencies of the wa
must be tuned in resonance with the atomic transitions s
to increase the nonlinear susceptibility. The gain may be s
stantial in gases, since the spectra of gases usually have
row lines.

The most promising schemes are those of four-w
mixing with frequency subtraction, which occasionally ma
it possible to compensate for Doppler broadening.1 A high
efficiency of conversion of the light frequency has be
achieved in pulsed experiments involving Pb vapo2

Quasi-cw generation has been demonstrated by Mara
et al.,3 who used the rhombic scheme and atomic krypt
The cw mode of four-wave mixing with substantial upco
version in the optical range has been realized by Apolon
et al.,4 who used sodium dimers in the doubleL scheme.
Both mixing schemes are depicted in Fig. 1. The cycle c
ditions for the doubleL scheme and the rhombic scheme a

va2vb2vc1vd50, va2vb1vc2vd50, ~1!

whereva , vb , vc , andvd are the frequencies of the ele
tromagnetic fields, and differ in the sequence of signs~either
7 or 6) in the third and fourth terms. Hence the schem
are sometimes called difference–sum and sum–differe
respectively. The conversion efficiency in the doubleL
scheme proved to be high~25% in relation to the lowes
intensity of the exciting fields5!. However, efficient conver-
sion is usually hindered by the resonant absorption of li
by the medium.

To avoid absorption, Harriset al.6 proposed using the
effect of electromagnetically induced transparency, wh
emerges in the medium because of coherent population
ping ~see also Refs. 2, 7 and 8!. Coherent population trap
ping in three-level system has been thoroughly studied9,10
1071063-7761/99/88(6)/7/$15.00
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The physics of this effect amounts to interference of
quantum states mixed by a strong field. In a three-leveL
system, coherent population trapping manifests itself at eq
detunings of the fields in relation to the corresponding tr
sitions as a split-off state, a linear combination of the pair
lower states not interacting with the field. If the detuning
one field is fixed, the curve representing the fluoresce
intensity as a function of the detuning of the second fi
exhibits a narrow deep dip, which manifests itself as
‘‘dark’’ resonance. Generalization of the theory of cohere
population trapping toN-levelsystems has also been di
cussed~see Ref. 10 and the literature cited therein!. How-
ever, the role of coherent population trapping in reson
four-wave mixing remained unclear. In their work devoted
amplification without inversion in a doubleL scheme, Ko-
charovskaya and Mandel11 took the criterion for coheren
population trapping from the theory of three-level system
On the other hand, in their studies of completely reson
four-wave mixing in a strong field, Coppetaet al.12 ignored
the criterion for coherent population trapping entirely.

In the present work we will calculate the nonlinear su
ceptibility in the simplest schemes of four-wave mixing wi
frequency subtraction. To this end, in Sec. 2 we will use
equations for the vector of the amplitudes without relaxat
to derive, by a simple algebraic method, the criterion
coherent population trapping in the four-level system. W
will find that the nonabsorbing state splits, i.e., a split-o
state not interacting with the field is observed at two valu
of detuning. In Sec. 3 we will solve numerically the equ
tions for the density matrix in the doubleL scheme with
allowance for relaxation. We will find that the abrupt dip
the curve representing the frequency dependence of
upper-level splits into two components. There we will al
calculate the manifestation of coherent population trapp
in the spectral contours of nonlinear susceptibility. Sectio
will be devoted to a discussion of why splitting of a nona
sorbing state has not been observed in either measurem
or computer simulations in four-wave mixing known fro
the literature. We will also establish the conditions for e
2 © 1999 American Institute of Physics
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FIG. 1. DoubleL ~a! and rhombic~b! schemes of four-wave mix-
ing with frequency subtraction.
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perimental verification of the effect. In Sec. 5 we will sum
our findings.

2. CONDITIONS FOR EMERGENCE OF A NONABSORBING
STATE

We will examine a doubleL system~Fig. 1a! that reso-
nantly interacts with four electromagnetic fields. The ene
levels are labeled by the numbersj 51, 2, 3, and 4, and the
fields by the lettersn5a, b, c, andd:

E~ t !5
1

2 (
n5a,b,c,d

En exp$2 ivnt%1c.c., ~2!

whereEn andvn are the amplitudes and frequencies of t
fields. At first we ignore relaxation and write the Schro¨dinger
equation for the column vectora5(a1 ,a2 ,a3 ,a4)T (T stands
for ‘‘transposed’’! of the probability amplitude of the system
being in statesu j & ( j 51, . . . ,4) in theinteraction picture:

i ȧ5Va. ~3!

The interaction matrix elements are nonzero for allow
transitions:

V135Ga exp$2 iVat%, V145Gb exp$2 iVbt%,

V235Gc exp$2 iVct%, V245Gd exp$2 iVdt%. ~4!

Here theVn are the detunings of the field with respect to t
corresponding transitionsv i j [(Ei2Ej )/\, i , j 51, . . . ,4:

Va5va2v31, Vb5vb2v41,

Vc5vc2v32, Vd5vd2v42, ~5!

andGn52En–dn/2\ are the Rabi frequencies, i.e., the am
plitudes of the matrix elements of the interaction of the fie
En with the dipole moments of the transitions,dn .

Now we will proceed with the search for a nonabsorbi
state. We transform the Schro¨dinger equation~3! into a sys-
tem of equations with constant coefficients by transform
the Hermitian matrixV5V† into a time-independent matri
via a unitary transformationU:
y

d

s

g

ã5Ua, Ṽ5UVU†2 iUU t
† . ~6!

Such a ‘‘stopping’’ transformation can be selected if we lo
for its matrix in diagonal form:

U5exp$2 iHt %, H5diag~D1 ,D2 ,D3 ,D4!. ~7!

For the undetermined coefficientsD i we have a degenerat
system of homogeneous linear equations, which has a s
tion if

Va2Vb2Vc1Vd50. ~8!

This condition is a corollary of the cycle~1! in the frequen-
cies of the fields. One parameter can be specified arbitra
say D450, and the other parameters are uniquely defin
D15Vc , D25Vd , andD35Vc2Va . Reasoning in a simi-
lar manner, we use the unitary transformation

U15exp$2 iF%, F5diag~f1 ,f2 ,f3 ,f4!,

to transform the Rabi frequenciesGa , Gb , Gc , andGd into
real positive parameters when the synchronism conditio
met, orwa2wb2wc1wd50, with thewn the phases of the
fields. The synchronism condition is met if one of the fiel
s,for examplec, is generated as a result of four-wave mixin
But if there is no phase synchronism, only three amplitud
can be made real. We write the resulting matrixṼ explicitly.
For conciseness we denote a Rabi frequency by its in
~i.e., we drop the letterG), or Gn→n, with n5a, b, c, andd:

Ṽ5S Vc 0 a c

0 Vd b d

a b Vc2Va 0

c d 0 0

D . ~9!

In a real four-level system there is relaxation. If the u
per levelu4& decays much faster than the statesu1&, u2&, and
u3& (G1,2,3!G4), the problem of mixing these states by
field into a coherent superposition can be studied with
allowing for relaxation whenG1,2,3!Gn . In particular, under
a certain restriction imposed on the parameters such a su
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position of long-lived states may split off and not intera
with the field. We call such a superposition a split-off sta

Below we derive a criterion for the emergence of suc
split-off state. Note that we began with the amplitude eq
tions ~3! without relaxation. If we account for spontaneo
decay, the population is transferred to the split-off st
through level u4&. If this split-off state is long-lived, the
fields cease to be absorbed. Such a nonabsorbing state
four-level system manifests itself as a narrow dip in the f
quency dependence of the population of levelu4&. A similar
narrow resonance appears in the frequency dependenc
the fluorescence signal from levelu4&.

We begin with the thoroughly studied simple case o
three-levelL scheme, which we will attempt to generalize
a four-level scheme. Ifa5b50, the diagrams in Figs. 1
and 1b reduce to the three-level diagramu1&–u4&–u2&. To
find the condition for emergence of a split-off state, we se
the eigenvector (a1 ,a2 ,a4) of the operator

V35S Vc 0 c

0 Vd d

c d 0
D , ~10!

in which a450 anda1, a2Þ0. For the nonzero componen
we obtain an overdetermined system of linear equations

Vca15la1 , Vda25la2 , ca11da250, ~11!

wherel is the eigenvalue. The system~11! has a solution if
l5Vc5Vd , i.e., only for equal detunings. The normalize
eigenvector of the split-off state has the form

ual&52
d

Ac21d2
u1&1

c

Ac21d2
u2&. ~12!

Such a state is known from the theory of coherent popula
trapping in a three-level system.10

Now we will derive the conditions for split-off in a four
level system with fieldsa,bÞ0. Bearing in mind the direc-
tion of the spontaneous decay of levelu4&, we must find the
split-off coherent superposition of the statesu1&, u2&, and
u3&. To do this, we must solve the eigenvalue problem

Ṽal5lal ~13!

and find an eigenvectoral5(a1 ,a2 ,a3,0)T in which the
fourth component is zero. For the first three nonzero com
nents,a1 , a2, anda3, we arrive at an overdetermined syste
of linear equations, a system that has a solution if there
common rootl for the two equations

b~ad2bc!1c~Vc2Va2l!~Vd2l!50,

bd~Vc2l!1ac~Vd2l!50. ~14!

If we combine this with~8!, we arrive at the condition

Va2Vb5
ac1bd

bd
F2

Vb

2
6AVb

2

4
1

b

c
~bc2ad! G ,

~15!

which links two detunings and four Rabi frequencies.
The curve representing theVa vs. Vb dependence~Fig.

2! is a hyperbola with its vertex at the origin and two asym
t
.
a
-

e

f a
-

of

k

n

o-

a

-

totes, Va5Vb and Va52Vbac/bd. The first asymptote
corresponds to a criterion for coherent population trapping
the three-levelL scheme, while the second emerges in t
four-level scheme. Ifbc,ad, a vertical bandVb

2<4b(ad
2bc)/c, known as the forbidden band, appears in t
(Va ,Vb) plane, and inside this band there can be no coh
ent population trapping, no matter what the value ofVa is.
Whenbc is exactly equal toad, the hyperbola degenerate
into a pair of straight lines intersecting at the origin.

The two branches of the hyperbola can be interpreted
a manifestation of the splitting of a nonabsorbing state i
four-level system into two components. To find the cor
sponding wave functions, we must solve the spectral pr
lem ~13!. The eigenvalue can be found from~14!,

l5
acVd1bdVc

ac1bd
,

and the unnormalized eigenvector is

al5S 2bd, bc, cF2
Vb

2
6AVb

2

4
1

b

c
~bc2ad! G , 0D T

.

~16!

In a special case we can also find the nonabsorbing s
in which only two states are mixed,u1& and u2& ~as in a
three-level system! rather than three. For such mixing to o
cur, additional conditions linking the field amplitudes and t
detunings must be imposed. To obtain these conditions,
seek the eigenvector of the matrixṼ in the subspace of state
orthogonal to the vectorsu3& andu4& (a35a450). The solv-
ability condition amounts toVc5Vd ~which also means tha
Va5Vb) and an equation that links the amplitudes:

Ua b

c d
U50. ~17!

In the given special case, the hyperbola degenerates in
pair of straight lines intersecting at the origin. Here, as E
~16! implies,a3 vanishes, too. The normalized split-off sta
al is the same as in the three-level system@Eq. ~12!#.

FIG. 2. Criterion for coherent population trapping in the (Va ,Vb) plane.
The solid curves correspond to the casebc.ad (a51, b52, c53, andd
54); the dashed curves represent a resonant hyperbola in the opposite
bc,ad (a, b, andc are the same andd58).



th
n

ts

el

-

e
or
e

be

t-

io

rs

on
to

em
lax-
s
i-

ts

on

ite

s

vels

in

1075JETP 88 (6), June 1999 D. A. Shapiro
We sought a linear transformation that would leave
stateu4& in place to account for the direction of relaxatio
processes. Coherent population trapping in which statesu1&,
u2&, and u3& are mixed can occur if the relaxation constan
of these levels,G1,2,3, are small compared toG4. The special
case~17! can be realized if the relaxation constants of lev
u1& and u2& are relatively small.

In the symmetric casea5c, b5d, Va5Vc , and
Vb5Vd , the interaction operator~9! becomes invariant un
der the permutationu3&↔u4&. Then al5(0,0,1,21)T be-
comes an eigenvector and the difference of amplitud
a3(t)2a4(t), a constant of the motion. In the subspace
thogonal to the vectoral the system reduces to a three-lev
scheme. Ata5b, c5d, Va5Vb , andVc5Vd , the vector
(1,21,0,0)T becomes an eigenvector and the system
comes invariant under the permutationu1&↔u2&. The sym-
metric linear combination~12! of these two states is the spli
off state.

Reasoning along similar lines, we arrive at an interact
matrix for the rhombic scheme~Fig. 1b!. The matrix differs
from ~9! by the signs of two detunings:Vc→2Vc andVd

→2Vd . Using the synchronism condition, which diffe
from ~8! in the signs ofVc andVd ,

Va2Vb1Vc2Vd50, ~18!

we arrive at the same criterion~15! for the detunings.

3. DARK RESONANCE IN THE NONLINEAR SUSCEPTIBILITY

In this section we will use the quantum kinetic equati
for the density matrix in the relaxation-constant model
e

s

s,
-
l

-

n

allow for the decay of states. For an open four-level syst
there are fourteen such parameters: four population re
ation constantsG j ( j 51,2,3,4), four relaxation constant
Gn (n5a,b,c,d) for the polarizations of the allowed trans
tions, two coherence decay constantsG12[Ge and G34[G f

for the forbidden transitions, and four Einstein coefficien
An .

As in Sec. 2, the Hamiltonian in the dynamical equati
ṡ52 i @V, s# for the density matrixs can be made time-
independent via the unitary transformation~7!:

r5exp$ iHt % sexp$2 iHt %,

Ṽ5exp$2 iHt % Vexp$ iHt %1H,

and matrix~9! can also be obtained.
When relaxation is included in the picture, we can wr

the kinetic equation as a system of equations

Ṙ52 i L̂R1Q, ~19!

where Q is the column of incoherent excitation rate
(Q5 j 245G jNj , while the other components ofQ are zeros!,
Nj are the steady-state values of the populations of the le
unperturbed by the field (N11N21N31N451), R is the
column of the elements of the density matrix ordered
rows,

R5~r11,r12,r13,r14,r21,r22,r23,r24,r31,

3r32,r33,r34,r41,r42,r43,r44!
T,

and L̂, known as the superoperator,13 is the 16316 matrix
L̂5

¨

G1 0 a c 0 0 0 0 2a 0 2Aa 0 2c 0 0 2Ac

0 Ĝ12 b d 0 0 0 0 0 2a 0 0 0 2c 0 0

a b Ĝ13 0 0 0 0 0 0 0 2a 0 0 0 2c 0

c d 0 Ĝ14 0 0 0 0 0 0 0 2a 0 0 0 2c

0 0 0 0 Ĝ21 0 a c 2b 0 0 0 2d 0 0 0

0 0 0 0 0 G2 b d 0 2b 2Ab 0 0 2d 0 2Ad

0 0 0 0 a b Ĝ23 0 0 0 2b 0 0 0 2d 0

0 0 0 0 c d 0 Ĝ24 0 0 0 2b 0 0 0 2d

2a 0 0 0 2b 0 0 0 Ĝ31 0 a c 0 0 0 0

0 2a 0 0 0 2b 0 0 0 Ĝ32 b d 0 0 0 0

0 0 2a 0 0 0 2b 0 a b G3 0 0 0 0 0

0 0 0 2a 0 0 0 2b c d 0 Ĝ34 0 0 0 0

2c 0 0 0 2d 0 0 0 0 0 0 0 Ĝ41 0 a c

0 2c 0 0 0 2d 0 0 0 0 0 0 0 Ĝ42 b d

0 0 2c 0 0 0 2d 0 0 0 0 0 a b Ĝ43 0

0 0 0 2c 0 0 0 2d 0 0 0 0 c d 0 G4

©

, ~20!



of
n-

1076 JETP 88 (6), June 1999 D. A. Shapiro
FIG. 3. Populationr44 as a function of the
detuningVc for different values ofc at b
50 ~a!, b52 ~b!, a51, d54, G15G25G3

50.01, andG451. The off-diagonal relax-
ation constants are equal to the half-sums
the corresponding diagonal relaxation co
stants: G i j 5(G i1G j )/2; N151, N25N3

5N450, Vb5Vd50, andVc5Va .
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Ĝ125 iGe2~Vd2Vc!, Ĝ135 iGa1Va , Ĝ145 iGc1Vc ,

Ĝ215 iGe1~Vd2Vc!, Ĝ235 iGb1Vb , Ĝ245 iGd1Vd ,

Ĝ315 iGa2Va , Ĝ325 iGb2Vb , Ĝ345 iG f1~Vc2Va!,

Ĝ415 iGc2Vc , Ĝ425 iGd2Vd , Ĝ435 iG f2~Vc2Va!.

The matrixL̂ becomes symmetric only if there is no spon
neous decay via the allowed transitions,An50. When
there is no relaxation, G j5Gn50, j 51, . . . ,4 and
n5a,b,c,d,e, f , the matrix becomes traceless.

Below we give the steady-state solutions of Eqs.~19!
obtained by numerically inverting the matrix~20! by Gauss’s
method. Figure 3 depicts the dependence of the populatio
level u4& on the frequency detuningVc5Va at Vd5Vb

50. To land in the range of parameters that ensures cohe
population trapping, the relaxation constants of levelsu1&,
u2&, and u3& were chosen so as to be one hundred tim
smaller than the relaxation constant ofu4&. Figure 3a depicts
the case whereb50, with the result that the field cycle i
broken and the system reduces to a three-level scheme.
reader can clearly see a narrow dip near zero detuning,Vd

50, corresponding to the condition for coherent populat
trapping. As the amplitude of fieldc increases, the dip be
comes shallower due to the smoothing effect of saturat
Figure 3b corresponds to the case wherebÞ0, with the re-
sult that a ‘‘dark’’ resonance appears atc52, when bc
5ad. Whenbc.ad (c53), the dip in the population of the
upper level~and hence in the fluorescence signal! splits into
two narrow components.
-

of

nt

s

he

n

n.

The absolute value of the nonlinear susceptibilityb
}ur14u at the frequencyvc was also calculated. In the sim
plest model, which ignores the depletion of the pump fie
a, b, and d, the propagation of fieldc is described by a
truncated Maxwell equation with polarizationr14 on the
right-hand side. Hence for an optically thin medium we ha
c2}ur14u2L2, whereL is the range of the medium. The de
pendence of the conversion coefficientb ~in arbitrary units!
on the detuning is depicted in Fig. 4a for three values of
amplitude c51,2,3. The parameters are chosen in suc
way that the curve forc51 corresponds tobc,ad and no
coherent population trapping atVa50 is present on it. Equa
tion ~17! is valid on the curve forc52, with the result that
coherent population trapping appears at the center of the
Va50. The opposite inequalitybc.ad holds for the curve
with c53; hence according to Fig. 2 this curve reflects t
presence of two resonances, in accordance with two sign
~15!. We see that the resonance, split into two broad sy
metric humps, also acquires a wide central component, a
narrow dip grows with increasing fieldc at the center of the
component. Then, as the field gets stronger, the dip sp
into two components. The narrow dips in the curve forc
53 are positioned at approximately the same frequencie
the abrupt dips in the population of stateu4& in Fig. 3b. At
VbÞ0 the ‘‘dark’’ resonance shifts. An example of an asym
metric frequency dependence is illustrated by Fig. 4b. Wh
VbÞ0, the radicand in~15! changes sign at a smaller valu
of c. Hence in Fig. 4b the splitting of the nonabsorbing st
is clearly visible already in the curve forc52.
FIG. 4. Nonlinear susceptibility~in arbitrary
units! as a function of the detuningVa at G1

5G25G350.01, G451, G i j 5(G i1G j )/2, An

50, a51, b52, d54, c51,2,3, Vd50, Vc

5Va2Vb , N151, and N25N35N450; Vb

50 ~a! andVb50.5 ~b!.
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FIG. 5. Absolute value of polarization}ur14u as
a function of the detuningVa and the fieldb: ~a!
a5d50.001, c50, and G15G25G35G4

50.5; and ~b! a51, c53, d54, G15G2

50.01, G350.5, and G453. EverywhereAn

50, N151, andN25N35N450.
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4. DISCUSSION

Figure 5 depicts the quantity}ur14u as a function of the
detuning of the fielda and the Rabi frequencyb if initially
only level u1& was populated. In the case of weak fieldsa, c,
andd, Fig. 5a shows the splitting of the resonance into th
peaks: one peak is not shifted, and the two peaks that
shifted in relation toVa50 represent the components of th
Autler–Townes doublet, as they do in Ref. 12. The pictu
changes dramatically as the fields become strong. Figur
shows that when the field strength exceeds a certain cri
value, the frequency dependence acquires a ‘‘dark’’ re
nance, which splits into two components. The distance
tween the dips grows as fieldb becomes stronger. Asb in-
creases, the central component~which is split into two
components! transforms into a triplet and then into a quart
Without the side components~not shown in the figure!, there
are altogether six components in the nonlinear susceptib
spectrum.

Lin et al.14 studied the degenerate four-wave mixing
the light of a titanium–sapphire laser at theD2 line of 85Rb.
The level configuration corresponded to a two-level syste
so that the spectrum of the probe field exhibited a double
triplet. In our setting a two-level system corresponds to
case of three weak~or far from resonance! fields, saya, c,
and d and one strong field,b ~see Fig. 5b!. A two-level
system does not exhibit coherent population trapping—th
is only the splitting of the resonance into three compone
corresponding to the transitions between the differ
quasienergy levels.

To achieve frequency conversion in Pb vapor, J
et al.2 used the mixing of the second and third harmonics
the light of a titanium–sapphire laser (lb5406 nm, ld

5283 nm,la5293 nm, andlc5425 nm!. However, in the
doubleL scheme they selected for the intermediate stateu3&
~Fig. 1a! a virtual level detuned by 1112 cm21 from u4&.
Hence the system was three-level and no splitting of coh
ent population trapping was observed either in the exp
ment or in computer simulations.

In their numerical calculations, Petchet al.7 studied the
mixing process in the rhombic krypton scheme. For the s
u2& ~Fig. 1b! they took a virtual level lying betweenu3& and
u4& and corresponding to the two-photon transitionu3&
→u4&. The system becomes three-level, the superoperat
a 939 matrix, and the nonabsorbing state does not split.
frequency dependence of the nonlinear susceptibility in R
7 consists of two components.
e
re

e
5b
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In studying the linear regime of amplification of
bichromatic field without inversion in a doubleL scheme,
Kocharovskaya and Mandel11 examined, for the sake of sim
plicity, a special symmetric case. In the notation adopted
the present paper this case can be written asVn50, a5b,
andc5d. The truncated Maxwell equations retain this pro
erty even if we allow for depletion of pumping in the me
dium. Thenbd5ac, i.e., condition~17! is met and the same
nonabsorbing state as in the three-level system@Eq. ~12!# is
retained.

In their experiment, Babinet al.5 fed the fieldsd, c, and
b (ld5488 nm,lc5599 nm, andlb5655 nm! to an external
cell from an argon and dimer Raman laser and a dye la
respectively. The fielda was generated in the process
resonant four-wave mixing, The fieldsa andc turned out to
be weak, and the detuningsVd andVc could not be varied
independently, since they were rigidly coupled by the con
tion for Raman generation. Hence no splitting of coher
population trapping was observed in the experiment. Neit
was there any splitting in the theory of a doubleL scheme
with two strong fields in the opposite transitions,15 while the
appearance of two additional peaks in the nonlinear sus
tibility spectrum~i.e., in addition to the four ordinary peaks!
was a consequence of averaging over velocities.

If we want to observe the effects of coherent populat
trapping in four-wave mixing, we must make all four field
strong, uGnu@uGn2 iVnu, and the three lower levels suffi
ciently narrow compared to the upper level. The effect
most appreciable atad5bc in exact resonanceVa5Vb

5Vc5Vd50. In this case, according to~17!, there is no
splitting, with the result that the dip in the dependence of
nonlinear susceptibility on the amplitude of wavec remains
abrupt even if the relaxation constant of levelu3& is large
~Fig. 6!.

The highest intensity of the field generated in the proc
of continuous resonant four-wave mixing with upconversi
was attained by Hinzeet al.16 In exciting molecular sodium
vapor by laser light of wavelengthsla5665 nm,
lb5756 nm, andld5532 nm and input powers of abou
100 mW, the output power of the generated light atlc

5480 nm was found to be about 0.1 mW, which is too low
observe the effect. However, the power of the genera
wave can be raised by stabilizing the frequency of the ex
ing radiation. Much stronger fields can be generated in
pulsed mode. Recently, Dorman and Marangos8 observed a
five-fold pulsed increase in the efficiency of four-wave mi
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ing due to electromagnetically induced transparency in kr
ton.

5. CONCLUSION

In this paper we have focused on a new coherence ef
the splitting of a nonabsorbing state in a four-level syste
The aim of the work was to demonstrate that the eff
strongly influences the dependence of populations and n
linear susceptibility of the frequencies and amplitudes of
waves. It was found~and corroborated by numerical calc
lations! that under certain conditions deep narrow dips fo
in the dependence. Experimental verification of the eff
requires that all four fields be strong.
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FIG. 6. Nonlinear susceptibility~in arbitrary units! as a function of the Rabi
frequencyc at a51, b52, d54, G15G250.1, andG451. Curve1 corre-
sponds toG350.1, curve2 to G350.3, and curve3 to G351 (An50 and
Vn50).
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Subthreshold resonances in three-particle molecular systems
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This paper examines the resonant scattering of a light particle by a pair of identical particles in
the Efimov limit. An analytic expression for the resonance widths is derived. The results
of calculations are compared with the solution of Faddeev integral equations within a broad range
of masses of the light particle. It is shown that the widths of the subthreshold resonances in
the scattering amplitude obtained from the integral equations with Yamaguchi potentials are
accurately described by the analytic expression, which makes it possible to use this
expression in a range of masses inaccessible to numerical calculations. The conclusion is drawn
that the lifetime of highly excited negative molecular ions is infinite. ©1999 American
Institute of Physics.@S1063-7761~99!00506-5#
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1. INTRODUCTION

Recent publications1–3 examined exotic states of system
consisting of neutral atoms and an electron. These st
have large dimensions~up to several tens of angstroms! and
are a reflection of the effects of three-body dynamics at
pairwise binding energies. For example, by directly anal
ing the Faddeev equations1 the effective interaction potentia
of two neutral atoms in the presence of an electron w
found. This potential is local over the range1!

max~r 0!!r !min~k21! ~1!

(r 0 is the range of the pairwise forces, andk is the wave
number of the bound or virtual state of the pair! and contains
not only long-range components of the 1/r 2 type ~which is
characteristic of the Efimov effect4! but also terms of the
quasi-Coulomb form~of the 1/r type!, which provide the
main contribution to the spectrum of negative diatomic m
lecular ions with a moderate binding energy of the elect
and atom~the binding may be real or virtual!. In particular,
the experimental data on the scattering of an electron b
helium atom suggest that even in the absence of an ato
atom interaction, a bound state of the He2

2 system can exist.2

Furthermore, a study of a system consisting of three neu
atoms of alkali metals and an electron3 has shown that the
effective interaction generated by the electron ensures
existence of more than 1000 bound states. It was assu
that such system can serve as a starting point for the for
tion of clusters in highly rarefied gases. However, the ana
sis proved to be incomplete in the presence of an atom–a
interaction with a binding energy higher than the bindi
energy of the three-particle system. In this case the sys
can disintegrate into a molecule and a free electron, with
bound states of the three-particle complex transforming
resonances with lifetimes determined by the resona
widths.

The present work studies these widths within the sc
of three-body scattering of a light particle by a bound pair
heavy particles. Here, as in Refs. 1 and 2, we examine
1071063-7761/99/88(6)/8/$15.00
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tems in which the pairwise scattering length is much grea
than the ranges of the pairwise forces, a condition co
sponding to that for the Efimov effect:

kr 0!1. ~2!

The binding energy of the atom is assumed finite, while
binding energy in the electron–atom pairs is assumed to v
ish, so as to simplify analytic calculations. Thus, the tra
formation threshold for the system coincides with t
breakup threshold, and the three-particle spectrum1,2 men-
tioned earlier is a spectrum of subthreshold Efimov re
nances. Such resonances~but only below the excitation
threshold! were examined in Ref. 5 for a three-boson syste
There it was noted that both the positions of the resonan
and their widths are equidistant on a logarithmic scale.

This paper examines the case in which the mass of
of the particles is much less than the masses of the other
This means that we a dealing with almost classical motion
the heavy particles,1 which technically makes an accura
numerical solution of the Faddeev equations for the electr
to-atom mass ratio impossible. Hence, as in Ref. 1, in
present work the numerical calculations were done for m
ratios not exceeding 1/100 in order to verify the validity
the analytic relationship linking the widths and positions
resonances, a relationship that can be derived for very
row ranges of the pairwise forces. We show that the anal
expression provides a satisfactory description of the
tremely complicated mass dependence of the resona
widths, which makes it possible to use this expression
estimating resonance widths for actual electron-to-atom m
ratios.

2. INTEGRAL EQUATIONS

We examine a system consisting of three spinless p
ticles with massesmi , where the subscripti 51,2,3 numbers
the particles, and pairwise potentialsv i , where the subscrip
indicates the particle absent from the pair system. We
sume that the identical particles 2 and 3 with mas
9 © 1999 American Institute of Physics
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m25m35m interact via the potentialv1 and form a bound
state with an energy«152k1

2/2m23, wheremi j is the re-
duced mass of particlesi and j. Particle 1 with massm1

interacts with particles 2 and 3 via the potentialsv3 andv2,
respectively (v25v35v), which generate pair states~real or
virtual! with very low binding energies (k25k35k→0).
For the potentialsv i ~between particlesj andk) we take the
separable Yamaguchi potential acting only in theS-wave:

v i~p,p8!52
4p

mjk

b i~b i1k i !
2

~b i
21p2!~b i

21p82!
. ~3!

The sign of the wave numberk determines whether the pa
forms a bound state (k.0) or a virtual state. The paramete
b i determines the ranges of the forces in pairi. In particular,
whenb i@k i , the expansion of the effective range in the p
i in powers of the relative-motion momentump (pcotdi5ki

1reffp
2/21•••) yields r eff53/b i , which makes it possible

to use condition~2! in the form k i!b i . For brevity, we
write the separable potential in the form of projection ope
tors, v i5un i&^n i u.

We examine the scattering of particle 1 by the bou
pair of identical particles 2 and 3 (2,3) with an energyEk

5k0
2/2m1,23 of relative motion lower than the system’s tran

formation energy«22«1. Heremi , jk is the reduced mass o
particle i and pair (j ,k). The momentumk i will always be
the momentum of relative motion of particlei and pair (j ,k),
and the momentumpi will refer to motion within the pair
( j ,k). The subscripts will be dropped if this does not caus
mix-up of notation.

To write the system of Faddeev integral equations~see,
e.g., Ref. 6! we need an expression for the product of t
pairwise t-matrix in the three-particle space and the fr
Green’s function G0(Z)5(Z2hi

02h( i )
0 )21. The Hamil-

tonian of the free motion of three particles is represented
two terms: the Hamiltonianhi

0 of free motion of particlei
and pair (j ,k) and the Hamiltonianh( i )

0 of relative motion
within the pair. The total energy of the three-particle syst
is Z5Ek1«11 i0. For separable potentials this product c
be written in the form7 tG0(Z)5v i uw i&gi

0(Z2« i)^w̃ i u,
which incorporates the wave functionuw i& of the bound state
of the pair and the function̂w̃ i(Z)u defined in the three-
particle space. Here and below we use expressions for
pairwise Green’s functionsgi

0(x) andg( i )
0 (x) corresponding

to the pairwise Hamiltonianshi
0 and h( i )

0 , respectively. In
this notation, the projection of̂w̃ i u on ^k i u has the simple
form

^w̃ i u5Ri^w i uv iG
0~Z2 ki

2/2mi , jk!,

Ri52
1

2mjk

~b i1ai !
2~ai1k i !

~2b i1k i1ai !^w i uv i uw i&
,

ai5A22mjk~Z2 ki
2/2mi , jk! . ~4!

Note that the pairwiset-matrix corresponding to a separab
potential of the Yamaguchi type has two poles. The near p
is at the point of the bound state of the pair,pi56 ik i ~on
the physical sheet for a real bound state and on the unph
cal sheet for a virtual state!. The distant pole on the unphys
r

-

d

a

y

he

le

si-

cal sheet,pi52 i (2b i1k i), is responsible for the range o
the pairwise force. The zero-range limit is reached whenb
goes to infinity. Only one pole remains in this limit, an
hence it is unimportant which pairwise potential genera
the pole—local or nonlocal. We use a separable potentia
this paper solely because it simplifies the Faddeev inte
equations. Thet-matrices remain finite asb→`.

If we know the pairwiset-matrices, we can write the
Faddeev equations for the scattering of particle 1 by
bound pair of identical particles 2 and 3 in the form

Tel5V12g2
0~Z2«2!Tr ,

Tr52V2112V21g1
0~Z2«1!Tel1V23g3

0~Z2«3!Tr , ~5!

where Vi j 5Ri
1/2^w i uv iG0(Z)v j uw j&Rj

1/2, and the transition
matricesTel and Tr are linked to the physical elastic an
inelastic scattering amplitudes through the relationships

f el52
m1,23

2p
Tel~k1

out,k1
in!,

f r52
Am1,23m2,13

2p
Tr~k2

out,k1
in!,

where the incoming and outgoing momenta,k in andkout, are
located on the energy surfaces.

The system of complex integral equations~5! can be
transformed into a system of real~below the transformation
threshold! equations ~see, e.g., Ref. 8!. For example, a
simple substitution done after the partial expansions

f el~k,k0!52
m1,23

2p
Kel~k,k0!~11 ik0f el~k0 ,k0!!,

f r~k,k0!52
Am1,,23m2,13

2p
Kr~k,k0!~11 ik0f el~k0 ,k0!!

~6!

have been performed yields a system of equations for the
functions Kel and Kr . The new equations were solved n
merically. To distinguish between the real equations conta
ing principal value integrals, we introduce additional no
tion for the total energy,z5ReZ. In this notation the real
integral equations forKel andKr coincide with Eqs.~5! if Tel

is replaced byKel, Tr by Kr , andZ by z, respectively:

Kel5V12g2
0~z2«2!Kr ,

Kr52V2112V21g1
0~z2«1!Kel1V23g3

0~z2«3!Kr . ~7!

These equations forKel and Kr were solved numerically.
Below we use Eqs.~7! to discuss a scheme for generatin
subthreshold resonances.

3. SUBTHRESHOLD RESONANCES

To see how subthreshold resonances emerge, we tr
form Eqs.~7! to

Kel5V12g2
0~z2«2!Kr ,

Kr52V211Vg3
0~z2«3!Kr , ~8!

where the effective potential of the energy-closed~inelastic!
channel has the form
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V5V2312V21g1
0~z2«1!V12. ~9!

The system of equations~8! makes it possible to describe th
two-channel scattering of particle 1 by the pair (2,3) in ter
of the single-channel interaction of particle 2~or 3! and the
pair of particles 1 and 3~or 2!. To do this, we use the system
of equations~8! and expressKel in terms of the Green’s
function of the closed~inelastic! channel,gv(x)5(x2h2

0

2V)21:

Kel52V12gv~z2«2!V21, ~10!

whose spectrum determines the features of the elastic c
nel. For example, resonances in elastic scattering corres
to the points in the spectrumEt of the Hamiltonianhv5h2

0

1V for Et.«12«2. Notwithstanding the obvious nature o
this statement, we present a method for building theS-matrix
in the resonant case because of some special features of
nances in the system considered here. To this end we ex
ine the case in which the energyz is close to«21Et and
specify the singular part in the Green’s functiongv explic-
itly:

gv~z2«2!5
uC t&^C tu

v
1gR ,

wherev5z2«22Et , C t is the wave function correspond
ing to the eigenvalueEt , andgR is the regular residual term
in the Green’s function~this term is usually dropped!. Then,
using the expression~10! and the relationship~6! between
the physical amplitude andKel, we arrive at an expressio
for the S-matrix (S5112ik0f el(k0 ,k0)):

S5
12 iB

11 iB

v1
1

2

GB

11B2
2 i

1

2

G

11B2

v1
1

2

GB

11B2
1 i

1

2

G

11B2

,

where the width

G52
k0m1,23

p
u^k0uV12uC t&u2 ~11!

generated by the singular part of the Green’s function va
due to the presence of the regular part

B5
k0m1,23

p
^k0uV12gRV21uk0&.

The size of the shift of the resonance fromEt is also deter-
mined by this part. It is the value ofB that determines back
ground scattering far from resonance, whereS5(1
2 iB)/(11 iB). Introducing the background scattering pha
d f52arctanB, we arrive at an expression for theS-matrix:

S5exp$2id f%

v2 i
G

4
2

G

4
~sin~2d f !1 i cos~2d f !!

v1 i
G

4
2

G

4
~sin~2d f !2 i cos~2d f !!

.

~12!

Note that Eq.~12! was derived without using any approx
mation schemes and is simply a convenient way to exp
s

n-
nd

so-
m-

s

e

ss

theS-matrix. However, by introducing the Breit–Wigner pa
rametrization, i.e., by separating out the resonance en
and resonance width, we impose a constraint on the wid
they must be small so that we can identify a resonance. H

the ‘‘true’’ resonance widthG̃ is determined not only byG

but also by the background scattering phase:G̃5G cos2df .
This explains why the expression forG contains plane waves
rather that the wave functions of the scattering state i
background potential. Below we use the expression for

width G, which is always greater than or equal toG̃. The
other features of representing theS-matrix in the form~12!
are fairly obvious, and their discussion lies outside the sc
of the present paper.

4. WAVE FUNCTION OF THE CLOSED CHANNEL

Here we are interested in the series of resonances co
sponding to the Efimov effect, a situation where the con
tion ~2! is met and the spectrum of the Hamiltonianhv be-
comes denser near zero. In this case the potentialV is
simplifies substantially, and to study subthreshold resonan
we only need to consider theS-wave part of the effective
potential at low energies or, more precisely, in the range
momentak@A22m2,13z, where the energy dependence
the solutions of the Schro¨dinger equation is weak. Unde
such an additional condition (b→` as z→0) the terms in
the effective potential~9!, which are the ‘‘exchange’’ poten
tial Vex[V23 and two ‘‘triangular’’ ~with internal integra-
tion! termsVtr[V21g1

0(z2«1)V21, can be written

Vex
0 ~k,k8!52

p

2Akk8 l1

1

Am3,12m12

ln
k21k82 12l1kk8

k21k82 22l1kk8
,

~13!

Vtr
0~k,k8!52

1

Akk8 ~2l1!2

m12

m23
2

PVE
0

` dt

t2a
L~ t,k!L~ t,k8!,

~14!

L~ t,k!5 ln
gt21k212l2kt

gt21k222l2kt
, a5k1Am1,23

m32
,

l i5Ami j mik

mi
2

, g5Am23

m12
.

The upper index 0 in this notation indicates that the effect
interaction is taken atz50. The exchange potentialVex

0 cor-
responds to the scattering of particle 2~or 3! by the bound
pair of particles 1 and 3~or 2! at zero binding energy in the
pair and is the ‘‘classical’’ potential generating Efimo
states. The solutions in the field of such a potential, stud
in Ref. 7 for a three-boson system, coincide with the solut
in the field of a local potential of the type2(m2

10.25)/2m2,13r
2 (r is the Jacobi potential of the relativ

motion of the particle and the complex! with the coupling
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TABLE I. Dependence ofm1 , m2, andmas on the masses.

m2 /m1 10 20 30 50 70 100

m1 1.379 051 1.893 909 2.284 713 2.906 777 3.415 826 4.061 1
m2 1.468 174 1.919 444 2.293 865 2.908 434 3.416 219 4.061 1
mas 1.430 016 1.907 906 2.289 978 2.908 096 3.416 437 4.061 4
P tr /Pex 1.1231021 2.2031022 6.4131023 9.0131024 1.8131024 2.3831025
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constantm satisfying a transcendental equation. Below
derive such an equation for the total interaction potent
Note that the potentialVex

0 behaves as 1/k and allows for a
solution in the formks. The potentialVtr

0 is more complicated
and allows for such solutions only in the momentum ran
where it is possible to ignorea in the denominator of the
integrand of~14!. To clarify this aspect, we look for the
solutions of the Schro¨dinger equation with zero energy in th
form C t5kim25/2. We defineP as

P~k!52
2m2,13

kim21/2 E V0~k,t !t im25/2
d3t

~2p!3

and attach a subscript that corresponds to the specific po
tial. The meaning ofP is simple: it is the ratio of the poten
tial energy to the kinetic energy in the Schro¨dinger equation.
Then the Schro¨dinger equation can be written in the for
Pex12P tr51. The contribution of the exchange potent
can be expressed in terms of an integral:

Pex5
11z1

2

z1
I 1 ,

I 15
1

2p E
0

`

dx xim21 ln
112l1x1x2

122l1x1x2

(z i5Amjmk /miM , and M is the total mass!, which exists
when21,Imm,1 and can be evaluated by the method
residues after being integrated by parts:

I 15
sinh~m arctanz1!

m cosh
p

2
m

.

Introducing the function

F i~m!5
11z i

2

z i

sinh~m arctanz i !

m cosh
p

2
m

,

we find thatPex5F1(m).
After simple transformations, the functionP tr(k) can be

expressed in terms of the functionF defined earlier and a

new functionF̃:

P tr~k!5F2~m!F̃,

F̃5
11z2

2

2pz2
PVE

0

`

dx
xim21kx

kx2ag
ln

112l2x1x2

122l2x1x2
.

Analyzing this integral, we note that it can easily be tran
formed into a contour integral about two logarithmic cu
and the integration contours can always be chosen in su
l.

e

n-

l

f

-
,

a

way that eitheruxu>1 or uxu<1. This makes it possible to
expand the denominator of the integrand in a series eithe
high momenta (k.ag) or for low momenta (k,ag). In the

first case we get the leading termF̃5F2 and in the second

F̃}k/k1. Hence we can write the transcendental equati
for m in two asymptotic regions. Allowing for the fact tha
Pex12P tr51, we obtain

F1~m!51, k!Am1,23

m12
k1 , ~15!

F1~m!12F2
2~m!51, k@Am1,23

m12
k1 . ~16!

SinceF is an even function ofm, we conclude that the wave
function C t can be represented by a linear combination
k6 im25/2, which coincides with the Fourier transform of th
wave function in the field of the local potential

Veff~r!52
m210.25

2m2,13r
2
, ~17!

when uVu@uzu, with different coupling constants for sma
and larger. The solutions in the field of a type-1/r2 potential
are well known. In particular, the energy levels obey t
relationEn21 /En5h, whereh depends only onm,

h5exp ~2p/m! , ~18!

and either go to minus infinity, which corresponds to a fall
the center~noted by Thomas9 as long ago as 1935! or be-
come denser at zero, which amounts to the Efimov effect.4 In
our case the deep levels correspond to small distances
are determined by the values ofm2 satisfying Eq.~16!. On
the other hand, shallow levels withz.«1 in the scattering
channel generate resonances and are determined by the
ues ofm1 satisfying Eq.~15!.

A simple analysis of Eqs.~15! and ~16! shows thatm2

tends tom1 asm1 /m2→0 with an exponential rate, andm1

in this limit is described well by the expansion

mas5cz11
c

~c11!z1
1OS 1

z1
3D ~19!

(z15Am2m3 /m1M@1), coinciding with the limit found
earlier in Ref. 1. The constantc50.5671••• used above sat
isfies the equationc5exp(2c). To avoid having to write
involved formulas representing calculations of secondary
portance, we list values ofm as a function of the ratio of the
masses of the light and heavy particles in Table I. The ra
convergence ofm2 to m1 indicates that the second term
Eq. ~16! becomes negligible~the difference in solutions is in
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the sixth decimal place atm2 /m15100), and this makes i
possible to discard the second term inV when m1 /m2!1.
To demonstrate this smallness, in the last row of Table I
list values of the ratio of the potential energiesPex(m1) and
P tr(m1).

Thus, we can assume that for a very light particle 1
wave functionC t is represented by a linear combination
the functionsk6 im25/2 with m5m1 in a broad range of mo
menta (k@A22m2,13z !. Knowing this momentum
asymptotic behavior is sufficient for calculating the mat
elements in the definition ofG, since the range of moment
;k1 provides the main contribution to these integrals. T
difficulty of normalizing such a function can be overcome
a simple trick. As noted earlier, our wave function corr
sponds to motion in the effective potential~17!. The solu-
tions in the field of such a potential are well known:C t

3(r);Km i /Ar, i.e., they can be expressed in terms
modified Bessel functions. We can normalizeC t , obtain an
expression for its Fourier transform, and find the coefficie
of the leading asymptotic termsk6 im25/2. This scheme is
somewhat tedious but yields a reasonable result, which in
limit of small masses of particle 1 coincides with the exa
result. On the other hand, the exact result~for zero pairwise
forces! can be obtained much faster. The thing is that we
find a solution of the integral equation with the potentialVex

in the entire momentum range, i.e., without puttingz to zero,
by using the Mellin transform, as done by Danilov10 and
Minlos and Faddeev11 in their studies of the properties of th
Skornyakov–Ter-Martirosyan equation.12 Furthermore, Min-
los and Faddeev11 found an approximate expression for th
wave function of a system of three bosons with zero pairw
forces, an expression that becomes exact when the bin
energies in the subsystems vanish. On other hand, afte
troducing the dimensionless variablet5k/k t (k t

5A22m2,13z ! into the Lippmann–Schwinger equation fo
the functionc5k(k222m2,13z)3/4C t with a potentialVex in
the entire momentum range, we see that the equation di
from the Skornyakov–Ter-Martirosyan equation for thr
bosons only by a factor of 2 and by the values of the m
constantsl1 anda5Am13/m2,13:

c~ t !5
1

2pl1a
E

0

`

ln
t21t82 12l1tt81a2

t21t82 22l1tt81a2

dt8 c~ t8!

At8211
.

~20!

Hence Eq.~20! also has an analytic solution, which can
obtained by using the Mellin transform. Here we simp
write the final result:

c~ t !5A sin~m ln~ t1A11t2 !!,

whose validity can be checked by pluggingc into Eq. ~20!.
As before, the constantm satisfies Eq.~15!, and the constan
A is determined by normalization. The integral equation~20!
has a solution at all energies, but the spectrum can be fi
by imposing a constraint on the coefficients of sin(m ln k) and
cos(m ln k) for large values ofk ~see Refs. 10 and 11!:

sin~m ln k t!5b cos~m ln k t!.
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The arbitrary constantb uniquely determines the wave num
ber k t

(n) for a level with numbern:

k t
(n)5exp~pn/m 1 arctan~b!/m!.

A spectrum obtained in this way satisfies Eq.~18! and dem-
onstrates both the effect of falling to the center for lar
positive values ofn ~noted in Ref. 11! and the Efimov effect
~logarithmic crowding of levels nearz50) for large negative
values of n ~discovered later and by another method
Efimov4!.

Normalizing the wave functionC t over the entire mo-
mentum space, we arrive at the final expression for the w
function of the closed channel:

C t~k!5
2p

Ak t
3~12pm/sinhpm!

1

t~11t2!3/4

3sin~m ln~ t1A11t2 !!. ~21!

5. WIDTHS OF SUBTHRESHOLD RESONANCES

As noted earlier, the resonance widthG̃ depends on the
background scattering phase andG specified by Eq.~11!,
which is determined by the matrix elements of the poten
V12 linking the open and closed elastic scattering chann
The background phase depends on the details of the pair
forces at small distances and cannot be examined in the
of zero-range forces~since it has no limit!. The quantityG,
which is an upper bound on the resonance width, can
calculated in this limit~as b→`). Note that the fact that
Ek1«15Er implies that for smalluEr u ~i.e., small compared
to u«1u) we can putk0→k1Am1,23/m23 . Moreover, because
of the simple relationshipEr5Et1G sin(2df)/4 @see Eq.
~12!# and the small values ofG in the relations we now
discuss, we can putEr5Et . Then, allowing for the definition
of V12 and for the expression~11! for the width and perform-
ing simple transformations, we arrive at

G

uEtu
532pS m2,13

m23
D 2

uJu2, ~22!

whereJ can be defined in terms of an integral over the en
momentum space:

J5
k1

k t
E d3k

~2p!3

~k21kt
2!1/4

k1
21k22k0–k1k0

2/4
C t~k!.

Using the explicit form of the wave function of the close
channel@Eq. ~21!#, we can evaluate this integral analyticall
Since this is a moderately involved procedure, we only d
cuss the problem schematically. We perform trivial angu
integration, reduce the result to dimensional form by int
ducing t5k/k t , and change variables,t5(x221)/2x. The
last step gets rid of radicals and changes the interval of i
gration from (0,̀ ) to (1,̀ ). The integrand is invariant unde
the transformationx→1/x, which allows us to return to the
integration interval (0,̀ ). After integrating by parts we ge
rid of the logarithmic function. The resulting integralI of
type
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I 5E
0

`

xim
Q1~x!

Q2~x!
dx,

where Q1 and Q2 are polynomials that guarantee conve
gence at zero and infinity, can be evaluated by a stand
trick: the integral along the upper side of the power-law
is expressed in terms of an integral along a contour surrou
ing the cut. The contour can be closed at infinity and
integral can be expressed in terms of the residues at the
roes of the polynomialQ2.

The entire procedure of integration leads to an expr
sion for J:

J5
1

2A12pm/sinhpm

sinh~m arctanz2!

mz2

3
sin~m ln 2A«1 /Et !

cosh~pm/2!
. ~23!

Equations~22! and ~23! have remarkable properties. Firs
the relative widthG/uEtu is independent of the number of th
resonance, since the positions of the resonances are d
mined by~18!, which leads to a situation in which the value
of J for resonances with numbersni andni 1k differ only by
the factor (21)k. Hence on the logarithmic scale not on
the positions of resonances are equidistant but so are
resonance widths. Second, the relative resonance width
creases exponentially with the mass of particle 1. To ve
this we write the limiting expression (m1 /m2!1) for the
relative width. With allowance for~19! and the fact that

S sinh~m arctanz2!

mz2
D 2

→1.024 . . . ,

we can write this limiting expression as

G

uEtu
.32p1.024 expH 2pcA m2

2m1
J sin2S m

2
ln 4

«1

Et
D .

~24!

Since the observed widthG̃ is always less thanG, we
can place an upper bound on the width of any subthresh
resonance:

G̃,103.0uEr uexpS 21.260Am2

m1
D , ~25!

where we have returned to the notationEr , since the differ-
ence betweenEt andEr is exponentially small. Formula~25!
allows us to make an estimate on the lifetime of highly e
cited negative ions of diatomic molecules. Already for
proton-to-electron mass ratio and a clearly overvalued s
of 1 eV for the binding energy of the complex (uEr u), the

resonance lifetime 1/G̃ is longer than 106 s and exceeds al
possible relaxation times for gases. What is of interest, h
ever, is systems with a low energy of electron–atom affin
As noted in the Introduction, negative ions of molecules
alkali metals are such systems. Plugging in the mass ratio
lithium, we arrive at a lifetime of 1040s, which is longer than
the lifetime of the universe.
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6. NUMERICAL SOLUTIONS

To demonstrate the validity of the analytic calculation
the Faddeev integral equations~7! describing the scattering
of particle 1 by a pair of identical particles (2,3) were solv
numerically. The calculation procedure was the one
scribed in Ref. 5. This made it possible to examine scatte
as close to the reaction threshold as possible. Actually, th
calculations do not require that we come very close to
threshold, since the coupling constantm is large. This re-
sulted in an interval ranging from zero kinetic energyz
5«1) to an energy that was 1028 MeV distant from the
transformation threshold (z2«2521028 MeV). Here the
transformation threshold differed from the three-partic
threshold by 10215MeV («25210215MeV) and the bind-
ing energy of the pair (2,3) was«1521023 MeV. The
masses of particles 2 and 3 equaled the nucleon mass,
the constantb determined by the ranges of the forces w
chosen equal to 0.72 fm21 for all pairwise potentials. The
units of energy~MeV! and length~fm! reflect the use of
Yamaguchi potentials with parameters of a nuclear prob
~masses and ranges! and a characteristic potential energy
several tens of MeV. Thus, small but finite values of t
ranges of the pairwise forces and binding energies in
pairs were selected for the calculations. Since the problem
determined entirely by the ratio of dimensional quantitie
the results are also valid in atomic units. For example, w
the atomic scale of the radius of forces amounting to 1
(r 0.3/b), the condition~2! for pairs,

k1/b1 .6.731023, k2/b2 51026Am1/m2 k1/b1 ,

corresponds to an atom–atom scattering length (1/k1) of
about 50 Å.

Figure 1 depicts the cross sections normalized to
unitary limit in the S-wave: sun54p/k0

2 for a mass ratio
m2 /m1565. Since the resonances crowd in towardz50, the
energy is presented on a logarithmic scale. The fact that r
nances are positioned equidistantly is clearly visible. Unf
tunately, even the maximum width in the range of masse
particle 1~see Fig. 2! remains very small, and the resonanc
look essentially like straight lines. Table II lists the positio
of the first six resonances, the ratios of the energy of
previous resonance to the energy of the given resonance
the values ofhcalc, and the relative resonance widths. F
comparison, here are the values ofm1 andm2 that are solu-
tions of Eqs.~15! and ~16!, respectively:

FIG. 1. Scattering cross section atm2 /m1565.
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m153.29589 . . . , m253.29654 . . . .

The corresponding values ofh are @see Eq.~18!#

h~m1!56.728 23 . . . , h~m2!56.726 08 . . . .

Table II shows that already the second-to-third resona
energy ratio lies within the range of analytic values ofh with
an accuracy to four decimal places. Note that the first re
nance is far from the threshold. The last column in Table
shows that the relative widths are almost independent of
number of the resonance. For example, starting with the t
resonance, variations occur only in the fourth decimal pla
Thus, Fig. 1 and Table II support fairly well the conclusio
that the positions of resonances are logarithmically equi
tant, and so are the resonance widths, which translates
constant relative resonance widths.

To demonstrate to what extent the expressions~22! and
~23! describe the analytic relationship between resona
widths and positions of resonances for small mass ra
m1 /m2, Fig. 2 depicts the relative widths obtained by so
ing the integral equations numerically~curve1! and by using
the expression~22! with values of the energies of resonanc
found numerically~curve2!. Clearly, the curve representin
the analytic dependence of the resonance widths on m
ratio follows fairly closely the curve representing the resu
of numerical calculations, although there exists a small ph
shift. Note some features of the dependence of the width
the mass of the light particle 1. First, the resonance widt
not a monotonic function of mass. Second, the peaks in
resonance widths exponentially decrease with the mas

FIG. 2. Relative resonance widths. Curve1 represents the numerical solu
tion of the Faddeev equation, and curve2 represents the analytic depen
dence.

TABLE II. Parameters of the first six resonances atm2 /m1565.

N Er /«1 hcalc G/uEr u

1 2.123631021 4.41331023

2 3.148031022 6.746 4.24631023

3 4.678731023 6.728 4.20831023

4 6.954031024 6.728 4.20231023

5 1.033831024 6.727 4.20131023

6 1.536931025 6.726 4.20031023
ce

o-
I
e

rd
e.

s-
to

e
s

ss
s
se
on
is
e
of

particle 1, correctly reflecting the estimate~24!. For example,
in the range of mass variations (m2 /m1) depicted in the
picture, i.e., from 15 to 100, the resonance widths decre
by a factor of 1000. The marked nonmonotonic behavior
the relative widths suggests that there is a difference betw
analytic estimates and the results of numerical calculatio
If the estimates rely on the sharp local minima, the ‘‘o
served’’ phase shift amounts to 2 mass units for the fi
minimum and monotonically decreases to 1.25 mass
near the last local minimum (m2 /m1;95). Thus, the differ-
ence between analytic and numerical estimates decre
with the massm1.

7. CONCLUSION

In studying the problem of estimating the lifetimes of th
Efimov states of negative ions of diatomic molecules,
were able to reduce it to the problem of the scattering o
light particle ~an electron! by a bound pair of two heavy
particles ~a molecule!, provided that condition~2! is met.
Such a three-body statement of the problem makes it p
sible, on the one hand, to derive analytic relationships li
ing the widths and positions of resonances and, on the ot
to verify these relationships directly by a numerical soluti
of the Faddeev equations. Here for the first time we cal
lated the Efimov resonances below the transformation thre
old of a three-particle system.

The conclusion that can be drawn from the present st
is that the lifetimes of the novel molecular states discusse
Refs. 1–3 suggest that these are bounds states for all typ
physical processes.

Note that the assumption that there are real syste
obeying condition~2! rests on the known values of th
electron–atom and atom–atom scattering lengths, wh
may be as large as tens and even hundreds of angstr
Here the experimental values of the effective interact
ranges are unknown, and only dimensional considerati
~atomic sizes! and the successful use of zero-range potent
in atomic physics ~see, e.g., Demkov and Ostrovski�’s
monograph13! support the hypothesis that condition~2! oper-
ates in real molecular systems.

This research was carried out within the framework
the K-40 ISTC Project.
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Multiphoton ionization of molecules under the conditions of strong field-induced
perturbation of Rydberg states

G. K. Ivanov and G. B. Golubkov* )
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Multiphonon ionization of the H2 molecule under the action of a weak~probe! field, which
provides the initial population of the low-lying~working! level, and intense monochromatic
linearly polarized radiation is studied. The multiphoton ionization process occurs under the
conditions of strong field perturbation of two intermediate Rydberg series,np0(1Su

1) and
np2(1Pu), of the opticalR(0)branch which have different ionization potentials. The
series are occupied simultaneously as a result of single-photon absorption by an excited H2*
molecule in the working state 4ssH8 1Sg

1 (n50). As a result of the irregularity in the
arrangement of the intermediate levels from a large group of states that are combined in
the multiphoton ionization process a sharp and irregular change occurs in the dependence of the
shifts and widthsGn of the levels on the intensityf of the strong field in a transition from
one level to another. It is shown that for field intensitiesf such that the level widths remain much
less than the splitting between the levels (Gn!1/n3) the stabilizing effect~i.e., the field-
induced narrowing of the levels asf→`) in the form Gn}1/f 2 ~as happens in atoms with a
structureless core! is not observed in molecular systems. ©1999 American Institute of
Physics.@S1063-7761~99!00606-X#
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1. INTRODUCTION

The development of a theory of multiphoton ionizatio
of atoms and molecules taking account of strong fie
induced perturbations of the system under study is a
problem of modern laser chemistry. Although the need
introduce field-dressed states arose at the beginning of
1970s,1,2 specific theoretical eleborations for doing so a
still very limited. This applies completely to Rydberg mo
ecules, where the effects of strong nonadiabatic coupling
the electronic and nuclear motions are pronounced. Th
effects are manifested in the fact that each molecular R
berg state is a superpositional-type state, whose individ
components correspond to different levels of the rotationaN
and vibrationalv excitations of the ion. The quantum defec
m of the Rydberg levelsand the coefficients in the expans
of the wave functions acquire a strong dependence on
principal quantum numbern ~Ref. 3!.The regularity of the
arrangement of the levels, which greatly simplifies the ana
sis of processes in which highly excited atoms participate
thereby destroyed. The specific properties of Rydberg m
ecules have a direct effect on the processes in which in
ference of the contributions of large groups of Rydberg sta
which are drawn into a strong interaction with an exter
electromagnetic field plays an important role. Specifica
here the interference suppression of the decay of Rydb
states~the stabilization effect!, the study of which up to now
has been limited to atomic systems,4–9 should be impeded.

Stabilization consists in a decrease of the level widthsGn

with increasing external field intensityf ~after a certain criti-
cal value has been reached! and is manifested in two funda
mentally different forms. For superstrong fieldsf ; f a ,
1081063-7761/99/88(6)/8/$15.00
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where f a is the intensity of the field of a hydrogen atom
the ground state!, stabilization occurs when the widthsGn of
the Rydberg states mixed as a result ofL transitions become
equal to the splitting between neighboring levels, i.e.,Gn

;1/n3 ~Ref. 7!.
The second mechanism producing the stabilization of

functionGn( f ) is due toV transitions from a low-lying reso-
nant level at lower field intensitiesf, so that the shifts of the
perturbed levels become comparable to 1/n3 ~the widthsGn

themselves remain small compared to the splitting betw
the levels, i.e.,Gn!1/n3).8,9 In addition, for a monochro-
matic field with frequencyv f it can be assumed that1!:

h5 f v f
25/3!1. ~1!

The present paper is devoted to a study of the charac
istic features of multiphoton ionization spectra that are due
strong nonadiabatic coupling with rotation. Light molecul
with a small moment of inertia are of the main interest fro
this standpoint. The most inviting such molecule is the h
drogen molecule, whose optical properties are well know
For this reason, it is worthwhile to investigate the followin
photoionization scheme. For theX 1Sg

1 ground state of para
H2 the population of the working level ‘‘0’’ should be stud
ied in the two-photon (2V) absorption regime with excita
tion of the singlet ss state. In what follows, the stat
4ssH8 1Sg

1 (n50) is chosen as the working state. Then,
an intense monochromatic laser field~with frequencyv f) the
classicalnp0(1Su

1) and np2(1Pu) two-channel Fano sys
tem of the optical branchR(0) will be populated at the in-
termediate stage.3 This makes it possible to analyze qui
simply and clearly the role of nonadiabatic coupling wi
7 © 1999 American Institute of Physics
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rotation in field-induced stabilization, since all structural fe
tures of the spectrum can be represented here in ana
form. Figure 1 shows the scheme of the process of inter

H2~Ji5Ni50!→
2V

H2* ~J95 l 95N950!→
v f

H2**

3S J85L851,
N850

N852D→v f

e21H2
1 . ~2!

Here Ji , J9, and J8 are the total angular momenta of th
initial and intermediate states, respectively,l is the orbital
angular momentum of the optical electron, andN is the ro-
tational quantum number.

Transitions through the Rydberg seriesnp0 andnp2 are
studied in the continuous excitation regime from a low
lying ‘‘0’’ level, which is populated in advance by a wea
~probe! field with frequencyV. Under these conditions it is
possible to implement a quite simple and rigorously va
dated computational procedure based on a stationary va
of the theory of Refs. 8 and 9 where the wave functions
the continuous spectrum of the systeme21 XY1, which are
found by taking account of the strong field-induced mixi
of large groups of states, are expressed in terms of the
ments of theT matrix for radiative collisions of the particle
e2 and XY1 in a strong radiation field with frequencyv f .
The expressions obtained make it possible to find not o
the photoelectron spectra but also the energy eigenvalue
highly excited molecules in a strong electromagnetic fie
We note that the question of the behavior of highly exci
molecules in a laser radiation field in the presence of str
nonadiabatic coupling with rotation has not been previou
discussed in the literature and is studied here for the
time.

FIG. 1. Scheme of multiphoton ionization of a molecule with excitation~at
an intermediate step! of a two-componentR(0) branch of thenp0(1Su

1)
and np2(1Pu) Rydberg series, converging to the ionization thresholdsN
50 andN52 and labeled by the indices 1 and 2, respectively;i — initial
state of the molecule, 0 — position of the 4ssH8 1Sg

1 (n50) working level
populated as a result of the absorption of two weak-field photons.
-
tic
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-

-
nt
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d
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2. GENERAL FORMULATION OF THE PROBLEM

Since for the scheme considered here the weak~probe!
field can be taken into account in perturbation theory,
basic problem reduces to determining the continuum w
functionsCp of the systeme21XY1 taking account of the
strong electromagnetic field, where perturbation theory is
applicable in principle. The idea of the method proposed
Ref. 8 consists in the fact that under the condition~1! an
electron strongly interacts with the radiation field only
small distances from the ion core. For this reason, the for
apparatus of multichannel scattering theory can be use
construct the wave functionsCp .

Energy transfer in the systeme21XY1 is determined
by r-vibronic transitions in the ion core XY1 and, taking
account of the effect of the field, also by the possibility
induced absorption (k,0) or emission (k.0) of external-
field photons, for which the energy of the system changes
the amountkv f . The indexk characterizes the change in th
number of photons in an external electromagnetic field,
sumed below to be linearly polarized, with the vectorf ori-
ented along thez axis in the laboratory coordinate system

The problem can be solved as follows. Basis chan
wave functionsuqk&5uJlnNk& of the zeroth-order Hamil-
tonian, which correspond to different values ofk and fixed
vibrational n and rotationalN states of the ion, are intro
duced into the theory to describe the intermediate Rydb
states. These functions take account of only the Coulo
interaction of the particlese2 and XY1. We recall that for
symmetric Rydberg molecules X2** the electron orbital an-
gular momentuml is a good quantum number. In what fo
lows, the perturbation of the Coulomb statesuqk&, which is
due to both the interaction of an electron with the ion co
~which distorts the Coulomb field at short distances! and the
interactionV f5f–D/2 with the radiation field (D is the dipole
moment operator!, is investigated in the formalism of modi
fied Lippmann–Schwinger equations.

The ionization of the H2 molecule according to the
scheme shown in Fig. 1 can be described by the follow
expression for the transition amplitude into the final co
tinuum stateup& of the systeme21 H2

1 :

Mip5Ai0

1

E2E0
T0p , ~3!

whereE5Ei12V, Ei is the energy of the initial state mea
sured from the spectrum limit, andE0 is the position of the
working ‘‘0’’ level. The quantityAi0 is the transition ampli-
tude to the zero level as a result of absorption of two we
field photonsV.

The structural features of the process~2! are contained in
the T matrix for radiative collisions, which satisfies the fun
damental equation8

T5t1t(
qk

uqk&^qkucotnqkT. ~4!

Here nqk5@2(Eq1kv f2E)#21/2 is the effective principal
quantum number in theqk channel (k,0) and Eq is the
excitation energy of the ion. The summation indices in E
~4! include the openp and closedc channels, i.e.,qk
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5$ck ,pk%. The statesuqk& are normalized to a delta functio
of the energŷ qk(«)uqk(«8)&5pd(«2«8). For a finite num-
ber of strongly coupled states the operator equation~4! re-
duces to a system of algebraic equations. The matrix
ments appearing in it have a transparent physical mean
For example, the diagonal elementstckck

can be expressed i
terms of the characteristic quantum defects~including cor-
rections responsible for the Stark shifts of the levels!; the
quantitiestckpk8

are related to the definition of the amplitud
of natural~for k5k8) and field-induced~for kÞk8) decays;
and the elementstckck8

(k85k61) are responsible for the
field-induced interaction of the discrete states.

The weakly energy-dependentt operator includes the
electrostatic interactionVe, responsible for the nonCoulom
part of the potential, and the interactionV f , which under the
condition~1! must be treated as weak. Taking account of
terms which are linear and quadratic in the interactionV f it
has the form

t5te1t f , t f5Ve~V f1V fGV f !Ve, ~5!

where the operator describing the interaction of the elec
with the ion core

te5Ve1VeGVe5VeVe5VeVe

is expressed in terms of the part of the Green’s functionG of
the Rydberg molecule that is a smooth function of ene
and is found by taking account ofVe. In addition, the opera-
tor Ve, which describes the distortion due to interaction
an electron with the ion core, appears in the expression
the field-interaction matrixt f .

3. MATRIX ELEMENTS OF THE OPERATORS t e AND t f

We shall now determine the explicit form of the electr
static te and fieldt f interaction operators. Since the H2 mol-
ecule in the initial1Sg

1 state and the low-lying 4ssH8 1Sg
1

states is not vibrationally and rotationally excited, the
bronic coupling in the intermediate Rydberg sta
np0(1Su

1) andnp2(1Pu) is weak and can be neglected to
first approximation. This makes it possible to neglect vib
tional transitions.

Then in the total angular momentum (J) representation,
where J is the total angular momentum of the systeme2

1H2
1 , the basis wave functions of the zeroth-order Ham

tonian are given by

uqk&5w lk
JN5glk

N ~r !F lN
JM~ r̂ ,R̂!. ~6!

For short distances between the electron and the ion co

~ l 11/2!2!r !u«Nku21

~which make the main contribution to the transition dipo
matrix elements! the radial part of the Coulomb wave func
tion glk

N (r ), which is regular at the origin, is

glk
N ~r !5S 2

r 3D 1/4

sina lk
N ~r !. ~7!

The corresponding semiclassical phase forl !u«Nku21/3 is

a lk
N ~r !5A8r 1~«Nk/3!A2r 3 2p l 2p/4, ~8!
e-
g.

e

n

y

f
or

-
s

-

-

«Nk5BN~N11!1kv f2E

whereB is the corresponding rotational constant.
The complete angular wave function of the system h

the form

F lN
JM~ r̂ ,R̂!5(

m
Ylm~ r̂ !YN,M2m~R̂!~ lNmM2muJM!,

~9!

whereYlm(x) are spherical harmonics, (lNmM2muJM) are
vector coupling coefficients,r̂ and R̂ are angular variables
giving the directions along the radius vector of the electror
and along the molecular axisR in the laboratory coordinate
system, andM is the projection of the total angular mome
tum J of the system. Thete-operator elements appearing
Eq. ~4! are defined in the Coulomb basisuqk& and are related
by a unitary transformation

t lN,l 8N8
e(J)

52@U tan~pm!UT# lN,l 8N8

with a diagonal matrix of characteristic phases tan(pm),
whose values tan(pm lL

(J)) are taken at the equilibrium pos
tion Re of the nuclei and correspond~for fixed J) to all
possible projectionsL of the angular momentuml of the
electron on the axis of the molecule. For homo-atomic m
ecules this relation is given by the expression10

t lN,l 8N8
e(J)

52(
L, j

~21!J1L@~2 j 11!~2N11!#1/2

3~ l l 8,L2Lu j 0!~ jN,00uN80!W~ l l 8NN8; jJ !

3tan~pm lL
(J)!, ~10!

whereW( l l 8NN8; jJ) are Racah coefficients.
The rotation matrixU gives rise to a transition from the

adiabatic representationlL to the nonadiabaticlN represen-
tation. For example, for the two-channel Fano system
elements are

UNL
Jl 5^ lNu lL&5~21! l 1L~22dL0!1/2~ lJL2LuN0!.

~11!

The elements of the reaction matrices are then given by
expressions

t10,10
e(1) 52

1

3
~ tan~pmps

(1)!12 tan~pmpp
(1)!!,

t10,12
e(1) 52

A2

3
~ tan~pmps

(1)!2tan~pmmp
(1) !!, ~12!

t12,12
e(1) 52

1

3
~2 tan~pmps

(1)!1tan~pmpp
(1)!!.

The field matrix elements, according to Eq.~5!, must be
calculated using the modified functions

C lk
JN5Vew lk

JN5w lk
JN2(

N8
t lN,lN8
e(J) w̃ lk

JN8 , ~13!

which contain, in addition to the regular Coulomb function
the irregular Coulomb functions

w̃ lk
JN5g̃lk

N ~r !F lN
JM~rR!, ~14!
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where

g̃lk
N ~r !5S 2

r 3D 1/4

cosa lk
N ~r !.

The elements of the matrixt f must be found using the con
dition ~1! and the linear approximation in Eq.~5!, i.e., they
must be represented in the form

t f52
1

2
Vef–rVe52

2p

3
f Ver(

s
Y1s* ~nf !Y1s* ~nr !Ve,

where nf and nr are unit vectors. Since the selection ru
allows in this case only transitions withDM50, choosing
the z axis so that one component of the vectorf is nonzero
~corresponding tos50), we setM50. Then the matrix el-
ements of the field interaction are

VlNk,l 8N8k8
JJ8 52 fAp

3 H ^w lk
JNY10~nr !ur uw l 8k8

J8N8&dNN8

2t lN,lN8
e(J) ^w̃ lk

JN8Y10~nr !ur uw l 8k8
J8N8&

2t l 8N8,l 8N
e(J8) ^w lk

JNY10~nr !ur uw̃ l 8k8
J8N&

1(
N9

t lNlN9
e(J) t l 8N9 l 8N8

e(J8) ^w̃ lk
JN9Y10~nr !ur uw̃ l 8k8

J9N9&J .

~15!

Next, using the well-known properties of the Coulomb wa
functions~6! and ~11! and the value of the radial integral

r lk,l 8k8
NN8 5^glk

N ur ugl 8k8
N8 &5

1

p
GS 2

3D
3S 4

3D 1/3

v f
25/3cosFpS DnlNk,l 8N9k81

1

6D G ,
where DnlNk,l 8N8k8 is the difference of the correspondin
principal quantum numbers of the final and initial states,
have to within a sign

VlNk,l 8N8k8
JJ8 5

f v f
25/3

2Ap
GS 2

3D S 4

3D 1/3FANN
J8 l 8SlNk,l 8Nk8

JJ8 dNN8

2(
N9

BN8N9
J8 l 8 t lN,lN9

e(J) SlN9k,l 8N9k8
JJ8 G , ~16!

where the coefficients are
e

ANN
J8 l 8511

t l 8N,l 8N
e(J8)

A3
and BN8N9

J8 l 8 5
dN8N9

A3
2t l 8N8,l 8N9

e(J8)

and the corresponding angular parts are

SlNk,l 8Nk8
JJ8 5^F lN

J0~ r̂ ,R̂!Y10~nr !uF l 8N
J80

~ r̂ ,R̂!&

5F3~2l 11!~2J11!

4p G1/2

~ l100u l 80!

3~1J00uJ80!W~1lJ8N; l 81!. ~17!

It is evident from the expression obtained that transitio
with a change inN are due to the second term in Eq.~16!,
which contains the off-diagonal elements of thete reaction
matrix, which give the nonadiabatic coupling with the rot
tion. The angular parts remain strictly diagonal inN. There-
fore two Rydberg seriesN50 andN52 are excited from the
lower-lying ‘‘0’’ level ~in Fig. 1 these series are denoted
the indices 1 and 2, respectively!, though the ‘‘0’’ level itself
belongs to the state withN50.

We note that the matrix elements of the field interacti
~16! change sign depending onv f , sinceDn;n3v f . It is
also important to emphasize thatL transitions through the
ionization continua are taken into account in Eq.~4! on an
equal basis.

4. MULTIPHOTON IONIZATION OF THE H2 MOLECULE

For single-photon absorption, seven final states co
sponding to three optical branches can be populated sim
neously from the intermediate Rydberg states in the proc
~2!. They are the following:

FIG. 2. Scheme giving rise to the population ofP(1) andR(1)branches by
single-photon dipole transitions into the ionization continua.
FIG. 3. Ionization cross sections~2!, normalized to
unity and calculated using Eq.~20! with data from
Refs. 11 and 12 for field intensitiesf 51023 a.u.~a!
and f 51022 a.u. ~b!.
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a! the P(1) branch with formation of the total angula
momentumJ50, where thel 5N50 andl 5N52 series are
mixed;

b! the Q(1) branch with total angular momentumJ51,
where one seriesl 5N52 is populated; and

c! the R(1) branch, corresponding to the total angu
momentumJ52. Here three different situations, dependi
on v f , are possible. One is the Butler region of the spectr
0,E1v f,6B, which contains the three closed chann
( l 50, N52), (l 5N52), and (l 52,N54), where the (l
52, N54) channel is populated only as a result of resc
tering of an electron by the ion core with the transitionN
52→N54. In the next region 6B,E1v f,20B one chan-
te
no

e
on
e
.

u

n

a

e
ns
r

s

t-

nel (l 52, N54) is closed. Finally, for 20B,E1v f all
channels are open and the coupling between them is bro
This is the physical situation that we shall study below.

The scheme resulting in population of theP(1) and
R(1) branches is shown in Fig. 2. Here six finalJlN states,
which have four general ionization continua (0s0, 2d0, 2d2,
and 2d4), corresponding toV transitions, form. The state
2s2 and 0d2 make a negligible contribution to the proce
under study. The opticalQ(1) branch is also weak and wil
be neglected below. Thus a six-channel scheme taking
count of theP andR branches must be taken into accoun

The expression
T0p5
~z11 ig11!V2p

f V20
f 1~z21 ig22!V1p

f V10
f 1~ t122 ig12!~V2p

f V10
f 1V1p

f V20
f !

D
, ~18!
se-
of
res-
ion

e

lly
en-
the
me-
-

the

th.

g
ef.

ld.
is obtained for the transition amplitudeT0p into a state of the
p continuum, i.e., into one of the six states enumera
above. For convenience we introduce here the following
tation ~the indicesJ, l, andN are dropped!:

z15tan~pn1!2t11, z25tan~pn2!2t22,

gss85(
p

Vsp
f Vps8

f , s51,2,

where

n15@22~E1v f !#
21/2 and n25@2~6B2E2v f !#

21/2

are the effective principal quantum numbers. The matrix
ementstss8 describe the nonadiabatic coupling with rotati
and are given by Eqs.~12!. The field coupling is takes plac
through the elementsV0s

f and Vsp
f , which are given by Eqs

~16! and ~17!. The denominator in the expression~18!, i.e.,
the determinant obtained from the system of algebraic eq
tions ~4!, is

D5~z12a111 ig11!~z22a221 ig22!

2~ t121a122 ig12!
2. ~19!

The coefficientsass8 are proportional tof 2 and are

ass85Vs0V0s8«, where «5E2E0 .

According to Eq.~3! the photoionization cross sectio
~to within unimportant factors! is

s ion~«!}SpAi0
2 1

«2
uT0p

(p)~«!u2. ~20!

The summation in Eq.~20! extends over all possible finalp
states of the system~see Fig. 2!. The ionization spectrum is
characterized by the presence of alternating maxima~reso-
nances! and minima. In addition, the position of the maxim
is determined by the zeros of the real part ReD50 of the
determinant~19!. The minima are a result of interferenc
between the contributions of the direct and resonant tra
d
-

l-

a-

i-

tions. Near the pointsn15n161/2 andn25n261/2, where
n1(2) are integers, the nonadiabatic coupling between the
ries 1 and 2 is broken and photoionization with population
a given isolated series proceeds independently of the p
ence of the other series. To illustrate this, the ionizat
spectrum of the H2 molecule in the intervaln1520225 is
presented in Fig. 3 for two values of the field intensityf. The
calculation was performed with the following values of th
parameters of the multichannel quantum defect theory:11,12

mss520.120, mps50.191, mds50.022,

mpp520.078, mdp5mdd50

for external field frequencyv f50.029 corresponding to the
direct transition

4ssH81Sg
1~n50!→20p01Su

1~n50!.

