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VERY HIGH MULTIPLICITY PHYSICS
Preface

The traditional purpose of the very high multiplicity physics workshops (VHMPW) is to highlight the
present status and prospects of searches for new physics beyond the standard models of inelastic hadron
interactions at intermediate and high energies. Various extensions of the existing theoretical approaches,
including multiperipheral models, pQCDpredictions, and fractal and wavelet analyses, were within the interest
of the VHMPW held in the years 2000–2002 at JINR (Dubna).

The list of main topics at the VHMPW includes the following items: phenomenology of VHM processes,
multiperipheral models, pQCD predictions in the VHMdomain, low-x physics, statistical physics approaches,
collective phenomena, multiparticle Bose–Einstein correlations, and perspectives of VHM experimental
investigations.

The VHMPW was sponsored by the Joint Institute for Nuclear Research (Dubna) and the Russian
Foundation for Basic Research.

The conference made a remarkable contribution to the fruitful exchange of ideas between theorists and
experimentalists working in particle physics and high-energy nuclear physics.

The talks presented at the meetings are collected in the Proceedings, Dubna, JINR (2000–2002), and
the present issue contains selected papers. We hope that the publication of them will contribute to a further
development of theoretical concepts in multiparticle-production physics beyond the standard hadron physics.
We believe that it will arouse interest of experimentalists in this important area of investigations.
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Moments of the Very High Multiplicity Distributions*
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Abstract—In experiment, the multiplicity distributions of inelastic processes are truncated due to finite
energy, insufficient statistics, or special choice of events. It is shown that the moments of such truncated
multiplicity distributions possess some typical features. In particular, the oscillations of cumulant moments
at high ranks and their negative values at the second rank can be considered as ones most indicative of
the specifics of these distributions. They allow one to distinguish between distributions of different type.
c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The studies of multiplicity distributions of high-
energy inelastic processes have produced many im-
portant and sometimes unexpected results (for re-
views, see, e.g., [1–3]). The completely new region of
very high multiplicities will be opened with the advent
of the RHIC, LHC, and TESLA accelerators.

Theoretical approaches to the multiplicity distri-
butions in high-energy processes usually have to deal
with analytic expressions at (pre)asymptotic energies
which only approximately account for the energy–
momentum conservation laws or with purely phe-
nomenological expressions of probability theory. The
multiplicity range extends in this case from zero to
infinity.

In experiment, however, one has to consider dis-
tributions truncated at some multiplicity values in
one way or another. These cuts could appear due to
energy limitations, low statistics of experimental data,
or because of special conditions of an experiment. En-
ergy limitations always impose the upper cutoff on the
tail of the multiplicity distributions. Low statistics of
data can truncate these distributions from both ends
if they are insufficient to detect rare events with very
low and/or very high multiplicity. Similar truncations
appear in some specially designed experiments [4],
when events within some definite range of multiplici-
ties have been chosen.

It would be desirable even in these cases to
compare the distributions within those limited re-
gions with underlying theoretical distributions. The
straightforward fits are sometimes not accurate
enough to distinguish between various possibilities

∗This article was submitted by the author in English.
**e-mail: nechit@lpi.ru
1063-7788/04/6701-0100$26.00 c©
because the probability values vary by many orders of
magnitude. A more rigorous approach is to compare
different moments of the truncated distributions. The
simple-minded χ2 fits are less sensitive and provide
less information. The cumulant momentsKq seem to
be most sensitive to slight variations (and, especially,
cuts and shoulders) of the distributions. They often
reveal such tiny details of the distributions which
otherwise are hard to notice.

In particular, QCD predicts quite peculiar behav-
ior of cumulant moments as functions of their rank
q. According to solutions to the equations for the
generating functions of the multiplicity distributions
in the asymptotic energy region, the ratio of cumulant
momentsKq to factorial moments Fq usually denoted
as Hq = Kq/Fq behaves as q−2 and, at preasymp-
totic energy values, reveals the minimum [5] at q ≈
5 with subsequent oscillations at higher ranks [6,
7]. Such behavior has been found in experiment at
presently available energies [8, 9]. The solutions to
the corresponding equations for fixed-coupling QCD
also indicate similar oscillations [10]. At asymptotics,
the oscillations should disappear and Hq becomes a
smoothly decreasing and positive definite function of
q, as mentioned above.

Neither of the distributions of the probability the-
ory possesses these features. Among them, the nega-
tive binomial distribution (NBD) happens to be one of
the most successful ones in describing global features
of the multiplicity distributions [11]. We recall that the
negative binomial distribution is defined as

Pn =
Γ(n+ k)

Γ(n+ 1)Γ(k)
an(1 + a)−n−k, (1)

where a = 〈n〉/k, 〈n〉 is the mean multiplicity, k is an
adjustable parameter, and the normalization condi-
2004 MAIK “Nauka/Interperiodica”
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Fig. 1. Dq = q2Hq are shown for asymptotic QCD by circles (DQCD
q ≡ 1) in comparison with NBD predictions at different

values of the parameter k = 2 (diamonds), 3 (crosses), 10 (squares). The numbers near the QCD values show which values of
k one would need to use for NBD to fitDq = 1 at the corresponding q.
tion reads
∞∑

n=0

Pn = 1. (2)

Its generating function is

G(z) =
∞∑

n=0

Pn(1 + z)n =
(

1 − z
〈n〉
k

)−k

. (3)

The integer rank factorial and cumulantmoments and
their ratio are

Fq =
1

〈n〉q
dqG(z)
dzq

∣∣∣∣
z=0

=
Γ(q + k)
Γ(k)kq

, (4)

Kq =
1

〈n〉q
dq lnG(z)

dzq

∣∣∣∣
z=0

=
Γ(q)
kq−1

, (5)

Hq =
Γ(q)Γ(k + 1)

Γ(k + q)
. (6)

Hq moments at the parameter k = 2 behave as
2/q(q + 1), i.e., with a power-law decrease reminding
one of QCD at large q, however, with a different
weight factor. Therefore, at first sight, it could be
considered as a reasonably good analytic model for
asymptotic behavior of the multiplicity distributions.
It has been claimed [12–15] that the superposition of
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
two NBDs with different parameters and their cutoff
at highmultiplicities can give rise to oscillations ofHq

and better fits of experimental data at preasymptotic
energies. Nevertheless, the fits have not been perfect
enough.

Let us compare first the asymptotic QCD pre-
dictions with NBD fits at different values of the ad-
justable parameter k. The values of Dq = q2Hq plot-
ted in Fig. 1 as functions of q for asymptotic QCD
are identically equal to 1. For the NBD at k = 2, they
exceed 1 tending to 2 at large q. At larger values
of k, all Dq are less than 1 except D2 = 1 at k = 3.
Surely, the identity D1 ≡ 1 is valid for any k due to
the normalization condition.

To get asymptotic QCD results with all Dq ≡ 1
from expressions similar to the NBD, one would need
to modify the NBD in such a way that the parameter k
becomes a function of n. Thus, some effective values
of k should be used to get QCD moments Dq = 1 at
various q. They are obtained as the solutions to the
equation

q−1∏
n=1

(
1 +

k(q)
n

)
= q2, (7)

which follows from Eq. (6) for Hq = q−2. They show
that k decreases somewhat from 3 to some values ex-
ceeding 2 with an increase in q. This reflects the well-
4
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known fact that the tails of distributions are under-
estimated in NBD fits [14] compared to experimental
data in the preasymptotic region. Also, the amplitude
of oscillations and their periodicity are not well repro-
duced by a single truncated NBD [14], and one has
to use the sum of at least two NBDs to get a better
fit. However, rather large values of k were obtained in
these fits. It implies, in fact, that the fit is done with
the help of two distributions very close to Poissonian
shapes because the Poisson distribution is obtained
from the NBD in the limit k → ∞. Therefore, the tails
are suppressed very strongly.

Here, we will focus our efforts on qualitative
changes of moments when the NBD is truncated,
especially, as applied to studies of very high multi-
plicities.

In QCD considerations based on the equations
for the generating functions for quark and gluon jets,
the preasymptotic (next-to-leading order, etc.) cor-
rections give rise to oscillations of Hq. Even though
they are of higher order in the coupling strength,
they appear mainly due to account of energy con-
servation in the vertices of Feynman diagrams but
not due to considering the higher order diagrams
which are summed in themodified perturbation theory
series (see [3]). In the phenomenological approach,
this would effectively correspond to the cutoff of the
multiplicity distribution at some large multiplicity.
Therefore, we intend here to study how strongly such
a cutoff influences the NBDmoments, whether it pro-
duces oscillations of the cumulant moments, and how
strong they are, and, as a more general case, consider
the moments of NBD truncated at both low and high
multiplicities. This would help answer the question
whether the shape of the distribution in the limited
region can be accurately restored from the behavior of
its moments. It could become especially helpful if only
events with very high multiplicities are considered in
a given experiment because of the above-mentioned
underestimation of tails in the NBD fits.

2. TRUNCATED NBD AND ITS MOMENTS

In real situations, the multiplicity distribution is
sometimes measured in some interval of multiplicities
and one can try to fit using theNBD the data available
only in the restricted multiplicity range. Therefore,
we shall consider the negative binomial distribution
within the interval of multiplicitiesm ≤ n ≤ N called

P
(c)
n and normalized to 1 so that

N∑
n=m

P (c)
n = 1. (8)

Moreover, due to the reasoning above and to simplify
formulas, we consider here only the case of k = 2. The
PH
generalization to arbitrary values of k is straightfor-
ward.

The generating function of the truncated distribu-
tion Gc(z) can be easily found as

Gc(z) =
N∑

n=m

P (c)
n (1 + z)n = G(z)(1 + z)m

f(z)
f(0)

,

(9)

where

f(z) = 1 +m(1 − x) (10)

− [1 + (N + 1)(1 − x)]xN−m+1,

x = b(1 + z), b =
a

1 + a
. (11)

Correspondingly,

f(0) ≡ f(z = 0) ≡ f(x = b). (12)

Using the above formulas for the factorial mo-
ments, one gets the following formula for the mo-
ments of the truncated distribution expressed in terms
of the NBD moments (4):

F (c)
q =

(
〈n〉
〈n〉c

)q

Fq

{
1 +

1
f(0)(q + 1)

(13)

×
q∑

r=1

a−r

r!
(q + 1 − r)

[(
m

1 + a
+ 1 − r

)

× θ(m+ 1 − r)
r∏

i=1

(m+ 2 − i)

−
(
N + 1
a+ 1

+ 1 − r

)
bN−m+1

r∏
i=1

(N + 3 − i)

]}
,

where 〈n〉c is the mean multiplicity of the truncated
distribution. It is related to the mean multiplicity 〈n〉
of the original distribution as

〈n〉 − 〈n〉c (14)

=
(1 − b)[(N + 1)(N + 2)bN−m+1 −m(m+ 1)]
1 +m(1 − b) + bN−m+1[(N + 1)b−N − 2]

.

These expressions can also be used for the dis-
tributions truncated on one side by setting m = 0 or
N = ∞.

The cumulant moments can be calculated after the
factorial moments are known from Eq. (13) according
to the identities

Fq =
q−1∑
m=0

Γ(q)
Γ(m+ 1)Γ(q −m)

Kq−mFm. (15)

This formula is a simple relation between the
derivatives of a function and of its logarithm [see
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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Fig. 2. Hq moments for NBD with 〈n〉 = 10 truncated at N = 30 (diamonds), 40 (crosses), 50 (squares) at m = 0.
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Fig. 3. Hq moments for NBD with 〈n〉 = 5 (diamonds), 10 (crosses), 15 (squares) truncated at N = 30 atm = 0.
Eqs. (4) and (5)]. Therefore, it is valid for both original
and truncated distributions.

For the Poisson distribution, the ratios Hq are
identically equal to zero and are given by Eq. (6) for
the NBD, while truncation induces new features. In
the figures, we show the behavior of the ratios Hq

as functions of the rank q for the truncated negative
binomial distributions.
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
At the beginning, we consider the abrupt cut-
off only of the very high multiplicity tail, i.e., the
case m = 0 and N > 〈n〉. This mimics the energy–
momentum conservation limits. In Figs. 2 and 3, it is
shown that such a cutoff induces oscillations of Hq.
The farther the cutoff from the mean multiplicity, the
weaker the oscillations. This quite expected result is
known from long ago [12, 13]. It is demonstrated in
4
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Fig. 4. Hq moments for NBD with 〈n〉 = 5 (diamonds), 10 (crosses), 15 (squares) truncated at N = 50 atm = 0.
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Fig. 5. Approximate scaling ofHq moments for NBD withN/〈n〉 = const atm = 0.
Fig. 2 for 〈n〉 = 10 and different cutoffs at N = 30,
40, 50. Another representation of the same result is

seen in Fig. 3, where the constant cutoff N = 30 has
been chosen for different 〈n〉 equal to 5, 10, and 15.
P

The closer the cutoff to 〈n〉, the stronger the low-rank
moments are damped. For the faraway cutoffN = 50,
the period of oscillations increases. This increase is

larger for lower mean multiplicity (see Fig. 4). At
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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Fig. 6. Dq moments for NBD with 〈n〉 = 10 truncated atm = 10, N = 30 (diamonds), 20–40 (crosses), 30–50 (squares).
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Fig. 7. Dq moments for NBD with 〈n〉 = 5 (diamonds), 10 (crosses), 15 (squares) truncated atm = 10, N = 30.
N/〈n〉 = const, one observes the approximate scal-
ing ofHq as seen in Fig. 5.

3. VERY HIGH MULTIPLICITIES
With the advent of RHIC, LHC, and TESLA, we

are approaching the situation where average multi-
plicities become very high and the tails of multiplicity
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
distributions reach values which are extremely large.
These events with extremely high multiplicities at the
tail of the distribution can be of special interest. The
tails of particular channels usually die out very fast,
and a single channel dominates at the very tail of the
distribution. Mostly soft particles are created there.
Thus, one hopes to get direct access to very low-x
4
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Fig. 9. Dq moments for NBD with 〈n〉 = 10 truncated at m = 20, N = 50 (diamonds), 20–40 (crosses), 20–30 (squares),
20–25 (circles).
physics. QCD interpretation in terms of the BFKL

equation (or its generalization) can be attempted.

Also, the hadronic densities are rather high in such
P

events, and the thermodynamic approach can be ap-
plied [16].

However, these events are rather rare and the
experimental statistics have been quite poor until
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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now. The Poisson distribution has a tail which de-
creases mainly like an inverse factorial. According to
NBD (1), the tail is exponentially damped with the
power-increasing preexponential factor. At the same
time, QCDpredicts even a somewhat slower decrease
as is seen in Fig. 1 from the behavior of the moments.
This is important for future experiments in the very
high multiplicity region.

To study these events within the truncated NBD
with k = 2 according to Eq. (13), let us choose the
multiplicity interval of constant length N −m = 20
and place it at various distances from the mean mul-
tiplicity 〈n〉 = 10 as in Fig. 2. The resulting Hq are
shown in Fig. 6.

Themost dramatic feature is the negative values of
H2 and the subsequent change of sign of Hq at each
q in the case where the lower cutoff m is noticeably
larger than 〈n〉 (m/〈n〉 ≥ 2). This reminds one of the
behavior of Hq for the fixed multiplicity distribution
and shows that the NBD tail decreases quite fast, so
that the multiplicity m dominates in the moments of
these truncated distributions.

