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It is found that the existence of spacetime foam leads to a situation in which the number of
fundamental quantum bosonic fields is a variable quantity. The general aspects of an exact theory
that allows for a variable number of fields are discussed, and the simplest observable effects
generated by the foam are estimated. It is shown that in the absence of processes related to
variations in the topology of space, the concept of an effective field can be reintroduced

and standard field theory can be restored. However, in the complete theory the ground state is
characterized by a nonvanishing particle number density. From the effective-field

standpoint, such particles are “dark.” It is assumed that they comprise dark matter of the
universe. The properties of this dark matter are discussed, and so is the possibility of measuring
the quantum fluctuation in the field potentials. 1®99 American Institute of Physics.
[S1063-776(199)00106-1

1. INTRODUCTION of space can occur at scales where the very concept of a flat
manifold breaks down, at least due to the presence of

In gravitation theory it is assumed that spacetime is a flavacuum fluctuations. On the other hand, it is believed that
manifold at scales much greater than the Planck lengththere is no other way to describe the given region but to
while at the Planck scale all geometric properties disappeagxtrapolate the spatial relationships existing at larger scales
and spacetime itself acquires a foamlike strucfuf@ere are  to it. In other words, all possible topologies of physical space
two basic indications of such behavior of spacetime. The firsshould be described in terms of a consistent coordinate basis
is related to the fact that at the Planck scale the vacuurgpace. We call this space simply a basis. Since measurement
fluctuations of the metric and curvature are of the same ordenstruments, which are classical objects, play a fundamental
as the corresponding average quantities. Not only does thigle in quantum theory,it is expected that the properties of
follow from simple estimates—rigorous calculations alsothe basis are determined entirely by the measuring device.
support this idea. In particular, the fact that such fluctuations  If we specify the quantum state corresponding to a fixed
exist leads to the absence of a classical background spacetipology of physical space and if the topology differs sub-
the Planck stage of evolution of the early univefsehe stantially from that of the basis, its image in terms of the
second indication is the fact that at small scales the topologipasis coordinate cannot be one-to-one. In the same way,
of space also experiences quantum fluctuatiofise study ~ when functions defined in physical space and corresponding
of possible observable effects related to changes in the topale different physical observables are mapped to the basis
ogy of space is attracting ever more attention. In particularspace, they cease to be single-valued and become multival-
to describe such effects, Hawkihgsed wormholes and vir- ued functions of the physical coordinates. Furthermore, the
tual black holes. Another work worth noting is that of number of images of an arbitrary physical observable is an
Garay? who proposed a phenomenological method to acadditional variable quantity, which, generally speaking, de-
count for spacetime foam. pends on the position in the basis space.

The absence of a background space at small scales is a Thus, we arrive at a situation in which the number of
serious problem in quantum field theory. The possibility offields corresponding to a physical observable is a variable
resolving this problem is usually related to the developmentguantity. In quantum theory this variable is an operator
of nonperturbative methodsin which the concept of back- whose eigenvalues characterize the topological structure of
ground fields is not used. However, these theories also relgpace. The possible dependence of this quantity on spatial
on the presence of a coordinate basis space, whose topologgordinates means that the given quantity is a characteristic
is fixed by the statement of the problem and therefore is nobr measure of the number density of the degrees of freedom
a dynamic characteristic. of the field.

This paper elaborates on a possible way to set up a quan- A natural way to describe systems with a variable num-
tum field theory in the case in which the topology and struc-ber of degrees of freedom is to use second quantization. Be-
ture of physical space may vary. The main idea of thisfore we begin to describe the method as applied to the prob-
method was set forth in Ref. 6 in order to describe the quanlem in question, we make the following remark. In the
tum birth of the early universe. standard second-quantization method, the number of degrees

The observation forms the basis of the proposed methodf freedom characterizes the number of particles or elemen-
On the one hand, as noted earlier, variations in the topologtary excitations(quanta in the system. Here it is assumed
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that the particles obey the identity principle or, as it is said,Generally, there is a natural projection opera®ofP?=P)

the indistinguishability principle. It can be expected that inthat partitions the coordinates into two groupé= ((l

measurements at small scales the different images of the P)¢,P&)=(#,{), wherel denotes the identity operator.

same physical observable also obey the identity principleThe first group{, refers to the manifold! and describes the

Indeed, the possibility of distinguishing between the differ-position in spaceM* at which the elementary measurement

ent images of observables would mean that physical space takes place(here and in what followdM* denotes either

itself has certain topology and structure, which by assumpspaceM or the mode spageThe second groupy, refers to

tion is impossible(at least in view of the presence of quan- the field ¢ and describes the position in spa¢eThe coor-

tum fluctuation in the topology dinaten e V denotes either the field amplitude or the number
Two types of statistics, Bose and Fermi, exist for par-of particles corresponding to the field. Thus, the Aedc-

ticles, depending on the symmetry of the wave function unquires the features of a fiber space with b&ié)~M* and

der particle permutations. Accordingly, we must also selecfiber P~1({)=V. The result of a complete measurement of

the type of statistics when performing second quantization ofield ¢ is a fibration section, which is the magM* —A.

the degrees of freedom of the fields. Since second quantizavhat is important is that in the usual picture an arbitrary

tion reflects the properties and topology of physical spacesection intersects each fiber only once, i.e., the projection of

this selection must be unique for all types of fields and physithe section coincides with the spade (P(¢)=M?*), which

cal quantities. Here it turns out that the only acceptablémplies that such sections can be represented by functions

choice is Fermi—Dirac statistics, since otherwise in dealingp({) on M* with values inV.

with fermions we immediately confront a violation of the As noted above, the topology and geometric structure of

Pauli principle. the setA (and thus ofM*) reflects the macroscopic proper-
At a fundamental level, the composition of matter is de-ties of the measurement process. On the other hand, the real

termined by a set of fields and their sources. The sources aphysical spaceM, is assumed to have arbitrary topology

point particles, which in quantum theory behave like fermi-and structuré. Furthermore, in a general quantum state, the

ons. The need to perform second quantization of the sourcgsoperties of spacély, are, generally speaking, not fixed.

arises already in relativistic theory and hence no changes ifihus, a physical field must be defined as an extended section

the description of fermions emerge. A new interpretation iSof the form;,;M;h_)A_ Here an arbitrary section can inter-
added, hoyvever. For instance, Pf_iif prod_uction corre_sponds ect each fiber an arbitrary number of times. Furthermore, if
a Change in the structure of physmal spatean_ be said that the top0|ogy of spacé/ ;h Changes, so does the number of
processes related to changes in the properties of Space Piersections. Thus, the number of images of figlth space
ceed much more easily at isolated points than they do if* is variable. An image of spacmgh is a subset in

entire regions KDY — M . .
When fields are quantized, the idea of particles, the'v.I .(P(‘P). Mphc,'\ﬁ ) that can be represenFed as aunion of
: . distinct piecesM = U o, so that on each pieae the field
guanta of a field, also emerges. Such particles, howevelr$ described b % iven] aumber of functio E(Z)J teo
obey the Bose—Einstein statistics. Here, generally speakin yag MRS). ¢ €0

) — . h - : i=1,2,...m, wherem is an integer characterizing the
particle production is not associated with variations in the . . )
tool f Th . tain similarity bet thi number of images of spadd ), in o;). Note that in general
opology of Space. 1Nere IS a ceriain simrarity between Isthe dimensionality of the piecas; can differ from the di-
y p j

aspect and the situation in solid state physics, where excita-

X ) 3
tion of vibrations in a crystal latticéphonon productionis mensmnal!ty ofM™. . . o

. . 2 . Thus, if the topology of physical space in an additional
not associated with variations in the true number of degree
of freedom egree of freedom, the result of a complete measurement of

i . T the state of the field will be represented by a definite set of
Thus, the variation mentioned above primarily involves . .
o functions {n;()}(I=(i,o) and {e o). Formally, such
bosonic fields. s X
states can be classified in the following way.
We introduce a set of operatos'(¢) and C(&), the
2. GENERAL SCHEME OF SECOND QUANTIZATION OF creation and annihilation operators for an individual ele-
FIELDS ments of the sed. For the sake of simplicity we assume that
) o ) . the measure of each individual poifit A is finite (as in the
We consider a se¥l, which in the future acts like a basis .,4a in which the coordinates take discrete valugsWe

manifold, and specify an arbitrary field on it. We also  oqjire that these operators satisfy the anticommutation rela-
assume that there is a device that can do complete measutgs,s

ments of the quantum states of the field. A complete mea-
surement can always be expanded in a set of elementary
measurements. For instance, to make a complete measure-

ment of a field state we must measure the field amplitude a‘;\/e define the vacuum statéd) by the relationship
every pointxe M, or equivalently measure the number of C(£)|0)=0 and build a Fock spack in which the basis
particles(or amplitude in each Fourier mode. Thus, the de- consists of the vectorie 1,2 )

vice can be viewed as a set of elementary detectors.
Let A be the set of possible readings of an elementary n

detector) The structure oA can be described in the follow- &, ,é £)= I1 ct(&)|0) ©)

ing way. InA we select an arbitrary system of coordinages L2 Vo e

{C(OCT(E)}=C(HCT(E)+CN(ENC(E =6z . (1)
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The vacuum state corresponds to complete absence of a field

and hence of the observables associated with the field. The ©=2 D{O;3D,

state|£) describes the fiele with only one degree of free-

dom. This can be either a field concentrated at a single poirfvhere 1,J=(#i({),0), and o is an arbitrary domain in
or a field containing only one mode, and the quanéityA ~ M™), thus defining the action of this operator i The
describes the intensitithe number of quantaand the posi- SPecific way in which this Hilbert space is built is deter-
tion of the field inM*. States described by single-valued Mined by the physical problem at hand.

functions are constructed in the following way:

In0)="T1 C'(n(0).0)0), (3) 3. SCALAR FIELD IN THE SECOND-QUANTIZATION
{em* REPRESENTATION
where the direct product is taken over the entire spdée

and where we have partitioned the coordinagemto two In Sec. 2 we discussed the general scheme of second
groups:£=(7,¢). Generally, such states do not belong to gduantization, irrespective of the dynamics of the field. We

Fock space. Furthermore, when the coordindtev* run now turn to the example of a real scalar field(the gener-

through continuous values, this expression requires an extefilization to the case of arbitrary fields is obvinuBor the

sion of its definition and hence can be interpreted only for.Pasis space we tal_<e ordinary flat MkaWSk'_ space.
One idea that is central to particle physics is the repre-

mally. However, when the variations of the physical quanti- o ) : L
sentation in which quantum states of a field are classified in

ties in real processes involve only a finite part of theMét, . X X X
we can stay within a Fock space. term_s of physical par_tlcles. Su_nce guantum states gf a fleld
We now examine an arbitrary domaine M* and de- can in general contain an arbitrary number of the identical
fine a set of operators modes, the definition of particles and their relation to field
operators require certain modifications. We find it more con-
+ -~ + venient to operate with discrete indices. To this end we re-
D (7’(0'0)_}1 Cl(n(0).0), @ quire that the field in question be located in a cube with edge
lengthL, and we introduce periodic boundary conditions. As
necessary, we can replace sums with integi@ds — ) via
She usual prescriptiors — [ (L/27)3 d3k.
We now examine the expansion of the field operator
in plane waves,

where the domain of the function(¢) is limited to the set
o. Then the states with an arbitrary nhumber of fields can b
written

|711,772,---,77n>=i1:[1 DY (7(0),09)(0). (5)

e(X)= 2, (2w,L3) Y3 aexplikx} +alexp —ikx}),
The interpretation of these states is obvious. Suppose that all 3 k explikd +aexpl }
functions #;(£) are specified on a single set Then in the ®)

given domain a complete measurement will show the preswherewk: K2+m2 . andk=2mn/L. with n=(ny,ny.n,).
ence of a set consisting of different fields7,(¢), 72(¢),  The general expression for the Hamiltonian is
., 7a(Q). Itis convenient to introduce the number density

operator of the fields: H=Ho+V, 9

+ whereH, describes free particles,
N(») =2 CH(7.0)C(n.0). (6)
neV +
= +
Then for e o the stateg5) represent the eigenstates of the Ho ; BT (10

operatorN(¢) with eigenvalues . ) . ) .
and the potential ternV is responsible for the interaction,

NI 7172, -« o) =nln1,7m2, -« 70)- (7)  and can be represented in the normal form:
Clearly, the states with a fixed number of fields correspond
to a fixed topology of the spac®¥,. Then under certain V=" > V?m}’{m,}, (11)
conditions (the requirement that the functions;({) be n.{m}.{m’}

smooth at cuts instead of the set of functions;({) we can )

introduce a single-valued function({) and thus restore the V?m}'{m'}:k 2 y V?m},{mf}(kl, o Kn)

structure of the sei;,. Conversely, each spadé;;, can be b n

projected on the basis dfl* by performing the necessary n )

paste-up, so that the state vector of the field has the (6ym X H (ali)mi(aki)mi . (12
The spaceH formed by the vectorgs) and their super- =1

position lays the basis for building the Hilbert space of theHere we assume that the sum with respect to the wave vec-

theory. An arbitrary operato®(¢) related to the fieldand  torsk; contains no terms with equal indices, i.k.# k; for

symmetrized in the number of the fie)dsan be expressed in any pair of indices andj (the sum is taken over distinct

the standard way in the terms of the set of basis oper&tors modes, and allow for the fact that for different wave num-

andC': bers the operatoray, andalj commute.
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The quantitye, in (10) is the energy of the ground state * (a*)"
of the kth mode. In a flat space without patrticles, the energy  C(a* k)= E C(n,k) ——,
must be zero, so we assume thgi=0 throughout the n=0 V!
present paper. However, as we show in the sections that fol- o n
low, the nontrivial nature of the topology of the spacegener-  C'(a k)= 2 C'(n,k) i (19
ally leads to a value of, that is finite. Note that the depen- n=0 Jnt

dence of the zero energy on the topology of space is kNnOWRpan the anticommutation relatiofis) become
as the Casimir effeand is assumed to be an experimentally

established fact. {C(n,k)CT(M,K)} =S mSici - (20

When the number of modes is variable, the set of fieldrhe physical meaning of the operat@$n,k) andCt(n,k)
T 1 1)

operatorgay,ay; is replaced by the somewhat expanded sefs that they create and annihilate modes with a given number

{a(i).ak(i)}, whereje[1, ... NiJ, andNy is the number  of particles.
of modes for a given wave numbé&r For a free field the Now, to express the Hamiltonial6) in terms of
energy is an additive quantity, which can be written C(n,k) andC'(n,k) it suffices to derive the corresponding
Ny expressions for the operatdikb). In the second-quantization
Ho=2> 2 oak(i)ay(j). (13)  representation, the expressions for the given operators are
k j=1 defined to be
Since the modes are indistinguishable, the interaction opera- da* da
tor has the obvious generalization Amn(K)= | exp—a*a} —
AR n d\"
V{m}'{m;} leZ_ Ykn jl_Z_ an V{m},{m’}(kl’ P ,kn) XCT(a,k)(a*)m( d_*> C(a*,k) (21)
a
n
Xiljl (ali(ji))mi(aki(ji))mili (14) or, with allowance for(l9),
. Vn+mp)! (n+my)!
where the indice$; run through the corresponding intervals Aml,mz(k):nzo ni
jiell, ... N(k)]. Itis convenient to introduce the notation
N(K) X CT(n+my,k)C(n+m; k). (22)
Amn(k)= 21 (al(j))m(ak(j))”. (15  An expression for the Hamiltonian in terms of the operators
=

C'(£) andC(£) can be obtained by simply substitutif2g)
Then the expression for the field Hamiltonian takes the forninto (16). For a free field, the eigenvalues of the Hamiltonian
take the form

H =§ o A1(K)

ﬂo=2k kal,l(k):g NNy K, (23
+ > > Vimm(Ke, oo Kn) whereN,,  is the number of modes for fixed values of the
n{m},{m’} K1 - Kn wave numberk and the number of particles (N,
n =c'(n,k)C(n,k)).
<1 Am mr(Ks). (16 Thus, the field state vect@b is a function of the occu-
i=1 '

pation numbersP (N, ,,,t), and its evolution is described by

We can now express the main quantities in terms of thdhe Schrdinger equation
fundameptal opergtor@T(g) andC(¢). For the operatora i9,®=HD. (24)
anda' it is convenient to use the Fock—Bargmann represen- )
tation, in which operators act in the space of entire analytiConsider the operator
functions with a scalar product of the type 0
da* da Nkzngo ct(n,k)C(n,k). (25)
—; 17
27i

(f,g)=J f*(a)g(a*)exp —a*a}
Physically, this operator characterizes the total number of
the action of these operators is defined as modes for a fixed wave numbkr One can easily verify that
for the Hamiltonian(16), N, is a constant of the motion,

a'f(a*)a*f(a*), af(a*)= i*f(a*). (18 [Ng,H]=0, (26)
da and in this way Hamiltonians lik&lL6) preserve the topologi-
Then for the normal field coordinates we can take thecal structure of the field. In the course of evolution, the num-
complex-valued quantities* ; thus, the seA consists of the ber of modes for eack does not change.
pairs £=(a*,k). For the fundamental operato&'(¢£) and We now turn to the problem of representing the particle
C(&) it is convenient to use the representation creation and annihilation operators in this formalism. Since
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the individuality of the modes is limited, operators of type Since the operatora, and al reflect only some of the
(22) act like the set of operatofs,(j),al(j)}. Among the information about the state of the system, the auxiliary na-
operatorg22) are some that change the number of particlesure of the effective field becomes manifest. Indeed, the only

by one: observables related to a given field are particles, and not just
A + A any patrticles, but only those that outhumber the particles in
Bin(K)=Amm+1(K),  Br(K)=Am1m(K), @D the ground state. For the particle number operatdt irwe
~ have
[n,bh(K)1==bl(K), [Ho,bh(K)1==wibl(K), Y S
(28) aja,= on,=n—ny, (33
where A , : —
whereny is the operator defined if29), andn, can be found
ﬁZE ﬁk:z NN . 29 by solvingﬁkd>o=nkcbo. Thus, the properties of the ground

K mk stated, remain beyond the scope of the effective field.

Then the ground stat®, of the field can be defined as a
vector satisfying the relationships&0,1, .. .)
bin(K)®o=0 (30) Equations(20) and (22)_ imply that a true vacuum state
has the property that all field modésnd hence all observ-
and corresponding to the minimum energy for a fixed modeypes related to the fieldire absent. A true vacuum state is
distributionN, . Note that in contrast to standard theory, thegne in which there are no particles and no zero-point vibra-
ground state is generally characterized by a nonvanishingons related to particles. This situation is similar to the situ-
particle number densitpn®,=ny®,. Using the vectod,,  ation in solid state physics, where in the absence of a crystal
we can build a Fock spadewhose basis consists of vectors there can be no phonons and no zero-point lattice vibrations.
obtained by cyclic application of the operatdr§(k) to ®,.  Since the properties of physical space are determined by the
properties of material fields, we conclude that in a true
4. EFFECTIVE FIELD vacuum state there can be no physical space. Obviously, in

. reality such a state cannot be achieved.
In the absence of processes related to changes in the  a; first glance the most common situation in particle

topology of space and for a mode distribution of the formy,eqry is the one in which physical space is ordinary flat
N=1 (there is only one mode for each wave numkgrthe  \jinkowski space, and nontrivial topology is manifest at the
standard field theory is restored. Furthermore, there is &|5nck scaldthis is the conventional view; see Refs. 1 and
fairly geperal case in which the concept of an effective field4). But since operating at the Planck scale requires using
can be introduced to restore the standard picture. energies unattainable with present-day accelerators, and also
Indeed, consider the case in which the interaction operarquires serious consideration of quantum gravity effects, it

tor in (16) isTexpresseq solely in terms of the set of operators,;q ;14 appear to be impossible to make any sort of directly
bo(k) andbg(k). Then instead of the complete Fock sp&ce | easurable predictions with this theory.

we can limit ourselves to its subspaeeCF formed by the In reality, the situation is somewhat different. First, the

. . . T .
cyclic application of the operatots(k) to the field ground  giapjlity of the Minkowski space means that probably even at

state®,. If the initial state ‘,’eCtO"D belongs toF’, then s {he planck scale the topology of the space can be assumed to
the system evolvesh(t) e F’ for all t (at least as long as the g simple(i.e., N, =1 andk=kp), at least as long as we do

5. PROPERTIES OF THE FIELD GROUND STATE

number of particles created remains fihite not consider processes in which real particles with Planck
We define the operators energies are produceghaturally, virtual processes cannot
a, =Ny Yy(k), al=N, ¥bl(k), (31 lead to real changes in the topology of space

) ] ) ) Second, recall that the universe has already passed the
where N, is the operator defined it25), which, when re-  o,antum stage, in which real processes involving changes in
stricted to the Fock spade’, is an ordinary number func-  gpaiia| topology might occur. After the quantum stage, pro-
tion. For (20) andT(22) we find that the commutation rela- cegses with topology variations are suppressed, and we can
tions fora, anda, have the standard form say that the topological structure of space has been “tem-

[ay ,all]: Seic - (32 pe_red,” so that the structure of the space is preserved as_the
universe expands. Thus, we expect that at the present time
Thus, if the basic observable objects are particles, it ishe nontrivial topology of space is most likely manifested on
possible to revert to the usual picture in which the particless cosmological scale.
are quanta of an effective field of type (8). Note that if the In the foregoing theory, the structure of space is deter-
field potentialsp(x) are measurable quantities, then the truemined by the number density of the field modes. These
expression for the field operators has the same f@m modes are in turn governed by Fermi statistics, i.e., they act
where instead of the operataag and al we must putby(Kk) like a Fermi gas. To simplify matters, we examine free fields,
and bg(k). The expression for the effective-field energy op-since consistent allowance for the interaction of field war-
erator has the forn®), but the ground-state energy in tkilh  rants a separate investigation. We assume that the field-mode
mode,e,, must be assumed not to vanish. The value of thigistribution was thermal in the Planck period of the evolution
energy can be found in the complete theory. of the universe. As the universe expands, the temperature
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drops and the gas becomes degenerate, with the field winignore the possible dependence of the parameten the
ing up in the ground state. Thus, the field ground sthe  wave numbek. In this case, to avoid obtaining too large a
can be characterized by occupation numbers of the type value for dark matter, we require that

Nign= 0= Ny, (39 uP-mi=ze<m? (38

where 6(x) is the Heaviside step function ang, is the Then the ground state contains only one particle per mode in
the wave-number rang&®<z?, where N,=2. In other

chemical potential. Note that when the expansion is adia X X -
batic, we must puju,= . When the evolution of the uni- words, massive bosons in the ground state behave like an

verse includes an inflationary perid¥t! the adiabaticity ordinary degenerate Fermi gas, and we obtain for the energy

condition can be violated, which generally leads to additionaP€nSity and particle number density
dependence of the chemical potential on the wave number.

For the mode spectral density we have e= F Ek noN(k,n)
n,
Nie= Y, B o) =1+ =X, 35 9 (Zu M 2t
n=0 Wy :2_772(7—’—? Zpy—m InT ) (39
where[x] denotes the integer part of the numbeEquation
(35) shows, in particular, that ai, > u, we haveN,=1, i.e., 1 9
the field structure corresponds to a flat Minkowski space, "~ 3 2( nN(k,n)= 6m2’ (40)

with the result thatw, < uy is the range of wave vectors in
which nontrivial field properties are expected to show up. whereg is the number of polarization states. In the limit

It can easily be verified that from the effective-field <m, this expression leads to the well-known nonrelativistic
standpoint, the ground stai®, is a vacuum state, i.e., relationship
a,d,=0. On the other hand, the given state can be charac-

terized by a nonvanishing particle number density. Indeed, e=nm+ Ep p= g =
for any wave number we have 27 3072 M’

) , (36) ground-state energy density is provided by the rest mass of
the particle, i.e., in leading order this contribution comes

with the result that the spectral density of the ground-statd©m dust. Note, however, that the particle pressure is non-

5

(41)

)

_ 1
N= > NO(ux—Nwy) = E( 1+
=0

i wherep is the gas pressure. The principal contribution to the

Wk

Mk
Wy

energy is zero, and it yields a small correction of ordgfe ~z%/m?
~nZ¥m?,
—  wy TR We now study particles with zero rest ma@ich as
&= o=>" 1+ o )| ]’ 37) photons and gravitonsFor the ground-state energy density

we have
Since the given particles correspond to the ground state A
of the field, in ordinary processdéwhich do not change the o= 9 u
topology of spacethe particles in question are not mani- 272 4
fested explicitly(but they enter into the renormalization of . . .
the parameters of the observed particles indirectly; here, if h€ number density of vacuum particles is

&(3). (42)

contrast to vacuum fluctuations, the contribution of the par- 3
ticles is naturally finite We also note that although the par- n= 9 "’“_5(2), (43)
ticles are bosons, in the ground state they behave like fermi- 2m% 3
ons. h
One possible explicit manifestation of a residual particleW ere
number density in the ground state is dark matter. Observa- 1
tions have shown that dark matter accounts for about 90% of &(s)= E —-

visible matter in our universe, and the matter is clearly not of n=1n

baryonic origin(see, e.g., Ref. 12lts existence is usually The equation of state in this case is ultrarelativistic
related to the presence of various hypothetical particleg, —3p).

(Higgs payﬂcles, axions, ?ﬁC-Wh'Ch for various reasons Massless particles are especially interesting, since one
cease to interact with ordinary matter. But if this mass iscan also measure the intensity of quantum fluctuations of the

ascribed to the ground state, then first it becomes obviougelq potentials, which for the ground stat@4) are
that the matter is truly dark, and second that the minimum set

incorporating only the particles known at present is suffi- 1 = dk sinkr

cient. (e(X),@(x+r))= 2m)? fo Xk
To describe the properties of dark matter, we begin with

massive bosonsnf# 0). For the sake of approximation, we where

®A(k), (49
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Another possibility is that when measuring the Casimir

D2(k)=k*Ny=k?| 1+ % - force®® one must expect an anomalous dependence on dis-
tance at scales exceeding the valueuof
At long wavelength&< u, a substantial increase in the level  The author is grateful to D. Turaev for useful discussions
of quantum fluctuations should be observable in comparisogt all stages of the research, and to M. Reiner for an invita-
with pure vacuum noisey=0). tion to Potsdam University, where a substantial portion of
this research was done. This work was supported by grants
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We see then that the concept of spacetime foam intro98-02-16278and DFG(Grant No. 436 RUS 113/236/0(R)).
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Within the framework of the cosmological model with cold dark matter we have calculated the
initial mass function of supermassive black holes formed in galactic nuclei. The collapsing

region is modeled by a homogeneous ellipsoid. It is assumed that the accumulation of angular
momentum by the proto-object takes place under the action of external tidal forces, and

that surmounting of the centrifugal barrier with subsequent gravitational collapse occurs as a result
of turbulent viscosity. To determine the mass function, we first find the angular momentum
distribution function of the nascent objects for an arbitrary spectrum of initial density perturbations.
The initial mass function is compared with available observations, and some processes

leading to its transformation are indicated. 1®99 American Institute of Physics.
[S1063-776(199)00206-]

1. INTRODUCTION approximate relatioM,=0.003M, between the mass of a
black holeM,, and the mas#/, of the stellar component of
Data obtained with the aid of the Hubble telescope and @& galaxy. A similar relatiorM ,=0.008M,, was obtained in
number of ground-based telescopeglicate that the nuclei Ref. 2 on the basis of a study of 32 galaxies. Correlations of
of ten galaxies contain supermassive black hok#d) with  a similar sort(albeit approximatetogether with the known
massesM,~ (10°—10")M,. There are also less definite luminosity function of galaxies have made it possible to ob-
indications of the presence of black holes in several dozeain an estimate for the mass distribution of black hdles.
other galaxies. The technique for determining the masses gny theory of galaxy formation must first address the prob-
black holes is based on a study of the dynamics of stars aném of determining the mass function of the black holes.
gas near the centers of galaxies and on a number of oth@fforts to calculate the mass function have been undertaken,
approaches. There are reasons to believe that the fraction efg., in Refs. 8 and 9; however, the approaches proposed in
the galaxies containing black holes in their nuclei is not lesshese works do not take sufficient account of the statistical
than 20%(Refs. 1 and P, so that the formation of a black aspects of black-hole formation. Reference 8 does not take
hole in the nucleus of a galaxy is not an exceptional evenaccount of the angular-momentum distribution of the objects
but rather a regular phenomenon in the history of almosinvolved. In Ref. 9, within the framework of a linear theory,
every galaxy. found only the asymptotic limit of the angular momentum
Several models of black-hole formation have been(L) distribution at largel and assumed it to be valid in the
proposed.® These models are not mutually exclusive; there-imit L—0. Besides, Ref. 9 utilized an inadequate criterion
fore black holes in different mass ranges and even of théor the formation of a black holéblack holes are formed
same mass have possibly a different origin. According to thevhenL does not exceed the maximum angular momentum of
model that we will use in the present work, a black holea Kerr black holg The goal of the present paper is a more
arises as the result of collapse of a gas cloud long before theccurate calculation of the black-hole mass function by first
formation of a stellar galaxy.The possibility of such a col- finding the angular-momentum distribution for smiltak-
lapse depends on the angular momentum collected under tlieg account of the nonlinear stage of evolution of a density
action of external tidal forces. At the center of a virialized perturbation. In contrast to Ref. 9, we employ what is in our
halo of dark matter the baryonic matter forms a self-opinion a more likely criterion of black-hole formation.
gravitating rotating disk. Compression of the central region  The model of accretion of matter to a black hole success-
of this disk before the relativistic state is reached occurdully explains many observed properties of quaséaheir
thanks to an outward transfer of angular momentum due tbigh luminosity, variability, and emission spectrumccre-
turbulent viscosity. A black hole is formed if the disk is able tion in the Eddington regime, as is well known, leads to
to compress before the moment at which it would otherwiseexponential growth of the black-hole mass. Another source
fragment into stars and before its disruption by supernovaf transformation of the mass spectrum is collisions and coa-
flareups. Thus, only objects with sufficiently small angularlescence of galaxies with large red shifts!interacting gal-
momentum collapse. axies, and also the remnants of such interactions have been
The accumulation of statistical material in recent yeardirectly observed. Black holes existing at the centers of gal-
has made it possible to detect definite correlations betweeaxies before coalescence should, as a result of dynamic fric-
the masses of black holes and the characteristics of the gaion, settle rapidly into the center of the new galaxy and also
axies containing them. The authors of Ref. 6 obtained amoalesce. Both processes—growth of mass during accretion,

1063-7761/99/88(6)/8/$15.00 1058 © 1999 American Institute of Physics
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and coalescence of black holes—lead to a redistribution othe assumption that it gives a reasonable quantitative esti-
the black-hole mass function toward larger masses. Theranate at least for the time dependence of the moment of the
fore, the presently observed black-hole mass spectrunidal forces.
should differ from the mass spectrum of nascent black holes. Equations for the evolution of a homogeneous ellipsoid
A comparison of the initial black-hole mass function calcu-were derived, for example, in Refs. 12 and 15. During the
lated by us with the observed mass function, subjected tevolution of the ellipsoid the total mass inside the ellipsoid is
transformation, can thus be useful in studies of the coaleszonservedM =p;V;=M.+p,V, whereV is the volume of
cence of galaxies and accretion mechanisms in quasars. the ellipsoid andV is the excess mass in the ellipsoid above
This paper is organized as follows. Section 2 examineshe background mass. The subscripere and in subsequent
the time dependence of the moment of the tidal forces anfbrmulas means that the quantity is taken at some initial time
obtains an approximate formula for the integral of this mo-t; that can be chosen close to the recombination time. We
ment over time. Section 3 finds the joint probability distribu- introduce the following parametrization of the coordinate
tion for quantities characterizing the inner and outer densityf the mass element of the ellipsoid:
distributions. Section 4 carries out a statistical average and |, .5 .. 5
obtains the angular-momentum distribution of the objects of re=S8"(0x", @)
interest. Section 5 briefly describes some physical processgghere|x|<1. The quadratic potential
leading to formation of black holes, and estimates the critical
value of the angular momentum. Section 6 calculates the
initial mass function and provides an interpretation of the
results obtained. Throughout this article we consider a flat

cosmological model with cold dark matter without\aterm. consists of the potential of the homogeneous ellipsoid, the
potential of the homogeneous background, and the potential

of the tidal forces:

O=Pg+ D+ Dy, 5)

1
= 5P p(0rer 4)

2. MODEL OF THE PROTO-OBJECT

Let us consider an individual peak in the density distri-
bution of the matter from which a gravitationally bound ob- ~ ®,=47Gp,(t)I, (6)
ject is formed after collapse. We divide the region of space . ) ) ) .
near the peak into inner and outer regions relative to asphetle'S the unit matrix. Let the Semi-axes Of. the ellipsoid be
of radiusR such that the larger part of the mass that lateffdu@l t0a, b, andc. In the Cartesian coordinate system as-
falls into the object is found in the inner region. The poten-Sociated with the principal axes of the ellipsoid, we have
tial of the outer part, representing the field of tidal forces, can a A,
be expanded in spherical harmorifcs

4G S= b v Pe=27Gpe Az (D
T
ban= 2 o g amYmlrl! (1) c Aa
where
where
A b f i an (8)
. =abc ,
Am=—pp fr|>Rd3rY?‘m6(r)lr| 1 (2) ! 0 (a2+\)[(a2+\)(b2+\)(c?+)\)]¥2
G is the gravitational constanp(r) is the density at the Az @ndAg are written analogously, anst=M./V.
point r, py is the mean cosmological density, arr) The equations of evolution of the ellipsoid are
=[p(r)—ppl/pp. The term with|=0 does not affect the 428
compression dynamics, and the term withl is responsible = _—PprrgYB, 9

only for motion of the center of mass and does not affect the dt?
accumulation of angular momentum. According to Ref. 13

. . . 'Formation of a black hole corresponds to a small angular
terms with1=3 can be neglected in a treatment of tidal

momentum and correspondingly a small moment of the tidal

forc:a;. del the i laosi ion by a h forces. We assume that they are so weak that their influence
€ model the Inner collapsing region by a NOMOYENeoUsy, , dynamics of the halo of dark matter can be neglected.

eIIipsoid.. For the acc_umule_ltion of angullar momentum by thqn this case the angular momentum due to the tidal forces
proto-object, of decisive importance is the presence of $ecomes a significant factor only in the further compression

quadrupol_e mom'er?t mt_eractlng with the fidal forces. Weof the baryon component. The initial velocities are written as
may nominally distinguish two sources of the quadrupole

moment: nonsphericity of the proto-object and inhomogene- dS*#
ity of the inner distribution of mattef* The model of a ho- dr |
mogeneous ellipsoid to a significant extent takes account :
only of the first of these factors. Despite the indicated shortwhereH is the Hubble constant.

coming, the model of a homogeneous ellipsoid is the only  Black holes emerge from relatively high density peaks.
model currently available that allows a detailed analysis ofin this situation the deviation of the shape of the object from
the dynamics of nonlinear compression. We will use it undeispherically symmetrical is not lardé Therefore we seek the

HSep 2 d7—PpaY)SYE 10
—ﬁ( —®y7) K (10
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solution of Egs(9) and(10) in the limit of small deviations The moment of forces acting on the ellipsoid is ex-
of the shape of the ellipsoid from spherically symmetrical,pressed by an integral over its volume:
i.e., we represer*? in the form

S*¥=IR+q, (12) Ka=—f d*rpp8()[rV dsr)] e
where M,
a1 == ?eaﬁyq)‘ya(t)sag(t)sﬁs(t)- (18)
q= a2 : (120 Substituting the expressions fdry, andS, we obtain
ds 2_p2
(cc=Db%) Imay;
andg?+qg3+g53<R2. We introduce the notatiop=q;+q, __2V67GM, (C2— a2) Reay, 19
+ (3. Then the matrix® on the right-hand side of Eq9) “ 5.5 _ '
takes the form (a®—b%) Imay,
R3 0 D The time dependence ak,,, in the linear approximation has
- R ) z the form'
P 277(3[p, R 1+ R pp(D)| 1+ R)]
2 2p\ 4q . 41-rG ol 13 azm(t) = azm,i t_-) (20
—— ==l—-== —_ i
3 5R) T5R[T 3 Cm (13

Formula (20) is applicable for sufficiently isolated density

In the zeroth approximation we neglect nonsphericity,peaks, as should hold for the majority of cases of black-hole
settingg=0 andp=p;=0. The solution in this case is well {5rmation.

known'® and is expressed by the parametric formulas We have the approximate equalitg®—b2~2R(q;
—q,), and analogously foc?—b? and c?—a?. Equations
R= Rig cosd, (17) are linear inq; therefore the time dependence @f
! —q; is the same as that @f;. We assume that the virializa-
1 2(568\%Pt—t, tion of the object sets up with its compression to roughly half
O+ 5 sind= §<?) B (14  its radius, starting at the time of maximum expansioiihe
' virialization timet, depends only or; and corresponds to
wheretg is the time of maximum expansion: 3= 7/4. Thus,
3w (547 LR gy(t) [ 1)
8; is the relative density fluctuation at the tie t\2/R\3] [t
We will consider nonsphericity effects in the following x| 1+ 5i—(_' (_) d(—) =K, itif(8). (21
approximation which is linear iq. Combining the equations AR i '
of system(9) with the initial conditions(10), we obtain The expression in brackets is the time dependendd oin
- . _ _ formula(19). By numerical integration with accuracy accept-
P=aptazpi, pt)=aspi, Pp(t)=pi, (16 Jble for the subsequent calculations, we obtain
where the quantitiea,, a,, anda; depend on the compo- o1
nents ofqg. If at the initial timet; we choose a sphere of f(6))~1.9x1076; ~. (22

radiusR such thatp;=0, then it follows from Eqs(16) that
p(t)=0 for any timet. Thenq satisfies the system of equa-

tions 3. JOINT PROBABILITY DISTRIBUTION

. 47G
q—QT

3
1R P Black holes are formed near peaks of the density field
33’ po(t) |,

1 .
— ikr 43
8(r) (277)3J 5 d3k. (23)

2,8
q(t)= 3t +15/9

The density perturbations are assumed to be Gaussian, and
q(t)=a;. (17)  their statistics are determined by assigning the power spec-

The relation betweerR andt is given by Eqgs.(14). The rumP(k):

given system of differential equations can be integrated nu- * _ 3 Gl 17

merically, e.g., by the Runge—Kutta method. We require the (8 8y =(2m) P o6 (k= k"), @4
solution in order to calculate the angular momentum. Wewhereag)(k—k’) is the Dirac delta function, and the angu-
will now clarify how the momentum of the tidal forces de- lar brackets denote ensemble averaging. The spectral mo-
pends org. ments are defined as
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2_j kzdk K kzj 5 §3 _(§1+g2+§3)
6= g2 PO @9 £, (G- EI2+ils
&1 1| istida
We expand the density fiel®3) in a power series about the &= e | "ol —(ci—2e+ 002 | (31)
pointr,: 0 1oeest o2
§-1 {5—1{4
1 £ (£1=82)2—i g
5(I’p+r)=5(rp)+7]iri+Egijril’j-l— P (26)

Here we have changed over to the new notadgn-{a,

. . , A=1,6: {1=011, {2=022, {3={33, {4={23, {5={13, L6

If rp, is the position vector of the density extremum, then =/, The choice of the normalized coefficients is made in
=0. The expression for the concentration distribution of theline with the notation of Ref. 16, from which we will use

maxima of the density field, obtained in Ref. 16 and generspme results in what follows. We write the inverse transfor-
alized with the angular momentum taken into account, hagyation in the form

the form

3
— (n)
n(r Lo, vo)dL,dv=|det 2| 58 1) 8(A1) B(A5) 6(N3) (=02 2 UR%n, (32

X 8p(v=v0)8p(L,—Ly)dL,dv,  whereU{" is a constant matrix. With the help &f{" we
27) express;n; in terms of Y, :

2
where v=4(r,)/ g, \; are the eigenvalues of the matrix ninj:( > Ui(jn)D(”)an +Ui(j3)D(3)YOO' (33
gij» and ¢ is the Heaviside step function. n=-2

Our immediate goal is to construct the joint probability \ynere the vector

distribution for the quantities characterizing the density field
inside the sphere of radil®centered at the point, and the 8m 15 J6
DW=1/Tg| - VZili-Li5 1) (34)

guantities characterizing the tidal forces, i.e., the variables 2
o(rp), mi, &ij, andayy or others that are expressed in terms

of them. We find the correlator We find the correlators
p(Mm D(M2
Asn)=——6mn» *N=——8mn,
<§iia2m>ch konian;m(Qk)y (28 {émdan) o, M {émén) A OMN
<a2ma;n> =W Smn, (35
where n;=k;/k and (, is the solid angle in momentum
space, where
2 . 2
P [~ kRcogkR)—sin(kR)
- kRcogkR)—sin(kR \Ifz—f dkk*P(k . (36
=P ["auidpq KREIKRI—SINkR) pocll B (k) R
167> Jo (kR)®

To diagonalize the correlator matrix, we introduce in

In the course of the calculation we took the Fourier transPlace ofazm the new variables

form, uged formuld24) to calculate the average, and applied vn=a(@, —faén), n= _2—2_ 37)
the relation

It follows from the requirement(v,é&y)=0 that f,
= ala&nl{&.EL). For such a choice off, we have

feikrYlm(9,€0)dQ:47TY|m(9k,€0k)i|j|(kr), (30) . ) ) o
(Vo) =a“ (Y —47C75) Smn= Smn> (39

wherej(x) are the spherical Bessel functions aifd is the  if we take a=(¥—47C?/¢3) Y2 We normalize¢,: w,
element of solid angle. =\47¢,/D™; then (WyWp)=8mn. The joint probability

If we take some definite linear combinations of the cor-distribution of the quantities,, andw,, (for the time being
relators (28) with fixed m, then the corresponding linear without ws) has the form
;:ignmsb$atlogs of.the expressiongy; give Fhe spherical funp P.P,dvd Sw=(2m)°

on- By virtue of the orthogonality of the spherical

functions it is thus possible to reduce a large subset of the 1. . 1. .
correlators to zero. The form of the necessary linear combi- Xex;{ v Zwiwld vd®w, (39
nations can be seen by writing dowf,, in Cartesian coor-
dinates, r,, andrg, substituting 11 for {15, riro for {1o,  the cross denotes the Hermitian conjugate, arahdw are
etc. Thus we introduce the new variablgs vectors with components,, andw,,, respectively.
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4. ANGULAR MOMENTUM In the averaging of expressid27) the following mean

. . . L o of the delta function arises:
By virtue of the isotropicity of the density field distribu-

tion, the distribution functiorF over the components of the (s,(L,—L,(v,W)))p

angular momentum depends only on the magnitude of the v

angular momenturh?=L5+L7+L2. We denote f d5y F{ 1. Q) ds
= eX —

— —_— + —
(277)5/2 vv 2T

- 2
F(Lf)zf F(LZ+L+LD)dLdL,
XeXFiiS(LZ—WEEkmUm—W’kC EILme)]
=2 FF L2+L2)L,dL,, 40 ds 1

4 0 ( * Z) * * ( ) :fZGXF{iS(Lz_W;EL’(me)_ESZWkEszImWr

whereL; =LZ+L7. Differentiating with respect ta.2, we

. 1 L2
obtain _ exd — —2— | (45)
1 'IE(LZ) (277)1/223/2Xy 16X2y2
F(LZ)=— = : : (41)
T dL? 202 where
: o . . , 7'%GpyR’ (872
Thus, to find the total distribution functioR(L?) it suffices X= —35 |15 (cr%\If—4q-rC2)1’2tif(5i). (46)

to know the distribution irL, .
~ We introduce the angular momentum operatorafter integrating overd®v, the coordinate axes can be
|,=—i[rV],. The spherical functions are the eigenfunctionsaligned with the eigenvectors of the matgy , which sig-
of this operator. Thus, thecomponent of the moment of the nificantly simplifies the process of integrating owein the
tidal forces takes the form last equality in Eqs(45) we changed over to the following
notation(see also Ref. 16

OoX=—({1+ L+ E3), oy=—(L1— )12,
Toz=— (1= 283+ (2)12, (47)

KZZ_J d3rpb5(r)[rv¢sr{r)]z
[r|<R

=ipy | _ dFramioun. @2
r

y= 0'%/0'20'0, X, =yv, R,= \/501/0'2. (48

As was indicated in the previous section, it is sufficient to o . )

restrict ourselves to the terms with 2. Making the neces- Further statistical averaging of expressi@7)

sary substitutions of variables, we obtain N(L,,»)=(n(r,L,,»)) (49)
2
) 27Tpr ~ . . . .
K,=—i . 2 ZmE §ijJ dgrrzrirjle2m(Qr) is re{;\ll.zed by the foII(')er)g integral ovey y, andz (a} way qf
=2 Ir|<R obtaining the normalization factor can be found in Ref): 16
2 2
27Gp,R’ N(L,,v,X,y,z)dL,dv
= (k) (m)* ~(m)
T m:E_Z Azl k:E—Z Mazmo2&UaUa™" D 5/21/2 3
_J' 53 (a ) 1
' ZWprR7 2 6 2 (277)7/223/2 o1 Xy(1— 72)1/2

m
_ 2O M W DO m
' 35van mZZ,AZl k—ZZ[aWk ATA

\/Emc
g2

x e QF(x,y,z)xdL,dvdxdydz (50)

where
XDMyx + w, DUy M+ D<m>w;} . (43
2
z

16X%y?

. . . . v (X_X*)Z 5
To calculate the integral over time of this expression, we =75 ot §(3y2+ 22+
make use of the results of Sec. 2. Note that in such an ap- 2(1=v9)
proach, to determine the initial value of the moment of the F(X.y,2) = y(X—22)[(x+2) — (3y)2](y2~22) (52)
tidal forces we employ the quadratic approximation of the Y '
exact peak profile, and to find the time dependence we enfhe characteristic functioy assigns the region of integra-
ploy the approximation of the homogeneous ellipsoid. Thusijon:
we find that the angular momentum is equal Lg
=K,it;f(5;), wheref (&) is given by formula22). We write x: y=0, y=z=-y, x+z=3y. (53
it conditionally in the form

, (51

The integral overy can be done analytically. We will not
L,=W} Expm+ Wi Ef Wi, (44) write out the result in light of its cumbersomeness.
. We are interested in objects with angular momentum
whereE,,, andEy,, are matrices which are independentof much less than the mean value. We introduce the smallness
andw. parameter
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L2 2
e=——<1 (54) Hymr g2 (57)
16X2 T2

and expand expressidf0) integrated ovey in a series ire. Wherevi is the angular velocity of rotation of the disk. The
The validity of such an expansion is verified by expandingcoefficient of kinematic viscosity and the characteristic com-
expression(50) in powers ofx andz at the poinx=z=0. By  pression time are equal respectively to
virtue of the additional differentiation in expressi6fil) the 2 3
zeroth term of the expansiofindependent of) does not = Al dVs s %

. . . . ' vis 3"
contribute. Let us limit ourselves to the term linearsinWe GMq aw?
integrate overz andx numerically and find an approximate
function for the dependence of the result on the variables
andx, within the ranges of variation of these latter quanti-
ties of interest. Finally, employing expressitfil), we ob-
tain the expression

(58)

In order to findv it is necessary to consider the process of
radiative transfer of the gravitational energy being liberated
outward during compression. The rate of liberation of energy
is
284 %’
N(L,»)dLdy=2.4x10"%(1— y?)°7—% e~ "2 2dLdv. dt
xRy (55) whereEgra\,:GMglrd, o is the Stefan—Boltzmann constant,
T, is the temperature on the surface of the disk. The relation
The accuracy of approximation formu(a5) for the values between the effective temperature at the ceifigand the
of the quantities entering into it used in our calculations iseffective temperature on the surfadg has the formT:
not worse than 20%. In the following sections on the basis of- 7-T‘S1 (Ref. 20, wherer= oTMg/2wr§mp>1 is the optical
this distribution we investigate the statistics of black holes inthickness of the plasma disk and; is the Thomson cross
galactic nuclei. section.

From the above relations it is possible to obtain the com-
pression timd,;s of the disk due to viscous transfer of angu-
lar momentum. We assume that a black hole is formed if this
time does not exceed the characteristic time of star

The main processes leading to formation of black holedormation®*
at the centers of galaxies have been discussed, in particular, ~[ M,
in Refs. 5, 17, and 18. Our treatment is similar to that given t, =t M
in Ref. 5 except that we have used equations for a self- ©
gravitating disk without predominance of the central masswhereM. is the characteristic mass of a star nucleus. In the
Let us consider an object with total maels(dark matter+ simplest modet ~5x 107 years ang8~ 2.8 (Ref. 21). If the
baryong. Let the baryonic matter make up the fractignof  stars have the standard Salpeter mass function, then we can
the massMy=f M. The gas cloud cools rapidly thanks to expectM .~0.5M . However, the conditions in a compact
inverse Compton scattering by photons of the microwavejisk are substantially different from those in ordinary star-
backgroundfossil radiation and to emission from free—free forming regions in galaxies; therefod at this stage of

and free—bound transitions. During cooling the baryonicdevelopment of the theory should be treated as a free param-
matter falls toward the center of the object and reaches thgter.

~Egadye =2mr50Te, (59

5. FORMATION OF BLACK HOLES

-B
, (60

centrifugal barrier at the radius From the conditiort,s<t, we obtainL<J, where
~ /6
L2 [g-cmz} (at)4/15( £ o\203 i L

rg= : 56 J——|=6.1x10°% —| |~=2| |————

¢ oM, (50 s 01 1003 [5x10 year
wherelL is the total angular momentum of the object with M.\ P8 M\
massM. It is assumed that the angular-momenturdensity X Mo (61)

o 1M

per unit mass is identical for baryons and for dark matter.
At the center of the object the baryonic matter forms alf the reverse inequality holds, then the disk fragments into
self-gravitating rotating disk. Further compression of thestars and instead of a black hole a star cluster is formed.
central region of the disk takes place thanks to outward trans- A second limitation arises from the requirement that the
fer of angular momentum. We assume that the main factor iigas be ionized after the virialization time of the dark halo. In
the transfer of angular momentum is turbulent viscosity. Thehe opposite case cooling and compression of baryons will
turbulence is usually characterized by the parameigr not take place. lonization can be a consequence of secondary
=v,/vs~0.1 (Ref. 19, wherev, is the velocity of the tur- ionization of the Universe by the first pregalactic generation
bulent pulsations,vs=(5kgT/3m,)Y2 is the velocity of of stars!®In this case, however, the concentration of na-
sound kg is the Boltzmann constant, ama, is the mass of scent black holes of small mass significantly exceeds the
the proton. limits of observation. A second source of ionization is heat-
The thickness of the self-gravitating disk is ing of the gas during virialization of the object under the



1064 JETP 88 (6), June 1999 Yu. N. Eroshenko and M. I. Zel'nikov

action of shock waves and vigorous mixing. We take thisian filter W, with R=R/10"® has only practical significance
ionization source to be defining. We find the temperatureand allows us to avoid problems with rapid oscillations in the
from the relationmyv?/2=3kgT/2, wherev is the virial ve-  integrand during numerical calculation of the quantitigs

locity. The conditionT>T;,,~(1-5)x 10*K yields By virtue of the fact that the filteWV, smooths out masses
27 kaT. £ |23 M/10<M, the presence of the filta, has only a weak
5=06/(1+z)> B '0”( 0 ) , (62)  influence on the result.
5\/E m, \GM The smallness parameter(54) used in the calculations
where Ty, is the ionization temperaturdg is the current 9'095 not exceed>$10 41for Masses varying within the fim-
time, and 1t z.=(ty/t,)22 its 10Mo<M,<5x10""M, which justifies the assump-

We have investigated formation of black holes within tion of inequality(54). The angular momentum collected by
i.the object depends on the orientation of its quadrupole mo-

the framework of a simple model without a detailed trea . ) - P
ment of the internal structure or evolution of the disk. TheMent relative to the outer density distribution. However, as

choice of such a model is based on the absence of detané}flculation shows, these quantities correlate only weakly. In-

studies of real models of self-gravitating disks. For exampled€€d, their mutual correlation is characterized by the expres-

5 : .
the authors of Ref. 22 found a self-similar solution for theSIon 47C* in relation (4). For the masses under consider-
evolution of an isothermal disk in the weak-accretion limit &ion here, 4rC%/o3W<1/700. Thus, the outer density
and under the assumption tha¢r)H4(r)/r =const. The so- distribution can be considered to be statistically independent

lution obtained correctly reflects some qualitative aspects off the inner distribution. The explanation of this fact prob-

the evolution of a disk; however, use of the quantitative reably lies in the statistical independence of fluctuations on

sults of Ref. 22 is hardly justified in a real situation. Accuratedifférent scales. Evidence in favor of this is provided by the
solution of the problem may require complicated, three-fesults of Ref. 1_3, where it was__found that tld:_al forces gen-
dimensional hydrodynamic calculations allowing for thermal€rated by spherical shells of radiand 2 are anticorrelated,

processes. In any additional calculations what is importan?”d the main contribution comes from density fluctuations a

for us is the presence of a maximum value of the angulafistance & away from the object of radiuR and corre-

momentum. In quantitative estimates we will use results opSPOnding to a mass F’fSM' _ , ,
tained within the framework of the above model. In studies of a hierarchical mechanism of formation of

the large-scale structure of the Universe the problem of
“cloud within a cloud” is well known?® The statement of
this problem is that an object of makt; can become incor-

In Secs. 3 and 4 the power spectritk) is taken to be porated in an object of maddl,>M, at a later time. In
arbitrary. For concrete calculations we will use the spectruntonnection with this the problem arises of calculating the
arising in the model with cold dark matter with the Hubble concentration of independent objects. It is natural to interpret
constantH=75kms 1-Mpc™?! (Ref. 16: formula (55) as the concentration of objects with mas$.

) To calculate the massM) distribution it is necessary to

a[In(1+4.164)] differentiate formula55) with respect tavl. The dependence
(1+6.94K+828.%2+925.43+ 2071(*) 12’ on v in formula(55) has the formy>8%exp(—1%/2); this func-

(63) tion attains its maximum at~2.4 in line with the fact that
wherek is measured in the co-moving coordinates and inPlack holes are formed from relatively high density peaks.
units of Mpc L. The normalization constaat~2.13x 1 is ~ 1he final distribution is given by the formula
determined, as usual, from the requirement that the relative J d
fluctuation of the mass on a scale of 8 Mpc be unity. d(M)YdM=dM f dLW ﬁ

We smooth the density field with the help of two filters 0

6. BLACK-HOLE MASS SPECTRUM

P(k)=
()k

)

dvN(L,v), (66)

dlag

3 3 whered=max d;,5,}. The values,=1.69 corresponds to
SR(r)= | 8(r)Wy(ry—ra)Wy(ro—r)drydr, (64 cojiapse at the current time. To transform to the mass distri-
bution of the black holes/,=fy M it is necessary to make

where the corresponding change of variables:
Wy(rr—rp)= — 39(1_ '”;“'), B1(Mp)d(InMy) = $(M/Fo)d(My /Ty,
47R
4 The result of the calculation is shown in Fig. 1. For compari-
lro—r|? son, the dashed cun&depicts the assumed distribution ob-
Wo(ry—r)= (ZTRZ)WGX TR (65  tained in Ref. 7 based on observational data. The difference

in the curves can be attributed to inaccuracies in the obser-
Use of the filteW, allows us to interpret o directly as the vations or in the subsequent transformation of the mass func-
density averaged over a sphere of radiugt is specifically  tion. The figure demonstrates the possible direction and mag-
this quantity that defines the moment of collapse and is denitude of such a transformation. It is interesting to observe
noted in Sec. 2formula(22)] as ;. In the final calculations that for masse$l,,>10°M, according to formula66) the

we transform to co-moving coordinates and express all quarinitial black-hole spectrum is close to a power-law:
tities in terms of quantities at the current time The Gauss- o«M ~184
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log#,(Mpc®] Eddington accretion stage. Foy<tgq (tgq is the Eddington
time) the masses of black holes remain essentially un-
changed after their formation. On the contrary, fgetgy
the masses grow significantly and the black-hole mass spec-
trum observed at the current time differs strongly from the
mass spectrum of nascent black holes. Calculations show
that almost all black holes with massds>3x 10°M , arose
from less massive black holes as a result of accretion. The
concentration of nascent black holes originally formed with
. . masseM >3x 10°M, can be neglected in comparison with

7 8 9 10 11 the concentration of black holes that have entered this range

log(¥,/ Mg) from below.

FIG. 1. Mass distributior; of black holes in galactic nuclei. Curvésand The authors express their grgtltqde to_ the Ru35|ar1 Fund
2 plot the results obtained using formulés6) for M.=0.3M, M, for Fundamental Research for its financial support in the

=0.5M,, respectively. For comparison, the dashed curve depicts the disform of Grants No. 96-15-96614 and 96-02-16670.
tribution obtained in Ref. 7.

*)E-mail: erosh@td.Ipi.ac.ru
DE-mail: zelnikov@td.lpi.ac.ru

Quantity (66) is proportional to the following combina-
tion of parameters of our model:

a5/ ¢ 2 ~ 12 M.\ — B2 1R. P. Van Der Marel, irProceedings of the IAU Symposium 18oto,
ﬂ 9 t c (67) August 1997, edited by D. B. Sanders and J. Barnes, Kluwer Academic
0.1 0.03 5% 107 year Mg Publishers(in pres$; E-prints archive, astro-ph/9712076.

2J. Magorrian, S. Tremaine, D. Richstoret, al, Astron. J.115 2285

For definiteness we set all parameters exceptMqrto be 35\1938#2 Annu. Rev. Astron. Astrophi22, 471 (1984
. . . P . J. Rees, Annu. Rev. Astron. Astrop s .
equal to their normalized values in expressi@). Thus, 4, '\’ Gurevich and K. P. Zybin, Zh. Esp. Teor. Fiz97, 20(1990 [Sov.

depending on the mass, the relationship between the initial phys, JETP70, 10 (1990].

mass function and the distribution in Ref. 7 can be under-°D. J. Eisenstein and A. Loeb, Astrophys4a3, 11 (1995.

stood as follows. It is clear from the figure that M 6J. Kormendy and D. Richstone, Annu. Rev. Astron. Astropl3;.581
~0.3Vlo then the calculated mass function reproduces th&gggz.ucci E. Szuszkiewicz, P. Monaco, and L. Danese, E-prints archive
distribution from Ref. 7 quite well for ¥ 1M o<M<5 astro-ph/9811102 Y ' ' '

X 10'% . Note that it is precisely in this mass range that M. G. Haehnelt and M. J. Rees, Mon. Not. R. Astron. Sp63 168

the largest number of black holes have been recorded. Thg(1993: E-prints archive astro-ph/9712259.

. . L . ..°H. Susa, M. Sasaki, and T. Tanaka, Prog. Theor. P#%,s961 (1994).
statistics outside the indicated range are incomplete. The difoy” ~ 5 Krivitsky and V. M. Kontorovich, E-prints archive
ference in the distributions may also be due to observational astro-ph/9801195.
selection at small black-hole massesM{>0.3V, then  "M. G. Haehnelt, E-prints archive astro-ph/9809328.
for small masses the initial mass function is also substa —3? é‘uﬁ:iegséesn g?ndn:' L,azt,.),’ ﬁ,ﬁ,‘{"ghﬁﬁi 532%29325(1993
tially greater than its values obtained from the observatfons,g § Ryden, A'Stmphy)g. 329 589(1989. '
but for large masses it is substantially less. Processes that c&p. J. E. PeeblesThe Large-Scale Structure of the Univergerinceton
lead to such a transformation were indicated in the Introduc- University Press, Princeton, N.J., 1980
tion, these being growth of the mass of black holes as a resultis'\(/'l'nggdee”' J-R.Bond, N. Kaiser, and A. S. Szalay, Astrophy4).
of their coalescence and as a result of accretion. In the hieta | oep, Astrophys. 3403 542 (1993.
archical picture of the formation of the large-scale structuré®A. Loeb and F. A. Rasio, Astrophys. 432, 52 (1994.
of the Universe every galaxy during its existence can expegw- '-BShZa'T}ga ?T]d R-dp\; sl;ny;ev, APSrEFO’F- Asftfgﬁk@"i\- 3\/37(1973(-1 o
rience up to ten coalescence events with other galaxies. T:mpé r;turgvllicy d;réyn;rﬁic'ljhaeirémg;g; gtgizyol\josk\f‘;efgzg 9

We obtained a similar picture of the transformation of 21y G, syrdin, The Birth of StarsURSS, Moskva1997.
the mass function on the basis of a comparison of an obsef?S. Mineshige and M. Umemura, Astrophys480, 167 (1997).
vational estimate of the black-hole mass distribution and thé’J: R Bond, S. Cole, G. Efstathiou, and N. Kaiser, Astrophy879, 440
luminosity and red-shift distributions of quasars. Of funda-

mental significance is the question of the duratigrof the  Translated by Paul F. Schippnick
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It is shown that the size of the focal spot has a substantial influence on the dynamics of
Mandel’shtam—DBrillouin induced scatteririlylBIS) for the laser beam power near critical for
striction self-focusing. For small focal spots MBIS suppresses self-focusing. An increase

in the size of the focal spot leads to growth of the MBIS pulsations and the steady-state setup
time. For large enough focal spots MBIS arises in the form of regular intense spikes.

Physical processes shaping the dynamics of MBIS are discussed99@ American Institute of
Physics[S1063-776(199)00306-§

1. INTRODUCTION odic intense spike¥. As the size of the focal spot is reduced,
self-focusing is suppressed and the spiking character of

In nonlinear optics one of the most widely known pro- MBIS gives way to oscillations about some mean value,
cesses is Mandel'shtam—Brillouin induced scatteringwhere the amplitude of these oscillations decays with time.
(MBIS), in which an incident electromagnetic wave, by in- For a fixed focal spot size self-focusing is suppressed that
teracting with sound waves, creates scattered electromagauch more effectively, the higher the initial level of scatter-
netic waves with shifted frequenciésee, e.g., Refs. 1+3 ing. In this case, the setting up of steady state takes place
This process is observed in many material media and is ofaster. Under conditions in which the initial MBIS reflection
great significance for a number of applications. In particularcoefficient, calculated in the one-dimensional theory neglect-
it is used for phase conjugatidsee, e.g., Refs. 436t is  ing self-focusing, amounts to several percent, the dynamics
also of great significance for laser nuclear fusion, loweringof MBIS approaches the dynamics described by the one-
the fraction of radiation absorbed in the targsee, e.g., dimensional nonlinear theory.

Ref. 7. Numerical calculations of the spatiotemporal variation of

If the laser beam powd? exceeds a certain critical value the intensity of the incident and scattered radiation, and also
P. (Refs. 8—10, then self-focusing can also take place alongthe density of the medium, have made it possible to interpret
with MBIS. It is well known that in steady state either self- the physical processes responsible for the above-described
focusing (like filamentation of the laser beanfeads to a MBIS dynamics. These questions, and also experiments in
growth of MBIS (see, e.g., Refs. 11-18r MBIS suppresses which MBIS pulsations have been observed, are discussed in
self-focusing(see, e.g., Refs. 14—16However, the interac- the Conclusion.
tion of MBIS and self-focusing can be most uniquely mani-
feste(_j in their S|multane01_Js development in time during 8 STATEMENT OF THE PROBLEM, AND BASIC EQUATIONS
transitory process. Thus, in Ref. 17 it was shown that be-
cause of self-focusing MBIS acquires the form of periodic  Let us consider a planar layer of a nonlinear, transparent
spikes during which the intensity of the scattered radiatiormedium, onto which, starting at the timie=0, a beam of
can exceed the intensity of the incident radiation. A non-electromagnetic radiation having characteristic widéh(@i-
monotonic time dependence of MBIS is also indicated byameter of the focal spptis incident. We assume that the
numerical calculation¥® radiation power exceeds its critical value for strictigron-

The present paper discusses the possibility of modifyingleromotive self-focusing and the thickness of the layer ex-
the dynamics of MBIS when the laser beam power exceedseeds the diffraction length. Together with self-focusing, we
the critical power of striction self-focusing by varying the consider MBIS in directions close to directly backwakd.
size of the focal spot. It follows from a numerical solution of To describe the incident and scattered beams, and also
the system of nonlinear equations describing the incidenperturbations of the medium density, we use, respectively,
beam and scattered beams and also large-scale perturbatidviaxwell’s equations and the equations of acoustics, in which
of the density of the medium associated with self-focusingwe allow for the action of the averaged ponderomotive force
that for relatively large focal spots the development of self-(see, e.g., Refs. 2 and).3We represent the electric field
focusing leads to the result that MBIS has the form of peri-strength in the medium in the form

1063-7761/99/88(6)/6/$15.00 1066 © 1999 American Institute of Physics
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1 . : 92 9
E(r,t)= > 0:211 {Ey(r,t)exd —iw,t+iok,z]+c.c}, (?JrZI“E—VgAL Sop
(1)
whereE, is the complex amplitude of the spatiotemporally =— i(pa_s> A E |E,|?, (5)
slowly varying (on scales ofk; ! and w,®, respectively 167\ " dp] ~o=%1

field of the incident §=1) and scattereds= —1) beams;
w, andk, are respectively the frequencies and wave NUMity perturbations.

bers, which are interrelated by the dispersion relatifo® Treatments of MBIS do not usually take account of self-
= wye(0,); £() is the linear dielectric constant of the me- focsing, and the term proportional & in system of equa-
dium, which is assumed to be isotropic. _ tions (4) is usually neglected. On the other hand, treatments
For simultaneous development of self-focusing andyf self-focusing neglect MBIS. This corresponds to discard-
MBIS two types of density perturbations develop. Large-ing the fourth term in Eq(4) for o=1 and taking account
scale variations in the density of the mediudim are respon- only of the term witho=1 on the right-hand side of E¢).

sible for self-focusing while small-scale sound waves are re- “£q; the numerical calculations. we represent Edjsand
sponsible for MBIS in the directions close to directly (5) in dimensionless form:

backward, where the density perturbations in these sound

wherel is the attenuation coefficient for the small-scale den-

waves can be represented in the form [ d — .
P [I(a—T-l-O'a—g +AL—A+IO'G|G_(,|2]G(,:O, (6)
1
Sps=={0ps(r,t)exd —iwgt+ikgz]+c.cl, 2 —
2 2
A L KAk S el @)
- - — e ,
where the frequencies of the sound wawgs w;— w_; and B?ar* B It - R Pl
their wave numberk,=Kk;+k_; are interrelated by the dis-
persion relationw,=k\V, (V.=\dp/dp is the speed of Where
sound, and pg is the amplitude of the sound wave. r=tc/2ka?, &E=z/2ka?,
If the mean free path of sound is small in comparison
with those scales on which the amplitude of the sound wave F=Fa/VS, e,=E,/E,
Spgo Varies, then the latter is expressed in terms of the am-
plitude E,, as follows 3 2: — 1a/( 9 /a
) L__% 7]% ' n= '
ikg de K
Spgo=——| p—|E,E*
Pso 16mysVs Pap) e ® B=2k Vs G kVs
= a—’ = —a’
where vy, is the decay decrement of the sound waves, which Vg ¥s
is assumed to be small in comparison withh; p is the 2 g2 5 5
density of the medium; and(de/dp) is the electrostriction a= 1 ao m (l)&_s) __[»a 5pﬁ_8
coefficient? 2\ ¢/ gmpVv2\ dp c ap

Substituting relationg1)—(3) in the Maxwell equations

and discarding small terms proportional to the second deriva,Em, IS the maximum amplitude . th? Eleciric field O_f .the
tive of the slowly varying amplitud&,., we obtain incident beam on the axig=0, anda is the characteristic
o

initial size of the focal spot at the boundagy 0.
w [ds In the solution of Eqs(6) and (7) we assume that the
+ W(%) P incident beam at the left-hand boundary of the lagerO
9 and the scattered “primer” beam at the right-hand boundary
w2 9e 2 &=¢0=1 have planar wavefronts and a Gaussian intensity
+i0'—(p%) |EU|2] E,=0, (4)  distribution in the radius:

327c?y Ve )
e(n,£€=0,r)=f(r)exp — n),
where, taking the inequalitys<wq,w_, into account, we (7 £=0n=H(nexp(= %)
assume thab,;~w_,=w and —k_,~k;=k; the group ve- e_1(& =&y =e,exp — 7°/b?). (8)
locity is equal to

1A
+ﬂl

(1a 4
i|o-—+o—
Vot 7oz

Here the functiorf(7) <1 describes the variation with time
Vy=c[d(wVe(w) )do]™?, of the amplitude of the incident beaimjs the dimensionless
width of the scattered “primer” beam. Fdor>1 the ampli-
tudee_, is essentially constant over the width of the incident
19/ o beam and it is possible to speak of spatially homogeneous
T aT(ra_r)' “priming.” The boundary conditions in the radial variable

corresponded to the symmetry of the fields and the density

In Egs. (4) self-focusing is taken into account by the perturbations relative to the=0 axis and to their falloff at

third term inside the braces. The equation for the correspondnfinity (in reality at somey,,,,>1). Initial density perturba-
ing perturbation of the medium density has the form tions 8p were assumed to be absent.

andA | is the transverse part of the Laplace operator
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i | FIG. 1. Variation of the MBIS reflection coefficient
R as a function of the dimensionless time
0.6 0.3- = 2kV2t/c for various widths of the focal spot: a —
G=15, |gy|?=10"7, B=1.5(1), B=0.5(2); b —
G=20, |e,|?=10"%, B=1.
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3. RESULTS OF NUMERICAL CALCULATIONS fraction length of the laser beak®a?/2 by a factor of four.

» ] Note that foré,=1 the scattering level does not depend on
.T.he critical power of self-focusing., c.orresponds toa ihe plasma length.
definite value of the parameter=a.,. This value can be Figure 1 plots the dependence on the dimensionless time
estimated if we neglect MBISe(.,=0), assuming that the o1y t)(v,/c) of the total (integrated over the radial vari-
beam is stationaryd/dr=0 in Egs.(6) and(7)] and homo- able MBIS backscattering coefficierR:
geneous in the longitudinal directid@/9é=0 in Eq. (6)].
Employing expressior{8), we find in the limit »—0 that 1 (= )
ag=4. A more consistent analysis, correctly taking into ac-  R= S fo d7 nle_1(£=0,7,7)|*, 9
count the radial dependence of the amplitwjeinside the
medium, gives the value.=7.54(Ref. 10. In the calcula- where the quantity
tions below we used the value of the parameder 8.4
>ag. - Sozj”dnne_znz
The quantityI’, characterizing the attenuation of the 0

large-scale perturbations of the medium density, w kentg .. o L .
arge-scale perturbations of the medium density, was take tgeflnes the total energy flux of the incident radiation. In Fig.

be equal to 0.25. Earlier it was shoffithat forl'<1 attenu- 1a we used the parameter valdes|2=10"7 and G=15

ation has a weak effect on the dynamics of self-focusing. \\hich corresponds ta/s/2kV,~0.25 and small initial scat-

In the results obtained below, growth of the amplitude Oftering Ro~2X1073. As can be seen from the figure, for a
the incident beam with time was assumed to be instantaneoySqer peam =1.5) the scattering coefficient pulsates in
[in formula (8) the functionf(7) is equal to zero for<0  {ime (the so-called spiking regime of MBJSnd the maxi-
and unity for7>0]. Calculations with a linearly increasing 51 values oR exceed unity. As the width of the focal spot
functionf(7) on the interval 8= 7<50 do not differ substan- ;g decreased4=0.5) the range of variation dR decreases
tially from results obtained for a step function, in line with 54 the spiking character of the scattering gives way to os-

the results obtained in Refs. 20 and 21. . cillations about a mean value. Here the amplitude of the
The system of equation§), (7) was solved for various  ,gijjations of the functiorR falls off with time.
values of the three parameters: the param@tewhich for a Similar properties of the MBIS coefficient were also ob-

fixed value ofe is determined by the dissipation of the short- ;5ined over a wide range of variation of the parame@esid
wavelength sound wavegs; the parametefe,| character- |g 12 '\yhereG varied from 10 to 20, ande,|? varied from
izing the “primer” level of the scattered radiation; and the 158 15 106 |n all of these cases the initial scattering level
parameter3 proportional to the width of the focal spot. In |45 |ess than or on the order of 0.1%.

the zabsence of self-focusinA0) the parameter& and A different picture arises when the MBIS level is suffi-
€| in the steady-state linear theory of MB[®hend/d  ;iently high even in the absence of self-focusing. Figure 1b
=0 andG=0 for ¢=1 in Eq. (6)] uniquely determine the g5 the variation oR with time for Ry=0.573 (8=1, G
level of the backscattered radiation for a given plasma length. 5 le|2=10"%). Clearly, the process has a relaxational

&0’ character and after a few oscillations the funct®melaxes
Ro=|eu|2ex (G/2)arctari4£y)], to a steady-state level. _

In order to understand the physical processes that deter-
where diffraction lowering of the pump field intensity has mine the properties of the reflection coefficiddtwe have
been taken into account. In the calculations we &get1l,  constructed isocontours of the amplitude of the radiation in
which corresponds to the plasma length exceeding the difthe incident and scattered beams in thg#4,&) plane for
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S~ 13

radiation, density of the mediumc) in the
) (2kV§t/c, z/2ka®) plane for =0 (beam axiy G
AL S L'Lﬁ =15, |e,|?=10"7 for a wide focal spo3=1.5.
3,
16 -
1.0,

0 02 040608 10 0 02 040608 10 0 02 04 06 08 10
2ka* J2ka® 2%’

2=
3 8*&@/ oy
ij ok =Y M, _% FIG. 2. L_ines of constant values of the modulus of
= o[ 2 L the amplitude of the inciderta) and scatteredb)
=0 i =%
3 4 N
Mnb

7n=0 (beam axiy and also for the large-scale density per- 7,="50, does not alter the character of the MBIS dynamics.
turbations associated with self-focusing. Figure 2 plots such
results for a relatively wide laser beang€1.5) for a low
initial level of MBIS. The parameter@ and|e,|? were taken 4 DISCUSSION
to be the same as in Fig. 1a. It can be seen that deep within
the medium a region is periodically created in which the  The results of numerical calculations can be understood
intensity of the incident radiation reaches a maximifiy. by comparing the times characterizing the development of
2a] and the density of the medium, a minimyiFig. 2¢]. The  various nonlinear processes. Striction self-focusing is associ-
location of this region varies slightly with time, and it is ated with a redistribution of the medium density in the radial
there mainly that growth of the intensity of the scattereddirection and develops during a characteristic timg
radiation takes placgrig. 2b. ~alV, (Refs. 20—22 The transit time of radiation through
For a narrower beam3d=0.5, Fig. 3 the process at first the interaction region equal in length to the diffusion length
resembles what happened for a wide be#&ig. 2) although  ka?/2 coincides in order of magnitude with the time of en-
it develops more slowly. Then, however, a state arises irrgy exchangety,, between the incident and scattered
which MBIS occurs mainly near the boundaffig. 3bl,  waves due to MBIS. According to Ref. 19, a more accurate
where the intensity of the incident radiation is the highestexpression for it has the form
[Fig. 3a. The dimensions of the region of amplification of 5
the scattered radiation pulsate with time, and this is reflected :47Tka (10)
in its intensity. "vep
Note that the time-averaged MBIS coefficient depends o . . .
only weakly on the parametes. It is equal to 0.277 foB wherep is the imaginary part of the complex solution of the
—1.5 and 0.226 foB=0.5. equation
Figure 4 plots the same functions as in Fig. 2, but for the  |e,|?expG—p(1—p+]|ey|2)exppG)=0. (11)

2 - .
paramgter@ and_|eb| _corrgspondlng_ to Fig. 1c, where the The steady-state setup time, according to Ref. 19, is equal to
scattering level is quite high even in the absence of self-

focusing. It can be seen that although at the outset of its 2ka?
development the scattering dynamics are similar to what tr:V Glpo— ,|, (12
took place for a low initial MBIS level, the scattering region g°IPo~P

then localizes near the boundary of the nonlinear mediunmwvherep, andp’ are the real root and real part of the com-
[Fig. 4b] and the variation of all the quantities in time be- plex root of Eq.(11). For the parametde,|? varying within
comes weaker and weaker and steady state is establisht interval from 10° to 10 8 and the parametd® varying
comparatively rapidly. within the interval from 10 to 20 the quantitigSp” and

As was already noted, switching on the incident beamG|p,—p’| vary respectively from 5.3 to 7.8 and from 2 to
gradually at the boundary, with characteristic time up t024.5.

1N

o0
T

i
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\

FIG. 3. The same as in Fig. 2, but for a narrow focal
spotB=0.5.
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M 7
10 a 7 b
o.t/
oy 8
>t
= 6 = FIG. 4. The same as in Fig. 2, but for a relative high
=0k initial MBIS level. Parameters the same as in Fig.
4 s
8 1(b).
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We may begin our discussion with a consideration of thefound to be in reasonable agreement with the nonlinear sta-
case in which the initial MBIS level is quite lowRy tionary theory?® according to whictR=0.18 for the param-
<10 %) and the steady-state setup tirfiE2) exceeds the eters corresponding to Fig. la.

timestg; andty . If tgs<<ty_ and correspondingly, according The effect of suppression of self-focusing by MBIS is
to relation(10), even more vividly manifested at larger gain coefficie@ter
. at a higher primer scattering levé,|2. Figure 4, which
2kaVg Gp . . .
=— >'8°1:ﬁ corresponds to Fig. 1b, depicts the dynamics of the process

9 for those parameters for which the initial MBIS level is sev-

(wide beam, then self-focusing develops faster than energyeral percent. It can be seen that self-focusing is suppressed
exchange takes place between the incident and scatterédig. 4c| and the functiorR has a relaxational character simi-
waves due to MBIS. This is the case to which Fig. 2 corredar to that considered in Ref. 19. However, also in this case
sponds. In the initial stage of the process, MBIS has almosin increase in the size of the focal spot to a value such that
no effect on the development of self-focusing, and by the8=7 leads to a spiking regime of MBIS.
time tg; a region is formed in which the density of the me- ~ Let us discuss the possibility of satisfying the condition
dium is lowered while the intensity of the incident radiation 2kaV, Gp"
. . _ . S
is increased®?*However, thanks to the exponential depen- 8=, or =—,
dence orle,|?, starting at some time in this region, there is Vg 2m
an abrupt growth in MB induced backscattering. The scatfor which the oscillatory regime gives way to the spiking
tered radiation, propagating toward the boundgn0 is am-  regime (see abovein the experiments. For liquids, solids,
plified and depletes the energy of the incident beam. MBISand gases the ratio of the velocity of light to the sound ve-
arises in the form of spikdsig. 14. During the time it takes locity is on the order of 10 For k=1.26x10°cm!; (the
a new portion of laser radiation to reach the self-focusingsecond harmonic of a neodymium-glass lasérfollows
region the perturbation of the medium density has time tdrom condition(14) that the diameter of the focal spot should
relax. The entire process begins practically anew. As a resulexceed one centimeter, and the diffraction length, one kilo-
MBIS has the form of almost periodic short spikes of dura-meter. Under these conditions our assumption that the thick-
tion tg¢. This regime was discussed in Ref. 17. ness of the layer of nonlinear medium exceeds the diffraction
Note that increasing the size of the focal spot leads, omength is difficult to fulfill under laboratory conditions. In a
the one hand, to an increase in the self-focusing tile ( hot, rarefied plasma the situation is different. Thus, at an
«@) and, on the other, to an increase in the length of theelectron temperatur@,=1 keV in a hydrogen plasma the
region and the characteristic time of the interaction betweematio V,/V¢~3X 10° and for the second harmonic of a
the incident and scattered waveg (><a?). Since the latter neodymium laser, conditiofl4) is fulfilled for the diameter
time increases more rapidly with growth affor sufficiently  of the focal spot on the order of 20m, for which the dif-
wide laser beams, the timg; is smaller thanty, and the fraction length is around 8 mm.
above-described region of pulsating MBIS should arise. Pulsations of the MBIS intensity have been experimen-
Let us turn now to the cagg;=ty, andB<pBy; (narrow tally observed more than once in a hot plasfsae, e.g.,
bean) depicted in Fig. 3. Self-focusing does not have time toRefs. 24—-28 However, the conditions in which these ex-
develop completely during the time it takes MBIS to amplify periments were performed did not always correspond to the
to a level sufficient to substantially lower the intensity of the formulation discussed in this work. In Refs. 24 and 25 the
incident beam in the focal region. It can be said that forplasma was inhomogeneous and the incident beam was par-
sufficiently narrow laser beams MBIS suspends and suptially reflected from the region with critical density. This
presses the development of self-focudifg. 3c|. Only near created additional possibilities for the MBIS pulsations,
the boundary of the mediufiFig. 3b] does a quasiperiodic which are discussed, for example, in Refs. 26 and 27. In
process of energy exchange between the incident and scatther experiments the plasma was transparent to radiation,
tered beams arise. The oscillations in the MBIS intensity inbut its dimensions were less than the diffraction length,
Fig. 1a for 3=0.5 is quite well described by theoty.In  which suppressed self-focusing and increased the role of
particular, the mean level of the MBIS reflecti®®0.226 is  MBIS over a wide range of anglé&1®we know of only one

(14)
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experimerf® in which the conditions corresponded to the *'E-mail: gorbun@lpi.ac.ru

formulation under discussion. The main characteristics of th&lf the layer thickness is much less than the diffraction length and is com-
; S 41 ; mensurate with the diameter of the focal spot, then it is necessary to allow

experiment W.erew~_2>< 101 s (CO, l_asebé rat|02 of the for MBIS over a wide interval of angles aspwas done in Refs. 14yand 16.

electron denS|ty1 to its critical Valuenc_ Mo*/4me equal 2For weakly attenuating sound waves the combined dynamics of MBIS and

to 0.16;a~10"%cm, | =2x 10" — 102 W/cn?, Te=100eV; self-focusing in a plasma were investigated in Ref. 15.

the length of the plasma was 1.2cm and exceeded the dif-

fraction length. In the experiment pulsations of MB induced

backscattering were observed at a level of 10-20% with

characteristic period on the order of 150 ps.

According to the definition given above, the quantity  N. BloembergenNonlinear Optics(Benjamin, New York, 1965p. 150.
can be written for a plasma in the foftn 2V. S. Starunov and |. L. FabelingkiUsp. Fiz. Naukog, 441 (1969 [Sov.
Phys. Usp12, 463(1970].
wpaVE 3Y. R. Shen;The Principles of Nonlinear Optidglohn Wiley & Sons, New

2V, | (15 vork, 1984 p. 190.
4B. Ya. Zel'dovich, N. F. Pilipetski V. V. Shkunov,Principles of Phase

where w, is the plasma frequency/; and Vg are respec- ~Conjugation(Springer-Verlag, New York, 1985
tively the thermal velocity of the electrons and the velocity °Wavefront Reversal in Nonlinear Medizdited by V. I. Bespalov
of their oscillations in the laser radiation fieldV GE}” IRgss'aﬁ (IPF AN SSSR, Gorki, 1982). . .

L . . |. Bespalov and G. A. Pasmanilonlinear Optics and Adaptive Laser
=ekE,/ m_w). Substituting th(.e. above values into fqrmula Systemsin Russiaf} (Nauka, Moscow, 1986
(15), we find that for the conditions of the experiment in Ref. 7K. Brakner and S. DzhornaControllable Laser Synthesfén Russiail
28 a~40> ay, for I=6x10"W/cn?. In addition, we find ~_(Atomizdat, Moskva, 1977p. 43.
that for the given experimerg~0.04 while the quantity8; 8G. A. Askar'yan, Zh. Kksp. Teor. Fiz42, 1567(1962 [Sov. Phys. JETP
is on the order of 2. Sincg is much less tharBq,, the or> 1088 (1962]. g . .

o 1 : . 4 V. |. Talanov, Pis’'ma Zh. Ksp. Teor. Fiz2, 222 (1969 [sic].

spiking regime of MBIS cannot be realized. An estimate ofioy N, Lugovor and A. M. Prokhorov, Usp. Fiz. Naukll, 203 (1973
the period of the oscillations according to form@ld®) gives [Sov. Phys. Uspl16, 658 (1973].
a value on the order of 50 ps f@p’=5. Thus, the results of C.J. Randall, Laser Program Annual Rep@r8 (1979.
the experiment in Ref. 28 correspond more closely to the '(\1'9755 Sodha, G. Umesh, and R. R. Sharma, J. Appl. Phgs.4678
MBIS regime considered in Ref. 19. 134, A. Rose, Phys. Plasmas 2216(1995.

Note that Ref. 30 investigated experimentally the dy-i4m. R. Amin, C. E. Capjack, P. Frycat al, Phys. Fluids B5, 3748(1993.
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This paper analyzes a four-level system interacting with four strong fields with frequencies
combining into a cycle. The conditions for coherent population trapping, when a nonabsorbing
superposition of states forms, are calculated. It is found that, in contrast to a three-level

system, the nonabsorbing state splits, i.e., is realized at two values of the detuning. Such splitting
manifests itself as narrow dips in the frequency dependence of the upper-level population.
Similar dips are found in the spectrum of the nonlinear susceptibility, which is responsible for the
conversion efficiency in the process of four-wave mixing. 1899 American Institute of
Physics[S1063-776099)00406-0

1. INTRODUCTION The physics of this effect amounts to interference of the
] ) ) quantum states mixed by a strong field. In a three-level
Nonlinear optics ha; three b"’,‘S'C ways to change the _fres'ystem, coherent population trapping manifests itself at equal
guency qf cohgrent rad|at|pn: stlmulateq Raman scgtterln%etunings of the fields in relation to the corresponding tran-
parametric mixing, and higher harmonics generation. TQjinng as a split-off state, a linear combination of the pair of
achieve highly efficient conversion of radiation in the CW |, er states not interacting with the field. If the detuning of
mode by any of these methods, the frequencies of the waves, . e|q s fixed, the curve representing the fluorescence

must be tuned in resonance with the atomic transitions so a}ﬁtensity as a function of the detuning of the second field

to increase the nonlinear susceptibility. The gain may be SUbéxhibits a narrow deep dip, which manifests itself as a

stantial in gases, since the spectra of gases usually have N3fark” resonance. Generalization of the theory of coherent

row lines. opulation trapping toN-levelsystems has also been dis-

. _The .r:;]oft promlsmgbtschi,-_mes ﬁrehthose .Of f?lur'\’v‘?(v‘fgussed(see Ref. 10 and the literature cited theyeidow-
mixing with frequency subtraction, which occasionatly ma eever, the role of coherent population trapping in resonant

I F.)O.SS'ble to compeqsate for Doppler broaderfirdy high four-wave mixing remained unclear. In their work devoted to
efficiency of conversion of the light frequency has beenamplification without inversion in a doublé scheme, Ko-

ach|eyed n puls_ed experiments involving Pb- vapor. charovskaya and Mandéltook the criterion for coherent
Quasi-cw generation has been demonstrated by Marangos

3 . . population trapping from the theory of three-level systems.
etal,” who used the rhomb|c.s.chem_e and atom.|c kryptonOn the other hand, in their studies of completely resonant
The cw mode of four-wave mixing with substantial upcon- g .\ e mixing in a strong field, Coppeta al** ignored
verS|cin in the optical _range.has bgen realized by ApOIOnSk¥he criterion for coherent populati(;n trapping entirely.
etal, \_/vho used sodium dlmgrs n the_ double scheme. In the present work we will calculate the nonlinear sus-
Both mixing schemes are depicted in Fig. 1. The cycle con-

ditions for the double\ scheme and the rhombic scheme arecGptlblllty in the smplest sch_emes qf four-wave mixing with
frequency subtraction. To this end, in Sec. 2 we will use the

(1) equations for the vector of the amplitudes without relaxation
to derive, by a simple algebraic method, the criterion for
wherew,, w,, o, andwy are the frequencies of the elec- coherent population trapping in the four-level system. We
tromagnetic fields, and differ in the sequence of sigither  will find that the nonabsorbing state splits, i.e., a split-off
F or ) in the third and fourth terms. Hence the schemesstate not interacting with the field is observed at two values
are sometimes called difference—sum and sum-differencef detuning. In Sec. 3 we will solve numerically the equa-
respectively. The conversion efficiency in the double tions for the density matrix in the doubl® scheme with
scheme proved to be higi25% in relation to the lowest allowance for relaxation. We will find that the abrupt dip in
intensity of the exciting field3. However, efficient conver- the curve representing the frequency dependence of the
sion is usually hindered by the resonant absorption of lightupper-level splits into two components. There we will also
by the medium. calculate the manifestation of coherent population trapping
To avoid absorption, Harrigt al® proposed using the in the spectral contours of nonlinear susceptibility. Section 4
effect of electromagnetically induced transparency, whichwill be devoted to a discussion of why splitting of a nonab-
emerges in the medium because of coherent population tragerbing state has not been observed in either measurements
ping (see also Refs. 2, 7 and.8oherent population trap- or computer simulations in four-wave mixing known from
ping in three-level system has been thoroughly stud@d. the literature. We will also establish the conditions for ex-

Wa— Wy~ W+t wg=0, w;—w,t+w.—wy=0,

1063-7761/99/88(6)/7/$15.00 1072 © 1999 American Institute of Physics
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14)

FIG. 1. DoubleA (a) and rhombidb) schemes of four-wave mix-
ing with frequency subtraction.