It is evident that the position of the minima is essentia
independent of the field intensity. A much sharper dep
dence onf appears in the position and characteristics of
resonance peaks, which display the structure of the inter
diate Rydberg states of the H2 molecule. They are a super
position of the statesnp0(1Su

1) and np2(1Pu)of the two-
channel Fano system, which contains information about
characteristics of these states and their decay.

The quasistationary~in the presence of a field! levels of
the systeme21H2

1 can be found from the equationD50,
finding successively first their position and then their wid
The equation ReD50, written in the form

~ tan~pn1!2t112a11!~ tan~pn2!2t222a22!5~ t121a12!
2,
~21!

is formally identical to the two-component Fano equation3 in
the problem of the energy eigenvalues of the opticalR(0)
branch of the H2** molecule under conditions of stron
nonadiabatic electron–rotational coupling. In contrast to R
3, Eq.~21! also includes the interaction characteristics (a11,
a22,a12) that depend on the external electromagnetic fie
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For the region of the spectrumu«u@1/n3, to determine the
positions of the levels within the characteristic Rydbe
rangesD«}1/n3 the variation of the interaction characteri
tics can be neglected. Stepwise analysis of the equatioD
50 is made possible by the fact that the quantitiesgss8 (s,
s850,2) are quadratic in the small@by virtue of the condition
~1!# interaction with the field, while in the matrix elemen
ass8 the presence of the energy denominatoru«u!1 can com-
pensate this smallness.

The dependence of the positions of the Rydberg level
the series 1 and2 on the external field strength is displaye
Fig. 4. It is evident that in the rangef ;1023–1022 the
field-induced perturbation of the Rydberg states is ind
large, since the change in the quantum defects of the le
mns( f )5n(s)2ns( f ) is a measure of this perturbation.
substantial irregularity from level to level is observed in t
mns( f ) dependence: Together with the strongly perturb
levels ~such as 15~1!, 16~1!, 13~2!, 14~2!, and others! there
are levels whose position remains almost unchanged~20~1!,
23~1!, and so on!. In addition, the series 2 is perturbed mu
more strongly ~the Coulomb scale factor 1/ns

3 , which is
much smaller for this series, comes into play here!.

The structure of the spectrum of perturbed levels exh
its a variety of features. The first one is a repulsion of
entire collection of levels relative to the level 20~1! located
at the center of the absorption line. At the same time,
resulting picture is supplemented by the existence of reg
of ‘‘strong’’ convergence of individual pairs of levels. The
occur in pairs 15~1!–13~2! and 18~1!–15~2! near f ;1023.
Convergence is due to the field-induced interaction of a la
group of states, though it occurs only when the splitting
tween the initial levels is small in the absence of a fie
~strong nonadiabatic mixing!. It is important to emphasize

FIG. 4. Positions of the Rydberg levels in the intermediate series 1 and
the opticalR(0) branch of the H2 molecule as a function of the externa
field strengthf which are roots of the secular equation~21!. The broken lines
show the levels of the series 1 forN50; solid lines— series 2 forN52,
dots — limiting positions of the series-1 levels with quantum defe
mn1( f )51/2.
in
in

d
ls

d

-
e

e
s

e
-

that in the series 1 a term can cross with the limit of it
Rydberg range

En1(`)52
1

2~n111/2!2
.

This is ruled out for the perturbation of Rydberg series w
the general ionization potential. Such crossing for a positi
definite detuning«.0 can occur if

En1(`),En2(`) and 12B1
1

n1~0!2
,

1

n2~0!2
,

wherens(0) are the effective principal quantum numbers
the series 1 and 2 and are roots of Eq.~21! for f 50. This
condition essentially reduces to the requirement that in
absence of a field the corresponding levelEn1(0) of series 1,
together with its limiting valueEn1(`) , must be contained in
the interval@En2(0) ; En2(`)] . An upward shift of the level
En2

with increasing external field strengthf can cause the
level En1

to be expelled and to cross its own limiting valu
The possibility of crossing is accidental, since this is det
mined by the specific values of the elements of the reac
matrix ~12!, which are individual characteristics of the H2

molecule and do not depend on the field strength. In
range ofn1 and f presented in Fig. 4 this situation is ob
served only for the leveln1524.

These features of the spectrum of intermediate Rydb
states of the H2 molecule give rise to unusual behavio!
~compared to atomic systems with a structureless core! of the
autodecay widthsGn( f ), which are determined by the ex
pression

Gn5
2

p F g1~z22a22!1g2~z12a11!12g12a12

n1
3~z22a22!~11z81

2!1n2
3~z12a11!~11z82

2!
G
~22!

~where zs85tan(pns), s51,2) and are a functional of the
positions of the levels in the Rydberg molecules XY** . The
f dependence of the autoionization widths for Rydberg lev
of atoms ~excited due toV transitions from a lower-lying
state! is directed related to the external field induced qua
tum defectmn( f ) and has the simple form8,9

Gn~ f !5
2g

pn3
cos2~pmn~ f !!.

A f2

11c f4
, ~23!

whereA andC are numerical factors. The presence of re
tively extended sections where the level widthsGn}1/f 2 de-
crease monotonically with increasingf, is clear evidence of
field-induced stabilization. The most characteristic indica
here is the fact that the Rydberg levels occupy positions
tween the Coulomb levels~i.e., n→n61/2 as f→`). This
dependence is typical for atoms with a structureless core
occurs for excitation of both one and two Rydberg series9

In molecular systems the regularity in the arrangem
of the levels is destroyed~as a result of the interaction o
Rydberg series corresponding to different excited states
the ion core! and theGn dependence (f ) can be very diverse
Specifically, the simple relation~23! between the width and
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position of a level no longer holds. Here, just as in syste
with few levels,13–15 interference stabilization is determine
not only by the relative arrangement of the levels but also
a special relation between the interaction parameters. In
dition, a simple crossing of the limit of a Rydberg interval
one series (n1(`)5n161/2) by a level belonging to a dif
ferent series~for example,n2) does not result in stabiliza
tion. However, it is interesting to note that near a cross
point the decay characteristics of the term are determine
one of the quantitiesg1 or g2 ~in the present caseg2):

Gn5
2g2

p

1

n1
3~ t121a12!

21n2
3~ t221a22!

2
. ~24!

This result follows from Eq.~22!, provided that the solution
of Eq. ~21! near this point, where tan(pn1)5` and
tan(pn2)5t221a22, is used.

Most states corresponding to the term picture presen
in Fig. 4 are not stabilized at all: Their widths increa
monotonically with f ~an example of such behavior is th
form of the width of the level 23~1!, presented in Fig. 5!.
Nonetheless some of them~for example, the statesn1524,
n2514, 15, 16, and 17! show a tendency toward a form o
stabilization that appears in the presence of sections wi
small decrease ofG f . However, subsequently this decrea
is replaced by growth with increasing field strength, thou
the growth is more gradual than on the initial section of
curve ~whereG} f 2!. Only the state 15~1! exhibits behavior
similar to that described by Eq.~23!. It can therefore asserte
be that for moderate field strengths, so that in accorda
with the condition ~1! the parameterh!1 and the field-
dependent widths of the Rydberg levels are much less
the splitting between the levels, the stabilization effect in
form G( f )}1/f 2 as f→` is essentially not observed.

This is explained by the fact that when the regularity
the arrangement of the levels as a function ofn is destroyed,
interference phenomena in large groups of Rydberg state

FIG. 5. Autoionization widths of the Rydberg levels of the optical serie
and 2 versus the external field strength.
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impeded. Therefore complete interference expulsion of
electron from the region of strong interaction with the io
core does not occur in molecules.

5. CONCLUSIONS

We have presented he foundations of the theory of m
tiphoton ionization of molecules taking account of stro
perturbations introduced into the intermediate highly exci
states by an external monochromatic field. Specifically,
large change in the structure of the Rydberg levels, the
bridization of interacting states, and the sharp dependenc
the decay characteristics of the states on the level num
were discussed. These phenomena are important for prac
applications, since only optically allowed series participa
in direct transitions in Rydberg states, while quite high fie
intensitis are required to study of multiphonon or casca
processes.

The photoionization of the H2 molecule with the partici-
pation of thenp0 andnp2 series of the opticalR(0) branch
is a striking illustration of strong nonadiabatic electron
rotational coupling. The field-induced perturbation of sta
with different rotational quantum numbers (N50 and N
52) and, correspondingly, with two ionization potentials
described here by the transcendental equation~21!, which is
formally identical to the two-component Fano equation,3 but
contains additional interaction characteristics that depend
the external field. Essentially, this opens up the possibility
deliberate action, using an external field, on the structure
the spectrum of the excited states and control of the p
cesses in which these states participate.

We also investigated the decay characteristics of th
states and showed that the disruption of the regularity in
arrangement of the levels~as a result of the strong interactio
of the Rydberg states corresponding to different ionizat
potentials! impedes the stabilization effect in Rydberg sy
tems. Most states do not stabilize at all and are characteri
as usual, by level broadening quadratic in the field strengf
(Gn} f 2). Nonetheless, for certain states a nonmonotonic
pendenceGn( f ) is observed and is expressed in the fact t
G( f )'A f2 for small f, when the parameterass8!1. Subse-
quently, partial narrowing of the levels occurs and th
changes to gradual growthGn( f )'B f2 with coefficient of
proportionalityB much less thanA. This Gn( f ) dependence
is typical for the Rydberg states of molecules excited a
result of quasiresonantV transitions from a lower-lying leve
in quite moderate fields~so that Gn!1/n3). At the same
time, it differs substantially from the corresponding behav
for the hydrogen atom or simple atoms with a structurel
core

This work was supported by the Russian Fund for Fu
damental Research~Grant No. 96-03-34113!.

* !E-mail: golubkov@phch.ras.ru
1!Here and below we use the atomic system of units\5me5e51, in which

the field intensity isf a51.
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Removal of single-atom optical bistability by quantum fluctuations
A. V. Kozlovski * ) and A. N. Oraevski †)
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The dynamics of the quantum-statistical properties of the radiation of an atom in a cavity
interacting with an external coherent field is investigated. A high level of quantum fluctuations
of the field in the cavity is shown to destroy optical bistability in the multiatom case.
Photon-number fluctuations and the spectral dispersion of the canonically conjugate quadratures
of the field inside and outside a cavity are calculated. It is found that in contrast to the
multiatom case quadrature squeezing and squeezing of the radiation intensity of a single atom
are negligible inside and outside the cavity. ©1999 American Institute of Physics.
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1. INTRODUCTION

The radiation of an active medium consisting of tw
level atoms in an optical cavity in an external coherent fi
exhibits the property of bistability for certain ratios of th
dissipation rates, frequency detuning, and external fi
strength. The microscopic quantum theory of this pheno
enon shows that under bistability conditions the radiation
be in a nonclassical quadrature-squeezed state.1–12 It has
been found1–3 that in the multiatom case (Nat@1) squeezing
inside a cavity can reach 50% on the lower stable bran
Analysis of the squeezing of radiation leaving the cav
showed that it can reach 90%.4–12

The phenomenon of bistability for one atom in a cav
has been investigated in Refs. 13 and 14. The Fokker–Pla
equation obtained in these works for the field and atom
variables on the basis of a linear approximation in the fi
fluctuations made it possible to conclude that bistability
present if the rateg of the cavity losses is much greater th
the spontaneous decay rateG of the levels,g@G, and that
bistability is absent forg,G. The presence of fluctuation
near the turning points in the latter case destroys optica
stability in the weak-fluctuation case.15

In the present paper we analyze the dynamics of
quantum-statistical properties of the radiation of an atom
the optical bistability region. In the reduced density opera
method for the ‘‘atom1 field’’ system in a basis consistin
of the Fock states of the field, the theory employed is va
for arbitrary ratios of the parameters characterizing the
herent pumping and dissipation processes, simulated by
propriate reservoirs interacting with the atom and the rad
tion field. We note that our investigations of the dynamics
the field and of the statistical properties of the radiation
not employ the small-fluctuation approximation, in which o
dinarily an approximation linear in the fluctuations is use
The statistical properties of the field inside and outside
cavity are analyzed.

2. MODEL OF OPTICAL BISTABILITY

The Hamiltonian of the ‘‘atom1 field 1 reservoir’’
system includes the energyHF of a discrete mode of the
1091063-7761/99/88(6)/7/$15.00
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electromagnetic field inside the cavity, the energyHA of the
two-level atom, the atom–field interactionVA2F , the energy
RF of the reservoir of the continuous spectrum of the therm
modes of the field~the thermostat!, the interactionVA2R of
the atom with the thermostat reservoir, the interactionVF2R

of the cavity field and the thermostat, and the interact
VF2I of a field oscillator inside the cavity with an extern
coherent fieldE5Ee2 iv0t, E5AnIe

ifI ~Refs. 1–15!:

H

\
5

1

\
~HF1HA1VA2F1RF1VA2R1VF2R1VF2I !

5vca
1a1

1

2
vAsz1g~a1s21s1a!1(

j 51

`

v jbj
1bj

1(
j 51

`

gj~bj
1s21bjs

1!1(
j 51

`

kj~a1bj1bj
1a!

1~a1E1Ea!. ~1!

Herea(a1) are annihilation~creation! operators for the elec
tromagnetic field of a discrete cavity mode with frequen
vc and bj (bj

1) are annihilation~creation! operators of the
reservoir of the continuous spectrum of the thermal mode
the field which are present inside the cavity due to the par
transparency of the mirrors. These operators satisfy com
tation relations for Bose particles:

@a,a1#51, @a1,a1#5@a,a#50, ~2!

@bj ,bi
1#5d j i , @bj

1 ,bi
1#5@bj ,bi #50.

In Eq. ~1! the interaction of the laser radiation field wit
the reservoir modes$bj%, which is responsible for establish
ing thermodynamic equilibrium between the cavity mod
and the reservoir–thermostat field, which enters through
mirrors, with an average number of photons per mode16

nT[n̄~v5vc ,T!5@exp~\vc /kT!21#21. ~3!

The atomic polarization operators (s2,s1) and the inver-
sion operatorsz of the populations of the two-level atom,
5 © 1999 American Institute of Physics
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s25u↓&^↑u, s15u↑&^↓u, and sz5u↑&^↑u2u↓&^↓u,
~4!

satisfy

2s7s6517sz and szsz51 ~5!

and the commutation relations for Fermi particles

$s1,s2%5u↑&^↑u1u↓&^↓u51,

$s1,s1%5$s2,s2%50. ~6!

In Eqs. ~4! and ~6! u↓& and u↑& are the lower and uppe
energy states of the active electron and$ . . . % is an anticom-
mutator.

The interaction between an atomic electron and the fi
$bj% of the harmonic oscillators in the thermostat establis
thermal equilibrium of the quantum average atomic opera
with temperatureT.

The interaction between the radiation field and the
larization of an atom is proportional to the interaction co
stantg, characterized by the transition dipole momentd↑↓
and the cavity volumeV,

g5d↑↓A2pvA

\V
, ~7!

wherevA is the atomic transition frequency. The consta
gjof the interaction between the thermostat field and
atomic electron are found similarly. The parameterkj ap-
pearing in the operatorVF2R is a constant characterizing th
interaction between the thermostat modes and a cavity m

We shall use the reduced density operator of the ‘‘at
1 single-mode field’’ system in the basis of Fock states:

r~ t !5 (
i , j 5$↑,↓%

(
n,m50

`

rn,i ;m, j~ t !u i &un&^mu^ j u ~8!

to analyze the quantum stochastic dynamics of a two-le
single-atom laser. In the interaction representation and
Born–Markov approximation16 the reduced density operato
~8! of the ‘‘atom1 field’’ system interacting with a reservoi
satisfies the Liouville equation

]r

]t
5TrR~sR% S!52 i

DA

2
@sz,r#2 iDC@a1a,r#

2 ig@~a1s21s1a!,r#1
g

2
~nT11!~2ara1

2a1ar2ra1a!1
g

2
nT~2a1ra2aa1r2raa1!

1
G

2
~NT11!~2s2rs12s1s2r2rs1s2!

1
G

2
NT~2s1rs22s2s1r2rs2s1!2 i @E~a1r

2ra1!1E* ~ar2ra!#, ~9!

where the detuning of the frequencyv0 of the external field
from the atomic frequencyvA and from the oscillator fre-
quencyvc is DA5vA2v0 and Dc5vc2v0, andg and G
ld
s
rs

-
-

s
n

e.

el
e

are, respectively, the field-loss rate at the mirrors and
spontaneous-emission rate. These dissipation constants
be expressed in terms of the correlation functions of the c
responding reservoir operators$bj% ~see, for example, Ref
16!.

The average numberNT of excitations of the atomic res
ervoir that appears in Eq.~9! for the case where the reservo
modes$bj% are in thermodynamic equilibrium at temperatu
T is ~see, for example, Ref.16!:

NT[N̄~v5vA ,T!5^bj
1bj&v j 5vA

5FexpS \vA

kT D21G21

. ~10!

Since at optical frequencies we have\vA , \vc@kT, we
shall neglectnT andNT in the calculations below.

Using the correspondence between quantum-mechan
operators andc-number variables, a generalized Fokke
Planck equation for the quasiprobability distributio
function3,13,14,17corresponding to the density operator can
obtained from the Liouville equation~9!. In turn, the
Fokker–Planck equation so obtained is equivalent to a s
tem of Langevin stochastic differential equations of moti
for the c-number field and atomic variables. The solution
this system of equations for stationary conditions make
possible to obtain a relation between the external field int
sity and the quantum-mechanical average intensity of
field inside the cavity~the equation of state!. As a result of
the nonlinearity of the atom–field interaction in the two-lev
model of an atom the stationary equation of state has
form

Y2[U2E

g U2 1

ns
5X2F S 11

2C

11X21dA
2 D 2

1S dc2
2CdA

11X21dA
2 D 2G , ~11!

X2[
^a1a&

ns
, dA52

vA2v0

G
, dc52

vc2v0

g
,

where the cooperativity parameterC and the numberns of
saturation photons have been introduced as

C5
2g2

Gg
and ns5

G2

8g2
. ~12!

The relation~11! can also be obtained in a determinist
theory using the Maxwell–Bloch equations.18 Analysis of the
equation of state~11! shows that absorptive bistability i
present ifC.4 anddA5dc50. Absorptive–dispersive bi-
stability is present ifC2.27dA

2/4 (C@1), dAÞ0, and dc

50 or if C2.27dA
2/4, dcÞ0, and dA50 and also if C

.4udcdAu (C@1) for dcdA,0 or C.0.5dcdA (C@1) for
dcdA.0.

The following system of coupled differential equation
for the density matrix elements follows from the Liouvill
equation~9!:19,20

r1n,m~ t ![^↑urn,mu↑&1^↓urn,mu↓&,
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r2n,m~ t ![^↑urn,mu↑&2^↓urn,mu↓&, ~13!

r3n,m~ t ![^↑urn,mu↓&, r4n,m~ t ![^↓urn,mu↑&.
Using the following relations for the creation–annihilatio
operators in the Fock basis

aun&5An un21&, a1un&5An11 un11&, ~14!

^nua5An11 ^n11u, ^nua15An ^n21u,

and

szs15s1, s1sz52s1, s2sz5s2, ~15!

as well as Eqs.~2! and ~4!–~7!, we find directly from the
Liouville equation ~9! the equation of motion for the ele
ments of the form~13! of the density matrix~8!. The result is

ṙ1,n,m5 ig~Am11 r3,n,m112An r3,n21,m1Am r4,n,m21

2An11 r4,n11,m!1
g

2
Lgr11LEr1 ,

ṙ2,n,m5 ig~Am11 r3,n,m111An r3,n21,m2Am r4,n,m21

2An11 r4,n11,m!1
g

2
Lgr22Gr1,n,m2G~2NT

11!r2,n,m1LEr2 ,

ṙ3,n,m5 iDr3,n,m1 i
g

2
~Am r1,n,m212An11 r1,n11,m

1Am r2,n,m211An11 r2,n11,m!1
g

2
Lgr3

1LEr32
G~2NT11!

2
r3,n,m ,

ṙ4,n,m5 iDr4,n,m1 i
g

2
~Am11 r1,n,m112An r1,n21,m

2Am11 r2,n,m112An r2,n21,m!1
g

2
Lgr4

1LEr42
G~2NT11!

2
r4,n,m , ~16!

where the terms that are common to all four equations
are due to cavity losses through the mirrors and the inte
tion of the cavity field with the external coherent field can
written in the general form

Lgr j5~nT11!@2A~n11!~m11! r j ,n11,m112~m

1n!r j ,n,m#1nT@2Anmr j ,n21,m212r j ,n,m~n1m

12!#, j 51,2,3,4, ~17!

LEr j52 i $@EAn r j ,n21,m2Am11 r j ,n,m11#

1E* @An11 r j ,n11,m2Am r j ,n,m21#%

2 iDc~n2m!r j ,n,m , j 51,2,3,4. ~18!

We solved the system of equations~16! of dimension
4(nmax11)(nmax11) numerically using the fourth-orde
d
c-

Runge–Kutta method (nmax is the size of the Fock basis!. In
the general case the field was initially in an arbitrary mix
state and the atom was in the lower state. Therefore the
sity matrix of the noninteracting atom and field at timet
50 is

r~0!5ra^ r f , ~19!

where

ra5u↓&^↓u, r f5 (
n,m50

`

cncm* un&^mu.

Specifically, if the field is initially in a coherent stateua&,
then the coefficients in the expansion in terms of the Fo
states are

cn* cm5
a* nam

An!m!
exp~2uau2!. ~20!

If the initial state is a pure Fock stateun0&, then
cn* cm5dn,m . For a thermal state we havecn* cm5@nT

n/(1
1nT)n11#dn,m .

The average number of photons, the average invers
the fluctuations~variance! of the photons, and the averag
field can be found, using a grouping of the form~13! for the
matrix elements of the system, as

^n~ t !&5Tr@r~ t !a1a#5 (
n50

`

nr1n,n~ t !, ~21!

^D~ t !&5Tr@r~ t !sz#5 (
n50

`

r2n,n~ t !, ~22!

Var~n~ t !![^~Dn~ t !!2&5 (
n50

`

~n2^n~ t !&!2r1n,n~ t !,

~23!

^a1~ t !&5 (
n50

`

An11 r1n,n11~ t !,

^a~ t !&5 (
n51

`

An r1n,n21~ t !. ~24!

The variances of the conjugate quadraturesX1(t)5@a1(t)
1a(t)#/2 andX2(t)5@a1(t)2a(t)#/2i can be expressed in
terms of the matrix elements of the density operator as

^~DX6!2&5
1

4 H (
n50

`

~2n11!r1n,n~ t !

6 (
n52

`

An~n21! r1n,n22~ t !

6 (
n50

`

A~n11!~n12!r1n,n12~ t !

7F (
n50

`

An11 r1n,n11~ t !
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FIG. 1. a! Dimensionless fieldX inside a cav-
ity versus the dimensionless amplitudeY of
the external field for the absorptive bistability
solid curve — semiclassical equation of sta
~11!; crosses — quantum-mechanical calcul
tion. C58, ns51, dc5dA50. b! Fano factor
F5 Var(n)/^n& for the number of in-cavity
photons versus the dimensionless extern
field.
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n51

`

An r1n,n21~ t !G2J . ~25!

3. OPTICAL BISTABILITY AND CAVITY FLUCTUATIONS

We performed numerical calculations of the dynamics
the quantities~21!–~25! to investigate the effect of quantum
fluctuations on the occurrence of optical bistability of t
radiation of a single atom. We calculated the cases of a h
Q cavity (g!G) and a high-loss cavity (g@G) for the ab-
sorptive and absorptive–dispersive bistabilities. A cohere
vacuum state and a coherent pure state were used a
initial state of the field att50. A numerical investigation of
the system~16! for various values of the parameters of t
atom, the external field, and the reservoir showed that for
stationary radiation of an atom both forms of optical bis
bility predicted by the semiclassical theory1–12 are absent.
The dependenceX(Y) ~Fig. 1! obtained for the purely ab
sorptive bistability in the semiclassical theory@the expres-
sion ~11!# in the region of bistability between the upp
(tp2) and lower (tp1) turning points,Ytp2,Y,Ytp1 , dif-
fers sharply from the results of our quantum calculation.
this region the stationary solutionX(Y) does not depend on
the initial conditions, i.e., there is no hysteresis, while t
theory neglecting quantum fluctuations~or taking such fluc-
tuations into account in the linear approximation13,14! pre-
dicts bistability and hysteresis, i.e., a dependence of the
tionary state of the field on the initial conditions. Th
dependence of the Fano factorF5Var(n)/^n& in the cavity
on the external field strengthY is displayed in Fig. 1b. It
f

h-

t-
the

e
-

n

e

ta-

follows from Fig.1b that a sharp spike of photon-numb
fluctuations which destroys bistability occurs in the bistab
ity region.

The data presented in Fig. 1a can be compared with
computational results obtained in Ref. 14 in the adiaba
approximation in the atomic variables and in the linear a
proximation in the fluctuations for the same values of t
parametersC and ns ~see Fig. 2a from Ref. 14!. The com-
parison shows that the small-fluctuation approximation is
applicable for the single-atom optical bistability, at least
the regionYtp2,Y,Ytp1 where the fluctuations are ver
large ~see Fig. 1b!. It is also found that much more time i
required to establish a stationary state in the region of se
classical bistability (gt;3000) than outside this region (gt
;100). Figure 2 shows the average stationary numbern of
photons versusY for the absorptive bistability for a large
value of the cooperativity parameterC and a smaller numbe
ns of saturation photons. Just as in the preceding case,
Fano factor~Fig. 2b! increases sharply in the region of sem
classical bistability, and hysteresis is completely absent.

The photon number distribution functionP(n)5r1n,n in
the region of semiclassical bistability is of special interest
is evident from Fig. 3 that the photon distribution functio
possesses two maxima, i.e., the state of the field forYtp2

,Y,Ytp1 is a superposition of two states corresponding
the lower and upper stable branches of the semiclass
equation of state. Each peak in the distribution function c
be approximated well by a Gaussian function, i.e., the qu
tum state of the field is a superposition of two cohere
states:uc&5c1ua1&1c2ua2&.
FIG. 2. a! Average stationary numbern of pho-
tons versus the dimensionless external fieldY
for C512 andns50.5. b!In-cavity Fano factor
under the same conditions.
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Figure 4a showsn(Y) for absorptive–dispersive bista
bility ( dcdA.0 for C@1). Just as for the purely absorptiv
bistability, quantum fluctuations completely remove bistab
ity in the one-atom case under study. It is evident from F
4a that the small-fluctuation approximation also breaks do
outside the region of bistability of the semiclassical cur
The results of the exact calculation differ substantially fro
the semiclassical data forY.Ytp1 also. Almost linear growth
of the Fano factor occurs for largeY ~Fig. 4b!. The compu-
tational results for the same value of the cooperativity
rameterC and detuningdc anddA but for smallns are pre-
sented in Fig. 5. This case corresponds to a large ratiog/G
.1, i.e., high cavity losses. Just as in the high-Q case, quan-
tum fluctuations remove the bistability in the single-ato
case.

Our calculations showed that for parametersC, dc , and
dA for which the greatest squeezing of the field quadratu
outside the cavity was found in Ref. 4 for the multiato
case, in our single-atom case quadrature squeezing insid
cavity is negligible~less than 10%! and is present only for
small Y,Ytp2 . The Fano factor for smallYalso differs just
as little from the shot-noise level. Increasing the numberns

of saturation photons for the same value ofC, leading to an
increase in the average number of photons in the cavity, d
not appreciably increase the squeezing.

Figure 6a showsn(Y) for the case where semiclassic
bistability is absent. In this case the results of exact calc
tions are essentially identical to the semiclassical results
follows from Fig. 6b, the peak of the fluctuations that aris
in the region of bistability is absent here. The Fano fac

FIG. 3. Photon distribution function for the absorptive bistability withC
580, ns58, andY58.5.
-
.
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a-
s

s
r

increases monotonically withY, and the small-fluctuation ap
proximation likewise breaks down for largeY ~see Fig. 6a!.

4. FLUCTUATIONS IN THE QUADRATURE OF THE FIELD
AT THE CAVITY EXIT

We assume that inside the laser cavity the electrom
netic field is in a state with discrete frequencies~photon en-
ergies!, while outside the cavity the field possesses a c
tinuous spectrum. As a result, it must be assumed that
temporal fluctuations of the field inside the cavity are sour
of fluctuations of the frequency spectrum of the radiati
exiting through the cavity mirror. The field outside the cav
can be represented as a sum of the laser radiation field
ing through the mirrors and the reservoir–thermostat no
field incident on the mirror, i.e.,21–23

aout~ t !5bin~ t !1Ag a~ t !,

bin~ t !}(
j

Av j exp~2 iv j t !bj .

The Heisenberg operatoraout1(t)aout(t) is the operator of
the number of photons exiting through the mirror per u
time. The commutation relations for the field operators for
ing a continuous spectrum outside the cavity~out! have the
form21–23

@aout~ t1t!,aout1~ t !#5d~t!. ~26!

We introduce the canonically conjugate phase quad
tures of the field outside the cavity,X1

out(u) andX2
out(u), for

a local oscillator of arbitrary phaseu:

aout5e2 iu@X1
out~u!1 iX2

out~u!#,

aout5eiu@X1
out~u!2 iX2

out~u!#, @X1
out~u!,X2

out~u!#5
i

2
.

~27!

For a single transmitting mirror the correlation functions
the field of a discrete radiation mode inside the cavity
related to the correlation functions of the fields of the co
tinuous spectrum outside the cavity have the form20–22

^a1~ t1t!a~ t !&out5g^a1~ t1t!a~ t !&. ~28!

The quantity characterizing the statistics of radiation pass
through the exit mirror is the stationary spectrum
fluctuations4–12
–
FIG. 4. Same as Fig. 2 for absorptive
dispersive bistability withC52200,ns50.001,
dA5100, anddc520.6.
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FIG. 5. Same as Fig. 4 withns50.0001.
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V6
out~v,u!5 lim

t→`
E

2`

`

dt e2 ivt@^X6
out~ t1t!X6

out~ t !&

2^X6
out~ t1t!&^X6

out~ t !&#. ~29!

The fluctuations~spectral dispersion! ~29! outside the cavity
can be calculated using the in-cavity field operators21–23and
the relation~28!:

V6
out~v,u!5

1

4
1

g

4
@S12~v!1S12~2v!

62~e2iuS11~v!1c.c.!#, ~30!

where

S12~v!5E
2`

`

dt e2 ivt@^a1~ t1t!a~ t !&

2^a1~ t1t!&^a~ t !&#5S21~2v!, ~31a!

S11~v!5E
2`

`

dt e2 ivt@^a1~ t1t!a1~ t !&

2^a1~ t1t!&^a1~ t !&#5S22* ~v!. ~31b!

Since under stationary conditions the two-time correlat
functions are even functions oft, the cosine Fourier trans
form was used in Eq.~31! for calculations.

As follows from Eq.~30!, the spectrum of the photon
number fluctuations in the field at the cavity exit consists
a shot-noise term@the first term in Eq.~30!# and the normally
and chronologically ordered fluctuation spectrum@second
term in Eq.~30!#. Maximum squeezingV(v,u),1/4 occurs
for the optimal phase of a local oscillator for each frequen
n

f

:

e22iu5
S11~v!

uS11~v!u
.

Then

Vout~v!5
1

4
1

g

4
@S12~v!1S12~2v!22uS11~v!u#. ~32!

Under stationary conditions it is easy to obtain the f
lowing expression, which follows from the quantum regre
sion theorem~see, for example, Ref. 16!, for the correlation
functions of the cavity field operators:

^a1~ t1t!a~ t !&ss5Tr@a1r̃~t!#, ~33a!

^a~ t1t!a~ t !&ss5Tr@ar̃~t!#, ~33b!

where the operatorr̃(t)[r̃(t1t) satisfies the Liouville
equation~9! with the initial (t50) condition

r̃ j ,n,m~0!5An11 r j ,n11,m~ tss!, j 51,2,3,4. ~34!

As shown in Ref. 4 for the absorptive bistability, appreciab
squeezing of the field quadratures does not occur outside
cavity for g@G. For absorptive–dispersive bistability sub
stantial squeezing occurs ifdcdA.0 on the lower stable
branch. The optimal conditions, obtained in Ref. 4, f
squeezing occurring for large detuning and smallX
5A^n&/ns are X2/dA

2!1 and X4/dA
3!1. To compare with

the quadrature squeezing outside the cavity in the multia
case4 we performed calculations of the stationary fluctuati
spectrum forC51100, dA5100, anddc520.6, for which
multiple squeezing was found in Ref. 4 in a wide range
values ofX(Y). The calculations showed that in contrast
FIG. 6. Same as Fig. 4 but withC51100 and
ns50.01.
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FIG. 7. a! Spectrum of squeezing of lase
radiation outside the cavity forC58 ns

51, Y57, anddc5dA50. b!Time depen-
dences of the variances of the canonica
conjugate quadraturesX1 andX2 .
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the multiatom case the degree of squeezing in the sin
atom case is extremely low and is only several percent
smallY ~Fig. 7!. As Y increases, squeezing vanishes for bo
the absorptive and absorptive–dispersive cases.

5. CONCLUSIONS

We have analyzed the dynamics of the quantu
statistical properties of the radiation of an atom in an ex
nal field without using adiabatic elimination of atomic va
ables and without assuming quantum fluctuations to
small. We have shown that for a high-Q cavity as well as for
large cavity losses bistability in the single-atom case is
stroyed by large quantum fluctuations of the field. A sha
spike of the quantum photon-number fluctuations is pres
in the region of bistability~hysteresis region!.

It was shown that the field in the region of the semicla
sical bistability is in a quantum state consisting of a sup
position of two coherent states corresponding to the up
and lower stable branches of the semiclassical equatio
state.

It was found that in contrast to the multiatom cas
where substantial quadrature squeezing of the field oc
inside and outside the cavity, in the single-atom case squ
ing is negligible under the same conditions.

It was shown that the small-fluctuation approximation
inapplicable under optical bistability conditions, both in t
hysteresis region and on the upper stable branch of the s
classical curve of the state corresponding to large value
the external field.
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Multiple ionization of a Thomas–Fermi cluster by a strong electromagnetic field
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Zh. Éksp. Teor. Fiz.115, 2014–2019~June 1999!

We develop a new model of a Thomas–Fermi cluster that describes the distribution of electrons
in alkaline clusters with many atoms. We examine the classical multiple ionization of such
a cluster by a strong electromagnetic field. Finally, we calculate the degree of ionization as a
function of the field strength. ©1999 American Institute of Physics.@S1063-7761~99!00806-9#
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1. INTRODUCTION

The multiple ionization of a Thomas–Fermi atom~and
molecule! by intense low-frequency laser light has be
studied theoretically by a number of researchers.1–4 These
researchers modeled a multielectron atom in the Thom
Fermi approximation,5 and assumed that the laser light tran
forms the atom into an ion by stripping it of its electron
starting with the outer shells and proceeding down to e
trons for which above-barrier ionization~classical ionization!
ceases to exist. Quantum tunneling of the remaining ato
electrons under the effective potential barrier during the
laser pulse has a probability that is much lower than tha
above-barrier ionization, so that it can be completely igno
in this model. Moreover, in view of the very strong depe
dence of the ionization probability on the intensity of t
electromagnetic field, ionization occurs only near the int
sity maximum, which means that the ionizing electric fie
may be assumed constant. This quasi-steady-state app
to the ionization problem is valid at small values of t
Keldysh parameter,6 which correspond to high values of th
electromagnetic-field intensity in the optical frequen
range. Fields generated by high-power titanium–sapphire
sers fully meet these conditions.

The aim of the present work is to generalize t
Thomas–Fermi model to alkaline clusters containing ma
atoms and to describe the classical~above-barrier! multiple
ionization of such clusters in a strong electromagnetic fie
Here the alkaline clusters proper are considered in the s
dard jellium model~see the review cited in Ref. 7!. This
model presupposes that the density of the atomic ion
constant and does not depend on the radial coordinate.
cluster electrons self-consistently adjust to the ion distri
tion specified in this manner. They fill shells, just as they
in atoms. When the number of electrons is large, the s
picture is replaced in the Thomas–Fermi model~as in an
ordinary atom! by a continuous electron-density distributio

2. THOMAS–FERMI MODEL

The Poisson equation for the electrostatic potentialw in
a cluster has the simple form

¹2w54p~ne2ni !, ~1!
1101063-7761/99/88(6)/3/$15.00
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where ne and ni are the electron and ion concentration
respectively. Throughout this paper we use natural un
with \5e5me51. In the jellium model, the ion concentra
tion is constant and has the form

ni5
Zh~R2r !

~4p/3!R3
, ~2!

whereZ is number of atoms in the cluster,R is the radius of
the ion subsystem, andh(x) is the Heaviside step function

According to the Thomas–Fermi model for ions,8 the
potential w is simply related to the electron concentratio
ne :

ne5
~2~w2we!!3/2

3p2
, ~3!

where

we5w~r e! ~4!

is the electrostatic potential at the boundaryr e of the electron
distribution.

Combining Eqs.~1!–~3!, we obtain a self-consisten
equation for the electrostatic potential atr ,r e :

¹2w5
1

r

d2

dr2
~rw!54pF 1

3p2
~2~w2we!!3/22

Zh~R2r !

~4p/3!R3 G .

~5!

The boundary conditions for this second-order differen
equation are

dw

dr
~r 50!50, w~r 5r e!5we . ~6!

The first corresponds to a vanishing electrostatic field at
coordinate origin of a spherical cluster~in contrast to the
Thomas–Fermi atom!, and the second corresponds@accord-
ing to ~3!# to the boundaryr e of the electron distribution of a
charged cluster ion~the charge results from ionization by th
electric field!.

Outside the electron distribution (r .r e), the solution
depends on the ratio of the electron and ion distributions
r e.R, the problem is simple. In this case, forr .r e , the
potential of the cluster ion outside the electron distribution
determined by the Coulomb field of the chargesZ andZ8:
2 © 1999 American Institute of Physics



t
e

ed

he
n

-

ce

he
e
h

s
-
is

tr
e

a

bu
u

he

.
re is
c-
te,

ter
ns,

in
as

e

s.
stri-

1103JETP 88 (6), June 1999 M. B. Smirnov and V. P. Kra nov
w~r !5
Z2Z8

r
. ~7!

Multiplying both sides of Eq.~5! by r 2 and integrating with
respect to the radial component, we can easily verify tha
the boundaryr e of the electron distribution not only is th
potential continuous, but so is its radial derivative, i.e.,

w8~r e!52
Z2Z8

r e
2

. ~8!

This equation makes it possible to expressZ8 in terms ofr e ,
since the left-hand side of Eq.~8! is known from the solution
of Eq. ~5!.

The situation is somewhat more difficult whenr e,R.
The solution~7! is valid only in the regionr .R. In the
region r e,r ,R, the solution for the potential has the form

w~r !52
Z8

r
2

Zr2

2R3
1

3Z

2R
~9!

~making use of the electrostatic solution for an ioniz
sphere with uniform bulk charge density!. If we match this
solution at the boundary of the electron distribution to t
interior solution~5!, we can express the number of electro
Z8 in terms of the radiusr e . Instead of~8! we obtain

w8~r e!52
Z~r e /R!32Z8

r e
2

. ~10!

We solved Eq.~4! numerically with the boundary con
ditions ~5! for a typical cluster containingZ5100 sodium
atoms. The ion concentration was taken equal to the con
tration of solid crystalline sodium,9 i.e., ni52.652
31022cm23. According to ~2!, the ion radiusR of such a
cluster is 18.25 a.u.

The typical electron potential energy2w for a positively
charged cluster~the energy is expressed in atomic units! as a
function of the radial coordinate~also in atomic units! is
shown by curve1 in Fig. 1 for Z8554 ~a roughly half-
ionized cluster!. In this case,r e516.25 a.u.,R518.25 a.u.
Clearly, over most of the electron distribution~the hatched
region! the potential is constant, i.e., there is no field. T
value w(0)52.82 a.u.;77 eV provides an estimate for th
binding energy of the interior electrons in such a cluster. T
Fermi limit ~the vertical dotted line! corresponds to electron
with an energy 2.70 a.u.;73 eV. Note that for a neutral clus
ter (Z5Z8) the binding energy of the interior electrons
much lower:w(0)50.12 a.u.53.26 eV.

Figure 2 depicts the radial dependence of ion concen
tion ni given by~2! ~dotted line!, and the curves represent th
electron concentrationsne calculated by~3! in terms of the
potential~established earlier! for various values of cluster ion
charge~the case depicted in Fig. 1 corresponds to curve3 in
Fig. 2!. Clearly, the radius of the electron distribution in
neutral cluster~curve1 in Fig. 2! is close to the ion distribu-
tion radius. However, the smearing of the electron distri
tion is much more pronounced than that of the ion distrib
tion. Generally, the electron distribution is normalized to t
electron numberZ8 in the cluster:
at

s

n-

e

a-

-
-

4pE
0

`

ne~r !r 2 dr5Z8<4pE
0

`

ni~r !r 2 dr5Z. ~11!

For curves1–5 in Fig. 2, the valuesr e5`, 21.2, 16.25, 12.2,
and 8 a.u. correspond toZ85100, 92.3, 54.35, 22.7, and 4.9
The shape of these curves suggests that in all cases the
an interior region in the electron distribution where the ele
tron concentration is independent of the radial coordina
i.e., an electron is not attracted to the center.

Of course, if the number of electrons is small, the clus
ion is unstable due to the strong mutual repulsion of the io
and it decays rapidly .

3. MULTIPLE IONIZATION OF A CLUSTER

Up to this point we examined the behavior of a cluster
a vanishing external field. Now, in accordance with the ide

FIG. 1. Unperturbed potential energy2w(r ) of a cluster of 100 sodium
atoms containing 54 electrons~curve 1!. The hatched region is the on
occupied by electrons. The effective potential energy~curve2! was calcu-
lated with Eq.~12! for an electric field strengthF50.04 a.u., which corre-
sponds to~13!. The horizontal line represents the Fermi limit for electron
The vertical dotted line corresponds to the boundary of the electron di
bution.

FIG. 2. Electron number densityne in cluster ions consisting of 100 sodium
atoms as a function of the radial coordinate: curve1, neutral cluster (Z
5Z85100); curve2, Z8592.3; curve3, Z8554.35; curve4, Z8522.7; and
curve5, Z854.9. The dotted line represents the ion number densityni as a
function of r.
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advanced in the Introduction relating to the quasi-stea
state nature of a low-frequency electromagnetic field,
bring a constant electric field~field strengthF) into the pic-
ture. Such a field ionizes the neutral cluster~which becomes
a multiply-charged cluster ion! by detaching a classically
well-defined number of electrons from the cluster. The fi
strengthF is related to the chargeZ2Z8 that remains after
electron detachment in a manner that follows from the
pression for the effective potential~see curve2 in Fig. 1!:

V52w~r !2Fr'2
Z2Z8

r
2Fr . ~12!

If we find the maximum of this expression~which lies out-
side the electron and ion distributions! and equate it to the
maximum effective potential of the Fermi energy,we , we
obtain the electric field strengthF that leads to a cluster with
a given degree of ionization~this dependence is similar t
the Bethe formula for atomic ionization; see Eq.~54.2! in
Ref. 10!:

F5
~w~r e!!2

4~Z2Z8!
. ~13!

Of course the electric field is actually directed alo
some Cartesian axis, rather than along the radial varia
We assume that in the event of rapid ‘‘ionization’’~atomic
times! of the first electrons on the axis along which the e
ternal field acts, subsequent electrons rapidly reoccupy th
locations and are then also ‘‘ionized’’~or detached! along
the same axis, with the result that a multiply-charged clus
ion is produced. The process is self-consistent, i.e.,
cluster-ion potential is altered by ionization.

For our example of a sodium cluster with 100 atoms,
calculated the degree of ionization, defined asa5(Z
2Z8)/Z, as a function ofF. The result is depicted in Fig. 3
Clearly, multiple ionization of the cluster occurs at fie
strengths up to 0.14 a.u. For the scale of field streng
shown in Fig. 3, the Keldysh parameter is small compare
unity, so the ionization can be reliably considered qua
steady-state~see the Introduction!. The ejected electrons ar
aligned in the direction of the effective field vector, i.e.,
the direction of polarization of linearly polarized las
light.11

After termination of the laser pulse, the remaining ele
trons and the ions fly apart in a spherically symmetric w
-
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le.

-
se

r
e

e
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y

due to Coulomb repulsion~Coulomb explosion of a cluste
ion!.

In conclusion we note that our numerical example
typical, so that all phenomena described in this paper oc
in clusters of other atoms and with other numbers of p
ticles.
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Rev. Lett.80, 1857~1998!.

5L. D. Landau and E. M. Lifshitz,Quantum Mechanics: Nonrelativistic
Theory, 3rd ed., Pergamon Press, Oxford~1977!.
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Elementary processes in dusty, beam-driven plasma discharges are studied experimentally and
theoretically for the first time. A theoretical model is constructed for a beam-driven
plasma containing macroscopic particles. The effect of macroscopic particles on the electron
energy distribution function is estimated assuming a Coulomb field for the particles. The resulting
rate of electron–ion recombination on the macroscopic particles is compared with the
electron loss constant calculated from the electron energy distribution function with an electron
absorption constant in the orbital-motion approximation. This approximation, which is
valid in the collisionless case, is found to work satisfactorily beyond its range of applicability.
The distributions of the charged particles and electric fields created by macroscopic
particles in a helium plasma are determined. The experimental data demonstrate the importance
of secondary emission by high-energy electrons. ©1999 American Institute of Physics.
@S1063-7761~99!00906-3#
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1. INTRODUCTION

Dusty gas plasmas, that is, plasmas containing s
micron- and micron-sized dust particles~macroscopic par-
ticles! in addition to electrons, ions, and gas atoms and m
ecules, have been studied widely in natural phenomen
astrophysics, such as the tails of comets, interstellar d
planetary rings, etc. Although the first laboratory studies
dusty plasmas were done early in the century,1 the greatest
interest in research on these plasmas has arisen in re
years in connection with the rapid development of mic
technologies and technologies for producing new mater
in plasma reactors.2–4 On one hand, these plasmas a
viewed as one of the most efficient methods for synthesiz
nanoparticles with unique physical properties, and this de
mines their widespread practical importance. On the ot
hand, research on the processes taking place in dusty pla
and the dynamic behavior of the structures formed in them
of deep fundamental interest, both for plasma physics and
solid state physics.

It should be noted that because of the greater mobility
the electrons, particles in these plasmas acquire a neg
charge, but if secondary electron emission or photoemis
are predominant, then the charge can also be positive
system of dust particles of like charge can form a sta
structure when long-range attractive forces are present
ing, for example, to the interaction of the macroscopic p
ticles with the plasma particles.

The experimental and theoretical studies of plasmas c
taining macroscopic particles have dealt mainly with th
formation,5,6 coagulation,7 and spatial distribution,8 the par-
ticle temperatures,9,10 and the formation of ordered structure
1101063-7761/99/88(6)/10/$15.00
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~‘‘Coulomb’’ crystals!.3,4 Most papers on observations an
studies of Coulomb crystals concern rf discharges, as t
are the most widely used in microtechnology. Thus, seve
similarity laws have been formulated for the structures wh
develop in the electrode sheaths of rf discharges4,11–13 ~re-
duced interparticle distance in the lattice of a structure w
increasing discharge power, reduced lattice stability as
particle size increases, the possible escape of particles
the lattice resulting in dislocations!.

The successful use of dc discharges in the reactors
ployed for plasma deposition of thin films has led to inter
in research on dusty plasmas in these plasmas.14,15However,
the presence of particles in the plasma can change its p
erties substantially because they represent an additiona
sorber~and sometimes, emitter! of electrons and ions.

There is special interest in the mechanism for nucleat
of macroscopic particles and their effect on the microsco
and macroscopic characteristics of the plasma. Dust parti
affect the electron energy distribution function, charge co
position, charged particle densities, and chemical comp
tion of a plasma.

Unfortunately, at present there are no detailed exp
mental and theoretical studies of the properties of plasm
containing macroscopic particles. A number of theoreti
papers16–18 indicate that macroscopic particles do have
effect on the electron distribution function and, therefore,
the transport coefficients. In order to construct a theory
plasmas with macroscopic particles, some study of elem
tary processes~excitation, recombination, etc.! in the plas-
mas will be needed. One of the main processes determi
the charged particle balance in the plasma is bulk recom
5 © 1999 American Institute of Physics
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1106 JETP 88 (6), June 1999 Ivanov et al.
nation. When macroscopic particles are present, additio
electron–ion recombination takes place on the particle
faces. This recombination is one of the principal ways m
roscopic dust particles affect the plasma.

Direct measurements of the rate constants for this k
of recombination have, however, not been made. In this
per we propose a method for measuring the rate of los
electrons on dust particles. Measurements of this type
made for the first time. The results are presented inthe f
of rate constants for volume recombination. Usually the
combination rate of a plasma is determined from its de
characteristics, i.e., somehow the rate at which the cha
particle density~as a rule, the electron density! is measured
when the source by which the plasma is sustained is tur
off. This method, however, is rather difficult andit is hard
interpret the results. In addition, the rate of loss ofelectr
in a decaying plasma can differ from the standard case,
because of differences in the electron energy distribu
function. Measurements of the plasma parameters as a f
tion of the electric field strength in stationary self-sustain
discharges are difficult because of the strong coupling of
field with the ionization rate. We believe that non-self su
tained gaseous discharges, i.e., discharges maintained b
external ionization source, offer unique prospects for m
suring the efficiency of recombination processes, includ
those on dust particles.

Indeed, in this case, the rate of production of charg
particles is essentially independent of the plasma parame
and is determined by the external ionizer, and when i
constant the charged particledensity is determined ex
sively by the processes by which they are lost in the plas
Therefore, a beam-driven gaseous discharge is a uniqu
strument for studying charged particle loss processes, inc
ing those on dust components. In addition, as far as
know, no studies have been made at all on dusty, be
driven discharge plasmas.

2. DESCRIPTION OF EXPERIMENT

The experiments were done on the apparatus sketche
Fig. 1. An electron accelerator injected a beam of 125 k
electrons at a current density of up to 100mA/cm2 in a pulse
lasting 1 ms into the discharge gap through a 55-mm-thick
beryllium foil. The 0.9-cm-long discharge gap was form
by a metal grid through which the beam could pass an
continuous circular electrode with an area of 1 cm2. A volt-
age pulse with a controlled amplitude, duration, and de
was applied to them. A large part of the experiments w
done in a non-self sustained discharge in helium at at
spheric pressure.

The discharge gap was filled with dust in the form o
powder consisting of microscopic particles of carbon gla
A scanning electron microscope picture of the dust partic
is shown in Fig. 2. It can be seen in the picture that
particles are regular spheres with diameters of 2465 mm.
Powder was placed in a container~Fig. 1! with a mesh bot-
tom, located above the discharge gap. A heater was place
the container for heating the powder in order to remove p
sible impurities. The container could be shaken once or
al
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frequency of 100 Hz using a special vibrator. A container
collecting the used powder was placed below the discha
gap. These containers were connected by a vertical pipe.
discharge electrodes were located in the midsection of
pipe. In the perpendicular direction there are 2-mm-di
holes for the entrance and exit of the probe laser beam.
outer case of thedischarge chamber, which provided
vacuum seal, was constructed so that the optical windo
were far from the dusty volume.

After the dust container was attached to the vessel
before filling with the working gas, the vessel was pump
out with a roughing pump for several hours and the contai
was heated to 400 °C. Between discharge pulses working
inside the vessel was continuously renewed. Gas pump
was stopped before the discharge was turned on. Followi
single shake of the upper container, the settling cloud of d
occupiedthe discharge gap for a few seconds. Visual ob
vation ~without a discharge! shows that the dust completel
fills the internal volume of the discharge vessel and is ess
tially absent outside it.

The density of dust particles in the plasma was de
mined from the attenuation of a laser beam in the dust clo
The setup for these measurements is shown in Fig. 1. L
from a He–Ne laser~wavelength 0.63mm, power 1 mW!
passes through the discharge vessel with the dusty gas.
transmitted light passes through a filter to a detector~FD-
24K photodiode! and is recorded on an oscilloscope~S9-8!.
The filter was chosen so that the detector current was be
the saturation level.

The densityNd of dust particles under our conditions
where the radiusr d of the particles is much greater than th
wavelength, was calculated using the following formu
based on the Bouguer–Beer law:19

Nd50.75 log~ I 0 /I !r d
2s, ~1!

whereI andI 0 are the respective intensities of the light wi
and without dust in the vessel ands51 cm is the depth of the
dust cloud. Estimates showed that the error in measuringNd

is mainly determined by the uncertainty in the diameter

FIG. 1. Experimental arrangement:~1! container with powder,~2! container
for collecting dust,~3! pipe in which the dust cloud propagates,~4! elec-
trodes,~5! holes for entry and exit of probe light,~6! casing,~7! optical
windows, ~8! gas inlet and outlet ports,~9! vibrator, ~10! laser,~11! filter,
~12! detector,~13! oscilloscope,~14! computer.
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FIG. 2. A microphotograph of a dust particle.
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the particles and was about 8% in our case. The rang
measured dust densities for the particle diameter of;25mm
was 5•103– 106 cm23.

Figure 3 is an oscilloscope trace of the signal after
powder container was shaken. It can be seen that dus
mains in the discharge gap for a few seconds and the
density falls off slowly with time. Thus, it is possible t
conduct the studies over a wide range of dust densities
varying the time delay before the discharge is turned on
our experiments the discharge duration was less than 1
Over this time the density of dust particles is essentially c
stant.

3. MEASUREMENT RESULTS

Figure 4 shows a current–voltage characteristicj (U) of
a discharge in pure helium for a beam current of 60mA/cm2.
The measurements were made after the current had rea

FIG. 3. Oscilloscope trace of the signal from the dust particle detector~2.5
V/div, 2 s/div!.
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its quasistationary value. The ionization rateS was
1016 cm23

•s21 for this beam current.20 Given this produc-
tion rateand a determination of the electron density from
discharge current, we can determine the effective rate of
of the electrons in a dust-free plasma. In fact, when there
no macroscopic particles present, a non-self sustaining
charge in helium can be described by the following syst
of equations:

]ne

]t
5S2bnenHe

2
1, ~2!

]nHe
2
1

]t
52bnenHe

2
11knHe1nHe

2 , ~3!

]nHe1

]t
5S2knHe1nHe

2 , ~4!

FIG. 4. Current–voltage characteristic of a beam-driven discharge in p
helium with a beam current of 60mA/cm2; 1—experimental data. The
smooth curve is an approximation using a fifth-order polynomial.
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wherene , nHe, nHe1, andnHe
2
1 are the densities of electron

helium atoms and ions, and helium molecular ions,t is time,
b is the recombination coefficient for the helium dimer ion
k is the coefficient of conversion of helium ions into th
dimer He2

1 , and S is the rate of ionization by the electro
beam. The observedj (U) curve for U.450 can be ex-
plained using Eqs.~2!–~4!, assuming that the recombinatio
coefficient isb52.5•1028 cm3s21 and the cathode fall is
Uc5450 eV. At lower voltages, the discharge description
more complicated, since the discharge becomes a Thom
discharge because of the low bulk ionization rate, and m
of the voltage drop is across the cathode sheath. The rec
bination coefficient obtained above for the He2

1 ions is
roughly fifty times the published value. This difference m
be caused either by vibrational excitation of the heliu
dimer ion or by the presence of impurity molecular gas
The first reason seems unlikely because of the high gas p
sure and rapid vibrational relaxation of molecular ions. T
second reason is better justified. In fact, because of ch
exchange on impurity ions, the helium ions are neutraliz
fairly rapidly and the molecular ions of an impurity gas, su
as nitrogen, undergo recombination. The rate of recomb
tion for nitrogen molecular ions is quite realistic for th
process. Note that 1023% impurity nitrogen is sufficient for
the N2

1 ion to be the most common ion in the discharge.
Adding dust particles to the plasma~beginning at densi-

ties of 5•103 cm23) alters the current–voltage characteris
of the discharge, specifically, reduces the current associ
with a rise in the rate of loss of charged particles owing
recombination on the dust particles. Figure 5 shows plots
the current density in the discharge as a function of the d
sity of macroscopic particles for different voltages. The fi
ure shows that the current density decreases as the dens
particles increases. The rate at which the current density
creases depends on the applied voltage. When no ma
scopic particles are present, the current density is higher
higher voltage, and as the particle density is increased
difference becomes smaller. For dust particle densities

FIG. 5. Current density in a helium discharge as a function of the densit
macroscopic particles and the applied voltage:~1! 940 V, ~2! 720 V, ~3! 480
V. The points (h, L, n! are the corresponding experimental data. Cal
lations neglecting~dashed curves! and including~smooth curves! a second-
ary emission coefficient of 1000.
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ceeding 105 cm23, the current density is essentially the sam
for all voltages.

4. THEORETICAL MODEL

To determine the charged particle loss rate in a du
plasma it is necessary to solve a self-consistent system
equations that includes the Boltzmann equation for the e
tron distribution function along with the particles in th
plasma, the continuity equation for the plasma particles
macroscopic particles, and the Poisson equation for the e
tric field in the neighborhood of the macroscopic particle
The complete statement of the problem for a collision
plasma is rather complicated, since the electron distribu
function has a dependence on the distance to a macrosc
particle and it is necessary to solve the inhomogene
Boltzmann equation:

] f

]t
1v¹ f 2

eE

m
¹v f 5S d f

dt D
coll

, ~5!

where the symbol¹v denotes the gradient in velocity spac
(d f /dt)coll is the collision integral, ande is the electronic
charge. As a result, it is necessary to solve the comp
self-consistent problem for determining the radial dep
dences of the electron distribution function, electric fie
and charged-particle densities.

In a beam-driven discharge, the electron distributi
function at low energies~on the order of the potential of th
macroscopic particles! is determined mainly by the externa
electric field and not by the degradation spectrum of thee
tron beam. The weak dependence of the electron distribu
function on the primary electron beam means that the ef
of the beam on it can be neglected. As part of the pres
effort, we have estimated the effect of macroscopic partic
on electron distribution function by solving the homog
neous Boltzmann equation in a binomial approximation, w
the electron absorption cross section approximated in te
of the orbital motion. This approximation works well in
nearly collisionless plasma with

r d!l! l , ~6!

wherel is the characteristic shielding length of the pote
tial of a macroscopic particle andl is the characteristic dis
tance between the particles. The question of the applicab
of this cross section in the collisional case requires a sepa
examination.

This approximation makes it possible to separate
problem of determining the electron distribution functio
from that of solving the continuity and Poisson equatio
The method for determining the electron distribution fun
tion in this approximation has been discussed in de
elsewhere.16 This method is based on the assumption that
the macroscopic particles of a given sizer d in the plasma
have some average chargeZd . In the binomial approxima-
tion for the steady state, the isotropic part of the elect
distributionfunction is determined from an equation whi
we shall transform to a form with an explicit dependence
the basic parameters:
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]

]« SA2«

m

e2~E/N!2
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]

]«

f «

A«
1

A2m

M
«3/2s tD

1Q~ f «!1Sr S 12
Ude

« DA2«

m
50, ~7!

whereE/N is the reduced electric field,Ud5Zde/r d is the
potential of a macroscopic particle,Sr5jpr d

2Nd /N is the
reduced area of the macroscopic particles,j is the probabil-
ity of attachment of an electron to a macroscopic partic
which was assumed equal to 1 for the calculations in
paper, andQ( f «) is the collision integral for the plasm
without macroscopic particles, normalized to the gas dens

The next term in the Boltzmann equation accounts
the loss of electrons to the macroscopic particles in the
bital approximation as a function of their energy«. An ex-
pression for it can be obtained from the flux of electrons t
macroscopic particle,

Q~«!5jsescv,

wheresescis the cross section for electron capture by a m
roscopic particle, given by

sesc5H pr d
2~12eUd /«!, «>eUd ,

0, «,eUd ,
~8!

wherev is the electron velocity.
Solving the Boltzmann equation showed that for a h

helium pressure (p51 atm), the change in the diffusion an
electron drift coefficients in the weak fieldsE/N,3 Td char-
acteristic of a beam-driven He discharge under the exp
mental conditions is not significant up to macroscopic p
ticle densities;3•105 cm23. At the maximum particle
density in these experiments (;106 cm23), the situation
changes. Owing to depletion of the electron energy sp
trum, the electron drift velocity and their diffusion chang
from 10 to 30%, depending on the applied electric field.~See
Fig. 6, which shows the form of the electron distributio
function without and with macroscopic particles.! It should
be kept in mind that the effect of macroscopic particles
the electron distribution function in the neighborhood of t
ionization potential of helium becomes important for lo

FIG. 6. Electron energy distribution function with~smooth curve! and with-
out ~dashed curve! macroscopic particles in a beam-driven atmosphe
pressure discharge in helium. The electric field strength is 2 Td, the de
of macroscopic particles is 106 cm23, and their potential is 0.75 eV.
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densities of macroscopic particles, but in a beam-driven
charge, ionization in the external field is negligible ever
where except in the cathode sheath, whose thicknes
;0.1 cm under our conditions.21 The structure of the cath
ode sheath can be determined to a great extent by ma
scopic particles, but this question lies outside the scope
this paper, which concerns processes taking place in
quasineutral positive column of a beam-driven discharge

The system of equations for describing the interaction
the charged plasma particles with macroscopic particles
one-dimensional ~spherical! coordinate system in the
diffusion-drift approximation has the following form:

]ne

]t
5

1

r 2

]

]r S r 2De

]ne

]r D2
1

r 2

]

]r
~r 2ve

drne!

1S2bnenHe
2
11Se , ~9!

]nHe1

]t
5

1

r 2

]

]r S r 2DHe1

]nHe1

]r D2
1

r 2

]

]r

3~r 2vHe1
dr nHe1!1S2knenHe

2 , ~10!

]nHe
2
1

]t
5

1

r 2

]

]r
S r 2DHe

2
1

]nHe
2
1

]r
D 2

1

r 2

]

]r

3~r 2vHe
2
1

dr
nHe

2
1!1knenHe

2 2bnenHe
2
1, ~11!

with

ve
dr5meE, vHe1

dr
5mHe1E, vHe

2
1

dr
5mHe

2
1E,

where D, vdr and m denote the diffusion coefficient, drif
velocity, and mobility of the electrons and ions labeled
the different subscripts. Note that the electron diffusion c
efficient De is determined by the magnitude of the extern
field Eext, which is related to the external voltage byEext

5(U2Uc)/L, whereL is the interelectrode gap, rather tha
through the local fieldE. Note that, on the right hand side o
Eq. ~9!, weinclude secondary emission of electrons from
macroscopic particles, as well as the electron source ass
ated with the ionization of helium atoms by the electr
beam.

It is known22 that particles of nonconducting materia
have a higher secondary emission coefficient. Here parti
of carbon-glass were used. They have a complicated c
posite structure, so they may have a high emissivityse . The
source of the electrons associated with secondary emis
was taken in a form that assumes that the cross section
interaction of a beam electron with a macroscopic parti
whose electrical potential is much lower than the elect
energy is given bypr d

2 :

Se5sej fpr d
2Nd /e, ~12!

where j f is the beam current density.
The center of the chosen system of coordinates lies at

center of a macroscopic particle and the boundary conditi
are the following: the ion density atr 5r d is zero, the flux of
electrons onto the macroscopic particle is limited by a ma

ity
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FIG. 7. Radial distributions of the electron
density~smooth curves!, ion density~dashed
curves!, and electric field strength~dot-
dashed curves!. The dot-dashed curves with
two dots correspond to the electric fiel
strength assuming a Coulomb potential fo
the macroscopic particle. The densities
macroscopic particles are 4000 cm23 ~a! and
106 cm23 ~b!.
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th/4, whereve

th is the electron sound speed. Th
boundary conditions atr equal to the radius of a sphere wi
the volume of a unit cell, corresponding to a single mac
scopic particle,Rd5(3/4pNd)1/3, were determined from the
symmetry conditions.

The system of continuity equations for all the comp
nents was closed by the Poisson equation for the ele
field:

dE

dr
54pe~nHe11nHe

2
12ne!, ~13!

for which the boundary condition atr 5r d was chosen from
the quasineutrality condition for the plasma:

Er 5r d
52

eZd

r d
2

, Zd5E
r d

Rd
4pe~nHe11nHe

2
12ne!r

2dr.

~14!

As estimates of the electron distribution functio
showed, the diffusion coefficients and drift velocities of t
electrons can be calculated neglecting the effect of the m
roscopic particles over almost all the range of densities of
macroscopic particles that was studied experimentally.

Solving the system of Eqs.~9!–~14! yields the profiles of
the electric field, the electron and ion densities, and
charge and potential of the macroscopic particles. For c
parison with the experimental data on the current densit
the external field, we have also calculated the average e
tron density in a unit cell:

ne5
3

Rd
32r d

3Er d

Rd
ner

2dr. ~15!

5. COMPUTATIONAL RESULTS AND COMPARISON WITH
EXPERIMENT

Figures 7a and 7b show the radial distributions of
electronand ion densities and of the electric field strength
different densities of macroscopic particles. The Coulo
field of the macroscopic particles for the same charge sh
here was calculated using the formula

E~r !5eZdr d /r 2. ~16!

The particle radius was taken to be 12mm, which corre-
sponds to the average radius of the carbon-glass particle
Fig. 7a shows, for a low particle density, the region ov
-
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which the particle affect the plasma density extends out t
distance of 200mm, while the region in which the quasineu
trality of the plasma is significantly disrupted is muc
smaller, on the order of 50mm. Thus, the electric field is also
considerably lower than the Coulomb field for a given cha
on aparticle, essentially everywhere except for a narr
layer of uncompensated ionic charge near the particle its
However, the thickness of this layer is still much grater th
the particle radius, and this partially justifies our earlier a
sumption of an orbital motion for the macroscopic partic
in calculating the electron distribution function.

When the density of the macroscopic particles is
creased~Fig. 7b!, the quasineutrality region remains esse
tially unchanged in size, while it forms an ever larger fra
tion of the decreasing radius of the unit cell. As a result,
nd5106 cm23, the average electron density decreases
nificantly below the ion density, while the electric field di
tribution comes closer to the Coulomb field over a larger p
of the unit cell. Note that for a low particle density, the
effect on the electron distribution function is small, so th
the errors associated with the enhancement of the ele
field near the particles also become less important.

Figures 8a and 8b show the dependence of the ave
chargeZd of a macroscopic particle and its potentialUd on
the density of macroscopic particles for different strengths
the external electric field.Zd and Ud as functions of the
macroscopic particle density because the regions of influe
of neighboring particles overlap; this shows up as a reduc
in the plasma density and, therefore, in the flux of electro
to a particle. At the same time, the flux of electrons from
macroscopic particle owing to secondary electron emiss
driven by the electron beam increases in proportion to
density of macroscopic particles. As a result, the fluxes
ions and electrons come into balance at lowerZd and Ud .
The dependence of these parameters on the external fie
less obvious. In our model, the reduction inZd andUd with
decreasingUext is determined by the dependence of electr
diffusion coefficients and of the average electron energy
the applied external voltage. Therefore, a drop inUext re-
duces the flux of electrons onto a macroscopic particle a
with that, inZd andUd .

These calculations of the radial distribution of the ele
tric potentialand charge on the macroscopic particles prov
a better estimate of the Coulomb coupling parameter
tween the macroscopic particles. The parameterGc has been
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FIG. 8. The average charge on a macrosco
particle in units of the electronic charge~a! and
the potential of the macroscopic particles~b! as
functions of the density of macroscopic particle
for external voltages of 940~smooth curves!,
720 ~dashed curves!, and 480 V ~dot-dashed
curves!.
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introduced in the literature to measure the degree of C
lomb coupling:25

Gc5
1

kT

Zde

4p«0d
, ~17!

wherek is the Boltzmann constant,Zde is the charge on the
macroscopic particles,d'2Rd is the distance between th
particles, andT is the kinetic temperature of the macroscop
particles. Essentially,Gc is the ratio of the potential energ
of the macroscopic particles owing to the Coulomb inter
tion to their kinetic energy. Ithas been shown in Monte-Ca
calculations23,24 that a three dimensional Coulomb liquid d
velops forGc.2, while a Coulomb crystal develops forGc

.170.
The values ofGc given here were obtained in the a

proximation of a one-component plasma, so that they neg
the screening of the potential of the macroscopic particles
the ions and electrons in a real plasma, which may reduce
parameterGc by several orders of magnitude. In order to ta
the screening into account, the formula

Gd5Gc exp~2 l /l!, ~18!

is customarily employed, where the screening lengthl is
taken to be the electron Debye radius.

In this paper we have calculatedGc , including the
screening of the potential of the macroscopic particles. Ta
I lists the values of various parameters characterizing
beam-driven discharges withU5940 V formed with the
maximum densityNd5106 cm23 ~first number! and mini-
mum density Nd54•103 cm23 ~second number! for the
macroscopic particles.
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Note the large difference between the values of
screening parameterl obtained in the best approximation t
a real plasma potential by the Yukawa potential~see Figs. 7a
and 7b! and the Debye radiusr D , as well as the fact that the
changes in the density of the macroscopic particles, the
bye radius, and the screening parameter are not correlate
most papers, it is assumed as an estimate, thatl is deter-
mined by the Debye radius~e.g., Ref. 15!. It has been
proposed25 that the screening parameter for the potential
the macroscopic particles when the particles are not a pla
component is given by

1

l
5

1

r De
1

1

r Di
, ~19!

that is, under our conditions, wherene'ni andTe@Ti , the
screening lengthl should be equal to the ion Debye radiu
r Di . As the table shows, the actual screening radius is
only larger thanr Di , but also larger thanr De . Note that in
Ref. 15 the screening parameter is not directly related tor Di

or r De ; this question lay outside the scope of the paper.
fact, the screening parameter is related to the Debye len
only in the linear approximation, while near a macrosco
particle the changes in the ion and electron densities re
100%. In the nonlinear case,l can be estimated on the bas
of charge conservation. Let us assume that in the scree
region r ,r d1l, the ion density is equal to the ion densi
far from the macroscopic particle, and the electron den
equals zero, while outside that region the quasineutra
condition is satisfied. Then Eq.~14! yields the following
equation forl:
TABLE I.

Parameter ne , 1011 cm23 ni , 1011 cm23 l , mm r De , mm l, mm

Formula 2 2 Nd
21/3 (kTe/8pnee

2)1/2 U'eZde(2r /l)/r

Value 1.5/6 1.6/6 100/600 15/7.5 45/60

Parameter Gc Gd GD l sh1, mm l sh2, mm

Formula Zd
2e2/ lTg Gc exp(2l/l) Gc exp(2l/rDe) eEZdt2/2m Fbt2/2m

Value 2•104/3•105 2•103/13 3•1022/10230 0.1/1 0.05/0.1
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Zd5
4

3
p~~r d1l!32r d

3!ni . ~20!

This formula allows us to understand the noncorrelation
tween the screening length and the Debye radius as the
sity of macroscopic particles decreases. Thus, when the
bye radius is calculated for a given field, the electr
temperature does not change, while at the same time
electron density, which is roughly equal to the ion dens
increases by a factor of 4, so the Debye radius decrease
a factor of two. At the same time, the screening length a
depends on the charge on a macroscopic particle, which
creases by an order of magnitude~Fig. 8a! and more than
compensates the change in the ion density. As a result
screening length increases by roughly one and a half tim

The screening length is, therefore, not coupled direc
to the electronor ion Debye radius, although in magnitud
is close to the electron Debye radius under our experime
conditions. This question is of great import for estimating t
Coulomb coupling parameter. In fact, as can be seen f
the table, when this parameter is estimated taking scree
into account, the result is qualitatively different, depend
whetherl or r De is used. EstimatingG for screening with
the Debye radius yields an uncorrelated system of ma
scopic particles, while using the actual screening length
give rise to crystal structures in a beam-driven plasma. Un
the present experimental conditions, however, a beam-dr
discharge burned stably for at most 1 ms. Over this time,
particles move a distance of less than 1mm ~much less than
the distance between particles!, both owing to the electro-
static forces~over a distancel sh1) and owing to the forces
which arise as a result of the bombardment of the surfac
a macroscopic particles by the plasma particles~over a dis-
tancel sh2):

26

Fb54pr d
4ne~Ti1Te!/Rd

2 . ~21!

The calculated average electron densities in a unit
can be used to calculate the current density in the disch
as a function of the density of macroscopic particles:

j 5eneve
dr .

When secondary emission is neglected, the calculated
experimental dependences of the current density on the
sity of the macroscopic particles differ by more than a fac
of 10 at high densities of thelatter~Fig. 5!. In order for these
results to agree, it is necessary to assume that the secon
emission coefficient equals 1000, a magnitude more or
typical of dielectrics. That this coefficient is so large is e
dence of inhomogeneities in the composition of the carb
glass particles and of the presence of poorly conducting
gions within them.

We have also examined another possibility for expla
ing the experimental data through additional ionization of
plasma by secondary emission electrons. A comparison
experiment in this case showed that reasonable agreeme
obtained if we assume that 102 ionization events take plac
per beam electron incident on a macroscopic particle. H
ever, at high macroscopic particle densities the calcula
current densities cease to depend on the applied exte
-
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voltage, which conflicts with the experimental data.~See Fig.
5.! The version of this calculation in which only seconda
electron emission from the beam electrons is included is
of this shortcoming, so it was chosen as the main versio

We can describe the loss of charged particles at ma
scopic particles globally by introducing a coefficient of r
combination of the plasma on macroscopic particles. It c
be introduced by integrating Eqs.~9!–~11! over the volume
of a unit cell, noting thatn̄He

2
1@n̄He1. Integrating Eq.~11!

and writing the flux of ions on a macroscopic particle~the
integralof the first two terms on the right of Eq.~11!! in the
form bdn̄He

2
1Nd , we obtain

S5bdn̄He
2
1Nd1bn̄en̄He

2
1'bdn̄eNd1bn̄e

2 . ~22!

Using the quantityn̄e in place ofnHe
2
1 is justified by their

closeness in the calculations, even for high macroscopic
ticle densities~Fig. 7b!, and makes it possible to compare th
calculated and measured values ofbd . The integral of the
first two terms on the right of Eq.~9!, which determines the
flux of electrons onto a macroscopic particle because
charge is time independent, should equal the sum of the
Se of electrons from the macroscopic particle and the
flux bdn̄end .

Figures 9a and 9b show the calculated and experime
dependences of the plasma recombination coefficientbd on
Nd andUext. Including secondary emission in Fig. 9b mak
it possible to match the experimental and theoretical resu
both qualitatively and quantitatively. The recombination c
efficient decreases as the density of macroscopic parti
increases because of a reduction in the average charge o
macroscopic particles and a corresponding reduction in
ion and electron fluxes to them. The dependence of the
combination coefficient on the applied voltage is associa
with an increase in the mobility and diffusion of the ele
trons as the reduced electric field is increased. As a result
find that the recombination coefficient increases as the e
tric field strength is raised, both inthe calculations and in
experiments.

As an illustration of the extent to which the macroscop
particles affect the rate of recombination of the plasma, F
9c shows a plot of the effective recombination coefficie
beff as a function ofNd and the applied voltage:

beff5S/ne
2 .

The figure shows that macroscopic particles at densities
ceeding 105 cm23 do have a significant effect on the recom
bination rate of the plasma. At a density of 106 cm23 the
recombination rate is more than an order of magnitu
higher.

In conclusion, we note that these results can be use
estimate the feasibility of using the orbital approximation f
the cross section for absorption of electrons by a mac
scopic particle~8! in a collisional plasma, i.e., far beyond th
formal limits for applicability of this approximation. To do
this, we calculatebd using a distribution function with the
cross section~8! for Nd5106 cm23, when the potential of
the electric field near a macroscopic particle is close to
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Coulomb value andE/N52 Td ~which corresponds to the
maximum applied voltage!. These calculations yieldbd

50.8, while the experimental value is a factor of six smal
~Fig. 9a!. This shows that the orbital approximation for th
cross section for electron absorption by macroscopic p
ticles is in qualitative agreement with experiment, even
from the region where it is formally applicable.

6. CONCLUSION

In this paper we have determined the current density
non-self sustained discharge experimentally for differ

FIG. 9. Same as in Fig. 8, for the recombination coefficient of the plasm
macroscopic particles~neglecting~a! and including~b! a secondary electron
emission coefficient of 1000! and for the effective recombination coefficien
of the plasma on macroscopic particles~including a secondary emissio
coefficient of 1000! ~c!.
r

r-
r

a
t

voltages and injected particle densities. The discharge
rent density was observed to decrease as the particle de
was raised when the electric field was held constant. W
the field is raised, the dropoff rate increases. Based on th
data, we have determined the recombination coefficient
the plasma on macroscopic particles. As the density of
particles increased up to 106 cm23, the recombination coef-
ficient increases by roughly a factor of 40 compared to t
in a dust-free plasma.

In this paper we have constructed a theoretical model
a non-self sustained discharge with macroscopic partic
both including their effect on the electron distribution fun
tion and plasma transport coefficients and calculating the
tributions of the charged particle densities and of the pot
tial near the macroscopic particles. A comparison of
experimental and theoretical results demonstrated the im
tance of secondary electron emission driven by the elec
beam.