The same features have been demonstrated in
Figs. 7 and 8 for different average multiplicities and
different positions of the fixed window N −m = 20.
In Fig. 7, the window is rather close to 〈n〉 or even
contains it inside (for 〈n〉 = 15). Therefore, H2 < 0
only for 〈n〉 = 5. In Fig. 8, it is very far from 〈n〉.
Thus, all H2 are negative, the more the lower is 〈n〉.
Again, the sign-changing characteristics remind one
of those for the fixed multiplicity distribution.

Another possibility to study the tail of the distribu-
tion with the help of Hq ratios is their variation with
the varying length of the tail chosen. At the same
mean multiplicity 〈n〉 = 10, we calculate moments
for the intervals starting at m = 20 and ending at
N = 50, 40, 30, 25. The values of Hq at rather low
ranks q = 2, 3, 4, 5 are very sensitive to the interval
length (as is shown in Fig. 9) and vary by an order of
magnitude.

4. CONCLUSIONS

In connection with some experiments planned, our
main concern here was to learn if Hq ratios can be
used to judge the behavior of the tail of themultiplicity
distribution. Using the NBD as an example, we have
shown thatHq behaves in a definite way depending on
the size of the multiplicity interval chosen and on its
location. Comparing the corresponding experimental
results with NBD predictions, one would be able to
showwhether the experimental distribution decreases
slower (as predicted byQCD) or faster than theNBD.

In particular, the negative values of H2 noted
above are of special interest because they show
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
directly how strong the decrease of the tail is. NBDs
at different k values would predict different variations
of H2 with more negative H2 for larger k. Also, the
nature of oscillations of Hq moments at larger values
of q reveals how steeply the tail drops down.

Let us stress that the choice of high multiplicities
for such a conclusion could be better than the simple-
minded fit of the whole distribution. As one hopes, in
this case, there are fewer transitions between different
channels of the reaction (e.g., from jets with light
quarks to heavy quarks), and the underlying low-x
dynamics can be revealed.
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Abstract—The goal of the proposed experiment is to investigate the collective behavior of particles in the
process of multiple hadron production in pp interaction pp→ nππ+ 2N at the beam energyElab = 70 GeV.
The domain of high multiplicity nπ = 30–40, or z = n/n̄ = 4–6, will be studied. Near the threshold of
reaction nπ → 69, z → zth = 8.2, all particles acquire small relative momentum ∆q < 1/R, where R is
the dimension of the particle production region. As a consequence of multiboson interference, a number
of collective effects may show up: (a) a drastic increase in the partial cross section σ(n) of production of
n identical particles is expected, compared with commonly accepted extrapolation; (b) the formation of
jets consisting of identical particles may occur as a result of the multiboson Bose–Einstein correlation
(BEC) effect; (c) a large fluctuation of charged n(π+, π−) and neutral n(π0) components and onset of
centauros or chiral condensate effects are anticipated; (d) an increase in the rate of direct γ as a result of
the bremsstrahlung in the partonic cascade and annihilation of π+π− → nγ in dense and cold pionic gas
or condensate is expected. In the domain of high multiplicity z ≥ 5, a major part of the c.m. energy

√
s =

11.6 GeV is materialized, leading to a high-density thermalized hadronic system. Under this condition,
a phase transition to cold quark–gluon plasma (QGP) may occur. The search for QGP signatures like
large intermittency in the phase-space particle distribution and an enhanced rate of direct photons will be
performed. The experimental setup is designed for detection of rare high-multiplicity events. The experiment
is to be carried out at the extracted proton beam of the IHEP U-70 accelerator. The required beam intensity
is ∼107 s−1. Under the assumption that the partial cross section σ(nπ = 35) = 10–1 nb, the anticipated
counting rate is 10–1 events/h. The multiboson BEC enhancement may drastically increase the counting
rate. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The investigation of multiple-particle production
at high energy is one of the fundamental problems
of hadron physics. It is essentially a nonperturba-
tive process. QCD gives only a qualitative picture
of this phenomenon: hadron collision initiates a
partonic cascade. The gluon strings that arise be-
tween colored partons eventually break and produce
quark–antiquark pairs. At the final stage of cascade
development when the energy is exhausted, the par-
tons join together creating hadrons. The mechanism
of color confinement is unknown. As a consequence,
at present, it is impossible to calculate theoretically
even the main parameters of the process: multiplicity
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distribution, the energy and mass spectra of particles.
Some features of the reaction are described by differ-
ent models: thermodynamic, hydrodynamic, partonic
cascade, Redge poles, and so on. But none of these
approaches are complete and their substantiation is
far from being rigorous.

There exists an extensive literature on this subject.
The theoretical approaches based on statistics and
thermodynamics are reviewed in [1, 2]. The grounds
for the phase transition search are presented in [3,
4]. The importance of the investigation of multipar-
ticle production for understanding the properties of
hadron matter under extreme conditions, like high
density and temperature, is stressed in [5]. A complete
survey of the situation with particle correlation and
intermittency can be found in [6]. Experimental data
on multiplicity distribution and its phenomenological
comprehension is given in [7].

The purpose of the proposed experiment “Ther-
malization” is to investigate the collective behavior of
particles in the process of multiparticle production in
2004 MAIK “Nauka/Interperiodica”
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pp (or pN ) interactions

pp → nππ + 2N (1)

at the proton energy Elab = 70 GeV. At present, the
multiplicity distribution at this energy is measured up
to the number of charged particles nch = 20 [8]. The
corresponding scaling variable z = nch/n̄ch = 3.5.
The kinematics limit is nπ,th = 69, zth = 8.2. Here,
nπ,th is the maximum number of charged and neutral
pions allowed by energy–momentum conservation.
We plan to study the events with multiplicity nπ =
30–45, z = 5–6. At large multiplicity and near the
threshold of the process (1), where all particles have
a small relative momentum, the high particle den-
sity f = (2π)3d6n/dp3dr3 ≈ π3/2N/(VpVr) in six-
dimensional phase space is reached. Here, N is the
number of particles in momentum–space volume
VpVr. Note that, in the system � = c = 1, the value
f is dimensionless. The authors of [9–11] argue
that the parameter f indicates the importance of
multiparticle effects. The value f is the mean number
of pions that interfere with one given pion and build
the Bose–Einstein (BE) enhancement in the two-
particle correlation function. Thus, if f � 1, only the
two-particle correlation may be observed. Typically,
f ≈ 0.1 for the midrapidity region and p⊥ ≈ p̄⊥. Even
at LHC energy in Pb–Pb collisions, f̄ is expected
to be small in spite of huge multiplicity. This is
due to large phase-space volume VpVr ≈ (4/3)2p̄3r̄3

occupied by secondary particles: p̄ ≈ 0.5 GeV/c,
r ≈ 10 fm. In contrast to high-energy A–A collision,
in our case of pp collision the volume VpVr is three
orders of magnitude less, since we expect to have p̄ ≈
0.07 GeV/c, r ≈ 2–3 fm. Therefore, we anticipate
being able to reach a very high particle phase-space
density, f � 1. As a consequence, one expects to
observe the collective effects connected with multi-
boson interference: broadening of the multiplicity
distribution, anomalous fluctuation of charged and
neutral components, the formation of jets, and so on.

In the region z ≥ 4, a major part of the c.m. en-
ergy

√
s = 11.6 GeV is transferred into the mass of

particles produced. The density of the created hadron
system may be rather high, ρ/ρ0 ≈ 5–10. Here, ρ0

is the density of nuclear matter in the ground state.
According to common belief, the system under such
conditions is supposed to be a quark–gluon plasma
(QGP). Figure 1 is taken from [12] to illustrate this
statement.

The onset of QGP manifests itself, at least, by
two signatures: large-particle intermittency in the
phase space of rapidity–transverse momentum and
an excess of direct photons and lepton pairs. We plan
to search for both of these signatures. The unique
feature of QGP in our case is its low temperature.
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
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Fig. 1. Phase diagram of nuclear matter.

The closer we approach to the reaction threshold, the
lower the temperature and the higher the density of
the system. The lower the temperature, the longer
the lifetime of the system. The latter is especially
important: the system must come into equilibrium in
order to reveal the QGP features.

Further progress in understanding the dynamics
of the multiparticle production process will come from
further development of the experiment.

For the purposes of this experiment, we plan to
improve the setup Spectrometer with Vertex Detec-
tor (SVD) installed at the extracted proton beam of
the IHEP (Protvino) U-70 accelerator. The beam
intensity is 107 s−1. It is incident on a hydrogen (or
light nuclei) target and generates 104 s−1 pp (or pN )
interactions. One should mention that it is difficult
to make a reliable extrapolation of an experimentally
measured multiplicity distribution from the region
0 ≤ z ≤ 3.5 to the region z ≥ 5. We expect that a
partial cross section in the interval 4 ≤ z ≤ 5 is about
10–1 nb. Then, we can collect about 1–10 events/h.
However, there are theoretical arguments favoring
BE enhancement of production of identical pions.
Then, the counting rate will be much higher.

2. PHYSICS PROGRAM

2.1. Multiparticle Process near Kinematics Limit

Let us consider a high enough multiplicity ncrit
when in c.m.s. no energy remains for formation of
the leading particles. Then, all secondaries have equal

energy
√
p2
⊥ + p2

l +m2, which we determine from the

mean transverse momentum of pion p⊥ ≈ 0.3 GeV/c,
4
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Fig. 2. Multiplicity distribution (partial cross section) in pp interaction. For details, see text.
as was measured in soft hadron reactions. The

longitudinal momentum is pl =
1√
2
p⊥. The critical

multiplicity is determined by relation
√
p̄2
⊥ +m2

π =

(
√
s− 2mN )/(ncrit + nN ). Here, nN = 2 is the nu-

cleon multiplicity. We get ncrit = 23. In the region n ≥
ncrit, the particles in c.m.s. should have an isotropic
angular distribution and their energy distribution is
Maxwellian or BE. The corresponding temperature is

T =
2
3
Ekin;Ekin = (

√
s− 2mN −nπmπ)/(nπ +nN ).

Here, nπ is pion multiplicity; T depends on pion
multiplicity nπ and vanishes when nπ → nth. On
this basis, we develop a Monte Carlo (MC) event
generator and calculated the angular and momentum
distribution of the pion and nucleons. These data are
necessary for planning the experiment. An example:
at multiplicity nπ = 50, the mean c.m. energy of
all particles is 50 MeV and the mean lab. emission
angle θ̄π = 90 mrad, θ̄N = 40 mrad. These numbers
indicate the remarkable feature of this apparatus:
having a very modest angular acceptance θ = 2θ̄π =
200 mrad, it will detect 95% of all secondary products.

There is experimental indication of the onset of the
thermalization regime at multiplicity nch = 18 [13].
PH
2.2. Multiplicity Distribution

The topological cross section σ(nch) in pp inter-
action at 70 GeV at the U-70 accelerator has been
measured in two experiments [8] (see Fig. 2). The
calculation by the MC PYTHIA code is shown. One
can see that the standard generator predicts a value
of cross section σ(z) which is in reasonably good
agreement with experimental data at z < 2 but it
underestimates the value of σ(z) by two orders of
magnitude at z ≥ 3.5.

An important task is the extrapolation of the func-
tion σ(z) from the domain z ≤ 3.5 to the domain
of our interest z ≥ 5. One successful approximation
of the data at moderate energy is suggested in [14].
There, the authors make use of the additive quark
model. It is assumed one quark–quark collision is
described by a Poisson function. Two and three qq
collision is represented by the convolution of Poisson
functions.

The models mentioned above do not take into
account the effect of interference of identical parti-
cles. Generally, the account of the multiboson effects
is extremely difficult task. But there exists a simple
analytically solvable model [9] allowing for a study of
the characteristic features of multiboson systems un-
der various conditions including those near the Bose
condensation. The latter is even sometimes called a
pion laser. The authors of [11] apply this model to
study the influence of the Bose–Einstein correlation
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004



PROTON–PROTON INTERACTION 111
(BEC) on pion multiplicity, spectra, and the two-pion
correlation function. The prediction of this model is
shown in Fig. 2. The free parameters are r for space
dimension of the system and ∆ for characteristic
mean momentum of the particles. We see that the
model strongly favors the production of π0 (so-called
anticentauro event).

2.3. Multiboson Jets

We considered the influence of the BE statistics
on pion multiplicity distribution. There is another in-
teresting BEC effect that is widely discussed in the
literature. It is multiboson momentum (and angular)
correlation. Preprint [15] is devoted to analysis of the
multipionic system. It was found that the require-
ment of wave function symmetrization leads to the
formation of an interference maximum with the mo-
mentum dispersion dcor and the angular width θcor:
dcor = C/(r

√
n); θcor = dcor/p0, p0 being the mean

momentum of the pion. The meaning of these for-
mulas is that, at n � 1, there is monochromatization
in momentum space and angular collimation of the
particles within the interference maximum.

A qualitatively similar effect is discussed in [16]
but on rather different grounds. The authors point out
the possibility that, at high enough energy density
3–6 GeV/fm3 (which we hope will be easily achieved
in our experiment), the produced pions can create
a certain coherent state—a classical pion field, the
analog of the classical electromagnetic field. Thus,
one can expect a rather characteristic picture: a large
number of pions may emerge with almost the same
momentum, creating a jet pattern in concrete col-
lision. There may be jets consisting predominantly
of particles with only one sign (i.e., π+, π−, or π0).
These effects resemble a laser without an optical res-
onator. Another analogy is the electromagnetic co-
herent superemission in a spin-oriented system in a
magnetic field.

2.4. Thermodynamics of the Hadron System

The emphasis of this proposal is the study of mul-
tiparticle process (1) at high multiplicity n ≥ ncrit,
where the leading particles must vanish and it is
reasonable to assume that the system approaches
the thermodynamic equilibrium state. The onset of
this regime may be checked directly by measuring
the degree of isotropy of particle angular distribu-
tion in c.m.s. and by evaluating the temperature Ti

corresponding to different species of the secondaries:
i = π, K, p, p̄, d. The difference of the quantities
Ti gives another criterion of equilibrium. Thermody-
namic analysis of hadron production has been widely
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
used for a long time. The main features of the multi-
particle process seem to be amenable to quantitative
description. In particular, the abundance of different
particle species is explained from relativistic quantum
molecular dynamics. The application of this kind of
theory and model to the data analysis of the proposed
experiment have a sound basis since we plan to take
special measures to detect a multiparticle system ap-
proaching the thermal equilibrium state. The devia-
tion of the experimental observation from theoretical
prediction will serve as a sign of new physics.

2.5. Intermittency

The secondary particles have a nonuniform dis-
tribution in momentum space. The particle density
has statistical and dynamical fluctuations; i.e., the
distribution has an intermittent character. The inter-
mittency depends on the particle production mech-
anism. For instance, the resonances and the clus-
ters in an intermediate state give rise to fluctua-
tions in the final state of the system. The theoretical
considerations show the rise of intermittency near
the phase transition point. It also depends on the
hadronization process (i.e., confinement) and QCD
vacuum properties. Thus, experimental study of the
intermittency may throw light on the complicated
and hidden mechanism of particle production at high
energy. The present project certainly has a direct con-
nection with this topic, since high statistics of the
high-multiplicity events make it possible to carry out
a precise investigation of the intermittency effect.