1 13
perimental verification of the effect. In Sec. 5we willsumup ~ z_ Ua V= uvut-iuuy. 6)
our findings.

Such a “stopping” transformation can be selected if we look

for its matrix in diagonal form:
2. CONDITIONS FOR EMERGENCE OF A NONABSORBING

We will examine a double\ system(Fig. 13 that reso- For the undetermined coefficient§ we have a degenerate
nantly interacts with four electromagnetic fields. The energysystem of homogeneous linear equations, which has a solu-
levels are labeled by the numbgrs 1, 2, 3, and 4, and the tion if
fields by the letters'=a, b, ¢, andd: Q. Qp— 0+ 0y=0. ®)

E(t)= E > E, exp{—iw,t}+c.c., (20  This condition is a corollary of the cycld) in the frequen-

2 y=ab,cd cies of the fields. One parameter can be specified arbitrarily,
whereE, and w, are the amplitudes and frequencies of theS&y A4=0, and the other parameters are uniquely defined:
fields. At first we ignore relaxation and write the Satirger ~ 21~ {Yc, A2={q, andA;={¢—{1,. Reasoning in a simi-
equation for the column vectar=(a,,a,,as,a,)T (T stands lar manner, we use the unitary transformation
for “transposed’) of the probability amplitude of the system U;=exp[—i®}, d=diag ¢q,ds,bs,da),

being in state$j) (j=1,...,4) in theinteraction picture: . ) ]
. to transform the Rabi frequenci€,, G,, G.;, andGy into
la=Va. () real positive parameters when the synchronism condition is
The interaction matrix elements are nonzero for allowedMet, Or a— @, — @c+ ¢4=0, with the ¢, the phases of the
transitions: fields. The synchronism condition is met if one of the field-

. . s,for example, is generated as a result of four-wave mixing.
Vig=Gaexp{—iQat},  Vig=Gpexp[—iQt}, But if there is no phase synchronism, only three amplitudes
Vos=Geexp{—iQct}, Vou=Ggexp{—iQgt}. (4)  can be made real. We write the resulting mawiexplicitly.

For conciseness we denote a Rabi frequency by its index
(i.e., we drop the letteB), or G,— v, with v=a, b, ¢, andd:

Q. O a c
0 Qq b d

a b Q.-Q, 0

andG,=—E,-d,/2% are the Rabi frequencies, i.e., the am- ¢ d 0 0
plitudes of the matrix elements of the interaction of the fields
E, with the dipole moments of the transitiord, . In a real four-level system there is relaxation. If the up-

Now we will proceed with the search for a nonabsorbingper level|4) decays much faster than the stdte)s |2), and
state. We transform the Scliager equation3) into a sys-  |3) (I'1,3<I'4), the problem of mixing these states by a
tem of equations with constant coefficients by transformingield into a coherent superposition can be studied without
the Hermitian matrixV=V" into a time-independent matrix allowing for relaxation whet’; , 3<<G,,. In particular, under
via a unitary transformatiokJ: a certain restriction imposed on the parameters such a super-

Here the() , are the detunings of the field with respect to the
corresponding transitions;;=(E;—E;)/%, i,j=1,... 4

Q== w3, Qp=wp—wy,

9

Q=0 w3, Qg=og— wgy, 5) V=
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position of long-lived states may split off and not interact Q

with the field. We call such a superposition a split-off state. 10 )
Below we derive a criterion for the emergence of such a

split-off state. Note that we began with the amplitude equa- 3 \ o

tions (3) without relaxation. If we account for spontaneous P i .

decay, the population is transferred to the split-off state /?' ——Q

through level|4). If this split-off state is long-lived, the st ]

fields cease to be absorbed. Such a nonabsorbing state of a e

four-level system manifests itself as a narrow dip in the fre- _10” . ,

quency dependence of the population of lgvel A similar -10 -5 0 5 o 10

narrow resonance appears in the frequency dependence of b

the fluorescence signal from Iev|(2_4|>. FIG. 2. Criterion for coherent population trapping in th@(,Q,) plane.

We begin with the thoroughly studied simple case of aTh4e) Stot:id;“r‘r’lesd correspond to thte Cmadt(?:ly EZIZ'_C;& a”dd_t
_ . . - =4); the dashed curves represent a resonant hyperbola in the opposite case

three-levelA scheme, which we will attempt to g.ene.rallze to, Zhd (a. b, andc are the same and—8).
a four-level scheme. la=b=0, the diagrams in Figs. 1a
and 1b reduce to the three-level diagram—|4)—|2). To
find the condition for emergence of a split-off state, we seek
the eigenvectord;,a,,a,) of the operator totes, Q,=Q, and Q,=—Qpac/bd. The first asymptote
corresponds to a criterion for coherent population trapping in

Q. 0 ¢ the three-levelA scheme, while the second emerges in the
Vo= 0 Q4 df, (100 four-level scheme. Ibc<ad, a vertical band)2<4b(ad
c d o —bc)/c, known as the forbidden band, appears in the

_ . (Q,,Q) plane, and inside this band there can be no coher-
in whicha,=0 anda,, a,7 0. For the nonzero cOMponents gnt population trapping, no matter what the value(f is.
we obtain an overdetermined system of linear equations: \yhenbec is exactly equal tad, the hyperbola degenerates
O.a;=\a;, Qga,=\a,, ca;+da,=0, (11)  into a pair of straight lines intersecting at the origin.

_ _ . The two branches of the hyperbola can be interpreted as
where) is the eigenvalue. The systefil) has a solution if 5 mapifestation of the splitting of a nonabsorbing state in a
A={¢=0Qyq, i.e., only for equal detunings. The normalized ¢, |evel system into two components. To find the corre-
eigenvector of the split-off state has the form sponding wave functions, we must solve the spectral prob-

lem (13). The eigenvalue can be found frofiv),

d c
|lay) =~ 1)+ |2). (12)
VeZ+d? Ve?+d? _ acQg+bdQ,
Such a state is known from the theory of coherent population ~ ac+bd

trapping in a three-level systeff\.
Now we will derive the conditions for split-off in a four- and the unnormalized eigenvector is
level system with field®,b+ 0. Bearing in mind the direc-
Qb+\/ﬂg+b bc—ad o)
2 * N7z felberad ),

tion of the spontaneous decay of leyé}, we must find the
|3). To do this, we must solve the eigenvalue problem (16)

T

split-off coherent superposition of the statds, |2), and axz( —bd, bc,c

In a special case we can also find the nonabsorbing state

and find an eigenvectoa, =(a;,a,,a3,0)" in which the in which only two states are mixedl) and|2) (as in a
fourth component is zero. For the first three nonzero compothree-level systejrrather than three. For such mixing to oc-
nentsay, a,, andas, we arrive at an overdetermined system cur, additional conditions linking the field amplitudes and the
of linear equations, a system that has a solution if there is getunings must be imposed. To obtain these conditions, we

common root\ for the two equations seek the eigenvector of the mathiin the subspace of states

b(ad—bc)+c(Q.—Q,—N)(Qg—\)=0, orthogonal to the vectoi8) and|4) (az=a,=0). The solv-
ability condition amounts t6).= Q4 (which also means that
bd(Q¢—N)+ac(Qy—N)=0. (14 0,=0,) and an equation that links the amplitudes:
If we combine this with(8), we arrive at the condition o
a
00 _ac+hbd Qb+\/9§ b bo_ ad ¢ 470 17)
T Tpg | T2 T Vg Terad ),

(15 In the given special case, the hyperbola degenerates into a
which links two detunings and four Rabi frequencies. pair of straight lines intersecting at the origin. Here, as Eq.
The curve representing the, vs. (), dependencéFig.  (16) implies, a5 vanishes, too. The normalized split-off state
2) is a hyperbola with its vertex at the origin and two asymp-a, is the same as in the three-level systdiq. (12)].
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We sought a linear transformation that would leave theallow for the decay of states. For an open four-level system
state|4) in place to account for the direction of relaxation there are fourteen such parameters: four population relax-
processes. Coherent population trapping in which s{dtgs  ation constants’; (j=1,2,3,4), four relaxation constants
|2), and|3) are mixed can occur if the relaxation constantsI’, (v=a,b,c,d) for the polarizations of the allowed transi-
of these levelsl'; , 3, are small compared 4. The special tions, two coherence decay constahits=I"c andI'3,=1I;
case(17) can be realized if the relaxation constants of levelsfor the forbidden transitions, and four Einstein coefficients
|1) and|2) are relatively small. A,.

In the symmetric casea=c, b=d, Q,=Q., and As in Sec. 2, the Hamiltonian in the dynamical equation
Qp,=9Qy4, the interaction operatg®) becomes invariant un- 5= —i[V, o] for the density matrixc can be made time-
der the permutatior)3)«<|4). Then a,=(0,0,1-1)" be-  independent via the unitary transformatic:
comes an eigenvector and the difference of amplitudes,
as(t) —a,(t), a constant of the motion. In the subspace or-  p=expliHt} oexp{—iHt},
thogonal to the vectos, the system reduces to a three-level V:exp{— iHt} Vexp{iHt} +H,
scheme. Aa=hb, c=d, Q,=Q, andQ .=y, the vector
(1,—1,0,0)" becomes an eigenvector and the system beand matrix(9) can also be obtained.
comes invariant under the permutatipl)<—>|2>_ The sym- When relaxation is included in the picture, we can write
metric linear combinatioki12) of these two states is the split- the kinetic equation as a system of equations
off state. . a

Reasoning along similar lines, we arrive at an interaction R=—ILR+Q, (19
matrix for the rhombic scheméig. 1. The matrix differs \\here Q is the column of incoherent excitation rates
from (9) by the signs of two detuning$2.— — Q. and Q4 (Qsj—4=T';N;, while the other components & are zerok
——{1y4. Using the synchronism condition, which differs N; are the steady-state values of the populations of the levels

from (8) in the signs of}; and (g, unperturbed by the fieldNy+N,+Ns+N,=1), R is the
Q,—0p+Q.—Qy=0, (18)  column of the elements of the density matrix ordered in
rows,

we arrive at the same criterigd5) for the detunings.

R=(p11:P12:P13:P14:P21:P22:P23:P24: P31,
3. DARK RESONANCE IN THE NONLINEAR SUSCEPTIBILITY T
. ) ) L ) X P32,033:P34:P41,P42:P43:P44) 5
In this section we will use the quantum kinetic equation

for the density matrix in the relaxation-constant model toandL, known as the superoperafdris the 16x 16 matrix

r, o a ¢ 0 O O 0 -a 0 -A, 0 -c 0 0 -A
o f, b d o o o0 0 O -a 0 O O -c 0 O
a b [, 0 0 0 0O O O O -a 0 0 0 -c 0
c d o, 0 O O O O O O -a 0 0 0 -c
0O 0 0 0 T, O a ¢ -b 0 O -d 0 0 O
0o 0 0 0 0 T, b d 0 -b -A 0 0 -d 0 -Ay
o o o O a b [, O 0O 0 -b 0 0 0 -d O
. o o o 0 ¢ d 0T, O O O -b 0O O 0 -d
““| a0 0 o b oo o f, 0 a ¢ 0 0 0 o0 | 20
0 -a 0 O -b 0 0 [, b d 0 0 0 0
0 0 -a 0 0 0 -b 0 a b Iy 0 0 0 0 O
0 -a 0 -b ¢ [, 0 0 0 O
-¢c 0 0 0 -d 0 0 0 O o, 0 a ¢
0O -¢c 0 0 0 -d 0 0 O o f, b d
0
0 0

©O O o o ©

c d 0 r,
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A i
0.01 - 0.01 -
TN AN . a c= r/’
c= 3,/ \\ 7 ] FIG. 3. Populatiorp,, as a function of the
,// \\ e ‘: :’ . detuning (), for different values ofc at b
- A ’ H =0 (a), b=2(b),a=1,d=4,T,=T,=T;
. . y 'f;' =0.01, andl',=1. The off-diagonal relax-
0.005 Lc =2 0.005 e =2 5:5 ?r:ieor:: g;)rr;ztants are equal to the half-sums cif
H ponding diagonal relaxation con
c=1 stants: I'jj=(I';+1})/2; N;=1, N,=N;
¥ =N4:0,Qb=Qd=0, andQC:Qa.

-20 -15 -10 -5 0 3 10 ISQ 20 -20 -15 -10 -5 0 5 10 15Q 20

c

with The absolute value of the nonlinear susceptibily
x|py4 at the frequencyw. was also calculated. In the sim-
plest model, which ignores the depletion of the pump fields
f21:ire+(Qd_Qc)a fzaZinJrQb, f24:ird+Qda a, b, and d, the propagation of fiel& is described by a
A A A truncated Maxwell equation with polarizatiopy, on the
IM'3=il;—Qy, T3=ily,—Qp, Tgp=ili+(Q:—Q,), right-hand side. Hence for an optically thin medium we have
. A . c?x|py42L?, wherelL is the range of the medium. The de-
Pa=iTe=Qc, Tap=ilg=Qg, Tag=ili=(Qc= Q). pendence of the conversion coefficight(in arbitrary unit3
The matrixL becomes symmetric only if there is no sponta-0n the detuning is depicted in Fig. 4a for three values of the
neous decay via the allowed transitiond,=0. When amplitudec=1,2,3. The parameters are chosen in such a
there is no relaxation,I';=I",=0, j=1,...,4 and way thatthe curve foc=1 corresponds tbc<ad and no
v=a,b,c,d,e,f, the matrix becomes traceless. coherent population trapping 8t,= 0 is present on it. Equa-
Below we give the steady-state solutions of E€E9)  tion (17) is valid on the curve foc=2, with the result that
obtained by numerically inverting the matii20) by Gauss's  coherent population trapping appears at the center of the line,
method. Figure 3 depicts the dependence of the population ?ﬁa:O. The opposite inequalitgc>ad holds for the curve

level |4) on .the frequency detunin@c={2, at 2q={y with ¢=3; hence according to Fig. 2 this curve reflects the
=0. To land in the range of parameters that ensures coherent . . . i

. . . presence of two resonances, in accordance with two signs in
population trapping, the relaxation constants of leyéls

|2), and |3) were chosen so as to be one hundred times(.ls)'_we see that the rgsonancg, split into two broad sym-
smaller than the relaxation constant|d§. Figure 3a depicts Metric humps, also acquires a wide central component, and a
the case wher®=0, with the result that the field cycle is Narrow dip grows with increasing fieldat the center of the
broken and the system reduces to a three-level scheme. TR@mponent. Then, as the field gets stronger, the dip splits
reader can clearly see a narrow dip near zero detufipg, into two components. The narrow dips in the curve ¢or
=0, corresponding to the condition for coherent population=3 are positioned at approximately the same frequencies as
trapping. As the amplitude of field increases, the dip be- the abrupt dips in the population of stag® in Fig. 3b. At
comes shallower due to the smoothing effect of saturationq) 0 the “dark” resonance shifts. An example of an asym-
Figure 3b corresponds to the case whiete0, with the re-  metric frequency dependence is illustrated by Fig. 4b. When
sult that a “dark” resonance appears @2, whenbc ) -0 the radicand if15) changes sign at a smaller value

=ad. Whenbc>ad (c=3), the dip in the population of the ¢ ence in Fig. 4b the splitting of the nonabsorbing state
upper level(and hence in the fluorescence sigrsglits into is clearly visible alreadv in the curve far=2
two narrow components. y y '

[ =iTe— (Qg—Qp), T[a=iT,+Q,, T=iT+Q,

FIG. 4. Nonlinear susceptibilitin arbitrary
unit9 as a function of the detuninf, at I';
=I,=I3=0.01, T'y,=1, I'j=(";+T))/2, A,
=0, a=1, b=2, d=4, ¢=1,2,3, Q4=0, Q.
=0,—Qp, N;=1, andN,=N3=N,=0; Q4
=0 (a) andQ,=0.5 (b).
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FIG. 5. Absolute value of polarization|p,, as
a function of the detunin€), and the fieldb: (a)
a=d=0.001, c=0, and I';=T,=I3=T,
=0.5; and (b) a=1, ¢c=3, d=4, I'1=I,
=0.01, I'3=0.5, andI',=3. EverywhereA,
=0,N;=1, andN,=N;=N,=0.

4. DISCUSSION In studying the linear regime of amplification of a
= 5 depi h . ¢ . fth bichromatic field without inversion in a doubl& scheme,
igure 5 depicts the quantity|p,4 as a function of the Kocharovskaya and Mandélexamined, for the sake of sim-

dtnerur:lr\llglcl)I ”\1/5 fielda a|n? tgelnRab' freque?s\? 'fk'r}:t'zlily plicity, a special symmetric case. In the notation adopted in
only level|1) was populated. € case ot weak lledis, 0 present paper this case can be writterf)las-0, a=b,

andd, Fig. 5a shows the splitting of the resonance into three _ . N )
peaks: one peak is not shifted, and the two peaks that araéndc d. The truncated Maxwell equations retain this prop

shifted in relation td),=0 represent the components of the erty even if Wi a”°.W for deplfatlon OT pumping in the me-
Autler—Townes doublet, as they do in Ref. 12. The pictured'um' Thenbd=ac, i.e., condition(17) is met and the same
' Co onabsorbing state as in the three-level systEm (12)] is

changes dramatically as the fields become strong. Figure %ta'ned
shows that when the field strength exceeds a certain criticd : th. . . ¢ Babiet al® fed the fieldsd d
value, the frequency dependence acquires a “dark” reso: n their expenment, babiet al.ted the TIeldsd, ¢, an

nance, which splits into two components. The distance be2 (*a=488NnMAc=599nm, and,=655nm) to an external

tween the dips grows as fiel becomes stronger. As in- cell from an argon and dimer Raman laser and a dye laser,
creases, the central componefwhich is split into two respectively. The fielda was generated in the process of

componentstransforms into a triplet and then into a quartet. resonant four-wave mixing, The fielésandc turned out_to
Without the side componentaot shown in the figune there be weak, and the detunings, and () could not be varied

are altogether six components in the nonlinear susceptibilitj’dependently, since they were rigidly coupled by the condi-
spectrum. tion for Raman generation. Hence no splitting of coherent

Lin et al!* studied the degenerate four-wave mixing of population trapping was observed in the experiment. Neither
the light of a titanium—sapphire laser at thg line of 8°Rb. ~ Was there any splitting in the theory of a doublescheme
The level configuration corresponded to a two-level systemWith two strong fields in the opposite transitioffawhile the
so that the spectrum of the probe field exhibited a doublet ofPPearance of two additional peaks in the nonlinear suscep-
triplet. In our setting a two-level system corresponds to thdibility spectrum(i.e., in addition to the four ordinary peaks
case of three wealor far from resonangefields, saya, ¢, Was a consequence of averaging over velocities.
and d and one strong fieldb (see Fig. 5h A two-level If we want to observe the effects of coherent population
system does not exhibit coherent population trapping—theréapping in four-wave mixing, we must make all four fields
is only the splitting of the resonance into three componentstrong, |G,|>|T",—iQ,|, and the three lower levels suffi-
corresponding to the transitions between the differengiently narrow compared to the upper level. The effect is
quasienergy levels. most appreciable aad=bc in exact resonancé), =),

To achieve frequency conversion in Pb vapor, Jain={.=Q4=0. In this case, according td7), there is no
et al? used the mixing of the second and third harmonics ofsplitting, with the result that the dip in the dependence of the
the light of a titanium—sapphire lasei{=406nm, Ay  nonlinear susceptibility on the amplitude of wawveemains
=283nm,\,=293nm, and\.=425nn). However, in the abrupt even if the relaxation constant of ley8) is large
doubleA scheme they selected for the intermediate g@ite  (Fig. 6).

(Fig. 19 a virtual level detuned by 1112 cm from |4). The highest intensity of the field generated in the process
Hence the system was three-level and no splitting of coheref continuous resonant four-wave mixing with upconversion
ent population trapping was observed either in the experiwas attained by Hinzet al'® In exciting molecular sodium
ment or in computer simulations. vapor by laser light of wavelengths\,=665nm,

In their numerical calculations, Petet al.’ studied the A,=756 nm, and\y=532nm and input powers of about
mixing process in the rhombic krypton scheme. For the statd00 mW, the output power of the generated light \at
|2) (Fig. 1b they took a virtual level lying betwegl3) and =480 nm was found to be about 0.1 mW, which is too low to
|4) and corresponding to the two-photon transititB)  observe the effect. However, the power of the generated
—|4). The system becomes three-level, the superoperator igave can be raised by stabilizing the frequency of the excit-
a 9x 9 matrix, and the nonabsorbing state does not split. Théng radiation. Much stronger fields can be generated in the
frequency dependence of the nonlinear susceptibility in Refoulsed mode. Recently, Dorman and Marafiguisserved a
7 consists of two components. five-fold pulsed increase in the efficiency of four-wave mix-
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This paper examines the resonant scattering of a light particle by a pair of identical particles in
the Efimov limit. An analytic expression for the resonance widths is derived. The results

of calculations are compared with the solution of Faddeev integral equations within a broad range
of masses of the light particle. It is shown that the widths of the subthreshold resonances in

the scattering amplitude obtained from the integral equations with Yamaguchi potentials are
accurately described by the analytic expression, which makes it possible to use this

expression in a range of masses inaccessible to numerical calculations. The conclusion is drawn
that the lifetime of highly excited negative molecular ions is infinite. 1€@99 American

Institute of Physicg.S1063-776199)00506-3

1. INTRODUCTION tems in which the pairwise scattering length is much greater

icatiorls® . . than the ranges of the pairwise forces, a condition corre-
Recent publications® examined exotic states of systems sponding to that for the Efimov effect:

consisting of neutral atoms and an electron. These states
have large dimension@ip to several tens of angstroyrend Kro<l1. 2

are a reflection of the effects of three-body dynamics at lowrhe pinding energy of the atom is assumed finite, while the
pairwise binding energies. For example, by directly analyzyinding energy in the electron—atom pairs is assumed to van-
ing the Faddeev equatichthe effective interaction potential ish, so as to simplify analytic calculations. Thus, the trans-
of two ne_utral atoms in the presence of an electron waggrmation threshold for the system coincides with the
found. This potential is local over the rarfye breakup threshold, and the three-particle spectftumen-
tioned earlier is a spectrum of subthreshold Efimov reso-
nances. Such resonancésut only below the excitation
(ro is the range of the pairwise forces, ardis the wave threshold were examined in Ref. 5 for a three-boson system.
number of the bound or virtual state of the paind contains There it was noted that both the positions of the resonances
not only long-range components of ’[ha'zltype (which is and their widths are equidistant on a logarithmic scale.
characteristic of the Efimov effégtbut also terms of the This paper examines the case in which the mass of one
quasi-Coulomb form(of the 1f type), which provide the of the particles is much less than the masses of the other two.
main contribution to the spectrum of negative diatomic mo-This means that we a dealing with almost classical motion of
lecular ions with a moderate binding energy of the electrorfhe heavy particle$,which technically makes an accurate
and atom(the binding may be real or virtualin particular, numerical solution of the Faddeev equations for the electron-
the experimental data on the scattering of an electron by E-atom mass ratio impossible. Hence, as in Ref. 1, in the
helium atom suggest that even in the absence of an atompresent work the numerical calculations were done for mass
atom interaction, a bound state of the,;Hgystem can exig. ratios not exceeding 1/100 in order to verify the validity of
Furthermore, a study of a system consisting of three neutrghe analytic relationship linking the widths and positions of
atoms of alkali metals and an electfdmas shown that the resonances, a relationship that can be derived for very nar-
effective interaction generated by the electron ensures th@w ranges of the pairwise forces. We show that the analytic
existence of more than 1000 bound states. It was assuméxpression provides a satisfactory description of the ex-
that such system can serve as a starting point for the formatemely complicated mass dependence of the resonance
tion of clusters in highly rarefied gases. However, the analywidths, which makes it possible to use this expression in
sis proved to be incomplete in the presence of an atom—atogstimating resonance widths for actual electron-to-atom mass
interaction with a binding energy higher than the bindingfatiOS-
energy of the three-particle system. In this case the system
can disintegrate into a molecu_le and a free electron, \_Nlth_ thg' INTEGRAL EQUATIONS
bound states of the three-particle complex transforming into
resonances with lifetimes determined by the resonance We examine a system consisting of three spinless par-
widths. ticles with massem; , where the subscript=1,2,3 numbers
The present work studies these widths within the scopé¢he patrticles, and pairwise potentials, where the subscript
of three-body scattering of a light particle by a bound pair ofindicates the particle absent from the pair system. We as-
heavy particles. Here, as in Refs. 1 and 2, we examine sysume that the identical particles 2 and 3 with masses

max(ro)<r<min(x 1) (1)

1063-7761/99/88(6)/8/$15.00 1079 © 1999 American Institute of Physics
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m,=mz=m interact via the potential, and form a bound cal sheetp;=—i(28;+ «;), is responsible for the range of
state with an energy ;= —K§/2m23, wherem; is the re-  the pairwise force. The zero-range limit is reached wigen
duced mass of particlesand j. Particle 1 with massn;  goes to infinity. Only one pole remains in this limit, and
interacts with particles 2 and 3 via the potentialsandv,,  hence it is unimportant which pairwise potential generated
respectively {,=v3=v), which generate pair staté®al or  the pole—local or nonlocal. We use a separable potential in
virtual) with very low binding energies ,=«k3=k—0). this paper solely because it simplifies the Faddeev integral
For the potential®; (between particles andk) we take the equations. Thé-matrices remain finite a8— oo.

separable Yamaguchi potential acting only in hevave: If we know the pairwiset-matrices, we can write the
) Faddeev equations for the scattering of particle 1 by the
vi(p,p’)=— 4_7" Bi(Bit ki) 3 bound pair of identical particles 2 and 3 in the form
I ’ , .
Mik (B +p?)(B7+p'?) Te=Vy1,0%(Z—£,)T',

The sign of the wave number determines whether the pair
forms a bound statex(>0) or a virtual state. The parameter
B; determines the ranges of the forces in paln particular, ~ where V;; =R ¢;|viGo(Z)v;j|¢;)R/*?, and the transition
when ;> k;, the expansion of the effective range in the pairmatricesT® and T" are linked to the physical elastic and
i in powers of the relative-motion momentum(pcots = «; inelastic scattering amplitudes through the relationships
+regp?/2+ - - -) yields r4=3/B;, which makes it possible

T' =2V + 2V gUZ— 1) T+ V,oi03(Z—£5)T",  (5)

to use condition(2) in the form x;<<B;. For brevity, we felz—MT9|(kg“t'kiln),

write the separable potential in the form of projection opera- 2

tors, v; = | vi)(vi. r NP T
We examine the scattering of particle 1 by the bound ff=—  om T'(kz k1),

pair of identical particles 2 and 3 (2,3) with an eneigy ) ) ] :
=Kk2/2m, ,3 of relative motion lower than the system’s trans- Where the incoming and outgoing momerka,and k" are
formation energy,—&,. Herem; j, is the reduced mass of located on the energy surfacgs. .

particlei and pair {,k). The momentunk; will always be The system of complex integral equatio(® can be
the momentum of relative motion of partidland pair §,k),  transformed into a system of redlelow the transformation
and the momentunp; will refer to motion within the pair ~threshold equations(see, e.g., Ref. )8 For example, a
(i,K). The subscripts will be dropped if this does not cause #imple substitution done after the partial expansions
mix-up of notation.

m
To write the system of Faddeev integral equati(sese, fel(k, ko) = — 217’723Ke'(k,k0)(1+ikofe'(ko,ko)),
e.g., Ref. & we need an expression for the product of the
pairwise t-matrix in the three-particle space and the free NGO _
Green’s function G%(Z)=(Z—hP—hg,)~*. The Hamil- fi(kiko) == —— ——K'(kko)(1+ ikof®(ko.Ko))
tonian of the free motion of three particles is represented by (6)

two terms: the Hamiltoniam of free motion of particle
and pair (,k) and the Hamiltoniarh‘()i) of relative motion
within the pair. The total energy of the three-particle syste
is Z=E,+¢&,+i0. For separable potentials this product can

i i 0(7)y= 07— Vo
be written in the form G (2)=vilengi(Z—e){eil.  ion for the total energyz=ReZ. In this notation the real
which incorporates the wave functida;) of the bound state integral equations fok® andK' coincide with Eqs(5) if T¢

of the pair and the functior@i(zﬂ defined in the three- g replaced byK®, T' by K', andZ by z, respectively:
particle space. Here and below we use expressions for the

have been performed yields a system of equations for the real
mfunctions K¢ and K". The new equations were solved nu-
merically. To distinguish between the real equations contain-
ing principal value integrals, we introduce additional nota-

pairwise Green’s functiong?(x) andg%)(x) corresponding K®=V105(z— £,)K",

to_ the pa_lrW|se Haml_ItOQlanhi~and h(i), respecnvel_y. In K'=2V,+ 2V21g‘1)(z—sl)Ke'+V23gg(z—83)K’. )

this notation, the projection ofg;| on (k;| has the simple ) )

form These equations foK® and K" were solved numerically.
_ Below we use Eqgs(7) to discuss a scheme for generating
(@il =Ri( i[viG%Z~ KkFI2m; j), subthreshold resonances.

) 2(q. )
1 (Bita) @i+« 3. SUBTHRESHOLD RESONANCES

T 2my (2Bi+ kit a)(e@ilvil @)’
i (21 wita){eiluilen To see how subthreshold resonances emerge, we trans-
a=—2m(Z— kZr2m; ) . (4)  form Egs.(7) to

Note that the pairwisematrix corresponding to a separable  K®=Vi,99(z—,)K',

potential of the Yamaguchi type has two poles. The near pole r 0 r

is at the point of the bound state of the paif=*ix; (on KI=2VartVey(z—ea)K, ®)
the physical sheet for a real bound state and on the unphysivhere the effective potential of the energy-clogerblastio
cal sheet for a virtual stateThe distant pole on the unphysi- channel has the form
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V=V,a+ 2\/2192(2_81)\/12. (9)  theSmatrix. However, by introducing the Breit—Wigner pa-
] ] ] ] rametrization, i.e., by separating out the resonance energy
The system of equatiori8) makes it possible to describe the gnq resonance width, we impose a constraint on the widths:

two-channel scattering of particle 1 by the pair (2,3) in termshey must be small so that we can identify a resonance. Here
of the single-channel interaction of particle(@ 3) and the . Y = .

. . ; the “true” resonance widtH" is determined not only by’
pair of particles 1 and 8or 2). To do this, we use the system . ~
of equations(8) and expresK® in terms of the Green’s but also by the background scattering phaSe:I COS'S; .

function of the closed(inelastio channel,g,(x)=(x—h3  This explains why the expression fbrcontains plane waves
—Vv)~ L rather that the wave functions of the scattering state in a

background potential. Below we use the expression for the

K=2V19,(2~82)Var, 10 width I, which is always greater than or equal fo The
whose spectrum determines the features of the elastic chanther features of representing tBematrix in the form(12)
nel. For example, resonances in elastic scattering correspormde fairly obvious, and their discussion lies outside the scope
to the points in the spectruil, of the Hamiltonianh,=h5  of the present paper.
+V for E;>¢,—¢e,. Notwithstanding the obvious nature of
this statement, we present a method for buildingStmeatrix
in the re;onant case becau§e of some speC|a_I features of reS0WAVE FUNCTION OF THE CLOSED CHANNEL
nances in the system considered here. To this end we exam-

ine the case in which the energyis close toe,+E; and Here we are interested in the series of resonances corre-
specify the singular part in the Green’s functign explic-  sponding to the Efimov effect, a situation where the condi-
itly: tion (2) is met and the spectrum of the Hamiltoniap be-
comes denser near zero. In this case the poteMias
W (Wl O :
0,(z—&;,)= +0R, simplifies substantially, and to study subthreshold resonances

we only need to consider th&wave part of the effective
wherew=z—e,—E;, ¥, is the wave function correspond- potential at low energies or, more precisely, in the range of
ing to the eigenvalu€&,, andgg is the regular residual term momentak>+—2m, ¥, where the energy dependence of
in the Green’s functiorithis term is usually droppedThen, the solutions of the Schdinger equation is weak. Under
using the expressiofil0) and the relationshig6) between such an additional condition3— asz—0) the terms in
the physical amplitude an{®, we arrive at an expression the effective potential9), which are the “exchange” poten-
for the Smatrix (S=1+ 2ikof®(ko,ko)): tial Vg, =Vy3 and two “triangular” (with internal integra-

tion) termsV,=V,9°%(z—£1)V,;, can be written
1 TB 1T o= V210;( 1)V

) w+§ Z_IE >
o= 1-iB 1+B 1+B Voxk k,) ar 1 I k2+k/2 +2)\1kk,
- 1 ! 1 = n ’
1+iB o1 1T e 2JkK Ny VMg, K2+k'2 — 20 KK/
21+B2 21+B2 (13

where the width

VO(k,k') M1z Pvr at L(t,k)L(t,k")
kom KK == ——""—"7 — — L 1K),
=201 ([ V) W) 2 ay VKK (26)2 mg; Jot—a
™ (14
generated by the singular part of the Green’s function varies
due to the presence of the regular part yt2+ K2+ 2\ okt my o3
Ltk =In———7——, a=x; ‘
_ komy 23 Yo+ Kk=— 2N okt M32

B - (kolV129rV21/ko)-

The size of the shift of the resonance frdipis also deter- - m;j My _ . [Mas
mined by this part. It is the value & that determines back- ™1~ m 7 Nmy
ground scattering far from resonance, whef=(1 '

—iB)/(1+iB). Introducing the background scattering phas
;= —arctarB, we arrive at an expression for timatrix:

®The upper index 0 in this notation indicates that the effective
interaction is taken at=0. The exchange potentia, cor-

r r ] responds to the scattering of particld@ 3) by the bound
w=i7 =7 (sin(26;)+icod25y)) pair of particles 1 and ®or 2) at zero binding energy in the
S=exp{2i 6;} . pair and is the *“classical’ potential generating Efimov
w+i i Z(sin(25f)—i cog26¢)) states. The solutions in the field of such a potential, studied

in Ref. 7 for a three-boson system, coincide with the solution
(12) in the field of a local potential of the type—(u?

Note that Eq.(12) was derived without using any approxi- +0.25)/2m2,1302 (p is the Jacobi potential of the relative

mation schemes and is simply a convenient way to expresmotion of the particle and the complewith the coupling
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TABLE I. Dependence oft;, w,, andu,s0on the masses.

m, /my 10 20 30 50 70 100

M1 1.379051 1.893909 2.284713 2.906 777 3.415 826 4.061110
Mo 1.468 174 1.919444 2.293 865 2.908 434 3.416 219 4.061172
Mas 1.430016 1.907 906 2.289978 2.908 096 3.416 437 4.061 489

Iy /Mgy 1.12x10°? 2.20<10°2 6.41x10°3 9.01x10°* 1.81x10°* 2.38x10°°

constantu satisfying a transcendental equation. Below weway that eithelx|=1 or |x|<1. This makes it possible to
derive such an equation for the total interaction potentialexpand the denominator of the integrand in a series either for
Note that the potentiaV®, behaves as f/and allows for a high momentak>ay) or for low momentak<ay). In the

i ian/0 i ; . . ~ .
solution in the formk®. The potentiaV,, is more complicated fijrst case we get the leading tedn=®, and in the second,

and allows for such solutions only in the momentum range&)mklkll Hence we can write the transcendental equations

yv?ere |td|s Fcﬁs'b_ll_e tol |g_nort?]_|n the dfnomlTatcl)(r fOf ttT]e for w in two asymptotic regions. Allowing for the fact that
integrand of(14). To clarify this aspect, we look for the M+ 201,=1, we obtain

solutions of the Schidinger equation with zero energy in the

form ¥,=k'#~52 We definell as my 53
Qy(n)=1, k< — K1, (19
(k)=——= f VO(k, byt ——
kw2 (2m)® 2 M o3
' B D (pn)+205(u)=1, k> K1- (16)
and attach a subscript that corresponds to the specific poten- M2

tial. The meaning ofl is simple: it is the ratio of the poten-  ginced is an even function of:, we conclude that the wave
tial energy to the kinetic energy in the Sctilger equation.  fynction ¥, can be represented by a linear combination of
Then the Schrdinger equation can be written in the form y=ix-52 \which coincides with the Fourier transform of the
[Tyt 2I1,=1. The contribution of the exchange potential \;3ve function in the field of the local potential

can be expressed in terms of an integral:

2
1+ Vei(p)=—-——

: 17)
Hex: gl I 1 2m2Y1302

) when |V|>|z|, with different coupling constants for small
1+2hx+X and largep. The solutions in the field of a type 4 potential

1— 2N X+ x? are well known. In particular, the energy levels obey the
relationE,_,/E,= n, wheren depends only o,

1 (=~ )
= u-1
I4 > Jo dxX*"*1In

(&i=~m;m/mM, and M is the total mass which exists
when—1<Imu<1 and can be evaluated by the method of  »=exp (27/u), (18

residues after being integrated by parts:
g g yp and either go to minus infinity, which corresponds to a fall to

| _sinh(p arctan(;) the center(noted by Thomasas long ago as 193%r be-
1 P ' come denser at zero, which amounts to the Efimov effét.
M COSh§ M our case the deep levels correspond to small distances and
) ) are determined by the values g} satisfying Eq.(16). On
Introducing the function the other hand, shallow levels with>¢, in the scattering
1+ £? sin w arctarnt;) channel generate resonances and are determined by the val-
Oi(u)= : ues of u, satisfying Eq.(15).
& w coshz w A simple analysis of Eqs(15) and (16) shows thatu,
2 tends tou, asm;/m,—0 with an exponential rate, ang,
we find thatlTg=®;(u). in this limit is described well by the expansion
After simple transformations, the functidh, (k) can be c 1
expressed in terms of the functish defined earlier and a o= Cl1+ Y, +O(—3 (19)
new function®: 1 &
Htr(k)=¢z(ﬂ)a>, ({1=+vmymz/m;M>1), coinciding with the limit found
earlier in Ref. 1. The constant=0.5671 - - used above sat-
1+ gg w  XETIRK 14 2N+ X2 isfies the equatiort=exp(—c). To avoid having to write
o= RPVL X = ay n 1— 20+ 2 involved formulas representing calculations of secondary im-

portance, we list values gf as a function of the ratio of the
Analyzing this integral, we note that it can easily be trans-masses of the light and heavy particles in Table I. The rapid
formed into a contour integral about two logarithmic cuts,convergence ofu, to w, indicates that the second term in
and the integration contours can always be chosen in suchEqg. (16) becomes negligibléhe difference in solutions is in
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the sixth decimal place ah,/m;=100), and this makes it The arbitrary constarit uniquely determines the wave num-

possible to discard the second term\inwvhenm, /m,<1.  ber«{" for a level with numben:

To demonstrate this smallness, in the last row of Table | we

list values of the ratio of the potential energids,(w,) and

Il (eq). A spectrum obtained in this way satisfies E48) and dem-
Thus, we can assume that for a very light particle 1 theonstrates both the effect of falling to the center for large

wave function¥, is represented by a linear combination of positive values ofi (noted in Ref. 11and the Efimov effect

the functionsk™'#~52 with u=u, in a broad range of mo- (logarithmic crowding of levels near=0) for large negative

menta k>y—2m,,#). Knowing this momentum values ofn (discovered later and by another method by

asymptotic behavior is sufficient for calculating the matrix Efimov?).

elements in the definition df, since the range of momenta Normalizing the wave functionV’;, over the entire mo-

~ k1 provides the main contribution to these integrals. Thementum space, we arrive at the final expression for the wave

difficulty of normalizing such a function can be overcome byfunction of the closed channel:

a simple trick. As noted earlier, our wave function corre-

sponds to motion in the effective potentidl7). The solu- W (k)= 2m 1

tions in the field of such a potential are well knowr; ! V(1= mulsinhmw) t(1+t2)%4

><(p)~Km/\/;, i.e., they can be expressed in terms of _

modified Bessel functions. We can normali¥g, obtain an Xsin(u In(t+1+t%)). (22)

expression for its Fourier transform, and find the coefficients

of the leading asymptotic termis"'#~52 This scheme is

s_or_newhat tedious but yields a reason_abl_e resul_t, which in thg_ WIDTHS OF SUBTHRESHOLD RESONANCES

limit of small masses of particle 1 coincides with the exact

result. On the other hand, the exact regfdt zero pairwise As noted earlier. the resonance wiﬁMepends on the
forceg can be obtained much faster. The thing is that we Carbackground scattering phase aldspecified by Eq(11),

find a solution of the integral equation with the potenWigk  \yhich is determined by the matrix elements of the potential
in the entire momentum range, i.e., without puttaig zero, v/, linking the open and closed elastic scattering channels.
by using the Mellin transform, as done by Dan_ﬂB\and The background phase depends on the details of the pairwise
Minlos and Faddeev in their studies of the properties of the forces at small distances and cannot be examined in the limit
Skornyakov—Ter-Martirosyan equatiéhFurthermore, Min- of zero-range forcessince it has no limjt The quantityl’,

los and FaddeéV found an approximate expression for the which is an upper bound on the resonance width, can be
wave function of a system of three bosons with zero pairwisg g culated in this limit(as B—). Note that the fact that
forces, an expression that becomes exact when the bindirl;gkngl:Er implies that for smal|E,| (i.e., small compared

energigs in the sub;ystems vanish. On_ other hand, after ing le4]) we can putky— 11 /My 23/ Mys. Moreover, because
troducing the dimensionless variablet=k/x; (ki of the simple relationshipg, =E,+T sin(25)/4 [see Eq.

=\—2my,7) into Zthe L|ppm2/nn—8(_:hwmger equation for (17)] and the small values of in the relations we now
the functiony=k(k®—2m, ;) **¥, with a potentialVe, in  giscuss, we can pl, =E,. Then, allowing for the definition

the entire momentum range, we see that the equation differs V1, and for the expressiofi1) for the width and perform-
from the Skornyakov—Ter-Martirosyan equation for threeing simple transformations, we arrive at

bosons only by a factor of 2 and by the values of the mass

kW =exp(mn/u + arctarib)/u).

_ . r m, 13\ 2
constantsk; and a=+my3/m, ;3: 30 2,13) 192, 22)
- , 1= Ma3
_ 1 © AU 201+ o” dE () whereJ can be defined in terms of an integral over the entire
W(t) In .
2mhia Joo {24472 —2ngtt’ +a? /241 momentum space:
(20) - K1 f dSk (k2+kt2)l/4 Tk
Hence EQq.(20) also has an analytic solution, which can be T ke (27)° K2+ k2—ko-k+k3/4 (k).
obtained by using the Mellin transform. Here we simply o )
write the final result: Using the explicit form of the wave function of the closed
channelEqg. (21)], we can evaluate this integral analytically.
() =Asin(u In(t+V1+t2)), Since this is a moderately involved procedure, we only dis-
cuss the problem schematically. We perform trivial angular
whose validity can be checked by pluggigiginto Eq.(20).  integration, reduce the result to dimensional form by intro-

As before, the constant satisfies Eq(15), and the constant ducingt=k/«,, and change variables=(x*—1)/2x. The

Ais determined by normalization. The integral equaii®®  last step gets rid of radicals and changes the interval of inte-

has a solution at all energies, but the spectrum can be fixegration from (0z) to (1°). The integrand is invariant under

by imposing a constraint on the coefficients of gifri{k) and  the transformationx— 1/x, which allows us to return to the

cosuInk) for large values ok (see Refs. 10 and 11 integration interval (G¢). After integrating by parts we get
rid of the logarithmic function. The resulting integrhlof

sin(wIn k) =bcoguink;). type



1084 JETP 88 (6), June 1999 F. M. Pen’kov

_ @ i Ql(x)
I_Jo X" 9,00 %

where Q; and Q, are polynomials that guarantee conver-
gence at zero and infinity, can be evaluated by a standard
trick: the integral along the upper side of the power-law cut
is expressed in terms of an integral along a contour surround-
ing the cut. The contour can be closed at infinity and the , , ‘
integral can be expressed in terms of the residues at the ze- 0 —log((z - &)/ 5
roes of the polynomia@,. I

The entire procedure of integration leads to an EXPresE|G. 1. Scattering cross sectionrap /m; =65.
sion for J:

=)
T

Scattering cross section
<
wn
T

3o 1 sinh(u arctans,)
2V1—mqpulsinhmu e o ] ]
To demonstrate the validity of the analytic calculations,

sin(uIn2ye,/E;) the Faddeev integral equatiofid) describing the scattering
cosh 7 ul2) (23 of particle 1 by a pair of identical particles (2,3) were solved
numerically. The calculation procedure was the one de-
Equations(22) and (23) have remarkable properties. First, scribed in Ref. 5. This made it possible to examine scattering
the relative widthl'/|E;| is independent of the number of the as close to the reaction threshold as possible. Actually, these
resonance, since the positions of the resonances are detggiculations do not require that we come very close to the
mined by(18), which leads to a situation in which the values threshold, since the coupling constaatis large. This re-
of J for resonances with numbens andn; ;. differ only by sulted in an interval ranging from zero kinetic energy (
the factor (- 1)X. Hence on the logarithmic scale not only =¢,) to an energy that was I8 MeV distant from the
the positions of resonances are equidistant but so are thgansformation thresholdz(-e,=—10 8 MeV). Here the
resonance widths. Second, the relative resonance width dgansformation threshold differed from the three-particle
creases exponentially with the mass of particle 1. To verifthreshold by 10°MeV (e,=—10"°MeV) and the bind-
this we write the limiting expressionnf;/m,<1) for the  jng energy of the pair (2,3) was,;=—103MeV. The
relative width. With allowance fo(19) and the fact that masses of particles 2 and 3 equaled the nucleon mass, and
sinh( w arctang,) | 2 the constaniB determined by the ranges of the forces was
(—2 ~1.0%..., chosen equal to 0.72fnt for all pairwise potentials. The
28 units of energy(MeV) and length(fm) reflect the use of
Yamaguchi potentials with parameters of a nuclear problem
(masses and rangeand a characteristic potential energy of
T \/m\2 L 1 several tens of MeV. Thus, small but finite values of the
H”—“32771-024 exp{—wc 2_ml]3m2(§|n 4E) ranges of the pairwise forces and binding energies in the
(24) pairs were selected for the calculations. Since the problem is
determined entirely by the ratio of dimensional quantities,
Since the observed Widtﬁ is always less thail', we the results are also valid in atomic units. For example, with

can place an upper bound on the width of any subthresholthe atomic scale of the radius of forces amounting to 1 A
resonance: (ro=3/B), the condition(2) for pairs,

- m2 K1/B126.7X 1073, Kzlﬁzzlois\ ml/m2 K1/B17
F<103.QE,|exp( —1.260\/;
1

corresponds to an atom-—atom scattering lengthc(1/of
about 50 A.
Where we haVe returned to the nOtatEn, Since the differ' Figure 1 depicts the Cross Sections norma”zed to the
ence betweek, andE, is exponentially small. Formul&S)  ynjtary limit in the Swave: o ,=47/k3 for a mass ratio
a]lows us to mqke an estimate on the lifetime of highly ex-m, /m, = 65. Since the resonances crowd in towarg0, the
cited negative ions of diatomic molecules. Already for aenergy is presented on a logarithmic scale. The fact that reso-
proton-to-electron mass ratio and a clearly overvalued scalgances are positioned equidistantly is clearly visible. Unfor-
of 1eV for the binding energy of the complex&|), the  tunately, even the maximum width in the range of masses of
resonance lifetime I/ is longer than 10s and exceeds all particle 1(see Fig. 2 remains very small, and the resonances
possible relaxation times for gases. What is of interest, howlook essentially like straight lines. Table Il lists the positions
ever, is systems with a low energy of electron—atom affinity.of the first six resonances, the ratios of the energy of the
As noted in the Introduction, negative ions of molecules ofprevious resonance to the energy of the given resonance, i.e.,
alkali metals are such systems. Plugging in the mass ratio fdhe values ofz.,., and the relative resonance widths. For
lithium, we arrive at a lifetime of 1's, which is longer than comparison, here are the valuesof and u, that are solu-
the lifetime of the universe. tions of Egs.(15) and (16), respectively:

6. NUMERICAL SOLUTIONS

we can write this limiting expression as

: (29
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r particle 1, correctly reflecting the estima®). For example,
£l in the range of mass variationsng/m,) depicted in the
107! picture, i.e., from 15 to 100, the resonance widths decrease
102 by a factor of 1000. The marked nonmonotonic behavior of
the relative widths suggests that there is a difference between
107 analytic estimates and the results of nhumerical calculations.
10~ If the estimates rely on the sharp local minima, the “ob-
served” phase shift amounts to 2 mass units for the first
107 minimum and monotonically decreases to 1.25 mass unit
106 near the last local minimunng,/m;~95). Thus, the differ-
ence between analytic and numerical estimates decreases
10~ with the massn;.
107 . . . :
15 35 55 75 95
mylm, 7. CONCLUSION
FIG. 2. Relative resonance widths. Curleepresents the numerical solu- In studying the problem of estimating the lifetimes of the

tion of the Faddeev equation, and cur2aepresents the analytic depen-

dence Efimov states of negative ions of diatomic molecules, we

were able to reduce it to the problem of the scattering of a

light particle (an electron by a bound pair of two heavy
n1=3.2958 ..., u,=3.296%... . particles (a moleculg, provided that condition2) is met.
Such a three-body statement of the problem makes it pos-
sible, on the one hand, to derive analytic relationships link-
() =6.728B ..., 7(uy)=6.726@... . ing the widths and positions of resonances and, on the other,

Table Il shows that already the second-to-third resonanc;tao verify these relationships directly by a numerical solution

- . . . of the Faddeev equations. Here for the first time we calcu-

energy ratio lies within the range of analytic valuesyofvith : ;
. . lated the Efimov resonances below the transformation thresh-
an accuracy to four decimal places. Note that the first resoc-)Id of a three-particle svstem
nance is far from the threshold. The last column in Table Il P y ’

shows that the relative widths are almost independent of the The conclusion that can be drawn from the present study

! : . IS that the lifetimes of the novel molecular states discussed in
number of the resonance. For example, starting with the thir
e . . efs. 1-3 suggest that these are bounds states for all types of
resonance, variations occur only in the fourth decimal place,

: . . “physical processes.
Thus, Fig. 1. gnd Table 1l support fairly we'II th? conclus,l_on Note that the assumption that there are real systems
that the positions of resonances are logarithmically equidis-

. . . —pbeying condition(2) rests on the known values of the
tant, and so are the resonance widths, which translates in . :
. : electron—atom and atom-—atom scattering lengths, which
constant relative resonance widths.

To demonstrate to what extent the expressi@ and may be as large as tens and even hundreds of angstroms.

(23) describe the analytic relationship between resonancgere the experimental values of the effective interaction

widths and positions of resonances for small mass ratiog 19€S are unknown, and only dimensional consideratipns
. : . . . fatomm sizesand the successful use of zero-range potentials

m, /m,, Fig. 2 depicts the relative widths obtained by solv-in atomic physics(see, e.g., Demkov and Ostroveki

ing the integral equations numericallyurvel) and by using monograpl) support thé h ' ('),thesis that conditié®) oper-

the expressiofi22) with values of the energies of resonancesates iﬁ repal molggular s st)gr)ns P

found numerically(curve 2). Clearly, the curve representing This research was zarrie q -out within the framework of

the analytic dependence of the resonance widths on mass. 10 ISTC Project

ratio follows fairly closely the curve representing the results ’

of numerical calculations, although there exists a small phase

shift. Note some features of the dependence of the widths 0ng_maii: penkov@thsun jinr.dubna.su

the mass of the light particle 1. First, the resonance width i$n this paper the Planck constalt=1.

not a monotonic function of mass. Second, the peaks in the

resonance widths exponentially decrease with the mass of

The corresponding values af are[see Eq.(18)]

1E, M. Penkov, Zh. ksp. Teor. Fiz.106 1046 (1994 [JETP 79, 568
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SE. M. Pen’kov, Zh. ksp. Teor. Fiz.111, 1229 (1997 [JETP 84, 678
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Multiphonon ionization of the Klmolecule under the action of a wegbrobe field, which
provides the initial population of the low-lyingworking) level, and intense monochromatic
linearly polarized radiation is studied. The multiphoton ionization process occurs under the
conditions of strong field perturbation of two intermediate Rydberg serig§,('2 ) and
np2(}1,), of the opticalR(0)branch which have different ionization potentials. The

series are occupied simultaneously as a result of single-photon absorption by an efcited H
molecule in the working state s&H'’ 125 (v=0). As a result of the irregularity in the
arrangement of the intermediate levels from a large group of states that are combined in

the multiphoton ionization process a sharp and irregular change occurs in the dependence of the
shifts and widthd", of the levels on the intensitlof the strong field in a transition from

one level to another. It is shown that for field intensitiexich that the level widths remain much
less than the splitting between the levely, € 1/n®) the stabilizing effecti.e., the field-

induced narrowing of the levels ds—%) in the formI",1/f? (as happens in atoms with a
structureless cojas not observed in molecular systems. 1®99 American Institute of
Physics[S1063-776199)00606-X

1. INTRODUCTION wheref, is the intensity of the field of a hydrogen atom in
the ground stafe stabilization occurs when the widths, of
The development of a theory of multiphoton ionization the Rydberg states mixed as a resulf\ofransitions become
of atoms and molecules taking account of strong fieldequal to the splitting between neighboring levels, il&,,
induced perturbations of the system under study is a key-1/n3 (Ref. 7).
problem of modern laser chemistry. Although the need to  The second mechanism producing the stabilization of the
introduce field-dressed states arose at the beginning of th@nctionI",(f) is due toV transitions from a low-lying reso-
1970s}? specific theoretical eleborations for doing so arenant level at lower field intensitigfs so that the shifts of the
still very limited. This applies completely to Rydberg mol- perturbed levels become comparable tw°1the widthsT,
ecules, where the effects of strong nonadiabatic coupling ofhemselves remain small compared to the splitting between
the electronic and nuclear motions are pronounced. Thesge levels, i.e.I';<1/n%).2% In addition, for a monochro-
effects are manifested in the fact that each molecular Rydmatic field with frequencyw; it can be assumed tHat
berg state is a superpositional-type state, whose individual
components correspond to different levels of the rotatidhal n="fw; P<1. (1)
and vibrationab excitations of the ion. The quantum defects
w of the Rydberg levelsand the coefficients in the expansion The present paper is devoted to a study of the character-
of the wave functions acquire a strong dependence on thistic features of multiphoton ionization spectra that are due to
principal quantum numben (Ref. 3.The regularity of the strong nonadiabatic coupling with rotation. Light molecules
arrangement of the levels, which greatly simplifies the analywith a small moment of inertia are of the main interest from
sis of processes in which highly excited atoms participate, ishis standpoint. The most inviting such molecule is the hy-
thereby destroyed. The specific properties of Rydberg moldrogen molecule, whose optical properties are well known.
ecules have a direct effect on the processes in which intef=or this reason, it is worthwhile to investigate the following
ference of the contributions of large groups of Rydberg statephotoionization scheme. For th@lzg ground state of para-
which are drawn into a strong interaction with an externalH, the population of the working level “0” should be stud-
electromagnetic field plays an important role. Specifically,ied in the two-photon () absorption regime with excita-
here the interference suppression of the decay of Rydberipn of the singletso state. In what follows, the state
stategthe stabilization effegt the study of which up to now 4soH’ 12; (»=0) is chosen as the working state. Then, in
has been limited to atomic systefhs,should be impeded.  an intense monochromatic laser fiéldth frequencywy) the
Stabilization consists in a decrease of the level widiths  classicalnp0(*S,) and np2(*I1,) two-channel Fano sys-
with increasing external field intensify(after a certain criti- tem of the optical brancR(0) will be populated at the in-
cal value has been reachezhd is manifested in two funda- termediate stagé.This makes it possible to analyze quite
mentally different forms. For superstrong fields-f,, simply and clearly the role of nonadiabatic coupling with

1063-7761/99/88(6)/8/$15.00 1087 © 1999 American Institute of Physics
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p 2. GENERAL FORMULATION OF THE PROBLEM
Since for the scheme considered here the wgakbe
field can be taken into account in perturbation theory, the
N=2 basic problem reduces to determining the continuum wave
N=0 functions¥, of the systene™ + XY * taking account of the

“
strong electromagnetic field, where perturbation theory is in-
] applicable in principle. The idea of the method proposed in
Ref. 8 consists in the fact that under the conditidh an
electron strongly interacts with the radiation field only at
small distances from the ion core. For this reason, the formal
%

N

apparatus of multichannel scattering theory can be used to
construct the wave function¥ , .
Energy transfer in the systemi +XY* is determined
0 by p-vibronic transitions in the ion core XY and, taking
account of the effect of the field, also by the possibility of
2Q induced absorptionk<0) or emission kK>0) of external-
field photons, for which the energy of the system changes by
i the amounkw; . The indexk characterizes the change in the
FIG. 1. Scheme of multiphoton ionization of a molecule with excitatian number of photons In an eXtema_l electr_omagnetlc ﬂel_d’ as-
an intermediate stepf a two-componenR(0) branch of thenpo(*s;) ~ sumed below to be linearly polarized, with the vectaori-
and np2(*1,) Rydberg series, converging to the ionization threshdlds ented along the axis in the laboratory coordinate system.
=0 andN=2 and labeled b)_/‘the indices 1 ?rllgg, res%ectivbll(y% inlitiall The problem can be solved as follows. Basis channel
T e o e s o ok o s Wave functions|a,) =RINK) of the zeroth-order Hamit
tonian, which correspond to different valuesloaind fixed
vibrational v and rotationalN states of the ion, are intro-
L N ) duced into the theory to describe the intermediate Rydberg
rotation in field-induced stabilization, since all strucyural fea'_states. These functions take account of only the Coulomb
tures of the spectrum can be represented here in analytiGieraction of the particles™ and XY*. We recall that for

form. Figure 1 shows the scheme of the process of interes%ymmetric Rydberg moleculesiX the electron orbital an-

20 o gular momentun is a good quantum number. In what fol-
H,(J;=N;=0)—H3 (J"=1"=N"=0)—H3* lows, the perturbation of the Coulomb stateg), which is
N due to both the interaction of an electron with the ion core
xla=L=1 e +H;. @) _(Whlch (_Jllstofrts the Coglomb fleI(_Jl gt sh_ort d|s_tar‘)caB(_JI the
N'=2 interactionV'=f.D/2 with the radiation field D is the dipole

moment operatgy is investigated in the formalism of modi-
fied Lippmann—Schwinger equations.

The ionization of the H molecule according to the
scheme shown in Fig. 1 can be described by the following
expression for the transition amplitude into the final con-
tinuum statgp) of the systeme™ + H; :

Here J;, J”, andJ’ are the total angular momenta of the
initial and intermediate states, respectivdlyis the orbital
angular momentum of the optical electron, axds the ro-
tational quantum number.

Transitions through the Rydberg serigg0 andnp2 are
studied in the continuous excitation regime from a lower-
lying “0” level, which is populated in advance by a weak 1
(probe field with frequency(). Under these conditions it is Mip:AiOE_—EOTOpv ©)
possible to implement a quite simple and rigorously vali- . o
dated computational procedure based on a stationary variath€reE=E;+2(, E; is the energy of the initial state mea-
of the theory of Refs. 8 and 9 where the wave functions offured from the spectrum limit, ar, is the position of the
the continuous spectrum of the system+ XY *, which are working “0” level. The quantityA;q is the transmon ampli-
found by taking account of the strong field-induced mixingt_Ude to the zero level as a result of absorption of two weak-
of large groups of states, are expressed in terms of the el@€ld photons(). o
ments of theT matrix for radiative collisions of the particles The structural features of the procégsare contained in
e~ and XY in a strong radiation field with frequenay; . the T matrix for _radlatlve collisions, which satisfies the fun-
The expressions obtained make it possible to find not onlflamental equatich
the photoelectron spectra but also the energy eigenvalues of
highly excited molecules in a strong electromagnetic field.  T=t+t>, |qi){dy|cotvy,T. (4)
We note that the question of the behavior of highly excited %
molecules in a laser radiation field in the presence of strongiere v, =[2(Eq+kw;— E)] Y2 is the effective principal
nonadiabatic coupling with rotation has not been previouslyquantum number in the channel k<0) andE, is the
discussed in the literature and is studied here for the firséxcitation energy of the ion. The summation indices in Eq.
time. (4) include the openp and closedc channels, i.e., gy
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={c.,p- The statesq,) are normalized to a delta function
of the energy(q.(e)|aw(e’))=m8(e —¢"). For a finite num-
ber of strongly coupled states the operator equatibrre-

duces to a system of algebraic equations. The matrix ele-
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8Nk:BN(N+1)+kwf_E

whereB is the corresponding rotational constant.
The complete angular wave function of the system has

ments appearing in it have a transparent physical meanin(l]he form

For example, the diagonal eIemen(thk can be expressed in
terms of the characteristic quantum defe@tsluding cor-
rections responsible for the Stark shifts of the leyethe
quantitiestckpk, are related to the definition of the amplitudes
of natural(for k=k") and field-inducedfor k#k’') decays;
and the elementsckck, (k"=k=1) are responsible for the
field-induced interaction of the discrete states.

The weakly energy-dependentoperator includes the
electrostatic interactioN®, responsible for the nonCoulomb
part of the potential, and the interactidf, which under the

@ﬂ&”(ﬂﬁe):% Yim(H)Ynm-m(R(INMM—m|IM),
9

whereY,(x) are spherical harmonicsNmM—m|JM) are

vector coupling coefficients; and R are angular variables
giving the directions along the radius vector of the electron
and along the molecular axR in the laboratory coordinate
system, andMis the projection of the total angular momen-
tum J of the system. The®-operator elements appearing in
Eq. (4) are defined in the Coulomb basig) and are related

condition(1) must be treated as weak. Taking account of theOy a unitary transformation

terms which are linear and quadratic in the interacnit
has the form

t'=0%V'+VviGv"H e, (5)

where the operator describing the interaction of the electro
with the ion core

5= VE+VEGVe=Ve0e= Q°Ve

is expressed in terms of the part of the Green’s funcGaof

t=te+tf,

the Rydberg molecule that is a smooth function of energy

and is found by taking account ®®. In addition, the opera-
tor Q°, which describes the distortion due to interaction of

an electron with the ion core, appears in the expression for

the field-interaction matrix'.

3. MATRIX ELEMENTS OF THE OPERATORS t € AND t/

We shall now determine the explicit form of the electro-
statict® and fieldt" interaction operators. Since the Irhol-
ecule in the initial"Y § state and the low-lying gorH’ '3 §
states is not vibrationally and rotationally excited, the vi-
bronic coupling in the
npo(*2 ) andnp2(*1,) is weak and can be neglected to a

first approximation. This makes it possible to neglect vibra-

tional transitions.

Then in the total angular momenturd)(representation,
where J is the total angular momentum of the system
+H, , the basis wave functions of the zeroth-order Hamil-
tonian are given by

a0 = @i =gik(NPR'(F.R). (6)
For short distances between the electron and the ion core

(I1+1/2)2<r<|ep !

(which make the main contribution to the transition dipole
matrix elementsthe radial part of the Coulomb wave func-
tion g{\l‘((r), which is regular at the origin, is

2 1/4
9|’\|‘<(f)=<r—3>

sinafy(r).
The corresponding semiclassical phaselfetey,/ 3 is

all(r)=8r +(en3)2r3 — 7l — /4, )

(@)

intermediate Rydberg states

=~ [Utan(mm) U o

with a diagonal matrix of characteristic phases tapf,
those values tan(,u,(j{)) are taken at the equilibrium posi-
tion R, of the nuclei and correspong@or fixed J) to all
possible projections\ of the angular momenturh of the
electron on the axis of the molecule. For homo-atomic mol-

ecules this relation is given by the expressfon

t

eld) _ _

NN = AZJ_ (—1)"A[(2)+1)(2N+1)]*2

X (I1",A—A|j0)(jN,00N’0)W(Il'NN’;jJ)

X tan(wul), (10

whereW(I1'NN’;jJ) are Racah coefficients.

The rotation matriXJ gives rise to a transition from the
adiabatic representatidrh to the nonadiabatitN represen-
tation. For example, for the two-channel Fano system its
elements are

URA=(IN[IAY=(—1)"*2(2= 6,0)Y4(1JA— A[NO).
(11)

The elements of the reaction matrices are then given by the
expressions

1

todo= — g (tan(mug)) + 2 tan(wug),
2

ti61= — 5 (tan(muf) —tan(wul)), (12
1

ti61=— 3 (2 tan(mul) Han(wuf).

The field matrix elements, according to E§), must be
calculated using the modified functions

e(Jd) ~JIN’

IN_
- IN,IN’ Plk

\Plk

Q=g = 2 t : (13

N!
which contain, in addition to the regular Coulomb functions,
the irregular Coulomb functions

o=gh(n®W(rR), (14)
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where 0s0

P 252 -

e

” ~.
- ey
"y 02 el

14
y 2 N
9|k(f):(r_3> cosay(r).

1p0 1p2

The elements of the matri¥ must be found using the con-
dition (1) and the linear approximation in E¢p), i.e., they

must be represented in the form 242

1 20 244
f— _ Z0ef. e _ e * * e
t= 2Q f-rQ 3 fQ rz YlS(nf)YlS(nr)Q ! FIG. 2. Scheme giving rise to the populationRfl1) andR(1)branches by
single-photon dipole transitions into the ionization continua.
wheren; and n, are unit vectors. Since the selection rule

allows in this case only transitions withM =0, choosing

the z axis so that one component of the vectas nonzero

(corresponding t®=0), we setM =0. Then the matrix el- g F(ﬂ,,)N 4 8" _ Onre e(d")
ements of the field interaction are NN = an NN LN e
V3 V3
3y and the corresponding angular parts are
VINk,I’N’k’:_f\/\[«P Ylo(n)|r|‘P|'k'>5NN/ P g anguiarp

S]NkI’Nk' (N RY 1o(nr)|(1)|Jr,|8(Fﬁ)>

e(J) J'N’
ININ’<(P 1o(nr)|r|<P|rkr> 3(20+1)(20+1) |12
e(d’) = yp (11041'0)
_tI'N’,I’N<‘PI 10(”)|"|<P|,k,)
X(1J00J'0)W(1IJ'N;1"1). 17
ed) .e(J’) IN” ~J'N"
+ NE tININ”tI’N”I’N’<(’D|k Ylo(”r)|r|9"l'k' >} : It is evident from the expression obtained that transitions

with a change irN are due to the second term in H46),
(15  which contains the off-diagonal elements of tifereaction
Next, using the well-known properties of the Coulomb waveMatrix, which give the nonadiabatic coupling with the rota-

functions(6) and (11) and the value of the radial integral tion. The angular parts remain strictly diagonalNn There-
fore two Rydberg serie=0 andN=2 are excited from the

z lower-lying “0” level (in Fig. 1 these series are denoted by
3 the indices 1 and 2, respectivglyhough the “0” level itself

13 1 belongs to the state witN=0.
— wf5’3c05{ 7,( ANk + = We note that the matr.ix elements of the field intergction
3 6 (16) change sign depending ap;, sinceAn~n3w;. It is
where Anyy vk is the difference of the corresponding also important to emphasize thAt transitions through the
principal quantum numbers of the final and initial states, weOnization continua are taken into account in E4). on an

! ’ l
NN N
I’lk‘l,k,=<g|'\l‘(|r|g|,k,>= ;F

4
X

have to within a sign equal basis.
~5/3 U3
VJJ/ :f(l)f F(E)(f) AJ/II N 5 ,
INKUN'K o Jr ~13/13 NN SN Nk RN 4. MULTIPHOTON IONIZATION OF THE H, MOLECULE
, ) For single-photon absorption, seven final states corre-
Z BJ | E(J) S]J (16) . . .
NN LN INT SN Nk | sponding to three optical branches can be populated simulta-
neously from the intermediate Rydberg states in the process
where the coefficients are (2). They are the following:
ion aion
1.0r a 1.0r .

FIG. 3. lonization cross sectiori®), normalized to
0.5+ 0.5+ unity and calculated using EqR0) with data from
Refs. 11 and 12 for field intensitids= 10~2 a.u.(a)

N . andf=10"2 a.u. (b).
0 JJL A i i 0 F. AJ ol L i

20 21 22 23 24 25 20 21 22 23 24 25
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a) the P(1) branch with formation of the total angular nel (I=2, N=4) is closed. Finally, for 2B<E+ w; all
momentum)=0, where thd =N=0 andl =N=2 series are channels are open and the coupling between them is broken.
mixed; This is the physical situation that we shall study below.

b) the Q(1) branch with total angular momentudr= 1, The scheme resulting in population of th¥1) and
where one series=N=2 is populated; and R(1) branches is shown in Fig. 2. Here six fiddN states,
mon?e:lrgjrrz( i)z bLa:r(;h'Eh?ggeol?fggrnedr:?Eittt?aiir:)istoﬁip?enr? dl“illr‘z;which have four general ionization continuas( 2d0, 2d2,

. X nd 24), corresponding td/ transitions, form. The states

on w¢, are possible. One is the Butler region of the spectru . L
0<E+ w;<6B, which contains the three closed channels2S2 and @2 make a negligible contribution to the process

(1=0, N=2), (I=N=2), and (=2,N=4), where the under study. The opticad(1) branch is also weak and will
=2, N=4) channel is populated only as a result of rescatb€ neglected below. Thus a six-channel scheme taking ac-
tering of an electron by the ion core with the transitidn  count of theP andR branches must be taken into account.

=2—N=4. In the next region B<E+ w{<20B one chan- The expression

(21 i Y1) Voot (Zo 172 VipVigt (ti—i 719 (Vo Vigt Vi Vi)

Op D

(18

is obtained for the transition amplitudg,, into a state of the tions. Near the points;=n;*1/2 andv,=n,* 1/2, where
p continuum, i.e., into one of the six states enumerated, ) are integers, the nonadiabatic coupling between the se-
above. For convenience we introduce here the following nories 1 and 2 is broken and photoionization with population of
tation (the indicesJ, I, andN are droppel a given isolated series proceeds independently of the pres-
ence of the other series. To illustrate this, the ionization
spectrum of the Kl molecule in the intervab;=20—-25 is

‘o presented in Fig. 3 for two values of the field intengitfhe
Yoo =2 ViVpy, $=12, calculation was performed with the following values of the

P parameters of the multichannel quantum defect thébty:

zy=tan(mvy) —tyy, Zy=tan(wr,y) —ty,

where

Mse=—0.120, pp,=0.191, puq,=0.022,
v=[~2(E+w)] ¥ and v,=[2(6B—E—wy)]

) . ) =-0.078, =ugs=0
are the effective principal quantum numbers. The matrix el- Hem frm ™ fds

ementst,y describe the nonadiabatic coupling with rotation for external field frequencw;=0.029 corresponding to the
and are given by Eg$12). The field coupling is takes place direct transition

f . .
through the element and V., which are given by Egs. 4SGH,125(1}:0)_)2%012:(1/:0).

sps
(16) and (17). The denominatopr in the expressi@iB), i.e.,
the determinant obtained from the system of algebraic equa- |t is evident that the position of the minima is essentially
tions (4), is independent of the field intensity. A much sharper depen-
D=(zy—a13+1 711 (Zo— 8pp+ i ¥20) dence orf appears in.the position and characteristics of the
resonance peaks, which display the structure of the interme-
—(typta—iy)? (19 diate Rydberg states of the,Hnolecule. They are a super-
position of the stateap0(*2 ) andnp2(*Il,)of the two-
channel Fano system, which contains information about the
asy =VoVosre, Where e=E—E,. characteristics of these states and their decay.
The quasistationartin the presence of a fieldevels of
the systeme™ +H, can be found from the equatidd=0,
finding successively first their position and then their width.
1 The equation R® =0, written in the form

Tion(8) 2 pAL = [ TR (2)]2. (20) ,
€ (tan(mvy) —ty—ag)(tan(mvy) —tyr—ag) =(ti+tan*,

The summation in Eq20) extends over all possible final (21)
states of the systerfsee Fig. 2 The ionization spectrum is is formally identical to the two-component Fano equation
characterized by the presence of alternating maxireao- the problem of the energy eigenvalues of the optiRéD)
nancegand minima. In addition, the position of the maxima branch of the B* molecule under conditions of strong
is determined by the zeros of the real part Re0 of the  nonadiabatic electron—rotational coupling. In contrast to Ref.
determinant(19). The minima are a result of interference 3, Eq.(21) also includes the interaction characteristiag;(
between the contributions of the direct and resonant transi,,,a;,) that depend on the external electromagnetic field.

The coefficientsa,y are proportional td? and are

According to Eq.(3) the photoionization cross section
(to within unimportant factopsis
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2V7_ that in the serig 1 a term can cross with the limit of its
L 18(2) Rydberg range
26E
25 g E - —1
P — T o(ny+ 1722
23 This is ruled out for the perturbation of Rydberg series with
2T — 16(2) the general ionization potential. Such crossing for a positive-
N definite detuning=>0 can occur if
20 1 1
19~ Eu ()<Ei = and 1B+ ) (0)2<W’
T E—— 15(2) ! 2
|7E=< wherev¢(0) are the effective principal quantum numbers of
e 14(2) the series 1 and 2 and are roots of E2{l) for f=0. This
16 condition essentially reduces to the requirement that in the
15E-=20====2 13(2) absence of a field the corresponding lekel o) of series 1,
14 N N N N . . . . . . .
o 07 04 o5 0B o toge_ther with its I|rT1|t|ng vaIueE,,l(x) , must t?e contained in
£ 10240 the interval[E, ); E, )] An upward shift of the level

E,. with increasing external field strengthcan cause the
FIG. 4._Positions of the Rydberg levels in the intermec_iiate series 1 and 2 0|f6\lze| E, to be expelled and to cross its own limiting value
the opticalR(0) branch of the K molecule as a function of the external vy :
field strengthf which are roots of the secular equati@i). The brokenlines  The possibility of crossing is accidental, since this is deter-
show the levels of the series 1 fbr=0; solid lines— series 2 foN=2, ~ mined by the specific values of the elements of the reaction
ZOtS(f)_:]l_l/r]Zq_ltlng positions of the series-1 levels with quantum defectsmatrix (12), which are individual characteristics of the, H
" molecule and do not depend on the field strength. In the
range ofn; andf presented in Fig. 4 this situation is ob-
For the region of the spectrufig|>1/n3, to determine the Served only for the leveh, =24.
positions of the levels within the characteristic Rydberg  These features of the spectrum of intermediate Rydberg
rangesAe>1/n® the variation of the interaction characteris- states of the bl molecule give rise to unusual behavior
tics can be neglected. Stepwise analysis of the equaion (compared to atomic systems with a structureless)axirthe
=0 is made possible by the fact that the quantities (s, autodecay widthd™,(f), which are determined by the ex-
s'=0,2) are quadratic in the smébly virtue of the condition ~pression
()] interaction with the field, while in the matrix elements

a5y the presence of the energy denominaigr< 1 can com- r _2| mZeman)tyazim a1t 27185
pensate this smallness. o v (z—ap) (142D +v3(zi—ag)(1+2'5
The dependence of the positions of the Rydberg levels in (22

the series 1 and2 on the external field strength is displayed i

i i i ; -3 2
F'g' 4 It is evident that in the rangé~10 _10_ the ositions of the levels in the Rydberg molecules*XY The
fleld-md'uced perturbaﬂop of the Rydberg states is indee dependence of the autoionization widths for Rydberg levels
large, since the change in the quantum defects of the Ievegr atoms (excited due toV transitions from a lower-lying

tas(f)=n(s)— »s(f) is a measure of this perturbation. A a4 s directed related to the external field induced quan-
substantial irregularity from level to level is observed in thetum defectu, (f) and has the simple forh?

uns(f) dependence: Together with the strongly perturbed
levels (such as 18l), 16(1), 13(2), 14(2), and othersthere 2y
are levels whose position remains almost unchang@ét), [n(f)=—cos(mun(f))=
23(1), and so onh In addition, the series 2 is perturbed much ™
more strongly(the Coulomb scale factor 113 which is  whereA and C are numerical factors. The presence of rela-
much smaller for this series, comes into play here tively extended sections where the level widihs<1/f2 de-

The structure of the spectrum of perturbed levels exhibcrease monotonically with increasirfigis clear evidence of
its a variety of features. The first one is a repulsion of thefield-induced stabilization. The most characteristic indicator
entire collection of levels relative to the level @D located here is the fact that the Rydberg levels occupy positions be-
at the center of the absorption line. At the same time, théween the Coulomb level6.e., v—n=*1/2 asf—x). This
resulting picture is supplemented by the existence of regiondependence is typical for atoms with a structureless core and
of “strong” convergence of individual pairs of levels. They occurs for excitation of both one and two Rydberg seties.
occur in pairs 161)-13(2) and 181)-152) nearf~10 3. In molecular systems the regularity in the arrangement
Convergence is due to the field-induced interaction of a largef the levels is destroyetas a result of the interaction of
group of states, though it occurs only when the splitting be-Rydberg series corresponding to different excited states of
tween the initial levels is small in the absence of a fieldthe ion corg¢ and thel”, dependencef() can be very diverse.
(strong nonadiabatic mixing It is important to emphasize Specifically, the simple relatio23) between the width and

fWhere z. =tan(mvg), s=1,2) and are a functional of the

2

, 23
1+cf* @3
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r.10%u impeded. Therefore complete interference expulsion of an
3F electron from the region of strong interaction with the ion
core does not occur in molecules.

5. CONCLUSIONS

We have presented he foundations of the theory of mul-
tiphoton ionization of molecules taking account of strong
perturbations introduced into the intermediate highly excited
states by an external monochromatic field. Specifically, the
large change in the structure of the Rydberg levels, the hy-
bridization of interacting states, and the sharp dependence of
the decay characteristics of the states on the level nhumber
were discussed. These phenomena are important for practical
applications, since only optically allowed series participate
in direct transitions in Rydberg states, while quite high field

0
intensitis are required to study of multiphonon or cascade
processes.
FIG. 5. Autoionization widths of the Rydberg levels of the optical series 1 The photoionization of the £-|mo|ecu|e with the partici-
and 2 versus the external field strength. pation of thenpO andnp2 series of the opticaR(0) branch

is a striking illustration of strong nonadiabatic electron—
rotational coupling. The field-induced perturbation of states
position of a level no longer holds. Here, just as in systemdvith different rotational quantum number&N¢0 and N
with few levels'®®interference stabilization is determined =2) and, correspondingly, with two ionization potentials is
not only by the relative arrangement of the levels but also bylescribed here by the transcendental equa@dn which is
a special relation between the interaction parameters. In adormally identical to the two-component Fano equatidmyt
dition, a simple crossing of the limit of a Rydberg interval of contains additional interaction characteristics that depend on
one series #;()=n,*1/2) by a level belonging to a dif- the external field. Essentially, this opens up the possibility of
ferent seriegfor example,r,) does not result in stabiliza- deliberate action, using an external field, on the structure of
tion. However, it is interesting to note that near a crossinghe spectrum of the excited states and control of the pro-
point the decay characteristics of the term are determined b§esses in which these states participate.

one of the quantities; or y, (in the present case,): We also investigated the decay characteristics of these
states and showed that the disruption of the regularity in the

2y, 1 arrangement of the leve(as a result of the strong interaction
F=—"— >3 > (29 of the Rydberg states corresponding to different ionization

T vi(tiptag) "+ va(lopt ag) potential$ impedes the stabilization effect in Rydberg sys-

tems. Most states do not stabilize at all and are characterized,
as usual, by level broadening quadratic in the field strehgth
(T, 2). Nonetheless, for certain states a nonmonotonic de-
endencd,(f) is observed and is expressed in the fact that
(f)=Af2 for smallf, when the parametexr,y <1. Subse-
quently, partial narrowing of the levels occurs and then
changes to gradual growth,(f)~Bf2 with coefficient of
proportionalityB much less thai\. ThisI',(f) dependence

is typical for the Rydberg states of molecules excited as a
result of quasiresonaM transitions from a lower-lying level

This result follows from Eq(22), provided that the solution
of Eg. (21) near this point, where tam{r;)=~ and
tan(mv,) =t,o+a,,, is used.

Most states corresponding to the term picture presenteﬁ
in Fig. 4 are not stabilized at all: Their widths increase
monotonically withf (an example of such behavior is the
form of the width of the level 2Q), presented in Fig. )5
Nonetheless some of theffor example, the states, =24,
v,=14, 15, 16, and J7show a tendency toward a form of

stabilization that appears in the presence of sections with A quite moderate fieldgso thatT',<1/n3). At the same
n .

small decrease df¢. However, subsequently this OleCreasetime, it differs substantially from the corresponding behavior

s replaced by growth with increasing field sirength, thOIJghfor the hydrogen atom or simple atoms with a structureless
the growth is more gradual than on the initial section of the

2 . . -
curve (whereI'«f<). Only the state 18) exhibits behavior This work was supported by the Russian Fund for Fun-

similar to that descrlbeq by E@3). It can therefo_re asserted o ontal ReseardiGrant No. 96-03-34113
be that for moderate field strengths, so that in accordance

with the condition(1) the parameterp<1 and the field- WE-mail: golubkov@phch
. -mail: golubKov ch.ras.ru

dependent widths of the Rydberg levels are much less thaﬂ%ere an(giJ below weFl)Jse the atomic system of ulitsm,=e=1, in which
the splitting between the levels, the stabilization effect in the ¢ fieid intensity isf,=1.
form I'(f)=<1/f2 asf—x is essentially not observed.
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The dynamics of the quantum-statistical properties of the radiation of an atom in a cavity
interacting with an external coherent field is investigated. A high level of quantum fluctuations

of the field in the cavity is shown to destroy optical bistability in the multiatom case.
Photon-number fluctuations and the spectral dispersion of the canonically conjugate quadratures
of the field inside and outside a cavity are calculated. It is found that in contrast to the

multiatom case quadrature squeezing and squeezing of the radiation intensity of a single atom
are negligible inside and outside the cavity. 1®99 American Institute of Physics.
[S1063-776(199)00706-4

1. INTRODUCTION electromagnetic field inside the cavity, the enekyy of the

The radiation of an active medium consisting of two- two-level atom, the atom—field interactidf ¢, the energy
level atoms in an optical cavity in an external coherent fieldRr Of the reservoir of the continuous spectrum of the thermal
exhibits the property of bistability for certain ratios of the modes of the fieldthe thermostat the interactionV, g of
dissipation rates, frequency detuning, and external fieldhe atom with the thermostat reservoir, the interactien
strength. The microscopic quantum theory of this phenomOf the cavity field and the thermostat, and the interaction
enon shows that under bistability conditions the radiation carYr-1 Of a field oscillator inside the cavity with an external
be in a nonclassical quadrature-squeezed tAfelt has coherent fieldZ=Ee '“d', E= Jne'*' (Refs. 1-15
been found3that in the multiatom caseN;> 1) squeezing H 1
inside a cavity can reach 50% on the lower stable branch. — = _(H+H,+Va_r+Re+Va_r+Ve_r+Ve_|)
Analysis of the squeezing of radiation leaving the cavity h
showed that it can reach 90%4'? 1 o

The phenomenon of bistability for one atom in a cavity =w.ata+ Eon'Z—f— glato +ota)+ 2 wjb;f b
has been investigated in Refs. 13 and 14. The Fokker—Planck =1
equation obtained in these works for the field and atomic

variables on the basis of a linear approximation in the field +> gj(bj+0'7+bj0'+)+ > kj(a*bj+bj+a)
fluctuations made it possible to conclude that bistability is =1 i=1
present if the ratey of the cavity losses is much greater than +(a* 7+ 2a) )

the spontaneous decay rdteof the levels,y>T", and that
bistability is absent fory<I'. The presence of fluctuations Herea(a*') are annihilatior(creatior operators for the elec-
near the turning points in the latter case destroys optical bitromagnetic field of a discrete cavity mode with frequency
stability in the weak-fluctuation case. w¢ and bj(bj*) are annihilation(creatior) operators of the

In the present paper we analyze the dynamics of theeservoir of the continuous spectrum of the thermal modes of
quantum-statistical properties of the radiation of an atom irthe field which are present inside the cavity due to the partial
the optical bistability region. In the reduced density operatotransparency of the mirrors. These operators satisfy commu-
method for the "atom+ field” system in a basis consisting tation relations for Bose particles:
of the Fock states of the field, the theory employed is valid . -
for arbitrary ratios of the parameters characterizing the co- [&a ]=1, [a",a"]=[a,a]=0, 2
herent pumping and dissipation processes, simulated by ap-
propriate reservoirs interacting with the atom and the radia-  LPi bi'1=8, [bj,b"1=[bj,bi]=0.
tion field. We note that our investigations of the dynamics of |y ¢ (1) the interaction of the laser radiation field with
the field and of the statistical properties of the radiation dang reservoir modefb;}, which is responsible for establish-
not employ the small-fluctuation approximation, in which or- ing thermodynamic equilibrium between the cavity modes

dinarily an approximation linear in the fluctuations is used.gng the reservoir—thermostat field, which enters through the
The statistical properties of the field inside and outside thenirrors with an average number of photons per mbde
cavity are analyzed.