These calculations have shown that the size of the reg
where quasineutrality is violated may not be correlated w
the electron Debye radius. The region where a macrosc
particle has an effect~i.e., the region where the plasma de
sity differs significantly from the maximum! is considerably
bigger than the region where quasineutrality is violated a
varies slowly with the density of the macroscopic particle

We have shown that the orbital approximation for t
cross section for the absorption of electrons by macrosco
particles yields qualitative agreement with experiment ev
far from the region where it is formally applicable.
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A study is made of the radiative Pierce instability of a relativistic electron beam in a waveguide
stabilized by an infinitely strong magnetic field. Analytical and computational methods are
used to determine the growth rate of the instability, as well as the efficiency for conversion of the
beam energy into electromagnetic field energy as a function of the beam current, how
relativistic the beam is, and the geometry of the system. The physical nature of the instability is
clarified and the mechanisms for its saturation are discussed. ©1999 American Institute
of Physics.@S1063-7761~99!01006-9#
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1. INTRODUCTION

It is well known that a relativistic electron beam ca
radiate coherent electromagnetic waves extremely efficie
as a result of a resonant interaction with a wave.1 Recently it
has been established2 that a relativistic electron beam prop
gating rectilinearly in a waveguide is capable of radiati
efficiently even when the phase velocity of the wave exce
the beam velocity. This nonresonant collective mechan
for the interaction of the beam electrons with anE-mode
electromagnetic wave is essentially a radiative Pierce in
bility.

The radiative Pierce instability has been realized
nonrelativistic electron beams in monotron generators.3 Short
systems, in which the transverse dimensions of the ca
exceed the longitudinal dimensions, were used.

The theory of the nonrelativistic monotron generator w
first developed by Muller and Rostas,4 who analyzed the
properties of the generator with the aid of an equivalent
cuit of lumped elements. It was found that the condition
the appearance of oscillations has the following form for
electron drift angle:

u[
vL

u
5S 2n1

1

2Dp,

whereL is the length of the system andn is an integer. This
condition corresponded to a loading characteristic with ne
tive conductivity. This can be said in a different way: a po
tive feedback develops, which leads to self oscillations.
the 1940’s Pierce5 studied another instability, which also re
lied on positive feedback~between the output and input ele
trodes through an external circuit!. Later the instability was
interpreted in a different way: when the beam current
ceeds a critical level, a beam wave develops in the sys
and propagates counter to the beam to create feedback~Ref.
1, Sections 49 and 50!. It would have been natural to regar
the two apparently different instabilities as one with two
gimes. The first, potential regime is possible when the Pie
parametervbg23/2/k'u exceeds unity. The second, radiati
~wave! regime occurs at cavity frequencies above the criti
1111063-7761/99/88(6)/7/$15.00
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frequency, when electromagnetic waves propagating cou
to the beam can exist in the system. In a plasma cav
instabilities can develop on a plasma wave.

In this paper we use analytical and numerical method
study the linear and nonlinear stages of the nonreson
stimulated emission of electromagnetic radiation by a re
linear relativistic electron beam in a smooth cavity. A d
tailed investigation is made of the cylindrically symmetr
case, i.e., when only azimuthally symmetric modes are
cited in a cavity with a circular cross section. The mech
nism by which the beam electrons interact with the elect
magnetic field, and which leads to the development of
instability, is studied in the limit of small wave amplitude.

Two mechanisms for saturation of the instability a
identified on the basis of numerical simulation. Phase p
traits of the beam electrons are obtained which can be a
lyzed to reveal the physical nature of both saturation mec
nisms for the instability. For the steady-state instability,
obtain the amplitude of the field in the cavity, as wellas t
conversion coefficient for the energy of the beam electr
into field energy, as functions of the system geometry a
the density and relativistic character of the electrons. T
spectrum of the electromagnetic radiation is investigated

We conclude by examining the dynamic instability
the beam particles in the field of the excited wave.

2. BASIC EQUATIONS

Let us consider a smooth, cylindrical metallic wav
guide. The ends ofthe cavity are covered with metal foil o
mesh to create mirror boundary conditions for the elect
magnetic field while being transparent to the beam electro
The cavity length isL and its radius isR. The system lies in
a uniform magnetic field that is directed along the cav
axisand is strong enough that the transverse motion of
beam electrons can be neglected. Maxwell’s equations
the nonzero components of the field in a cylindrical coor
nate system take the form

1

r

]

]r
~rEr !1

]Ez

]z
54pr, 2

]Bw

]z
5

1

c

]Er

]t
,

5 © 1999 American Institute of Physics
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]Er

]z
2

]Ez

]r
52

1

c

]Bw

]t
. ~1!

In this case it is also convenient to express the field in te
of asingle component of the Hertz polarization potentialc:

Ez5S ]z
22

1

c2
] t

2D c, Er5] t] rc, Bw52
1

c
] t] rc.

~2!

The initial equation and boundary conditions for the fie
are

]zS D2
1

c2
] t

2D c54pr, Ezur 5R5Er uz50,L50. ~3!

The perturbed charge density of the particles is then given

r5enb~r !F E d~z2z~ t,z0!! dz021G , ~4!

wherez5z(t,z0) is the solution of the characteristic syste
of Vlasov equations:

dz

dt
5v,

dv
dt

5
e

m
g̃23Ez . ~5!

(nb is the unperturbed beam electron density andg̃5(1
2v2/c2)21/2 is the Lorentz factor.!

The beam charge is assumed to be neutralized. Whe
electron enters the cavity its unperturbed velocity isu. The
beam leaves the cavity without hindrance, carrying away
acquired perturbations.

3. LINEAR THEORY

The radiative instability of a straight, neutralized relati
istic electron beam in the linear approximation was exa
ined on the basis of a solution to the dispersion equatio2

The conditions for development of the instability and
growth rate were obtained a functions of the system ge
etry and beam current. It has been shown that the instab
is a Raman instability, is self-oscillatory, and has no curr
threshold. In order to reveal the mechanism for transfer
the directed energy of the beam to the electromagnetic fi
let us consider the work done by the longitudinal compon
Ez of the radiation field on an electron as it passes thro
the cavity,

A5eE
0

L

Ez~ t@z#,z! dz. ~6!

The componentEz is expressed, with the aid of Eq.~2!, in
terms of the potentialc, which, to first order in the field
amplitude for a waveguide with a beam that is uniform ov
the cavity cross section, is given by~Ref. 1, Section 8!

c5fs~r ! (
n51

4

An cos~vt2knz!, ~7!

wherefs(r ) is the transverse structure of the field. The lo
gitudinal wave numberkn corresponding to a wave with am
plitude An is related to the frequencyv by the dispersion
relation ~Ref. 1, Section 8!
s

y

an

e

-
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-
ty
t
f

d,
t
h

r

-

k'
2 1S kn

22
v2

c2 D F12
vb

2g23

~v2knu!2G50. ~8!

If we average the workA of the field over the phases o
the electrons or, equivalently, over the timet0 the electrons
spend in the cavity,

^A&5
1

tE0

t

A~ t0! dt0 , v21!t!~dv!21, ~9!

then summing over the phases of the unperturbed elect
makes no contribution to the radiation. In order to obta
nonzero coherent radiation, it is necessary to include the
action of the radiation field on the beam electrons. In t
case the beam comes into phase and a stimulated coh
radiation effect occurs that corresponds to a nonzero co
bution to the work by the radiation field. Here there is
phasingof the radiation field accompanying the beam e
trons.

When the beam is modulated, the velocity and traject
of an electron are slightly perturbed, so that

v5u1 ṽ, t@z#5t01
z

u
1 t̃ . ~10!

Here ṽ and t̃ are the solutions of the linearizedequations
the characteristic system of Vlasov equations,

d t̃

dz
52

ṽ

u2
,

dṽ
dz

5
e

mu
g23Ez . ~11!

The solution of Eqs.~11! with the potential~7! has the
form

ṽ5
e

m
g23fs~r ! (

n51

4
En

v2knu
sinFvt01S v

u
2knD zG ,

t̃ 5
e

mu
g23fs~r ! (

n51

4
En

~v2knu!2
cosFvt01S v

u
2knD zG .

~12!

Here En5(v2/c22kn
2)An . In this case, the work average

over the phases of the electrons is

^A&5
e2v

2mu
g23fs

2~r !X(
i , j

ai j F 1

~v2kju!2
2

1

~v2kiu!2G ,

~13!

whereX5E2
2, while

ai j 5
EiEj

E2
2

cos@~ki2kj !L#21

kj2ki
. ~14!

The average work done on the beam electrons per
time is

A5E
S'

^A&nb~r !u dS' . ~15!

The integral is taken over the transverse cross section of
cavity.

In order to calculate a specific value of the workA, it is
necessary~for finding the ratiosAi /A2) to use the boundary
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conditions, in particular the conditions that there be no p
turbations in the charge densities and beam current in thz
50 plane:

(
n51

4

~kn
22a2!An50, (

n51

4

kn
3An50, ~16!

as well as two boundary conditions on the radiation field

(
n51

4

knAn50, (
n51

4

knAneiknL50. ~16a!

Herea25v2/c22k'
2 . The first three of Eqs.~16! and ~16a!

yield the ratioAn /A2 and the last,a. Here the wave number
kn satisfy Eq.~8!, which for a small Pierce parameter,

x[
vb

2g23

k'
2 u2

!1, ~17!

has the solution2

k1,256a6
b1,2

2a
vb

2 , b1,25
k'

2 g23

~v7au!2
,

k3,45
v

u
6avb , a5

v

u

g25/2

Av22a2u2
, aÞ0. ~18!

Condition ~17! ensures a Raman instability develo
ment,1 and also assumes that there is no Pierce pote
instability which would disrupt the current in the beam a
not contribute to the radiation field.

Given the above remarks, we obtain the following e
pression for the work

A5~21!n11
vb

2p
ifsi

v2ug21/2

~v22a2u2!3/2
sin~avbL !sinS vL

u DX,

~19!

where

ifs
2i5E

S'

fs
2~r ! dS' .

Here we have used the fact thata5pn/L holds in the lead-
ingorder. The main contribution to the workA is from the
crossed beam-electromagnetic terms. This means that w
the beam is modulated by the electromagnetic part of
radiated wave, most of the work is done by the beam wa
And, conversely, when the trajectory of an electron is p
turbed by the beam wave, the maximum contribution to
work of the radiation field is from electromagnetic wave
Thus, the two oscillatory systems are coupled: the beam
the electromagnetic field in the cavity. The result of th
interaction is a shiftdv in the frequency, whose imaginar
part is nothing other than the growth rate of the instabili
Here the effect is obviously collective, since the develo
ment of the instability requires that beam plasma waves
excited in the system.

For calculating the instability growth rate we write dow
the balance equation for the energy in the cavity,
r-

ial

-

en
e
s.
r-
e
.
nd

.
-
e

d

dt
^W&52A, ~20!

where the time averaged energy^W& includes both the en-
ergy of the field and the kinetic energy of the beam electr
in the cavity, i.e.,

^W&5^Wel&1^We&.

For small values of the Pierce parameter,x!1, the en-
ergy contained in the cavity will be determined mainly b
the energy of the electromagnetic field. In this case, Eq.~20!
takes the form

dX

dt
52~21!nvb

k'
2 c2g21/2

~v22a2u2!3/2

u

L

3sin~avbL !sinS vL

u DX. ~21!

For a cylindrical waveguide

fs~r !5J0~k'sr !,

wherek's5m0,s /R. (m0,s is the root of the Bessel function
J0(x)).

X is quadratic in the field, so that

dX

dt
52dvX. ~22!

Comparing Eqs.~21! and ~22!, we obtain the instability
growth rate

dv5~21!nvb

k'
2 c2g21/2

~v22a2u2!3/2

u

L
sin~avbL !sinS vL

u D
~23!

at the frequency

v[vs,n5cAS ms,0

R D 2

1S pn

L D 2

. ~24!

The condition for development of the instability,

~21!n sinS vL

u D sin~avbL !.0, ~25!

determines the cavity and beam parameters for which e
tromagnetic waves can be amplified in the system.

To conclude this section, we note that Eqs.~23!–~25! are
completely identical with those derived in Ref. 2 on the ba
of an analysis of the dispersion relation, confirming the c
rectness of the proposed mechanism for the radiative Pi
instability as nonresonant, stimulated emission by a recti
ear relativistic electron beam in a cavity.

4. NONLINEAR THEORY OF THE INSTABILITY

The nonlinear system of Eqs.~1!, ~4!, and ~5! can be
studied only by numerical simulation of the instability. Ac
cording to the linear theory, several modes with similar f
quencies are excited at once in thecavity. The absence
distinct frequency, as well as wavelength, makes it imp
sible to separate the field into slowly and rapidly varyi
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FIG. 1. ~a! Dynamics of the wave amplitude in a
short cavity,j56 for g52 andx50.5. ~b! Phase
planes of beam electronsin the cavity at differe
timest540 ~1!, 45 ~2!, 60 ~3!, and 65~4!.
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components with subsequent averaging over time or p
tion. Thus, we found it necessary to use the methods
scribed in Refs. 6 and 7. In our case, the beam was simul
by a particle method.6 For better smoothing and eliminatio
of sawtooth fluctuations in the density and charge, the c
of the particle was chosen to have a triangular shape;
particle size coincided with the cell size~which can be re-
garded as a modification of the PIC method!. From 10 to 40
particles belonged to asingle grid cell. An explicit schem
with step size changes was used to solve the Maxw
equation.6 For studying long systems withL/R;30 an
explicit-implicit Crank-Nicholson scheme with factorizatio
with respect to the coordinatez was used. In the transvers
direction, the field was expanded in the eigenfunctions of
waveguide. In order to eliminate grid fluctuations vario
methods of numerical filtering were used for the field co
ponents, as well as for the current density and charge of
beam.7 The following dimensionless quantities were used
the numerical simulation:

t5
u

L
t, p5

pz

mc
, «5

eL

mc2g3
Ez . ~26!

In the numerical calculation, we considered an infinite
thin beam with a cylindrical geometry and used a soft regi
for its entry into the cavity. The Pierce parameterx was
defined as the ratio of the working currentI to the limiting
Pierce currentI n , where

I n5
mc3

e

u3

c3

g3

2 ln~R/r 0!
. ~27!

In all the calculations we choser 0 /R50.4. Here the insta-
bility saturated after 10–10000 transit times, depending
the beam current and the cavity geometric parametej
5L/R. In most cases the first transverse modes51 was
excited. For very short systemsj<1 and for some values o
j in long systems, higher transverse modes were excited.
short systems, withj,12, the instability regime was mainl
single-mode; for certain values ofj two longitudinal har-
monics corresponding to the selection rule~25! were excited.
In long systems (j.12), a multimode regime sets in. In fac
for largej (j@1), the relation

j5
1

2

c

u

p

ms,0

n2
22n1

2

Du
, ~28!
i-
e-
ed

re
e

e
ll

e

-
he

e

n

or

holds, whereni is the longitudinal mode number. Tw
modes with the same growth rates can be excited if the
ference between their drift angles obeysDu,p. Since Eq.
~25! implies that either even or odd harmonics can be exc
simultaneously in long systems, we find that forg52, when
j>3, a two-mode regime exists and forj>12, a three-mode
regime.

We have distinguished two mechanisms for saturation
the instability. The first mechanism occurs in short (j,12)
systems with single-mode regimes. It is analogous to
Landau mechanism.8 The four-wave process

v1,n1v1,n→v1,n211v1,n11 , ~29!

which results in pumping of energy from the wave back in
the beam in accordance with the condition~25!, occurs in the
system. In this case, for large field amplitudes in the cav
the oscillations of the beam electrons relative to the equi
rium position cease to be harmonic.

Figure 1 shows the results of a calculation forj56, g
52 andx50.05 ~which roughly corresponds to a currentI
'2.4 kA). Regular oscillations in the field amplitude with
modulation frequency on the order ofdv in a steady-state
saturation regime can be seen clearly. The position of
beam electrons in the phase planes is represented by Fig
For timet545, when the instability is still linear, the modu
lation of the beam is purely harmonic. As the instability d
velops, nonlinear distortions appear, which cause break
the electrons begin to overtake each other and the b
stratifies in velocity. Breaking occurs whem the instabil
passes into a stationary regime. As the instability becom
saturated, the changes in the beam electron density acq
the character of a deep modulation. This corresponds to
increase in the ratio of the amplitudes of the beam wave
the electromagnetic wave and to a shift in the longitudi
wave numberskn toward larger values. The beam remai
cold, despite the rather long time after the radiation am
tude reaches its stationary level.

In long systems (j>12), when the instability is multi-
mode from the outset, the mechanism responsible for sat
tion is the randomization of the beam particles in the field
many waves. As a result of the randomization of the parti
trajectory, the modulation of the beam becomes uniform, i
the phases of the electromagnetic field relative to the e
trons are distributed uniformly in the interval@0;2p#. Thus,
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the contribution to the stimulated emission goes to zero.
the numerical studies showed, saturation of the instab
sets in simultaneously with the chaos of the beam partic
Figure 2 shows the calculations forj518, g52, and x
50.05. The phase plane of the beam electrons is shown
the time the instability saturates,t540. By the middle of the
cavity, the beam is completely randomized. Although
beam is highly chaotic, it is still modulated at the initi
level. At the cavity exit the effective temperature of the be
is on the order of 0.1–0.3 MeV, which is not surprisin
since the field strength in thecavity reaches 100–300 kV/
For this operating regime of the generator, the field in
cavity has a broad spectrum of longitudinal harmoni
higher harmonics are also excited in the transverse struc
Thus, for example, excitation of the third transverse mo
was observed. Beam bunching was absent for both instab
saturation mechanisms.

In order to estimate the degree of randomness in
oscillations of the system at the time when the stability
only beginning to reach saturation, two test particles w
launched into the cavity separated by a rather small dista
in the phase plane, with velocities roughly equal to the be
electron velocityu. The maximum distance by which th
particles could separate in the phase plane as they
through the cavity was chosen as a measure of the rand
ization of the beam. Figure 3 is a plot of the maximum pha
separation between the particles,

D5AS z

L D 2

1S pz

mcD
2

,

FIG. 2. Phase plane of beam electrons in a long cavity (j518) at the time
saturation sets in forg52 andx50.05.
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as a function of the controlling parameter, which is the ge
metric factorj, for g52 and x50.05. This graph shows
clearly the existence of two saturation regimes for the ins
bility which appear in regions consistent with the above
timates.

As the beam current is raised, and the Pierce param
x approaches unity~or greater!, a Pierce potential instability
develops in the system. Figure 4 shows a phase pattern o
beam at the time the instability saturates, whent510 holds,
for j518, x50.95, andg52. A virtual cathode is observed
to form at the cavity entrance and the beam electrons
partially reflected from it. In the meantime, the randomiz
tion of the beam corresponds to the presence in the cavit
a radiative instability whose development is somewhat s
pressed by the potential instability. Asx is increased further,
the growth rate of the aperiodic Pierce instability increa
more rapidly than that of the radiative instability. As a resu
thepotential branch suppresses the radiative branch. T
the aperiodic and radiative Pierce instabilities can be
garded as two regimes of a single instability which are re
ized for different values ofx.

A straight relativistic electron beam is, therefore, c
pable of stimulated emission of electromagnetic waves i
smooth cavity. Naturally, the question of the efficiency w
which the energy of the electron beam is transferred to
radiation field arises. Since the radiation is trapped inside
resonant cavity, we take the conversion efficiency of
beam electron energy to electromagnetic radiation energ
be the ratio of the radiation flux to the incident beam ene
flux,

h5
^usu&

mc2nug
, ~30!

where ^usu& is the magnitude of the Poynting vector of th
electromagnetic wave near the right hand boundary of
waveguide, averaged over a long time intervalt@2p/v.

For short systems (j,1) the growth rate is small and i
}vb

2 , so using a Pierce source for pulsed currents with lowj
is inefficient. The quantityh(j) attains its maximum in long
systems, with 1,j,8 ~Fig. 5!. When the cavity length is
in
FIG. 3. The maximum distance between two test particles
the phase plane as a function of the geometric parameterj at
the time the instability enters the nonlinear stage.
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1120 JETP 88 (6), June 1999 Klochkov et al.
increased further, the conversion efficiency falls off rapid
in agreement with the linear theory.2 Therefore,j of order
five is the optimum.

Numerical simulation yielded the dependence of
conversion coefficienth on the beam current for differen
values of the geometric parameterj. As the current is in-
creased,h decreases because of the heating of the be
Heating sets in faster in long cavities, and this leads to m
rapid drop in theconversion efficiency as the beam curren
raised.

The dependence ofh on the relativistic character (g) of
the beam is consistent with the linear theory.2 As g in-
creases, the energy conversion efficiencyh initially in-
creases quadratically withg but then saturates forg.5 ~Fig.
6!.

5. DYNAMIC INSTABILITY OF THE BEAM PARTICLE
MOTION

As the instability reaches the nonlinear stage, the fi
amplitude continues to rise slowly. The regular amplitu
modulations in the field are replaced by random oscillatio
This is because, as the instability develops further, the
quency spectrum of the oscillations broadens~Fig. 7! owing
to nonlinear many-wave processes which cause a redist
tion of the energy in the radiation spectrum.

v1,n1v1,n→v1,n2m1v1,n1m , ~31!

FIG. 4. Phase plane of the beam electrons at the time of saturationj
525, x50.95, andg52.

FIG. 5. Energy conversion coefficienth as a function of the geometric
parameter of the cavity for beam parametersg52 andx50.05.
,

e

m.
re
is

d
e
s.
-

u-

in terms of the integerm,n.
A monotron is an open system, since it exchanges

ergy with the surroundings by means of an electron be
The development of an instability assumes the existenc
strong feedback. Naturally, in such a system there is a

FIG. 6. Energy conversion coefficienth as a function of the relativistic
characteristicg of the beam forx50.05 andx54 ~1!, 5 ~2!, and 6~3!.

FIG. 7. Fourier spectrum of the electromagnetic oscillations at differ
times:~a! at the time the instability saturates,~b! in the nonlinear stage and
~c! advanced nonlinear stage.
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1121JETP 88 (6), June 1999 Klochkov et al.
namic instability of the motion—an exponential spread in
particle trajectories,9 which was observed in the nonlinea
stage of the numerical calculations for long systems witj
>8. The development of the instability is, indeed, accom
nied by a broadening of the spectrum of the oscillations. I
convenient to take theK-entropy, which is defined by the
expression9

K5 lim
t→`

lim
D~0!→0

1

t
ln

D~ t !

D~0!
, ~32!

as the characteristic of the dynamic chaos. Since the time
particles spend in the cavity is limited and is on the order
L/u, the K-entropy can be calculated approximately usi
the formula

K5
1

T
ln

Dmax~T!

D~0!
, ~33!

whereT is the transit time of the particles. TheK-entropy
obtained in this way for different values of the geomet
parameter was a decreasing function ofj. The K-entropy is
low for j.8 because randomization of the beam is resp
sible for saturation of the instability at these values of
geometric parameter. Thus, the level of chaos which de
ops in the linear stage remains the same even in the adva
nonlinear stage. As noted above, forj,8 the mechanism
responsible for stabilizing the instability is not associa
with heating of the beam, so stronger amplification of t
electromagnetic waves and, therefore, stronger subseq
heating of the beam are possible.

During the numerical calculations, for some values oj
an intermittence between the ordered and chaotic regi
was observed in time. Besides the regime instability, str
fication of the beam into two components was observ
cold, in which the particle motion was ordered, and hot,
which the particles were subject to a dynamic instabili
Here the transit time through the cavity for the cold partic
was considerably shorter than the residence time in the
ity for the hot particles.

6. CONCLUSION

Based on the above results, we can answer the que
of why monotron generators were inefficient. All these d
e
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-
e
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i-
:

.
s
v-
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vices operated in a parameter range where weak gener
occurred, specifically, withg.1 ~nonrelativistic beam! and
j5L/R!1 ~ultrashort systems!. Numerical simulation
showed that for optimum generation, the device efficien
can be on the order of 20–30%.

There is yet another parameter which can be used
regulate the generator efficiency—the radiusr b of a thin cy-
lindrical beam. Infact, the electrons with transverse coor
nate r b are modulated by a radiation field proportional
fs(r b). Since the entry into the steady state is determined
the modulation depth of the beam, the saturation amplit
will depend on the beam radiusr b .

Finally, we note that the existence of two different inst
bility regimes opens up the possibility of creating both wi
and narrow band generators. The fact that the regimes
pend only on the geometric parameterj of the cavity makes
an attempt to construct a tuneable generator tempting.

We thank V. A. Cherepenin for discussing the proble
associated with numerical integration of Maxwell equatio
and for valuable comments.
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Observation of ions with energies above 100 keV produced by the interaction of a 60-fs
laser pulse with clusters
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The x-ray spectra of a plasma generated by heating CO2 and Ar clusters with high-intensity
femtosecond laser pulses withqlas.1018W/cm2 are investigated. Spatially resolved x-ray spectra
of a cluster plasma are obtained for the first time. Photoionization absorption is observed to
influence the spectral line profiles. The recorded features of the x-ray emission spectra definitely
indicate the existence of a large relative number of excited ions (.102221023) with
energies of 0.121 MeV in such a plasma. Possible mechanisms underlying the acceleration of
ions to high energies are discussed. It is shown that the experimental results can be
attributed to the influence of ponderomotive forces in standing waves generated by the reflection
of laser radiation from the clusters. ©1999 American Institute of Physics.
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1. INTRODUCTION

The fabrication of lasers that generate subpicosec
pulses at a power of several terawatts has unleashed
possibilities in research on the interaction of laser radiat
with matter. In addition to the study of fundamental pro
lems in the physics of high energy densities, various app
problems are of major interest as well, for example, the
velopment of efficient sources of both incoherent and coh
ent x-rays utilizing a laser plasma, or the acceleration
charged particles. Together with the solid-state targets c
ventionally used in experiments involving picosecond a
nanosecond laser pulses, targets consisting of agas je
panding in vacuum have come into widespread use for
trashort pulses. The practical advantages of these target
ease of control, simplicity of replacement, and good repe
ability. Unlike solid-state targets with a multitude of plasm
generating processes, the plasma of a low-density gas ta
is generated for the most part by tunneling or above-bar
ionization in a strong optical field.

A new class of targets has emerged in recent years:
called cluster targets, i.e., gas jets containing clusters
consist of a significant number (1032107 of molecules or
atoms having near-solid densities at diameters of 1
100 nm. Such targets, on the one hand,have the practica
vantages of gas targets and, on the other, can be use
investigate the kinds of processes typical of high mate
densities. A great many important phenomena have been
covered by means of cluster targets, including the s
1121063-7761/99/88(6)/8/$15.00
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focusing of a laser beam in a plasma,1–4 the formation of
multiply-charged ions with completely empty inner she
~hollow ions!,1–4 and the generation of higher harmonic5

and ions with energies above 1 Mev.6,7

It is important to note that the details of the interacti
of ultrashort laser pulses with clusters are not at all clea
this point. There are several models at the present time, e
with a different description of the ionization of cluste
targets.1,8,9 The data available from mass spectrometer m
surements are too meager to explain the mechanism un
lying the generation of fast ions in such a plasma. Th
occurrence can be attributed to the Coulomb explosion o
molecule or cluster and to hydrodynamic~collective! pro-
cesses.

In principle, the presence of fast ions is detectable
only by mass spectrometer techniques, but by x-ray spec
methods as well. The instrumentation for the latter is si
pler, and they can be used to systematically amass exp
mental data on plasma processes. In fast-ion detection a
cations, the sensitivity threshold of the x-ray spectral meth
is lower than in mass spectrometer measurements. Howe
if the lasing efficiency is high enough to produce a reas
ably large relative number of fast particles, their influen
can be detected in the plasma emission spectrum.

In this paper we show that a large relative population
ions (102221023) with energies greater than 100 keV
generated in the plasma when femtosecond laser pulses
a peak intensity of 1018W/cm2 interact with gas targets con
2 © 1999 American Institute of Physics
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taining CO2 and Ar clusters. The presence of these io
shows up in the x-rayspectral lines.

2. EXPERIMENTAL SETUP AND RESULTS

Experiments have been carried out with the laser sys
at the Saclay Research Center~Center d’Études de Saclay
Commissariat a` l’Énergie Atomique, Direction de Science
de la Matière! in France. The plasmawas heated by
titanium–sapphire laser (l las50.8mm) with a pulse duration
of 60 fs and energy of 70 mJ. Focusing of the radiation b
parabolic mirror produced a radiant flux density up
1018W/cm2. A cluster target was formed by the adiaba
expansion in vacuum of a comparatively small burst of g
(CO2 or Ar! issuing from a gas valve through a puls
nozzle of diameter 0.3 mm. The gas pressure in the va
was 10–40 atm.

The plasma-emitted x-rays were detected simultaneo
by three spectrographs with spherically concave m
crystals.10 The relative positions of the laser beam, the g
target, and the spectrographs are shown schematically in
1. The radii of curvature of the crystals wereR5100 mm
~spectrographs 2 and 3! and R5150 mm ~spectrograph 1!.
Spectrographs 2 and 3 provided a spectral resolution
l/Dl57000 and spatial resolutiondx;25mm. These pa-
rameters were somewhat better for spectrograph 1:l/Dl
510 000 anddx;15mm.

For the CO2 plasma the spectral intervals 17–17.8 Å a
15.8–16 Å were detected in the first reflection order from
crystal; they contain the 1snp1P121s2 lines (n>4) of He-
like O VII and the 3p21s line of H-like O VIII, respec-
tively. The emission spectra of the Ar plasma were detec
in the fifth andfourth reflection orders from the crystal. T
corresponding spectral intervals 3.35–3.5 Å and 3.9–4.
contained the 1s 3p21s2 lineof He-like Ar XVII and its Li-
like dielectronic satellites and the 1s 2p 1,3P121s2 lines of
Ar XVII with satellite structures due to transitions in Li-
Be-, and B-like argon ions. Examples of the recorded spe
of the CO2 and Ar plasmas are shown in Fig. 2.

Figure 2 reveals the sharp distinction between the em
sion spectra of the CO2 and Ar plasmas in connection wit
the strong asymmetry of the spectral line profiles of the o
gen ions. This asymmetry in theprofiles of the oxygen
lines, which is also observed in the lines of He-like O V
and the 3p21s line of H-like O VIII, cannot be identified

FIG. 1. Experimental layout.
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either with a thermal Doppler mechanism or with a Sta
mechanism of spectral line broadening in the plasma. In
next section we propose a simple model, which provide
consistent explanation of the observed line profiles of
oxygen~asymmetric! and argon~symmetric! ions. The prin-
cipal attributes of this model are, first, line broadening due
macroscopic motion~expansion! of the plasma and, second
the onset of asymmetry of the line profiles of the oxygen io
as a result of the photoionization of unheated clusters and
presence of H-like and He-like carbon ions in the CO2

plasma.

3. SPECTRAL LINE PROFILES IN AN EXPANDING DENSE
PLASMA

We assume that the interaction of a femtosecond la
pulse with a gas jet generates a plasma in a spatial regio
characteristic lengthl las in the vicinity of the focal spot. The
generated plasma then expands into the surrounding
dium, which contains unheated~or slightly warmed! clusters.
At time t@t las (t las is the duration of the laser pulse! we
have a mixture of unheated clusters and outwardly disper
ions and electrons. This complex object has a character
lengthLmix@ l las, and the velocity distribution of the ions in
it is highly nonuniform. Specifically, high-velocity ions ar
situated closer to the boundary of the object, whereas slo
ions are localized close to its center. In other words, io
with different velocities are spatially separated in the giv
object. If we assume that ions are acceleratedonly at the
of incidence of the laser pulse, then att@t las an ion with
velocity v is situated at a distancey5vt from the center of
the plasma~i.e., from the focus of the laserbeam!. In this
regard we consider the following one-dimensional mod
which,on the one hand, reflects all the principal features
the object and, onthe other, can be used to derive sim
expressions for its spectral characteristics.

Let the y axis be directed toward the recording spe
trograph~spectrograph 1 in Fig. 1!. We denote byNi(y) the
density of ions in the excited statei situated at a distancey
from the centerof the plasma~i.e., from the focus of the lase
pulse!, and byv(y) the velocity of these ions; in keepin
with the foregoing discussion,v(y) is a linear function:
v(y)5by, whereb5const. Let us consider the spectral lin
associated with the radiative transitioni→k with probability
Aik and frequencyv ik , and let its profile aty50 ~i.e., for
ions at rest on the average! be characterized by the symme
ric function Sik(uv2v iku). Inasmuch as the spectrograp
records the total radiation from all ions, the observed l
profile in an optically thin plasma is described by the integ

Fik
obs 1~v2v ik!5

Aik*2`
` Ni~y!Sik~ uv2v ik~11by/c!u!dy

Aik*2`
` Ni~y!dy

,

~1!

where the factor (11by/c) in the argument ofSik is associ-
ated with the Doppler shift in frequency.

It is readily apparent from Eq.~1! that if the function
Ni(y) is symmetric, the observed line profileFik

obs(v2v ik)
will be symmetric about the frequencyv ik . Consequently,
the expansion of an optically thin plasma can impart asy
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FIG. 2. Emission spectra of CO2 ~upper! and Ar
~lower! plasmas produced by the interaction of a fem
tosecond laser pulse with cluster targets. The spe
were obtained with one-dimensional spatial resoluti
along thex-axis, which defines the direction of propa
gation of the laser beam~see Fig. 1!.
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metry to the observed line profiles only when the ion dis
bution Ni(y) itself is asymmetric. But then the asymmet
must be detected differently by spectrographs aimed in
ferent directions toward the plasma. If, for example, the s
ond spectrograph is situated in the regiony,0 ~spectro-
graphs 2 and 3 in Fig. 1!, it will observe a spectrum
Fik

obs 2(v2v ik) given by

Fik
obs 2~v2v ik!5Fik

obs 1~2v1v ik!, ~2!

which implies that the line profile detected by the seco
spectrograph is obtained from the line profile detected by
first via symmetric reflection about the frequencyv ik , i.e.,
if, for example, the long-wavelength wing of the line is su
pressed in one spectrum, the opposite, short-wavele
wing will be suppressed in the other.
-

f-
c-

d
e

th

Equations~1! and ~2!, which have been obtained for a
optically thin plasma, cannot account for the asymme
profiles of the lines emitted by the CO2 plasma because in
the first place, there is no reason to believe that the exp
sion is not symmetric about the axis of the laser beam,
even more importantly, the spectra detected by spectrogra
aimed at the plasma in opposite directions have the s
form, in direct conflict with Eq.~2!.

We now inquire how the line profile equation~1! is
modified for a plasma with absorption. We assume an
sorption mechanism such that in a narrow frequency b
Dv/v!1 the absorption coefficientk(y) does not depend
on v ~properties of this kindare found, for example, in a
sorption by inverse bremsstrahlung!. The spectral line profile
is then given by
Fik
obs~v2v ik!5

*2`
` exp$2*y

`k~x!dx%Ni~y!AikSikS v2v ikS 11
by

c D Ddy

E
2`

`

expH 2E
y

`

k~x!dxJ Ni~y!Aikdy

. ~3!
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FIG. 3. a! Profile of the 1s 4p 1P121s2 1S0 line
of the He-like O VII ion, calculated from Eq.~6!
for various optical depths of the plasmat and
values of the parametera51023. b! Profile of the
1s 4p 1P121s2 1S0 line of the He-like O VII ion,
calculated from Eq.~6! for an optical depth of the
plasmat59 and various values of the paramet
a.
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It is evident from Eq.~3! that the factor exp$2*y
`k(x)dx% in

the integrand imparts asymmetry to the observed line pro
even when the functionsk(y), Ni(y), and Sik(v2v ik)
themselves are symmetric. Indeed, allowing for the fact t
the main contribution to the integral is from the region whe
the argument of the functionSik vanishes, from Eq.~3! we
obtain the estimate

Fik
obs~2v1vk!

Fik
obs~v2v ik!

'expH 2E
2

(v2v ik)c

v ikb

1
(v2v ik)c

v ikb k~y!dyJ ,1

for v.v ik . ~4!

Equation~4! implies that the long-wavelength wing of th
line inan optically thick plasma is suppressed in compari
with the short-wavelength wing. This result is physically o
vious: long-wavelength photons are emitted mainly by io
that move away from the spectrographand are therefore
ther from it. To enter the spectrograph, these photons m
pass through a large volume of the plasma and, hence,
dergo greater absorption. We also note that Eq.~4! still holds
for a spectrograph aimed toward the plasma from the op
site direction, owing to the overall symmetry of the proble
for symmetric distribution functionsNi(y) andk(y).

Further simplification of Eq.~3! requires specification o
the functionsNi(y), k(y), andSik(v2v ik). We note above
all that the width of the distributionSik(v2v ik), being pri-
marily associated with thermal Doppler broadening, is mu
less than the width of the observed line profile under
experimental conditions~even at an ion temperature
Ti51 keV the Doppler width of the oxygen ion lines
Dv ik

D /v ik.631024, in contrast with the observed width
Dv ik

obs/v ik.331023. This difference permits us to regar
Sik(v2v ik) as ad-function. The absorption coefficientk(y)
and the populationof excited levelsNi(y) have different
functional forms in general,becausek(y) is determined pri-
marily by the density of unheated clusters andions in
ground stateN0(y), and even though the quantitiesNi(y) are
proportional toN0(y), the proportionality factor is a com
plex function of both the density and the temperature of
plasma. In our simplemodel we assume that this coeffic
is constant, whereupon the form of the functionsk(y) and
Ni(y) is determined by the distribution of the plasma de
sity, which we model asN0 /(11(y/y0)2):
le

t

n
-
s
r-
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n-
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Ni~y!5
aikN0

11~y/y0!2
,

k~y!5
bikN0

11~y/y0!2
. ~5!

In this case the observed line profiles are described by
equation

Fik
obs~v2v ik!

5M
exp$2t ik@1/22~1/p!tan21~~v/v ik21!/a!#%

11@~v/v ik21!/a#2
, ~6!

wherea5by0 /c, t ik5bikN0y0p is the optical depth of the
plasma, and

M 215E
2`

` exp$2t ik~1/221/p!tan21~y/y0!%

11~y/y0!2
dy

is a normalization factor independent ofv. It is evident from
Eq. ~6! that for our simple model the line profile depends
onlytwo parameters:a and t ik . The parametera occurs in
Eq. ~6! only in combination with the frequency mismatc
and characterizes the width of the line emitted by an o
cally thin,expanding plasma. We emphasize that the va
of the parametera are identical for all spectral lines. Th
parametert ik is the optical depth of the plasma at frequen
v ik , and characterizes the asymmetry of the observed
profile. Its valuescan differ for different spectral lines, but
a wideband absorptionmechanism prevails~free–free or
bound–free transitions!, these differences are extreme
small.

Line profiles plotted from Eq.~6! for the 1s 4p 1P1

21s2 line of the O VII ion for various values of the param
etersa and t are shown in Fig. 3. It is evident from th
figure that, first, appreciable deformation of the line profi
sets in byt.3, second, absorption suppresses not only
long-wavelength wing, but also the center of the line, sh
ing the observed maximum of the line to shorter wav
lengths, and third, absorption significantly increases the
served linewidth. Comparing the model calculations of Fig
with the experimental spectra in Fig. 2, we see that the p
posed simple model yields a qualitatively correct descript
ofboth the argon plasma spectrum~at t50) and the CO2
plasma spectrum~at t>3). The only remaining dilemma is
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why the CO2 plasma in our experimental situation was op
cally thick, whereas the Ar plasma was optically thin, ev
though the average parameters of the plasma~density and
size! were approximately the same in the two cases. To
solve the issue, we analyze possible x-ray absorption me
nisms in the plasma.

X rays can be absorbed in the plasma by free–free~in-
verse bremsstrahlung!, bound–free~photoionization!, and
bound–bound~photoexcitation! transitions. To estimate th
efficiencies of the various absorption mechanisms, we n
information about such parameters of the plasma as its e
tron and ion densities, temperature, charge composition,
size. In the CO2 plasma, the cluster sizes range from 80–1
nm; they are separated by 300–400 nm, and the particle
sity number is 831021 cm23. This means that the averag
density of carbon ions in the plasma generated in the fo
spot ~with a characteristic lengthl las.20 nm) isNC.(0.64
23)31020cm23, and the density of oxygen ions isNO

52NC.(1.326)31020cm23. It follows from the x-ray
spectral measurements that H-like and He-like O VIII a
O VII ions occur inequal amounts in the plasma. It is natu
to assume that carbon ions will be predominantly H-like. W
therefore infer an estimate of the average electron densit
the plasma:Ne.(1.225.5)31021cm23. The electron tem-
perature of the plasma can be estimated, on the one h
from the ratio of H-like and He-like O VIII and O VII ions
and on the other, from the intensities of the resonance lin
the He-like Ar XVII ion and its dielectronic satellites:Te

.200–700 eV. During expansion the density of the plas
decreases, and at the instant that it expands to a lengthLmix

.3002400mm the densities of electrons and multipl
charged ions become three orders of magnitude lower
their initial values.

We now consider absorption associated with boun
bound transitions, i.e., resonant photoabsorption or s
absorption of the spectral lines. The cross section of
process is greater than the cross sections of free–fre
bound–free transitions, and for lines of the resonancese
the laser plasma is normally optically thick, i.e.,tbb@1. Two
important conclusions can be drawn from the resonant c
acter of this process.

First of all, the efficiency of the process declines wh
large velocity gradients are present in the expanding plas
In fact, as a result of the Doppler shift associated with
translational motion of the plasma photons emitted in
spatial regiony can be absorbed only in parts of the plasm
close to this point with a lengthDy.(c/b)(Dv ik

D /v ik),
whereDv ik

D is the intrinsic linewidth, i.e., the width of the
functionSik(v2v ik). For large velocity gradients, i.e., larg
values ofb, Dy is much less than the length of the plasmaL,
so that the optical depthtbb decreases by a factor;L/Dy.
The values oft ik

bb can be estimated for this case from th
equation

t ik
bb5Nkl ik

3 gi

gk

Aik

b
. ~7!
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We infer from Eq. ~7! that the optical depthtbb for the
middle of the 1s 4p 1P121s2 line of O VII at the instant of
plasma generation is

tbb~1s 4p 1P121s2!.302100.

As the plasma expands,tbb rapidly decreases as a result
the decreasing ion density.

Second, photoabsorption can result in deformation of
spectral line profiles across essentially the full width of t
function Sik(v2v ik) ~see, e.g., Refs. 11 and 12! or, more
precisely, in the range

uv2v iku<~1/2!Dv ik
DAlnt ik

bb,

which is considerably narrower than the total width of t
observed line profile.

We now discuss inverse bremsstrahlung, i.e., absorp
associated with free–free transitions. The optical de
t f f(l) of theplasma due to this mechanism can be estima
to be13

t f f'1.3310249l3
Z2NiNe

ATe

L, ~8!

whereL is measured in cm,l in Å, Te in eV, and bothNi

andNe in cm23. For the lines of O VII and O VIII ions in the
range 16–18 Å we obtain7

t0
f f.~0.0623.3!31024!1,

and for the lines of Ar XVII ions (l.324 Å) we have

tAr
f f .~0.0322.5!31025!1.

Consequently, inverse bremsstrahlung is weak both in
CO2 plasma and in the Ar plasma.

Next we consider absorption associated with bound–f
transitions, i.e., with photoionization. The main contributin
factor is photoionizationfrom the ground state of an ion, b
cause the populations of the excited levels are norm
small. This phenomenon is a threshold process in the pho
energy, since photons with energies above the ionization
tential are absorbed. At energies well above threshold,
cross section of the process is approximately13

sb f50.55310216
1

Z2 S I

\v D 7/2

cm2, ~9!

where I and Z are the ionization potential and the spectr
scopic symbol of the absorption-inducing ion. We note th
although Eq.~9! has been derived for photoionization of th
ground state of an H-like ion, it can be used for order-
magnitude estimates of the photoionization cross section
multielectron ions.

The threshold nature of photoionization absorption e
plains why this mechanism does not show up in the emiss
spectra of a chemically homogeneous plasma. Indeed,
spectral lines of the most conspicuous ions in the plasma
ionize only ions of lower multiplicity, which have a low
density in the plasma, and despite the large cross sect
sb f, the photoionization absorption cross section is not v
large. This situation is encountered, for example, in our
periments with the Ar plasma. The spectral lines of the Ar
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1127JETP 88 (6), June 1999 Dobosz et al.
VII and Ar XVIII ions can only lead to photoionization o
the Li-like Ar XVI ion and ions of lower multiplicity. If the
abundances of H-like and He-like ions are approximately
same~as in our experimental conditions!, the abundance o
even the Li-like Ar XVI ion will not exceed 0.1, and th
optical depth of the plasma is

tAr
b f.102321022!1.

A different situation can arise in a plasma of compl
chemical~mixtureof ions of different chemical elements! or
ionization ~mixture of a multiply-charged plasma and u
heated clusters! composition. In this case the spectral lin
associated with ions of one chemical element can photo
ize not only ions of the other element, which can have a v
high density in the plasma, but also neutral atoms contai
in unheated clusters. For example, in our investigated C2

plasma the He-like O VII lines can photoionize the H-lik
C VI ion as well as C I and O I atoms. An estimate of t
optical depthtCO2

b f of the plasma associated with both pr

cesses can be obtained from Eq.~9!: tCO2

b f .0.8325.3. Of

course, absorption by unheated clusters is also possible i
case of the Ar plasma, but the estimatetAr

b f,1 is still valid
by virtue of the somewhat smaller photoionization cross s
tions. Consequently, photoionization absorption should l
to modification of the emission spectra of the CO2 plasma
and should not affect the spectra of the Ar plasma, as
have indeed observed in our experiments.

As mentioned, in our model~6! the profile of each spec
tral line depends only on two parameters. The parametera is
identical for all lines, and according to~9! the values oft ik

b f

for different lines are related by the equation

t i 1k1

b f v i 1k1

7/2 5t i 2k2

b f v i 2k2

7/2 .

Altogether, therefore, we have two free parameters to
scribe a whole group of spectral lines:a5v0 /c, which is
associated with the ‘‘average’’ plasma expansion rate@v0

5by0), and the optical depthof the plasma at the freque
of one of the spectral lines. We have attempted to desc
qualitatively the emission spectra of He-like and H-like ox
gen ions in the CO2 plasma. The results are shown in Figs
and 5. It is evident from these figures that the simple mo
~6! accurately describes, not just qualitatively buteven qu

FIG. 4. Comparison of the model spectrum~6! ~heavy curve! with the
experimental result for the He-like lines of the H-like O VII ion.
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titatively, the profiles of all observed lines of oxygen ions f
values of the free parametersa51023 and tb f(1s 4p
21s2)59. ~We note that the model~6! describes only the
line profiles; the relative line intensities used in plotting t
theoretical spectrumare taken from experiment.!

Since the broadening of the spectral lines in our exp
ments has been attributed to translational motion of
plasma, the analysis of the line profiles can be used, ge
ally speaking, to measure the distribution of excited io
with respect to their dispersal energies. This procedure
simplest~and most accurate! for the Ar plasma, for which
photoionization absorption does not occur, and the spec
line profile is directly proportional to the dispersal veloci
distribution of excited ions:

Fik
obs~v2v ik!.Ni~v/c!. ~10!

The distributionNi(E) obtained from~10! ~with the normal-
ization Ni(0)51) is shown in Fig. 6~curve3!. This distri-
bution can be plotted only for energiesE<100 keV, because
for larger mismatches the line profile cannot be distinguish
from the noise.

In the case of CO2, direct measurements ofNi(E) are
rendered impossible by the presence of photoionization
sorption. Model functions of the type~5! with values of the
parametersa andt such as to ensure good agreement w
experiment are useful only for estimating the distributi
Ni(E). Such a model distribution is shown in Fig. 6~curve
1!. Interestingly enough, in the rangeE<100 keV this distri-

FIG. 5. Comparison of the model spectrum~6! ~heavy curve! with the
experimental result for the Lyb line of the H-like O VIII ion.

FIG. 6. Distribution of excited ions with respect to their translational kine
energy~expansion!: ~3! direct measurement for an Ar plasma;~1! approxi-
mate profile for a CO2 plasma;~2! distribution obtained for a CO2 plasma
without regard for photoionization absorption.
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bution scarcely differs from the measurement result for
Ar plasma. Again we emphasize that in the presence
photoionization absorption~i.e., for the CO2 plasma! Eq.
~10! would yield the totally incorrect result represented
curve2 in Fig. 6.

The main conclusions drawn from the foregoing disc
sion are as follows.

1! The short-wavelength wings of the spectral lines
O VII and O VIII ions are attributable to translational motio
of the ions, and the lack of long-wavelength wings is as
ciated with photoionization absorption.

2! The detection of a radiative intensity well above t
noise level inthe vicinity of frequency mismatchesu(v
2v ik)/v iku51.231022 proves unequivocally the existenc
in the plasma of an appreciable number~beyond that charac
terized by the tail of a Maxwellian distribution! of ions mov-
ing at velocitiesv'3.63108 cm/s, i.e., with energies of ap
proximately 1 MeV.

Next we take a look at possible mechanisms underly
the production ofsuch fast ions in a femtosecond la
plasma.

4. GENERATION OF FAST IONS IN A FEMTOSECOND
LASER PLASMA

Ions can be accelerated by various processes assoc
with the emergence of strong electric fields in the la
plasma. The possible mechanisms include the Coulomb
plosion of molecules and clusters7 and the ‘‘hydrodynamic’’
acceleration of ions in the dispersal of clusters under
influence of electron kinetic energy.14 The ponderomotive
acceleration of ions under the influence of forces created
high-frequency pressure directly as a result of strong la
radiation in the plasma near the critical densityNc has been
discussed15,16 for long laser pulses of nanosecond duratio
whent las greatly exceeds the acceleration time.

It is fairly simple to estimate the maximum ion energ
for the various acceleration mechanisms. For example, in
Coulomb explosion of a molecule~when as a result of rapid
ionization, ions with chargeZi are situated at the characte
istic interatomic spacing of the moleculer a) the Coulomb
potential of the ionic core iswmol.(Zie/r a . Consequently,
the kinetic energy that can be acquired by anion with cha
Zueu as a result of the expansion of the ionic core is

Eion5Zueuwmol.Z( Zie
2/r a . ~11!

Because the characteristic interatomic spacing of the m
ecule is of the same order as the radius of the neutral a
and spans at least several Bohr radii, we infer from Eq.~11!
that the maximum energy of oxygen ions formed by the
plosion of a CO2 molecule cannot be too high:Eion

,4 keV.
Generally speaking, the Coulomb energy of a large cl

ter can be significantly greater. For example, for a density
moleculesNCO2

.831021cm23 the maximum Coulomb en
ergy of an ionZueu Qcl in a cluster of radiusr cl.40 is

Eion.ZueuQcl /r cl ; ~12!
e
of

-

r

-

g
r

ted
r
x-

e

y
er

,

e

e

l-
m

-

-
f

for Qcl5Qcl
max522e(4p/3)r cl

3NCO2
~charge of the cluster for

fully ionized oxygen and carbon atoms! this expression
yields the estimateEion.1.4Z MeV. In reality, of course, the
cluster charge cannot be greater thanQcl.Eer cl /ueu, i.e., the
value dictated by the kinetic energyEe of electrons capable
of escaping the cluster. The maximum ion energy associa
with Coulomb ‘‘repulsion’’ in the cluster is determined b
the electron kinetic energy:

Eion.ZEe . ~13!

We note that this is precisely the kinetic energy acquired
the bulk of the ions with chargeZ in ambipolar hydrody-
namic plasmaexpansion~at the speed of sound! under the
influence of the thermal pressure of electrons~with Te

5Ee). According to Eq.~13!, the emergenceof a sizabl
number of ions with energy.1 meV atZ.628 as a result
of ‘‘Coulomb explosion’’ of a cluster requires a very ‘‘hot’
component of electrons with energies.140 keV. The num-
ber of such electrons should be of the order of 10% of
electrons resulting from the complete ionization of all ato
in the cluster, the probability of which is exceedingly low

Somewhat more detailed estimates of the maximum
ergy and number of ions can be obtained if the kinetics
ion motion for various electron energy distributions is tak
into account.14 In the case of a Maxwellian electron distribu
tion function, the maximum energy of fast ions in the expa
sion in vacuum of a finite plasmoid of characteristic radiusR
is

Eion.ZTetm
2 , ~14!

wheretm5A2 ln(R/rDe) r De5vTe /vpe5ATe/4pne
2ne is the

Debyeradius of the electrons. The number of ionsNion

.N0exp(2A2 tm) is exponentially small (tm@1) in this
case. At an electron temperature.1 keV these relations
show that on the order of 0.2% of the total number of ions
the cluster~for R.r cl.40 nm andZ58) cannot acquire an
energy greater than 200 keV.

The maximum ion acceleration energy depends hea
on the form of the electron distribution function. For e
ample, in the case of a distribution fortified with fast ele
trons, f e.exp(2v/ATeff /m ), for v@ATeff /m we havetm

.25/2/3@ ln(R/rDe)#
3/2; according to Eq.~14!, for Z58 and

Teff51 keV we obtainEion.1.44 MeV, and the relative
number of ions with such energies is approximately 0
31023.

During the motion of the clusters, therefore, a sm
number of ions canbe accelerated to megawatt energies
for non-Maxwellian electron distributions fortified with fas
particles. The feasibility of such distributions and the det
mination of their characteristics require further investigatio

The intriguing possibility of the ponderomotive acceler
tion of ions to high energies is afforded by the irradiation
a plasma with an extremely strong field of ultrashort la
pulses. The acceleration of ions by femtosecond laser pu
can be highly nonstationary in this case, so that the ma
mum energy of the accelerated ions depends not only on
radiative intensity, but also on the duration of the laser pu
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We now consider the model of a plasma generated
the irradiation of a cluster gas, when the density of
plasma~formed from uncondensed gas! between clusters is
subcritical, and the cluster plasma density greatly exce
the critical value. During the laser pulse, the ponderomo
force in standing waves generated by reflection fromclus
will affect ions of the intercluster plasma by way of th
charge separation field. During this time an ion with cha
Zi and massMi acquires a velocity

v i.
Zi

M i
Fpt las, ~15!

where Fp5(mec
2/4l E)a0

2(11a0
2/2)21/2 is the ponderomo-

tiveforce on an electron in a standing wave of the laser fi
with characteristic scalel E;c/2vp , whose intensityI is re-
lated to the dimensionless amplitudea0 by

a05eElas/v0mec58.6310210lL @mm# I 1/2@W•cm22#

(L is the wavelength andv0 is the laser frequency!. We note
that in a standing wave the strength of the fieldElas can
exceed the amplitude of the laser field incident on
plasma. Equation~15! holds for laser pulse durations short
than the acceleration time,t las, l E /v i , but longer than the
period of the electron plasma waves. According to Ref.
the maximum energy of the accelerated ions is

Miv i
2

2
5

Zi
2me

2c2

4Mi

a0
4

11a0
2/2

~v0t las!
2, ~16!

where the transient acceleration condition has the form

t las,
2

v0
S Mi

Zime
D 1/2~11a0

2!1/4

a0
[t* . ~17!

For laser pulses of longer duration, such that the opposit
condition~17! holds (t las.t* ), the maximum ion energy is
determined by the total ponderomotive potential differenc

Miv i
2

2
5

Zimec
2

4

a0
2

~11a0
2/2!1/2

. ~18!

If the duration of the laser pulse corresponds to the transi
from transient to steady-state acceleration (t las.t* ), the
two equations~16! and ~18! yield essentially the same en
ergy. Under the conditions of our experiment (Zi58,
t las.60) for a0.1 andt las.t* , according to Eqs.~16! and
~18!, the maximum energy of the accelerated ions
.1 MeV, which is consistent with the x-ray spectral me
surements. We also note that for an uncondensed~interclus-
ter! gas of densityna.331019cm23 (P51 atm), the num-
ber ofions in the intercluster plasma is only slightly less th
the number of ions in the clusters (na( l /r cl)

3/ncl.0.4). The
number of electrons is now sufficient to maintain a cha
separation field such that a ponderomotive force is applie
the ions. The number of accelerated ions, which is de
mined by their density inthe region where a standing wa
exists, will also be sufficiently large for the given condition
with the distance between clusters being of the order of
the laser wavelength.
y
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5. CONCLUSION

The reported experimental investigations show that x-
spectral methods can be used for the systematic acquis
of experimental data about the properties of the plas
formed when clusters are heated by high-intensity femtos
ond laser pulses. We have obtained spatially resolved x
spectra of CO2 and Ar cluster plasmas for the firsttime, an
we have observed that photoionization absorption influen
the profilesof the spectral lines in a plasma of comp
chemical composition. The recorded features of the x-
emission spectra indicate unequivocally the presencein
cluster plasma of a large relative number of excited ion
(.102221023) with energies of 0.1–1 MeV. A compariso
of mechanisms capable of accelerating ions to high ener
shows that the experimental results can be attributed to p
deromotive forces generatedin standing waves resulting f
the reflection of laser radiation from the clusters.
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Role of stochastic fluctuations in the charge on macroscopic particles in dusty plasmas
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Zh. Éksp. Teor. Fiz.115, 2067–2079~June 1999!

The currents which charge a macroscopic particle placed in a plasma consist of discrete charges;
hence, the charge can undergo random fluctuations about its equilibrium value. These
random fluctuations can be described by a simple model which, if the mechanisms for charging
of macroscopic particles are known, makes it possible to determine the dependence of the
temporal and amplitude characteristics of the fluctuations on the plasma parameters. This model
can be used to study the effect of charge fluctuations on the dynamics of the macroscopic
particles. The case of so-called plasma-dust crystals~i.e., highly ordered structures which develop
because of strong interactions among macroscopic particles! in laboratory gaseous discharge
plasmas is considered as an example. The molecular dynamics method shows that, under certain
conditions, random fluctuations in the charge can effectively heat a system of macroscopic
particles, thereby impeding the ordering process. ©1999 American Institute of Physics.
@S1063-7761~99!01206-8#
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1. INTRODUCTION

A macroscopic particle placed in a gaseous discha
plasma acquires an electrical charge by absorbing elect
and ions from the plasma. The equilibrium potential~charge!
is determined by the condition that the current to the part
equals zero. It is negative because the electrons are m
mobile than the ions and can be very high~on the order of
103– 105 elementary charges for micron-sized particle!.
Such a large number of charges means that systems of
roscopic particles are often highly nonideal, i.e., the poten
energy of the interaction between the macroscopic parti
greatly exceeds their average kinetic energy. In this case
highly ordered structures of macroscopic particles known
plasma-dust crystals can develop.1 The first reports of the
creation of crystals from dust particles in low pressure
discharge plasmas in inert gases appeared in 1994.2–5 Or-
dered structures were observed somewhat later in other t
of plasmas, as well: in a thermal atmospheric press
plasma6 and in stratified glow discharges.7 ~A detailed re-
view of these experiments can also be found in Ref. 8.! Sys-
tems consisting of a plasma and charged macroscopic
ticles are also widespread in space and in devices for pla
materials processing. This explains the great interest in
tems of this type at this time.

Dusty plasmas are often described theoretically in
approximation of a constant charge on the macroscopic
ticles, since the times of interest are typically considera
longer than the time to establish an equilibrium charge.
this case, a dusty plasma can be regarded as a multisp
plasma in which the macroscopic particles represent i
with anomalously high charges and masses. This appro
however, does not take an important feature of these sys
into account. In fact, the charge on the macroscopic parti
is determined by the local plasma parameters~potential, ion
1131063-7761/99/88(6)/7/$15.00
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and electron densities and temperatures, currents, e!.
Therefore, it has to be regarded as one of the set of dyna
variables determining the behavior of the plasma. Thus,
example, perturbations in the charge on macroscopic
ticles during propagation of electrical oscillations in a dus
plasma may give rise to new mechanisms for dissipation
instability.9

Even in an isotropic, spatially uniform, unperturbe
plasma, however, the charge on the macroscopic parti
will undergo random fluctuations about its equilibrium valu
This is because ions and electrons are absorbed by the
faces of macroscopic particles at random times and in r
dom sequences. In this paper we examine precisely this
of fluctuation in the charges on macroscopic particles in
plasma and propose a model that can be used to obtain
quantitative characteristics. The model is also applicable
studies of the effect of random charge fluctuations on
dynamic behavior of a system of macroscopic particles.
an example of such a system, we examine the formation
dust particles in the electrode region of a gaseous discha
where the force of gravity acting on the macroscopic p
ticles is balanced by an electric field.

Before proceeding to a description of the stochastic fl
tuation model,let us summarize the earlier work. Morph
et al.,10 first pointedout the need to include random char
fluctuations, assuming that the amplitude of the fluctuatio
is given byDZ[A^dZ2& 5A^uZu&, where^Z& is the equilib-
rium charge on a macroscopic particle in units of the el
tronic charge. Cui and Goree11 used a numerical simulation
to obtain the temporal sequence of the values of the cha
on macroscopic particles in the absence of emission p
cesses.~The orbital approximation and Maxwellian distribu
tions of the electrons and ions were used to determine
current to a macroscopic particle.! Their main result11 isthat
DZ50.5A^uZu& for a wide range of parameters of the plasm
0 © 1999 American Institute of Physics
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1131JETP 88 (6), June 1999 Vaulina et al.
and macroscopic particle, provided that^uZu&@1. Finally,
Matsukas and Russell12 presented an analytical model deve
oped for the same conditions which yielded a charge dis
bution of the macroscopic particles~and, therefore, the char
acteristic amplitude of the fluctuations!. Our paper differs
from these10–12 in that we are primarily interested in th
dynamical, rather than the static, properties of the rand
fluctuations in charge, since it is they which determine
effect of the fluctuations on the dynamics of a system
macroscopic particles.

2. MODEL OF RANDOM FLUCTUATIONS IN THE CHARGE
ON MACROSCOPIC PARTICLES

Let us consider an isolated macroscopic particle wh
carries chargeZ. For simplicity we assume that all the neg
tive charges in the system are carried by electrons and
positive ions have unit charge. The equation describing
random fluctuations in the charge can be written in a fo
analogous to the Langevin equation of motion for a fr
Brownian particle in one dimension, with the sole differen
that the motion takes place ina one-dimensional cha
space, rather than in velocity space. For small deviati
dZ(t) of the charge from its equilibrium value (u^Z&u
@udZ(t)u), we can write

ddZ

dt
1bdZ5F~ t !, ~1!

whereb52]I /]Zuz5^Z& , I is the current to the macroscop
particle ~in s21), and

F~ t !5(
j

d~ t2t j !~61! j

is a random term which represents the source of the fluc
tions and describes the absorption of a single plasma elec
~minus sign! or ion ~plus sign! at a random timet j . Under
the above assumptions, the current to the macroscopic
ticle can be written in the formI 5I 12I 2, whereI 1 is the
current determined by the absorption of plasma ions andI 2

is the current determined by the absorption of electrons.
term bdZ (b.0) acts as a restoring force which tends
return the charge to its equilibrium value^Z& determined by
the conditionI 50. It is easy to verify that the termF(t)
obeys the relations

^F~ t !&50, ^F~ t !F~ t8!&5
1

t0
d~ t2t8!, ~2!

where 1/t0 characterizes the rate at which ions and electr
are absorbed, so thatt0

215I 11I 252I 2. Integrating Eq.~1!
using Eq.~2! allows usto obtain the temporal autocorrelati
function of the charge fluctuations in the form

^dZ~ t !dZ~ t8!&5
1

2t0b
exp~2but2t8u!. ~3!

Equation~3! is an important result and we shall use it f
studying the effect of random charge fluctuations on the
namic behavior of the macroscopic particles. It contains
formation on the amplitudeDZ5(2t0b)21/2, as well as on
the correlation time of the fluctuations,tc51/b. We now
i-
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determine the values ofDZ andtc for the practically impor-
tant case of the charging of macroscopic particles in a la
ratory gaseous discharge plasma typical of the experime
conditions in Refs. 2–5 and 7.~Other charging mechanisms
including the thermionic emission of electrons characteris
of thermal plasmas6 and photoemission charging of macr
scopic particles, which plays a major role in space,13 are
examined elsewhere.14! To do this, we use the standard equ
tions for the electron and ion fluxes onto the surface o
negatively charged macroscopic particle:15

I 25I e5A8p a2nevTe expS Ze2

aTe
D , ~4!

I 15I i5A8p a2nivTiS 12
Ze2

aTi
D , ~5!

wherea is the particle radius,ne( i ) , me( i ) , andTe( i ) are the
density, mass, and temperature of the electrons~ions!, re-
spectively, ande is the electronic charge. We have also us
the notationvTe( i )5(Te( i ) /me( i ))

1/2 for the thermal velocity
of the electrons~ions!. If the density of macroscopic particle
is nottoo high, so thatne'ni , then the equilibrium charge
can be written in the form

^Z&52gS Ti

Te
,
mi

me
DaTe

e2
.

Hereg.0 is a coefficient on the order of unity and define
by the equation exp(2g)5(11gTe/Ti)vTi /vTe. Using Eqs.~4!
and ~5!, we can readily obtain

b52
]I

]Z U
z5^z&

5A8p a2nevTe

e2

aTe
FAme

mi

Te

Ti
1exp~2g!G ,

~6!

DZ5A 11gu

g~11u1gu!
A^uZu& 5aA^uZu& , ~7!

whereu5Te /Ti . The same expression forDZ has been ob-
tained in a slightly different way in Ref. 12. A numerica
calculation11 has shown thata'0.5 for a wide range of pa-
rameters of the plasma and of the macroscopic particlea
@determined using Eq.~7!# for the plasma parameters used
the calculations of Ref. 11 and values ofb @Eq. ~6!# for a
macroscopic particle of 1mm diameter under the following
conditions:ne55•108 cm23 andTe54 eV. It is evident that
a depends weakly on the plasma parameters and that

TABLE I. Values ofg, a, andb ~see text! for different plasma parameter
mi andTi /Te .

mi , amu Ti /Te g a b, s21

1 0.05 1.698 0.61 1.1•105

1 1 2.501 0.56 4.0•104

40 0.05 2.989 0.50 2.5•104

40 1 3.952 0.46 8.7•103
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close to 0.5; at the same time, the frequency of the fluc
tions, b, varies by more than an order of magnitude as
plasma parameters are changed.

When there is a directed flux of ions, whose velocityv0

greatly exceeds the ion thermal velocityvTi , as happens, fo
example, in the electrode sheaths of discharges, the fol
ing expression should be used instead of Eq.~5!:

I 15I i5pa2niv0S 12
2Ze2

miv0
2D .

Then, instead of Eq.~6! we obtain

b52
]I

]Z U
z5^z&

5A8p a2nevTe

e2

aTe
F v0

vTe

2Te

miv0
2

1exp~2g!G .

~8!

Equation~7! is still valid if we redefineu as the ratio of the
electron temperature to the kinetic energy of the directed
motion, i.e.,u52Te /miv0

2.

3. ESTIMATE OF THE EFFECT OF RANDOM CHARGE
FLUCTUATIONS ON THE DYNAMICS OF MACROSCOPIC
PARTICLES

We now proceed to an examination of the effect of ra
dom charge fluctuations on the dynamic processes in a
tem of macroscopic particles. As a first, simple example,
us consider a macroscopic particle contained in the elect
sheath of a discharge, where the force of gravityFg5mdg is
balanced by the electrostatic forceFel5ZeE. Heremd is the
mass of the macroscopic particle andE is the electric field
directed toward and increasing toward the macroscopic
ticle ~Fig. 1!. This situation corresponds to the experimen
conditions in Refs. 2–5, where negatively charged mac
scopic particles located near the lower electrode~cathode!
form ordered structures. Because of random fluctuation
its charge, the macroscopic particle will undergo random
cillations in the direction of the field. It is easy to confir
that during these oscillations, the electric field will perfor

FIG. 1. An isolated macroscopic particle contained near an electrode
result of the balance between the force of gravitymdg and the electrical
force Fel5ZeE. The ions have the Bohm velocityv05ATe /mi . The two
images of the macroscopic particle are a consequence of using per
boundary conditions in they direction. The electric field increases from th
boundary of the electrode sheath, whereE(x50)'0, to E5Es at the elec-
trode surface.
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e

w-

n
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s-
t

de
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l
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in
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positive work on the macroscopic particle, increasing its
netic energy. Without dissipation, the energy will increa
without bound. Friction on the neutral gas in a weakly io
ized plasma means that the energy of the random oscillat
of the macroscopic particle will reach some steady-st
value. Assuming that the electric field is linear near the eq
librium positionx0 , the force acting on the macroscopic pa
ticle, including the charge fluctuations, isFel1mdg
52mdv2dx1eE0dZ, where dx is a small displacement
E05E(x0) is the electric field at the equilibrium positio
(mdg1^Z&eE050), and

v252
^Z&e

md

]E

]x U
x0

is a constant characterizing the rigidity with which the ma
roscopic particle is confined~stiffness coefficient! in the po-
tential well formed by the action of the electrostatic a
gravitational forces~recall that^Z&,0). The results of the
previous section can be used to determine the average ki
energy of an isolated macroscopic particle in the direction
the field:

Kx5
Tn

2
1

mdg2a2

2^uZu&
b

n@v21b~b1n!#
'

Tn

2
1

mdg2

2^uZu&j
,

~9!

where the kinetic energy is introduced through the form
Kx5md^d ẋ2&/2, n is the coefficientof friction on the neutra
gas ~in s21), Tn is the neutral gas temperature,j5nb/a2,
and the last estimate was made assuming thatv!b and n
!b. ~As a rule, this assumption is fully justified.! The first
term on the right of Eq.~9! corresponds tothe thermal energ
per degree of freedom of the macroscopic particle~in equi-
librium with the surrounding gas!. The additional kinetic en-
ergy owing to the fluctuations is given by the second term
the right of Eq.~9!. For simplicity, in the following we omit
the Brownian motion and study only the added term ow
to the random charge fluctuations. Since the motion of
macroscopic particles caused by the random charge fluc
tions is chaotic, we can also consider an effective tempe
ture of the macroscopic particle,Kx5Tdx,eff/2. Note that in
this case of an isolated particle,the fluctuations can ‘‘heat
macroscopic particle only in the direction ofthe field and
not change the kinetic energy of the macroscopic particle
directions perpendicular to the field, so thatKy5Tn/2. Here
the inequalityTdx,eff.Tdy5Tn holds.

We have derived Eq.~9! assuming that the macroscop
particle is isolated, which corresponds to a weak interacti
among the macroscopic particles. As a rule, however, a
tem of macroscopic particles under these conditions is hig
nonideal. The effect of the interaction on our results will
examined below in a numerical simulation of a system. H
we point out another effect. It has been noted11 that in a
system of interacting charged particles, fluctuations in
charges give rise to fluctuations in the interparticle inter
tion potential, which should cause chaotic motion of t
macroscopic particles in addition to the thermal motion. W
shall estimate the magnitude of this effect in terms of
approach17 used to study the effect of the spatial depende

a

dic
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of the charge on the macroscopic particle dynamics. Spe
cally, we separate the force, owing to the other charg
which acts on a test charge into constant and fluctua
components. The fluctuating component is determined in
case by stochastic fluctuations in the charges on the ma
scopic particles and not by the change in the charges as
macroscopic particles move. Following Ref. 17, we obt
the following estimate for the additional kinetic energy b
yond the thermal energy~neglecting screening!:

Kad;
^Z&2^dZ2&e4

mdn l 4
tc;

^uZu&3e4

mdl 4

1

j
,

wherel is the average distance between the macroscopic
ticles andtc is the correlation time for the random forc
which is given by the correlation time of the fluctuations
our case. Thus, because of the charge fluctuations, the e
tive temperature of a system of macroscopic particles is
ways somewhat higher than the thermal level. The reason
this inequality is that the system of dust particles is open
thatit can exchange charge and energy with the gaseous
charge plasma.

In the case of a system of interacting macroscopic p
ticles located in the electrode sheath of a gaseous disch
both of the effects described above occur. The ratio of
contributions from the two is

Kx

Kad
;S mdg

^Z2&e2/ l 2 D 2

. ~10!

Therefore, their relative roles are determined by the squar
the ratio of the force of gravity to the Coulomb interpartic
interaction force. For the typical parameters of an experim
with a dusty plasma,a51 mm, densityr55 g/cm3 of the
material in the particles (md'2•10211 g), ^Z&5afs'3
•103 (fs'5 V, the floating potential!, and l'500 mm, we
obtain Kx /Kad'600. For larger macroscopic particles th
ratio will be still higher, sinceKx /Kad;a2l 4. Therefore, un-
der typical experimental conditions,2–5 the first effect, of
magnitude given by Eq.~9!, will make the larger contribu-
tion to the disequilibrium.

4. NUMERICAL SIMULATION

In order to account for the interaction among the mac
scopic particles, we have done a molecular dynamics si
lation of a system of macroscopic particles with fluctuati
charges located in the electrode sheath of a discharge.
computational region consisted of a square with sides
length L equal to 50 times the average interparticle sepa
tion. Periodic boundary conditions were imposed in they
direction perpendicular to the direction of the external fo
Fext. ~See Fig. 1.! The number of particles in the simulatio
was varied between 50 and 300. The two-dimensional eq
tion of motion was solved for each macroscopic partic
including the pairwise interactionF int between the particles
the frictional force, the totalexternal forceFext in the gravi-
tational and electric fields, and therandom fluctuations in
charges of the macroscopic particles:
fi-
s,
g
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e

md

d2r k

dt2
5(

j
F int~r !ur 5urk2r j u

r k2r j

ur k2r j u
2mdn

dr k

dt
1Fext.

Here the pairwise interaction between the macroscopic
ticles is given by

F int~r !52eZ~ t !
]fD

]r
,

where

fD5
eZ~ t !

r
expS 2

r

l D
is the screened Coulomb potential with a screening lengtl
determined by the appropriate Debye radius.~For a homoge-
neous, isotropic plasma,l225lDe

221lDi
22'lDi

22 .) Note that
the interaction force depends on time, as noted at the en
the previous section. Here the time dependence shows
only through the time variation in the charge. This can
assumed, if the characteristic time of the charge fluctuatio
tc , is much longer than the reciprocal of the plasma f
quency (vpi for a homogeneous, isotropic plasma!, so that
the plasma electrons and ions are able to fine-tune th
selves in the charge fluctuations.

In the numerical simulations the electric field in the ele
trode sheath was specified as a linear function of the coo
natex, so thatE(x)5Esx/L. Here the external force depend
on both position andtime, and acts only in thex direction:
Fext(t,x)5mdg1eZ(t)E(x).

The random fluctuations in the macroscopic parti
charges are assumed to be uncorrelated. Here the ran
fluctuations were modelled by a gaussian random varia
so that at each integration step the increment in the cha
was given by

Zi 115^Z&1@~Zi2^Z&!1dZtz#~12bDt !,

where Zi5Z(t i), t i 115t i1Dt, dZt5DZA2bDt, z
5sin(2px1)A2 ln(1/x2), andx1 andx2 are random numbers
distributed uniformly on the segment@0,1#. The integration
step Dt was Dt5tc/20 in the simulations.~Note that tc

!n21 in our calculations.! For simplicity, in the calculations
we have neglected the Brownian force owing to the s
rounding gas, so that the motion of the macroscopic partic
was determined solely by the charge fluctuations.

5. RESULTS OF THE NUMERICAL SIMULATIONS

We have found that the macroscopic particles form la
ers~up to six layers in our calculations! in the potential well
created for them by theexternal force~the sum of the elec-
trostatic and gravitational forces! in thex direction.~See Fig.
2a.! The layers are perpendicular to the direction of the
ternal force and the number of layers is determined by
system parameters: the number of particles, screening le
l, and potential well characteristicv. For constantv, an
increase in the number of particles or in the screening len
increases the number of layers, since their mutual repuls
increases. Layer formation also occurred in the experime
of Refs. 2–5, where;10 layers were observed. We hav
also found that layer formation is discrete in nature; in p
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FIG. 2. A portion of the computational region. Macro
scopic particles with radiia525 mm form six layers
(j'5•104 s22): ~a! instantaneous positions of th
macroscopic particles,~b! a sequence of positions of th
macroscopic particles, separated by a time intervaln21,
with an exposure time of 20n21.
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ticular, for certain critical values ofv andl, adding a new
particle increases the number of layers by unity. On
whole, the process of layer formation in our calculations
similar to layer formation in an earlier three-dimension
simulation of dusty plasmas in a one-dimensional exter
force field.18

The main results of the simulation were obtained for t
types of macroscopic particles with different radii,a
55 mm and 25mm. The density of the macroscopic partic
material was taken to ber55 g/cm3. The friction rate was
n51 s21 ~for a525 mm) and n55 s21 ~for a55 mm).
These values correspond to a pressure of about 0.5 To
helium at room temperature. The equilibrium surface pot
tial of the macroscopic particles,fs , was assumed equal to
V, which corresponds to a charge^Z&'1.7•104 on the mac-
roscopic particles witha55 mm and ^Z&'8.7•104 for a
525mm. The screening length was assumed to bel
5450mm. For each type of macroscopic particle, we det
mined the dependence of the dynamic characteristics on
parameterj ~actually on the parameterb/a2, sincen must
be fixed, in order to solve the equations of motion! in the
approximate expression~9!.