One should distinguish stochastic and regular in-
termittency. The field source movement inside the
medium with velocity greater than the phase velocity
of the field quanta in this medium leads to wave pro-
duction. In the case of electromagnetic interactions,
it is the well-known Cherenkov effect. Generalization
of Cherenkov radiation to scalar and vector field cases
was developed in a number of papers. In particular,
Cherenkov gluon radiation in QCD frames was de-
vised in [17]. The existence of color current, necessary
for this phenomena, is confirmed by studying hard
processes. Cherenkov-type radiation can be emitted
in the projectile and target particles. This leads to a
distribution with two peaks of dense groups of par-
ticles (spikes) in rapidity phase space. At the same
time, the particle distribution as a function of az-
imuthal angle is uniform. It is so-called ring events.
Indication of the existence of such a phenomenon
was reported in a number of papers (see, e.g., [18]).
A double-peak shape in the pseudorapidity parti-
cle distribution for pp collisions has been observed
in agreement with the coherent gluon-jet emission
model. Therefore, high luminosity and high multiplic-
ity trigger in “Thermalization” setup is very important
4
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Fig. 3. Schematic of the experimental setup SVD: c1, c2—beam monitor; c3—nuclear and hydrogen targets; c4—silicon
vertex detector; 1, 2 and 3, 4—tracker of the magnetic spectrometer, drift tubes, and proportional chambers; 5—threshold
Cherenkov counter; 6—scintillation hodoscope; 7—electromagnetic calorimeter.
to collect enough statistic for study the ring events.
Accurate data will make it possible to determine the
confinement radius and refractive index of hadron
matter.

2.6. Direct Photons

Direct photons (DP) by definition are not a decay
product of any known particles. In accordance with
quantum electrodynamics, they may be emitted in
the process of charged particle scattering. In particu-
lar, quark–quark and quark–gluon interaction leads
to photon emission. The higher the density and the
longer the system lifetime, the more DP it should
emit. This simple picture explains why so many ex-
perimental and theoretical efforts are devoted to the
study of DP. The phenomenon of DP was discovered,
but, it seems, nothing unusual has been found up to
now: the DP rate agrees with the general theoretical
expectation. But there is one exception. They are low-
energy photons p⊥ ≤ 0.1 GeV/c, x ≤ 0.01. One can
cite at least three publications where the low-energy
photon spectrum is measured and the photon rate
exceeds the theoretical prediction by a factor of 5–
7. It is K+p and pp̄ interaction at 70 GeV and π+p
and K+p interaction at 250 GeV [19]. The excess of
DP may be connected with some unknown physical
process. It is especially interesting to investigate DP
in the proposed experiment, since we are going to
deal with a high-density system. The quark–gluon
P

cascade leading to a high-multiplicity final state has a
large number of steps (rescattering, loops, and so on)
and each of them is connected with bremsstrahlung.
Apart from this, at high density an additional source
of γ is predicted [20]: the charged pion annihilation
π+π− → nγ. This process, if it is discovered, may
serve as one of the tools of density and temperature
measurement.

3. EXPERIMENTAL SETUP

The experiment will be carried out at the improved
setup SVD installed at the extracted proton beam
of the IHEP (Protvino) U-70 accelerator [21]. The
physics program dictates the following requirements
to the apparatus.

(i) The setup is capable of detecting, with high
efficiency, events with large charge and (or) neutral
multiplicity of 20–50 particles. Photon multiplicity
is up to 100. The energy threshold of γ detection is
50 MeV.

(ii) The trigger system is capable of selecting rare
events with multiplicity nπ = 20–50. The coefficient
of suppression of low-multiplicity events nπ < 20 is
103.

(iii) The magnetic spectrometer has resolution
δp/p ≈ 1% in the momentum interval p =
0.3–4.0 GeV/c.
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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The setup schematic is presented in Fig. 3. The
apparatus consists of the following main parts.

The position sensitive beam monitor.
The liquid hydrogen target has a diameter of 2 cm

and length of 2.5 cm. The apparatus test and some
data collection may be done with a nuclear target.

The vertex detector consists of ten planes of silicon
strip detectors with space resolution of 2.5–5.0 µm.

The trigger solution is obtained from a combina-
tion of amplitude signals and number of hits in strip
detectors and electromagnetic calorimeter signal.

The magnet has bending power equal to 1.5 T m
and aperture X × Y = 130 × 160 cm.

The tracker of the magnetic spectrometer consists
of 25 planes of drift tubes and proportional chambers.

4. CONCLUSION

The goal of the proposed experiment “Thermal-
ization” is the investigation of collective behavior of
particles in the process of multiple hadron produc-
tion in pp (or pN ) interaction pp → nππ + 2N at
the beam energy Elab = 70 GeV. The domain of high
multiplicity nπ = 30–50, or z = n/n̄ = 4–6, will be
studied. Near the threshold of reaction nπ → 69, z →
zth = 8.2, all particles acquire small relative momen-
tum ∆q < 1/R, where R is the size of the particle
production region. As a consequence of multiboson
interference, a number of collective effects may show
up.

The physics objectives of the experiment are as
follows:

1. Search for new phenomena.
(a) Drastic broadening of the multiplicity distri-

bution σ(z) is expected due to effect of BEC. In the
region nπ ≥ 40, z ≥ 5, the actual cross section σ(z)
may exceed by three orders of magnitude the extrap-
olated function σextr(z). The latter is calculated on the
basis of QCD or qq-collision model without inclusion
of the BEC effect.

(b) The BEC may manifest itself by formation of
narrow jets of identical particles or "cold spots" in
momentum space. The other notions for this effect are
pion laser, classical boson field, and boson conden-
sate.

(c) The particle sources may be of two types:
chaotic and coherent. Precision measurement of the
two-particle correlation function R(q) makes it pos-
sible to determine the source parameters: chaotic-
ity, spacetime size, primordial correlation length and
time. The latter are dynamic characteristics of hadron
matter.

(d) The large variation of the π+, π−, π0 mul-
tiplicity is expected in the framework of BEC. The
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
multiplicity fluctuations may also manifest classical
pionic field production or onset of chiral condensate.

2. The systematic and precision study of known
phenomena.

(a) The direct photons, especially with low energy
Eγ ≤ 100 MeV, may manifest new physics, in partic-
ular, existence of QGP.

(b) The study of stochastic intermittency is the in-
strument for phase transition search and also search
for the BEC effect of the cold spot type.

(c) The existence of events with regular intermit-
tency, so-called ring events, is published. This effect
is referred as a gluonic Cherenkov radiation. It needs
confirmation. If it really exists, it will be a genuine
probe of hadronic matter properties.

(d) The measurement of the production rate of
particles of different species π, K, p, d, p̄ gives data
for test and development of thermodynamics models.
Simultaneous analysis of the differential cross section
and BEC functions makes it possible to disentangle
the hadronic system size, temperature, and expansion
rate.

The experiment will be carried out at a 70-GeV
proton beam of the IHEP U-70 accelerator. The ap-
paratus design is essentially based on the fact that,
at high multiplicity, all secondary particles have sharp
forward collimation. In spite of the modest setup size,
it is expected that at least 70% of all particles will drop
into the aperture of the apparatus and will be detected.

The apparatus includes a liquid hydrogen target,
silicon vertex detector, magnetic spectrometer, and
electromagnetic calorimeter. The multilevel trigger
system is designed to select the rare events with high
charge and neutral multiplicity nπ ≥ 20. The target
luminosity is 1030 cm−2 s−1 at a beam intensity of
107s−1.

The magnet spectrometer provides high momen-
tum resolution δp ≤ 5 MeV/c, which is crucially im-
portant for BEC investigation.

The counting rate of events with total multiplicity
40 is expected to be 10 events/h. If the scenario of
BEC is realized, then counting rate will be substan-
tially higher.
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Abstract—The S-matrix perturbation theory for the generating functional of Wigner functions at a finite
temperature is derived. Two possible boundary conditions are considered. One of them is usual in a field
theory vacuum boundary condition. The corresponding generating functional of Wigner functions can be
used in particle physics. Another type of boundary condition assumes that the system under consideration
is in an environment of blackbody radiation. This leads to the usual, in statistics, Kubo–Martin–Schwinger
boundary condition at the equilibrium limit. The comparison of the S-matrix approach with the “nonsta-
tionary statistical operator” approach of Zubarev is considered. The range of applicability of the finite-
temperature description of dissipation processes is discussed. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The field-theoretical description of statistical sys-
tems at a finite temperature is usually based on the
formal analogy between imaginary time and inverse
temperature β (β = 1/T ) [1]. This approach is pro-
ductive [2] for the description of static properties of
a system, but it requires a complicated mathematical
formalism of the analytic continuation to real time [3]
if we want to clear up the dynamical aspects of the
statistical system.

The first important quantitative attempt to build
up the real-time finite-temperature field theory [4]
discovered a problem of the pinch singularities. Fur-
ther investigations of the theory have allowed one
to demonstrate the cancellation mechanism of these
unphysical singularities [5]. This is attained by dou-
bling the degrees of freedom [6, 7]: the Green’s func-
tions of the theory represent a 2 × 2 matrix. It surely
makes the theory more complicated, but the operator
formalism of the thermofield dynamics [8] shows the
unavoidable character of this complication.

The Schwinger–Keldysh real-time finite-tempe-
rature field-theoretical description [6, 7] of statistical
systems is based on the Kubo–Martin–Schwinger
(KMS) [9, 10] boundary condition for a field:

Φ(t) = Φ(t− iβ).

This formal trick introduces into the formalism the
temperature T = 1/β but without fail leads to equi-
librium fluctuation–dissipation conditions [11] (see
also [12]).

∗This article was submitted by the author in English.
**e-mail: joseph@nusun.jinr.ru
1063-7788/04/6701-0011$26.00 c©
The multiple production may be considered as a
process of dissipation of kinetic energy of colliding
particles into the mass of produced particles [13].
The corresponding S-matrix approach to the finite-
temperature description of inelastic particle collisions
can be introduced (e.g., [14] and references cited
therein) taking into account that, for instance,

dΓn = |an,m(ε(q1), ε(q2), . . . , ε(qn))|2

×
n∏
1

d3qi
(2π)3 · 2ε(qi)

, ε(q) = (q2 +m2
h)

1/2,

is the differential measure of the final state, where
an,m(ε(q1), ε(q2), . . . , ε(qn)) is the corresponding
amplitude. Then, following Gibbs [15], the state is
characterized by the integral

Zn =
∫
dΓnδ

(
E −

n∑
i=1

ε(qi)

)
.

We can define the temperature as the function
of initial energy through the equation of state, i.e.,
proportional to the mean energy of created parti-
cles. Such introduction of temperatures as the La-
grange multiplier is obvious for the microcanonical
approach [9]. The initial-state temperature will be
introduced, if this is possible, in the same way. Using
the standard terminology [10], we will deal in our ap-
proach with the “mechanical” perturbations only [16]
and it will not be necessary to divide the perturbations
into “thermal” and “mechanical” ones [17].

Introducing the temperature as the Lagrange
multiplier, we should assume that the temperature
fluctuations are small (Gaussian). In the opposite
case, the notion of temperature loses its sense. The
2004 MAIK “Nauka/Interperiodica”
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“working” idea concerning nonequilibrium processes
is based on the assumption that evolution of a system
goes through a few phases. In the first (“fast”)
phase, the s-particle distribution functions Ds, s > 1,
strongly depend on the initial conditions. But at the
end of this phase, the system forgets the initial-
state information. The second phase is “kinetic.”
One can expect that the spacetime fluctuations of
thermodynamic parameters in this phase are large
scaled, i.e., there are macroscopic domains in which
the subsystems are in equilibrium with Gaussian
fluctuations of thermodynamic parameters. In the
last (“hydrodynamic”) phase, the whole system is
described by macroscopic parameters. We will see
that the Schwinger–Keldysh [3, 6, 7] real-time finite-
temperature formalism is applicable for the “hydrody-
namic” phase only.

The described S-matrix finite-temperature ap-
proach can be realized not only for a uniform tem-
perature distribution (we have done the first step in
this direction, wishing to introduce initial and final
temperatures separately). Thus, introducing cells of a
measuring device (calorimeter) and introducing the
energy–momentum shells of each cell separately,
we can introduce the individual temperatures in
each cell. This can be done since in the S-matrix
theory the measurement is performed by free (mass-
shell) particles, i.e., the measurement of energy (and
momentum) can be performed in each cell separately.
This allows one to capture the “kinetic” phase also
(if the number of calorimeter cells is high enough).
In this phase, multiparticle distribution functions Ds,
s > 1, are the functionals of the one-particle distri-
bution function D1 only. This means the “shortened”
description of the nonequilibrium medium [18]. We
will return to this question considering the range of
applicability of thermal descriptions of the dissipative
processes.

Wigner proposed the function W (q,R) for the
phase space description of quantum states [19]:

W (q,R) =
∫
dreiqrΨ(R+ r/2)Ψ∗(R− r/2),

where Ψ(x) is the wave function of state (see also
[20]).

In the classical limit � = 0, the function W (q, r)
coincides with the phase space probability distribu-
tion function. It obeys the equation [21]

Ẇ = {W,H} +O(�),

which coincides with the Liouville equation only in the
classical limit � = 0.

The extension of Wigner’s idea on the relativistic
case uses the connection between Wigner’s approach
and inclusive description of inelastic scattering pro-
cesses [22, 23]. But the Wigner functions are not
PH
directly measurable quantities because of the quan-
tum uncertainty principle ∆q∆r ∼ �. This restriction
leads to the impossibility of taking the 4-dimensional,
of the cells of the measuring device (calorimeter) ar-
bitrarily small (∆r).

Thus, in our terms, one can use the thermody-
namic formalism if the “shortened” description of the
nonstationary medium may be applied: in this case,
a mean value of correlation functions over spacetime
are negligible and the fluctuations of thermodynamic
parameters are small (Gaussian).

In proposing [24] that the equilibrium in the
nonuniform nonstationary medium may be attained
in small regions more quickly than in the whole
system, the entropy maximality in these restricted
domains of a system can be used for the construction
of the “local equilibrium density matrix” (LDM) [24].
But the LDM is applicable for description of pro-
cesses in which dissipation may be disregarded [25].
Nevertheless, if the energy–momentum density of
nonstationary flow is considerably smaller than the
energy density of matter, then the first one can be
taken into account perturbatively considering the
LDM as the initial condition. This modifies the LDM
into the “nonstationary density matrix” (NDM) of
Zubarev [24] if an infinitesimal interaction with a heat
bath is introduced to get increasing entropy.

2. S-MATRIX INTERPRETATION
OF THERMODYNAMICS

2.1. Vacuum Boundary Conditions

The starting point of our calculations is the
n-into-m-particles transition amplitude an,m, the
derivation of which is a well-known procedure [26].
So, an,m in the momentum representation has the
form

an,m((q)n; (p)m) (2.1)

= (−i)n+m
m∏
k=1

φ̂(qk)
n∏
k=1

φ̂∗(pk)Z(φ).