. _ _ -1
2. MODEL OF OPTICAL BISTABILITY N=nN(w=w.,T)=[expfhow/KT)—1]"". 3

The Hamiltonian of the “atom+ field + reservoir”  The atomic polarization operatorgr{,o") and the inver-
system includes the enerdyr of a discrete mode of the sion operatoir? of the populations of the two-level atom,

1063-7761/99/88(6)/7/$15.00 1095 © 1999 American Institute of Physics
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o =|IX1], oeT=|T], and o= |T)T|—|1){L], are, respectively, the field-loss rate at the mirrors and the

4 spontaneous-emission rate. These dissipation constants can
be expressed in terms of the correlation functions of the cor-
responding reservoir operatofb;} (see, for example, Ref.
2070 =1F%¢? and o%c?=1 (5) 16).

satisfy

The average numbét; of excitations of the atomic res-
ervoir that appears in E@9) for the case where the reservoir
{oT, 0 =TT+ [I)]]|=1, modes{b;} are in thermodynamic equilibrium at temperature

T is (see, for example, Ref.16
{o*,0"}={c",07}=0. (6)

— _ _ +
In Egs. (4) and (6) ||) and|1) are the lower and upper Nr=N(w=wa,T)=(b, bi>‘”i:‘”A
energy states of the active electron gnd . }is an anticom- fion -1
mutator. = exp{W)—l} . (10
The interaction between an atomic electron and the field
{b;} of the harmonic oscillators in the thermostat establisheSince at optical frequencies we haie,, i >KT, we
thermal equilibrium of the quantum average atomic operatorshall neglech; andN+ in the calculations below.
with temperatureT. Using the correspondence between quantum-mechanical
The interaction between the radiation field and the po-operators andc-number variables, a generalized Fokker—
larization of an atom is proportional to the interaction con-Planck equation for the quasiprobability distribution
stantg, characterized by the transition dipole momeint  functior®'3!**corresponding to the density operator can be

and the commutation relations for Fermi particles

and the cavity volumé/, obtained from the Liouville equatior(9). In turn, the
Fokker—Planck equation so obtained is equivalent to a sys-
—d 2Twa 7 tem of Langevin stochastic differential equations of motion
g=dy, VAR (7)

for the c-number field and atomic variables. The solution of
where w, is the atomic transition frequency. The constantstiS Systém of equations for stationary conditions makes it
gjof the interaction between the thermostat field and arp_ossmle to obtain a relation betyveen the extgrnal flgld inten-
atomic electron are found similarly. The paramekerap- ~ S¥Y and the quantum-mechanical average intensity of the
pearing in the operatore_ is a constant characterizing the f1€1d inside the cavity(the equation of stajeAs a result of
interaction between the thermostat modes and a cavity modH€ nonlinearity of the atom—field interaction in the two-level
We shall use the reduced density operator of the «gtomnodel of an atom the stationary equation of state has the

+ single-mode field” system in the basis of Fock states: 0
- o |ZEPL_f(,, 2C ?
p(t):i,j:E{T,L} nelo Pn,i;m,j(t)||>|n><m|<” (8) o Y| Ng 1+ X2+ 5%
to analyze the quantum stochastic dynamics of a two-level 2Cédp 2
single-atom laser. In the interaction representation and the R —1+X2+52 1D
Born—Markov approximatiotf the reduced density operator A
(8) of the “atom + field” system interacting with a reservoir ) (a*a) wpA— 0 we— v
satisfies the Liouville equation X=—— n=2—F—, 672 ,
s Y
Ip Aa here th tivit terand th ben, of
L e Tr(o = 22162 p1—iAfa*a, where the cooperativity paramet€rand the numbeng o
at R(ORos) 2 Lo*p] el Pl saturation photons have been introduced as
. B Y 2 2 FZ
—igl(a”e”+o7a),p]+ 5 (nr+1)(2apa” c=2 andn-—. (12
L'y 8g2
—atap—pa‘a)+ ZnT(2a+pa—aa+p—paa+) The relation(11) can also be obtained in a deterministic
2

theory using the Maxwell—Bloch equatiotfsAnalysis of the
r equation of statg11) shows that absorptive bistability is
+ E(NT+ 1)(20 pot—oto p—poto) pres_e_nt |_fC>4 and_&A: 6.=0. Absorptive—dispersive bi-
stability is present ifC?>2752/4 (C>1), 8,#0, and &,
T =0 or if C>>27682/4, 8,#0, and 5,=0 and also ifC
+ENT(Za*pa’—a’a*p—po*a*)—i[E(a% >4]68.65 (C>1) for 6,6,<0 or C>0.55.5, (C>1) for
8:6,>0.
—pa®t)+E*(ap—pa)], (9) The following system of coupled differential equations
for the density matrix elements follows from the Liouville

where the detuning of the frequeney, of the external field equation(9):192°

from the atomic frequencw, and from the oscillator fre-
quencyw, is Ap=wa—wo and A;=w,— wq, andy andI’ Pln,m(t)E<T|Pn,m|T>+<l|pn,m|l>,
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panm(={Tpnml )= (Llpaml 1), (13 Runge—Kutta methodn(,,, is the size of the Fock bagidn
_ _ the general case the field was initially in an arbitrary mixed

Panm(O=(Tlpnml L), panm®=(LlpnmlT). state and the atom was in the lower state. Therefore the den-
Using the following relations for the creation—annihilation sity matrix of the noninteracting atom and field at tirne
operators in the Fock basis =0is

alny=yn[n-1), a*ln)=Vn+1ln+1), (14 p(0)=p,®ps, (19)

(njla=yn+1(n+1|, (nla*=n(n-1], where
and o

Fot=ct, ote?=—0", o o*=0", (15) Pf:n;:() Cncrn|n><m|'

as well as Egs(2) and (4)—(7), we find directly from the
Liouville equation(9) the equation of motion for the ele-
ments of the form(13) of the density matrix8). The result is

Specifically, if the field is initially in a coherent staje),
then the coefficients in the expansion in terms of the Fock

states are
Pinm= ig( ym+1 P3nm+1— \/ﬁp3,n71,m+ \/mp4,n,mfl a*Ngm
crep= exp(—|a|?). 20
ntm \/W of |a| ) (20
N+t1pgnrim)+ 5 > LyP1+ Lepa,

If the initial state is a pure Fock staténg), then
bz,n,m: ig(Vm+1pzme1t \/ﬁp3,n71,m_ \/EP4,n,mfl ChCm= Onm- For a thermal state we have c,=[n7/(1
+ nT)n+1] 5n,m-

The average number of photons, the average inversion,
the fluctuations(variance of the photons, and the average
field can be found, using a grouping of the fot&B) for the
matrix elements of the system, as

n+1p4,n+1,m)+2 2= Ipram=T'(2N7

+ 1)p2,n,m+ Leps,

bS,n,m:iAP&n,m'Hg(\/mpl,n,mfl_ \/n+1pl,n+1,m N ”
(n(1)=Trlp(a"al= 3 Npna(t), (21)
+\/5P2,n,m—1+ n+1p2,n+l,m)+ 2L'yp3 ®
(DO)=Tr p(1) 1= 2, pann(l), (22)
['(2N+1) n=0
+LEP3_ Tp&n,m' o
| g var(n())=((An(t)%)= 2, (n=(n(1)))%p1nn(V),
P4,n,m:iAP4,n,m+iE(Vm+1pl,n,m+1_\/ﬁpl,nfl,m - (23
—Vm+1pynmi1— VN 21w + 5 > Lyp4 (a*(t)>=n§0 Vn+1pinnra(t),
L _ T(2N7+1) 19 .
Epa 2 Pam (a(V)=3, Vi pign-1(t). (24

where the terms that are common to all four equations and

are due to cavity losses through the mirrors and the interacFhe variances of the conjugate quadratuXegt)=[a"(t)
tion of the cavity field with the external coherent field can be+a(t)]/2 andX_(t)=[a"(t)—a(t)]/2i can be expressed in
written in the general form terms of the matrix elements of the density operator as

L p]:(nT+1)[2 V(n+1)(m+1) Pj,n+1,m+1_(m

1 o]
<(Axt)2>: _| Z (2n+ 1)P n,n(t)
+n)Pj,n,m]+nT[Z\/anj,nfl,mfl_l?j,n,m(n"'m 4 n=0 '

Tl Jmass w &3 A1) paaa ot
LEPj:_i{[E\/ﬁpj,nfl,m_ VM+1pj o m+1l "

FE* [N+ 1pj e 1m= VM pjm-a]} 2 JF DN T 2)pan mealt)

—iA(n—M)p; nm, 1=1,2,3,4. (18) n=0

We solved the system of equatiorid6) of dimension 1{2 L pinnea(t)
n,n

A(Nmaxt 1) (Nmaxt 1) numerically using the fourth-order
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X
121
F -
" 16}~ b FIG. 1. g Dimensionless fielX inside a cav-
u ity versus the dimensionless amplitutfeof
8r 12k the external field for the absorptive bistability:
r solid curve — semiclassical equation of state
3 o (12); crosses — quantum-mechanical calcula-
[ 8r tion. C=8, ng=1, §,=6,=0. b) Fano factor
4 | r F= Var(n)/(n) for the number of in-cavity
i 4+ photons versus the dimensionless external
] L field.
0 ol_1 N NP PR
4 7 9 ¥ 11
* 2 follows from Fig.1b that a sharp spike of photon-number
+ E \/ﬁpln’n,l(t) . (250 fluctuations which destroys bistability occurs in the bistabil-
n=1 ity region.
The data presented in Fig. 1a can be compared with the
3. OPTICAL BISTABILITY AND CAVITY FLUCTUATIONS computational results obtained in Ref. 14 in the adiabatic

We performed numerical calculations of the dynamics of2PProximation in the atomic variables and in the linear ap-
the quantitieg21)—(25) to investigate the effect of quantum proximation in the fluctuat!ons for the same values of the
fluctuations on the occurrence of optical bistability of the Parameter<C andn; (see Fig. 2a from Ref. 34The com-
radiation of a single atom. We calculated the cases of a high?@rison shows that the small-fluctuation approximation is in-
Q cavity (y<I') and a high-loss cavityy>T) for the ab- appllcal_ale for the single-atom optical blstab_lllty, at least in
sorptive and absorptive—dispersive bistabilities. A coherentin€ region Yy, <Y<Y,y where the fluctuations are very
vacuum state and a coherent pure state were used as t39€(see Fig. 1b Itis also found that much more time is
initial state of the field at=0. A numerical investigation of required to establish a stationary state in the region of semi-
the system(16) for various values of the parameters of the classical bistability §t~3000) than outside this regiom{
atom, the external field, and the reservoir showed that for the 100). Figure 2 shows the average stationary nunmbef
stationary radiation of an atom both forms of optical bista-Photons versu¥ for the absorptive bistability for a larger
bility predicted by the semiclassical thedry? are absent. Vvalue of the cooperativity paramet€rand a smaller number
The dependencX(Y) (Fig. 1) obtained for the purely ab- Ns Of saturation photons. Just as in the preceding case, the
sorptive bistability in the semiclassical thedithe expres- Fano factor(Fig. 2b) increases sharply in the region of semi-
sion (11)] in the region of bistability between the upper classical bistability, and hysteresis is completely absent.
(tp2) and lower {p1) turning points,Yp, <Y<Yy, dif- The photon number distribution functidh(n) =p, , in
fers sharply from the results of our quantum calculation. Inthe region of semiclassical bistability is of special interest. It
this region the stationary solutiok(Y) does not depend on is evident from Fig. 3 that the photon distribution function
the initial conditions, i.e., there is no hysteresis, while thepossesses two maxima, i.e., the state of the fieldYfgp
theory neglecting quantum fluctuatiofer taking such fluc- <Y<Y, is a superposition of two states corresponding to
tuations into account in the linear approximafiot) pre- the lower and upper stable branches of the semiclassical
dicts bistability and hysteresis, i.e., a dependence of the st&quation of state. Each peak in the distribution function can
tionary state of the field on the initial conditions. The be approximated well by a Gaussian function, i.e., the quan-
dependence of the Fano fact®r Var(n)/{n) in the cavity tum state of the field is a superposition of two coherent
on the external field strength is displayed in Fig. 1b. It states]#)=cq|aq)+Cy|ay).

80 a
60 b
r - FIG. 2. 3 Average stationary numberof pho-

40 n tons versus the dimensionless external fi¥ld
2 for C=12 andng=0.5. bIn-cavity Fano factor
- under the same conditions.

201 o

0 . o 3
——t 1 { i i ! L L t i 1 i
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P increases monotonically with, and the small-fluctuation ap-
0.06( proximation likewise breaks down for largé(see Fig. 6a
0.04- 4. FLUCTUATIONS IN THE QUADRATURE OF THE FIELD

L AT THE CAVITY EXIT

0.02f We assume that inside the laser cavity the electromag-
L netic field is in a state with discrete frequencipboton en-
ergies, while outside the cavity the field possesses a con-

5 4'0 : 8-0 ! 150 tinuous spectrum. As a resglt, i.t must be assumed that the

n temporal fluctuations of the field inside the cavity are sources
of fluctuations of the frequency spectrum of the radiation
exiting through the cavity mirror. The field outside the cavity
can be represented as a sum of the laser radiation field exit-
ing through the mirrors and the reservoir—thermostat noise
field incident on the mirror, i.€1~%

FIG. 3. Photon distribution function for the absorptive bistability w@h
=80, ng=8, andY=8.5.

Figure 4a shows(Y) for absorptive—dispersive bista-
bility ( 6.64>0 for C>1). Just as for the purely absorptive a®U(t)=b"(t)+ \/§a(t),
bistability, quantum fluctuations completely remove bistabil-
ity in the one-atom case under study. It is evident from Fig. in .
4a that the small-fluctuation approximation also breaks down b (t)oc; \/;jexp( )by
outside the region of bistability of the semiclassical curve:
The results of the exact calculation differ substantially from

the semiclassical data fof>Y,, also. Almost linear growth . : '
of the Fano factor occurs for largé (Fig. 4b. The compu- time. The commutation relations for the field operators form-
e ing a continuous spectrum outside the cayityt) have the

tational results for the same value of the cooperativity pa_form21‘23
rameterC and detuningd. and é, but for smallng are pre-
sented in Fig. 5. This case corresponds to a large rdfio [a®(t+ 7),a%"" (t)]=&(7). (26)
>1, i.e., high cavity losses. Just as in the higtease, quan-
tum fluctuations remove the bistability in the single-atom
case.

Our calculations showed that for paramet€ss., and
5, for which the greatest squeezing of the field quadratures  a®'=e~'[X%"(9)+iX°"(6)],
outside the cavity was found in Ref. 4 for the multiatom :
case, in our single-atom case quadrature squeezing inside the ,out_ qifpyout 5y _:yoou ou ou _ .
cavity is negligible(less than 109%and is present only for A= DAENO) X0, X0 X 6)] 2
small Y<Y,,. The Fano factor for sma¥also differs just (27)
as little from the shot-noise level. Increasing the numier For a single transmitting mirror the correlation functions of
of saturation photons for the same valueQyfleading to an  the field of a discrete radiation mode inside the cavity are
increase in the average number of photons in the cavity, dogelated to the correlation functions of the fields of the con-
not appreciably increase the squeezing. tinuous spectrum outside the cavity have the fOrf?

Figure 6a shows(Y) for the case where semiclassical
bistab?lity is absent. I|$1 tz]is case the results of exact calcula- (& (1 Pat)*'=x@’(t+na(t)). (28)
tions are essentially identical to the semiclassical results. AFhe quantity characterizing the statistics of radiation passing
follows from Fig. 6b, the peak of the fluctuations that arisesthrough the exit mirror is the stationary spectrum of
in the region of bistability is absent here. The Fano factorfluctuation§ =2

The Heisenberg operat@®'t" (t)a°“(t) is the operator of
the number of photons exiting through the mirror per unit

We introduce the canonically conjugate phase quadra-
tures of the field outside the cavity2"{(6) andX°"(6), for
a local oscillator of arbitrary phasg

n -
[ a x F
40 x } b
" X
20r
01 x
r i FIG. 4. Same as Fig. 2 for absorptive—
201 dispersive bistability withC=2200,ns=0.001,
L 10t 8,=100, ands.= 20.6.
10 i
0 L . . s L
0 0 400 200 1200 Y
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FIG. 5. Same as Fig. 4 withy=0.0001.
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viut(w,9)=|imf dre T(XM(t+ 7)X(1)) 2ig_ 11(w)_
- tood = B B |311(w)|
= (X¥t+ D)(XL(D)). (29  Then
The fluctuationgspectral dispersign(29) outside the cavity ouy L 7 S () —
can be calculated using the in-cavity field opergbrs and Ve 2T 7[S1@) S —w0) ~2|S(w)[]. (32

the relation(28): Under stationary conditions it is easy to obtain the fol-

ou 1 v lowing expression, which follows from the quantum regres-
Vi¥(w,0)= 2" 2[312(“)) +Sp(—w) sion theorentsee, for example, Ref. 16for the correlation
, functions of the cavity field operators:
+2(e?’S(w)+c.c)], (30
+ _ +~
where (@™ (t+7)a(t))ss=Tra" p(7)], (333
(a(t+ma(t))ss=Trlap(7)], (33b)

Slz(w)=f dre '*T(a*(t+na(t)) B 5
- where the operatop(7)=p(t+ 7) satisfies the Liouville

—(a* (t+1))Xa(t))]=Su(— w), (313 equation(9) with the initial (t=0) condition
Pinm(0)=Vn+1pjniimtsd, j=1234. (34

Sll(w):f dre'T(a*(t+na* (1) . R .
—o As shown in Ref. 4 for the absorptive bistability, appreciable

" squeezing of the field quadratures does not occur outside the
—(a’(t+ )@’ ()] =Sw). (31b) cavity for y>T. For absorptive—dispersive bistability sub-

Since under stationary conditions the two-time correlatiorstantial squeezing occurs #.6,>0 on the lower stable
functions are even functions of the cosine Fourier trans- branch. The optimal conditions, obtained in Ref. 4, for
form was used in Eq31) for calculations. squeezing occurring for large detuning and sml

As follows from Eq.(30), the spectrum of the photon- =./(n)/ng are X?/52<1 and X*/ 83<1. To compare with
number fluctuations in the field at the cavity exit consists ofthe quadrature squeezing outside the cavity in the multiatom
a shot-noise terrfthe first term in Eq(30)] and the normally casé we performed calculations of the stationary fluctuation
and chronologically ordered fluctuation spectrlisecond spectrum forC=1100, §,=100, andd.=20.6, for which
term in Eq.(30)]. Maximum squeeziny/(w, 8)<1/4 occurs multiple squeezing was found in Ref. 4 in a wide range of
for the optimal phase of a local oscillator for each frequencyvalues ofX(Y). The calculations showed that in contrast to

FIG. 6. Same as Fig. 4 but witB=1100 and
ng=0.01.
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the multiatom case the degree of squeezing in the single2E-mail: kozlovsky@neur.lpi.msk.su
atom case is extremely low and is only several percent fofE-mail: oraevsky@sci.lebedev.ru
smallY (Fig. 7). As Y increases, squeezing vanishes for both___

the absorptive and absorptive—dispersive cases.
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We develop a new model of a Thomas—Fermi cluster that describes the distribution of electrons
in alkaline clusters with many atoms. We examine the classical multiple ionization of such

a cluster by a strong electromagnetic field. Finally, we calculate the degree of ionization as a
function of the field strength. €999 American Institute of Physid$1063-776(99)00806-9

1. INTRODUCTION where n, and n; are the electron and ion concentrations,
L ) respectively. Throughout this paper we use natural units,

The multiple ionization of a Thomas—Fermi atd@nd ity 4 —e=m_=1. In the jellium model, the ion concentra-
molgcule by m}ense low-frequency laser I|gh£ has bee”tion is constant and has the form
studied theoretically by a number of researchefsThese
researchers modeled a multielectron atom in the Thomas— Zn(R-r)
Fermi approximatioﬁ,and assumed that the laser light trans- n=———3

X . L . (4mI3)R
forms the atom into an ion by stripping it of its electrons,
starting with the outer shells and proceeding down to elecwhereZ is number of atoms in the clusteR,is the radius of
trons for which above-barrier ionizatidolassical ionization  the ion subsystem, ang(x) is the Heaviside step function.
ceases to exist. Quantum tunneling of the remaining atomic  According to the Thomas—Fermi model for ichshe
electrons under the effective potential barrier during the thepotential ¢ is simply related to the electron concentration
laser pulse has a probability that is much lower than that of,:
above-barrier ionization, so that it can be completely ignored 5 32
in this model. Moreover, in view of the very strong depen- ne:M, 3)
dence of the ionization probability on the intensity of the 37?2
electromagnetic field, ionization occurs only near the inten-
. ) . S - . Where

sity maximum, which means that the ionizing electric field
may be assumed constant. This quasi-steady-state approach .= ¢(r,) (4)
to the ionization problem is valid at small values of the i )
Keldysh parametétwhich correspond to high values of the is thg elgctrostatlc potential at the boundegf the electron
electromagnetic-field intensity in the optical frequencyd'smb“t'on'

range. Fields generated by high-power titanium—sapphire la- Cpmbining Eqs.(l)—(3)_, we ob_tain a_self-consistent
sers fully meet these conditions. equation for the electrostatic potentialratr,:

2

The aim of the present work is to generalize the 1 d2 1 Zn(R-T)
Thomas—Fermi model to alkaline clusters containing manW?e= — — (r¢) =4 — (2(¢— @¢)) />~ —————|.
atoms and to describe the classialbove-barrier multiple rdr? 37 (4mI3)R®
ionization of such clusters in a strong electromagnetic field. ®)

Here the alkaline clusters proper are considered in the starFhe boundary conditions for this second-order differential
dard jellium model(see the review cited in Ref.).7This  equation are

model presupposes that the density of the atomic ions is

constant and does not depend on the radial coordinate. The d—@(r=0)=0 (r=rg)= (6)
cluster electrons self-consistently adjust to the ion distribu- ~ dr ¢ o) Pe-

tion specified in this manner. They fill shells, just as they dollhe first corresponds to a vanishing electrostatic field at the

oordinate origin of a spherical clust@n contrast to the
Thomas—Fermi atojnand the second corresponi@gcord-

ing to (3)] to the boundary . of the electron distribution of a
charged cluster iofthe charge results from ionization by the
electric field.

2. THOMAS-FERMI MODEL Outside the electron distributiorr £r.), the solution
depends on the ratio of the electron and ion distributions. If
r«>R, the problem is simple. In this case, forr,., the
potential of the cluster ion outside the electron distribution is
V2p=4m(ng—n;), (1) determined by the Coulomb field of the chargeandZ’:

in atoms. When the number of electrons is large, the she
picture is replaced in the Thomas—Fermi mog@at in an
ordinary atom by a continuous electron-density distribution.

The Poisson equation for the electrostatic potengidh
a cluster has the simple form

1063-7761/99/88(6)/3/$15.00 1102 © 1999 American Institute of Physics
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Z_z! —-@ a.u.
e(r)=——. (7 -1.0}
Multiplying both sides of Eq(5) by r? and integrating with _1st

respect to the radial component, we can easily verify that at
the boundaryr, of the electron distribution not only is the

potential continuous, but so is its radial derivative, i.e., -2.0¢ ;
-7 25t
@' (rg)=——5—. (8) :
re }\\
. . . . . _30F 2
This equation makes it possible to expr&ssn terms ofr, 30 \
since the left-hand side of E(B) is known from the solution ; , . . .
of Eq. (5). 0 10 120 30 40 SO

The situation is somewhat more difficult whep<R. T, au.

The solution(7) is valid only in the regionr>R. In the  FIG. 1. Unperturbed potential energy(r) of a cluster of 100 sodium

regionr.<r <R, the solution for the potential has the form atoms containing 54 electror(surve 1). The hatched region is the one
occupied by electrons. The effective potential enegf@yrve 2) was calcu-

7' Zr?2 37 lated with Eq.(12) for an electric field strength =0.04 a.u., which corre-
(P(r) - - 4+ — (g) sponds to13). The horizontal line represents the Fermi limit for electrons.
r 2R® 2R The vertical dotted line corresponds to the boundary of the electron distri-
bution.

(making use of the electrostatic solution for an ionized
sphere with uniform bulk charge dengityf we match this
solution at the boundary of the electron distribution to the
interior solution(5), we can express the number of electrons
Z' in terms of the radius.. Instead of(8) we obtain

47rf ne(r)rzdr=Z’s47-rJ ni(r)r2dr=2. (11
0 0

For curvesl-5in Fig. 2, the values .=, 21.2, 16.25, 12.2,

Z(ro/R)3-2’ and 8 a.u. correspond # =100, 92.3, 54.35, 22.7, and 4.9.
e lre)=———7F——. (10 The shape of these curves suggests that in all cases there is
Fe an interior region in the electron distribution where the elec-

We solved Eq(4) numerically with the boundary con- tron concentration is independent of the radial coordinate,

ditions (5) for a typical cluster containing=100 sodium i.€., an electron is not attracted to the center.
atoms. The ion concentration was taken equal to the concen- Of course, if the number of electrons is small, the cluster
tration of solid crystalline sodiurh, i.e., n;=2.652 ionis unstable due to the strong mutual repulsion of the ions,
X 10%2cm~3. According to(2), the ion radiusR of such a and it decays rapidly .
cluster is 18.25a.u.

The typical electron potential energye for a positively ~ 3- MULTIPLE IONIZATION OF A CLUSTER

charged clustefthe energy is expressed in atomic unds a Up to this point we examined the behavior of a cluster in

function of the radial coordinatéalso in atomic unitsis 5 yanishing external field. Now, in accordance with the ideas
shown by curvel in Fig. 1 for Z'=54 (a roughly half-

ionized cluster. In this caser,=16.25a.u<R=18.25a.u.

Clearly, over most of the electron distributigthe hatched n,, a.u.
region the potential is constant, i.e., there is no field. The

value ¢(0)=2.82a.u=-77 eV provides an estimate for the

binding energy of the interior electrons in such a cluster. The 0.003
Fermi limit (the vertical dotted linecorresponds to electrons

with an energy 2.70 a.t-.73 eV. Note that for a neutral clus-

ter (Z=2') the binding energy of the interior electrons is 0.002-
much lower:p(0)=0.12 a.u=3.26 eV.

Figure 2 depicts the radial dependence of ion concentra-
tion n; given by(2) (dotted ling, and the curves represent the 0.001F
electron concentrations, calculated by(3) in terms of the
potential(established earligfor various values of cluster ion
charge(the case depicted in Fig. 1 corresponds to ciiie Ok, YR
Fig. 2. Clearly, the radius of the electron distribution in a T au.
neutral clustefcurvel in Fig. 2) is close to the ion distribu-
tion radius. However, the smearing of the electron distribuF!G- 2. Electron n_umber densit)g_ in cluste_r ions consisting of 100 sodium
tion is much more pronounced than that of the ion distribu-*9"" 16(1)30)6;1 é:?\f;fnzoi ;26_3:iﬂié?;ggg;ﬁﬁ;gi;I;S;;egf |
tion. Generally, the electron distribution is normalized to thegyryes, 77~ 4.9. The dotted line represents the ion number demsigs a
electron numbeZ’ in the cluster: function ofr.
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advanced in the Introduction relating to the quasi-steady

state nature of a low-frequency electromagnetic field, we

bring a constant electric fieldfield strengthF) into the pic-
ture. Such a field ionizes the neutral cluste@hich becomes

a multiply-charged cluster ignby detaching a classically
well-defined number of electrons from the cluster. The field
strengthF is related to the chargé—Z' that remains after

electron detachment in a manner that follows from the ex-

pression for the effective potentiedee curve? in Fig. 1):

!

—<p(r)—Fr~—T—Fr.

\Y; (12

If we find the maximum of this expressidwhich lies out-
side the electron and ion distributionand equate it to the
maximum effective potential of the Fermi energy,, we
obtain the electric field strengfhthat leads to a cluster with
a given degree of ionizatiofthis dependence is similar to
the Bethe formula for atomic ionization; see E§4.2 in
Ref. 10:

o (o1’

C4z-2") (13

Of course the electric field is actually directed along

M. B. Smirnov and V. P. Krainov

i

e

0.08 0.12
F,au.

FIG. 3. Degree of ionization of a cluster of 100 sodium atoms as a function
of electric field strengthF (in atomic units.

due to Coulomb repulsiofiCoulomb explosion of a cluster
ion).

In conclusion we note that our numerical example is
typical, so that all phenomena described in this paper occur
in clusters of other atoms and with other numbers of par-
ticles.

This work was supported by a grant from the Russian
Fund for Fundamental Resear@@&rant No. 99-02-1781)0

some Cartesian axis, rather than along the radial variable.

We assume that in the event of rapid “ionizatiofdtomic
times of the first electrons on the axis along which the ex-
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ternal field acts, subsequent electrons rapidly reoccupy those

locations and are then also “ionized(br detacheg along
the same axis, with the result that a multiply-charged cluste
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Elementary processes in dusty, beam-driven plasma discharges are studied experimentally and
theoretically for the first time. A theoretical model is constructed for a beam-driven

plasma containing macroscopic particles. The effect of macroscopic particles on the electron
energy distribution function is estimated assuming a Coulomb field for the particles. The resulting
rate of electron—ion recombination on the macroscopic particles is compared with the

electron loss constant calculated from the electron energy distribution function with an electron
absorption constant in the orbital-motion approximation. This approximation, which is

valid in the collisionless case, is found to work satisfactorily beyond its range of applicability.
The distributions of the charged particles and electric fields created by macroscopic

particles in a helium plasma are determined. The experimental data demonstrate the importance
of secondary emission by high-energy electrons. 1899 American Institute of Physics.
[S1063-776(199)00906-3

1. INTRODUCTION (“Coulomb” crystals).>* Most papers on observations and
_ o studies of Coulomb crystals concern rf discharges, as they

~ Dusty gas plasmas, that is, plasmas containing subare the most widely used in microtechnology. Thus, several
micron- and micron-sized dust particlémacroscopic par-  similarity laws have been formulated for the structures which
ticleg in addition to electrons, ions, and gas atoms and mo'develop in the electrode sheaths of rf dischahd&s (re-
ecules, have been studied widely in natural phenomena igyced interparticle distance in the lattice of a structure with
astrophysics, such as the tails of comets, interstellar dusfycreasing discharge power, reduced lattice stability as the
planetary rings, etc. Although the first laboratory studies ofyaricle size increases, the possible escape of particles from
dusty plasmas were done early in the cenfutlyge greatest the lattice resulting in dislocations
interest in research on these plasmas has arisen in recent The successful use of dc discharges in the reactors em-
years In c_:onnecnon with th_e rapid develqpment of micro- loyed for plasma deposition of thin films has led to interest
technologies and technologies for producing new material research on dusty plasmas in these plasth®However
the presence of particles in the plasma can change its prop-

nanoparticles with unique physical properties, and this dete%rties substantially because they represent an additional ab-
' orber(and sometimes, emitteof electrons and ions.

mines their widespread practical importance. On the othe? There i il int tin th hanism f leati
hand, research on the processes taking place in dusty plasmas ere 1S special interest in the mechanism for nucieation

and the dynamic behavior of the structures formed in them iQf macroscopic.particles and Itheir effect on the microscqpic
of deep fundamental interest, both for plasma physics and fd?nd macroscopic characteristics of the plasma. Dust particles
solid state physics. affect the electron energy distribution function, charge com-

It should be noted that because of the greater mobility oposition, charged particle densities, and chemical composi-
the electrons, particles in these plasmas acquire a negatifn of a plasma.
charge, but if secondary electron emission or photoemission Unfortunately, at present there are no detailed experi-
are predominant, then the charge can also be positive. Atental and theoretical studies of the properties of plasmas
system of dust particles of like charge can form a stableontaining macroscopic particles. A number of theoretical

structure when long-range attractive forces are present owapers® ® indicate that macroscopic particles do have an
ing, for example, to the interaction of the macroscopic par-effeCt on the electron distribution function and, therefore, on

ticles with the plasma particles. the transport coefficients. In order to construct a theory of
The experimental and theoretical studies of plasmas corplasmas with macroscopic particles, some study of elemen-
taining macroscopic particles have dealt mainly with theirtary processesexcitation, recombination, ejcin the plas-
formation®® coagulatiorf, and spatial distributiofithe par- mas will be needed. One of the main processes determining
ticle temperature$°and the formation of ordered structures the charged particle balance in the plasma is bulk recombi-

1063-7761/99/88(6)/10/$15.00 1105 © 1999 American Institute of Physics
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nation. When macroscopic particles are present, additione @:EI—_J 8

electron—ion recombination takes place on the particle sur /

faces. This recombination is one of the principal ways mac- ™~

roscopic dust particles affect the plasma.

Direct measurements of the rate constants for this kinc

of recombination have, however, not been made. In this pa

per we propose a method for measuring the rate of loss ¢

electrons on dust particles. Measurements of this type ar

made for the first time. The results are presented inthe forn

of rate constants for volume recombination. Usually the re-

combination rate of a plasma is determined from its deca /;

characteristics, i.e., somehow the rate at which the charg 2

particle density(as a rule, the electron densitig measured

when the source by which the plasma is sustained is tumegG. 1. Experimental arrangemeiit) container with powdenr(2) container

off. This method, however, is rather difficult andit is hard to for collecting dust,(3) pipe in which the dust cloud propagatéd) elec-

interpret the results. In addition, the rate of loss ofelectrongodes,(5) holes for entry and exit of probe light6) casing,(7) optical

ina decaying plasma can differ from the standard case, e_%viindows,(S) gas inlet_ and outlet port$9) vibrator, (10) laser,(11) filter,

. . L. . 2) detector,(13) oscilloscope(14) computer.

because of differences in the electron energy distributio

function. Measurements of the plasma parameters as a func-

tion of the electric field strength in stationary self-sustained

discharges are difficult because of the strong coupling of thérequency of 100 Hz using a special vibrator. A container for

field with the ionization rate. We believe that non-self sus-collecting the used powder was placed below the discharge

tained gaseous discharges, i.e., discharges maintained by gap. These containers were connected by a vertical pipe. The

external ionization source, offer unique prospects for meadischarge electrodes were located in the midsection of the

suring the efficiency of recombination processes, includingipe. In the perpendicular direction there are 2-mm-diam

those on dust particles. holes for the entrance and exit of the probe laser beam. The

Indeed, in this case, the rate of production of chargeduter case of thedischarge chamber, which provided a

particles is essentially independent of the plasma parametevacuum seal, was constructed so that the optical windows

and is determined by the external ionizer, and when it isvere far from the dusty volume.

constant the charged particledensity is determined exclu- After the dust container was attached to the vessel and

sively by the processes by which they are lost in the plasmébefore filling with the working gas, the vessel was pumped

Therefore, a beam-driven gaseous discharge is a unique iout with a roughing pump for several hours and the container

strument for studying charged particle loss processes, includvas heated to 400 °C. Between discharge pulses working gas

ing those on dust components. In addition, as far as winside the vessel was continuously renewed. Gas pumping

know, no studies have been made at all on dusty, beanwas stopped before the discharge was turned on. Following a

driven discharge plasmas. single shake of the upper container, the settling cloud of dust

occupiedthe discharge gap for a few seconds. Visual obser-
vation (without a dischargeshows that the dust completely

2. DESCRIPTION OF EXPERIMENT fills the internal volume of the discharge vessel and is essen-
The experiments were done on the apparatus sketched ii@lly absent outside it.

Fig. 1. An electron accelerator injected a beam of 125 kev ~ The density of dust particles in the plasma was deter-

electrons at a current density of up to 108/cm? in a pulse  mined from the attenuation of a laser beam in the dust cloud.

lasting 1 ms into the discharge gap through a/&%-thick  The setup for these measurements is shown in Fig. 1. Light

beryllium foil. The 0.9-cm-long discharge gap was formedfrom a He—Ne lasefwavelength 0.63um, power 1 mW

by a metal grid through which the beam could pass and &asses through the discharge vessel with the dusty gas. The

continuous circular electrode with an area of 1°ciA volt-  transmitted light passes through a filter to a dete¢kdd-

age pulse with a controlled amplitude, duration, and delay?4K photodiodg¢ and is recorded on an oscillosco(f9-8.

was applied to them. A large part of the experiments werd he filter was chosen so that the detector current was below

done in a non-self sustained discharge in helium at atmothe saturation level.

spheric pressure. The densityNy of dust particles under our conditions,
The discharge gap was filled with dust in the form of awhere the radius of the particles is much greater than the

powder consisting of microscopic particles of carbon glasswavelength, was calculated using the following formula

A scanning electron microscope picture of the dust particle®ased on the Bouguer—Beer laiv:

is shown in Fig. 2. It can be seen in the picture that the _ 2

particles are regular spheres with diameters of 84.m. Na=0.75loglo/rgs, @

Powder was placed in a contain@fig. 1) with a mesh bot- wherel andl are the respective intensities of the light with

tom, located above the discharge gap. A heater was placed and without dust in the vessel aré 1 cm is the depth of the

the container for heating the powder in order to remove posdust cloud. Estimates showed that the error in measuing

sible impurities. The container could be shaken once or at & mainly determined by the uncertainty in the diameter of
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FIG. 2. A microphotograph of a dust particle.

the particles and was about 8% in our case. The range 6fs quasistationary value. The ionization rat® was
measured dust densities for the particle diameter85um 10 cm 2-s7* for this beam currerf® Given this produc-
was 510°-1¢F cm 3. tion rateand a determination of the electron density from the
Figure 3 is an oscilloscope trace of the signal after thedischarge current, we can determine the effective rate of loss
powder container was shaken. It can be seen that dust ref the electrons in a dust-free plasma. In fact, when there are
mains in the discharge gap for a few seconds and the dusib macroscopic particles present, a non-self sustaining dis-
density falls off slowly with time. Thus, it is possible to charge in helium can be described by the following system
conduct the studies over a wide range of dust densities bgf equations:
varying the time delay before the discharge is turned on. In

: : : n
our experiments the discharge duration was less than 1 ms. Ezs_ BNeNyet, 2
Over this time the density of dust particles is essentially con- at 2
stant. Mgt
= _BnenHe++ane+naev €
3. MEASUREMENT RESULTS ot 2
Figure 4 shows a current—voltage characterigtld) of s — S KN @
a discharge in pure helium for a beam current of8%cm?. a He™Her
The measurements were made after the current had reached
Jj-mA/cm?
80r

T 60r
JW 401

J 201

! . . . .
M 0 200 400 600 800 1000
uv

FIG. 4. Current—voltage characteristic of a beam-driven discharge in pure
FIG. 3. Oscilloscope trace of the signal from the dust particle deté2tér  helium with a beam current of 60A/cm?, +—experimental data. The
V/div, 2 s/div). smooth curve is an approximation using a fifth-order polynomial.



1108 JETP 88 (6), June 1999 Ivanov et al.

ceeding 16 cm ™3, the current density is essentially the same
for all voltages.

4. THEORETICAL MODEL

To determine the charged particle loss rate in a dusty
plasma it is necessary to solve a self-consistent system of
equations that includes the Boltzmann equation for the elec-
tron distribution function along with the particles in the
plasma, the continuity equation for the plasma particles and
macroscopic particles, and the Poisson equation for the elec-

N,cm’ tric field in the neighborhood of the macroscopic particles.
G5 C + density in a helium disch function of the densit The complete statement of the problem for a collisional
mac'ro'scoli)rircegartii?;ih”dihee;;gie:fioﬁ%;gjg\;J‘r("z:)'ggoov, (g) fgg'yoblasma is rather complicated, since the electron distribution
V. The points (1, ¢, A) are the corresponding experimental data. Calcu- function has a dependence on the distance to a macroscopic
lations neglectingdashed curvesand including(smooth curvesa second-  particle and it is necessary to solve the inhomogeneous

ary emission coefficient of 1000. Boltzmann equation:
of UV eEV e df 5
E ' F v a coII, ( )

wherene, Ne, Nuer, andnye; are the densities of electrons, \yhere the symboV, denotes the gradient in velocity space,
helium atoms and ions, and helium molecular idris,time,  (df/dt).,, is the collision integral, ana is the electronic
B is the recombination coefficient for the helium dimer ions,charge. As a result, it is necessary to solve the complete
k is the coefficient of conversion of helium ions into the self-consistent problem for determining the radial depen-
dimer Hg , andSiis the rate of ionization by the electron dences of the electron distribution function, electric field,
beam. The observeg(U) curve for U>450 can be ex- and charged-particle densities.
plained using Egqs2)—(4), assuming that the recombination In a beam-driven discharge, the electron distribution
coefficient is3=2.5-10"% cn’s™* and the cathode fall is function at low energiegon the order of the potential of the
U.=450 eV. At lower voltages, the discharge description ismacroscopic particléss determined mainly by the external
more complicated, since the discharge becomes a Thomseectric field and not by the degradation spectrum of theelec-
discharge because of the low bulk ionization rate, and moston beam. The weak dependence of the electron distribution
of the voltage drop is across the cathode sheath. The recorfunction on the primary electron beam means that the effect
bination coefficient obtained above for the Heéons is  of the beam on it can be neglected. As part of the present
roughly fifty times the published value. This difference mayeffort, we have estimated the effect of macroscopic particles
be caused either by vibrational excitation of the heliumon electron distribution function by solving the homoge-
dimer ion or by the presence of impurity molecular gasesneous Boltzmann equation in a binomial approximation, with
The first reason seems unlikely because of the high gas preghe electron absorption cross section approximated in terms
sure and rapid vibrational relaxation of molecular ions. Theof the orbital motion. This approximation works well in a
second reason is better justified. In fact, because of charggearly collisionless plasma with
exchange on impurity ions, the helium ions are neutralized-
fairly rapidly and the molecular ions of an impurity gas, such
as nitrogen, undergo recombination. The rate of recombinawhere\ is the characteristic shielding length of the poten-
tion for nitrogen molecular ions is quite realistic for this tial of a macroscopic particle ards the characteristic dis-
process. Note that 18% impurity nitrogen is sufficient for tance between the particles. The question of the applicability
the N; ion to be the most common ion in the discharge.  of this cross section in the collisional case requires a separate
Adding dust particles to the plasnilaeginning at densi- examination.
ties of 5 10° cm™?) alters the current—voltage characteristic  This approximation makes it possible to separate the
of the discharge, specifically, reduces the current associatgatoblem of determining the electron distribution function
with a rise in the rate of loss of charged particles owing tofrom that of solving the continuity and Poisson equations.
recombination on the dust particles. Figure 5 shows plots oThe method for determining the electron distribution func-
the current density in the discharge as a function of the dertion in this approximation has been discussed in detail
sity of macroscopic particles for different voltages. The fig-elsewhere® This method is based on the assumption that all
ure shows that the current density decreases as the densitytbE macroscopic particles of a given sizgin the plasma
particles increases. The rate at which the current density ddtave some average chargg. In the binomial approxima-
creases depends on the applied voltage. When no macrten for the steady state, the isotropic part of the electron
scopic particles are present, the current density is higher atdistributionfunction is determined from an equation which
higher voltage, and as the particle density is increased thige shall transform to a form with an explicit dependence on
difference becomes smaller. For dust particle densities exhe basic parameters:

rg<i<l, (6)
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densities of macroscopic particles, but in a beam-driven dis-
charge, ionization in the external field is negligible every-
where except in the cathode sheath, whose thickness is
~0.1 cm under our conditiorfs. The structure of the cath-
ode sheath can be determined to a great extent by macro-
scopic particles, but this question lies outside the scope of
this paper, which concerns processes taking place in the
quasineutral positive column of a beam-driven discharge.
The system of equations for describing the interaction of
the charged plasma particles with macroscopic particles in a
one-dimensional (spherical coordinate system in the
diffusion-drift approximation has the following form:

FIG. 6. Electron energy distribution function witemooth curvgand with- ong 1 4 ) dng 1 90 5 dr
out (dashed curvye macroscopic particles in a beam-driven atmospheric —=——|I"Deg—|—— —(r“v ne)
: . : oo . ; ot 2 9r ar 2 9r €
pressure discharge in helium. The electric field strength is 2 Td, the density r
of macroscopic particles is $@m~2, and their potential is 0.75 eV.
+S— ,6’nenH92++Se, (9)
d( [26 EIN? o f, L, <9nHe+:ii(r2DH +&nHe+)_£i
de m 30y de g M ot r2or ¢ o r2or
d 2
+Q(f,)+s[1 Ude) N @ (i e ) S KD o
& r - — =Y
& m
Mhef 1 9, MNuer\ 1 9
. L _ . _- 7 Dot -7
whereE/N is the reduced electric field) =Z4el/rq is the at 2 o Hey ~ o 2 o

potential of a macroscopic particl6,=§1-rr§Nd/N is the
_reduced area of the macroscopic particess the pr_obabil-_ x(rzvi;+nHe+)+ knenﬁe— BNt (11)
ity of attachment of an electron to a macroscopic patrticle, 2 2 2
which was assumed equal to 1 for the calculations in thigyiy
paper, andQ(f,.) is the collision integral for the plasma
without macroscopic particles, normalized to the gas density. vgrz,ueE, vﬂ;+=,uHe+E, vﬂ;+=MHe+E,
The next term in the Boltzmann equation accounts for 2 ?
the loss of electrons to the macroscopic particles in the orwhere D, v and . denote the diffusion coefficient, drift
bital approximation as a function of their energy An ex-  velocity, and mobility of the electrons and ions labeled by
pression for it can be obtained from the flux of electrons to ahe different subscripts. Note that the electron diffusion co-
macroscopic particle, efficient D, is determined by the magnitude of the external
Q(e)=Eveqw field Eqy, which is rel_ated tp the external voltage By,
ese =(U—-Up)/L, whereL is the interelectrode gap, rather than
whereo s is the cross section for electron capture by a macthrough the local fieldE. Note that, on the right hand side of
roscopic particle, given by Eq. (9), weinclude secondary emission of electrons from the
macroscopic particles, as well as the electron source associ-
(8)  ated with the ionization of helium atoms by the electron
e<ely, beam.
wherev is the electron velocity. It is knowrf? that particles of nonconducting materials

Solving the Boltzmann equation showed that for a highhave a higher secondary emission coefficient. Here particles
helium pressureg(= 1 atm), the change in the diffusion and Of carbon-glass were used. They have a complicated com-
electron drift coefficients in the weak fiel@N<3 Td char- ~ POSite structure, so they may have a high emissirity The

acteristic of a beam-driven He discharge under the experiSource of the electrons associated with secondary emission
mental conditions is not significant up to macroscopic par\Was taken in a form that assumes that the cross section for

ticle densities~3-10° cm 3. At the maximum particle interaction of a beam electron with a macroscopic particle
density in these experiments-(L0° cm™3), the situation Whose electrical potential is much lower than the electron

changes. Owing to depletion of the electron energy specEnergy is given byrr3:

trum, the electron drift velocity and their diffusion change 2

from 10 to 30%, depending on the applied electric fi¢Rke Se=0elmraNale, 12

Fig. 6, which shows the form of the electron distribution wherej; is the beam current density.

function without and with macroscopic particlest should The center of the chosen system of coordinates lies at the
be kept in mind that the effect of macroscopic particles oncenter of a macroscopic particle and the boundary conditions
the electron distribution function in the neighborhood of theare the following: the ion density at=r 4 is zero, the flux of
ionization potential of helium becomes important for low electrons onto the macroscopic particle is limited by a maxi-

mri(l1—eUyle), e=ely,
Oesc— 0
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E.Td R n; om>  E Td n,, n,cm™
10'EY @ 18-10'" ol ) 11.5-10"
of FIG. 7. Radial distributions of the electron
16-10" 10°F density(smooth curves ion density(dashed
curves, and electric field strengthdot-
107 dashed curvgs The dot-dashed curves with
4.10M! two dots correspond to the electric field
102k strength assuming a Coulomb potential for
. the macroscopic particle. The densities of
2100 3 macroscopic particles are 4000 ¢in(a) and
10° cm™3 (b).
0 107
0.04 0

mum ofnevg‘/4, Whereug‘ is the electron sound speed. The which the particle affect the plasma density extends out to a
boundary conditions atequal to the radius of a sphere with distance of 20Qum, while the region in which the quasineu-
the volume of a unit cell, corresponding to a single macrodrality of the plasma is significantly disrupted is much
scopic particleRy= (3/47Ny) 3, were determined from the smaller, on the order of 5am. Thus, the electric field is also
symmetry conditions. considerably lower than the Coulomb field for a given charge
The system of continuity equations for all the compo-0On aparticle, essentially everywhere except for a narrow
nents was closed by the Poisson equation for the electri@yer of uncompensated ionic charge near the particle itself.

field: However, the thickness of this layer is still much grater than
the particle radius, and this partially justifies our earlier as-
d_E = 47e(Nyer +Nper — Ne), (13)  sumption of an orbital motion for the macroscopic particles

dr 2 in calculating the electron distribution function.
for which the boundary condition at=r 4 was chosen from When the density of the macroscopic particles is in-
the quasineutrality condition for the plasma: creasedFig. 7b), the quasineutrality region remains essen-

tially unchanged in size, while it forms an ever larger frac-

tion of the decreasing radius of the unit cell. As a result, for

ng=1C° cm3, the average electron density decreases sig-
(14)  nificantly below the ion density, while the electric field dis-
tribution comes closer to the Coulomb field over a larger part

As estlmgtes_ of the . glectron dls_tr|but|on_ _functlon of the unit cell. Note that for a low particle density, their
showed, the diffusion coefficients and drift velocities of the N .
effect on the electron distribution function is small, so that

electrons can be calculated neglecting the effect of the ma he errors associated with the enhancement of the electric
roscopic particles over almost all the range of densities of th%eld near the particles also become less important
macroscopic particles that was studied experimentally. P P '

Sohing e Syte of Eo) 14 el e prfles o FOLS B8 16 00 s e depencence o U averce
the electric field, the electron and ion densities, and th 9€s4 pic p P

. . : She density of macroscopic particles for different strengths of
charge and potential of the macroscopic particles. For com- o )
) . . . the external electric fieldZy and U, as functions of the
parison with the experimental data on the current density "Macroscopic particle density because the regions of influence
the external field, we have also calculated the average elec- . pic p . y : 9 .
o : . of neighboring particles overlap; this shows up as a reduction
tron density in a unit cell: ) ) .
in the plasma density and, therefore, in the flux of electrons
o 3 ¢, to a particle. At the same time, the flux of electrons from a
Ne= —R3_rgfr Ner <dr. (19  macroscopic particle owing to secondary electron emission
d-Td7d driven by the electron beam increases in proportion to the
density of macroscopic particles. As a result, the fluxes of
5. COMPUTATIONAL RESULTS AND COMPARISON WITH  jgng and electrons come into balance at loiigrand Uy .
EXPERIMENT The dependence of these parameters on the external field is
Figures 7a and 7b show the radial distributions of theless obvious. In our model, the reductiondg andU 4 with
electronand ion densities and of the electric field strength foflecreasindJ ., is determined by the dependence of electron
different densities of macroscopic particles. The Coulomidiffusion coefficients and of the average electron energy on
field of the macroscopic particles for the same charge showthe applied external voltage. Therefore, a dropUg,; re-
here was calculated using the formula duces the flux of electrons onto a macroscopic particle and,
B 2 with that, inZy andUy.
E(r)=eZyrq/r. (16 These calculations of the radial distribution of the elec-
The particle radius was taken to be 12n, which corre- tric potentialand charge on the macroscopic particles provide
sponds to the average radius of the carbon-glass particles. As better estimate of the Coulomb coupling parameter be-

Fig. 7a shows, for a low particle density, the region overtween the macroscopic particles. The paramEtehas been

eZy Ry
Ef:fd:_r_z’ Zdzf 477e(nHe++nHez+—ne)r2dr.
d fd
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Z, U, \
5. 104 b S5t b
4-10%} 4t
FIG. 8. The average charge on a macroscopic
310t 3t particle in units of the electronic charge) and
the potential of the macroscopic particlés as
4 functions of the density of macroscopic particles
2107y 2 for external voltages of 94@smooth curves
720 (dashed curves and 480 V (dot-dashed
1-10%} 1+ curves.
0 3 0 3
10 10

introduced in the literature to measure the degree of Cou- Note the large difference between the values of the

lomb coupling®® screening parametar obtained in the best approximation to
1 Ze a real plasma potential by the Yukawa potentsae Figs. 7a
r.=— _-d (17) and 7h and the Debye radius,, as well as the fact that the
¢ KT 4meqd’

changes in the density of the macroscopic particles, the De-
wherek is the Boltzmann constar,e is the charge on the bye radius, and the screening parameter are not correlated. In
macroscopic particlesi~2R, is the distance between the most papers, it is assumed as an estimate, Xhit deter-
particles, and is the kinetic temperature of the macroscopicmined by the Debye radiuge.g., Ref. 1% It has been
particles. Essentiallyl’. is the ratio of the potential energy Proposed that the screening parameter for the potential of
of the macroscopic particles owing to the Coulomb interacthe macroscopic particles when the particles are not a plasma
tion to their kinetic energy. Ithas been shown in Monte-Carlocomponent is given by
calculationd®?*that a three dimensional Coulomb liquid de-
velops forI'.>2, while a Coulomb crystal develops f. 1 i+ 1 19
>170. N Ipe Ipi

The values ofl’; given here were obtained in the ap-
proximation of a one-component plasma, so that they negledhat is, under our conditions, wherg~n; andT,>T,, the
the screening of the potential of the macroscopic particles bgcreening lengtih should be equal to the ion Debye radius
the ions and electrons in a real plasma, which may reduce thig; . As the table shows, the actual screening radius is not
parametef . by several orders of magnitude. In order to takeonly larger tharrp;, but also larger thamnp,. Note that in
the screening into account, the formula Ref. 15 the screening parameter is not directly related,fo

or rpe; this question lay outside the scope of the paper. In

y=T.exp(—1/\), (18) fact, ihe screening parameter is related to the Debye length
is customarily employed, where the screening lengtis  only in the linear approximation, while near a macroscopic
taken to be the electron Debye radius. particle the changes in the ion and electron densities reach

In this paper we have calculatel,, including the 100%. In the nonlinear cask,can be estimated on the basis
screening of the potential of the macroscopic particles. Tablef charge conservation. Let us assume that in the screening
| lists the values of various parameters characterizing theegionr <r4+\, the ion density is equal to the ion density
beam-driven discharges witth=940 V formed with the far from the macroscopic particle, and the electron density
maximum densityN4=10° cm~2 (first numbey and mini- equals zero, while outside that region the quasineutrality
mum density Ng=4-10° cm 3 (second numberfor the  condition is satisfied. Then Eq14) yields the following

macroscopic particles. equation for\:
TABLE |I.
Parameter  n,, 10" cm™3 ni, 10 cm™3 I, um Ibe, M N, um
Formula - - Ny 3 (KTo/87n e?)*? U=~eZsel" ")y
Value 1.5/6 1.6/6 100/600 15/7.5 45/60
Parameter I'. Iy I'p lsh1, #M lsh2, wM
Formula %7, T, exp(I/\) T exp(lirpe) eEZt%2m Fyt?/2m

Value 2.1043-10° 2-10%13 3-107%/10°%° 0.1/1 0.05/0.1
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4 5 voltage, which conflicts with the experimental dg&ee Fig.
Zg=7 m((rg+ N)3=rn;. (200 5) The version of this calculation in which only secondary
electron emission from the beam electrons is included is free
This formula allows us to understand the noncorrelation beof this shortcoming, so it was chosen as the main version.
tween the screening length and the Debye radius as the den- \We can describe the loss of charged particles at macro-
sity of macroscopic particles decreases. Thus, when the Decopic particles globally by introducing a coefficient of re-
bye radius is calculated for a given field, the electroncombination of the plasma on macroscopic particles. It can
temperature does not change, while at the same time thge introduced by integrating Eqg9)—(11) over the volume

electron density, which is roughly equal to the ion density,qf 4 ynit cell, noting thahHe+>nHe+ Integrating Eq.(11)
increases by a factor of 4, so the Debye radius decreases b

a factor of two. At the same time, the screening length alsa mtegralof the first two terms on the right of EGL1)) in the
depends on the charge on a macroscopic particle, which in
creases by an order of magnitudéig. 83 and more than 0™M BaNke; Ny, we obtain
compensates the change in the ion density. As a result, the
screening length increases by roughly one and a half times.
The screening length is, therefore, not coupled directly
to the electronor ion Debye radius, although in magnitude itUSing the quantityn in place 0ane* is justified by their
is close to the electron Debye radius under our experimentalloseness in the calculations, even for high macroscopic par-
conditions. This question is of great import for estimating theticle densitiegFig. 70, and makes it possible to compare the
Coulomb coupling parameter. In fact, as can be seen frorgalculated and measured values@¥. The integral of the
the table, when this parameter is estimated taking screenirfgst two terms on the right of E¢9), which determines the
into account, the result is qualitatively different, dependingflux of electrons onto a macroscopic particle because the
whether\ or rp, is used. Estimatind” for screening with ~ charge is time independent, should equal the sum of the flux
the Debye radius yields an uncorrelated system of macroSe of electrons from the macroscopic particle and the ion
scopic particles, while using the actual screening length cafiux ,Bdﬁend.
give rise to crystal structures in a beam-driven plasma. Under  Figures 9a and 9b show the calculated and experimental
the present experimental conditions, however, a beam-drivegiependences of the plasma recombination coeffigignon
discharge burned stably for at most 1 ms. Over this time, thély andU,y. Including secondary emission in Fig. 9b makes
particles move a distance of less thapuh (much less than it possible to match the experimental and theoretical results,
the distance between particledoth owing to the electro- both qualitatively and quantitatively. The recombination co-
static forces(over a distancég,) and owing to the forces efficient decreases as the density of macroscopic particles
which arise as a result of the bombardment of the surface dhcreases because of a reduction in the average charge of the
a macroscopic particles by the plasma parti¢®eer a dis- macroscopic particles and a corresponding reduction in the
tancelsh2):26 ion and electron fluxes to them. The dependence of the re-
4 2 combination coefficient on the applied voltage is associated
Fo=4mrane(Ti+ Te)/Ry. @D with an increase in the mobility and diffusion of the elec-
The calculated average electron densities in a unit celirons as the reduced electric field is increased. As a result, we
can be used to calculate the current density in the dischardéd that the recombination coefficient increases as the elec-
as a function of the density of macroscopic particles: tric field strength is raised, both inthe calculations and in the
experiments.
As an illustration of the extent to which the macroscopic

When secondary emission is neglected, the calculated arRprticles affect the rate of recombination of the plasma, Fig.
exper|menta| dependences of the current densr[y on the deﬁ_c shows a plot of the effective recombination coefficient
sity of the macroscopic particles differ by more than a factorBett @S @ function oNy and the applied voltage:

of 10 at high densities of thelattéFig. 5). In order for these Bu=

results to agree, it is necessary to assume that the secondary ef
emission coefficient equals 1000, a magnitude more or les§he figure shows that macroscopic particles at densities ex-
typical of dielectrics. That this coefficient is so large is evi- ceeding 18 cm™2 do have a significant effect on the recom-
dence of inhomogeneities in the composition of the carbonbination rate of the plasma. At a density of®lém 2 the
glass particles and of the presence of poorly conducting rececombination rate is more than an order of magnitude
gions within them. higher.

We have also examined another possibility for explain-  In conclusion, we note that these results can be used to
ing the experimental data through additional ionization of theestimate the feasibility of using the orbital approximation for
plasma by secondary emission electrons. A comparison witthe cross section for absorption of electrons by a macro-
experiment in this case showed that reasonable agreementssopic particlg8) in a collisional plasma, i.e., far beyond the
obtained if we assume that A@nization events take place formal limits for applicability of this approximation. To do
per beam electron incident on a macroscopic particle. Howthis, we calculateBy using a distribution function with the
ever, at high macroscopic particle densities the calculatedross sectior(8) for Ng=10° cm™3, when the potential of
current densities cease to depend on the applied externtide electric field near a macroscopic particle is close to the

¥1d writing the flux of ions on a macroscopic parti¢tee

S=BaNtier Na+ BNeNyes = BaneNg + BN (22)

j=end’



JETP 88 (6), June 1999 Ivanov et al. 1113

! voltages and injected particle densities. The discharge cur-

rent density was observed to decrease as the particle density
‘ was raised when the electric field was held constant. When

/ the field is raised, the dropoff rate increases. Based on these
i data, we have determined the recombination coefficient for

N s the plasma on macroscopic particles. As the density of the

0.5f 0 » S particles increased up to 4@m™3, the recombination coef-

~., ficient increases by roughly a factor of 40 compared to that

e 0 2 @7 in a dust-free plasma.

"""""" O oo In this paper we have constructed a theoretical model for
(1) S R sl a non-self sustained discharge with macroscopic particles,
10° 10* 10° 10° both including their effect on the electron distribution func-
tion and plasma transport coefficients and calculating the dis-
tributions of the charged particle densities and of the poten-
tial near the macroscopic particles. A comparison of the
1of b experimental and theoretical results demonstrated the impor-
tance of secondary electron emission driven by the electron
o beam.

These calculations have shown that the size of the region
where quasineutrality is violated may not be correlated with
the electron Debye radius. The region where a macroscopic
particle has an effedi.e., the region where the plasma den-
sity differs significantly from the maximujris considerably
bigger than the region where quasineutrality is violated and
varies slowly with the density of the macroscopic particles.

We have shown that the orbital approximation for the
cross section for the absorption of electrons by macroscopic
particles yields qualitative agreement with experiment even
far from the region where it is formally applicable.
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A study is made of the radiative Pierce instability of a relativistic electron beam in a waveguide
stabilized by an infinitely strong magnetic field. Analytical and computational methods are

used to determine the growth rate of the instability, as well as the efficiency for conversion of the
beam energy into electromagnetic field energy as a function of the beam current, how
relativistic the beam is, and the geometry of the system. The physical nature of the instability is
clarified and the mechanisms for its saturation are discussedl999 American Institute

of Physics[S1063-776099)01006-9

1. INTRODUCTION frequency, when electromagnetic waves propagating counter

) o to the beam can exist in the system. In a plasma cavity,
It is well known that a relativistic electron beam can instabilities can develop on a plasma wave.

radiate coherent electromagnetic waves extremely efficiently | ihis paper we use analytical and numerical methods to
as aresult of a r.ei%nant interaction with a waiRecently it study the linear and nonlinear stages of the nonresonant,
has been establishethat a relativistic electron beam propa- giimyjated emission of electromagnetic radiation by a recti-
gating rectilinearly in a waveguide is capable of radiatingjinear relativistic electron beam in a smooth cavity. A de-

efficiently even \{vhen the phase velocity of thg wave excegd§aned investigation is made of the cylindrically symmetric

the beam velocity. This nonresonant collective mechanism,ce ie. when only azimuthally symmetric modes are ex-
for the interaction of the beam electrons with Bmode  jteq in a cavity with a circular cross section. The mecha-

e!e_ctromagnetic wave is essentially a radiative Pierce instgsigm by which the beam electrons interact with the electro-
bility. - _ _ . _ magnetic field, and which leads to the development of the

The radiative Pierce instability has been realized foringeapiiity, is studied in the limit of small wave amplitude.
nonrelativistic electron beams in monotron generat@kort Two mechanisms for saturation of the instability are
systems, in which the transverse dimensions of the cavityyentified on the basis of numerical simulation. Phase por-
exceed the longitudinal dimensions, were used. traits of the beam electrons are obtained which can be ana-
~ The theory of the nonrelativistic monotron generator wasy ;e to reveal the physical nature of both saturation mecha-
first developed by Muller and ROSté‘_SNhO analyzed the pisms for the instability. For the steady-state instability, we
properties of the generator with the aid of an equivalent Cirqain the amplitude of the field in the cavity, as wellas the
cuit of lumped elements. It was found that the condition for.,nyersion coefficient for the energy of the beam electrons
the appearance of oscillations has the following form for thg ;4 field energy, as functions of the system geometry and
electron drift angle: the density and relativistic character of the electrons. The
spectrum of the electromagnetic radiation is investigated.

We conclude by examining the dynamic instability of
the beam particles in the field of the excited wave.

1

2n+§

wl

= ——= T,
u

whereL is the length of the system amdis an integer. This
condition corresponded to a loading characteristic with nega?- BASIC EQUATIONS

tive conductivity. This can be said in a different way: a posi- Let us consider a smooth, cylindrical metallic wave-

tive feedback develops, which leads to self oscillations. Inyige. The ends ofthe cavity are covered with metal foil or a
the 1940's _E|erééstud|ed another instability, which also re- megh 1o create mirror boundary conditions for the electro-
lied on positive feedbactbetween the output and input elec- agnetic field while being transparent to the beam electrons.

trodes through an external circuitater the instability was e cavity length id and its radius iR The system lies in

interpreted in a different way: when the beam current ex+ yniform magnetic field that is directed along the cavity

ceeds a critical level, a beam wave develops in the systemyisang is strong enough that the transverse motion of the
and propagates counter to the beam to create feedB®fk poam electrons can be neglected. Maxwell's equations for

1, Sections 49 and 30It would have been natural to regard (e nonzero components of the field in a cylindrical coordi-
the two appgrently dlffgrent |nstapllltles as one with twol ré-nate system take the form

gimes. The first, potential regime is possible when the Pierce

parametemw,y~ ¥4k, u exceeds unity. The second, radiative ~ 1 ¢ JE 9B, 1 JE,

, i : - S —(rE)+—=4 -—ft==—
(wave regime occurs at cavity frequencies above the critical r &r( ) dz s dz ¢ at’

1063-7761/99/88(6)/7/$15.00 1115 © 1999 American Institute of Physics
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k2 — w_Z 1— ﬂ
"oc? (w—k,u)?

If we average the world of the field over the phases of
the electrons or, equivalently, over the timgthe electrons
spend in the cavity,

JE, JE, 1B,

_ . 2
9z or c gt - @ ki+

=0. (8

In this case it is also convenient to express the field in terms
of asingle component of the Hertz polarization potengtal

1 1
Ezz(aﬁ—?af)lp, A L
(2) <A>: ;J A(to) dto, w71< T<(5w)7l, (9)

0

The initial equation and boundary conditions for the field

are then summing over the phases of the unperturbed electrons

makes no contribution to the radiation. In order to obtain
1 nonzero coherent radiation, it is necessary to include the re-
aZ(A— —2&f> y=4mp, E,,_g= E,|2101L=0. 3 action of the radiation field on the beam electrons. In this
¢ case the beam comes into phase and a stimulated coherent

The perturbed charge density of the particles is then given byadiation effect occurs that corresponds to a nonzero contri-
bution to the work by the radiation field. Here there is no

p=eny(r) J o(z—2z(t,z9)) dzp— 1|, (4)  Pphasingof the radiation field accompanying the beam elec-
trons.

wherez=z(t,z,) is the solution of the characteristic system  When the beam is modulated, the velocity and trajectory
of Vlasov equations: of an electron are slightly perturbed, so that

dz dv e~ ~ z -

—= — =53 =u-+ =ty+ —+t.

GV G m E,. (5) v=u+tv, t[z]=t, a t (10
(n, is the unperturbed beam electron density apd (1 Herev andt are the solutions of the linearizedequations of
—v?/c?) 2 s the Lorentz factoy. the characteristic system of Vlasov equations,

The beam charge is assumed to be neutralized. When an  ~ ~ &
electron enters the cavity its unperturbed velocityiisThe _t: L e

. . . . 2 ’ ')’ EZ . (11)

beam leaves the cavity without hindrance, carrying away the ~ dz u dz mu

acquired perturbations. The solution of Eqs(11) with the potential(7) has the

form
3. LINEAR THEORY

4
The radiative instability of a straight, neutralized relativ- 7 = Ey‘3¢s(r)2 E, sir{wtﬁ(g—ky) ,
istic electron beam in the linear approximation was exam- m =1 0—k,u u

ined on the basis of a solution to the dispersion equétion. 4

The conditions for development of the instability and its ~ 7_ i)’_g(ﬁ (f)E E, COE{ otg+ ﬂ_k )z
growth rate were obtained a functions of the system geom- mu = (w—k,u)? u ’
etry and beam current. It has been shown that the instability (12

is a Raman instability, is self-oscillatory, and has no current, .« g — (02— K2)A, . In this case, the work averaged
threshold. In order to reveal the mechanism for transfer of;, ., thVe phases of IiheVeIectrons is

the directed energy of the beam to the electromagnetic field,

let us consider the work done by the longitudinal componentA e’w 3,2 XE 1
oo fi i =— r a;; - ,

E, of th.e radiation field on an electron as it passes througﬁ ) >mu?’ #5(r) =il (w_kju)g (w—kiu)2
the cavity, (13)

L _ 2 ;

A=ef E,(t[Z],2) dz (6) whereX=Ej5, while
0
EE; cog (ki—kj)L]—-1
The componenE, is expressed, with the aid of E¢R), in ajj= £2 - : (14)
2 J !

terms of the potentialy, which, to first order in the field
amplitude for a waveguide with a beam that is uniform over  The average work done on the beam electrons per unit

the cavity cross section, is given IfRef. 1, Section 8 time is
4
=p(r) >, A,cofwt—k,z), 7 A= J (AYny(nu ds . (15)
v=1 S,

where ¢4(r) is the transverse structure of the field. The lon-The integral is taken over the transverse cross section of the
gitudinal wave numbek, corresponding to a wave with am- cavity.

plitude A, is related to the frequency by the dispersion In order to calculate a specific value of the work it is
relation (Ref. 1, Section B8 necessaryfor finding the ratiosA; /A,) to use the boundary
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conditions, in particular the conditions that there be no per- ¢
turbations in the charge densities and beam current irz the &(WF — A, (20

=0 plane:
where the time averaged enerdy/) includes both the en-

4 4 . . .
ergy of the field and the kinetic energy of the beam electrons
2 _ 3p —
;1 (k;—a?)A,=0, 1;1 KJA,=0, (16 in the cavity, i.e.,

(W)= (Wep) +(We).

For small values of the Pierce parametets1, the en-
ergy contained in the cavity will be determined mainly by
the energy of the electromagnetic field. In this case,(ZQ).
takes the form

as well as two boundary conditions on the radiation field,

4 4

> k,A,=0, X kAekt=0. (163
v=1

Herea?= w?/c?>—k? . The first three of Eqg(16) and (163

yield the ratioA, /A, and the lasta. Here the wave numbers d_X (1) kfczfllz u
k, satisfy Eq.(8), which for a small Pierce parameter, dt (=1 wb(wz_azuz)s/z L
wg'}/73 i A (,UL
=5 <1, 17) X sin(awpl)sin — | X. (21)
1

For a cylindrical waveguide
ds(r)=Jo(k, sr),

has the solutioh

B Biz2 , _ K2y~ 3 _ , .
ki,=*far——wy, T aa— wherek ;= uos/R. (uog is the root of the Bessel function
| 2a (0Fau) 3o()).
e X is quadratic in the field, so that
w
Kss=—*aw,, a=—-———, a#0. (19 dX
Moy U Jo?—alu Ip = 200X, (22)

Clondition (17) ensures a Raman instability develop-  comparing Eqs(21) and (22), we obtain the instability
ment, and also assumes that there is no Pierce pme”“@rowth rate

instability which would disrupt the current in the beam and

not contribute to the radiation field. ] k2c?y 2 u el

Given the above remarks, we obtain the following ex- ~ 9@=(—1) “b o2 a2y2) 3 [ Sin(awpL)sin| -~
pression for the work (23)
i1 el @b w?uy 2 s ol « at the frequency
A=(—1) E”(bs”msm(awb )sin —— X, T T
where The condition for development of the instability,

2 2 no oL\ .
I psll= KHQLER (—1)"sin| —=|sin(@w,L)>0, (25)
a8

Here we have used the fact that n/L holds in the lead- determines the cavity and beam parameters for which elec-
ingorder. The main contribution to the work’ is from the ~ romagnetic waves can be amplified in the system.
crossed beam-electromagnetic terms. This means that when To C0”9|Ude_th|5 section, we note that E(®3)—(25) are _
the beam is modulated by the electromagnetic part of th&ompletely |qlent|cal WI'Fh thos_e derlve_d in Ref._2 on the basis
radiated wave, most of the work is done by the beam wavedf an analysis of the dispersion re_latlon, conflrml_ng_ the cor-
And, conversely, when the trajectory of an electron is per_.rectne.sls of the proposed mephamsm for.th(_e radiative Pl.e.rce
turbed by the beam wave, the maximum contribution to thénstablhty as nonresonant, stlr_nulated emission by a rectilin-
work of the radiation field is from electromagnetic waves. €@ relativistic electron beam in a cavity.
Thus, the two oscillatory systems are coupled: the beam and
the electromagnetic field in the cavity. The result of this
interaction is a shifbw in the frequency, whose imaginary
part is nothing other than the growth rate of the instability. The nonlinear system of Eq$l), (4), and (5) can be
Here the effect is obviously collective, since the develop-studied only by numerical simulation of the instability. Ac-
ment of the instability requires that beam plasma waves beording to the linear theory, several modes with similar fre-
excited in the system. quencies are excited at once in thecavity. The absence of a
For calculating the instability growth rate we write down distinct frequency, as well as wavelength, makes it impos-
the balance equation for the energy in the cavity, sible to separate the field into slowly and rapidly varying

4. NONLINEAR THEORY OF THE INSTABILITY
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FIG. 1. (a) Dynamics of the wave amplitude in a
short cavity,é=6 for y=2 andy=0.5. (b) Phase
planes of beam electronsin the cavity at different
times7=40 (1), 45 (2), 60 (3), and 65(4).

components with subsequent averaging over time or posholds, wheren; is the longitudinal mode number. Two
tion. Thus, we found it necessary to use the methods denodes with the same growth rates can be excited if the dif-
scribed in Refs. 6 and 7. In our case, the beam was simulatddrence between their drift angles obey#< . Since Eq.

by a particle methof.For better smoothing and elimination (25) implies that either even or odd harmonics can be excited
of sawtooth fluctuations in the density and charge, the corsimultaneously in long systems, we find that for 2, when

of the particle was chosen to have a triangular shape; thé=3, a two-mode regime exists and &= 12, a three-mode
particle size coincided with the cell siZerhich can be re- regime.

garded as a modification of the PIC methogrom 10 to 40 We have distinguished two mechanisms for saturation of
particles belonged to asingle grid cell. An explicit schemethe instability. The first mechanism occurs in shaft(12)
with step size changes was used to solve the Maxwelbystems with single-mode regimes. It is analogous to the
equatior® For studying long systems witth/R~30 an Landau mechanisthThe four-wave process

explicit-implicit Crank-Nicholson scheme with factorization

with respect to the coordinatewas used. In the transverse wintwin—win 1t o, (29
direction, the field was expanded in the eigenfunctions of the

waveguide. In order to eliminate grid fluctuations variousWhich results in pumping of energy from the wave back into
methods of numerical filtering were used for the field com-the beam in accordance with the conditi@3), occurs in the
ponents, as well as for the current density and charge of theystem. In this case, for large field amplitudes in the cavity,
beam? The fo”owing dimension'ess quantities were used inthe OSCi||ati0nS Of the beam eleCtronS relative to the equi”b'

the numerical simulation: rium position cease to be harmonic.
Figure 1 shows the results of a calculation o+ 6, y
u Pz eL =2 and y=0.05 (which roughly corresponds to a currdnt
T Et' P= mc’ °7 mc2y3 z: (26) ~2.4 kA). Regular oscillations in the field amplitude with a

) ) ) ~_ modulation frequency on the order 6 in a steady-state
_ In the numerical calculation, we considered an infinitely satyration regime can be seen clearly. The position of the
thin beam with a cylindrical geometry and used a soft regimgyeam electrons in the phase planes is represented by Fig. 1b.
for its entry into the cavity. The Pierce paramejerwas  For time r=45, when the instability is still linear, the modu-
defined as the ratio of the working currento the limiting  |ation of the beam is purely harmonic. As the instability de-
Pierce current,,, where velops, nonlinear distortions appear, which cause breaking:
mc u3 53 the 'e!ectr'ons begin to ovgrtake each other anq the peam
I“:T 3 2IN(Rirg)’ (27 straﬂﬁe; in velocny. Breaklng occurs whgm th.e. instability
c 0 passes into a stationary regime. As the instability becomes
In all the calculations we chosg/R=0.4. Here the insta- Saturated, the changes in the beam electron density acquire
bility saturated after 10—10000 transit times, depending oh€ character of a deep modulation. This corresponds to an
the beam current and the cavity geometric paraméter increase in the ratio of the amplitudes of the beam waves to
=L/R. In most cases the first transverse madel was the electromagnetic wave and to a shift in the longitudinal
excited. For very short systengs<1 and for some values of Wave numbers, toward larger values. The beam remains
£ in long systems, higher transverse modes were excited. F&0!d, despite the rather long time after the radiation ampli-
short systems, witl§< 12, the instability regime was mainly tude reaches its stationary level.
single-mode; for certain values @f two longitudinal har- In long systems {&=12), when the instability is multi-
monics corresponding to the selection r(28) were excited. ~Mode from the outset, the mechanism responsible for satura-
In long systems¢>12), a multimode regime sets in. In fact, tion is the randomization of the beam particles in the field of

for large ¢ (£>1), the relation many waves. As a result of the randomization of the particle
- trajectory, the modulation of the beam becomes uniform, i.e.,
lc 7 ny—ng the phases of the electromagnetic field relative to the elec-

f:2 u /‘LS,O Aa ’

(28) trons are distributed uniformly in the intervfd;27]. Thus,
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plmc as a function of the controlling parameter, which is the geo-
4 metric factoré, for y=2 and y=0.05. This graph shows

clearly the existence of two saturation regimes for the insta-
bility which appear in regions consistent with the above es-

timates.
0 oli' - "6“‘1 0'6 0'8 0 As the beam current is raised, and the Pierce parameter
| ’ ' CaL x approaches unityor greatey, a Pierce potential instability

develops in the system. Figure 4 shows a phase pattern of the
beam at the time the instability saturates, whenl0 holds,
for £=18, x=0.95, andy=2. A virtual cathode is observed
to form at the cavity entrance and the beam electrons are
partially reflected from it. In the meantime, the randomiza-
the contribution to the stimulated emission goes to zero. Asion of the beam corresponds to the presence in the cavity of
the numerical studies showed, saturation of the instabilitya radiative instability whose development is somewhat sup-
sets in simultaneously with the chaos of the beam particleqressed by the potential instability. Asis increased further,
Figure 2 shows the calculations fér=18, y=2, and y  the growth rate of the aperiodic Pierce instability increases
=0.05. The phase plane of the beam electrons is shown fanore rapidly than that of the radiative instability. As a result,
the time the instability saturates=40. By the middle of the thepotential branch suppresses the radiative branch. Thus,
cavity, the beam is completely randomized. Although thethe aperiodic and radiative Pierce instabilities can be re-
beam is highly chaotic, it is still modulated at the initial garded as two regimes of a single instability which are real-
level. At the cavity exit the effective temperature of the beamized for different values of.
is on the order of 0.1-0.3 MeV, which is not surprising, A straight relativistic electron beam is, therefore, ca-
since the field strength in thecavity reaches 100—300 kV/cmpable of stimulated emission of electromagnetic waves in a
For this operating regime of the generator, the field in thesmooth cavity. Naturally, the question of the efficiency with
cavity has a broad spectrum of longitudinal harmonicswhich the energy of the electron beam is transferred to the
higher harmonics are also excited in the transverse structureadiation field arises. Since the radiation is trapped inside the
Thus, for example, excitation of the third transverse modeesonant cavity, we take the conversion efficiency of the
was observed. Beam bunching was absent for both instabilitbeam electron energy to electromagnetic radiation energy to
saturation mechanisms. be the ratio of the radiation flux to the incident beam energy
In order to estimate the degree of randomness in théux,
oscillations of the system at the time when the stability is
only beginning to reach saturation, two test particles were {EN
launched into the cavity separated by a rather small distance 7= —5——
in the phase plane, with velocities roughly equal to the beam
electron velocityu. The maximum distance by which the
particles could separate in the phase plane as they paddiere(|s|) is the magnitude of the Poynting vector of the
through the cavity was chosen as a measure of the randorfilectromagnetic wave near the right hand boundary of the
ization of the beam. Figure 3 is a plot of the maximum phasévaveguide, averaged over a long time interzal 7/ w.

FIG. 2. Phase plane of beam electrons in a long cavity 18) at the time
saturation sets in foy=2 andy=0.05.

mcnuy’ (30

5 5 * @y, SO using a Pierce source for pulsed currents withgow
D— z . Pz is inefficient. The quantityy(£) attains its maximum in long
L mc/ ’ systems, with ¥ ¢<8 (Fig. 5. When the cavity length is

~ O

FIG. 3. The maximum distance between two test particles in
the phase plane as a function of the geometric parangeder
the time the instability enters the nonlinear stage.

4.0 67 94 121 142 169 196 223 250 277 L
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FIG. 4. Phase plane of the beam electrons at the time of saturatiah for FG- 6. Energy conversion coefficienf as a function of the relativistic
=25, x=0.95, andy=2. characteristicy of the beam fory=0.05 andy=4 (1), 5 (2), and 6(3).

increased further, the conversion efficiency falls off rapidly,in terms of the integem<n.

in agreement with the linear theofyTherefore,£ of order A monotron is an open system, since it exchanges en-
five is the optimum. ergy with the surroundings by means of an electron beam.

Numerical simulation yielded the dependence of theThe development of an instability assumes the existence of
conversion coefficienty on the beam current for different strong feedback. Naturally, in such a system there is a dy-
values of the geometric parametér As the current is in-
creased,n decreases because of the heating of the beam.
Heating sets in faster in long cavities, and this leads to more
rapid drop in theconversion efficiency as the beam current i
raised.

The dependence af on the relativistic characterf of
the beam is consistent with the linear thednjs v in-
creases, the energy conversion efficiengyinitially in-

a
creases quadratically with but then saturates for>5 (Fig. [ It
6). w \ M’[ i

0 02 04 03 07 09 10 L2 13 15 16 18 19
5. DYNAMIC INSTABILITY OF THE BEAM PARTICLE wlk

MOTION

Field amplitude

As the instability reaches the nonlinear stage, the field |
amplitude continues to rise slowly. The regular amplitude
modulations in the field are replaced by random oscillations’S
This is because, as the instability develops further, the fre's
guency spectrum of the oscillations broadéiig. 7) owing
to nonlinear many-wave processes which cause a redistribLE

d am

tion of the energy in the radiation spectrum. AR L
Wint O = O -m T ©O1pm, (31) h“ Vi i i da 1.7
0 02 04 05 07 08 10 L1 13 14 16 17 19
wlh
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FIG. 7. Fourier spectrum of the electromagnetic oscillations at different
FIG. 5. Energy conversion coefficienf as a function of the geometric times:(a) at the time the instability saturate#) in the nonlinear stage and
parameter of the cavity for beam parametgrs2 andx=0.05. (c) advanced nonlinear stage.
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namic instability of the motion—an exponential spread in thevices operated in a parameter range where weak generation
particle trajectorie$, which was observed in the nonlinear occurred, specifically, withy=1 (nonrelativistic beamand
stage of the numerical calculations for long systems ith ¢£=L/R<1 (ultrashort systems Numerical simulation

=8. The development of the instability is, indeed, accompashowed that for optimum generation, the device efficiency
nied by a broadening of the spectrum of the oscillations. It iscan be on the order of 20—30%.

convenient to take th&-entropy, which is defined by the There is yet another parameter which can be used to
expression regulate the generator efficiency—the radiyof a thin cy-
lindrical beam. Infact, the electrons with transverse coordi-
_ ) 1 D(1) - ) .
K=Ilim lim =ZIn—=, (32 nater, are modulated by a radiation field proportional to
to D(0)—0 ¢ D(0) ¢4(ry). Since the entry into the steady state is determined by

ng modulation depth of the beam, the saturation amplitude
fvviII depend on the beam radiusg .

Finally, we note that the existence of two different insta-
bility regimes opens up the possibility of creating both wide

as the characteristic of the dynamic chaos. Since the time t
particles spend in the cavity is limited and is on the order o
L/u, the K-entropy can be calculated approximately using

the formula .
and narrow band generators. The fact that the regimes de-
K 1 DmalT) 33 pend only on the geometric parameteof the cavity makes
T n D(0) '’ an attempt to construct a tuneable generator tempting.

We thank V. A. Cherepenin for discussing the problems
associated with numerical integration of Maxwell equations
and for valuable comments.
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The x-ray spectra of a plasma generated by heating & Ar clusters with high-intensity
femtosecond laser pulses with,= 10 W/cn? are investigated. Spatially resolved x-ray spectra

of a cluster plasma are obtained for the first time. Photoionization absorption is observed to
influence the spectral line profiles. The recorded features of the x-ray emission spectra definitely
indicate the existence of a large relative number of excited iens0( 2— 10 %) with

energies of 0.1 MeV in such a plasma. Possible mechanisms underlying the acceleration of
ions to high energies are discussed. It is shown that the experimental results can be

attributed to the influence of ponderomotive forces in standing waves generated by the reflection
of laser radiation from the clusters. ®999 American Institute of Physics.

[S1063-776(199)01106-3

1. INTRODUCTION focusing of a laser beam in a plasfi4,the formation of
multiply-charged ions with completely empty inner shells

The fabrication of lasers that generate subpicoseconghojiow iong,™* and the generation of higher harmorics
pulses at a power of several terawatts has unleashed neynq jons with energies above 1 M&Y.

possibilities in research on the interaction of laser radiation |1 s important to note that the details of the interaction

with matter. In addition to the study of fundamental prob- o¢ \,irashort laser pulses with clusters are not at all clear at

lems in the physics of high energy densities, various applieghig nint. There are several models at the present time, each
problems are of major interest as well, for example, the de\'/vith a different description of the ionization of cluster

velopment of _e_ff_|C|ent sources of both incoherent and ,COher'argetsl.*&g The data available from mass spectrometer mea-
ent x-rays utilizing a laser plasma, or the acceleration o

. ) ) surements are too meager to explain the mechanism under-
charged particles. Together with the solid-state targets con- g P

ventionally used in experiments involving picosecond an yézgr:gﬁcgecn:r:agfgu? {btiztd |tc:)nfh|en Cssjzn?bpelisgzi'o;r;eflg
nanosecond laser pulses, targets consisting of agas jet X P

panding in vacuum have come into widespread use for ulmoslses:Ie or cluster and to hydrodynamicollective pro-

trashort pulses. The practical advantages of these targets ar L . .
ease of control, simplicity of replacement, and good repeat- N Principle, the presence of fast ions is detectable not
ability. Unlike solid-state targets with a multitude of plasma-©NlY by mass spectrometer techniques, but by x-ray spectral
generating processes, the plasma of a low-density gas targ@€thods as well. The instrumentation fqr the latter is sim-
is generated for the most part by tunneling or above-barriePler, and they can be used to systematically amass experi-
ionization in a strong optical field. mental data on plasma processes. In fast-ion detection appli-
A new class of targets has emerged in recent years: s@ations, the sensitivity threshold of the x-ray spectral method
called cluster targets, i.e., gas jets containing clusters thd$ lower than in mass spectrometer measurements. However,
consist of a significant number (3010° of molecules or if the lasing efficiency is high enough to produce a reason-
atoms having near-solid densities at diameters of 10-ably large relative number of fast particles, their influence
100 nm. Such targets, on the one hand,have the practical agan be detected in the plasma emission spectrum.
vantages of gas targets and, on the other, can be used to In this paper we show that a large relative population of
investigate the kinds of processes typical of high materialons (10 2—10 %) with energies greater than 100keV is
densities. A great many important phenomena have been digenerated in the plasma when femtosecond laser pulses with
covered by means of cluster targets, including the selfa peak intensity of 1X¥W/cn? interact with gas targets con-

1063-7761/99/88(6)/8/$15.00 1122 © 1999 American Institute of Physics
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To spectrograph 2 To spectrograph 3 either with a thermal Doppler mechanism or with a Stark
207207, mechanism of spectral line broadening in the plasma. In the
next section we propose a simple model, which provides a
consistent explanation of the observed line profiles of the
laser oxygen(asymmetri¢ and argon'symmetrig ions. The prin-

)\ beam cipal attributes of this model are, first, line broadening due to

ti'ruséfr /I\ macroscopic motioriexpansion of the plasma and, second,
9 the onset of asymmetry of the line profiles of the oxygen ions

as a result of the photoionization of unheated clusters and the

y presence of H-like and He-like carbon ions in the LO
To spectrograph 1 plasma.

X

FIG. 1. Experimental layout.