We found that the velocity distributions of the particl
are anisotropic and Maxwellian, characterized by two te
peratures~which corresponding to two different directions!:
Td,x52Kx

s andTd,y52Ky
s , where theKx(y)

s 5md^vx(y)
2 &/2 are

determined using the data from the simulations~denoted by
the indexs). Note thatKy

s is everywhere less thanKx
s . This

is because energy enters the system only in the directio
the external force (x). However, because of the interactio
between the macroscopic particles, their kinetic energy in
direction perpendicular to the external force is nonzero.~Re-
call the estimate~10! and ourneglect of the Brownian motio
in our calculations.! Figure 2a shows the instantaneous po
tion of 25-mm-diam macroscopic particles which form s
layers. The average distance between the macroscopic
ticles ~determined from the position of the first maximum
the pairwise correlation function! is 330 mm. The average
total kinetic energy of the macroscopic particles isKs[Kx

s

1Ky
s511 eV (Kx

s57 eV andKy
s54 eV). Figure 2b shows

the average deviation of the particles of a timet520/n. Note
that the root mean square displacement of the particles a
the y axis exceeds that along thex axis, although the differ-
ence in the kinetic energies obeysKx

s.Ky
s . This is because

there is a potential barrier for the particles in thex direction.
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The dependence of the total kinetic energyKs on the
parameterj for macroscopic particles of both sizes and d
ferent numbers of layers is shown in Fig. 3. For comparis
the analytic result for an isolated particle is also shown in
graph.@The lines correspond to Eq.~9!#. It can be seen tha
the total energy is close to the analytic value forKx . The
deviation d5(Kx2Ks)/Ks is greatest for six layers~a
strongly interacting system! and is roughly 25%. It is pos-
sible to find the coupling parameterG, which is defined as
the ratio of the Coulomb interaction energy between nei
boring particles to their average kinetic energy:G
5Z2e2/ lK s. For six layers (l'330 mm), G varies from 13
(j'5•102 s22) to 1.3•104 (j'5•105 s22) for the particles
with a radiusa55 mm and from 140 (j'5•103 s22) to
1.4•105 (j'5•106 s22) for the particles witha525 mm.
This suggests that Eq.~9! can also be used as an estimate
systems of strongly interacting macroscopic particles~if we
treat Kx as the total kinetic energy of the macroscopic p
ticles!, although we derived it assuming an isolated mac
scopic particle. Furthermore, these results provide a qua
tive explanation for some of the experimentally observ
phenomena. In particular, in many experiments melting
the plasma crystal has been observed as the neutral pre
is reduced.1,19,20From the standpoint of charge fluctuation
thisis easily explained. In fact, lowering the pressure caus
reduction inthe coefficient of friction,n, and, therefore, inj.
The kinetic energy of the macroscopic particles increa
~Fig. 3!, while the coupling parameterG decreases, which

FIG. 3. The total kinetic energy of macroscopic particlesKs5Kx
s1Ky

s as a
function of j for macroscopic particle radiia525 mm ~open points! and
a55 mm ~filled points!: ~squares! a single layer;~circles! three layers;~tri-
angles! six layers. The smooth and dashed curves are calculations acco
to Eq. ~9! for a55 and 25mm, respectively.
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1135JETP 88 (6), June 1999 Vaulina et al.
may be the reason for the melting. Here the quantitative
timates are complicated because, as the pressure is va
other parameters of the plasma~electron and ion densitie
and temperatures and, therefore, the charge on the ma
scopic particles, screening length, etc.! may also change.

Figure 4 shows plots of the ratiosKx
s/Ks and Ky

s/Ks,
which characterize the fraction of the energyKx that is re-
distributed into they direction, as a function ofKs. In our
case, this redistribution is related exclusively to the inter
tion ~collisions! between macroscopic particles. It is cle
that, the stronger the interaction between the macrosc
particles is, the more strikingly the redistribution of the k
netic energy over the directions should showup. Thus,
example, in the case of six layers, the total energyKs is
essentially uniformly distributed between thex andy direc-
tions for largeKs. We believe that this result is independe
of the nature ofthe random motion, i.e., the interaction red
tributes a random motion which develops in one direct
over the other directions. The simulations also showed
the energy redistribution coefficient does not depend on
ratio b/a2, but is determined by the coefficient of friction
n. As an illustration of this fact, Fig. 5 shows plots ofth
ratiosKx

s/Ks andKy
s/Ks as functions ofKs for a single layer

of particles with radiia55 mm and different values ofn.
We now estimate this effect numerically for the typic

conditions in the cathode region of a discharge. TakeTe

'4 eV, me /mi'1.4•1024, and ne'ni'108 cm23. The
ions move toward the cathode at the Bohm velocityv0

;ATe /mi;vTeAme /mi . Here the charging equation give
g52efs /Te'3 and, using Eq.~7!, we havea'0.51, re-

FIG. 4. The ratiosKx
s/Ks andKy

s/Ks as functions ofKs, which illustrate the
distribution of the kinetic energy over the degreesof freedom. The nota
is as in Fig. 3.

FIG. 5. The ratiosKx
s/Ks and Ky

s/Ks as functions ofKs for viscositiesn
55 s21 ~filled squares! andn50.5 s21 ~crosses!. The macroscopic particles
with a55 mm form a single layer.
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gardless of the size of the macroscopic particles andj'1.1
•106 s22, also independently of the size of the macrosco
particles, sinceb}a and n}a21. Now, for the kinetic en-
ergy of the macroscopic particles, Eq.~9! gives Kx

'0.04 eV fora55 mm andKx'1 eV for a525 mm. These
energies exceed the thermal energy (Tn'0.025 eV at room
temperature!. Therefore, random fluctuations can cause
substantial disequilibrium between the dust and neutral c
ponents. At the same time, the energies observed in exp
ments with plasma-dust formations have been even hig
under certain conditions.19–21 Thus, we cannot unambigu
ously assert that the proposed mechanism for the disequ
rium is the most important one in a gaseous discha
plasma. In particular, in an anisotropicregion such as
electrode sheath of a plasma, it is necessary to include
position dependence of the charges, which can also cau
disequilibrium,17 as well as the random temporal fluctuatio
in the charge on the macroscopic particles.

We conclude this section with a brief discussion of t
simplifying assumptions we have explicitly or implicitl
used in studying the effect of random charge fluctuations
the dynamic properties of a system of macroscopic partic
We have assumed that the equilibrium charge of the ma
scopic particles is independent of the coordinatex. In gen-
eral, this is not realistic, since near the electrode the elec
density falls off more rapidly than the ion density, while th
ions are accelerated by an electric field directed toward
electrode. The approximation we have been examining c
responds to a situation in which the equilibrium position
the macroscopic particles is close to the boundary of
electrode sheath, so that the difference between the ion
Bohm velocities can be neglected, while the electric fie
depends on the coordinatex much more strongly than doe
the equilibrium charge. Here we should add the approxim
tion of a linear dependence for the electric field on posit
used in the numerical simulation. In general, the se
consistent problem must be solved, which allows the dis
butions E(x) and ^Z(x)&, where the effect of the macro
scopic particles themselves on the field distribution in
electrode region has to be taken into account. Then the fl
tuations in the charges of different macroscopic partic
were assumed to be uncorrelated. This is true, provided

Ze2np
1/3

min$Te ,Ti%
!1,

so that the effective mean free path for interactions of
macroscopic particles with the plasma electrons and ion
much shorter than the average distance between macros
particles. Only two forces were considered to act on a m
roscopic particle in the electrode sheath, electrostatic
gravitational forces. At the same time, it is known that for
particle with a small radius, the drag force in the ion flo
may be greater than the force of gravity.22 In this case, the
equilibrium position will be determined by the balance b
tween the ion drag and electrostatic forces. Finally, the in
action among the macroscopic particles was described b
screened Coulomb potential. At present, other poss
mechanisms for the interaction between dust particles ca

n
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1136 JETP 88 (6), June 1999 Vaulina et al.
found in the literature, such as attraction owing to dire
bombardment by the plasma electrons and ions,1 an interac-
tion in an ion flow associated with their focussing in t
region between particles,23,24 and a dipole interaction be
tween macroscopic particles.24 The effect of charge fluctua
tions in these cases can be analyzed in a fashion analogo
the above discussion, but lies beyond the scope of this pa

6. CONCLUSION

The results obtained here mean that stochastic fluc
tions in the charge on macroscopic particles in a plasma
have a significant effect on the dynamic properties of a s
tem of macroscopic particles. Determining the magnitude
this effect in each specific case requires knowledge of
characteristic amplitudes and correlation times of the fluct
tions. The model proposed here can be used to determ
both characteristics of the fluctuations analytically, if expr
sions are known for the currents which charge a macrosc
particle.

As an example, we have considered the conditions ty
cal of experiments in gaseous discharge plasmas, where
macroscopic particles are charged by absorbing electrons
ions from the plasma and form ordered structures near
lower electrode.2–5,19,20 Analytical estimates and numerica
simulations have shown that in this case, random fluctuat
in the charges on macroscopic particles can serve as a so
of kinetic energy beyond the thermal energy and ther
cause a disequilibrium between the system of macrosc
particles and the neutral gas. Random fluctuations there
impose a limit on the minimum kinetic energy of the macr
scopic particles and under certain conditions can facilit
the melting of a plasma crystal, greatly reducing the coupl
parameterG below its equilibrium value. Numerical est
mates for the typical experimental plasma parameters s
that the kinetic energy of the macroscopic particles can
several eV. Although our approach involves a considera
t
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simplification of the physical picture, it provides a simp
and clear illustration of the importance of random fluctu
tions in the charge on macroscopic particles in dusty p
mas.
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Nuclear reactions triggered by laser-accelerated high-energy ions
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A technique is suggested for triggering nuclear reactions by accelerating ions with a powerful
ultrashort laser pulse in a plasma. The underlying idea of the suggested compact
‘‘reactor’’ is utilization of high-energy ions accelerated by the charge-separation electrostatic
field in the direction perpendicular to the laser beam axis in a gas-filled capillary.
Accelerated ions with energies of several MeV penetrating the target from the inside surface of a
channel give rise to nuclear reactions which can be used to create a compact source of fast
neutrons and neutrons of intermediate energies for generating various~short- and long-lived, light
and heavy! isotopes, for generating gamma radiation over a broad energy range, for making
sources of light ion and induced radioactivity. The yield of the corresponding nuclear reactions as
a function of the laser beam parameters has been investigated. The suggested technique for
triggering nuclear reactions provides a practical tool for studies of nuclear transformation on the
pico- and nanosecond scales, which cannot be achieved using other methods. ©1999
American Institute of Physics.@S1063-7761~99!01306-2#
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1. INTRODUCTION

The unique possibilities afforded by present-day te
niques for generating ultrashort laser pulses open up ave
to their practical application in nuclear physics. They ha
been demonstrated, for example, in experiments on the l
acceleration of electrons and ignition of nuclear reactions
accelerated electrons.1–4 Although the idea of using powerfu
ultrashort laser pulses to accelerate ions and trigger nuc
reactions was put forward5 as early as the year 1987~see also
the review by Luther–Daviset al.6!, practical steps to its
implementation have been undertaken only recently. Exp
mental data7,8 indicate that ions with energies.0.5 MeV are
generated as a result of a laser pulse acting on a gas
target at wavelengths of 1.06 and 0.53mm with an intensity
of .531018 W/cm2 and pulsewidth of 400–600 fs. Theo
retical models9,10 have demonstrated that methods of ion a
celeration by laser pulses can find novel applications, es
cially in the field of nuclear physics. An advantage of ions
that, unlike electrons, they can participate in strong inter
tions, and therefore have much larger cross sections
nuclear transformations. The topic of this paper is the de
opment of a theoretical background for the technique
laser–ion ignition of nuclear reactions.

The high ion energies achieved in the focus of la
beams shows that existing generators of ultrashort op
pulses suffice for effective ignition of nuclear reactions.
recent experiments11 fluxes of.73107 neutrons/sr were de
tected when a laser pulse with an energy of 20 J, a dura
of 1.3 ps, and an intensity of 1019 W/cm2 at a wavelength of
1.054mm was focused on a film made of deuterated po
styrene or frozen deuterium. In another experiment,12 a laser
1131063-7761/99/88(6)/6/$15.00
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pulse of energy 200 mJ and duration 160 fs at a wavelen
of 0.79 mm interacted with a plasma produced by a las
prepulse in a deuterated polyethylene film, and the neu
yield averaged over many pulses was.140 neutrons per
pulse. However, the experimental configuration12 was far
from optimal, and the number of reacting particles was sm
owing to the small target size.

In order to increase the efficiency of the laser ene
transfer to ions, it is expedient to use a plasma which
transparent to the laser radiation and a sufficiently short
powerful laser pulse. The plasma should be surrounded
the material that will be used as a target. One configura
that satisfies these conditions includes a target in the form
a capillary filled with a gas. The ions from a gas are acc
erated by a laser pulse and interact with walls containin
material for the nuclear reaction. The gas density should
such that the plasma density is below the critical value
the laser radiation, and the thickness of the capillary w
should be of order the range of accelerated ions. The la
pulse power should be matched to its duration so that
latter equals the ion acceleration time at the laser beam f
spot.

The technique of laser-triggered nuclear reactions co
be implemented by focusing a powerful (Il2*1019

W/cm2
•mm2) laser radiation inside a cylindrical~with a ra-

dius of several tens of microns! channel in a target~capillary!
filled with a gas at the required pressure. The choice of
gas and target material~capillary walls!, i.e., the selection of
reacting pairs, is determined by the specific nuclear react
that are to be ignited. Gas ions accelerated in the direc
perpendicular to the beam axis penetrate the target and i
act with its nuclei in a layer with a thickness equal to the i
7 © 1999 American Institute of Physics
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mean free path in the target. High energy ions are gener
by the Coulomb explosion,13 which means that the ions ar
accelerated by the electrostatic field due to the charge s
ration. This field results from the ejection of electrons fro
the region of intense laser field in the radial direction by
ponderomotive force and/or the thermal pressure of elect
over the entire length of the laser channel. Creating an
tended laser channel raises a possibility that the numbe
accelerated particles can be large enough to make possi
considerable number of nuclear reactions. According to R
9, at a length of 1 mm of a channel with a diameter of 10mm
filled with gas at a density of 1020–1021 cm23, the number of
radially accelerated ions will be 1013–1014. Then even a re-
action with a relatively low efficiency (;1025) will yield
;108–109 particles per laser pulse, which can be of practi
significance. This paper presents for the first time estima
of the yield of nuclear reactions triggered by fast ions and
dependence on the laser pulse parameters. The thresho
ser intensities required for triggering the corresponding re
tions have also been determined.

2. PHYSICAL MODEL

An intense laser pulse propagating through a gas ion
it almost instantaneously owing to the tunneling effect, a
ions are imparted a radial acceleration directed perpendic
to the beam axis due to the Coulomb explosion. The ac
eration is determined by the ponderomotive force and
electron pressure, which is proportional to the average e
tron energy~effective temperatureTeff) in the region of in-
tense laser field.~This effective temperature is generat
through the nonlinear interaction between the laser radia
and electrons, which causes nonadiabatic electron hea
during the laser pulse.! The acceleration of an ion of massM
and chargeZ in the field of a linearly polarized laser beam
described by the following equation9:

dui

dt
52

Z

M
mc2¹ rA11

a2

2
2

Z

M
¹ rTeff , ~1!

whereui is the ion velocity,m is the electron mass,c is the
speed of light, a50.8531029lAI is the dimensionless
vector-potential of the laser field, the intensityI is measured
in W/cm2 and the laser wavelengthl in microns.

At present there is no quantitatively accurate theory t
would relateTeff to the laser light intensity, and direct me
surements of the electron energy spectrum in the subpico
ond range of pulse durations have also been impossibl
far. Wilks et al.14 suggested that at laser field intensiti
close to the relativistic value,Il2*1018 W/cm2

•mm2, the
electron temperature is of the same order of magnitude as
energy of electron oscillations in the laser field,Teff

'mc2(A11a2/221). This is in qualitative agreement wit
numerical calculations.12,15 We therefore assume that th
contribution of the electron pressure to the accelerating fo
in Eq. ~1! is comparable to the ponderomotive contributio

An important parameter of ion acceleration by the la
field is the laser pulse durationt. At a very short pulses (t
,d/ui , whered is the laser beam diameter!, ions located in
the focal spot do not have enough time to acquire the m
ed
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mum possible energy, and if the laser pulse is too longt
@d/ui , its energy is wasted, since ions leave the region
interaction long before the pulse termination. Thus, the c
dition of equality betweent and the ion transit time through
the interaction region,d/ui , determines the optimal lase
pulse duration:

t*0.1d@mm#~A11a2/221!21/2ps. ~2!

Here we use the approximate relationA.2Z, whereA is the
atomic number of accelerated ions.

By equating the force of electron pressure in Eq.~1! to
the ponderomotive force, we obtain an approximate equa
for the characteristic ion energy due to acceleration by
laser field:

e'Z~A11a2/221! MeV. ~3!

In particular, for ions accelerated by a laser pulse
intensity Il2.1021 W/cm2

•mm2 and durationt.100 fs,
with a channel diameterd.10 mm, Eq. ~3! an estimate
yields e'20Z MeV. Note that these parameters are close
those of the existing petawatt laser.1 Ions of such energies
can trigger nuclear reactions over a wide range. Howe
considerably lower ion energies suffice for many nuclear
actions, i.e.,lower laser field intensities are required. For
ample, the DT reaction is most efficient for particles colli
ing at a relative energy of.0.1 MeV, which can be achieve
using a terawatt laser generating picosecond pulses~for ex-
ample, Il2.1018 W/cm2

•mm2, t.3 ps, andd.10 mm!.
In general, we can assert that ion energies of several M
are quite feasible in existing systems generating ultras
optical pulses and are sufficient for triggering vario
nuclear reactions.

Fast ions passing through matter lose their energy
ionization and excitation of atoms~deceleration losses!. The
stopping lengthl i is fairly adequately described by the Beth
formula:

l i~e!5E
0

e de

ude/dru
,

de

dr
.2

M*

me
2pe4Z2ZanaL , ~4!

wherena is the density of target atoms,Za is their charge,
M* is the reduced mass of colliding particles,l
5 ln(4me/M*J), and J is the average ionization energy o
target atoms~for hydrogenJ514.9 eV and for heavy atom
J.10Za eV!. At this point, we disregard relativistic effect
for ions, corrections due to the binding energy of electrons
K and L shells of atoms, and the correction due to the
called density effect. This approximation is sufficiently a
curate in the range of ion energies up to 100 MeV.

Accelerated ions react with target nuclei in a layer
thickness equal to their stopping length, Eq.~4!. The total
numberN of reactions can be estimated by the formulaN
'Ni

0nas l i , wheres is the characteristic reaction cross se
tion. Thus the number of reactions is smaller than the nu
berNi

0 of accelerated ions by a factor equal to the ratio of
ion mean free path associated with the reaction, (sna)21,
and the total stopping lengthl i . With due account of Eqs.~3!
and ~4!, we obtain
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FIG. 1. Spectrum of protonsdNi /deNi
0 accelerated

by a laser pulses of intensities~a! I 0l251019

W/cm2
•mm2 and ~b! 1021 W/cm2

•mm2. The solid
and dashed lines correspond to Gaussian and su
Gaussian laser intensity profiles,I 0exp@2(2r/d)2#
and I 0exp@2(2r/d)4#, respectively.
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, ~5!

where the reaction cross section is measured in milliba
Note that the number of nuclear reactions is independen
the charge of accelerated ions and the target material den
The latter circumstance means that a gaseous medium ca
also used as a target. In practice, such a gas target ca
realized using a thin-wall capillary with a wall thickness th
has a little decelerating effect on fast ions. In this case
reaction time. l i /ui , however, is longer, just as the sizel i

}na
21 of the reaction region is larger, hence larger targets

required. The latter condition has not been fulfilled in t
experiment conducted by Pretzleret al.12 This can be one of
the reasons why the number of reactions detected in
experiment was low.

3. SPECTRUM OF ACCELERATED IONS

Equations~2! and ~5! are convenient for approximat
estimates of the efficiency of nuclear reactions and their
timization. They allow one to estimate the order of mag
tude of the nuclear reaction yield, given the laser pulse b
parameters. At the same time, these estimates are based
specific characteristic energy of fast ions~3!, whereas in re-
ality there is a certain energy distribution of ions,dNi /de,
whose shape depends on the temporal pulse profile an
spatial distribution.9 Many reaction cross sections have res
nances, so the reaction yield can strongly depend on
shape of the particle energy distribution. An expression
the number of reactions which is more accurate than Eq.~5!
contains the cross section averaged over the ion energy s
trum, the so-called overlap integral:

N5na E
0

`

de
dNi

de E
0

e

de8 s~e8!Ude8

dr U
21

, ~6!

where the stopping powerde/dr is given by Eq.~4!.
Under the conditions when accelerated particles

leave the focal region during the laser pulse duration, it f
lows from Eq. ~1! that a universal momentum distributio
function of ions independent of the pulse duration is est
lished:

dNi

de
.

2pr * ~e!ni
0~2Zmc21e!

Z2m2c4uda2/drur 5r* (e)

, ~7!
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whereni
0 is the initial ion density, the energy-dependent r

dius r * is found by solving the equation

e5F~r * ![2Zmc2~A11a~r * !2/221!,

and the spectrum is cut off at higher energies in accorda
with the formulae<max@F(r )#. In the case of a Gaussia
radial distribution of the laser beam intensity,I 5I 0

3exp(24r2/d2), Eq. ~7! yields a decreasing energy distribu
tion:

dNi

de
.2 Ni

0 e1Z

e~e12Z!
Q~emax2e!,

emax5Z~A110.4I 0l221!. ~8!

Here Ni
05pni

0d2/4, the parameterse, I 0, and l are mea-
sured in MeV, 1018 W/cm2, and microns, respectively,Q is
the unit step-function, and the lower bound of the ene
range is determined by the conditione.F(R), whereR is
the radius of the plasma generated during fast tunneling
ization by the laser pulse preceding acceleration of io
SinceR@d actually holds~Ref. 9!, this energy is negligible
in comparison with the maximum ion energyemax. In com-
parison with the dependencee21 over the rangese!Z and
e@Z, Eq. ~8! shows flattening of the fast-ion spectrum in th
energy rangee;Z, which enhances the reaction yield in th
range.

Note that the ion energy distribution and hence the re
tion yield depends sensitively on the spatial distribution
the laser field intensity, which in general can significan
differ from the intensity distribution in the incident lase
beam owing to its interaction with the plasma. By selecti
an appropriate laser intensity profile, one can maximize
triggering efficiency of a nuclear reaction. In particular, f
most nuclear reactions, an energy of several MeV is requ
along with fairly large numbers of ions with these energi
Therefore, given the limited energies of pulses generated
present-day lasers, it is advisable to shape the laser b
profile to redistribute energy to the faster accelerated io
One example is a super-Gaussian laser pulse profileI
5I 0exp@2(2r/d)4#, for which the analogue of the spectru
~8! is

dNi

de
.Ni

0 e1Z

e~e12Z! F ln
emax~emax12Z!

e~e12Z! G21/2

Q~emax2e!.

~9!
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This is to be compared with the spectrum~8! corresponding
to the Gaussian distribution in Fig. 1 for~a! relativistically
strong,a;1, and~b! ultrarelativistic,a@1, laser pulses ac
celerating protons. The plots in Fig. 1 clearly show that
ion spectrum~9! generated by a super-Gaussian laser bea
richer in ions with energiese&emax. The number of slow
ions is accordingly suppressed. The latter tendency is w
illustrated by going over to a parabolic laser intensity profi
I 5I 0(124r 2/d2), which results in a spectrum increasin
with the energy and proportional to (e1Z)Q(emax2e).

4. YIELDS OF NUCLEAR REACTIONS

Now let us discuss yieldsw5N/Ni
0 of reactions which

are of interest for possible applications. For the sake of d
niteness, our analysis will be based on formulas for a Ga
ian distribution of laser intensity and data on the cross s
tions of nuclear reactions from the EXFOR data file.18 Most
importantly, the laser technique of ion acceleration provid
a microsource of short pulses of neutrons of different en
gies ranging between hundreds of kiloelectrovolts and t
of MeV. Figure 2 shows the yield of fast neutrons (>14.1
MeV! and neutrons of moderate energies~from several hun-
dreds of keV to several MeV! as functions of the laser inten
sity I 0 in the reactions T(d,n)4He and T(p,n)3He, respec-
tively. Figure 2 also shows the yield of the reaction
(d,n)3He, for which Norreyset al.11 reported efficient pro-
duction of neutrons with a characteristic energy of.2.45
MeV.

These authors11 estimated the total number of accele
ated ions to be;1014. According to curve2 in Fig. 2, the
characteristic yield of the D(d,n)3He reaction under the con
ditions of the experiment11 is ;1025. This means that for the
parameters under discussion, one should expect gener
of ;109 neutrons per laser pulse, which is in qualitati
agreement with the experimental data.

Figure 2 shows that the DT reaction is triggered at re
tively small ~comparing to modern experimental facilitie!
laser radiation intensities. AtI 0l251018 W/cm2

•mm2, the
reaction yield is already 431025. The proton charge ex
change reaction, T(p,n)3He, has a clearly defined thresho
at 1019 W/cm2

•mm2, but it is characterized by a higher yiel
of *0.01 for laser pulses of higher intensities.

Some fusion reactions triggered by laser pulses in
manner can be used to accelerate light ions. Light ions

FIG. 2. Neutron yield in reactions~1! T(d,n)4He, ~2! D(d,n)3He, and~3! T
(p,n)3He versus laser intensity.
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accelerated as a result of the coversion of the energy ge
ated in the fusion reaction into the high kinetic energy
reaction products. One example is the reaction6Li( d,a)4He,
which allows one to acceleratea-particles to an energy o
22.4 MeV; another is the reaction7Li( p,a)4He, for which
the maximum energy of generateda-particles is 17.3 MeV.
Figure 3 plots yields of these reactions as functions of
laser beam intensity. They have a threshold at;1019

W/cm2
•mm2 and lower yields than the thermonuclear rea

tions discussed above.
In practice, reactions in which artificial isotopes are pr

duced are of great interest. Curves1 and2 in Fig. 4 show the
efficiency of production ofb1- andb2-active light isotopes
@reactions14N(p,n)14O and26Mg(d,a)24Na], and curves3
and 4 show the production efficiency of heavier isotop
@reactions124Te(p,n)124I and 95Mo(p,n)95Tc]. These last
two reactions, which createb1-active isotopes, are interes
ing for medical applications, in particular, positron tomogr
phy. The long-lived isotope24Na is often used as a source
secondary gamma rays. The yields of these reactions
relatively high (w*1025), although they require higher lase
field intensities:I 0l2*1019–1020 W/cm2

•mm2.
At a sufficiently high laser field intensity,I 0l2*1020

W/cm2
•mm2, which is required to drive an incident particl

over the fission barrier~7–8 MeV! and provide sufficient
penetrability of the Coulomb barrier@'1.4ZZa /(A1/3

1Aa
1/3) MeV;20 MeV#, laser-accelerated ions trigger fis

sion reactions in targets made of heavy elements. Figu
illustrates this effect on the examples of uranium-238 a

FIG. 3. Yields~in units of 1018 W/cm2! of reactions~1! 6Li( d,a)4He and
~2! 7Li( p,a)4He generating fasta particles as functions of the laser powe
density.

FIG. 4. Yields~in units of 1018 W/cm2! of isotopes generated in reaction
14N(p,n)14O and 26Mg(d,a)24Na ~curves 1 and 2, respectively!, and
124Te(p,n)124I and 95Mo(p,n)95Tc ~curves3 and 4, respectively! as func-
tions of the laser power density.
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thorium-232 fission triggered by protons. Unlike other pr
ton sources, the laser acceleration technique allows on
generate induced activity in an extremely short time. Spec
cally, a proton of energy;10 MeV traverses the stoppin
length ~4! in a uranium salt, for example, in a time of;10
ps, whereas alternative proton sources generate pulses
one nanosecond long or longer. Therefore the laser acce
tion technique offers a unique opportunity for fundamen
research in the field of nuclear physics in a new, subna
second range of times. In particular, it becomes possibl
study a decay of radioactive fission products on a time s
inaccessible to other triggering techniques. The sugge
technique opens prospects for determination of lifetimes
ultrashort-lived isotopes~mostly b6-active! which are far
from the stability band, and for investigating a strongly no
equilibrium system of isotopes relaxing to the secular eq
librium. Although the yields are relatively low and th
thresholds are high, an ignition of fission reactions in lab
ratory facilities is a unique experiment because of the h
energy yield,*200 MeV per one fission event. Such a rea
tion can lead to a thermal explosion, and these experim
will, apparently, require radiation safety measures becaus
accumulation of radioactive isotopes and neutrons emitte
fission reactions.

Finally, let us consider examples of generation of ha
gamma rays and generation of photons with a wide spec
range, including the softer component, by allowing las
accelerated protons to hit a target. Thus, the proton-cap
reaction T(p,g)4He ~curve 1 in Fig. 6! is a source of hard
gamma rays in which the released energy*19.8 MeV is

FIG. 5. Yields of fission reactions involving238U and 232Th triggered by
protons~curves1 and2, respectively! as functions of the laser power den
sity.

FIG. 6. Yields of reactions generating hard gamma rays@T(p,g)4He, curve
1# and gamma rays of a broad-range spectrum@11B(p,g)12C, curve2# as
functions of the laser power density.
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carried by three or four photons, while in a similar reacti
11B(p,g)12C ~curve 2 in Fig. 6!, gamma rays are emitte
over a broad spectrum with a maximum total energyeg max

determined by the maximum proton energyep max, namely

eg max'16 MeV1ep max'~151A110.4I 0l2 ! MeV,

where the laser intensityI 0 is measured in units of 1018

W/cm2 and the laser wavelength in microns. In targets ma
of heavier materials, gamma rays with a softer spectrum
lower total energy are generated. Because these reaction
electromagnetic processes, the yields of these reactions
lower ~since the electromagnetic constante2/\c51/137 is
small! than those of fusion reactions, which are controlled
the strong interaction. This circumstance, however, does
rule out the possibility of using these reactions in research
the gamma-laser problem.

5. CONCLUSION

In this paper, we have suggested a scheme for a com
nuclear ‘‘reactor’’ based on laser acceleration of ions. T
method of nuclear reaction ignition can be implemented
practice using available powerful lasers~10–103 TW! gener-
ating ultrashort pulses. They can become powerful tools
nuclear research. The effect of relativistic self-focusing o
laser beam can substantially increase the length of its cau
thereby increasing the total number of accelerated ions.
this reason it is desirable to meet the conditions for s
focusing. It is also desirable to reduce the laser wavelen
and at the same time increase the pressure in the cha
since this will allow one to generate more accelerated io
and hence a higher yield of nuclear reactions. Note also t
even in the absence of self-focusing a capillary can tra
laser pulse over a fairly large distance owing to its wav
guide properties. This was demonstrated in recent exp
ments on propagation of laser pulses in hollow capillarie16

where the beam was focused over a length of up to 10 m
Investigations on the problem of laser hole boring in
plasma as a part of the fast ignitor program17 will probably
show that it is possible to dispense with prefabricated ch
nels if the conditions for burning sufficiently long cavitie
with a high plasma density in them can be determined. T
relativistic effect of plasma transparency can also be a fav
able factor. Results of computer simulation15 of formation of
a plasma channel with a length of up to 20mm and a density
of about double the critical value in a solid-state target us
a laser relativistic beam with an intensityIl2;1020

W/cm2
•mm2 also provide evidence in favor of the hole

boring technique.
We have quantitatively estimated the yields of vario

reactions which can have numerous applications and dem
strated the possibility of creating compact sources of f
neutrons and neutrons of moderate energies, productio
various isotopes, generation of hard gamma rays and pho
with a wide energy spectrum, creation of sources of lig
ions and artificial radioactivity. The proposed scheme of
ser ignition of nuclear reactions provides a practicable t
for fundamental research in nuclear reactions on time sc
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of several tens of picoseconds, which cannot be studied
other methods. We have demonstrated a possibility of g
erating gamma-radiation that can be used as a base f
concerted effort in designing gamma-lasers.

If a solid-state target is used, the suggested techn
allows one to create an almost point-like source of activ
with a size of several tens or hundreds of microns, which
a unique achievement. This makes the method of ion-la
ignition of nuclear reactions a promising tool for investig
tion of a wide range of phenomena in nuclear physics
will permit researchers to fabricate radioactive microsamp
with prescribed properties. One possible practical applica
is, in our opinion, the production of isotopes for use in me
cine and biology. It is known that the production cost
some isotopes is very high, so it is desirable to develop
ternative techniques. Since the required activity of su
samples is not high, the needed quantity of isotopes ca
accumulated in one or several laser pulses.

Free access to the EXFOR data base~Experimental
Nuclear Reaction Data File!18 has been essential for compl
tion of our research. The work was supported by the Rus
Fund for Fundamental Research~Grant No. 99-02-17267!.
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Rarefaction wave and gravitational equilibrium in a two-phase liquid–vapor medium
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The problems studied in this paper involve the action of laser radiation or a particle beam on a
condensed material. Such an interaction produces a hot corona, and the recoil momentum
accelerates the cold matter. In the coordinate frame tied to the accelerated target, the acceleration
is equivalent to the acceleration of gravity. For this reason, the density distributionr is
hydrostatic in the zeroth approximation. In this paper the structure of such a flow is studied for a
two-phase equation of state. It is shown that instead of a power-law density profile, which
obtains for a constant specific-heat ratio, a complicated distribution containing a region with a
sharp variation ofr arises. Similar characteristics of the density profile arise with isochoric
heating of matter by an ultrashort laser pulse and the subsequent expansion of the heated layer.
The formation of a rarefaction wave and the interaction of oppositely propagating
rarefaction waves in a two-phase medium are studied. It is very important to take account of the
two-phase nature of the material, since conditions (pa;1 Mbar) are often realized under
which the foil material comes after expansion into the two-phase region of the phase diagram.
© 1999 American Institute of Physics.@S1063-7761~99!01406-7#
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1. INTRODUCTION

Let us consider the effect of a powerful laser or i
beam on an initially solid layer. The region heated as a re
of theabsorption of beam energy has a definite mass th
ness. If the thickness of the initial layer is greater than t
value, then the flow separates into hot and cold zones.1–4 We
shall call them the coronal and foil zones, respectively. L
ers ranging in thickness from 1 to 100mm are used in ex-
periments on acceleration of foils. An ablation front—a r
gion where the entropys of the material varies sharply—
separates the corona and the foil. The surfacex5xa , where
the function2d ln s/dx reachesits maximum value, gives th
position of the front. Ordinarily,2H(d ln s/dx)max@1 holds,
whereH is the foil thickness and thex axis is directed to-
ward the vacuum edge, which is the backside of the foil.

We shall give the typical values of the experimental p
rameters for which the effects due to the two-phase natur
the matter will be important. Aluminum in a shock wav
melts at 1 Mbar.4 Ablation pressures 1–3 Mbar are reach
with incident laser radiation intensities I 51012

– 2•1013 W/cm2 at wavelengthl5200 nm andI 53•1012

– 4•1013 W/cm2 at l5500 nm.2,5The characteristic pulse
durations aret51 – 10 ns. These effects are also importa
for subpicosecond pulses interacting with matter, if the pu
intensity is such that heating up to temperatures much hig
than the melting temperature occurs. For femtosecond pu
the thickness of the heated layers is much lessH
;0.1 mm). For heating of a material by a charged-partic
beam the target size and pulse duration are somewhat gr
1141063-7761/99/88(6)/8/$15.00
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than for laser heating. There is an extensive literature
voted to these questions~see Refs. 6 and 7!.

Hot gas in the corona produces pressurepa which accel-
erates the foil. The ablation front ‘‘absorbs’’ the foil materi
with a velocityva . It is very important that this velocity is
ordinarily low compared with the sound velocitycs in the
foil. For this reason, for a pulse withdurationt;H/va the
time t is sufficient to establish an atmosphere~hydrostatic
equilibrium!. It is established in time;H/cs . Neglecting the
velocity va compared withcs , we arrive at a simple mode
in which the ablation boundary of the foil is a Lagrangia
layer, where a pressurepa is maintained. After the pressur
pa is switched on a shock wave punches through the initia
uniform foil. If the pressurepa is constant, then the shoc
wave is stationary. A uniform entropic background rema
behind such a wave.

At some moment in time the shock wave reaches
backside of the layer.The flow arising here is described
the solution of the problem of the decay of a discon
nuity.8–10 As a result of the decomposition, a rarefactio
wave passes into the interior volume of the foil. As me
tioned above, an atmospheric distribution is established
ymptotically in a time of orderH/cs . Thus, the problem of a
rarefaction wave~Sec. 3! and the structure of the atmosphe
~Sec. 2! are of interest in connection with the problem of th
effect of laser radiation and particle beams on matter. T
problem of the interaction of rarefaction waves is also rela
to these problems~Sec. 4!. We shall consider the atmosphe
problem first. We confine ourselves to a thermodynamic~i.e.,
equilibrium! analysis. It is valid in the ‘‘dirty’’ situation
3 © 1999 American Institute of Physics
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~short kinetic times! and for not too small values ofH andt.
From the analysis follows that the switch to two-phas
causes the density profiler(x) to vary sharply compared to
the single-phase case.

2. TWO-PHASE HYDROSTATICS

2.1. Thermodynamic description: phase equilibriu
curve and isentropes.Isochoric heating of thin layers by a
ultrashort laser pulse or by ashock wave arising when p
sure is switched on produces a uniform distribution of
entropys. In this connection, it is of interest to analyze a
isentropic two-phase atmosphere. We shall consider as a
ample the isentropes of aluminum~Fig. 1!. They have been
calculated from wide-range equations of state.4,11,12 The
kinks e in the isentropes are due to the intersections of
binodal bounding the two-phase region on the liquid si
The pressure is given in GPa and density in g/cm3. The
critical parameters areTc58000 K, pc50.45 GPa, rc

50.64 g/cm3, andsc54.83 J/g•K ~Ref.4, p. 345!. All four
isentropes lie below the critical point. The latter is marked
the letterC in Fig. 1. The pointC together with the pointse
form the curve of boiling.

For simplicity, in all variants the density of solid alum
numrss52.7 g/cm3 is taken as the initial density. The initia
pressure and temperature on the isentropes1, 2, 3, and 4
were, respectively, 19.8, 23.3, 31.3, and 36.5 GPa and 3
5990, 7610, and 10190 K, and the values ofs on them were,
respectively, 3.05, 3.48, 3.76, and 4.12 J/g•K.1! These isen-
tropes were used to calculate the hydrostatic equilibri
~Sec. 2.2! and to calculate the rarefaction waves~Secs. 3 and
4!. In the case of the atmosphere, the layer is heated is
orically, the pressure in the layer becomespa , and then this
pressure is maintained on one of the boundaries of the la
For rarefaction waves the material is heated isochorically
then expands.

2.2. Structure of the atmosphere.We write the equation
of hydrostatics px52rg in the form (]p/]r)sdr/dX
52r, whereX5gx. Hence

2E
rss

r

@c~r8!#2
dr8

r8
5X, ~2.1!

wherec(r) is the sound velocity on a given isentrope. In E
~2.1! the ablation frontXa is chosen as the origin for theX
axis(Xa50). The maximum densityrss5ra is reached on
the ablation front. The equation~2.1! implicitly determines

FIG. 1. Curves1, 2, 3, and4 — Al isentropes withs53.05, 3.48, 3.76, and
4.12 J/g•K.
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the profiler(X) and together with it the distributions of a
other thermodynamic variables. Let us find the functions(r)
along the isentrope and integrate~2.1!. Theresults of the nu-
merical integration are displayed in Fig. 2. The curves1–4
refer to the isentropes1–4 presented in Fig. 1. The density
given in g/cm3, and the quantityX5gx ~the ‘‘height’’! in
(km/s)2 is plotted along the ordinate. The atmosphere wit
higher pressurepa extends to greater heightsX5gx. The
small difference between the distributions atX50 is due to
the approximation error. The segmentsa–e of the curves
contain'10 approximation points, each curve1–4 contain-
ing 50–100 such points. Herea is the surface on which the
pressurepa is maintained, ande is the vaporization surface
~compare the correspondence between the pointsa ande in
Figs. 1 and 2!.

The most important feature of two-phase liquid–vap
systems is the existence of a narrow zone where the den
changes sharply. The functionr(X) varies smoothly on the
segmentsa–e and very rapidly~but continuously! decreases
to values much less thanre in a narrow layer bounding the
surfacee at the top~herere is the value ofr at the pointe).

The vaporized part of the atmosphere lies above the
facee. The fraction of the liquid phase there decreases r
idly with X. A transition occurs from a bubble to a dropl
state ~vapor!. The two-phase layer is very thin compare
with Xe2Xa , whereXe is the coordinate of the pointe. This
means that its spatial scale (1/ud ln r(Xe10)/dXu) is small.
Formally, the two-phase layer extends to infinity. It rema
two-phase at all heights, since once the isentrope enters
two-phase region it remains there asr decreases further. Th
pressure in this layer near the surfacee decreases slowly~the
sections of the isentropes are approximately parallel to
abscissa in Fig. 1!. In this connection we call attention t
Refs. 13 and 14, where the internal structure of two-ph
matter and the influence of the two phases on the motion
the medium in the near-critical region are investigated.

Along the binodal toward the critical point, the densi
re decreases and the entropys increases. Fors'sc and
above the profiles of the variables become quite smooth~no
sharp gradients alongX). For s.sc (sc54.83 J/g•K; Refs.
4, 11, 12! the isentropes, on expansion, enter the two-ph
region through the curve of condensation~the branch of the
curve of phase equilibrium that lies to the left of the pointC

FIG. 2. Profilesr(X) in accelerated foils for different values of the nea
criticality parameterpc /pe .
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in Fig. 1!. We note that all adiabats terminate in the tw
phase region.

It is important to note that the pressurepe at which va-
porizationstarts is low. The ratiopa /pe ranges from 2.5 to 5
orders of magnitude forthe curves presented in Fig. 1. Th
fore the massme evaporatedfrom the backside of the fo
~‘‘tail’’ ! is small,me /mtotal5pe /pa . The tail grows in mass
and thickness withs ~compare the curves1–4 in Fig. 2!.

For a large decrease of pressure on the segmenta–e the
density changes very little (re /ra50.5– 0.7). The appear
ance of the above-described density profile is due to th
two circumstances. Qualitatively, it resembles the den
jump at the edge of a liquid layer in a gravitational fiel
Indeed, if the liquid is bounded above by a vacuum~we
neglect vaporization!, then at its edge the pressure vanish
and the density abruptly changes from a finite value to ze

It is obvious that if the pointa is close to the pointe
(pa.pe , pa.pe , sa5se), then the mass and thickness
the liquid layer should be of the same order of magnitude
those of the vaporized layer.

The strong decrease inp with a small change inr results
because in the single-phase condensed state the values
derivativeg5(] ln p/] ln r)s are large compared to 1. Plo
of g(r) and g(X) are presented in Figs. 3 and 4, respe
tively. The values ofg grow asr→re . For example,g(re

10)'200 on the curve1 in Figs. 3 and 4. Conversely, in th
two-phase region these functions near the pointre are small
compared to 1 in the case of the isentropes1, 2, and3.

2.3. Analytic models of the atmosphere.We shall de-
scribe the profiler(x) using simple analytic models. Firs
we assumeg(r)[ const~polytropic atmosphere!. Then, it is

FIG. 3. g(r) on the isentropes1–4.

FIG. 4. g(X). The numbers1–4 refer to the isentropes1–4 in Fig. 1.
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easy to see that a power-law dependence follows from
equation of hydrostatics. For example, the distributionr has
the form

r/rss5@12~g21!X/csa
2 #1/(g21)5~122X/Ncsa

2 !N/2,
~2.2!

wherecsa is the sound velocity at the bottom of the atm
sphere andN52/(g21). The indexsa shows that the sound
speed is determined by the ablation pressure.

In the second model we approximate the real isentr
by two polytropes.In the layerXa,X,Xi the function
g(X)[ga , whileabove this layer, forX.Xt , we assume
that g(X)[g t , whereg t.ga . Such a step function gives
better approximation of the real isentrope on which, as o
can see from Figs. 3 and 4, in the single-phase conden
region the exponentg increases with decreasingr. At the
matching pointXt the densities and pressures calculated
ing formulas of the type~2.2! are matched.

In Fig. 5 the models 1 and 2 are compared with t
numerical calculations. Here the light solid line refers
model 1, the heavy line refers to model 2, and the das
line refers to the integral~2.1!. The arrow marks the match
ing point of the solutions. In this examples53.76 J/g•K.
The values taken from the tabulated isentrope (csa

57.2 km/s, ga54.5, Xt511 ~km/s)2, r t51.837 g/cm3, pt

55.527 GPa,g t510, ct55.4 km/s) were substituted into
Eq. ~2.2!. The power-law distributions~2.2! for g.1 vanish
at a finite heightXv5c2/(g21). For largeg they decrease
rapidly near the vacuum edgeXv . Nonetheless, this decreas
follows a power law,r}(Xv2X)1/(g21) and does not cut off
at the pointXe ~compare the dashed and solid curves in F
5 in the region ofrapid falloff!.

We shall now consider a ‘‘truncated’’ polytrope. Th
models the zone of very largeg near and to the right of the
point e ~compare Figs. 1, 3, and 4!. This is a particular case
of a two-step polytrope~model 2!. The finite value ofg is
replaced at the point with finiter t and pt by the valueg
5` ~incompressible liquid!. In this case Eq.~2.2! describes
the segmenta– t of the profile. At the matching pointt a
plateau—the layert –e of thicknessDX5pt /r t where the
density r t is constant and the pressure decreases line

FIG. 5. Comparison of the profiles obtained with analytic and numerical
of the isentrope. The single-layer~light solid curve! and two-layer~heavy
solid curve! polytropes and the numerical fit~thin dashes! are presented for
the example of isentrope 3. The arrow marks the point where the solut
are matched.
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from pt to zero—is matched to it continuously as a functi
of r andp. The density vanishes abruptly at the pointe.

The form of this profile is essentially identical to th
profile shown by the heavy line in Fig. 5. It is only necessa
to substitute a step for the smoothly decreasing function
the region above the pointt marked by the arrow. Below the
point t the isentrope and therefore the density profile rem
unchanged.

Let us consider model 3. This model is based on a lin
approximation of the pressure on the isentrope

p5pa~r2re!/~rss2re!. ~2.3!

In this caser undergoes a jump rather than dropping o
gradually to zero, just as in polytropic models with finiteg.
The pressurep ~2.3! vanishes at a finite densityr. The func-
tion ~2.3!, referring to the isentrope 3, is shown in Fig.
~broken curve;pa531.3 GPa,re51.56 g/cm3).

The profiler following from the isentrope~2.3! has the
form

r~X!5rssexpS 2
rss2re

pa
XD , ~2.4!

for Xa,X,Xv and Xv2Xa5@pa /(rss2re)# ln(rss/re). For
X.Xv the densityr(X) is zero. A density jump occurs at th
point Xv .

A comparison of the model 3 with the numerical calc
lations is shown in Fig. 6. The solid curve was calcula
using Eq.~2.4! and the broken curve shows the numeric
calculation of the isentrope 3.

Let us now examine the structure of the tail, i.e., t
distribution of variables in the vaporized matter. Let the e
ponentg be small (g!1, g'0, see Figs. 3 and 4! to the left
of the pointe ~see Fig. 1!. Let us consider two layers. Th
lower layer is an adiabatic with a large value ofg or an
isentrope~2.3! linear in r ~we shall require its segmenta– t
that does not reachp50). We choose as the constantg in
the bottom layer an average value of the functiong(r) over
the single-phase region, and we choose forr t a density
somewhat greater thanre . The upper distribution matche
the lower distribution continuously in the variablesr andp
(pt!pa , r t.ra).

Let us assume that the upper layer is described by
isentrope with exponentg50. Then the distributions in this
layer are

FIG. 6. Foil profiles for model 3~2.3!–~2.4! ~solid curve! and for a real
isentrope~dashed curve!. In this examples53.76 J/g•K ~isentrope3!.
y
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r~X!5
r t

11X/ct2
2

, p'pt , c5AX1ct2
2 , ~2.5!

wherect2 is the sound velocity at the matching pointt on the
upper-layer side. We havect2!ct1 , wherect1 is the sound
velocity at the pointt on the lower-layer side. The smallnes
of ct2

2 is responsible for the rapid decrease ofr in the tail
~2.5!, since the height of the homogeneous atmosph
(DX)25ct2

2 in it is small compared with the analogous sca
in the lower layer.

2.4.Remark concerning multidimensional hydrodynam
stability. The acceleration of the cold part of the foil by th
pressurepa isunstable with respect to the Rayleigh–Tayl
instability. The ablation surface is unstable. The entropy d
tribution s inside the foil is uniform and therefore loca
quasihydrostatic equilibrium is neutrally stable. For lo
plasma density in the corona we haveG5Agk, whereG is
the growth rate of the Rayleigh-Taylor instability,g is the
acceleration, andk is the wave number. This dependenc
which refers to the linear stage, is universal: It does
depend on the equation of state or the profiler.

At the nonlinear stage the instantaneous state of mix
is characterizedby a horizontal scalêl&—the average
bubble size. The profile ofr should affect the dynamics o
thebubble motion if̂ l&;Heff5s/^r&, wheres is the sur-
face density andr the average density. The presence of tw
phases means that the foil is bounded by two sharp jump
r at the pointsa ande ~see Fig. 2!. For re.ra this profile
is similar to that of a uniform (re5ra) incompressible
(g5`) liquid, since in our case the exponentg is quite large
inside the foil. A detailed experimental investigation of th
nonlinear Rayleigh–Taylor instability in a layer of incom
pressible liquid has been made in Ref.15. The lifetimet life of
the foil before it undergoes mixing and perforation is finit
It is known that the growth rate of the disturbances is su
that the foil traverses several tens ofHeff before being per-
forated. The foil can undergo many acoustic oscillations o
the time t life . Therefore the quasihydrostatic descriptio
makes senseas a convenient zeroth approximation despit
Rayleigh–Taylor instability.

3. RAREFACTION WAVE

3.1. Numerical integration.Let us consider the expan
sion of an initially uniform layer into a vacuum. The expa
sion is described by a centered8–10 rarefaction wave. The
equations of gas dynamicsin this case are

r t1~ru!x50, ut1uux1px /r50, p5p~r!. ~3.1!

In Riemann variables the system~3.1! becomes

Pt1~u1c!Px50, Mt1~u2c!Mx50, ~3.2!

where c5A(]p/]r)s, P5u1I , M5u2I , I 5*ra

r c(r)

3dr/r, and a reference level forr, which is convenient for
what follows, is chosen immediately in the integralI. In
contrast to the integral~2.1! the integralI ~here the accelera
tion of gravity g50) contains the first power ofc(r).

A centered rarefaction wave is self-similar. The se
similar variable isj5x/t, wheret is measured from the mo
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ment expansion starts, the pointx50 coincides with the po-
sition of the edge of the layer att50, and thex axis is
directed toward the vacuum.

In the self-similar case the system~3.2! becomes

~2j1u1c!Pj850, ~2j1u2c!M j850. ~3.3!

For the chosen direction of thex axis, the wavesu2c travel
into the foil. In this case the functionP(j) is constant (Pj8
[0), and the functionM (j) is nontrivial (M j8Þ0). There-
fore from the second equation of Eqs.~3.3! follows 2j1u
2c50. From the condition at the edge of a centered rare
tion wave and by virtue of the chosen calibration of the
tegral I we have P(j)[0, since u(j)1I (j)5u(2ca)
1I (2ca)50. Thereforeu(j)52I (j).

On the isentrope we haver5r(c). ThereforeI 5I (r)
5I @r(c)#5I (c). Correspondingly, the relation2j1u2c
50 becomes j5u2c52I (c)2c52I @c(r)#2c(r)
52I (r)2c(r). The latter equation determines implicitl
the self-similar profiles of the thermodynamic variables a
the velocityu of the centered rarefaction wave. The comp
tational results obtained under this program are presente
Fig. 7. The waves1–4 refer to the isentropes1–4 in Fig. 1.

3.2. Analytic solution: power-law approximation.For a
power-law isentrope the systems~3.1! and ~3.2! assume the
simple form

Nct1cux1Ncxu50, ut1uux1Nccx50, ~3.4!

whereN52/(g21). In the self-similar case the system~3.4!
becomes

cu8/N1~u2j!c850, ~u2j!u81Ncc850, ~3.5!

whereu8[uj8 . Inhomogeneous solutions are obtained if t
determinant of the system~3.5! vanishes. This condition ha
the form (u2j)25c2 or j5u6c. In our casej5u2c.
Since the equations of the acoustic characteristics aredx/
dt5u6c, this means that the characteristics of the fam
u2c are rectilinear, and inside the centered rarefaction w
they coincide with the linesj5const. Substitutingj5u2c
into the system~3.5!, we find the general solution8–10

u5
Nj

N11
1A, c52

j

N11
1A, ~3.6!

whereA is an arbitrary constant determined by the bound
conditions.

FIG. 7. Profiles of a centered rarefaction wave.
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Let us examine a centered rarefaction wave in the c
of a two-step isentrope. On each step the isentrope
power-law with exponentsg1 andg3 , respectively. The two-
step isentrope is continuous at the pointe where the steps
join. At the pointe the derivative of the isentrope is discon
tinuous.

The rarefaction wave consists of three sections. The
one is acentered rarefaction wave, adjoining a uniform r
zone, where undisturbed matter is present. The condition
matching with this zone determine the constantA in Eq.
~3.6!. On the first section the solution~3.6! is

u1~j!5
N1 ~j1ca!

N111
, c1~j!5

2j1N1ca

N111
, ~3.7!

where the index 1 refers to the first section andca[csa is the
sound velocity in the uniform zone.

The section 1 of the centered rarefaction wave lies in
segment2ca,j,j1e . Along the characteristicj52ca this
section adjoins the undisturbed foil (u1(2ca)50, c1(2ca)
5ca).

Let us examine the other boundary of section 1, loca
at the pointj1e . To each of the two steps of the isentrop
there is associated a separate centered rarefaction wav
the form ~3.6!. The first stepcovers the segmenta–e of the
isentrope~see Fig. 1!. The second step covers the part of t
isentrope which passes along the two-phase region fromr
5re to r50. The sign of the kink in the isentrope at th
point e is such that the sound velocity decreases abruptl
the transition through the pointe from right to left ~see Fig.
1!, i.e., from the single- to the two-phase region. The cor
sponding inequality is

c3e,c1e ,

c3e5AS ]p~re20!

]r D
s

, c1e5AS ]p~re10!

]r D
s

,

~3.8!

wherec1e is the sound velocity at the end of section 1 of t
centered rarefaction wave at the pointj1e and c3e is the
sound velocity at the start of section 3 at the pointj3e . Since
the characteristicsu2c run, relative to Lagrangian particles
in the direction of negative values ofj, the start of the cen-
tered rarefaction wave lies at lower values ofj than the end
of the wave.

In the rarefaction wave under consideration we havej
5u2c. Therefore

j1e5u1e2c1e , j3e5u3e2c3e , ~3.9!

where u1e[u1(j1e), c1e[c1(j1e), u3e[u3(j3e), and c3e

[c3(j3e). A region of uniform flow—a plateau—can exis
between the end of section 1 and the start of section 3. T
u1e5u3e5u2 . It is easy to see that from this equality, Eq
~3.9!, and the inequality~3.8! follows j3e.j1e . This means
that the sections 1 and 3 of the centered rarefaction w
cannot be matched directly with one another and that a
gion of uniform flow does indeed lie in the segmentj1e,j
,j3e . Indeed,p is continuous at the pointe. Thereforeu is
also continuous at this point (¹p and the acceleration of th
Lagrangian particles are finite!. The sound velocity decrease



th

th
ul

d

rt

v

to

th

b-

on

au

e

r-
l

er

n
,

he
this

-
las

ec-
rdi-

sec-

ns,

n
d in
-
ng
at

and

s

sts
au

is

ease

er

s
, in

1148 JETP 88 (6), June 1999 Inogamov et al.
abruptly. Hence the sound wavej3e lags behind the wave
j1e . We shall consider the correspondence between
points$r,p% on the isentrope andthe points$j,r% in the rar-
efaction wave. We can see that the pointe in the$r,p% plane
transforms into a finite segment in the$j,r% plane. The left-
and right-hand neighborhoods of the pointe from $r,p%
form the ends of the plateau on$j,r%.

Let us now estimate the position of the plateau on
basis of the parameters of the tabulated isentrope. Calc
ing the second of the functions~3.7! at the pointj1e , we find

j1e5N1ca2~N111!c1e , ~3.10!

where the velocitiesca andc1e are found from the tabulate
isentrope. Now we write the first of the functions~3.7! at the
point j1e . Substituting the expression~3.10! into it we find
the mass velocity in the region of uniform flow

u1e5u25u3e5N1~ca2c1e!. ~3.11!

It is obvious from what we have said above that the pa
of the wave are the section 1, the uniform flow~plateau,
section 2!, and the section 3.

Let us now find the width of the plateau. We havej3e

5u22c3e @see Eqs.~3.9! and ~3.11!#. The value ofc3e is
found from the isentrope. The velocityc3e is very low, so
j3e'u2 . Fromj5u2c and Eq.~3.11! we find the width of
the plateau as

j3e2j1e5c1e2c3e'c1e .

Let us now consider the section 3. This rarefaction wa
is unusual, because the exponentg5(] ln p/] ln r)s is small
here compared to 1. In ordinary situations we haveg.1 ~a
power-law rarefaction wave bounded by a vacuum edge! or
g51 ~isothermal exponential rarefaction wave continuing
infinity!.

Let us determine the constantA in Eqs.~3.6! for a cen-
tered rarefaction wave on the section 3. For this we use
point j3e and the sound velocityc3e there. As a result we
obtain

u3~j!5
N3j1N1~ca2c1e!1N3c3e

N311
'2j2N1~ca2c1e!,

~3.12!

c3~j!5
2j1N1~ca2c1e!1N3c3e

N311
'j2N1~ca2c1e!.

~3.13!

In Eqs. ~3.12! and ~3.13! approximate expressions are o
tained forc3e'0 andN3'22.

From Eq.~3.13! and the isentrope follows an expressi
for r

r3~j!5r2F 2j1N1 ~ca2c1e!1N3c3e

~N311! c3e
GN3

5
re$@2~N311!#c3e%

2/(12g3)

j2j3e1@2~N311!#c3e
'

r2c3e
2

~j2j3e1c3e!
2

,

~3.14!

wherer2 is the density on the section 2, i.e., on the plate
e

e
at-

s

e

e

.

For low sound velocitiesc3e in the two-phase region the
density ~3.14! in the section 3 decreases rapidly withj in-
creasing rightward from the left-hand boundaryj3e of the
section~see Fig. 7!. This section resembles the tail of th
atmosphere studied in Sec. 2. Its width is (Dj)35c3e .

As we can see, the relative width of the tail in the ra
efaction wave~i.e., the width of the tail scaled to the tota
width of the wave! is of orderc3e /ca . It is much greater than
the relative thickness of the atmospheric tail, which in ord
of magnitude is (c3e /ca)2. However,r in the tail decreases
with increasingx more rapidly in the rarefaction wave tha
in hydrostatics. Specifically,r}1/x in the atmosphere
whereasr}1/x2 in the rarefaction wave@compare Eqs.~2.5!
and ~3.14!#.

3.3. Analytic solution with a linear approximation.We
shallconsider the model with a linear approximation of t
isentrope in the single-phase region. Let the pressure in
region be

p~r!5~pa2pe!
r2re

ra2re
1pe . ~3.15!

Let cae
2 5(pa2pe)/(ra2re). It is easy to show that the pro

files of the variables in this case are given by the formu
for an isothermal rarefaction wave. They have the form

u1~j!5j1cae and r1~j!5ra exp@2~j1cae!/cae#.

The rarefaction wave once again consists of three s
tions: an isothermal wave, a plateau, and a tail. The coo
nates of the boundaries between them arej1e52cae

1cae ln(ra /re) and j3e5cae ln(ra /re)2c3e, where once
again the indices 1, 2, and 3 denote the numbers of the
tions, a is the initial point, ande is a point on the curve of
boiling. The indices 1e and 3e refer to neighborhoods of the
point e on the side of the single- and two-phase regio
respectively.

The problem of boiling up of a liquid in rarefactio
waves has a definite bearing on the questions examine
Sec. 3~Ref. 16!. Itwas studied in connection with the prob
lems of safety of nuclear power production. We are talki
about accidental rupture of a pipeline carrying coolant
high pressure. We underscore that physically the coolant
laser-heatingcases are very different. In the formerpa /pc is
only 10% greater than1,16 whereas in the latterpa /pc

;102, ~see Sec. 2.1!. In thefirst casere'ra . Thereforeu2 is
small compared toca ~the rarefaction wave in section 1 i
short and the acceleration of matter is small!. As a result,
sound runs rapidly through the tube, while matter exhau
relatively slowly. In the second case matter on the plate
moves much more rapidly (u2;ca).

In the rupture problem information about the process
obtained from pressure sensors. In this problemp varies
abruptly on the short section 1. Conversely, a sharp decr
of r on the section 3 under our conditions~see Fig. 7! is
smoothed by the piezoelectric element, sincep in the two-
phase region approximately equalsp on the plateau. At the
same time, for applications in optical diagnostics of las
ablation by ultrashort laser pulses17,18 jumps inr ~great val-
ues ofu¹ru), which reflect light, are important. Such jump
in r have been observed in Refs. 17 and18. In addition
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the rupture problem the sectionx,0 is usually studied~see
Fig. 7!, since the rupture point is located atx50, while for
optical measurements the entire wave is important.

3.4. Structure of the wave.In Fig. 8 the first and second
analytic solutions are compared with the numerical soluti
The heavy dashed curve shows the numerical solution in
case of the isentrope 3. In Fig. 7 it is distinguished by dash
The heavy solid curve shows the first solution correspond
to a power-law approximation of the single-phase isentro
The light solid curve is a linear approximation~3.15! of the
same part of the isentrope~second solution!. The light small
dashes show the form that the centered rarefaction w
would have if the isentrope were described by a power
everywhere.

The first solution was constructed as follows. The poi
(ln pa , ln ra) and (lnpe, ln re) were taken from the isentrop
~see Fig. 1!. The exponentg1 was found from the slope o
the straight line connecting them. The velocitiesca

2

5g1pa /ra and ce
25g1pe /re were calculated. This metho

overestimatesca and underestimatesce , and in consequenc
it overestimates the width of section 1. Looking ahead,
note in contrast that in the method referring to the sec
solutionca is underestimated,ce is overestimated, and there
fore the width of section 1 is underestimated. The fact t
the linear approximation underestimatesca and overesti-
matesce is obvious from a comparison of the linear~dashed
curve a–e)and the tabulated~solid curvea–e) isentropes
presented in Fig.1. We note that the width of the plateau
the first solution is less and in the second solution gre
than in the numerical calculation.

We also note that the plateau in the numerical calcu
tions has a slope~see Figs. 7 and 8!. This is due to the
computational errors.

Further, in constructing the first solutionj1e andr1(j)
were found, the endj3e of the plateau was found, andg3 and
c3e were found from the isentrope, and the functionr3(j)
was found. To construct the second solutionpa , pe , ra , and
re were chosen andcae , j1e , and j3e and the functions
r1(j) andr1(j) were calculated.

Figure 8 compares waves withs53.76 J/g•K ~isen-
trope 3, see Fig. 1!. The values of the parameters a

FIG. 8. Structural features of a two-phase wave: plateau and tail. The
rameters are constant in the plateau region. Thermodynamically this e
portion of matter is in a state corresponding to the point of the kink in
isentrope on the vaporization curve. Asharp decrease of the density o
in the tail.
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g158.4, ca59.8 km/s, ce51.7 km/s, j1e50.487 km/s,
j3e52.14 km/s,g350.195, and c3e50.052 km/s. In
the second solution the main parameters arecae

55.5 km/s,u1e5u25u3e52.6 km/s,j1e522.9 km/s, and
j3e52.6 km/s.

A comparison shows that the tails of the analytic a
numerical solutions agree well with one another~the agree-
ment between the heavy dashed and light solid lines in F
8!.

4. SIMPLE WAVE AND INTERFERENCE OF TWO SIMPLE
WAVES: FORMATION OF A GAP INSIDE THE
VAPORIZED MATTER

An atmosphere, bounded by a density jump, and
simple wave, consisting of the standard centered rarefac
wave and a plateau, also bounded by the jump inr, was
presented in Secs. 2 and 3. We shall now study the expan
of a layer heated uniformly by an ultrashort laser pulset
!H/ca). Simple waves propagate toward one another fr
the two boundaries of the layer~foil ! and meet at time
H/2ca . If the foil is deposited on a rigid substrate, then
time t r5H/ca the simple waveis reflected from this su
strate. For definiteness, we shall study this case.

In the case of an isentrope without a phase transition
with an everywhere continuous sound velocity, fort.t r the
rarefaction wave is divided into two parts by the reflect
sound wave with instantaneous coordinatexr(t). The first
part forms a centered rarefaction wave. This is the reg
xr(r ),x,xv(t) with one simple wave. In the second pa
(0,x,xr(t)) two simple waves—incident and reflected—
interact. Ast→` the mass of the first regionm1→0. Inte-
grating the reflected characteristic (dxr /dt5u1c) with a
power-law approximation of the isentrope givesxr5H
1@Nca2(Nca1H/t r)(t r /t)2/(N11)#t. Here x is measured
from the rigid wall. With this reference the film edge att
50 is located at the pointx5H5catr .

We are especially interested in the interaction of the
flected wave with the plateau region. The wavexr(t) reaches
it at the moment of freezingt f . The reason why it is called
this will be explained below. For a power-law approximatio
t f /t r5@(Nca1H/t r)/(Nca2j1e)# (N11)/2. A difference cal-
culation of the isentropes1–4 presented in Fig. 1 gives
t f /t r5exp@*dj/2c(j)#51.44 (1), 1.63 ~2!, 1.97 ~3!, and
2.63 ~4!, where the integral is taken from2ca to j1e ~the
number of the isentrope is indicated in parentheses!. As s
increases, the differencej1e2ja and the timet f /t r increase.

The rate of stretching, characterized by the derivat
]u/]x or the total derivative (2D ln r/Dt) (D/Dt5] t

1u]x), is greater in the two-wave region than in the on
wave region. In a simple wave with a phase transition~see
Sec. 3! ux8.0 on section 1, andux8[0 on section 2. This is
the frozen region~plateau!, where matter coasts as a who
and the thermodynamic quantities are constant as a func
of x and t.

Let us see what happens fort.t f . The unusual nature o
the the interaction of the reflected sound with the plate
region should be underscored. Behind the reflected w
(0,x,xr(t)) the densityr(x,t) decreases with time, while
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on the plateau it isre and does not change. Att5t f r(x,t)
're in the reflected wave (r(xr ,t f)5re). We shall call the
region 0,x,x1e a gap, wherex1e is the instantaneous left
hand coordinate of the plateau. By the timet't f a phase
transition has already occurred in allmatter in the gap. A
the transitionu¹pu decreases sharply. As a result, motion
the gap becomes frozen—a coasting regime is establis
This means that the dependence ont in the velocityu(m,t)
written as a function of the Lagrangian coordinatem van-
ishes.

At the moment freezing occursum8 [0 on the plateau and
um8 .0 in the gap. Therefore fort.t f the motion of the
boundary between the plateau and the gap along the
grangian coordinatem stops~accumulation of matter by the
plateau region stops; the maximum ratio of the plateau m
to the total mass is (re /ra)(Dj/ca)(t f /t r), Dj5j3e2j1e).
The densityr in the gap continues to decrease, since h
um8 .0 and is frozen. As a result,r in the gap becomes
smaller than the densityre in the plateau region. Thus th
distribution ofr overx or m becomes nonmonotonic. On th
plateauc5c1e holds for compression waves andc5c3e for
rarefaction waves. In the gap fort.t f the motion is hyper-
sonic. It is evident that the boundary between the plateau
the gap becomes a second~with respect to the boundaryx3e)
boundary where the density changes sharply. Fort@t f the
densityr in the gap decreases'(t f /t)re. The plateau de-
cays slowly, since the expansion velocities are low
(;c3e).

5. CONCLUSIONS

A comparative analysis of the structure of ablatio
accelerated foils was performed including and neglect
phase transformations. A phase transition leads to the
pearance of important physical features. Whenthe unload
isentrope passes through the two-phase region, a vapo
tion boundary forms andr above this boundary decreas
sharply ~atmospheric tail!. For rarefaction waves the two
phase nature of the medium has the effect that a quite
tended region of uniform flow~a plateau!, ending with a
sharp dropoff ofr ~the tail of the rarefaction wave! arises. In
the zone of the sharp dropoff of density the matter is in
two-phase state~vapor bubbles in a liquid, droplet conden
sate in vapor!. The phase composition of the vapor–liqu
changes away from the vaporization boundary~from the
outer boundary of the plateau!. Expansion of a layer of finite
thickness is accompanied by the formation of two plate
separated by a gap. The density of matter in the plat
remains constant for a long time.

The structures of the tails are different in the atm
spheric and wave cases. They differ by the width a
asymptotic behavior ofr(x) ~see end of Sec. 3.2!. An ana-
lytic description of the profiles of the tails was obtained.
agrees well with numerical calculations.

Ordinarily, the fraction of matter behind the vaporizatio
boundary is small compared to 1 under the experimental c
ditions considered. This is due to the smallness of the rati
the pressurepe on the binodal to the ablation pressurepa .
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We note that a direct numerical simulation is impeded
cause after a phase transition the sound velocity decreas
extremely low values.
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1!It should be noted that the accuracy of the semiempirical equations of

in the two-phase and near-critical regions is comparatively low for m
metals. Metals with low critical temperatures~mercury and alkali metals!,
for which direct experimental data are available, are exceptions. In
connection, the numerical results obtained with different equations of s
can differ. However, this does not change the qualitative picture of
phenomena studied. Laser and beam experiments open up interesting
sibilities for refining the equations of state in regions where the m
conventional methods are of limited applicability.
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Multiquantum triple-pulse spin-echo signals from quadrupole nuclei in magnetically
ordered substances

V. N. Berzhanski ,* ) A. I. Gorbovanov, and S. N. Polulyakh

Simferopol State University, 330007 Simferopol, Ukraine
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We analyze theoretically the formation of NMR pulse responses from a quadrupole spin system
in which the inhomogeneous broadening of a spectral line is due to both magnetic and
electric quadrupole interactions. We derive formulas for the moments of formation of
multiquantum echo signals in the case of three exciting pulses. For the first time we detected in
experiments multiquantum spin-echo signals from copper nuclei in ferromagnetic copper
sulfochromite in the cases of double-pulse and triple-pulse excitations. We find that there is good
agreement between the calculated and experimentally observed moments of echo signal
formation. © 1999 American Institute of Physics.@S1063-7761~99!01506-1#
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1. INTRODUCTION

The magnetic hyperfine interactions between the e
tron and nuclear spin subsystems in magnetically orde
substances lead to the emergence of local magnetic field
the nuclei, fields that determine the NMR frequencies.1 More
than that, NMR in magnetically ordered substances is ch
acterized by natural inhomogeneous broadening of a spe
line, due to which the main method of experimental NM
spectroscopy is the spin-echo method.1–3 In the case of mag-
netic resonance of nuclei with spinsI .1/2, the electric
quadrupole interactions lead to the emergence of additio
spectral lines, to quadrupole satellites, and to formation
multiquantum echo signals.2,4

The moments of formation of multiquantum echo sign
from quadrupole nuclei in magnetically ordered substan
are well known for the case of two exciting pulses.5–8 On the
other hand, triple-pulse trains are widely used to excite e
signals in inhomogeneously broadened spin systems.2,3 In
particular, they are used in studies of magnetic relaxa
processes.

The aim of the present work is to analyze theoretica
the moments of formation of multiquantum responses o
quadrupole spin system under triple-pulse excitation.
verify the theoretical results in experiments, we used mu
quantum echo signals from63Cu nuclei in the ferromagne
CuCr2S4 :Sb atT577 K.

2. THEORY

We analyze the moments of formation of triple-pul
echo signals theoretically by using the approach develo
for the case of two exciting pulses.4–7 We begin by repre-
senting an inhomogeneously broadened spectral line in
form of a set of isochromatic spin groups. We write t
Hamiltonian of an isochromatic spin group in a rotating r
erence frame as follows:

H52\DvI z1\vqS I z
22

I ~ I 11!

3 D , ~1!
1151063-7761/99/88(6)/4/$15.00
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whereI z is the operator of projection of spinI on the quan-
tization axisz. Each isochromatic spin group is characteriz
by its own detuningDv and quadrupole splittingvq of the
NMR spectrum.

During the action of the exciting pulses, the Hamiltoni
of the spin system,H1 , consists of the Hamiltonian~1! and
the term describing the interaction between the spin sys
and the alternating magnetic field:

H15H1\v1I x , ~2!

wherev1 is the amplitude of the alternating magnetic fie
expressed in units of frequency.

Using the method of the density-matrix operator,2,4–7we
arrive at an expression for the transverse component of
nuclear magnetization,M 15Mx1 iM y , at timet:

M 1~ t !5 (
m,m1 ,m2 ,

m3 ,m4

VH expF2
i t

\
~Em2Em11!

2
i t23

\
~Em1

2Em4
!GexpF2

i t12

\
~Em2

2Em3
!G J .

~3!

Here time t is measured from the moment when the th
exciting pulse ends,t12 is the time interval between the firs
and second exciting pulses,t23 is the time interval between
the second and third exciting pulses~Fig. 1!, and Em8
5^m8uHum8& is the eigenvalue of the Hamiltonian~1! in the
state with the magnetic quantum numberm8. Each term in
~3! describes the echo signal in the case where the expo
vanishes at all values ofDv and vq . This is possible for
various values of the magnetic quantum numbersm, m1 ,
m2 , m3 , and m4 . The amplitudeV of the corresponding
echo signal is

V5AI ~ I 11!2m~m11!^muR3um1&^m1uR2um2&

3^m2uR1I zR1
21um3&^m3uR2

21um4&^m4uR3
21um11&,

~4!
1 © 1999 American Institute of Physics
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whereRj
615exp$7it jH1 /\% are the operators describing th

action of thej th exciting pulse, witht j the pulse length.
Assuming that the exciting pulses are much shorter t

the time intervalst12 and t23 and using the fact that th
exponent in~3! must vanish at the moment of formation
the echo signal, we find that

te5t12

2Dv~m22m3!1vq~m2
22m3

2!

2Dv1vq~2m11!

1t23

2Dv~m12m4!1vq~m1
22m4

2!

2Dv1vq~2m11!
. ~5!

This expression~5! describes the moment of echo signal fo
mation whente is independent ofDv and vq . By multi-
quantum echo signals we mean such responses of the
system for which at least one condition,um22m3u.1 or
um12m4u.1, is met. If the first condition is met, multiquan
tum coherence forms in the time intervalt12. If the second
condition is met, multiquantum coherence forms in the ti
intervalt23. Ordinary triple-pulse echo signals form if mag
netic quantum numbers obey the condition

m5m15m25m3215m421. ~6!

3. EXPERIMENTAL RESULTS AND A DISCUSSION

Experiments were done with a pulsed incoherent NM
spectrometer. The NMR signals were those genera
by 63Cu nuclei in a polycrystalline ferromagne
CuCr1.98Sb0.02S4 cooled toT577 K. In the double-pulse re
sponse, in addition to the ordinary echo signal formed at t

FIG. 1. Time diagram of formation of a triple-pulse echo signal:t j is the
length of thej th exciting pulse;P1 , P2 , andP3 are the exciting pulses;e1

is double-pulse echo; ande2 is triple-pulse echo.
n

pin
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te85t, we detected multiquantum echo formation at timete8
53t, where t is the time interval between the excitin
pulses, andte8 is measured from the moment at which th
second exciting pulse ceases to act. The maximum in
echo signal amplitude atte853t was observed nea
100.7 MHz, with the first and second pulse lengths bein
and 3ms, respectively, and the amplitude of the rf puls
beingU5220620 V.

The 63Cu nucleus is a quadrupole nucleus with spinI
53/2. The moments of occurrence of triple-pulse echo s
nals, te , calculated by~5! with I 53/2 are listed in Table I
for the case of multiquantum signals. All echo signals can
divided into three groups. The first group consists of sign
for which multiquantum coherence is formed in the tim
interval t12 ~signals 1–4 in Table I!. The second group con
sists of echo signals for which multiphoton coherence
formed in the time intervalt23 ~signals 5–8!. The third group
consists of echo signal with multiphoton coherence form
in both time intervals,t12 and t23 ~signals 9–11!. Equation
~5! describes the occurrence of a multiquantum echo sig
at time te53t12 for any ~of the four possible! values of the
magnetic quantum numberm1 . The moment of echo forma
tion, te53t23, is realized at all possible values of the ma
netic quantum numberm2 .

In our experiments we used triple-pulse trains in whi
at least two pulses were of the same length. The amplitu
U of different pulses belonging to the same chain were
same. The search for multiphoton echo signals for the cas
triple-pulse excitation was done at the frequency correspo
ing to the maximum in the amplitude of the double-pul
echo, 3t.

Ordinary triple-pulse echo signals were observed
times te5t12, t23, t122t23, t232t12, and t121t23 ~Fig.
2!. Moreover, all~eleven! theoretically expected multiquan
tum echo signals were experimentally detected in the trip
pulse response. The observation of a theoretically predic
echo signal is possible ifte.0. Equation~5! implies that it is
impossible to select the values of the time intervals betw
the exciting pulses,t12 andt23, so that all eleven calculate
signals are observed simultaneously. A variety of values
t12 and t23 were used to observe various echo signals
experiments. The relationship between the moment of form
tion of the experimentally observed echo signal,te , and the
TABLE I. Moments of formation of triple-pulse multiquantum echo signals.

Theory Experiment
No. m1 m2 m3 m4 te t1 ,ms t2 ,ms t3 ,ms t12 ,ms t23 ,ms te ,ms U,volts

1 any 3/2 23/2 m1 3t12 5 3 5 50 75 150 220610
2 21/2 3/2 23/2 1/2 3t122t23 5 3 5 50 10 140 220610
3 1/2 3/2 23/2 21/2 t2313t12 5 2 5 15 45 90 220610
4 1/2 23/2 3/2 21/2 t2323t12 5 3 5 10 110 80 220610
5 3/2 any m2 23/2 3t23 5 2 5 15 45 135 220610
6 3/2 21/2 1/2 23/2 3t232t12 1 1.1 1 49 75 175 600610
7 3/2 1/2 21/2 23/2 3t231t12 1 0.9 1 10 55 175 500610
8 23/2 1/2 21/2 3/2 t1223t23 1 1.1 1 90 10 60 600610
9 3/2 3/2 23/2 23/2 3t1213t23 5 1 5 10 55 190 220610

10 23/2 3/2 23/2 3/2 3t1223t23 5 5 3 80 35 135 220610
11 3/2 23/2 3/2 23/2 3t2323t12 5 5 5 12 85 220 220610
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FIG. 2. Oscillograms of a triple-pulse response. The ho
zontal scale is 20ms per scale division.P1 , P2 , andP3 are
the exciting pulses. The pulse lengths are~a! t155 ms, t2

53 ms, andt355 ms; and~b! t151 ms, t251 ms, andt3

51 ms. The time intervals between the pulses are~a! t12

543ms and t23517ms; and ~b! t12580ms and t23

510ms. Ordinary triple-pulse echo signals are formed
the following moments:~a! te5t23 (e1), t122t23 (e2), t12

(e3), and t121t23 (e4); and ~b! te5t13 (e1), t122t23

(e3), t12 (e4), and t1213t23 (e5). Multiquantum triple-
pulse echo signals are formed at the following momen
~a! te5t1213t23 (e5), 3t12 (e6), and 3t121t23 (e7); and
~b! te5t1223t23 (e2) andt1213t23 (e6).
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time intervals between the exciting pulses was found
varying the values of the time intervalst12 and t23. As an
example, Table I lists the moments of formation of ec
signals and the values of the time intervalst12 and t23 at
which the corresponding echo signal was observed s
rately from other signals. The repetition frequency of t
pulse trains amounted to 0.1 s.