Here, we introduce the “annihilation” operator

φ̂(q) =
∫
dxe−iqxφ̂(x), φ̂(x) =

δ

δφ(x)
; (2.2)

φ̂∗(pk) is the “creation” operator. The generating
functional

Z(φ) =
∫
DΦeiS(Φ)−iV (Φ+φ),

where S(Φ) is the free part of the action and V (Φ, φ)
describes the interactions. At the very end, one should
set the auxiliary field φ = 0.
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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To provide the convergence of the integral (2.1)
over the scalar field, Φ, the action S(Φ) must contain
a positive imaginary part. One may shift infinites-
imally the time contour into the upper half plane
[3, 27],

C+ : t→ t+ iε, ε > 0,

and after all calculations return the time contour to
the real axis, ε→ +0. In Eq. (2.1), the integration is
performed over all field configurations with a standard
vacuum boundary condition:∫

d4x∂µ(Φ∂µΦ) =
∫
σ∞

dσµΦ∂µΦ = 0.

We introduce the probability

r(P ) =
∑
n,m

1
n!m!

∫
dωn(q)dωm(p) (2.3)

× δ(4)
(
P −

n∑
k=1

qk

)
δ(4)

(
P −

n∑
k=1

pk

)
|an,m|2,

where

dωn(q) =
n∏
k=1

dω(qk) =
n∏
k=1

d3qk
(2π)3 · 2ε(qk)

,

ε = (q2 +m2
h)

1/2,

is the Lorentz-invariant phase space element. It is
evident that

r =
∫
d4Pr(P )

is the imaginary part of the amplitude, 〈vac|vac〉.
Therefore, for the computing of r(P ), the standard
renormalization procedure can be applied and no new
divergences will arise.

The Fourier transformation of δ functions in (2.3)
allows one to write r(P ) in the form [28, 29]

r(P ) =
∫
d4α1

(2π)4
d4α2

(2π)4
eiP (α1+α2)ρ(α),

where

ρ(α) =
∑
n,m

1
n!m!

∫ n∏
k=1

{dω(qk)e−iα1qk} (2.4)

×
m∏
k=1

{dω(pk)e−iα2pk}|an,m|2.

Inserting (2.1) into (2.4), we find that

ρ(α) (2.5)

= exp

{
i

∫
dxdx′(φ̂+(x)D+−(x− x′, α2)φ̂−(x′)
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− φ̂−(x)D−+(x− x′, α1)φ̂+(x′))

}
Z(φ+)Z∗(φ−),

where D+− and D−+ are the positive and negative
frequency correlation functions;

D+−(x− x′, α) = −i
∫
dω(q)eiq(x−x

′−α)

describing the process of particle creation at the time
moment x0 and its absorption at x′0, x0 > x

′
0, and α is

the center-of-mass (CM) 4-coordinate. The function

D−+(x− x′, α) = i

∫
dω(q)e−iq(x−x

′+α)

describes the opposite process, x0 < x
′
0. They obey

the homogeneous equations

(∂2 +m2)xD+− = (∂2 +m2)xD−+ = 0.

We suppose thatZ(φ) may be computed perturba-
tively. For this purpose, the following transformations
will be used:

e−iV (φ) = e−i
∫
dxĵ(x)φ̂′(x)ei

∫
dxj(x)φ(x) (2.6)

× e−iV (φ′) = e
∫
dxφ(x)φ̂′(x)e−iV (φ′)

= e−iV (−iĵ)ei
∫
dxj(x)φ(x),

where φ̂ was defined in (2.2) and at the end of cal-
culations the auxiliary variables j, φ′ should be taken
equal to zero. Using the first equality in (2.6) we find
that

Z(φ) = e−i
∫
dxĵ(x)Φ̂(x)e−iV (Φ+φ) (2.7)

× exp
{
− i

2

∫
dxdx′j(x)D++(x− x′)j(x′)

}
,

whereD++ is the causal Green’s function

(∂2 +m2)xG++(x− y) = δ(x− y).
Inserting (2.7) into (2.5) after simple manipulations
with differential operators [see (2.6)], we find the ex-
pression

ρ(α) = e−iV (−iĵ+)+iV (−iĵ−) (2.8)

× exp

{
i

2

∫
dxdx′(j+(x)D+−(x− x′, α1)j−(x′)

− j−(x)D−+(x− x′, α2)j+(x′)

− j+(x)D++(x− x′)j+(x′)

+ j−(x)D−−(x− x′)j−(x′))

}
,

where

D−− = (D++)∗
4
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is the anticausal Green’s function.
Considering the system with a large number of

particles, we can simplify calculations choosing the
CM frame P = (P0 = E,0). It is also useful [9, 14]
to rotate the contours of integration over α0,k: α0,k =
−iβk , Imβk = 0, k = 1, 2. As a result, omitting an
unnecessary constant, we will consider ρ = ρ(β1, β2).

The integrals over βk

r(E) =
∫
dβ1

2πi
dβ2

2πi
e(β1+β2)Ee−F (β1,β2), (2.9)

where

F (β1, β2) = − ln ρ(β1, β2),

can be computed by the stationary phase method.
This assumes that the total energy E is a fixed quan-
tity. The solutions to the equations (of state)

E =
∂F (β1, β2)

∂βk
, k = 1, 2, (2.10)

give the most probable values of βk at a given E.
Equations (2.10) always have real solutions and,
because of energy conservation law, both equa-
tions (2.10) have the same solution with the prop-
erty [9]

βk = β(E), β > 0.

Assuming that β is a “good” parameter, i.e., that
the fluctuations of βk are Gaussian, we can interpret
F (β1, β2) as the free energy and 1/βk as the tempera-
tures. Such a definition of thermodynamic parameters
is in the spirit of microcanonical description. We will
return to this question.

The structure of the generating functional (2.8)
is the same as the generating functional of Niemi–
Semenoff [5]. The difference lies in the definition of
Green’s functions assigned on the complex time con-
tours C± (C− = C∗

+) [7]. The doubling of the degrees
of freedom is unavoidable since Green’s functionsDij
are singular on the light cone.

2.2. Closed-Path Boundary Conditions

The generating functional ρ(α, z) has the impor-
tant factorization property [see (2.5)]

ρ(α) = eN̂(α;φ)ρ0(φ±),

where the operator

N̂(α;φ) (2.11)

=
∫
dxdx′(φ̂+(x)D+−(x− x′, α2)φ̂−(x′)

− φ̂−(x)D−+(x− x′, α1)φ̂+(x′))
PH
acts on the generating functional

ρ0(φ±) = Z(φ+)Z∗(φ−) (2.12)

=
∫
DΦ+DΦ− exp{iS(Φ+) − iS(Φ−)

− iV (Φ+ + φ+) + iV (Φ− + φ−)}
of measurables. All external information was pre-
scribed in the operator N̂(α1, α2;φ) and interactions
are hidden in ρ0(φ±).

By definition, the path integral (2.12) describes the
closed path motion in the space of fields Φ. Hence, we
can introduce the following boundary condition:∫

σ∞

dσµΦ+∂
µΦ+ =

∫
σ∞

dσµΦ−∂
µΦ−. (2.13)

It requires that the fields Φ+ and Φ− (and their first
derivatives) coincide on the boundary hypersurface
σ∞:

Φ±(σ∞) = Φ(σ∞),

where, by definition, Φ(σ∞) is an arbitrary, “turning-
point,” field.

The existence of nontrivial field Φ(σ∞), in the
absence of surface terms, has influence only on the
structure of Green’s functionsGij . The general solu-
tion to equations for the Green’s functions looks as
follows:

Gii = Dii + gii, Gij = gij , i �= j. (2.14)

It contains the term gij which must obey the homo-
geneous equation

(∂2 +m2)xgij(x− y) = 0, i, j = +,−. (2.15)

The general solution to these equations,

gij(x− x′) =
∫
dω(q)eiq(x−x

′)nij(q), (2.16)

q2 = m2,

is defined through the unknown functions nij . The
latter are the functionals of “turning-point” field
Φ(σ∞): if Φ(σ∞) = 0, we must have nij = 0 and we
must return to the theory of the previous section.

We should suppose that, on the infinitely far hy-
persurface σ∞, only the free, i.e., mass-shell, particles
may exist. This is natural in the S-matrix frame-
work [30]. In other respects, the choice of the bound-
ary condition is arbitrary.

Therefore, we describe evolution of the system in
a background field of mass-shell particles. Let us as-
sume that there are no any special correlations among
them except the constraints of energy–momentum
conservation laws. Then the derivation is the same as
in [29].
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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After these preliminaries, it is easy to find that, in
the CM frame, we have

n++(q0) = n−−(q0) (2.17)

=
[
exp

(
β1 + β2

2
|q0|
)
− 1
]−1

≡ ñ

(
|q0|

β1 + β2

2

)
.

Computing nij for i �= j, we must take into account
that we have one additional particle:

n+−(q0) = Θ(q0)(1 + ñ(q0β1)) (2.18)

+ Θ(−q0)ñ(−q0β1)

and
n−+(q0) = Θ(q0)ñ(q0β2) (2.19)

+ Θ(−q0)(1 + ñ(−q0β2)).

Using (2.17), (2.18), and (2.19), as well as defini-
tion (2.14), we find the Green’s functions (the matrix
Green’s functions in real-time finite-temperature field
theories were first introduced in [31])

Gij(x− x′, (β)) =
∫

d4q

(2π)4
eiq(x−x

′)G̃ij(q, (β)),

where

iG̃ij(q, (β)) (2.20)

=




i

q2 −m2 + iε
0

0 − i

q2 −m2 − iε




+ 2πδ(q2 −m2)

×



ñ

(
β1 + β2

2
|q0|
)

ñ(β2|q0|)a+(β2)

ñ(β1|q0|)a−(β1) ñ

(
β1 + β2

2
|q0|
)



and

a±(β) = −eβ(|q0|±q0)/2.

The corresponding generating functional has the
standard form

ρcp(j±) = exp{−iV (−iĵ+) + iV (−iĵ−)} (2.21)

× exp
{
i

2

∫
dxdx′ji(x)Gij(x− x′, (β))jj(x′)

}
,

where the summation over repeated indices is as-
sumed.

Inserting (2.21) into the equation of state (2.10),
we can find that β1 = β2 = β(E). If β(E) is a “good”
parameter, then Gij(x− x′;β) coincides with the
Green’s functions of the real-time finite-temperature
field theory and the KMS boundary condition

G+−(t− t′) = G−+(t− t′ − iβ), (2.22)

G−+(t− t′) = G+−(t− t′ + iβ)
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is restored. Equation (2.22) can be deduced from
(2.20) by direct calculations.

3. RANGE OF THE “HYDRODYNAMIC”
APPROXIMATION

Let us return now to Eq. (2.4). To find the phys-
ical meaning of β1(2), we must show the way how
they can be measured. If there is a nonequilibrium
flow, it is hard to invent a thermometer (or thermo-
dynamic calorimeter) which measures the tempera-
tures of these dissipative processes spacetime locally.
Another way is to define the temperatures through
equations of state. This is possible in the accelerator
experiments where the total energy E is fixed. The
definition of temperature, both canonical and micro-
canonical, must coincide and, therefore, β1(2) must be
“good” quantities; i.e., the fluctuations near solutions
to Eqs. (2.10) must be Gaussian.

This assumption is the main problem facing
nonequilibrium thermodynamics. The problem in our
microcanonical terms looks as follows: the expansion
near β1(2)(E) gives asymptotic series over∫

Ds ∼
∫ ∏

{dω(ki)dri}〈ε(k1)ε(k2) · · · 〉|(r1,r2,...),

where 〈 〉( ) means the averaging over fields drawn on
fixed points of phase space (k, r)i. In other words, the
fluctuations near β1(2)(E) are defined by the value of
inclusive spectra familiar in particle physics. There-
fore, β1(2)(E) are “good” quantities if these inclusive
spectra are small. But this is too strong an assump-
tion. A more careful analysis shows that having the
factorization properties is enough [32]:∫ ∏

{dω(ki)dri}〈ε(k1)ε(k2) · · · 〉|(r1,r2,...) (3.1)

−
∏∫

dΩ(ki)dri〈ε(ki)〉|(ri) ∼ 0.

It must be noted that this is the unique solution of the
problem since the expansion near β1(2)(E) unavoid-
ably leads to asymptotic series with zero radii of the
convergence.

One can hope to avoid this problem working per-
manently in the energy–momentum representation,
i.e., without the introduction of temperatures. Of
course, this is possible in particle physics, but if
β1(2)(E) is not a "good" parameter, this means that all
correlations between created particles are sufficient,
i.e., only the energy–momentum representation does
not solve the problem.

Finally, the discussed factorization property of Ds,
s > 1, is the well known Bogolyubov condition of the
4
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“shortened” description of nonequilibrium thermody-
namic systems with s-particle distribution functions
Ds, s > 1, expressed in terms of D1. It is the condi-
tion for the applicability of “hydrodynamic” descrip-
tions since it assumes that the constant β1(E) =
β2(E) is a “good” parameter for the description of the
whole system.

4. LOCAL EQUILIBRIUM HYPOTHESIS
4.1. Vacuum Boundary Condition

We start the consideration from the assumption
that the temperature fluctuations are of large scale.
In a cell whose dimension is much smaller than the
fluctuation scale of temperature, we can assume that
the temperature is a “good” parameter. (A “good”
parameter means that the corresponding fluctuations
are Gaussian.)

Let us surround the interaction region, i.e., the
system under consideration, by N cells with known
spacetime position and let us propose that we can
measure the energy and momentum of groups of
in- and outgoing particles in each cell. The 4-
dimensional of cells cannot be arbitrarily small in this
case because of the quantum uncertainty principle.

To describe this situation, we decompose δ func-
tions on the product of (N + 1) δ functions:

δ(4)

(
P −

n∑
k=1

qk

)

=
∫ N∏
ν=1

{
dQνδ

(
Qν −

nν∑
k=1

qk,ν

)}

× δ(4)
(
P −

N∑
ν=1

Qν

)
,

where qk,ν is the momentum of the kth ingoing parti-
cle in the νth cell and Qν is the total 4-momentum
of nν ingoing particles in this cell, ν = 1, 2, . . . , N .
The same decomposition will be used for the second
δ function. We must take into account the multino-
mial character of particle decomposition onN groups.
This will give the coefficient

n!
n1! · · ·nN !

δK

(
n−

N∑
ν=1

nν

)

× m!
m1! · · ·mN !

δK

(
m−

N∑
ν=1

mν

)
,

where δK is the Kronecker δ function.
As a result, the quantity

r((Q)N , (P )N ) =
∑

(n,m)

∫
|a(n,m)|2 (4.1)
PH
×
N∏
ν=1

{
nν∏
k=1

dω(qk,ν)
nν !

δ(4)

(
Qν −

nν∑
k=1

qk,ν

)

×
mν∏
k=1

dω(pk,ν)
mν !

δ(4)

(
Pν −

mν∑
k=1

pk,ν

)}

describes the probability of measuring in the νth
cell the fluxes of both ingoing particles with total
4-momentum Qν and outgoing particles with the
total 4-momentum Pν . The sequence of these two
measurements is not fixed.

The Fourier transformation of δ functions in (4.1)
gives

r((Q)N , (P )N ) =
∫ N∏
k=1

d4α1,ν

(2π)4
d4α2,ν

(2π)4

× exp

{
i
N∑
ν=1

(Qνα1,ν + Pνα2,ν)

}
ρ((α1)N , (α2)N ),

where ρ((α1)N , (α2)N ) = ρ(α1,1, α1,2, . . . , α1,N ;
α2,1, α2,2, . . . , α2,N ) has the form

ρ((α1)N , (α2)N ) (4.2)

=
∫ N∏
ν=1

{
nν∏
k=1

dω(qk,ν)
nν !

e−iα1,νqk,ν

×
mν∏
k=1

dω(pk,ν)
mν !

e−iα2,νpk,ν

}
|a(n,m)|2.