3. SPECTRAL LINE PROFILES IN AN EXPANDING DENSE
PLASMA

taining CGQ and Ar clusters. The presence of these ions ] .
shows up in the x-rayspectral lines. We assume that the interaction of a femtosecond laser

pulse with a gas jet generates a plasma in a spatial region of
characteristic length, in the vicinity of the focal spot. The
generated plasma then expands into the surrounding me-
Experiments have been carried out with the laser systerflium, which contains unheatédr slightly warmed clusters.
at the Saclay Research Cent@enter d'Eudes de Saclay, At time t> 7,5 (75 is the duration of the laser pulseve
Commissariat & Energie Atomique, Direction de Sciences have a mixture of unheated clusters and outwardly dispersing
de la Matiee) in France. The plasmawas heated by aions and electrons. This complex object has a characteristic
titanium—sapphire lasei(,<=0.8.m) with a pulse duration lengthL,;,>1.s, and the velocity distribution of the ions in
of 60fs and energy of 70 mJ. Focusing of the radiation by &t is highly nonuniform. Specifically, high-velocity ions are
parabolic mirror produced a radiant flux density up tosituated closer to the boundary of the object, whereas slower
10®W/cn?. A cluster target was formed by the adiabatic ions are localized close to its center. In other words, ions
expansion in vacuum of a comparatively small burst of gagvith different velocities are spatially separated in the given
(CO, or Ar) issuing from a gas valve through a pulsed object. If we assume that ions are acceleratedonly at the time
nozzle of diameter 0.3mm. The gas pressure in the valvef incidence of the laser pulse, then tat 7,5 an ion with
was 10—40 atm. velocity v is situated at a distange=vt from the center of
The plasma-emitted x-rays were detected simultaneousihe plasma(i.e., from the focus of the laserbeamn this
by three spectrographs with spherically concave micdegard we consider the following one-dimensional model,
crystalst® The relative positions of the laser beam, the gagvhich,on the one hand, reflects all the principal features of
target, and the spectrographs are shown schematically in Fighe object and, onthe other, can be used to derive simple
1. The radii of curvature of the crystals weRe=100mm  expressions for its spectral characteristics.
(spectrographs 2 and) &nd R=150 mm (spectrograph )1 Let they axis be directed toward the recording spec-
Spectrographs 2 and 3 provided a spectral resolution drograph(spectrograph 1 in Fig.)1We denote byN;(y) the
A AN=7000 and spatial resolutiodx~25um. These pa- density of ions in the excited statesituated at a distancg
rameters were somewhat better for spectrograpix/A\ from the centerof the plasniae., from the focus of the laser
=10000 anddx~15um. pulse, and byuv(y) the velocity of these ions; in keeping
For the CQ plasma the spectral intervals 17—-17.8 A andwith the foregoing discussion;(y) is a linear function:
15.8—16 A were detected in the first reflection order from thev (y) =by, whereb=const. Let us consider the spectral line
crystal; they contain thesin p1P1— 152 lines (n=4) of He- associated with the radiative transitiom k with probability
like OVII and the 3—1s line of H-like OVIII, respec- Aj and frequencyw;,, and let its profile ay=0 (i.e., for
tively. The emission spectra of the Ar plasma were detectetPns at rest on the averagee characterized by the symmet-
in the fifth andfourth reflection orders from the crystal. Theric function Sy (Jw— wi|). Inasmuch as the spectrograph
corresponding spectral intervals 3.35-3.5A and 3.9-4.2 Aecords the total radiation from all ions, the observed line
contained the §3p— 1s? lineof He-like ArXVIl and its Li-  profile in an optically thin plasma is described by the integral

2. EXPERIMENTAL SETUP AND RESULTS

like dielectronic satellites and thes2p 3P, — 1s? lines of %

A ST N; - —w (1+by/c)|)d
ArxVIl with satellite structures due to transitions in Li-, F*{w—w;)= [ '(y)s"k(lw wi(1+by/o)) Y
Be-, and B-like argon ions. Examples of the recorded spectra A ZNi(y)dy
of the CQ and Ar plasmas are shown in Fig. 2. 2)

Figure 2 reveals the sharp distinction between the emiswhere the factor (¥ by/c) in the argument o8&, is associ-
sion spectra of the CQOand Ar plasmas in connection with ated with the Doppler shift in frequency.
the strong asymmetry of the spectral line profiles of the oxy- It is readily apparent from Eql) that if the function
gen ions. This asymmetry in theprofiles of the oxygen ionN;(y) is symmetric, the observed line profiliqokbs(w—wik)
lines, which is also observed in the lines of He-like O VIl will be symmetric about the frequenay;,. Consequently,
and the ®—1s line of H-like OVIII, cannot be identified the expansion of an optically thin plasma can impart asym-
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O VII

171 172 17.4 17.77 X

FIG. 2. Emission spectra of GO(uppe) and Ar
(lower) plasmas produced by the interaction of a fem-
tosecond laser pulse with cluster targets. The spectra
were obtained with one-dimensional spatial resolution
along thex-axis, which defines the direction of propa-
gation of the laser bearfsee Fig. 1

2mm

He, ArXVIl  He,, Ar XVII v

// h

] | |
395 40 405 A A

metry to the observed line profiles only when the ion distri- Equations(1) and (2), which have been obtained for an
bution N;(y) itself is asymmetric. But then the asymmetry optically thin plasma, cannot account for the asymmetric
must be detected differently by spectrographs aimed in difprofiles of the lines emitted by the G@lasma because in
ferent directions toward the plasma. If, for example, the secthe first place, there is no reason to believe that the expan-
ond spectrograph is situated in the regiprr0 (spectro-  sion is not symmetric about the axis of the laser beam, and
graphs 2 and 3 in Fig. )l it will observe a spectrum even more importantly, the spectra detected by spectrographs
FO®{w— wy) given by aimed at the plasma in opposite directions have the same
obs _ —obs form, in direct conflict with Eq(2).

Fi* o~ 0 =Fi*{— ot 0w, @ We now inquire how the line profile equatiofl) is
which implies that the line profile detected by the secondmodified for a plasma with absorption. We assume an ab-
spectrograph is obtained from the line profile detected by theorption mechanism such that in a narrow frequency band
first via symmetric reflection about the frequeney,, i.e., Aw/w<1 the absorption coefficierit(y) does not depend
if, for example, the long-wavelength wing of the line is sup-on w (properties of this kindare found, for example, in ab-
pressed in one spectrum, the opposite, short-wavelengtorption by inverse bremsstrahlyndhe spectral line profile

wing will be suppressed in the other. is then given by
|
f*ocexp{_fy k(X)dX}NI(y)AIkSk( w— wik( 1+ F )dy

Fiokbs(w— W) =

()

jlexp[ - fymk(x)dx} Ni(Y)Aidy
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FIG. 3. 3 Profile of the 54p 1P, — 15?15, line

of the He-like O VII ion, calculated from Ed6)

for various optical depths of the plasmaand
values of the parameter=10"2. b) Profile of the
1s 4p P, —15? 1S, line of the He-like O VIl ion,
calculated from Eq(6) for an optical depth of the
plasmar=9 and various values of the parameter
L a.

n

0 . 0 .
i7.5 17.6 177 17.8 17.9 17.1 17.3 17.5 17.7 17.9

Wavelength, A Wavelength, A

It is evident from Eq.(3) that the factor exp-[yk(x)dx} in
the integrand imparts asymmetry to the observed line profile  N;(y)= 5
even when the functionk(y), Ni(y), and Sy(w— wiy) 1+(ylyo)

aixNg

themselves are symmetric. Indeed, allowing for the fact that «No
the main contribution to the integral is from the region where  k(y)= —2 6)
the argument of the functio§;, vanishes, from Eq(3) we 1+(yyo)
obtain the estimate In this case the observed line profiles are described by the
equation
(w a)lk)C
+
S(S( w wk) f ( .kE) k(y)dy| <1 FoXS o= wik)
w—® ) w— wWjK)C
« _ O 172 (Umtan (wl oy D)) ©
for 0> Wik . (4) 1+[(w/wlk 1)/(1’]2

wherea=Dby,/c, i =bixNgyq7 is the optical depth of the

Equation(4) implies that the long-wavelength wing of the plasma, and
line inan optically thick plasma is suppressed in comparison
with the short-wavelength wing. This result is physically ob- L exp — 7ik(1/2— 1/ar)tan” 1(y/y0)}
vious: long-wavelength photons are emitted mainly by ions - f_m 1+(yly,)?
that move away from the spectrographand are therefore far-
ther from it. To enter the spectrograph, these photons mus$$ a normalization factor independent®f It is evident from
pass through a large volume of the plasma and, hence, uikq. (6) that for our simple model the line profile depends on
dergo greater absorption. We also note that(Bpstill holds  onlytwo parametersax and 7;,. The parameterr occurs in
for a spectrograph aimed toward the plasma from the oppoEqg. (6) only in combination with the frequency mismatch
site direction, owing to the overall symmetry of the problemand characterizes the width of the line emitted by an opti-
for symmetric distribution functionsl;(y) andk(y). cally thin,expanding plasma. We emphasize that the values

Further simplification of Eq(3) requires specification of of the parameter are identical for all spectral lines. The
the functionsN;(y), k(y), andSy (o — w;). We note above parameterr;, is the optical depth of the plasma at frequency
all that the width of the distributio®;,(w — wjy), being pri-  w;,, and characterizes the asymmetry of the observed line
marily associated with thermal Doppler broadening, is muclprofile. Its valuescan differ for different spectral lines, but if
less than the width of the observed line profile under oura wideband absorptionmechanism prevaifsese—free or
experimental conditions(even at an ion temperatures bound-free transitions these differences are extremely
Ti=1keV the Doppler width of the oxygen ion lines is small.
Aw lwi=6X10"%, in contrast with the observed widths Line profiles plotted from Eq(6) for the 1s4p'P,
Aw,kslw,k—sx 10 3. This difference permits us to regard —1s? line of the O VIl ion for various values of the param-
S« (w— wj) as as-function. The absorption coefficiek(y) etersa and 7 are shown in Fig. 3. It is evident from the
and the populationof excited levelN;(y) have different figure that, first, appreciable deformation of the line profiles
functional forms in general,becaukéy) is determined pri- sets in byr=3, second, absorption suppresses not only the
marily by the density of unheated clusters andions in thdong-wavelength wing, but also the center of the line, shift-
ground statdNy(y), and even though the quantitidg(y) are  ing the observed maximum of the line to shorter wave-
proportional toNg(y), the proportionality factor is a com- lengths, and third, absorption significantly increases the ob-
plex function of both the density and the temperature of theserved linewidth. Comparing the model calculations of Fig. 3
plasma. In our simplemodel we assume that this coefficientvith the experimental spectra in Fig. 2, we see that the pro-
is constant, whereupon the form of the functidl{y) and  posed simple model yields a qualitatively correct description
N;(y) is determined by the distribution of the plasma den-ofboth the argon plasma spectrui@ r=0) and the CQ
sity, which we model adly/(1+ (y/yo)?): plasma spectrufat 7=3). The only remaining dilemma is
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why the CQ plasma in our experimental situation was opti- We infer from EQ-1(7) thatzthe optical dePtthb_ for the

cally thick, whereas the Ar plasma was optically thin, evenmiddle of the 4p “P; —1s” line of O VIl at the instant of

though the average parameters of the plagdensity and Plasma generation is

size) were approximately the same in the two cases. To re-  :bb(154p 1P, —15?)~30- 100.

solve the issue, we analyze possible x-ray absorption mecha- bb

nisms in the plasma. As the plasma expands;® rapidly decreases as a result of
X rays can be absorbed in the plasma by free—fiee e decreasing ion density. _ _

verse bremsstrahlupg bound—free (photoionizatioh, and Secor_wd, phot_oabsorptlon can re_sult in deformgtlon of the

bound—boundphotoexcitatioh transitions. To estimate the spec@ral line profiles across essentially the full width of the

efficiencies of the various absorption mechanisms, we neeﬁmcpor} S”f(“t’h_ wi) (see, e.g., Refs. 11 and)iar, more

information about such parameters of the plasma as its eleBr€CISE, In Ihe range

tron and ion densities, temperature, charge composition, and |w—wik|s(1/2)Awﬁ(,/|nTi5k5,

size. In the CQ plasma, the cluster sizes range from 80-100 , = . . .

nm:; they are sQeF:)arated by 300400 nm angthe particle deH‘fh'Ch is considerably narrower than the total width of the

sity number is & 102! cm™3. This means that the average Observed line profile.

density of carbon ions in the plasma generated in the focal We now discuss inverse bremsstrahlung, i.e., absorption

spot(with a characteristic length,~20 nm) isNe=(0.64 associated with free—free transitions. The optical depth

ff ; ; ;
“3)x10%%m 2, and the density of oxygen ions N ;H());l)?’()f theplasma due to this mechanism can be estimated

=2Nc=(1.3-6)x10%cm 3. It follows from the x-ray

spectral measurements that H-like and He-like O VIII and . o3 2N;N,

O VIl ions occur inequal amounts in the plasma. It is natural 7 ~1.3X10"™A 5 b ®
to assume that carbon ions will be predominantly H-like. We . . € . _

therefore infer an estimate of the average electron density ofhereL is measured in cmy in A, T, in eV, and bothN;
the plasmaN,=(1.2—5.5)x 10?*cm 3. The electron tem- andNin cm 3. For the lines of O VIl and O VIl ions in the
perature of the plasma can be estimated, on the one hangnge 16—18 A we obtain

from the ratio of H-like anq He-Ii'k.e OVlll and O VII ior!s, rgf:(0.0G— 3.3 X107 %<1,

and on the other, from the intensities of the resonance line of . .

the He-like ArXVIl ion and its dielectronic satellite§, ~ and for the lines of ArXVIl ions {=3-4 A) we have
=200-700eV. During.expansion t.he density of the plasma TLfr”:(O-O?’_ 2.5 X 10 °<1.

decreases, and at the instant that it expands to a léngth ) ) )
~300-400um the densities of electrons and multiply- Consequently, inverse bremsstrahlung is weak both in the

charged ions become three orders of magnitude lower thaf©z Plasma and in the Ar plasma. _
their initial values. Next we consider absorption associated with bound—free

We now consider absorption associated with bound_transitions, i.e., with photoionization. The main contributing
bound transitions, i.e., resonant photoabsorption or selff@Ctor is photoionizationfrom the ground state of an ion, be-

absorption of the spectral lines. The cross section of thi§au5”e 'IEEe pgpulaﬂons O_f thteh ex%lt?g levels grethnorrrr:a':ly
process is greater than the cross sections of free—free gmail. This pneénomenon IS a thréshold process in the photon

bound—free transitions, and for lines of the resonanceserieteé:'nei_rgly ;én(;i pgrzfgs X\tl |t2n(;rr1e_r3|es g?z\éitzetfgzﬁg%n fr?e-
the laser plasma is normally optically thick, i.e°°>1. Two ! S ' gies w M shold,

) ) cross section of the process is approximétel
important conclusions can be drawn from the resonant char- P pp y

acter of this process. 1 ( I

First of all, the efficiency of the process declines when — 0°'=0.55x 10716?

712

cn?, 9)

fiw

large velocity gradients are present in the expanding plasma.

In fact, as a result of the Doppler shift associated with thewherel and Z are the ionization potential and the spectro-
translational motion of the plasma photons emitted in thescopic symbol of the absorption-inducing ion. We note that
spatial regiory can be absorbed only in parts of the plasmaalthough Eq(9) has been derived for photoionization of the
close to this point with a lengti\y=(c/b)(Awh/wy),  9round state of an H-like ion, it can be used for order-of-
whereAwiﬁ’( is the intrinsic linewidth, i.e., the width of the Magnitude estimates of the photoionization cross sections of
function S (w— ;). For large velocity gradients, i.e., large Multielectron ions.

values ofb, Ay is much less than the length of the plasima The threshold nature of photoionization absorption ex-
so that the optical depth®® decreases by a facterL/Ay. plains why this mechanism does not show up in the emission

The values ofr5° can be estimated for this case from the- SPectra of a chemically homogeneous plasma. Indeed, the
equation spectral lines of the most conspicuous ions in the plasma can

ionize only ions of lower multiplicity, which have a low

density in the plasma, and despite the large cross sections

o®', the photoionization absorption cross section is not very
3 9i A @) large. This situation is encountered, for example, in our ex-

ik = Nick ik g« b periments with the Ar plasma. The spectral lines of the Ar X-
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17.1 173 175 R 171 17.9 FIG. 5. Comparison of the model spectrui® (heavy curvé with the
Wavelength, A experimental result for the Lyline of the H-like O VIII ion.

FIG. 4. Comparison of the model spectrui®) (heavy curve with the
experimental result for the He-like lines of the H-like O VIl ion. o ] ] .
titatively, the profiles of all observed lines of oxygen ions for

values of the free parameters=10° and f(1s4p

—182)= i
VIl and Ar XVIII ions can only lead to photoionization of Ls )__9' (We note _that _the_mode{_ﬁ) descnb_es 0”'Y the
the Li-like ArXVI ion and ions of lower multiplicity. If the line profiles; the relative line intensities used in plotting the

abundances of H-like and He-like ions are approximately thdneoretical spectrumare taken from experiment.

same(as in our experimental conditionghe abundance of Since the broadening of the spectral lines in our experi-
even the Li-like ArXVI ion will not exceed 0.1. and the Ments has been attributed to translational motion of the

optical depth of the plasma is plasma, th_e analysis of the line p_rofilles can be usgd, gener-
o . - aI_Iy speaking, to measure the dlstrlputlon qf excited ions
Ta=10""—-10""<1. with respect to their dispersal energies. This procedure is
simplest(and most accurateor the Ar plasma, for which
photoionization absorption does not occur, and the spectral
line profile is directly proportional to the dispersal velocity
distribution of excited ions:

A different situation can arise in a plasma of complex
chemical(mixtureof ions of different chemical elemeisr
ionization (mixture of a multiply-charged plasma and un-
heated clustejscomposition. In this case the spectral lines
associated with ions of one chemical element can photoion- Fiokbs(w_wik)zNi(U/C)- (10)
ize not only ions of the other element, which can have a ver o ) )
high density in the plasma, but also neutral atoms containe he, dlstr|but|onNi§E) obtaln_ed f_rom(lO) (with the_ nor.ma.l—
in unheated clusters. For example, in our investigateg CO'Zat,'On Ni(0)=1) is shown in Fig. §(curve 3). This distri-
plasma the He-like O VII lines can photoionize the H-like bution can t?e plotted only for energ|E§ 100keV, 'be.caurse
CVl ion as well as Cl and Ol atoms. An estimate of thefor larger mismatches the line profile cannot be distinguished

optical depthr2f, of the plasma associated with both pro- FOM the noise.
P P k:cozb ) dpf . bl 08353 Of‘) In the case of CQ, direct measurements of;(E) are
cesses can be obtained from E): 7¢o,=0.83-5.3. rendered impossible by the presence of photoionization ab-

course, absorption by unheated clusters is also possible in t%rption. Model functions of the type) with values of the
case of the Ar plasma, but the estimaf<1 is still valid  parametersr and = such as to ensure good agreement with
by virtue of the somewhat smaller photoionization cross secexperiment are useful only for estimating the distribution
tions. Consequently, photoionization absorption should leagy,(E). Such a model distribution is shown in Fig.(6urve

to modification of the emission spectra of the £@lasma 1) |nterestingly enough, in the ran§e<100 keV this distri-
and should not affect the spectra of the Ar plasma, as we

have indeed observed in our experiments.

As mentioned, in our mode€b) the profile of each spec- N.(E)IN,(0)
tral line depends only on two parameters. The parameisr
identical for all lines, and according {8) the values of5
for different lines are related by the equation

bf 712 bf 712

igky™iky T Tk ™ok

Altogether, therefore, we have two free parameters to de-
scribe a whole group of spectral lineg=v,/c, which is

associated with the “average” plasma expansion ifatg 1073 1 .
=Dbyy), and the optical depthof the plasma at the frequency 107 1072 10! 10°
of one of the spectral lines. We have attempted to describe E, MeV

gualitatively the emission spectra of He-like and H-like oxy-

gen ions in the C@plasma. The results are shown in Figs. 4FIG. 6. Dlstrlbu_tlon of e)_(cned ions with respect to their translational k!netlc
nergy(expansioit (3) direct measurement for an Ar plasma) approxi-

and 5. Itis evident f.rom thes? figures_ th?‘t the simple mOdeﬁate profile for a CQ@ plasma;(2) distribution obtained for a COplasma
(6) accurately describes, not just qualitatively buteven quanwithout regard for photoionization absorption.
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bution scarcely differs from the measurement result for théfor Q= Qg¥= 22e(47-r/3)r§|NC02 (charge of the cluster for
Ar plasma. Again we emphasize that in the presence ofully ionized oxygen and carbon atoinshis expression
photoionization absorptiorti.e., for the CQ plasma Eq.  yields the estimat&;,,=1.4Z MeV. In reality, of course, the
(10) would yield the totally incorrect result represented by cluster charge cannot be greater ti@g=Ero/|€], i.e., the

curve2in F!g. 6. . _ _ value dictated by the kinetic enerdg of electrons capable
_ The main conclusions drawn from the foregoing discus-of escaping the cluster. The maximum ion energy associated
sion are as follows. with Coulomb “repulsion” in the cluster is determined by

1) The short-wavelength wings of the spectral lines forthe electron kinetic energy:
O VIl and O VIl ions are attributable to translational motion
of the ions, and the lack of long-wavelength wings is asso- E; ~ZE,. (13
ciated with photoionization absorption.

2) The detection of a radiative intensity well above theWe note that this is precisely the kinetic energy acquired by
noise level inthe vicinity of frequency mismatch¢éw  the bulk of the ions with charg& in ambipolar hydrody-
— wi)/ wy | =1.2x 102 proves unequivocally the existence namic plasmaexpansiofat the speed of soundinder the
in the plasma of an appreciable numifeeyond that charac- influence of the thermal pressure of electrofvaith T,

terized by the tail of a Maxwellian distributipmf ions mov-  =E.). According to Eg.(13), the emergenceof a sizable
ing at velocitiesv ~3.6x 10° cm/s, i.e., with energies of ap- number of ions with energy-1 meV atZ=6—8 as a result
proximately 1 MeV. of “Coulomb explosion” of a cluster requires a very “hot”

Next we take a look at possible mechanisms underlyingcomponent of electrons with energiesi40 keV. The num-
the production ofsuch fast ions in a femtosecond laseber of such electrons should be of the order of 10% of all
plasma. electrons resulting from the complete ionization of all atoms

in the cluster, the probability of which is exceedingly low.
Somewhat more detailed estimates of the maximum en-
4. GENERATION OF FAST IONS IN A FEMTOSECOND ergy and number of ions can be obtained if the kinetics of
LASER PLASMA ion motion for various electron energy distributions is taken

. 4 . . . _
lons can be accelerated by various processes associat%g %Cﬁ;?c)n:' twet&eaf(?rzirﬁf:nxaméﬂsg ?Jigtirr?r:hcgséib;n_
with the emergence of strong electric fields in the IaserI ' gy P

plasma. The possible mechanisms include the Coulomb e)§,_ion in vacuum of a finite plasmoid of characteristic radus

plosion of molecules and clustérand the “hydrodynamic”
acceleration of ions in the dispersal of clusters under the
influence of electron kinetic enerd§.The ponderomotive
acceleration of ions under the influence of forces created b%

Eion=ZTeTh. (14)

here 7= 12 IN(RIrpe) Tpe=0v7e/ wpe= Tel4mn’n, is the
ebyeradius of the electrons. The number of iddg,
~Ngexp(—+2 7,,) is exponentially small £,>1) in this
case. At an electron temperaturel keV these relations
It is fairly simple to estimate the maximum ion energy show that on the order of 0.2% of the total number of ions in

for the various acceleration mechanisms. For example, in th@e cluster(for R=rq=40nm andZ=8) cannot acquire an
Coulomb explosion of a moleculgvhen as a result of rapid energy greatgr tharj 200 keV. . .
ionization, ions with charg&; are situated at the character- The maximum ion accelera_ltlop energy depends heavily
istic interatomic spacing of the moleculg) the Coulomb on the form of the electrpn 'dlst'nbuuor.].funct!on. For ex-
potential of the ionic core ig.~SZ;e/r,. Consequently, ample, in the case of a distribution fortified with fast elec-
the kinetic energy that can be acquired by anion with chargfONS; fe=€Xp(-v/yTer/m), for v>Ter/m we haver,

C_ 502 302. - _
Z|e| as a result of the expansion of the ionic core is =2""13[In(Rirpg]"*; according to Eq(14), for Z=8 and
Te=1 keV we obtainE;,,=1.44 MeV, and the relative

number of ions with such energies is approximately 0.6
X103,
Because the characteristic interatomic spacing of the mol- During the motion of the clusters, therefore, a small

ecule is of the same order as the radius of the neutral atm‘ﬁumber of ions canbe accelerated to megawatt energies only
and spans at least several Bohr radii, we infer from (&a) for non-Maxwellian electron distributions fortified with fast

that the maximum energy of oxygen ions formed by the expa}rtic!es. The feasibility of spch distributions a.nd thg dgter-
plosion of a CQ molecule cannot be too highE,, mlnatlon_ of _the_lr chara(_:tgrlstlcs require further !nvestlgatlon.
~4keV. The intriguing possibility of the ponderomotive accelera-
Generally speaking, the Coulomb energy of a large clustion of ions to high energies is afforde_d by the irradiation of
ter can be significantly greater. For example, for a density oft plasma with an ex‘.feme')’ strong field of ultrashort laser
moleculesNgo,=8x 107 em2 the maximum Coulomb en- Pulses. The acceleration of ions by femtosecond laser pulses

ergy of an ionz|e| Qg in a cluster of radius =40 is can be highly nonstationary in this case, so that the maxi-
9y cl ™ mum energy of the accelerated ions depends not only on the

Eion=2Z/€|Qu/r4; (12 radiative intensity, but also on the duration of the laser pulse.

high-frequency pressure directly as a result of strong lase
radiation in the plasma near the critical dengity has been
discussetf® for long laser pulses of nanosecond duration,
when 7,5 greatly exceeds the acceleration time.

Eion=Z|€lemo=Z2>, Zi€?Ir . (11)
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We now consider the model of a plasma generated by. CONCLUSION
the irradiation of a cluster gas, when the density of the

plasma(formed from uncondensed galsetween clusters is The reported experimental investigations show that x-ray

. . dsspectral methods can be used for the systematic acquisition
subcritical, and the cluster plasma density greatly excee . )
Of experimental data about the properties of the plasma

the critical value. During the laser pulse, the ponderomotivef o .
. . : ormed when clusters are heated by high-intensity femtosec-
force in standing waves generated by reflection fromclusters

: . . ond laser pulses. We have obtained spatially resolved x-ray
will affect ions of the intercluster plasma by way of the T
L : L X . spectra of CQ@ and Ar cluster plasmas for the firsttime, and
charge separation field. During this time an ion with charge S T
) . we have observed that photoionization absorption influences
Z; and masaM; acquires a velocity : : X
the profilesof the spectral lines in a plasma of complex
Zi chemical composition. The recorded features of the x-ray
viszpTIasv (15 emission spectra indicate unequivocally the presencein the
' cluster plasma of a large relative number of excited ions
where F,=(mec?/4lg)aj(1+aj/2) ¥ is the ponderomo- (=102-10"°) with energies of 0.1-1 MeV. A comparison
tiveforce on an electron in a standing wave of the laser fieldf mechanisms capable of accelerating ions to high energies
with characteristic scalg-~c/2w,, whose intensity is re-  shows that the experimental results can be attributed to pon-
lated to the dimensionless amplitudg by deromotive forces generatedin standing waves resulting from
the reflection of laser radiation from the clusters.
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The currents which charge a macroscopic particle placed in a plasma consist of discrete charges;
hence, the charge can undergo random fluctuations about its equilibrium value. These

random fluctuations can be described by a simple model which, if the mechanisms for charging
of macroscopic particles are known, makes it possible to determine the dependence of the
temporal and amplitude characteristics of the fluctuations on the plasma parameters. This model
can be used to study the effect of charge fluctuations on the dynamics of the macroscopic
particles. The case of so-called plasma-dust crystas highly ordered structures which develop
because of strong interactions among macroscopic pajticldaboratory gaseous discharge

plasmas is considered as an example. The molecular dynamics method shows that, under certain
conditions, random fluctuations in the charge can effectively heat a system of macroscopic
particles, thereby impeding the ordering process. 1999 American Institute of Physics.
[S1063-776(199)01206-9

1. INTRODUCTION and electron densities and temperatures, currents). etc.
Therefore, it has to be regarded as one of the set of dynamic
A macroscopic particle placed in a gaseous dischargeariables determining the behavior of the plasma. Thus, for
plasma acquires an electrical charge by absorbing electrorskample, perturbations in the charge on macroscopic par-
and ions from the plasma. The equilibrium potenti@large  ticles during propagation of electrical oscillations in a dusty
is determined by the condition that the current to the particlgplasma may give rise to new mechanisms for dissipation and
equals zero. It is negative because the electrons are mojestability®
mobile than the ions and can be very higin the order of Even in an isotropic, spatially uniform, unperturbed
10°~1C elementary charges for micron-sized partigles plasma, however, the charge on the macroscopic particles
Such a large number of charges means that systems of magill undergo random fluctuations about its equilibrium value.
roscopic particles are often highly nonideal, i.e., the potentiallhis is because ions and electrons are absorbed by the sur-
energy of the interaction between the macroscopic particlefaces of macroscopic particles at random times and in ran-
greatly exceeds their average kinetic energy. In this case, trdom sequences. In this paper we examine precisely this type
highly ordered structures of macroscopic particles known asf fluctuation in the charges on macroscopic particles in a
plasma-dust crystals can devefoffhe first reports of the plasma and propose a model that can be used to obtain their
creation of crystals from dust particles in low pressure rfquantitative characteristics. The model is also applicable to
discharge plasmas in inert gases appeared in 199@r-  studies of the effect of random charge fluctuations on the
dered structures were observed somewhat later in other typelgnamic behavior of a system of macroscopic particles. As
of plasmas, as well: in a thermal atmospheric pressuran example of such a system, we examine the formation of
plasm4 and in stratified glow dischargés(A detailed re-  dust particles in the electrode region of a gaseous discharge,
view of these experiments can also be found in RefS§s-  where the force of gravity acting on the macroscopic par-
tems consisting of a plasma and charged macroscopic paticles is balanced by an electric field.
ticles are also widespread in space and in devices for plasma Before proceeding to a description of the stochastic fluc-
materials processing. This explains the great interest in sysuation model,let us summarize the earlier work. Morphill
tems of this type at this time. et al,’° first pointedout the need to include random charge
Dusty plasmas are often described theoretically in thdluctuations, assuming that the amplitude of the fluctuations
approximation of a constant charge on the macroscopic pais given byAZ= /(6% = \/{|Z[), where(Z) is the equilib-
ticles, since the times of interest are typically considerablyium charge on a macroscopic particle in units of the elec-
longer than the time to establish an equilibrium charge. Irtronic charge. Cui and GorEeused a numerical simulation
this case, a dusty plasma can be regarded as a multispeciesobtain the temporal sequence of the values of the charge
plasma in which the macroscopic particles represent ionen macroscopic particles in the absence of emission pro-
with anomalously high charges and masses. This approachesses(The orbital approximation and Maxwellian distribu-
however, does not take an important feature of these systentions of the electrons and ions were used to determine the
into account. In fact, the charge on the macroscopic particlesurrent to a macroscopic partidl€heir main result isthat
is determined by the local plasma parametpatential, ion ~AZ=0.5\(|Z|) for a wide range of parameters of the plasma

1063-7761/99/88(6)/7/$15.00 1130 © 1999 American Institute of Physics
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and macroscopic particle, provided tf‘(dZ|>>1. Finally, TABLE |. Values ofy, «, andp (see text for different plasma parameters
Matsukas and Russ&Ipresented an analytical model devel- ™ 21dTi/Te.

oped for the same conditions which yielded a charge distri;ni’ amu T, y o B, st
bution of the macroscopic particléand, therefore, the char-

acteristic amplitude of the fluctuationsOur paper differs 1 0.05 1.698 0.61 1.10°
from thesé®'2in that we are primarily interested in the 0105 22'%%19 %i% 42'_%5
dynamical, rather than the static, properties of the randomg 1 3.952 0.46 870

fluctuations in charge, since it is they which determine the
effect of the fluctuations on the dynamics of a system of
macroscopic particles.

determine the values &Z and 7. for the practically impor-
tant case of the charging of macroscopic particles in a labo-
ratory gaseous discharge plasma typical of the experimental
Let us consider an isolated macroscopic particle whichconditions in Refs. 2—5 and {Other charging mechanisms,
carries charg&. For simplicity we assume that all the nega- including the thermionic emission of electrons characteristic
tive charges in the system are carried by electrons and thef thermal plasm&sand photoemission charging of macro-
positive ions have unit charge. The equation describing thecopic particles, which plays a major role in spatare
random fluctuations in the charge can be written in a formexamined elsewher®) To do this, we use the standard equa-
analogous to the Langevin equation of motion for a freetions for the electron and ion fluxes onto the surface of a
Brownian particle in one dimension, with the sole differencenegatively charged macroscopic partitle:
that the motion takes place ina one-dimensional charge

2. MODEL OF RANDOM FLUCTUATIONS IN THE CHARGE
ON MACROSCOPIC PARTICLES

space, rather than in velocity space. For small deviations  _ ze?
6Z(t) of the charge from its equilibrium value[(Z)| | =Ie=\/%a2nevTeex;{a—Te), )
>|56Z(t)]), we can write
doz | *=1;=\8m7a? 1—Zez 5
¢ tBOZ=F(v), (1) —hENeTanvT T T ) ©
where=—0dl/9Z|,—z, | is the current to the macroscopic wherea is the particle radiusey, Mgy, andTe; are the
particle (in s™1), and density, mass, and temperature of the electrgoss), re-
spectively, anck is the electronic charge. We have also used
F()=2 8(t—t;)(=1), the notationu regiy = (Tegi) /Meciy) V2 for the thermal velocity
i

of the electrongions). If the density of macroscopic particles

is a random term which represents the source of the fluctuds Nottoo high, so thahe~n;, then the equilibrium charge
tions and describes the absorption of a single plasma electréi®n be written in the form

(minus sign or ion (plus sign at a random time; . Under

the above assumptions, the current to the macroscopic par-
ticle can be written in the fornh=1*—1", wherel * is the
current determined by the absorption of plasma ionsland

is the current determined by the absorption of electrons. Thelere y>0 is a coefficient on the order of unity and defined
term B6Z (B>0) acts as a restoring force which tends toby the equation expf{y)=(1+yT./T)vi/vTe. Using Eqs(4)
return the charge to its equilibrium valgg) determined by and(5), we can readily obtain

the conditionl =0. It is easy to verify that the terrf (t)

T, m;

aTe
Te ' me

(Z)=-v 7

e

obeys the relations al el /mT
1 B:_ﬁ :\/87Ta2neUTeﬁ ﬁ%"‘exq_')’)},
, , z=(2) e it
(F(1))=0, (F(OF(t )>:Eé(t_t ), (2 (6)
where 11, characterizes the rate at which ions and electrons 1+ y6
are absorbed, so thgf'=1*+1"=21". Integrating Eq(1) = AZ= 1T 0+70) ([Z]) =a(|2]), ™
using Eq.(2) allows usto obtain the temporal autocorrelation
function of the charge fluctuations in the form where6=T,/T;. The same expression f&rZ has been ob-
1 tained in a slightly different way in Ref. 12. A numerical
SZ(1)8Z(t')y= ——exp(— Blt—t’]). (3)  calculatiort! has shown thax~0.5 for a wide range of pa-
2toB A

rameters of the plasma and of the macroscopic partieles
Equation(3) is an important result and we shall use it for [determined using Eq7)] for the plasma parameters used in
studying the effect of random charge fluctuations on the dythe calculations of Ref. 11 and values Bf[Eq. (6)] for a
namic behavior of the macroscopic particles. It contains in-macroscopic particle of km diameter under the following
formation on the amplitudAZ=(2t,B8) 2, as well as on conditions:ng=5-10° cm 2 andT.=4 eV. It is evident that
the correlation time of the fluctuations,=1/8. We now « depends weakly on the plasma parameters and that it is
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lon flux positive work on the macroscopic particle, increasing its ki-
l 1 l 1 l l 1 1 netic energy. Without dissipation, the energy will increase
vy without bound. Friction on the neutral gas in a weakly ion-
: ized plasma means that the energy of the random oscillations
FelI of the macroscopic particle will reach some steady-state
9 L ® L ® value. Assuming that the electric field is linear near the equi-
Particle mg Particle librium positionx,, the force acting on the macroscopic par-
image image ticle, including the charge fluctuations, i§¢+myg
=—myw?dx+eEy6Z, where 8x is a small displacement,
, Eo=E(Xp) is the electric field at the equilibrium position
x Electrode (mgg+{(Z)eEy=0), and
L 2 (2@ B
FIG. 1. An isolated macroscopic particle contained near an electrode as a myg JX Xo

result of the balance between the force of gravityg and the electrical

force F=ZeE The ions have the Bohm velocity,=T./m;. The two IS a constant characterizing the rigidity with which the mac-

images of the macroscopic particle are a consequence of using periodigscopic particle is confinestiffness coefficientin the po-

Eoundary conditions in thg direction. The ilectrlc field Tcreases from the tential well formed by the action of the electrostatic and

oundary of the electrode sheath, whefex=0)~0, to E=E; at the elec- s

trode surface. gravitational forcedqrecall that{Z)<0). The results of the
previous section can be used to determine the average kinetic
energy of an isolated macroscopic particle in the direction of

close to 0.5; at the same time, the frequency of the fluctuathe field:

tions, B, varies by more than an order of magnitude as the s 2

plasma parameters are changed. :EJF Mg~ B - EJF mqg

When there is a directed flux of ions, whose velogity 2 2AZ]) ye2+ps+rv)] 2 AlZ)E
greatly exceeds the ion thermal velocity;, as happens, for 9

ﬁ\xarenxplfésigi:;esﬁszot?: j:ee;tizztg;giz?gges, the ollowghere the kinetic energy is introduced through the formula
g &P ' K,=mq(8x?)/2, v is the coefficientof friction on the neutral
ZZeZ) gas(in s'1), T, is the neutral gas temperatures v8/a?,

2

and the last estimate was made assuming ¢hat3 and v
<. (As a rule, this assumption is fully justifiedThe first
Then, instead of Eq:6) we obtain term on the right of Eq(9) corresponds tothe thermal energy
per degree of freedom of the macroscopic partigleequi-

1" =1;=ma’nvo| 1- —
miUO

Il e? vo 2T i - . . L i
B= =7 - /87 aznevTeﬁ = 62 +exp— ) |. librium Wlth the surroundllng g:')sT_he additional kinetic en
2=(2) e|UTe Mg ergy owing to the fluctuations is given by the second term on

(8)  the right of Eq.(9). For simplicity, in the following we omit
Equation(7) is still valid if we redefined as the ratio of the ~the Brownian motion and study only the added term owing

electron temperature to the kinetic energy of the directed ion? the rand_om charge fluctuations. Since the motion of the
motion. i.e. 8=2T /m-vé macroscopic particles caused by the random charge fluctua-
,l.e., /miug.

tions is chaotic, we can also consider an effective tempera-
ture of the macroscopic particl&,=Tgy /2. Note that in

|3:L 52;'{')":;3\?5': ;:ETE';FS%S'\;CFQSA‘%?:O&AA(C;';%';%EPIC this case of an isolated patrticle,the fluctuations can “heat” a
PARTICLES macroscopic particle only in the direction ofthe field and do

not change the kinetic energy of the macroscopic particle in
We now proceed to an examination of the effect of ran-directions perpendicular to the field, so that=T,/2. Here
dom charge fluctuations on the dynamic processes in a sythe inequalityT gy > Tqy= T, holds.
tem of macroscopic particles. As a first, simple example, let  We have derived Eq9) assuming that the macroscopic
us consider a macroscopic particle contained in the electrodegarticle is isolated, which corresponds to a weak interactions
sheath of a discharge, where the force of grakify-myg is ~ among the macroscopic particles. As a rule, however, a sys-
balanced by the electrostatic foreg)=ZeE Heremyisthe  tem of macroscopic particles under these conditions is highly
mass of the macroscopic particle aids the electric field nonideal. The effect of the interaction on our results will be
directed toward and increasing toward the macroscopic paexamined below in a numerical simulation of a system. Here
ticle (Fig. 1). This situation corresponds to the experimentalwe point out another effect. It has been ndlethat in a
conditions in Refs. 2-5, where negatively charged macrosystem of interacting charged particles, fluctuations in the
scopic particles located near the lower electrg¢daethode  charges give rise to fluctuations in the interparticle interac-
form ordered structures. Because of random fluctuations ition potential, which should cause chaotic motion of the
its charge, the macroscopic particle will undergo random osmacroscopic particles in addition to the thermal motion. We
cillations in the direction of the field. It is easy to confirm shall estimate the magnitude of this effect in terms of an
that during these oscillations, the electric field will perform approach’ used to study the effect of the spatial dependence
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of the charge on the macroscopic particle dynamics. Specifi- d2r, =T dr

cally, we separate the force, owing to the other charges, md—zzz Fmt(r)|r=|rk,r,| %—deEJFFext-
which acts on a test charge into constant and fluctuating ! ! rerl

components. The fluctuating component is determined in OUHere the pairwise interaction between the macroscopic par-
case by stochastic fluctuations in the charges on the macrgcles is given by

scopic particles and not by the change in the charges as the

macroscopic particles move. Following Ref. 17, we obtain g (r)=—eZ(t)%

the following estimate for the additional kinetic energy be- it ar

yond the thermal energfneglecting screening where

o (@azet  (z)et1 ezt) p( r)
ad de|4 ¢ md|4 é ' D™ r ex N

A

wherel is the average distance between the macroscopic pais the screened Coulomb potential with a screening leRgth
ticles andr, is the correlation time for the random force, determined by the appropriate Debye radir a homoge-
which is given by the correlation time of the fluctuations in neous, isotropic plasma, 2=\p2+\pZ~\p?.) Note that
our case. Thus, because of the charge fluctuations, the effettie interaction force depends on time, as noted at the end of
tive temperature of a system of macroscopic particles is althe previous section. Here the time dependence shows up
ways somewhat higher than the thermal level. The reason fanly through the time variation in the charge. This can be
this inequality is that the system of dust particles is open, s@ssumed, if the characteristic time of the charge fluctuations,
thatit can exchange charge and energy with the gaseous dig, is much longer than the reciprocal of the plasma fre-
charge plasma. quency @y, for a homogeneous, isotropic plasmao that

In the case of a system of interacting macroscopic parthe plasma electrons and ions are able to fine-tune them-
ticles located in the electrode sheath of a gaseous discharggglves in the charge fluctuations.
both of the effects described above occur. The ratio of the In the numerical simulations the electric field in the elec-

contributions from the two is trode sheath was specified as a linear function of the coordi-
2 natex, so thate(x) = Egx/L. Here the external force depends
Kx [ mMgg ) 1o On both position andtime, and acts only in telirection:
Kad <Zz>ez/|2 Fexd(1,X) =myg+eZ(t) E(X).

Therefore. their relative rol re determined by th e of The random fluctuations in the macroscopic particle
eretore, their relative roles are gete ed by the squa ecE:harges are assumed to be uncorrelated. Here the random
the ratio of the force of gravity to the Coulomb interparticle

interaction fo For the tvpical meters of an experi enquctuations were modelled by a gaussian random variable,
interaction force. or ypical para s ot an experim éo that at each integration step the increment in the charge
with a dusty plasmaa=1 um, densityp=5 g/cn? of the

material in the particles njy~2-10 1 g), (Z)=a¢p~3 was given by

-10° (¢s~5V, the floating potentia) andl~500 um, we Zi1=(2)+[(Zi—=(Z)) + 6Z,£](1— BAY),

obFain !<X/Kad_~690. For. larger macrozsiopic particles this where Z,=Z(t), ti.,=t+At, 8Z,=AZ\2BAt, ¢

ratio will be still higher, since&, /K 4~a“l”*. Therefore, un- = sin(2my) V2 In(Uxz), andy; andy, are random numbers

der typical experimental conditiods® the first effect, of distributed uniformly O’n the segmep,1]. The integration

r_nagnitude given _b_y I_Eq(.9), will make the larger contribu- step At was At=7./20 in the simula’tions(Note that 7

tion to the disequilibrium. < v~ Yin our calculationg.For simplicity, in the calculations
we have neglected the Brownian force owing to the sur-
rounding gas, so that the motion of the macroscopic particles

4. NUMERICAL SIMULATION was determined solely by the charge fluctuations.

Ir_1 order to account for the interaction among the_ MACIOL TS OF THE NUMERICAL SIMULATIONS
scopic particles, we have done a molecular dynamics simu-
lation of a system of macroscopic particles with fluctuating ~ We have found that the macroscopic particles form lay-
charges located in the electrode sheath of a discharge. Thegs(up to six layers in our calculation the potential well
computational region consisted of a square with sides o€reated for them by theexternal for¢de sum of the elec-
length L equal to 50 times the average interparticle separatrostatic and gravitational forcem the x direction.(See Fig.
tion. Periodic boundary conditions were imposed in the 2a) The layers are perpendicular to the direction of the ex-
direction perpendicular to the direction of the external forceternal force and the number of layers is determined by the
Fex- (See Fig. 2. The number of particles in the simulation system parameters: the number of particles, screening length
was varied between 50 and 300. The two-dimensional equax, and potential well characteristio. For constaniw, an

tion of motion was solved for each macroscopic particle,increase in the number of particles or in the screening length
including the pairwise interactioR;,; between the particles, increases the number of layers, since their mutual repulsion
the frictional force, the totalexternal forde,,; in the gravi- increases. Layer formation also occurred in the experiments
tational and electric fields, and therandom fluctuations in thef Refs. 2—5, where~10 layers were observed. We have
charges of the macroscopic particles: also found that layer formation is discrete in nature; in par-
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f e 0 o o AN X X ¥ )
® o © o o o o ~ . ’ ® ‘ ‘ . FIG. 2. A portion of the computational region. Macro-
e o6 @ ® o o o scopic particles with radia=25 um form six layers
. * % ‘ ® e ‘ d (é=5-10"s7?): (a) instantaneous positions of the
e ¢ o e o o o { IR ‘ “.' ' ‘ e macroscopic particlesh) a sequence of positions of the
e © [ ] o o o o L N N ) . ' L) macroscopic particles, separated by a time intepval
e o o with an exposure time of 20~ 2.
» e ® o X E X XN XX
a b
ticular, for certain critical values ab and\, adding a new The dependence of the total kinetic enedg§y on the

particle increases the number of layers by unity. On theparamete# for macroscopic particles of both sizes and dif-
whole, the process of layer formation in our calculations isferent numbers of layers is shown in Fig. 3. For comparison,
similar to layer formation in an earlier three-dimensionalthe analytic result for an isolated particle is also shown in the
simulation of dusty plasmas in a one-dimensional externafjraph.[The lines correspond to EQ)]. It can be seen that
force field!® the total energy is close to the analytic value Ky. The
The main results of the simulation were obtained for twodeviation §=(K,—K®)/K® is greatest for six layerqa
types of macroscopic particles with different radi,  strongly interacting systenand is roughly 25%. It is pos-
=5 um and 25um. The density of the macroscopic particle sible to find the coupling parametér, which is defined as
material was taken to bgp=5 g/cn?. The friction rate was the ratio of the Coulomb interaction energy between neigh-
v=1 s ! (for a=25um) and v=5s ! (for a=5 um). boring particles to their average kinetic energy:
These values correspond to a pressure of about 0.5 Torr is Z2e?/IKS. For six layers (=330 um), I' varies from 13
helium at room temperature. The equilibrium surface poten{é~5-10% s 2) to 1.3 10* (¢~5-10° s 2) for the particles
tial of the macroscopic particleg,, was assumed equal to 5 with a radiusa=5 um and from 140 £~5-10° s ) to
V, which corresponds to a chargg)~1.7-10* on the mac- 1.4-10° (¢~5- 10° s72) for the particles witha=25 um.
roscopic particles witha=5um and(Z)~8.7-10* for a  This suggests that E¢9) can also be used as an estimate for
=25um. The screening length was assumed to Yoe systems of strongly interacting macroscopic parti¢lésve
=450um. For each type of macroscopic particle, we deterdreatK, as the total kinetic energy of the macroscopic par-
mined the dependence of the dynamic characteristics on thecles), although we derived it assuming an isolated macro-
parameter (actually on the parameted/a?, sincev must  scopic particle. Furthermore, these results provide a qualita-
be fixed, in order to solve the equations of mojiam the  tive explanation for some of the experimentally observed
approximate expressiai®). phenomena. In particular, in many experiments melting of
We found that the velocity distributions of the particles the plasma crystal has been observed as the neutral pressure
are anisotropic and Maxwellian, characterized by two temis reduced:**?°From the standpoint of charge fluctuations,
peraturegwhich corresponding to two different directions thisis easily explained. In fact, lowering the pressure causes a
Tgx=2K; andT4,=2K;, where thek;, ) =my(v5,,)/2 are  reduction inthe coefficient of frictiory, and, therefore, ig.
determined using the data from the simulatigdenoted by The kinetic energy of the macroscopic particles increases
the indexs). Note thatKj is everywhere less thak;. This  (Fig. 3), while the coupling parametdr decreases, which
is because energy enters the system only in the directionof
the external forceX). However, because of the interaction
between the macroscopic particles, their kinetic energy in the K eV
direction perpendicular to the external force is nonz&re-
call the estimat€10) and ourneglect of the Brownian motion
in our calculations.Figure 2a shows the instantaneous posi-
tion of 25-.um-diam macroscopic particles which form six 10°F
layers. The average distance between the macroscopic par-

ticles (determined from the position of the first maximum of 10y

the pairwise correlation functigris 330 um. The average lO"g

total kinetic energy of the macroscopic particlesKis&=K3 1072 L "
+Kj=11eV (K;=7 eV andKj=4eV). Figure 2b shows 10 10° 10° & s2

the average deviation of the particles of a titre20/v. Note o _ _
that the root mean square displacement of the particles alorfgC- 3- The total kinetic energy of macroscopic partid€s= K3+ Kj as a

they axis exceeds that along teaxis, although the differ- fonction of ¢ for macroscopic particle rada=25 um (open points and
a=5 um (filled pointy: (squaresa single layerjcircles three layers{tri-

. A . S 2
ence in the kmeF'C energies obel§> Ky' ThIS 'S.bec?‘use angles six layers. The smooth and dashed curves are calculations according
there is a potential barrier for the particles in thdirection.  to Eq.(9) for a=5 and 25um, respectively.
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gardless of the size of the macroscopic particles &gd..1
.10° s72, also independently of the size of the macroscopic
particles, since8=a and vxa~ 1. Now, for the kinetic en-
ergy of the macroscopic particles, Ed9) gives K,
~0.04 eV fora=5 um andK,~1 eV fora=25 um. These
energies exceed the thermal energy0.025 eV at room
temperature Therefore, random fluctuations can cause a
substantial disequilibrium between the dust and neutral com-
ponents. At the same time, the energies observed in experi-
ments with plasma-dust formations have been even higher
g_'ct;-_é-t_The f?:ih‘)*ki_/K:a”dK;/Ks as fl:rr:ctiéms oKS,fv¥hicZ iIIustTrite thi,' . under certain conditionS~2* Thus, we cannot unambigu-
is'sag ” ':ig_os_ € Kinetic energy over the degreesot freedom. The no a'(”busly assert that the proposed mechanism for the disequilib-
rium is the most important one in a gaseous discharge
plasma. In particular, in an anisotropicregion such as the

may be the reason for the melting. Here the quantitative ese_leg’:'roded shea(tjh of a ?Iﬁlsmar,] It is necr?siary to :nclude the
timates are complicated because, as the pressure is variegfs' lon gpeg ence of Ine charges, which can aiso cause a
other parameters of the plasnialectron and ion densities Isequilibrium;‘ as well as the random temporal fluctuations
and temperatures and, therefore, the charge on the macr&- the charge on the macroscopic particles.

scopic particles, screening length, gtmay also change We conclude this section with a brief discussion of the
Figure 4 shows plots of the ratidé¥/K® and K§/KS' simplifying assumptions we have explicitly or implicitly

which characterize the fraction of the energy that is re- used in stu_dying the_ effect of random charge qucFuation.s on
distributed into they direction, as a function oK®. In our the dynamic properties of a syst.e.m.of Macroscopic particles.
case, this redistribution is related exclusively to the interacwe have a}['sslum.ed.ti;at thedeqttull?rtlﬁm charge (z;rt]he macro-
tion (collisiong between macroscopic particles. It is clear scopic particies Is independent of the coordinatén gen-

that, the stronger the interaction between the macroscop! ral, this is not realistic, since near the electrode the electron

particles is, the more strikingly the redistribution of the ki- . ensity falls off more rapidly than the ion density, while the

netic energy over the directions should showup. Thus, folons are accelerated by an electric field directed toward the

example, in the case of six layers, the total enekgyis electrode. The a_pprc_)xmatlon. we have b.e.en. examining cor-
essentially uniformly distributed between thandy direc- responds to a situation in which the equilibrium position of

tions for largeK®. We believe that this result is independentthe macroscopic particles is close to the boundary of the

of the nature ofthe random motion, i.., the interaction redis€/€Ct0de sheath, so that the difference between the ion and

tributes a random motion which develops in one directionBOhm velocities can pe neglected, while the electric field
epends on the coordinatemuch more strongly than does

over the other directions. The simulations also showed tha& flibri h H hould add th ;
the energy redistribution coefficient does not depend on th € equiiibrium charge. Here we sholld add th€ approxima-
tion of a linear dependence for the electric field on position

ratio /a2, but is determined by the coefficient of friction, _ . : .
used in the numerical simulation. In general, the self-

v- As an illustration of this fact, Fig. 5 shows plots ofthe consistent problem must be solved, which allows the distri
ratiosK§/K*® andK§/K* as functions oK® for a single layer butions E 4(z H th’ foct of th )
of particles with radiia=5 wm and different values o#. utions (X.) and (Z(x)), where the efect ot the macro
We now estimate this effect numerically for the typical scopic particles themselves on the field distribution in the
conditions in the cathode region of a discharge. Take electrode region has to be taken into account. Then the fluc-
~deV m./m~1410% and no~n~10° Cm_g' The tuations in the charges of different macroscopic particles
1 e 1 . 1 e 1 .

were assumed to be uncorrelated. This is true, provided

ions move toward the cathode at the Bohm veloaity

~yTe/Mm~vteyme/m;. Here the charging equation gives 7e2n 13
y=—eg¢/T,~3 and, using Eq(7), we havea~0.51, re- P <1
min{T.,T;}

so that the effective mean free path for interactions of the

) \\ macroscopic particles with the plasma electrons and ions is
f{o'g' KK much shorter than the average distance between macroscopic
* 0.6f * particles. Only two forces were considered to act on a mac-

roscopic particle in the electrode sheath, electrostatic and

S K, K’ gravitational forces. At the same time, it is known that for a
0.2 / particle with a small radius, the drag force in the ion flow
- I L ul " may be greater than the force of gravityln this case, the
0?2 10t 10 10t 10 equilibrium position will be determined by the balance be-
K, eV tween the ion drag and electrostatic forces. Finally, the inter-

FIG. 5. The ratiosK;/K® and K{/K*® as functions ofK® for viscositiesv action among the macroscqplc particles was described k_)y a
=551 (filled squaresand»=0.5 s'* (crosses The macroscopic particles Screeneq Coulomb _ potent!al. At present, Othe_r possible
with a=5 um form a single layer. mechanisms for the interaction between dust particles can be
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found in the literature, such as attraction owing to directsimplification of the physical picture, it provides a simple
bombardment by the plasma electrons and foas,interac- and clear illustration of the importance of random fluctua-
tion in an ion flow associated with their focussing in thetions in the charge on macroscopic particles in dusty plas-
region between particlés;?* and a dipole interaction be- mas.
tween macroscopic particl8$The effect of charge fluctua- This work was supported by the Russian Fund for Fun-
tions in these cases can be analyzed in a fashion analogousdamental Researdi@rants No. 97-02-17565 and No. 98-02-
the above discussion, but lies beyond the scope of this papet6825.
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A technique is suggested for triggering nuclear reactions by accelerating ions with a powerful
ultrashort laser pulse in a plasma. The underlying idea of the suggested compact

“reactor” is utilization of high-energy ions accelerated by the charge-separation electrostatic

field in the direction perpendicular to the laser beam axis in a gas-filled capillary.

Accelerated ions with energies of several MeV penetrating the target from the inside surface of a
channel give rise to nuclear reactions which can be used to create a compact source of fast
neutrons and neutrons of intermediate energies for generating vasiooi- and long-lived, light

and heavy isotopes, for generating gamma radiation over a broad energy range, for making
sources of light ion and induced radioactivity. The yield of the corresponding nuclear reactions as
a function of the laser beam parameters has been investigated. The suggested technique for
triggering nuclear reactions provides a practical tool for studies of nuclear transformation on the
pico- and nanosecond scales, which cannot be achieved using other methoti399©

American Institute of Physic§S1063-776(99)01306-2

1. INTRODUCTION pulse of energy 200 mJ and duration 160 fs at a wavelength
of 0.79 um interacted with a plasma produced by a laser

The unique possibilities afforded by present-day techprepulse in a deuterated polyethylene film, and the neutron
niques for generating ultrashort laser pulses open up avenuggeld averaged over many pulses wasl40 neutrons per
to their practical application in nuclear physics. They havepulse. However, the experimental configuratiomas far
been demonstrated, for example, in experiments on the las¢tom optimal, and the number of reacting particles was small
acceleration of electrons and ignition of nuclear reactions bywing to the small target size.
accelerated electrons? Although the idea of using powerful In order to increase the efficiency of the laser energy
ultrashort laser pulses to accelerate ions and trigger nucleamansfer to ions, it is expedient to use a plasma which is
reactions was put forwards early as the year 1983ee also  transparent to the laser radiation and a sufficiently short and
the review by Luther—Davit al®), practical steps to its powerful laser pulse. The plasma should be surrounded by
implementation have been undertaken only recently. Experithe material that will be used as a target. One configuration
mental dat4® indicate that ions with energies0.5 MeV are  that satisfies these conditions includes a target in the form of
generated as a result of a laser pulse acting on a gaseoascapillary filled with a gas. The ions from a gas are accel-
target at wavelengths of 1.06 and 0,68 with an intensity  erated by a laser pulse and interact with walls containing a
of =5x 10" W/cn? and pulsewidth of 400-600 fs. Theo- material for the nuclear reaction. The gas density should be
retical model3'® have demonstrated that methods of ion ac-such that the plasma density is below the critical value for
celeration by laser pulses can find novel applications, espehe laser radiation, and the thickness of the capillary wall
cially in the field of nuclear physics. An advantage of ions isshould be of order the range of accelerated ions. The laser
that, unlike electrons, they can participate in strong interacpulse power should be matched to its duration so that the
tions, and therefore have much larger cross sections fdatter equals the ion acceleration time at the laser beam focal
nuclear transformations. The topic of this paper is the develspot.
opment of a theoretical background for the technique of The technique of laser-triggered nuclear reactions could
laser—ion ignition of nuclear reactions. be implemented by focusing a powerfull \é=10"°

The high ion energies achieved in the focus of laseMW/cn?- um?) laser radiation inside a cylindricéith a ra-
beams shows that existing generators of ultrashort opticalius of several tens of micronshannel in a targdtapillary)
pulses suffice for effective ignition of nuclear reactions. Infilled with a gas at the required pressure. The choice of the
recent experimentSfluxes of=7x 10" neutrons/sr were de- gas and target materiétapillary wallg, i.e., the selection of
tected when a laser pulse with an energy of 20 J, a duratioreacting pairs, is determined by the specific nuclear reactions
of 1.3 ps, and an intensity of ¥dW/cn? at a wavelength of that are to be ignited. Gas ions accelerated in the direction
1.054 um was focused on a film made of deuterated poly-perpendicular to the beam axis penetrate the target and inter-
styrene or frozen deuterium. In another experintémtjaser  act with its nuclei in a layer with a thickness equal to the ion

1063-7761/99/88(6)/6/$15.00 1137 © 1999 American Institute of Physics
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mean free path in the target. High energy ions are generateadum possible energy, and if the laser pulse is too long,
by the Coulomb explosioff which means that the ions are >d/u;, its energy is wasted, since ions leave the region of
accelerated by the electrostatic field due to the charge sepateraction long before the pulse termination. Thus, the con-
ration. This field results from the ejection of electrons fromdition of equality betweer and the ion transit time through
the region of intense laser field in the radial direction by thethe interaction regiond/u;, determines the optimal laser
ponderomotive force and/or the thermal pressure of electronsulse duration:

over the entire length of the laser channel. Creating an ex-

tended laser channel raises a possibility that the number of 7=0.1d[ um](1+a%2-1)"2ps. v
accelerated particles can be large enough to make possible a ) _ )
considerable number of nuclear reactions. According to Ref167€ We Use the approximate relatidr-2Z, whereA is the
9, at a length of 1 mm of a channel with a diameter of ~ 210MiC number of accelerated ions.

filled with gas at a density of 28-1C* cm™3, the number of By equating the force of electron pressure in Eq.to
radially accelerated ions will be 13-10*. Then even a re- the ponderomotive force, we obtain an approximate equation

action with a relatively low efficiency £10~5) will yield for the characteristic ion energy due to acceleration by the

~10°-1@ particles per laser pulse, which can be of practicalIaser field:

significance. This paper presents for the first time estimates __ _ 5,5

of the yield of nuclear reactions triggered by fast ions and its e~Z(yirai2=1)Mev. ©
dependence on the laser pulse parameters. The threshold la- | particular, for ions accelerated by a laser pulse of

ser intensities required for triggering the corresponding reacintensity | \2~10%* W/cm?- um? and durationr=100 fs,

tions have also been determined. with a channel diameted=10 um, Eq. (3) an estimate
yields e~20Z MeV. Note that these parameters are close to
2. PHYSICAL MODEL those of the existing petawatt lasetons of such energies

can trigger nuclear reactions over a wide range. However,

_ Anintense laser pulse propagating through a gas ionizegypsigerably lower ion energies suffice for many nuclear re-
it almost instantaneously owing to the tunneling effect, and, tjons, i e. lower laser field intensities are required. For ex-
ions are imparted a radial acceleration directed perpend|culac[mp|e1 the DT reaction is most efficient for particles collid-
to the beam axis due to the Coulomb explosion. The acceli-ng at a relative energy 6£0.1 MeV, which can be achieved
eration is determined by the ponderomotive force and th%lsing a terawatt laser generating picosecond pufsgsex-
electron pressure, which is proportional to the average elecémple,l)\zzlow Wicm?- um?, 7=3 ps, andd=10 um).

tron energy(effective temperatur@ey) in the region of in- |, general we can assert that ion energies of several MeV

tense laser field(This effective temperature is generated 5o qyjite feasible in existing systems generating ultrashort
through the nonlinear interaction between the laser radlatlontica| pulses and are sufficient for triggering various

and electrons, which causes nonadiabatic electron heating,jear reactions.
during the laser pulseThe acceleration of an ion of maks
and charge in the field of a linearly polarized laser beam is
described by the following equatitin

Fast ions passing through matter lose their energy to
ionization and excitation of aton{sleceleration lossg¢sThe
stopping length; is fairly adequately described by the Bethe

duy; Z 2 a? z formula:
e S Mm@V /14 = — =V, Ter, (1)
dat . mmer 2 M'rie e de de oM
whereu; is the ion velocity,m is the electron mass, is the li(e)= fo [de/dr[” dr e 2T ZanaA L (4)

speed of light,a=0.85x10"°\\/ is the dimensionless
vector-potential of the laser field, the intensitis measured wheren, is the density of target atom&, is their charge,
in W/cn? and the laser wavelength in microns. M* is the reduced mass of colliding particles,

At present there is no quantitatively accurate theory that=In(4me/M*J), and J is the average ionization energy of
would relateT . to the laser light intensity, and direct mea- target atomsgfor hydrogenJ=14.9 eV and for heavy atoms
surements of the electron energy spectrum in the subpicosed=10Z, eV). At this point, we disregard relativistic effects
ond range of pulse durations have also been impossible dorions, corrections due to the binding energy of electrons in
far. Wilks et all* suggested that at laser field intensitiesk and L shells of atoms, and the correction due to the so-
close to the relativistic valud \?=10'® W/cnm?. um?, the  called density effect. This approximation is sufficiently ac-
electron temperature is of the same order of magnitude as treurate in the range of ion energies up to 100 MeV.
energy of electron oscillations in the laser fieldq Accelerated ions react with target nuclei in a layer of
~mc?(yJ1+a?/2—1). This is in qualitative agreement with thickness equal to their stopping length, E4). The total
numerical calculation$>'® We therefore assume that the numberN of reactions can be estimated by the formila
contribution of the electron pressure to the accelerating force-N’n,ol;, whereo is the characteristic reaction cross sec-
in Eq. (1) is comparable to the ponderomotive contribution. tion. Thus the number of reactions is smaller than the num-

An important parameter of ion acceleration by the IaserberN? of accelerated ions by a factor equal to the ratio of the
field is the laser pulse duration At a very short pulses7{ ion mean free path associated with the reactiam,) 1,
<d/u;, whered is the laser beam diamejeions located in  and the total stopping length. With due account of Eq$3)
the focal spot do not have enough time to acquire the maxiand (4), we obtain
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1.0t FIG. 1. Spectrum of protongN; /deN° accelerated

by a laser pulses of intensitieg) |,\2=10"
Wicn?- um? and (b) 10?* W/cn?- um?. The solid

and dashed lines correspond to Gaussian and super-
Gaussian laser intensity profilesgexd —(2r/d)?]

andl gexd — (2r/d)*], respectively.

25 50 75 100 125 150,175

N0
N=Ni AZ,A
where the reaction cross section is measured in millibarns. e=®(r*)=2Zmd(yJ1+a(r*)%2—1),
Note that the number of nuclear reactions is independent of
the charge of accelerated ions and the target material densit@
The latter circumstance means that a gaseous medium can BE
also used as a target. In practice, such a gas target can [)aed'aI

a2 2 whereni0 is the initial ion density, the energy-dependent ra-
( 1+ —1) : (5)  diusr* is found by solving the equation

nd the spectrum is cut off at higher energies in accordance
ith the formulaesmax ®(r)]. In the case of a Gaussian
distribution of the laser beam intensity=1,

X exp(—4r?d?), Eq. (7) yields a decreasing energy distribu-

realized using a thin-wall capillary with a wall thickness that
has a little decelerating effect on fast ions. In this case th&lon:
reaction time=I;/u;, however, is longer, just as the sike dN:
ocn;1 of the reaction region is larger, hence larger targets are L~
required. The latter condition has nlgt been fulfilled in the
experiment conducted by Pretzletral.~ This can be one of I er~yras
the reasons why the number of reactions detected in that €ma=Z(V1H+ 04\ 1). ®
experiment was low. Here N°= 7n°d?/4, the parameters, |,, and \ are mea-
sured in MeV, 162 W/cn?, and microns, respectively) is
the unit step-function, and the lower bound of the energy
3. SPECTRUM OF ACCELERATED IONS range is determined by the conditien®(R), whereR is

Equations(2) and (5) are convenient for approximate .the radius of the plasma generated during fast tunneling ion-

estimates of the efficiency of nuclear reactions and their opization by the laser pulse preceding acceleration of ions.
timization. They allow one to estimate the order of magni-SinceR>d actually holds(Ref. 9, this energy is negligible

tude of the nuclear reaction yield, given the laser pulse basil? comparison with the Mmaximum 10N EneT@ay- In com-
parameters. At the same time, these estimates are based oR&iSon with the dependenee ~ over the rangeg<Z and
specific characteristic energy of fast iof®, whereas in re- €>Z, Ed.(8) shows flattening of the fast-ion spectrum in the
ality there is a certain energy distribution of iomtly; /de, ~ €N€rgy range~Z, which enhances the reaction yield in this
whose shape depends on the temporal pulse profile and {t&19€: _ o

spatial distributior?. Many reaction cross sections have reso- ~ NOte that the ion energy distribution and hence the reac-
nances, so the reaction yield can strongly depend on thiion yield depends sensitively on the spatial distribution of
shape of the particle energy distribution. An expression fothe laser field intensity, which in general can significantly
the number of reactions which is more accurate than(gq. differ from the .|nt<.an3|ty Q|str|byt|on in the incident Iasgr
contains the cross section averaged over the ion energy spet€a&M owing to its interaction with the plasma. By selecting

0 et+Z

de =2 im®(fmax_€)r

-1

: (6)

!

dr

trum, the so-called overlap integral: an appropriate laser intensity profile, one can maximize the
' triggering efficiency of a nuclear reaction. In particular, for
_ = dN; (e | , most nuclear reactions, an energy of several MeV is required
N=n, | de—— | de' o(€) . . . : :
0 de Jo along with fairly large numbers of ions with these energies.

. . Therefore, given the limited energies of pulses generated by
wheLrJe (tjhe stt]opplng dpfwefe/dr: IS glvenl by tEg.(4). ficl resent-day lasers, it is advisable to shape the laser beam
| r;herf el condi |(()jns_ w tﬁn Iacce er? € q paz_lc es_t fc"‘l‘rgrofile to redistribute energy to the faster accelerated ions.
leavef € oEca ;egtlr?nt uring the laser pu ste u(;g 'tog It % one example is a super-Gaussian laser pulse prdfile,
ows rom .q.( ) at a universal momentum distrioution =1qex —(2r/d)*], for which the analogue of the spectrum
function of ions independent of the pulse duration is estab(S) is
lished:

dN; et+Z €mad €maxt 2Z) -1
AN, 27r*(e)n(2Zmc+e RN max €max . _
dN; 2ar* (e)ni( ) 7 de N; (c122) (et 27) O (€max—€)-

de — Z2m2c4|da?/dr|,—rx(o | 9)
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FIG. 2. Neutron yield in reactiond) T(d,n)*He, (2) D(d,n)*He, and(3) T F|G7. 3. Y|elfs(|n units of 10 W/cmz_) of reactions(1) °Li(d, a)*He and

(p,n)3He versus laser intensity. 512) Ltl( p,a)“He generating fast particles as functions of the laser power
ensity.

This is to be compared with the spectr8) corresponding
to the Gaussian distribution in Fig. 1 f¢a) relativistically

strong,a~ 1, and(b) ultrarelativistic,a>1, laser pulses ac- reaction products. One example is the reactiifd, «)*He,

_celerating protons. The plots in Fig. 1 clearl_y show that the?which allows one to accelerate-particles to an energy of
ion spectrum9) generated by a super-Gaussian laser beam 1S5 4 MeV: another is the reactiohi( p,«)*He, for which

.“Chef n IOﬂSdYVItT energies= gm%Fh TTettnuTbZr of SI_OW (fe maximum energy of generatedparticles is 17.3 MeV.
ons 1S accordingly suppressed. The fatler tendency 1S we igure 3 plots yields of these reactions as functions of the

illustrated by going over to a parabolic laser intensity proflle,Iaser beam intensity. They have a threshold ~at 0

|=1o(1~4r?/d?), which results in a spectrum increasing Wicn?- wm? and lower yields than the thermonuclear reac-
with the energy and proportional t& ¢ Z) O (e €)- tions discussed above

In practice, reactions in which artificial isotopes are pro-
4. YIELDS OF NUCLEAR REACTIONS duced are of great interest. Cunveand?2 in Fig. 4 show the
. . _ 0 . . efficiency of production of3*- and 8~ -active light isotopes
Now let us discuss yield&s=N/N; of reactions which [reactions™N(p.n) 40 and®Mg(d,a)?Na], and curvess

are of interest for possible applications. For the sake of deflénd 4 show the production efficiency of heavier isotopes

niteness, our analysis will be based on formulas for a Gausj?eactionslz“Te(p,n)12“1 and ®Mo(p,n)®Tc]. These last

ian distribution of laser intensity and data on the cross sec: ! . IR .
i ) two reactions, which creatg " -active isotopes, are interest-
tions of nuclear reactions from the EXFOR data Hiéost . . . ) : .

ing for medical applications, in particular, positron tomogra-

importantly, the laser technique of ion acceleration provides . . h
R y q uonp phy. The long-lived isotop&Na is often used as a source of
a microsource of short pulses of neutrons of different ener:

gies ranging between hundreds of kiloelectrovolts and tengecondary gamma rays. The yields of these reactions are

. . 75 . .
of MeV. Figure 2 shows the yield of fast neutrons 14.1 rglatlyely h'.g.h 6{\’2 %0 )'ga'tho(‘fgh they rqulre higher laser
field intensities] oA 2= 10'°-10%° W/cn?- um?.
MeV) and neutrons of moderate energi@®m several hun-

i i ald i ; 2 0
dreds of keV to several MeMas functions of the laser inten- W /Cﬁ‘; .a ;%ﬁlv(cﬁir;ﬂyishlrgh ulﬁgsrtglzlgvlenf:?:g’gznf 1:r2ticle
sity 1, in the reactions Tq,n)*He and Tp,n)3He, respec- K 9 b

tively. Figure 2 also shows the yield of the reaction p over the fission barrief7—8 MeV) and provide sufficient
(d,n).3He, for which Norreyset al!! reported efficient pro- iezsg;amgt\);wgg mgv]cf;ﬂgrabccsggz[ d%i%).:fzt?i/(frlsﬁs-
duction of neutrons with a characteristic energy=e2.45 -2 i . X gger

MeV. sion reactions in targets made of heavy elements. Figure 5

These authofd estimated the total number of acceler- illustrates this effect on the examples of uranium-238 and

ated ions to be~10". According to curve2 in Fig. 2, the

accelerated as a result of the coversion of the energy gener-
ated in the fusion reaction into the high kinetic energy of

characteristic yield of the @{,n)*He reaction under the con- w

ditions of the experimeftis ~ 10" 5. This means that for the f 4
parameters under discussion, one should expect generation 107F 3
of ~10° neutrons per laser pulse, which is in qualitative

agreement with the experimental data. 1074

Figure 2 shows that the DT reaction is triggered at rela-

tively small (comparing to modern experimental facilifies 1075

laser radiation intensities. At,\%=10" Wicn?. um?, the [ X ) ,
reaction yield is already %10 °. The proton charge ex- 0 200 400 600 800 1000
change reaction, T,n)3He, has a clearly defined threshold Iy A, 10" wiem? . ym?

at 10° W/cmz.,um2, but it is characterized by a higher yield FIG. 4. Yields(in units of 10 Wicr?) of isot ed i i
. . e . 4. Yileldas(in units o C Ol Isotopes generated In reactions
of =0.01 for laser pulses of higher intensities. UN(p.n) MO0 and 2Mg(d,a)?Na (curves 1 and 2, respectively, and

Some fusion reactions triggered_by [aser pglseg in this2sre(p Y124 and 9Mo(p,n)%Tc (curves3 and 4, respectively as func-
manner can be used to accelerate light ions. Light ions areons of the laser power density.
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w carried by three or four photons, while in a similar reaction
10~k ] 1B(p,y)*?C (curve 2 in Fig. 6), gamma rays are emitted
e 2 over a broad spectrum with a maximum total eneegy,ax
107°F determined by the maximum proton energymax, hamely
107 €y mac=16 MeV+ €y mac= (15+1+0.410A2) MeV,
107k where the laser intensity, is measured in units of 19
/ . : . W/cn? and the laser wavelength in microns. In targets made
0 200 400 600 , 800 , 1000 of heavier materials, gamma rays with a softer spectrum and
Iy 2, 107 Wiem*® . ym lower total energy are generated. Because these reactions are

FIG. 5. Yields of fission reactions involving?®U and 22Th triggered by eIeCtrOmagnetlc Processes, the_ yields of these reacthns are

protons(curves1 and2, respectively as functions of the laser power den- IOWer (since the electromagnetic constaftfic=1/137 is

sity. small) than those of fusion reactions, which are controlled by
the strong interaction. This circumstance, however, does not

. . . . rule out the possibility of using these reactions in research on
thorium-232 fission triggered by protons. Unlike other Pro-ipe gamma-laser problem.

ton sources, the laser acceleration technique allows one to
generate induced activity in an extremely short time. Specifi-

cally, a proton of energy-10 MeV traverses the stopping

length (4) in a uranium salt, for example, in a time 6f10 5. CONCLUSION
ps, whereas alternative proton sources generate pulses about .
one nanosecond long or longer. Therefore the laser accelera- In th!‘S paper:,we have suggested a SCheme fof a compact
tion technique offers a unique opportunity for fundamentaInUCIear reactor based.on !asgr acceleratpn of ions. Th_|s
research in the field of nuclear physics in a new, subnanor-mth.Od of _nuclear. reaction ignition can be implemented in
second range of times. In particular, it becomes possible tBrf”‘Ct'Ce using available powerful las¢i—-1G TW) gener-
study a decay of radioactive fission products on a time scal@tIng ultrashort pulses. They can bgcp me poweriul .tools of
inaccessible to other triggering techniques. The suggestéﬁ"dear research. The effect .Of relativistic self-focu_smg of a
technique opens prospects for determination of lifetimes o Ser bez_;lm can _substantlally increase the length of |t_s caustic,
ultrashort-lived isotopegmostly 3*-active which are far thereby increasing the total number of accelerated ions. For

from the stability band, and for investigating a strongly non-;fhIS reasol? It ISI dedswa_blzl tot met(ajt thetr?onmons forl selft—h
equilibrium system of isotopes relaxing to the secular equi—oc(;s'?%'] IS asot_ esirable 1o r?h uce the faser lﬁaveheng |
librium. Although the yields are relatively low and the and at the same tme Increase the pressure in the channel,

thresholds are high, an ignition of fission reactions in labo->""¢€ this will allow one to generate more accelerated ions,

ratory facilities is a unique experiment because of the higr‘i"lnd hgnce a higher yield of nuclear reactlong. Note also that,
energy yield, =200 MeV per one fission event. Such a reac-SVeN N the absence .Of self-focgsmg a caplllary can trap a
tion can lead to a thermal explosion, and these experimen!gl‘c’_(ér pulse ot\_/er aTLa_urIy Iarg;: dlstar:cet c;lw!ng to 't‘? wave-
will, apparently, require radiation safety measures because ! f properties. i IS \;V?S em<|)ns ra eh Illn recer_lna%xperl-
accumulation of radioactive isotopes and neutrons emitted ifj’eN's on propagation of faser pulses in holiow capiiiaries,
fission reactions. where_ the_ beam was focused over a length of up tp 1Q mm.
Finally, let us consider examples of generation of hardlnvestlgatlons on the problgm .Of laser holle boring in a
gamma rays and generation of photons with a wide spectr&ilasma asa part Of. the fasF gnitor prpgr’énmll p.robably
range, including the softer component, by allowing Iaser-ShOW. that it is pp§3|ble to d|spgnse W'.th prefabricated .c_han—
accelerated protons to hit a target. Thus, the proton-captu ?IS if the conditions for. bgrnmg sufficiently long 'cavmes
reaction TP, )*He (curve 1 in Fig. 6) is a source of hard with a high plasma density in them can be determined. The

gamma rays in which the released energy9.8 MeV is relativistic effect of plasma transparency can also be a favor-
' able factor. Results of computer simulatidnf formation of

a plasma channel with a length of up to 2&h and a density

of about double the critical value in a solid-state target using
a laser relativistic beam with an intensityx2~10%°
Wicn?- um? also provide evidence in favor of the hole-
boring technique.

We have quantitatively estimated the yields of various
reactions which can have numerous applications and demon-
strated the possibility of creating compact sources of fast
. . neutrons and neutrons of moderate energies, production of
10 20 50,100 200 500 1000 various isotopes, generation of hard gamma rays and photons

Iy &', 10~ Wiem® . ym with a wide energy spectrum, creation of sources of light
FIG. 6. Yields of reactions generating hard gamma fays, y)*He, curve ions and artificial radioactivity. The proposed scheme of la-

1] and gamma rays of a broad-range spectfdiB(p,y)!°C, curve2] as  S€r ignition of nuclear reactions provides a practicable tool
functions of the laser power density. for fundamental research in nuclear reactions on time scales
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The problems studied in this paper involve the action of laser radiation or a particle beam on a
condensed material. Such an interaction produces a hot corona, and the recoil momentum
accelerates the cold matter. In the coordinate frame tied to the accelerated target, the acceleration
is equivalent to the acceleration of gravity. For this reason, the density distriqui®n

hydrostatic in the zeroth approximation. In this paper the structure of such a flow is studied for a
two-phase equation of state. It is shown that instead of a power-law density profile, which
obtains for a constant specific-heat ratio, a complicated distribution containing a region with a
sharp variation op arises. Similar characteristics of the density profile arise with isochoric

heating of matter by an ultrashort laser pulse and the subsequent expansion of the heated layer.
The formation of a rarefaction wave and the interaction of oppositely propagating

rarefaction waves in a two-phase medium are studied. It is very important to take account of the
two-phase nature of the material, since conditiopg~1 Mbar) are often realized under

which the foil material comes after expansion into the two-phase region of the phase diagram.
© 1999 American Institute of PhysidS1063-776199)01406-7

1. INTRODUCTION than for laser heating. There is an extensive literature de-
voted to these questiorisee Refs. 6 and)7

Let us consider the effect of a powerful laser or ion  Hot gas in the corona produces presspyevhich accel-
beam on an initially solid layer. The region heated as a resulérates the foil. The ablation front “absorbs” the foil material
of theabsorption of beam energy has a definite mass thickwith a velocityv,. It is very important that this velocity is
ness. If the thickness of the initial layer is greater than thisordinarily low compared with the sound velocity, in the
value, then the flow separates into hot and cold zon®#/e  foil. For this reason, for a pulse withduratian-H/v, the
shall call them the coronal and foil zones, respectively. Laytime 7 is sufficient to establish an atmosphéetgdrostatic
ers ranging in thickness from 1 to 1Q&m are used in ex- equilibrium). It is established in time-H/c,. Neglecting the
periments on acceleration of foils. An ablation front—a re-velocity v, compared withc, we arrive at a simple model
gion where the entropg of the material varies sharply— in which the ablation boundary of the foil is a Lagrangian
separates the corona and the foil. The surfeees,, where layer, where a pressumg, is maintained. After the pressure
the function—d In s/dx reachesits maximum value, gives the p, is switched on a shock wave punches through the initially
position of the front. Ordinarily—H(d In §dX),,,,2>1 holds,  uniform foil. If the pressurep, is constant, then the shock
whereH is the foil thickness and the axis is directed to- wave is stationary. A uniform entropic background remains
ward the vacuum edge, which is the backside of the foil. behind such a wave.

We shall give the typical values of the experimental pa- At some moment in time the shock wave reaches the
rameters for which the effects due to the two-phase nature dfackside of the layer.The flow arising here is described by
the matter will be important. Aluminum in a shock wave the solution of the problem of the decay of a disconti-
melts at 1 Mbaf. Ablation pressures 1-3 Mbar are reachednuity®-2° As a result of the decomposition, a rarefaction
with incident laser radiation intensities | =102  wave passes into the interior volume of the foil. As men-
—2.10" W/cn? at wavelengthh =200 nm andl=3-10' tioned above, an atmospheric distribution is established as-
—4-102 W/cn? at A=500 nm?°The characteristic pulse ymptotically in a time of ordeH/cs. Thus, the problem of a
durations arer=1-10 ns. These effects are also importantrarefaction wavéSec. 3 and the structure of the atmosphere
for subpicosecond pulses interacting with matter, if the puls€Sec. 2 are of interest in connection with the problem of the
intensity is such that heating up to temperatures much highesffect of laser radiation and particle beams on matter. The
than the melting temperature occurs. For femtosecond pulsgsoblem of the interaction of rarefaction waves is also related
the thickness of the heated layers is much less ( tothese problem&Sec. 4. We shall consider the atmosphere
~0.1 um). For heating of a material by a charged-particleproblem first. We confine ourselves to a thermodynafingc,
beam the target size and pulse duration are somewhat greatsguilibrium) analysis. It is valid in the “dirty” situation

1063-7761/99/88(6)/8/$15.00 1143 © 1999 American Institute of Physics
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FIG. 2. Profilesp(X) in accelerated foils for different values of the near-
criticality parametep. /pe .

From the analysis follows that the switch to two-phases

causes the density profijgx) to vary sharply compared to
the single-phase case.

2. TWO-PHASE HYDROSTATICS

2.1. Thermodynamic description: phase equilibrium
curve and isentropedsochoric heating of thin layers by an
ultrashort laser pulse or by ashock wave arising when pre

sure is switched on produces a uniform distribution of the

entropys. In this connection, it is of interest to analyze an

isentropic two-phase atmosphere. We shall consider as anex-

ample the isentropes of aluminugfig. 1). They have been
calculated from wide-range equations of statél? The
kinks e in the isentropes are due to the intersections of th
binodal bounding the two-phase region on the liquid side
The pressure is given in GPa and density in glcihe
critical parameters arel.=8000 K, p.=0.45 GPa, p,
=0.64 g/cni, ands,=4.83 JIgK (Ref.4, p. 345. All four

isentropes lie below the critical point. The latter is marked by

the letterC in Fig. 1. The pointC together with the points
form the curve of boiling.

For simplicity, in all variants the density of solid alumi-
numpss=2.7 glcnd is taken as the initial density. The initial
pressure and temperature on the isentrohe®, 3, and 4

were, respectively, 19.8, 23.3, 31.3, and 36.5 GPa and 396

5990, 7610, and 10190 K, and the values @h them were,
respectively, 3.05, 3.48, 3.76, and 4.12-Kg" These isen-
tropes were used to calculate the hydrostatic equilibriu
(Sec. 2.2 and to calculate the rarefaction wav&ecs. 3 and
4). In the case of the atmosphere, the layer is heated isoc
orically, the pressure in the layer beconmgs and then this

pressure is maintained on one of the boundaries of the laye

For rarefaction waves the material is heated isochorically an
then expands.

2.2. Structure of the atmospher@/e write the equation
of hydrostatics p,=—pg in the form (@p/dp)dp/dX
= —p, whereX=gx. Hence

P dp’
- [c<p'>]2p—p,:x, 2.1

Pss
wherec(p) is the sound velocity on a given isentrope. In Eq.
(2.1) the ablation frontX, is chosen as the origin for theé
axis(X;=0). The maximum densitp,.=p, is reached on
the ablation front. The equatiof2.1) implicitly determines

e

m

the profilep(X) and together with it the distributions of all
other thermodynamic variables. Let us find the functgn)
along the isentrope and integrd#1). Theresults of the nu-
merical integration are displayed in Fig. 2. The curlegl
refer to the isentropeb-4 presented in Fig. 1. The density is

Sgiven in g/cnd, and the quantityX=gx (the “height”) in

{(km/s) is plotted along the ordinate. The atmosphere with a
higher pressurg, extends to greater heighd$=gx. The
small difference between the distributionsXat 0 is due to

e approximation error. The segmerise of the curves
contain~10 approximation points, each curte4 contain-

ing 50—100 such points. Heeeis the surface on which the
pressurep, is maintained, ane is the vaporization surface
(compare the correspondence between the pairisde in

Figs. 1 and 2

The most important feature of two-phase liquid—vapor
systems is the existence of a narrow zone where the density
changes sharply. The functigi(X) varies smoothly on the
segments—e and very rapidly(but continuously decreases
to values much less tham, in a narrow layer bounding the
surfacee at the top(herep, is the value o at the point).