For nonquadrupole spin systems with an inhomo
neously broadened spectral line there exists a vector m
that provides a graphic description of the process of e
signal formation.2,3 No such model exists, however, for mu
tiquantum echo signals. We believe that the formation
echo signals in an inhomogeneously broadened quadru
system~and in a nonquadrupole system! amounts to the fol-
lowing. The precursor pulse~or pulses! generates a trans
verse component of nuclear magnetization. Inhomogene
broadening leads to decay of the transverse component o
magnetization, due to which the magnetizations of differ
isochromatic spin groups oscillate with different frequenci
The last exciting pulse leads to ‘‘time reversal’’ in the sy
tem, with the result that at a timete there forms a peak in the
transverse component of magnetization, which is observe
an echo signal.

For a quadrupole spin system withI 53/2 the exciting
pulse preceding the multiquantum coherence interval cou
the states withDm53 andDE/\53Dv ~see Table I!. In the
multiquantum coherence interval, the magnetizations of
isochromatic spin groups become dephased with a freque
equal to three times the detuningDv. Such oscillations,
however, are not observed in experiments, since they co
spond to the frequency of a ‘‘forbidden’’ transition. The la
exciting pulse couples the states withDE/\5Dv and leads
to phasing with a frequency that is three times smaller t
the dephasing frequency. Such oscillations correspond to
frequency of an ‘‘allowed’’ transition (Dm51) and are ob-
served in experiments. Since the phasing process proc
three times slower than the dephasing process, the mom
of occurrence of a multiquantum echo signal is three tim
the value of the multiquantum coherence interval~see Table
I!.

The amplitude of multiquantum echo signals observed
experiments was found to be much smaller than the am
tude of ordinary echo signals. For signals 1–5 and 9–11
multiquantum triple-pulse echo~Table I!, the experimentally
observed signal-to-noise ratio was small and varied from
to 3 ~signalse5 , e6 , ande7 in Fig. 2a!. The maximum of the
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amplitude of these echo signals was observed when
length of the first exciting pulse and the pulse amplitudeU
were such that the amplitude of the double-pulse echo wa
its maximum, 3t ~see Table I!.

Optimum excitation of multiquantum echo signals 6–
was achieved at a larger amplitude and smaller length of
exciting pulse~Table I!. The amplitude of these echo signa
was substantially larger than the amplitude of the other m
tiquantum triple-pulse echo signals~signalse2 ande6 in Fig.
2b!. For the case of three-quantum double-pulse echo
quadrupole spin system withI 53/2 it is known5,8 that opti-
cal excitation of the signal is achieved when the first pulse
twice as long as the second. For signals 6–8 of multiquan
echo, the multiquantum coherence state is prepared by
first and second exciting pulses, whose total length is
proximately twice the length of the last signal. Thus, sign
6–8 of multiquantum echo can be seen as analogs of m
quantum double-pulse echo signals. However, by compa
the conditions for the formation of these echo signals w
the conditions for the formation of signals 5~Table I! we can
see that multiquantum triple-pulse echo is similar to doub
pulse echo if there is an interval of ordinary one-quant
coherence (Dm51 andDE/\5Dv) in the time interval be-
tween the first and second exciting pulses.

The dependence of the amplitude of the echo signal
the frequency of the alternating field in the exciting puls
was used to detect the magnetic resonance spectra. A
tional studies have shown that the frequency spectra of m
tiquantum triple-pulse echo signals coincide with the f
quency spectrum of the multiquantum double-pulse e
signal 3t. Probably, the reason is that in the formation
both multiquantum double- and triple-pulse echo signals
exciting pulses couple the states withDE/\5Dv and
DE/\53Dv, so that electric quadrupole interactions are
fectively excluded from the process of echo signal format
and quadrupole interactions in the spectra of multiquant
echo signals are suppressed.

As a result of studies of the relaxation properties
double-pulse echo signals it was found that the amplitude
the multiquantum double-pulse echo signal 3t decreases
e-fold as the time intervalt between the exciting pulses in
creases by 7065ms. Such a decay rate is several tim
larger than that of ordinary echo atte85t. To separate the
moments of formation of different triple-pulse echo signa
we were forced to make the values of the time intervalst12
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and t23 very large~Table I!, which could be the reason th
amplitude of multiquantum echo signals is so small.

Moreover, the amplitude of the triple-pulse respon
@Eq. ~4!# depends on a large number of parameters:
length t j of each exciting pulse, the amplitudev1 of the
alternating magnetic field, the average value of the quad
pole splitting of the NMR spectrum, etc. With such a lar
number of parameters one cannot exclude the possibilit
nonoptimal signal excitation, which may be another rea
the amplitude of multiquantum echo signals is so small.

4. CONCLUSION

We have analyzed theoretically the moments of form
tion of multiquantum signals of nuclear spin echo for t
case of three exciting pulses. The situation involved b
magnetic and quadrupole inhomogeneous spectral-
broadening. The formulas we derived can also be used in
limits of a purely magnetic and purely quadrupole inhom
geneous broadening. To do this we must drop the term w
vq or with Dv in ~5!.

We have verified by experiments the theoretical res
for the quadrupole nucleus63Cu ~spin I 53/2) in ferromag-
netic copper sulfochromite alloyed with antimony. Th
lengths of the exciting pulses that ensure optimum conditi
for the formation of multiquantum coherence in a quadrup
spin system have been established experimentally.

Our results can be used to study the relaxation cha
teristics of an inhomogeneously broadened spin system
e
e

u-

of
n

-

h
e

he
-
th

s

s
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th

quadrupole interaction. However, such studies require a
oretical analysis of the effect of fluctuations of the nonse
lar part of the spin Hamiltonian, which is responsible f
spin–lattice relaxation processes, on the rate of decay
echo signals. For the case of selective excitation of e
signals from quadrupole nuclei such an analysis has yet t
made.

This work was made possible by grants from ISS
~Grants APU072083 and SPU062005!.

* !E-mail: roton@ccssu.crimea.ua

1M. I. Kurkin and E. A. Turov,NMR in Magnetically Ordered Materials
and Its Applications@in Russian#, Nauka, Moscow~1990!.

2A. Abragam,The Principles of Nuclear Magnetism, Clarendon Press, Ox-
ford ~1961!.

3A. A. Vashman and I. S. Pronin,Nuclear Magnetic Relaxation Spectros
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This paper examines particle diffusion inN-dimensional Euclidean space with traps of the return
type. Under the assumption that the random continuous-diffusion time has a finite mean
value, it is established that subdiffusion~which is characterized by an increase in the width of
the diffusion packet with time according to theta-law, wherea,1; for normal diffusion
a51) emerges if and only if the distribution density of the random time a particle spends in a
trap has a tail of the power-law type}ta21. In these conditions the asymptotic expression
for the distribution density of a diffusing particle is found in terms of the density of a one-sided
stable law with a characteristic exponenta. It is shown that the density is a solution of
subdiffusion equations in fractional derivatives. The physical meaning of the solution is discussed,
and so are the properties of the solution and its relation to the results of other researchers in
the field of anomalous-diffusion theory. Finally, the results of numerical calculations are discussed.
© 1999 American Institute of Physics.@S1063-7761~99!01606-6#
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1. INTRODUCTION

Usually by anomalous diffusion one means a rando
walk process involving a particle whose diffusion pack
D(t) @i.e., the width of the distribution densityr(x,t) with
the initial conditionr(x,0)5d(x)] grows in time according
to the law

Dt}tn, t→`, ~1!

where the exponentn differs from 1/2, a value that corre
sponds to normal diffusion. Whenn.1/2, we have superdif-
fusion, and whenn,1/2, we have subdiffusion~see the re-
views by Bouchaud and Georges1, Isichenko,2 and West and
Deering3!. The first type of anomalous diffusion is associat
with anomalously long particle paths in the medium,j,
while the second is associated with anomalously long tim
that the particle spends in a trap,t. By anomalously long we
mean that the random quantitiesj and t are such that̂j2&
5` and^t&5`. The power law~1! emerges when the dis
tributions ofj and/ort have tails of the power-law type. In
Ref. 4 it is shown that in the asymptotic limit of very larg
times, superdiffusion is described by an equation with a fr
tional Laplacian whose solution is a symmetric stable dis
bution. The present paper is devoted to a theoretical stud
the subdiffusion model, whose numerous applications
physical processes have been discussed in Refs. 1–3,5
and others.

If we assume that the random variablesj i and t i are
mutually independent, subdiffusion can be described by
tegral equations. If we want the subdiffusion equation
look like an ordinary diffusion equation, we must consid
equations in fractional derivatives.5–10 Schneider and
Wyss,11 Glöckle and Nonnenmacher,12 and Westet al.13

used Fox functions14 to represent the solutions of such equ
tion, but since Fox functions are peculiarly ill-suited to n
merical problems, such representations are no better
1151063-7761/99/88(6)/9/$15.00
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Fourier–Laplace or Mellin transforms. The densities of t
spatial distribution of a subdiffusive particle have yet to
found numerically.

The idea to seek the solution of subdiffusion equatio
in terms of stable laws emerged on the basis of two facts
are not well known to physicists. The first is that the Gau
ian distribution is but one representative of an infinitely lar
set of stable laws, whose common property is that all th
laws describe limiting distributions of sums of independe
random quantities, with each sum being normalized in a s
cial way.15–17The Gaussian distribution emerges as the li
iting distribution only if the terms have finite or logarithm
cally divergent variances. The second fact is that a relati
ship exists18,19 between stable laws and Fox functions.

Since different approaches to the problem of anomal
diffusion invoke different variants of the equations, we beg
with a complete description of the model under consid
ation, based on integral equations.

2. INTEGRAL EQUATIONS OF THE DIFFUSION
OF PARTICLES IN A MEDIUM WITH TRAPS

We use a model in which a particle can be in one of t
states: a state of ordinary diffusion~state 1!, or a state of rest
~state 0! after it has landed in a trap. Subdiffusion is a pr
cess in which the particle state changes successively at
dom moments in time. We assume that the random t
intervals within which the particle is in one of the two stat
are mutually independent and are distributed with densi
q1(t) andq0(t).

The distribution of the time a particle stays in a tra
q0(t), which is determined by the trapping mechanism a
the statistical spread of the trap properties, will not be nai
down for now. As forq1(t), we only assume that the mea
time interval between a particle’s leaving a trap arriving
the next trap is finite:
5 © 1999 American Institute of Physics
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t̄15E
0

`

tq1~t! dt,`. ~2!

The medium is assumed spatially homogeneous and t
invariant.

Let p(x,t) be the spatial distribution of the probability i
the case of continuous diffusion. InN-dimensional space,

p~x,y!5
1

~4pDt !N/2
expH 2

x2

4DtJ , xPRN, ~3!

where D is the diffusion coefficient. Next, byr0(x,t) we
denote the particle distribution at timet, where the particle’s
history begins att50 when it lands in the trap atx50, and
by r1(x,t) we denote the particle distribution at timet,
where the particle’s history begins att50 when it leaves the
trap atx50. These two distributions are related by a pair
integral equations:

r0~x,t !5Q0~ t !d~x!1E
0

t

dt q0~t!r1~x,t2t!, ~4!

r1~x,t !5Q1~ t !p~x,t !1E
0

t

dt q1~t!p~x,t!* r0~x,t2t!,

~5!

where Qi(t)5* t
`qi(t) dt, and * denotes spatial convolu

tion:

p~x,t!* r0~x,t2t![E p~x8,t!r0~x2x8,t2t! dNx8.

~6!

The system of equations~4! and~5! normally describes a
more general class of processes, since it holds for an a
trary distributionp(x,t). In particular, instead of using th
diffusion regime~3! in the interval between two traps, w
can use the ballistic regime or, say, the superdiffusion
gime. In this paper we limit ourselves to the study of so
tions of Eqs.~4! and ~5! with distribution ~3!. We select the
distribution of the time a particle spends in a trap,q0(t), in
a form that ensures that the subdiffusion regime prevails

3. NECESSARY AND SUFFICIENT CONDITION
FOR SUBDIFFUSION

Let us find the condition that the distributionq0(t) must
meet so that the model leads to subdiffusion~1!. Introducing,
for the sake of brevity, the notationsi(t)5* uxu2r i(x,t) dNx
and using~4! and ~5!, we obtain

s0~ t !5E
0

t

dt q0~t!s1~ t2t!, ~7!

s1~ t !5Q1~ t !s~ t !1E
0

t

dt q1~t!@s~t!1s0~ t2t!#, ~8!

where

s~ t !5E uxu2p~x,t ! dNx5at, a52ND. ~9!
e-

f

bi-

-
-

Taking the Laplace transform of Eqs.~7! and ~8!, si(l)
5*0

` exp$2lt%si(t) dt, we obtain a system of algebraic equ
tions for the componentss0(l)5q0(l)s1(l) and s1(l)
5K(l)1q1(l)s0(l), where

K~l!5E
0

`

dt exp$2lt%FQ1~ t !s~ t !1E
0

t

dt q1~t!s~t!G .
Its solution has the form

s0~l!5
q0~l!K~l!

12q0~l!q1~l!
, ~10!

s1~l!5
K~l!

12q0~l!q1~l!
. ~11!

Using ~9!, we can transformK(l) into

K~l!52a
d

dlE0

`

Q1~ t !exp$2lt%dt2
a

l

dq1l

dl

52a
d

dl

12q1~l!

l
1

a

l

d

dl
@12q1~l!#

5
a@12q1~l!#

l2
. ~12!

According to Tauber’s theorem,si(t);Ait
a, t→`, im-

plies

si~l!;G~a11!Ail
2a21, l→0, ~13!

and conversely.20 By virtue of ~2! we have

12q1~l!;t̄1l, Q1~l!5
12q0~l!

l
;t̄1 , ~14!

so thatK(l);at̄1 /l as l→0. Substituting~13! into ~10!
and ~11! and solving the resulting equations for 12q0(l),
we find the necessary condition for subdiffusion:

12q0~l!;bla, l→0, b5
at̄1

G~a11!A
, a,1,

~15!

with A15A25A ~the asymptotic behavior of the width of th
subdiffusion packet is independent of the initial partic
state!. By virtue of the reciprocity of Tauber’s theorem, th
condition ~14! is also sufficient.

To reformulate the condition~14! for the distribution
densityq0(t), we again turn to Tauber’s theorem and app
it to the function Q0(t), with the result thatQ0(l)5@1
2q0(l)#/l. We obtain

Q0~ t !5E
t

`

q0~t! dt;Bt2a, t→`,

B5
at̄1

@G~12a!#2A
, ~16!

or, for the density,

q0~ t !;aBt2a21, t→`. ~17!

Thus, in the model considered, subdiffusion emerges if
only if the distribution of the times particles stay in trap
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exhibits asymptotic behavior of the power-law type~16! with
an exponenta,1. This means, in particular, that the avera
time a particle stays in a trap is infinite:*0

`tq0(t) dt5`,
a,1. If it is finite, or *0

`tq0(t) dt5 t̄0 , the asymptotic be-
havior of q0(l) is

q0~l!;12 t̄0l, l→0. ~18!

Substituting~14! and ~18! into ~11!, we see that in this cas

s1~l!;
a

l2@11 t̄0 / t̄1#
, l→0,

with the result that the effect of traps reduces to a variation
the diffusion coefficient,D→D/(11 t̄0 / t̄1), and that the
temporal variation of the mean squares1(t) remains linear. It
can be shown that the diffusion packet in this case rem
Gaussian.

4. DIFFERENTIAL EQUATIONS OF SUBDIFFUSION

We go back to Eqs.~4! and ~5! and take Fourier and
Laplace transforms with respect to position and time, resp
tively:

r i~k,l!5E
0

`

dtE dNx exp$2lt1 ikx% pi~x,t !,

with kPRN. This yields

r0~k,l!5Q0~l!1q0~l!r1~k,l!,

r1~k,l!5Q1~l1Dk2!1q1~l1Dk2!r0~k,l!.

The solution of this system has the form

r0~k,l!5
Q0~l!1q0~l!Q1~l1Dk2!

12q0~l!q1~l1Dk2!
, ~19!

r1~k,l!5
Q1~l1Dk2!1Q0~l!q1~l1Dk2!

12q0~l!q1~l1Dk2!
. ~20!

Combining the conditions~15!–~17! with Eqs.~19! and
~20!, we obtain an expression for the leading asympto
terms,

ras~k,l!5
la

l@D8k21la#
, D85

t̄1D

b
, ~21!

which is independent of the initial state. We postpone tak
the inverse transform to Sec. 5. Here we write the ab
relationship in three equivalent forms:

laras~k,l!52D8k2ras~k,l!1la21, ~22!

lras~k,l!52D8k2l12aras~k,l!11, ~23!

ras~k,l!52D8k2l2aras~k,l!1l21. ~24!

As is known, on a suitable class of functions the Lapla
transformF(l) of the Riemann–Liouville fractional deriva
tive

F~ t !5
dm f ~ t !

dtm
[

1

G~2m!

d

dt E0

t f ~t! dt

~ t2t!m
, m,1, ~25!
in

ns

c-

c

g
e

e

is related tof (l) of the differentiable functionf (t):21,22

F~l!5lm f ~l!. ~26!

When m,0, the expression~25! is a fractional integral of
orderumu. Using this notation in the inverse Fourier–Lapla
transform of Eqs.~22!–~24!, we obtain an equation in frac
tional derivatives that describes the asymptotic behavio
the subdiffusion process:

]aras

]ta
5D8¹2ras1

t2a

G~12a!
d~x!, ~27!

]ras

]t
5D8¹2

]12aras

]t12a
1d~x!d~ t !, ~28!

ras5D8¹2
]2aras

]t2a
1d~x!. ~29!

These equations have a general solution with the Four
Laplace transform found earlier, which is represented
Eq. ~21!.

Note that the special case of Eq.~27! corresponding to
a51/2 was obtained by Nigmatullin5 in connection with dif-
fusion in fractal structures of the Koch-tree type, which mo
els porous and disordered media. The one-dimensional
log of Eq.~28! was written out by Compte,10 and the integral
equation~29! was solved by Schneider and Wyss.11 We now
discuss their solution.

5. SUBDIFFUSION DISTRIBUTION DENSITY

Let D851 in Eq. ~29! and write the latter

r~x,t !5d~x!1
1

G~a!
E

0

tdt¹2r~x,t !

~ t2t!12a
, 0,a,1. ~30!

Equation ~30! was studied by Schneider and Wyss,11 who
expressed its solution as a function of the distancer 5uxu in
terms of the Fox functions:

r~r ,t !5
1

a1pN/2r N
H12

20S S r

2D 2/a 1

t U ~1, 1

~N/2,1/a!, ~1,1/a!
D .

~31!

They also found the explicit form of the Mellin compone
in r:

r~s,t !5E
0

`

r s21r~r ,t ! dr

5
2s2N21

pN/2
ta(s2N)/2

G~s/2!G~~s2N!/2!

aG~a~s2N!/2!
. ~32!

We establish another form of the solution that relates
form to stable distributions. This will make it possible n
only to carry out a qualitative analysis but also to understa
the physics of the solution.

We write ~21! as

ras~k,l!5la21E
0

`

exp$2@D8k21la#y% dy, ~33!
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with a,1, and also write the inverse Laplace transform:

ras~k,t !5E
0

`

dy exp$2D8k2y%

3~2p i !21E
g
dl la21 exp$lt2lay%.

Evaluating the innermost integral by parts, we obtain

ras~k,t !5
t

aE0

`

dy exp$2D8k2y%y21

3~2p i !21E
g
exp$lt2lay%dl.

In the innermost integral we transform to the new varia
s5y1/al:

ras~k,t !5
t

aE0

`

dy
exp$2D8k2y%

y111/a

3F ~2p i !21E
g

exp$sy21/at2sa% dsG .
The expression in square brackets is a one-sided stable
sity with characteristic exponenta,1 @see Eq.~A1!#:

g(a)~ t !5~2p i !21E
g
exp$st2sa% ds. ~34!

Thus,

ras~k,t !5a21tE
0

`

dy
exp$2D8k2y%

y111/a
g(a)~y21/at !.

Introducing the integration variablet5y21/at, we find that

ras~k,t !5E
0

`

dt expH 2
D8k2ta

ta J g(a)~t!.

Finally, taking the inverse Fourier transform, we obtain

ras~x,t !5
1

~D8ta!N/2
CN

(a)~ uxu/AD8ta !, ~35!

where

CN
(a)~r !5

1

~4p!N/2E0

`

dt expH 2
r 2ta

4 J tNa/2g(a)~t!,

~36!

with a,1, is a function of the distance and depends on t
parameters: the subdiffusion exponenta and the dimension-
ality N of the space.

Note that both~21! and ~33! have the same meaning
the limit a51 and lead to normal diffusion with the sam
coefficientD8. This means that the functionCN

(a)(r ) can be
redefined so that it holds ata51:

CN
(a)~r !5~4p!2N/2 expH 2

r 2

4 J .

The subdiffusion distribution in the form~35! can be
defined as an ordinary diffusion distribution from simp
e

en-

o

probabilistic considerations based on the central limit th
rem in its generalized form~A7! and ~A8!.16,17,23 Ignoring
the particle dwell time in the diffusion state in our calcul
tions of the distribution of the number of trap events over
observation timet→`, we find that

pn'Q0
(n11)~ t !2Q0

(n)~ t !

5G(a)~~nB* !21/at !2G(a)~@~n11!B* #21/at !.

Representing the argument of the subtracted function in
form

@~n11!B* #21/at5@nB* #21/at2@nB* #21/at~na!21

and expanding in series, we obtain the asymptotic expres

pn;@nB* #21/at~na!21g(a)~@nB* #21/at !, t→`.

When n is fixed, the conditional distribution of the coord
nates of a particle can be expressed in terms of the ordin
diffusion density asr(x,tun);p(x,n/m). Here the random
diffusion time is replaced by the mean valuen/m for under-
standable reasons. Averaging over the number of cont
ous-diffusion events,r(x,t)5(nr(x,tun)pn , and replacing
summation overn by integration with respect to the variab
t5@nB* #21/at, we obtain the distribution~35!.

A convenient way to compare our solution with the o
obtained by Schneider and Wyss11 is to compare the Mellin
transforms of the two solutions. According to~35!,

ras~s,t !5
1

2
p2N/2~4D8ta!(s2N)/2GS s

2D
3E

0

`

t (N2s)a/2g(a)~t! dt.

Expressing the surviving integral in terms of gamma fun
tions via ~A2! and comparing the result with~32! at D851,
we see that the solutions are identical.

6. ANALYSIS OF SUBDIFFUSION DISTRIBUTIONS

In this section we discuss some properties of the so
tions, examine their asymptotic behavior at small and la
distances, and discuss the results of numerical calculatio

We begin with the spatial moments, which can be e
plicitly expressed in terms of the Mellin transforms di
cussed above:

^uxu2n&5
2pN/2

G~N/2!
E

0

`

t2n1N21ras~r ,t ! dr

5
G~n11!G~N/21n!

G~an11!G~N/2!
~4D8ta!n.

The second moment

^uxu2&5
2ND8

G~a11!
ta, ~37!

which is the same as the one calculated by Schneider
Wyss ~Eq. ~1.14! in Ref. 11!, increases with time in propor
tion to ta, 0,a,1, a hallmark of subdiffusion. The ratio
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m2n
(a)5

^uxu2n&

^uxu2&n
5

2nG~n11!G~N/21n!@G~a11!#n

NnG~an11!G~N/2!
,

which represents dimensionless moments of orders hig
than the second, does not depend on time. This suggests
the shape of the distribution remains unchanged@inciden-
tally, this follows immediately from~35!#. At a51 the ratio
yields the dimensionless moments of the normal distributi

m2n
(1)5

2nG~N/21n!

NnG~N/2!
.

Figure 1 depicts the ratio of the dimensionless absolute
ments of order 2s (21/2,s,3/2),

n2s
(a)5

m2s
(a)

m2s
(1)

5
G~s11!@G~a11!#s

G~as11!
,

which characterizes the difference between the shape o
subdiffusion distributionCN

(a)(r ) for a,1 and the normal
distributionCN

(1)(r ). Close to zero (s,0) and at large dis-
tances (s.1), FN

(a)(r ) exceeds the normal distribution
while in the transitional region 0,s,1 the opposite is true

Moving on to analyze the shape of the distributi
CN

(a)(r ) , we note first and foremost that by differentiatin
~36! with respect tor we can easily obtain a relationsh
between the distributions inN- andN12-dimensional space

CN12
(a) ~r !52

1

2pr

dCN
(a)~r !

dr
. ~38!

Let r 5(x1 , . . . ,xN) be anN-dimensional vector, so thatr
5Ax1

21•••1xN
2 . Integrating~36! with respect to the vari-

ablesxn11 , . . . ,xN , where 1,n,N, we obtain

E dxn11•••E dxN CN
(a)~Ax1

21•••1xN
2 !

5Cn
(a)~Ax1

21•••1xn
2 !,

which means that the behavior of the projection of a rand
point in subdiffusive motion inN-dimensional space onto a
n-dimensional subspace is described by ann-dimensional
subdiffusion equation with the same characteristic expon

FIG. 1. Ratio of dimensionless moments,n2s
(a) , for a50.2, 0.4, 0.6, 0.8,

and 1.
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a. In this respect the situation is similar to that in norm
diffusion, but there is an important difference. In normal d
fusion, the coordinatesX1 andX2 of a diffusing particle are
mutually independent, while in subdiffusion the joint distr
bution of the particles,

P$X1Pdx1 , X2Pdx2%

5~4p!21E
0

`

dt expH 2
~x1

21x2
2!ta

4 J tag(a)~t!,

does not reduce to the productP$X1Pdx1%P$X2Pdx2%,
with the result that the random coordinatesX1 andX2 cease
to be independent. The nature of their statistical depende
at small and large distances can be clarified by examining
asymptotics.

Equation ~36! implies that in the one-dimensional (N
51) case the distribution density at the origin exists:

C1
(a)~0!5~4p!21/2E

0

`

ta/2g(a)~t! dt,

sinceg(a)(t) has finite moments of order less thana. Mak-
ing use of Eq.~A2!, we obtain

C1
(a)~0!5@2G~12a/2!#21.

In spaces withN>2, the subdiffusion density~in contrast to
the normal diffusion density! has an integrable singularity
WhenN52, this singularity is logarithmic, as can be eas
verified by splitting the integral in~36! into two parts, the
transient and the asymptotic, and replacing the den
g(a)(t) in the latter by the leading term in the expansi
~A5!:

C2
(a)~r !'~4p!21S E

0

T

expH 2
r 2ta

4 J tag(a)~t! dt

1
G~11a!sinpa

p E
T

`

expH 2
r 2ta

4 J t21dt D .

When r→`, the second term in this sum dominates, whi
leads to a logarithmic singularity:

C2
(a)~r !;@4pG~12a!#21E1~r 2Ta/4!

;@2pG~12a!#21u ln r u, r→0.

In a space withN>3, the singularity at the origin is hyper
bolic:

CN
(a)~r !;

G~a11!sinpa

p~4p!N/2 E
0

`

expH 2
r 2ta

4 J T(N/221)a21 dt

5
1

4pN/2

G~N/221!

G~12a!
r 2(N22), r→0. ~39!

SettingN51 in ~38! and substituting the asymptotic ex
pression~39! into the left-hand side, we find that

dC1
(a)~r !

dr
→2

2

G~12a!

as r→`. This implies that atx50 the derivative of the
function C1

(a)(x) has a finite discontinuity, i.e., rather tha
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being smooth~as in normal diffusion!, the peak of the distri-
bution in the one-dimensional case is a cusp. Asa→1, the
derivative vanishes and the vertex becomes smooth.

Whenr is large, the exponential in the integrand of~36!
rapidly decreases, so that to make an asymptotic estima
the integral we use the expression~A6!, which approximates
the stable density at small values of the argument. We
culate the resulting integral

CN
(a)~r !' ~4p!2N/2AE

0

`

expH 2
r 2ta

4
2br2dJ TNa/22g dt

~40!

by the Laplace method. We begin by introducing the no
tion

w~t!52
r 2ta

4
2bt2d. ~41!

Using the conditionw( t̄)50, we find the position of the
maximum of this function:

t̄5S 4bd

ar 2 D 1/(d1a)

. ~42!

Proceeding in the usual way, we find that

FIG. 2. One-dimensional distributionsC1
(a)(r ) for a52/6, 3/6, 4/6, 5/6,

and 1.

FIG. 3. Two-dimensional distributionsC2
(a)(r ) for the same values ofa as

in Fig. 2.
of

l-

-

E
0

`

expH 2
r 2ta

4
2bt2dJ T~Na/22g!dt

;
At̄2(Na/22g)/(d1a)

pN/2
A 2p

uw9~ t̄ !u
exp$w~ t̄ !%. ~43!

Substituting~41! and~42! into ~43!, and the result into~40!,
we obtain the asymptotic expression~40! in the form

CN
(a)~r !;

1

~4p!N/2

a [(N11)a/221]/(22a)

A22a

3S r

2D 2N(12a)/(22a)

3expH 2~22a!aa/(22a)S r

2D 2/(22a)J . ~44!

A comparison with exact calculations~carried out below!
shows that fora.1/2, Eq. ~44! provides a satisfactory ap
proximation of the distribution over the entire region, exce
at small distances, and asa→1 it turns into the normal dis-
tribution CN

(1)(r )5(4p)2N/2 exp$2r2/4%, i.e., it becomes ex-
act.

Figures 2–4 provide an accurate idea of the shape of
distributions. They depict the subdiffusion distribution
CN

(a)(r ) for several values ofa, including the limit a51
corresponding to normal diffusion@the variances of these
distributions are different and depend ona according to
~37!#. An important difference in the shape of subdiffusio
distributions that sets them apart from normal distributions
the higher concentration of probability at both small a
large distances. But if these features do not play a signific
role in a specific problem, in the one-dimensional case w
a.1/2 subdiffusion distributions can indeed be appro
mated by a Gaussian with subdiffusion variance, as dem
strated by Klimontovich24 ~see Fig. 5!. For spaces of highe
dimensionality, the normal approximation fails to yield sa
isfactory results.

FIG. 4. Three-dimensional distributionsC3
(a)(r ) for the same values ofa as

in Fig. 2.
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FIG. 5. Comparison of subdiffusion distribution
~solid curves! and normal distributions~dashed
curves! with the same variance,a52/3. ~a! N
51, and~b! N53.
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7. DISCUSSION

The fact that there are different formulations of t
anomalous-diffusion problem and different ways in whi
the results can be presented sometimes leads to a situati
which researchers fail to see the logical relations am
them, even when the same problem is being studied.
approach developed in the present paper—from the rand
walk model based on integral equations to the asympt
part of solutions of these equations that satisfy equation
fractional derivatives—makes it possible not only to expr
the coefficients of anomalous diffusion in terms the char
teristics of ‘‘elementary distributions,’’ but also to establish
relationship among the solutions obtained by various me
That such a problem exists can easily be seen by compa
some of the papers devoted to anomalous diffusion1,11 with
Ref. 13.

As noted above, Schneider and Wyss11 used the integra
equation~29! with a multidimensional Laplacian, found th
Mellin and Laplace transforms, expressed the solution
terms of Fox functions, found an approximate express
@that is exactly equivalent to Eq.~44!# for the density at large
distances, and obtained in the one-dimensional case an
expression for the density of the form~in our notation!

C1
a~r !5

1

ar 112/a
g(a/2)~r 22/a!. ~45!

If in ~36! we put N51 and use~A3!, we obtain the same
formula, which advantageously differs from~36! in that there
is no need to integrate now. Note that, according to the pr
erty ~38!, we can express the distributions in spaces wit
large odd number of dimensions in terms of the densityg(a/2)

and its derivatives. As is well known, however, integration
preferable to differentiation in numerical calculations.

At a52/3, the distribution~45! can be expressed, ac
cording to~A4!, in terms of modified Bessel functions of th
second kind:

C1
(2/3)~r !5

1

3p
Ar K 1/3

2r 3/2

A27
.

In Sec. 1.2.3.1 of their review, Bouchaud and Georg1

discuss the problem in which a particle hops suddenly fr
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one point to another with a density characterized by a fin
value of the rms hop length, and by a distribution of tim
intervals between successive hops satisfying the condi
~16!. Using the central limit theorem~as we did at the end o
Sec. 5 of the present paper!, they found the Laplace trans
form ras(x,l), which is the same as the one obtained
Schneider and Wyss11 @Eqs.~2.8! and~2.10!#, established the
self-similar behavior of the distribution, i.e., introduced t
functionCN(r ), and once more derived Eq.~45! without any
mention of Ref. 11.

The work of Schneider and Wyss11 is mentioned in the
Introduction to the paper by Westet al.,13 who nevertheless
believed that they solved a different problem@not the one
solved by Schneider and Wyss11 with the use of Eq.~28!#.
They expressed their solution~only the one-dimensional cas
was considered! in terms of Fox functions and gave the a
proximate expression~44!, derived earlier by Schneider an
Wyss.11 Westet al.13 gave neither a general formula for th
multidimensional case nor the exact solution~45! for the
one-dimensional case, and the well known review
Bouchaud and Georges1 was not cited at all. It must also b
noted that by writing the equation in the form

]s0~x,t !

]t
5C

]2

]x2

]bs0~x,t !

]tb
, ~46!

West et al.13 used a nonstandard notation for the fraction
derivative

]b f ~ t !

]tb
5

1

r ~12b!
E

0

t f ~ t8! dt8

~ t2t8!b
,

instead of the standard notation~25!. As a result, Eq.~46!
corresponds to Eq.~28! at b21512a, i.e.,b522a. With
this modification, the results of Westet al.13 are identical to
their analogs in the cited papers and in the present paper
the improperly defined order of the fractional derivative l
them to believe that fora.1 their solution describes subdif
fusion ~see the remark to Eq.~44! and Figs. 2–5 in Ref. 13
which depict the distributions fora.1). In actuality, how-
ever, as Sec. 4 of the present paper suggests, the paramea
cannot exceed unity in this problem: even if we puta.1 in
the distribution~16! where it first appears, the transform
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~19! and~20! will lead, due to~18!, to an ordinary diffusion
equation, i.e., to Eq.~28! with a51. As Ref. 4 suggests, th
superdiffusion regime is described by equations contain
fractional derivatives with respect to the spatial variables~in-
cidentally, the same is stated in the last section of Ref. 1!.

In conclusion we note that the representation of sub
fusion distributions in terms of steady distributions~in con-
trast to Fox functions! appears to be more convenient, phy
cally clear, and logically justified~in the sense of the limit
theorem!. The properties of stable distributions have be
thoroughly studied and the densities have been tabulate
that they can be added to the class of special functions.19

The author is grateful to S. A. Korobko for doing th
necessary numerical calculations of the distributions in
paper. The work was supported by a grant from the Rus
Fund for Fundamental Research~Grant No. 98-01-03307!.

APPENDIX ONE-SIDED STABLE LAWS

One-sided stable densitiesg(a)(t), a,1, comprise a
subset of the family of strictly stable laws defined in t
following way: the densityg(t) is strictly stable if and only
if for any two positive numbersb1 and b2 there exists a
positive numberb such that

1

b1b2
gS t

b1
D* gS t

b2
D5

1

b
gS t

bD .

In other words, the shape of strictly stable distributions
invariant under convolutions~the best known representativ
of this class of distributions is the Gaussian distribution, c
responding toa52, but it is not a member of the subset
one-sided distributions considered here!.

The characteristic functions of one-sided stable distri
tions have the simple form~form ~B! in Ref. 19!

w (a)~k!5E
0

`

exp$ ikt%g(a)~ t ! dt

5expH 2ukuaexpF2
i ~ap/2!k

uku G J .

According to Lemma 2.2.1 of Ref. 19, the analytic co
tinuation of the functionw (a)(k) from the entire realk axis to
the complex z plane with a cut along the ray argz
52(3/4)p is given by the function

w (a)~z!5exp$2~2 iz!a%, a,1,

which implies that g(a)(l)5*0
` exp$2lt%g(a)(t) dt, the

Laplace transform of the one-sided stable densityg(a)(t),
has the form

g(a)~l!5w (a)~ il!5exp$2la%. ~A1!

The Mellin transform of the stable density can be expres
in terms of the ratio of two gamma functions:17,18

g(a)~s![E
0

`

tsg(a)~ t ! dt5
G~12s/a!

G~12s!
. ~A2!

We have the relationship
g

f-

-

n
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n

s
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d

1

A4p
E

0

`

expH 2
r 2ta

4 J g(a)~t!ta/2 dt5
g(a/2)~r 22/a!

ar 112/a
,

~A3!

whose validity can easily be proved by taking the Mel
transform and using~A2!.

The densityg(a)(t) can be expressed in terms of eleme
tary functions only ifa51/2:

g(1/2)~ t !5
1

2Ap
t23/2expH 2

1

4tJ .

This is the Lévy distribution, also known as the Smirno
distribution17,25 ~named after N. V. Smirnov!. At a51/3 and
a52/3 the stable density~34! can be expressed in terms o
the modified Bessel function and Whittaker function:17

g(1/2)~ t !5~3p!21t23/2K1/3~2/A27t !,

g(2/3)~ t !5A3/p t21 exp$2u/2%W1/2,1/6~u!, ~A4!

whereu5(4/27)t22. Whena is rational,g(a)(t) can be rep-
resented by a finite sum of generalized hypergeome
functions,26, e.g.,

g(3/4)~ t !52
1

t

8

3p (
n51

3

sinS 3np

4 D z2
nF2S 1

3
1

n

4
,
2

3

1
n

4
;
1

2
1

n~n21!

8
,
n~72n!

8
; 2z4D ,

with z52(3/t)3/4/4. For an arbitrary function ofa, the func-
tions g(a)(t) are related to the Fox functions by18

g(a)~x!5a21x22H11
10S x21U ~21, 1

~2a21, a21D .

For numerical purposes, it is convenient to represent the d
sity as the integral of a nonoscillating function. This repr
sentation was obtained by Zolotarev27 by deforming the in-
tegration contour in~34! in a special way:

g(a)~ t !5
at1/(a21)

p~12a!
E

2p/2

p/2

Ua~w!exp$2ta/(a21)Ua~w!% dw,

where

Ua~w!5Fsina~w1p/2!

cosw Ga/(12a) cos@pa/22~12a!w#

cosw
.

It is also convenient to expand the density in a series
convergence for any positivet,

g(a)~ t !5
1

p (
n51

`
~21!n21

n!
G~11na!sin~pna!t2na21,

~A5!

and to find the leasing term in the asymptotic expans
when t→0:

g(a)~ t !5At2g exp$2btd%, ~A6!

where

A5
a1/2(12a)

A2p~12a!
,
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g5
12a/2

12a
, b5

a21

ad
, d5

a

a21
.

Formula ~A6!, which is exact ata51/2, provides a fairly
accurate approximation in the middle of the interval (0,1

The expectation value and higher-order moments
these densities are infinite, but moments of orderm,a ~in-
cluding negative orders! exist and are given by Eq.~A2!.

Tables of the distribution functions G(a)(t)
5*0

t g(a)(t) dt and densities can be found in Refs. 28 a
29, respectively. Note that Holt and Crow29 use form~A! of
the stable distribution, which is related to form~B! of
Bol’shov et al.28 used here, gA

(a)(t)5c(a)g(a)(c(a)t),
wherec(a)5@cos(pa/2)#1/a. Moreover, the second param
eterb of stable laws is defined differently by these resear
ers: according to Holt and Crow29, b521 for a one-sided
distribution on the positive semiaxis, while according
Bol’shov et al.28 b51 for the same case. It may have be
these differences that prevented Holt and Crow29 from com-
paring their results with the earlier results of Bol’sho
et al.28 ~at least they attempted to do so at the end of th
paper; see p. 163 in Ref. 29!. In any case, our comparison o
the results of the two groups, with full allowance for th
foregoing, has shown that there is good agreement.

Stable laws play the same role in the summation of
dependent random quantities with infinite variances as
ordinary Gaussian law does in the case of finite variances
particular, if independent random quantitiesTi<0 are dis-
tributed with a densityq0(t) satisfying the condition~16! for
a,1, for large values ofn the normalized sum

Sn5(
i 51

n
Ti

@nBG~12a!#1/a
~A7!

is distributed with a densityg(a)(t). In other words, in the
asymptotic region of largen, the distribution densityq0

(n)(t)
of the sum( i 51

n Ti has the form

q0
(n)~ t !;@nB* #21/ag(a)~~nB* !21/at !, ~A8!

whereB* 5BG(12a).
.
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One of the simplest examples of possible application of themSR2 method for estimating the
sizes of diamagnetic domains is analyzed in detail. The domains have been observed for the first
time by means of themSRmethod in beryllium@G. Solt, C. Baines, V. S. Egorovet al.,
Hyperfine Interactions104, 257 ~1997!#. Results are given from a computer simulation of amSR2

experiment to measure domain sizes in Be. An algorithm is described for processing the
experimental results. It is graphically demonstrated that domain sizes can be estimated within the
accelerator operating time allocated for an ordinarymSRexperiment. ©1999 American
Institute of Physics.@S1063-7761~99!01706-0#
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1. INTRODUCTION

The mSR method is customarily used to measure t
probability density function of magnetic fieldsw(b) and to
estimate their correlation times. Data averaged over the
ume or surface of a target are obtained inmSRexperiments.
Even if another coordinate of a decay pointr is fixed during
the compilation of a histogram, only the reconstruction of
density functionw(b,r ) can be formally addressed. A muo
stopping point or decay point can be fixed to within at b
1023 cm. The actual errors to within which a coordinate
fixed are 102121022 cm. Such distance scales clearly ha
a more important bearing on solid state physics than
correlation radii of magnetic inhomogeneities, because i
impossible to investigate space-time correlations by suc
‘‘direct’’ method.

However, it has been shown1–3 that the temporal corre
lation function of ordinarymSR histograms compiled from
several different regions of the investigated target alre
contain information about the space-time correlations of
magnetic fields. In principle, the temporal correlation fun
tions ofmSRhistograms compiled from several counters
up at different angles relative to the initial direction of p
larization of the muon spin contain information about t
space-time correlations of the second-order, third-order,
in part fourth-order magnetic fields. In the same papers it
been shown that slow (tcor@1026 s), long-wavelength
space-time correlations with a characteristic scaler cor

@1026 cm can already be successfully investigated at
intensity levels of present-day accelerators. In other wo
space-time correlations can be investigated in ranges tha
essentially inaccessible by the neutron method. Such sc
are important in the investigation of domain structure, sp
glass states, fluctuations at phase transition points~in particu-
lar, for the experimental measurement of critical indice!,
vortex structure in superconductors, and the segregatio
samples into different fractions, etc.

Since themSRsignal is squared as it occurs in the co
relation function, the given approach is called themSR2
1161063-7761/99/88(6)/6/$15.00
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method. We emphasize that this method can actually be u
to measure fluctuations of the muon spin polarization vec
The principal condition for observing them is the detecti
of a sufficient number of paired events~the decay of at leas
two muons! from one correlation volume during compilatio
of the mSR histogram. It has been proposed in the abo
cited papers that either strong pulsed beams of muons o
apparatus that fixes the muon decay point be used to ob
information of interest about magnets. Naturally, this a
proach requires new experimental procedures.

In this paper we have sought to focus attention on
periments of another kind, in which the acquisition of ad
tional information does not require modification of the sta
dardmSRprocedure.

For example, the first application of themSRmethod to
observe the onset of diamagnetic domains in Be has b
reported.4 In the cited experiment the total volume of diffe
ent types of domains has been observed to depend on
external magnetic field and the temperature. From these d
however, it is impossible to deduce the size of the diam
netic domains.

Nonetheless, as will be shown below, by compiling se
eral ordinarymSR histograms from various points of th
target, i.e., in essence transcending the conventional pr
dure used in Ref. 4, it is possible to estimate the domain
after special processing of the experimental data.

Fluctuations of the domain size lead to fluctuations
the volumes of corresponding fractions in which the mu
spin precesses at different frequencies. On the basis of
physical models, information about the domain size can
reconstructed from measurements of the fluctuations of
relative volumes of the fractions at a fixed total volume.

Analogous situations are encountered in the investi
tion of vortex structure in rigid superconductors, in the se
regation of a magnet into zones of differing magnetizatio
and, finally, in paramagnetic states produced by a m
trapped by impurities or defects of a crystal lattice. Differe
4 © 1999 American Institute of Physics
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fractions with their own distinct muon spin precession f
quencies coexist in all these cases.

2. RELATIONSHIP OF THE mSR2 CORRELATION
FUNCTION TO FLUCTUATIONS OF THE RELATIVE
FRACTIONS

The zone irradiated by the muon beam changes sev
times during themSR2 experiment so that the probabilit
W(a) of detecting decays from different fractions also var
in an inhomogeneous target. In the ensuing discussion
define theith pulse or block of information as a set ofNi

detected decays of muons that occur in one zone and
which Wi

(a) can be regarded as constant. Hereni(t) is the
number of events in thei th pulse in thej th time channel,j
5@ t/Dt# and widthDt5Tmax/Nch, whereNch is the number
of counter channels, andTmax is the decay time correspond
ing to the channel with the numberNch (@ . . . # denotes the
integer part of a number!. The expected value of the rando
variableni(t) for a channel widtht small in comparison with
all characteristic times and for a counter having a small s
angle can be written as

ni~ t !5
NiDt

gtm
expS 2

t

tm
D F12Ka(

a
Wi

(a)Mab
(a)~ t !Pb~0!G ,

~1!

where Ka is a vector defining the direction toward th
counter, and the normalization factorg depends on the maxi
mum (Tmax) and minimum (Tmin) muon decay times and ca
be deduced from the normalization condition

E
Tmin

Tmax
ni~ t !dt51.

The behavior of the spin polarizationPb(t) in the frac-
tion of type a is specified by the tensorMab

(a)(t), and its
contribution to the total polarization is proportional toWi

(a) .
Of course,(aWi

(a)51. If the quantitiesWi
(a) vary during

compilation of the statistics for a fixed target position, th
time interval must be divided into subintervals in which t
probabilitiesWi

(a) can be regarded as constant. The subin
vals in this case must be much greater than the muon lifet
tm52.231026 s. One situation in which this condition fail
has been discussed in two papers,2,5 where the potential use
of pulsed muon beams inmSR2 experiments has been inve
tigated. In domain measurement experiments in ferromag
and very likely in the investigation of diamagnetic domai
in Be such conditions can be observed when the target p
tion is fixed and the external fields are constant during
compilation of more than 106 events. Cases in which thi
requirement might not be satisfied will be discussed below
Secs. 6 and 7.

We denote the number of histograms, which is equa
the number of ‘‘pulses,’’ byNblocks. The total number of
single events detected in the entire experiment is t
Nsingle5NblocksNi for an identical number of eventsNi in the
pulse. We can construct an ordinarymSR histogram aver-
aged over all pulses,n(t)5( ini(t)/Nblocks, and find the av-
erage probabilitieŝW(a)&.
-
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In the usual processing of histograms from a physi
model the tensorsMab

(a)(t), which involve the precession fre
quencies, are specified, and the most probable preces
amplitudes of the components of the various fractions
selected. The averages^W(a)& are actually determined in thi
way.

In mSR2 experiments we can obtain an estimate of t
correlation function

B~t!5 (
i 51

Nblocks E
Tmin

Tmax/2 ni~ t1t!ni~ t !

Ni~Ni21!
dt

2E
Tmin

Tmax/2 n~ t1t!n~ t !

Ni
2

dt, ~2!

wheren(t)5( ini(t). The expected value of the correlatio
function,

BT~t!5
Dt

g2tm

expS 2
t

tm
D (

a,a8
^DW(a) DW(a8)&C(aa8)~t!,

~3!

is proportional to the correlations of the deviations of t
quantitiesW(a) from their averages. The functionC(aa8)(t)
is uniquely determined by the behavior of the polarizati
Mab

(a)(t)Pb(0) in the various fractions, which can be dete
mined from the ordinarymSRsignal:

C(aa8)~t!5E
Tmin

Tmax/2

expS 2
t

tm
DKaMab

(a)~ t1t!

3Pb~0!Ka8Ma8b8
(a8)

~ t !Pb8~0!dt. ~4!

For sufficient statistics the least-squares method or F
rier analysis can be employed, in principle, to fin

^DW(a)DW(a8)& from the correlation function. Usually the
correlationŝ DW(a)DW(a8)& simply reduce to fluctuations o
the total volume of the fractions and are associated with
number of grains or domains in the muon stopping zone
with the scatter of their sizes. The relationship of the sizes
the domains to their number must be established on the b
of a physical model. For a stochastic scatter of domain s
comparable in order of magnitude with the average or
random variations of the density of grains, their fluctuatio
are proportional to the volumeV of the muon stopping zone
and, accordingly, the quantitŷDW(a)DW(a8)& is propor-
tional to 1/V. The number of detected events is proportion
to V, so that the error of measurement of the correlat
function is essentially independent of the size of the be
and is in fact determined by its intensity.

Equation ~4! provides a means of readily obtaining
theoretical estimate of the average correlation function w
the number of detected paired events, the number of whic
the experiment isNdouble5NblocksNi(Ni21), is formally in-
finite. A finite number of events produces statistical scatte
the experimentally determined correlation function. A pu
lished estimate2 of the number of paired events necessary
the measurement of correlation effects yields a gross o
estimate, and depends not only on the total number of pa
events, but also on the number of events in a single puls
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When ^(DW(a))2& are small, a computer simulation o
themSR2 experiment must be performed to obtain a realis
estimate of the error of measurement of the correlations
the optimum number of events in a single ‘‘pulse.’’ The to
number of paired events is squared inNi , and it is preferably
made as large as possible. In some cases, however, sim
tion shows that it may be pointless to increaseNi . For nar-
row beams the intensity distribution over the profile of t
beam must also be taken into account. AmSR2 experiment
simulation program has been implemented and, in particu
has provided a means for choosing the conditions un
which it is possible to estimate satisfactorily the sizes
diamagnetic domains in beryllium.

3. APPLICATION OF THE mSR2 METHOD FOR ESTIMATING
THE SIZES OF DIAMAGNETIC DOMAINS IN BERYLLIUM

A straightforward model describing the structure of d
magnetic domains in Be does not exist; we therefore c
sider the simplest model of linear domains, which rests
the assumption that when an external magnetic field is
plied, the target is partitioned into two types of domain
which differ in the strength of the magnetic field in the int
rior of the domain. The following simplifications are adopt
in this model:

1! The field inside each domain is constant~the differ-
ence between the fields in adjacent domains for beryllium
30–40 G for an applied external field of 27.4 G!.

2! A domain comprises a strip of infinite length in th
direction of they axis and of constant width independent
y andz.

3! The width of a domain is distributed equiprobably
the interval fromRmin to Rmax (Rmin andRmax differ for dif-
ferent types of domains, so we denote byRmax1 and Rmax2

the maximum widths of domains of the first and seco
types, respectively;Rmin can serve as the width of the do
main walls, which are not explicitly taken into account in t
given model!. The width of the domain wall cannot b
smaller in order of magnitude than the Larmor radius of
electron, which is equal to 1024 cm in such fields; accord
ingly, the maximum domain width must be of the same or
or greater than 1023 cm.

The contribution of domains of each type to themSR
histogram depends, though not strongly, on the profile of
beam. Let us assume that the target is irradiated by a b
with a Gaussian intensity distribution characterized by
parameters. The input parameters of the model are the
fore the minimum and maximum widths of the domains
each type and the parameter of the Gaussian intensity d
bution s.

Under the conditionRmin ! Rmax the problem is essen
tially independent of the minimum width. In this model w
have constructed the network of graphs shown in Fig.
which can be used to determineRmax1 directly from ^W(a)&
and ^DW2& and then to determineRmax2 from Fig. 2.

The general equations~3! and~4! can be simplified con-
siderably for diamagnetic domains in Be. If the beam pol
ization and the direction to the counter are perpendicula
the magnetic field in the domains, we can introduce a ph
c
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f, which takes into account the relative position of t
counter~vectorK ) and the initial polarizationP(0).

As a result, the tensor expressionKaMab
(a)(t1t)Pb(0)

can replace the scalar functionP0 cos(Vat1f), where P0

5uP(0)u, andVa is the precession frequency in a domain
type a.

Taking into account the presence of only two fraction

^~DW(1)!2&5^~DW(2)!2&52^DW(1)DW(2)&

52^DW(2)DW(1)&5^DW2&,

it is a simple matter to obtain an analytic expression for
expected value of the correlation function from the gene
equations~3! and ~4!:

BT~t!5
DV tm

2

4 S DV tm

4
ka cos

DV t

2

1kb sin
DV t

2 D cos~V t!, ~5!

where

ka,b5Fa,bS Tmax

tm
D2Fa,bS 2 Tmin

tm
D ,

Fa52~x212 x12! e2x, Fb52~x11! e2x,

FIG. 1. Network of graphs for the determination ofRmax1 from experimental
values of ^W(a)& and ^DW2&: ~1! Rmax1/s53.16231023; ~2! 1023; ~3!
3.16231024; ~4! 1024; ~5! 3.16231025; ~6! 1025.

FIG. 2. Dependence of^W(a)& on the maximum radiusRmax1 of domains of
the first type for various maximum radiiRmax2 of domains of the second
type: ~1! Rmax2/s51022; ~2! 1023; ~3! 1024; ~4! 1025.
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FIG. 3. Theoretical~solid curve! and modeled
~dashed curve and points! correlation functions
~a! and their Fourier transforms~b! for 23108 ~a!
and 23107 ~b! events in the caseRmax

51023 cm, Rmin51024 cm, s50.1 cm.
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DV5V12V2 is the difference between the precession f
quencies in adjacent domains, andV5(V11V2)/2 is the
average precession frequency. Equation~5! has been derived
on the assumption thatDVTmax!1 andVTmax@1.

4. SIMULATION PROGRAM

The validity of themSR2 method for estimating domain
sizes in Be has been tested by Monte Carlo computer si
lation of a mSR experiment. The program simulating th
mSR2 experiment consists of three main parts. The first p
is designed to calculate the distribution of the domains o
the target in the above-described one-dimensional mode
linear domains. The final result is the values ofW(a).

The second part of the program is designed to simu
the compilation ofmSR statistics. The only parameter ca
ried over from the first part to the second part of the progr
is W(1), becauseW(2)512W(1).

The simulation result is amSR histogram, i.e, an array
of integers, whosei th element is equal to the number
muons in the corresponding channel of the counter. The
sulting array can be placed in a file for subsequent proces
by other programs, displayed on the screen for compar
with a normalized theoretical curve, or transferred into
third module of the program, where the correlation functi
is calculated.

A cumulative computational algorithm is used, whic
permits the correlation function to be determined after
compilation of statistics in each pulse. This kind of algorith
does not require storage of the sequence ofmSRhistograms
for all pulses.

5. DETERMINATION OF THE AMPLITUDE OF THE mSR2

CORRELATION FUNCTION IN THE CASE OF LARGE
STATISTICS

For a sufficiently large number of events the correlat
function obtained by computer simulation of themSR2 ex-
periment can be brought into agreement with the theoret
equation. For diamagnetic domains having an identical m
mum width of 1023 cm, irradiated by a Gaussian beam
muons with a half-width~standard deviation! of 0.1 cm in the
computer simulation of 20 histograms compiled from vario
points of the target, we havêDW2&51.331024 and
^W(a)&'0.5. Figure 3a shows the correlation function o
tained by simulation and its theoretical estimate calcula
from Eqs.~2!–~4!, in which the value of̂ DW2& known from
the first simulation stage is substituted.
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The ‘‘experimental’’ points essentially fit the theoretic
curve with the correct value of^DW2&, i.e., ^DW2& is deter-
mined indirectly for ^W(a)&'0.5, and from the curves in
Figs. 1 and 2 we readily obtain the dimensionless ra
Rmax/s51022, which for an effective beam diameter o
0.1 cm gives an estimate of the diamagnetic domain width
1023 cm. Such an experiment conducted on a modern ac
erator would require 10–20 h, but there is no need to com
23108 events, because a satisfactory estimate of the dom
widths can be obtained with significantly smaller statisti
The amplitude of the correlation function at the frequen
known from an ordinarymSR experiment can be discrimi
nated for statistics at least an order of magnitude smalle
the total number of events is 23107 and the same number o
‘‘pulses’’ is used, the Fourier amplitude of the ‘‘experime
tal’’ correlation function does not deviate too far from th
theoretical function~Fig. 3b!, so that the domain widths ca
be estimated.

If the above-described effect is not observed experim
tally, this means that the structure of the domains in
target changes during the compilation of a single histogra
corresponding to 106 events in the case discussed above.

The invariance ofW(a) during the compilation of events
in each block pulse signifies in this case that the doma
must preserve their configuration during a time of the or
of 102 s. This requirement can be relaxed by decreasing
number of single events in the block or by using a puls
beam. However, an order-of-magnitude reduction of
number of events in one block leads to a hundredfold
crease in the time to compile the same number of pa
events, making it necessary to consider the possibility
obtaining information about the domain sizes for ‘‘smal
statistics.

6. DISCRIMINATION OF THE AMPLITUDE OF THE mSR2

CORRELATION FUNCTION IN THE PRESENCE OF SMALL
STATISTICS

The statistics compiled in an individual block might n
be sufficient to obtain a ‘‘good’’ correlation function, whic
can be extremely cluttered with noise, and its amplitude c
not possibly be determined from the Fourier transform.
this event a technique analogous to synchronous detectio
radio engineering can be used to discriminate the useful
nal.

The technique essentially entails convolution of the s
nal containing useful information with a certaina priori
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known theoretical function describing the useful signal. T
convolution yields a periodic function, whose amplitude c
ries information about the amplitude of the useful signal, a
the phase shift can be used to assess the influence of n

Figure 4 shows how the amplitude of themSR2 correla-
tion function is reconstructed for the statistics in a sin
block pulse of 20 000 muons. The number of pulses in t
case is 5000, so that the number of single events is of
same order as in the cases represented in Fig. 3, but now
number of paired events governing the error of reconstr
tion of the correlation function is much lower. The noi
amplitude in the correlation function is greater than the u
ful signal and is comparable with it in the Fourier spectru

In the given situation the signal is an experimental e
mate of themSR2 correlation functionB(t) described by Eq.
~2!. The expected value of the convolutionBT(t) ~3! is
adopted as its kernel.

Comparing the autocorrelation function of the kernel

CT~Dt!5E BT~t!BT~t1Dt!dt ~6!

FIG. 4. Discrimination of the amplitude of the correlation function for s
tistics of 5000 blocks of 20 000 muons each for the caseRmax51023 cm,
Rmin51024 cm, s50.1 cm. Comparison of the theoretical~solid curve! and
modeled~dashed curve and points! correlation functions~a! and their Fou-
rier transforms~b!. Result of convolution with the theoretical correlatio
function~c!: autocorrelation function of the kernelCT(Dt) ~solid curve! and
convolution of the signalC(Dt) ~dashed curve!.
e
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with the convolution of the signal

C~Dt!5E B~t!BT~t1Dt!dt, ~7!

both of which are shown in Fig. 4c, we can see that
curves all but coincide. They agree because the known v
of ^DW2& has been substituted into the kernel determin
from Eq. ~3!. In a real experiment̂DW2& is unknown and
must be determined from the ratio of the amplitudes of
convolutions. In contrast with the correlation functions the
selves, whose form in an experiment depends on the num
of paired events and in the presence of small statistics
semble white noise, their convolutions are in the form
periodic functions, even when a useful signal is simply no
existent. In this case the convolution of the theoretical a
experimental correlation functions actually give the amp
tude of random noise at the frequencies of the theoret
correlation function. The test of whether a useful signal
present is smallness of the phase shift. For a high noise
plitude the phase shift can be large and must undergo
dom variation during compilation of the statistics. In Fig.
the indicated phase shift is noticeable, but small, indicatin
low noise amplitude at the frequency of the useful sign
This fact is not so obvious in the Fourier spectrum in Fig. 4

The small statistics of paired events (5000320 0002

5231012) in the above example are the result of the co
paratively small number of solitary events~20 000! in a
single ‘‘pulse,’’ despite the large total number of sing
events, 23108, and their compilation requires approximate
10 h of acceleration operating time. To estimate the dom
sizes, the same result can be obtained in a few minutes
vided that the structure of the domains does not change
nificantly during such time. For example, the statistics can
compiled eight times from 53105. Of course, the random
deviations ofW(a) from the average over eight measur
ments do not give the exact variance in this case, but
order-of-magnitude estimate is clearly in order. For 50
‘‘pulses’’ the variance is determined very accurately, and
characteristic time of required invariance of the doma
structure can be of the order of a second.

7. CONCLUSION

We have shown that large-scale magnetic inhomoge
ities with characteristic dimensions of the order of 1023 cm
can be measured essentially without any modification of
conventional procedure used to performmSR experiments
on surface beams of muons, even when the magnetic
variations have the small amplitude typical of diamagne
domains. ThemSR2 method reduces to a technique for pr
cessing ordinarymSR histograms compiled from severa
zones of the investigated target.

The limitations inherent in the conventional procedu
— first of all, the annoyances incurred by having to chan
the position of the beam relative to the target and, secon
the utilization of a small part of the beam, so that no mo
than 104 events can be detected — severely restrict the
pabilities of themSR2 method. The application of pulse
beams or instruments that fix the muon decay or stopp
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point for mSR investigations makes it possible to surmou
these difficulties and opens up expanded possibilities for
investigation of space-time correlations. Such instrume
and beams have been in existence for some time now,6,7 but
so far have not been used for these applications. By fix
the decay coordinate even within 1-mm error limits it is po
sible to speed up the compilation of statistics by two ord
of magnitude on a target of diameter 1 cm without having
change the position of the target, since a hundred of
mSR2 experiments described in this article are actually p
formed simultaneously. It is entirely within the realm of po
sibility to reduce the coordinate-fixation error to the order
1022 cm, so thatmSR2 experiments can be successfully pe
formed on existing Russian-made accelerators. The plan
time structure of the Moscow Meson Factory beam wo
afford the capability of measuring the temporal and well
spatial correlations of magnetic fields with correlation tim
of 102721025 s and, most auspiciously, slow correlations
1022 s or more. Such experiments were first proposed
this very accelerator many years ago.

The primary objective of the present article has been
t
e

ts

g
-
s
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f

ed
d
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o

visibly demonstrate, by means of a computer experiment
an object of interest in metal physics, the accessibility
experimental teams of this new direction in materials
search by themSRmethod.
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Critical behavior of a degenerate ferromagnet in a uniaxial random field: exact results
in a space of arbitrary dimension
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L. D. Landau Institute of Theoretical Physics, 142432 Chernogolovka, Moscow Region, Russia
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The critical behavior of the transverse~with respect to the field! magnetization component in
classical degenerate magnets with only nearest-neighbors interaction in a uniaxial random
magnetic field at zero temperature is found exactly. For a Gaussian distribution of the random
field the asymptotic transverse magnetization in strong fields does not depend on the
dimension of the space and is of the formm'} ln h0 /h0

2, whereh0 is the width of the distribution.
For a bimodal distribution, where only the field direction is random and the amplitude is
fixed, the transverse magnetization behaves asm'}exp(2const/(Hc2H)D/2), whereH is the
amplitude of the random field,D is the dimension of the space, andHc is the critical
field. © 1999 American Institute of Physics.@S1063-7761~99!01806-5#
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1. INTRODUCTION

Phase transitions in systems with random magnetic-fi
disorder1–3 remain of interest even after 20 years. The Isi
model in a random field was proposed at the end of
1970s for describing doped antiferromagnets placed in a
form external field.4–6 Later, a variety of other systems wit
random-field disorder was discovered. These include var
structurally disordered materials,7–9classical10 and quan-
tum11–13 liquids and liquid crystals14,15 in porous matrices,
and vortex phases of dirty superconductors.16,17

Theoretical investigations of these systems have enco
tered serious difficulties. The early works18–20devoted to an
Ising magnet in a random field led to an elegant result kno
as the Parisi–Sourlas reduction: the critical exponents
dirty system in a space of dimensionD are the same as in
pure (D22)-dimensional magnet. This result implies th
long-range order is absent in a three-dimensional ferrom
net in a random field. However, experiments with doped
tiferromagnets in a uniform external field have not confirm
this prediction of the theory.5 Several years later the exis
tence of long-range order in a three-dimensional Ising mo
in a random field was proved rigorously.21–23 Subsequent
experiments1 and numerical simulations24 showed that even
the critical exponents had been predicted incorrectly in
dimensions. The collapse of the theory is evidently due to
complicated structure of the energy landscape of a disord
system.25,26 As a result, the perturbation theory used in t
early works does not work. Since a complicated energy re
is typical for mean-field systems where replica symmetry
broken27–30 it is tempting to use the concept of replica sym
metry breaking in disordered systems with a finite interact
length. In recent years progress has been made along
avenue31–35 by means of the variational method, taking a
count of the possibility of replica-symmetry breaking. How
ever, an approximate variational approach is insufficient
solving the phase-transition problem.

In the absence of a reliable systematic method exac
1171063-7761/99/88(6)/9/$15.00
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sults that can be obtained for specific models become im
tant. For systems with random fields and a finite interact
length, exact solutions can be obtained in two cases: o
dimensional models36 and the spherical approximation.37–40

Since there is no phase transition in the one-dimensio
case, exact results on the critical behavior exist only for
spherical model, where the number of components of
order parameter is infinite.

In the present paper the critical behavior of classical
generate magnets with a finite number of components (XY
and Heisenberg magnets! and a finite interaction length in a
uniaxial random magnetic field at zero temperature is st
ied. The critical behavior of the transverse~with respect to
the field! magnetization component near the average am
tude of the random field for which the magnetization va
ishes is studied. This problem is interesting because it ca
solved exactly and mathematically rigorously in a space
arbitrary dimension. A brief report on this subject has be
published in Ref. 41. The present paper contains a deta
exposition of the results presented in Ref. 41. The metho
based on a proof of strict upper and lower estimates for
magnetization. These estimates can be made close enou
that the asymptotic behavior of the magnetization nea
phase-transition point can be extracted from them.

Two types of distributions of the random field are stu
ied in this paper: a Gaussian distribution and a bimodal d
tribution in which only the direction of the field is random
and the absolute magnitude of the field is fixed. For a bim
dal distribution of the random field the model can be used
describe dirty antiferromagnets in a uniform magnetic fie
Quantum fluctuations are neglected below, i.e., the spins
assumed to be large.

The critical behavior of the present model at nonze
temperature has been studied in Refs. 42–44 by the re
malization group method. It is found that the critical beha
ior of the magnetization at zero temperature differs subs
tially from a power law, predicted by renormalization-grou
0 © 1999 American Institute of Physics
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calculations for finite temperature, and in addition there i
large difference between the Gaussian and bimodal case

The model is described by the Hamiltonian

H52J(̂
i j &

Si•Sj2(
i

HiSi
z , ~1!

whereSi are spin vectors of unit length,Hi are the random
fields, and(^ i j & denotes summation over pairs of neighbo
ing sites in aD-dimensional cubic lattice. Below the distanc
between the neighboring spins is assumed to be unity. T
types of distributions of the random field are considered:

1! a Gaussian distribution of widthh0

P~Hi !5
1

A2ph0

expS 2
Hi

2

2h0
2D ; ~2!

2! a bimodal distribution

P~Hi !5cd~Hi1H !1~12c!d~Hi2H !, ~3!

wherec and 12c are the probabilities of two opposite dire
tions of the random field6H.

For a bimodal distribution of the random field th
Hamiltonian~1! can be obtained by a gauge transformat
of the Hamiltonian of a Mattis spin glass45,46 in a uniform
magnetic fieldH. It can be verified that the results found
the bimodal case also hold for antiferromagnets w
random-bond disorder in a uniform external field.

The magnetization component transverse to the field,
case of interest below, arises by the same mechanism a
order parameter component transverse to a uniform exte
field in antiferromagnets.47 For a Gaussian distribution of th
random field the transverse magnetizationm' is different
from zero for arbitrary distribution widthh0,`. It is shown
rigorously below that for largeh0 the transverse magnetiza
tion follows the law

m'}const
ln h0

h0
2

~4!

for a space of arbitrary dimensionD. The exact formulation
of the result consists of the inequalities~16! for the disorder-
and volume-averaged magnetization in the thermodyna
limit. For a bimodal distribution of the random field th
transverse magnetization vanishes in strong fields,H.Hc

54DJ. As will be shown below, for random field amplitud
H close to the critical fieldHc the transverse magnetizatio
satisfies

m'}expS 2
const

~Hc2H !D/2D . ~5!

The rigorous result lies in the estimates~33!.
This paper is organized as follows. The critical behav

of the transverse magnetization~4! and ~5! is elucidated in
Sec. 2 on the basis of qualitative considerations. A rigor
derivation of the upper and lower bounds for the magnet
tion with a Gaussian random field is given in Sec. 3. T
bimodal case is analyzed in Sec. 4. Two lemmas which
used in so doing are given in an appendix. A discussion
the results is contained in Sec. 5.
a
.
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Auxiliary statements required in what follows are form
lated below.

In the first place, we note that in the ground state
transverse~with respect to the field! magnetization compo-
nents of all spins point in the same direction. Indeed,
interaction energy with the random field does not depend
the direction of the transverse components. However, the
change energy is minimum for spins oriented in the sa
direction. Hence it follows that if for all spins the transver
components are different from zero, then they all point in
same direction. The case where in the ground state s
spins are parallel to the random field requires a sepa
analysis. In this case the system could break up into clus
in which the transverse magnetization points in different
rections. However, it is easy to see that in the ground s
the transverse component of the magnetization can va
only for all spins simultaneously. To show this, rotate t
transverse components of all spins so that they point in
same direction. This will not increase the energy of the s
tem. Now take a spinSwhich is parallel to the field and ha
a neighbor with a nonzero transverse component. An ef
tive field, including the random field and the Weiss field d
to the exchange interaction with neighboring spins acts
the spinS. This effective field possesses a component tra
verse to the random field. The energy of the system w
decrease if the spinS is rotated, without changing the direc
tion of all other spins, so that it points in the same directi
as the effective field. The assertion follows.

We have arrived at the conclusion that in the grou
state all spins lie in the same plane. This explains the
that the critical behavior~4! and ~5! is the same for any
number of spin components. For this reason, in what follo
we can assume that the spinsSi are two-component and th
spin component transverse to the field is positive:

Si
z5cosf i , Si

x5sinf i>0. ~6!

Now our problem is to calculate in the ground state t
transverse component of any single spin averaged over
realizations of disorder

m'5sinf i . ~7!

If the ground state is degenerate, then any ground state
be chosen, since the estimates obtained below hold fo
ground states. Of course, the average~7! is independent of
the choice of spin only in the thermodynamic limit, whe
boundary effects are negligible. In the problem at hand
transition to the thermodynamic limit does not present a
difficulties. For the transition to the thermodynamic limit
the Gaussian case it should be noted that the estimates
rived in Sec. 3 hold for all spins located farther than 5~the
distance between neighboring spins is taken as 1! from the
boundary of the system. In the bimodal case bound
effects are negligible for spins located at distanc
L.exp(1/(Hc2H)) from the boundary.

We will use repeatedly two inequalities whose deriv
tion is given below. In the ground state each spinSk is di-
rected along the effective field, which depends on the r
dom fieldHk and the directions of the neighboring spinsSl .
This is expressed by the equation
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sinfk5S cosfkJ(
l

sinf l D /S Hk1J(
l

cosf l D . ~8!

Hence for sufficiently largeHk

sinfk<S J(
l

sinf l D /~ uHku22DJ!. ~9!

Since sinfl<1, it follows from the last inequality that

sinfk<2DJ/~ uHku22DJ!. ~10!

2. QUALITATIVE ESTIMATES

The purpose of this section is to present intuitive cons
erations elucidating the origin of the results obtained in t
work. Strict proofs, which are contained in Secs. 3 and 4,
obtained by formalizing these guiding considerations.

2.1. Gaussian case.
For a Gaussian distribution of the random field the res

~4! does not depend on the dimension of the space. For
reason, we start with the zero-dimensional case.

For this, we consider the two-spin model with th
Hamiltonian

H52JS1•S22H1S1
z2H2S2

z , ~11!

whereH1 andH2 are random fields. We assume that

H2@J, ~12!

and the fieldH1 is such that

uH11Ju,eJ2/uH2u, e!1. ~13!

Let us compare the energies of two equilibrium states@i.e.,
such that the spins are directed along the local effective fi
and their components satisfy Eq.~8!#: the stateA where
S1

x5S2
x50 and the stateB whereS1

x'1 andS2
x'J/uH2u. A

simple calculation shows that the stateB is deeper: the loss
in the energy of interaction of the spinS2 with the magnetic
field is compensated by a gain in the interaction energy
the spin components transverse to the field. Therefore
transverse magnetization of the system in the ground sta
of the order of 1. For a Gaussian distribution of rando
fields H1 and H2 with width h0@J, the configuration of
random fields~12! and ~13! has a probabilityP; ln h0 /h0

2.
However, if the inequality~13! is not satisfied, then the stat
A is deeper and the transverse magnetization is zero.
result ~4! follows.

In the D-dimensional situation we note that for a larg
width h0 of the Gaussian distribution rare regions where
random field is of the order of the exchange constant m
the main contribution to the transverse magnetization. It
be shown that the transverse magnetization decreases e
nentially away from such regions. Therefore the magnet
tion of the system is concentrated in rare clusters consis
of several spins. The clusters can be treated as z
dimensional systems. As a result, the critical behavior~4!
remains in a space of arbitrary dimension.

2.2. Bimodal case.
Just as in the Gaussian case, rare clusters make the

contribution to the magnetization, but now the magnitude
the magnetic field is fixed. Clusters where the magnetic fi
-
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is zero on the average over the volume play the main role
such clusters the tendency of the exchange interaction
align all spins in the same direction competes with the t
dency of the spins to align along the magnetic field. A r
orous analysis shows that the transverse magnetizatio
concentrated in clusters where the random field is orien
upwards and downwards in a chessboard fashion.

It is easy to find the energy of such a cluster with volum
V5LD (L is the size of a cluster! when the transverse com
ponent of all spinsm' is the same. Neglecting surface e
fects, for smallm' the energy can be expressed as

E5constV2V
Hc2H

2
m'

2 , ~14!

where H is the amplitude of the random field andHc

54DJ. However, the state where the magnetization is n
uniform over the volume of a cluster is more advantageo
since the energy loss due to the boundary of the cluste
lower in this state. Assuming that the magnetization var
smoothly over the volume from zero at the boundary to
certain valuem at the center of the cluster, we estimate t
energy as

E;constV2V
Hc2H

2
m21JLD22m2, ~15!

whereL is the cluster size. A state with nonzeroL is advan-
tageous forL.1/AHc2H, i.e., V.(Hc2H)2D/2. Since
large clusters are exponentially rare as a function of th
volume, the result~5! follows.

The results~4! and ~5! are rigorously substantiated be
low.

3. GAUSSIAN DISTRIBUTION

We shall estimate the disorder-averaged transverse c
ponentsinf0 of the spinS0 at the lattice siteS0 . Our aim is
to prove the inequalities

sinf0.C1

ln h0

h0
2

, ~16a!

sinf0,C2

ln h0

h0
2

, ~16b!

whereC1 andC2 are constants.
A derivation of Eq.~16a! is contained in the next sec

tion. In addition, in this section a convention is introduc
for the notation used in subsequent sections.

In what follows const and the lettersa, g, d, e, V, C,
C1 , andC2 denote constants which depend on the dimens
D of the space but not on the amplitude of the random fie

3.1. Lower bound on the magnetization
Let us consider a configuration of random fields f

which

0,H012DJ,e(
k

J2

Hk
, ~17!

Hk.VJ, Hp.VJ. ~18!
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In these formulasH0 is the field at the siteS0 , Hk is the field
at sitesSk neighboringS0 , Hp is the field acting on the spin
Sp (pÞ0) which are neighbors of the spinS0 ~and are dif-
ferent fromS0), and the constantse!1 andV@1. We shall
use a similar convention for the spin indicesk andp every-
where below without explanation. The bounds on the c
stantse and V will be clear from the scheme of the proo
presented in the present section. For largeh0 the probability
of the configuration~17! and~18! is of the order of lnh0 /h0

2.
For this reason, to prove Eq.~16a! it is sufficient to show that
sin f0;1. To this end we compare the energy of two st
es: the stateA, which has the lowest possible energy wi
the restriction sinf0,e, and the stateB, which will be
described below and in which sinf051. In the stateB all
spins exceptS0 and its neighborsSk point in the same direc
tion as in the stateA. The spinsSk are assumed to be directe
along the local effective field:

sinfk5S cosfkJ(
l

sinf l D /S Hk1J(
l

cosf l D , ~19!

where( l denotes summation over all neighbors of the s
Sk , including the spinS0 . Similar notation will be used be
low without explanation. The equation~19! also holds in the
stateA, since this equation expresses the condition that
energy has an extremum with respect to the anglesfk .

As will be shown below, the stateB is deeper. This is
because the loss in the interaction energy of the spinsSk with
the random field is less than the gain in the exchange in
action energy of their transverse components with spinS0 .

An estimate of the form~9! for the quantitiesfk follows
from Eq.~19!. In the stateA a similar estimate also holds fo
the spinsSp ~after all, in the stateA they point in the same
direction as the local field!. The inequality~10! for sin fp

follows from this estimate. It is easy to verify that the spi
Sk andSp make anglesless thanp/2 with the corresponding
random fields. In combination with Eqs.~9! and ~10!, this
makes it possible to estimate cosf(k,p) .