Inserting (2.1) into (4.2) we find

ρ((α−)N , (α+)N ) = exp

{
i
N∑
ν=1

∫
dxdx′[φ̂+(x)

(4.3)

×D+−(x− x′;α2,ν)φ̂−(x′) − φ̂−(x)

×D−+(x− x′;α1,ν)φ̂+(x′)]

}
Z(φ+)Z∗(φ−),

where φ− is defined on the complex conjugate contour
C−: t→ t− iε and D+−(x− x′;α) and D−+(x−
x′;α) are the positive and negative frequency corre-
lation functions, respectively.

We must integrate over sets (Q)N and (P )N if
the distribution of fluxes of momenta over cells is not
fixed. As a result,

r(P ) =
∫
D4α1(P )d4α2(P )ρ((α1)N , (α2)N ),

(4.4)

where the differential measure

D4α(P ) =
N∏
ν=1

d4αν
(2π)4

K(P, (α)N )
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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takes into account the energy–momentum conserva-
tion laws

K(P, (α)N ) =
∫ N∏
ν=1

d4Qν exp

{
i

N∑
ν=1

ανQν

}

× δ(4)
(
P −

N∑
ν=1

Qν

)
.

Explicit integration gives

K(P, (α)N ) ∼
N∏
ν=1

δ(3)(α− αν),

where α is the CM 3-vector.
To simplify the consideration, let us choose the

CM frame and set α = (−iβ,0). As a result,

K(E, (β)N ) =

∞∫
0

N∏
ν=1

dEν exp

{
N∑
ν=1

βνEν

}

× δ
(
E −

N∑
ν=1

Eν

)
.

Consequently, in the CM frame,

r(E) =
∫
Dβ1(E)Dβ2(E)ρ((β1)N , (β2)N ),

where

Dβ(E) =
N∏
ν=1

dβν
2πi

K(E, (β)N )

and ρ((β)N ) was defined in (4.3) with αk,ν =
(−iβk,ν ,0), Reβk,ν > 0, k = 1, 2.

4.2. Wigner Function Formalism

We will use the Wigner function approach in the
formulation of Carruthers–Zachariasen [22]. In the
previous section, the generating functional ρ((β)N )
was calculated by means of dividing the “measuring
device” (calorimeter) onto theN cell. It was assumed
that the dimension of device cells tends to zero (N →
∞). Now we will specify the cell coordinates using the
Wigner description.

Let us introduce the distribution function Fn
which defines the probability of finding n particles
with definite momentum and with arbitrary coordi-
nates. These probabilities (cross sections) are usually
measured in particle physics. The corresponding
Fourier-transformed generating functional can be
deduced from (4.3):

F (z, (β+)N , (β−)N ) (4.5)
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=
N∏
ν=1

∏
i�=j

exp
{∫

dω(q)φ̂∗i (q)e
−βj,νε(q)

× φ̂j(q)zνij(q)
}
Z(φ+)Z∗(φ−).

The variation of F over zνij(q) generates the corre-
sponding distribution functions. One can interpret
zνij(q) as the local activity: the logarithm of zνij(q) is
conjugate to the number of particles in the cell ν with
momentum q for the initial (ij = 21) or final (ij = 12)
states. Note that zνij(q)φ̂

∗
i (q)φ̂j(q) can be considered

as the operator of activity.
The generating functional (4.5) is normalized as

follows:
F (z = 1, (β)) = R((β)), (4.6)

F (z = 0, (β)) = |Z(0)|2 = ρ0(φ±)|φ±=0,

where ρ0(φ±) is the “probability” of the vacuum-
into-vacuum transition in the presence of external
fields φ±. The one-particle distribution function

F1((β1)N , (β2)N ; q) =
δ

δzνij(q)
F |z=0 (4.7)

= {φ̂∗i (q)e−β
ν
i ε(q)/2}{φ̂j(q)e−β

ν
i ε(q)/2}ρ0(φ±)

describes the probability of finding one particle in the
vacuum.

Thus,

F1((β1)N , (β2)N ; q) =
∫
dxdx′eiq(x−x

′) (4.8)

× e−βi,νε(q)φ̂i(x)φ̂j(x′)ρ0(φ±)

=
∫
dr{dyeiqye−βi,νε(q)}φ̂i(r + y/2)

× φ̂j(r − y/2)ρ0(φ±).

We introduce the one-particle Wigner function W1

[22] using this definition:

F1((β1)N , (β2)N ; q) =
∫
drW1((β1)N , (β2)N ; r, q).

Thus,

W1((β1)N , (β2)N ; r, q) =
∫
dyeiqye−βi,νε(q)

× φ̂i(r + y/2)φ̂j(r − y/2)ρ0(φ±).

This distribution function describes the probability of
finding in the vacuum a particle with momentum q at
point r in cell ν.

Since the choice of the device coordinates is in our
hands, it is natural to adjust the cell coordinate to the
coordinate of measurement r:

W1((β1)N , (β2)N ; r, q) =
∫
dyeiqye−βi(r)ε(q)
4
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× φ̂i(r + y/2)φ̂j(r − y/2)ρ0(φ±).

This choice of the device coordinates leads to the
following generating functional:

F (z, β) = exp
{
i

∫
dydr[φ̂+(r + y/2) (4.9)

×D+−(y;β2(r), z)φ̂−(r − y/2) − φ̂−(r + y/2)

×D−+(y;β1(r), z)φ̂+(r − y/2)]
}
ρ0(φ±),

where

D+−(y;β(r), z)

= −i
∫
dω(q)z+−(r, q)eiqye−β(r)ε(q),

D−+(y;β(r), z)

= i

∫
dω(q)z−+(r, q)e−iqye−β(r)ε(q)

are the modified positive and negative correlation
functions.

The inclusive, i.e., partial, distribution functions
are familiar in particle physics. These functions de-
scribe the distributions in the presence of an arbitrary
number of other particles. For instance, the one-
particle partial distribution function

Pij(r, q; (β)) =
δ

δzij(r, q)
F (z, (β))|z=1 (4.10)

=
e−βi(r)ε(q)

(2π)3ε(q)

∫
dyeiqyφ̂i(r + y/2)

× φ̂j(r − y/2)ρ(φ±, (β)),

where Eq. (4.6) was used.

The mean multiplicity nij(r, q) of particles in the
infinitesimal cell Y with momentum q is

nij(r, q) =
∫
dq

δ

δzij(r, q)
lnF (z, (β))|z=1.

If the interactions among fields are switched off, we
can find that (omitting indices)

n(Y, q0) = [eβ(r)q0 − 1]−1, q0 = ε(q) > 0.

This is the mean multiplicity of the blackbody radia-
tion.

4.3. Closed-Path Boundary Conditions

The developed formalism allows one to intro-
duce more general “closed-path” boundary condi-
tions. The presence of the external blackbody ra-
diation flow will reorganize the differential operator
P

exp{N̂ (φ∗iφj)} only, and the new generating func-
tional ρcp has the form

ρcp(α1, α2) = eN̂(φ∗i φj)ρ0(φ±).

Introducing the cells, we will find that

N̂(φ∗iφj) =
∫
drdyφ̂i(r + y/2)

× ñij(Y, y)φ̂j(r − y/2),
where the occupation number ñij carries the cell in-
dex r:

ñij(r, y) =
∫
dω(q)eiqynij(r, q),

and (q0 = ε(q))

n++(r, q0) = n−−(r, q0) = ñ(r, (β1 + β2)|q0|/2)
= [exp ((β1 + β2)(r)|q0|/2) − 1]−1,

n+−(r, q0) = Θ(q0)(1 + ñ(r, β2q0))
+ Θ(−q0)ñ(r,−β1q0),

n−+(r, q0) = n+−(r,−q0).
For simplicity, the CM system was used.

Calculating ρ0 perturbatively, we will find that

ρcp(β) = exp{−iV (−iĵ+) + iV (−iĵ−)} (4.11)

× exp
{
i

∫
drdyĵi(r + y/2)Gij(y, (β(r)))

× ĵj(r − y/2)
}
,

where, using matrix notation,

iG(q, (β(r))) =




i

q2 −m2 + iε
0

0 − i

q2 −m2 − iε




(4.12)

+ 2πδ(q2 −m2)

×



n

(
(β1 + β2)(r)

2
|q0|
)

n(β1(r)|q0|)a+(β1)

n(β2(r)|q0|)a−(β2) n

(
(β1 + β2)(r)

2
|q0|
)



and

a±(β) = −eβ(|q0|±q0)/2. (4.13)

Formally, these Green’s functions obey the standard
equations in y space:

(∂2 −m2)yGii = δ(y), (∂2 −m2)yGij = 0,
i �= j,
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since Φ(σ∞) �= 0 reflects the mass-shell particles.
But the boundary conditions for these equations are
not evident.

It should be emphasized that, in our consideration,
r is the coordinate of measurement, i.e., r is regarded
like the coordinate of calorimeter cells and there is no
necessity to divide the interaction region of QGP into
domains (cells). This means that L must be smaller
than the typical range of fluctuations of QGP. But,
on the other hand, L cannot be arbitrarily small since
this will lead to the assumption of a local factorization
property of correlators, i.e., to the absence of interac-
tions.

Thus, changing β → β(r), we should assume that
β1(2)(r) and z+−(−+)(r, k) are constants on inter-
val L. This prescription adopts the Wigner function
formalism for the case of high multiplicities. It de-
scribes the temperature fluctuations which are larger
than L and the fluctuations smaller than L are av-
eraged, leading to the absence, on average, of “non-
Gaussian” fluctuations.

It is the typical “calorimetric” measurement since
in a dominant number of calorimeter cells the mea-
sured mean values of energy, with exponential ac-
curacy, are “good” parameters ∼1/β2(r,E). We will
assume that the dimension of calorimeter cells L�
Lcr, where Lcr is the dimension of characteristic fluc-
tuations at the given n. In the deep asymptotics over
n, we must have Lcr → ∞. This consideration shows
that the proposed experiment with the calorimeter as
the measuring device of particles energies is suffi-
ciently informative in the domain of high multiplici-
ties.

4.4. Nonstationary Statistical Operator
One cannot expect the evident connection be-

tween the above-considered S-matrix (microcanon-
ical) and Zubarev’s [24] approaches. The reason is
the introduction of interaction with a heat bath in
Zubarev’s formalism. This interaction is crucial for
the definition of NSL for the explanation of the trend
to the maximal-entropy state starting evolution from
the local-equilibrium state.1)

Therefore, in Zubarev’s theory, the local-equili-
brium state was chosen as the boundary condition.
It is assumed that, in the suitably defined cells of the
system at a given temperature distribution T (x, t) =
1/β(x, t), where (x, t) is the index of the cell, the en-
tropy is maximal. The corresponding nonequilibrium
statistical operator

ρz ∼ exp
{
−
∫
d3xβ(x, t)T00

}
(4.14)

1)This condition is not necessary in the S-matrix formalism
since it is “dynamical” by its nature, i.e., it includes the
notion of initial and final states as the boundary conditions.
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describes evolution of a system in the time scale
t. Here, Tµν is the energy–momentum tensor. It is
assumed that the system “follows” β(x, t) evolution
and the local temperature 1/β(x, t) is defined as the
external parameter which is the regulator of systems
dynamics. For this purpose, the special iε prescription
was introduced [24]. It brings the interaction with the
heat bath.

The KMS periodic boundary condition cannot be
applied to a nonstationary temperature distribution
and for this reason the decomposition

β(x, t) = β0 + β1(x, t) (4.15)

was proposed in [25]. Here, β0 is the constant and the
inequality

β0 � |β1(x, t)|
is assumed. Then,

ρz ∼ e−β0(H0+V+B), (4.16)

where H0 is the free part of the Hamiltonian, V de-
scribes the interactions, and the linear term B over
β1/β0 is connected with the deviation of temperature
from the “equilibrium” value 1/β0. The presence of B
perturbations creates “thermal” flows in the system
to explain increasing entropy. Considering V and B
as perturbations, one can calculate the observables
averaging over equilibrium states, i.e., adopting the
KMS boundary condition. Using the standard termi-
nology, one can consider V as the “mechanical” and
B as the “thermal” perturbations.

The quantization problem of the operator (4.16)
is connected with the definition of the spacetime se-
quence of mechanical (V ) and thermal (B) excita-
tions. It is necessary since the mechanical excitations
affect the thermal ones and vice versa. It was assumed
in [25] that V and B are commuting operators, i.e.,
the sequence of V and B perturbations is not suf-
ficient. The corresponding generating functional has
the form [25]

Z(j) = exp

{
− i
∫
Cβ

d4x

(
V (−iĵ(x))

+
β1(x, τ)
β0

T00[−iĵ(x)]

−
0∫

−∞

dt1
β1(x, τ + t1)

β0
T00[−iĵ(x, t1)]

)}

× Tr


e−β0H0TC exp


i
∫
C

d4yj(y)Φ(y)




 ,

where the time contour Cβ was described in Subsec-
tion 4.1 and τ is the measurement time.
4
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It is evident that this solution leads to the renor-
malization by the interactions with the external field
β(x, t) even without interactions among fundamental
fields Φ. The source of these renormalizations is the
kinetic term in the energy–momentum tensor T00,
i.e., follows from “thermal” interactions with the ex-
ternal heat bath. Note the absence of these renormal-
izations in the S-matrix formalism, see (2.21), where
the interactions are generated by the V perturbations
only.

The operators V and B are noncommuting ones
[33] and B perturbations were switched on after
V perturbations. In this formulation, nondynamical
renormalizations are also present, but it is not un-
likely that they may be canceled at the very end of
calculations [34].

5. CONCLUSIONS

Finally, let us add that, as follows from the above
conclusion, the very high multiplicity (VHM) process
leads to a dense, cold, and equilibrium locally colored
state, i.e., a “cold” plasma. Note that, if the parton
system is “hot,” the kinetic motion would rapidly sep-
arate the color charges and this must lead to strong
polarization of the vacuum. This effect is absent in a
QED plasma and this is why a QCD plasma must be
cold. Just this is the VHM region.
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Abstract—Preliminary results are reported on the two-particle correlation function R(Q) in hadronic Z
decays, fully hadronicWW decays, and mixed hadronic–leptonicWW decays using data collected by the
DELPHI detector at LEP at energies between 189 and 206 GeV. Evidence for Bose–Einstein correlations
was observed in all three cases. The event mixing technique was used to determine correlations between
particles arising from differentW bosons in fully hadronicWW decays. An excess of like-sign particle pairs
with low four-momentum difference in fully hadronic WW events is observed, consistent with the effect
expected from correlations between identical particles from different W bosons. c© 2004 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

The possible presence of color reconnection effects
and Bose–Einstein correlations in hadronic decays of
WW pairs has been discussed on a theoretical basis,
in relation to themeasurement of theW mass (see, for
example, [1, 2] and references therein). These effects
can induce a systematic uncertainty on theW -mass
measurement in the fully hadronic channel [1] compa-
rable with the expected accuracy of the measurement.