The vaporized part of the atmosphere lies above the sur-
Bace e. The fraction of the liquid phase there decreases rap-
idly with X. A transition occurs from a bubble to a droplet
state (vapop. The two-phase layer is very thin compared
with X.— X, , whereX, is the coordinate of the poiet This
means that its spatial scale [dIn p(X.+0)/dX]) is small.
Formally, the two-phase layer extends to infinity. It remains
two-phase at all heights, since once the isentrope enters the
trwo-phase region it remains there@sdecreases further. The
B'ressure in this layer near the surfaodecreases slowlfthe
Sections of the isentropes are approximately parallel to the
abscissa in Fig. )1 In this connection we call attention to
Refs. 13 and 14, where the internal structure of two-phase
matter and the influence of the two phases on the motion of
the medium in the near-critical region are investigated.

Along the binodal toward the critical point, the density
pe decreases and the entrogyincreases. Fos~s; and
above the profiles of the variables become quite sm@uth
sharp gradients alony). Fors>s; (s,=4.83 J/gK; Refs.

4, 11, 12 the isentropes, on expansion, enter the two-phase
region through the curve of condensatighe branch of the
curve of phase equilibrium that lies to the left of the pdint
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FIG. 3. y(p) on the isentrope&—4. FIG. 5. Comparison of the profiles obtained with analytic and numerical fits

of the isentrope. The single-layéight solid curve and two-layer(heavy
solid curve polytropes and the numerical fithin dashesare presented for
in Fig. 1). We note that all adiabats terminate in the two- the example of isentrope 3. The arrow marks the point where the solutions
phase region. are matched.
It is important to note that the pressysg at which va-
porizationstarts is low. The ratip, /p. ranges from 2.5t0 5

orders of magnitude forthe curves presented in Fig. 1. Theresasy to see that a power-law dependence follows from the
fore the massn, evaporatedfrom the backside of the foil equation of hydrostatics. For example, the distributiomas
(“tail” ) is small,my/Mg= Pe/Pa - The tail grows in mass the form
and thickness witls (compare the curve$—4 in Fig. 2). 2 _ 2

For a large decrease of pressure on the segaeatthe plpss=[1= (y=DX/cg,]"0D=(1~ 2XINCg, N/2’2 2
density changes very littlep(./p,=0.5—0.7). The appear- (22
ance of the above-described density profile is due to thes&herecs, is the sound velocity at the bottom of the atmo-
two circumstances. Qualitatively, it resembles the densitpphere andN=2/(y—1). The indexsa shows that the sound
jump at the edge of a liquid layer in a gravitational field. Speed is determined by the ablation pressure.
Indeed, if the liquid is bounded above by a vacuiwe In the second model we approximate the real isentrope
neglect vaporization then at its edge the pressure vanishedy two polytropes.In the layeiX,<X<X; the function
and the density abruptly changes from a finite value to zeroy(X)=va., Whileabove this layer, foX>X;, we assume

It is obvious that if the point is close to the poine  that y(X)=1y;, wherey,>vy,. Such a step function gives a
(Pa=Pe, Pa>Pe, Sa=Se), then the mass and thickness of better approximation of the real isentrope on which, as one
the liquid layer should be of the same order of magnitude a§an see from Figs. 3 and 4, in the single-phase condensed
those of the vaporized layer. region the exponeny increases with decreasing At the

The strong decrease pwith a small change ip results ~ matching pointX; the densities and pressures calculated us-
because in the single-phase condensed state the values of tAg formulas of the typ&2.2) are matched.
derivative y= (4 In p/dIn p) are large compared to 1. Plots In Fig. 5 the models 1 and 2 are compared with the
of y(p) and y(X) are presented in Figs. 3 and 4, respec-numerical calculations. Here the light solid line refers to
tively. The values ofy grow asp— p.. For exampley(pe model 1, the heavy line refers to model 2, and the dashed
+0)~200 on the curvd in Figs. 3 and 4. Conversely, in the line refers to the integral.1). The arrow marks the match-
two-phase region these functions near the ppjnare small  ing point of the solutions. In this exampke=3.76 J/gK.
compared to 1 in the case of the isentrofieg, and3. The values taken from the tabulated isentropes,

2.3. Analytic models of the atmospheidle shall de- =7.2km/s, y,=4.5, X;=11 (km/sy, p,=1.837 g/cr, p;
scribe the profilep(x) using simple analytic models. First, =5.527 GPa,y;=10, ¢c,=5.4 km/s) were substituted into
we assumey(p)= const(polytropic atmosphejeThen, itis EQ. (2.2). The power-law distribution§2.2) for y>1 vanish
at a finite heightX,=c?/(y—1). For largey they decrease
rapidly near the vacuum edgg, . Nonetheless, this decrease

%gk_mfs)z follows a power lawpo (X, —X)Y~1) and does not cut off

’ > 4 at the pointX, (compare the dashed and solid curves in Fig.
17.51 5 in the region ofrapid falloft
50p~— 3 We shall now consider a “truncated” polytrope. This
12.5¢ 2 models the zone of very large near and to the right of the
10.077= point e (compare Figs. 1, 3, and 4This is a particular case
7.5¢ 1 of a two-step polytropgmodel 2. The finite value ofy is
5.01 replaced at the point with finitp, and p; by the valuey
2.51 = (incompressible liquid In this case Eq(2.2) describes

0 3 the segment—t of the profile. At the matching point a

plateau—the layet—e of thicknessAX=p,/p; where the
FIG. 4. y(X). The numbers—4 refer to the isentropes—4 in Fig. 1. density p; is constant and the pressure decreases linearly
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X, (km/s)? Py
C (X)=———, p=p;, C=X+c5, (2.9

14 P 1+ X/c%, PP .

12f

10 wherec;, is the sound velocity at the matching poirgn the

5 upper-layer side. We havg,<<c,;, wherec,; is the sound
velocity at the point on the lower-layer side. The smallness

6 of ¢ is responsible for the rapid decreasepofn the tail

4 (2.5, since the height of the homogeneous atmosphere

2 (Ax)zch2 in it is small compared with the analogous scale

in the lower layer.

2.4.Remark concerning multidimensional hydrodynamic
stability. The acceleration of the cold part of the foil by the
pressurep, isunstable with respect to the Rayleigh—Taylor
instability. The ablation surface is unstable. The entropy dis-
tribution s inside the foil is uniform and therefore local
from p, to zero—is matched to it continuously as a functionquasihydrostatic equilibrium is neutrally stable. For low
of p andp. The density vanishes abruptly at the pant plasma density in the corona we halle= \/gk, whereT is

The form of this profile is essentially identical to the the growth rate of the Rayleigh-Taylor instability,is the
profile shown by the heavy line in Fig. 5. It is only necessaryacceleration, and is the wave number. This dependence,
to substitute a step for the smoothly decreasing function ijvhich refers to the linear stage, is universal: It does not
the region above the poitimarked by the arrow. Below the depend on the equation of state or the pragfile

pointt the isentrope and therefore the density profile remain At the nonlinear stage the instantaneous state of mixing

0 0.5 1.0 1.5 20 25
p, glem®

FIG. 6. Foil profiles for model 32.3—(2.4) (solid curve and for a real
isentrope(dashed curve In this examples=3.76 J/gK (isentrope3).

unchanged. _ _ ~is characterizedby a horizontal scale.)—the average
Let us consider model 3. This model is based on a lineapubble size. The profile of should affect the dynamics of
approximation of the pressure on the isentrope thebubble motion i¥\)~H=o/(p), whereo is the sur-

P=pa(p—p) (Psc—po)- (2.3 face density ang the average density. The presence of twq
phases means that the foil is bounded by two sharp jumps in
In this casep undergoes a jump rather than dropping off , at the pointsa ande (see Fig. 2 For pe=p, this profile
gradually to zero, just as in polytropic models with finite s similar to that of a uniform g.=p,) incompressible
The pressurg (2.3 vanishes at a finite densip. The func- (y=) liquid, since in our case the exponents quite large
tion (2.3), referring to the isentrope 3, is shown in Fig. 1 jnsjde the foil. A detailed experimental investigation of the

(broken curvep,=31.3 GPa,pe=1.56 g/cr). nonlinear Rayleigh—Taylor instability in a layer of incom-
The profilep following from the isentropé2.3) has the  pressible liquid has been made in Ref.15. The lifettgof
form the foil before it undergoes mixing and perforation is finite.

It is known that the growth rate of the disturbances is such
(2.4  that the foil traverses several tenstof; before being per-

forated. The foil can undergo many acoustic oscillations over
for Xa<X<X, andX,—Xa=[pa/(pss— pe) IIN(pss/ped). FOr  the time t;,. Therefore the quasihydrostatic description
X>X, the densityp(X) is zero. A density jump occurs at the makes senseas a convenient zeroth approximation despite the
point X,, . Rayleigh—Taylor instability.

A comparison of the model 3 with the numerical calcu-

Iat!ons is shown in Fig. 6. The solid curve was calcula_lteda_ RAREFACTION WAVE
using Eq.(2.4) and the broken curve shows the numerical
calculation of the isentrope 3. 3.1. Numerical integrationLet us consider the expan-

Let us now examine the structure of the tail, i.e., thesion of an initially uniform layer into a vacuum. The expan-
distribution of variables in the vaporized matter. Let the ex-sion is described by a centefedf rarefaction wave. The
ponenty be small (y<1, y=~0, see Figs. 3 and)4o the left  equations of gas dynamicsin this case are
of the pointe (see Fig. L Let us consider two layers. The _ _ _
lower Igyer is an ad?abatic with a large value ;for an pit(pU)y=0, UtulU+ps/p=0, p=p(p). (3.1
isentrope(2.3) linear inp (we shall require its segmenat-t  In Riemann variables the systei®.1) becomes

Pss— pex) ,

a

p(X)= Pssexl{ -

that does not reach=0). We choose as the cpnstaynin P+ (u+c)P,=0, M,+(u—c)M,=0, (3.2
the bottom layer an average value of the functidp) over
the single-phase region, and we choose fora density Where c=\(dp/dp)s, P=u+l, M=u—I, =[] c(p)

somewhat greater tham,. The upper distribution matches Xdp/p, and a reference level fer, which is convenient for
the lower distribution continuously in the variablpsandp  what follows, is chosen immediately in the integdalin
(Pt<€Pa, Pi=pa)- contrast to the integrdR.1) the integrall (here the accelera-
Let us assume that the upper layer is described by ation of gravityg=0) contains the first power af(p).
isentrope with exponeng=0. Then the distributions in this A centered rarefaction wave is self-similar. The self-
layer are similar variable ist=x/t, wheret is measured from the mo-
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Let us examine a centered rarefaction wave in the case
of a two-step isentrope. On each step the isentrope is a
power-law with exponentsg; andys, respectively. The two-
step isentrope is continuous at the paéntvhere the steps
join. At the pointe the derivative of the isentrope is discon-
tinuous.

The rarefaction wave consists of three sections. The first
one is acentered rarefaction wave, adjoining a uniform rest
zone, where undisturbed matter is present. The conditions of

RS . . matching with this zone determine the constédntin Eq.
% <4 -2 0 2 g km?s (3.6). On the first section the solutiai3.6) is
FIG. 7. Profiles of a centered rarefaction wave. Uy()= Ni(é+cy) . _ —&tNjcy 3.7
! N,+1 1 N;+1 '

where the index 1 refers to the first section apekc, is the
ment expansion starts, the point 0 coincides with the po-  sound velocity in the uniform zone.

sition of the edge of the layer at=0, and thex axis is The section 1 of the centered rarefaction wave lies in the
directed toward the vacuum. segment-c,< < &;,. Along the characteristié= — c, this
In the self-similar case the syste(®.2) becomes section adjoins the undisturbed foili{(—c,)=0, ¢;(—C,)
(—€+utc)Pi=0, (—£+u—c)M}=0. 33 ~Ca)

Let us examine the other boundary of section 1, located
For the chosen direction of theaxis, the wavesi—c travel  at the pointé;.. To each of the two steps of the isentrope
into the foil. In this case the functioR(¢) is constant P;  there is associated a separate centered rarefaction wave of
=0), and the functiorM (¢) is nontrivial (M;#0). There-  the form(3.6). The first stepcovers the segmente of the
fore from the second equation of Ed8.3) follows —¢+u isentrope(see Fig. 1L The second step covers the part of the
—c=0. From the condition at the edge of a centered rarefacisentrope which passes along the two-phase region fsfom
tion wave and by virtue of the chosen calibration of the in-=p_ to p=0. The sign of the kink in the isentrope at the
tegral | we have P(£§)=0, since u(é)+I1(&)=u(—c,)  pointeis such that the sound velocity decreases abruptly at
+1(—c4)=0. Thereforeu(§) = —1(¢). the transition through the poimtfrom right to left (see Fig.
On the isentrope we have=p(c). Thereforel=1(p) 1), i.e., from the single- to the two-phase region. The corre-
=I[p(c)]=1(c). Correspondingly, the relatior-{+u—c  sponding inequality is
=0 becomes ¢é=u—c=-Il(c)—c=—I[c(p)]—c(p)
=—I(p)—c(p). The latter equation determines implicitly
the self-similar profiles of the thermodynamic variables and 9p(pe—0) Ip(pe+0)
the velocityu of the centered rarefaction wave. The compu-  Cg.= Q| Cie= |
tational results obtained under this program are presented in P s p s
Fig. 7. The waved—4 refer to the isentropet—4 in Fig. 1. (3.8
3.2. Analytic solution: power-law approximatiofror a  wherec,, is the sound velocity at the end of section 1 of the
power-law isentrope the syster(.1) and(3.2) assume the centered rarefaction wave at the poifit, and cs. is the
simple form sound velocity at the start of section 3 at the p@igt. Since
(3.4 the characteristica— ¢ run, relative to Lagrangian particles,

' in the direction of negative values ¢f the start of the cen-
whereN=2/(y—1). In the self-similar case the systéBi4)  tered rarefaction wave lies at lower valueséathan the end
becomes of the wave.

cU'/N+(u—£)c'=0, (u—&u’'+Ncc' =0, (3.5 In the rarefaction wave under consideration we hdve

. _ _ =u—c. Therefore
whereu’=u; . Inhomogeneous solutions are obtained if the

CBe< Cie:

N¢,+cu,+Nc,u=0, u;+uu,+Ncc=0,

determinant of the systei.5) vanishes. This condition has §1e=Uie~Cie, &3¢~ Uze™ Cae, 3.9
the form U—¢)?=c? or £é=u*c. In our caseé=U—C.  where Uyo=Uy(£10), Cre=C1(£10), Use=Us(£sc), and Cae
Since the equations of the acoustic characteristicsdafe  =c4(¢,,). A region of uniform flow—a plateau—can exist

dt=uzxc, this means that the characteristics of the familypetween the end of section 1 and the start of section 3. Then
u-—c are rectilinear, and inside the centered rarefaction wave, .=us.,=u,. It is easy to see that from this equality, Egs.

they coincide with the lineg= const. Substituting=u—c (3.9, and the inequality3.8) follows &;.> &;.. This means

into the systen(3.5), we find the general solutién'® that the sections 1 and 3 of the centered rarefaction wave
Nég ¢ cannot be matched directly with one another and that a re-
u= m+A, c=-— m+A, (3.6)  gion of uniform flow does indeed lie in the segmént<¢

<&3.. Indeed,p is continuous at the poirg. Thereforeu is
whereA is an arbitrary constant determined by the boundanalso continuous at this poin¥({ and the acceleration of the
conditions. Lagrangian particles are finjteThe sound velocity decreases
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abruptly. Hence the sound wavg, lags behind the wave For low sound velocitiess, in the two-phase region the
&1.. We shall consider the correspondence between thdensity (3.14) in the section 3 decreases rapidly wghn-
points{p,p} on the isentrope andthe poiri§,p} in the rar-  creasing rightward from the left-hand boundafy, of the
efaction wave. We can see that the parih the{p,p} plane  section(see Fig. J. This section resembles the tail of the
transforms into a finite segment in thé, p} plane. The left- atmosphere studied in Sec. 2. Its width &) 3= C3,.
and right-hand neighborhoods of the pomtfrom {p,p} As we can see, the relative width of the tail in the rar-
form the ends of the plateau ¢i,p}. efaction wave(i.e., the width of the tail scaled to the total
Let us now estimate the position of the plateau on thewidth of the wavegis of ordercs./c, . Itis much greater than
basis of the parameters of the tabulated isentrope. Calculathe relative thickness of the atmospheric tail, which in order
ing the second of the functiori8.7) at the pointé;., we find  of magnitude is €3./c,)?. However,p in the tail decreases
with increasingx more rapidly in the rarefaction wave than
€1e=N1Ca= (N1 +1)Cee, (3.10 in hydrostatics. Specificallypx1/x in the atmosphere,
where the velocities, andc,, are found from the tabulated Whereaspoc1/x? in the rarefaction wavcompare Eqs(2.5)
isentrope. Now we write the first of the functio(&7) atthe  and(3.14)].

point £;.. Substituting the expressiaB.10 into it we find 3.3. Analytic solution with a linear approximatior've
the mass velocity in the region of uniform flow shallconsider the model with a linear approximation of the
isentrope in the single-phase region. Let the pressure in this
U1e=Up=Uge=N1(Ca—Cye). (3.11 region be
It is obvious from what we have said above that the parts pP—Pe
of the wave are the section 1, the uniform flgplateau, pP(p)=(Pa—Pe) +Pe.- (3.1

section 2, and the section 3. Pa™Pe

Let us now find the width of the plateau. We hagg Let c§e=(pa—pe)/(pa—pe). It is easy to show that the pro-
=U,—C3 [See Egs(3.9 and (3.11)]. The value ofcs, is  files of the variables in this case are given by the formulas
found from the isentrope. The velocity, is very low, so  for an isothermal rarefaction wave. They have the form

&3.~U,. Fromé=u—c and Eq.(3.11) we find the width of Uy(£)= £+ Cae AN py(€)=pa Xt — (£+ Cao)/Cadl.

the plateau as
The rarefaction wave once again consists of three sec-
§3¢~ 61~ C1e™ C3e™Cie- tions: an isothermal wave, a plateau, and a tail. The coordi-

Let us now consider the section 3. This rarefaction wavelates of the boundaries between them &= —Cae
is unusual, because the exponent (3Inp/aln p)s is small ~ +CaelN(pa/pe) aNd &3e=CaelN(pa/pe) —Cse, Where once
here compared to 1. In ordinary situations we hawvel (a  adgain the indices 1, 2, and 3 denote the numbers of the sec-
power-|aw rarefaction wave bounded by a vacuum ¢(dge tions, a is the initial pOint, ance is a pOint on the curve of
y=1 (isothermal exponential rarefaction wave continuing toboiling. The indices & and 3e refer to neighborhoods of the
infinity). point e on the side of the single- and two-phase regions,

Let us determine the constaAtin Egs.(3.6) for a cen- ~ respectively. 3 o _
tered rarefaction wave on the section 3. For this we use the The problem of boiling up of a liquid in rarefaction
point &3, and the sound velocitgs, there. As a result we Wwaves has a definite bearing on the questions examined in

obtain Sec. 3(Ref. 1. Itwas studied in connection with the prob-
lems of safety of nuclear power production. We are talking
_ N3&+Ny(Ca—Cie) +N3Cge about accidental rupture of a pipeline carrying coolant at
us(é§)= ~2&—Ny(Ca—Cqe),

N;+1 high pressure. We underscore that physically the coolant and
(38.12  laser-heatingcases are vgry different. In the formglp, is
only 10% greater than®, whereas in the lattemp,/p.
C3(é)= £ MG el T Ngcse“f— N1(Ca—Cie). ~10?, (see Sec. 2)1In thefirst cas@~p,. Thereforeu, is
Ng+1 small compared ta, (the rarefaction wave in section 1 is
(3.13 short and the acceleration of matter is smalls a result,

In Egs.(3.12 and (3.13 approximate expressions are ob- sound runs rapidly through the tube, while matter exhausts

tained forcse~0 andNz~—2. relatively slowly. In the second case matter on the plateau
From Eq.(3.13 and the isentrope follows an expression moves much more rapidlyug~c,).
for p In the rupture problem information about the process is
_£EN 3 N N obtained from pressure Sensors. In this problemvaries
ps(6)=p» §+ N3 (Ca—Cye) + N3Cae abruptly on the short section 1. Conversely, a sharp decrease
(N3+1) Cze of p on the section 3 under our conditiofsee Fig. 7 is
21— o) 2 smoothed by the piezoelectric element, sipce the two-
_ pell —(Ng+1)]Cze} ° ~ P2C3e phase region approximately equaion the plateau. At the
§—&set[—(Ns+1)]JCse  (g—g50+Cqe)?’  Same time, for applications in optical diagnostics of laser

(3.14 ablation by ultrashort laser pul$é<8jumps inp (great val-
' ues of|Vp|), which reflect light, are important. Such jumps
wherep, is the density on the section 2, i.e., on the plateauin p have been observed in Refs. 17 and18. In addition, in
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v1=8.4, ¢c,=9.8 km/s, c,=1.7 km/s, &,,=0.487 km/s,
£3.=2.14 km/sy;=0.195, and c3.,=0.052 km/s. In
the second solution the main parameters atrg,

=5.5 Km/s,uje=U,=U3,=2.6 km/s, &£;,= —2.9 km/s, and
£3.=2.6 km/s.

A comparison shows that the tails of the analytic and
numerical solutions agree well with one anotliére agree-
ment between the heavy dashed and light solid lines in Fig.
8).

-10 -8 6 4 -2 0 2 4
& km/s 4. SIMPLE WAVE AND INTERFERENCE OF TWO SIMPLE

FIG. 8. Structural features of a two-phase wave: plateau and tail. The payyAVES: FORMATION OF A GAP INSIDE THE
rameters are constant in the plateau region. Thermodynamically this entirigaApORIZED MATTER
portion of matter is in a state corresponding to the point of the kink in the

?sentropg on the vaporization curve. Asharp decrease of the density occurs  Ap atmosphere, bounded by a density jump, and a
in the tail. simple wave, consisting of the standard centered rarefaction
wave and a plateau, also bounded by the jump,invas
presented in Secs. 2 and 3. We shall now study the expansion
the rupture problem the sectior< 0 is usually studiedsee of a layer heated uniformly by an ultrashort laser pulse (
Fig. 7), since the rupture point is locatedat 0, while for ~ <H/c,). Simple waves propagate toward one another from
optical measurements the entire wave is important. the two boundaries of the laydfoil) and meet at time
3.4. Structure of the wavdn Fig. 8 the first and second H/2c,. If the foil is deposited on a rigid substrate, then at
analytic solutions are compared with the numerical solutiontime t,=H/c, the simple waveis reflected from this sub-
The heavy dashed curve shows the numerical solution in thstrate. For definiteness, we shall study this case.
case of the isentrope 3. In Fig. 7 it is distinguished by dashes. In the case of an isentrope without a phase transition and
The heavy solid curve shows the first solution correspondingvith an everywhere continuous sound velocity, fort, the
to a power-law approximation of the single-phase isentroperarefaction wave is divided into two parts by the reflected
The light solid curve is a linear approximatig®.15 of the  sound wave with instantaneous coordinatét). The first
same part of the isentrogeecond solution The light small  part forms a centered rarefaction wave. This is the region
dashes show the form that the centered rarefaction wave (r)<x<x,(t) with one simple wave. In the second part
would have if the isentrope were described by a power lawfl0<x<x,(t)) two simple waves—incident and reflected—
everywhere. interact. Ast—o the mass of the first regiom; —0. Inte-
The first solution was constructed as follows. The pointsgrating the reflected characteristidX, /dt=u+c) with a
(Inpy, Inpy) and (Inpe, In p;) were taken from the isentrope power-law approximation of the isentrope gives=H
(see Fig. 1 The exponenty; was found from the slope of +[Nc,—(Nc,+H/t,)(t, /t)ZNTD]t. Here x is measured
the straight line connecting them. The velocitif£c§cl from the rigid wall. With this reference the film edge tat
= y:1Palpa and c2=y,p./p. Were calculated. This method =0 is located at the point=H=ct, .
overestimates, and underestimates,, and in consequence We are especially interested in the interaction of the re-
it overestimates the width of section 1. Looking ahead, welected wave with the plateau region. The way&) reaches
note in contrast that in the method referring to the secondt at the moment of freezing: . The reason why it is called
solutionc, is underestimated;, is overestimated, and there- this will be explained below. For a power-law approximation
fore the width of section 1 is underestimated. The fact that;/t,=[(Nc,+H/t,)/(Ncy— &) INT V2. A difference cal-
the linear approximation underestimateg and overesti- culation of the isentroped—4 presented in Fig. 1 gives
matesc, is obvious from a comparison of the line@ashed t;/t,=exqfd&2c(£&)]=1.44 (1), 1.63 (2), 1.97 (3), and
curve a—e)and the tabulatedsolid curvea—e) isentropes 2.63 (4), where the integral is taken fromc, to &4, (the
presented in Fig.1. We note that the width of the plateau imumber of the isentrope is indicated in parenthpsAs s
the first solution is less and in the second solution greateincreases, the differendg.— &, and the time; /t, increase.
than in the numerical calculation. The rate of stretching, characterized by the derivative
We also note that the plateau in the numerical calculagu/dx or the total derivative {D Inp/Dt) (D/Dt=g4,
tions has a slopésee Figs. 7 and)8 This is due to the +ud,), is greater in the two-wave region than in the one-
computational errors. wave region. In a simple wave with a phase transitisee
Further, in constructing the first solutidh, and p;(&) Sec. 3 u, >0 on section 1, and,=0 on section 2. This is
were found, the ends, of the plateau was found, ang and  the frozen regior(plateay, where matter coasts as a whole
C3e Were found from the isentrope, and the functies(¢) and the thermodynamic quantities are constant as a function
was found. To construct the second solutmn pe, pa, and  of x andt.
pe Were chosen and,., &1, and &3, and the functions Let us see what happens fort; . The unusual nature of
p1(€) andp4(&) were calculated. the the interaction of the reflected sound with the plateau
Figure 8 compares waves with=3.76 J/gK (isen- region should be underscored. Behind the reflected wave
trope 3, see Fig. 1 The values of the parameters are (0<x<x(t)) the densityp(x,t) decreases with time, while
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on the plateau it i, and does not change. At=t; p(x,t) We note that a direct numerical simulation is impeded be-
~pe in the reflected wavep(x, ,t;) = pe). We shall call the cause after a phase transition the sound velocity decreases to
region 0<x<Xie & gap, where, is the instantaneous left- extremely low values.
hand coordinate of the plateau. By the tinret; a phase We thank A. M. Oparin and V. V. ZhakhovsKor help-
transition has already occurred in allmatter in the gap. Afterful discussions. Financial support for this work was provided
the transition|Vp| decreases sharply. As a result, motion inby the Russian Fund for Fundamental ResedRibject 98-
the gap becomes frozen—a coasting regime is established2-17441-a and the program for support of leading science
This means that the dependencetan the velocityu(m,t) schools(Project 96-15-96448
written as a function of the Lagrangian coordinatevan-
ishes.

At the moment freezing occutg,=0 on the plateau and
u,,>0 in the gap. Therefore fot>t; the motion of the
boundary between the plateau and the gap along the LaE-mail: nail@landau.ac.ru
grangian coordinaten stops(accumulation of matter by the E-mail: anisimov@itp.ac.ru

1 L X
; . ; ; -Mail: i2042803@aix3.thp.nat.tu-bs.de
plateau region stops; the maximum ratio of the plateau ma t should be noted that the accuracy of the semiempirical equations of state

to the total mass isple/pa) (Aé/Cy) (i /1), Aé= €ze— &1e)- in the two-phase and near-critical regions is comparatively low for most
The densityp in the gap continues to decrease, since heremetals. Metals with low critical temperaturésercury and alkali metals
ur'n>0 and is frozen. As a resulp in the gap becomes for which direct experimental data are available, are exceptions. In this

ler th the d . in th lat . Th th connection, the numerical results obtained with different equations of state
Sma_ er . an the densitye In the plateau region. . us the  can differ. However, this does not change the qualitative picture of the
distribution ofp overx or m becomes nonmonotonic. On the  phenomena studied. Laser and beam experiments open up interesting pos-
plateauc=cle holds for compression waves ane: Cae for sibilities for refining the equations of state in regions where the more
rarefaction waves. In the gap ftb]>tf the motion is hyper- conventional methods are of limited applicability.

sonic. It is evident that the boundary between the plateau and———

the gap becomes a secofth respect to the boundary,)

boundary where the density changes sharply. tet; the

densityp in the gap decreases(t;/t)p.. The plateau de-

cays slowly, since the expansion velocities are low o o _
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We analyze theoretically the formation of NMR pulse responses from a quadrupole spin system
in which the inhomogeneous broadening of a spectral line is due to both magnetic and

electric quadrupole interactions. We derive formulas for the moments of formation of
multiquantum echo signals in the case of three exciting pulses. For the first time we detected in
experiments multiquantum spin-echo signals from copper nuclei in ferromagnetic copper
sulfochromite in the cases of double-pulse and triple-pulse excitations. We find that there is good
agreement between the calculated and experimentally observed moments of echo signal
formation. © 1999 American Institute of Physids$51063-776(99)01506-1

1. INTRODUCTION wherel, is the operator of projection of spinon the quan-

The magnetic hyperfine interactions between the elect_|za_t|on axisz. Eat_:h isochromatic spin group is characterized
y its own detuningA w and quadrupole splitting, of the

tron and nuclear spin subsystems in magnetically ordereEA

substances lead to the emergence of local magnetic fields MR spectrum.

the nuclei, fields that determine the NMR frequendi&ore During the action of the exciting pulses, the Hamiltonian

than that, NMR in magnetically ordered substances is charc—)f the spin systemii,, consists of the Hamiltonia(t) and

acterized by natural inhomogeneous broadening of a spectrgie term descnpmg the |nte.ra9t|or'1 between the spin system
line, due to which the main method of experimental NMRand the alternating magnetic field:

spectroscopy is the spin-echo metHadin the case of mag- Hi=H+Aw;l,, 2

netic resonance of nuclei with spins>1/2, the electric : . . -
guadrupole interactions lead to the emergence of additioné{vhere“’l is the amplitude of the alternating magnetic field

: : : xpressed in units of frequency.
spectral lines, to quadrupole satellites, and to formation of . . . 7
multiquantum echo signaf Using the method of the density-matrix operatdr, we

The moments of formation of multiquantum echo signalsaLrgllsa?tn?: ﬁé?i;iisolg\;l] fo_r ,\t/lhe+tir|<a/lnsv§:st<iam(;otmponent of the
from quadrupole nuclei in magnetically ordered substance! 9 T y? '

are well known for the case of two exciting pulSe§On the it
other hand, triple-pulse trains are widely used to excite echo  M+(1)= > Viexg - 7 (Em=Em+a)

. . . . m,mq,my,
signals in inhomogeneously broadened spin systehis. ma.my,
particular, they are used in studies of magnetic relaxation )
iT
processes. B E _E ex;{__lz E. —E }
The aim of the present work is to analyze theoretically 7 (Em~Em) 7 (Em~Emg)
the moments of formation of multiquantum responses of a @)

qguadrupole spin system under triple-pulse excitation. To ) ) .
verify the theoretical results in experiments, we used multiHere timet is measured from the moment when the third

CuCr,S,:Sh atT=77K. and second exciting pulses,; is the time interval between

the second and third exciting puls€Eig. 1), and E,
=(m'|H|m’) is the eigenvalue of the Hamiltonigd) in the
state with the magnetic quantum numivet. Each term in

We analyze the moments of formation of triple-pulse (3) describes the echo signal in the case where the exponent
echo signals theoretically by using the approach developedanishes at all values diw and w,. This is possible for
for the case of two exciting pulsés’ We begin by repre- various values of the magnetic quantum numbersm;,
senting an inhomogeneously broadened spectral line in the,, m;, and m,. The amplitudeV of the corresponding
form of a set of isochromatic spin groups. We write theecho signal is
Hamiltonian of an isochromatic spin group in a rotating ref-
erence frame as follows:

2. THEORY

V=1/1(1+1)—m(m+1){m|Rs|my)(m;|R,|my)

(1+ 1)) X(My|Ry IRy [ m3)(mg|R; *|my)(my|R3 1 m+1),

H=—ﬁAw|Z+ﬁwq(|§— 3 1) @

1063-7761/99/88(6)/4/$15.00 1151 © 1999 American Institute of Physics
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J h 5 t.=7, we detected multiguantum echo formation at tithe
L 7, - . =37, where 7 is the time interval between the exciting
12 <————‘—>1 pulses, and, is measured from the moment at which the
f . second exciting pulse ceases to act. The maximum in the

100.7 MHz, with the first and second pulse lengths being 5
and 3us, respectively, and the amplitude of the rf pulses
4 P, e B & beingU=220+20V.
_ _ , _ , The %3Cu nucleus is a quadrupole nucleus with spin
FIG. 1. Time diagram of formation of a triple-pulse echo signals the  _ 35 - The moments of occurrence of triple-pulse echo sig-
length of thejth exciting pulseP,, P,, andP; are the exciting pulses; . . .
is double-pulse echo: are is triple-pulse echo. nals,t., calculated by(5) with 1=3/2 are listed in Table |
for the case of multiquantum signals. All echo signals can be
divided into three groups. The first group consists of signals
whereRf1=exp{1itJH1/ﬁ} are the operators describing the for which multiquantum coherence is formed in the time
action of thejth exciting pulse, witt; the pulse length. interval 7, (signals 1-4 in Table)l The second group con-
Assuming that the exciting pulses are much shorter thagists of echo signals for which multiphoton coherence is
the time intervalsr;, and 7,3 and using the fact that the formed in the time intervat,; (signals 5—8 The third group
exponent in(3) must vanish at the moment of formation of consists of echo signal with multiphoton coherence formed
the echo signal, we find that in both time intervals;;, and 7,5 (signals 9—11 Equation
(5) describes the occurrence of a multiquantum echo signal

/\- echo signal amplitude att,=37 was observed near

— Aw(My—m3) + wg(m3—m?)

te=T15 — at timet.= 374, for any (of the four possiblgvalues of the
Ao+ og(2m+1) magnetic quantum numbern;. The moment of echo forma-
—Aw(m;—my)+ wq(mf_mi) tion, t.=37,3, is realized at all possible values of the mag-
+ 723 (5)  netic quantum numbem,.

—Aotwy(2m+1 ) , L .
w0 @q( ) In our experiments we used triple-pulse trains in which

This expressioit5) describes the moment of echo signal for- at least two pulses were of the same length. The amplitudes
mation whent, is independent oA w and wy. By multi- U of different pulses belonging to the same chain were the
quantum echo signals we mean such responses of the spiame. The search for multiphoton echo signals for the case of
system for which at least one conditiofm,—ms|>1 or  triple-pulse excitation was done at the frequency correspond-

|m; —my[>1, is met. If the first condition is met, multiquan- jng to the maximum in the amplitude of the double-pulse
tum coherence forms in the time interval,. If the second echo, 3.

Condition iS met, multiquantum Coherence formS in the t|me Ordinary triple_pulse echo Signa's were observed at
intgrval 7,3. Ordinary triple-pulse echo §i'gnals form if mag- times to=T12, Toz, Tio— T23, Toa— T12, ANd 7y5+ o3 (Fig.
netic quantum numbers obey the condition 2). Moreover, all(eleven theoretically expected multiquan-
m=m;=my=mz—1=m,—1. (6)  tum echo signals were experimentally detected in the triple-
pulse response. The observation of a theoretically predicted
echo signal is possible i>0. Equation(5) implies that it is
impossible to select the values of the time intervals between
Experiments were done with a pulsed incoherent NMRthe exciting pulsesr;, and 53, so that all eleven calculated
spectrometer. The NMR signals were those generatesdignals are observed simultaneously. A variety of values of
by ©Cu nuclei in a polycrystalline ferromagnet 7, and 7,3 were used to observe various echo signals in
CuCr,_ggShy o254 cooled toT=77 K. In the double-pulse re- experiments. The relationship between the moment of forma-
sponse, in addition to the ordinary echo signal formed at timéion of the experimentally observed echo signal, and the

3. EXPERIMENTAL RESULTS AND A DISCUSSION

TABLE I. Moments of formation of triple-pulse multiquantum echo signals.

Theory Experiment
No. mi m, mg my te t1,u8 ty,uS t3,uS T1o,uS Toz,uS te,us U,volts
1 any 32 -32 m 371, 5 3 5 50 75 150 22810
2 —1/2 3/2 =312 12 3r,—73 5 3 5 50 10 140 22810
3 12 32 =312 —1/2 7y3+37y, 5 2 5 15 45 90 226110
4 12 -3/2 32 -12 155-37, 5 3 5 10 110 80 22810
5 32 any m, -3/2 373 5 2 5 15 45 135 22610
6 32 —12 12 -312 3rp—1 1 1.1 1 49 75 175 60810
7 32 12 —12 —312 3yt 1 0.9 1 10 55 175 50010
8 —3/2 12 —12 32 7,37y 1 1.1 1 90 10 60 60810
9 3/2 32 —3/2 —3/2 3r,t37y3 5 1 5 10 55 190 226810
10 —3/2 3/2 —3/2 3/2 3r;;— 373 5 5 3 80 35 135 226810
11 3/2 —3/2 3/2 —3/2 3r,3— 37y 5 5 5 12 85 220 22610
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E FIG. 2. Oscillograms of a triple-pulse response. The hori-
. mA zontal scale is 2@us per scale divisiorP,, P,, andP; are
the exciting pulses. The pulse lengths &et,=5 us, t,

=3 us, andtz=5 us; and(b) t;=1 us, t,=1 us, andts

=1 us. The time intervals between the pulses @er,
=43 us and 7,3=17pus; and (b) 7,=80us and 7,3

] [l =10us. Ordinary triple-pulse echo signals are formed at
the following moments{a) to= 753 (€1), 71— 723 (€5), T12

3 : (e3), and 7o+ 793 (&4); and (b) te=713 (€1), T1o— To3
(e3), 712 (€4), and 7o+ 37,3 (€5). Multiquantum triple-

t Y pulse echo signals are formed at the following moments:
e
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ce (&) te= 712+ 3723 (€5), 3712 (€6), and 3ryp+ 723 (€7); and
1 2 4% & (b) te=171,— 3723 (€;) and 7y,+ 3723 (€6)-

[y~
l))ﬁ —

time intervals between the exciting pulses was found byamplitude of these echo signals was observed when the
varying the values of the time intervatg, and 753. As an  length of the first exciting pulse and the pulse amplitie
example, Table | lists the moments of formation of echowere such that the amplitude of the double-pulse echo was at
signals and the values of the time intervals and 73 at  its maximum, 3 (see Table)l
which the corresponding echo signal was observed sepa- Optimum excitation of multiquantum echo signals 6-8
rately from other signals. The repetition frequency of thewas achieved at a larger amplitude and smaller length of the
pulse trains amounted to 0.1s. exciting pulse(Table ). The amplitude of these echo signals
For nonquadrupole spin systems with an inhomogewas substantially larger than the amplitude of the other mul-
neously broadened spectral line there exists a vector mOdﬁhuantum triple-pulse echo signakignalse, andeg in Fig.
that provides a graphic description of the process of echeyp) For the case of three-quantum double-pulse echo in a
signal formatiorf-* No such model exists, however, for mul- quadrupole spin system with=3/2 it is knowr?® that opti-
tiquantum echo signals. We believe that the formation of:5| excitation of the signal is achieved when the first pulse is
echo signals in an inhomogeneously broadened quadrupolg;ice as long as the second. For signals 6—8 of multiquantum
system(and in a nonquadrupole systgamounts to the fol-  chg  the multiquantum coherence state is prepared by the
lowing. The precursor pulséor pulse$ generates a trans- (st and second exciting pulses, whose total length is ap-

\k;ersz co_mplone(:jnt ofdnuclearf r:]lagnetlzanon. Inhom()genefo'@oximately twice the length of the last signal. Thus, signals
roadening leads to decay of the transverse component of the g ¢ multiquantum echo can be seen as analogs of multi-

isoch i . illate with diff it : Huantum double-pulse echo signals. However, by comparing
Isochromatic spin groups osciilate with ditterent requUeNnciesy, o ., jitions for the formation of these echo signals with

The Ia;t exciting pulse Ieads. to “time reversal” in the SYS" the conditions for the formation of signalgbable ) we can
tem, with the result that at a tintg there forms a peak in the : : A
see that multiquantum triple-pulse echo is similar to double-

transverse component of magnetization, which is observed as . . . .
an echo signal pulse echo if there is an interval of ordinary one-quantum

For a quadrupole spin system with=3/2 the exciting coherenceAm=1 andAE/A=Aw) in the time interval be-

pulse preceding the multiquantum coherence interval coupletéfveen the first and second excnlr_]g pulses. .
the states witthm=3 andAE/% =3A o (see Table)l In the The dependence of the amplitude of the echo signal on

multiquantum coherence interval, the magnetizations of thé"€ frequency of the alternating field in the exciting pulses
isochromatic spin groups become dephased with a frequen&Q}aS used 'to detect the magnetic resonance spectra. Addi-
equal to three times the detuningw. Such oscillations, tonal studies have shown that the frequency spectra of mul-
however, are not observed in experiments, since they corrdiduantum triple-pulse echo signals coincide with the fre-
spond to the frequency of a “forbidden” transition. The last qUeNcy spectrum of the multiquantum double-pulse echo
exciting pulse couples the states WitlE/ = Ao and leads signal 3r. Probably, the reason is that in the formation of
to phasing with a frequency that is three times smaller tha®oth multiquantum double- and triple-pulse echo signals the
the dephasing frequency. Such oscillations correspond to tHXCiting pulses couple the states withE/i=Aw and
frequency of an “allowed” transition 4m=1) and are ob- AE/h=3Aw, so that electric quadrupole interactions are ef-
served in experiments. Since the phasing process proceetgstively excluded from the process of echo signal formation
three times slower than the dephasing process, the momedfd quadrupole interactions in the spectra of multiquantum
of occurrence of a multiquantum echo signal is three timegcho signals are suppressed.
the value of the multiquantum coherence interigge Table As a result of studies of the relaxation properties of
). double-pulse echo signals it was found that the amplitude of
The amplitude of multiguantum echo signals observed irthe multiquantum double-pulse echo signat 8ecreases
experiments was found to be much smaller than the amplie-fold as the time intervat between the exciting pulses in-
tude of ordinary echo signals. For signals 1-5 and 9-11 ofreases by 785us. Such a decay rate is several times
multiquantum triple-pulse ech@able |), the experimentally larger than that of ordinary echo gt=7. To separate the
observed signal-to-noise ratio was small and varied from 1.5noments of formation of different triple-pulse echo signals,
to 3(signalses, eg, ande; in Fig. 23. The maximum of the we were forced to make the values of the time intervals
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and 7,3 very large(Table ), which could be the reason the quadrupole interaction. However, such studies require a the-

amplitude of multiquantum echo signals is so small. oretical analysis of the effect of fluctuations of the nonsecu-
Moreover, the amplitude of the triple-pulse responsdar part of the spin Hamiltonian, which is responsible for

[Eg. (4)] depends on a large number of parameters: thepin—lattice relaxation processes, on the rate of decay of

length t; of each exciting pulse, the amplitude, of the echo signals. For the case of selective excitation of echo

alternating magnetic field, the average value of the quadrusignals from quadrupole nuclei such an analysis has yet to be

pole splitting of the NMR spectrum, etc. With such a largemade.

number of parameters one cannot exclude the possibility of This work was made possible by grants from ISSEP

nonoptimal signal excitation, which may be another reasoriGrants APU072083 and SPU062005

the amplitude of multiquantum echo signals is so small.

L= il :
4. CONCLUSION E-mail: roton@ccssu.crimea.ua
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This paper examines particle diffusion Mxdimensional Euclidean space with traps of the return
type. Under the assumption that the random continuous-diffusion time has a finite mean

value, it is established that subdiffusiomhich is characterized by an increase in the width of

the diffusion packet with time according to th&law, wherea<1; for normal diffusion

a=1) emerges if and only if the distribution density of the random time a particle spends in a
trap has a tail of the power-law typet® 1. In these conditions the asymptotic expression

for the distribution density of a diffusing particle is found in terms of the density of a one-sided
stable law with a characteristic exponent It is shown that the density is a solution of

subdiffusion equations in fractional derivatives. The physical meaning of the solution is discussed,
and so are the properties of the solution and its relation to the results of other researchers in

the field of anomalous-diffusion theory. Finally, the results of numerical calculations are discussed.
© 1999 American Institute of PhysidsS1063-776099)01606-§

1. INTRODUCTION Fourier—Laplace or Mellin transforms. The densities of the

o spatial distribution of a subdiffusive particle have yet to be
Usually by anomalous diffusion one means a randomszq ng numerically.

walk process involving a particle whose diffusion packet
A(t) [i.e., the width of the distribution densify(x,t) with
the initial conditionp(x,0)= §(x)] grows in time according
to the law

The idea to seek the solution of subdiffusion equations
in terms of stable laws emerged on the basis of two facts that
are not well known to physicists. The first is that the Gauss-
ian distribution is but one representative of an infinitely large

Atect?,  t—oo, (1) set of stab[e Ia\_/vs_, _whos_e common property is _that all these

laws describe limiting distributions of sums of independent
where the exponent differs from 1/2, a value that corre- random quantities, with each sum being normalized in a spe-
sponds to normal diffusion. Wher>1/2, we have superdif- cial way*>~*' The Gaussian distribution emerges as the lim-
fusion, and wherv<1/2, we have subdiffusiofsee the re- iting distribution only if the terms have finite or logarithmi-
views by Bouchaud and Geordeisichenkoz, and West and cally divergent variances. The second fact is that a relation-
Deering). The first type of anomalous diffusion is associatedship exist$®!° between stable laws and Fox functions.
with anomalously long particle paths in the mediug, Since different approaches to the problem of anomalous
while the second is associated with anomalously long timesliffusion invoke different variants of the equations, we begin
that the particle spends in a trap, By anomalously long we Wwith a complete description of the model under consider-
mean that the random quantitiésand 7 are such tha{¢?)  ation, based on integral equations.
=o and(r)=c. The power law(1) emerges when the dis-
tributions of ¢ and/or = have tails of the power-law type. In
Ref. 4 it is sghown that in the asymptotkr:j limit of ve>r/)‘/)large 2. INTEGRAL EQUATIONS OF THE DIFFUSION
. e . _ . OF PARTICLES IN A MEDIUM WITH TRAPS
times, superdiffusion is described by an equation with a frac-
tional Laplacian whose solution is a symmetric stable distri-  We use a model in which a particle can be in one of two
bution. The present paper is devoted to a theoretical study aftates: a state of ordinary diffusidstate 1, or a state of rest
the subdiffusion model, whose numerous applications tdstate Q after it has landed in a trap. Subdiffusion is a pro-
physical processes have been discussed in Refs. 1-3,5—-X®&ss in which the particle state changes successively at ran-
and others. dom moments in time. We assume that the random time

If we assume that the random variablgsand r; are  intervals within which the particle is in one of the two states
mutually independent, subdiffusion can be described by inare mutually independent and are distributed with densities
tegral equations. If we want the subdiffusion equation toq;(7) andqo(7).
look like an ordinary diffusion equation, we must consider  The distribution of the time a particle stays in a trap,
equations in fractional derivativés!® Schneider and qo(7), which is determined by the trapping mechanism and
Wyss!! Glockle and Nonnenmachéf, and Westet all®  the statistical spread of the trap properties, will not be nailed
used Fox functior’é to represent the solutions of such equa-down for now. As forq,(7), we only assume that the mean
tion, but since Fox functions are peculiarly ill-suited to nu-time interval between a particle’s leaving a trap arriving at
merical problems, such representations are no better thahe next trap is finite:

1063-7761/99/88(6)/9/$15.00 1155 © 1999 American Institute of Physics
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_ % Taking the Laplace transform of Eqé7) and (8), s;(\)

TFJ 7qy(7) d7<co. (20 =17 exp{—M}s(t) dt, we obtain a system of algebraic equa-
tions for the componentsy(A)=qg(N)s;(A) and s;(A)

The medium is assumed spatially homogeneous and time=K(\)+q;(\)sg(\), where

invariant. {

Let p(x,t) be the spatial distribution of the probability in K(\)= fxdtexp{—)\t}
0

0

t
Ql(t)S(t)ﬂLf drqi(7)s(7)

the case of continuous diffusion. M-dimensional space, 0

1 2 Its solution has the form
POV = Dy XF’(‘H]’ xeRY @ QoK)

" @npy o= T 0 a0 (10
. o . N 1-go(M)ai(N)
where D is the diffusion coefficient. Next, bygy(x,t) we
denote the particle distribution at timiewhere the particle’s Si(M) = K(N) 11
history begins at=0 when it lands in the trap at=0, and 1 1-qo(M)gi(N)”
by pi(x,t) we denote the particle distribution at tinte . .
where the particle’s history beginstat 0 when it leaves the Using (9), we can transforni () into
trap atx=0. These two distributions are related by a pair of K(\)= — d fw ) N a dg;\
integral equations: (M=-agy 0 Qu(tyexp(—At}dt—+—
t
_ _ d 1-gy(\) ad
po(X,t)—Qo(t)é(X)Jrf d7qo(7)pa(X,t—7), 4 —g—— WML T
t
pr(x,)=Qu()p(x,t) + fodrql( T)P(X, 7% po(X,t—7), _ a[l‘_qzl“)] 12
A
(5) . .

where Q;(t)=f7q;(r) dr, and * denotes spatial convolu- p”esccordlng to Tauber’s theorens;(t) ~Ajt®, t—c, im-
tion:

s(M~T(a+1)AN L A—0, (13

P(X, 7)* po(X,t— T)Ef P(X',7)po(X—x',t—7) d"x'. and conversel§® By virtue of (2) we have
© - 1-qN) —
1-qu(M)~7h, Q)= ———~, (14)

The system of equatior(g) and(5) normally describes a N

more general class of processes, since it holds for an arbi- — o )
trary distributionp(x,t). In particular, instead of using the SO thatK(x)~ari/A as\—0. Substituting(13) into (10)
diffusion regime(3) in the interval between two traps, we 2nd(11) and solving the resulting equations for-Tjp()),
can use the ballistic regime or, say, the superdiffusion re?e find the necessary condition for subdiffusion:

gime. In this paper we limit ourselves to the study of solu- a?l

tions of Eqs.(4) and(5) with distribution(3). We select the 1-qgo(N)~br% AX—0, b= m, a<l,
distribution of the time a particle spends in a trgp(7), in (15)

a form that ensures that the subdiffusion regime prevails.
with A; = A,= A (the asymptotic behavior of the width of the

subdiffusion packet is independent of the initial particle
statg. By virtue of the reciprocity of Tauber’s theorem, the
condition(14) is also sulfficient.

To reformulate the conditiori14) for the distribution

Let us find the condition that the distributia(r) must ~ densitydo(7), we again turn to Tauber's theorem and apply
meet so that the model leads to subdiffusith Introducing, It T the function Qo(t), with the result thatQq(A)=[1
for the sake of brevity, the notatics(t) = f|x|2p;(x,t) dNx  ~Go(X)]/A. We obtain

and using(4) and(5), we obtain w
Qo(t):J Oo(7) d7~Bt™%, t—oo,
t

3. NECESSARY AND SUFFICIENT CONDITION
FOR SUBDIFFUSION

t
So(t)=f d7qo(7)s1(t—17), (7 -
0 aTl
t T w A 1o
sl(t)=Q1(t)s(t)+f drqu(7)[s(7) +se(t—=7)], (8
0 or, for the density,
where Qo(t)~aBt @71, too, 17

Thus, in the model considered, subdiffusion emerges if and

_ 2 Ny, — —
S(t)_f X*p(x,t) d"x=at, a=2ND. ©) only if the distribution of the times particles stay in traps
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exhibits asymptotic behavior of the power-law ty(i€) with is related tof (\) of the differentiable functiorf (t):%1%2
an exponentt<<1. This means, in particular, that the average yp

time a particle stays in a trap is in_ﬁnité%"rqo(r) dr=oo, FO) =M. _ _ . _ 26
a<1. Ifitis finite, or [§ 70o(7) d7= 7o, the asymptotic be- When 1 <0, the expressiori25) is a fractional integral of

havior of go(\) is order|u|. Using this notation in the inverse Fourier—Laplace
_ transform of Eqs(22)—(24), we obtain an equation in frac-

do(A)~1—=7\, A—0. (18 tional derivatives that describes the asymptotic behavior of

Substituting(14) and (18) into (11), we see that in this case (he subdiffusion process:
aapas t—a
=D'VZp®+ ———— 5(x) (27)
S (}\)N —_—, )\—)0, a p _ ’
N N 1+ 7yl at I(1-a)

with the result that the effect of traps reduces to a variationin ~ 9p® gt apds
the diffusion coefficientD—D/(1+7,/7,), and that the ot v gtl-a +a(x) (1), (28)
temporal variation of the mean squaxgt) remains linear. It
can be shown that the diffusion packet in this case remains ,07¢ as
Gaussian. p®=D'V —a +68(x). (29

These equations have a general solution with the Fourier—
4. DIFFERENTIAL EQUATIONS OF SUBDIFFUSION Laplace transform found earlier, which is represented by

We go back to Egs(4) and (5) and take Fourier and Eq. (22). _ '
Laplace transforms with respect to position and time, respec- NOte that the special case of E@7) corresponding to

tively: a=1/2 was obtained by Nigmatulfirin connection with dif-
fusion in fractal structures of the Koch-tree type, which mod-
, e N Nt . els porous and disor(_jered media. The one—dimensional ana-
pitkiA) Jo dtf dxexp{ —At+ikx pi(x.), log of Eq.(28) was written out by Compt¥ and the integral

equation(29) was solved by Schneider and Wys$3aNe now

. N . -
with ke R, This yields discuss their solution.

po(K,N)=Qo(N)+ (M) pi(k,N),

p1(K,\)=Q1(X+Dk?)+qy (X +Dk?)po(k,\). 5. SUBDIFFUSION DISTRIBUTION DENSITY
The solution of this system has the form LetD’=1 in Eq. (29 and write the latter
Qo(N)+Go(A) Q1 (A +Dk?) 1 [ditV2p(x,1)
pO(ki)\): ’ (19) = + P2 <a<
1—0go(N)gy (A +DK?) p(X,t)=6(x) Ml Jo (i 0<a<1l. (30
Q1(A+Dk?)+Qp(N)g (N +DKk?) Equation (30) was studied by Schneider and Wy3syho
pa(k,N)= 1—qo(\)gy(A + Dk?) : (200 expressed its solution as a function of the distareéx| in
0 ! terms of the Fox functions:
Combining the condition$l5)—(17) with Egs.(19) and .y
(20), we obtain an expression for the leading asymptotic (r.f)= H29 (£> al (1, 1
terms, PR = NN 121 2] TN, 1), (L,la))
A D (31
pHkN)=—————, D'=——, (21)  They also found the explicit form of the Mellin component
’ a b
AD'k+\?] in r-
which is independent of the initial state. We postpone taking "
the inverse transform to Sec. 5. Here we write the above p(S,t)If rS™1p(r,t)dr
relationship in three equivalent forms: 0
A3k, \)=—D'k?p3k,\)+ "1, (22 2s-N-1 (S_N)/ZF(S/Z)F((S—N)/Z)
= v r N)/2 (32
Ap?k,N)=—D'K2\1"%p3(k,\) +1, (23 T al'(a(s—N)/2)
Pk, \)=—D'K2\ "%k, \ )+ N L. (24)  We establish another form of the solution that relates the

form to stable distributions. This will make it possible not

As is known, on a suitable class of functions the Laplaceyy to carry out a qualitative analysis but also to understand
transformF(\) of the Riemann-Liouville fractional deriva- he physics of the solution.

tive We write (21) as
d#f(t) 1 d Jt f(r)dr

PO e ~T(=m dt Jo t—nr

. p<1, (29 pa%k,m:v—lfwexp{—[D'kzwﬂy}dy, (33
0
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with <1, and also write the inverse Laplace transform: probabilistic considerations based on the central limit theo-
. rem in its generalized forntA7) and (A8).1%1"23|gnoring
paS(k,t)zf dyexp{—D’ka} the particle dwell time in the diffusion state in our calcula-
0 tions of the distribution of the number of trap events over the
observation timé¢—o, we find that

Pn~QE V(1) - QM (1)
Evaluating the innermost integral by parts, we obtain =G@((nB*) Yet) - G([(n+1)B*] V).

><(27Ti)_1J d\ A Texp A t— A%y}
Y

t [ 21 Representing the argument of the subtracted function in the
pHk =~ . dyexp{—D'k%y}y form

[(n+1)B*] Yet=[nB*] Yt—[nB*] *t(na) !

V1 Yy @
X (2i) Lexp[)xt Aytdh. and expanding in series, we obtain the asymptotic expression
In the innermost integral we transform to the new variable ~ Pn~[NB*]™*t(na) "'g([nB*]"*1), t—oe.
SZYW)\: Whenn is fixed, the conditional distribution of the coordi-
exp{ D'k2y} nates of a particle can be expressed in terms of the ordinary
p&k,t)= f dy 1+1/ diffusion density agp(x,t|n)~p(x,n/u). Here the random

diffusion time is replaced by the mean valoku for under-
standable reasons. Averaging over the number of continu-
X (27ri)*1f exp{sy Yt—s} ds|. ous-diffusion eventsp(x,t)==,p(x,t|n)p,, and replacing

Y summation oven by integration with respect to the variable
The expression in square brackets is a one-sided stable den=[NnB*]~"*t, we obtain the distributioii35).

sity with characteristic exponent<1 [see Eq(Al)]: A convenient way to compare our solution with the one
obtained by Schneider and Wy3ss to compare the Mellin
g(“)(t)=(2wi)*lf exp{st—s?} ds. (34)  transforms of the two solutions. According 85),
Y

1 S

Thus, p*(s.t)=5m V(4D 't“)‘s—m’zr(i)

exp{—D'k?y} o
-1 a —lla _
Pk t)=a tf dy T ( )(y t). on 7N s)alzg(a)(T)dT

Introducing the integration variable=y~**t, we find that  Expressing the surviving integral in terms of gamma func-
L2 tions via(A2) and comparing the result witf82) atD’' =1,
@ D'kt : ot
paS(k,t):f drexp — g9 (7). we see that the solutions are identical.
0

T«

Finally, taking the inverse Fourier transform, we obtain
6. ANALYSIS OF SUBDIFFUSION DISTRIBUTIONS

SO — Y ([x/VD't7), (35 - - - -
Pt (D't a)N/Z In this section we discuss some properties of the solu-
tions, examine their asymptotic behavior at small and large
where distances, and discuss the results of numerical calculations.
" r2.a We begin with the spatial moments, which can be ex-
xpg\la)(r): drexp — ——{ TN*2g(@) (), plicitly expressed in terms of the Mellin transforms dis-
4 N/2 4 .
(4m)™<J)o cussed above:

(36)

N2 ro
with @<1, is a function of the distance and depends on two  (|x|?")= T 7,:”2 f 2" N=153%r,t) dr
parameters: the subdiffusion exponenaind the dimension- (N2) Jo
ality N of the space. F(I’H— 1)T(N/2+n)

Note that both(21) and (33) have the same meaning at T(an+ 1T (N/2) (4Dt
the limit =1 and lead to normal diffusion with the same
coefficientD’. This means that the functiof{("’(r) can be  The second moment
redefined so that it holds at=1: ND’

: X3=rrass
\I'(N“)(r)=(47-r)"\"2exp|—rz]. [(a+t1)

which is the same as the one calculated by Schneider and
The subdiffusion distribution in the forni35) can be Wyss(Eq. (1.14) in Ref. 11, increases with time in propor-
defined as an ordinary diffusion distribution from simple tion tot*, 0<a<1, a hallmark of subdiffusion. The ratio

Ck)n

te, (37)
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S a. In this respect the situation is similar to that in normal
2n . . . . . .
15 diffusion, but there is an important difference. In normal dif-

fusion, the coordinateX; and X, of a diffusing particle are
mutually independent, while in subdiffusion the joint distri-
bution of the particles,

P{X]_E Xm, X2€ dXZ}

» X2+ X2) 7%
=(4w)_1f drexp{——( ! 42)7]#9(“)(7),
0

does not reduce to the produB{X;edx;}P{X,edx,},
with the result that the random coordinabésand X, cease
0.5 5 ; " to be independent. The nature of their statistical dependence
at small and large distances can be clarified by examining the
FIG. 1. Ratio of dimensionless momenig?) , for a=0.2, 0.4, 0.6, 0.8, asymptotics.
and 1. Equation (36) implies that in the one-dimensionaN(
=1) case the distribution density at the origin exists:

1.0

@ (XP) 2T (n+ HT(N2+n)[T (a+1)]" ‘I’(la)(O)=(477)_1/2j:7'“/29(“)(7') dr,

SCNTNEN N"T (an+ 1)T(N/2)
sinceg(®(7) has finite moments of order less than Mak-
which represents dimensionless moments of orders highgkg use of Eq(A2), we obtain

than the second, does not depend on time. This suggests that (a) .
the shape of the distribution remains unchangjediden- vi¥(0)=[2I'(1-al2)]" "

tally, this follows immediately fron{35)]. At a=1 the ratio |5 gpaces witiN=2, the subdiffusion densitgin contrast to
yields the dimensionless moments of the normal distributionine normal diffusion densilyhas an integrable singularity.

2T (N/2+ ) WhenN=2, this singularity is logarithmic, as can be easily
pi=————. verified by splitting the integral if36) into two parts, the
N"T'(N/2) transient and the asymptotic, and replacing the density
Figure 1 depicts the ratio of the dimensionless absolute ma3'’(7) in the latter by the leading term in the expansion
ments of order 8 (—1/2<s<3/2), (AS):
a T r2 @
o1 _T(st DM (at D] W (r)~(4m) f exp{ -7 } rg()(7) dr
2s (215) IN'as+1) ' 0

which characterizes the difference between the shape of the n F(l+a)sm7-raf°°exp[
subdiffusion distributiort®{"’(r) for «<1 and the normal

distribution ¥ {)(r). Close to zero§<0) and at large dis-
tances ¢$>1), ®{(r) exceeds the normal distribution
while in the transitional region€s<1 the opposite is true.

( )l\/loving on to analyze the shape of the distributon  Wi(r)~[4nT(1—a)] *Eq(r?T4)

w¥(r), we note first and foremost that by differentiating _

(32) with respect tor we can easily obtain a relationship ~[2aT(1=a)] ¥Inr|, r—0.
between the distributions iN- andN + 2-dimensional space: In a space witiN=3, the singularity at the origin is hyper-

rZTa
_ -1
7 ]7’ dr).

Whenr —«, the second term in this sum dominates, which
' leads to a logarithmic singularity:

1 dw(r) bolic:
U, (r)=—5— ——. (39
>ar  dr IN'a+1)sinra —1a—
‘I’f\fy)(r T(N/2 Da-1q,
Let r=(xq, ... Xy) be anN-dimensional vector, so that w(4) le
= \/x21+ e +x2N. Integrating(36) with respect to the vari- 1 T(N2-1
ablesx,+1, - . - Xy, Where I<n<N, we obtain - ( ) -N-2) 0 (39
4 N/2 F(l a) ! !
(@D At . X2 . . _ .
f dXn1 deN\I’N (VXp+ - Fxy) SettingN=1 in (38) and substituting the asymptotic ex-
pression(39) into the left-hand side, we find that
:\I;ga)( /Xi+...+xﬁ), @
dwi®(r) 2

which means that the behavior of the projection of a random ——
L e L : dr 'i-a)

point in subdiffusive motion irN-dimensional space onto an

n-dimensional subspace is described by radimensional asr—. This implies that atx=0 the derivative of the

subdiffusion equation with the same characteristic exponerfunction \If(f“’(x) has a finite discontinuity, i.e., rather than
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a) a)

¥ W

in
a=1/3
0.1+
1.0t
23 516 1
0.001
0.0.1 015 1 r

0 I r
FIG. 4. Three-dimensional distributiodis{”)(r) for the same values af as

FIG. 2. One-dimensional distributionﬁ‘l")(r) for a=2/6, 3/6, 416, 5/6, in Fig. 2

and 1.

being smoothas in normal diffusiohn the peak of the distri-
bution in the one-dimensional case is a cusp.dAs 1, the fx p{ r2
exp —
0

Ta
derivative vanishes and the vertex becomes smooth. 4
Whenr is large, the exponential in the integrand(86)

rapidly decreases, so that to make an asymptotic estimate of Ar (Nal2=9)/(5+a) 20 _

the integral we use the expressigk6), which approximates ~ N2 =exple(n)}. (43
the stable density at small values of the argument. We cal- 4 l¢"(7)]

culate the resulting integral

—b7” 5] TNa2=9)q 7

Substituting(41) and(42) into (43), and the result int§40),

W@(r)~ (477)_N/2Afxexp{ et _br_g;] TNai2—y 4, we obtain the asymptotic expressiet0) in the form
N
0 4
(40 1 gl(NtDa2-1)/(2-a)
. . . _\I](a)(r)~
ggnthe Laplace method. We begin by introducing the nota-* N (47)N2 -«
r —N(1-a)/(2—a)
I'zTa _s X | =
o(1)=— 7 —br % (41 2
_ r\2(2=a)

Using the conditiong(7)=0, we find the position of the Xexp{—(Z—a)aa/(Za) _) ] (44)
maximum of this function: 2

4bs 1/(5+a) . . . .

(22 42) A comparison with exact calculationgarried out below

ar? ' shows that fora>1/2, Eq.(44) provides a satisfactory ap-

L _ proximation of the distribution over the entire region, except
Proceeding in the usual way, we find that at small distances, and as—1 it turns into the normal dis-

tribution W (P(r) = (47) "N exp{—r%/4}, i.e., it becomes ex-
act.
@ Figures 2—4 provide an accurate idea of the shape of the

distributions. They depict the subdiffusion distributions
\Iff\,")(r) for several values ofy, including the limita=1
corresponding to normal diffusiofthe variances of these
distributions are different and depend @n according to
(37)]. An important difference in the shape of subdiffusion
distributions that sets them apart from normal distributions is
the higher concentration of probability at both small and
large distances. But if these features do not play a significant
role in a specific problem, in the one-dimensional case with
a>1/2 subdiffusion distributions can indeed be approxi-
. mated by a Gaussian with subdiffusion variance, as demon-

0 0.5 ! r strated by Klimontovich (see Fig. 5. For spaces of higher
FIG. 3. Two-dimensional distributior{)(r) for the same values af as ~ dimensionality, the normal approximation fails to yield sat-
in Fig. 2. isfactory results.

23 56 1

0.01¢

i
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\{_,1(2/3) \{,1(2/3)
0.4} 0.04

0.03r-

FIG. 5. Comparison of subdiffusion distributions
(solid curve$ and normal distributiongdashed

0.02¢ curves with the same varianceg=2/3. (a) N
=1, and(b) N=3.
0.01
0 5
7. DISCUSSION one point to another with a density characterized by a finite

The fact that there are different formulations of theyalue of the rms hop length, and by a distribution of time

anomalous-diffusion problem and different ways in WhiChlntervals between successive hops satisfying the condition

the results can be presented sometimes leads to a situation(16)' Using the central limit theorertas we did at the end of

which researchers fail to see the logical relations amongFérga c. 5 of the present papethey found the Laplace trans-

a o .
them, even when the same problem is being studied. Th orm p*{x,A), which is the same as the one obtained by

approach developed in the present paper—from the randon"Tg'Chnelder and Wys5[Egs.(2.8) and(2.10], established the

walk model based on integral equations to the asymptoti?self'sflm”ar behavior of the dlstrlbguon, ie., m_troduced the
. . . : JunctionW(r), and once more derived E@5) without any
part of solutions of these equations that satisfy equations 'Pnention of Ref. 11

fractional derivatives—makes it possible not only to express The work of Schneider and WyKsis mentioned in the

the coefficients of anomalous diffusion in terms the charac- . 13
. " o » . Introduction to the paper by West al,,~> who nevertheless
teristics of “elementary distributions,” but also to establisha, . .
relationship among the solutions obtained by various means?e“eved that they solved a different problgmut the one
Solved by Schneider and Wysswith the use of Eq(28)].

That such a problem exists can easily be seen by compari : . . .
; . ey expressed their solutiganly the one-dimensional case
some of the papers devoted to anomalous diffusibmith . : )
was consideredin terms of Fox functions and gave the ap-

Ref. 13. WA proximate expressiot¥4), derived earlier by Schneider and
As noted above, Schneider and ed the integral Wyss!! Westet al'® gave neither a general formula for the

equation(29) with a multidimensional Laplacian, found the - . .
. . . multidimensional case nor the exact solutiotb) for the
Mellin and Laplace transforms, expressed the solution in

. ) . _one-dimensional case, and the well known review of
terms of Fox functions, found an approximate expressio .
. . . ouchaud and Georgewas not cited at all. It must also be
[that is exactly equivalent to E¢44)] for the density at large " T
: : . . ! noted that by writing the equation in the form
distances, and obtained in the one-dimensional case an exac

expression for the density of the forfim our notation d0o(X,t) P2 Poo(x,t)
V()= —52 922, (45) _ _
ar Westet al!® used a nonstandard notation for the fractional

If in (36) we putN=1 and use(A3), we obtain the same derivative
formula, which advantageously differs frof®6) in that there P 1 (L) dit!
is no need to integrate now. Note that, according to the prop- =
erty (38), we can express the distributions in spaces with a atB 1(1=p) Jo (t—t")B"'
large odd number of dimensions in terms of the dengit{?)
and its derivatives. As is well known, however, integration is
preferable to differentiation in numerical calculations.

At «=2/3, the distribution(45) can be expressed, ac-
cording to(A4), in terms of modified Bessel functions of the

instead of the standard notati¢®5). As a result, Eq(46)
corresponds to Eq28) atB—1=1—aq, i.e.,=2—a. With

this modification, the results of West al® are identical to
their analogs in the cited papers and in the present paper, but
the improperly defined order of the fractional derivative led

second kind: them to believe that forr>1 their solution describes subdif-
213) 1 2r372 fusion (see the remark to E¢44) and Figs. 2-5 in Ref. 13,
wiTo(r) = E\/FKME' which depict the distributions foe>1). In actuality, how-

ever, as Sec. 4 of the present paper suggests, the parameter
In Sec. 1.2.3.1 of their review, Bouchaud and Geofgescannot exceed unity in this problem: even if we put 1 in
discuss the problem in which a particle hops suddenly fronmthe distribution(16) where it first appears, the transforms
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(19) and(20) will lead, due to(18), to an ordinary diffusion 1 (= r2 @ gaf2)(y ~2)
equation, i.e., to Eq28) with «=1. As Ref. 4 suggests, the —J exp{ - ] 9(n)r P dr=——,
superdiffusion regime is described by equations containing vamJo ar (A3)

fractional derivatives with respect to the spatial varialjies

cidentally, the same is stated in the last section of Ref. 13 whose validity can easily be proved by taking the Mellin
In conclusion we note that the representation of subdiftransform and usingA2).

fusion distributions in terms of steady distributiotis con- The densityg(?)(t) can be expressed in terms of elemen-

trast to Fox functionsappears to be more convenient, physi-tary functions only ifa=1/2:

cally clear, and logically justifiedin the sense of the limit

theorem. The properties of stable distributions have been g(1/2)(t)zit—3lzexp{_i]_

thoroughly studied and the densities have been tabulated, so 2\ 4t

that they can be added to the class of special funcidns. This is the Ley distribution, also known as the Smirnov

The author is grateful to S. A. Korobko for doing the . = = =~ 7,55 . B
necessary numerical calculations of the distributions in thisd'smbl“'tIoriL (named after N. V. SmirgvAt a=1/3 and

paper. The work was supported by a grant from the Russiaa=2/3 the stable densit{84) can be expressed inﬂéerms of
) e modified Bessel function and Whittaker function:
Fund for Fundamental Resear@@rant No. 98-01-03307

gt =(3m) UK yy(21V27),

g®3(t)=3/mt~ Lexp{ —u/2Wy, 1 ), (A4)
whereu= (4/27)t~2. Whena is rational,g(®(t) can be rep-
One-sided stable densitieg®(t), a<1, comprise a resented by a finite sum of generalized hypergeometric

subset of the family of strictly stable laws defined in thefunctions?®, e.g.,
following way: the densityg(t) is strictly stable if and only

APPENDIX ONE-SIDED STABLE LAWS

3
if for any two positive numberd; and b, there exists a gC®(t)=— E; > sm(3277) zoF, %4— ?—12
positive numbeb such that t 37 n=1
1 t t 1 [t E_Lrn(n—l) n(7—n)__z4)
mgb_l*gb_z_ﬁgﬁ' 4’2 g ' g ,

In other words, the shape of strictly stable distributions isWith 2= — (3/t)3/4. For an arbitrary function of, the func-
invariant under convolutionéhe best known representative tionsg{®(t) are related to the Fox functions Hy
of this class of distributions is the Gaussian distribution, cor- (-1, 1
responding tox=2, but it is not a member of the subset of  g{¥(x)= alszﬂ(xl _ _1).
one-sided distributions considered Here (za™ a
The characteristic functions of one-sided stable distribu+or numerical purposes, it is convenient to represent the den-

tions have the simple forrtform (B) in Ref. 19 sity as the integral of a nonoscillating function. This repre-
" sentation was obtained by Zolotaféwy deforming the in-
GD(“)(k):f explikt}g(®(t) dt tegration contour in(34) in a special way:
0 @ atl/(a—l) 2 1)
i V)= ——— U, (p)exp—t“*"~U, do,
=exp{—|k|“exp{—l(a|7;12)kH. 9= i) (PR (¢)rde

where
According to Lemma 2.2.1 of Ref. 19, the analytic con-

tinuation of the functionp(*)(k) from the entire reakaxisto |, (0)= sina(¢+7/2)

/(1= cod ral2— (1 a)¢]

the complex z plane with a cut along the ray azg Cose COse
= —(3/4)m is given by the function It is also convenient to expand the density in a series that
o (z)=exp{—(—i2)*}, a<l1, convergence for any positive
which implies that g‘®¥(\)=[j exp{—At}g¥(t)dt, the (@) L S (—pnt . T
Laplace transform of the one-sided stable dengit§(t), g(H)= T nzl n! F(I+na)sin(mna)t '
has the form (A5)
gD\ = @(iN)=exp{— N2} (A1) and to find the leasing term in the asymptotic expansion
whent—0:
The Mellin transform of the stable density can be expressed
in terms of the ratio of two gamma functiohs*® g(t)=At"7exp{—bt’}, (AB)
w0 _fwts (@(t) dt= [(1-sla) A2 where
g'“(s)= Y (t) = Ti=s (A2) JRT.

We have the relationship 2r(l-a)
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_1—a/2 b= 5o
Y= 1_a ’ - a5 ) - .

Formula (A6), which is exact atoe=1/2, provides a fairly

accurate approximation in the middle of the interval (0,1).
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One of the simplest examples of possible application oftl§d method for estimating the

sizes of diamagnetic domains is analyzed in detail. The domains have been observed for the first
time by means of theeSRmethod in beryliumG. Solt, C. Baines, V. S. Egoroet al,,

Hyperfine Interactiond04, 257 (1997]. Results are given from a computer simulation gi &R
experiment to measure domain sizes in Be. An algorithm is described for processing the
experimental results. It is graphically demonstrated that domain sizes can be estimated within the
accelerator operating time allocated for an ordinafyR experiment. ©1999 American

Institute of Physicg.S1063-776(99)01706-0

1. INTRODUCTION method. We emphasize that this method can actually be used
to measure fluctuations of the muon spin polarization vector.
The nSR method is customarily used to measure thethg principal condition for observing them is the detection
probability density function of magnetic fieldg(b) and 10 o 5 sufficient number of paired everitse decay of at least

estimate their correlation times. Daj[a avgraged over the Vo't'wo muong from one correlation volume during compilation
ume or surface of a target are obtainegu8 R experiments. of the uSR histogram. It has been proposed in the above-

Even if another coordinate of a decay pains fixed during . .
o . . cited papers that either strong pulsed beams of muons or an
the compilation of a histogram, only the reconstruction of the

density functionw(b,r) can be formally addressed. A muon fipparatgs that fixes the muon decay point be used t(,) obtain
stopping point or decay point can be fixed to within at besﬂnformatlon _Of Interest abqut magnets. Naturally, this ap-
10-3cm. The actual errors to within which a coordinate is Pr0ach requires new experimental procedures.
fixed are 101—10 2cm. Such distance scales clearly have [N this paper we have sought to focus attention on ex-
a more important bearing on solid state physics than th@eriments of another kind, in which the acquisition of addi-
correlation radii of magnetic inhomogeneities, because it igional information does not require modification of the stan-
impossible to investigate space-time correlations by such gard SR procedure.
“direct” method. For example, the first application of theSR method to
However, it has been showr that the temporal corre- observe the onset of diamagnetic domains in Be has been
lation function of ordinaryu SR histograms compiled from reported® In the cited experiment the total volume of differ-
several different regions of the investigated target alreadgnt types of domains has been observed to depend on the
contain information about the space-time correlations of thexternal magnetic field and the temperature. From these data,
magnetic fields. In principle, the temporal correlation func-however, it is impossible to deduce the size of the diamag-
tions of uSRhistograms compiled from several counters sethetic domains.
up at different angles relative to the initial direction of po- Nonetheless, as will be shown below, by compiling sev-

larization of the muon spin contain information about theg 4 ordinary xSR histograms from various points of the

space-time correlations of the second-order, third-order, anﬂistrget, i.e., in essence transcending the conventional proce-
in part fourth-order magnetic fields.GIn the same papers it haaure used in Ref. 4, it is possible to estimate the domain size
been s_hown that .SlOW T&P 107%s), Iong-vyavelength after special processing of the experimental data.
space-time correlations with a characteristic scalg, . S .

s ; . Fluctuations of the domain size lead to fluctuations of
>10 °cm can already be successfully investigated at thef-h | f ding fracti i1 which th
intensity levels of present-day accelerators. In other words, € volumes ot corresponading ractpns n which t € muon
space-time correlations can be investigated in ranges that argn 'precesses at' d|ffereqt frequencies. On the pa5|s of real
essentially inaccessible by the neutron method. Such scal@dysical models, information about the domain size can be
are important in the investigation of domain structure, Spin_reco_nstructed from measurements of _the fluctuations of the
glass states, fluctuations at phase transition pgimtsarticu- relative volumes of the fractions at a fixed total volume.
lar, for the experimental measurement of critical indjces Analogous situations are encountered in the investiga-
vortex structure in superconductors, and the segregation éon of vortex structure in rigid superconductors, in the seg-
samples into different fractions, etc. regation of a magnet into zones of differing magnetization,

Since theuSRsignal is squared as it occurs in the cor- and, finally, in paramagnetic states produced by a muon

relation function, the given approach is called th&R  trapped by impurities or defects of a crystal lattice. Different

1063-7761/99/88(6)/6/$15.00 1164 © 1999 American Institute of Physics
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fractions with their own distinct muon spin precession fre- In the usual processing of histograms from a physical

guencies coexist in all these cases. model the tensorsi (aag(t), which involve the precession fre-
guencies, are specified, and the most probable precession
amplitudes of the components of the various fractions are

2. RELATIONSHIP OF THE uSR? CORRELATION selected. The averagéd/®) are actually determined in this
FUNCTION TO FLUCTUATIONS OF THE RELATIVE way. _ _ _
FRACTIONS In ©SR experiments we can obtain an estimate of the

correlation function
The zone irradiated by the muon beam changes several

times during theuSR experiment so that the probability Noiodks (Traf2 ny(t+ 7)Ni(t)
W@ of detecting decays from different fractions also varies B(r)= 21 N;(N;—1)
in an inhomogeneous target. In the ensuing discussion we

define theith pulse or block of information as a set Mf Tmad2 N(t+ 7)Nn(t)
detected decays of muons that occur in one zone and for _J'T _ T
which W® can be regarded as constant. Heré) is the " !
number of events in thigh pulse in thejth time channelj ~ wheren(t)=Z2;n;(t). The expected value of the correlation
=[t/At] and widthAt=T . /N, WhereN, is the number function,
of counter channels, anf,,, is the decay time correspond-

?ng to the channel with the numbét,, ([ . . .] denotes the B(7)= 2t ex;{ _ l) 2 (AW® AW(a’)>C(aa’)(T),
integer part of a numbgrThe expected value of the random YT, Tulaa

variablen;(t) for a channel width small in comparison with ()

all characteristic times and for a counter having a small soligg proportional to the correlations of the deviations of the
angle can be written as

N;At t
n;(t)= ex;{ -—

YTu Tu

Trmin

dt, 2

quantitiesw® from their averages. The functio®®2)(7)

is uniquely determined by the behavior of the polarization

M)(t)P4(0) in the various fractions, which can be deter-
(1) mined from the ordinaryw SR signal:

1—Ka§ WM ()P 4(0) |,

where K, is a vector defining the direction toward the (@a'); . _ Tma{2 t @
counter, and the normalization factprdepends on the maxi- cHi(n)= L exg [ K Mgp(t+7)
mum (T s and minimum T ) muon decay times and can " a
be deduced from the normalization condition % PB(O)KarMfﬁ/ﬁ),(t)PBr(O)dt. (4)
meaXni(t)dtz 1. For sufficient statistics the least-squares method or Fou-
Trmin rier analysis can be employed, in principle, to find

The behavior of the spin polarizatidP,(t) in the frac- (AWE@AWED) from the correlation function. Usually the
tion of type a is specified by the tensavl Ezaﬁ)(t)v and its correlations(AW(a)AW(a )> simply reduce to fluctuations of
contribution to the total polarization is proportional\tdfa) . the total volume of the fractions and are associated with the
Of course,X,W®=1. If the quantitiesW!® vary during number of grains or domains in the muon stopping zone and
compilation of the statistics for a fixed target position, thiswith the scatter of their sizes. The relationship of the sizes of
time interval must be divided into subintervals in which thethe domains to their number must be established on the basis
probabilitiesWi(a) can be regarded as constant. The subinterof & physical model. For a stochastic scatter of domain sizes
vals in this case must be much greater than the muon lifetimeomparable in order of magnitude with the average or for
T,=2.2 10 ®s. One situation in which this condition fails random variations of the density of grains, their fluctuations
has been discussed in two papetsyhere the potential use are proportional to the volumé of the muon stopping zone
of pulsed muon beams inSR experiments has been inves- and, accordingly, the quantityAW®AW@") is propor-
tigated. In domain measurement experiments in ferromagnet®nal to 1. The number of detected events is proportional
and very likely in the investigation of diamagnetic domainsto V, so that the error of measurement of the correlation
in Be such conditions can be observed when the target posiunction is essentially independent of the size of the beam
tion is fixed and the external fields are constant during thend is in fact determined by its intensity.
compilation of more than fOevents. Cases in which this Equation (4) provides a means of readily obtaining a
requirement might not be satisfied will be discussed below irtheoretical estimate of the average correlation function when
Secs. 6 and 7. the number of detected paired events, the number of which in

We denote the number of histograms, which is equal tahe experiment idNyoupie= NpiockdNi (N;—1), is formally in-
the number of “pulses,” byNp.ks: The total number of finite. A finite number of events produces statistical scatter in
single events detected in the entire experiment is thethe experimentally determined correlation function. A pub-
Nsingle= NpiockdNj for an identical number of events; in the  lished estimateof the number of paired events necessary for
pulse. We can construct an ordingmSR histogram aver- the measurement of correlation effects yields a gross over-
aged over all pulse®i(t) ==;n;(t)/Npoeks: and find the av-  estimate, and depends not only on the total number of paired
erage probabilitiegW®), events, but also on the number of events in a single pulse.
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When ((AW®)?2) are small, a computer simulation of
the uSR experiment must be performed to obtain a realistic
estimate of the error of measurement of the correlations and
the optimum number of events in a single “pulse.” The total
number of paired events is squaredNin, and it is preferably
made as large as possible. In some cases, however, simula-
tion shows that it may be pointless to incred$e For nar-
row beams the intensity distribution over the profile of the
beam must also be taken into accountuSR experiment

aw’y

. . i . . 6
simulation program has been implemented and, in particular, - . e e

0 0.2 0.4 0.6 0.8 1.0

has provided a means for choosing the conditions under <W(a))

which it is possible to estimate satisfactorily the sizes of

diamagnetic domains in beryllium. FIG. 1. Network of graphs for the determinationRy,,, from experimental
values of (W®) and (AW?): (1) Ryaa/0=3.162x10"3%; (2) 10°3; (3)
3.162<10°4; (4) 10 % (5) 3.162x10°%; (6) 10 5.

3. APPLICATION OF THE uSR? METHOD FOR ESTIMATING

THE SIZES OF DIAMAGNETIC DOMAINS IN BERYLLIUM

A straightforward model describing the structure of dia- ¢, which takes into account the relative position of the
magnetic domains in Be does not exist; we therefore concounter(vectorK) and the initial polarizatior?(0).

sider the simplest model of linear domains, which rests on  As a result, the tensor expressiK@MS‘,}(HT) P4(0)
the assumption that when an external magnetic field is apcan replace the scalar functid®y cos@Q.t+¢), where P,
plied, the target is partitioned into two types of domains,=|pP(0)|, and(), is the precession frequency in a domain of
which differ in the strength of the magnetic field in the inte- type a.

rior of the domain. The following simplifications are adopted Taking into account the presence of only two fractions,

in this model: 1
)2\ — (2)2y = — (DAWR)
1) The field inside each domain is constdtite differ- «AW( )9)=((AW)%)=—(AWZAW)
ence between the fields in adjacent domains for beryllium is = —(AWRAWD) = (AW?),

30—-40G for an applied external field of 27.4.G o ) ) . )
2) A domain comprises a strip of infinite length in the it is a simple matter to obtain an analytic expression for the

direction of they axis and of constant width independent of expected value of the correlation function from the general
equationg3) and (4):

y andz
3) The width of a domain is distributed equiprobably in AQ Ti AQ T, AQ 7
the interval fromR;, t0 Riax (Rmin @Nd Ryax differ for dif- Br(7)= 2 (Tk” cos—;
ferent types of domains, so we denote Ry.1 and Ryax2
the maximum widths of domains of the first and second CAQ T
types, respectivelyR,, can serve as the width of the do- tkgsin— )COE{Q 7), ®)
main walls, which are not explicitly taken into account in the
given model. The width of the domain wall cannot be Where
smaller in order of magnitude than the Larmor radius of the T max 2 Trin
electron, which is equal to I¢ cm in such fields; accord- Ka,p=Fapl — _Fa,B( - )
ingly, the maximum domain width must be of the same order ”
or greater than 10° cm. F,=—(X?+2x+2)e™, Fg=—(x+1)e %

The contribution of domains of each type to th&R
histogram depends, though not strongly, on the profile of the
beam. Let us assume that the target is irradiated by a beam
with a Gaussian intensity distribution characterized by the
parameteto. The input parameters of the model are there-
fore the minimum and maximum widths of the domains of
each type and the parameter of the Gaussian intensity distri-
bution o

Under the conditiorR,i, < Rmnax the problem is essen-
tially independent of the minimum width. In this model we
have constructed the network of graphs shown in Fig. 1,
which can be used to determifg,,; directly from (W®)
and(AW?) and then to determinB,,,, from Fig. 2.