Now it is easy to estimate the contribution depending
the spinsS0 andSk to the energy of the stateA. To within a
constant that is independent of the spinsS0 and Sk , this
contribution is

E~f0 ,fk!52~H012DJ!cosf01(
k

~Hk1Jcosf0!

3~12cosfk!2J(
k

sinfk sinf0

1J(
k

~12cosfk!(
p

cosfp

2J(
k

sinfk(
p

sinfp . ~20!

In this formula the notation(k( . . . )(p implies summation
over pairs of neighboring spinsSk and Sp only. We shall
adhere to a similar convention below. The estimates enum
ated above permit concluding that in the caseA
-

-

n

e

r-

n

r-

E.2a(
J2

Hk
, a!1. ~21!

The lower bound of the anglesfk in the stateB can be
found by analogy with Eq.~9!:

sinfk>
J cosfk

Hk1~2D21!J
. ~22!

The estimates obtained above make it possible to estim
the energy~20! in the caseB. It is found that

E,2b(
k

J2

Hk
, b'1/2. ~23!

We see that the stateB is deeper. Hence we conclude that t
ground state satisfies sinf0.e and we extract the require
estimate~16a!.

The proof that the transverse magnetization is differ
from zero for any width of the Gaussian distribution is com
pletely analogous.

3.2. Upper bound of the magnetization
We now proceed to the derivation of Eq.~16b!. If the

magnetic fieldH0 at the siteS0 is high compared with the
exchange constant, then the spinS0 is oriented almost in the
direction of the field. For this reason, only spins located in
weak random field contribute to the transverse magnet
tion. This contribution depends on the field acting on a giv
spin and on the fields at neighboring sites. However, t
contribution does not depend on the random field acting
distant spins. The reason is that the transverse spin com
nents decrease rapidly away from the weak-field regi
Therefore the correlations between distant spins are wea
turns out that in the limit of largeh0 the contribution of the
spinS0 to the transverse magnetization is determined ma
by the configuration of the random field inside a cubeG with
edge length 9~the distance between neighboring spins
taken to be 1! and centered at the siteS0 .

Four possibilities for the distribution of the random fie
in the cubeG are considered below:

1! the random fieldHi,VJ, where the constant satisfie
V@1, in at least two points of the cubeG;

2! Hi.VJ holds at all points of the cube;
3! the random field satisfiesHi,VJ at one point of the

cube, which is not the center of the cubeS0 ;
4! the random field satisfiesH0,VJ andHi.VJ holds

elsewhere in the cube.
In all cases our problem is to estimate the contribution

the corresponding field configurations tosinf0.
1! This case is very simple. It occurs with probability o

order 1/h0
2, and sinf0<1. Therefore the corresponding con

tribution m1 to the transverse magnetization is

m1,const /h0
2 . ~24!

2! In this case the spinS0 behaves almost as if the sys
tem were in a strong uniform external field. Therefore t
transverse magnetization is small. The scheme of the a
ments in the second case is as follows: applying Eq.~9! to
the spinS0 we obtain
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sinf0,S J(
k

sinfkD /~ uH0u22DJ!, ~25!

where the notation was explained in the preceding sect
Applying Eq. ~9! to the anglesfk and Eq.~10! to the angles
fp , we find

sinf0S 12
1

V22D

2D

V22D D,
J

uH0u22DJ

3(
k

J

uHku22DJ (
p

2DJ

uHpu22DJ
. ~26!

It remains to integrate the inequality~26! over the distribu-
tion function of the random field. As a result,

m2,constS ln h0

h0
D 3

~27!

is obtained for the contributionm2 to the transverse magne
tization.

3! There are two variants here:
a! the random fieldsHi.VJ at all points of the cubeD

with edge length 5 and centered at the siteS0 ;
b! the random fieldH1,VJ at some pointS1 of the

cubeD.
The case 3a! can be examined identically to case 2!. This

is because information about random fields outside the c
D was not used to analyze case 2!. The inequality

m3a,constS ln h0

h0
D 3

~28!

is obtained for the contribution to the transverse magnet
tion.

In the case 3b! once again we argue similarly to case 2!.
Here a difference from case 2! arises. It is due to the fact tha
now Eq.~9! cannot be used to estimate the transverse c
ponent sinf1 of the spin at the siteS1 . Therefore the struc-
ture of Eq. ~26! changes. Now the indicesp and k cannot
assume the value 1, and an additional term proportiona
sin f1 appears. Its upper bound is const•sinf1. Integrating
over the distribution function of the random field gives t
following estimate of the contribution to the transverse m
netization:

m3b,constS ln h0

h0
D 3

1const~p sinf1!, ~29!

where the overbar denotes an average over the realizatio
the disorder for whichH1,VJ and p is the probability of
the configuration b!. The expression forp sinf1 can be esti-
mated by the same method that will be used to analyze
case 4!.

4! Once again there are two variants:

a) UH01J(
k

signHkU,C(
k

J2

uHku
,

b) UH01J(
k

signHkU.C(
k

J2

uHku
,

n.

be

a-

-

to

-

of

e

where the notation is the same as in Eq.~17! and the constan
satisfiesC@1.

The probability of the configuration 4a! is of the order of
ln h0 /h0

2. This is sufficient to obtain the estimate

m4a,const
ln h0

h0
2

. ~30!

In the case 4b! the z componentH01J(kcosfk of the
effective field at the siteS0 is essentially identical toH0

1J(k signHk . This can be verified by noting that the diffe
ences of thez components of the spinsSk from signHk are
small, as 1/Hk

2 ~or even stronger!. The rest of the proof is the
same as in case 2!. The only difference will be that in an
estimate of the type~9! for the anglef0 the quantityuH0

1J(ksignHku/2 must be substituted foruH0u22DJ. The fi-
nal result for the contribution to the transverse magnetiza
is

m4b,constS ln h0

h0
D 3

. ~31!

Using the inequalities~24! and ~27!–~31! we obtain the
estimate~16b!. This completes the analysis of the Gauss
case.

4. BIMODAL DISTRIBUTION

We shall call a site of this set of lattice a connect
region if any lattice site can be reached from any other lat
site by moving along lattice edges while always remain
inside the region. In the bimodal case connected regi
where the random field is oriented upwards and downwa
in a chessboard fashion make the main contribution to
magnetization. We shall call chessboard regions conne
regions if the random field at each point of the region poi
in a direction opposite to the field at all neighboring points
the lattice. In chessboard regions the Hamiltonian~1! can be
obtained from the Hamiltonian of an antiferromagnet in
uniform external field by inverting the spinsSi→2Si in one
of the two chessboard sublattices. Therefore in sufficien
large chessboard regions a transverse magnetization ap
for the same critical field as in an antiferromagnet. In o
model this field isHc54DJ, whereD is the dimension of
the space.

It is easy to show that the transverse magnetization v
ishes forH.Hc . For this, the inequality~9! must be applied
several times in succession. As a result, we obtain for a
trary spin, given by the anglef,

sinf,S 2DJ

H22DJD M

, ~32!

where M is an arbitrarily large number. It follows tha
sinf50 for H.4DJ.

Our goal is to prove the two inequalities

m'.expS 2
C1

~Hc2H !D/2D , ~33a!
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m',expS 2
C2

~Hc2H !D/2D , ~33b!

whereC1 andC2 are constants. The inequality~33b! will be
proved below forDÞ2. The weaker inequality

m',expS 2
const

~Hc2H !ln~1/~Hc2H !! D ~33c!

will be proved in the two-dimensional case.
It would be interesting to learn whether in the tw

dimensional case logarithmic corrections are indeed pre
or the inequality~33b! always holds.

The lower bound can be easily derived. For this it
necessary to consider a chessboard region in the shape
cube of sizeL5V/A12H/Hc, V@1. The concentration o
such regions is exponentially low exp(2constLD). In a pure
antiferromagnet the magnetization nearHc behaves accord
ing to the mean-field law sinf;A12H/Hc. Comparing dif-
ferent contributions to the energy shows that in a disorde
system the state with sinf;A12H/Hc at the center of the
cube is indeed energetically favorable. Hence obtains the
quired bound. The formal proof can be constructed by co
paring the energy of the deepest stateA from among the
states for whichf,(12H/Hc)

4 everywhere inside the cub
with the energy of the stateB for which all spins outside and
on the boundary of the cube point in the same direction a
the stateA, while inside the cube sinf varies smoothly,
reaching at the center the maximum valueeA12H/Hc,
wheree is a small constant which does not depend onH.

The upper bounds are derived below. To make the
position clearer we consider the casec!1 first and then
proceed to the general case. The simplification for smac
arises because in this limit large chessboard clusters are
ponentially rare. The exposition of the general case will
based on the casec!1.

4.1.Upper bound of the magnetization in the presence
weak disorder

For smallc the density of chessboard clusters with vo
umeV is less than exp(2const V!. The argument proving this
fact is based on an estimate of the number of conne
regions with volumeV that contain a given point. It is given
in Appendix 1. It is obvious that the contribution from ches
board clusters with volumeV.const/(Hc2H)D/2 to the
magnetization is exponentially small.

Outside chessboard clusters the transverse magnetiz
decreases rapidly with increasing distance to the nea
chessboard cluster. IfH is close toHc ~this is the case of
interest to us!, then an analysis ofthe possible directions
the effective field shows that the magnetization at each
makes with the random field an angle less thanp/2. This
makes it possible to obtain from Eq.~8! the following in-
equality outside chessboard clusters:

sinfk,
J( l sinf l

H2~2D21!J
. ~34!

Applying the inequality~34! several times successively w
obtain for the transverse component of the spinSk
nt

f a

d

e-
-

in
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sinfk,F 2DJ

H2~2D21!JGS

, ~35!

whereS is the distance from the spinSk to the nearest chess
board region. The derivation of Eq.~33b! requires an esti-
mate with the structure of Eq.~35! but with a larger expo-
nent.

To obtain such an estimate we consider a chessbo
region with volumeV,Vc , where

Vc5a~Hc2H !2D/2, DÞ2, ~36a!

Vc5a
1

~Hc2H !ln~1/~Hc2H !!
, D52, ~36b!

a!1.

The magnetization in this region can be estimated in term
the magnetization at the sites closest to it and lying outs
the region, i.e., in terms of the magnetization at the bound
of this region. A lemma according to which inside the d
scribed region the transverse magnetization satisfies the
equality

sinf,~11e!~sinfb!max, e,consta2/D!1, ~37!

where (sinfb)max is the maximum magnetization at the
boundary of the region, is proved in Appendix 2. This lemm
permits writing instead of Eq.~34! ~for spins located outside
chessboard clusters and not on the boundary of the ch
board clusters of volume greater thanVc) the inequality

sinfk,S J~11e! (
u51

2D

sinfuD /~H2~2D21!J!, ~38!

where the sinfu denote the transverse components of cert
spins located outside the chessboard regions and at a dis
less thanVc11 from the siteSk . Repeated application of th
inequality ~38! gives the estimate

sinfk,F 2DJ~11e!

H2~2D21!JGS8/(Vc11)

, ~39!

whereVc is the critical volume~36! and S8 is the distance
from the spinSk to the nearest chessboard region with v
ume V.Vc . The inequality~39! refers to spins outside th
chessboard clusters. Combining it with the inequality~37!
we obtain a similar estimate for spins from small chessbo
regions. Since large chessboard regions are exponent
rare, this makes it possible to derive Eqs.~33b and 33c!.

4.2.Upper bound of the magnetization in the presence
strong disorder

If c is not small, then one cannot assert that large che
board clusters are exponentially rare. Conversely, above
percolation threshold even infinite chessboard clusters
arise in the system. However, the estimates of the transv
magnetization~33b and 33c! remain valid. The point is tha
almost every chessboard cluster is ‘‘larded’’ with nonche
board regions. Although the appearance of transverse m
netization inside a cluster is energetically favorable, the l
in energy due to ‘‘nonchessboard impregnations’’ can
greater. As a result, only the large chessboard clusters
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are free of ‘‘nonchessboard impregnations’’ contribute to
magnetization, and the number of such clusters is expon
tially small.

We now proceed to the proof. Let us cut the system i
cubic cells with edges of large lengthA which is independen
of H. The probability of such a cell being a chessboard cl
ter is small. In what follows, we shall retain the term ‘‘ches
board cluster’’ only for chessboard regions consisting
tirely of one or several cells. With this definition large ches
board clusters will once again be exponentially rare. The
fore their contribution to the magnetization is once ag
exponentially small. Our next goal is to derive the analog
Eq. ~39! for spins located outside chessboard clusters. Jus
in the preceding subsection, the inequality~37! makes it pos-
sible to obtain an analogous formula for spins from sm
chessboard clusters. This will make it possible to give a co
plete proof.

To derive the analog of Eq.~39! we shall assume that th
distance from the spin considered to the closest chessb
cluster with volume greater thanVc ~36! is greater than
AD(Vc11). The fraction of spins for which this condition i
not satisfied is exponentially small as a function ofVc , so
that their contribution to the transverse magnetization is c
tainly also exponentially small.

All further arguments are valid if the amplitude of th
random field is sufficiently close toHc , Hc2H,B!Hc ,
and the constanta ~36! is sufficiently small~but independent
of H). How smalla andB must be will be evident from the
proof given below.

Outside chessboard clusters an inequality similar to~34!
~but weaker because of the new definition of a chessbo
cluster! follows from Eq.~8!. This inequality is

sinfk<S (
l

sinf l D /2D~12~Hc2H !/~2DJ!!. ~40!

Each of our cells with edge lengthA, if the cell is not a
chessboard cluster~this is the only case in which we are no
interested!, will contain a spinS1 for which the random field
at one of the neighboring sites points in the same directio
at this spin. For this spin the inequality~34! holds. For arbi-
trary spinSk from a nonchessboard cell we can write

sinfk<
Tk

2D S (
l

sinf l D , ~41!

where Tk /(2D)( lsinfl denotes the right-hand side of th
inequality ~40! for spins at which the random fields at a
neighboring sites point in a direction opposite to the dir
tion at the spins themselves and the right-hand side of
inequality ~34! for all other spins.

Using the lemma proved in Appendix 2 we derive fro
the inequality~41! the relation

sinfk<
Rk

2D S (
u51

2D

sinfuD , ~42!

whereRk5(11e)Tk and the spinsSu lie outside the chess
board clusters and are located at distances from the siteSk no
greater than (Vc11). The constante can be made as small a
desired~independently ofH) by appropriately choosing th
e
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constanta in the definition of the critical volume~36!.
Therefore, for a random field with amplitude sufficient
close toHc it is possible to attain

Rk,11g, ~43!

whereg is an H-independent constant, which by choosin
appropriate values ofa andB can be made as small as d
sired. The estimate

R1,
11e

111/~4D !
~44!

which is stronger than the inequality~43!, holds for the
above-mentioned spinS1 with the property that the random
field acting on it points in the same direction as the field
one of the neighboring sites .

Next we apply the inequality~42! DA times succes-
sively. The result is an estimate for the transverse magn
zation sinfk

sinfk<
1

~2D !DA (
w51

(2D)DA

Pw sinfw , ~45!

where all spinsSw lie at distances no greater thanDA(Vc

11) from the siteSk . Each factorPw in Eq. ~45! is a prod-
uct of DA factors of the formRi . The inequality~45! can be
put into the form

sinfk<
1

~2D !DA (
w

Pw~sinfw!max, ~46!

where (sinfw)max is the largest of the quantities sinfw .
We now recall the inequalities~43! and~44!. They make

it possible to estimatePw . It is important that since we hav
worked with a nonchessboard cell, a factor equal to the rig
hand side of Eq.~44! appears in the estimate of one of th
coefficientsPw . For sufficiently smallg this makes it pos-
sible to show that

1

~2D !DA (
w

Pw,12d, ~47!

whered is a small positive constant that does not depend
H. As a result we obtain from Eq.~46!

sinfk<~12d!~sinfw!max. ~48!

Applying the latter formula repeatedly we obtain an estim
of the type~39!. To complete the proof it remains to give a
argument similar to that contained in the preceding secti

5. DISCUSSION

In the system studied above, rare regions give rise
ordering. This is reminiscent of a Griffiths phase.48 However,
our problem contains long-range order and spontaneous s
metry breaking. The appearance of long-range order is du
a weak ferromagnetic interaction of rare ordered cluste
Such an interaction is also present in other disordered
tems undergoing a Griffiths transition, but even weak th
mal fluctuations can destroy the order. A specific feature
the problem studied in the present paper is that there ar
thermal fluctuations.
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The mean-field approximation42 ignores the contribu-
tions from rare regions and therefore leads to incorrect c
clusions. In the Gaussian case the mean-field approxima
predicts an incorrect exponential dependence of the ma
tization on the field in the strong-field limit. In the bimod
case the mean-field approximation gives incorrect answ
for the critical behavior and for the critical field in which
phase transition occurs.

The results obtained above are applicable to certain o
systems. Specifically, the critical behavior~5! occurs in an-
tiferromagnets with random-bond disorder in a uniform fie

The model studied above neglects quantum fluctuatio
Strong quantum fluctuations can completely change the
havior of the system. For weak fluctuations there are t
critical regimes: the classical regime studied in the pres
paper and a regime closer to a phase transition point—
quantum regime with a hypothetically slow power-law fie
dependence of the magnetization.
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helpful discussions. This work was supported by the Russ
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APPENDIX 1

Here the upper bound on the number of connected
gions with volume V which consist of the sites of a
D-dimensional cubic lattice and contain a given siteA is
found. It is shown that this bound is an exponential funct
of the volume. Hence it follows for weak disorder that th
density of chessboard regions with volumeV is exponen-
tially small as a function ofV.

The number of broken lines of length (2V22), consist-
ing of the edges of the lattice and starting at the pointA, is
less than (2D)(2V22). Therefore it is sufficient to show tha
the number of regions of interest to us does not exceed
number of broken lines described above.

For this we note that each connected region can be
into correspondence in at least one way with a tree gr
consisting of the edges of a lattice lying in the region a
containing all of its sites. The length of the tree graph
V21. It remains to note that a tree graph can be put i
correspondence with a closed broken line passing thro
each edge of the graph twice.

APPENDIX 2

The lemma used in Sec. 4 is proved here.

Lemma

Consider a chessboard region with volumeV,Vc ,
whereVc is defined by Eqs.~36!. The transverse magnetiza
tion inside such a region satisfies the inequality~37!.
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Proof

Inside a chessboard region the inequality

D sinf>2
Hc2H

J
~sinf!max, ~49!

where

D sinf5 (
neighbors

sinfk22D sinf ~50!

is the lattice Laplacian, summation extends over nea
neighbors, and (sinf)max is the maximum value of the trans
verse magnetization inside the chessboard region, follo
from Eqs.~8!. To prove the inequality~49! Eq. ~8! must be
rewritten in the form

sinfk<S J(
l

sinfkD /~H22DJ!,

and then transformed identically to the form

D sinf>2
Hc2H

J
sinf.

The solutions of the inequalities~49! are majorized by solu-
tions of the equation

Du52
Hc2H

J
~sinf!max ~51!

with the same boundaries conditions as the inequality.
construct the solution of the last equation as follows. Fi
we find a particular solutionu1 . It can be taken in the form
of a convolution of the right-hand side of the equation a
the Green’s function of the lattice Laplace equation. It can
verified that becausea ~36! is small this solution is smal
compared with (sinf)max

uu1u,b~sinf!max, b5consta2/D!1. ~52!

For D51 and 2 there is no difficulty in establishing th
estimate~52!. The derivation forD.2 requires for a fixed
volume of the region thatu1(r ) be maximum for a region in
the shape of a sphere centered at the pointr . Next we find
the solutionu2 of the equation with a zero right-hand sid
such thatu5u11u2 satisfies the boundary conditions. B
virtue of the principal of the maximum,

u2,~sinfb!max1b~sinf!max. ~53!

Recalling thatu is the majorant of the desired function, an
using the inequalities~52! and ~53!, we obtain the required
estimate for sinf.
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Generation, dynamics, and collisions of bending waves at domain boundaries in yttrium
orthoferrite
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Zh. Éksp. Teor. Fiz.115, 2160–2169~June 1999!

Solitary bending waves have been observed on domain boundaries of Ne´el type in wafers of
yttrium orthoferrite, having a very sharp leading edge and an extended trailing edge and offset as a
whole from the domain boundary and moving with high speeds close to the limiting
velocity. Head-on collisions of two such waves of the same amplitude lead to their complete
annihilation. Analogous collisions of two such waves, but of different amplitudes, lead
to the appearance of a wave with the difference amplitude moving in the same direction as the
wave of larger amplitude. The solitary bending waves investigated in this study appear to
move under the action of gyroscopic forces acting on magnetic vortices on domain boundaries in
yttrium orthoferrite, analogous to vertical Bloch lines with departure of the magnetization
vector from theac plane. From equality of the gyroscopic force with the friction force acting on
the leading edge of the solitary bending wave we have estimated the amplitudes of these
waves and the magnitudes of the topological charges of the magnetic vortices. ©1999 American
Institute of Physics.@S1063-7761~99!01906-X#
u
d
he
e
in
e
n
f
r

th
ce

ce
e
an
e
ng
bl
tic
t

rs
t

ag
-

o
th
do
re

ti-
ti

-
es
the
ri-
of

yt-
on

e–
m-
nd
vor-
rv-

rd

or-
m

lli-
in

of

a-
se-
mic
des
able
a-
l
eld
1. INTRODUCTION

Domain boundaries in orthoferrites move with high s
personic velocities1,2 and with increasing magnetic fiel
reach a record high limiting velocity of 20 km/s equal to t
velocity of spin waves on the linear segment of the disp
sion law.3 The dependence of the velocity of a doma
boundary on the magnetic field in all experiments perform
to date is a nondecreasing function without any segme
with negative differential mobility. Magnetic vortices o
vertical-Bloch-line type on domain boundaries in orthofe
rites have not been observed experimentally under ei
static or dynamic conditions. By virtue of Lorentz invarian
of the dynamics of domain boundaries in orthoferrites4,5 gy-
roscopic forces capable of moving the magnetic vorti
should be equal to zero.6 Experiments of the last two to thre
years have shown that solitary bending waves exist
move on domain boundaries in yttrium orthoferrite, offs
from them as a whole.7–9 These waves have a sharp leadi
edge and an extended trailing edge, in their shape resem
analogous waves accompanying magnetic vortices—ver
Bloch lines, which have been investigated in detail bo
experimentally6,10 and theoretically11–13 in ferrite–garnet
films with uniaxial magnetic anisotropy. In the last few yea
a number of theoretical works have appeared addressing
dynamics of magnetic vortices in easy-plane antiferrom
nets with Dzyaloshinski� interaction.14 These vortices con
tribute substantially to the thermodynamic characteristics
antiferromagnets and move with high velocities. What
above-mentioned works on solitary bending waves on
main boundaries in orthoferrites have in common is the
quirement that the antiferromagnetism vectorl and weak fer-
romagnetism vectorm extend out from the easy magne
zation plane in order to form three-dimensional magne
1171063-7761/99/88(6)/7/$15.00
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vortices moving with high velocities, almost the limiting ve
locity, under the action of gyroscopic forces. These forc
arise under the action of a magnetic field perpendicular to
ac plane.15 In the present work we systematize the expe
mental results on generation, dynamics, and collisions
solitary bending waves on moving domain boundaries in
trium orthoferrite. These data are compared with results
the dynamics and collisions of magnetic vortices in ferrit
garnet films, a qualitative analysis of the gyroscopic dyna
ics of solitary bending waves in orthoferrites is provided, a
the amplitudes of these waves accompanying magnetic
tices are estimated. The possibility of experimentally obse
ing limiting velocities of domain boundaries in yttrium
orthoferrite in weak magnetic fields is linked with the reco
small value of their dimensionless decay parametera
.1025 ~Refs. 6 and 16!. Such a small value ofa makes it
possible to experimentally observe motion of magnetic v
tices at limiting velocities on domain boundaries in yttriu
orthoferrite.

2. EXPERIMENTAL TECHNIQUE

The generation, dynamics, and results of pairwise co
sions of solitary bending waves on domain boundaries
yttrium orthoferrite have been studied with the help
double-exposure high-speed photography in real time6–10 us-
ing two light pulses with a time delay of 5–20 ns. The dur
tion of light pulses from a dye laser pumped by a transver
discharge pulsed nitrogen laser was 0.25 ns. A glass-cera
wafer with a thin opening was placed between the electro
of the spark-gap of the laser. This ensured extended st
operation of the laser. We used thin yttrium-orthoferrite w
fers of thickness 30240mm, cut perpendicular to the optica
axis. In such wafers in the absence of a magnetic fi
9 © 1999 American Institute of Physics
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FIG. 1. Diagram of the arrangement of the main controlling e
ments and magnetization in a two-domain wafer of yttrium orth
errite perpendicular to the optical axis for studying the generati
dynamics, and collisions of solitary bending waves at a dom
boundary:1 — orthoferrite wafer,2 — Néel domain boundary,3 —
magnetizations of neighboring domains,4 — coil for creating the
magnetic field shifting the domain boundary,5 — isolated leads for
creating the magnetic field braking local segments of the dom
boundary; and6 — magnetization in the center of the doma
boundary.
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banded domain structures exist having domain boundarie
Néel type, perpendicular to thea axis lying in the plane of
the sample. With the help of a magnetic field perpendicu
to the sample surface with a gradient of 800 Oe/cm along
a axis, we set up an isolated domain boundary of Ne´el type
~Fig. 1!. In the center of this domain boundary them vector
was aligned or anti-aligned with thea axis and was oriented
perpendicular to the plane of the boundary. On such
orthoferrite boundary thel and m vectors ordinarily rotate
either clockwise or counterclockwise in theac plane . There-
fore, in principle, in such a geometry the existence of tr
sitional regions is possible, with these regions being of m
netic vortex or vertical Bloch line type, separating segme
with opposite directions of rotation of thel and m vectors.
By rotating the gradient field about the optical axis of t
sample, it is possible to set up domain boundaries of N´el,
Bloch, and intermediate type in it. The isolated doma
boundary in the sample was set in motion by the magn
field from two coils with eight windings each and inner d
ameter 1.5 mm. To generate solitary bending waves, we u
isolated leads 20mm in diameter, perpendicular to the stat
orientation of the domain boundary. Short current pul
were sent through them, creating magnetic fields braking
cal segments of the domain boundary moving with sup
sonic speed. The field dependence of the speeds of the
different types of domain boundaries in the wafer is plot
in Fig. 2. The experiments primarily examined doma
boundaries of Ne´el type. For this type of boundary the rang
of fields where the speed is constant and close to the spe
transverse sound was maximal and equal in width to ab
100 Oe. In thicker wafers, for the Ne´el domain boundary and
especially for the Bloch and intermediate domain bounda
the regions of constant velocity were substantially narrow
~see Fig. 2! and in them it was not possible to observe ge
eration of solitary bending waves. The question of the int
val where the velocity of the domain boundary is const
and equal to the speed of transversev t or longitudinal v l

sound was considered theoretically only in the on
dimensional case.6,17–19As for the dependence of the widt
of the region DH(v t) where the velocity of the domain
boundary is constant and equal to the speed of transv
of
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sound on the wafer thickness, this dependence is qua
tively linked with the curvature of the originally flat domai
boundary that ensues upon the transition to supersonic ve
ity. Under these conditions, a braking force due to surfa
tension arises that is inversely proportional to the radius
curvature, and for sample thicknesses equal to 30240mm it
is equivalent to a magnetic field of a few hundred oerste
aligned opposite the direction of motion. This field retar
the domain boundary and leads to an expansion of the re
where the velocity is constant and equal approximately to
speed of sound. The first experimental observations of s
tary bending waves in yttrium-orthoferrite wafers were ma
in the absence of an isolated lead.7 In this case, what prob-
ably took place was a braking of the segment of the dom
boundary in the upper part of the sample on the bound
with the windings of the coils creating the motive magne
field. Generation of solitary waves in these first studies w
significantly less reproducible than with the help of an is
lated lead, as was done in subsequent works.

3. EXPERIMENTAL RESULTS

Experiments on the dynamics and collisions of solita
bending waves on a supersonic domain boundary in yttr
orthoferrite were preceded by experiments on the dynam
of the domain boundaries themselves. The dependence o

FIG. 2. Velocities of domain boundaries of Ne´el (1), Bloch (L), and
intermediate type (h), plotted as functions of the magnetic field in a YFeO3

wafer of thickness 30mm perpendicular to the optical axis.
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FIG. 3. Double-exposure high-speed photograph of t
solitary bending waves moving from right to left on a do
main boundary in YFeO3 , moving upward~in the figure!.
Delay time between light pulses 9 ns.
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velocities of the domain boundaries in a YFeO3 wafer of
thickness 40mm is plotted in Fig. 2 for different orientation
of the plane of the boundary. For a domain boundary
Bloch type, for which in the central plane of its static orie
tation the weak ferromagnetism vectorm lies in the plane of
the domain boundary and is aligned with thea axis, the
singularity in the speed of transverse sound is absent. O
domain boundary of Ne´el type, for which in the central plan
of its static orientation the weak ferromagnetism vectorm is
oriented perpendicular to the plane of the domain bound
a region of constant velocity exists having maximum wid
DHt on the order of 100 Oe. In this interval the velocity
the Néel domain boundary is equal to the speed of transve
sound. Both of these results for Bloch and Ne´el domain
boundaries are in agreement with theoretical analysis6,17–19

and the results of earlier experiments.1–3 For domain bound-
aries of intermediate type the widths of the regions of c
stant velocity near the speed of transverse sound fall mo
tonically from their maximum to zero. Note that the abo
characterization of Bloch and Ne´el domain boundaries in
yttrium orthoferrite agrees with the data of earlier studies
the dynamics and mobility6 and does not agree with the
definition given in Ref. 20. This work defines Ne´el domain
boundaries in terms of rotations ofl in the ac plane and
Bloch domain boundaries in terms of rotations in theab
plane. Experiments on the generation, dynamics, and c
sions of solitary bending waves were performed on dom
boundaries of Ne´el type. With further increase of the mag
netic field above the constant velocity region the velocity
the domain boundary grew abruptly to 12 km/s. The sub
quent local, rapidly relaxing decrease in the velocity of t
domain boundary aided by a short current pulses in the
lated lead intersecting the domain boundary led to genera
of stationary solitary bending waves, moving along the d
main boundary during the entire observation time. An e
ample of such waves is shown in Fig. 3, which shows t
frames in which two isolated bending waves are clearly v
ible, moving from right to left along a domain boundary th
is moving upward in the figure. The time delay between lig
pulses is 9 ns. The leading edges of these waves is
f
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sharp, the trailing edges are extended, and both waves m
along the domain boundary with velocityu516 km/s. The
velocity of the domain boundary isv512 km/s, so that the
velocitiesu and v and the limiting velocity of the domain
boundaryc obey the relationv21u25c2, i.e., the total ve-
locity of the solitary wave is close to the limiting velocity o
the domain boundary. This means that the solitary wa
move under the action of very strong forces, which can
parently only be gyroscopic forces. Indeed, the magn
field moving the domain boundary upward~per the figure!
can only brake the leading edge of the solitary wave. T
field in the plane of the YFeO3 wafer, which can, in prin-
ciple, be created by magnets creating a gradient magn
field, does not exceed a few tens of oersteds. It is cle
insufficient to move the leading edge of an isolated wa
with a velocity near the limiting velocity, equal to 20 km/
The amplitudes of the solitary bending waves in Fig. 3 a
equal to 5 and 30mm, and both these waves move with tot
velocities of 20 km/s. Bending waves in our experiment we
generated by local braking of the domain boundary mov
initially with a velocity of only 12 km/s. This velocity value
ends up the interval of supersonic instability of the dom
boundary, and it is found right in the middle between t
limiting velocity and the speed of transverse sound.

Figure 4 shows a double-exposure high-speed ph
graph in which two solitary bending waves of identical am
plitude are clearly visible, moving in opposite directions wi
the above-indicated speeds on a domain boundary mo
upward~in the figure! with a velocity of 12 km/s. Motion in
different directions is probably associated with differe
signs of the topological charges of magnetic vortices of
type vertical Bloch lines, which are accompanied by the
waves. Different segments of the locally retarded part of
domain boundary move with various speeds less than
equal to 12 km/s, so that solitary bending waves can m
along domain boundaries moving not only with a velocity
12 km/s.

Figure 5 shows the results of head-on collisions of t
solitary bending waves of the same amplitude, genera
with the help of two leads intersecting the domain bounda
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FIG. 4. Double-exposure high-spee
photograph of two solitary bending
waves moving in opposite directions o
a domain boundary in YFeO3 , moving
upward ~in the figure!. Delay time be-
tween light pulses 7 ns.
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In the first frame, in Fig. 5a, they are quite far apart, in t
second frame, after 6 ns they have almost annihilated. In
5b they have annihilated completely. This result can be
plained by annihilation of topological charges of magne
vortices accompanied by solitary bending waves and equ
absolute value but different in sign. Two counterpropagat
solitary waves of different amplitudes, moving with veloc
ties that are the same in absolute value form one soli
wave after they collide having amplitude equal to the diff
ence of the amplitudes of the two colliding waves. This
sult is depicted in Fig. 6. The solitary wave formed after t
collision continues to move in the same direction as
original wave of larger amplitude before the collision. On t
whole, the dynamic profiles of solitary bending waves
yttrium orthoferrite are qualitatively very similar to th
analogous profiles of such waves in ferrite–garnet films w
uniaxial anisotropy. These waves in ferrite–garnets acc
pany magnetic vortices of vertical Bloch line type. The d
namics and collisions of magnetic vortices in ferrite–garn
were studied experimentally6,10 and theoretically.11–13 It was
found that two vertical Bloch lines with topological charg
of equal magnitude can, in a head-on collision, annihil
completely, annihilate partially, behave in a solitonlike ma
ner, and even increase their topological charges near
critical velocity of the domain boundary. The maximum v
locities of magnetic vortices on domain boundaries
ferrite–garnets do not exceed 150–200 m/s and they m
under the action of gyroscopic forces. In yttrium orthoferr
the total velocity of the solitary bending waves is close to
limiting velocity of the domain boundary. This indicates th
the motion of solitary bending waves takes place under
action of large gyroscopic forces, proportional to the lar
velocities of the domain boundaries in orthoferrites. The
forces should be proportional to the velocity of the dom
boundaryv. Our experimental results confirm this concl
sion. A decrease in the velocity of the domain bound
g.
x-
c
in
g

ry
-
-

e

h
-

-
s

e
-
he

f
ve

e
t
e

e
e

y

leads to a decrease in the velocity of the solitary bend
wave. Extrapolation of the dependenceu(v) shows that in
this caseu also tends to zero.

4. DISCUSSION

The experimentally detected solitary bending waves
domain boundaries in yttrium orthoferrite have amplitudes
several microns to several tens of microns. They are offse
a whole from the domain boundary. Their rectangular le
ing edges resemble large-amplitude kinks on a dom
boundary in YFeO3, moving with the speed of transvers
sound.21 The motion of large-amplitude kinks takes pla
under the action of a magnetic field moving the doma
boundary as a whole. According to the data of Fig. 2,
inclined leading edge of a kink, being a domain boundary
intermediate type, has a larger velocity in the same magn
field than the entire Ne´el domain boundary. The leading edg
of a solitary bending wave is also a boundary of intermedi
type, but it cannot move under the action of an exter
magnetic field moving the entire domain boundary. Ignori
the external magnetic field moving the orthoferrite doma
boundary, the equations of motion of this boundary a
Lorentz-invariant.4–6 The gyroscopic force in this cas
should be equal to zero.6 In a magnetic fieldH moving the
entire domain boundary as a whole, Lorentz invariance
violated and a gyroscopic force appears that is proportio
to the ratioH/HE , where HE is the exchange interactio
force. These forces in an antiferromagnetFAFM and in a
ferromagnetFFM are related by the equation14

FAFM5
8H

HE
FGFM .

The small factorH/HE is present here. However, the spe
of the domain boundary in orthoferrites reaches large val
;106 cm/s, which is much larger than the speed of the d
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FIG. 5. Double-exposure high-speed photograph of t
colliding solitary bending waves of the same amplitude
a domain boundary in YFeO3 , moving upward~in the fig-
ure!: a — just before collision, b — annihilation of solitary
waves. Delay time between light pulses 6 ns.
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main boundary in ferromagnets, where it is on the order
104 cm/s. The gyroscopic force acting on a magnetic vor
for steady-state motion should be balanced by the frict
force, which is proportional to the dimensionless decay
rametera51025. This value follows for yttrium orthoferrite
from the mobility of the domain boundaries, which is equ
to 104 cm/s•Oe ~see Fig. 2! and from the antiferromagneti
resonance data.16 Equating the gyroscopic force to the fric
tion force acting on the leading edge of a solitary bend
wave, it is possible to estimate the amplitude of a solit
bending wave accompanying a magnetic vortex with defin
topological charge. For a charge of 2p the wave amplitude is
equal to 0.1mm. The experimentally observed amplitud
correspond to topological charges from several units ofp to
several tens of units ofp. In contrast to ferrite–garnets, th
slope angles of the leading edges relative to the unpertu
domain boundary for waves of all amplitudes are identic
and their total velocities are large and close to the limit
velocity of the domain boundary. In uniaxial ferrite–garn
films, where the dynamics of the vertical Bloch lines and
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results of their pairwise collisions have been investiga
both experimentally and theoretically, these were either N´el
segments of a Bloch domain boundary or Bloch segment
a Néel boundary. The lengths of these segments were m
greater than the width of the domain boundary. In orthof
rites, besides rotation ofl andm in the ac plane, only rota-
tion of l in the ab plane without rotation ofm but with
variation in the magnitude and sign ofm is known. Domain
boundaries in orthoferrites without rotation ofm were pre-
dicted in Refs. 22 and 23. Such domain boundaries w
detected in DyFeO3 from an analysis of the NMR spectrum24

at temperatures much higher than the transition tempera
to the antiferromagnetic state. Reference 25 calculated
‘‘fine’’ structure of an immobile orthoferrite domain bound
ary with alternating segments with and without rotation ofm.
The dynamics of the segments without rotation ofm was
analyzed theoretically under the conditionv!c in Refs. 26
and 27. This analysis did not encompass the experime
results described above on the dynamics and collisions
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FIG. 6. Double-exposure high-speed photograph of two coll
ing solitary bending waves of different amplitudes on a doma
boundary in YFeO3 , moving upward~in the figure!: a — just
before collision, b — annihilation of solitary waves. Delay
time between light pulses 6 ns.
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solitary bending waves in YFeO3, where their velocities are
comparable with or even equal to the limiting velocityc. For
the case of a Ne´el domain boundary in our experiment rot
tion of l in the ab plane does not allow one to describe t
structure of a magnetic vortex. Toward this end, it is nec
sary to analyze the possibility of rotation of thel and m
vectors in other planes, different from the ones mention
above. This requires that the orthorhombic anisotropy
overcome and leads to the result that the length of a magn
vortex along a domain boundary will be less than its wid
in contrast to the case for uniaxial ferrite–garnets. In pr
ciple, the large orthorhombic magnetic anisotropy can be
creased as a result of motion of a domain boundary w
velocity close to the speed of transverse or longitudi
sound. For the appearance of the spin-reorientation trans
GzFx�Gy inside a domain boundary, the surface of t
sample can be significant.25,28 Departure of thel andm vec-
tors from theac plane can be facilitated by the superson
instability of an orthoferrite domain boundary, manifested,
particular, in the steep slope of its plane and by the abse
of hysteresis in the field dependence of its velocityv(H) in
this region. For a complete theoretical analysis of the dyna
ics and collisions of magnetic vortices in weak ferromagne
it is necessary to analyze these processes on the basis
numerical simulation of the three-dimensional motion of t
magnetic moment in analogy with the analysis of these p
cesses in ferrite–garnets with uniaxial anisotropy perform
in Ref. 13. It is of interest to extend this analysis to ferrite
garnet films with orthorhombic anisotropy, where magne
vortices have not yet been experimentally observed.

5. CONCLUSIONS

1. On domain boundaries of Ne´el type in yttrium-
orthoferrite wafers, we have detected and investigated s
tary bending waves with sharp leading edges and exten
trailing edges moving with very high velocities near the lim
-

d
e
tic
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e-
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iting velocities of domain boundaries in these weak fer
magnets, and set off as a whole from the domain bound
These waves cannot move under the action of an exte
magnetic field moving the domain boundary as a who
Such a field can only brake the leading edge of solitary be
ing waves. Nor can then move with velocities close to t
limiting velocity under the action of small planar fields pe
pendicular to the plane of the domain boundary.

2. Head-on collisions of two solitary bending waves
the same amplitude on a domain boundary in yttrium ort
ferrite, moving with a velocity of around 12 km/s, lead
their total annihilation. Analogous collisions of two solitar
bending waves of different amplitude lead to the appeara
of one solitary wave with the difference amplitude, movin
in the same direction as the wave with the larger amplitu
before the collision.

3. The experimental results obtained in yttrium orthofe
rite and their comparison with the results of studies of
dynamics and collisions of magnetic vortices~vertical Bloch
lines! in ferrite–garnets show that solitary bending waves
orthoferrites also accompany magnetic vortices moving
der the action of gyroscopic forces with departure of t
magnetization vector in them from theac plane. These
forces are proportional both to the small ratio of the ma
netic field moving the domain boundary as a whole to
exchange field and to the very large speed of this bound
and in the steady state are balanced by the friction fo
acting on the leading edge of the solitary bending wave
proportional to the very small dimensionless decay para
eter in the Landau–Lifshitz equations of motion.
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We have measured far infrared reflectance and transmittance spectra as well as Raman scattering
spectra ofa8-NaV2O5 single crystals for all the principal polarizations. The temperature
range above the phase transition temperatureTc535 K was investigated, mainly. On the basis of
this experimental study and of the lattice dynamics calculations we conclude that the
symmetry of NaV2O5 in the high-temperature phase is described by the centrosymmetricD2h

13

space group. This conclusion leads to important physical consequences concerning the
interpretation of one-dimensional magnetic properties of NaV2O5 and of the phase transition at
35 K considered earlier to be an ordinary spin-Peierls transition. The assignment of the
observed phonons is given. Values of dielectric constants are obtained from the infrared data.
Asymmetric shapes of several infrared lines and higher-order infrared vibrational spectra
are discussed. The crystal field energy levels of the 3d electron localized at the V41 site have
been calculated in the framework of the exchange charge model using the values of
effective charges obtained from the lattice dynamics calculations. According to the results of
these calculations, the broad optical bands observed earlier in the vinicity of 1 eV can
be interpreted as phonon assistedd–d transitions. ©1999 American Institute of Physics.
@S1063-7761~99!02006-5#
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1. INTRODUCTION

The vanadatea8-NaV2O5 has attracted considerable in
terest recently as the second inorganic compound underg
the spin-Peierls transition~at the highest known temperatu
for the spin-Peierls compounds,Tc535 K1!. The spin-Peierls
transition is expected to occur within a system of linear sp
1/2 Heisenberg antiferromagnetic chains coupled to a th
dimensional phonon field. As a result of such a coupli
magnetic atoms of the chain dimerize and a spin gap ope2

One-dimensional magnetic properties of NaV2O5 above 35 K
follow from magnetic susceptibility,1 ESR3 and angle-
resolved photoemission4 measurements.

Below 35 K the lattice dimerizes, as observed by x-ra5

and Raman6,7 scattering, infrared transmission8 and
reflection9 measurements, while the magnetic susceptibi
decreases isotropically, thus showing a spin gap formati6

The size of the gapD510 meV follows from inelastic neu
tron scattering study of NaV2O5 single crystals.5,10

The structure of NaV2O5 contains double chains of edge
sharing distorted VO5 pyramids running along the ortho
rhombicb-axis ~Fig. 1!. These double chains are linked v
common corners of the pyramids to form theab-layers. Na
atoms lie between the layers.1,11 The structure of NaV2O5

looks like the structure of V2O5
12 intercalated with sodium

In an early x-ray room temperature investigation on po
1181063-7761/99/88(6)/12/$15.00
ng

-
e-
,
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y
.

-

crystalline samples of NaV2O5, Carpy and Galy11 suggested
the noncentrosymmetric space groupC2v

7 2P21mn with two
nonequivalent vanadium positions in the unit cell. The p
ture of magnetic chains of V41O5 (S51/2) pyramids isolated
by nonmagnetic chains of V51O5 (S50) pyramids proposed
to account for one-dimensional magnetic properties of t
mixed valence (V4.51) compound is compatible with this
space group.1

However, the recent redetermination of the structure
single crystal x-ray diffraction at room temperature was
favor of the centrosymmetricD2h

13-Pmmn group with only
one vanadium position in the structure.13,14 Though the to-
pology of the structure remains essentially the same as in
previously proposed noncentrosymmetric space group,11 the
possibility for charge ordering is, however, lost in the ne
higher symmetry group. Smolinskiet al.,13 and Horsch and
Mack15 suggested a quarter-filled ladder model for NaV2O5,
with the spins carried byV–O–V molecular orbitals on the
rungs of the ladder. They argued that the exchange inte
tion along the ladder is much greater than that between
neighboring ladders which would explain the on
dimensional magnetic properties of the high temperat
phase of NaV2O5. The transition at 35 K was supposed to
an ordinary spin-Peierls transition. Quite recent51V-NMR
experiment on a single-crystalline sample of NaV2O5 also
6 © 1999 American Institute of Physics
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FIG. 1. Structure of NaV2O5. a! Stereometric projection. Oxygen and vanadium atoms are at the corners of and inside the pyramids, respectively
atoms are represented by balls. b! ab projection. Apical oxygen O3 atoms~situated above or below the correspondingV atoms! are not shown. A dashed line
indicates the longest V–O2 bond~0.199 nm!. ab-projection of the crystal unit cell is shown by a thin solid line.
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revealed only one vanadium position in the high-tempera
phase but pointed unambiguously to the existence of
different vanadium sites occupied by V41 and V51 at liquid-
helium temperatures.16 Thus, the transition at 35 K is con
nected with a structure and charge ordering processes.
recently. Seo and Fukuyama17 and Mostovoy and
Khomskii18 proposed a zigzag scheme of V41–V51 ordering.
Seo and Fukuyama argued that, as a result, two-dimens
lattice of antiferromagnetic dimers is formed,17 while Mos-
tovoy and Khomskii gave reasons in support of a system
alternating chains.18 Thalmeier and Fulde19 have presented
some theoretical reasons for the primary charge orde
which provides neighboring linear V41 and V51 chains with
a subsequent spin-Peierls transition. Two close transit
near 35 K in NaV2O5 were detected by Ko¨ppenet al., via
thermal expansion measurements.20

In view of these recent works, the symmetry problem
the high-temperature phase seems to be a matter of g
urgency. Raman and infrared measurements could give a
tional information to clarify whether the space group is ce
trosymmetric or not, because of totally different selecti
rules in these two cases. We reanalyzed our earlier infra
and Raman spectra of NaV2O5

21 and found that they are in
better agreement with the centrosymmetricD2h

13 space group
than with the noncentrosymmetricC2v

7 . However, in our
work21 we did not measure infrared spectra in theEic polar-
ization. Also, the signal-to-noise ratio of Raman spectra w
rather low. In the present work, we reinvestigate vibratio
spectra of the high-temperature phase of NaV2O5 using dif-
ferent single crystals, including extraordinary big ones. W
present far-infrared reflectivity as well as Raman-scatter
spectra for all principal polarizations. In addition, transm
tance spectra were studied. We show that our results are
much better agreement with the centrosymmetricD2h

13 group
than with the noncentrosymmetricC2v

7 . The assignment o
vibrational modes is given. It is based on a comparison w
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results of the previously studied of V2O5
22 and on lattice

dynamics calculations of this work performed in the fram
work of the rigid-ion model.

2. EXPERIMENTAL

Single crystals of stoichiometrica8-NaV2O5 used in this
study were grown by a melt growth method using NaVO3 as
a flux.23 Samples from different batches were used. O
sample was 1.33831 mm, another one was 3317.3
31.6 mm alonga-, b-, and c-axes, respectively. For trans
mission measurements we have prepared four thin sam
cleaved perpendicular to thec-axis. Their thicknesses wer
11061, 4565, 1461.5 and 661 mm. The samples were
checked with x-ray diffraction, magnetization, and ESR m
surements. They exhibited a sharp transition at about 35

Reflection and transmission measurements were
formed with a BOMEM DA3.002 Fourier transform spe
trometer at nearly normal incidence of polarized infrared
diation. The following geometries of the experiment we
used: 1! kic, Eia and Eib; 2! kia, Eic and Eib. Room-
temperature reflectance and transmittance spectra were
sured in a spectral range 30–5000 cm21 with a resolution
0.5–2.0 cm21. Using both reflectance and transmittan
spectra, the absorption coefficienta was calculated. Low-
temperature~down to 6 K! transmittance spectra were me
sured with a He vapor cryostat in the spectral range 30–1
cm21 with a resolution 0.05–1.0 cm21.

Raman spectra were excited at room temperature by
514-nm and 488-nm lines of an Ar-ion laser in backscatt
ing geometries, dispersed by a home-made triple sp
trograph, and recorded using a multichannel system con
ing of an image intensifier tube with a multichannel plate a
a vidicon.
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FIG. 2. Room-temperature far-infrared reflectivit
spectra of NaV2O5. Open circles represent exper
mental data. Solid lines are fit results~see the text!.
th

e

i-

y

be
a

he

the

d

us

this
ac-

ec-

en
the
3. RESULTS

3.1. Factor-group analysis

There are two formula units and, hence, 16 atoms in
NaV2O5 orthorhombic unit cell with lattice constantsa
51.1316 nm, b50.3611 nm, c50.4797 nm.11,13,14 Below,
we present the results of factor-group analysis for both c
trosymmetricD2h

1313,14 and noncentrosymmetricC2v
7 11 space

groups.
a. Space group D2h

13-Pmmn. The notationPmmnrefers
to the standard axis setting, such thatxia, yib, zic. It fol-
lows from x-ray diffraction data13,14 that Na atoms occupy
2b positions ~the corresponding fractional atomic coord
nates are defined by the basis vectorsr1(Na)52r2(Na)
5(1/4,21/4,z1),z150.8592) and oxygen O1 atoms occup
2a positions (r1(O1)52r2(O1)5(1/4,1/4,z2),z2

50.5195), both these positions havingC2v
z local symmetry.

V, O2 and O3 atoms reside in different 4f
positions ~r1(A)52r3(A)5(xA,1/4,zA), r2(A)52r4(A)
5(1/22xA,1/4,zA); A5V, O2, O3; xv50.40212, zv

50.39219, xO250.57302, zO250.48769, xO350.38548,
zO350.05803! with the local symmetryCs

xz . These positions
yield the following irreducible representations:24,25

C2v
z :G5Ag1B2g1B3g1B1u1B2u1B3u ,

Cs
xz :G52Ag1B1g12B2g1B3g1Au12B1u1B2u12B3u .

Multiplying the representations given above by the num
of different positions of the appropriate symmetry, summ
rizing them, and subtracting acoustic modes (B1u1B2u

1B3u), we obtain the following NaV2O5 optical vibrational
modes:
e

n-

r
-

GNaV2O5

vib ~Pmmn!58Ag~aa,bb,cc!13B1g~ab!

18B2g~ac!15B3g~bc!13Au

17B1u~Eic!14B2u~Eib!

17B3u~Eia!. ~1!

There are 45 vibrational modes in total.Au modes being
silent, 24 Raman (Ag ,B1g ,B2g ,B3g) and 18 infrared
(B1u ,B2u ,B3u) active modes are expected to be found in t
spectra of NaV2O5, provided the crystal space group isD2h

13 .
b. Space group C2v

7 2P21mn. In their original work,11

Carpy and Galy adopted the axis setting for theP21mn
space group. Below, we use the standard setting for
Pmn21 space group:xib,yic,zia. There are two non-
equivalentV positions, five nonequivalent O positions an
one Na position in this group, all of them being 2a positions
with Cs

yz local symmetry. In the same way as in the previo
case, using tables25 and subtracting acoustic modes (A1

1B21B1), we find the following vibrational modes:

GNaV2O5

vib ~Pmn21!515A1~aa,bb,cc;Eia!18A2~bc!

17B1~ab;Eib!115B2~ac;Eic!.

~2!

There are 45 optical modes again. But in the case of
noncentrosymmetric space group all of them are Raman
tive, 37 of them are also infrared active.

3.2. Infrared spectra

Figure 2 shows the room temperature far-infrared refl
tivity spectra of NaV2O5, for different polarizations of the
incident light. Experimental data are presented by op
circles. Measured spectra were least-squares fitted by
spectra computed according to the expression
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FIG. 3. Absorption coefficienta in the region of low-frequency
absorption bands at room temperature. The arrow indicates a F
type resonance, shown separately in the inset. Open circles re
sent experimental data. Solid line in the main figure was calcula
using the parameters obtained by fitting the reflectance spect
Solid line in the inset is a result of fitting the expression~5! with
aB(v), shown as a dashed line.
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A«11
U2

. ~3!

The classical dispersion formula forN independent dampe
oscillators was used:

«5«`1(
i 51

N 4p f iv i
2

v i
22v22 ig iv

. ~4!

For Eib andEia polarizations the number of oscillators an
initial values of parameters were taken from the transm
tance spectra~21 and the present work!. The anomaly crossed
out in Figs. 2 and 3 at 1014 cm21 in Eia polarization and
also observed inEib polarization for some samples depen
on a particular sample, and is evidently not an intrinsic pr
erty of NaV2O5. It was not taken into account in the fittin
procedure. In addition to weakly damped phonon oscillato
an overdamped oscillator centered at about 300 cm21 ~v i

5291 cm21, g i5260 cm21, f i50.38! was introduced inEia
polarization to account for a low-frequency part of a bro
absorption band of a complex two-humped shape found
our previous study21 ~see also Fig. 3!. We failed to model the
high-frequency hump of this band centered at about 1
cm21 with a similar oscillator, and did not try to use a mo
complicated model. This results in only a fair fit to the high
frequency part of the reflectance spectrum. InEia polariza-
tion the phonon at about 150 cm21 could not be fitted well.
This line is strongly asymmetric in transmittance spec
obviously due to interaction with the underlying broad ban

The small bump in reflection at 939 cm21 shown by the
arrow in Fig. 2 corresponds to the Fano-type resonan26

well seen in the absorbance spectrum~Fig. 3!. One more
such resonance becomes visible below 200 K at abou
cm21 ~see Fig. 4 and also Ref. 8!. We fitted the absorption
coefficient in the vicinity of these two strongly asymmetr
lines by the expression:26

a~v!5aB~v!1a0

q212jq21

11j2 . ~5!
t-

-

s,

in

0

,
.

1

wherej5(v2v r)/g, aB(v) is a slowly varying broad band
absorption~it is shown as a dashed line in the vicinity of th
939-cm21 sharp resonance in Fig. 3!, anda0 , v r , g, andq
are variable parameters. Such an expression describes
ous physical situations for a sharp transitions overlapped
a broad continuum. The line shape of the sharp transitio
altered by interference with a continuum, and depen
heavily on the strength of the interaction between discr
and continuum states. The parameterq being inversely pro-
portional to the matrix element of an interaction, the ca
uqu5` corresponds to zero interaction and results in a n
mal Lorenzian resonance,uqu51 yields a dispersion-like
curve, while uqu50 gives an inverted Lorenzian~antireso-

FIG. 4. Fano resonance near 91 cm21 at 40 K ~open circles! and its fit using
Eq. ~5! with parametersv r590.7 cm21, g50.2 cm21, q521.0, aB(v2)
5270 cm21, anda0 /aB50.3 ~solid line!. The temperature dependence
the Fano parameterq is given in the left inset. The right inset presents t
absorbance spectrum in the vicinity of 91 cm21 at 6 K with resolution 0.05
cm21 ~open circles!, and Lorenzian fit with FWHM50.10 cm21.
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TABLE I. Infrared active vibrational modes~cm21! and dielectric constants of NaV2O5.

av153200 cm21, v2540 cm21.
b
Asymmetric line.

c
Fano-type resonance:vt590.7 cm21, g50.2 cm21, q521.0, a0/aB50.3.

d
Fano-type resonance:vt5939 cm21, g51.0 cm21, q51.1, a0/aB50.2.
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nance!. The ratio a0 /aB shows what fraction of the con
tinuum states interacts with a sharp excited state. The re
of fitting are displayed in the inset of Fig. 3 and in Fig. 4.
similar fit should be performed for the resonance at ab
150 cm21 but we failed to constructaB(v) in this case. The
fit parameters obtained are listed in Table I;vTO and gTO

denotev i and g i of Eq. ~4! or v r and g of Eq. ~5!. LO
frequencies and damping constants were calculated as
plex roots of the equation«(v)50.

The left inset of Fig. 4 presents the temperature dep
dence of the Fano parameterq for the spectral line near 91
cm21 at temperatures higher thanTc535 K. It should be
mentioned that below 35 K, the shape of this line change
an ordinary Lorenzian~see the right inset of Fig. 4 an
also8!. Simultaneously, continuum absorption diminish
markedly in this spectral region while it is essentially u
changed at the maximum of the low-frequency hump at 3
cm21.

With decreasing the temperature, besides the asymm
resonance at 91 cm21 in Eia transmittance, two lines at 21
and 225 cm21 appear in Eib transmittance spectra a
well.8,21 We have studied the resonances at 91 and 939 c21

(Eia); 215 and 225 cm21 (Eib) for the samples of differen
lts

ut

m-

n-

to

0

ric

thicknesses, and found that while the intensities of 91-, 9
and 225-cm21 lines are proportional to the sample thickne
d ~that is, a5const!, the intensity of the 215-cm21 line is
essentially independent of the thickness (ad.const). Con-
sequently, while the frequencies 91 and 939 cm21 (Eia) and
225 cm21 (Eib) correspond to intrinsic resonances,v
5215 cm21 must refer to a surface excitation. All the ob
served infrared phonon frequencies together with the ca
lated ones are displayed in Table I.

NaV2O5 crystals are well transparent in the frequen
region between 2500 and 4500 cm21 and below 100 cm21.
In these regions, an interference pattern was observed inEia
andEib transmittance spectra of the samples of good qu
ity. We also managed to observe the interference pattern
low 100 cm21 in Eic transmittance of 1.3-mm thick sample
By measuring the distancesD between the interferenc
maxima, we found the refractive indexesn according to the
relation

D5
1

2dn
. ~6!

Appropriate values of«5n2 are listed in Table I.
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We also looked for the higher-order vibrational spec
by measuring the transmittance of thick (d50.4– 3.0 nm)
samples in the frequency range 1000–4000 cm21. While no
pronounced features were found inEia and Eib polariza-
tions, sharp resonances were observed inEic(kia) polariza-
tion at 1930, 2858 and possibly 1072 and 1270 cm21, the
latter two lines being somewhat masked by the edge o
strong phonon at 955 cm21 ~Fig. 5!.

3.3. Raman spectra

Polarized room-temperature Raman spectra of NaV2O5

in the spectral range 80–1000 cm21 are shown in Fig. 6. One
can see immediately that the three diagonal compon
aa,bb,ccof the Raman scattering tensor differ markedly o
from another, which points to considerable anisotropy of
structure. The most intense spectra were observed in thAg

geometrya(cc)ā. The intensity of the lines marked by a
terisks inBig ( i 51,2,3) spectra depended strongly on slig
variations in the sample orientation. Probably, these lines
due to a leakage of strong lines fromAg geometries. We
failed to assign for certain a weak feature near 100 cm21 in
the b(ac)b̄ spectrum overlapped by a strong unshifted li
that is present in this geometry. It might-possibly come fro

FIG. 5. Absorbance spectrum of NaV2O5 in the region of multiphonon
bands at room temperature.
a

ts

e

t
re

the leakage of a very strong line 90 cm21 from the ~cc!
polarization. Frequencies of the observed Raman modes
gether with the calculated ones are collected in Table II.

As we have already reported,21 besides relatively narrow
lines, a broad band with a maximum near 600 cm21 is ob-
served in thec(aa) c̄ spectrum~see Fig. 6!. Since this band
appears under both 514.5-nm and 488-nm excitation,
conclude that it originates from the Raman scattering p
cess. However, a large width of this band~213 cm21!, which
is essentially independent of the temperature, means that
not attributable to fundamental modes.

We also studied Raman spectra of Na-deficient sam
Na12xV2O5 ~x50, 0.05, 0.10, 0.15!. The most prominent
changes occur in theAg(aa) spectrum~see Fig. 7!. The
447-cm21 Raman line moves to higher frequencies asx in-
creases. Its position shown by the vertical dashed lines
Fig. 7 is 477 cm21 for the sample withx50.15. The maxi-
mum of the broad band moves in the opposite directi
namely, from 632 cm21 for x50 to 562 cm21 for x50.15.
This change of the frequency difference between these
Raman bands is, probably, due to a change in interm
interaction. The shape of the broad band can be appr
mated well by a Gaussian for all the values ofx, its width
growing from 213 cm21 at x50 to 290 cm21 at x50.15. As
for phonon Raman lines, their shape is almost Lorenzian,
their width grows too. For example, the lines at 177, 301 a
531 cm21 broaden from 11, 18 and 20 cm21 at x50 to 16,
27 and 34 cm21 at x50.15. The broadening of Raman ban
with increasingx is probably associated with an increase
lattice disorder.

It is difficult to compare absolute intensities of the spe
tra at differentx. However, certain conclusions concernin
relative spectral intensities can be drawn. The most pro
nent features are a rise in intensity of the 301 cm21 line, and
the amergence of a new line at 988 cm21 at x50.15. All
these results were obtained by expanding the observed s
trum into individual spectral profiles. An example of suc
expansion is shown in Fig. 8.

3.4. Calculations of vibrational spectra

To obtain an information about the phonon spectrum
NaV2O5 throughout the Brillouin zone, which is necessa
for the analysis of the spin-phonon interaction effects,
of
FIG. 6. Room-temperature Raman spectra
NaV2O5. Asterisks labelAg lines seen inBig ( i
51,2,3) spectra.
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TABLE II. Room-temperature Raman frequencies~cm21! for NaV2O5.
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have considered the lattice dynamics of this crystal in
framework of the rigid ion model. The goal of this study is
display the basic pairwise interionic interactions that de
mine the main features of the measured Raman and infr
transmittance and reflection spectra.

A theoretical analysis of the vibrational spectra has b
carried out for both lattice structures proposed in the lite
ture. We did not obtain any physically well-grounded set
parameters which might provide the stableC2v

7 lattice struc-
ture. We therefore discuss in this section only vibrations
the centrosymmetric lattice with theD2h

13 space group.
From the large measured large TO–LO splittings

some normal modes at the center of the Brillouin zone~G
point!, it is clear that long-range Coulomb forces play a c
cial role in formation of the vibrational spectrum of NaV2O5.
The potential energy of the lattice was represented by a
of Coulomb and non-Coulomb interactions. The Coulom
terms in the dynamical matrix were calculated exactly us
the Ewald method. Non-Coulomb interactions in the form
the Born–Mayer potentials with the exponential depende
on the interionic distancer (w i j (r )5Ci j exp(2r/rij)) were in-

FIG. 7. Room-temperature Raman spectra of Na12xV2O5 for variousx.
e

r-
ed

n
-
f

f

f

-

m
b
g
f
e

troduced between V–O~five bonds per vanadium ion!,
Na–O ~eight bonds per sodium ion! and O–O neighboring
ions at interionic distances less than 0.325 nm. Becaus
the nonequivalence of the oxygen O1, O2 and O3 ions
have to introduce different potentials for different types
bonding. In the initial step we confined ourselves to just
fitting parameters~instead of the 34 independent force co
stants for the V2O5 lattice in Ref. 22! including ion charges
Z(A) ~a condition of lattice neutrality brings the relatio
Z(Na)1Z(O1)12Z(V) 12Z(O2)12Z(O3)50 about! and
Ci j ,r i j constants for V–O, Na–O and O–O pairs of ion
Starting values of the parameters were taken from the lat
dynamics simulations of TmVO4,

27 LuPO4
28 and NaNO3.

29

An orthogonal transformation of the atomic displac
ments to symmetrized and normalized linear combinatio
namely,

ua~G1u ,A!5
1

2
@u1a~A!1u2a~A!1u3a~A!1u4a~A!#,

FIG. 8. Expansion of the room temperaturec(aa) c̃ Raman spectrum of
NaV2O5 into individual profiles~dashed lines!. The sum of these profiles
shown by a solid line, approximates the experimental spectrum~circles!
well.
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ua~G1g ,A!5
1

2
@2u1a~A!2u2a~A!1u3a~A!

1u4a~A!#,

ua~G2u ,A!5
1

2
@2u1a~A!1u2a~A!2u3a~A!

1u4a~A!#,

ua~G2g ,A!5
1

2
@u1a~A!2u2a~A!2u3a~A!1u4a~A!#,

ua~G1u ,B!5
1

&
@u1a~B!1u2a~B!#,

ua~G1g ,B!5
1

&
@2u1a~B!1u2a~B!#,

where A, denotes V, O2, or O3 ions, and B denotes Na or
ions, divides the dynamical matrix at theG-point into blocks
corresponding to irreducible representations of the cry
factor-group. Here,

G1u5B3u , G1g5B2g , G2u5B1u ,

G2g5Ag for a5x,

G1u5B2u , G1g5B3g , G2u5Au ,

G2g5B1g for a5y,

G1u5B1u , G1g5Ag , G2u5B3u ,

G2g5B2g for a5z.

Comparing the calculated eigenvalues of the dynam
matrix with the measured frequencies of the lattice norm
modes, we varied the parametersZ,Ci j ,r i j step-by-step in a
physically motivated direction~e.g., absolute values ofZ
were diminished to account for the observed maxim
LO–TO splittings! with the aim of achieving a better agre
ment with the measured frequencies at the Brillouin zo
center. Simultaneously, frequencies of normal modes at z
boundaries and with the wave vectorsk close to theG point
~acoustical modes! were controlled.

The rigid-ion model presents a very crude approximat
to the charge distribution in covalent compounds, and
optimization of the model parameters was terminated w
achieving real values for the lattice normal modes frequ
cies throughout the Brillouin zone. The final values of t
effective ionic charges wereZ(V) 52.405, Z(Na)50.83,
Z(O1)521.22, Z(O2)521.23, Z(O3)520.98 ~in units
of the proton charge!, which are close to corresponding e
fective charges for vanadiumZ(V) 53 and oxygenZ(O)5
21.5 in TmVO4,

27 phosphorusZ(P)52.33 and oxygen
Z(O)521.19 in LuPO4,

28 and sodiumZ(Na)50.87 in
NaNO3.

29 The apical oxygen ion O3, closest to the vanadiu
ion, has the lowest charge due to its having the strong
covalent binding.

The calculated frequencies of the lattice normal mode
the Brillouin zone center are presented in Table I and II
infrared and Raman active modes. The calculated frequ
1

al

al
l

e
ne

n
e
n
-

st

at
r
n-

cies of silentAu modes are 120, 167 and 572 cm21. The
acoustic properties of the lattice are defined by nine ela
constants, the predicted values ofC11517.7, C1259.7, C22

523.6 ~in units of 1010N/m2! are less dependent on varia
tions of the model parameters.

The measured components of the high-frequency die
tric tensor«` differ appreciably from unity~see Table I!, so
neglect of electronic polarization is a very crude approxim
tion in this case—in particular, when estimating LO–T
splittings at theG point. However, for most of the infrared
active normal modes, our model yields a satisfactory desc
tion of the longitudinal macroscopic electric field induced
the vibrations of ions. Very strong damping of theB1u TO
mode at 591 cm21 may be the reason for the large differen
between the calculated and measured LO–TO splitting~see
Table I!; in the case of theB2u TO mode at 365 cm21, our
model yields a greatly overestimated frequency of the co
sponding LO mode. Large discrepancies between several
culated frequencies of the Raman active modes and the
perimental data~see Table II! clearly demonstrate that som
significant interactions—in particular, three-body force
which strongly affect the frequencies of bendin
vibrations—are to be included in more thorough study of
lattice dynamics of this system.

Perhaps, the most interesting result of this analysis of
NaV2O5 lattice dynamics is the predicted soft mode behav
of the transverse acoustic mode at the Brillouin zone bou
ary @with the wave vectork05p(0,0,1/c)#, polarized in the
ac-plane. Due to the competition between long-range C
lomb and short-range non-Coulomb forces, the correspo
ing branch of the vibrational spectrum moves to the range
imaginary frequencies when approaching thek0 point thus
making it possible to consider the NaV2O5 crystal an im-
proper virtual ferroelastic. To stabilize the lattice again
k0-excitations, we had to introduce an attractive interact
between neighboring V1 and V2 ~V3 and V4! ions along the
a-axis with the significant bending force constant of appro
mately 5 N/m. Charge ordering in the subsystem of V io
can destroy the balance between forces of opposite sign
induce freezing of the soft-mode atomic displacements~the
unit cell doubles in thec direction, the neighboring layer
shift in opposite directions, and in each layer the right a
left legs of the vanadium ladders become nonequivalent,
to shifts of V1–V2 and V3–V4 rungs along opposite direc
tions in theac-plane! as a precursor of the subsequent ma
netic ordering with doubling of a unit cell ina-, b- and
c-directions.

4. DISCUSSION

4.1. Symmetry group of NaV 2O5

Table III summarizes the observed vibrational modes
gether with their interpretation both in centrosymmetricD2h

13

and noncentrosymmetricC2v
7 groups. While the former

group explains naturally the experimental data provided
Raman and three infrared frequencies remain undetected
latter group leads to an assumption that 22 of 45 expec
Raman and 23 of 37 expected infrared modes were not
tected. Moreover, only three frequencies~90, 174, and 951
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TABLE III. Comparison of experimentally observed Raman and infrared modes with the expected ones
centrosymmetricD2h

13 and noncentrosymmetricc2v
7 space groups~mode frequencies are in cm21!.

a
Observed below 200 K.
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cm21! coincide to within the experimental accuracy~64
cm21! in the sets of Raman and infrared modes correspo
ing to a given irreducible representation of the nonc
trosymmetric group, whereas all the modes should be b
Raman and infrared active in that case. We also note o
more that we failed to obtain a realistic set of force consta
when carrying out the lattice dynamics calculations in
assumptionC2v

7 noncentrosymmetric space group.
We consider our Raman and infrared data, and the

sults of lattice dynamics calculations, to support strongly
conclusion of the previous structural studies13,14 that the
space group of NaV2O5 aboveTc535 K is the centrosym-
metricD2h

13 rather than noncentrosymmetricC2v
7 group. From

the point of view ofD2h
13 group it is also easy to explain th

results of a recent51V-NMR study16 that revealed only one
vanadium position at elevated temperatures.

4.2. Atomic displacements

As we have mentioned in the Introduction, the strucu
of NaV2O5 looks like the structure of V2O5 intercalated with
Na. The V–O bond lengths within the vanadium-oxygen la
ers are close in these two compounds~see Table IV!. The
longest bond within the layer interconnects two V2O5 units
in the crystal unit cell~see Fig. 1b where this bond is ind
cated by a dashed line!. Thus, it makes a certain amount
sense to classify thek50 crystal vibrations on the basis o
internal vibrations of the V2O5 «molecule»~C2v point sym-
d-
-
th
ce
ts
e

e-
e

e

-

metry group!, split into Davydov doublets of theD2h factor
group by an interaction between two «molecules» in
crystal unit cell. (Ag1B1u), (B2g1B3u), (B3g1B2u), and
(B1g1Au) Davydov doublets come, respectively, fromA1 ,
B1 , B2 , andA2 vibrations of the V2O5 ‘‘molecule.’’ Split-
tings of these doublets can be as great as 100 cm21 due to
Coulomb interactions and, in particular, due to interactio
between adjacentV ions via common neighbors~O2 ions!
along the chains~see Fig. 1!. Many of the vibrational fre-
quencies of NaV2O5 are close to those of V2O5.

22

A comparison of our observed vibrational frequenc
with those of V2O5

22 and with the results of our calculation
leads to the following assignment of the vibrational modes
NaV2O5. The V–O3 stretching modes are manifested by t
Davydov doublets: 951 cm21(B2g)1939 cm21(B3u) and
970 cm21(Ag)1955 cm21(B1u). The Davydov splittings are
relatively small in this case, indicating that these vibratio
associated with the strongest bond V–O3 are really well
calized. The mode frequencies are somewhat lower than
corresponding frequencies in V2O5 ~976, 982, 994, and 975
cm21!, which is consistent with longer V–O3 bonds
NaV2O5 in comparison with V2O5. The following vibrations
are associated with the O1–V–O3 bending modes:
177 cm21(Ag), 162 cm21(B1u), 392 cm21(B2g),
366 cm21(B3g).

The bridging oxygens O1 participate in V–O1–V ben
ing vibrations 418 cm21(B3g), 367 cm21(B2u),
TABLE IV. The bond lengths~nm! in NaV2O5 and V2O5.
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447 cm21(Ag), and 468 cm21(B1u). The V–O1–V stretch-
ing vibration is located at 420 cm21(Ag) and mainly involves
the motion of the V atoms along thea-axis.

The modes at 683 cm21 ~B3g and B1g! and
582 cm21(B2u) correspond to V–O2 stretching vibration
along the b-axis, while those at 550 cm21(B2g),
533 cm21(Ag), and 526 cm21(B3u) correspond to the bend
ing vibrations.

Most of the remaining modes can be described in te
of external modes of the V2O5 units. Thus, the modes a
186 cm21(B2g), 169 cm21(B3g) and 90 cm21(Ag), corre-
spond to the relative translations of the two V2O5 units
within the crystal unit cell along thea-, b-, andc-axes, re-
spectively. As the V2O5 units are bind along theb-axis, these
modes can be considered relative translations of neighbo
(VO5)n chains. TheB1g mode at 174 cm21 ~O3 ions move
along theb-axis! and theAg mode at 301 cm21 ~O2 ions
move along thec-axis! correlate with in-plane and out-of
plane chain bending vibrations, respectively. TheB2g mode
at 141 cm21 and B3u mode at 91 cm21 are associated with
rotation of the chains around theb-axis.

Modes that involve mainly displacements of Na ato
are at 225 cm21(B2u), 251 cm21(B3u), and 179 cm21(B1u).

4.3. Spectra of electron excitations

With our derived values of the effective charges, w
estimated the crystal field energies of the 3d electron local-
ized at a V41 ion site. The crystal field paramete
B2

05136012090G, B2
15202021590G, B2

258201640G,
B4

0561011430G, B4
152181023690G, B4

2331144G,
B4

35365018180G, B4
45407017420G cm21 for the V1 and

V3 sites were calculated in the framework of the exchan
charge model30 ~for the V2 and V4 sitesBp

1 and Bp
3 param-

eters change signs; the first terms correspond to point ch
contributions, and Stevens normalization is used!. The scal-
ing factorG determines the strength of the exchange cha
field. We estimated this phenomenological parameter of
model (G54) by fitting the total crystal field splitting to the
width of the V-3d bands presented in Ref. 13. In this cas
the effective crystal field provides the following energy lev
pattern of the V41 ion: 0(A9), 1.10(A8), 1.18(A9), 3.39(A8)
and 4.78(A8) eV ~irreducible representations of theCs point
group, corresponding to the space symmetry of the elec
wave function, are given in brackets, additional shifts of
crystal field levels due to the spin-orbit interaction and
electrostatic field of a hole at the neighboring vanadium
are less than 0.025 eV!. The ground state wave function
the dxy orbital with small admixture of thedyz orbital, as
previously pointed out,13 and the sequence of the excite
states is in agreement with band structure calculations
well.13

Strong absorption of light (kic) with Eia as well as with
Eib was observed in the region 1.0–1.2 eV.21 Both magnetic
dipole and induced electric dipoled–d transitions in the odd
crystal field are allowed between the A9 states forEia, and
between the A9 and A8 states forEib. Thus, in accordance
with the results on crystal field energies given above,
observed broad optical bands in the vicinity of 1 eV can
s
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e
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interpreted as phonon assistedd–d transitions without any
additional suppositions about the broken symmetry betw
the legs of vanadium ladders.31

The next step towards the detailed description of
spectra of electron excitations is to construct molecular
bitals for the @V2O#71 ‘‘molecule,’’ which has C2v point
symmetry, using vanadiumd-orbitals and oxygenp-orbitals.
The vanadium ground state wave functiondxy yields the
nonbondinga2 orbital as well as bondingB2 and antibond-
ing b2* molecular orbitals, namely,

a2 :@dxy~L!1dxy~R!#, b2 :@dxy~L!2dxy~R!#1py ,

b2* :@dxy~L!2dxy~R!#2py .

Here, a2 ,b2 denote irreducible representations of theC2v
point group and L and R denote vanadium sites on the
and right sides of a ladder rung. The highest filled orbi
being a2 , the a2→b2* electronic transition allowed inEia
polarization can account for the low-frequency absorpt
band observed only in this polarization. Quantum-chemi
calculations are necessary to varify this qualitative interp
tation.

4.4. Fano resonances with a continuum

The asymmetric line shapes of the infrared active mo
at 91, 150, 939 cm21 in Eia polarization highlight the strong
interference between these modes and a continuum, obse
just in this polarization. This interpretation is supported
the fact that the spectral line near 91 cm21 becomes perfectly
symmetric when the continuum absorption vanishes in
spectral range below the phase transition temperatureTc

535 K. In our earlier work8 we argued that these chang
are related to the opening of a gap in the magnetic excita
spectrum atTc , the observed continuum being due to tw
magnon absorption.

However, such a straightforward interpretation is
longer valid in the case of the space groupD2h

13 . It must be
revised, taking into account possible electronic excitations
this frequency range, as discussed in the previous sec
and charge ordering at the transition temperature.

4.5. Higher order infrared vibrational spectra

Two- and three-phonon absorption results from anh
monicity of crystal vibrations. It is continuous, displayin
singularities corresponding to critical points of the Brillou
zone. Leaving the detailed analysis of multiphonon band
the future, we discuss here only sharp lines observed inEic
absorbance spectrum~Fig. 5!. They are listed in Table V
together with their tentative assignment, using symme
allowed combinations ofG-point phonons observed in ou
first-order spectra. The coincidence of the observed and c
binational frequencies lies within the accuracy of our me
surements.