Bose–Einstein correlations (BEC) originate from
the symmetrization of the production amplitude for
identical bosons. The effects of BEC between identi-
cal bosons have been studied extensively in different
types of reactions and for different boson species.
Although many studies exist, there is still no com-
plete understanding of the influence of this quantum
mechanical effect on amultiparticle system generated
in a high-energy collision. The description of a given
multiparticle system itself is complicated by needing
to know the amplitude for the system and symmetrize
it.

The observable most often used for the inves-
tigation of BEC in multiparticle final states is the
two-particle correlation function. It was also demon-
strated that BEC considerably affect other observ-
ables in high-energy reactions [3]. A strong distortion
of the ρ0(770) line shape due to BEC was observed in
experimental data at LEP1 [4].

The e+e− → WW events allow a comparison of
the characteristics of the W hadronic decays when

∗This article was submitted by the author in English.
**e-mail: Nelli.Pukhaeva@cern.ch
1063-7788/04/6701-0115$26.00 c© 2
both W decay hadronically in the reaction e+e− →
W+W− → q1q̄2q3q̄4 (in the following, we shall of-
ten refer to this as the (4q) mode) with the case in
which one of theW decays leptonically in the reaction
e+e− → W+W− → q1q̄2lν (denoted (2q) mode for
brevity). Since the distance between the W+ and
W− decay vertices is considerably smaller than the
typical hadronization distance, their decay products
are expected to overlap in space and time and identical
bosons from different W can be subject to BEC. In
the framework of LUBOEI, the Bose–Einstein algo-
rithm embedded in JETSET [5], the authors of [2]
concluded that BEC between identical bosons from
the decays of different W could strongly influence
the measured mass of the W . On the other hand,
some authors (see, e.g., [6]) argue that such inter-W
correlations should not exist. It is therefore important
to establish whether such correlations exist.
A rigorous mathematical treatment of correlations

between pions from different W is given in [7]. BEC
are incorporated in a spacetime parton-shower model
for e+e− annihilation into hadrons in [8]. In the
present paper, BEC are studied for W in (4q) and
in (2q) events. Such a combined study allows us to
extract information on BEC between decay products
of the two hadronically decaying W . The data used
for the analysis related to W were collected with
the DELPHI detector [9, 10] at LEP in 1998, 1999,
and 2000 at c.m. energies of 189–206 GeV with
integrated luminosities of 155, 228, and 164 pb−1,
respectively, with total statistics of 547 pb−1.
The layout of the paper is the following. Sec-

tion 2 summarizes the general properties of BEC.
Section 3 describes the particle and event selection
004 MAIK “Nauka/Interperiodica”
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criteria. Section 4 presents the measurements of cor-
relation functions in Z and fully hadronic and mixed
hadronic–leptonic WW events. Section 5 describes
measurements of correlations between particles from
differentW in fully hadronicWW events. A summary
is given in Section 6.

2. BOSE–EINSTEIN EFFECTS

BEC manifest themselves as an enhancement
in the production of pairs of identical bosons close
in phase space. To study the enhanced probability
for emission of two identical bosons, the correlation
function R is used. For pairs of particles, it is defined
as

R(p1, p2) =
P (p1, p2)
P0(p1, p2)

, (1)

where P (p1, p2) is the two-particle probability den-
sity, subject to Bose–Einstein symmetrization; pi is
the four-momentum of particle i; and P0(p1, p2) is
a reference two-particle distribution which, ideally,
resembles P (p1, p2) in all respects, apart from the
lack of Bose–Einstein symmetrization.
If f(x) is the spacetime distribution of the source,

R(p1, p2) takes the form

R(p1, p2) = 1 + |G[f(x)]|2,

where G[f(x)] =
∫
f(x)e−i(p1−p2)xdx is the Fourier

transform of f(x). Thus, by studying the correlations
between the momenta of pion pairs, one can study the
distribution of the points of origin of the pions. Exper-
imentally, the effect is often described in terms of the
variable Q, defined by Q2 = −(p1 − p2)2 =M2

ππ −
4m2

π , where Mππ is the invariant mass of the two
pions. The correlation function can then be written as

R(Q) =
P (Q)
P0(Q)

, (2)

which is frequently parametrized by the function

R(Q) = γ(1 + δQ)
(
1 + λe−rQ

)
. (3)

In the above equation, in the hypothesis of a
spherically homogeneous pion source, the parameter
r gives the radius of the source and λ is the strength
of the correlation between the pions.
BEC can be included in PYTHIA/JETSET [5]

by using the LUBOEI code, where they are intro-
duced as a final-state interaction [2, 5]. After the
generation of the pion momenta, the values gener-
ated for all identical pions are modified by an algo-
rithm that reduces their momentum vector differences
according to Eq. (3). For the present analysis, the
BE32 version of the LUBOEI code was used. For
the comparison with the data, BEC were switched
P

on in LUBOEI with a Gaussian parametrization for
pions that are produced either promptly or as decay
products of short-lived resonances (resonances with
decay width less than 45 MeV were considered long-
lived), with parameters set to λ = PARJ(92) = 1.35
and r = 0.58 fm, which corresponds to model param-
eter R = PARJ(93) = 0.34 GeV. It should be noted
that the measured values for λ and r, corresponding
to all particles, do not reproduce the above LUBOEI
input values, which correspond to primary particles or
particles from short lived resonance decays only.
Two scenarios were considered for the study of

BEC inW pairs:
(i) BEC were included for particles from the same

and from different W (hereafter called full BE). In
this case, BEC between particles from different W
are treated in the same way as BEC between particles
from the sameW .
(ii) BEC were included only for particles from the

sameW (hereafter called inside BE).
The correlation function was also studied in Z

decays. Since the fraction of heavy-quark pairs ini-
tiating the hadronic final state differs in Z and in W
events, and especially since b quarks are practically
absent in W decays, a Z sample depleted in bb̄ pairs
has also been studied.

3. PARTICLE AND EVENT SELECTIONS

The present analysis relies on the information pro-
vided by the tracking detectors: the micro vertex de-
tector, the inner detector, the time projection chamber
as the main tracking detector, the outer detector,
the forward chambers, and the muon chambers. The
calorimeters were used for lepton identification and to
detect neutral particles. All charged particles except
those tagged as hard leptons in semileptonic events
were taken to be pions and assigned the pion mass.
Events were selected using a run quality flag, requir-
ing all detectors essential for the analysis of the dif-
ferent decay channels of theW to be fully operational
and efficient.
In the event selection, charged particles were se-

lected if they had a polar angle between 10◦ and 170◦,
momentum between 0.2 GeV/c and the beam mo-
mentum, and good quality, i.e., track length greater
than 15 cm, transverse and longitudinal impact pa-
rameters less than 4 cm (as measured from the nom-
inal interaction point with respect to the beam di-
rection), and error on the momentum measurement
less than 100%. Neutral particles were considered if
they were associated to an electromagnetic or hadron
shower with energy greater than 0.5 GeV and had a
relative error on the energy measurement less than
100%.
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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Electron identification in the polar-angle range
between 20◦ and 160◦ used the characteristic energy
deposition in the central and forward/backward elec-
tromagnetic calorimeters and demanded a nominal
energy-to-momentum ratio consistent with unity.
For this polar-angle range, the identification effi-
ciency for high-momentum electrons was determined
from simulation to be (77 ± 2)%, in good agreement
with the efficiency determined using Bhabha events
measured in the detector.
Tracks were identified as muons if they had at least

one associated hit in the muon chambers or an energy
deposition in the hadronic calorimeter consistent with
a minimum ionizing particle. Muon identification was
performed in the polar-angle range between 10◦ and
170◦. Within this acceptance, the identification effi-
ciency was determined from simulation to be (92 ±
1)%. Good agreement was found between data and
simulation for high-momentummuons inZ → µ+µ−

decays and for lower momentum muons produced in
γγ reactions.
In the subsequent analysis, more restrictive cuts

were used. The information from the time projection
chamber of DELPHI was used to reconstruct the
track, which gave an implicit track length cut of
25 cm. Only tracks with polar angle θ between 30◦
and 150◦ were accepted. The impact parameters in
the transverse and longitudinal plane were required to
be smaller than 0.4 cm and 1 cm/sin θ. The energetic
isolated charged particle of the mixed decay channel
was not included in the analysis.

3.1. Fully Hadronic Channel (WW → (4q))

The event selection criteria were optimized in order
to ensure that the final state was purely hadronic and
in order to reduce the residual background, for which
the dominant contribution is radiative qq̄ production,
e+e− → qq̄γ, especially the radiative return to the Z
peak, e+e− → Zγ → qq̄γ. For each event passing the
above criteria, all particles were clustered into jets
using the LUCLUS algorithm [5] with the resolution
parameter djoin = 8 GeV/c. At least four jets were
required, with at least three particles in each jet.
Events from the radiative return to theZ peakwere

rejected by requiring the effective c.m. energy of the
e+e− annihilation to be larger than Ec.m. · 0.79. The
effective energy was estimated using either the recoil
mass calculated from one or two isolated photons
measured in the detector or, in the absence of such
a photon, by forcing a two-jet interpretation of the
event and assuming that a photon had been emitted
collinearly to the beam line.
The remaining events were then forced into a four-

jet (4j) configuration. The four-vectors of the jets
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Table 1. The year of the run, the numbers of events se-
lected, the purity of the samples, and the efficiency at
different energies forWW → (4q)

Year
√
s, GeV Number of events Purity, % Efficiency, %

1998 189 855 89.1 60.0

1999 192–200 1181 89.8 53.2

2000 202–206 771 90.5 49.6

were used in a kinematic fit, which imposed conser-
vation of energy and momentum. The variableD was
defined as [11]

D =
Emin
Emax

θmin
(Emax − Emin)

, (4)

whereEmin andEmax are the minimum and maximum
jet energies and θmin is the smallest interjet angle
after the constrained fit. Events were used only if the
variableD was larger than 0.006 rad/GeV.
A total of 2807 events were selected.
The detector effects on the analysis were esti-

mated using samples of WW events generated with
EXCALIBUR [12] for all four-fermion final states.
Background events were generated with PYTHIA 5.7
[5] with the fragmentation tuned to the DELPHI da-
ta at LEP1 [13]. The generated events were passed
through the full detector simulation program DEL-
SIM [10]. The purity and efficiency of the selection
of WW → qq̄qq̄, estimated using simulated events,
were about 90 and 54%, respectively (see Table 1).

3.2. Mixed Hadronic–Leptonic Channel
(WW → (2q)lν)

Events in which one W decays into a lepton plus
neutrino (lν) and the other one into quarks are char-
acterized by two hadronic jets, one energetic isolated
charged lepton, and missing momentum resulting
from the neutrino. The main backgrounds to these
events are radiative qq̄ production and four-fermion
final states containing two quarks and two charged
leptons of the same flavor.
Events were selected by requiring six or more

charged particles and a missing momentum of more
than 5% of the nominal total c.m. energy. Electron
and muon tags were applied to the events. In qq̄
events, the selected lepton candidates are either lep-
tons produced in heavy-quark decays or misidentified
hadrons, which generally have rather low momenta
and small angles with respect to the corresponding
quark jet. The momentum of the selected muon or the
energy deposited in the electromagnetic calorimeters
by the selected electron was required to be greater
4
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Table 2. The year of the run, the numbers of events se-
lected, the purity of the samples, and the efficiency at the
different energies forWW → (2q)

Year
√
s, GeV Number of events Purity, % Efficiency, %

1998 189 630 95.2 51.8

1999 192–200 960 96.6 51.1

2000 202–206 643 97.2 48.0

than 17 GeV/c. The energy not associated to the lep-
ton, but assigned instead to other charged or neutral
particles in a cone of 10◦ around the lepton, is a useful
measure of the isolation of the lepton; this energy
was required to be less than 5 GeV for both muons
and electrons. In addition, the isolation angle between
the lepton and the nearest charged particle with a
momentum greater than 1 GeV/c was required to
be larger than 10◦. If more than one identified lepton
passed these cuts, the one with highest momentum
was considered to be the lepton candidate from theW
decay. The angle between the lepton and the missing
momentum vector was required to be greater than
70◦. All the other particles were forced into two jets
using the LUCLUS algorithm [5]. Both jets had to
contain at least one charged particle.

The radiative qq̄ background was suppressed by
looking for evidence of an initial-state radiation (ISR)
photon. Events were removed if there was a cluster
with energy deposition greater than 20 GeV in the
electromagnetic calorimeters, and it could not be at-
tributed to a charged particle. Events with ISR pho-
tons at small polar angles, where they would be lost
inside the beam pipe, were suppressed by requiring
the polar angle of the missing momentum vector to
satisfy | cos θmiss| < 0.96.

The four-fermion neutral current background was
reduced by applying additional cuts to events in which
a second lepton of the same flavor as the first was
detected. Such events were rejected if the energy in
a cone of 10◦ around the second lepton direction was
greater than 5 GeV.

If no lepton was identified, the most energetic
particle which formed an angle greater than 25◦ with
all other charged particles was considered as a lep-
ton candidate. In this case, tighter cuts were ap-
plied. The lepton momentum had to be greater than
20 GeV/c, the amount of missing momentum greater
than 20 GeV/c, and its polar angle | cos θmiss| < 0.85.

A kinematical fit was performed on the selected
events. The four-vectors of the two jets, of the lepton,
and of the missing momentum were used in the fit,
PH
which imposed conservation of energy and momen-
tum and equality of the masses of the two-jet sys-
tem and the lepton–neutrino system, attributing the
missing momentum of the event to the undetected
neutrino. Events were used only if the fit probability
was larger than 0.1%. In total, 2233 events were
selected. The purity and efficiency of the selection,
estimated using simulated events, were about 96 and
50%, respectively (see Table 2).

4. CORRELATION FUNCTIONS FOR Z,
WW → (4q), AND WW → (2q)lν EVENTS

To compute the correlation function R(Q) (2), the
two-particle probability density P (Q)was calculated;
the reference P0(Q) came from EXCALIBUR with-
out BEC after full simulation of the DELPHI detector
and after the same selection criteria as for real data.
The P0(Q) reference distribution was normalized to
the number of pairs in the P (Q) distribution.

The presence of bin-to-bin and inside-bin corre-
lations influences the errors on the R(Q) distribu-
tion [14]. If there areN particles of given charge in an
event, each one has N − 1 entries in the two-particle
density P (Q), mostly contributing to different bins of
the histogram. But due to the finite size of the bins,
the same track can also contribute several times to
the same bin, which is a source of inside-bin corre-
lations. The covariance matrix technique was used to
measure the parameters. The covariance matrix was
calculated from the data themselves. The method is
based on classical statistics (for details, see [15]). Let
us consider the ith event from the set of n events and
two-particle probability density P which is presented
in the histogram hi withNp bins.

The histogramH =
∑n

i=1 h
i and the values

cjk =
n∑

i=1

(hi
j −Hj/n)(hi

k −Hk/n)(1 + 1/n)

were calculated event by event. Here, j and k are the
bin numbers for the histograms. The correlations and
errors for one event are not known, but the different
events are uncorrelated. Considering bin values of the
histogram made for one event as a random vector
with unknown distribution, one has an uncorrelated
ensemble of these vectors, and, hence, the covariance
matrix can be estimated statistically.