The general equation(8) and(4) can be simplified con-
siderably for diamagnetic domains in Be. If the beam polar—FIG. 2. Dependence diV(®) on the maximum radiu@y,g, of domains of
ization and the direction to the counter are perpendicular tge first type for various maximum radRyay of domains of the second
the magnetic field in the domains, we can introduce a phasgpe: (1) Ryae/o=10"2; (2) 10°3; (3) 10°%; (4) 10°5.

max]
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AQ=0Q,—Q, is the difference between the precession fre-  The “experimental” points essentially fit the theoretical
quencies in adjacent domains, afid=(Q,+,)/2 is the curve with_the correct value gAW?), i.e.,(AW?) is deter-_
average precession frequency. Equat®rhas been derived mined indirectly for(W®)~0.5, and from the curves in

on the assumption tha&tQ T, <1 andQT > 1. Figs. 1 and 2 we readily obtain the dimensionless ratio
Rmax/0=10"2, which for an effective beam diameter of
4. SIMULATION PROGRAM 0.1cm gives an estimate of the diamagnetic domain width as

o o ~ 10 3cm. Such an experiment conducted on a modern accel-
~ The validity of thex SR method for estimating domain  erator would require 10—20 h, but there is no need to compile
sizes in Be has been tested by Monte Carlo computer simuy, 18 events, because a satisfactory estimate of the domain
lation of a uSR experiment. The program simulating the wgths can be obtained with significantly smaller statistics.
nSR experiment consists of three main parts. The first partrhe amplitude of the correlation function at the frequency
is designed to calculate the distribution of the domains ovegnown from an ordinaryx SR experiment can be discrimi-
the target in the above-described one-dimensional model G{ate for statistics at least an order of magnitude smaller. If
linear domains. The final result is the valuesvif®. the total number of events 9210’ and the same number of

The s_ecc_)nd part of the_pr_ogram is designed to SimU|at8pu|5es" is used, the Fourier amplitude of the “experimen-
the compilation ofuSR statistics. The only parameter car- a” correlation function does not deviate too far from the
ried over from the first part to the second part of the programpeoretical functior(Fig. 30, so that the domain widths can
is W), becausaN@=1— W), be estimated.

“The simulation result is aSR histogram, i.e, an array If the above-described effect is not observed experimen-
of integers, whoseth element is equal to the number of {4y this means that the structure of the domains in the
muons in the corresponding channel of the counter. The '&arget changes during the compilation of a single histogram,
sulting array can be placed in a file for subsequent proceSSi%rresponding to Toevents in the case discussed above.
by other programs, displayed on the screen for comparison  The invariance ofV® during the compilation of events
with a normalized theoretical curve, or transferred into the, each block pulse signifies in this case that the domains
third module of the program, where the correlation functiony st preserve their configuration during a time of the order
is calculated. _ _ _ ~of 10?s. This requirement can be relaxed by decreasing the

A cumulative computational algorithm is used, which ,mber of single events in the block or by using a pulsed
permits the correlation function to be determined after thgyggm. However, an order-of-magnitude reduction of the
compilation of statistics in each pulse. This kind of algorithm,,mber of events in one block leads to a hundredfold in-
does not require storage of the sequencg®Rhistograms  ¢rease in the time to compile the same number of paired

for all pulses. events, making it necessary to consider the possibility of
obtaining information about the domain sizes for “small”

5. DETERMINATION OF THE AMPLITUDE OF THE uSR? statistics.

CORRELATION FUNCTION IN THE CASE OF LARGE

STATISTICS

6. DISCRIMINATION OF THE AMPLITUDE OF THE uSR?
CORRELATION FUNCTION IN THE PRESENCE OF SMALL
TATISTICS

For a sufficiently large number of events the correlation
function obtained by computer simulation of theSR ex-
periment can be brought into agreement with the theoretical
equation. For diamagnetic domains having an identical maxi- The statistics compiled in an individual block might not
mum width of 10 3cm, irradiated by a Gaussian beam of be sufficient to obtain a “good” correlation function, which
muons with a half-widtl{standard deviatiorof 0.1 cm in the  can be extremely cluttered with noise, and its amplitude can-
computer simulation of 20 histograms compiled from variousnot possibly be determined from the Fourier transform. In
points of the target, we havéAW?)=1.3x10 % and this event a technique analogous to synchronous detection in
(W(a))~0.5. Figure 3a shows the correlation function ob-radio engineering can be used to discriminate the useful sig-
tained by simulation and its theoretical estimate calculatedal.
from Egs.(2)—(4), in which the value of AW?) known from The technique essentially entails convolution of the sig-
the first simulation stage is substituted. nal containing useful information with a certasn priori
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- a with the convolution of the signal
S 3 !
§ if i 8 C(Aﬂ:f B(7)Br(7+An)dr, ()
B

0 . . .
3 _1b both of which are shown in Fig. 4c, we can see that the
S ot i : X curves all but coincide. They agree because the known value
3 ab ‘ i of (AW?) has been substituted into the kernel determined
5 b : L : . ; 2\ i
S oo ot o T 605 from Eq. (3). In a real experimenfAW<) is unknown and

must be determined from the ratio of the amplitudes of the
convolutions. In contrast with the correlation functions them-
10 selves, whose form in an experiment depends on the number
10 of paired events and in the presence of small statistics re-
107 it semble white noise, their convolutions are in the form of
10" periodic functions, even when a useful signal is simply non-
2t 107 5% existent. In this case the convolution of the theoretical and
’ Frequency, MHz experimental correlation functions actually give the ampli-
! "‘.‘ P IS tude of random noise at the frequencies of the theoretical
\ ¥ '-,"‘v’ v correlation function. The test of whether a useful signal is
340 360 380 400 present is smallness of the phase shift. For a high noise am-
Frequency, MHz plitude the phase shift can be large and must undergo ran-
dom variation during compilation of the statistics. In Fig. 4c
the indicated phase shift is noticeable, but small, indicating a
low noise amplitude at the frequency of the useful signal.
This fact is not so obvious in the Fourier spectrum in Fig. 4b.
The small statistics of paired events (56080 00¢
=2x%10"9 in the above example are the result of the com-
paratively small number of solitary event2000Q in a
single “pulse,” despite the large total number of single
events, X 10°, and their compilation requires approximately
10 h of acceleration operating time. To estimate the domain
sizes, the same result can be obtained in a few minutes pro-
FIG. 4. fD;sécgrgmli)Tatikon c;f ;raeogomplitude of thﬁ fcorzﬁlat(i%n fun;gf’g for sta- yiged that the structure of the domains does not change sig-
tF'{sn:i':j o4 om. i Comp:r?:onns ot theorat ({SEI% curvs o nificantly during such time. For example, the statistics can be
modeled(dashed curve and pointsorrelation functionga) and their Fou- ~ compiled eight times from % 10°. Of course, the random
rier transforms(b). Result of convolution with the theoretical correlation deviations of W(® from the average over eight measure-
function(_c): autocorr_elation function of the kern€k(A 7) (solid curve and ments do not give the exact variance in this case, but an
convolution of the signaC(A ) (dashed curve order-of-magnitude estimate is clearly in order. For 5000
“pulses” the variance is determined very accurately, and the

. . - . characteristic time of required invariance of the domain
known theoretical function describing the useful signal. The a

. . o ! ; structure can be of the order of a second.
convolution yields a periodic function, whose amplitude car-
ries information about the amplitude of the useful signal, and
the phase shift can be used to assess the influence of noise.CONCLUSION

Figure 4 shows how the amplitude of tpeS R correla- .
g P psS We have shown that large-scale magnetic inhomogene-

tion function is reconstructed for the statistics in a single, . - o .
g ties with characteristic dimensions of the order of ¥@m

block pulse of 20000 muons. The number of pulses in thid . . e
case is 5000, so that the number of single events is of thean be measured essentially without any modification of the

same order as in the cases represented in Fig. 3, but now tﬁgnvennonal procedure used to perfopSR experiments

number of paired events governing the error of reconstruco _sn:_rfacehbean;; of mL:IO ns, (T\t/ eg V‘f{he.n tlhe f“;?‘gne“c f|t(_e|d
tion of the correlation function is much lower. The noise Y2"atons have the small amplitude typical of diamagnetic

amplitude in the correlation function is greater than the usegomams. Theu SR method reduces to a technique for pro-

ful signal and is comparable with it in the Fourier spectrum.Cessmg ordinaryu SR histograms compiled from several

: S . : : .- zones of the investigated target.
In the given situation the signal is an experimental esti- S ; ; .
g g P The limitations inherent in the conventional procedure

mate of theu SR correlation functiorB(7) described by Eq. i . :
(2). The expected value of the convolutid®r(7) (3) is first pf all, the annoyances incurred by having to change
adopted as its kernel. the po_s_;ltlo_n of the beam relative to the target and, secondly,
Comparing the autocorrelation function of the kernel the utilization of a small part of the beam, so that_ no more
than 1¢ events can be detected — severely restrict the ca-
pabilities of the SR method. The application of pulsed
beams or instruments that fix the muon decay or stopping

T, US

E-N
T
(en

w
T

Fourier amplitude

Fourier amplitude, 107

=L )

C(A1), C (A1), arb. units

& A

CT(AT)=f B1(7)Br(7+A7)dr (6)
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point for uSR investigations makes it possible to surmountvisibly demonstrate, by means of a computer experiment on
these difficulties and opens up expanded possibilities for than object of interest in metal physics, the accessibility to
investigation of space-time correlations. Such instrumentexperimental teams of this new direction in materials re-
and beams have been in existence for some time%fdwit  search by thexSR method.

so far have not been used for these applications. By fixing
the decay coordinate even within 1-mm error limits it is pos-,
sible to speed up the compilation of statistics by two orders
of magnitude on a target of diameter 1 cm without having to———

change the position of the target, since a hundred of they, A Gordeev and V. N. Gorelkin, Hyperfine Intera66, 1129(1990.
uSR experiments described in this article are actually per-2v. A. Gordeev and V. N. Gorelkin, ifhysics of the Atomic Nucleus and
formed simultaneously. It is entirely within the realm of pos- Elementary Particles: Proceedings of the 24th Winter SchiadRussian,

. . fiyati LIYaF, Leningrad(1989, p. 159.
sibility to reduce the coordinate-fixation error to the order of 3v. A. Gordeev and V. N. GorelkirMuons and Pions in Matter: Proceed-

72 .
10" “cm, so tha'?MSRZ expe”mems can be successfully per- ings of the Third International Symposium on Problems in the Interaction
formed on existing Russian-made accelerators. The plannecbf Muons and Pions with Mattdin Russiaf, Dubna(1999, p. 237.
time structure of the Moscow Meson Factory beam would ‘G- Solt, C. Baines, V. S. Egoroet al, Hyperfine Interact.104 257

. . (1997.

aﬁor_d the Capa_lblhty of meas“_””g the tgmporal an_d We_” assV. A. Gordeev, V. N. Gorelkin, and N. E. Vtorova, Hyperfine Interact.
spatial correlations of magnetic fields with correlation times 106 265(1997.
of 10" ’—10"°s and, most auspiciously, slow correlations of °P. Podini and R. Tedeschi, Hyperfine Interat-19, 917 (1984).

. 1993.
this very accelerator many years ago. (1993
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The critical behavior of the transverg§eith respect to the fieldmagnetization component in
classical degenerate magnets with only nearest-neighbors interaction in a uniaxial random
magnetic field at zero temperature is found exactly. For a Gaussian distribution of the random
field the asymptotic transverse magnetization in strong fields does not depend on the
dimension of the space and is of the form In hy/h3, whereh, is the width of the distribution.
For a bimodal distribution, where only the field direction is random and the amplitude is

fixed, the transverse magnetization behavemas exp(—const/H,—H)P?), whereH is the
amplitude of the random field) is the dimension of the space, ahd is the critical

field. © 1999 American Institute of Physid$$1063-776(199)01806-5

1. INTRODUCTION sults that can be obtained for specific models become impor-

tant. For systems with random fields and a finite interaction

Phase transitions in systems with random magnetic-fielgength, exact solutions can be obtained in two cases: one-
disorde}_3 remain of interest even after 20 years. The |Singdimensiona| mode?é and the Spherica| approxima’[iah—_‘m

model in a random field was proposed at the end of thesince there is no phase transition in the one-dimensional

1970s for describing doped antiferromagnets placed in a Uniase, exact results on the critical behavior exist only for the

form external field™° Later, a variety of other systems with spherical model, where the number of components of the
random-field disorder was discovered. These include varioug,qer parameter is infinite.

: 9 .40
strulclt_ulr;cll_ly disordered _materlaﬁpsé,lclls_ssmajl and quan- In the present paper the critical behavior of classical de-
tunr"liquids and liquid crystafs™ in %(:gus matrices,  generate magnets with a finite number of componeM¢ (
and vortex phases of dirty superconductors. and Heisenberg magnétand a finite interaction length in a

Theoretical investigations of these systems have encoufyiaxial random magnetic field at zero temperature is stud-
tered serious difficulties. The early wotRs?°devoted to an

. . . ied. The critical behavior of the transverégith respect to
Ising magnet in a random field led to an elegant result knowr;!he field magnetization component near the average ampli-
as the Parisi—Sourlas reduction: the critical exponents of

dirty svstem in a space of dimensi@nare the same as in a fide of the random field for which the magnetization van-
y sy ' & 5pa . L ishes is studied. This problem is interesting because it can be
pure D —2)-dimensional magnet. This result implies that

) ; . . solved exactly and mathematically rigorously in a space of
long-range order is absent in a three-dimensional ferromal y yng y P

net in a random field. However, experiments with doped anggrbltrary dimension. A brief report on this subject has been

tiferromagnets in a uniform external field have not com‘irmedebhs.h.ed in Ref. 41. The present baper contains a detalle_d
this prediction of the theory.Several years later the exis- exposition of the results presented in Ref. 41. The method is

tence of long-range order in a three-dimensional Ising modefased on a proof of strict upper and lower estimates for the
in a random field was proved rigoroud¥:2® Subsequent magnetization. Thgse esum_ates can be made _cloge enough so
experiments and numerical simulatioA$showed that even that the asymptotic behavior of the magnetization near a
the critical exponents had been predicted incorrectly in alPhase-transition point can be extracted from them.
dimensions. The collapse of the theory is evidently due to the  TWO types of distributions of the random field are stud-
complicated structure of the energy landscape of a disorderd@d in this paper: a Gaussian distribution and a bimodal dis-
systen?>2® As a result, the perturbation theory used in thetribution in which only the direction of the field is random
early works does not work. Since a complicated energy relie@nd the absolute magnitude of the field is fixed. For a bimo-
is typical for mean-field systems where replica symmetry isdal distribution of the random field the model can be used to
brokerf’~%Cit is tempting to use the concept of replica sym- describe dirty antiferromagnets in a uniform magnetic field.
metry breaking in disordered systems with a finite interactiofRuantum fluctuations are neglected below, i.e., the spins are
length. In recent years progress has been made along thssumed to be large.
avenué!~3 by means of the variational method, taking ac- The critical behavior of the present model at nonzero
count of the possibility of replica-symmetry breaking. How- temperature has been studied in Refs. 42—44 by the renor-
ever, an approximate variational approach is insufficient fomalization group method. It is found that the critical behav-
solving the phase-transition problem. ior of the magnetization at zero temperature differs substan-
In the absence of a reliable systematic method exact reially from a power law, predicted by renormalization-group

1063-7761/99/88(6)/9/$15.00 1170 © 1999 American Institute of Physics
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calculations for finite temperature, and in addition there is a  Auxiliary statements required in what follows are formu-
large difference between the Gaussian and bimodal cases.lated below.

The model is described by the Hamiltonian In the first place, we note that in the ground state the
transversgwith respect to the fieldmagnetization compo-
H:—J(Z) S'Sj—z, H, S, (1) nents of all spins point in the same direction. Indeed, the
ij i

interaction energy with the random field does not depend on
whereS are spin vectors of unit length; are the random the direction of the transverse components. However, the ex-

fields, ands ;j, denotes summation over pairs of neighbor-change energy is minimum for spins oriented in the same
ing sites in aD-dimensional cubic lattice. Below the distance direction. Hence it follows that if for all spins the transverse
between the neighboring spins is assumed to be unity. ngompon_ents_ are different from zero, then they all point in the
types of distributions of the random field are considered: Same direction. The case where in the ground state some

1) a Gaussian distribution of widthy spins are parallel to the random field requires a separate
analysis. In this case the system could break up into clusters

1 H2 in which the transverse magnetization points in different di-
P(Hi)= J2mhy exp — Z_hS , (2 rections. However, it is easy to see that in the ground state

the transverse component of the magnetization can vanish
2) a bimodal distribution only for all spins simultaneously. To show this, rotate the
transverse components of all spins so that they point in the
P(Hi)=co(Hi+H)+(1=c)o(Hi—H), © same direction.pThis will not incF:ease the energ);/ %f the sys-
wherec and 1-c are the probabilities of two opposite direc- tem. Now take a spis which is parallel to the field and has
tions of the random field-H. a neighbor with a nonzero transverse component. An effec-
For a bimodal distribution of the random field the tive field, including the random field and the Weiss field due
Hamiltonian (1) can be obtained by a gauge transformationto the exchange interaction with neighboring spins acts on
of the Hamiltonian of a Mattis spin glaS<'®in a uniform  the spinS. This effective field possesses a component trans-
magnetic fieldH. It can be verified that the results found in verse to the random field. The energy of the system will
the bimodal case also hold for antiferromagnets withdecrease if the spi is rotated, without changing the direc-
random-bond disorder in a uniform external field. tion of all other spins, so that it points in the same direction
The magnetization component transverse to the field, thas the effective field. The assertion follows.
case of interest below, arises by the same mechanism as the We have arrived at the conclusion that in the ground
order parameter component transverse to a uniform externatate all spins lie in the same plane. This explains the fact
field in antiferromagnet$’ For a Gaussian distribution of the that the critical behaviof4) and (5) is the same for any
random field the transverse magnetization is different  number of spin components. For this reason, in what follows
from zero for arbitrary distribution widthy<<ce. It is shown  we can assume that the spiisare two-component and the
rigorously below that for largég the transverse magnetiza- spin component transverse to the field is positive:
tion follows the law

S'=cos¢;, S'=sin¢g;=0. (6)
miocconst% (4) Now our problem is to calculate in the ground state the
h(z, transverse component of any single spin averaged over the

for a space of arbitrary dimensidh. The exact formulation realizations of disorder

of the result consists of the inequalitiekt) for the disorder- m, :w )
and volume-averaged magnetization in the thermodynami
limit. For a bimodal distribution of the random field the
transverse magnetization vanishes in strong fielis;H,;
=4DJ. As will be shown below, for random field amplitude
H close to the critical fieldH. the transverse magnetization
satisfies

ﬁ‘the ground state is degenerate, then any ground state can

be chosen, since the estimates obtained below hold for all

ground states. Of course, the averd@gis independent of

the choice of spin only in the thermodynamic limit, where

boundary effects are negligible. In the problem at hand the

transition to the thermodynamic limit does not present any
const difficulties. For the transition to the thermodynamic limit in

m, «<expg — (H——H)D’Z . (5 the Gaussian case it should be noted that the estimates de-
¢ rived in Sec. 3 hold for all spins located farther thaftle

The rigorous result lies in the estimat&s). distance between neighboring spins is taken Jagdm the

This paper is organized as follows. The critical behaviorboundary of the system. In the bimodal case boundary

of the transverse magnetizatidd) and (5) is elucidated in effects are negligible for spins located at distances

Sec. 2 on the basis of qualitative considerations. A rigorous >exp(1/H.—H)) from the boundary.

derivation of the upper and lower bounds for the magnetiza- We will use repeatedly two inequalities whose deriva-

tion with a Gaussian random field is given in Sec. 3. Thetion is given below. In the ground state each sBjnis di-

bimodal case is analyzed in Sec. 4. Two lemmas which areected along the effective field, which depends on the ran-

used in so doing are given in an appendix. A discussion oflom fieldH, and the directions of the neighboring spfs

the results is contained in Sec. 5. This is expressed by the equation
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sin¢k=<cos¢kJ2l sin¢>|)/ Hk+‘]2l cos¢|). (8)

Hence for sufficiently largéd

I(|H(=2DJ). 9

sing/;ks(\]Z sin ¢,

Since sing<1, it follows from the last inequality that
sing,<2DJ/(|H,|—2DJ). (10

2. QUALITATIVE ESTIMATES

The purpose of this section is to present intuitive consid- ~ E=constv—V—

D. E. Fel'dman

is zero on the average over the volume play the main role. In
such clusters the tendency of the exchange interaction to
align all spins in the same direction competes with the ten-
dency of the spins to align along the magnetic field. A rig-
orous analysis shows that the transverse magnetization is
concentrated in clusters where the random field is oriented
upwards and downwards in a chessboard fashion.

It is easy to find the energy of such a cluster with volume
V=LP (L is the size of a clust¢mwhen the transverse com-
ponent of all spinan, is the same. Neglecting surface ef-
fects, for smallm, the energy can be expressed as

H,—H

m?, (14)

erations elucidating the origin of the results obtained in this _ _ _
work. Strict proofs, which are contained in Secs. 3 and 4, ar&vhere H is the amplitude of the random field and.

obtained by formalizing these guiding considerations.
2.1. Gaussian case.

=4DJ. However, the state where the magnetization is non-
uniform over the volume of a cluster is more advantageous,

For a Gaussian distribution of the random field the resulince the energy loss due to the boundary of the cluster is
(4) does not depend on the dimension of the space. For thi@wer in this state. Assuming that the magnetization varies

reason, we start with the zero-dimensional case.

smoothly over the volume from zero at the boundary to a

For this, we consider the two-spin model with the certain valuem at the center of the cluster, we estimate the

Hamiltonian

H=-JS;-S,— H,;S—H,S3, (11)
whereH, andH, are random fields. We assume that

H,>J, (12
and the fieldH, is such that
[Hi+J|<ed?[H,|, e<1. (13

Let us compare the energies of two equilibrium stdtes,

energy as

E~const\/—V¥m2+JLD‘2m2,
wherel is the cluster size. A state with nonzdrds advan-
tageous forL>1/yH.—H, i.e., V>(H.—H) P2 Since
large clusters are exponentially rare as a function of their
volume, the resulf5) follows.

The results(4) and (5) are rigorously substantiated be-
low.

(15

such that the spins are directed along the local effective field

and their components satisfy E¢(B)]: the stateA where
S{=S5=0 and the stat® whereS{~1 andS}~J/|H,|. A

simple calculation shows that the stdas deeper: the loss

in the energy of interaction of the sp®# with the magnetic

3. GAUSSIAN DISTRIBUTION

We shall estimate the disorder-averaged transverse com-

field is compensated by a gain in the interaction energy oponentsin ¢ of the spin& at the lattice siteS,. Our aim is
the spin components transverse to the field. Therefore th&® prove the inequalities

transverse magnetization of the system in the ground state is
of the order of 1. For a Gaussian distribution of random

fields H; and H, with width hy>J, the configuration of
random fields(12) and (13) has a probabilityP~In hOIhS.

However, if the inequality13) is not satisfied, then the state
A is deeper and the transverse magnetization is zero. The
result(4) follows.

In the D-dimensional situation we note that for a large
width hg of the Gaussian distribution rare regions where the.
random field is of the order of the exchange constant makf
the main contribution to the transverse magnetization. It ca

be shown that the transverse magnetization decreases expo- , X )
C;, andC, denote constants which depend on the dimension

of the space but not on the amplitude of the random field.

nentially away from such regions. Therefore the magnetiza:
tion of the system is concentrated in rare clusters consistinB
of several spins. The clusters can be treated as zero-
dimensional systems. As a result, the critical behayir
remains in a space of arbitrary dimension.

2.2.Bimodal case

Just as in the Gaussian case, rare clusters make the main 0<Ho+ 2DJ<€; Ay

contribution to the magnetization, but now the magnitude of
the magnetic field is fixed. Clusters where the magnetic field

N Inhg
singy>C1——, (169
0
Inh
sin¢0<C2?0, (16b)
0

whereC,; andC, are constants.

A derivation of Eq.(16g is contained in the next sec-

on. In addition, in this section a convention is introduced
or the notation used in subsequent sections.

In what follows const and the lettees, vy, 6, € (Q, C,

3.1. Lower bound on the magnetization
Let us consider a configuration of random fields for

which

2

(17)

He>QJ, Hp>0J. (18)
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In these formula#$i is the field at the sit&,, H, is the field J?

at sitesS, neighboringSy, H,, is the field acting on the spins E>-a> Ay a<l. (21)
S, (p#0) which are neighbors of the spi (and are dif-

ferent fromS,), and the constants<1 and(>1. We shall The lower bound of the anglas, in the stateB can be

use a similar convention for the spin indidesindp every-  found by analogy with Eq(9):
where below without explanation. The bounds on the con-

stantse and Q will be clear from the scheme of the proof : J cosgy
presented in the present section. For ldngehe probability Sin = H+(2D-1)J°
of the configuration(17) and(18) is of the order of Ir‘no/hS.

For this reason, to prove E(L63 it is sufficient to show that The estimates obtained above make it possible to estimate
sin ¢o~1. To this end we compare the energy of two stat-the energy(20) in the caseB. It is found that

es: the statéd, which has the lowest possible energy with 32

the restriction sing,<e, and the stateB, which will be E<-bY, —, b=~1/2. (23)
described below and in which sifp=1. In the stateB all k Hy

spins excep§, and its neighbor$, point in the same direc-
tion as in the staté. The spinsS, are assumed to be directed
along the local effective field:

(22

We see that the staiis deeper. Hence we conclude that the
ground state satisfies ghg>e and we extract the required
estimate(163).
The proof that the transverse magnetization is different
H+J3> cos¢>,), (190  from zero for any width of the Gaussian distribution is com-
! pletely analogous.
. . ) 3.2. Upper bound of the magnetization
whereZ, denotes summation over all neighbors of the spin  \ye now proceed to the derivation of E€GL6D). If the
S, including the spir,. Similar notation will be used be-  magnetic fieldH, at the siteS, is high compared with the
low without explanation. The equatid9) also holds in the gy hange constant, then the s@ipis oriented almost in the
stateA, since this equation expresses the condition that thgjrection of the field. For this reason, only spins located in a
energy has an extremum with respect to the angies ~ \yeak random field contribute to the transverse magnetiza-
As will be shown below, the statB is deeper. This is oy This contribution depends on the field acting on a given
because the loss in the interaction energy of the sfingth i and on the fields at neighboring sites. However, this
the random field is less than the gain in the exchange intefsontribution does not depend on the random field acting on
action energy of their transverse components with §gin  gjistant spins. The reason is that the transverse spin compo-
An estimate of the forn(9) for the quantitiesp, follows  hents decrease rapidly away from the weak-field region.
from Eq.(19). In the stateA a similar estimate also holds for therefore the correlations between distant spins are weak. It
the spinsS; (after all, in the statéA they point in the same ;s out that in the limit of largé,, the contribution of the
direction as thg Ioca}l fie)d The mequal't)’(l_o) for sin ¢, _spinS, to the transverse magnetization is determined mainly
follows from this estimate. It is easy to verify that the SPINShy the configuration of the random field inside a clibaith
S and S, make anglesless tham'2 with the corresponding  g4ge |ength 9the distance between neighboring spins is
random fields. In combination with Eg$9) and (10), this taken to be Land centered at the sif.

makes it possible to estimate afgp. _ Four possibilities for the distribution of the random field
Now it is easy to estimate the contribution depending on, the cubel” are considered below:

sing= ( cos¢kJE| sin g, )/

the spinsS, and S to the energy of the stat To within a 1) the random fieldd;<QJ, where the constant satisfies
constant that is independent of the sp@sand S, this  s.1 iy at least two points of the culi&
contribution is 2) H;>QJ holds at all points of the cube;

3) the random field satisfidd; <(2J at one point of the
E ’ = — (Ha42DJ)cosdn+ H.+ Jcos cube, which is not the center of the cuBg;
(¢, 4= (Ho Jcosco Ek (Hi o) 4) the random field satisfield ;< QJ andH;>QJ holds
elsewhere in the cube.
X (1—cosgy) —J 2, singy sin gy In all cases our problem is to estimate the contribution of
k the corresponding field configurations sm ¢y,
1) This case is very simple. It occurs with probability of
+J32, (1—cos¢y) D, cose, order 1h2, and sinpy<1. Therefore the corresponding con-
K P tribution m, to the transverse magnetization is

—J32, singy >, sing,. (20) m, <consthZ. (24)
k p

2) In this case the spi§, behaves almost as if the sys-
In this formula the notatiorE,( . . . )=, implies summation tem were in a strong uniform external field. Therefore the
over pairs of neighboring spin§, and S, only. We shall  transverse magnetization is small. The scheme of the argu-
adhere to a similar convention below. The estimates enumements in the second case is as follows: applying @}to
ated above permit concluding that in the cdse the spinS, we obtain
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where the notation is the same as in Ey) and the constant
sin¢o<(J2k 5in¢k)/(|Ho|—2DJ), (25 satisfiesC>1.
The probability of the configuration 4& of the order of
where the notation was explained in the preceding sectiorin hy/h3. This is sufficient to obtain the estimate
Applying Eqg. (9) to the anglesp, and Eq.(10) to the angles

i Inh
¢p, we find my < const—zo. (30)
. 2D J ha
Singg| 1— <
O—-2D Q—-2D/ |Hy|—2DJ In the case 4bthe z componentH + J=cosp, of the

effective field at the site5; is essentially identical td,
D J D 2DJ +J3 sigrH, . This can be verified by noting that the differ-
X . (26) ) ‘

K |Hd—2DJ 5 [Hy[—2DJ ences of thez components of the spir§, from signH, are
small, as :Ih‘lﬁ (or even stronger The rest of the proof is the
same as in case).2The only difference will be that in an
estimate of the typeé9) for the angle¢, the quantity|H,

It remains to integrate the inequalit26) over the distribu-
tion function of the random field. As a result,

Inh)3 +J3,sigrH,|/2 must be substituted fdHy| —2DJ. The fi-
m,< cons( h—) (270 nal result for the contribution to the transverse magnetization
O .
is
is obtained for the contributiom, to the transverse magne- Inhot 3
3) There are two variants here: ho
. a) the random field$d;>QJ at all points of the cuba& Using the inequalitie$24) and (27)~(31) we obtain the
with edge length 5 and centered at the Se estimate(16b). This completes the analysis of the Gaussian
b) the random fieldH,;<()J at some pointS; of the  ;qe
cubeA.
The case 3ecan be examined identically to case 2his
is because information about random fields outside the cube
A was not used to analyze case Zhe inequality 4. BIMODAL DISTRIBUTION
Inha\3 We shall call a site of this set of lattice a connected
0 L . . -
Mga<<CONs h_o (28 region if any lattice site can be reached from any other lattice

site by moving along lattice edges while always remaining

is obtained for the contribution to the transverse magnetizainside the region. In the bimodal case connected regions
tion. where the random field is oriented upwards and downwards

In the case 3pbonce again we argue similarly to case 2 in a chessboard fashion make the main contribution to the
Here a difference from case arises. It is due to the fact that magnetization. We shall call chessboard regions connected
now Eg.(9) cannot be used to estimate the transverse comregions if the random field at each point of the region points
ponent sinp, of the spin at the sit&,. Therefore the struc- in a direction opposite to the field at all neighboring points of
ture of Eq.(26) changes. Now the indicgs and k cannot  the lattice. In chessboard regions the Hamiltor{iBncan be
assume the value 1, and an additional term proportional tobtained from the Hamiltonian of an antiferromagnet in a
sin ¢, appears. Its upper bound is corsh ¢,. Integrating  uniform external field by inverting the spil%— — S in one
over the distribution function of the random field gives theof the two chessboard sublattices. Therefore in sufficiently
following estimate of the contribution to the transverse magdarge chessboard regions a transverse magnetization appears

netization: for the same critical field as in an antiferromagnet. In our
nho\3 model this field isH,=4DJ, whereD is the dimension of
n -
mMyp< cons(—O +constpsing,), (29 the Space. o
ho It is easy to show that the transverse magnetization van-

... _ishes forH>H,. For this, the inequality9) must be applied
where the overbar denotes an average over the realizations ¢ d ¥9) bp

the disorder for whichH,;<QJ and p is the probability of §a¥§rsapit:mgei?/é?1 EL;C&ZS;?S@AS a result, we obtain for arbi
the configuration b The expression fop sin ¢, can be esti- ' '
mated by the same method that will be used to analyze the 2DJ )'V'

case 4. . . sing< (H_—ZDJ (32
4) Once again there are two variants:

) where M is an arbitrarily large number. It follows that

. J sing=0 for H>4DJ
Ho+ < — ; ' . "
3) ‘ 0 JEK signH C; [Hyl’ Our goal is to prove the two inequalities
) |Hot S signi>cS > - (333
+ sign > , m, >exp — '
) |Potd g SO =Cg Ty ' (He—H)P%
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s
: (35

_ 2DJ
: (33b) sin ¢k<[m

< C2
m exp ——m
. (He—H)P"

whereC, andC, are constants. The inequalitg3b) will be
proved below forD # 2. The weaker inequality

whereSis the distance from the spi, to the nearest chess-
board region. The derivation of E§33b) requires an esti-
mate with the structure of Eq35) but with a larger expo-

< p< const ) (330 nenEI.'o obtain such an estimate we consider a chessboard
m, <exp — — — 0
(He=H)In(1A(H=H)) region with volumeV<V,, where
will be proved in .the two_—dimensional case. Ve=a(H.—H)P2 D=2, (369
It would be interesting to learn whether in the two-
dimensional case logarithmic corrections are indeed present B 1 B
or the inequality(33b) always holds. VC_a(HC—H)In(ll(HC—H)) . D=2, (36b)

The lower bound can be easily derived. For this it is
necessary to consider a chessboard region in the shape of a @<<1.
cube of sizd =Q/y1—-H/H., Q>1. The concentration of
such regions is exponentially low exp¢onstLP). In a pure
antiferromagnet the magnetization né#y behaves accord-
ing to the mean-field law sip~+1—H/H.. Comparing dif-

The magnetization in this region can be estimated in terms of
the magnetization at the sites closest to it and lying outside
the region, i.e., in terms of the magnetization at the boundary

f i tributi o th h that in a disord gf this region. A lemma according to which inside the de-
erent contributions to the energy shows that in a diSsordered ;4 region the transverse magnetization satisfies the in-

system the state with sip~+/1—H/H_ at the center of the equality
cube is indeed energetically favorable. Hence obtains the re-
quired bound. The formal proof can be constructed by com-  sing<(1+ €)(SiNdp)max,» €<consta?P<1, (37
paring the energy of the deepest stétéfrom among the
states for whichp<(1—H/H.)* everywhere inside the cube
with the energy of the stat® for which all spins outside and
on the boundary of the cube point in the same direction as i
the stateA, while inside the cube simp varies smoothly,
reaching at the center the maximum valeg1l—H/H,
wheree is a small constant which does not dependHon

The upper bounds are derived below. To make the ex- sin¢g<
position clearer we consider the cas&1 first and then

proceed to the general case. The simplification for small where the sim, denote the transverse components of certain
arises because in this limit large chessboard clusters are expins located outside the chessboard regions and at a distance
ponentially rare. The exposition of the general case will bgess tharlv/.+ 1 from the siteS, . Repeated application of the

based on the case<1. inequality (38) gives the estimate
4.1.Upper bound of the magnetization in the presence of

weak disorder ) 2DJ(1+e€)
For smallc the density of chessboard clusters with vol- S'”¢k<[m
umeV is less than exp{const V). The argument proving this
fact is based on an estimate of the number of connecteyhereV, is the critical volume(36) and S’ is the distance
regions with volumeV that contain a given point. It is given from the spinS, to the nearest chessboard region with vol-
in Appendix 1. It is obvious that the contribution from chess-UmeV>V,. The inequality(39) refers to spins outside the
board clusters with volume/>const/H.—H)?”2 to the chessboard clusters. Combining it with the inequal(By)
magnetization is exponentially small. we obtain a similar estimate for spins from small chessboard
Outside chessboard clusters the transverse magnetizatié@gions. Since large chessboard regions are exponentially
decreases rapidly with increasing distance to the neare&re, this makes it possible to derive E¢83b and 33k
chessboard cluster. H is close toH, (this is the case of 4.2.Upper bound of the magnetization in the presence of
interest to ug then an analysis ofthe possible directions ofsStrong disorder
the effective field shows that the magnetization at each site  If € is not small, then one cannot assert that large chess-

makes with the random field an angle less tha2. This board clusters are exponentially rare. Conversely, above the
makes it possib'e to obtain from E@) the fo”owing in- perCOIation threshold even infinite chessboard clusters can

where (Singy)max IS the maximum magnetization at the-
boundary of the region, is proved in Appendix 2. This lemma
Rermits writing instead of Eq34) (for spins located outside
chessboard clusters and not on the boundary of the chess-
board clusters of volume greater theg) the inequality

2D

J(1+e)21 sing,|/(H-(2D—-1)J), (398

S'I(Vc+1)
, (39

equality outside chessboard clusters: arise in the system. However, the estimates of the transverse
magnetization33b and 33gremain valid. The point is that
. JZ, sing, almost every chessboard cluster is “larded” with nonchess-
sm¢k<m. (34) board regions. Although the appearance of transverse mag-

netization inside a cluster is energetically favorable, the loss
Applying the inequality(34) several times successively we in energy due to “nonchessboard impregnations” can be
obtain for the transverse component of the spin greater. As a result, only the large chessboard clusters that
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are free of “nonchessboard impregnations” contribute to theconstanta in the definition of the critical volumg36).
magnetization, and the number of such clusters is exponerfherefore, for a random field with amplitude sufficiently
tially small. close toH, it is possible to attain
We now proceed to the proof. Let us cut the system into Ro<14
cubic cells with edges of large leng#which is independent
of H. The probability of such a cell being a chessboard cluswhere y is an H-independent constant, which by choosing
ter is small. In what follows, we shall retain the term “chess-appropriate values ok andB can be made as small as de-
board cluster” only for chessboard regions consisting ensired. The estimate
tirely of one or several cells. With this definition large chess- 1+e
board clusters will once again be exponentially rare. There- R1<W(4D)
fore their contribution to the magnetization is once again
exponentially small. Our next goal is to derive the analog ofwhich is stronger than the inequaliti43), holds for the
Eq. (39 for spins located outside chessboard clusters. Just ahove-mentioned spiB; with the property that the random
in the preceding subsection, the inequally) makes it pos-  field acting on it points in the same direction as the field at
sible to obtain an analogous formula for spins from smallone of the neighboring sites .
chessboard clusters. This will make it possible to give acom-  Next we apply the inequalityf42) DA times succes-
plete proof. sively. The result is an estimate for the transverse magneti-
To derive the analog of E¢39) we shall assume that the zation sing,
distance from the spin considered to the closest chessboard

(44)

, : (2D)PA
cluster with volume greater thaW. (36) is greater than . .
AD(V,+ 1). The fraction of spins for which this conditionis 5" #k= (2D)PA w§=:1 Py Sindy, (49

not satisfied is exponentially small as a function\&f, so _ ) )
that their contribution to the transverse magnetization is cerVhere all spinsS, lie at distances no greater th&A(V,

tainly also exponentially small. +1) from the siteS,. Each factorP,, @n Eq. (45) is a prod-
All further arguments are valid if the amplitude of the UCt Of DA factors of the formR; . The inequality(45) can be

random field is sufficiently close tbl,, H.—H<B<H,, Putinto the form

and the constant (36) is sufficiently small(but independent 1

of H). How smalle andB must be will be evident from the Singy=< oA > Pu(Sindy) max (46)

proof given below. (2D)"" 'w

Outside chessboard clusters an inequality similaB#®  \yhere (Sing,)max iS the largest of the quantities sy, .
(but weaker because of the new definition of a chessboard e now recall the inequalitie@3) and(44). They make
clustey follows from Eq.(8). This inequality is it possible to estimat®,, . It is important that since we have
worked with a nonchessboard cell, a factor equal to the right-
sin¢k$(2 sin¢|)/2D(1—(HC—H)/(2DJ)). (400  hand side of Eq(44) appears in the estimate of one of the
! coefficientsP,,. For sufficiently smally this makes it pos-
Each of our cells with edge length, if the cell is not a  sible to show that
chessboard clustéthis is the only case in which we are now
interesteg] will contain a spinS, for which the random field ! > p,<1-3, (47)
at one of the neighboring sites points in the same direction as (2D)°A “w
at this spin. For this spin the inequali(g4) holds. For arbi-
trary spinS, from a nonchessboard cell we can write

whereé is a small positive constant that does not depend on
H. As a result we obtain from Eq46)

sin msJ—S(E sm¢,), 4y SNA=(1-8)(Sindy)ma (48
! Applying the latter formula repeatedly we obtain an estimate

where T, /(2D)3,singy denotes the right-hand side of the of the type(39). To complete the proof it remains to give an
inequality (40) for spins at which the random fields at all argument similar to that contained in the preceding section.
neighboring sites point in a direction opposite to the direc-
tion at the spins themselves and the right-hand side of the. DISCUSSION
inequality (34) for all other spins.

Using the lemma proved in Appendix 2 we derive from
the inequality(41) the relation

In the system studied above, rare regions give rise to
ordering. This is reminiscent of a Griffiths ph&8edowever,
our problem contains long-range order and spontaneous sym-
ing Ry ( 2D ) metry breaking. The appearance of long-range order is due to
SINPy= 5~ ,

°D >, sing, (42)  a weak ferromagnetic interaction of rare ordered clusters.

u=t Such an interaction is also present in other disordered sys-
whereR,=(1+ €) T, and the spins, lie outside the chess- tems undergoing a Giriffiths transition, but even weak ther-
board clusters and are located at distances from th&gite ~ mal fluctuations can destroy the order. A specific feature of
greater thanV.+ 1). The constant can be made as small as the problem studied in the present paper is that there are no
desired(independently oH) by appropriately choosing the thermal fluctuations.
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The mean-field approximatiéh ignores the contribu-  Proof
tions from rare regions and therefore leads to incorrect con-
clusions. In the Gaussian case the mean-field approximation
predicts an incorrect exponential dependence of the magne- . He—H
tization on the field in the strong-field limit. In the bimodal A sin¢g=—
case the mean-field approximation gives incorrect answers
for the critical behavior and for the critical field in which a where
phase transition occurs. . ) .

The results obtained above are applicable to certain other A SIN$= neigEhborsSInQSk_ 2D sin¢ (50
systems. Specifically, the critical behavi@) occurs in an- . ) )
tiferromagnets with random-bond disorder in a uniform field.iS the lattice Laplacian, summation extends over nearest

The model studied above neglects quantum fluctuationd?€ighbors, and (sith)max is the maximum value of the trans-
Strong quantum fluctuations can completely change the be€rse magnetization inside the chessboard region, follows
havior of the system. For weak fluctuations there are twdrom Egs.(8). To prove the inequality49) Eq. (8) must be
critical regimes: the classical regime studied in the preserfiewritten in the form
paper and a regime closer to a phase transition point—the
guantum regime with a hypothetically slow power-law field singy<
dependence of the magnetization.
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Fund for Fundamental Resear@Project 96-02-18985and
the Program for the Support of Leading Scientific SchoolsThe solutions of the inequalitig49) are majorized by solu-

Inside a chessboard region the inequality

(SiN ) max: (49

JEI sind:k)/(H —-2DJ),

¢

(Project 96-15-96756 tions of the equation
Ho—H
Au=— J (SiN &) max (51
APPENDIX 1 with the same boundaries conditions as the inequality. We

construct the solution of the last equation as follows. First,
Here the upper bound on the number of connected rewe find a particular solution; . It can be taken in the form
gions with volume V which consist of the sites of a of a convolution of the right-hand side of the equation and
D-dimensional cubic lattice and contain a given skes  the Green’s function of the lattice Laplace equation. It can be
found. It is shown that this bound is an exponential functionyerified that because (36) is small this solution is small
of the volume. Hence it follows for weak disorder that the- compared with (Si)),ax
density of chessboard regions with volurifeis exponen-
tially s);nall as a function o%/. i |Us|<B(siNP)max,  B=coOnsta®P<1. (52
The number of broken lines of length\{2-2), consist- For D=1 and 2 there is no difficulty in establishing the
ing of the edges of the lattice and starting at the pdinis  estimate(52). The derivation forD>2 requires for a fixed
less than (B)(V~2), Therefore it is sufficient to show that volume of the region that,(r) be maximum for a region in
the number of regions of interest to us does not exceed thine shape of a sphere centered at the pairitiext we find
number of broken lines described above. the solutionu, of the equation with a zero right-hand side
For this we note that each connected region can be pwuch thatu=u;+u, satisfies the boundary conditions. By
into correspondence in at least one way with a tree grapkirtue of the principal of the maximum,
consisting of the edges of a lattice lying in the region and : .
containing all of its sites. The length of the tree graph is Uz=<(SIN Gp)masc B(SIN $)max- (53)
V—1. It remains to note that a tree graph can be put intdRecalling thatu is the majorant of the desired function, and
correspondence with a closed broken line passing throughsing the inequalitie$52) and (53), we obtain the required
each edge of the graph twice. estimate for sirp.
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Solitary bending waves have been observed on domain boundariesbfylde in wafers of

yttrium orthoferrite, having a very sharp leading edge and an extended trailing edge and offset as a
whole from the domain boundary and moving with high speeds close to the limiting

velocity. Head-on collisions of two such waves of the same amplitude lead to their complete
annihilation. Analogous collisions of two such waves, but of different amplitudes, lead

to the appearance of a wave with the difference amplitude moving in the same direction as the
wave of larger amplitude. The solitary bending waves investigated in this study appear to

move under the action of gyroscopic forces acting on magnetic vortices on domain boundaries in
yttrium orthoferrite, analogous to vertical Bloch lines with departure of the magnetization

vector from theac plane. From equality of the gyroscopic force with the friction force acting on
the leading edge of the solitary bending wave we have estimated the amplitudes of these

waves and the magnitudes of the topological charges of the magnetic vorticel99®@American
Institute of Physicq.S1063-776(99)01906-X

1. INTRODUCTION vortices moving with high velocities, almost the limiting ve-
locity, under the action of gyroscopic forces. These forces
Domain boundaries in orthoferrites move with high su-arise under the action of a magnetic field perpendicular to the
personic velocities® and with increasing magnetic field ac plane!® In the present work we systematize the experi-
reach a record high limiting velocity of 20 km/s equal to themental results on generation, dynamics, and collisions of
velocity of spin waves on the linear segment of the dispersolitary bending waves on moving domain boundaries in yt-
sion law® The dependence of the velocity of a domaintrium orthoferrite. These data are compared with results on
boundary on the magnetic field in all experiments performedhe dynamics and collisions of magnetic vortices in ferrite—
to date is a nondecreasing function without any segmentgarnet films, a qualitative analysis of the gyroscopic dynam-
with negative differential mobility. Magnetic vortices of ics of solitary bending waves in orthoferrites is provided, and
vertical-Bloch-line type on domain boundaries in orthofer-the amplitudes of these waves accompanying magnetic vor-
rites have not been observed experimentally under eitheices are estimated. The possibility of experimentally observ-
static or dynamic conditions. By virtue of Lorentz invarianceing limiting velocities of domain boundaries in yttrium
of the dynamics of domain boundaries in orthoferfifegy-  orthoferrite in weak magnetic fields is linked with the record
roscopic forces capable of moving the magnetic vorticesmall value of their dimensionless decay parameter
should be equal to zefoExperiments of the last two to three =105 (Refs. 6 and 16 Such a small value ofr makes it
years have shown that solitary bending waves exist an@ossible to experimentally observe motion of magnetic vor-
move on domain boundaries in yttrium orthoferrite, offsettices at limiting velocities on domain boundaries in yttrium
from them as a whol&:° These waves have a sharp leadingorthoferrite.
edge and an extended trailing edge, in their shape resembling
analogous waves accompanying magnetic vortices—vertic%l
Bloch lines, which have been investigated in detail both™
experimentall§® and theoreticall*~3 in ferrite—garnet The generation, dynamics, and results of pairwise colli-
films with uniaxial magnetic anisotropy. In the last few yearssions of solitary bending waves on domain boundaries in
a number of theoretical works have appeared addressing thgtrium orthoferrite have been studied with the help of
dynamics of magnetic vortices in easy-plane antiferromageouble-exposure high-speed photography in real%iffess-
nets with Dzyaloshinskiinteraction** These vortices con- ing two light pulses with a time delay of 5-20 ns. The dura-
tribute substantially to the thermodynamic characteristics ofion of light pulses from a dye laser pumped by a transverse-
antiferromagnets and move with high velocities. What thedischarge pulsed nitrogen laser was 0.25ns. A glass-ceramic
above-mentioned works on solitary bending waves on dowafer with a thin opening was placed between the electrodes
main boundaries in orthoferrites have in common is the reof the spark-gap of the laser. This ensured extended stable
guirement that the antiferromagnetism vedtand weak fer-  operation of the laser. We used thin yttrium-orthoferrite wa-
romagnetism vectom extend out from the easy magneti- fers of thickness 30 40 um, cut perpendicular to the optical
zation plane in order to form three-dimensional magneticaxis. In such wafers in the absence of a magnetic field

EXPERIMENTAL TECHNIQUE
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optical axis

c
\ %‘ / FIG. 1. Diagram of the arrangement of the main controlling ele-
ments and magnetization in a two-domain wafer of yttrium orthof-
\3 errite perpendicular to the optical axis for studying the generation,
dynamics, and collisions of solitary bending waves at a domain
4 boundary:1 — orthoferrite wafer2 — Néel domain boundaryd —
magnetizations of neighboring domairs— coil for creating the
6 2 magnetic field shifting the domain boundaB/— isolated leads for
creating the magnetic field braking local segments of the domain
boundary; andé — magnetization in the center of the domain
boundary.

X
N

3

banded domain structures exist having domain boundaries aound on the wafer thickness, this dependence is qualita-
Neel type, perpendicular to tha axis lying in the plane of tively linked with the curvature of the originally flat domain
the sample. With the help of a magnetic field perpendiculaboundary that ensues upon the transition to supersonic veloc-
to the sample surface with a gradient of 800 Oe/cm along théy. Under these conditions, a braking force due to surface
a axis, we set up an isolated domain boundary 0éNgpe  tension arises that is inversely proportional to the radius of
(Fig. 1). In the center of this domain boundary thevector  curvature, and for sample thicknesses equal te Z0um it
was aligned or anti-aligned with treeaxis and was oriented is equivalent to a magnetic field of a few hundred oersteds,
perpendicular to the plane of the boundary. On such amligned opposite the direction of motion. This field retards
orthoferrite boundary thé and m vectors ordinarily rotate the domain boundary and leads to an expansion of the region
either clockwise or counterclockwise in the plane . There- where the velocity is constant and equal approximately to the
fore, in principle, in such a geometry the existence of transpeed of sound. The first experimental observations of soli-
sitional regions is possible, with these regions being of magtary bending waves in yttrium-orthoferrite wafers were made
netic vortex or vertical Bloch line type, separating segmentsn the absence of an isolated leath this case, what prob-
with opposite directions of rotation of tHeand m vectors.  ably took place was a braking of the segment of the domain
By rotating the gradient field about the optical axis of theboundary in the upper part of the sample on the boundary
sample, it is possible to set up domain boundaries aINe with the windings of the coils creating the motive magnetic
Bloch, and intermediate type in it. The isolated domainfield. Generation of solitary waves in these first studies was
boundary in the sample was set in motion by the magnetisignificantly less reproducible than with the help of an iso-
field from two coils with eight windings each and inner di- lated lead, as was done in subsequent works.
ameter 1.5 mm. To generate solitary bending waves, we used
isolated leads 2@ m in diameter, perpendicular to the static 3. EXPERIMENTAL RESULTS
orientation of the domain boundary. Short current pulses . . - .
. o : Experiments on the dynamics and collisions of solitary
were sent through them, creating magnetic fields braking lo; . . ) . i
cal segments of the domain boundary moving with super-bendlng waves on a supersonic d°“?a'” boundary in yttnum
orthoferrite were preceded by experiments on the dynamics

sonic speed. The field erendencg Of. the speeds 9f the thrg?the domain boundaries themselves. The dependence of the
different types of domain boundaries in the wafer is plotted

in Fig. 2. The experiments primarily examined domain

boundaries of Nel type. For this type of boundary the range v, km/s

of fields where the speed is constant and close to the speed of 20 .
transverse sound was maximal and equal in width to about ° ot

100 Oe. In thicker wafers, for the edomain boundary and 151 5;"'

especially for the Bloch and intermediate domain boundaries V4

the regions of constant velocity were substantially narrower 10

(see Fig. 2 and in them it was not possible to observe gen- i

eration of solitary bending waves. The question of the inter- 5[ joqremes

val where the velocity of the domain boundary is constant »”

and equal to the speed of transverseor longitudinal v, 0 200 400 600 800
sound was considered theoretically only in the one- H,0e

; ; 17-19 ;
dimensional casg. As for the dependence of the width FIG. 2. Velocities of domain boundaries of &le(+), Bloch (¢), and

of the reg.ionAH(Ut) where the velocity of the domain intermediate typel[)), plotted as functions of the magnetic field in a YReO
boundary is constant and equal to the speed of transversefer of thickness 3@m perpendicular to the optical axis.
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FIG. 3. Double-exposure high-speed photograph of two
solitary bending waves moving from right to left on a do-
main boundary in YFe®, moving upward(in the figure.
Delay time between light pulses 9 ns.

velocities of the domain boundaries in a YRe@afer of  sharp, the trailing edges are extended, and both waves move
thickness 4Qum is plotted in Fig. 2 for different orientations along the domain boundary with velocity=16 km/s. The

of the plane of the boundary. For a domain boundary otvelocity of the domain boundary is=12km/s, so that the
Bloch type, for which in the central plane of its static orien- velocitiesu andv and the limiting velocity of the domain
tation the weak ferromagnetism vectarlies in the plane of ~boundaryc obey the relation)?+u®=c?, i.e., the total ve-

the domain boundary and is aligned with theaxis, the locity of the solitary wave is close to the limiting velocity of
singularity in the speed of transverse sound is absent. Onthe domain boundary. This means that the solitary waves
domain boundary of N type, for which in the central plane move under the action of very strong forces, which can ap-
of its static orientation the weak ferromagnetism vectas ~ parently only be gyroscopic forces. Indeed, the magnetic
oriented perpendicular to the plane of the domain boundanyfjeld moving the domain boundary upwafder the figure

a region of constant velocity exists having maximum widthcan only brake the leading edge of the solitary wave. The
AH, on the order of 100 Oe. In this interval the velocity of field in the plane of the YFepwafer, which can, in prin-
the Neel domain boundary is equal to the speed of transverseiple, be created by magnets creating a gradient magnetic
sound. Both of these results for Bloch andeNelomain field, does not exceed a few tens of oersteds. It is clearly
boundaries are in agreement with theoretical andly$id® insufficient to move the leading edge of an isolated wave
and the results of earlier experimehts.For domain bound- with a velocity near the limiting velocity, equal to 20 km/s.
aries of intermediate type the widths of the regions of con-The amplitudes of the solitary bending waves in Fig. 3 are
stant velocity near the speed of transverse sound fall monequal to 5 and 3@m, and both these waves move with total
tonically from their maximum to zero. Note that the abovevelocities of 20 km/s. Bending waves in our experiment were
characterization of Bloch and Mk domain boundaries in generated by local braking of the domain boundary moving
yttrium orthoferrite agrees with the data of earlier studies ofinitially with a velocity of only 12 km/s. This velocity value
the dynamics and mobilifyand does not agree with their ends up the interval of supersonic instability of the domain
definition given in Ref. 20. This work defines dledomain  boundary, and it is found right in the middle between the
boundaries in terms of rotations ofin the ac plane and limiting velocity and the speed of transverse sound.

Bloch domain boundaries in terms of rotations in the Figure 4 shows a double-exposure high-speed photo-
plane. Experiments on the generation, dynamics, and colligraph in which two solitary bending waves of identical am-
sions of solitary bending waves were performed on domairplitude are clearly visible, moving in opposite directions with
boundaries of Nel type. With further increase of the mag- the above-indicated speeds on a domain boundary moving
netic field above the constant velocity region the velocity ofupward(in the figurg with a velocity of 12 km/s. Motion in

the domain boundary grew abruptly to 12 km/s. The subsedifferent directions is probably associated with different
quent local, rapidly relaxing decrease in the velocity of thesigns of the topological charges of magnetic vortices of the
domain boundary aided by a short current pulses in the isatype vertical Bloch lines, which are accompanied by these
lated lead intersecting the domain boundary led to generatiowaves. Different segments of the locally retarded part of the
of stationary solitary bending waves, moving along the do-domain boundary move with various speeds less than or
main boundary during the entire observation time. An ex-equal to 12km/s, so that solitary bending waves can move
ample of such waves is shown in Fig. 3, which shows twoalong domain boundaries moving not only with a velocity of
frames in which two isolated bending waves are clearly vis-12 km/s.

ible, moving from right to left along a domain boundary that Figure 5 shows the results of head-on collisions of two
is moving upward in the figure. The time delay between lightsolitary bending waves of the same amplitude, generated
pulses is 9ns. The leading edges of these waves is venyith the help of two leads intersecting the domain boundary.
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FIG. 4. Double-exposure high-speed
photograph of two solitary bending
waves moving in opposite directions on
a domain boundary in YFeQ moving
upward (in the figurg. Delay time be-
tween light pulses 7 ns.

In the first frame, in Fig. 5a, they are quite far apart, in theleads to a decrease in the velocity of the solitary bending
second frame, after 6 ns they have almost annihilated. In Figvave. Extrapolation of the dependengéy) shows that in

5b they have annihilated completely. This result can be exthis caseu also tends to zero.

plained by annihilation of topological charges of magnetic

vortices accompanie_d by sol_itary bending waves and equgl IR DISCUSSION

absolute value but different in sign. Two counterpropagating

solitary waves of different amplitudes, moving with veloci- ~ The experimentally detected solitary bending waves on
ties that are the same in absolute value form one so|itary|0main boundaries in yttrium orthoferrite have amplitudes of
wave after they collide having amplitude equal to the differ-several microns to several tens of microns. They are offset as
ence of the amplitudes of the two colliding waves. This re-a whole from the domain boundary. Their rectangular lead-
sult is depicted in Fig. 6. The solitary wave formed after theing edges resemble large-amplitude kinks on a domain
collision continues to move in the same direction as théoundary in YFe@, moving with the speed of transverse
original wave of larger amplitude before the collision. On thesound?' The motion of large-amplitude kinks takes place
whole, the dynamic profiles of solitary bending waves inunder the action of a magnetic field moving the domain
yttrium orthoferrite are qualitatively very similar to the boundary as a whole. According to the data of Fig. 2, the
analogous profiles of such waves in ferrite—garnet films withinclined leading edge of a kink, being a domain boundary of
uniaxial anisotropy. These waves in ferrite—garnets accomintermediate type, has a larger velocity in the same magnetic
pany magnetic vortices of vertical Bloch line type. The dy-field than the entire Nl domain boundary. The leading edge
namics and collisions of magnetic vortices in ferrite—garnet®f a solitary bending wave is also a boundary of intermediate
were studied experimentafty’ and theoretically! %It was ~ type, but it cannot move under the action of an external
found that two vertical Bloch lines with topological charges magnetic field moving the entire domain boundary. Ignoring
of equal magnitude can, in a head-on collision, annihilatéhe external magnetic field moving the orthoferrite domain
completely, annihilate partially, behave in a solitonlike man-boundary, the equations of motion of this boundary are
ner, and even increase their topological charges near tHeorentz-invarianf™® The gyroscopic force in this case
critical velocity of the domain boundary. The maximum ve- should be equal to zefbln a magnetic fieldH moving the
locities of magnetic vortices on domain boundaries ofentire domain boundary as a whole, Lorentz invariance is
ferrite—garnets do not exceed 150—200 m/s and they moweéolated and a gyroscopic force appears that is proportional
under the action of gyroscopic forces. In yttrium orthoferriteto the ratioH/Hg, whereHg is the exchange interaction
the total velocity of the solitary bending waves is close to theforce. These forces in an antiferromagrietey and in a
limiting velocity of the domain boundary. This indicates that ferromagnef ¢y are related by the equatith

the motion of solitary bending waves takes place under the 8H

action of large gyroscopic forces, proportional to the large FAFM:H—FGFM.

velocities of the domain boundaries in orthoferrites. These E

forces should be proportional to the velocity of the domainThe small factoH/H¢ is present here. However, the speed
boundaryv. Our experimental results confirm this conclu- of the domain boundary in orthoferrites reaches large values
sion. A decrease in the velocity of the domain boundary~10° cm/s, which is much larger than the speed of the do-
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FIG. 5. Double-exposure high-speed photograph of two
colliding solitary bending waves of the same amplitude on
a domain boundary in YFeQ moving upward(in the fig-
ure): a — just before collisionb — annihilation of solitary
waves. Delay time between light pulses 6 ns.

main boundary in ferromagnets, where it is on the order ofesults of their pairwise collisions have been investigated
10* cm/s. The gyroscopic force acting on a magnetic vortexpoth experimentally and theoretically, these were eithezlNe
for steady-state motion should be balanced by the frictiorsegments of a Bloch domain boundary or Bloch segments of
force, which |§5prop'ort|onal to the dimensionless decay paa Neel boundary. The lengths of these segments were much
rametera=10"". This value follows for yttrium orthoferrite  greater than the width of the domain boundary. In orthofer-
from the mobility of the domain boundaries, which is equaljjtes pesides rotation dfandm in the ac plane, only rota-
to 10° cm/s Oe (see Fig. 2 and from the antiferromagnetic yion of | in the ab plane without rotation ofm but with
resonance datd. Equating the gyroscopic force to the fric- variation in the magnitude and sign wfis known. Domain
tion force acting on the leading edge of a solitary bending0 L . . . )
g . . ) . oundaries in orthoferrites without rotation of were pre
wave, it is possible to estimate the amplitude of a solitary,. . . .
; . . . . “dicted in Refs. 22 and 23. Such domain boundaries were
bending wave accompanying a magnetic vortex with definite . .
detected in DyFe@from an analysis of the NMR spectrdfn

topological charge. For a charge ofr2he wave amplitude is i -
equal to 0.Jum. The experimentally observed amplitudesat temperatures much higher than the transition temperature
to the antiferromagnetic state. Reference 25 calculated the

correspond to topological charges from several units ¢b ) i _ ) )
several tens of units of-. In contrast to ferrite—garnets, the “fine” structure of an immobile orthoferrite domain bound-

slope angles of the leading edges relative to the unperturbedfy With alternating segments with and without rotatiomof
domain boundary for waves of all amplitudes are identical,The dynamics of the segments without rotationnofwas
and their total velocities are large and close to the limitinganalyzed theoretically under the conditior<c in Refs. 26
velocity of the domain boundary. In uniaxial ferrite—garnetand 27. This analysis did not encompass the experimental
films, where the dynamics of the vertical Bloch lines and theresults described above on the dynamics and collisions of



1184 JETP 88 (6), June 1999 Chetkin et al.

FIG. 6. Double-exposure high-speed photograph of two collid-
ing solitary bending waves of different amplitudes on a domain
boundary in YFe@, moving upward(in the figurg: a — just
before collision b — annihilation of solitary waves. Delay
time between light pulses 6 ns.

solitary bending waves in YFe where their velocities are iting velocities of domain boundaries in these weak ferro-
comparable with or even equal to the limiting velodityFor ~ magnets, and set off as a whole from the domain boundary.
the case of a N domain boundary in our experiment rota- These waves cannot move under the action of an external
tion of | in the ab plane does not allow one to describe the magnetic field moving the domain boundary as a whole.
structure of a magnetic vortex. Toward this end, it is necessuch a field can only brake the leading edge of solitary bend-
sary to analyze the possibility of rotation of theand m  jng waves. Nor can then move with velocities close to the

vectors in other planes, different from the ones mentionegiyiting velocity under the action of small planar fields per-
above. This requires that the orthorhombic anisotropy b endicular to the plane of the domain boundary

overcome and leads to the result that the length of a magnetic 2. Head-on collisions of two solitary bending waves of

vortex along a domain boundary will be less than its width, . . . .
. L7 . . 'the same amplitude on a domain boundary in yttrium ortho-
in contrast to the case for uniaxial ferrite—garnets. In prin-

ciple, the large orthorhombic magnetic anisotropy can be def_errite, moving with a velocity of around 12km/s, lead to

creased as a result of motion of a domain boundary withheir total annihilation. Analogous collisions of two solitary
velocity close to the speed of transverse or longitudinaP€nding waves of different amplitude lead to the appearance
sound. For the appearance of the spin-reorientation transitiopf one solitary wave with the difference amplitude, moving
G,F=G, inside a domain boundary, the surface of thein the same direction as the wave with the larger amplitude
sample can be significaft?® Departure of thé andmvec-  before the collision.

tors from theac plane can be facilitated by the supersonic 3. The experimental results obtained in yttrium orthofer-
instability of an orthoferrite domain boundary, manifested, inrite and their comparison with the results of studies of the
particular, in the steep slope of its plane and by the absencgnamics and collisions of magnetic vortice®rtical Bloch

of hysteresis in the field dependence of its velooifyl) in  jineg) in ferrite—garnets show that solitary bending waves in
this region. For a complete theoretical analysis of the dynamg i, 5¢errites also accompany magnetic vortices moving un-
ics and collisions of magnetic vortices in weak ferromagnets

g . 1der the action of gyroscopic forces with departure of the
it is necessary to analyze these processes on the basis of a

numerical simulation of the three-dimensional motion of themagnetlzatmn vec_tor in them from thac plgne. These
magnetic moment in analogy with the analysis of these proforges.are proportlonal both_to the small ratio of the mag-
cesses in ferrite—garnets with uniaxial anisotropy performedi€tic field moving the domain boundary as a whole to the
in Ref. 13. It is of interest to extend this analysis to ferrite—€*change field and to the very large speed of this boundary,
garnet films with orthorhombic anisotropy, where magneticand in the steady state are balanced by the friction force
vortices have not yet been experimentally observed. acting on the leading edge of the solitary bending wave and
proportional to the very small dimensionless decay param-
eter in the Landau-Lifshitz equations of motion.
5. CONCLUSIONS The authors thank A.K. Zvezdin and A.F. Popkov for
1. On domain boundaries of Mk type in yttrium-  discussion of the results, and A. M. Balbashov for providing
orthoferrite wafers, we have detected and investigated solisingle crystals of yttrium orthoferrite. This work was carried
tary bending waves with sharp leading edges and extendeglt with the financial support of the Russian Fund for Fun-
trailing edges moving with very high velocities near the lim- damental ReseardfProject No. 98-02-16440
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We have measured far infrared reflectance and transmittance spectra as well as Raman scattering
spectra ofa’-NaV,Og single crystals for all the principal polarizations. The temperature

range above the phase transition temperaiyre35 K was investigated, mainly. On the basis of
this experimental study and of the lattice dynamics calculations we conclude that the
symmetry of Na\Os in the high-temperature phase is described by the centrosymm)e;ﬁic
space group. This conclusion leads to important physical consequences concerning the
interpretation of one-dimensional magnetic properties of )@a\and of the phase transition at

35 K considered earlier to be an ordinary spin-Peierls transition. The assignment of the
observed phonons is given. Values of dielectric constants are obtained from the infrared data.
Asymmetric shapes of several infrared lines and higher-order infrared vibrational spectra

are discussed. The crystal field energy levels of the 3d electron localized af treit® have

been calculated in the framework of the exchange charge model using the values of

effective charges obtained from the lattice dynamics calculations. According to the results of
these calculations, the broad optical bands observed earlier in the vinicity of 1 eV can

be interpreted as phonon assisteed transitions. ©1999 American Institute of Physics.
[S1063-77619902006-3

1. INTRODUCTION crystalline samples of Na)Ds, Carpy and Galf* suggested
) _ the noncentrosymmetric space graDf, — P2,;mn with two
The vanadater'-NaV,0s has attracted considerable in- onequivalent vanadium positions in the unit cell. The pic-
terest recently as the second inorganic compound undergoinge of magnetic chains of4/ O (S= 1/2) pyramids isolated
the spin-FfeierI; transitiotat the highest1 known tgmpefature by nonmagnetic chains of%O, (S=0) pyramids proposed
for the spin-Peierls compound, =35 K°). The spin-Peierls 4 50count for one-dimensional magnetic properties of this

transition is expected to occur within a system of linear SPiN~ived valence (¢5") compound is compatible with this

1/2 Heisenberg antiferromagnetic chains coupled to a threes'pace group

d|men3|_onal phonon fleld._As_a re_sult of such a coupling, However, the recent redetermination of the structure by
magnetic atoms of the chain dimerize and a spin gap opens,

One-dimensional magnetic properties of N&y above 35 K ?;?/glreO?riﬁ;alcg;]rt?gsd';rrn?gﬂ?g 12} ;??ntezﬂerﬁaeoﬁ?s n
follow from magnetic susceptibility, ESR and angle- y 2h group y

resolved photoemissidtmeasurements. one vanadium position in the structure Though the to-
Below 35 K the lattice dimerizes, as observed by Xira pology of the structure remains essentially the same as in the
and Ramaf scattering, infrared transmissfonand  Préviously proposed noncentrosymmetric space _gi‘émpe
reflectior! measurements, while the magnetic susceptibilityPSsibility for charge ordering is, _howgveﬂ lost in the new
decreases isotropically, thus showing a spin gap form4tion Nigher symmetry group. Smolinski al,™ and Horsch and
The size of the gap =10 meV follows from inelastic neu- Mack™ suggested a quarter-filled ladder model for Nay
tron scattering study of NayDs single crystals:*° with the spins carried byy—O-V molecular orbitals on the
The structure of Na)Os contains double chains of edge- fungs of the ladder. They argued that the exchange interac-
sharing distorted VO pyramids running along the ortho- tion along the ladder is much greater than that between the
rhombic b-axis (Fig. 1). These double chains are linked via neighboring ladders which would explain the one-
common corners of the pyramids to form tab-layers. Na  dimensional magnetic properties of the high temperature
atoms lie between the layerd! The structure of NaYO;  phase of NayOs. The transition at 35 K was supposed to be
looks like the structure of ¥O<? intercalated with sodium. an ordinary spin-Peierls transition. Quite rec@h-NMR
In an early x-ray room temperature investigation on poly-experiment on a single-crystalline sample of N@V also

1063-7761/99/88(6)/12/$15.00 1186 © 1999 American Institute of Physics
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FIG. 1. Structure of Na¥Os. a) Stereometric projection. Oxygen and vanadium atoms are at the corners of and inside the pyramids, respectively. Sodium
atoms are represented by ballg.ab projection. Apical oxygen O3 atonisituated above or below the correspondihgtomsg are not shown. A dashed line
indicates the longest V-02 bori@.199 nm. ab-projection of the crystal unit cell is shown by a thin solid line.

revealed only one vanadium position in the high-temperatur@esults of the previously studied of,®s°2 and on lattice
phase but pointed unambiguously to the existence of twelynamics calculations of this work performed in the frame-
different vanadium sites occupied by“i/and \PT at liquid-  work of the rigid-ion model.
helium temperature¥. Thus, the transition at 35 K is con-
nected with a structure and charge ordering processes. Very
recently. Seo and Fukuyaffa and Mostovoy and
Khomskii® proposed a zigzag scheme of\-V°" ordering.  » ExpERIMENTAL
Seo and Fukuyama argued that, as a result, two-dimensional
lattice of antiferromagnetic dimers is formétwhile Mos- Single crystals of stoichiometrie'-NaV,0O5 used in this
tovoy and Khomskii gave reasons in support of a system o$tudy were grown by a melt growth method using Na\&d®
alternating chain&® Thalmeier and Fuld€ have presented a flux?® Samples from different batches were used. One
some theoretical reasons for the primary charge orderingample was 1.88X1 mm, another one was >317.3
which provides neighboring linear®7 and \P* chains with X 1.6 mm alonga-, b-, and c-axes, respectively. For trans-
a subsequent spin-Peierls transition. Two close transitionmission measurements we have prepared four thin samples
near 35 K in NaOs were detected by Kapenet al, via  cleaved perpendicular to theaxis. Their thicknesses were
thermal expansion measuremeffts. 110+1, 45+5, 14+1.5 and 6-1 um. The samples were

In view of these recent works, the symmetry problem ofchecked with x-ray diffraction, magnetization, and ESR mea-
the high-temperature phase seems to be a matter of grestirements. They exhibited a sharp transition at about 35 K.
urgency. Raman and infrared measurements could give addi- Reflection and transmission measurements were per-
tional information to clarify whether the space group is cen-formed with a BOMEM DA3.002 Fourier transform spec-
trosymmetric or not, because of totally different selectiontrometer at nearly normal incidence of polarized infrared ra-
rules in these two cases. We reanalyzed our earlier infrarediation. The following geometries of the experiment were
and Raman spectra of Na®s;?! and found that they are in a used: 1 kiic, Ella and Ellb; 2) klia, Elic and Ellb. Room-
better agreement with the centrosymmefbiﬁ space group temperature reflectance and transmittance spectra were mea-
than with the noncentrosymmetric,,. However, in our sured in a spectral range 30—5000 ¢nwith a resolution
work?! we did not measure infrared spectra in e polar-  0.5-2.0 cm’. Using both reflectance and transmittance
ization. Also, the signal-to-noise ratio of Raman spectra waspectra, the absorption coefficieatwas calculated. Low-
rather low. In the present work, we reinvestigate vibrationaltemperaturgdown to 6 K transmittance spectra were mea-
spectra of the high-temperature phase of Mad/using dif-  sured with a He vapor cryostat in the spectral range 30—1000
ferent single crystals, including extraordinary big ones. Wecm ! with a resolution 0.05—1.0 cnt.
present far-infrared reflectivity as well as Raman-scattering Raman spectra were excited at room temperature by the
spectra for all principal polarizations. In addition, transmit- 514-nm and 488-nm lines of an Ar-ion laser in backscatter-
tance spectra were studied. We show that our results are iniag geometries, dispersed by a home-made triple spec-
much better agreement with the centrosymmdl’r@ﬂ group  trograph, and recorded using a multichannel system consist-
than with the noncentrosymmetr(b;v. The assignment of ing of an image intensifier tube with a multichannel plate and
vibrational modes is given. It is based on a comparison witha vidicon.
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3. RESULTS rx}gvzos( Pmmn=8Ay(aa,bb,cc)+3B,4(ab)

3.1. Factor-group analysis
+8By4(ac) +5B3¢(bc)+3A,
There are two formula units and, hence, 16 atoms in the

NaV,Os orthorhombic unit cell with lattice constants +7B1y(Ellc) +4By,(Elb)

— — — 11,13,14

=1.1316 nm, b=0.3611 nm, ¢=0.4797 nm. _ Below, +7Ba,(Ella). )
we present the results of factor-group analysis for both cen-

trosymmetricDéﬁlS'” and noncentrosymmetri@%v“ space There are 45 vibrational modes in tot#,, modes being
groups. silent, 24 Raman Ay,Bi4,B54,B3g) and 18 infrared

a. Space group EBf-Pmmn The notationrPmmnrefers  (B1u.B2u,Bsy) active modes are expected to be found in the
to the standard axis setting, such thé, yib, Zlc. It fol-  SPectra of NayOs, provided the crystal space groupDs; .
lows from x-ray diffraction dats''* that Na atoms occupy b. Space group & —P2;mn. In their original work;"
2b positions (the corresponding fractional atomic coordi- Carpy and Galy adopted the axis setting for tAg;mn
nates are defined by the basis vectoféNa)=—r,(Na) Space group. Below, we use the standard setting for the
:(1/4’_ 1/4’21),21:08592) and oxygen O1 atoms occupy Pngl space group:XIIb,yllc,ZIIa. There are two non-
2a positions €,(01)=—r,(01)=(1/4,1/4z,),z,  €dquivalentV positions, five nonequivalent O positions and
=0.5195), both these positions havi@g, local symmetry. ~one Na position in this group, all of them being Positions
V, 02 and O3 atoms reside in different f4 With C{*local symmetry. Inthe same way as in the previous
positions (r;(A)=—rz(A)=(Xa,1/47s), To(A)=—r4(A) case, using tablé% and subtracting acoustic modeg(
=(1/2-xa,1/42,); A=V, 02, 03; x,=0.40212, z, +B2+B;), we find the following vibrational modes:

=0.39219, X0p=0.57302, 20,=0.48769, X03=0.38548, TYb, o (Pmm2;)=15A,(aa,bb,cc;Ella)+ 8A,(bc)
Zo3=0.05803 with the local symmetr{C;“. These positions 275
yield the following irreducible representatioffs® + 7B, (ab;Ellb) + 15B,(ac;Ellc).
(2
50 :T'=Ag+Bog+B3g+tByy+ Byt Bay, There are 45 optical modes again. But in the case of this

noncentrosymmetric space group all of them are Raman ac-
tive, 37 of them are also infrared active.

Cs*:T=2Ay+B1g+ 2B+ Bag+ A +2By,+ By, +2Bg,.
3.2. Infrared spectra

Multiplying the representations given above by the number  Figure 2 shows the room temperature far-infrared reflec-
of different positions of the appropriate symmetry, summa-ivity spectra of Na\VOs, for different polarizations of the
rizing them, and subtracting acoustic modeB; (+B,, incident light. Experimental data are presented by open
+Bg3,), we obtain the following NaYOs optical vibrational circles. Measured spectra were least-squares fitted by the
modes: spectra computed according to the expression
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sent experimental data. Solid line in the main figure was calculated
using the parameters obtained by fitting the reflectance spectrum.
Solid line in the inset is a result of fitting the expressi@h with
ag(w), shown as a dashed line.
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2 whereé=(w— o)/ y, ag(w) is a slowly varying broad band
3 absorption(it is shown as a dashed line in the vicinity of the
939-cmi ! sharp resonance in Fig),3andag, o,, 7, andq
are variable parameters. Such an expression describes vari-
ous physical situations for a sharp transitions overlapped by
a broad continuum. The line shape of the sharp transition is
N Arfiw? altered by interference with a continuum, and depends
£=sx+z ——. (4)  heavily on the strength of the interaction between discrete
=1 op T enmlyie and continuum states. The parameidseing inversely pro-

For Elb andElla polarizations the number of oscillators and Portional to the matrix element of an interaction, the case
initial values of parameters were taken from the transmit] 9= corresponds to zero interaction and results in a nor-
tance spectré! and the present woykThe anomaly crossed Mal Lorenzian resonanceéq|=1 yields a dispersion-like
out in Figs. 2 and 3 at 1014 ¢ in Ella polarization and  Curve, while|g|=0 gives an inverted Lorenzia(antireso-
also observed iiEllb polarization for some samples depends
on a particular sample, and is evidently not an intrinsic prop-

Ve—1
Ve+1

The classical dispersion formula fof independent damped
oscillators was used:

erty of Na\,Os. It was not taken into account in the fitting 1-0.4 ; 2000} c T=6K
procedure. In addition to weakly damped phonon oscillators ~ 300[ g

an overdamped oscillator centered at about 300 ‘cfw; 1706 g 7 § fl
=291cm?, v,=260cm?, f;=0.38 was introduced ifElla 103 ; 51000_ |
polarization to account for a low-frequency part of a broad 200} , g ° |
absorption band of a complex two-humped shape found it [ 1-10 o o ;o

our previous studi (see also Fig. 8 We failed to model the & * ﬂ i gﬁ

high-frequency hump of this band centered at about 100! °.= 100

cm 1 with a similar oscillator, and did not try to use a more N

complicated model. This results in only a fair fit to the hight- »

frequency part of the reflectance spectrumElra polariza-

tion the phonon at about 150 ¢rhcould not be fitted well.

This line is strongly asymmetric in transmittance spectra,

obviously due to interaction with the underlying broad band.
The small bump in reflection at 939 cthshown by the 100}

arrow in Fig. 2 corresponds to the Fano-type resorfince

well seen in the absorbance spectrfig. 3). One more 8l0 . : 8'5 5 . 9’5 o

such resonance becomes visible below 200 K at about 9 Wave number. cm”!

cm ! (see Fig. 4 and also Ref).8We fitted the absorption ’

coefficient in the vicinity of these two strongly asymmetric FIG. 4. Fano resonance near 91¢nat 40 K (open circlegand its fit using

1

lines by the expressio%‘f”. Eq. (5) with parametersn,=90.7 cml, y=0.2cm'}, g=—-1.0, ag(w,)
=270cm}, and ay/ag=0.3 (solid line). The temperature dependence of
q2+ 2&9—1 the Fano parameteryis given in the left inset. The right inset presents the

(5) absorbance spectrum in the vicinity of 91 chat 6 K with resolution 0.05

a(w)=ag(w)tag—F—=—.
(@) al@)+ao 1+¢ cm ! (open circle and Lorenzian fit with FWHM:0.10 cm .
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TABLE |. Infrared active vibrational mode@m™1) and dielectric constants of NatWs.

Calculated
Observed (Pmmn)
Polarization. Transmission Reflection
mode
symmetry T=40K T =300 K T =300 K
wro rolwro yro €%, €%, lwro YTo wio o 10f £ & |wro wio
Ejjc 751162 52 165 57 45 39 7726 219
+0.2
B, (Pmmn) 179 84 212 83 130 232 256
or - 298 298
B;(Pmn2)) 468 38.0 483 38.0 23 430 430
591 119.9 597 119.0 6.8 589 690
760 594 762 593 L& 691 716
955 2.5 1017 30 39 961 1036
Ejib 178 4 {175 12 52 102{175 83 180 84 39 49 95] 141 173
+0.2 40.2
By, (Pmmn)| 225 1 - 240 266
or k¥ 367 16 365 12.8 378 133 60 388 483
Bi(Pmn2y) | 594 13 | 382 584 29.5 769 29.0 271 578 747
Elja 91¢ - 9.6 150 7.7 15.8] 111 126
+0.3 £0.6
Bi.(Pmmn) | 140° 145° 153 33.0 155 341 46 130 177
or 254 251 251 7.3 252 82 9 227 276
A(Pmn2) | — - - 493 534
531 18 | 526 53 525 39.5 622 524 208 538 653
- - 742 808
939¢ 955 957

2w,=3200 cml, w,=40cm L,

CAsymmetric line.

Fano-type resonancei,=90.7 cm', y=0.2 cn'!, q=—1.0, ay/ag=0.3.
Fano-type resonancei,=939 cm', y=1.0cm’}, q=1.1, ag/ag=0.2.

nance. The ratio ag/ag shows what fraction of the con- thicknesses, and found that while the intensities of 91-, 939-
tinuum states interacts with a sharp excited state. The resuland 225-cm lines are proportional to the sample thickness
of fitting are displayed in the inset of Fig. 3 and in Fig. 4. A d (that is, a=cons}, the intensity of the 215-cfit line is
similar fit should be performed for the resonance at abougssentially independent of the thicknessd& const). Con-
150 cm ! but we failed to construcig(w) in this case. The sequently, while the frequencies 91 and 939 ¢ifElla) and
fit parameters obtained are listed in Tablewko and y1o 225 cm! (Elb) correspond to intrinsic resonances,

denotew; and y; of Eq. (4) or w, and y of Eq. (5). LO  =215cm ! must refer to a surface excitation. All the ob-
frequencies and damping constants were calculated as corserved infrared phonon frequencies together with the calcu-
plex roots of the equation(w)=0. lated ones are displayed in Table I.

The left inset of Fig. 4 presents the temperature depen- NaV,Os crystals are well transparent in the frequency
dence of the Fano parameigffor the spectral line near 91 region between 2500 and 4500 ctrand below 100 cm.
cm ! at temperatures higher thaih,.=35K. It should be In these regions, an interference pattern was observEtan
mentioned that below 35 K, the shape of this line changes tand Ellb transmittance spectra of the samples of good qual-
an ordinary Lorenziansee the right inset of Fig. 4 and ity. We also managed to observe the interference pattern be-
alsd). Simultaneously, continuum absorption diminisheslow 100 cm ! in Elic transmittance of 1.3-mm thick sample.
markedly in this spectral region while it is essentially un-By measuring the distanceA between the interference
changed at the maximum of the low-frequency hump at 320naxima, we found the refractive indexasaccording to the

cm L. relation
With decreasing the temperature, besides the asymmetric
resonance at 91 cm in Ella transmittance, two lines at 215 1
and 225 cm® appear inElb transmittance spectra as A= 2dn’ )

well.82*We have studied the resonances at 91 and 939 cm
(Ella); 215 and 225 cmt (Ellb) for the samples of different Appropriate values of =n? are listed in Table I.
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the leakage of a very strong line 90 ¢Mmfrom the (co)
polarization. Frequencies of the observed Raman modes to-
gether with the calculated ones are collected in Table II.

As we have already reportélipesides relatively narrow
lines, a broad band with a maximum near 600 ¢ris ob-
served in thec(aa)c spectrum(see Fig. 8. Since this band
appears under both 514.5-nm and 488-nm excitation, we
conclude that it originates from the Raman scattering pro-
cess. However, a large width of this baffi3 cm ), which
is essentially independent of the temperature, means that it is
not attributable to fundamental modes.

We also studied Raman spectra of Na-deficient samples
Na; _,V,05 (x=0, 0.05, 0.10, 0.15 The most prominent
changes occur in théy(aa) spectrum(see Fig. 7. The
010'00 2000 3000 000 447-cnit Raman line moves to higher frequenciesxas-

Wave number, cm™ creases. Its position shown by the vertical dashed lines in
Fig. 7 is 477 cm* for the sample withx=0.15. The maxi-
FIG. 5. Absorbance spectrum of Ng@% in the region of multiphonon  \im of the broad band moves in the opposite direction,
bands at room temperature. namely, from 632 cm?® for x=0 to 562 cm* for x=0.15.
This change of the frequency difference between these two

We also looked for the higher-order vibrational spectraRaman bands is, probably, due to a change in intermode
by measuring the transmittance of thici=£0.4—3.0nm) interaction. The shape of the broad band can be approxi-
samples in the frequency range 1000—4000 triwhile no  mated well by a Gaussian for all the valuesxpfits width
pronounced features were found fia and Ellb polariza- growing from 213 cmlatx=0 to 290 cm*! atx=0.15. As
tions, sharp resonances were observefllic(klla) polariza-  for phonon Raman lines, their shape is almost Lorenzian, and
tion at 1930, 2858 and possibly 1072 and 1270 gnthe  their width grows too. For example, the lines at 177, 301 and
latter two lines being somewhat masked by the edge of &31 cm* broaden from 11, 18 and 20 crhatx=0 to 16,

Elte

e o e & = o

—

> voury

strong phonon at 955 cm (Fig. 5). 27 and 34 cm* atx=0.15. The broadening of Raman bands
with increasingx is probably associated with an increase in
3.3. Raman spectra lattice disorder.

It is difficult to compare absolute intensities of the spec-
tra at differentx. However, certain conclusions concerning
relative spectral intensities can be drawn. The most promi-

. . li?nf r re a rise in intensity of th 1 ciin n
aa,bb,ccof the Raman scattering tensor differ markedly one ent features are a rise tensity of the 301 ciine, and

. . i . the amergence of a new line at 988 chat x=0.15. All
from another, which points to considerable anisotropy of thghese results were obtained by expanding the observed spec-
structure. The most intense spectra were observed iAjhe

— _ _ i trum into individual spectral profiles. An example of such
geometrya(cc)a. The intensity of the lines marked by as- gypansion is shown in Fig. 8.

terisks inBjqy (i=1,2,3) spectra depended strongly on slight

variations in the sample orientation. Probably, these lines are _ o

due to a leakage of strong lines frofy, geometries. We 34 Calculations of vibrational spectra

failed to assign for certain a weak feature near 100 tin To obtain an information about the phonon spectrum of
the b(ac)b spectrum overlapped by a strong unshifted lineNaV,O5 throughout the Brillouin zone, which is necessary
that is present in this geometry. It might-possibly come fromfor the analysis of the spin-phonon interaction effects, we

Polarized room-temperature Raman spectra of XV
in the spectral range 80—1000 chare shown in Fig. 6. One

b 2 F S
2 | 8= Cacha  * 3 BN
RNy = g,
— o

x© § <+ x0.1
Pl b L T >
=« Kac)b =
n ND o %] —
§ w S A BZg A 5.:>_ a R . c(bb)c FIG. 6. Room-temperature Raman spectra of
=l = M - o @A NaV,0s. Asterisks labelA, lines seen iBjgy (i

=1,2,3) spectra.

vy % . g e
| ®  cibarc

/ P R A claa)e
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Raman shift, cm™ Raman shift, cm™!
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TABLE Il. Room-temperature Raman frequencies™?) for NaV,Os,

Popova et al.

aa, bb, cc ab ac be

Ag(Pmmn) B (Pmmn) By,(Pmmn) B3 (Pmmn)

or A{(Pmn2;) or Bi(Pmn2;) or By(Pmn2)) or A;(Pmn2))

Observed Calc. |Observed Calc. |Observed Calc. |Observed Calc.