The strongest narrow peak at 1930 cm21 corresponds,
according to this assignment, to sum of the components
the Davydov doublet originating from the V–O3 stretchin
vibration. This stretching mode is well localized, which r
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TABLE V. Multiphonon bands in NaV2O5 observed inEic polarization.
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sults in its small dispersion over the Brillouin zone, th
delivering a narrow two-phonon band, in accordance w
the experimental observation.

5. SUMMARY

We have performed a thorough spectroscopic study
far infrared reflectance and transmittance, along with Ram
scattering of a8-NaV2O5 single crystals in the high
temperature phase~above Tc535 K!. Far infrared spectra
were obtained forEia, Eib, andEic polarizations of inci-
dent light. Diagonal~aa!, ~bb!, ~cc! and off-diagonal~ab!,
~bc!, ~ac! components of the Raman scattering tensor w
investigated. We report five infrared active modes inEia
polarization, four inEib polarization, and six inEic polar-
ization. Eight Raman active modes have been detected
parallel polarizations of incident and scattered light~aa!,
~bb!, ~cc!. The ~ab!, ~ac! and ~bc! Raman geometries deliv
ered three, seven, and five modes, respectively. These re
are in much better agreement with the recently proposed
trosymmetric space groupD2h

13(Pmmn) for the high-
temperature phase of NaV2O5 than with the previously
adopted noncentrosymmetric space groupC2v

7 (Pmn21). We
have also carried out the lattice dynamics calculations, ba
on the rigid ion model for both structures of NaV2O5 pro-
posed in the literature. We failed to obtain any physica
well-grounded set of parameters providing a stableC2v

7 lat-
tice structure. Thus, our infrared and Raman experime
data, along with the results of lattice dynamics calculatio
strongly support the conclusion of the previous structu
study13,14 that the space group of NaV2O5 aboveTc535 K is
the centrosymmetricD2h

13 rather than noncentrosymmetr
C2v

7 group.
This conclusion leads to important physical cons

quences. In particular, it requires a revised interpretation
one-dimensional magnetic properties of NaV2O5 and of the
phase transition at 35 K, previously considered as an o
nary spin-Peierls transition. The interpretation of the pre
ously observed broad bands in near and far infra
absorption8,21 needs to be reconsidered as well.

Using the effective charges derived via lattice dynam
calculations, and fitting the total crystal field splitting to th
width of the V-3d bands,12 we estimated the crystal fiel
energies of the 3d electron localized at the vanadium site.
follows from this estimate that the observed21 near infrared
broad band absorption of NaV2O5 can be interpreted a
phonon-assistedd–d transitions. We speculate that the f
h
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infraredEia polarized absorption continuum might be ass
ciated with electron excitations of@V2O#71 rungs in a crystal
field of C2v symmetry.

Strongly asymmetric spectral lines observed inEia ab-
sorbance spectra of NaV2O5 highlight a strong interference
between relatively narrow phonon lines and the underly
continuum. This suggest an interaction between crystal
brations and magnetic or electronic excitations. The deta
physical interpretation of the observed phenomenon depe
on the nature of the far infraredEia polarized continuum,
which requires special investigation.

In conclusion, we reported also some preliminary resu
on higher-order vibrational spectra of NaV2O5 resulting from
anharmonicity of lattice vibrations.

After having submitted this paper for publication~see
Ref. 32! we became aware of a similar investigation.33,34

Experimental data presented in these papers are in g
agreement with our results.
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Grant No. 98-02-17620 from the Russian Fund for Fun
mental Research.
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The conductivity of single crystals of the organic conductor~ET!4Hg3I8 @ET-
bis~ethylendithio!tetrathiafulvalene# has been investigated at temperatures from 4.2 to 360 K and
pressures of up to 75 kbar. Two first-order phase transitions have been detected at room
temperature at pressures of 2.75 and 6.7 kbar. On the basis of the experimental data, thep–T
phase diagram for the first-order phase transitions has been plotted. The unusual shape
of the phase diagram~a slow monotonic growth of the transition temperature with a slopedT/dp
54 deg/kbar followed by a sharp drop around the pointp056.5 kbar,T05324 K! has been
analyzed using the Landau theory of second-order phase transitions. Our analysis supports the
hypothesis of a second-order phase transition around this point and also exhibits satisfactory
agreement between calculations and the experimental curves of the first-order phase transitions.
© 1999 American Institute of Physics.@S1063-7761~99!02106-X#
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1. INTRODUCTION

Most low-dimensional organic conductors~salts! are of
interest to researchers because small changes in externa
rameters~temperature, pressure, and magnetic field! can
have a considerable effect on their properties and beha
These changes result in phase transitions leading to
states of materials. As a rule, these are second-order tr
tions, where the first derivatives of entropy or volume a
discontinuous. These transitions give rise to charge-den
or spin-density waves in the system of charge carrie
order–disorder or metal–insulator transformations, which
ten compete with superconducting transitions.1,2 Much less
often low-dimensional conductors undergo first-order tran
tions, in which first derivatives of the basic thermodynam
functions ~thermodynamic potential, free energy, etc.! have
jumps. The features of the first-order transitions in the ma
rials under discussion are hysteresis loops on curves of t
modynamic functions plotted against pressure or temp
ture, and these transitions are structural metal–insul
transformations3 @for example, in the MEM~TCNQ!2 salt,
where MEM is methylethylmorpholinium and TCNQ is te
racyanchinodimethane#, semiconductor–semiconductor tra
sitions @in the MTPP~TCNQ!2 salt, where MTPP is methyl
triphenylphosphonium#, or metal–metal transitions@in
(BEDO-TTF)2ReO4•H2O, where BEDO-TTF is bis-
~ethylendioxy!tetrathiafulvalene#. Synthesis of organic con
ductors based on ET and TMTSeF~thetramethyteraseleni
umfulvalene! allows one to produce salts in which all the
states can be observed.
1191063-7761/99/88(6)/4/$15.00
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One of the most interesting types of salts for research
of organic conductors is ET4Hg32dX8, where X5Cl, Br, and
I andd50.22, 0.11, and 0, respectively.6 The salt with com-
position ~ET!4Hg2.78Cl8 is an organic metal at atmospher
pressure and all temperatures. At higher pressures and
temperatures, it is a semiconductor, and atp512 kbar it goes
over to a superconducting state withTc51.8 K.7 The salt
with composition ET4Hg2.89Br8 is a superconductor withTc

54.3 K at atmospheric pressure. ItsTc changes with pres-
sure in an unusual manner (dTc /dP.0), and it becomes an
insulator atp.25 kbar.8 All the salts listed above are isos
tructural, and their anion and cation sublattices are inco
mensurate. The third salt of this group,~ET!4Hg3I8, has the
structure and properties notably different from those of
former two. At atmospheric pressure and room temperatu
is a semiconductor which undergoes a first-order transitio
the insulator state atT5260 K.9

The present investigation is concerned with the ph
diagram of ~ET!4Hg3I8 at pressures of up to 26 kbar an
temperatures ranging between 4.2 K and 360 K, which w
studied by measuring electric resistivity. At room tempe
ture measurements have been conducted at pressures of
75 kbar.

2. EXPERIMENT

~ET!4Hg3I8 crystals were fabricated by electrochemic
oxidation of ET in tetrahydrofuran in the presence of t
electrolyte~Bu4N!2Hg3I8. The crystal lattice of~ET!4Hg3I8
8 © 1999 American Institute of Physics
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is composed of cation–radical layers formed by piles of t
independent ET molecules and Hg3I8

22 anion layers. The
mercury atoms are inside I4 tetrahedra, and the occupancy
mercury sites is 0.5.

The conductivity measured at room temperature in
ab plane of the conducting layer is 0.3–2 (V•cm!21. The
conductivity measured in the normal direction demonstra
an anisotropy factor of;103, which is typical of low-
dimensional organic conductors. In our experiments,
tested crystals of the same batch; measurements of sam
from other batches have not revealed notable difference
the phase diagrams. In our measurements of conductivity
have used several devices of different types, depending
the pressure. At pressures up to 75 kbar and at room t
perature we used a toroidal cell made of limestone.10 In mea-
surements at a variable temperature, the toroid was place
a squirrel-wheel apparatus,10 where a pressure of up to 2
kbar could be fixed to within62 kbar and the temperatur
lowered to 4.2 K. Measurements at temperatures of 4.2–
K and pressures of up to 15 kbar were conducted in a h
pressure chamber formed by a cylinder and a piston.11 The
pressure in this chamber was measured using a mang
wire with an precision of 0.03 kbar, and the temperature w
measured by a Cu–CuFe thermocouple to within 0.5 K. T
phase diagram was plotted using the following procedu
the pressure was chosen at room temperature, after tha
resistivity was measured as a function of temperature.
phase transition point was determined by detecting a jum
the resistivity in the process of cooling~Fig. 1!, where the
pressure was measured by the manganin probe.

3. EXPERIMENTAL RESULTS AND DISCUSSION

The temperature dependence of the resistance of
~ET!4Hg3I8 single crystal measured at atmospheric press
in the direction of theb-axis is plotted in Fig. 1. One can se
that the salt undergoes a semiconductor–insulator phase
sition at T5260 K. At this temperature, the resistan
abruptly increases by 1–1.5 orders of magnitude. The a
vation energy above the transition point corresponds toE1

FIG. 1. Resistance of a~ET!4Hg3I8 single crystal versus temperature
atmospheric pressure. The inset shows the hystersis loop for phase tran
I↔II at p'3.9 kbar andT5310 K.
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5500 K, and below the transition point we haveE255000
K. This is a first-order transition with a hysteresis loop;9 K
wide. Figure 2 shows the resistance of the~ET!4Hg3I8 single
crystal as a function of pressure measured in the cylind
piston chamber. It is clear that the crystal resistance disp
two jumps as the pressure increases, at 2.75 and 6.7 k
which indicates that there can be three phases in this m
rial. Measurements performed at decreasing pressure s
two hystersis loops of widths,0.1 and 0.25 kbar. The inse
to Fig. 2 plots the single crystal conductivity measured
pressures of up to 75 kbar at room temperature in the toro
apparatus made from limestone. The conductivity gradu
saturates at higher pressures, which is typical of most org
conductors, and at 75 kbar it is a 18 times higher than un
normal conditions. This moderate increase in the conduc
ity of the organic conductor at so high a pressure indica
that the molecules of this salt are packed fairly densely. I
noteworthy that there is another modification of this s
which displays no phase transition under increasing pres
and whose conductivity at 75 kbar is 300 times as high
under normal conditions.

The resistance plotted as a function of temperature~Fig.
3! indicates that the band-gap width in the phase existing
pressuresp.6.7 kbar, where the conductivity is of the sem
conducting type, drops with the increasing pressure, th
fore, it is possible that this phase undergoes a transition
metallic state at a pressure of about 30 kbar.

The experimentally detected transition points are plot
in Fig. 4. One can see that the phase boundary monotonic
shifts with the pressure up to the point with coordinatesp0

56.5 kbar andT05324 K, where it has a sharp bend, an
then the phase boundary is an almost vertical line paralle
the temperature axis.

At normal pressure and at temperatureT5260 K a first-
order phase transition with a conventional hysteresis loop
width T'9 K and a sharp change in the resistance~Fig. 1!
occurs in the~ET!4Hg3I8 salt. The transition detected on th
R(T) curves rapidly shifts upwards with the temperatu
whereas the resistance jump decreases monotonically~inset
to Fig. 1! and is smeared out at pressurep056.5 kbar and
temperatureT05324 K, i.e., at the point wheredT/dp goes

tion
FIG. 2. Resistance and conductivity~inset! of ~ET!4Hg3I8 single crystal
versus pressure at room temperature.



th
n

on

e
h
in
on
m

s

t t

to
on
rd
m

a-

s,
ses,
s.

on
be
the

an-

au
the

ly
ent

h a
ase

t
e
-
r

an

ed

nd

-
For

orm

for
d

nd

1200 JETP 88 (6), June 1999 Kornilov et al.
to zero. The width of the hysteresis loop decreases at
point, which may be associated with a decrease in the cha
in volume.

One can see in Fig. 2 that in addition to the transiti
between phases I and II, which occurs atp52.75 kbar, there
is another transition atp56.7 kbar between phase II and th
hypothetical phase III in this salt at room temperature. T
investigation of the boundary between phases II and III us
curves ofR(T) in the pressure range 6.5–9 kbar has dem
strated that this boundary rapidly moves towatd lower te
peratures with the pressure up top56.7 kbar, where
dT/dp→2`, and then returns to the region of lower pre
sures and temperatures. The jump in the curve ofR(T) in
this region also has a hysteresis loop, which indicates tha
transition is of first order.

This unusual shape of thep–T phase diagram leads us
conclude that phases I and III are not identical. In this c
nection, we suppose that there should be a second-o
phase transition between them, and its boundary is assu
to originate from the triple point with coordinatesp056.5
kbar andT05324 K and is directed toward higher temper

FIG. 3. Resistance measured at~curve1! 4, ~2! 6, ~3! 12, ~4! 16, ~5! 22, and
~6! 26 kbar versus temperature.

FIG. 4. Phase diagram in thep–T plane for the~ET!4Hg3I8 salt. Experi-
mental data are plotted by symbols, solid curves show approximations
scribed in the text. The dashed line is the boundary between phases I a
derived from calculations.
is
ge

e
g
-
-

-

he

-
er
ed

tures. In measuringR(T) in the range of high temperature
we could not detect a difference between these two pha
since no resistivity jumps were observed on these curve

4. ANALYSIS OF THE PHASE DIAGRAM

Usually the effect of a second-order phase transition
the phase equilibrium near a first-order transition line can
neglected. This is not so, however, in the case when
jumps in the entropy and volume due to the first-order tr
sition are small, which is consistent with the slope ofdT/dp
at p,6.5 kbar.

Hence there is good reason to try to apply the Land
theory of second-order phase transitions to interpret
curves of the first-order phase transitions I↔II and ~tenta-
tively! II↔III. This approach produced not only qualitative
adequate results, but also satisfactory quantitative agreem
with the experimental data, which allows us to assert wit
high degree of certainty that a line of second-order ph
transitions between phases I and III really exists.

For definiteness, suppose~assuming this is consisten
with shape of the curve! that phase I is symmetrical in th
sense of the Landau theory~Fig. 4!, and phase III is its asym
metrical modification~with a nonvanishing order paramete
h).

The chemical potential of the asymmetrical phase is12

m35m11Ah21Bh41 . . . , ~1!

whereB.0, andA near the second-order transition line c
be expressed by the expansion

A~p,T!5a~T2T0!1a~p2p0!, ~18!

so that we can derive from the equationA(p,T)50 the tem-
perature of the transition I↔III near the triple point as a
function of pressure:

Tc~p!5T02~a/a!~p2p0!. ~188!

After minimizing m3 in Eq. ~1! with respect toh ~Ref. 13!
we have

h252A/2B, m35m12A2/4B.

The equilibrium between phases I and II is determin
by equating the chemical potentials:m1(p,T)5m2(p,T).
Differentiation yields the Clapeyron–Clausius equation a
the slope of the phase boundary:

dT

dp
5

v12

s12
.

Here s125s12s2 and v125v12v2 are the differences be
tween the specific entropies and volumes, respectively.
the II↔III transition we obtain

m2~p,T!5m35m1~p,T!2A2/4B.

In this case, the Clapeyron–Clausius equation takes the f

dT

dp
5

v122aA/2B

s121aA/2B
.

This equation can be solved, given the slopes of curves
the transitions I↔II and I↔III around T0:

e-
III
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t085
v12

s12
, tc85

dTc~p!

dp
52

a

a
.

By introducing the variablesT2T05t and p2p05x, we
transform this equation to

t8[
dt

dx
5

t081tc8~ t2tc8x!/Tm

11~ t2tc8x!/Tm

, ~2!

whereTm52Bs12/a2.
Since, as is well known,12 the jump in the specific heat a

the point of a second-order transition is

Dc315c32c15T0a2/2B

~it is clear that near the triple pointTc→T0), one can easily
find that

Tm5
Tcs12

Dc31
5

Dq12

Dc31
,

whereDq12 is the heat of transition I↔II. Thus,Tm is effec-
tively the ratio between the heat of the first-order transit
and the specific heat jump at the neighboring second-o
transition. By substituting in Eq.~2! ~which is valid only for
x.0) y5t2tc8x, we obtain its solution:

y1y2/2Tm5~ t082tc8!x1const. ~3!

Given that atx50 we havet50, hencey50, we derive
from Eq. ~3! that const50 and

t5H t08x, x,0,

tc8x2Tm1ATm
2 22Tm~ tc82t08!x, 0,x,xm ,

~4!

wherexm5Tm/2(tc82t08).
This solution describes the branch of the II↔III transi-

tion above~with respect to the temperature! the point where
dT/dp→2`. The second solution of Eq.~3! describes the
branch of transition II↔III that tends to higher temperature
at higher pressures~below the point wheredT/dp→2`):

t5tc8x2Tm2ATm
2 22Tm~ tc82t08!x, x,xm . ~48!

This solution is meaningful if the Landau theory also appl
to the region about the point where the line of transition
↔III is vertical: (p01xm , T01tc8xm2Tm!. This requires
that the termCh6 in expansion~1! for m3 be small, i.e.,A
!B2/C;B should hold~since usuallyC;B), and sinceA
5ay52aTm , this is equivalent to the conditionTm!B/a.

Figure 4 shows the phase diagram of the material un
investigation, where the solid trace for the transition I↔II is
a parabola obtained by a least-square fit to the experime
data ~plotted as points!, and for the transition II↔III the
trace shows calculations using Eqs.~4! and ~48! for p0

56.5 kbar,T05324 K, t0854 K/kbar, tc85125 K/kbar, and
Tm547 K.

Thus, if one accepts our interpretation of the phase d
gram, it follows that the curve of the I↔III second-order
n
er

s
I

er

tal

-

phase transition must be present in the high-temperature
gion, and its shape is determined by Eq.~19! with the re-
duced parametertc852a/a.

As for the microscopic nature of the transition, i.e., t
change in the structural symmetry, it seems natural to
sume that this change is associated with the deviation of
Hg site occupancy in the anion chain from 0.5~according to
the X-ray diffraction data9 obtained at room temperature i
phase I, the anion sublattice is composed of adjacent te
hedra with iodine atoms at their apices and central po
occupied by mercury atoms with a probability of 0.5!. This
assumption is supported by the fact that the curves of re
tance versus pressure in phases I and III~Fig. 2! almost
coincide if the presence of phase II is neglected. The rea
is that the conductivity is due to the charge transfer via
organic molecules, which are not affected by the symme
change under discussion.

A full analysis of symmetry breaking would be possib
only with full X-ray diffraction data on this transition. None
theless, we can assert that the dimensionality of the o
parameter cannot be higher than unity,13 and this is the only
condition for the validity of our interpretation.
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Peculiarities of crystal field effects in CeInCu 2 based heavy-fermion compounds

V. N. Lazukov,* ) P. A. Alekseev, E. S. Klement’ev, and I. P. Sadikov

Kurchatov Institute, 123182 Moscow, Russia

N. B. Kol’chugina and O. D. Chistyakov

A. A. Ba�kov Institute of Metallurgy
~Submitted 18 November 1998!
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We have studied the evolution of the inelastic neutron magnetic scattering spectra of a
compound with cubic symmetry, CeInCu2, in the temperature range 10–130 K, and also their
transformation with variation of the Kondo temperatureTK due to substitution of cerium
ions in the system Ce12x(La,Y)xInCu2 at T510 K. It turns out that the energy of the transition
between the ground state and excited state of the 4f electrons (DCF) in the crystal electric
field in CeInCu2 increases with growth of the population of the ground state as the temperature
is reduced, with a slight change in its intensity. Such behavior is inconsistent with the
notion of classical one-ion effects of the crystal electric field. We have found that the scale of
the observed variations in the excitation spectra of the 4f electrons depends on the Kondo
temperatureTK and is insensitive to disorder in the rare-earth sublattice. Thus, despite the fact
that TK!DCF , hybridization with states in the conduction band has a substantial effect
on all parameters of the excitation spectrum of the ground multiplet of the 4f electrons at low
temperatures. ©1999 American Institute of Physics.@S1063-7761~99!02206-4#
ica
-

l
o

io
o

tio
in
e

ll

ac
nt
d

on
o
n

-
he

n-
th
n

ha
x-
-

.
u-

ith

cent
-
-
b-

lits
nd-
si-

tron
the
rat-
nts

nt,

ing
lec-
ore
the
of
the
m-
it
de-

on
1. INTRODUCTION

One of the main interactions responsible for the phys
properties of rare-earth~RE! based compounds at low tem
peratures is the interaction of 4f electrons with the potentia
of the crystal electric field, which removes the degeneracy
the ground multiplet of the rare-earth ions. In heavy-ferm
compounds, in addition to this interaction, hybridization
the 4f -electron states with electron states in the conduc
band, which is usually described in terms of the Kondo
teraction, also plays an important role. The characteristic
ergy (DCF) of the interaction of the 4f electrons with the
potential of the crystal electric field, as a rule, substantia
exceeds the energy scale of the Kondo interaction (TK). This
is probably the reason why only the removal of degener
of the J multiplet by the crystal field is taken into accou
when determining the initial wave function of the groun
state in various models of heavy-fermion systems.

The influence of the Kondo interaction on the excitati
spectrum of the 4f electrons reduces to a renormalization
the ground state and to appreciable broadening of the tra
tions between levels of the crystal electric field~see Refs. 1
and 2 and the references therein!. At the same time, the in
teraction with the crystal electric field determines for t
ground state and excited states of the 4f electrons not only
the magnitude of the splitting and multiplicity of the dege
eracy, but also the symmetry of the wavefunctions of
states that hybridize with the states in the conduction ba
which can be manifested in certain temperature effects.

The first experimental indications of a possible mec
nism by which hybridization influences the formation of e
citations of 4f electrons in the classical heavy-fermion com
1201063-7761/99/88(6)/6/$15.00
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pound with hexagonal symmetry CeAl3 appeared in Ref. 3
In particular, in this study a strong modification of the ne
tron inelastic magnetic scattering spectra~changes in the po-
sition and intensity of the inelastic transitions associated w
the energy and wave functions of thef-electron states! was
observed when the temperature was reduced. In a re
study4 on Ce0.5La0.5Ni ~a compound with lower, orthorhom
bic crystal symmetry!, in which the Ce ions are in the heavy
fermion state, qualitatively similar effects were also o
served.

In the systems CeAl3 and Ce0.5La0.5Ni the ground state
multiplet of the cerium ions is sextuply degenerate and sp
in the crystal electric field into three doublets, and, depe
ing on the symmetry of the ground state, one or two tran
tions from the ground state can be observed in the neu
inelastic magnetic scattering spectra. Since the widths of
transitions are comparable to the excitation energy, sepa
ing out and analyzing the temperature variations prese
real difficulties. For a higher symmetry of the environme
namely cubic, the ground-state 4f multiplet of the cerium
ions splits only into two groups of states: aG7 doublet and a
G8 quartet, i.e., in the neutron inelastic magnetic scatter
spectra only one transition between levels of the crystal e
tric field is observed. Such a spectrum is simpler and m
convenient for experimental and theoretical study of
renormalization of splitting of the crystal electric field and
the wave functions in the presence of hybridization. On
other hand, a comparison of the excitation spectra of co
pounds with a variety of crystal symmetry would make
possible to establish general trends and identify specific
tails in the formation of the ground state of heavy-fermi
2 © 1999 American Institute of Physics
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compounds. Therefore it would be useful to investigate
perimentally the temperature evolution of the excitati
spectra of 4f electrons in a heavy-fermion compound wi
cubic symmetry at temperatures ranging from less thanTK to
values aboveDCF , and to compare with analogous resu
for compounds with lower crystal symmetry.3,4

2. SAMPLES AND MEASUREMENT TECHNIQUE

A suitable object of study for examining the role of h
bridization in the formation of the excitation spectrum of 4f
electrons is the cerium-based heavy-fermion compo
CeInCu2. This compound has cubic symmetry of the loc
environment of the rare-earth ion and belongs to the st
tural typeL21 ~Ref. 5!. The coefficient of the electronic term
in the specific heat, found by extrapolatingC/T from the
range 10–20 K toT50 for this compound, isg5247 mJ/
~mole•K2) ~Ref. 6!. It increases as the temperature is
duced, and reachesg51200 mJ/~mole•K2) at T,1.4 K
~Refs. 6–8!. Such a large value ofg at low temperatures is
probably the result of the emergence of magnetic orde
T,2 K ~Refs. 6 and 9!. The magnetic susceptibility deviate
from the Curie–Weiss law atT,30 K, and extrapolation of
its value x as T→0 K yields x(0)53731023 emu/mole
~Ref. 7!, which allows us to consider CeInCu2 to be a heavy-
fermion compound. On the basis of low-temperature m
netic and thermodynamic data,6–8,10 the Kondo temperature
TK for CeInCu2 was estimated to be approximately 4 K. O
the other hand, the emergence of magnetic order at
temperatures6 can lead to an increase ing and thereby yield
an underestimate ofTK ~starting atg5247 mJ/(mole•K2)
we haveTK'20 K!.

A strong dependence of the position of the maximu
Tmax ~i.e., the maximum associated withTK) on the applied
hydrostatic pressure (DTmax/DP'24 K/GPa to 1.55 GPa!
was detected in measurements of the temperature de
dence of the magnetic component of the resistance
CeInCu2 ~Ref. 11!, which indicates thatTK is very sensitive
to pressure. This peculiarity of the compound makes it p
sible to study the influence of the magnitude of the Kon
interaction on the formation and properties of the grou
state.

In neutron measurements it is more convenient for
purpose of measuringTK to use the ‘‘chemical pressure
instead of the external hydrostatic pressure, i.e., repla
cerium ions with the smaller Y ions~which corresponds to
applying a positive pressure with a resultant increase inTK)
or with the larger La ions~a ‘‘negative’’ pressure with a
corresponding decrease inTK). It should be noted that during
chemical substitution in the rare-earth sublattice of the s
tem CeInCu2, no change takes place in the type of ions in t
immediate environment of the cerium ions, which consists
eight copper ions. This suggests that to first order the io
component of the crystal, which as a rule12 is determined
mainly by its immediate environment, remains unchang
upon Ce ion substitution. The electronic component of
potential of the crystal electric field, which is substantial f
metals, can also be considered to be invariant upon cova
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substitution, as has been confirmed by experimen
studies.12

Neutron studies of the magnetic excitation spectrum
CeInCu2 were performed in Refs. 8 and 10. These stud
revealed that atT55 K there is one inelastic peak in th
spectrum with maximum around 8 meV, associated with
excitation from the ground state, and a quasielastic peak w
a half-width at half-maximum~HWHM! of approximately
0.35 meV. In Refs. 8 and 10 it was concluded that when
temperature is raised, the inelastic peak broadens, andT
.50 K it transforms into a quasielastic peak. The auth
associated the observed evolution of the inelastic peak w
the relaxation processes observed in Ref. 13. Such a con
sion is inconsistent with recent measurements on o
heavy-fermion compounds, in particular CeAl3 ~Ref. 3!, and
requires additional experimental verification.

Polycrystalline samples of Ce12x~La,Y!xInCu2 (x50
and 0.2! and the structural nonmagnetic analog LaInC2

were prepared in an arc furnace in an argon atmosph
X-ray analysis showed that all the samples correspond to
structural type of CeInCu2. Within the limits of experimental
error ('3%! no other phases were detected. The lattice
rameters for CeInCu2 (a50.6789460.00003 nm! and
LaInCu2 (a50.6851260.00004 nm! are in good agreemen
with published data.

Measured values of the lattice parameter as a functio
cerium ion concentration are shown in the inset to Fig.
Within the limits of the examined concentrations the latti
constant varies linearly~and significantly! as the Ce conten
is reduced. The lack of salient points in the dependence
the lattice parameter on the concentration suggests tha

FIG. 1. Magnetic component of the spectral functionSm(Q,E) for CeInCu2,
obtained from inelastic neutron scattering spectra atT510 K. Points —
experiment~see text!. Lines — fits to data using Lorentzian spectral fun
tions: dashed lines — inelastic (Ein56.9860.09 meV,G in5761 meV! and
quasielastic (Gqe51.4 meV! components, solid line — sum of the two. Inse
plots the concentration dependence of the cubic lattice parameter
Ce12x~La,Y!xInCu2. Error in the lattice parameter is less than the width
the symbol.
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isostructural phase transition to a state with intermediate
lence takes place~a transition of the typeg→a in Ce!, i.e.,
the cerium ions remain in the heavy-fermion state. For
neutron experiments we chose two samples with the s
cerium ion concentration but opposite ‘‘chemical’’ pressu
effect: Ce0.8Y0.2InCu2 and Ce0.8La0.2InCu2. Comparison of
the derived lattice constants upon substitution by Y ato
and application of hydrostatic pressure14 allowed us to esti-
mate that substitution of 20% of the cerium atoms is equi
lent to application of a pressure of;1 GPa. On the basis o
the results of Ref. 14, we believe that the Kondo tempera
TK increases in proportion to the increase in the pressure
this case the application of a pressure of 1 GPa should lea
roughly a doubling ofTK . Extrapolating this dependence
‘‘negative’’ pressures, we obtain the value'0.7TK for the
samples with lanthanum.

We measured the neutron inelastic magnetic scatte
spectra of the indicated samples with a KDSOG-M time-
flight spectrometer~reactor IBR-2, LNF, OIYaI! with a fixed
final neutron energyEf54.9 meV ~we used a pyrographite
analyzer! in the temperature range 10–130 K. The ene
resolution at the elastic peak was 0.5 meV. The meas
ments atT5100 K on CeInCu2 and Ce0.8Y0.2InCu2 samples
had a resolution of around 1.5 meV. Powdered samples w
prepared in the form of a set of wafers around 1 mm thick
thin aluminum foil, which made it possible to achieve a ne
tron transparency'80 for E525 meV. The range of neutro
scattering angles was 30° – 90°.

To obtain the scattering functionS(Q,E) we introduced
a background correction into each of the derived neut
inelastic scattering spectra, normalized to the spectrum
incident neutrons, and summed over scattering angles in
range 30°290°. A possible nonuniformity in the thicknesse
of the samples precludes taking accurate account of the
rection for absorption~self-screening! of the sample, which
decreases with increasing transferred energy. Howeve
quantitative estimate shows that this self-screening, tak
into account the actual, relatively high transmittance of
samples, is compensated by a correction for the magn
form factorF2(Q) @variation of the scattering intensity wit
neutron momentum~energy! transfer at a fixed scatterin
angle#, which has an inverse dependence on the energy tr
fer. Therefore we ignored these corrections.

To estimate the background components of the neu
inelastic scattering spectra for CeInCu2 we used the neutron
inelastic scattering spectrum of the structural nonmagn
analog LaInCu2. The background components were det
mined from the LaInCu2 spectra measured under the sa
experimental conditions. An example of the neutron inela
magnetic scattering spectrumSm(Q,E) of CeInCu2 at T
510 K derived in this way is shown in Fig. 1. All spectr
taken on other samples had a qualitatively similar form, d
fering only in the parameters of the inelastic peak. So
differences in the energy positions of the maxima and re
tive intensities of the peaks in the generalized density
phonon states for the lanthanum-based samples and th
vestigated samples led to the onset of small oscillation
the Sm(Q,E) spectra for the CeInCu2-based compound
~Fig. 1! which were not associated with magnetic scatteri
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To determine the parameters characterizing the exc
tion spectrum of the 4f electrons, we fit the dependenc
Sm(Q,E) with the help of two Lorentzian spectra
functions15 with energy positionEqe50 meV ~quasielastic
scattering! and withEinÞ0 meV ~inelastic scattering!:

Sm~Q,E!}
F2~Q!E

12exp~2E/kT! F Gqe/2

~Gqe/2!21E2

1
G in/2

~G in/2!21~E2Ein!2G , ~1!

whereGqe andG in are the widths of the quasielastic peak a
the inelastic peak, andF(Q) is the magnetic form factor.

Since the energy resolution in the given measureme
was insufficient to determine the parameters of the quasie
tic component, in the fitting of the spectra for CeInCu2 we
used the temperature dependence ofGqe derived in Ref. 10.
In fitting the Sm(Q,E) spectra of the samples with partia
substitution of cerium we used data obtained for the CeInC2

spectra as the initial parameters.

3. MEASUREMENT RESULTS AND DISCUSSION

The derived energy positions of the maxima of the Lo
entz peaks and their total intensities are plotted in Fig. 2.
CeInCu2 the maximum of S(Q,E) corresponds toEin

56.9860.09 meV atT510 K. The peak is preserved as th
temperature is increased, but its energy in the magnetic s
trum drops toEin56.460.1 meV atT5130 K. In the com-
pound with 20% substitution of yttrium for cerium the in
elastic peak has a large value (Ein57.6360.08 meV!, which
decreases noticeably(Ein56.760.2 meV! as the temperature
is increased toT5100 K. Substituting lanthanum for cerium
leads to a negligible decrease in the energy of the maxim
of the magnetic peak (Ein56.7660.08 meV! @Fig. 2a#.

The magnetic excitation spectrum of CeInCu2 at
T510 K obtained in the present study is in good agreem
with the results of Ref. 10. Differences at high temperatu
are probably due to ignoring background scattering in R
10. According to measurements of the magnetic suscept
ity and specific heat of CeInCu2 ~Ref. 7!, the ground state is
a doublet, and the excited state is a quartet. It is notewo
that as the temperature is reduced from 130 K the energ
the inelastic peak experiences a considerable increase~of ap-
proximately 0.6 meV!. Here we are talking about an increa
in the energy of the maximum of the spectral functionEin ,
not the experimentally observed peak, which is shifted c
siderably more by virtue of the influence of the thermal fa
tor @see formula~1!#. The greatest change takes place in t
temperature range 30–10 K~Fig. 2!. In this temperature
range the lattice constant varies by less than 631025 nm
~Ref. 11!, which can lead only to a negligible shift in th
levels, much less than the experimental error in the posi
of the peak obtained in the present work. This prevents
from relating the observed effects to changes in the poten
of the crystal electric field due to changes in the distance
the rare-earth ion to its nearest neighbors.

Note that in the temperature range investigated here,
total intensity of inelastic magnetic scattering was also fou
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FIG. 2. a — Temperature dependence of the energy positionE of the inelastic peak in the inelastic neutron magnetic scattering spectrum:s — CeInCu2 , D
— Ce0.8Y0.2InCu2 ; h — Ce0.8La0.2InCu2. The dotted line corresponds toE56.45 meV. b — Temperature dependence of the total intensity of inela
neutron magnetic scattering in the CeInCu2 spectra, normalized to the intensity atT5130 K. Solid line — calculation of the intensity of the inelastic transitio
between levels of the 4f multiplet of cerium in the cubic crystal electric field for asplitting diagram withG7 doublet as the ground state and splitting ener
7 meV. Dotted line — relative intensity 0.45. Experimental and calculated data ‘‘referenced’’ to the experimental data atT5130 K.
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to have an anomalous temperature dependence. Figur
plots experimental data on the temperature dependenc
the total intensity of inelastic scattering together with resu
of a calculation of the intensity of the transition betwe
levels of the crystal electric fieldG7→G8 with energyEin

56.98 meV, ‘‘referenced’’ toT5130 K. It can be seen tha
as the temperature is reduced, not only does the obse
intensity not grow, it even decreases somewhat. Thus,
inelastic component of the magnetic excitation spectrum
the given compound cannot be considered to correspon
the ordinary transition between levels of the crystal elec
field, for which reducing the temperature leads to an incre
in the population of the ground state, and consequently to
increase in the intensity of the inelastic peak with almost
change in its energy position. The width of the inelastic pe
in the Sm(Q,E) spectra isG'7 meV at low temperatures
which is much greater than the energy resolution of
KDSOG-M spectrometer. Comparison of the parameters
theSm(Q,E) spectra atT510 K obtained for all the sample
with the parameters of the spectrum of CeInCu2 at T5130 K
shows that the observed changes in the position of the m
mum in the investigated temperature range is approxima
proportional to the change inTK : an increase inTK

(Ce0.8Y0.2InCu2) leads roughly to double the shift of th
maximum toward higher energies (DE51.2 meV!, while a
decrease inTK (Ce0.8La0.2InCu2) reduces the energy shift o
the maximum toDE50.4 meV.
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The observed features in theSm(Q,E) spectra for
CeInCu2 are in qualitative agreement with the temperatu
variations observed in the heavy-fermion compound Ce3

~Ref. 3! and in Ce0.5La0.5Ni ~Ref. 4!. A parameter of the
system that varies appreciably at these temperatures is
population of the levels of the crystal electricfield, which f
the ground state grows from'45% atT5130 K to'100 at
T510 K. Figure 3 plots the energies of the peaks and th
total intensities normalized to the energy and total intens
at the maximum temperature of the measurements versu
population of the ground state. Figure 3b also shows res
derived from a calculation based on one-ion notions. Alig
ment of the experimental and calculated data was acc
plished at the maximum measurement temperatures. The
ure presents results for CeInCu2 obtained in the presen
work, and also for CeAl3 ~1.5–90 K, Ref. 3! and
Ce0.5La0.5Ni(12– 150 K, Ref. 4!.Consideration of all the data
taken together enables us to tentatively identify three te
perature ranges for all these compounds. For temperatur
which the population of the ground state is less than ab
0.7, the position of the peaks within the limits of experime
tal accuracy does not change. As the population of
ground state increases from 0.7 to 1, the inelastic peak
gins to move toward higher energies while the total intens
decreases only insignificantly. In the third range the popu
tion of the ground state is almost constant and equal to un
which on the temperature scale corresponds toT<TK . In
n-

he

al-
4

ate
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-

FIG. 3. Dependence of the energy position of the i
elastic peak~Lorentzian, see text! of the transition be-
tween the ground state and the first excited level of t
crystal electric field~a! and its intensitySm(Q,E) ~b!,
normalized to the corresponding high-temperature v
ues, on the population of the ground state of thef
multiplet for CeInCu2 (d, present work!, Ce0.5La0.5Ni
~D, Ref. 4!, CeAl3 (h, Ref. 3!; N — coefficient asso-
ciated with the degree of degeneracy of the excited st
(N51 for Ce0.5La0.5Ni and CeAl3 , N52for CeInCu2).
Solid line inb — calculation of the relative intensity of
the transition between the ground state and the exc
level in of the crystal electric field in the one-ion pic
ture. The dashed linesa are fitted by eye~see text!.
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this range the energy of the peak is significantly greater,
its intensity is somewhat less. The derived temperature
pendences tell us that as the temperature is reduced, cha
in the excitation spectra of the 4f electrons for heavy-
fermion systems start up at that point at which signific
growth begins in the population of the ground state, and
greatest changes occur at temperatures on the scale ofTK and
for an unchanging population of the ground state. The
served effects cannot be a consequence of ordinary re
ation processes since according to the results of Ref. 13
effect of relaxation on the characteristics of the spectr
increases when the temperature is raised, and not the o
way around, as was found to be the case in the present w

At the same time it should be noted that the magnitu
of the observed effects differ substantially from one co
pound to another. It is clear from looking at the temperat
dependences of the total intensity of the inelastic peak@Fig.
3b# that the largest deviation of the experimental intens
from the result of the one-ion calculation at lower tempe
tures is observed for CeInCu2. This possibly has to do with
the different values of the Kondo temperature in these co
pounds:TK (CeAl3)'5 K, TK (Ce0.5La0.5Ni)'15 K ~Ref.
4!, andTK (CeInCu2)'20 K ~Ref. 6!. As follows from the
data for Ce12x~La,Y!xInCu2 at T510 K ~Fig. 2!, the energies
of the maxima of the excitation spectra of the 4f electrons
increase with increasingTK . But a comparison of the posi
tions of the maxima of the excitation spectra for compoun
with different structures and Kondo temperatures shows
the Kondo temperature is not the only thing that determi
the scale of the observed effects. The form of the grou
state wave function probably also has a substantial influe
on the formation of the excitation spectrum. Thus, the gre
est variation in the energy of the maximum ofS(Q,E) at T
'0.5TK is observed for systems with crystal symmetry
the local environment of the rare-earth ions lower than cu
(E/Emin51.19 for Ce0.5La0.5Ni, E/Emin51.28 for CeAl3),
and the least variation—for cubic symmetry (E/Emin51.09
for CeInCu2) ~Fig. 3!. For systems with high crystal symme
try (CeAl3 and CeInCu2) it is not possible to explain the
observed variation of the intensity simply on the basis
‘‘classical’’ one-ion notions of crystal electric field effec
since the wave functions of the 4f -electron levels do no
depend on the parameters of the crystal electric field. Th
the detected effect is evidence of a change in the symm
properties of thef-electron states in a certain temperatu
range.

Recently, the authors of Ref. 16 suggested an expla
tion for the observed changes in the neutron inelastic m
netic scattering spectra based on the temperature depend
of the component of the total Hamiltonian for the 4f elec-
trons due to the anisotropic exchange interaction in Kon
systems. The proposed model considers the influence o
population of the levels of the crystal electric field on t
constants of the exchange interaction. But at temperat
comparable toTK , the marked increase in the temperatu
dependence is related to Kondo-scattering induced renor
ization of the exchange integrals. In compounds with h
crystal symmetry, in which the wave functions of states
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the crystal electric field do not depend on the values of
parameters, two possible mechanisms for reducing the s
metry of the Hamiltonian have been considered to expl
the emergence of temperature dependence in the intensi
transitions between states: one is based on reducing the
metry of the exchange interaction due to defects in the
mediate environment of the rare-earth ion, and the othe
related to dynamic distortion of the environment of the ra
earth ion and, accordingly, to a change in the symmetry
the exchange interaction due to magnetoelastic interact
The temperature dependence of each of these mechan
comes about just as it does for the energy level of the cry
electric field, i.e., it is substantially enhanced atT;TK due
to the Kondo effect. The emergence of ranges with differ
temperature dependence of the energies of transitions
tween levels of the crystal electric field@Fig. 3a# is in good
agreement with predictions based on this model.16 The
changes we have observed in the energy of the peak in
S(Q,E) spectrum in CeInCu2 based compounds with subst
tution of 20% of their cerium ions but with different degre
of hybridization obtained in this research~Fig. 2! indicate
that the introduction of defects into the rare-earth sublat
most probably does not have a substantial effect on the s
of the effect, i.e., the main role is played by the magne
elastic interaction. Thus, the nature of the temperature eff
in pure CeInCu2 is the same as in CeAl3 and Ce0.5La0.5Ni,
and the observed renormalization of the spectrum reflects
formation of a new ground state of thef shell as a result of
the interaction of the effects of the crystal electricfield a
the Kondo effect.

4. CONCLUSION

Our results lead us to believe that in a heavy-ferm
system with cubic symmetry of the crystal lattice, the ex
tation spectrum of the 4f electrons definitely evolves as th
temperature is reduced, with the population of the grou
state tending toward 100%. In particular, the energy
creases and the total intensity of the peaks of the neu
inelastic magnetic scattering peaks decreases. No influe
of disorder in the rare-earth sublattice on the transforma
of the neutron inelastic magnetic scattering was detected,
the ongoing transformation is not a consequence of re
ation processes. The scale of changes in the spectru
probably related mainly to the degree of hybridization~i.e.,
with TK). It is important to stress that significant and qua
tatively similar deviations from the temperature dependen
for classical one-ion effects of the crystal electric field we
observed in some heavy-fermion compounds with differ
crystal symmetry.

In conclusion, we wish to thank A. S. Mishchenko fo
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Topics in Condensed-Matter Physics.’’
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‘‘Symmetrical’’ phase and collective excitations in the proton system of ice
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A model of the ice proton system taking into account quantum-mechanical tunneling of protons
along hydrogen bonds has been formulated and investigated. When the tunneling amplitude
is small the quantum ground state of the proton system is degenerate, like the classical ground
state. At higher tunneling amplitudes, however, a transition to a nondegenerate state with
a symmetrical distribution of protons on hydrogen bonds~a symmetrical phase of ice! is possible.
Collective excitations of protons in the nonsymmetrical phase have been considered, and an
equation that determines their spectrum has been derived. ©1999 American Institute of Physics.
@S1063-7761~99!02306-9#
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1. INTRODUCTION

Ice is one of the most common materials on the earth
unique mechanical , electrical, and thermodynamic prop
ties are of great importance for various applications. Fr
the fundamental viewpoint, the specific physical propert
of ice can be interpreted in terms of the unusual structure
its crystal lattice, which contains two sublattices with ra
cally different properties. One of them is formed by oxyg
ions and is a regular lattice similar to crystal lattices of
dinary solid materials. Figure 1 shows the unit cell of t
most common hexagonal modification of ice, which exi
under natural conditions~oxygen ions are shown by ope
circles!. Note that the oxygen sublattice has the wurtz
structure and is identical to the lattices of II–VI semico
ducting compounds if oxygen ions are substituted for th
of groups II and VI.

The second sublattice formed by protons, however
disordered~it is shown by closed circles in Fig. 1!. Specifi-
cally, protons can occupy one of two possible positions
each hydrogen bond, which connect oxygen ions, at
tances of 0.1 nm from the oxygens~the whole length of the
hydrogen bond is 0.27 nm!.1 Disorder implies thatN protons
are distributed randomly of among 2N positions in accor-
dance with the two ice rules~also called Bernal–Fowle
rules!: there are two protons near each oxygen ion, and th
is one proton on each bond. It is clear that these ice rules
out proton conductivity, because any motion of a prot
would break the ice rules and cause an increase in the
ergy. At finite temperatures the ice rules can be broken,
ing rise to configurations with one or three protons near
oxygen ion (H3O1 and OH2 are ionic defects! and with two
or zero protons on hydrogen bonds (D and L are bond de-
fects!. As a result of the motion of protons along bonds
from one bond to another, these defects can move thro
the oxygen lattice without a further increase in the pro
system energy. This configuration of the proton latt
ground state, excitations, and charge transfer in ice find t
natural interpretation in terms of the classical microsco
1201063-7761/99/88(6)/4/$15.00
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model, which takes into account the Coulomb interact
between protons and specific properties of the oxyg
lattice.2

In the classical model, the motion of protons across
tential barriers is treated as a classical thermally activa
process. However, the proton motion along hydrogen bo
is assumed to be quantum-mechanical tunneling. The par
eter measuring the tunneling efficiency is the splitting of t
proton level in the symmetrical potential with two minim
~the corresponding coordinate is measured along the hy
gen bond!. In ice under natural conditions the splitting
nearly 331023 eV, which is much smaller than the chara
teristic defect energy'1 eV ~see Ref. 2!. But high pressure
applied to ice can reduce both the length of the hydrog
bond and the separation between potential energy minim3,4

The probability of tunneling under these conditions increa
while the energy of the ion defects decreases. Thus, a s
tion can arise in which the quantum-mechanical tunnel
becomes important. The aim of the present research i
study proton tunneling effects under such conditions. W
will determine the ground state of a strongly correlated p
ton system, investigate its variation with the tunneling a
plitude, and show that excitations in the nonsymmetri
state are the collective tunneling modes first introduced
describe collective motion in ferroelectrics.5 Section 2 briefly
describes the model, the basic approximations, and the t
sition to a symmetrical phase. A detailed description of
model can be found elsewhere.2 Section 3 treats collective
excitations of protons in the presence of tunneling along
drogen bonds and derives an equation for the excitation s
trum.

2. MODEL AND PROPERTIES OF THE GROUND STATE

In describing protons as quantum-mechanical partic
moving in the potential of the oxygen lattice and interacti
with each other, it is natural to apply the Hubbard mode6

The derivation of the basic equations of the Hubbard mo
version used in this study is described in detail elsewhere2,7
8 © 1999 American Institute of Physics
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1209JETP 88 (6), June 1999 I. A. Ryzhkin
here we give only a brief description. Of especial impo
tance, note that the localization radius of proton wave fu
tions is much smaller than that of wave functions in ele
tronic models, so the effect of intrasite correlations betwe
protons is unusually strong. For this reason we first elimin
all states with two~or zero! protons at one potential mini
mum. Secondly, we treat a hydrogen bond as a single la
site and two proton positions at two different minima of t
potential energy as states characterized by the pseudo
variable. Thereby we describe the system in terms of
conventional Hubbard model for particles with spin 1/2. R
member that this parameter is the pseudospin which
scribes the proton position on a hydrogen bond, whereas
real proton spin is insignificant and will be ignored. Thirdl
in view of available experimental data, it is reasonable
keep in the model only proton tunneling along hydrog
bonds and neglect tunneling between different bonds.
presence of tunneling along the bond leads to a ‘‘fictiona
magnetic field acting on the pseudospin variable. Fourt
and finally, we neglect all configurations with zero or tw
protons on one bond~Bjerrum defects!, since the mainappli-
cation of the model is to ice under high pressure~where the
distance between proton positions is smaller and the C
lomb interaction between protons at two minima on o
bond is stronger!. The projection of the whole Hamiltonia
on the corresponding subspace of quantum states can b
scribed in terms of the Pauli matrices:

H52V(
i

sxi1
J

2 (
i j

szisz j , ~1!

where the sum is performed over all bonds and pairs of
nearest neighbors,V is the matrix element of proton tunne
ing along a bond, andsx and sz are Pauli matrices. The
spin-up and spin-down states correspond to different pro
positions on a bond, andJ is a positive constant of Coulom
interaction between pseudospins on the nearest hydro
bonds. The sign of this constant is of great significance
means that this is an antiferromagnetic model. The poin
that the pseudospin lattice~i.e., the lattice formed by center
of hydrogen bonds! is frustrated and contains cycles of nea
est neighbors with odd numbers of sites. For this lattice

FIG. 1. Unit cell of hexagonal ice~the modification existing under natura
conditions!. Oxygen ions are shown by open circles, protons by clo
circles. There is one proton on each hydrogen bond~bold lines connecting
oxygen ions! and two protons near each oxygen ion.
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cannot satisfy all rules of antiferromagnetic ordering, whi
makes its ground state degenerate. With good accuracy
degeneracy of this lattice is given by the expression (3/N

~Refs. 1 and 2!. Neither can one transform the antiferroma
netic model to a ferromagnetic one by a gauge transfor
tion ~by changing signs of some spins and interaction c
stants!, since a frustrated lattice cannot be divided into tw
mutually penetrating sublattices 1 and 2 such that all
nearest neighbors of sites of sublattice 1~2! belong to sub-
lattice 2 ~1!.

Although the Hamiltonian has a simple form, it cann
be diagonalized analytically. For this reason, we restrict
analysis to a version of the mean-field approximation. Bef
discussing this approximation, recall that in the approxim
tion of the mean~or self-consistent! field, spin products are
replaced by the following expressions:

szisz j5szi^sz j&1^szi&sz j2^szi&^sz j&, ~2!

where the mean valueŝszi& are determined in a self
consistent manner. In the ferromagnetic model the mean
ues of spins are constant, independent of the bond numbi,
and can be considered as an order parameter.5 For an ordi-
nary nonfrustrated antiferromagnet the mean values of s
can take two values:6s, wheres is the order parameter. In
the case of ice, however, we deal with a frustrated antife
magnetic model, whose ground state is degenerate and h
more complicated structure. To describe this state, we
sume that the mean values of the spin variables,^szi&, de-
pend on the indexi in the following manner. Let us divide al
hydrogen bonds into two equal groups~positive and negative
ones! with the only condition that two positive and two neg
tive bonds have to be attached at each oxygen site. It is c
that this separation is in fact equivalent to the first ice ru
whereas the second ice rule is incorporated in the model.
mean values of spins for the two groups of bonds are de
mined by the expressionŝszi&56cos(2u), whereu is de-
fined from the self-consistency condition~or from energy
minimum atT50, or from the free energy minimum atT
Þ0). An important point is that, although the bonds are
vided randomly into two groups, we can consider the me
spins^szi& taking only two values:6cos(2u). This follows
from the analysis of effective fields, which can take in th
case only two values with opposite signs for arbitrary bon
~Fig. 2!. In fact, a stronger disorder cannot take place
cause of the short-range nature of the interaction~only near-

d

FIG. 2. Fragment of ice lattice illustrating division of bonds into two grou
~positive and negative!, in accordance with the ice rules. The effective fie
acting on the central bond pseudospin is7cosu for all states of neighboring
bonds that satisfy the ice rules.
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1210 JETP 88 (6), June 1999 I. A. Ryzhkin
est neighbors interact! and the ice rule~two positive and two
negative bonds are attached at each oxygen lattice site!. It is
clear that this version of the mean-field approximation
identical to the variational approach with a wave function

C5)
i 51

N/2 S cos~u!

sin~u!
D )

j 51

N/2 S sin~u!

cos~u!
D , ~3!

where the products are performed over bond groups
scribed above.

Using Eqs.~1! and ~3! and definitions of the Pauli ma
trices, we easily obtain the following expression for the e
ergy per bond:

E/N52V sin~2u!2J cos2~2u!. ~4!

This equation applies to both positive and negative bond
any environment~Fig. 2!. An elementary analysis of Eq.~4!
shows that forV,2J the energy has a minimum at

u5
1

2
arcsin

V

2J
, ~5!

where the extremum atu5p/4 is a maximum. But atV
52J this second extremum becomes a minimum, and for
V.2J this is the only minimum on the energy curve. Sin
the wave functions of all hydrogen bonds are symmetr
with respect to the pseudospin variable or the proton dis
bution on the bond, the phase transition atV52J can be
associated with the conversion of the ice to the symmetr
phase. The phase characterized byu given by Eq.~5! is the
conventional disordered phase of ice, but of course w
quantum corrections forVÞ0. The degeneracy of the non
symmetrical ground state is determined by the number
divisions of the hydrogen bonds into two groups in the m
ner describe above. Obviously, it equals the number of p
ton configurations that satisfy the ice rule, i.e., the numbe
the Bernal–Fowler configurations.

Note that, since the variational procedure discus
above is approximate, the resulting states are only appr
mately orthogonal. Let us estimate the largest overlap
tween two wave functions of the nearest ground states
clearly follows from the shapes of wave functions~3! and the
solution procedure that the nearest states are those with
smallest difference between the sets of positive and nega
bonds. Given the correspondence between the division
bonds into two groups and the Bernal–Fowler classical c
figurations, it is obvious that the difference between the t
nearest states is in the configuration of six hydrogen bon
Figure 3 illustrates a transition between two such states
H3O1 ion defect is generated, it moves along the shor
cycle and annihilates with an OH2 defect on the last step
Using Eqs.~3! and~5!, one can easily show that the overla
between the nearest states is (V/2J)6, and the largest matrix
element of the Hamiltonian is of orderV(V/2J)6. These
quantities characterize the accuracy of the approxima
treating barriers between the ground states as infinite
considering elementary excitations in one separate dege
ate state.
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3. TUNNELING MODES

The quantum tunneling of protons results in the ex
tence of a new kind of excitations in the proton system.
hydrogen bonds were absolutely uncorrelated, these ex
tions would be tunneling modes similar to excitations in tw
level systems in glasses. But the Coulomb interaction
tween protons leads to correlations between events of pr
tunneling and a radically different character of excitations
similar problem was studied by De Gennes5 in the case of a
ferromagnetic. Following De Gennes, let us term the n
excitations collective tunneling modes.

To investigate the excitation spectrum, let us use
technique of the equation of motion, which includes the f
lowing steps: the part of Hamiltonian corresponding to t
mean-field approximation is diagonalized; an equation
motion is derived by adding the fluctuational part; the eq
tion of motion is linearized assuming that deviations of sp
from their mean values are small. The linear equations
motion determine the spectrum of elementary excitations5,6

We begin carrying out this program with an identity tran
formation of Hamiltonian~1!. Using the expressions fo
spinsszi5^szi&1dszi in Eq. ~1!, we obtain

H52V (
i

sxi1J (
i

hiszi2
J

2 (
i j

^szi&^sz j&

1
J

2 (
i j

dszidsz j , ~6!

where hi5( j P i^sz j& is the effective mean field acting o
spin i and generated by its nearest neighborsj. Next, as in the
previous section, we divide all bonds into two groups
positive and negative. The mean values of the spins for th
groups are6cos(2u), respectively. As a result, we have th
Hamiltonian in the form

H5NJ cos2~2u!2V (
i

sxi72J

3cos~2u!(
i

ssi1
J

2 (
i j

dszidsz j , ~7!

where the upper and lower signs correspond to the pos
and negative bonds, respectively. The one-particle part of
Hamiltonian can be diagonalized through rotation in t
pseudospin space, which is described by the change of v
ables:

sxi56sxi8 cos~2u!1szi8 sin~2u!, ~8!

FIG. 3. Fragment of ice lattice containing the shortest cycle of six hydro
bonds. Protons are shown by closed circles. The arrows depict six sequ
proton jumps~creation of a pair of ionic defects on the first jump, subs
quent motion of the positive defect along the closed circuit, and its ann
lation on the sixth jump!. As a result of these six sequential jumps, th
left-hand proton configuration transforms to the right-hand one, which is
one closest to it.
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szi52sxi8 sin~2u!6szi8 cos~2u!, ~9!

where the parameteru, as in the previous sections, is dete
mined by the equation sin(2u)5V/2J. In new variables, the
Hamiltonian takes the form

H5NJ cos2~2u!2@V sin~2u!12J cos2~2u!#

3(
i

szi8 1
J

2 (
i j

dszi8 dsz j8 , ~10!

wheredszi52sxi8 sin(2u)6szi8 cos(2u)7 cos(2u).
At first sight, it may seem that signs6 alternating ran-

domly in the last term of Eq.~10! should lead to disordere
equations for the operatorssxi8 andsyi8 . This, however, is not
so for the reasons given in the previous section~see the note
about the choice of mean values of spins!. A self-consistent
derivation of the equation of motion for spin operators act
on both positive and negative bonds yields absolutely id
tical expressions. After linearization in smallsx8 andsy8 vari-
ables, they take the form

dsxi8

dt
54Jsyi8 , ~11!

dsyi8

dt
524Jsxi8 22J sin2~2u!(

j P i
sx j8 . ~12!

After eliminating the variables syi8 and taking sxi8
5aiexp(ikr 2 i«t), we obtain an equation for the amplitude

@«22~4J!2#ai58J sin2~2u!(
j P i

exp~ ikr i j !aj , ~13!

wherei 51, . . .n, andn is the number of hydrogen bonds
one unit cell of the ice modification under investigation;n
58 for the hexagonal ice~Fig. 1!.

4. CONCLUSION

The spectrum of collective tunneling modes is calcula
by equating the determinant of the system of equations~13!
g
-

d

to zero. Unfortunately, this equation cannot be solved a
lytically for all ice modifications, and numerical calculation
are necessary. However, some essential properties of
spectrum can be determined without solving specific eq
tions. Firstly, there is a gap in the excitation spectrum eq
to approximately 4J and corresponding to the energy of fo
mation of classical ionic defects. Secondly, the band width
proportional toV2/J, but notV alone. SinceV/J!1 holds,
this means that the band is narrowed by the Coulomb in
action. Thirdly and finally, note that quantum analogs
classical ionic defects are more like spin waves than cur
carriers in conventional semiconductors. Like spin wav
the tunneling modes are ‘‘almost’’ bosons: the creation a
annihilation operators,s i

1 and s i 8
2 , obey the commutation

rules for different bondsi and i 8 and anticommutation rules
for the same bond. An important point is that these statist
properties are only based on the commutation propertie
their creation and annihilation operators, whereas distri
tion functions of ionic defects or their quantum analogues
undoubtedly of greater interest. As was shown previous8

the latter are more like fermion distribution functions.
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Using scanning tunneling microscopy, we have detected nonuniform electron states on cleaved
bismuth surfaces, which manifest themselves in the form of a random relief with a
characteristic lateral size of 1–2 nm and a vertical size of a fraction of an angstro¨m. This relief
is due to variations in current–voltage characteristics when the tip is moved over the
sample surface. Features on the current–voltage characteristics associated with states near the
surface have been observed in a voltage range of20.4 to 10.4 V. The nonuniform
states are tentatively associated with defects generated in the process of crystal cleavage.
© 1999 American Institute of Physics.@S1063-7761~99!02406-3#
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1. INTRODUCTION

The cleaved surface of a brittle crystal has been a po
lar object of research using the scanning tunneling micr
copy and scanning atomic-force microscopy. Most attent
has been focused on cleaved surfaces of semiconduc
where one can observe atomically smooth surfaces w
well-resolved atomic structures. In many cases features
lateral sizes of order several lattice constants and ver
displacements of a fraction of an a˚ngström were observed
They are associated with impurities located at some de
below the upper surface layer.1–3 The possibility that the
cleaving process itself could generate local defects has
been discussed in this context. This issue can be raised,
rally, only when pure materials are studied. The experime
with atomically smooth surfaces described in this paper h
demonstrated that their electronic parameters vary on
scale of several nanometers. This has led us to conclude
our concepts concerning the process of crystal cleav
should be revised.

Bismuth, studies of whose electronic properties have
considerable impact on the progress in metal physics,
attracts a lot of attention. But, whereas in the 1970–80s m
effort was concentrated on studies of its bulk propertie4

almost all current publications are dedicated to phenom
associated with the surface. The reason for this shift of
tention is obvious: the concentration of current carriers
bismuth is low, of order 1025 per atom, and their wavelengt
and Debye screening radius are much longer than the la
constant and reach hundreds of a˚ngströms, so the entire sub
system of conduction electrons should undergo a modifi
tion at such separations from the surface. In this connect
for example, quantum size effects and a transition to a se
conducting state in thin films have been mooted during
cent decades.5,6 In order to interpret experiments with thi
epitaxial layers oriented in the basal trigonal plane, one
to assume the presence of a surface charge whose magn
1211063-7761/99/88(6)/9/$15.00
u-
s-
n
rs,
th
th
al

th

ot
tu-
ts
e
e

hat
ge

d
ill
st
,
a

t-
n

ce

a-
n,
i-
-

s
ude

and sign depend on the substrate material and surface co
tion. This charge varies between22.531012 ~Ref. 5! and
1831012 ~Ref. 6! electron charges per square centimeter
these numbers are scaled with respect to the volume
layer of thickness equal to the lattice constant along
three-fold crystal axis, which is about 1.2 nm, we have~2–
6)31019 cm23, i.e., a quantity which is at least two orders
magnitude greater than the bulk density of both electrons
holes. In analyzing the reflection of current carriers from t
surface and their transverse focusing in magnetic field
has to assume the presence of electron band bending of o
0.1 eV at the surface and the occurrence of an excess su
charge.7

Direct evidence of the presence of surface states or r
nances lying at 0.4 eV below the Fermi level is provided
accurate measurements of the photoeffect~one of the latest
studies in this field was published by Jezequelet al.8!. The
accuracy of these measurements, however, is limited: t
resolution is 0.25 eV. Moreover, they yield parameters av
aged over the entire surface.

Therefore, it seems interesting to study the tunnel
spectra of bismuth. Tunneling measurements of laye
structures were conducted long ago in studies of the b
bismuth spectrum, when the impact of the surface had
been realized as clearly as at the present time. Note
disagreement between the results published by different
thors is so great~these results were reviewed earlier4! that
they are hardly worth considering. It seems highly proba
that the decisive role in this case is played by interfaces
layered tunneling structures, whose properties strongly
pend on technology. The technique of scanning tunne
spectroscopy, i.e., measuring local current–voltage cha
teristics using a scanning tunneling microscope, allows
to make specific statements about the state of the surfa
samples are prepared in ultrahigh vacuum by cleaving c
tals, or using a more expensive and complicated techniq
of epitaxial film deposition in vacuum or ion etching of
2 © 1999 American Institute of Physics
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crystal surface with subsequent annealing and concur
monitoring of the surface composition using updated me
ods of analysis. The advantage of this technique is that
scanning tunneling spectroscopy allows one to measure
electron spectrum with a lateral resolution down to the int
atomic separation. This is combined in a natural way w
the scanning tunneling microscopy, which allows one to
tablish a correspondence between the spectroscopy data
the real surface structure, including certain linear or po
defects.

Studies of cleaved bismuth surfaces using scanning
neling microscopy were started in our earlier experiments9,10

when we investigated the structure of diatomic steps, ther
motion of their boundaries, and surface atomic corrugatio
room temperature and above. Later studies were condu
at lower temperature, down to that of liquid helium. At the
temperatures features such as a linear structure of terr
with straight, almost atomically smooth boundaries on s
faces cleaved at low temperatures11 and twin layers of quan-
tized widths with ideal boundaries12,13were discovered. Tun
neling spectroscopy has indicated that one-dimensio
electron states arise in the region of these twin layers. Be
we describe our investigations of atomically smooth areas
cleaved bismuth surfaces, which have shown that elec
states with typical energies of tens of meV with respect
the Fermi level are nonuniform in the surface plane o
distances of several lattice constants.

2. EXPERIMENTAL TECHNIQUES

In our experiments, we used samples in the shape
long rods oriented along the@0001# axis with sizes of abou
13235 mm3. They were spark-cut from single crysta
grown from melt by the technique described in Ref. 14 fro
a starting material with a purity of 99.99999%. At this d
gree of the material purity, the density of impurity atoms
a cleaved surface should be at a level of'1 atom/mm2. The
dislocation density on the cleaved surface determined
counting pits after etching in dilute nitric acid was of ord
0.05 mm22. ~Note that the same samples or those manu
tured by the same technique were previously used in stu
of the cyclotron resonance4,15 and quantum oscillations o
the quasistatic conductivity.16 According to those measure
ments, the electron mean free path is of order one millime
so the high quality of initial bulk crystals is evident.!

In the middle of a sample~at half its height!, a small
notch was made when the sample was cut off from the in
crystal to define the cleaved surface position. Samples w
etched in nitric acid in order to strip off the outer contam
nated layer and washed in distilled water. Immediately
fore cleaving, the sample mounted in the scanning tunne
microscope was heated to 200–250 °C in vacuum in orde
remove water and other volatile materials from its surfa
and avoid contamination of the cleaved surface in meas
ments of the heating effect on its properties.

In our experiments we have used the scanning tunne
microscope described in detail elsewhere.17 Its basic charac-
teristics are as follows: for voltages of 0–200 V applied
the x andy PZT drives and624 V to thez drive, the scan-
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ning area is 13130.05 mm3 at the liquid-helium tempera
ture. Using three piezoinertial motors, we could move the
of the scanning tunneling microscope along all three axe
steps of 0.1–1mm and select an area to be tested within
range of several millimeters. When the tip approache
sample, it is stopped automatically at the moment whe
current between the tip and sample is detected. The sam
were mounted in the scanning tunneling microscope hold18

so that their upper halves jutted out and they could be fr
tured in situ by hitting with one end of a released sprin
After that the tip was driven to the area selected for
experiment.

Low-temperature experiments were performed in a c
ostat described elsewhere.19 When gaseous helium is fed t
the evacuated volume and a pressure of 1023–1024 Torr
builds up, the tunneling microscope and sample cool dow
a temperature about 1 K above liquid-helium temperature
This is the temperature at which the reported measurem
were performed. The presence of gaseous helium has n
fect on recorded images. The sample and the tunneling
croscope tip could be seen through a window transparen
visible light, which could be closed when necessary with
magnetically driven shutter. The sample could be heatein
situ by feeding a current through a heater mounted in
holder.18 One watt of dissipated electric power is sufficient
heat bismuth to its melting temperature even in the prese
of the heat-exchange gas. The sample temperature was
sured using a copper-constantan thermocouple.

The tips of the scanning tunneling microscope we
platinum. They were fabricated either by cutting a wire or
electro-chemical etching of a wire with subsequent ablat
of the surface layer using 2.5-keV argon ions. The tips w
heated by an electron beam to the light-red colorin situ.

The scanning tunneling microscope was driven by
computer with internal ADC and DAC cards, which allowe
us to apply digital feedback in order to maintain the tunn
ing current and define all driving voltages required for t
scanning microscopy and spectroscopy. Measurements
performed in the following modes.

1. Recording ofz(x,y) topograms when the tip wa
scanned over thexy plane~the x-axis was that of the line or
frame scan, they-axis was that of the frame or line sca
respectively, depending on the user’s choice! with the feed-
back on and at prescribed tunneling currentI and voltageU
between the tip and sample.

2. Simultaneous recording of several frames at sev
prescribed values of the tunneling currentI k . In this case,
each line is scanned several times andI k is switched to a new
value at the end of each line. After running through all p
scribed values, the current returns to its initial value and
tip moves to a new line. The characteristic scan time of o
line is about 0.1 s, so frames corresponding to different c
rents are not shifted with respect to each other because
temporal drift is within 0.1 Å/s.

3. Simultaneous recording of several frames at sev
prescribed voltagesUi between the tip and sample, whic
was performed similarly to the procedure described in
previous paragraph. Note that measurements performe
the latter two modes not only yielded frames recorded un
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various experimental conditions, but also allowed us to
rive from the shifts of recorded figures along thez-axis the
effective work functionW averaged over all points of th
frame ~usually 1283128 or 2563256). If W was about
4–4.5 V, the current undoubtedly flows in the vacuu
tunneling regime. At smallerW, the tip and/or sample sur
face were almost surely contaminated, had nonconduc
coatings, and were in mechanical contact. In the experim
described below, either the condition of vacuum tunnel
was satisfied, or a ‘‘weak’’ mechanical contact took pla
which had no apparent effect on the results. Therefore,
condition of vacuum tunneling will be taken for granted
what follows.

4. Simultaneous recording of the topogram at a fix
voltageU1 and of the map of current distribution at a diffe
ent voltageU2. In this mode, the tunneling gap was stab
lized at each point at voltageU1, and the corresponding
value of z was measured, then the voltage driving the
along thez-axis was fixed, the voltage between the sam
and tip was switched toU2, and after a delay of about 10 m
which was required for termination of transient process
the tunneling current was measured. Then the voltage
returned to the initial valueU1, the feedback was switche
on, the tip moved to another point, and the procedure
repeated.

5. Measurements at given points of current–volta
characteristics within certain limits with accumulation
several measurements. In this case, the feedback system
prescribed currentI 0 at the initial voltageU0 , then the volt-
age driving the tip along thez-axis was fixed, the curve o
I (U) was recorded within a prescribed range of voltageU,
the initial voltageU0 was set, and the cycle was repeated
necessary. The typical recording time of one cycle was ab
0.1 s. At the temperature of liquid helium the drift along t
z-axis during this time was negligible.

6. Measurement of differential current–voltage char
teristics at specified points within certain ranges with ac
mulation of sequential measurements. The difference fr
the previously described mode was that an ac compo
with a frequency of 20 kHz was added to the voltageU
across the tunneling gap and the ac component of the tun
ing current was measured using a lock-in amplifier.

3. EXPERIMENTAL RESULTS

Atomically smooth terraces with a characteristic size
a fraction of a micrometer are formed on bismuth cleav
surfaces both on the basal trigonal plane and on the sur
of the twin layer, whose symmetry is characterized by a tw
fold axis ~Fig. 1!. On measurements made at the high re
lution one can see an atomic-scale structure superpose
nonperiodic variations of the relief with the ‘‘lemon peel
shape with characteristic lateral sizes of about one na
meter, i.e., of order several lattice constants~Fig. 1b and 1c!.
On the surface of the trigonal plane, the lemon peel is i
tropic in the sense that is has no specific direction. The st
ture on the surface of the twin layer is anisotropic becaus
shows valleys and ridges stretching along the twin bound
direction ~Fig. 1b!.
-

-

g
ts

g
,
e

d

e

s,
as

s

e

et a

f
ut

-
-

m
nt

el-

f
d
ce
-
-
on

o-

-
c-
it

ry

Neither the shape of the lemon-peel image nor its am
tudeDz depends on the tunneling currentI ~Fig. 2!. Since the
tunneling current is changed by varying the separation
tween the tip and sample, this experiment indicates thatDz is
independent of this distance, at least over the range of
nm, which corresponds to changes in the tunneling curr
by a factor of ten.

The peak-to-trough variationDz oof the relief super-
posed on the atomic structure varies with the voltageU fol-
lowing approximately the lawDz}1/U ~Fig. 3a and 3c!.
When the voltageU is reversed, the image is inverted, i.e
we can see hills in place of valleys. When the voltage
creases to the order of ten millivolts, the lemon-peel str
ture cannot be seen against the background of the noise.
atomic structure, whose amplitude varies more slowly,10 can
be seen at voltages of up to several hundred millivolts.

At low voltages of order one millivolt, the tunneling
current becomes very unstable when the tip is scanned ac
the sample and even changes its sign. One could suppose
jumps in the current are due to the small separation betw
the sample and tip, so that sometimes the tip touches
surface because of the finite response time in the feedb
loop with respect to noise. This, however, is not so, since
can observe changes in the current sign even when the
rent remains stable in the process of scanning. To this e
one should record simultaneously the topogram at the v
ageU1 ~Fig. 3a! and the current distribution map~Fig. 3b! at
the voltageU2 so that the current averaged over the ent
frame is zero.

Variations of the current and relief over a scale larg
than the mean interatomic distance with the voltageU1 cor-
relate with one another, as one can see in Fig. 3. The di
bution widths of the heightDz and currentDI are shown in
Fig. 3. These parameters were defined as the widths of
propriate histograms~Fig. 3c and 3d! at the level 0.1 so as to
leave out overshoots. The choice of the cut-off level, ho
ever, has little effect on the ultimate result, which is that bo
DI and Dz are inversely proportional toU. Note also that
DI}I holds to within 10–20%.

Current variations obviously indicate the presence of
additional voltageDU(x,y) applied between the tip an
sample, whose amplitude is a function of the tip lateral c
ordinatesx andy. The order ofDU can be estimated usin
the obvious relationDU'DI •R, whereR is the resistance o
the tunneling gap set when the feedback of the scann
tunneling microscope is turned on. For the case illustrated
Fig. 3, we haveDU'0.6 mV.

These results indicate that relief variations of the lemo
peel shape and current at zero voltage have much in c
mon. Moreover, changes inz are mostly determined by
variations in the voltageU11DU(x,y) between the tip and
sample. The higher the relative contribution of the seco
term, the larger the tip displacement along thez-axis needed
to maintain the prescribed value of the tunneling current. I
also clear that changing the sign of the voltageU1 should
invert the relief pattern. At the same time, a change in
value of the currentI to be maintained constant at fixedU1

should not changeDz, which is illustrated by Fig. 2. Numeri-
cally, a change in the current of about 0.2 nA~Fig. 3! should
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FIG. 1. ~a! Topogram of bismuth surface in the region of th
twin layer. Topograms of~b! area 1 on the surface of the laye
with the two-fold axis and~c! area 2 on the basal plane with th
trigonal symmetry. In order to emphasize atoms on the surfa
the amplitude of atomic surface modulation is enhanced b
factor of four using a mathematical procedure~components of
the two-dimensional Fourier transform corresponding to t
atomic period are multiplied by four!. The parameters of the
experiment are the following:I 50.5 nA, the voltage between the
tip and sample~a! U512 mV; ~b! 1 mV; ~c! 3 mV.
e-

ed
a

-

ic
the

de-
correspond toDz'0.04–0.07 nm, judging by the measur
ments of the mutual displacements of topograms shown
Fig. 3 along thez-axis. This value is close to the measur
Dz'0.08 nm, which is also plotted in this graph. Given th
the uncertainty is relatively large andDI can also be renor
in

t

malized considerably owing to variations inz, the agreement
between the numbers can be deemed quite satisfactory.

A very interesting fact is that point defects of the atom
scale do not produce features on current maps. Thus, on
surface relief shown in Fig. 4b one can clearly see two
the
ge
FIG. 2. Smoothed images of the same region on the surface on
trigonal plane recorded at different tunneling currents. The volta
U53 mV andDz50.06 nm.
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FIG. 3. ~a! Original ~left! and smoothed topograms and~b! current maps of the same region on the trigonal plane;~c, d! histograms for records~a! and~b!,
respectively. On the right of the histograms are curves ofDz andDI , respectively, as functions of voltage~which is shown over the graphs!. The current at
which the tunneling gap was fixed equaled 0.5 nA.
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fects of the form of missing atoms. The lemon-peel struct
is virtually unobservable in this graph, sinceU1 is relatively
high. It can be seen in the current map~Fig. 4c!, where the
point defects, in contrast, cannot be detected.

It follows from the results given above that on a see
ingly ideal cleaved surface of a bismuth crystal, whose p
odic atomic structure is clearly seen in topograms, nonu
form states with a characteristic sizes of one nanometer
established, and they appear in the form of an additio
current initiation. They have been detected in tens of sam
cleaved at low temperatures and on a sample cleaved a
room temperature~At temperatures above 350 K, bismu
single crystals become too plastic and we could not cle
them in situ.!

The mechanism of additional voltage initiation can
e

-
i-
i-
re
al
es
the

e

extracted from the fine structure of differential curren
voltage characteristics measured at various arbitrary po
on the atomically smooth sample surface. Three characte
tics of this kind are plotted in Fig. 5. Each of them w
recorded twice, and they show good reproducibility. T
characteristics measured at different points are roughly s
lar, but at low voltages the differences between them
comes quite clear.

The changes in the current–voltage characteristics du
the tip displacement over the surface suggests that the a
tional voltage between the tip and sample is due to detec
of some radiation by nonlinearity of the tunneling gap.
order to check out this hypothesis, we recorded current m
of the same tested area by varying the amplitudeU200 of an
ac voltage at a frequency of 200 kHz. Experiments w
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FIG. 4. Surface topograms of two different crystals recorded after heating them to about~a! 240 °C and~b! 200 °C.~c! Current map recorded simultaneous
with topogram~b!. Parameters of the experiment:~a! I 51 nA andU521.5 mV; ~b, c! I 51 nA andU517 mV.
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carried out with several samples. This frequency is far
yond the cut-off frequency of the tunneling current pream
lifier, which is less than 15–20 kHz. In recording these i
ages, voltageU1 was set at a fairly high level with a view t
limiting variations ofDz and rule out their possible effect o
measurements ofDI .