For all events, the resulting histogram H for the
two-particle probability density, the covariance ma-
trix P (Q), and Vjk = cjkn/(n− 1) for this histogram
were calculated. The fits below were performed using
the inverted Vjk matrix.
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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Fig. 1. (a) Measured correlation functions R(Q) for like-sign pairs in Z decays for data (closed circles) and the PYTHIA
Monte Carlo model tuned at the Z peak (open circles). (b) Same as in (a), but for Z events depleted in bb production.
4.1. Correlation between Particles in Z Events
Correlations between particles in Z events pro-

duced during the calibration runs were investigated.
The track selection for the analysis was the same
as above. The event selection was similar to the one
in [16]. The number of selected events amounted to
24 681.
The R(Q) distribution for like-sign combinations

is shown in Fig. 1a. The fit using expression (3)
yielded

λZ = 0.712 ± 0.021(stat.), (5)

rZ = 0.888 ± 0.040(stat.) fm. (6)

Since the fraction of heavy-quark pairs that initi-
ated the hadron cascade is different in Z and in W
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
decays, a light flavor-enriched Z sample has been
used for comparison. The bb̄ fraction has been reduced
from the original 22% to about 2% by removing a
large fraction of bb̄ events using a b-event tagging
procedure (see [10] for details). The correlation func-
tions for this sample are shown in Fig. 1b for like-sign
combinations. The results of the fit were

λZ(no bb̄) = 0.913 ± 0.027(stat.), (7)

rZ(no bb̄) = 0.893 ± 0.047(stat.) fm. (8)

The λ and r parameters in the LUBOEI BE32 code
were tuned to the correlation function measured at
the Z for like-sign pairs. The tuned parameters λ =
1.35 and r = 0.58 fm were obtained (PARJ(92) =
4
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Fig. 3. The ratio ofQ plots for real and simulated events in Z-decay data (a) for all Z events and for selected Z four-jet events
with (b) djoin > 4GeV/c, (c) djoin > 5GeV/c, (d) djoin > 6.5 GeV/c. The model parameters were λ = 1.35 and r = 0.58 fm.
1.35 and PARJ(93) = 0.34 GeV). The R(Q) distri-

butions for the data for Z events are compared with
P

the LUBOEI predictions in Figs. 1a and 1b. Good

agreement between data and model was found.
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Fig. 4. Same as in Fig. 3, but for simulated events with parameters of λ = 0.90 instead of λ = 1.35.
4.2. Correlation between Particles from AnyW
inWW → (4q) andWW → (2q)lν Events
The R2q(Q) and R4q(Q) distributions for the data

are shown in Fig. 2. A fit to the correlation functions
R(Q) using Eq. (3) yielded the values

λ2q = 0.791 ± 0.096(stat.), (9)

r2q = 1.177 ± 0.121(stat.) fm (10)

for the mixed hadronic–leptonic channel and
λ4q = 0.725 ± 0.053(stat.), (11)

r4q = 1.117 ± 0.070(stat.) fm (12)

for the fully hadronic decay channel.
4.2.1. Background subtraction inWW → (4q)WW → (4q)WW → (4q)

events. Averaged over all energies, the selectedWW
fully hadronic events contained 10% qq̄ events (Ta-
ble 1). The correction for these background contri-
butions to the fully hadronic sample was done in the
following way.
A sample of qq̄ events was generated with BEC in-

cluded according to LUBOEI BE32 with parameters
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
λ = 1.35 and r = 0.58 fm as was tuned at Z peak.
These events were subjected to the same event and
track selection criteria as the fully hadronic sample,
and the Q distribution of the background was calcu-
lated from the events passing the selection.

The agreement between data and simulated events
at Z peak for four-jet samples selected using the djoin
requirement was then checked.

The comparison of Q distributions for data and
simulated Z events are shown in Fig. 3 for all
events (Fig. 3a) and for four-jet events (Figs. 3b,
3c, and 3d for djoin > 4GeV/c, djoin > 5GeV/c, and
djoin > 6.5GeV/c, respectively). The agreement for
all events is satisfactory (as was shown also in Sub-
section 4.1), while the model strongly overestimates
the correlations at lowQ for selected four-jet samples.

We then used an alternative simulated sample atZ
peak with reduced parameter of λ = 0.90 (instead of
λ = 1.35). All other model parameters were the same.
The comparison of Q distributions for data and these
simulated Z events are shown in Fig. 4.
4
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Fig. 5. (a) Q distributions for real (4q) events and for simulated (4q) background events for like-sign pairs (shaded
area); (b) measured R4q(Q) distributions for (4q) events without and with background subtraction (circles and triangles,
respectively).
The Q plot for simulated background qq̄ events
was corrected for the discrepancy between the da-
ta and the simulated sample at Z peak shown in
Fig. 3c. This distribution, properly weighted by the
percentage of the background, was subtracted from
the experimental WW → (4q) distribution. Alter-
natively, the contribution of background qq̄ events
were subtracted using the simulated sample with
parameter λ = 0.90 (without corrections). These two
procedures yielded practically the same background-
subtracted distributions.
The Q distributions for real WW fully hadronic

events and for background events, calculated as
described above, are shown in Fig. 5a. Figure 5b
presents the R(Q) distributions for WW → (4q)
P

events without (circles) and with (triangles) back-
ground subtraction.

It can be seen that the background contribution
hardly changes the Q distribution for (4q) events
(Fig. 5b).

We note also that, for WW BEC analysis at
LEP, the background contribution in the WW fully
hadronic channel was usually estimated using the
LUBOEI model tuned at the Z peak. As shown in
this section, this can overestimate the correlations
at low Q for four-jet samples. This problem is most
important for selections with a high background
contribution (which is up to 20% for some selections
used at LEP).
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PARTICLE CORRELATIONS 123

 

0.02

0
0.6

(

 

c

 

)

Thrust
0.8 1.0

0.04

0.06

0.02

0 20

(

 

d

 

)

 

P

 

miss

 

40 80

0.04

10

 

–3

 

0 0.1

(

 

a

 

)

 

D

 

, rad/GeV
0.2 0.3

60

10

 

–4

 

10

 

–2

 

10

 

–1

 

10

(

 

b

 

)

 

d

 

join

 

, GeV/

 

c

 

20 30
0

0.02

0.04

0.06

0.08
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A fit to the R(Q) after the background subtraction
with Eq. (3) yielded the values

λ4q = 0.741 ± 0.065(stat.), (13)

r4q = 1.199 ± 0.088(stat.) fm. (14)

In the subsequent analyses theR(Q) distributions
after the background subtraction were used.

5. CORRELATIONS BETWEEN PARTICLES
FROM DIFFERENT W

To perform a direct measurement sensitive to BEC
between particles from differentW , the analysis used
a comparison sample which contained only BEC for
particle pairs coming from a singleW boson, but not
for particle pairs from different W . This comparison
sample of (4q)-like events was constructed by the
mixing of two hadronic W from the different (2q)
events in the following way.
The pairs ofW were accepted formixing if they had

momentum imbalance |P1 + P2| < 25 GeV. From
each selected semileptonic event, the hadronic part
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
was boosted to the rest frame of the W candidate.
The rest frames of theW candidates were determined
using the energy and momenta of the W obtained
from the kinematical fits. The mixed event was then
constructed from two W candidates by boosting the
particles of the individual W in opposite directions.
The boost vectors were determined taking into ac-
count energy–momentum conservation and the fitted
mass ofW candidate.

The fully hadronic event selections were applied
to mixed events. Some event shape variables, mul-
tiplicities, and single-particle distributions for fully
hadronic and mixed events for data and MC are
shown in Figs. 6–10. In general, good agreement was
found.

The expected R4q when there are no correlations
between W , constructed from the experimental val-
ues of P2q (for pairs from same W ) and from the
mixed sample Pmix (for pairs from different W ), can
be written as

R4q(Q)(mixing) (15)
4
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=
[P2q(Q) + Pmix(Q)]data

[P2q(Q) + Pmix(Q)]DELSIM(no BEC)
,

where Pmix(Q) was obtained using the mixing of two
(2q) events as described above. ThemeasuredR4q(Q)
and R4q(Q)(mixing) are shown in Fig. 11 for like-
sign pairs, indicating the correlations between parti-
cles from differentW .
To perform model-independent measurements of

correlations between particles from different W , the
ratio, which is independent of anyMonte Carlomodel,

D(Q) ≡ P4q(Q)
P2q(Q) + Pmix(Q)

(16)

was used. This was fitted by the expression

D(Q) = N (1 + δQ)
(
1 + Λe−RQ

)
. (17)

The resulting plots are shown in Fig. 12.

The fit for the model with full BEC gave

Λ(full BE) = 0.227 ± 0.026(stat.), (18)
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
R(full BE) = 0.895 ± 0.100(stat.) fm, (19)

δ(full BE) = 0.000 ± 0.002(stat.), (20)

N(full BE) = 0.998 ± 0.004(stat.). (21)

Fixing the parameter R to the value obtained
above (R = 0.895 fm) and repeating the fit for the
model with inside BEC and for the data yielded

Λ(inside BE) = −0.002 ± 0.016(stat.), (22)

δ(inside BE) = 0.001 ± 0.001(stat.) (23)

for the model with insideW BEC and

Λ(data) = 0.149 ± 0.045(stat.)+0.025
−0.020(syst.), (24)

δ(data) = −0.003 ± 0.004(stat.) (25)

for data.
The systematic error quoted on the measured

value of Λ(data) in (24) is the sum in quadrature of
the following contributions.
4
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events using the mixing technique.
(i) Due to the event-mixing technique. Two esti-
mated were made:
The model with BEC only inside W should give

Λ = 0.0. The magnitude of the value Λ(inside BE)
plus 1σ [Eq. (22)] is 0.018.
P

The effects of discrepancies between fully hadronic

and mixed events were studied. Weights were as-

signed to the mixed events which were equal to the

ratio of the event shape and single-particle distribu-
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tion variables shown in Figs. 6–10. The maximum
deviation obtained from the value (24) was 0.020.

The value ±0.020, i.e., the larger of these two es-
timates, was used as a conservative systematic error
due to the mixing technique.

(ii) Due to background events. The value of pa-
rameterΛ(data)without background subtraction was

Λ(data) = 0.164 ± 0.043(stat.). (26)

The difference between the values of (24) and (26),
i.e., +0.015, was used as an estimate of the system-
atic error.

(iii) The contribution due to other sources were
found to be negligible.

The analysis was repeated using the requirement
α > 3◦, where α is the angle between pairs of par-
ticles. The corresponding D(Q) plots are shown in
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
Fig. 13. The fit for the prediction of the model with
full BEC gave

Λ(full BE, α cut) = 0.292 ± 0.037(stat.). (27)

Note that the α > 3◦ requirement increases the sen-
sitivity to inter-W correlations [values (18) and (27)].
The fitted values for the prediction of the model

with inside BEC and for the data were
Λ(inside BE, α cut) = −0.002 ± 0.021(stat.), (28)

Λ(data, α cut) = 0.177 ± 0.055(stat.)+0.033
−0.023(syst.).

(29)

The value of Λ without background subtraction
was Λ(data, α cut) = 0.201 ± 0.052.

6. SUMMARY
The correlation functions for like-sign particles

were measured in hadronic Z decays, in semilep-
4
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Fig. 13. Same as in Fig. 12, but for α > 3◦ cut.
tonic and in fully hadronic WW channels using da-
ta collected with the DELPHI detector during the
1998, 1999, and 2000 runs with integrated luminosity
of 547 pb−1 at c.m. energies of 189–206 GeV.

Measurements were performed to extract corre-
lations between pions from different W . The event
mixing technique was used to construct a comparison
sample which contained only BEC for particle pairs
coming from a singleW boson.

The value of parameter Λ(data) characterizing the
correlations between particles from different W was
found to be

Λ(data) = 0.149 ± 0.045(stat.)+0.025
−0.020(syst.).

The value using the α > 3◦ requirement was found to
be

Λ(data, α cut) = 0.177 ± 0.055(stat.)+0.033
−0.023(syst.).

Our overall conclusion is that our data support the
hypothesis of correlations between like-sign pions
coming from differentW .
P
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Abstract—We present a study of pp̄ collisions at
√
s = 1800 and 630 GeV collected using a minimum

bias trigger by the CDF experiment in which the data set is divided into two classes corresponding to
“soft” and “hard” interactions. For each subsample, the analysis includes measurements of the multiplicity,
transverse momentum (pT ) spectrum, and the average pT and event-by-event pT dispersion as a function
of multiplicity. A comparison of results shows distinct differences in the behavior of the two samples as a
function of the center-of-mass (CM) energy. We find evidence that the properties of the soft sample are
invariant as a function of CM energy. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Hadron interactions are often classified as either
“hard” or “soft” [1, 2]. Although there is no formal
definition for either, the term “hard interactions” is
typically understood to mean high transverse energy
(ET ) parton–parton interactions associated with
such phenomena as high-ET jets, while the soft
component consists of everything else. Whereas
perturbative QCD provides a reasonable description
of high-ET jet production, there is no equivalent
theory for the low-ET multiparticle production pro-
cesses that dominate the inelastic cross section.
Some QCD inspired models [2] attempt to describe
these processes by the superposition of many parton
interactions extrapolated to very low momentum
transfers. It is not known, however, if these or other
collective multiparton processes are at work.

The study of low-ET interactions usually involves
collecting data using minimum bias (MB) triggers,
which, ideally, sample events in fixed proportion to the
production rate—in other words, in their “natural”
distribution. Lacking a comprehensive description
of the microscopic processes [3] involved in low-
ET interactions, our knowledge of the details of
low transverse momentum (pT ) particle production
rests largely upon empirical connections between
phenomenological models and data collected with
MB triggers at many center-of-mass (CM) energies.
Such comparisons are further complicated by the

∗This article was submitted by the author in English.
**e-mail: Franco.Rimondi@bo.infn.it
1063-7788/04/6701-0130$26.00 c©
difficulty in isolating events of a purely soft or purely
hard nature.
This paper adopts a novel approach in addressing

this issue using samples of pp̄ collisions at
√
s =

1800 and 630 GeV collected with a MB trigger. The
analysis first divides the full MB samples into two
subsamples, one highly enriched in soft interactions,
the other relatively depleted of soft interactions. We
then compare inclusive distributions and final-state
correlations between the subsamples and as a func-
tion of CM energy in order to gain insights into the
mechanisms of particle production in soft interac-
tions. The results in the isolated soft sample exhibit
some interesting properties, in particular, an unpre-
dicted invariance with CM energy. The results pre-
sented in this paper were published in [4].