(Pmmn) (Pmmn) (Pmmn) (Pmmn)

90 (cc, aa) 91 174 191 141 129 169 149

177 (aa, bb,cc) 226 295 288 186 193 257 239

233 (bb) 319 683 679 225 296 366 262

301 (aa, bb) 362 392 332 418 396

420 (bb, cc) 439 429 410 683 685
447 (aa) 518 550 619
533 (aa, bb) 626 - 798
970 (cc, aa) 964 951 961

have considered the lattice dynamics of this crystal in théroduced between V-Qfive bonds per vanadium ign
framework of the rigid ion model. The goal of this study is to Na—O (eight bonds per sodium iprand O—O neighboring
display the basic pairwise interionic interactions that deterions at interionic distances less than 0.325 nm. Because of
mine the main features of the measured Raman and infraratie nonequivalence of the oxygen O1, O2 and O3 ions we
transmittance and reflection spectra. have to introduce different potentials for different types of
A theoretical analysis of the vibrational spectra has beebonding. In the initial step we confined ourselves to just ten
carried out for both lattice structures proposed in the literafitting parameterginstead of the 34 independent force con-
ture. We did not obtain any physically well-grounded set ofstants for the YO; lattice in Ref. 22 including ion charges
parameters which might provide the staé, lattice struc- Z(A) (a condition of lattice neutrality brings the relation
ture. We therefore discuss in this section only vibrations ofZ(Na)+Z(01)+2Z(V) +2Z(02)+2Z(03)=0 abouj and
the centrosymmetric lattice with tH@%ﬁ space group. Cij,pij constants for V-0, Na-O and O-O pairs of ions.
From the large measured large TO-LO splittings ofStarting values of the parameters were taken from the lattice
some normal modes at the center of the Brillouin z6fie dynamics simulations of TmVE?’ LuPQ,?® and NaNQ.%®
point), it is clear that long-range Coulomb forces play a cru-  An orthogonal transformation of the atomic displace-
cial role in formation of the vibrational spectrum of NgO%. ments to symmetrized and normalized linear combinations,
The potential energy of the lattice was represented by a sumamely,
of Coulomb and non-Coulomb interactions. The Coulomb
terms in the dynamical matrix were calculated exactly using
the Ewald method. Non-Coulomb interactions in the form of
the Born—Mayer potentials with the exponential dependence
on the interionic distance( ¢;;(r) = Cj; exp(—r/p;)) were in-

1
Ua(I'3u s A) = 5 [U1a(A) + Uza(A) + Usa(A) +Usa(A)],

Intensity

Intensity

Raman shift, cmi™!

. 120( - ,400 — .600‘ - LSOO‘ — ‘1000. FIG. 8. Expansion of the room temperaturéaa)t Raman spectrum of
Raman shift, cni! NaV,0s into individual profiles(dashed lines The sum of these profiles,
shown by a solid line, approximates the experimental specfirles

FIG. 7. Room-temperature Raman spectra of N®,05 for variousx. well.
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1 cies of silentA, modes are 120, 167 and 572 ¢mThe
Ua(l'1g,A)= 5[~ Ua(A) ~Uza(A) +Usa(A) acoustic properties of the lattice are defined by nine elastic
constants, the predicted values ©f;=17.7,C,,=9.7,C,,
+Ug(A)], =23.6 (in units of 10°N/m?) are less dependent on varia-
1 tions of the model parameters.
Ua(I'2u,A) = 5 [~ U1a(A) + Uza(A) ~Usa(A) ~ The measured components of the high-frequency dielec-
tric tensore, differ appreciably from unitysee Table), so
UL (A)], neglect of electronic polarization is a very crude approxima-

tion in this case—in particular, when estimating LO-TO
splittings at thel’ point. However, for most of the infrared
active normal modes, our model yields a satisfactory descrip-
tion of the longitudinal macroscopic electric field induced by
1 the vibrations of ions. Very strong damping of tBeg, TO
Ua(l'yy,B)= ‘E[Ula(BH Uza(B)], mode at 591 cm* may be the reason for the large difference
between the calculated and measured LO-TO splittseg
1 Table I); in the case of thé,, TO mode at 365 ct, our
Uo(T1g,B)= —[—U1a(B) +Uz,(B)], model yields a greatly overestimated frequency of the corre-
V2 sponding LO mode. Large discrepancies between several cal-
where A, denotes V, 02, or O3 ions, and B denotes Na or Otulated frequencies of the Raman active modes and the ex-
ions, divides the dynamical matrix at tliepoint into blocks  perimental datdsee Table Il clearly demonstrate that some
corresponding to irreducible representations of the crystagignificant interactions—in particular, three-body forces,
factor-group. Here, which strongly affect the frequencies of bending
vibrations—are to be included in more thorough study of the
T1=Bau, T1g=Bzg, T'2y=Buu, lattice dynamics of this system.

1
ua/(ng vA) = E[ula(A) - UZQ(A) - u3a(A) + u4a(A)]!

Ty=A, for a=x, Perhap;, the mos_t int_eresting re_sult of this analysis of _the
NaV,0s lattice dynamics is the predicted soft mode behavior
I'1w=Bou, T'1g=Bsg, I'ay=Ay, of the transverse acoustic mode at the Brillouin zone bound-

ary [with the wave vectok,= 7(0,0,1£)], polarized in the

I',,=B for a=y, .
207 "o a=y ac-plane. Due to the competition between long-range Cou-

I'y=B1, T1g=Ag, T'2y=Bgy, lomb and short-range non-Coulomb forces, the correspond-
ing branch of the vibrational spectrum moves to the range of
['og=Bayq for a=z. imaginary frequencies when approaching tepoint thus

Comparing the calculated eigenvalues of the dynamicamaking it possible to consider the Ng; crystal an im-
matrix with the measured frequencies of the lattice normaProper virtual ferroelastic. To stabilize the lattice against
modes, we varied the paramet&<;; ,p;; step-by-step in a ko-excitations, we had to introduce an attractive interaction
physically motivated directior(e.g., absolute values of  between neighboring Mand \, (V3 and V,) ions along the
were diminished to account for the observed maximum@-axis with the significant bending force constant of approxi-
LO-TO splittingg with the aim of achieving a better agree- mately 5 N/m. Charge ordering in the subsystem of V ions
ment with the measured frequencies at the Brillouin zone&san destroy the balance between forces of opposite sign and
center. Simultaneously, frequencies of normal modes at zorigduce freezing of the soft-mode atomic displacemétits
boundaries and with the wave vectdrslose to thel” point  unit cell doubles in thec direction, the neighboring layers
(acoustical modeéswere controlled. shift in opposite directions, and in each layer the right and

The rigid-ion model presents a very crude approximatiorieft legs of the vanadium ladders become nonequivalent, due
to the charge distribution in covalent compounds, and théo shifts of Vi—V, and V;—V, rungs along opposite direc-
optimization of the model parameters was terminated whe#ions in theac-plang as a precursor of the subsequent mag-
achieving real values for the lattice normal modes frequennetic ordering with doubling of a unit cell im-, b- and
cies throughout the Brillouin zone. The final values of thec-directions.
effective ionic charges wer&(V)=2.405, Z(Na)=0.83,

Z(01)=-1.22,2(02)=—1.23, Z(03)=—0.98 (in units 4. DISCUSSION

of the proton charge which are close to corresponding ef-
fective charges for vanadiuzi(V) =3 and oxygerZ(O)=
—1.5 in TmVQ,?’ phosphorusZ(P)=2.33 and oxygen Table lll summarizes the observed vibrational modes to-
Z(0)=-1.19 in LuPQ,?® and sodiumZ(Na)=0.87 in  gether with their interpretation both in centrosymmeDi;
NaNO;.2° The apical oxygen ion O3, closest to the vanadiumand noncentrosymmetri@%v groups. While the former
ion, has the lowest charge due to its having the strongegroup explains naturally the experimental data provided one
covalent binding. Raman and three infrared frequencies remain undetected, the

The calculated frequencies of the lattice normal modes dtatter group leads to an assumption that 22 of 45 expected
the Brillouin zone center are presented in Table | and Il forRaman and 23 of 37 expected infrared modes were not de-
infrared and Raman active modes. The calculated frequeriected. Moreover, only three frequencig®, 174, and 951

4.1. Symmetry group of NaV ,0s5



1194 JETP 88 (6), June 1999 Popova et al.

TABLE lll. Comparison of experimentally observed Raman and infrared modes with the expected ones within
centrosymmetri@%ﬁ and noncentrosymmetrh.“;v space groupgmode frequencies are in ¢r.

Pmmn(D}}) Observed modes Pmn2,(C],)
8A4,(aa, bb, cc) 90 177 233 301 420 447 533 970
154 (aa, bb, cc; E||a)
7B5,(E||a) 912 145 251 526 939
3By {ab) 174 295 683
7B, (ab; E||b)
4B, (E|[b) 175 225¢ 367 582
8By,(ac) 141 186 225 392 429 550 951
15B; (ac; E||¢)
7B.(Elle) 162 179 468 591 760 955
5B34(bc) 169 2357 366 418 683
84, (be)
34,

°Observed below 200 K.

cm ) coincide to within the experimental accura¢y4  metry group, split into Davydov doublets of thB,, factor
cm %) in the sets of Raman and infrared modes correspondgroup by an interaction between two «molecules» in the
ing to a given irreducible representation of the noncencrystal unit cell. BAg+B1y), (Bogt+Bay), (BsgtByy), and
trosymmetric group, whereas all the modes should be bot(B,,+A,) Davydov doublets come, respectively, frok,
Raman and infrared active in that case. We also note oncg,, B,, andA, vibrations of the O5 “molecule.” Split-
more that we failed to obtain a realistic set of force constantgings of these doublets can be as great as 100*ae to
when carrying out the lattice dynamics calculations in thecoulomb interactions and, in particular, due to interactions
assumptiorC}, noncentrosymmetric space group. between adjacen¥ ions via common neighbor€2 iong

We consider our Raman and infrared data, and the reyong the chaingsee Fig. 1 Many of the vibrational fre-
sults of lattice dynamics calculations, to support strongly the,,encies of NayOs are close to those of X2
conclusion of the previous structural _studr’é’é‘ that the A comparison of our observed vibrational frequencies
space group of Na)0s aboveT,=35K is the centrosym- itk those of 0522 and with the results of our calculations
metricD;, rather than noncentrosymmet@g, group. From leads to the following assignment of the vibrational modes of

the point of view OID%ﬁ group it issalso easy to explain the NaV,0s. The V-03 stretching modes are manifested by two
result; of a repgrﬁ V-NMR study*® that revealed only one Davydov doublets: 951 Cﬁgr(Bngggg cn(By,) and
vanadium position at elevated temperatures. 970 cmfl(Ag)+955 cnmY(B,,). The Davydov splittings are
relatively small in this case, indicating that these vibrations
4.2. Atomic displacements associated with the strongest bond V—-03 are really well lo-
As we have mentioned in the Introduction, the strucutrec@lized. The mode frequencies are somewhat lower than the
of NaV,Ox looks like the structure of YO intercalated with ~ corresponding frequencies in,®; (976, 982, 994, and 975
Na. The V-0 bond lengths within the vanadium-oxygen lay-cm %), which is consistent with longer V-03 bonds in
ers are close in these two compour{dse Table IY. The  NaV;Os in comparison with \Os. The following vibrations
longest bond within the layer interconnects twgO¢ units ~ are associated with the 16V-03 bending modes:
in the crystal unit cellsee Fig. 1b where this bond is indi- 177 cm‘l(Ag), 162 cm Y(B,,), 392 cm‘l(Bzg),
cated by a dashed lineThus, it makes a certain amount of 366 cm‘l(ng).
sense to classify the=0 crystal vibrations on the basis of The bridging oxygens O1 participate in V—O1-V bend-
internal vibrations of the %05 «molecule»(C,, point sym- ing vibrations 418 crﬁl(ng), 367 cm (By,),

TABLE IV. The bond lengthsnm) in NaV,0s and V,0s.

Bond NaV,0; Ref. 13 V,05 Ref. 22
V-03 0.161 0.158
V-0l 0.183 0.177
(V-02)x2 0.192 0.188
V-02' 0.199 0.202
V-03 0.318 0.278
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447 cm‘l(Ag), and 468 cmi(B;,). The V-01-V stretch- interpreted as phonon assistéeld transitions without any
ing vibration is located at 420 cm(A,) and mainly involves ~ additional suppositions about the broken symmetry between

the motion of the V atoms along theaxis. the legs of vanadium laddets.

The modes at 683 cni (Bsy and B;y) and The next step towards the detailed description of the
582 cm }(B,,) correspond to V—0O2 stretching vibrations spectra of electron excitations is to construct molecular or-
along the b-axis, while those at 55Ocﬁ1|(Bzg), bitals for the[V,0]’* “molecule,” which hasC,, point
533 cm‘l(Ag), and 526 cmY(Bg,) correspond to the bend- Symmetry, using vanadiumtorbitals and oxygemp-orbitals.
ing vibrations. The vanadium ground state wave functidg, yields the

Most of the remaining modes can be described in term§ionbondinga, orbital as well as bonding, and antibond-
of external modes of the X5 units. Thus, the modes at ing b3 molecular orbitals, namely,

186 cm Y(By,), 169cm(Bsg) and 90cm?(Ay), corre- a0 Tdo L)+ do( R by Tdo(L) — do(R) ]+
spond to the relative translations of the twgQé units 2:L0x(L)F A (R) - bz:ld(L) = (R + Py,
within the crystal unit cell along the-, b-, and c-axes, re- b3 :[dyy(L) —dyy(R) ]—py .

spectively. As the YO5 units are bind along the-axis, these
modes can be considered relative translations of neighborin
(VOs), chains. TheB;4 mode at 174 cm' (O3 ions move
along theb-axis) and theA; mode at 301 cmt (02 ions
move along thec-axis) correlate with in-plane and out-of-
plane chain bending vibrations, respectively. By mode

Here, a,,b, denote irreducible representations of t@g,
|9oint group and L and R denote vanadium sites on the left
and right sides of a ladder rung. The highest filled orbital
being a,, the a,—b3 electronic transition allowed iiElla
polarization can account for the low-frequency absorption
band observed only in this polarization. Quantum-chemical

at 141 cm?® and By, mode at 91 cm® are associated with : P L
X > . calculations are necessary to varify this qualitative interpre-
rotation of the chains around theaxis. tation

Modes that involve mainly displacements of Na atoms
are at 225 cm*(B,,), 251 cm {(B3,), and 179 cm(By,).

4.4, Fano resonances with a continuum

4.3. Spectra of electron excitations The asymmetric line shapes of the infrared active modes

With our derived values of the effective charges, weat 91, 150, 939 ¢t in Ella polarization highlight the strong
estimated the crystal field energies of theé @lectron local- interference between these modes and a continuum, observed
ized at a V' ion site. The crystal field parameters just in this polarization. This interpretation is supported by
B9=1360+ 20905, Bi=2020-15905, B2=820+ 640G, the fact that the spectral Ime near 91 ’chbgcomes. perfegtly _
B)=610+1430G, BL=-1810-3690G, B233+144G, Symmetric when the continuum absorpt.u_Jn vanishes in this
B3=23650+8180G, B%=4070+ 74205 cm™* for the V; and spectral range bel_ow the phase transition temperafiyre
Vs sites were calculated in the framework of the exchange™35 K. In our earlier work we argued that these changes
charge modéP (for the V, and V, sitesBrl, and BS param- &€ related to the opening of a gap in the mggnetlc excitation
eters change signs; the first terms correspond to point charG@€ctrum afl¢, the observed continuum being due to two-
contributions, and Stevens normalization is Usdte scal- magnon absorption. _ _ o
ing factorG determines the strength of the exchange charge ~HOwever, such a straightforward interpretation is no
field. We estimated this phenomenological parameter of thionger valid in the case of the space grdd. It must be
model G=4) by fitting the total crystal field splitting to the reylsed, taking into account'possmle glectronlc e.XC|tat|ons' in
width of the V-3d bands presented in Ref. 13. In this case,his frequency range, as discussed in the previous section,
the effective crystal field provides the following energy level @nd charge ordering at the transition temperature.
pattern of the V* ion: 0(A”), 1.10A"), 1.18(A"), 3.39A")
and 4.78QA") eV (irreducible representations of ti@&, point _ , L
group, corresponding to the space symmetry of the electrofi™> Higher order infrared vibrational spectra
wave function, are given in brackets, additional shifts of the ~ Two- and three-phonon absorption results from anhar-
crystal field levels due to the spin-orbit interaction and themonicity of crystal vibrations. It is continuous, displaying
electrostatic field of a hole at the neighboring vanadium sitesingularities corresponding to critical points of the Brillouin
are less than 0.025 @VThe ground state wave function is zone. Leaving the detailed analysis of multiphonon bands to
the d,, orbital with small admixture of thel,, orbital, as the future, we discuss here only sharp lines observegl
previously pointed out® and the sequence of the excited absorbance spectrufifFig. 5). They are listed in Table V
states is in agreement with band structure calculations a®gether with their tentative assignment, using symmetry-
well. 2 allowed combinations of-point phonons observed in our

Strong absorption of lightl(ic) with Ella as well as with  first-order spectra. The coincidence of the observed and com-
Ellb was observed in the region 1.0-1.2 8\Both magnetic  binational frequencies lies within the accuracy of our mea-
dipole and induced electric dipote-d transitions in the odd surements.
crystal field are allowed between the Atates forElla, and The strongest narrow peak at 1930 ¢htorresponds,
between the Aand A’ states forEllb. Thus, in accordance according to this assignment, to sum of the components of
with the results on crystal field energies given above, théhe Davydov doublet originating from the V—0O3 stretching
observed broad optical bands in the vicinity of 1 eV can bevibration. This stretching mode is well localized, which re-
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TABLE V. Multiphonon bands in NaYOs observed irElc polarization.

Observed bands, cm™! Combination of phonons, cm™!
1072 (Biy) 550 (Bag) + 526(Bs,) = 1076(B4,)
1270 (Biy) 683 (Bs,) + 582(Bsy,) = 1265(B)4)
1930 (Byy) 970 (Ag) +955(B1y) = 1925(B14)
2858 (Biw) 3 x 955(By,,) = 2865(By.,)
2901 (Biy) 2 x 970(A,) + 955(B1.) = 2895(By.)

sults in its small dispersion over the Brillouin zone, thusinfraredElla polarized absorption continuum might be asso-
delivering a narrow two-phonon band, in accordance withciated with electron excitations p¥,0]”" rungs in a crystal
the experimental observation. field of C,, symmetry.
Strongly asymmetric spectral lines observeckEira ab-
sorbance spectra of NaWs highlight a strong interference
5. SUMMARY between relatively narrow phonon lines and the underlying
continuum. This suggest an interaction between crystal vi-
We have performed a thorough spectroscopic study oprations and magnetic or electronic excitations. The detailed
far infrared reflectance and transmittance, along with Ramaphysical interpretation of the observed phenomenon depends
scattering of a'-NaV,0Os single crystals in the high- on the nature of the far infrareBlla polarized continuum,
temperature phaséabove T.=35K). Far infrared spectra which requires special investigation.
were obtained foElla, Ellb, andEllc polarizations of inci- In conclusion, we reported also some pre|iminary results
dent light. Diagonal@a), (bb), (cc) and off-diagonal(ab),  on higher-order vibrational spectra of Ng® resulting from
(bc), (ac) components of the Raman scattering tensor wereinharmonicity of lattice vibrations.
investigated. We report five infrared active modesHira After having submitted this paper for publicatigaee
polarization, four inEllb polarization, and six irEllc polar- Ref. 32 we became aware of a similar investiga’[?ﬁﬁf1
ization. Eight Raman active modes have been detected fCExperimental data presented in these papers are in good
parallel polarizations of incident and scattered lighs), agreement with our results.
(bb), (co). The (ab), (ac) and (bc) Raman geometries deliv- We are grateful to A. I. Smirnov for checking the
ered three, seven, and five modes, respectively. These resuismples by ESR measurements, to A. N. Vasil’ev for stimu-
are in much better agreement with the recently proposed cemating discussions, and to G. N. Zhizhin for sustained support
trosymmetric space groufD3y(Pmmp) for the high-  of this research. This work was made possible in part by
temperature phase of NaWs; than with the previously Grant No. 98-02-17620 from the Russian Fund for Funda-
adopted noncentrosymmetric space grm;p(Pmml). We  mental Research.
have also carried out the lattice dynamics calculations, based
on the rigid ion model for both structures of N3 pro-
posed in the literature. We failed to obtain any physically
well-grounded set of parameters providing a sta(big lat-
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. . Phys. Usp23, 409 (1980].
strongly support the conclusion of the previous StrUCtural3J. I¥|embeprger, M. (Lohrr?;nn, N. Nickloas, A. Loidl, M. Klemm, G. Ober-

*)E-mail: popova@isan.troitsk.ru

3,14 _ ;
study'>*“that the spac?sgroup of NaWs aboveT . =35K is ~ meier, and S. Horn, Europhys. Lett2, 661(1998; T. Yamada, private
the centrosymmetridyy, rather than noncentrosymmetric  communication.
CZ group 4K. Kobayashi, T. Mizokawa, A. Fujimori, M. Isobe, and Y. Ueda, Phys.
v .

. . . . Rev. Lett.80, 3121(1998.
This conclusion leads to Important phySICal conse- 5Y. Fujii, H. Nakao, T. Yoshihama, M. Nishi, K. Nakajima, K. Kakurai,

guences. In particular, it requires a revised interpretation of . sobe, Y. Ueda, and H. Sawa, J. Phys. Soc. 580326 (1997.
one-dimensional magnetic properties of N&J and of the  °M. Weiden, R. Hauptmann, C. Geibel, F. Steglich, M. Fisher, P. Lem-
phase transition at 35 K, previously considered as an Ordi_7megiyrc?:dHGégtzm.?eg;(i;kzi.TPhSyZIkligi i/l(llz?)-ge and Y. Ueda, submitted
nary spin-Peierls transition. The interpretation of the previ- 'y Phys. Soc. Jap.; E-prints archive cond-mat/9805251.
ously observed broad bands in near and far infrared®m. N. Popova, A. B. Sushkov, A. N. Vasil'ev, M. Isobe, and Y. Ueda,
absorptiofi?! needs to be reconsidered as well. ,JETP Lett.65, 743(1997; E-prints archive cond-mat/9711052.

Using the effective charges derived via lattice dynamics D. Smirnov, P. Millet, J. Leotin, D.( P0|I§Ianc, J. Riera, D. Augier, and

. - . e P. Hansen, Phys. Rev. B/, R11035(1998.

cz_ilculatmns, and fitting th2e total cr_ystal field splitting to the 101 yoshihama, M. Nishi, K. Nakajima, Y. Fujii, M. Isobe, and Y. Ueda,
width of the V-3d bandst? we estimated the crystal field Physica B234-236 539(1997.
energies of the @ electron localized at the vanadium site. It EA- Carpy and J. Galy, Acta Crystallogr. &1, 1481(1979.
follows from this estimate that the obser¢édear infrared 241.9?1‘) Backman, F. R. Ahmed, and W. H. Barnes, Z. Krist5 110
broad band. absorption Of NaWs can be interpreted as 13y gmolinski, C. Gros, W. Weber, U. Peuchert, G. Roth, M. Weiden, and
phonon-assisted—d transitions. We speculate that the far C. Geibel, Phys. Rev. Let80, 5164(1998.



JETP 88 (6), June 1999 Popova et al. 1197

14A. Meetsma, J. L. de Boer, A. Damascelli, T. T. M. Palstra, J. Jegoudez?®J. C. Nipko, C.-K. Loong, M. Loewenhaupt, M. Braden, W. Reichardt,

and A. Revcolevschi, Acta Cryst. G4, 1558(1998. and L. A. Boatner, Phys. Rev. 86, 11584(1997).
15p. Horsch and F. Mack, E-prints archive cond-mat/9801316. 2A. Yamamoto, T. Utida, H. Murata, and Y. Shiro, J. Phys. Chem. Solids
16T, Ohama, H. Yasuoka, M. Isobe, and Y. Ueda, Phys. Re9B3299 37, 693(1976.
17(1999- _ . 30B, 7. Malkin, in Spectroscopy of solids containing rare-earth ions, ed. by
H. Seo and H. Fukuyama, E-prints archive cond-mat/9805185. A. A. Kaplyanskii and R. M. Macfarlane, Elsevier Science PB, Amster-
8M. V. Mostovoy and D. I. Khomskii, E-prints archive cond-mat/9806215.  gam (1987, pp. 13-49.
zz:\jﬂ '}I;h_almeler and P. Fulde, E-prints archive cond-mat/9805230. 31A pamascelli, D. van der Marel, J. Jegoudez, G. Dhalenne, and A. Rev-
. Koppen, D Pankert, R. Hauptmann, M. Lang, M. Weiden, C. Geibel, colevschi, E-prints archive cond-mat/9806222.
and F. Steglich, Phys. Rev. B, 8466(1998. 32M. N. Popova, A. B. Sushkov, S. A. Golubchik, B. N. Mavrin, V. N.

23, A. Golubchik, M. Isobe, A. N. Ivlev, B. N. Mavrin, M. N. Popova ; : .
’ ' ’ ' Denisov, B. Z. Malkin, A. I. Iskhakova, M. Isobe, and Y. Ueda, E-prints
A. B. Sushkov, Y. Ueda, and A. N. Vasil'ev, J. Phys. Soc. %8,.4042 archive cond-mat/9807369.

(1997. 23 p N » .
2], Abello, E. Husson, Y. Repelin, and G. Lucazeau, Spectrochem. Acta Z. V. POPQY'C M. J. KonstantinovicR. Gajig V. P.opov, Y. S. Raptis,

39A, 641 (1983. A. N. Vasil'ev, M. Isobe, and Y. Ueda, J. Phys.: Condens. Mati@r
23\1. Isobe, C. Kagami, and Y. Ueda, J. Cryst. Growsi, 314 (1997. 5o213 (1998. _ _ ‘
248 N. Mavrin, Optika i Spectroscopiyad, 79 (1980. D. Smirnov, J. Leotin, P. Millet, J. Jegoudez, and A. Revcolevschi,
25D, L. Rousseau, R. P. Bauman, and S. P. S. Porto, J. Raman Spet@osc. £-Prints archive cond-mat/9808006.

253(198)).
28, Fano, Phys. Rev124, 1866(1961). Published in English in the original Russian journal. Reproduced here with
27y, R. Pekurovskii, Izvestiya AN USSR, Ser. F&0, 324 (1986. stylistic changes by the Translation Editor.



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 88, NUMBER 6 JUNE 1999

Behavior of the p-T phase diagram of the organic conductor (ET),Hgslg
A. V. Kornilov and V. M. Pudalov

Institute of High-Pressure Physics, Russian Academy of Sciences, 142092 Troitsk, Moscow Region, Russia;
P. N. Lebedev Institute of Physics, Russian Academy of Sciences, 117924 Moscow, Russia

A. P. Kochkin

Institute of High-Pressure Physics, Russian Academy of Sciences, 142092 Troitsk, Moscow Region, Russia

R. N. Lyubovskaya and R. B. Lyubovskii*’

Institute for Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow
Region, Russia

(Submitted 21 September 1998

Zh. Eksp. Teor. Fiz115 2190-2196June 1999

The conductivity of single crystals of the organic conduct&T),Hgslg [ET-
bis(ethylendithigtetrathiafulvalenghas been investigated at temperatures from 4.2 to 360 K and
pressures of up to 75 kbar. Two first-order phase transitions have been detected at room
temperature at pressures of 2.75 and 6.7 kbar. On the basis of the experimental dat&, the

phase diagram for the first-order phase transitions has been plotted. The unusual shape

of the phase diagrarta slow monotonic growth of the transition temperature with a stbpéd p

=4 deg/kbar followed by a sharp drop around the pgigpt 6.5 kbar,T,= 324 K) has been

analyzed using the Landau theory of second-order phase transitions. Our analysis supports the
hypothesis of a second-order phase transition around this point and also exhibits satisfactory
agreement between calculations and the experimental curves of the first-order phase transitions.
© 1999 American Institute of Physid$$1063-776(99)02106-X

1. INTRODUCTION One of the most interesting types of salts for researchers

Most low-dimensional organic conductosalty are of ~ Of organic conductors is EHgs - 5Xg, where X=Cl, Br, and
interest to researchers because small changes in external p@&nd 6=0.22, 0.11, and 0, respectllve%Ihe salt with com--
rameters (temperature, pressure, and magnetic fietdn position (ET)4Hg, 7LClg is an orgamc.metal at atmospheric
have a considerable effect on their properties and behavioPressure and all temperatures. At higher pressures and low
These changes result in phase transitions leading to nefgMmperatures, itis a semiconductor, ang &t12 k7bar itgoes
states of materials. As a rule, these are second-order tran§Ver 10 @ superconducting state wil=1.8 K.” The salt
tions, where the first derivatives of entropy or volume areWith composition ETHg, g is a superconductor witfi.
discontinuous. These transitions give rise to charge-density 4-3 K at atmospheric pressure. Ifg changes with pres-
or spin-density waves in the system of charge carriersSUre in an unusual mannedT./dP>0), and it becomes an
order—disorder or metalinsulator transformations, which ofinsulator atp>25 kbar? Al the salts listed above are isos-
ten compete with superconducting transitiéisMuch less tructural, and the|r_ anion and _cat|on sublattices are incom-
often low-dimensional conductors undergo first-order transilNénsurate. The third salt of this groufgT),Hgsle, has the
tions, in which first derivatives of the basic thermodynamicStructure and properties notably different from those of the
functions (thermodynamic potential, free energy, gtgave former two. At atmospheric pressure and room temperature it
jumps. The features of the first-order transitions in the matelS @ semiconductor which undergoes a first-order transition to

- _ 9
rials under discussion are hysteresis loops on curves of thef® insulator state at=260 K" ,
The present investigation is concerned with the phase

modynamic functions plotted against pressure or tempera-.
ture, and these transitions are structural metal—insulatdfiagram of(ET);Hgsls at pressures of up to 26 kbar and

transformation’ [for example, in the MEMTCNQ), salt, temperatures rangi_ng betwe_en 4.2 K gnd 360 K, which was
where MEM is methylethylmorpholinium and TCNQ is tet- studied by measuring electric resistivity. At room tempera-
racyanchinodimethafesemiconductor—semiconductor tran- ture measurements have been conducted at pressures of up to
sitions[in the MTPRTCNQ), salt, where MTPP is methyl- /> kbar.

triphenylphosphoniufp or metal-metal transitions[in
(BEDO-TTF)L,ReQ,- H,0, where BEDO-TTF is bis-

. . : _ 2. EXPERIMENT
(ethylendioxytetrathiafulvaleng Synthesis of organic con-

ductors based on ET and TMTSedthetramethyteraseleni- (ET)4Hgslg crystals were fabricated by electrochemical
umfulvaleng allows one to produce salts in which all these oxidation of ET in tetrahydrofuran in the presence of the
states can be observed. electrolyte(BusN),Hgslg. The crystal lattice of ET),Hgslg

1063-7761/99/88(6)/4/$15.00 1198 © 1999 American Institute of Physics
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FIG. 1. Resistance of &T),Hgslg single crystal versus temperature at FIG. 2. Resistance and conductiviinsed of (ET),Hgslg single crystal
atmospheric pressure. The inset shows the hystersis loop for phase transitioersus pressure at room temperature.
|~ Il at p~3.9 kbar andl'=310 K.

=500 K, and below the transition point we hakg=5000

is composed of cation—radical layers formed by piles of twoK. This is a first-order transition with a hysteresis loef® K
independent ET molecules and j—H@’ anion layers. The wide. Figure 2 shows the resistance of {&),Hgslg single
mercury atoms are insidg tetrahedra, and the occupancy of crystal as a function of pressure measured in the cylinder—
mercury sites is 0.5. piston chamber. It is clear that the crystal resistance displays

The conductivity measured at room temperature in théwo jumps as the pressure increases, at 2.75 and 6.7 kbar,
ab plane of the conducting layer is 0.3—22(cm)~ 1. The  which indicates that there can be three phases in this mate-
conductivity measured in the normal direction demonstratesial. Measurements performed at decreasing pressure show
an anisotropy factor of~10°, which is typical of low- two hystersis loops of widths:0.1 and 0.25 kbar. The inset
dimensional organic conductors. In our experiments, wdo Fig. 2 plots the single crystal conductivity measured at
tested crystals of the same batch; measurements of sampleressures of up to 75 kbar at room temperature in the toroidal
from other batches have not revealed notable differences iapparatus made from limestone. The conductivity gradually
the phase diagrams. In our measurements of conductivity, weaturates at higher pressures, which is typical of most organic
have used several devices of different types, depending otpnductors, and at 75 kbar it is a 18 times higher than under
the pressure. At pressures up to 75 kbar and at room tenmormal conditions. This moderate increase in the conductiv-
perature we used a toroidal cell made of limestbhe.mea- ity of the organic conductor at so high a pressure indicates
surements at a variable temperature, the toroid was placed that the molecules of this salt are packed fairly densely. It is
a squirrel-wheel apparatd$where a pressure of up to 26 noteworthy that there is another modification of this salt
kbar could be fixed to within=2 kbar and the temperature which displays no phase transition under increasing pressure
lowered to 4.2 K. Measurements at temperatures of 4.2—36and whose conductivity at 75 kbar is 300 times as high as
K and pressures of up to 15 kbar were conducted in a highander normal conditions.
pressure chamber formed by a cylinder and a pistofhe The resistance plotted as a function of temperatkig.
pressure in this chamber was measured using a mangan® indicates that the band-gap width in the phase existing at
wire with an precision of 0.03 kbar, and the temperature wagpressurep>6.7 kbar, where the conductivity is of the semi-
measured by a Cu—CuFe thermocouple to within 0.5 K. Theonducting type, drops with the increasing pressure, there-
phase diagram was plotted using the following procedurefore, it is possible that this phase undergoes a transition to a
the pressure was chosen at room temperature, after that theetallic state at a pressure of about 30 kbar.
resistivity was measured as a function of temperature. The The experimentally detected transition points are plotted
phase transition point was determined by detecting a jump iin Fig. 4. One can see that the phase boundary monotonically
the resistivity in the process of coolirig. 1), where the shifts with the pressure up to the point with coordinabgs
pressure was measured by the manganin probe. =6.5 kbar andTy=324 K, where it has a sharp bend, and
then the phase boundary is an almost vertical line parallel to
the temperature axis.

At normal pressure and at temperattre 260 K a first-

The temperature dependence of the resistance of therder phase transition with a conventional hysteresis loop of
(ET)4Hgslg single crystal measured at atmospheric pressurgvidth T~9 K and a sharp change in the resistafiery. 1)
in the direction of thév-axis is plotted in Fig. 1. One can see occurs in the(ET),Hgslg salt. The transition detected on the
that the salt undergoes a semiconductor—insulator phase traR{T) curves rapidly shifts upwards with the temperature,
sition at T=260 K. At this temperature, the resistance whereas the resistance jump decreases monotonig¢afgt
abruptly increases by 1-1.5 orders of magnitude. The actito Fig. 1) and is smeared out at pressyrg=6.5 kbar and
vation energy above the transition point correspond&to temperaturely=324 K, i.e., at the point wheréT/dp goes

3. EXPERIMENTAL RESULTS AND DISCUSSION
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R(TYR, tures. In measurin@®(T) in the range of high temperatures,
50¢ we could not detect a difference between these two phases,
; since no resistivity jumps were observed on these curves.

40F
30: 4. ANALYSIS OF THE PHASE DIAGRAM
: Usually the effect of a second-order phase transition on
20:_ the phase equilibrium near a first-order transition line can be
E neglected. This is not so, however, in the case when the
jumps in the entropy and volume due to the first-order tran-
105' sition are small, which is consistent with the slopeddidp
t at p<<6.5 kbar.
0% 50100 150 200 250 300 Hence there is good reason to try to apply the Landau
T,K theory of second-order phase transitions to interpret the

curves of the first-order phase transitiors|l and (tenta-

tively) Il Ill. This approach produced not only qualitatively

adequate results, but also satisfactory quantitative agreement

with the experimental data, which allows us to assert with a

to zero. The width of the hysteresis loop decreases at thisigh degree of certainty that a line of second-order phase

point, which may be associated with a decrease in the chandeansitions between phases | and lll really exists.

in volume. For definiteness, suppodassuming this is consistent
One can see in Fig. 2 that in addition to the transitionwith shape of the curyethat phase | is symmetrical in the

between phases | and I, which occurgat2.75 kbar, there  sense of the Landau theoffyig. 4), and phase Ill is its asym-

is another transition gi=6.7 kbar between phase Il and the metrical modification(with a nonvanishing order parameter

hypothetical phase Il in this salt at room temperature. Then).

investigation of the boundary between phases Il and Ill using  The chemical potential of the asymmetrical phagé is

curves ofR(T) in the pressure range 6.5—-9 kbar has demon- _ 2 4

strated that this boundary rapidly moves towatd lower tem- pa=pitAnTtBr . @

peratures with the pressure up =6.7 kbar, where WwhereB>0, andA near the second-order transition line can

dT/dp— —, and then returns to the region of lower pres-be expressed by the expansion

FIG. 3. Resistance measuredatrvel) 4, (2) 6, (3) 12,(4) 16, (5) 22, and
(6) 26 kbar versus temperature.

sures qnd temperatures. Theljump in the gurv@@T) in A(p,T)=a(T—To)+ a(p—po), 1)
this region also has a hysteresis loop, which indicates that the
transition is of first order. so that we can derive from the equati@(p,T)=0 the tem-

This unusual shape of the-T phase diagram leads us to Perature of the transition<+lll near the triple point as a
conclude that phases | and Ill are not identical. In this confunction of pressure:
nection, we suppose that there should be a second-order To(p)=To—(a/a)(p—po). 1

phase transition between them, and its boundary is assumed o _ )
to originate from the triple point with coordinatgs=6.5  After minimizing us in Eq. (1) with respect toy (Ref. 13

kbar andT,=324 K and is directed toward higher tempera- We have
7?=—AI2B, u3=pu,—A?/4B.
T,K The equilibrium between phases | and Il is determined
by equating the chemical potentialg,(p,T)=uo(p,T).

350F /
{ Differentiation yields the Clapeyron—Clausius equation and
{ the slope of the phase boundary:
300 d—T = U_12
dp sp

Here s;,=s;—5S, andv,=v;,—v, are the differences be-
tween the specific entropies and volumes, respectively. For
the Il Il transition we obtain

i p2(p,T)=pma=ui(p,T)—A?/4B.

250

2000 — é 2 In this case, the Clapeyron—Clausius equation takes the form
P. kbar dT vy~ aA/2B
FIG. 4. Phase diagram in the-T plane for the(ET),Hgslg salt. Experi- dp s,taAi2B’

mental data are plotted by symbols, solid curves show approximations dei_ . . .
scribed in the text. The dashed line is the boundary between phases | and NI €quation can be solved, given the slopes of curves for

derived from calculations. the transitions 41l and I~ Ill around Ty:
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t V12 ,:ch(p): o

0=—" — —

S1o’ dp a’

By introducing the variable§ —Ty=t and p—py=Xx, we
transform this equation to
dt  to+ti(t—tx)/ Ty

t'=— : 2
dX 14 (t—t/x)/Tpy @

whereT,=2Bs;,/a°.

Since, as is well knowr? the jump in the specific heat at

the point of a second-order transition is
AC31: C3_ C]_: Tan/ZB

(it is clear that near the triple poiffi.— Ty), one can easily
find that

_ TcS12 _ AQy,
Acy;  Acgy’

m

whereAqq, is the heat of transition<k1l. Thus, T, is effec-

tively the ratio between the heat of the first-order transitiont
and the specific heat jump at the neighboring second-ordef

transition. By substituting in Eq2) (which is valid only for
x>0) y=t—t/x, we obtain its solution:

y+Yy2I2T = (ty—tL)x+ const. 3

Given that atx=0 we havet=0, hencey=0, we derive

from Eq. (3) that const0 and
toX, x<0,

t:
tIX— Tt VT5—2Tm(tL—th)x, 0<X<Xp,

(4)

wherexq,,=T/2(t;—tg).

This solution describes the branch of the-llll transi-
tion above(with respect to the temperatyrine point where
dT/dp— —. The second solution of Eq3) describes the

branch of transition K11l that tends to higher temperatures

at higher pressuredelow the point wherel T/d p— —):
(4)

t=tX—Tm— VT5—2Tm(tL—tOX, X<Xp.

This solution is meaningful if the Landau theory also applies,
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phase transition must be present in the high-temperature re-
gion, and its shape is determined by Ef’) with the re-
duced parametdr,= — a/a.

As for the microscopic nature of the transition, i.e., the
change in the structural symmetry, it seems natural to as-
sume that this change is associated with the deviation of the
Hg site occupancy in the anion chain from @agcording to
the X-ray diffraction datiobtained at room temperature in
phase |, the anion sublattice is composed of adjacent tetra-
hedra with iodine atoms at their apices and central points
occupied by mercury atoms with a probability of 0.Fhis
assumption is supported by the fact that the curves of resis-
tance versus pressure in phases | and(Fig. 2) almost
coincide if the presence of phase Il is neglected. The reason
is that the conductivity is due to the charge transfer via ET
organic molecules, which are not affected by the symmetry
change under discussion.

A full analysis of symmetry breaking would be possible
only with full X-ray diffraction data on this transition. None-
heless, we can assert that the dimensionality of the order
arameter cannot be higher than urlityand this is the only
condition for the validity of our interpretation.
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and 97-03-33686a Russian Ministry of Science and Tech-
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We have studied the evolution of the inelastic neutron magnetic scattering spectra of a
compound with cubic symmetry, Celngun the temperature range 10-130K, and also their
transformation with variation of the Kondo temperatiise due to substitution of cerium

ions in the system Ge,(La,Y),InCu, at T=10K. It turns out that the energy of the transition
between the ground state and excited state of theldctrons Ag) in the crystal electric

field in CelnCy increases with growth of the population of the ground state as the temperature
is reduced, with a slight change in its intensity. Such behavior is inconsistent with the

notion of classical one-ion effects of the crystal electric field. We have found that the scale of
the observed variations in the excitation spectra of theléctrons depends on the Kondo
temperaturel ¢ and is insensitive to disorder in the rare-earth sublattice. Thus, despite the fact
that Ty<<Acg, hybridization with states in the conduction band has a substantial effect

on all parameters of the excitation spectrum of the ground multiplet of thelectrons at low
temperatures. €1999 American Institute of PhysidsS$1063-776099)02206-4

1. INTRODUCTION pound with hexagonal symmetry Cepdppeared in Ref. 3.
o ] ) _In particular, in this study a strong modification of the neu-

Ong of the main interactions responsible for the physica},qn, inelastic magnetic scattering spedithanges in the po-
properties of rare-earttRE) based compounds at low tem- gjion and intensity of the inelastic transitions associated with
peratures is the interaction of £lectrons with the potential o energy and wave functions of thelectron statéswas
of the crystal electric field, which removes the degeneracy OBbserved when the temperature was reduced. In a recent
the ground multiplet of the rare-earth ions. In heavy-fermionstud)f on Ce dLagsNi (a compound with lower, orthorhom-
compounds, in addition to this interaction, hybridization of bic crystal symmétry in which the Ce ions are in the heavy-
the 4f-electron states with electron states in the conductio

"fermion state, qualitatively similar effects were also ob-
band, which is usually described in terms of the Kondo in'served + 4 y

teraction, also plays an important role. The characteristic en- In the systems CeAland Cg d.a, Ni the ground state

ergy (Ace) of the interaction of the & electrons with the e o the cerium ions is sextuply degenerate and splits
potential of the crystal electric field, as a rule, substantially, P ply deg P

exceeds the energy scale of the Kondo interactigg) ( This in the crystal electric field into three doublets, and, depend-
is probably the reason why only the removal of degeneracI g on the symmetry of the ground state, one or two transi-

of the J multiplet by the crystal field is taken into account ions from the ground state can be observed in the neutron

when determining the initial wave function of the ground inela.st.ic magnetic scattering spectra. .Sin-ce the widths of the
state in various models of heavy-fermion systems. f[ransmons are comparable to the excitation energy, separat-
The influence of the Kondo interaction on the excitation!Nd out and analyzing the temperature variations presents
spectrum of the # electrons reduces to a renormalization of €@l difficulties. For a higher symmetry of the environment,
the ground state and to appreciable broadening of the trangi@mely cubic, the ground-statef 4nultiplet of the cerium
tions between levels of the crystal electric figte Refs. 1 0nS splits only into two groups of states'a doublet and a
and 2 and the references thepeiAt the same time, the in- 1's quartet, i.e., in the neutron inelastic magnetic scattering
teraction with the crystal electric field determines for theSpectra only one transition between levels of the crystal elec-
ground state and excited states of theedectrons not only tric field is observed. Such a spectrum is simpler and more
the magnitude of the splitting and multiplicity of the degen-convenient for experimental and theoretical study of the
eracy, but also the symmetry of the wavefunctions of the'enormalization of splitting of the crystal electric field and of
states that hybridize with the states in the conduction bandhe wave functions in the presence of hybridization. On the
which can be manifested in certain temperature effects.  other hand, a comparison of the excitation spectra of com-
The first experimental indications of a possible mechapounds with a variety of crystal symmetry would make it
nism by which hybridization influences the formation of ex- possible to establish general trends and identify specific de-
citations of & electrons in the classical heavy-fermion com-tails in the formation of the ground state of heavy-fermion

1063-7761/99/88(6)/6/$15.00 1202 © 1999 American Institute of Physics
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compounds. Therefore it would be useful to investigate ex- a.nm
perimentally the temperature evolution of the excitation
spectra of 4 electrons in a heavy-fermion compound with
cubic symmetry at temperatures ranging from less fhaio 0.20}
values abovelr, and to compare with analogous results
for compounds with lower crystal symmetty.

Cel _I(La, Y)xInCu2

(=

P

W
T

P i | RSO |
2. SAMPLES AND MEASUREMENT TECHNIQUE 02 04 06 08

(Q,.E), arb. units

A suitable object of study for examining the role of hy- _z0.10f
bridization in the formation of the excitation spectrum df 4
electrons is the cerium-based heavy-fermion compound
CelnCy. This compound has cubic symmetry of the local
environment of the rare-earth ion and belongs to the struc-

S,

tural typelL 2, (Ref. 5. The coefficient of the electronic term /o T TS0l _o

in the specific heat, found by extrapolati@T from the |7 "“‘------—---I‘;
range 10-20K tol =0 for this compound, isy=247 m_.J/ 0 5 o s T 30
(mole-K?) (Ref. 6. It increases as the temperature is re- E,meV

2
= . <1.

ducfed’ and re?]CheIS/ 120? qumOIel K ) at T<14 K. FIG. 1. Magnetic component of the spectral funct®{Q,E) for CelnCuy,
(Refs. 6-8. Such a arge value of at low tempera_tures IS obtained from inelastic neutron scattering spectrdl at10 K. Points —
probably the result of the emergence of magnetic order adxperiment(see text Lines — fits to data using Lorentzian spectral func-
T<2 K (Refs. 6 and 2 The magnetic susceptibility deviates tions: dashed lines — inelasti€(, = 6.98+0.09 meV,I';;=7=1 meV) and
from the Curie—Weiss law a<30K. and extrapolation of quasielastic [ 4e= 1.4 me\j components, solid line — sum of the two. Inset
it | T-O0K vield 0 L37>< 10-3 /mol plots the concentration dependence of the cubic lattice parameter for
IS value X. as 1— yields X.( )_ emu/mole Ce,_,(La,Y),InCu,. Error in the lattice parameter is less than the width of
(Ref. 7, which allows us to consider Celngto be a heavy-  the symbol.
fermion compound. On the basis of low-temperature mag-
netic and thermodynamic data®!°the Kondo temperature
T for CelnCy was estimated to be approximately 4 K. On substitution, as has been confirmed by experimental
the other hand, the emergence of magnetic order at lowtudies:?

temperaturéscan lead to an increase iand thereby yield Neutron studies of the magnetic excitation spectrum of
an underestimate of (starting aty=247 mJ/(molekK?) CelnCy were performed in Refs. 8 and 10. These studies
we haveTy~20K). revealed that af=5 K there is one inelastic peak in the

A strong dependence of the position of the maximumspectrum with maximum around 8 meV, associated with the
Tmax (i-€., the maximum associated willx) on the applied excitation from the ground state, and a quasielastic peak with
hydrostatic pressure AT ./ AP~24 K/GPa to 1.55GPa a half-width at half-maximum(HWHM) of approximately
was detected in measurements of the temperature deped-35meV. In Refs. 8 and 10 it was concluded that when the
dence of the magnetic component of the resistance demperature is raised, the inelastic peak broadens, aifid at
CelnCy (Ref. 1), which indicates thalk is very sensitive >50K it transforms into a quasielastic peak. The authors
to pressure. This peculiarity of the compound makes it posassociated the observed evolution of the inelastic peak with
sible to study the influence of the magnitude of the Kondathe relaxation processes observed in Ref. 13. Such a conclu-
interaction on the formation and properties of the groundsion is inconsistent with recent measurements on other

state. heavy-fermion compounds, in particular CeARef. 3, and
In neutron measurements it is more convenient for theequires additional experimental verification.
purpose of measuringk to use the “chemical pressure” Polycrystalline samples of Ge,(La,Y),InCu, (x=0

instead of the external hydrostatic pressure, i.e., replacingnd 0.2 and the structural nonmagnetic analog LalpCu
cerium ions with the smaller Y iongvhich corresponds to were prepared in an arc furnace in an argon atmosphere.
applying a positive pressure with a resultant increasgqn  X-ray analysis showed that all the samples correspond to the
or with the larger La ionga “negative” pressure with a structural type of CelnCu Within the limits of experimental
corresponding decreaseTR). It should be noted that during error (=3%) no other phases were detected. The lattice pa-
chemical substitution in the rare-earth sublattice of the sysrameters for CelnCu (a=0.67894+0.00003nm and

tem CelnCy, no change takes place in the type of ions in theLalnCu, (a=0.68512+0.00004 nm are in good agreement
immediate environment of the cerium ions, which consists ofwith published data.

eight copper ions. This suggests that to first order the ionic Measured values of the lattice parameter as a function of
component of the crystal, which as a iflés determined cerium ion concentration are shown in the inset to Fig. 1.
mainly by its immediate environment, remains unchangedVithin the limits of the examined concentrations the lattice
upon Ce ion substitution. The electronic component of theconstant varies linearl{and significantly as the Ce content
potential of the crystal electric field, which is substantial foris reduced. The lack of salient points in the dependence of
metals, can also be considered to be invariant upon covalettte lattice parameter on the concentration suggests that no
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isostructural phase transition to a state with intermediate va- To determine the parameters characterizing the excita-
lence takes placé transition of the typer— « in Ce), i.e.,  tion spectrum of the # electrons, we fit the dependence
the cerium ions remain in the heavy-fermion state. For the5,,(Q,E) with the help of two Lorentzian spectral
neutron experiments we chose two samples with the samfeinctions® with energy positionEq.=0 meV (quasielastic
cerium ion concentration but opposite “chemical” pressure-scattering and with E;,# 0 meV (inelastic scattering

effect: CggY 2 InCu, and CgglayInCu,. Comparison of

the derived lattice constants upon substitution by Y atoms S.(Q,E)x F*(QE I'qe/2

and application of hydrostatic presstfrallowed us to esti- " 1-exp(—E/KT) | (T J2)%+E2

mate that substitution of 20% of the cerium atoms is equiva-

lent to application of a pressure 6f1 GPa. On the basis of n I'iy/2 e
the results of Ref. 14, we believe that the Kondo temperature (T'in/2)2+(E—E;p)? '

Tk increases in proportion to the increase in the pressure. In
this case the application of a pressure of 1 GPa should lead f%
roughly a doubling ofTy . Extrapolating this dependence to t
“negative” pressures, we obtain the value0.7Ty for the
samples with lanthanum.

We measured the neutron inelastic magnetic scatterin
spectra of the indicated samples with a KDSOG-M time-of-

f!|ght spectromete(reacior IBR-2, LNF, Olvalwith a f|xeq substitution of cerium we used data obtained for the CejnCu
final neutron energfE;=4.9 meV (we used a pyrographite "
spectra as the initial parameters.

analyzey in the temperature range 10-130K. The energy
resolution at the elastic peak was 0.5meV. The measureg— MEASUREMENT RESULTS AND DISCUSSION
ments afT=100K on CelnCy and CggY,.InCu, samples ™
had a resolution of around 1.5 meV. Powdered samples were The derived energy positions of the maxima of the Lor-
prepared in the form of a set of wafers around 1 mm thick inentz peaks and their total intensities are plotted in Fig. 2. For
thin aluminum foil, which made it possible to achieve a neu-CeIlnCy the maximum of S(Q,E) corresponds toE;,
tron transparency- 80 for E=25 meV. The range of neutron =6.98+0.09 meV afT=10K. The peak is preserved as the
scattering angles was 30°—90°. temperature is increased, but its energy in the magnetic spec-
To obtain the scattering functid® Q,E) we introduced trum drops toE;,=6.4+0.1 meV atT=130K. In the com-
a background correction into each of the derived neutropound with 20% substitution of yttrium for cerium the in-
inelastic scattering spectra, normalized to the spectrum célastic peak has a large valug;(=7.63+0.08 meV}, which
incident neutrons, and summed over scattering angles in thiecreases noticeably,=6.7+0.2 me\j as the temperature
range 30%90°. A possible nonuniformity in the thicknesses is increased t@ = 100 K. Substituting lanthanum for cerium
of the samples precludes taking accurate account of the coleads to a negligible decrease in the energy of the maximum
rection for absorptior{self-screeningof the sample, which of the magnetic peakH;,=6.76+0.08 meVj [Fig. 24.
decreases with increasing transferred energy. However, a The magnetic excitation spectrum of CelnCuat
guantitative estimate shows that this self-screening, takind =10 K obtained in the present study is in good agreement
into account the actual, relatively high transmittance of thewith the results of Ref. 10. Differences at high temperatures
samples, is compensated by a correction for the magnetare probably due to ignoring background scattering in Ref.
form factor F2(Q) [variation of the scattering intensity with 10. According to measurements of the magnetic susceptibil-
neutron momenturrienergy transfer at a fixed scattering ity and specific heat of CelnGYRef. 7), the ground state is
anglg, which has an inverse dependence on the energy trana-doublet, and the excited state is a quartet. It is noteworthy
fer. Therefore we ignored these corrections. that as the temperature is reduced from 130 K the energy of
To estimate the background components of the neutrothe inelastic peak experiences a considerable incrghse-
inelastic scattering spectra for CelnCue used the neutron proximately 0.6 meY. Here we are talking about an increase
inelastic scattering spectrum of the structural nonmagnetitn the energy of the maximum of the spectral functieg,
analog LalnCy. The background components were deter-not the experimentally observed peak, which is shifted con-
mined from the LalnCu spectra measured under the samesiderably more by virtue of the influence of the thermal fac-
experimental conditions. An example of the neutron inelastid¢or [see formula(1)]. The greatest change takes place in the
magnetic scattering spectruig,(Q,E) of CelInCy at T  temperature range 30-10KFig. 2. In this temperature
=10K derived in this way is shown in Fig. 1. All spectra range the lattice constant varies by less than16 °nm
taken on other samples had a qualitatively similar form, dif-(Ref. 11, which can lead only to a negligible shift in the
fering only in the parameters of the inelastic peak. Soméevels, much less than the experimental error in the position
differences in the energy positions of the maxima and relaef the peak obtained in the present work. This prevents us
tive intensities of the peaks in the generalized density ofrom relating the observed effects to changes in the potential
phonon states for the lanthanum-based samples and the iaf the crystal electric field due to changes in the distance of
vestigated samples led to the onset of small oscillations ithe rare-earth ion to its nearest neighbors.
the S,(Q,E) spectra for the CelnGtbased compounds Note that in the temperature range investigated here, the
(Fig. 1) which were not associated with magnetic scatteringtotal intensity of inelastic magnetic scattering was also found

herel’ ;. andI';, are the widths of the quasielastic peak and
e inelastic peak, anB(Q) is the magnetic form factor.
Since the energy resolution in the given measurements
was insufficient to determine the parameters of the quasielas-
éic component, in the fitting of the spectra for CelnGue
sed the temperature dependencé’gf derived in Ref. 10.
In fitting the S, (Q,E) spectra of the samples with partial
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FIG. 2. a— Temperature dependence of the energy poditiofthe inelastic peak in the inelastic neutron magnetic scattering specum:CelnCy, A

— CqgY (. dnCuy,; O — Cegglay InCu,. The dotted line corresponds =6.45 meV. b — Temperature dependence of the total intensity of inelastic
neutron magnetic scattering in the CelnGpectra, normalized to the intensityTat 130 K. Solid line — calculation of the intensity of the inelastic transition
between levels of thefdmultiplet of cerium in the cubic crystal electric field for asplitting diagram wWithdoublet as the ground state and splitting energy
7 meV. Dotted line — relative intensity 0.45. Experimental and calculated data “referenced” to the experimentalTdate3atK.

to have an anomalous temperature dependence. Figure 2b The observed features in th§,(Q,E) spectra for
plots experimental data on the temperature dependence @eInCy are in qualitative agreement with the temperature
the total intensity of inelastic scattering together with resultsvariations observed in the heavy-fermion compound GeAl
of a calculation of the intensity of the transition between(Ref. 3 and in CgsLaysNi (Ref. 4. A parameter of the
levels of the crystal electric fielf;—1I'g with energyE;,  system that varies appreciably at these temperatures is the
=6.98 meV, “referenced” tol=130K. It can be seen that population of the levels of the crystal electricfield, which for
as the temperature is reduced, not only does the observéde ground state grows from45% atT=130K to~100 at
intensity not grow, it even decreases somewhat. Thus, th€=10K. Figure 3 plots the energies of the peaks and their
inelastic component of the magnetic excitation spectrum ofotal intensities normalized to the energy and total intensity
the given compound cannot be considered to correspond &t the maximum temperature of the measurements versus the
the ordinary transition between levels of the crystal electriqpopulation of the ground state. Figure 3b also shows results
field, for which reducing the temperature leads to an increasderived from a calculation based on one-ion notions. Align-
in the population of the ground state, and consequently to ament of the experimental and calculated data was accom-
increase in the intensity of the inelastic peak with almost nglished at the maximum measurement temperatures. The fig-
change in its energy position. The width of the inelastic peakure presents results for CelnCwbtained in the present

in the S,(Q,E) spectra isl'~7 meV at low temperatures, work, and also for CeAl (1.5-90K, Ref. 3 and
which is much greater than the energy resolution of theCe,slagsNi(12—150 K, Ref. 4.Consideration of all the data
KDSOG-M spectrometer. Comparison of the parameters ofaken together enables us to tentatively identify three tem-
the S,(Q,E) spectra afl = 10 K obtained for all the samples perature ranges for all these compounds. For temperatures at
with the parameters of the spectrum of Celp@iT=130K  which the population of the ground state is less than about
shows that the observed changes in the position of the max8.7, the position of the peaks within the limits of experimen-
mum in the investigated temperature range is approximateltal accuracy does not change. As the population of the
proportional to the change ifMy: an increase inTk ground state increases from 0.7 to 1, the inelastic peak be-
(CeygYooInCuw,) leads roughly to double the shift of the gins to move toward higher energies while the total intensity
maximum toward higher energiedAE=1.2me\j, while a  decreases only insignificantly. In the third range the popula-
decrease iy (Ce d.ay,nCw,) reduces the energy shift of tion of the ground state is almost constant and equal to unity,
the maximum tcAAE=0.4 meV. which on the temperature scale correspondg4oTy. In

FIG. 3. Dependence of the energy position of the in-
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elastic peak(Lorentzian, see textof the transition be-
tween the ground state and the first excited level of the
crystal electric field(@ and its intensityS,(Q,E) (b),
normalized to the corresponding high-temperature val-
ues, on the population of the ground state of tHe 4
multiplet for CeIlnCy (®, present work Ce,glag gNi

(A, Ref. 9, CeAl; (O, Ref. 3; N — coefficient asso-
ciated with the degree of degeneracy of the excited state
(N=1 for CesLagsNi and CeAl, N=2for CelnCy).
Solid line inb — calculation of the relative intensity of
the transition between the ground state and the excited
level in of the crystal electric field in the one-ion pic-
ture. The dashed lines are fitted by eydsee text
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this range the energy of the peak is significantly greater, anthe crystal electric field do not depend on the values of its
its intensity is somewhat less. The derived temperature dgparameters, two possible mechanisms for reducing the sym-
pendences tell us that as the temperature is reduced, changestry of the Hamiltonian have been considered to explain
in the excitation spectra of thef4electrons for heavy- the emergence of temperature dependence in the intensity of
fermion systems start up at that point at which significantransitions between states: one is based on reducing the sym-
growth begins in the population of the ground state, and thénetry of the exchange interaction due to defects in the im-
greatest changes occur at temperatures on the sc@learfd  mediate environment of the rare-earth ion, and the other is
for an unchanging population of the ground state. The obrelated to dynamic distortion of the environment of the rare-
served effects cannot be a consequence of ordinary relagarth ion and, accordingly, to a change in the symmetry of
ation processes since according to the results of Ref. 13 tH8€ exchange interaction due to magnetoelastic interaction.
effect of relaxation on the characteristics of the spectrumlhe temperature dependence of each of these mechanisms
increases when the temperature is raised, and not the othgPMes about just as it does for the energy level of the crystal
way around, as was found to be the case in the present worklectric field, i.e., it is substantially enhancedTat Ty due

At the same time it should be noted that the magnitudeéo the Kondo effect. The emergence of ranges with different

of the observed effects differ substantially from one com-l€mperature dependence of the energies of transitions be-

pound to another. It is clear from looking at the temperatunatween levels ththe cr)_/st_al electric ge[Eig. r?eil s g]&g]?r?d
dependences of the total intensity of the inelastic féad. agreement with predictions based on this modelhe

3b] that the largest deviation of the experimental intensity(:ham:-’eS we have observed in the energy of the peak in the

from the result of the one-ion calculation at lower tempera—S(Q'E) spectrum in CelnCubased compounds with subsii-

) o . Lo o
tures is observed for CelnguiThis possibly has to do with tution of 20% of their cerium ions but with different degrees

the different values of the Kondo temperature n these comy Y G800 BB TR f0 I IESRE e i sublattice
pounds: Tk (CeAl)~5K, Tk (CeyslagsNi)~15K (Ref.

2), and T, (CelnCp)~20K (Ref. 6. As follows from the most probably does not have a substantial effect on the scale

- : . of the effect, i.e., the main role is played by the magneto-
data for C@__X(La,Y)xlnCuz_at'_I'— 10K (Fig. 2), the energies elastic interaction. Thus, the nature of the temperature effects
of the maxima of the excitation spectra of thé dlectrons

) ith i . B .  th . in pure CelnCy is the same as in Cefland Cg g.a, ¢Ni,
increase with increasingy . But a comparison of the posi- 4 the ohserved renormalization of the spectrum reflects the
tions of the maxima of the excitation spectra for compoundsgmation of a new ground state of tfiehell as a result of

with different structures and Kondo temperatures shows thafe interaction of the effects of the crystal electricfield and
the Kondo temperature is not the only thing that determines,e kondo effect.

the scale of the observed effects. The form of the ground-
state wave function probably also has a substantial influence
on the formation of the excitation spectrum. Thus, the great-
est variation in the energy of the maximum$(fQ,E) at T

~0.5Tg is observed for systems with crystal symmetry of
the local environment of the rare-earth ions lower than cubic

(E/Epin=1.19 for CeclagsNi, E/Enin=1.28 for CeAL), g stem with cubic symmetry of the crystal lattice, the exci-

and the least variation—for cubic symmetig/€nin=1.09  (4tion spectrum of the #electrons definitely evolves as the
for CeInCy) (Fig. 3). For systems with high crystal symme- o mperature is reduced, with the population of the ground

try (CeAl; and CelInCy) it is not possible to explain the gia1e tending toward 100%. In particular, the energy in-
observed variation of the intensity simply on the basis ofcreases and the total intensity of the peaks of the neutron
“classical” one-ion notions of crystal electric field effects ne|astic magnetic scattering peaks decreases. No influence
since the wave functions of thef lectron levels do not s gisorder in the rare-earth sublattice on the transformation
depend on the parameters of the crystal electric field. Thus the neutron inelastic magnetic scattering was detected, but
the detected effect is evidence of a change in the symmetrye ongoing transformation is not a consequence of relax-
properties of thef-electron states in a certain temperaturegtion processes. The scale of changes in the spectrum is
range. probably related mainly to the degree of hybridizatiae.,
Recently, the authors of Ref. 16 suggested an explanagith T,). It is important to stress that significant and quali-

tion for the observed changes in the neutron inelastic magatively similar deviations from the temperature dependences
netic scattering spectra based on the temperature dependengg classical one-ion effects of the crystal electric field were

of the component of the total Hamiltonian for thé élec-  observed in some heavy-fermion compounds with differing
trons due to the anisotropic exchange interaction in Kond@rystal symmetry.

systems. The proposed model considers the influence of the |n conclusion, we wish to thank A. S. Mishchenko for
population of the levels of the crystal electric field on thefruitful and stimulating discussions, A. Yu. Muzychok and
constants of the exchange interaction. But at temperatureSh. Gantulga for assistance with the neutron measurements.
comparable toT, the marked increase in the temperatureThis work was carried out with the support of the Russian
dependence is related to Kondo-scattering induced renormalFund for Fundamental Resear@roject No. 98-02-16229
ization of the exchange integrals. In compounds with highand the State Science and Engineering Program “Current
crystal symmetry, in which the wave functions of states inTopics in Condensed-Matter Physics.”

4. CONCLUSION

Our results lead us to believe that in a heavy-fermion
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A model of the ice proton system taking into account quantum-mechanical tunneling of protons
along hydrogen bonds has been formulated and investigated. When the tunneling amplitude

is small the quantum ground state of the proton system is degenerate, like the classical ground
state. At higher tunneling amplitudes, however, a transition to a nondegenerate state with

a symmetrical distribution of protons on hydrogen bofalsymmetrical phase of i¢és possible.
Collective excitations of protons in the honsymmetrical phase have been considered, and an
equation that determines their spectrum has been derivedl999 American Institute of Physics.
[S1063-776(9902306-9

1. INTRODUCTION model, which takes into account the Coulomb interaction
between protons and specific properties of the oxygen
Ice is one of the most common materials on the earth. It$attice?
unigue mechanical , electrical, and thermodynamic proper- In the classical model, the motion of protons across po-
ties are of great importance for various applications. Fromtential barriers is treated as a classical thermally activated
the fundamental viewpoint, the specific physical propertieprocess. However, the proton motion along hydrogen bonds
of ice can be interpreted in terms of the unusual structure o assumed to be quantum-mechanical tunneling. The param-
its crystal lattice, which contains two sublattices with radi- eter measuring the tunneling efficiency is the splitting of the
cally different properties. One of them is formed by oxygenproton level in the symmetrical potential with two minima
ions and is a regular lattice similar to crystal lattices of or-(the corresponding coordinate is measured along the hydro-
dinary solid materials. Figure 1 shows the unit cell of thegen bond. In ice under natural conditions the splitting is
most common hexagonal modification of ice, which existsnearly 3x 102 eV, which is much smaller than the charac-
under natural conditiongoxygen ions are shown by open teristic defect energy-1 eV (see Ref. 2 But high pressure
circles. Note that the oxygen sublattice has the wurtziteapplied to ice can reduce both the length of the hydrogen
structure and is identical to the lattices of 11-VI semicon-bond and the separation between potential energy mififma.
ducting compounds if oxygen ions are substituted for thosdhe probability of tunneling under these conditions increases
of groups Il and VI. while the energy of the ion defects decreases. Thus, a situa-
The second sublattice formed by protons, however, igion can arise in which the quantum-mechanical tunneling
disordered(it is shown by closed circles in Fig,).1Specifi- becomes important. The aim of the present research is to
cally, protons can occupy one of two possible positions orstudy proton tunneling effects under such conditions. We
each hydrogen bond, which connect oxygen ions, at diswill determine the ground state of a strongly correlated pro-
tances of 0.1 nm from the oxygefhe whole length of the ton system, investigate its variation with the tunneling am-
hydrogen bond is 0.27 nnt Disorder implies thaN protons ~ plitude, and show that excitations in the nonsymmetrical
are distributed randomly of among\2positions in accor- state are the collective tunneling modes first introduced to
dance with the two ice rulegalso called Bernal-Fowler describe collective motion in ferroelectricSection 2 briefly
rules: there are two protons near each oxygen ion, and therdescribes the model, the basic approximations, and the tran-
is one proton on each bond. It is clear that these ice rules rulgition to a symmetrical phase. A detailed description of the
out proton Conductivity, because any motion of a protoande| can be found elsewhezréSection 3 treats collective
would break the ice rules and cause an increase in the egXcitations of protons in the presence of tunneling along hy-
ergy. At finite temperatures the ice rules can be broken, givdrogen bonds and derives an equation for the excitation spec-
ing rise to configurations with one or three protons near thdrum.
oxygen ion (HO™ and OH" are ionic defectsand with two
or zero protons on hydrogen bond® @ndL are bond de-
fectg. As a result of the motion of protons along bonds or
from one bond to another, these defects can move through In describing protons as quantum-mechanical particles
the oxygen lattice without a further increase in the protonmoving in the potential of the oxygen lattice and interacting
system energy. This configuration of the proton latticewith each other, it is natural to apply the Hubbard mdudel.
ground state, excitations, and charge transfer in ice find theifhe derivation of the basic equations of the Hubbard model
natural interpretation in terms of the classical microscopioversion used in this study is described in detail elsewPére;

2. MODEL AND PROPERTIES OF THE GROUND STATE

1063-7761/99/88(6)/4/$15.00 1208 © 1999 American Institute of Physics
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FIG. 2. Fragment of ice lattice illustrating division of bonds into two groups
(positive and negatiyein accordance with the ice rules. The effective field
acting on the central bond pseudospinFisosd for all states of neighboring
bonds that satisfy the ice rules.

FIG. 1. Unit cell of hexagonal ic&he modification existing under natural
conditions. Oxygen ions are shown by open circles, protons by closed

circles. There is one proton on each hydrogen bad lines connecting  cannot satisfy all rules of antiferromagnetic ordering, which
oxygen fons and two protons near each oxygen ion. makes its ground state degenerate. With good accuracy the
degeneracy of this lattice is given by the expression (3/2)
. . o o (Refs. 1 and 2 Neither can one transform the antiferromag-
here we give only a brief description. Of especial impor-petic model to a ferromagnetic one by a gauge transforma-
tance, note that the localization radius of proton wave funcsg, (by changing signs of some spins and interaction con-

tions is much smaller than that of wave functions in elec-giants “since a frustrated lattice cannot be divided into two
tronic models, so the effect of intrasite correlations betWee'PnutuaIly penetrating sublattices 1 and 2 such that all the

protons is unusually strong. For this reason we first eliminate o 5 est neighbors of sites of sublatticé2] belong to sub-
all states with two(or zerg protons at one potential mini- |a+ice 2(2).

mum. Secondly, we treat a hydrogen bond as a single lattice  Athough the Hamiltonian has a simple form, it cannot
site and two proton positions at two different minima of the e giagonalized analytically. For this reason, we restrict our
potential energy as states characterized by the pseudospifgiysis to a version of the mean-field approximation. Before

variable. Thereby we describe the system in terms of thejiseyssing this approximation, recall that in the approxima-
conventional Hubbard model for particles with spin 1/2. Re+ion of the mear(or self-consistentfield, spin products are
member that this parameter is the pseudospin which der‘eplaced by the following expressions:

scribes the proton position on a hydrogen bond, whereas the

real proton spin is insignificant and will be ignored. Thirdly, 04i02j= 02 02)) +(021) 02j= (T 2)(02), (2)

in view of available experimental data, it is reasonable toynhere the mean valueéo,;) are determined in a self-
keep in the model only proton tunneling along hydrogenconsistent manner. In the ferromagnetic model the mean val-
bonds and neglect tunneling between different bonds. Th@es of spins are constant, independent of the bond nuimber
presence of tunneling along the bond leads to a “fictional” 3nd can be considered as an order paraniefer. an ordi-
magnetic field acting on the pseudospin variable. Fourthlynary nonfrustrated antiferromagnet the mean values of spins
protons on one bon(Bjerrum defects since the mainappli-  the case of ice, however, we deal with a frustrated antiferro-
cation of the model is to ice under high presstméiere the  magnetic model, whose ground state is degenerate and has a
distance between proton positions is smaller and the Counore complicated structure. To describe this state, we as-
lomb interaction between protons at two minima on onegyme that the mean values of the spin variables;), de-
bond is stronger The projection of the whole Hamiltonian pend on the indekin the following manner. Let us divide all

on the corresponding subspace of quantum states can be drogen bonds into two equal grou@gsitive and negative

scribed in terms of the Pauli matrices: ones with the only condition that two positive and two nega-
J tive bonds have to be attached at each oxygen site. It is clear
H= —QZ oxit 3 E T2i07j, (1) that this separation is in fact equivalent to the first ice rule,
i ij

whereas the second ice rule is incorporated in the model. The
where the sum is performed over all bonds and pairs of thenean values of spins for the two groups of bonds are deter-
nearest neighborg$) is the matrix element of proton tunnel- mined by the expressionsr,;)= *cos(%), where§ is de-
ing along a bond, and-, and o, are Pauli matrices. The fined from the self-consistency conditidor from energy
spin-up and spin-down states correspond to different protominimum atT=0, or from the free energy minimum &t
positions on a bond, antlis a positive constant of Coulomb #0). An important point is that, although the bonds are di-
interaction between pseudospins on the nearest hydrogesided randomly into two groups, we can consider the mean
bonds. The sign of this constant is of great significance andpins{o;) taking only two values:=*cos(%). This follows
means that this is an antiferromagnetic model. The point isrom the analysis of effective fields, which can take in this
that the pseudospin lattidee., the lattice formed by centers case only two values with opposite signs for arbitrary bonds
of hydrogen bondsis frustrated and contains cycles of near- (Fig. 2). In fact, a stronger disorder cannot take place be-
est neighbors with odd numbers of sites. For this lattice oneause of the short-range nature of the interactmy near-
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est neighbors interacand the ice rulétwo positive and two
negative bonds are attached at each oxygen lattice Hiis
clear that this version of the mean-field approximation is
identical to the variational approach with a wave function

N/2 N/2 . FIG. 3. Fragment of ice lattice containing the shortest cycle of six hydrogen
W= 1—[ cos(6) 1—[ sin(6) (3) bonds. Protons are shown by closed circles. The arrows depict six sequential
it sin(&) i cos( ) ’ proton jumps(creation of a pair of ionic defects on the first jump, subse-

guent motion of the positive defect along the closed circuit, and its annihi-
lation on the sixth jump As a result of these six sequential jumps, the
where the products are performed over bond groups d@eft-hand proton configuration transforms to the right-hand one, which is the

scribed above. one closest to it.
Using Egs.(1) and (3) and definitions of the Pauli ma-
trices, we easily obtain the following expression for the €N~ TUNNELING MODES
ergy per bond:
The quantum tunneling of protons results in the exis-
E/N=—Q sin(26)—J cog(26). (4)  tence of a new kind of excitations in the proton system. If
hydrogen bonds were absolutely uncorrelated, these excita-
This equation applies to both positive and negative bonds itions would be tunneling modes similar to excitations in two-
any environmentFig. 2. An elementary analysis of E¢4) level systems in glasses. But the Coulomb interaction be-

shows that fo2 <2J the energy has a minimum at tween protons leads to correlations between events of proton
tunneling and a radically different character of excitations. A
1 . Q similar problem was studied by De Gennésthe case of a
0= = arcsin—, (5)

2 2J ferromagnetic. Following De Gennes, let us term the new

excitations collective tunneling modes.

where the extremum afi=w/4 is a maximum. But at) To investigate the excitation spectrum, let us use the

=2J this second extremum becomes a minimum, and for altechnique of the equation of motion, which includes the fol-

0 >2J this is the only minimum on the energy curve. Sincelowing steps: the part of Hamiltonian corresponding to the

the wave functions of all hydrogen bonds are symmetricamean-field approximation is diagonalized; an equation of

with respect to the pseudospin variable or the proton distrimotion is derived by adding the fluctuational part; the equa-

bution on the bond, the phase transition(at2J can be tion of motion is linearized assuming that deviations of spins

associated with the conversion of the ice to the symmetricarom their mean values are small. The linear equations of

phase. The phase characterizedtbgiven by Eq.(5) is the  motion determine the spectrum of elementary excitattdhs.

conventional disordered phase of ice, but of course withVe begin carrying out this program with an identity trans-

guantum corrections fof)#0. The degeneracy of the non- formation of Hamiltonian(1). Using the expressions for

symmetrical ground state is determined by the number o$pinso,;=(o;)+ do,; in Eq. (1), we obtain

divisions of the hydrogen bonds into two groups in the man- 3

ner describe above. Obviously, |t.equals the number of pro- H=—-0 E oy +J 2 hio,i— > 2 ()0

ton configurations that satisfy the ice rule, i.e., the number of | ' 1

the Bernal—-Fowler configurations. J
Note that, since the variational procedure discussed +§Z 80,1004, (6)

above is approximate, the resulting states are only approxi- 1

mately orthogonal. Let us estimate the largest overlap beyhere hi=3;.i(o,;) is the effective mean field acting on
tween two wave functions of the nearest ground states. Kpini and generated by its nearest neighfjolext, as in the
clearly follows from the shapes of wave functia@s and the  previous section, we divide all bonds into two groups —
solution procedure that the nearest states are those with ti@sitive and negative. The mean values of the spins for these

smallest difference between the sets of positive and negati§roups are+ cos(®), respectively. As a result, we have the
bonds. Given the correspondence between the division gfiamiltonian in the form

bonds into two groups and the Bernal-Fowler classical con-

figurations, it is obvious that the difference between the two [ _NJco2(20)—Q D, o F2J

nearest states is in the configuration of six hydrogen bonds. i

Figure 3 illustrates a transition between two such states: an 3

H,O" ion defect is generated, it moves along the shortest Xc0g260) >, ot = >, 80,1804, (7)
cycle and annihilates with an OHdefect on the last step. i 24

Using Egs.(3) and(5), one can easily show that the overlap \yhere the upper and lower signs correspond to the positive
between the nearest states 8/2J)°, and the largest matrix  ang negative bonds, respectively. The one-particle part of the
element of the Hamiltonian is of orde2(€2/23)°. These  Hamiltonian can be diagonalized through rotation in the

guantities characterize the accuracy of the approximatiorl},smjdospin space, which is described by the change of vari-
treating barriers between the ground states as infinite angl|es:

considering elementary excitations in one separate degener- ) o
ate state. oxi= * 0, C020) +0,;SiN(26), 8
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05i=— 0, Sin(260) + o}, cog26), (9)  to zero. Unfortunately, this equation cannot be solved ana-
Iytically for all ice modifications, and numerical calculations
are necessary. However, some essential properties of the
spectrum can be determined without solving specific equa-
tions. Firstly, there is a gap in the excitation spectrum equal

where the parametdt, as in the previous sections, is deter-
mined by the equation singk=/2J. In new variables, the
Hamiltonian takes the form

H=NJcog(26)—[Q sin(26)+2J cog(26)] to approximately 4 and corresponding to the energy of for-
3 mation of classical ionic defects. Secondly, the band width is
, ' roportional toQ22/J, but notQ alone. Since)/J<1 holds,
XEI UZI+§; 50-Zi50-2j’ (10) p p

this means that the band is narrowed by the Coulomb inter-
action. Thirdly and finally, note that quantum analogs of
classical ionic defects are more like spin waves than current
carriers in conventional semiconductors. Like spin waves,

: , . : the tunneling modes are “almost” bosons: the creation and
equations for the operatoes; anday; . This, however, is not annihilation operatorse” and o . obev the commutation
so for the reasons given in the previous sectgge the note P 7 i Y

about the choice of mean values of spins self-consistent rules for different bonds andi’ and anticommutation rules

derivation of the equation of motion for spin operators actingfor the same bond. An important point is that these statistical

on both positive and negative bonds yields absolutely idenproperties are only based on the commutation properties of

where 8o ,;= — ; Sin(26) = o5, cos(X) + cos().
At first sight, it may seem that signs alternating ran-
domly in the last term of Eq10) should lead to disordered

tical expressions. After linearization in smal} ando, vari- t_helr creation af?d gnmhllatlon operators, whereas distribu-
y tion functions of ionic defects or their quantum analogues are
ables, they take the form h :
undoubtedly of greater interest. As was shown previotisly,
doy; _ , the latter are more like fermion distribution functions.
dt =4Joy;, (1) The work was supported by the Russian Fund for Fun-
damental ReseardProject No. 98-02-16642
doy, : : ,
5 =~ 4o—2] Sln2(20)j2i o) (12)

*)E-mail: ryzhkin@issp.ac.ru
!

After eliminating the variablesoy; and taking oy,
=a;exp(kr —iet), we obtain an equation for the amplitudes:

2_ 274 — : ler.\A. 1P. V. Hobbs Ice PhysicsClarendon Press, Oxford974).
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Using scanning tunneling microscopy, we have detected nonuniform electron states on cleaved
bismuth surfaces, which manifest themselves in the form of a random relief with a
characteristic lateral size of 1-2 nm and a vertical size of a fraction of an amgsfius relief

is due to variations in current—voltage characteristics when the tip is moved over the

sample surface. Features on the current—voltage characteristics associated with states near the
surface have been observed in a voltage range @4 to +0.4 V. The nonuniform

states are tentatively associated with defects generated in the process of crystal cleavage.

© 1999 American Institute of Physids$$1063-776(99)02406-3

1. INTRODUCTION and sign depend on the substrate material and surface condi-
tion. This charge varies between2.5x 10*? (Ref. 5 and

The cleaved surface of a brittle crystal has been a popu+ 8x 10 (Ref. 6 electron charges per square centimeter. If
lar object of research using the scanning tunneling microsthese numbers are scaled with respect to the volume in a
copy and scanning atomic-force microscopy. Most attentionayer of thickness equal to the lattice constant along the
has been focused on cleaved surfaces of semiconductotiree-fold crystal axis, which is about 1.2 nm, we h&%e
where one can observe atomically smooth surfaces witlg)x 10'°cm™3, i.e., a quantity which is at least two orders of
well-resolved atomic structures. In many cases features withagnitude greater than the bulk density of both electrons and
lateral sizes of order several lattice constants and verticaoles. In analyzing the reflection of current carriers from the
displacements of a fraction of amgstran were observed. surface and their transverse focusing in magnetic field one
They are associated with impurities located at some depthas to assume the presence of electron band bending of order
below the upper surface lay&r® The possibility that the 0.1 eV at the surface and the occurrence of an excess surface
cleaving process itself could generate local defects has n@harge’
been discussed in this context. This issue can be raised, natu- Direct evidence of the presence of surface states or reso-
rally, only when pure materials are studied. The experimentsances lying at 0.4 eV below the Fermi level is provided by
with atomically smooth surfaces described in this paper haveccurate measurements of the photoeffecie of the latest
demonstrated that their electronic parameters vary on thstudies in this field was published by Jezeqeehl?). The
scale of several nanometers. This has led us to conclude thatcuracy of these measurements, however, is limited: their
our concepts concerning the process of crystal cleavageesolution is 0.25 eV. Moreover, they yield parameters aver-
should be revised. aged over the entire surface.

Bismuth, studies of whose electronic properties have had Therefore, it seems interesting to study the tunneling
considerable impact on the progress in metal physics, stiépectra of bismuth. Tunneling measurements of layered
attracts a lot of attention. But, whereas in the 1970—-80s mogtructures were conducted long ago in studies of the bulk
effort was concentrated on studies of its bulk propefties, bismuth spectrum, when the impact of the surface had not
almost all current publications are dedicated to phenomenbeen realized as clearly as at the present time. Note that
associated with the surface. The reason for this shift of atdisagreement between the results published by different au-
tention is obvious: the concentration of current carriers inthors is so greatthese results were reviewed eafljethat
bismuth is low, of order 10° per atom, and their wavelength they are hardly worth considering. It seems highly probable
and Debye screening radius are much longer than the latticdhat the decisive role in this case is played by interfaces in
constant and reach hundreds’afjatrans, so the entire sub- layered tunneling structures, whose properties strongly de-
system of conduction electrons should undergo a modificapend on technology. The technigue of scanning tunneling
tion at such separations from the surface. In this connectiorspectroscopy, i.e., measuring local current—voltage charac-
for example, quantum size effects and a transition to a semieristics using a scanning tunneling microscope, allows one
conducting state in thin films have been mooted during reto make specific statements about the state of the surface if
cent decade¥® In order to interpret experiments with thin samples are prepared in ultrahigh vacuum by cleaving crys-
epitaxial layers oriented in the basal trigonal plane, one hatls, or using a more expensive and complicated techniques
to assume the presence of a surface charge whose magnituafeepitaxial film deposition in vacuum or ion etching of a

1063-7761/99/88(6)/9/$15.00 1212 © 1999 American Institute of Physics
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crystal surface with subsequent annealing and concurremfing area is &K 1x0.05 um?® at the liquid-helium tempera-
monitoring of the surface composition using updated methture. Using three piezoinertial motors, we could move the tip
ods of analysis. The advantage of this technique is that thgf the scanning tunneling microscope along all three axes in
scanning tunneling spectroscopy allows one to measure thgeps of 0.1-1um and select an area to be tested within a
electron spectrum with a lateral resolution down to the interrange of several millimeters. When the tip approaches a
atomic separation. This is combined in a natural way withsample, it is stopped automatically at the moment when a
the scanning tunneling microscopy, which allows one to escurrent between the tip and sample is detected. The samples
tablish a correspondence between the spectroscopy data afgre mounted in the scanning tunneling microscope htider
the real surface structure, including certain linear or poinisg that their upper halves jutted out and they could be frac-
defects. tured in situ by hitting with one end of a released spring.