Figure 6b shows three current maps at ac signal am
tudesU200530, 15, and 0 mV. It is clear that, although som
fine structure of these maps is different~which is partly due
to noise!, there is correlation among the three maps in ter
of the positions of the main features on thexy plane. At the
same time, the range of variations in the current essent
broadens with the ac voltage amplitude, as can be see
histograms of the current distribution~Fig. 6c!.

From the current–voltage characteristics given in Fig
one can estimate the expected current variations to orde
magnitude. At low voltages, the rectified current compon
should be (1/4)U200

2
•d2I /dU2. Numerical differentiation of
-
-
-

li-

s

lly
in

,
of
t

the characteristics yields atU50 the values ofd2I /dU2

ranging between210 and 20 nA/V2 ~Fig. 5b!. Hence we
derive atU200530 mV the rectified currents ranging betwee
20.01 and10.02 nA, i.e., the expected value can beDI
'0.03 nA, which is close to the measurements in order
magnitude.~Our calculations take into account the fact th
in recording the plots of Fig. 6 we set the stabilized curre
and voltage across the gap a factor of two higher and low
respectively, than in measurements of the current–volt
characteristics~Fig. 5!. For this reason, the values o
d2I /dU2 should be multiplied by four.!

Figure 7 showsDI as a function ofU200 andU200
2 . One

can see that the measurement accuracy is insufficient fo
unambiguous choice betweenDI}U200 and DI}U200

2 . The
latter function is compatible with the suggested mechani
provided that, along with the voltage at a frequency of 2
kHz an additional voltage is applied to the gap between
-
a

-

ing
FIG. 5. ~a! Differential current–voltage character
istics for three various points on the surface at
distance of'4 nm from one another.~b! Second
derivative of current with respect to voltage ob
tained by numerical differentiation of curves~a!.
In measuring these characteristics, the tunnel
gap was stabilized atI 50.5 nA andU50.125
mV.
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FIG. 6. ~a! Topograms,~b! cur-
rent maps, and~c! histograms of
current distribution recorded a
various amplitudes of ac voltage
at a frequency of 200 kHz. The
tunneling gap was stabilized atI
52 nA andU150.06 V.
d
c

rit
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not
de
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ro-
an
tip and sample, and the powers of these two signals a
Note, however, that the ac signal amplitude is not mu
smaller than the typical voltages at which the nonlinea
parameter of current–voltage characteristics essent
changes~Fig. 5!, so deviations from the quadratic curv
should be noticeable.
d.
h
y
lly

The issue of the source of additional voltage has
been ultimately clarified. Figure 7 indicates that its amplitu
is estimated to be about 10 mV, and the power dissipate
the tunneling gap at a level of 10210–10212 W. One can say
that the preamplifier noise of the scanning tunneling mic
scope in terms of the input voltage cannot have such
z
es
FIG. 7. Current variations versus~a! ampli-
tude and~b! amplitude squared of the 200-kH
ac voltage component. Circles and squar
correspond to different samples.~Values ofDI
for squares are multiplied by three.!
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effect. Another plausible source of this voltage is light f
through the window, but it has no effect since the measu
ments do not depend on whether the window is open
closed by a copper foil shutter set on the helium screen of
scanning tunneling microscope on the side of the evacu
volume. Oscilloscope traces of the voltage at the preampl
input indicated that the most probable source of this volt
is a spurious signal at the TV frequency of about 200 MH
Note, however, that the uncertainty in this issue became
consequential in the context of the reported experime
when we had amplified the effect under investigation by
plying the definite ac voltage.

Based on the reasoning given above, we conclude
the mechanism leading to the nonuniformity in the relief a
current maps has been established: these effects are d
differences among current–voltage characteristics at dif
ent points of the sample surface, i.e., nonuniformity of el
tron states. Obviously, such effects are out of question in
ideal lattice. Since the quality of the initial crystals was ve
high,15,16 the only feasible explanation is generation of d
fects near the surface in the process of cleavage. In ord
obtain additional information about their nature, we
tempted to anneal crystalsin situ. Various samples were
heated from the room temperature to 200–240 °C~recall that
the melting temperature of bismuth is 271 °C! and exposed to
this temperature for about one minute.~The total time during
which the sample temperature was higher than the room t
perature was about ten minutes.! In all cases, nonuniform
states persisted after cooling down, and features on
records were essentially the same as on freshly cleaved
faces. Examples of records obtained on two differ
samples after annealing are shown in Fig. 4. Thus, a r
tively high barrier had to be overcome to eliminate the d
fects. If the frequency of hits against the barrier is set at
upper frequency of acoustic phonons in bismuth, 1.531012

Hz,20 we have a lower estimate of the barrier height of 1.5
eV.

Probably, a longer annealing could get rid of the lem
peel, but this would considerably complicate the experime
in particular, this would sharply increase the liquid-heliu
consumption. Moreover, one should take into account
the surface composition can be changed by segregatio
impurities from the bulk to surface, surface diffusion of fo
eign atoms from sample sides, and changes in the struc
near the surface owing to the motion of terraces, which
noticeable even at the room temperature and greatly a
vated by heating.9 Therefore the measurement of the activ
tion energy of such defects is a separate complex task.

4. DISCUSSION

Many publications have been dedicated to the fract
dynamics of brittle crystals. To the best of our knowledg
however, none of these papers discussed formation of de
near cleaved surfaces and their structures. Nor is the
theory of this phenomenon available, so our discussion
limited to approximate estimates and qualitative consid
ations.

The lemon peel goes together with undisturbed ato
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surface layers, so we can assert that it is an indication
crystal defects not associated with changes in the mean
sity. Such defects could be, for example, vacancies and
terstitial atoms localized near the surface at depths of ab
one nanometer, which are comparable to characteristic la
sizes of features in the structure. Probably these defects
generated when atoms are displaced from their initial po
tions in the process of cleavage. The formation and rel
ation energies of vacancies and interstitial atoms are sev
electronvolts.~This is why they are not eliminated by annea
ing at about 500 K.! The surface density of defects observ
in our experiments, which is a factor of several tens low
than the surface density of host atoms, and their rand
distribution indicates that these defect result from rand
events when momenta transferred from surface atoms ad
some lattice sites. We do not try to describe the scenario
this process, but only indicate that a description in terms
phonons is hardly adequate since their maximal energy
bismuth is only about 8 meV for acoustic phonons and ab
13 meV for optical phonons.20

In principle there can be two causes of the lemon-p
pattern: statistical variations of the defect density, which
fairly high, or sparsely distributed weakly interacting defec
The analysis of current–voltage characteristics~Fig. 5! re-
veals that they have different amplitudes of features loca
at the same voltages, i.e., there is a limited number of
crete features in the electron spectrum. This circumsta
makes the second cause more probable.

The feature in the electron spectrum at20.3 V is prob-
ably due to theT6

1 level in the bulk with an energy of 0.38
eV above the Fermi level, which was calculated by Lin a
Allen.21 Other features that could be associated with defe
in the bulk are peaks at222 and133 mV in Fig. 5 ~the
valence band top at 11 meV and levels at227 and240
meV corresponding to conduction electrons4,21!. The dimen-
sions of wave functions corresponding to these levels, h
ever, are tens of nanometers, and their relative contribu
could not change as a result of lateral translations thro
smaller distances. Therefore, all features in the spectrum
voltages between the tip and sample ranging between20.2
and10.4 V reflect properties of surface states.

A fraction of these features can be attributed, in pr
ciple, to surface levels of the two-dimensional lattice. Usi
the estimatepr'\ and equating the sizer to the interatomic
distance on the surface of 0.45 nm, we obtain for these st
the characteristic electron energyp2/2m'0.1 eV.~The mass
m is equated to the free electron mass.! Features at lower
energies should correspond to smaller sizes, i.e., the struc
dubbed lemon peel in this paper. Since the calculation te
niques for electron spectra have been well developed, the
hope that the real structure of observed defects will be
vealed by the theory in future if it is possible to compa
experimental data with calculated by different models of d
fects.

The estimates given above explain why surface featu
of the atomic scale cannot be seen in current maps~Fig. 4b
and 4c!. They can be seen only at sufficiently high ac volta
amplitudes across the gap between the tip and sample
follows from our preliminary experiments, this is true, an
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the amplitude of the atomic-scale pattern in the current m
increases sharply when the ac voltage amplitude surpa
100 mV, so that the contribution from surface defects of
atomic scale become dominant.

To sum up, we focus the reader’s attention on the f
lowing: we have reported on the first ever observation o
nonuniform state on the cleaved crystal surface. This p
nomenon can probably be detected by different techniq
and information about the structure of the corresponding
fects can be obtained by studying the surface with the hel
such techniques as grazing-incidence x-ray diffraction
electron diffraction. Another important aspect is theoreti
investigation of both the mechanism of formation of the no
uniform state and the electron spectrum on the cleaved
face, as well as the search for similar effects in other ma
rials. The work in this line of research will continue.

We are grateful to A. F. Andreev for support of th
work, and to A. P. Volodin and I. N. Khlyustikov for helpfu
discussions. The work was supported by the Russian F
for Fundamental Research~Grant No. 96-02-18991!.
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drievski�, Zh. Éksp. Teor. Fiz.60, 669 ~1971! @Sov. Phys. JETP33, 364
~1971!#.

6C. A. Hoffman, J. R. Meyer, and E. J. Bartoli, Phys. Rev. B48, 11431
~1993!.

7V. S. Tsoi and I. I. Razgonov, JETP Lett.23, 92 ~1975!.
8G. Jezequel, J. Thomas, and I. Pollini, Phys. Rev. B56, 6620~1997!.
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The spectrum and intensities of NMR lines are investigated experimentally and theoretically for
excitation by an alternating magnetic fieldhi parallel to a static fieldH in the quasi-one-
dimensional, six-sublattice antiferromagnet CsMnBr3 . According to theory, two new NMR lines,
which are not excited by a transverse magnetic fieldh' , are observed near the phase
transition from triangular to collinear structure (H5Hc) @JETP86, 197 ~1998!#. © 1999
American Institute of Physics.@S1063-7761~99!02506-8#
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1. INTRODUCTION

The application of NMR methods to studies of the ma
netic properties of quasi-one-dimensional, multip
sublattice antiferromagnets has already helped to prod
nontrivial results, such as the phenomenon of suppressio
quantum fluctuations of electron spins1 and a new type of
magnetic structure in the easy-axis triangular antiferrom
net CsMnI3.2 Nonetheless, it has become increasingly ob
ous that the full potential of NMR in such investigation
have yet to be fully exploited. In this paper we discuss
sults obtained in the excitation of NMR by a longitudin
alternating magnetic fieldhi parallel to a static magnetic fiel
H. This method has been successful in disclosing two a
tional NMR lines that are not excited by a transverse rf m
netic fieldh' . These lines are intriguing in that they exhib
a dynamic frequency shift near the phase transition from
angular to collinear structure.

In Secs. 2 and 3 of the present paper, we describe
magnetic properties of CsMnBr3 and experiments on the ob
servation of55Mn NMR for hi . In Sec. 4 we give the result
of calculations of the spectrum and intensities of NMR lin
for various excitation techniques. In the Conclusion we d
cuss the suppression of steady-state NMR signals in the p
ence of large dynamic frequency shifts and the possibili
inherent in the parametric excitation of nuclear spins.

2. MAGNETIC PROPERTIES OF CsMnBr 3

The compound CsMnBr3 is one of the family of halides
of the type ABX3, where A denotes an alkali metal, B is a 3d
metal, and X is a halogen. The crystal structure of CsMn3

is described by the spatial symmetry group D6h
4 , the Mn21

ions forming a hexagonal grid in the basal plane~perpen-
dicular to theC6 axis!.4 The crystal lattice determines th
1221063-7761/99/88(6)/8/$15.00
-
-
ce
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-
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-
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he
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s

detailed magnetic structure of this compound.5–9 The princi-
pal distinguishing feature of the lattice is that the distan
between adjacent planes of magnetic ions is half the dista
between nearest-neighbor ions within one plane. As a re
antiferromagnetic exchange interaction of the magnetic m
ments within chains running along theC6 axis is 103 times
the interchain antiferromagnetic exchange. This quasi-o
dimensionality significantly affects the magnetic properti
thus accounting for the heightened interest in the study
this class of materials.

The easy-axis character of the magnetic anisotropy
conjunction with antiferromagnetic interchain exchange
sults in the formation of a noncollinear, six-sublattice ma
netic structure~Fig. 1a!. Intrachain exchange induces antife
romagnetic ordering of the magnetic momentsM j ( j 51
26) of three pairs of electronic sublattices, which is d
scribed by the antiferromagnetism vectors

L15M12M4 , L25M22M6 , L35M32M5 .

Because of the vanishingly weak magnetic anisotropy in
basal plane, the sublattices in a weak magnetic fieldH'C6

are oriented in such a way that one of the indicated vec
L i , sayL1, is perpendicular toH ~Fig. 1a!. The other two
vectors,L2 L3, form angles close to 30° and 150° withH.

As H is increased, the anglea betweenL2 andL3 varies
according to the law10

cos
a

2
5

1

22z
, z5

H2

Hc
2

, ~1!

where Hc5AHEHE8'61 kOe ~at T51.8 K, Ref. 9!, HE

'1500 kOe, andHE8'3 kOe are the effective fields of in
trachain and interchain exchange interactions, respectiv
1 © 1999 American Institute of Physics



uc-

1222 JETP 88 (6), June 1999 Dumesh et al.
FIG. 1. Schematic representation of the magnetic str
ture of CsMnBr3: a! H!Hc ; b! H.Hc (b.g).
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In a field H5Hc the above-described magnetic structu
changes to a collinear configuration (a50), corresponding
to a second-order phase transition~Fig. 1b!.

The magnetic field of the nuclei of thej th sublattice is
determined by the sum of the external fieldH and the hyper-
fine fieldsHn j :

H j5uHn j1Hu5HnA11
H2

Hn
2

22
H

Hn
cosu j , ~2!

whereHn52AM0 , M0 is the average magnetic moment
the sublattice,A is the hyperfine interaction constant, andu j

is the angle betweenH andM j :

cosu1,45
H

HE
,

cosu2,552sin
a

2
1

H

HE
cos2

a

2
1oS H

HE
D ,

cosu3,65sin
a

2
1

H

HE
cos2

a

2
1oS H

HE
D . ~3!

Consequently, forH,Hc there must be three twofold dege
erate NMR branchesvn j5gnH j .

In weak fieldsH the degeneracy is lifted by interactio
with the Goldstone antiferromagnetic resonance~AFMR!
mode. The frequencies of the three NMR branches (V4 , V5,
and V6) decrease~this is the so-called dynamic frequenc
shift!. Their spectrum has been investigated experiment
and theoretically.1,3 A functional dependenceHn(H) that dif-
fers for spins in sublattices 1, 4 and 2, 3, 5, 6 has also b
reported in the cited papers, owing to the suppression
quantum fluctuations of the magnetic field and a correspo
ing increase inM j (H). The spectrum of all other branches
described by Eqs.~2!and ~3! with the functionalHn j(H)
taken into account, but NMR signal amplification does n
take place for these branches, and they have not been
served experimentally.

As H→Hc , two of these branches begin to interact w
the AFMR modev5 ~in the notation of Ref. 8!, whose fre-
quency tends to zero as phase transition is approached.
spectrum of these branches is deformed in this case, an
ly

en
of
d-

t
b-

he
the

branches themselves become observable in excitation b
rf field hi . These phenomena are the subject of the pres
article.

3. MEASUREMENT PROCEDURE AND DESCRIPTION OF
THE EXPERIMENT

The objects of investigation were CsMnBr3 single crys-
tals grown and oriented as in Ref. 3, which also describes
wide-range continuous NMR spectrometer used to perfo
the measurements. The main difference is a modification
the cavity structure to impart the required polarization to
rf field hi . A block diagram of the resonance circuit
shown in Fig. 2. A movable copper plate2 with a dielectric
coating 3 forms with the casing an additional variable c
pacitance, which is used to tune the cavity frequency. A n
row slot 7 forms the structural capacitance of the loop. T
two-headed arrow indicates the directions of motion of
plate. The whole structure is positioned in a superconduc

FIG. 2. Block diagram of the resonance circuit:~1! cavity; ~2! movable
copper plate;~3! thin insulating film;~4, 5! coupling loops;~6! coaxial leads;
~7! narrow slot.
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solenoid with an inside diameter of 25 mm, and the rf field
precisely parallel to the field of the solenoidH.

We used two cavities withQ'400 at 4.2 K. The fre-
quency tuning range of one cavity was from 390 MHz
470 MHz, and the range of the other was from 310 MHz
380 MHz. The cavity containing the investigated sing
crystal sample was placed directly in a helium tank. An e
ternal magnetic field was applied perpendicular to the h
agonal C6 axis of the crystal. In all other respects th
spectrometer and the measurement procedure were iden
to those in Ref. 3.

Figure 3 shows the absorption signal in CsMnBr3 for
T51.3 K, a frequency of 349.6 MHz, and fieldshi ~curve1!
andh' ~curve2!. It is evident that different NMR branche
are excited in these two cases. The NMR spectrum
CsMnBr3 for hi'C6 at T51.3 K is represented by ligh
circles in Fig. 4. NMR is observed close toHc over a broad
frequency range, demonstrating the large dynamic freque
shift of NMR. As uH2Hcu increases, the intensity of th
signal decreases, and its position approaches the unsh
NMR spectrum, which is represented by dashed curves.
solid curves represent the NMR spectrum calculated fr
Eqs.~20! and~21! below. We have not used any fitting con
stants here. Satisfactory agreement is observed betwee

FIG. 3. Experimental absorption signal in CsMnBr3 (H'C6) at T51.3 K
and 349.6 MHz with excitation by alternating magnetic fieldshi ~curve 1!
andh' ~curve2!.

FIG. 4. NMR spectrum in CsMnBr3 for H'C6 at T51.3 K with excitation
by alternating magnetic fieldshi ~light circles! and h' ~heavy dots, from
Ref. 3!.
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experimental and calculated spectra. The observed dif
ences are attributable to the appreciable width of the AFM
line near phase transition.

It must be noted that NMR in parallel fields has here
fore been observed only in superfluid helium3He and in the
domain walls of ferromagnets. In our case NMR is genera
in a homogeneous sample, because the signal is observ
a large distance from the phase transition field.

Consequently, five NMR modes are observed
CsMnBr3. Three of them are excited forh' , interact with
the Goldstone AFMR mode, and are observed in the rang
fields 20–80 kOe.3 Two modes are generated forhi , interact
with the AFMR modev5, and are observed in fields of 50
65 kOe.

4. THEORY

We analyze the intensities of NMR lines excited by va
ous techniques, using the same equations for the magne
tionsmj ( j 51, . . . ,6) of thenuclear sublattices as in Ref. 3
Now, however, in these equations we need to take into
count, first, interaction with differently polarized alternatin
fields h and, second, nuclear magnetic relaxation, wh
takes the oscillations ofmj into the steady state. We trea
relaxation processes in the relaxation time approximati
which corresponds to the Bloch equations11 ~see Appendix!.

Figure 5 shows the influence of a transverse fieldh' on
the orientation of the vectorM1 when the frequency of the
alternating field is much lower than the AFMR frequency~at
NMR frequencies this condition is easily satisfied at anyH,
owing to the hyperfine gap in the AFMR spectrum12,13!. It is
evident that for h'!H everything reduces to rotatio
through the angledw5h' /H. All other vectorsM j rotate
through the same angle, and their variations are there
described by the equations

M j
(h')

~ t !5M jdw5x'h'~ t !, ~4!

where

x'5M j /H ~5!

is the magnetic susceptibility in a fieldh' . It follows from
Fig. 1 that a longitudinal fieldhi has scarcely any influenc
on the orientation of the vectorsM1 andM4, but changes the
angle a by

FIG. 5. Influence ofh' on the orientation ofM .
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da5H 4Hhi /A~3Hc
22H2!~Hc

22H2!, H<Hc ,

0, H.Hc .
~6!

Equations~6! can be derived from Eq.~1! by writing the
latter for the fieldH1hi and expanding in powers ofhi . The
calculation of the variations of the vectorsM j for such a
variation of the anglea leads to the equations

M j
(hi)~ t !5x i jhi~ t !, ~7!

where

x i15x i450, x i25x i652x i352x i55x i , ~8!

x i~H !5H M0da/2hi , H<Hc ,

0, H.Hc .
~9!

We have thus calculated the NMR gains:

h'5Ax'5Hn /H,

h i j5Ax i j . ~10!

In the Appendix we show that the use of Eqs.~6!–~9! in
the equations formj permits them to be written in the form
~A12!:

F S v1
i

T2
D 2

2vn j
2 Gmxj

~v!

1gnvn jAmzj

Hn

HE8
(

j
l j j 8mxj 8

~v!

1gnvn jmzj
h'h'~v!1gnvn jmzj

h i jhi~v!50.

~11!

The Appendix also gives expressions for the quantitiesl j j 8
~A7! and vn j ~A13!. The expressions formxj

(v), h'(v),
and hi(v) are related tomxj

(t), h'(t), and hi(t) by the
Fourier transform~48!.

The determinant of the system of equations~11! charac-
terizes the six NMR frequencies. We note that the frequ
cies of only three of these lines, excited by a transverse fi
h' , were analyzed in Ref. 3. We now look into the feasib
ity of exciting all six lines.

Taking the amplification into account, we describe t
intensity I n(v) of the absorption signal measured in the e
periments of Ref. 3 by the equation

I n~v!5(
j

h j Im mxj
~v!, ~12!

where Immxj
(v) is the imaginary part of the solution of th

system~11! for the frequencyv. These equations have th
simplest form in the casesH!Hc , H'Hc , andH.Hc . An
analysis of the casesH!Hc and H.Hc yields results that
agree with the curves in Refs. 1 and 3 to within the expe
mental errors. We therefore confine our discussion to
caseH'Hc only, as it is associated with new experimen
results described in the preceding section of the article.

For H'Hc the following expressions forl j j 8 can be
obtained from Eq.~A7!:
-
ld

-

i-
e
l

l225l335l555l665l265l3552l2352l6352l25

52l5650.5$2@12~H/Hc!
2#1e%21, ~13!

wheree52m0 /HE8'1022 @see Eq.~A5!#.
The componentsl1 j andl4 j do not have singularities a

H5Hc , and their influence can therefore be disregarded
second procedure by which it is possible to substantially s
plify the system of equations~11! involves the transforma-
tion to new variablesmk6 (k51,2,3):

m165mx1
6mx4

, m265mx2
6mx5

, m365mx3
6mx6

.
~14!

As a result, the system~11! is decomposed into four inde
pendent equations:

F S v1
i

T2
D 2

2vn1
2 Gm1250,

F S v1
i

T2
D 2

2vnk
2 Gmk112vnkm0gnh'h'50, k51,2,3,

~15!

and a system of two coupled equations:

F S v1
i

T2
D 2

2vn2
2 Gm221

1

2
vn2vpc~H !

mz

m0
~m22

2m32!12vn2gnh ihimz50,

F S v1
i

T2
D 2

2vn3
2 Gm321

1

2
vn3vpc~H !

mz

m0
~m32

2m22!12vn3gnh ihimz50, ~16!

where the two quantities

vpc~H !5
vn2~Hc!e

@e12~12~H/Hc!
2!#

~17!

and

h i5Hn /AHc~Hc2H !, ~18!

have singularities atH5Hc . According to Eqs.~15!, the
component in the NMR spectrum corresponding tom12 is
not excited by the variable field, and themk1 components
are excited by the transverse fieldh' . The spectrum of these
components is represented by dots in Fig. 4, and their p
erties are discussed in Ref. 3. The new results, represe
by the open circles in Fig. 4, are described by the soluti
of Eqs. ~16!. Their form depends strongly on the ratio b
tween the difference in the frequenciesvn2 andvn3 ~45!,

D5vn22vn352H sin~a/2!, ~19!

and the quantityvpc ~17!. For D@vpcthe frequencies of the
componentsm22 andm32 differ from the frequencies of the
componentsm21 and m31 excited by the fieldh' , consis-
tent with the results shown in Fig. 4. ForD!vpc the follow-
ing equations can be obtained for the frequencies of the c
ponentsm22 and m32 , which are the roots of the secula
equation for~16!:

V2
250.5@vn2

2 ~H !1vn3
2 ~H !#, V3

25V2@V22vpc~H !#.
~20!
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As H→Hc , the frequency V2 approaches vn2(Hc)
5gnAM0 ~45!, and V3 ~taking ~17! into account! tends to
zero:

V3
2~H !5V2

2~Hc!
12~H/Hc!

2

e/2112~H/Hc!
2

. ~21!

The spectra calculated from these equations are represe
by solid curves in Fig. 4.

Equations for the intensitiesI n(v) of the NMR lines at
the frequenciesV2 and V3 can be obtained by substitutin
the corresponding solutions of the system~16! into Eq. ~12!:

I n~V3!52m0h i
2gnhiT2 , ~22!

I n~V2!54I n~V3!F gnH

vpc~H !G
2

sin2
a

2
. ~23!

It follows from Eqs.~18!, ~21!, and~22! that the intensity

I n~V3!}h i
2}

1

Hc2H
}

1

V3~H !
~24!

should increase asV3(H) decreases. It is evident from Fig.
that it decreases in the experiment. The reason for this
parity is that Eqs.~22! and~23! have been obtained from th
solution of the system~16! in the approximationmz5m0. If
this is not done, Eq.~20! has the form

V3
25V2@V22vpc~H !mz /m0#. ~25!

Inasmuch asm0
25mx

21my
21mz

2 , the dependence ofV3 on
mz implies a dependence ofV3 on the amplitude of the
oscillations of the magnetizations of the nuclear sublatti
mj . In other words, whereas the oscillations ofmj are in
resonance with the alternating field at small amplitudes,
resonance conditions begin to break down as this amplit
increases, doing so more rapidly the higher the freque
vpc(H) and, accordingly, the lower the frequencyV3.
Hence it follows that for sufficiently highvpc(H) the inten-
sity I n(V3) begins to decrease asV3 decreases.

The influence of various nonlinear effects on the stea
state NMR signals in the presence of a dynamic freque

FIG. 6. Experimental traces of the low-frequency NMR branchV3(H) at
T51.3 K and several frequencies. The arrows indicate the midpoints o
NMR lines at 379.7 MHz.
ted
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shift has been analyzed previously.11,13–18 If the equations
given in the cited papers are used, the following relat
betweenI n(V3) andV3 can be obtained in the investigate
frequency range of 310–380 MHz:

I n~V3!}V3
1/3, ~26!

which agrees qualitatively with the results in Fig. 6. To ma
a quantitative comparison, the influence of inhomogenei
of the sample must also be taken into account in the the
because we are now in the vicinity of the phase transitio

5. CONCLUSION

It follows from Fig. 6 that the decrease in the intensity
the steady-state NMR signals due to nonlinear effe
strongly limits the frequency range in which such signals c
be observed nearHc . A similar difficulty is encountered in
weak fieldsH!Hc .1,3 In this case the dynamic frequenc
shift is observed over a far broader range of fieldsH than
merely in the vicinity ofHc , so that the NMR signals show
in Fig. 7 exhibit not only the values of the frequenciesV, but
also the fieldsH. It is evident from Fig. 7 that asH andV
decrease~i.e., as the dynamic frequency shift increases!, the
signal intensity first increases and then decreases. If E
~11!, with nonlinear effects taken into account, are used
describe these signals, the following relation can be obtai
for their intensitiesI n(V) ~12!:

I n~V!}h'
2 }H22, ~27!

whereh'
2 is given by Eq.~10!. Like Eq. ~24!, this relation

describes the increase inI n(V) as V decreases. For large
dynamic frequency shifts, such that nonlinear effects beco
appreciable, it is necessary to use the same expressionsI n

as those from which the relation~26! is obtained. Then in
place of~27! we can obtain a dependence of the form

I n~V4!}H10/3, ~28!

which dictates thatI n decreases asH decreases.
There are three ways to approach the investigation of

nuclear spin properties at lower frequencies~for larger dy-
namic frequency shifts!. First, the amplitude of the exciting

e

FIG. 7. Experimental low-frequency NMR branchV4(H) at T51.3 K and
various frequencies:~1! 220.1 MHz; ~2! 273.7 MHz; ~3! 350.1 MHz; ~4!
363.0 MHz;~5! 370.0 MHz;~6! 375.2 MHz.
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field can be raised to levels such that hysteresis effects b
to set in as a result of the nonlinearity of the dynamic f
quency shift.13–16 Tulin17 investigated these effects expe
mentally for three-dimensional antiferromagnets (MnC3
and CsMnF3), but he worked with weak fieldsH of the order
of 1 kOe or less, for which the gainh' ~10! is large. At
H'20 kOe,h' is much smaller, so that the investigation
hysteresis effects in the case of CsMnBr3 requires more pow-
erful rf field generators.

Second, NMR pulse techniques can be used, and e
signals in particular. Owing to the mechanism by which su
signals are generated as a result of modulation of the N
frequency, a certain reserve is available for increasing t
amplitude in the presence of a large dynamic frequency s
The feasibility of using NMR pulse signals to study the pro
erties of nuclear spins with a large dynamic frequency s
has been discussed in detail.18

The third possibility for the investigation of NMR sig
nals in the presence of a large dynamic frequency shift
volves the parametric excitation of nuclear spins by para
pumping.19 This method is based on the fact that under
conditions of a dynamic frequency shift, the precession
the nuclear magnetic moments normally becomes ellipti
with an eccentricity that depends on the magnetic field. A
result, an alternating magnetic fieldhi at twice the NMR
frequency imparts parametric instability to such precessio
the amplitudeh(t) exceeds the threshold levelh0. Equations
~11! then lead to an expression forh0,

h0~v!5
2

T2u]vp /]Hu
, ~29!

where vp is the dynamic frequency shift parameter.
CsMnBr3 a large dynamic frequency shift occurs in tw
cases: a! for H'Hc . when vp(Hc)5vpc ~17!; b! for H
!Hc , whenvp(H) is given by

vp5
12evn1

9~H/Hc!
6112e

. ~30!

Equation~29! is transformed as follows for these two case
a! for H'Hc ande!u12(H/Hc)

2u

h05
Hcu12~H/Hc!

2u
vpc~Hc!T2

; ~31!

b! for H!Hc ande!H/Hc

h05
H

3vp~H !T2
. ~32!

Equations~31! and ~32! can also be used to analyze th
threshold amplitude in the parametric pumping of nucl
spin waves.20–22 It is sufficient here to replaceT2 andvp by
T2(q) andvp(q), whereq is the wave vector.

It is clear from these equations that the threshold am
tude h0 drops asvp increases. This means that when t
dynamic frequency shift increases, the conditions for the
servation of parametric NMR improve, rather than deter
rating as in the case of steady-state NMR.
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APPENDIX

As mentioned in the Introduction, the equations used
Ref. 3 to analyze the spectrum of NMR frequencies can
applied to the calculation of the intensities of steady-st
NMR signals. To do so, however, the equations must
modified to account for interactions with the external alt
nating magnetic field and with the fluctuating fields respo
sible for nuclear magnetic relaxation. If direct interaction
the magnetizationsmj of the nuclear sublattices with th
alternating field is ignored~by virtue of amplitude effects11!
and if interaction with the fluctuating fields is taken in
account in the relaxation time approximation, it is possible
obtain a system of equations that coincides with the us
Bloch equations23 in the external magnetic fieldH and the
hyperfine fieldHn j5AM j ~Ref. 11!:

dmxj

dt
5gn~AMzj

1Hzj
!myj

2
mxj

T2
,

dmyj

dt
52gn~AMzj

1Hzj
!mxj

1gnmzj
AMxj

2
myj

T2
, ~A1!

where (xj ,yj ,zj ) denotes the coordinate systems associa
with equilibrium orientations of the vectorsmj iHn jiM j ~we
disregard the deviation of the orientation of the fieldHn j

1H from the hyperfine fieldHn j ,sinceHn j@H!, A is the
hyperfine interaction constant,gn is the nuclear gyromag
netic ratio, andT2 is the transverse nuclear magnetic rela
ation time.

For small oscillations ofmj the componentsmz j can
almost always be replaced by the equilibrium valuem0. An
exception is encountered for oscillations with a large d
namic frequency shift, when nonlinear effects become s
nificant, and the variation of the componentsmzj

must be
taken into account. In CsMnBr3, however, as opposed t
two-sublattice, three-dimensional antiferromagnets, these
fects do not exhibit any specific attributes, so that the eq
tions derived in Refs. 13–18 can be used.

In the description of NMR experiments the magnetiz
tion componentsMzj

of the electronic sublattices can alway
be replaced by the equilibrium valuesM j ~by virtue of the
weak influence of hyperfine interaction on the oscillations
M j ).

The componentsM yj
do not occur in Eqs.~A1!. As in

Ref. 3, they are disregarded, because strong uniaxial an
ropy prevents the sublattices from leaving the basal pl
(M yj

!Mxj
). The componentsMxj

in Eq. ~A1! can be written
as a three-term sum

Mxj
5Mxj

(h')
1Mxj

(hi)1Mxj

(m) , ~A2!

whereM (h') andM (hi) are attributable to interaction with th
transverse (h') and longitudinal (hi) alternating magnetic
fields, and the componentsMxj

(m) are attributable to hyperfine
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interaction with the oscillations ofmj . The equations used t
calculateMxj

(m) in Ref. 3 take into account only one low

frequency AFMR branch. Here we have made use of the
that the NMR frequencies are very much lower than
AFMR frequencies~with allowance for the hyperfine gap i
the spectrum of magnons12!, so that the kinetic energy can b
neglected in the expression for the Lagrangian describing
behavior ofM j ~Ref. 24!. In this approximation, equation
for Mxj

can be obtained by minimizing the potential ener
with hyperfine interaction taken into account. We can n
obtain equations that are valid for any fieldsH, despite the
difference in the symmetries of the soft modes forH50 and
H5Hc :

a1Mx1

(m)2b1~Mx2

(m)1Mx3

(m)!5~Hn /HE8!~mx11mx4!,

2b1Mx1

(m)1a2Mx2

(m)1b2Mx3

(m)5~Hn /HE8!~mx21mx6!,

2b1Mx1

(m)1b2Mx2

(m)1a2Mx3

(m)5~Hn /HE8!~mx31mx6!,

~A3!

Mx1

(m)5Mx4

(m) , Mx2

(m)5Mx6

(m) , Mx3

(m)5Mx5

(m) , ~A4!

whereHn5AM0,

b15cos
a

2
5

1

22~H/Hc!
2

, b25cosa52b1
221,

a15S H

Hc
D 2

12b11e, a25b12F12S H

Hc
D 2Gb21e,

e5
2Am0

HE8

, ~A5!

Am0 is the static hyperfine field, which is conveyed by t
nuclei to the electrons and is responsible for the hyper
gap in the AFMR spectrum,11, HE853 kOe is the effective
in-plane exchange field,a is the angle between the vecto
M2 andM3 ~Fig. 1!, andHc is the critical field for transition
to the collinear phase. AtT.1 K we have

e5
2Am0

HE8

5
2Hn

HE8

gn

ge

\gnHn

kT
<1022,

so that only linear corrections ine will be taken into account
below. The solution of the system~A3!, ~A4! has the form

Mxj

(m)5
Hn

HE8
(
j 8

l j j 8mxj 8
, ~A6!

where

l115l445~a2
22b2

2!/D , l1 j5l4 j5b1~a22b2!/D ,

l225l335l555l665l265l355~a1a22b1
2!/D ,

l235l635l255l655~b1
22a1b2!/D , l j j 85l j 8 j ;

~A7!

and

D5~a22b2!@a1~a21b2!22b1
2# ~A8!
ct
e

e

e

is the determinant of the system~A3!. For H<Hc , on the
basis of~A5! and ~A8!, we have

D~H !5@b1~H !11#@12~H/Hc!
21e#@3b1~H !e

1~H/Hc!
6b1~H !~b1~H !11!2#, ~A9!

and forH>Hc

D5@~H/Hc!
2211e#~H/Hc!

2@~H/Hc!
213#. ~A10!

At the pointsH50 andH5Hc the determinantD(H) at-
tains the minimum values

D~0!59e/4, D~Hc!54e, ~A11!

and the componentsMxj

(m) attain maxima.

Taking Eqs.~A2!, ~A6!, ~7!, ~9!, and ~10! into account,
we can write Eq.~A1! in the form

F S v1
i

T2
D 2

2vn j
2 Gmxj

~v!

1gnvn jAmzj

Hn

HE8
(
j 8

l j j 8mxj
~v!

1gnvn jmzj
h'h'~v!1gnvn jmzj

h i j
hi~v!50,

~A12!

where

vn15vn45gnAM1 ,

vn25vn55gnAM21H sin~a/2!,

vn35vn65gnAM22H sin~a/2!, ~A13!

are the unshifted~not perturbed by dynamic frequency shif!
NMR frequencies, while

h'5Ax'5Hn /H ~A14!

and

h i25h i652h i352h i55h i5Ax i , h i15h i450
~A15!

are the gains for the fieldh' andhi ; the variablesmxj
(v),

h'(v), andhi(v) are related tomxj
(t), h'(t), andhi(t) by

the Fourier transform

mxj
~v!5E

2`

1`

exp~ ivt ! mxj
~ t ! dt. ~A16!

Analogous relations hold forh'(v) andhi(v).
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Nonlinear microwave response of YBCO single crystal in constant magnetic field
V. V. Bol’ginov, V. M. Genkin, G. I. Leviev,* ) and L. V. Ovchinnikova
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Russia
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The generation of a microwave second harmonic by a YBCO single crystal in a dc magnetic
field was studied. We found that the signal existed only when there was a direct
screening current. As a result, the pinning current as a function of magnetic field can be derived
directly from the second harmonic intensity versus the magnetic field. The experimental
data were interpreted in terms of a generalized model of the critical state taking into account
diffusion of vortices and the absence of a barrier stopping vortices from leaving the
sample. We have shown that, in a decreasing dc magnetic field, the current density is considerably
lower than both the critical and screening current densities in an increasing dc field. Our
experiments indicate that vortices are not the sources of radiation at the double frequency. A
relation between the mechanism of harmonic generation in the Meissner phase and
modulation of the order parameter by the microwave magnetic field~Ginzburg–Landau
nonlinearity! is discussed. It is remarkable that, by measuring the second harmonic intensity in
the Meissner state versus temperature, one can obtain the magnetic field penetration
depth as a function of temperature with fairly good accuracy. ©1999 American Institute of
Physics.@S1063-7761~99!02606-2#
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1. INTRODUCTION

The behavior of superconductors in strong hig
frequency fields has been extensively studied in recent ye
The incentive for this research is not only the interest in
fundamental aspects of the nonlinear electrodynamics of
perconductors, but also the promise shown by these mate
in the field of development of microwave devices, and
fact that the nonlinearity of their microwave response de
mines the characteristics of prospective devices. The inte
tion between high-temperature superconductors and mi
wave fields has been studied by many researchers. Gor
and Éliashberg1 showed that harmonic generation in sup
conductors in the framework of the nonstationary superc
ductivity theory is determined by the order-parameter rel
ation time, so this time can be derived from measurement
the harmonic intensity. Such an experiment was perform
by Amato and McLean2 on LaCaSn samples. The relaxatio
time was calculated by means of equations taking into
count the actual configuration3 of the experiment at a radia
tion frequency of 11 GHz. Later this technique was used
measure the order-parameter relaxation time in a YBCO
perconducting single crystal.4,5 At a lower frequency har-
monic generation in a YBCO single crystal was studied
Ciccarello et al.6,7 Their results were interpreted using th
two-liquid model with the densities of superconducting a
normal electrons characterized by special functions of
electromagnetic wave amplitude. In order to calculate a h
monic intensity, the requisite Fourier component of the n
linear crystal magnetization was identified. By combini
results of nonlinear experiments and measurements of sin
crystal surface impedance under magnetic field, the aut
1221063-7761/99/88(6)/7/$15.00
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determined the temperature behavior of the upper and lo
critical fields and their numerical values.7,8 In view of pos-
sible applications, experiments with films are most imp
tant. The main mechanism of nonlinearity in film samples
associated with Josephson junctions between struct
irregularities.9–14 Harmonic generation in structures wit
weak links was the subject of publications by Jeffri
et al.15,16 It is noteworthy that such ideas have also be
developed in the context of low-temperatu
superconductors.17

The investigation of the high-frequency nonlinear r
sponse, in particular, generation of even harmonics, i
magnetic field is of special interest.18–26 In the absence of a
dc magnetic field, this generation is forbidden by the sy
metry laws, so the harmonic intensity is determined by
field configuration~of the screening current! in the surface
layer and contains information concerning this configurati
The model of the critical state is most often used in desc
ing nonlinear effects in a magnetic field. The mechanism
nonlinear absorption or emission at frequencies of hig
harmonics is associated with vortices generated in a sam
in the mixed state. The nonlinearity of the electromagne
response of the vortex system is determined by several
tors, such as the pinning potential nonparabolicity,27 its de-
pendence on the current,28 and others.29 In our experiments,
no nonlinearity associated with vortices has been detec
This conclusion derives from the curves of harmonic inte
sity versus temperature and magnetic field. This paper d
not deal with details of the radiation mechanism in the mix
state. As for the Meissner phase, we will discuss an interp
tation of the harmonic radiation in terms of the Ginzburg
Landau nonlinearity, namely, modulation of the order para
9 © 1999 American Institute of Physics
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eter by the microwave magnetic field. Irrespective of t
mechanism, the intensity of the double-frequency radiatio
controlled by currents near the surface, which screen the
magnetic field, and the current can be derived from the s
ond harmonic intensity. Below, our experimental results
generation of the second harmonic in a YBCO single cry
will be interpreted after a description of the experimen
procedure.

2. EXPERIMENT

A YBCO single crystal shaped as a plate with dime
sions of 43330.2 mm3 was fabricated by G. A.
Emel’chenko in the Institute of Solid State Physics, Russ
Academy of Sciences. The superconducting transition
curs, according to impedance measurements at a frequ
of 3 GHz~Ref. 30!, at a temperature of 91 K and has a wid
of about 1 K. The sample was placed on the bottom o
bimodal cylindrical cavity resonating in the TM010 mode at
the incident wave frequencyv/2p59.2 GHz and in the
TE111 mode at the second harmonic frequency. The sam
was placed at the site where the magnetic fields of both th
modes were aligned with one another over the sample a
The dc magnetic field was also aligned with the microwa
fields. The source of incident radiation was a magnetron
erating in the pulsed mode with a pulse duration of 1ms. The
relative pulse duration was chosen so that the results of m

FIG. 1. Second harmonic amplitudeE2v as a function of dc magnetic field
H in the range of 0 to 180 Oe. The inset shows the range of 0 to 25 Oe.
temperatureT578 K, the field scan starts at 0 Oe.

FIG. 2. Second harmonic amplitudeE2v versus dc magnetic fieldH in the
range of 0 to 1200 Oe. The temperature isT578 K, the field scan starts a
0 Oe.
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surements were independent of the repetition rate. The in
sity of the emitted second harmonic was recorded as a fu
tion of the dc magnetic field, temperature, and amplitude
the incident radiation.

The second harmonic amplitude as a function of dc m
netic field is plotted in Figs. 1 and 2. The sample was coo
down to the required temperature at zero magnetic field, t
the field was slowly scanned to its maximum value and
scanning direction was reversed. The field scan rate was
lected so that the shape of the hysteresis loop remained
same when the rate was reduced severalfold. The cu
were recorded at several temperatures, and the fieldHx at
which the harmonic amplitude saturated proved to be alm
independent of temperature.

Figure 3 shows the harmonic intensity versus tempe
ture. The magnetic field of 250 Oe was applied at a tempe
ture of 78 K, then the sample was heated aboveTc and again
cooled without changing the magnetic field. One can see
the harmonic intensity after the heating-and-cooling cycle
several times lower. The second harmonic intensity in
Meissner phase~at a magnetic field of 5.3 Oe! versus tem-
perature is plotted in Fig. 4.

The harmonic amplitude can be treated as a quadr
function of the incident wave amplitude throughout the
terval of studied microwave intensities~Fig. 5!.

he

FIG. 3. Second harmonic amplitudeE2v versus temperatureT. Curve1 was
recorded by warming the sample to the normal state in a magnetic fiel
250 Oe introduced when the sample was in the superconducting state
lowest temperature; curve2 was recorded by cooling the sample in the sam
field ~250 Oe!. The inset shows fragments of curves1 and2 on the extended
scale.

FIG. 4. Second harmonic amplitude versus temperature in the Meis
state~under a field of 5.3 Oe!. Filled symbols connected by the dashed lin
follow the l5 law.
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3. DISCUSSION

Harmonic amplitude.A second harmonic cannot be ge
erated in the absence of a magnetic field in a crystal with
inversion center, which directly follows from symmetr
considerations.31 As the magnetic field increases, a harmon
can already be detected in the Meissner state, when the
is surely lower than the field of vortex penetration into t
sample. In the presence of a magnetic field, a cons
screening current is generated near the surface and, in a
dance with our data, we will attribute the second harmo
radiation to this current. In accordance with the phenome
logical approach, let us write an expression for the mic
wave currentj mw carried by superconducting electrons in t
presence of the screening currentj dc and microwave fields a
frequenciesv and 2v characterized by the vector potenti
componentsAve2 ivt andA2ve2 i2vt:

j mw52
c

4pl2
Ave2 ivt2

c

4pl2
A2ve2 i2vt

1x~ j !Ave2 ivtAve2 ivt. ~1!

Here x( j ) is the phenomenological nonlinearity facto
which vanishes together with the direct screening currenj.
The linear component of the microwave current is written
the conventional London form,l is the penetration depth o
magnetic field, andc is the speed of light. These terms a
also nonvanishing in the absence of a dc magnetic field,
in analyzing the harmonic generation one can assume
they are independent of the field and limit the analysis to
function determined by the nonlinear term. In the expe
ment, one can measure the power fed to the microwave
ity, its Q-factor, coupling factors for both resonant mode
geometrical sizes of the sample and cavity. Using these
rameters and the constitutive equation~1!, one can determine
the second harmonic amplitudeE2v using the theory describ
ing a cavity excited by a prescribed current.32 The calcula-
tion details can be found in Ref. 33. This technique used
calculating the radiation intensity, unlike those used by ot
authors,6,7 yields a correct asymptotic result in the limit o
infinite sample thickness~in reality, for thicknesses much
larger than the field penetration depthl). The wave ampli-

FIG. 5. Second harmonic amplitudeE2v versus the incident wave amplitud
Ev . The solid line follows the quadratic function. The temperature isT
578 K.
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tude at the second harmonic frequency is determined by
integrated interaction between a predetermined nonlin
source

j nl~2v!5x~ j !Ave2 ivtAve2 ivt

and the resonant mode field, to which the radiation
coupled:

E2v}Q111 E j nl~2v!e111~r !d3r . ~2!

Integration in Eq.~2! is performed over the sample volum
e111(r ) is the electric field of the TE111 mode inside the
crystal, Q111 is the Q-factor of this mode. The integral~2!
strongly depends on temperature because the integran
cludes the field within the sample. The magnetic field dep
dence is incorporated only in the form of the nonlinear
factor x( j ), i.e., it is determined in the long run by th
screening current in the skin. It is more convenient to assu
that x is a function of current~rather than the fieldH) be-
cause there is a hysteresis effect~Figs. 1 and 2!. The har-
monic amplitude versus the screening current is assume
be a single-valued function, without hysteresis. It follow
from our experimental data~Fig. 5! that the radiation inten-
sity at the double frequency is a quadratic function of t
incident wave amplitude throughout the range of studied
crowave intensities~at temperatures notably different from
Tc). Therefore the nonlinear source in Eq.~1! is a quadratic
function of the vector potential at the fundamental frequen
A phenomenological relation between the nonlinear sou
and vector potential does not specify a mechanism of n
linearity. We will reconsider the issue of the harmonic ge
eration mechanism in discussing the temperature depend
of the generation intensity, but first let us discuss the int
sity versus magnetic field~curves with hysteresis loops i
Figs. 1 and 2!, which requires a detailed analysis of the su
face current in increasing and decreasing magnetic fields
increase in the signal and switching to a slower function
the field can be easily described in terms of the Bean mo
modified by Portis for analysis of the microwav
absorption.34,35 But according to this model, the harmon
signal should drop to zero when the magnetic field scan
reversed and then rapidly recover to the level correspond
to the field scanned in the upward direction. This is not so
the experiment: the signal remains small over a wide ra
of magnetic fields. Later we will discuss a model that w
allow us to interpret this behavior of the harmonic signal
terms of the screening current as a function of magnetic fi
generation of vortices on the surface, their diffusion ins
the sample, and their exit from the sample without any b
rier.

Direct screening current and hysteresis loop on t
curve of the second harmonic intensity.The magnetization,
alongside the screening current in a superconductor in
equilibrium state, is controlled by the applied magnetic fie
and temperature. The Meissner state is stable in a plate
type-II superconductor under a magnetic field parallel to
surface ifH<Hc1, whereHc1 is the first critical field. If the
field exceedsHc1, the Meissner state becomes metastab
and vortices can penetrate into the sample. In a magn
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field H5Hc1 the surface current densityj s is approximately
j * j/l, wherej * is the Ginzburg–Landau decoupling curre
density andj is the coherence length. The Meissner st
becomes absolutely unstable in a magnetic fieldH5Hs ,
where the surface current density satisfiesj s. j * . HereHs is
the field of the Bean–Livingston surface barrier.36 Thus, one
can say that on the microscopic level the process of vo
penetration into a superconductor is controlled by the cur
density. It is usually supposed that the main parameter is
magnetic field strength.37,38

In a real experiment, a vortex can enter a supercondu
at a field weaker thanHs . This process can take place b
cause of a surface irregularity where the local current den
achievesj * . From this viewpoint, vortices can penetrate in
a sample when the current density on the surface is hig
than a certain critical valuej̃ . This parameter is determine
by the real surface morphology and satisfies the condi
j * j/l< j̃ < j * . In real samples, pinning should be taken in
account, which was done in the theory of the critical state39

The magnetization is assumed to be equilibrium, and sur
currents are not taken into account. Nevertheless, they
an important part in the magnetic moment and microwa
response.

The pinning critical current densityj p is controlled by
the interaction between vortices and static defects in
bulk. We can identify two possibilities:j p. j̃ and j p, j̃ . In
the former case the strong pinning masks the surface bar
and one can say that vortices penetrate into the sample
if j s. j c . In reality this is the case treated by the critical sta
theory. The latter possibility is more interesting.

The vortex density near the surface can be small beca
of surface currents, which effectively drive vortices into t
sample. A similar inhomogeneous vortex distribution w
considered in connection with the ‘‘geometrical’’ barrier f
a plate in a normal magnetic field.40 For a thermodynami-
cally equilibrium state, the vortex densityr near the surface
is different from that in the bulk. In the sample interior w
haver,H/f0, wheref0 is the magnetic flux quantum, be
cause the superconductor magnetic susceptibility ism,1,
and the magnetic induction jumps on the superconductor
face. The resulting surface current drives vortices from
surface.

Let us discuss the distributions of current and vor
densities in a plate in a parallel magnetic field. Suppose
the vortex penetration into the sample is controlled by
current density. We will prove that the difference betwe
surface currents in increasing and decreasing magnetic fi
is due to redistribution of vortices in the sample withou
change in their total number. Consider a superconduc
plate of thickness 2d in an external parallel magnetic fieldH
and introduce a reference frame with thex-axis normal to the
plate andz-axis aligned with the applied magnetic field. L
us define thex50 plane in the middle of the plate. In th
linear approximation, we have an equation for the vec
potential:

DA5FA2f0 (
i

¹f~r2r i !/2pG Y l2, ~3!
e
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where¹f(r2r i) is the phase gradient generated by thei th
vortex at pointr (x,y). Equation ~3! is linear, so one can
average it over the planex5const and introduce the averag
density of vorticesr(x):

]2A/]x2 5 ~A2f0N~x!!/l2 , ~4!

where

N~x!5E
0

x

r~x!dx.

Equation~4! does not imply averaging along thex-axis.
The solution of this equation with the boundary conditio
]A/]x5H at x5d and2d has the form

A5FHl1f0 expS 2
d

l D
3E

0

d

sinhS x

l D N~x!

l
dxG sinh~x/l!

cosh~d/l!

1f0E
0

dFexpS 2
ux2x8u

l D
2expS 2

ux1x8u
l D G N~x8!

2l
dx8. ~5!

If N(x) changes slowly over the London length and 2d@l
(x.0), the vector potentialA and superconducting curren
densityj can be expressed by approximate formulas:

A5f0N~x!1f0l2
]r

]x
1l@H2f0r~d!#expS 2

d2x

l D ,

~6!

j 52
c

4p Ff0

]r

]x
1S H

l
2f0

r~d!

l DexpS 2
d2x

l D G . ~7!

The first term on the right of Eq.~7! yields the current den-
sity, which is used in the theory of critical state iff0r is
treated as the magnetic induction. Given the current den
one can calculate the sample magnetic moment:

M5f0S 11tanh
d

l DexpS 2
d

l D E
0

d N~x!

2pl

3sinhS x

l Ddx2
H

2p S d2ltanh
d

l D . ~8!

Direct calculation of the functional derivative
2](MH)/]r(x) indicates that this parameter vanishes ax
5d. This means that there is nothing to stop vortices fro
leaving the sample, so elimination of a vortex decreases
free energy. Thus, if there is no surface current acting a
wall restraining the vortices they will be ejected from th
sample. As a result, the vortex density on the surface
vanish in a decreasing magnetic field, when the Lore
force expels them from the sample. This differs from t
theory of the critical state, where the surface density of v
tices can take arbitrary values.

For N(x) we have a continuity condition:

]N/]t1V]N/]x1D]2N/]x25Q~ j !, ~9!
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where V is the average vortex density,D is the diffusion
coefficient, andQ( j ) is responsible for generation of vortice
by superconducting currents in the sample. The term cont
ing the second derivative on the left-hand side of Eq.~9!
accounts for the vortex diffusion. We describeQ( j ) in terms
of a model in which vortices are generated when the cur
density is higher than a certain critical valuej̃ ~Ref. 41!:

Q~ j !52g E
0

x

~ u j u2 j̃ !Q~ u j u2 j̃ ! sign~ j !dx, ~10!

whereg is a phenomenological parameter andQ(x) is the
Heaviside’s step-function.

In order to obtain a closed equation system, we nee
relation between the vortex velocityV and current densityj.
We assume a relation betweenV and j in the spirit of the
Bean model:

V50, j , j p ; V5const~ j 2 j p!, j . j p , ~11!

where j p is the pinning current density.
There is a solution of Eqs.~4! and~9! with zero current

and a constant vortex densityr5H/f0 throughout the
sample. This is stationary but not an equilibrium state. Fo
thermodynamically equilibrium state withr0f0,H, the vor-
tex density on the surface is zero owing to the surface c
rents driving vortices into the sample interior. Herer0 is the
equilibrium vortex density in the volume. The formation of
vortex-free zone in a nonequilibrium state was discussed
Clem38 and Burlachkov.42

There are discontinuities in the current and vortex d
sities because all diffusion processes have been negle
One can write an approximate expression for the current d
sity on the surface for an equilibrium state in an appl
magnetic fieldH:

j s5cH ~3.0697622.78577m20.428182m21

10.216499m22!/4pl ~12!

for 0.35,m,0.95 andl/d,0.05.
In this model, the difference between the intensities

the second harmonic in increasing and decreasing mag
fields can be interpreted in the following manner. Expe
mental data indicate that the harmonic generation is c
trolled by the direct surface current. In an increasing m
netic field the surface current density isj̃ because vortices do
not penetrate into the sample at smaller currents. This cur
drives vortices into the sample and forms a vortex-free z
near the surface. In a decreasing field, the surface cur
changes its sign, ejects vortices from the sample, and form
vortex-free zone near the surface. There is a jump in
vortex density in both these cases. The currents have o
site signs, but almost equal magnitudes. Vortex diffus
eliminates jumps and causes the surface current densi
vanish for a decreasing magnetic fields because only in
case do the diffusion processes and Lorentz force act in
direction. In an increasing magnetic field, diffusion driv
vortices out of the sample, i.e., it acts against the Lore
force. Figure 6 shows current distributions in the skin
increasing and decreasing fields with and without inclus
of diffusion. The difference between the currents in incre
n-
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ing and decreasing fields leads to the difference in the sec
harmonic intensity. The theoretical curve in Fig. 7 was c
culated in the following manner. The second harmonic a
plitude, in accordance with Eq.~2!, is proportional to

P5E
d

0

j ~x!exp@3~x2d!/l#dx, ~13!

where the penetration depth of the high-frequency field
assumed to be constantas a function of the frequency, an
nonlinear susceptibility is proportional to the direct curre
in the sample. FirstP was calculated without taking diffusion
into account,D50, but the pinning current was treated as
function of magnetic field. We assume that measurement
the second harmonic amplitude versus an increasing m
netic field faithfully reproduce the pinning current vers
magnetic field,j p(H). After substituting this function in Eq
~13! we have good agreement between the theory and exp
ment for increasing magnetic fields, but a large discrepa
for decreasing fields. In the next stage the vortex distribut
in a certain magnetic field was treated as a rough appr
mation, and a more accurate distribution function was cal
lated forDÞ0. It is clear that the diffusion has little effec
on the second harmonic amplitude, whereas its effect is q

FIG. 6. Distribution of screening current calculated by solving model eq
tions. Curves1 and2 are calculated for the increasing magnetic field wi
and without taking account of diffusion, respectively. Curves3 and4 show
calculations for the decreasing field with and without taking account
diffusion.

FIG. 7. Comparison between measurements of the harmonic amplitude
sus magnetic field and curves with hysteresis loops calculated by m
equations. Triangles plot experimental data, the solid line plots calculat
without diffusion, open circles calculations taking diffusion into account
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considerable in a decreasing magnetic field, and one can
that the agreement between calculations and experime
data is better if diffusion is taken into account. An estima
of the diffusion coefficient yieldsD<10212–10214 cm2/s.

Harmonic intensity versus temperature.The second har-
monic intensity plotted against the temperature in Fig. 3
lows us to draw an important conclusion: vortices are
sources of the second harmonic radiation. Specifically, Fi
allows one to compare between radiation intensities at
same temperature and magnetic field magnitude, but w
different magnetic prehistories of the sample, namely, w
the magnetic field introduced in the normal and superc
ducting states. One can see that the harmonic intensit
notably higher in the latter case, although the vortex den
generated near the surface is lower in this case.~A similar
conclusion about the insignificant contribution of vortices
radiation derives from the analysis of the harmonic am
tude versus magnetic field.! The weak radiation intensity
generated in the sample cooled in a magnetic field indic
that the surface current is low. Although it stretches the po
a little bit, we can say that this current is suppressed beca
the Meissner current is compensated for by the vortex c
rent ~strictly speaking, one cannot separate the Meissner
vortex currents!.

Let us discuss the harmonic intensity in a weak magn
field as a function of temperature, when there is no pene
tion of vortices over a wide temperature range~Fig. 4!. In the
microwave frequency band one can use the relation betw
the current and vector potential obtained in the Ginzbu
Landau theory for a static homogenous configuration:

j j52
c

4pl2
AS 12

c2

108p2l4 j * 2
A2D . ~14!

Let us express the vector potential in the form of two term
one at the frequency of the incident radiationv and the other
at zero frequency:A5A01Av . We obtain a nonlinear
sourcej nl in the expression for the harmonic intensity~2!:

j nl}KA0Av
2 .

The proportionality factorK in this expression is indepen
dent of temperature. Given thatAv}z}l, where z is the
sample surface impedance in the microwave band, andA0

}l, we obtain the harmonic amplitude

E2v}l5. ~15!

Figure 4 shows that the measurements of the harm
intensity and calculations by Eq.~15! are in fairly good
agreement at temperatures quite different fromTc . The pen-
etration depthl versus temperature was taken from Ref. 4
where it was derived from measurements of the surface
pedance of a YBCO single crystal. AroundTc Eq. ~15! fails,
at least because the generation regime is not quadratic. T
considerations lead us to a conclusion that the mechanis
harmonic generation in the Meissner phase is due to mo
lation of the order parameter by microwave magnetic fie
i.e., Ginzburg–Landau nonlinearity. If this is the case, E
~15! can be used in calculating the penetration depth ve
temperature.
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4. CONCLUSION

Let us summarize the basic results of our work. We ha
studied experimentally and theoretically generation of
second harmonic in a YBCO superconducting single cry
under an intense microwave field. The second harmoni
generated only in a dc magnetic field. The curve of the h
monic intensity versus applied magnetic field has a hys
esis loop, which can be interpreted in terms of a model t
ing into account diffusion of vortices, although vortice
themselves do not act as sources of the second harm
There are good reasons to assume that the harmonic ge
tion mechanism for the Meissner phase is due to
Ginzburg–Landau nonlinearity.
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Toward a theory of nuclear relaxation in dielectric glasses at ultralow temperatures
Yu. Kagan, L. A. Maksimov, and I. Ya. Polishchuk* )

Russian Scientific Center ‘‘Kurchatov Institute’’
~Submitted 28 January 1999!
Zh. Éksp. Teor. Fiz.115, 2254–2262~June 1999!

The temperature and frequency dependence of the nuclear relaxation rate in dielectric glasses is
investigated. It is shown that at low and ultralow temperatures nuclear relaxation is due to
an interaction between the nuclear quadrupole moment and fluctuations of the electric field created
by dipole moments of two-level systems. Fluctuations of this field can be associated with
the background relaxation or are due only to the dipole–dipole interaction between two-level
systems. It is shown that at lower temperatures the second relaxation mechanism begins
to dominate. Expressions are obtained for the temperature and frequency of crossover between
different nuclear relaxation regimes. The possibility of experimental confirmation of our
results is discussed. ©1999 American Institute of Physics.@S1063-7761~99!02706-7#
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1. More than 25 years ago Zeller and Pohl1 demonstrated
experimentally that at temperatures below 1 K dielec
glasses exhibit a universal anomalous behavior of their s
cific heat and thermal conductivity in comparison with th
crystalline counterparts. To explain these anomalies, the
thors of Ref. 2 advanced the hypothesis that additional
grees of freedom~in addition to the phonon degrees of fre
dom! exist in such glasses which can be describ
phenomenologically within the framework of the model
noninteracting two-level tunneling systems~TLS!. In this
model an isolated two-level system is described by the s
dard pesudospin Hamiltonian

h52DSz2D0Sx, ~1!

where the level detuningD and the tunneling transition am
plitude D0 are governed by the distribution function

P~D,D0!5 P̄/D0 . ~2!

This model of a dielectric glass has afforded a satisfact
explanation of experimental results at temperatures be
1 K, all the way down to 100 mK.3,4 Thus, for example, in
this temperature range experimental studies have been
ducted on the relaxation properties of thermal two-level s
tems with parameters

D.D0.T, ~3!

whose concentration is equal to

cT5a3~ P̄T!, ~4!

wherea is the interatomic distance. For the rate of longit
dinal relaxation of two-level systems~inverse lifetime! the
following dependence has been revealed4:

tph
215U0~T/v !3, ~5!

which is associated with single-phonon relaxation. Here

U05
g2

rv2
, ~6!
1231063-7761/99/88(6)/5/$15.00
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w
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and g is the constant of the deformational interaction b
tween the two-level tunneling system and the phonons, anr
andv are respectively the density and speed of sound in
glass. Note that for all known dielectric glasses it has be
empirically determined that

P̄U0!1. ~7!

The interaction of two-level tunneling systems wi
phonons gives rise to an indirect interaction between tw
level systems, which can be written as~see, e.g., Ref. 5!

V̂5
1

2 (
i j

U~Ri j !Si
zSj

z , U~Ri j !5
U0

Ri j
3

. ~8!

The first systematic experimental studies indicating the
portance of taking this interaction into account were begun
1976.3 The dipole–dipole nature of this interaction and t
associated spectral diffusion between the two-level syste6

made it possible to explain the experimentally revealed q
dratic temperature dependence of the transverse relaxa
rate

t2
21;T2. ~9!

2. For a long time it was assumed that spectral diffus
is the only manifestation of the interaction between two-le
systems,7 and the question has remained open, to what
gree the properties of dielectric glasses at ultralow temp
tures are due to the dipole–dipole interaction. The possib
that this interaction plays a defining role in the formation
the universal properties of such glasses was indicated
Refs. 8 and 9.

The influence of the dipole–dipole interaction on t
properties of dielectric glasses at ultralow temperatures
most consistently investigated in the series of papers
Burin et al.10–12 In these papers it was shown that a ne
class of collective low-energy excitations arises in dielec
glasses due to the dipole–dipole interaction, which br
about the relaxational properties of these glasses at ultra
temperatures. This class of excitations is associated w
6 © 1999 American Institute of Physics
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transitions in pairs of two-level systems whose parame
are close to thermal~3! and whose excitation energy isE
5AD0

21D2.T, where the transitions themselves are crea
by the indirect interaction~8!.

Any pair of two-level systems can be found, genera
speaking, in one of four states: (12), (21), (11),
(22). Here the symbols1 and2 correspond to the excite
state and the ground state, respectively. The amplitude o
transition between states belonging to the flip-flop confi
ration, i.e., between the states (12) and (21), is given
by10

D0p~R!'
U0

R3

D0D08

EE8
. ~10!

As was shown in Refs. 10–12, if

U0 /R3!T, ~11!

then the probability of a transition between the states of
flip-flop configuration is much greater than the probability
a transition from these states to any of the two other sta
(11) and (22). Therefore it may be assumed that pr
vided condition~11! is satisfied, transitions in pairs of two
level systems take place only between states of the flip-
configuration, and the energy of these transitions isDp5uE
2E8u. Thus, a pair of thermal two-level tunneling system
for which condition~11! is fulfilled is in essence a two-leve
system described by the Hamiltonian~1! with parametersDp

and D0p . An important role in such relaxation processes
played by the so-called resonance pairs, for which

Dp<D0p'D* 5T~ P̄U0!2.

The concentration of such resonance pairs is equal to10

c* 5cT~ P̄U0!!cT , ~12!

and the relaxation rate

t
*
21'D* 5T~ P̄U0!2. ~13!

Note that the characteristic dimension of the resona
pairs,R* , is equal in order of magnitude to

R* 5ac
*
21/3. ~14!

It is important to note that because of the interact
with phonons the coherent coupling between two-level s
tems belonging to the same resonance pair is destroyed
this reason, as was shown in Ref. 10, the concept of a r
nance pair, considered as a carrier of the elementary ex
tion, loses meaning at temperatures

T.T05~ P̄U0!Av3/U0, ~15!

for which tph
215t

*
21 . It is important that forT,T0

t* ,tph.

Despite the fact that taking relaxation of resonance p
into account enables one to understand peculiarities of
behavior of dielectric glasses at ultralow temperatures~e.g.,
it explains the linear temperature dependence of the inte
friction coefficient10 and the rate of phase memory loss12!, in
some works the fundamental role of the dipole–dipole int
rs
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action in the formation of the universal properties of glas
at ultralow temperatures continues to be put in doubt.13,14 In
this regard, in our opinion it is important to identify altern
tive properties of dielectric glasses that might be determi
primarily by relaxation of resonance pairs.

3. A study of relaxation of nuclei having a quadrupo
electric moment in dielectric glasses in external magne
fields at low temperatures has a more-than-two-decades-
history.15–17 At low temperatures spin-lattice relaxatio
(;T7) is suppressed against the background of the re
ation associated with the presence of a nuclear quadru
moment, when the relaxation of nuclear spins is due to th
interaction with dipole moments of the two-level system
(;T3 or T). In an external electric field, the nuclear sp
relaxes in the fluctuating electric field created by the dip
moments of the surrounding two-level systems. Depend
on whether the thermal two-level system fluctuates beca
of phonon relaxation or as a component of a resonance p
different temperature, temporal, and frequency characte
tics of nuclear relaxation will be observed, an experimen
study of which will allow us to judge the role of the dipole
dipole interaction in the formation of the dynamic properti
of dielectric glasses.

To start with, let us specify the relaxation mechanism
the two-level systems. If we neglect anisotropy, the ene
of the quadrupole–dipole interaction between a nucleus
a two-level system located a distanceR from it has the form

E5A/R4, ~16!

where A is the interaction constant. Note that in the ca
when a two-level system existing as a component of a re
nance pair relaxes, we takeR to mean the distance from th
nucleus to the nearest two-level system of this resona
pair.

We assume that we are considering a nuclear transi
between levels separated by the energy intervalv. It is well
known that in a time-varying external electric fieldE(t) the
probability of such a transition is proportional to the corr
sponding Fourier transform of the correlator^E(t)E(0)&. In
our case the time dependence of the field~16! is linked with
fluctuations of the dipole moments of the two-level system
In order of magnitude the characteristic correlation timet of
these fluctuations coincides with one of the times~5! and
~13!. Therefore the relaxation rate of a nucleus located
distanceR from a two-level system is equal to18

GR5S A

R4D 2
t21

t221v2

5S a

RD 8S A

a4D 2
t21

t221v2
5S a

RD 8

Ga , ~17!

where

Ga5S A

a4D 2
t21

t221v2
. ~18!

If at first the projection of the magnetic moment on som
axis is equal toM0, then because of the interaction with
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fluctuating two-level system located a distanceR from the
nucleus the temporal evolution of this projection is given

M5M0 exp~2tGR!. ~19!

As a consequence of the short-range nature of
quadrupole-dipole interaction~16!, relaxation of the nucleus
is completely determined by the two-level system neares
it. The probabilityW(R) that the fluctuating two-level sys
tem nearest the nucleus is found at the distanceR is

W~R!5c exp@2~R/Rc!
3#, Rc5ac21/3, ~20!

wherec coincides with eithercT or c* . Therefore, averaging
expression~19! over the configuration of the two-level sys
tem about the nucleus, we obtain

M̄ ~ t !5M0(
R

W~R!exp~2tGR!. ~21!

We rewrite relation~21! in the form

M̄ ~ t !2M052M0c (
R

expF2S R

Rc
D 3G

3H 12expF2S Rt

R D 8G J ,

Rt5a~ tGa!1/8. ~22!

Let us consider the behavior ofM̄ (t) on different time
scales. At early timest!Ga

21 @see Eq.~18!# nuclei relax that
have a fluctuating two-level system at one of their nea
sites. Equation~22! then yields

M̄ ~ t !.M0 exp~2tg1!, ~23!

where

g15zcGa , ~24!

and z is the number of nearest neighbors. Thanks to
smallness of the low-temperature relaxation the early-t
stage is extremely important.

At intermediate times, satisfying the condition

a!Rt!Rc , ~25!

nuclei relax, for which the nearest fluctuating two-level sy
tem is found atR.Rt .

Neglecting the first factor in Eq.~22! inside the sum and
replacing the sum by an integral, we find

M̄ ~ t !.M0 exp@2~ tg2!3/8#, ~26!

where

g25c8/3Ga5c5/3g1!g1 . ~27!

And, finally, at late times, when

Rc!Rt , ~28!

changing over in Eq.~21! from a sum to an integral, we
obtain

M̄ ~ t !.M0c
4p

a3 E R2dRexpF2S Rt

R D 8

2S R

Rc
D 3G . ~29!
e

to

st

e
e

-

From this formula it follows that in the considered tim
interval, thanks to spatial inhomogeneity of the configurat
of the subsystem, nuclei relax that have the nearest fluct
ing TLS at a distance

R5Rt
8/11Rc

3/11@Rc .

Estimation of the integral~29! by the method of steepes
descent gives

M̄ ~ t !.M0 exp@2~ tg2!3/11#. ~30!

Note that, as for the case of intermediate times~26!,
relaxation at late times does not have a simple exponen
character and occurs much more slowly than at early tim

4. Let us turn now to an analysis of the obtained dep
dences in the two following cases:

1! when nuclear relaxation is caused by single-phon
fluctuations of all the thermal two-level systems;

2! when nuclear relaxation is caused by fluctuations
only thermal two-level systems existing as components
resonance pairs.

Thus, in expressions~24! and ~27! in the first case in-
stead oft andc we must substitute respectivelytph andcT

@see Eqs.~5! and~4!#, and in the second caset* andc* @see
Eqs. ~12! and ~13!#. For the analysis that is to follow, not
that in dielectric glasses the numerical values oft

ph
andt*

are such that for the characteristic radio frequencies at wh
nuclear resonance experiments are usually performed,
condition

1!vt* !vtph ~31!

is satisfied and the quantity~18! is equal to

Ga5S A

a4v
D 2

t21.

Let the characteristic times be such thatt!(Ga* )21.
Then, the nuclear relaxation goes according to the expon
tial law ~23!, ~24!. In this case, in the first of the above tw
cases, when nuclear relaxation is stimulated by fluctuati
of thermal two-level systems, we obtain

g1
ph5cTGa

ph5~ P̄T!S A

a4v
D 2

tph
21;T4, ~32!

while in the second case, when nuclear relaxation is cau
by fluctuations of resonance pairs,

g1* 5c* Ga* 5~ P̄T!~ P̄U0!S A

a4v
D 2

t
*
21;T2. ~33!

Comparison of expressions~32! and ~33! shows thatg1
ph

5g1* at the temperature

T85~ P̄U0!3/2Av3

U0
5~ P̄U0!1/2T0 . ~34!

Thus, at temperaturesT.T8 the nuclei relax on thermal two
level systems, and in the opposite caseT,T8 the nuclei
relax on resonance pairs. Note thatT8 is the temperature a
which crossover takes place in the rate of longitudinal a
transverse relaxation of two-level systems.10,12
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The cases of late times@see Eqs.~26! and ~30!# are
treated analogously. When

t@~Ga
ph!21, ~35!

we obtain

g2
ph5cT

8/3Ga
ph5~ P̄T!8/3S A

a4v
D 2

tph
21;T17/3, ~36!

while

g2* 5c
*
8/3Ga* 5@~ P̄T!~ P̄U0!#8/3S A

a4v
D 2

t
*
21;T11/3. ~37!

Comparing formulas~36! and ~37!, we find that g2
ph

5g2* at the temperature

T95~ P̄U0!5/6T8,T8, ~38!

and, thus, for temperaturesT.T9 the nuclei relax on therma
two-level systems, and in the opposite case, at tempera
T,T9 the nuclei relax on resonance pairs. Note that in
case~35! crossover in the nuclear relaxation rate occurs
the temperatureT9, which is lower thanT8. Also note that in
the time interval

~G* !21,t,~Gph!21

the relaxation processesg1
ph andg2* compete.

For completeness, let us consider the hard-to-realize
of low temperatures when

vt* !1!vtph. ~39!

The relaxation times grow as the temperature is lower
and the first of conditions~39! in fact imposes a lower boun
on the temperature:

Tv5
v

~ P̄U0!2
,T, ~40!

when nuclear relaxation can still be stimulated by a re
nance pair. Thus, for a low enough frequency in the cas
early times we have

g1** 5c* S A

a4D 2
1

t
*
21

;T0 ~41!

and the nuclear relaxation rate is independent of the temp
ture as long asg1** >g1

ph. If this condition is satisfied for
T5Tv , then it continues to be satisfied as the temperatur
raised up to the temperature

Tv8 5
1

~ P̄U0!
AvT85A vT0

~ P̄U0!3/2
5ATvT8 ~42!

@for g1
ph see expression~32!#. This expression is meaningfu

as long as

Tv<T8, v,v
*
8 5T8~ P̄U0!25T0~ P̄U0!5/2. ~43!

At late times we have
res
e
t

se

d,

-
of

ra-

is

g2** 5c
*
8/3S A

a4D 2
1

t
*
21

;T5/3.

Recall that the resonance pairs control relaxation at
times if g2** >g2

ph. Estimates~42! and ~43! in this case are
replaced by

Tv9 5Tv8 ~ P̄U0!5/125~ P̄U0!5/12ATvT8,

Tv<~ P̄U0!5/24T8,

v,v
*
9 5T8~ P̄U0!215/245T0~ P̄U0!2.7.

5. For the most widely studied dielectric glasses, such
SiO2, the characteristic temperature region in which cro
over of the relaxation mechanism can be expected to occ
T,100 mK. For such temperatures the above numerical
timates show that the nuclear relaxation rate is on the o
of 1026 s21.

More suitable objects in which crossover of the nucle
relaxation mechanism can be observed are the mixed cry
KBr12xKCNx—compounds which have recently bee
widely studied as systems which quite adequately model
properties of dielectric glasses at low temperatures. E
mates show that in such systems the threshold tempera
T0 @see Eq.~15!# at which the coherent coupling between t
two-level systems of a resonance pair has still not been
stroyed by phonons exceeds 1 K. For such temperature
the indicated mixed crystals the nuclear relaxation rate
reach values of 102421023 s21. Note that nuclear relaxation
rates of such orders of magnitude have been experimen
recorded in amorphous As2S3 ~Ref. 19!. Note that for this
compound at temperatures near 10 K a power-law dep
denceTa was discovered for the nuclear relaxation ra
where it was established that 1<a<2. This is in clear con-
tradiction with the assumption of a phonon mechanism
nuclear relaxation~32!, but may be evidence in favor of th
mechanism of non-phonon nuclear relaxation~33! proposed
in the present paper. However, the existence of coherent
pling between the two-level systems in this temperat
range cannot be taken as an undisputed fact and req
separate study.
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Erratum: Quasi-collinear and partially degenerate four-wave mixing: an alternative
explanation of the phase-conjugation property of backward stimulated scattering †JETP
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Dun Liu

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan
48109, USA

Guang S. He

Photonics Research Laboratory, State University of New York at Buffalo, New York 14260-3000, USA
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Figures 5 and 6 should read as follows:

FIG. 5. Photographs of~a! the pump beam II,~b! the pump
beam I after passing through an aberration plate,~c! the
interference pattern of the two pump beams with no ab
ration plate, and~d! the interference pattern of the two
pump beams with aberration plate in position A shown
Fig. 4.
12411063-7761/99/88(6)/2/$15.00 © 1999 American Institute of Physics
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FIG. 6. Photographs of~a! the BSBS beam excited by the
pump beam II,~b! the BSBS beam excited by the pum
beam I passing through an aberration plate,~c! the interfer-
ence pattern of the two BSBS beams with no aberrat
plate, and~d! the interference pattern of the two BSB
beams with an aberration plate in position B shown in F
4.
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