Studies of cleaved bismuth surfaces using scanning tunafter that the tip was driven to the area selected for the
neling microscopy were started in our earlier experiménts, experiment.

when we investigated the structure of diatomic steps, thermal | ow-temperature experiments were performed in a cry-

motion of their boundaries, and surface atomic corrugation agstat described elsewhef®When gaseous helium is fed to
room temperature and above. Later studies were conduct@He evacuated volume and a pressure of 30 * Torr

at lower temperature, down to that of liquid helium. At thesepuilds up, the tunneling microscope and sample cool down to
temperatures features such as a linear structure of terracgstemperature aboul K above liquid-helium temperature.
with straight, almost atomically smooth boundaries on sur-This is the temperature at which the reported measurements
faces cleaved at low temperatureand twin layers of quan- were performed. The presence of gaseous helium has no ef-
tized widths with ideal boundari&s™were discovered. Tun- fect on recorded images. The sample and the tunneling mi-
neling spectroscopy has indicated that one-dimensionaroscope tip could be seen through a window transparent to
electron states arise in the region of these twin layers. Belowisible light, which could be closed when necessary with a
we describe our investigations of atomically smooth areas ofagnetically driven shutter. The sample could be heated
cleaved bismuth surfaces, which have shown that electrosjty by feeding a current through a heater mounted in the
states with typical energies of tens of meV with respect toholder!® One watt of dissipated electric power is sufficient to
the Fermi level are nonuniform in the surface plane oveheat bismuth to its melting temperature even in the presence
distances of several lattice constants. of the heat-exchange gas. The sample temperature was mea-
sured using a copper-constantan thermocouple.

The tips of the scanning tunneling microscope were
platinum. They were fabricated either by cutting a wire or by

In our experiments, we used samples in the shape ddlectro-chemical etching of a wire with subsequent ablation
long rods oriented along tH®001] axis with sizes of about of the surface layer using 2.5-keV argon ions. The tips were
1x2X5 mn?. They were spark-cut from single crystals heated by an electron beam to the light-red cifositu.
grown from melt by the technique described in Ref. 14 from  The scanning tunneling microscope was driven by a
a starting material with a purity of 99.99999%. At this de- computer with internal ADC and DAC cards, which allowed
gree of the material purity, the density of impurity atoms onus to apply digital feedback in order to maintain the tunnel-
a cleaved surface should be at a levekaf atomjum?. The  ing current and define all driving voltages required for the
dislocation density on the cleaved surface determined bgcanning microscopy and spectroscopy. Measurements were
counting pits after etching in dilute nitric acid was of order performed in the following modes.

0.05 um™2. (Note that the same samples or those manufac- 1. Recording ofz(x,y) topograms when the tip was
tured by the same technique were previously used in studiescanned over they plane(the x-axis was that of the line or
of the cyclotron resonan¢&® and quantum oscillations of frame scan, the-axis was that of the frame or line scan,
the quasistatic conductivi§f. According to those measure- respectively, depending on the user's chpiséth the feed-
ments, the electron mean free path is of order one millimetefack on and at prescribed tunneling curreand voltageU
so the high quality of initial bulk crystals is evident. between the tip and sample.

In the middle of a sampléat half its height, a small 2. Simultaneous recording of several frames at several
notch was made when the sample was cut off from the initiaprescribed values of the tunneling currépt In this case,
crystal to define the cleaved surface position. Samples wereach line is scanned several times ani switched to a new
etched in nitric acid in order to strip off the outer contami- value at the end of each line. After running through all pre-
nated layer and washed in distilled water. Immediately bescribed values, the current returns to its initial value and the
fore cleaving, the sample mounted in the scanning tunnelingip moves to a new line. The characteristic scan time of one
microscope was heated to 200—-250 °C in vacuum in order tbne is about 0.1 s, so frames corresponding to different cur-
remove water and other volatile materials from its surfacaents are not shifted with respect to each other because the
and avoid contamination of the cleaved surface in measuréemporal drift is within 0.1 A/s.
ments of the heating effect on its properties. 3. Simultaneous recording of several frames at several

In our experiments we have used the scanning tunnelingrescribed voltage$); between the tip and sample, which
microscope described in detail elsewh&réts basic charac- was performed similarly to the procedure described in the
teristics are as follows: for voltages of 0-200 V applied toprevious paragraph. Note that measurements performed in
thex andy PZT drives and+ 24 V to thez drive, the scan- the latter two modes not only yielded frames recorded under

2. EXPERIMENTAL TECHNIQUES
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various experimental conditions, but also allowed us to de- Neither the shape of the lemon-peel image nor its ampli-
rive from the shifts of recorded figures along thexis the tudeAz depends on the tunneling currérfig. 2). Since the
effective work functionW averaged over all points of the tunneling current is changed by varying the separation be-
frame (usually 128128 or 256<256). If W was about tween the tip and sample, this experiment indicatesAlzais
4-4.5 V, the current undoubtedly flows in the vacuum-independent of this distance, at least over the range of 0.1
tunneling regime. At smalleW, the tip and/or sample sur- nm, which corresponds to changes in the tunneling current
face were almost surely contaminated, had nonconductingy a factor of ten.
coatings, and were in mechanical contact. In the experiments The peak-to-trough variatiohz oof the relief super-
described below, either the condition of vacuum tunnelingposed on the atomic structure varies with the voltagil-
was satisfied, or a “weak” mechanical contact took place,lowing approximately the lawAzx1/U (Fig. 3a and 3¢
which had no apparent effect on the results. Therefore, th@/hen the voltagdJ is reversed, the image is inverted, i.e.,
condition of vacuum tunneling will be taken for granted in we can see hills in place of valleys. When the voltage in-
what follows. creases to the order of ten millivolts, the lemon-peel struc-
4. Simultaneous recording of the topogram at a fixedure cannot be seen against the background of the noise. The
voltageU; and of the map of current distribution at a differ- atomic structure, whose amplitude varies more sloflyan
ent voltageU,. In this mode, the tunneling gap was stabi- be seen at voltages of up to several hundred millivolts.
lized at each point at voltagel;, and the corresponding At low voltages of order one millivolt, the tunneling
value of z was measured, then the voltage driving the tipcurrent becomes very unstable when the tip is scanned across
along thez-axis was fixed, the voltage between the samplehe sample and even changes its sign. One could suppose that
and tip was switched tbl,, and after a delay of about 10 ms, jumps in the current are due to the small separation between
which was required for termination of transient processesihe sample and tip, so that sometimes the tip touches the
the tunneling current was measured. Then the voltage wasurface because of the finite response time in the feedback
returned to the initial valu&J,, the feedback was switched |oop with respect to noise. This, however, is not so, since one
on, the tip moved to another point, and the procedure wagan observe changes in the current sign even when the cur-
repeated. rent remains stable in the process of scanning. To this end,
5. Measurements at given points of current—voltageone should record simultaneously the topogram at the volt-
characteristics within certain limits with accumulation of ageU; (Fig. 33 and the current distribution m&pig. 3b at
several measurements. In this case, the feedback system seha voltageU, so that the current averaged over the entire
prescribed current, at the initial voltagel, , then the volt-  frame is zero.
age driving the tip along the-axis was fixed, the curve of Variations of the current and relief over a scale larger
I(U) was recorded within a prescribed range of voltdle than the mean interatomic distance with the voltagecor-
the initial voltageU, was set, and the cycle was repeated ifrelate with one another, as one can see in Fig. 3. The distri-
necessary. The typical recording time of one cycle was abouution widths of the heighAz and currentAl are shown in
0.1 s. At the temperature of liquid helium the drift along the Fig. 3. These parameters were defined as the widths of ap-
z-axis during this time was negligible. propriate histograméFig. 3c and 3glat the level 0.1 so as to
6. Measurement of differential current—voltage characieave out overshoots. The choice of the cut-off level, how-
teristics at specified points within certain ranges with accuever, has little effect on the ultimate result, which is that both

mulation of sequential measurements. The difference from\| and Az are inversely proportional ttJ. Note also that
the previously described mode was that an ac componemt|«| holds to within 10—20%.

with a frequency of 20 kHz was added to the voltade Current variations obviously indicate the presence of an
across the tunneling gap and the ac component of the tunneéddditional voltageAU(x,y) applied between the tip and
ing current was measured using a lock-in amplifier. sample, whose amplitude is a function of the tip lateral co-

ordinatesx andy. The order ofAU can be estimated using
the obvious relatiod U~ Al - R, whereR is the resistance of
the tunneling gap set when the feedback of the scanning
Atomically smooth terraces with a characteristic size oftunneling microscope is turned on. For the case illustrated by
a fraction of a micrometer are formed on bismuth cleaved-ig. 3, we haveAU~0.6 mV.
surfaces both on the basal trigonal plane and on the surface These results indicate that relief variations of the lemon-
of the twin layer, whose symmetry is characterized by a twopeel shape and current at zero voltage have much in com-
fold axis (Fig. 1). On measurements made at the high resomon. Moreover, changes im are mostly determined by
lution one can see an atomic-scale structure superposed eariations in the voltag®); +AU(X,y) between the tip and
nonperiodic variations of the relief with the “lemon peel” sample. The higher the relative contribution of the second
shape with characteristic lateral sizes of about one nanderm, the larger the tip displacement along #xis needed
meter, i.e., of order several lattice constaifiig. 1b and 1& to maintain the prescribed value of the tunneling current. It is
On the surface of the trigonal plane, the lemon peel is isoalso clear that changing the sign of the voltdge should
tropic in the sense that is has no specific direction. The strudavert the relief pattern. At the same time, a change in the
ture on the surface of the twin layer is anisotropic because alue of the current to be maintained constant at fixéd
shows valleys and ridges stretching along the twin boundarghould not changaz, which is illustrated by Fig. 2. Numeri-
direction (Fig. 1b. cally, a change in the current of about 0.2 (fAg. 3) should

3. EXPERIMENTAL RESULTS
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FIG. 1. (a) Topogram of bismuth surface in the region of the
twin layer. Topograms ofb) area 1 on the surface of the layer
with the two-fold axis andc) area 2 on the basal plane with the
trigonal symmetry. In order to emphasize atoms on the surface,
the amplitude of atomic surface modulation is enhanced by a
factor of four using a mathematical procedyommponents of
the two-dimensional Fourier transform corresponding to the
atomic period are multiplied by four The parameters of the
experiment are the followind:= 0.5 nA, the voltage between the
tip and sampléa) U=12 mV; (b) 1 mV; (c) 3 mV.
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correspond taAz=~0.04-0.07 nm, judging by the measure- malized considerably owing to variationsinthe agreement
ments of the mutual displacements of topograms shown ibetween the numbers can be deemed quite satisfactory.

Fig. 3 along thez-axis. This value is close to the measured A very interesting fact is that point defects of the atomic
Az~0.08 nm, which is also plotted in this graph. Given thatscale do not produce features on current maps. Thus, on the
the uncertainty is relatively large amxl can also be renor- surface relief shown in Fig. 4b one can clearly see two de-

FIG. 2. Smoothed images of the same region on the surface on the
trigonal plane recorded at different tunneling currents. The voltage
U=3 mV andAz=0.06 nm.

e e
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FIG. 3. (a) Original (left) and smoothed topograms affg) current maps of the same region on the trigonal pléceg) histograms for record&) and (b),
respectively. On the right of the histograms are curveAonfindAl, respectively, as functions of voltagehich is shown over the graphsThe current at
which the tunneling gap was fixed equaled 0.5 nA.

fects of the form of missing atoms. The lemon-peel structureextracted from the fine structure of differential current—
is virtually unobservable in this graph, sintdg is relatively  voltage characteristics measured at various arbitrary points
high. It can be seen in the current m@fg. 49, where the  on the atomically smooth sample surface. Three characteris-
point defects, in contrast, cannot be detected. tics of this kind are plotted in Fig. 5. Each of them was

It follows from the results given above that on a seem-recorded twice, and they show good reproducibility. The
ingly ideal cleaved surface of a bismuth crystal, whose perieharacteristics measured at different points are roughly simi-
odic atomic structure is clearly seen in topograms, nonunitar, but at low voltages the differences between them be-
form states with a characteristic sizes of one hanometer amomes quite clear.
established, and they appear in the form of an additional The changes in the current—voltage characteristics due to
current initiation. They have been detected in tens of samplethe tip displacement over the surface suggests that the addi-
cleaved at low temperatures and on a sample cleaved at thienal voltage between the tip and sample is due to detection
room temperaturéAt temperatures above 350 K, bismuth of some radiation by nonlinearity of the tunneling gap. In
single crystals become too plastic and we could not cleaverder to check out this hypothesis, we recorded current maps
themin situ.) of the same tested area by varying the amplitugg, of an

The mechanism of additional voltage initiation can beac voltage at a frequency of 200 kHz. Experiments were
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FIG. 4. Surface topograms of two different crystals recorded after heating them to(ab24 °C andb) 200 °C.(c) Current map recorded simultaneously
with topogram(b). Parameters of the experime@ I=1 nA andU=-1.5mV; (b, 9 =1 nA andU=17 mV.

carried out with several samples. This frequency is far bethe characteristics yields a=0 the values ofd?l/dU?
yond the cut-off frequency of the tunneling current preamp-ranging between-10 and 20 nA/\ (Fig. 5b. Hence we
lifier, which is less than 15-20 kHz. In recording these im-derive atU o= 30 mV the rectified currents ranging between
ages, voltagéJ; was set at a fairly high level with a view to  — (.01 and+0.02 nA, i.e., the expected value can hé
limiting variations ofAz and rule out their possible effect on g 03 naA, which is close to the measurements in order of

mea;uremer;)ts ;ﬁl. h . | I_magnitude.(Our calculations take into account the fact that
Figure 6b shows three current maps at ac signal amp i recording the plots of Fig. 6 we set the stabilized current

t.UdeSUZOOZ 30, 15,and 0 mv. Itis clear that, _although SOME 5 nd voltage across the gap a factor of two higher and lower,
fine structure of these maps is differdathich is partly due . .
respectively, than in measurements of the current—voltage

to noise, there is correlation among the three maps in terms . . .

of the positions of the main features on thge plane. At the crzlaractzerlstlcs(Flg. 9. _Fgr this reason, the values of

same time, the range of variations in the current essentiall9 ”d_U should be multiplied by. four. )

broadens with the ac voltage amplitude, as can be seen in Figure 7 showsil as a function oz andUzgo. One

histograms of the current distributigfig. 6. can see that the measurement accuracy is insufficient for an
From the current—voltage characteristics given in Fig. 5unambiguous choice betweei Uy, and Al=U5y,. The

one can estimate the expected current variations to order ddtter function is compatible with the suggested mechanism,

magnitude. At low voltages, the rectified current componenprovided that, along with the voltage at a frequency of 200

should be (1/40J§00-d2|/d U?. Numerical differentiation of kHz an additional voltage is applied to the gap between the

a 96 _p333, 4150 mv :
10
J 1 /3
\ / y 40 b //\ FIG. 5. (a) Differential current—voltage character-
w,,\ \[ \ istics for three various points on the surface at a
5: distance of~4 nm from one anothefb) Second
c \ « 2 derivative of current with respect to voltage ob-
55 \ 2 tained by numerical differentiation of curvea).
2 \_\/V\/\ / E ] In measuring these characteristics, the tunneling
= i - —
~-0 al gap was stabilized at=0.5 nA andU=0.125
\/~/ \ § -/ / mv.
0 s L L L 40
-04 0.2 0 02 04 -0.05 0 0.05

u
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FIG. 6. (@) Topograms,b) cur-

15 mV rent maps, andc) histograms of
current distribution recorded at
various amplitudes of ac voltage
at a frequency of 200 kHz. The
tunneling gap was stabilized &t
=2 nA andU,;=0.06 V.

30 mV

tip and sample, and the powers of these two signals add. The issue of the source of additional voltage has not
Note, however, that the ac signal amplitude is not muchbeen ultimately clarified. Figure 7 indicates that its amplitude
smaller than the typical voltages at which the nonlinearityis estimated to be about 10 mV, and the power dissipated in
parameter of current—voltage characteristics essentiallthe tunneling gap at a level of 1&°—~10"*2 W. One can say

changes(Fig. 5), so deviations from the quadratic curve that the preamplifier noise of the scanning tunneling micro-
should be noticeable. scope in terms of the input voltage cannot have such an

0.10r a °

FIG. 7. Current variations versug) ampli-
tude andb) amplitude squared of the 200-kHz
ac voltage component. Circles and squares
correspond to different sample§.alues ofAl

for squares are multiplied by thrge.

Al nA

Uyopr MV
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effect. Another plausible source of this voltage is light fedsurface layers, so we can assert that it is an indication of
through the window, but it has no effect since the measureerystal defects not associated with changes in the mean den-
ments do not depend on whether the window is open osity. Such defects could be, for example, vacancies and in-
closed by a copper foil shutter set on the helium screen of theerstitial atoms localized near the surface at depths of about
scanning tunneling microscope on the side of the evacuateshe nanometer, which are comparable to characteristic lateral
volume. Oscilloscope traces of the voltage at the preamplifiesizes of features in the structure. Probably these defects are
input indicated that the most probable source of this voltaggenerated when atoms are displaced from their initial posi-
is a spurious signal at the TV frequency of about 200 MHz tions in the process of cleavage. The formation and relax-
Note, however, that the uncertainty in this issue became ination energies of vacancies and interstitial atoms are several
consequential in the context of the reported experimentglectronvolts(This is why they are not eliminated by anneal-
when we had amplified the effect under investigation by aping at about 500 K.The surface density of defects observed
plying the definite ac voltage. in our experiments, which is a factor of several tens lower
Based on the reasoning given above, we conclude thahan the surface density of host atoms, and their random
the mechanism leading to the nonuniformity in the relief anddistribution indicates that these defect result from random
current maps has been established: these effects are duegi@ents when momenta transferred from surface atoms add at
differences among current-voltage characteristics at differsome lattice sites. We do not try to describe the scenario of
ent points of the sample surface, i.e., nonuniformity of electhis process, but only indicate that a description in terms of
tron states. Obviously, such effects are out of question in aphonons is hardly adequate since their maximal energy in

ideal lattice. Since the quality of the initial crystals was verypismuth is only about 8 meV for acoustic phonons and about
high,'>*° the only feasible explanation is generation of de-13 meV for optical phonon®

fects near the surface in the process of cleavage. In order to |n principle there can be two causes of the lemon-peel

obtain additional information about their nature, we at-pattern: statistical variations of the defect density, which is
tempted to anneal crystals situ. Various samples were fairly high, or sparsely distributed weakly interacting defects.
heated from the room temperature to 200—-24@r&call that  The analysis of current—voltage characteristiggy. 5) re-
the melting temperature of bismuth is 271) @hd exposed to  veals that they have different amplitudes of features located
this temperature for about one minu(€he total time during  at the same voltages, i.e., there is a limited number of dis-
which the sample temperature was higher than the room tengrete features in the electron spectrum. This circumstance
perature was about ten minute$n all cases, nonuniform makes the second cause more probable.
states persisted after cooling down, and features on the The feature in the electron spectrum-a0.3 V is prob-
records were essentially the same as on freshly cleaved sugiply due to theT¢ level in the bulk with an energy of 0.38
faces. Examples of records obtained on two differentey above the Fermi level, which was calculated by Lin and
samples after annealing are shown in Fig. 4. Thus, a relaajlen.? Other features that could be associated with defects
tively high barrier had to be overcome to eliminate the de-in the bulk are peaks at 22 and+33 mV in Fig. 5(the
fects. If the frequency of hits against the barrier is set at thgalence band top at 11 meV and levels-a27 and —40
upper frequency of acoustic phonons in bismuth x116"  meV corresponding to conduction electrdA. The dimen-
Hz,?° we have a lower estimate of the barrier height of 1.5—2sjons of wave functions corresponding to these levels, how-
ev. ever, are tens of nanometers, and their relative contribution
Probably, a longer annealing could get rid of the lemoncould not change as a result of lateral translations through
peel, but this would considerably complicate the experimentsmaller distances. Therefore, all features in the spectrum at
in particular, this would sharply increase the liquid-heliumyoltages between the tip and sample ranging betwe8r?
consumption. Moreover, one should take into account thaind + 0.4 V reflect properties of surface states.
the surface composition can be changed by segregation of A fraction of these features can be attributed, in prin-
impurities from the bulk to surface, surface diffusion of for- ciple, to surface levels of the two-dimensional lattice. Using
eign atoms from sample sides, and changes in the structufRe estimatgr~7# and equating the sizeto the interatomic
near the surface owing to the motion of terraces, which igjistance on the surface of 0.45 nm, we obtain for these states
noticeable even at the room temperature and greatly actthe characteristic electron energ$/2m~0.1 eV.(The mass
vated by heatina.Therefore the measurement of the activa-m is equated to the free electron masSeatures at lower
tion energy of such defects is a separate complex task.  energies should correspond to smaller sizes, i.e., the structure
dubbed lemon peel in this paper. Since the calculation tech-
niques for electron spectra have been well developed, there is
hope that the real structure of observed defects will be re-
Many publications have been dedicated to the fracturevealed by the theory in future if it is possible to compare
dynamics of brittle crystals. To the best of our knowledge,experimental data with calculated by different models of de-
however, none of these papers discussed formation of defedtscts.
near cleaved surfaces and their structures. Nor is there a The estimates given above explain why surface features
theory of this phenomenon available, so our discussion isf the atomic scale cannot be seen in current n{&xs 4b
limited to approximate estimates and qualitative considerand 4¢. They can be seen only at sufficiently high ac voltage
ations. amplitudes across the gap between the tip and sample. As
The lemon peel goes together with undisturbed atomidollows from our preliminary experiments, this is true, and

4. DISCUSSION
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The spectrum and intensities of NMR lines are investigated experimentally and theoretically for
excitation by an alternating magnetic fieg parallel to a static fieldd in the quasi-one-
dimensional, six-sublattice antiferromagnet CsMnBAccording to theory, two new NMR lines,
which are not excited by a transverse magnetic field are observed near the phase

transition from triangular to collinear structurel EH;) [JETP86, 197 (1998]. © 1999

American Institute of Physic§S1063-776(99)02506-§

1. INTRODUCTION detailed magnetic structure of this compodndiThe princi-
— . _pal distinguishing feature of the lattice is that the distance
The application of NMR methods to studies of the mag between adjacent planes of magnetic ions is half the distance

netic properties of ~quasi-one-dimensional, - multiple-p, .00 nearest-neighbor ions within one plane. As a result,
sublattice antiferromagnets has already helped to produce

L . tiferromagnetic exchange interaction of the magnetic mo-
nontrivial results, such as the phenomenon of suppression g s : ; - .
. ments within chains running along ti@; axis is 1§ times
quantum fluctuations of electron sptnand a new type of

magnetic structure in the easy-axis triangular antiferroma the interchain antiferromagnetic exchange. This quasi-one-
9 2 >asy 9 . .gdimensionality significantly affects the magnetic properties,
net CsMn}.“ Nonetheless, it has become increasingly obvi-

: . : 2 thus accounting for the heightened interest in the study of
ous that the full potential of NMR in such investigations _, . g 1o 9 y
have yet to be fully exploited. In this paper we discuss re this class of materials.
yet [Ty explorted. bap N The easy-axis character of the magnetic anisotropy in
sults obtained in the excitation of NMR by a longitudinal . : : . L .
. e . o conjunction with antiferromagnetic interchain exchange re-
alternating magnetic fielt; parallel to a static magnetic field . . ; . :
sults in the formation of a noncollinear, six-sublattice mag-

H. This method has been successful in disclosing two addlﬁetic structurdFig. 1. Intrachain exchange induces antifer-

tional NMR lines that are not excited by a transverse rf mag, - onetic ordering of the maanetic mome (i=1
netic fieldh, . These lines are intriguing in that they exhibit g9 9 g a5 ()

. . - .—6) of three pairs of electronic sublattices, which is de-
a dynamic frequency shift near the phase transition from tri- ) P

k scribed by the antiferromagnetism vectors
angular to collinear structure.
In Secs. 2 and 3 of the present paper, we describe the
magnetic properties of CsMnBand experiments on the ob-

servation of®Mn NMR for hj. In Sec. 4 we give the results B f th ishinal K tic anisot in th
of calculations of the spectrum and intensities of NMR lines ecause ot the vanishingly weak magnetic anisotropy in the
basal plane, the sublattices in a weak magnetic feldCg

for various excitation techniques. In the Conclusion we dis- iented | h that f the indicated ;

cuss the suppression of steady-state NMR signals in the prei%l[e g;';f € is:npzl;lp():enili\(lzvligr tg-l (()Eiz 01 3 eTlr?e Ig?h’:r t\\j\i;: ors
. . N 1, . 1a.

ence of large dynamic frequency shifts and the pOSSIbIIItIevectors,Lz L, form angles close to 30° and 150° with

inherent in the parametric excitation of nuclear spins. 2= .
P P As H is increased, the angte betweerlL , andL ; varies
according to the lat¥

Li=M;—My, L=M;—Mg, L3z=M3—Ms.

2. MAGNETIC PROPERTIES OF CsMnBr 3

The compound CsMnBris one of the family of halides cos
of the type ABX;, where A denotes an alkali metal, Bis d 3
metal, and X is a halogen. The crystal structure of CsMnBr
is described by the spatial symmetry grouépthe Mr?* where H,=+VHgHg/ ~61kOe (at T=1.8K, Ref. 9, Hg
ions forming a hexagonal grid in the basal plajperpen- ~1500kOe, andHg,~3 kOe are the effective fields of in-
dicular to theCg4 axis).* The crystal lattice determines the trachain and interchain exchange interactions, respectively.

@

1

= — Z:_
_ ) 2!
2—z H2
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b4
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/ , FIG. 1. Schematic representation of the magnetic struc-
H M, ¥ ture of CsMnBg: @ H<H,; b) H>H, (8=7).
a/ . X'
0 M
M; 4

In a field H=H_ the above-described magnetic structurebranches themselves become observable in excitation by an
changes to a collinear configuration £ 0), corresponding rf field h. These phenomena are the subject of the present
to a second-order phase transitigfig. 1b). article.
The magnetic field of the nuclei of thigh sublattice is
determined by the sum of the external fiéldand the hyper-
fine fieldsH,;: 3. MEASUREMENT PROCEDURE AND DESCRIPTION OF
THE EXPERIMENT

2
H; =|Hnj+ Hl=H, \/1+ H_z _ZHi cosd;, 2 The objects of investigation were CsMnBsingle crys-
HY n tals grown and oriented as in Ref. 3, which also describes the
wide-range continuous NMR spectrometer used to perform
the measurements. The main difference is a modification of
the cavity structure to impart the required polarization to the
rf field h. A block diagram of the resonance circuit is
H shown in Fig. 2. A movable copper plaZewith a dielectric

coating 3 forms with the casing an additional variable ca-

whereH,,= —AMg,, M is the average magnetic moment of
the sublatticeA is the hyperfine interaction constant, afd
is the angle betweeH and M :

COSH:LA:

He pacitance, which is used to tune the cavity frequency. A nar-
« H o H row slot 7 forms the structural capacitance of the loop. The
€0sf6, 5= —sin > hs co§§+o H—) two-headed arrow indicates the directions of motion of the
E E plate. The whole structure is positioned in a superconducting
0 in=+ A 22y A 3
€0S03,6=Sin 5 HEco 5o e 3

Consequently, foH <H_ there must be three twofold degen-
erate NMR branches,;= y,H;.

In weak fieldsH the degeneracy is lifted by interaction
with the Goldstone antiferromagnetic resonari@éd&MR)
mode. The frequencies of the three NMR branches,((s,
and Q) decreasdthis is the so-called dynamic frequency
shift). Their spectrum has been investigated experimentally
and theoretically:® A functional dependendd ,(H) that dif-
fers for spins in sublattices 1, 4 and 2, 3, 5, 6 has also been
reported in the cited papers, owing to the suppression of
guantum fluctuations of the magnetic field and a correspond- H
ing increase iM;(H). The spectrum of all other branches is
described by Egs(2)and (3) with the functionalH,;(H)
taken into account, but NMR signal amplification does not
take place for these branches, and they have not been ob-
served experimentally.

As H—H_, two of these branches begin to interact with
the AFMR modeuws (in the notation OT .Ref.' B whose fre- IG. 2. Block diagram of the resonance circuit) cavity; (2) movable
quency tends to zero as phase transition is approached. Tg@pper plate(3) thin insulating film;(4, 5 coupling loops|6) coaxial leads;
spectrum of these branches is deformed in this case, and th® narrow slot.

0
NG
p—
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FIG. 3. Experimental absorption signal in CsMgBH_L Cg) at T=1.3K
and 349.6 MHz with excitation by alternating magnetic fielgs(curve 1)

andh, (curve?). experimental and calculated spectra. The observed differ-

ences are attributable to the appreciable width of the AFMR
line near phase transition.

It must be noted that NMR in parallel fields has hereto-
solenoid with an inside diameter of 25 mm, and the rf field iSfore been observed on|y in Superﬂuid helidie and in the
precisely parallel to the field of the solenditl domain walls of ferromagnets. In our case NMR is generated

We used two cavities wittQ~400 at 4.2K. The fre- jn a homogeneous sample, because the signal is observed at
quency tuning range of one cavity was from 390 MHz to3 |arge distance from the phase transition field.

470 MHz, and the range of the other was from 310 MHz to Consequenﬂy, five NMR modes are observed in
380MHz. The cavity containing the investigated single-CsMnBr,. Three of them are excited fdr, , interact with
crystal sample was placed directly in a helium tank. An exthe Goldstone AFMR mode, and are observed in the range of
ternal magnetic field was applied perpendicular to the hexfields 20—80 kO&.Two modes are generated fay, interact

agonal Cg axis of the crystal. In all other respects the wjth the AFMR modews, and are observed in fields of 50—
spectrometer and the measurement procedure were identiggd kOe.

to those in Ref. 3.

Figure 3 shows the absorption signal in CsMgBor
T=1.3K, a frequency of 349.6 MHz, and fielti (curvel)
andh, (curve?2). It is evident that different NMR branches

are excited in these two cases. The NMR spectrum in  \ye analyze the intensities of NMR lines excited by vari-

CsMnBg for hyLCe at T=1.3K is represented by light g techniques, using the same equations for the magnetiza-
circles in Fig. 4. NMR is observed close k. over a broad  jong m; (j=1,...,6) of thenuclear sublattices as in Ref. 3.

frequency range, demonstrating the large dynamic frequencyio,, however, in these equations we need to take into ac-
shift of NMR. As [H—H,| increases, the intensity of the nt first, interaction with differently polarized alternating
signal decreases, z_and_lts position approaches the unshlfteﬁgms h and, second, nuclear magnetic relaxation, which
NMR spectrum, which is represented by dashed curves. Thges the oscillations afn; into the steady state. We treat
solid curves represent the NMR spectrum calculated fromgaxation processes in the relaxation time approximation,
Egs.(20) and(21) below. We have not used any fitting con- which corresponds to the Bloch equatibh&ee Appendix
stants here. Satisfactory agreement is observed between the Figure 5 shows the influence of a transverse frelcon

the orientation of the vectavl; when the frequency of the
alternating field is much lower than the AFMR frequeriay
NMR frequencies this condition is easily satisfied at &hy
045 2r—fretgt o eeeeees] owing to the hyperfine gap in the.AFMR spectritfnd. It i;
evident that for h, <H everything reduces to rotation
through the angleSp=h, /H. All other vectorsM; rotate

4. THEORY

IPURPNSRE Lt

040 ;z:—v“ through the same angle, and their variations are therefore
£ described by the equations
5 |
] () sy —n1 s
a0.35- M; ()=M;do=x,h, (1), 4
where
0.30 . ; : x.=M;/H )
50 55 60 gl 65 60
c H, kOe is the magnetic susceptibility in a field, . It follows from

FIG. 4. NMR spectrum in CsMnBrfor HL Cg at T=1.3 K with excitation Fig. 1 tha,‘t a lo,ngltUdmal fleldh” has Scarcely any influence
by alternating magnetic fields; (light circles andh, (heavy dots, from O the orientation of the vectoM,; andM,, but changes the

Ref. 3. angle a by
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4Hhy/\(3HZ—H?)(H—H?), H=H,,

- 6
““lo, hen, O

Equationg6) can be derived from Ed1) by writing the
latter for the fieldH + h; and expanding in powers &f . The
calculation of the variations of the vectols; for such a
variation of the angler leads to the equations

M) = by (o), ™
where
X11=X14=0,  X2=X|6= ~X|3= ~X|5=X| » (8
) Modai2hj, H=H,, "
” 0, H>H,.
We have thus calculated the NMR gains:
7 =Ax.=Hn/H,
7= AX)j - (10

In the Appendix we show that the use of E®—(9) in
the equations fom; permits them to be written in the form
(A12):

i \2 )
w+ T_z — W

mxj(w)

Hp
+ 7nwnjAmzj ? 2 Ajj 'mxj,(w)
E

+ 7’n")njmzj 7. h (w)+ 7’n")njmzj 77”th((1))=0.
11
The Appendix also gives expressions for the quantitigs
(A7) and w,; (A13). The expressions fomxj(w), h, (w),
and hy(w) are related tomxj(t), h,(t), and hy(t) by the

Fourier transform(48).
The determinant of the system of equatigh$) charac-

Dumesh et al.

A 2o= N33= A55= Nge= M pg= N 3s= — A p3= —Agz™ —Aos
=—A5e=0.5[2[1— (H/H/)?]+ €} 1, (13

wheree=2m,/Hg, ~10 2 [see Eq(A5)].

The components ;; and\4; do not have singularities at
H=H_., and their influence can therefore be disregarded. A
second procedure by which it is possible to substantially sim-
plify the system of equation€ll) involves the transforma-
tion to new variablesn,. (k=1,2,3):

Mpe =M EM,,, Mye=Mm *m,, Mz.=m,*=m,.

(14)

As a result, the systertill) is decomposed into four inde-
pendent equations:

i \2
i
o+ T_2 —wﬁl m;_=0,
i 2
( w+ | - w2 M +200mMeyam h, =0, k=1,2,3,
2
(15
and a system of two coupled equations:
i\? 1
2 z
(,L)+T_2 —Wpo m2_+§wn2wpc(H)m—O(m2_

—M3_) +2wny 7, hym,=0,

i\, 1 m,
O+ —| —wy m37+_wn3wpc(H)m_o(m3—

T, 2
—My_)+2wnz ¥, 7 hym,=0, (16
where the two quantities
wpo(He)e
pr(H):[e—i-Z(;Z—((Ij)/HC)z)] (0
and
n=Hn/\H(H.—H), (19

terizes the six NMR frequencies. We note that the frequenhave singularities aH=H,. According to Egs.(15), the
cies of only three of these lines, excited by a transverse fieldomponent in the NMR spectrum correspondingme_ is
h, , were analyzed in Ref. 3. We now look into the feasibil- not excited by the variable field, and ting_ components

ity of exciting all six lines.

are excited by the transverse figld. The spectrum of these

~ Taking the amplification into account, we describe thecomponents is represented by dots in Fig. 4, and their prop-
intensity |l ,(w) of the absorption signal measured in the ex-erties are discussed in Ref. 3. The new results, represented

periments of Ref. 3 by the equation

(@) =25 7 Imm, (), (12)

where Immxj(w) is the imaginary part of the solution of the
system(11) for the frequencyw. These equations have the

simplest form in the casdd<H., H~H_., andH>H.. An
analysis of the cased<H; andH>H, yields results that

agree with the curves in Refs. 1 and 3 to within the experi
mental errors. We therefore confine our discussion to th
caseH~H, only, as it is associated with new experimenta

results described in the preceding section of the article.
For H~H, the following expressions fok; can be
obtained from Eq(A7):

I%onentsmz, and mz_, which are the roots of the secular

03=0.9 w2,(H) + w5(H)],

by the open circles in Fig. 4, are described by the solutions
of Eqgs. (16). Their form depends strongly on the ratio be-

tween the difference in the frequencies, and w,3 (45),

A=wn— wy3=2H sin(a/2), (19

and the quantityo,. (17). For A> wthe frequencies of the
componentsn, _ andmg_ differ from the frequencies of the
componentsn,, andms, excited by the fieldh, , consis-

tent with the results shown in Fig. 4. FAr< 0, the follow-

ing equations can be obtained for the frequencies of the com-

equation for(16):

03=0,[Q5— wp(H)].
(20)
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) FIG. 7. Experimental low-frequency NMR bran€ly(H) at T=1.3K and
FIG. 6. Experimental traces of the low-frequency NMR brasi(H) at various frequenciestl) 220.1 MHz;(2) 273.7 MHz; (3) 350.1 MHz; (4)
T=1.3K and several frequencies. The arrows indicate the midpoints of thgygz 5 MHz; (5) 370.0 MHz; (6) 3752 MHz ' '
NMR lines at 379.7 MHz. ' ' ' ' ' '

shift has been analyzed previouslyt3>-8If the equations

As H—H., the frequency Q, approachesw(H, 9iven in the cited papers are used, the following relation

=y,AM, (45), and Q5 (taking (17) into account tends to betweenl ,({23) and(); can be obtained in the investigated
zero: frequency range of 310—380 MHz:

In(Q3)xQF?, (26)

which agrees qualitatively with the results in Fig. 6. To make
) a quantitative comparison, the influence of inhomogeneities
The spectra calculated from these equations are representgfihe sample must also be taken into account in the theory,

by solid curves in Fig. 4. . because we are now in the vicinity of the phase transition.
Equations for the intensitids,(w) of the NMR lines at

the frequencieg), and ()5 can be obtained by substituting
the corresponding solutions of the systél6) into Eq. (12):

1—(H/H)?
€/2+1—(H/H)?

Q3(H)=Q3(H,) 21)

5. CONCLUSION

It follows from Fig. 6 that the decrease in the intensity of

_ 2
n(Q23)=2mo77] yohy T2, 22 e steady-state NMR signals due to nonlinear effects
yvoH 1?2 .« strongly limits the frequency range in which such signals can
In(Q2)=41,(Q3) o (H) stE. (23)  pe observed neat. A similar difficulty is encountered in
pc

weak fieldsH<H,."® In this case the dynamic frequency
It follows from Egs.(18), (21), and(22) that the intensity  shift is observed over a far broader range of fiettithan

1 1 merely in the vicinity ofH., so that the NMR signals shown
moc m (29 in Fig. 7 exhibit not only the values of the frequencie@sbut

¢ 3 also the fielddH. It is evident from Fig. 7 that akl and ()
should increase &3;(H) decreases. It is evident from Fig. 6 decreasdi.e., as the dynamic frequency shift increaséise
that it decreases in the experiment. The reason for this disignal intensity first increases and then decreases. If Egs.
parity is that Eqs(22) and(23) have been obtained from the (11), with nonlinear effects taken into account, are used to
solution of the systemil6) in the approximatiorm,=my. If  describe these signals, the following relation can be obtained
this is not done, Eq(20) has the form for their intensitied ,(Q) (12):

02=0,[Q,— wyo(H)m, /mg]. (25) In(Q) pfocH 2, @7

Inasmuch agnj=mZ+ mf,+ mZ, the dependence dd; on  where 7? is given by Eq.(10). Like Eq. (24), this relation
m, implies a dependence dd; on the amplitude of the describes the increase IR() as() decreases. For larger
oscillations of the magnetizations of the nuclear sublatticeglynamic frequency shifts, such that nonlinear effects become
m; . In other words, whereas the oscillations rof are in  appreciable, it is necessary to use the same expressiohs for
resonance with the alternating field at small amplitudes, thas those from which the relatiof26) is obtained. Then in
resonance conditions begin to break down as this amplitudplace of(27) we can obtain a dependence of the form
increases, doing so more rapidly the higher the frequency | (€)1 28
wp(H) and, accordingly, the lower the frequendys. nito4 '
Hence it follows that for sufficiently higlw,.(H) the inten-  which dictates that, decreases ad decreases.
sity 1,(€23) begins to decrease &5; decreases. There are three ways to approach the investigation of the
The influence of various nonlinear effects on the steadynuclear spin properties at lower frequenciés larger dy-
state NMR signals in the presence of a dynamic frequencyamic frequency shifis First, the amplitude of the exciting

[n(Q23) e ﬂﬁ“
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field can be raised to levels such that hysteresis effects beginA. Fomin for a productive discussion and critical remarks.
to set in as a result of the nonlinearity of the dynamic fre-This work received financial support from the Russian Fund
quency shift®~1® Tulin!” investigated these effects experi- for Fundamental Resear¢Rrojects 96-02-16489 and 98-02-
mentally for three-dimensional antiferromagnets (MnrCO 16572.

and CsMnk), but he worked with weak fieldd of the order
of 1kOe or less, for which the gaim, (10) is large. At

H~20kOe,n, is much smaller, so that the investigation of APPENDIX
hysteresis effects in the case of CsMgBquires more pow- As mentioned in the Introduction, the equations used in
erful rf field generators. Ref. 3 to analyze the spectrum of NMR frequencies can be

Second, NMR pulse techniques can be used, and echapplied to the calculation of the intensities of steady-state
signals in particular. Owing to the mechanism by which suclNMR signals. To do so, however, the equations must be
signals are generated as a result of modulation of the NMRnodified to account for interactions with the external alter-
frequency, a certain reserve is available for increasing theinating magnetic field and with the fluctuating fields respon-
amplitude in the presence of a large dynamic frequency shiftsible for nuclear magnetic relaxation. If direct interaction of
The feasibility of using NMR pulse signals to study the prop-the magnetizationsn; of the nuclear sublattices with the
erties of nuclear spins with a large dynamic frequency shiftalternating field is ignoredby virtue of amplitude effectd)
has been discussed in detXil. and if interaction with the fluctuating fields is taken into

The third possibility for the investigation of NMR sig- account in the relaxation time approximation, it is possible to
nals in the presence of a large dynamic frequency shift inebtain a system of equations that coincides with the usual
volves the parametric excitation of nuclear spins by paralleBloch equation® in the external magnetic fiel#l and the
pumping:® This method is based on the fact that under thehyperfine fieldH ;=AM (Ref. 11:
conditions of a dynamic frequency shift, the precession of
the nuclear magnetic moments normally becomes elliptical dm"j My,

! :'yn(Asz+HZj)myj_T_21

with an eccentricity that depends on the magnetic field. As a dt

result, an alternating magnetic fielg at twice the NMR dm, m,.

frequency imparts parametric instability to such precessionif —-X=_, (AM, +H,)m, +y,m,AM, — —, (Al)

the amplitudeh(t) exceeds the threshold levej. Equations dt oo P T

(11) then lead to an expression fbg, where ;,y;,z;) denotes the coordinate systems associated

with equilibrium orientations of the vectorsj||H;[M; (we
ho(w):m, (29 disregard the deviation of the orientation of the fi¢ld;
2l7%p +H from the hyperfine fieldH,;,sinceH,;>H), A is the
where w, is the dynamic frequency shift parameter. In hyperfine interaction constan, is the nuclear gyromag-
CsMnBr; a large dynamic frequency shift occurs in two netic ratio, andT, is the transverse nuclear magnetic relax-
cases: pfor H~H.. when w,(Hc)=wpc (17); b) for H ation time.

<H., whenwy(H) is given by For small oscillations ofm; the componentsn,; can
almost always be replaced by the equilibrium vaiog An
12ewn; exception is encountered for oscillations with a large dy-
Wym—————————. (30 P , : ge dy
P 9(H/H,)8+12€ namic frequency shift, when nonlinear effects become sig-

nificant, and the variation of the componemtrgj must be
‘taken into account. In CsMnBr however, as opposed to
two-sublattice, three-dimensional antiferromagnets, these ef-
H¢l1—(H/H? _ fects do not exhibit any specific attributes, so that the equa-
OZW’ (3D tions derived in Refs. 13-18 can be used.
In the description of NMR experiments the magnetiza-
b) for H<H. ande<H/H, tion components/, of the electronic sublattices can always
H be replaced by the equilibrium valués; (by virtue of the
ho—m- (32 \weak influence of hyperfine interaction on the oscillations of

Equation(29) is transformed as follows for these two cases
a) for H~H_ and e<|1— (H/H)?|

. M;j).
Equations(31) and (32) can also be used to analyze the ! The componentd!, do not occur in Eqs(A1). As in
J

threshold amplitude in the parametric pumping of nUCIearRef. 3, they are disregarded, because strong uniaxial anisot-

spin waves?"**Itis sufficient here to replace, andwp by ropy prevents the sublattices from leaving the basal plane

T»(q) andwp(q), whereq is the wave vector. . )
. . . < . .
It is clear from these equations that the threshold amp||-(Myj MXJ) The components! x; 1N Eq. (A1) can be written

tude hy drops asw,, increases. This means that when the3S @ three-term sum

dynamic frequency shift increases, the conditions for the ob-  p. =M M) 4 MmO p (M (A2)
. . . . X; X; X Xi 7
servation of parametric NMR improve, rather than deterio- ! ] ] !
rating as in the case of steady-state NMR. whereM (") andM (") are attributable to interaction with the

In closing, the authors wish to extend their sinceretransverse If,) and longitudinal fy) alternating magnetic
thanks to N. M. Krénes, L. A. Prozorov, A. |. Smirnov, and fields, and the componerMQj“) are attributable to hyperfine
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interaction with the oscillations afi;. The equations used to is the determinant of the systefA3). For H<H., on the
caIcuIateM('J“) in Ref. 3 take into account only one low- basis of(A5) and(A8), we have

frequency AFMR branch. Here we have made use of the fact  (H)=[b,(H)+ 1][1_(|-|/|-|c)2+ €][3by(H)e
that the NMR frequencies are very much lower than the

AFMR frequenciegwith allowance for the hyperfine gap in +(H/H)®by(H) (by(H) +1)%], (A9)
the spectrum of magnotfs, so that the kinetic energy can be and forH= He

neglected in the expression for the Lagrangian describing the ) ) )

behavior ofM; (Ref. 24. In this approximation, equations Z=[(HIH) =1+ €el(H/H)T(H/H)*+3].  (AL0)

for ij can be obtained by minimizing the potential energyAt the pointsH=0 andH=H, the determinantz(H) at-
with hyperfine interaction taken into account. We can nowtains the minimum values
obtain equations that are valid for any fields despite the HOV=9¢l4. T _
) ) . 92(0)= , Y(H.)=4e,
difference in the symmetries of the soft modesHkbr 0 and (0)=%¢ (Ho)=4e
and the componentsl (™ attain maxima.

H=H.:
Taking Egs.(A2), (A6), (7), (9), and(10) into account,
we can write Eq(A1l) in the form

(A11)

a ;M by (M + M) = (Hy /He ) (Mg +myy),

_ (m) (m) (m) _ 2
blMxl +a2MX2 +b2MX3 (Hn/HEr)(mX2+mx6)y w+T|_ _wﬁj}le(w)
2
—by M +b, M +a,M{ = (H, /He ) (Myg+Myg),
A3
(A3) +7nwn]Amz 2 )\Jj’mx(w)
MP =MD, MP=MD, MD=M,  (A4)
whereH =AM, + ')’nwnjmzj 7]J_hJ_(w)+ ')’nwnjmzj 77Hjh||(w):0a
(A12)

o 1 9
b;=cos;=———, by=cosa=2bi—1, where

2 2—(H/Hy)?

®n1= ©0na= YnAMy,
2 H 2

a;= H_ +2b1+ €, a2:bl—{l—(H—) b2+ €, wn2=wn5='ynAM2+H Sin(a/Z),

C Cc

Wp3= Wpg= ’ynAMZ_H Sin(CY/Z), (A13)
2A
€= mo' (A5) are the unshiftednot perturbed by dynamic frequency shift
Hes NMR frequencies, while

Am, is the static hyperfine field, which is conveyed by the =Ay,=H,/H (A14)
nuclei to the electrons and is responsible for the hyperfine

gap in the AFMR spectrurtt, Hg, =3 kOe is the effective

in-plane exchange fieldy is the angle between the vectors N2=Ne= — M3=— Ns=7=AX|, 71=7s=0

M, andM; (Fig. 1), andH_. is the critical field for transition (A15)

to the collinear phase. AL>1K we have are the gains for the field, andh;; the variablesm, (w),

h, (), andh|(w) are related tonxj(t), h, (t), andh(t) by

2AmMy  2H, vy, hyH
= = - the Fourier transform

HE/ HE' 7e kT

1<10°2

so that only linear corrections inwill be taken into account
below. The solution of the systefA3), (A4) has the form

M(m)_

Xj JJ’mXM

(A6)
He j

where

N11=Ngq= (85— b3)/ 7, N1j=Ngj=bi(az—by)/ 7,

Moo= N33= Ns5= A ge= A 26= N 35= (a8, — b3)/ ¥,

N23=Nez=Nos=Ags= (DI—asb,)/ &, A r=Njrj;

(A7)

il
and
[/: (az_

by)[ai(az+by) —2b3] (A8)

mxj(w)z J'jxexp(iwt) mxj(t) dt. (Alo6)

Analogous relations hold fan, (w) andhj(w).

*)E-mail: dumesh@isan.troitsk.ru
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The generation of a microwave second harmonic by a YBCO single crystal in a dc magnetic
field was studied. We found that the signal existed only when there was a direct

screening current. As a result, the pinning current as a function of magnetic field can be derived
directly from the second harmonic intensity versus the magnetic field. The experimental

data were interpreted in terms of a generalized model of the critical state taking into account
diffusion of vortices and the absence of a barrier stopping vortices from leaving the

sample. We have shown that, in a decreasing dc magnetic field, the current density is considerably
lower than both the critical and screening current densities in an increasing dc field. Our
experiments indicate that vortices are not the sources of radiation at the double frequency. A
relation between the mechanism of harmonic generation in the Meissner phase and

modulation of the order parameter by the microwave magnetic f@idzburg—Landau

nonlinearity is discussed. It is remarkable that, by measuring the second harmonic intensity in
the Meissner state versus temperature, one can obtain the magnetic field penetration

depth as a function of temperature with fairly good accuracy.1999 American Institute of
Physics[S1063-776099)02606-3

1. INTRODUCTION determined the temperature behavior of the upper and lower
critical fields and their numerical valué$.In view of pos-

The behavior of superconductors in strong high-sible applications, experiments with films are most impor-
frequency fields has been extensively studied in recent yeargant. The main mechanism of nonlinearity in film samples is
The incentive for this research is not only the interest in theassociated with Josephson junctions between structural
fundamental aspects of the nonlinear electrodynamics of surregularities’** Harmonic generation in structures with
perconductors, but also the promise shown by these materialgeak links was the subject of publications by Jeffries
in the field of development of microwave devices, and theet al'>1 |t is noteworthy that such ideas have also been
fact that the nonlinearity of their microwave response deterdeveloped in the context of low-temperature
mines the characteristics of prospective devices. The interasuperconductors’
tion between high-temperature superconductors and micro- The investigation of the high-frequency nonlinear re-
wave fields has been studied by many researchers. Gor'kasponse, in particular, generation of even harmonics, in a
and Hiashberd showed that harmonic generation in super-magnetic field is of special intere¥t:?® In the absence of a
conductors in the framework of the nonstationary superconelc magnetic field, this generation is forbidden by the sym-
ductivity theory is determined by the order-parameter relaximetry laws, so the harmonic intensity is determined by the
ation time, so this time can be derived from measurements dfeld configuration(of the screening currentn the surface
the harmonic intensity. Such an experiment was performethyer and contains information concerning this configuration.
by Amato and McLeahon LaCaSn samples. The relaxation The model of the critical state is most often used in describ-
time was calculated by means of equations taking into acing nonlinear effects in a magnetic field. The mechanism of
count the actual configuratidmf the experiment at a radia- nonlinear absorption or emission at frequencies of higher
tion frequency of 11 GHz. Later this technique was used tdharmonics is associated with vortices generated in a sample
measure the order-parameter relaxation time in a YBCO sun the mixed state. The nonlinearity of the electromagnetic
perconducting single cryst&P. At a lower frequency har- response of the vortex system is determined by several fac-
monic generation in a YBCO single crystal was studied bytors, such as the pinning potential nonparaboli¢itits de-
Ciccarelloet al®” Their results were interpreted using the pendence on the currefftand other$® In our experiments,
two-liquid model with the densities of superconducting andno nonlinearity associated with vortices has been detected.
normal electrons characterized by special functions of th&his conclusion derives from the curves of harmonic inten-
electromagnetic wave amplitude. In order to calculate a harsity versus temperature and magnetic field. This paper does
monic intensity, the requisite Fourier component of the non-not deal with details of the radiation mechanism in the mixed
linear crystal magnetization was identified. By combiningstate. As for the Meissner phase, we will discuss an interpre-
results of nonlinear experiments and measurements of singléation of the harmonic radiation in terms of the Ginzburg—
crystal surface impedance under magnetic field, the authoilsandau nonlinearity, namely, modulation of the order param-

1063-7761/99/88(6)/7/$15.00 1229 © 1999 American Institute of Physics
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as a function of dc magnetic field FIG. 3. Second ha_rmonic amplitud®,, versus temperatgr‘é Curvel was

éecorded by warming the sample to the normal state in a magnetic field of
250 Oe introduced when the sample was in the superconducting state at the
lowest temperature; cun&was recorded by cooling the sample in the same
field (250 Og. The inset shows fragments of curveand?2 on the extended

. L . le.
eter by the microwave magnetic field. Irrespective of the™

mechanism, the intensity of the double-frequency radiation is

controlled by currents near the surface, which screen the dsurements were independent of the repetition rate. The inten-
magnetic field, and the current can be derived from the sesity of the emitted second harmonic was recorded as a func-
ond harmonic intensity. Below, our experimental results ontion of the dc magnetic field, temperature, and amplitude of
generation of the second harmonic in a YBCO single crystathe incident radiation.

will be interpreted after a description of the experimental  The second harmonic amplitude as a function of dc mag-

FIG. 1. Second harmonic amplituds,,
H in the range of 0 to 180 Oe. The inset shows the range of 0 to 25 Oe. Th
temperaturel =78 K, the field scan starts at 0 Oe.

procedure. netic field is plotted in Figs. 1 and 2. The sample was cooled
down to the required temperature at zero magnetic field, then
2. EXPERIMENT the field was slowly scanned to its maximum value and the

scanning direction was reversed. The field scan rate was se-

sions of 4x3x0.2 mn? was fabricated by G. A. lected S(I'.: thaththe shape of th:ja hyzteress Iﬁo%re_mamed the

Emel’chenko in the Institute of Solid State Physics, Russiarp@Me when the rate was reduced severaliold. The curves
were recorded at several temperatures, and the Feldt

Academy of Sciences. The superconducting transition oc="~ . .
curs, according to impedance measurements at a frequen ich the harmonic amplitude saturated proved to be almost
independent of temperature.

of 3 GHz (Ref. 30, at a temperature of 91 K and has a width' : L .
Figure 3 shows the harmonic intensity versus tempera-

of about 1 K. The sample was placed on the bottom of a L .
bimodal cylindrical cavity resonating in the T mode at ture. The magnetic field of 250 Oe was applied at a tempera-

the incident wave frequencw/27=9.2 GHz and in the ture of 78 K, then the sample was heated abbyand again

TE,;, mode at the second harmonic frequency. The sampIEOOIed without changing the magnetic field. One can see that

was placed at the site where the magnetic fields of both the§ge harmonic intensity after the heating-and-cooling cycle is

modes were aligned with one another over the sample areg_e\{eral times lower. The sepqnd harmonic intensity in the
The dc magnetic field was also aligned with the microwave'vIelssner phaséat a magnetic field of 5.3 Qeversus tem-

fields. The source of incident radiation was a magnetron Opperature is plotte_zd in Fig‘ 4. .
erating in the pulsed mode with a pulse duration afs The The harmonic amplitude can be treated as a quadratic

relative pulse duration was chosen so that the results of meidnction of the incident wave amplitude throughout the in-
terval of studied microwave intensiti€Big. 5).

A YBCO single crystal shaped as a plate with dimen-
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FIG. 2. Second harmonic amplitud®,, versus dc magnetic field in the FIG. 4. Second harmonic amplitude versus temperature in the Meissner
range of 0 to 1200 Oe. The temperaturdis 78 K, the field scan starts at  state(under a field of 5.3 Oe Filled symbols connected by the dashed line
0 Oe. follow the \° law.
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E, . arb. units tude at the second harmonic frequency is determined by the
12 integrated interaction between a predetermined nonlinear
1ot source
8t M2w)=x(AL A
6 and the resonant mode field, to which the radiation is
4 coupled:
2t .
EmeQlllfJnl(zw)elll(r)dsr- 2
0
0 02 04 06 08 10 Integration in Eq.(2) is performed over the sample volume,
E,  arb. units ei14(r) is the electric field of the Tk, mode inside the

crystal, Q41; is the Q-factor of this mode. The integrdR)
FIG. 5. Second harmonic amplitu@®g,, versus the incident wave amplitude Strong|y depends on temperature because the integrand in-
E,. The solid line follows the quadratic function. The temperaturd is cludes the field within the sample. The magnetic field depen-

=78 K. o . . .
dence is incorporated only in the form of the nonlinearity
factor x(j), i.e., it is determined in the long run by the

3. DISCUSSION screening current in the skin. It is more convenient to assume

that y is a function of currentrather than the fieldH) be-

Harmonic amplitudeA second harmonic cannot be gen- cause there is a hysteresis effé¢tgs. 1 and 2 The har-
erated in the absence of a magnetic field in a crystal with amonic amplitude versus the screening current is assumed to
inversion center, which directly follows from symmetry pe a single-valued function, without hysteresis. It follows
considerations! As the magnetic field increases, a harmonicfrom our experimental datéFig. 5 that the radiation inten-
can already be detected in the Meissner state, when the fielty at the double frequency is a quadratic function of the
is surely lower than the field of vortex penetration into theincident wave amplitude throughout the range of studied mi-
sample. In the presence of a magnetic field, a constardrowave intensitiegat temperatures notably different from
screening current is generated near the surface and, in accar;). Therefore the nonlinear source in Hd) is a quadratic
dance with our data, we will attribute the second harmonidunction of the vector potential at the fundamental frequency.
radiation to this current. In accordance with the phenomenoA phenomenological relation between the nonlinear source
logical approach, let us write an expression for the micro-and vector potential does not specify a mechanism of non-
wave currenf ,,, carried by superconducting electrons in thelinearity. We will reconsider the issue of the harmonic gen-
presence of the screening currggnt and microwave fields at  eration mechanism in discussing the temperature dependence
frequenciesw and 2w characterized by the vector potential of the generation intensity, but first let us discuss the inten-

component e~ “t andA, e 2t sity versus magnetic fieldcurves with hysteresis loops in
Figs. 1 and 2 which requires a detailed analysis of the sur-
= — ¢ A e iot— A, e 120t face current in increasing and decreasing magnetic fields. An
47r\? 47\? increase in the signal and switching to a slower function of

(DA e 1otA e iot ) the f_ie_ld can be eas_ily described in_ terms of the B_ean model
X(A.€ & modified by Portis for analysis of the microwave
Here x(j) is the phenomenological nonlinearity factor, absorptiort*3® But according to this model, the harmonic
which vanishes together with the direct screening curjent signal should drop to zero when the magnetic field scan is
The linear component of the microwave current is written inreversed and then rapidly recover to the level corresponding
the conventional London forn is the penetration depth of to the field scanned in the upward direction. This is not so in
magnetic field, and is the speed of light. These terms are the experiment: the signal remains small over a wide range
also nonvanishing in the absence of a dc magnetic field, andf magnetic fields. Later we will discuss a model that will
in analyzing the harmonic generation one can assume thallow us to interpret this behavior of the harmonic signal in
they are independent of the field and limit the analysis to theéerms of the screening current as a function of magnetic field,
function determined by the nonlinear term. In the experi-generation of vortices on the surface, their diffusion inside
ment, one can measure the power fed to the microwave cathe sample, and their exit from the sample without any bar-
ity, its Q-factor, coupling factors for both resonant modes;rier.
geometrical sizes of the sample and cavity. Using these pa- Direct screening current and hysteresis loop on the
rameters and the constitutive equatidn one can determine curve of the second harmonic intensifyhe magnetization,
the second harmonic amplitudg,, using the theory describ- alongside the screening current in a superconductor in an
ing a cavity excited by a prescribed curréhfThe calcula-  equilibrium state, is controlled by the applied magnetic field
tion details can be found in Ref. 33. This technique used irand temperature. The Meissner state is stable in a plate of a
calculating the radiation intensity, unlike those used by othetype-Il superconductor under a magnetic field parallel to its
authors>’ yields a correct asymptotic result in the limit of surface ifH<H.,, whereH, is the first critical field. If the
infinite sample thicknessin reality, for thicknesses much field exceedsH.;, the Meissner state becomes metastable,
larger than the field penetration depth. The wave ampli- and vortices can penetrate into the sample. In a magnetic
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field H=H,; the surface current densify is approximately ~whereV ¢(r—r;) is the phase gradient generated by ittie
j* &\, wherej* is the Ginzburg—Landau decoupling current vortex at pointr(x,y). Equation(3) is linear, so one can
density andé is the coherence length. The Meissner stateaverage it over the plane=const and introduce the average
becomes absolutely unstable in a magnetic filleeH,,  density of vorticesp(x):
where the surface current density satisfigsj*. HereH; is 2 2 _ 2

. Al X = (A— PpgN(X))/\7, 4
the field of the Bean—Livingston surface barri&hus, one (A= ¢oN(X)) @
can say that on the microscopic level the process of vortexhere
penetration into a superconductor is controlled by the current «
density. It is usually supposed that the main parameter is the N(x):f p(x)dx.
magnetic field strengtf.8 0

In a real experiment, a vortex can enter a superconductor  gquation(4) does not imply averaging along thxeaxis.

at a field weaker thakis. This process can take place be- The solution of this equation with the boundary conditions
cause of a surface irregularity where the local current densitya/ sx=H atx=d and —d has the form

achieveg*. From this viewpoint, vortices can penetrate into

a sample when the current density on the surface is higher _ d

. . ~ . . ) A=|HN+ ¢O exp — —
than a certain critical valug. This parameter is determined A
by the real surface morphology and satisfies the condition g %\ N(x) sinh(x/\)
i*¢/N<j<j*. In real samples, pinning should be taken into xf sinr(—) dx 4
account, which was done in the theory of the critical state. 0 NoA costid/A)
The magnetization is assumed to be equilibrium, and surface d x—x'|
currents are not taken into account. Nevertheless, they play + d)of exp{ - )

0

an important part in the magnetic moment and microwave
response. x+X'|
The pinning critical current density, is controlled by —e p(— N
the interaction between vortices and static defects in the
bulk. We can identify two possibilities;,>] andj,<j.In  If N(x) changes slowly over the London length and>2\
the former case the strong pinning masks the surface barriefx>0), the vector potentiah and superconducting current
and one can say that vortices penetrate into the sample onfiensityj can be expressed by approximate formulas:
if j¢<>]j.. Inreality this is the case treated by the critical state p d—x
theory. The latter possibility is more interesting. A= ¢oN(x)+ (;50)\25 +A[H- ¢Op(d)]ex[< - —) ,

N(x")
2\

dx’. (5

The vortex density near the surface can be small because A 6
of surface currents, which effectively drive vortices into the ©)
sample. A similar inhomogeneous vortex distribution was c dp [H p(d) d—x
considered in connection with the “geometrical” barrier for 1=~ 7| o T (X - ¢0T) ex;< - T) )

a plate in a normal magnetic fiefd.For a thermodynami-
cally equilibrium state, the vortex densipynear the surface The first term on the right of Eq7) yields the current den-

is different from that in the bulk. In the sample interior we Sity, which is used in the theory of critical statedfp is
havep<H/ ¢, Whereg, is the magnetic flux quantum, be- treated as the magnetic induction. Given the current density,
cause the superconductor magnetic susceptibility.4s1, ~ One can calculate the sample magnetic moment:

and the magnetic induction jumps on the superconductor sur- d d\ [d N(x)
face. The resulting surface current drives vortices from the M= ¢y 1+tanh—|exp — — J >
A N Jo 2mA

d A d—\t hoI 8

X_E —Alan X . ( )

surface.

Let us discuss the distributions of current and vortex
densities in a plate in a parallel magnetic field. Suppose that X sinh
the vortex penetration into the sample is controlled by the
current density. We will prove that the difference between  Direct calculation of the functional derivative
surface currents in increasing and decreasing magnetic fieldsd(MH)/dp(x) indicates that this parameter vanishexat
is due to redistribution of vortices in the sample without a=d. This means that there is nothing to stop vortices from
change in their total number. Consider a superconductingeaving the sample, so elimination of a vortex decreases the
plate of thickness @ in an external parallel magnetic fieldl  free energy. Thus, if there is no surface current acting as a
and introduce a reference frame with thexis normal to the  wall restraining the vortices they will be ejected from the
plate andz-axis aligned with the applied magnetic field. Let sample. As a result, the vortex density on the surface will
us define thex=0 plane in the middle of the plate. In the vanish in a decreasing magnetic field, when the Lorentz
linear approximation, we have an equation for the vectorfforce expels them from the sample. This differs from the

X
A

potential: theory of the critical state, where the surface density of vor-
tices can take arbitrary values.
E / , For N(x) we have a continuity condition:
AA=|A- Vo(r—r;)i2 )y 3
o 2 Vo(r=r)izm @ IN/gt+ VNI ax+D >Nl ax2=Q(j), 9)
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whereV is the average vortex densitl) is the diffusion J, arb. units
coefficient, andQ(j) is responsible for generation of vortices 20 3
by superconducting currents in the sample. The term contain- IOZAZ‘A‘MMAAM
ing the second derivative on the left-hand side of EQ). | O~O=O=0-0-0-0-0C 00
accounts for the vortex diffusion. We descriQéj) in terms o %
of a model in which vortices are generated when the current L 5
density is higher than a certain critical vaijiéRef. 41): —IOrV‘VWWW‘VDDD
OO0
X F
Qi)=—v [[dil-Dedil-Dsoniax @0 = S
080 084 088 092 096 100

where y is a phenomenological parameter a@dx) is the x/d

Heaviside’s step-function. FIG. 6. Distribution of screening current calculated by solving model equa-
In order to obtain a closed equation system, we need #ons. Curvesl and2 are calculated for the increasing magnetic field with
relation between the vortex velociyand current density, ~ 2nd without taking account of diffusion, respectively. Cur@eend4 show
. L. .. calculations for the decreasing field with and without taking account of
We assume a relation betweshandj in the spirit of the  §ifrusion.
Bean model:
V=0, j<lp; V=consti=jp), j>p, (1D ing and decreasing fields leads to the difference in the second
wherej, is the pinning current density. harmonic intensity. The theoretical curve in Fig. 7 was cal-
There is a solution of Eq$4) and(9) with zero current culated in the following manner. The second harmonic am-
and a constant vortex density=H/¢, throughout the plitude, in accordance with E@2), is proportional to
sample. This is stationary but not an equilibrium state. For a 0
thermodynamically equilibrium state wigh¢o<H, the vor- pP= J’ j(x)exp{ 3(x— d)/)\]dx, (13
tex density on the surface is zero owing to the surface cur- d
rents driving vortices into the sample interior. Hexgis the  where the penetration depth of the high-frequency field is
equilibrium vortex density in the volume. The formation of & 3ssumed to be constantas a function of the frequency, and the
vortex-free zone in a nonequilibrium state was discussed bjjonlinear susceptibility is proportional to the direct current
Clen? and BurlachkoV? in the sample. FirsP was calculated without taking diffusion
There are discontinuities in the current and vortex denjnto accountD =0, but the pinning current was treated as a
sities because all diffusion processes have been neglectaginction of magnetic field. We assume that measurements of
One can write an approximate expression for the current defihe second harmonic amplitude versus an increasing mag-
sity on the surface for an equilibrium state in an appliednetic field faithfully reproduce the pinning current versus

magnetic fieldH: magnetic fieldj (H). After substituting this function in Eq.
j.=CH (3.06976-2.7857 % —0.428182,~* (13) we have good agreement between the theory and experi-
ment for increasing magnetic fields, but a large discrepancy
+0.216499 %)/ 4\ (12)  for decreasing fields. In the next stage the vortex distribution
for 0.35< 1< 0.95 and\/d<0.05. in a certain magnetic field was treated as a rough approxi-

In this model. the difference between the intensities O1mation, and a more accurate distribution function was calcu-

the second harmonic in increasing and decreasing magneﬁi%ted forD+#0. It is clear that the diffusion has little effect

fields can be interpreted in the following manner. Experi-O" the second harmonic amplitude, whereas its effect is quite
mental data indicate that the harmonic generation is con-
trolled by the direct surface current. In an increasing mag-

netic field the surface current densityjibecause vortices do 9
not penetrate into the sample at smaller currents. This curren ¢
drives vortices into the sample and forms a vortex-free zone,, | ¥
near the surface. In a decreasing field, the surface currerg >
changes its sign, ejects vortices from the sample, and forms g 4
vortex-free zone near the surface. There is a jump in the® 3
vortex density in both these cases. The currents have opp
site signs, but almost equal magnitudes. Vortex diffusion 2
eliminates jumps and causes the surface current density t
vanish for a decreasing magnetic fields because only in this
case do the diffusion processes and Lorentz force act in ons
direction. In an increasing magnetic field, diffusion drives
vortices out of the sample, i.e., it acts against the Lorentz _ _ _
force. Figure 6 shows current distributions in the skin inFIG. 7. Comparlson between measurements c_>f the harmonic amplitude ver-
. . . . . . . . sus magnetic field and curves with hysteresis loops calculated by model
increasing and decreasing fields with and without inclusion.gyations. Triangles plot experimental data, the solid line plots calculations
of diffusion. The difference between the currents in increaswithout diffusion, open circles calculations taking diffusion into account.

20

0
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considerable in a decreasing magnetic field, and one can séeCONCLUSION
that the agreement between calculations and experimental

. S e . . Let us summarize the basic results of our work. We have
data is better if diffusion is taken into account. An estlmateStudied experimentally and theoretically generation of the
of the diffusion coefficient yield® <10 ?-10 4 cnm?/s. P y y 9

o . nd harmonic in a YB rcon ing single cr I
Harmonic intensity versus temperatuiéhe second har- second harmonic in a YBCO superconducting single crysta

. X . S nder an intense microwave field. Th cond harmonic is
monic intensity plotted against the temperature in Fig. 3 aI-u der a ense microwave field e second onic

: o : 1generated only in a dc magnetic field. The curve of the har-
lows us to draw an important conclusion: vortices are no

: e o . onic intensity versus applied magnetic field has a hyster-
sources of the second harmonic radiation. Specifically, Fig. §énsis loop, which can be interpreted in terms of a model tak-

allows one to compare between radiation intensities at the

L . .Ihg into account diffusion of vortices, although vortices
same temperature and magnetic field magnitude, but wit .
themselves do not act as sources of the second harmonic.

different magnetic prehistories of the sample, namely, WithThere are good reasons to assume that the harmonic genera-
the magnetic field introduced in the normal and supercon:

. . - tion mechanism for the Meissner phase is due to the
ducting states. One can see that the harmonic intensity Binzbura—Landau nonlinearit
notably higher in the latter case, although the vortex density We gare grateful to Ey' S. Borovitskaya, M. V
generated near the surface is lower in this céesimilar Feigel'man, and D. V Shovk.un f.or detailed disc'ussi(-)ns .of
conclusion about the insignificant contribution of vortices toresults of t’his study .and to M. V. Golubkov for help in
radiation derives from the analysis of the_hgrmo_nic ar.np"'conducting the expe;iment. The.wo.rk was supported by the
tude versus magnetic fie)dThe weak radiation intensity Russian Fund for Fundamental Reseaifoject No. 97-02-
generated in the sample cooled in a magnetic field indicate '

that the surface current is low. Although it stretches the poin 798).
a little bit, we can say that this current is suppressed because
the Meissner current is compensated for by the vortex curt’E-mail: leviev@issp.ac.ru
rent (strictly speaking, one cannot separate the Meissnerand
vortex currents
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The temperature and frequency dependence of the nuclear relaxation rate in dielectric glasses is
investigated. It is shown that at low and ultralow temperatures nuclear relaxation is due to

an interaction between the nuclear quadrupole moment and fluctuations of the electric field created
by dipole moments of two-level systems. Fluctuations of this field can be associated with

the background relaxation or are due only to the dipole—dipole interaction between two-level
systems. It is shown that at lower temperatures the second relaxation mechanism begins

to dominate. Expressions are obtained for the temperature and frequency of crossover between
different nuclear relaxation regimes. The possibility of experimental confirmation of our

results is discussed. @999 American Institute of Physids$$1063-776(99)02706-7

1. More than 25 years ago Zeller and Potiémonstrated and y is the constant of the deformational interaction be-
experimentally that at temperatures below 1K dielectrictween the two-level tunneling system and the phononspand
glasses exhibit a universal anomalous behavior of their speandv are respectively the density and speed of sound in the
cific heat and thermal conductivity in comparison with their glass. Note that for all known dielectric glasses it has been
crystalline counterparts. To explain these anomalies, the aempirically determined that
thors of Ref. 2 advanced the hypothesis that additional de- _—_
grees of freedon(in addition to the phonon degrees of free- PUo<1. @)

dom) exist in such glasses which can be described The interaction of two-level tunneling systems with
phenomenologically within the framework of the model of hhonons gives rise to an indirect interaction between two-

noninteracting two-level tunneling systenf§LS). In this  |eye| systems, which can be written @=e, e.g., Ref.)5
model an isolated two-level system is described by the stan-

dard pesudospin Hamiltonian ~ 1 U
pestifosp V=53 UR)SS, UR)=—2. ®
h=—AS—A,S, (1) ] Rij
where the level detuning and the tunneling transition am- The first systematic experimental studies indicating the im-
plitude A, are governed by the distribution function portance of taking this interaction into account were begun in
_ 19762 The dipole—dipole nature of this interaction and the
P(A,Aq)=P/Aq. (2)  associated spectral diffusion between the two-level sy$tems

This model of a dielectric glass has afforded a satisfactor)made it possible to explain the experimentally revealed qua-

explanation of experimental results at temperatures beIo\ﬁratic temperature dependence of the transverse relaxation
1K, all the way down to 100 mR# Thus, for example, in rate

this temperature range experimental studies have been con- 751~T2. (9)
ducted on the relaxation properties of thermal two-level sys-

tems with parameters 2. For a long time it was assumed that spectral diffusion

is the only manifestation of the interaction between two-level
A=Ap=T, (3)  system¢<, and the question has remained open, to what de-
gree the properties of dielectric glasses at ultralow tempera-
tures are due to the dipole—dipole interaction. The possibility
cT=a3(ET), (4) that this interaction plays a defining role in the formation of

] ) o . the universal properties of such glasses was indicated in
wherea is the interatomic distance. For the rate of longitu- Rets 8 and 9.

whose concentration is equal to

dinal relaxation of two-level systen(ﬁ;:verse lifetime the The influence of the dipole—dipole interaction on the
following dependence has been revedled properties of dielectric glasses at ultralow temperatures was
T,;hl=U0(T/v)3, (5) most consistently investigated in the series of papers by

Burin et al1®~'? In these papers it was shown that a new
which is associated with single-phonon relaxation. Here  class of collective low-energy excitations arises in dielectric
glasses due to the dipole—dipole interaction, which bring
Uo= Y ’ (6) about the relaxational properties of these glasses at ultralow

pv? temperatures. This class of excitations is associated with

1063-7761/99/88(6)/5/$15.00 1236 © 1999 American Institute of Physics
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transitions in pairs of two-level systems whose parameteraction in the formation of the universal properties of glasses
are close to thermal3) and whose excitation energy B  at ultralow temperatures continues to be put in dddbtin
= \/A02+ A’=T, where the transitions themselves are createdhis regard, in our opinion it is important to identify alterna-

by the indirect interactiori8). tive properties of dielectric glasses that might be determined
Any pair of two-level systems can be found, generallyprimarily by relaxation of resonance pairs.
speaking, in one of four states+(), (—+), (++), 3. A study of relaxation of nuclei having a quadrupole

(——). Here the symbols- and— correspond to the excited electric moment in dielectric glasses in external magnetic
state and the ground state, respectively. The amplitude of tHields at low temperatures has a more-than-two-decades-long
transition between states belonging to the flip-flop configuhistory?>™*" At low temperatures spin-lattice relaxation
ration, i.e., between the states () and (—+), is given (~T’) is suppressed against the background of the relax-
by? ation associated with the presence of a nuclear quadrupole
, moment, when the relaxation of nuclear spins is due to their
Up Aol interaction with dipole moments of the two-level systems
Agp(R)~ — ~. (10 3 L ;

R® EE (~T° or T). In an external electric field, the nuclear spin
relaxes in the fluctuating electric field created by the dipole
moments of the surrounding two-level systems. Depending
UO/R3<T, (11 on whether the thermal two-level system fluctuates because
of phonon relaxation or as a component of a resonance pair,
Qiifferent temperature, temporal, and frequency characteris-
tics of nuclear relaxation will be observed, an experimental
%tudy of which will allow us to judge the role of the dipole—

" dipole interaction in the formation of the dynamic properties
of dielectric glasses.

P 7o start with, let us specify the relaxation mechanism of
the two-level systems. If we neglect anisotropy, the energy
of the quadrupole—dipole interaction between a nucleus and
a two-level system located a distarieérom it has the form

As was shown in Refs. 10-12, if

then the probability of a transition between the states of th
flip-flop configuration is much greater than the probability of
a transition from these states to any of the two other state
(++) and (——). Therefore it may be assumed that pro
vided condition(11) is satisfied, transitions in pairs of two-
level systems take place only between states of the flip-flo
configuration, and the energy of these transitiond js-|E
—E’|. Thus, a pair of thermal two-level tunneling systems
for which condition(11) is fulfilled is in essence a two-level
system described by the Hamiltoniél) with parameterd ,
andA,,. An important role in such relaxation processes is E=A/R?, (16

played by the so-called resonance pairs, for which . ) ) .
where A is the interaction constant. Note that in the case

ApsAgp~A, =T(PUgp)2. when a two-level system existing as a component of a reso-
nance pair relaxes, we taketo mean the distance from the
nucleus to the nearest two-level system of this resonance
¢, =cr(PUg)<cr, (12 pair.
We assume that we are considering a nuclear transition
between levels separated by the energy intesvdt is well
T;l%A* =T(EUO)2. (13 known .t_hat ina time—varyir)g ex'ternal eleptric fied(t) the
probability of such a transition is proportional to the corre-
Note that the characteristic dimension of the resonancgponding Fourier transform of the correlatd(t) E(0)). In
pairs,R, , is equal in order of magnitude to our case the time dependence of the figdlf) is linked with
R, =ac, 13 (14) fluctuations of thg dipole moments Qf _the two-leyel s_ystems.
In order of magnitude the characteristic correlation tinef
It is important to note that because of the interactionihese fluctuations coincides with one of the tin(8% and
with phonons the coherent coupling between two-level sys¢13). Therefore the relaxation rate of a nucleus located a

tems belonging to the same resonance pair is destroyed. F@jstanceR from a two-level system is equal'fb
this reason, as was shown in Ref. 10, the concept of a reso-

The concentration of such resonance pairs is eqdil to

and the relaxation rate

nance pair, considered as a carrier of the elementary excita- A\? 1
tion, loses meaning at temperatures RO\ R4 724 02
T>To=(PUg)yv3/Uq, (15) 218/ A\Z -1 18
for which 7= 7. It is important that forT <T, “\R ) T2 R Iy, (17
Te < Tph-
* = ph where
Despite the fact that taking relaxation of resonance pairs )
into account enables one to understand peculiarities of the A !
behavior of dielectric glasses at ultralow temperatiees., I'a= ; 24 2 (18)
it explains the linear temperature dependence of the internal
friction coefficient® and the rate of phase memory I183sin If at first the projection of the magnetic moment on some

some works the fundamental role of the dipole—dipole inter-axis is equal toM,, then because of the interaction with a
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fluctuating two-level system located a distariRdrom the From this formula it follows that in the considered time
nucleus the temporal evolution of this projection is given byinterval, thanks to spatial inhomogeneity of the configuration
of the subsystem, nuclei relax that have the nearest fluctuat-

M=Moexp—tl'g). (19 ing TLS at a distance

As a consequence of the short-range nature of the R— RILIRIILS. R

quadrupole-dipole interactiof16), relaxation of the nucleus t ¢

is completely determined by the two-level system nearest t&stimation of the integra(29) by the method of steepest

it. The probabilityW(R) that the fluctuating two-level sys- descent gives

tem nearest the nucleus is found at the distaRdig

M (t)=Mg exp — (ty,)¥1. (30)
W(R)=cexd — (R/R,)%], R.=ac 3 (20)

Note that, as for the case of intermediate tin{@6),
wherec coincides with eithect or ¢, . Therefore, averaging relaxation at late times does not have a simple exponential
expression19) over the configuration of the two-level sys- character and occurs much more slowly than at early times.

tem about the nucleus, we obtain 4. Let us turn now to an analysis of the obtained depen-
o dences in the two following cases:
M(t)=My>, W(R)exp —tlR). (21 1) when nuclear relaxation is caused by single-phonon

R fluctuations of all the thermal two-level systems;
We rewrite relation21) in the form 2) when nuclear relaxation is c.au'sed by fluctuations of
R13 only thermal two-level systems existing as components of

M = resonance pairs.
M(t)=Mo=—Mqc ER: exr{ (Rc> } Thus, in expression&24) and (27) in the first case in-

8 stead ofr andc we must substitute respectivety, and cy
« 1_@(4 _ (&) H [see Egs(5) and(4)], and in the second casg andc, [see

R ’ Egs. (12 and (13)]. For the analysis that is to follow, note
that in dielectric glasses the numerical values:-qlfand Ty
are such that for the characteristic radio frequenmes at which
Let us consider the behavior dﬁ(t) on different time nuclear resonance experiments are usually performed, the
scales. At early times<TI", * [see Eq(18)] nuclei relax that ~ condition
have a fluctuating two-level system at one of their nearest
sites. Equatior(ZZE)J then yields / l<on <o (3D

=a(tl',) Y8 (22

is satisfied and the quantitit8) is equal to

M (t)=Mgexp —ty,), (23 a2
where Tp=|——| 7%
a'w
y1=2zcly, (24)

_ _ Let the characteristic times be such thag(I'}) 1.
and z is the number of nearest neighbors. Thanks to therhen, the nuclear relaxation goes according to the exponen-
smallness of the low-temperature relaxation the early-timejal law (23), (24). In this case, in the first of the above two

stage is extremely important. cases, when nuclear relaxation is stimulated by fluctuations
At intermediate times, Satisfying the condition of thermal two-level systems, we obtain
a<< Rt< Rc , (25) A 2
— ph_ -1 _T4
nuclei relax, for which the nearest fluctuating two-level sys- 71 crla (PT) atw Toh =T (32)

tem is found aR=R;.
Neglecting the first factor in Eq22) inside the sum and
replacing the sum by an integral, we find

while in the second case, when nuclear relaxation is caused
by fluctuations of resonance pairs,

M (t)=Mg ex —(ty)*?], (26) *=c,I'*=(PT)(PUy)

2
A
) T T (33)
where Yo

Comparison of expression@2) and (33) shows thatyﬁh

— (83 53,
2= a=cPy1<y1. @7 =y} at the temperature
And, finally, at late times, when
3/2 1/
R.<R,, 28) =(PUo) \/ =(PUg)Y2T,. (34)
changing over in Eq(21) from a sum to an integral, we Thus, at temperatur§s>T’ the nuclei relax on thermal two-
obtain level systems, and in the opposite cabe T’ the nuclei

8 3 relax on resonance pairs. Note tffdtis the temperature at
i am Ri|”_[R hich kes place in th f longitudinal and
M(t)=Moc R2dRexg —| —| —| =] |. (299  Which crossover takes place in the rate of longitudinal an
3 R R ; ~ Hd2
a c transverse relaxation of two-level systems:
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The cases of late timefsee Eqs.(26) and (30)] are
treated analogously. When

t> (-1, (35)
we obtain
A 2
,ygh: C_?_/?)I‘gh: (PT)S/B a4_> T[;hlw Tl7/3, (36)
w

while
A 2
5= =I( PT)(PUO>18’3< a4—> 7 TR (37)
w

Comparing formulas(36) and (37), we find that yg“
=5 at the temperature
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2
1 5/3
1 ~T7,
Tx

A

8.4

*% __ ~8/3
2 _C*

Recall that the resonance pairs control relaxation at late

times if y5* = 15", Estimateg42) and (43) in this case are
replaced by

T, =T, (PUg)*"=(PUg)"**T, T,

T,=<(PUg)>>4T’,

w<o]=T'(PUg)?"*=Ty(PUy)*".

5. For the most widely studied dielectric glasses, such as
SiO,, the characteristic temperature region in which cross-
over of the relaxation mechanism can be expected to occur is
T< 100 mK. For such temperatures the above numerical es-

timates show that the nuclear relaxation rate is on the order
of 1078571,
More suitable objects in which crossover of the nuclear
relaxation mechanism can be observed are the mixed crystals
r;—yKCN,—compounds which have recently been
dely studied as systems which quite adequately model the
roperties of dielectric glasses at low temperatures. Esti-
mates show that in such systems the threshold temperature
T, [see Eq(15)] at which the coherent coupling between the
two-level systems of a resonance pair has still not been de-
stroyed by phonons exceeds 1K. For such temperatures in
the relaxation processed" and y5 compete. the indicated mixed crystals the nuclear relaxation rate can
For completeness, let us consider the hard-to-realize caseach values of 10°— 10 3s™ 1. Note that nuclear relaxation
of low temperatures when rates of such orders of magnitude have been experimentally
recorded in amorphous AS; (Ref. 19. Note that for this
(39 compound at temperatures near 10K a power-law depen-

The relaxation times grow as the temperature is |0wered,jence T* was discovered for the nuclear relaxation ra.te,

and the first of condition€39) in fact imposes a lower bound Where it was established thatla<2. This is in clear con-
on the temperature: tradiction with the assumption of a phonon mechanism of

nuclear relaxatior§32), but may be evidence in favor of the
1) mechanism of non-phonon nuclear relaxati88) proposed
= (EU 0)2<T’ (40) in_the present paper. However, the existgnce _of coherent cou-
pling between the two-level systems in this temperature
when nuclear relaxation can still be stimulated by a resofrange cannot be taken as an undisputed fact and requires
nance pair. Thus, for a low enough frequency in the case adeparate study.
early times we have This work was carried out with the support of the Rus-

T'=(PUy)®T'<T', (39)

and, thus, for temperaturds>T' the nuclei relax on thermal
two-level systems, and in the opposite case, at temperatur

T<T' the nuclei relax on resonance pairs. Note that in tthi
case(35) crossover in the nuclear relaxation rate occurs ab

the temperaturé'", which is lower thanT’. Also note that in
the time interval

(T*) " t<t<(TPh~1

o7, <1<oTpH,.

w
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and the nuclear relaxation rate is independent of the tempera-
ture as long asy}* =+2". If this condition is satisfied for E-mail: iyp@Ikv.Kiae.su
T=T,, then it continues to be satisfied as the temperature is ' o
raised up to the temperature
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ERRATA

Erratum: Quasi-collinear and partially degenerate four-wave mixing: an alternative
explanation of the phase-conjugation property of backward stimulated scattering [JETP
88, 235-245 (February 1999)]

Dun Liu

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan
48109, USA

Guang S. He
Photonics Research Laboratory, State University of New York at Buffalo, New York 14260-3000, USA
[S1063-776(99)02806-]

Figures 5 and 6 should read as follows:

FIG. 5. Photographs dB) the pump beam li(b) the pump
beam | after passing through an aberration plétg,the
interference pattern of the two pump beams with no aber-
ration plate, andd) the interference pattern of the two
pump beams with aberration plate in position A shown in
Fig. 4.

1063-7761/99/88(6)/2/$15.00 1241 © 1999 American Institute of Physics
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FIG. 6. Photographs dfa) the BSBS beam excited by the
pump beam Il,(b) the BSBS beam excited by the pump
beam | passing through an aberration plétgthe interfer-
ence pattern of the two BSBS beams with no aberration
plate, and(d) the interference pattern of the two BSBS
beams with an aberration plate in position B shown in Fig.
4.
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