2. DATA SET AND EVENT SELECTION

Data samples have been collected with the CDF
detector at the Fermilab Tevatron Collider. The CDF
apparatus has been described elsewhere [5]; here, only
the parts of the detector utilized for the present anal-
ysis are discussed.
Data at 1800GeVwere collected with anMB trig-

ger during runs 1A and 1B, and at 1800 and 630 GeV
during run 1C. This trigger requires coincident hits
in scintillator counters located at 5.8 m on either
side of the nominal interaction point and covering the
pseudorapidity (η = − log(tan(θ/2)), where θ is the
angle with respect to the proton direction) interval
3.2 < |η| < 5.9, in coincidence with a beam-crossing
signal.
2004 MAIK “Nauka/Interperiodica”
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The analysis uses charged tracks reconstructed
within the central tracking chamber (CTC). The CTC
is a cylindrical drift chamber covering a η interval of
about three units with full efficiency for |η| ≤ 1 and
pT ≥ 0.4 GeV/c.
Inside the CTC inner radius, a set of time pro-

jection chambers (VTX) [6] provides r–z tracking
information out to a radius of 22 cm for |η| < 3.25.
The VTX is used in this analysis to find the z position
of event vertices, defined as a set of tracks converging
to the same point along the z axis. Reconstructed ver-
tices are classified as either “primary” or “secondary”
based upon a combination of the number of tracks
pointing to the vertex and the forward–backward
symmetry of these tracks. High-multiplicity vertices
with highly symmetric topologies are considered to be
primaries; low-multiplicity, highly asymmetric ver-
tices are classified as secondaries.
The transverse energy flux was measured by a

calorimeter system [7] covering from−4.2 to 4.2 in η.
The 1800-GeV data sample consists of subsam-

ples collected during three different time periods. Ap-
proximately 1 700 000 events were collected in run
1A at an average luminosity of 3.3 × 1030 s−1 cm−2,
1 500 000 in run 1B at an average luminosity of 9.1 ×
1030 s−1 cm−2, and 106 000 in run 1C at an aver-
age luminosity of 9.0× 1030 s−1 cm−2. The 630-GeV
data set consists of about 2 600 000 events recorded
during run 1C at an average luminosity of 1.3 ×
1030 s−1 cm−2.
Additional event selection conducted off-line re-

moved the following events: (i) events identified as
containing cosmic-ray particles as determined by
time-of-flight measurements using scintillator coun-
ters in the central calorimeter; (ii) events with no re-
constructed tracks; (iii) events exhibiting symptoms
of known calorimeter problems; (iv) events with at
least one charged particle reconstructed in the CTC
to have pT > 400 MeV/c, but no central calorime-
ter tower with energy deposition above 100 MeV;
(v) events with more than one primary vertex; (vi)
events with a primary vertex more than 60 cm away
from the center of the detector (in order to keep
full tracking efficiency in the CTC and avoid energy
leakage through exposed cracks in the calorimeter);
(vii) events with no primary vertices.
After all event selection cuts, 2 079 558 events

remain in the full minimum bias sample at
√
s =

1800GeV (runs 1A+ 1B+ 1C) and 1 963 157 in that
at

√
s = 630 GeV (run 1C).
The vast majority of rejected events failed the ver-

tex selection. About 0.01% of selected events contain
background tracks from cosmic rays that are coinci-
dent in time with the beam crossing and pass near the
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 20
event vertex. The residual beam gas contamination is
about 0.02%.

The systematic uncertainties that arise from the
event selection criteria and other sources are dis-
cussed in Section 6.

3. TRACK SELECTION

Reconstructed tracks within each event must pass
selection criteria designed to remove themain sources
of background. Tracks must pass through aminimum
number of layers in the CTC and have a minimum
number of hits in each superlayer in order to reduce
the number of tracks with reconstruction errors. Fake
and secondary particle tracks are removed by requir-
ing that tracks pass within 0.5 cm of the beam axis
and within 5 cm along the z axis of the primary event
vertex. Accepting only tracks with pT ≥ 0.4 GeV/c
and within |η| ≤ 1.0 ensures full efficiency and accep-
tance.

We define the charged track multiplicity in an
event, N∗

ch, as the number of selected CTC tracks in
the event. The mean pT of the event is defined as

p̄T =
1
N∗
ch

N∗
ch∑
i

pTi (1)

unless stated otherwise.

4. SELECTION OF SOFT AND HARD
INTERACTIONS

The identification of soft and hard interactions is
largely a matter of definition [8]. In this analysis,
we use a jet reconstruction algorithm to distinguish
between the two classes. The algorithm employs a
cone with radiusR = (∆η2 + ∆φ2)1/2 = 0.7 to define
“clusters” of calorimeter towers belonging to the jet.
To be considered, a cluster must have a transverse
energy (ET ) of at least 1 GeV in a seed tower, plus
at least 0.1 GeV in an adjacent tower.

In the regions |η| < 0.02 and 1.1 < |η| < 1.2, a
track-clustering algorithm is used instead of the
calorimeter algorithm in order to compensate for
energy lost in calorimeter cracks. A track cluster is
defined as one track with pT > 0.7GeV/c and at least
one other track with pT ≥ 0.4 GeV/c in a cone of
radius R = 0.7.

We define a soft event as one that contains no clus-
ter with ET > 1.1 GeV. All other events are classified
as hard.
04
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Fig. 1. Multiplicity distributions at 1800 and 630 GeV for (a) the full MB samples, (b) the soft samples, and (c) the hard
samples; data are plotted in KNO variables for |η| ≤ 1.0 and pT ≥ 0.4 GeV/c. In the bottom panel, the ratio of the above two
distributions is shown. The two curves delimit the band of all systematic uncertainties (see Section 2).
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Fig. 2. Transverse momentum distributions at (�) 1800 and (•) 630 GeV (|η| ≤ 1.0) for (a) the full MB samples, (b) the soft
samples, and (c) the hard samples. In the bottom panel, the ratio of the two distributions is shown. The two curves delimit the
band of all systematic uncertainties [see Section 2; for (b) and (c), the lower limit overlaps the data points].Ntrack refers to the
number of charged tracks in a unit η interval.
5. EFFICIENCY CORRECTIONS

The track reconstruction efficiency for the CTC
has been investigated for several different analyses
and under various conditions at CDF [9–11]. For this
analysis, we have calculated a full-event track recon-
struction efficiency using a parametric MC sample.
Version 5.7 of the Pythia generator was used with the
MB configuration tuned to match the inclusive mul-
tiplicity and pT distributions of the 1800-GeV sam-
ple. For each inclusive distribution, a track-finding
efficiency correction was computed by taking the ra-
tio of the Pythia-generated distribution to the cor-
responding distribution from tracks traced through
the apparatus. The efficiency for reconstructing the
P

correct event charged multiplicity is about 95% up
to a multiplicity of about 20, falling to about 85% at
multiplicities above about 20.

The same Pythia MC sample was used to eval-
uate the background from gamma-ray conversions
and charged and neutral particle decays. Correction
factors due to these effects have been computed as a
function of track pT and the event multiplicity.

There exists a small contamination from diffractive
events even in the restricted region of phase space ex-
amined in this study.We have evaluated this contami-
nation with a special PythiaMC run in which only the
diffractive generation algorithmwas switched on. The
data were then subjected to the full event and track
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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Fig. 3. Transverse momentum distributions at fixedmultiplicity (multiplicity= 1, 5, 10, 15) for the full MB samples at (�) 1800
and (•) 630 GeV (|η| ≤ 1.0). At the bottom of each plot, the ratio of the above two distributions is shown. Error bars represent
statistical error only. Systematic error was found to be negligible and is not included.
selection procedure. The correction for this effect is
estimated to be about 5% in the zero multiplicity
bin, decreasing rapidly to zero for N∗

ch ∼ 4. In the pT

distribution, the correction is between zero and 1%
up to about 1 GeV/c.

6. SYSTEMATIC UNCERTAINTIES

Several sources of systematic errors have been in-
vestigated. The effect of each on the final distributions
is discussed below.
Vertex selection. As discussed in Section 2, the

vertex selection classifies vertices as either primary or
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
secondary. The standard selection demands that pri-
mary vertices be highly isolated. Misclassification or
identification of vertices can strongly influence the pT

and multiplicity distributions, particularly the latter.
We set conservative bounds on the magnitude of this
effect in the following way. Two samples of events are
selected. In one, all vertices except the highest quality
one are classified as secondaries. In the other sample,
all vertices are classified as primary. Compared to re-
sults obtained using the standard vertex selection, the
ratio of the multiplicity distribution at

√
s = 630GeV

to that at 1800 GeV varies by about 5% in the region
between a multiplicity of 2 and 11, and reaches 40%
4
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Fig. 4. Same as Fig. 3 for the soft samples.
for multiplicities in excess of 22. The deviation in the
ratio of pT distributions at the two energies is almost
constant at about 10% up to a pT around 11 GeV/c,
increasing to 15% as pT increases.

Vertices in some multiple interaction events re-
main unresolved and introduce a residual luminosity-
dependent contamination. We estimate the sys-
tematic uncertainty from this source by comparing
the results of the complete analysis on two sub-
samples of data, one at low luminosity (<1.5 ×
1030 cm−2 s−1) and the other at high luminosity
(>7 × 1030 cm−2 s−1). Differences range between
2% and 6% for multiplicities less than 20, increasing
to about 16% for multiplicities in the range 20 <
P

N∗
ch < 30 and to 45% for multiplicities greater than

30. The effect on the ratios of the various distributions
is negligible.
The selection of events identified with known

calorimeter problems depends upon thresholds ap-
plied to classify the anomalous behavior. This selec-
tion removes �1% of the total sample. Changing the
rejection factor causes no appreciable change in the
distribution ratios.
Tracking efficiencies evaluated at CDF under var-

ious conditions and using different techniques obtain
results that differ by as much as 8–10% in the low-
pT (below 1 GeV/c), high-pT (above 2 GeV/c), or
high-multiplicity regions. The impact of using widely
different efficiency corrections on the multiplicity and
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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pT distributions is—at most—as large as the statis-
tical uncertainty. The effect on the distribution ratios
is negligible.
The systematic uncertainty due to the correction

for gamma conversions, secondary particle interac-
tions, and particle decays is estimated to be about
1%, almost independent of multiplicity and pT . The
effect on the ratios of distributions is negligible.
The systematic uncertainty in the correction to the

multiplicity distribution due to contamination from
diffractive production is on the order of 1% and is
limited to very low multiplicities (0 ≤ N�

ch ≤ 3). No
correction was applied to the pT distribution, where
the magnitude of the effect was less than 1% for all
pT . The effect is negligible on the distribution ratios.
The systematic uncertainty from the vertex selec-

tion dominates all other sources. The curves on the
final inclusive distribution ratios are obtained as the
ratios of the distributions originated by the extreme
selections outlined above. They are not intended as
point-to-point systematic uncertainties, but are in-
cluded in the figures to show the approximate range
over which the shape of the final distribution may be
changed by altering the vertex selection.
Systematic effects cancel in the ratios of final-

state correlations (see Subsections 7.2 and 7.3).

7. DATA ANALYSIS

7.1. Inclusive Distributions

We first examine the inclusive multiplicity and
transverse momentum distributions. Figure 1a shows
the multiplicity distributions for the full MB samples
at 1800 and 630 GeV, plotted in KNO variables [12].
The distributions at the two energies show a weak
violation of KNO scaling, as is expected in a limited
phase-space region [13]. The same comparison is
made in Figs. 1b and 1c for the soft and hard samples
separately. The ratio of the multiplicity distributions
at the two energies is plotted at the bottom of Fig. 1.
Transverse momentum distributions at the two

energies are shown in Fig. 2a for the full MB sample.
Figures 2b and 2c show the same distributions for
the soft and hard sample, respectively. As for the
multiplicity distributions, the ratios of the distribu-
tions at the two energies are shown in the bottom of
these figures. The pT spectrum in the soft sample falls
more rapidly with increasing pT than that of the hard
sample. This difference is expected and reflects the
absence of events with high-pT jets in the soft sample.
A deeper insight into the dynamics of the interac-

tions can be gained by comparing the pT distributions
for fixed charged multiplicity as a function of

√
s.

Figure 3 shows fixed-multiplicity pT distributions for
the full MB sample at the two energies superimposed.
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
The same distributions are plotted in Figs. 4 and
5 for the soft and hard subsamples, respectively. For
brevity, only multiplicities of 1, 5, 10, and 15 are
shown.
We observe that, within uncertainties, the pT dis-

tributions for a given multiplicity are the same at
√
s

equal to 1800 and 630 GeV—they are CM energy in-
variant. None of the current models predict or suggest
such an invariance. The result suggests that, in purely
soft interactions, the number of produced (charged)
particles is the only global event variable changing
with

√
s. The particle multiplicity may also fix other

event properties independently of the energy of the
reaction.
A further observation is worth noting. It is known

that, for minimum bias samples, the slope of the
inclusive pT distribution increases steadily by some
power of log s up to Tevatron energies [9, 14]. Such
an increase is also visible for pT distributions at fixed
multiplicity for the full MB sample shown in Fig. 3.
The result of the present analysis implies that the

√
s

dependence in the slope of the pT distribution of the
soft sample is due entirely to the change in the mean
multiplicity. In contrast, themore pronounced change
in the shape of the full MB and the hard samples
as a function of

√
s must be caused in part by the

increasing cross section of hard parton interactions.

7.2. Dependence of Mean Track pT on Charged
Multiplicity

The correlation between mean pT and charged
multiplicity was first observed by UA1 [15] and then
investigated at ISR [16] and Tevatron Collider en-
ergies [14, 17]. Although several different theoretical
explanations have been proposed, such as geomet-
rical models [18], thermodynamic models [19], and
contributions from semihard parton scattering (mini-
jets) [20], none provide satisfactory predictions for
existing experimental results, leaving the real origin
of the effect unexplained. Simulations performed with
Pythia and Herwig generators do not show better
agreement with data (see Fig. 6) [21]. In this analysis,
the mean pT (to be distinguished from the mean
event pT ) is obtained by summing the pT of all re-
constructed charged tracks in all events with a given
charged multiplicity, then dividing by the number of
such tracks. The results are shown in Fig. 7a for the
full MB sample at the two analyzed energies and in
Figs. 7b and 7c for the soft and for the hard samples,
respectively.
The event multiplicity is smeared by track-finding

inefficiency. We correct the data points for the average
track-finding efficiency at each multiplicity.
The mean pT as a function of multiplicity for the

soft sample (Fig. 7b) is nearly identical at the two
4
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Fig. 5. Same as Fig. 3 for the hard samples.
energies. This invariance is a direct consequence and
a confirmation of the invariance of the soft-pT spectra
at fixed multiplicities noted in the previous section.
Comparing Figs. 7b and 7c, we note a clear differ-

ence in the mean pT correlation of the soft and hard
samples. Interestingly, the mean pT increases at low
multiplicity even in the soft sample, which should be
highly depleted in high-ET events. This observation
suggests that an increasing contribution from hard
gluon production, as proposed in [20], is at least not
the only mechanism responsible for the correlation at
low multiplicity.

7.3. 〈pT 〉ev Dispersion versus Multiplicity
Event-by-event fluctuations of the mean event pT

have been shown to be a useful tool to investigate the
PH
collective behavior of soft multibody production and
has been used to analyze experimental data in various
different ways [22, 24]. Following the approach of [22],
the dispersion Dm of the mean event pT for events
with multiplicitym is defined as

Dm (p̄T ) =
〈p̄2

T 〉m − 〈p̄T 〉2m
〈p̄T 〉2sample

. (2)

Brackets 〈 〉 indicate an average over all events with
the given multiplicity m, while p̄T is the mean event
pT from Eq. (1).
The dispersion is expected to decrease with in-

creasing multiplicity and to converge to zero when
m→ ∞ if only statistical fluctuations are present.
Conversely, an extrapolation to a nonzero value would
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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indicate the presence of nonstatistical fluctuations in
p̄T from event to event. This indeed is what was found
in [22] and, in different ways, in [23] and [24]. Large
nonstatistical fluctuations of the mean event pT are a
consequence of particle correlations in the multibody
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
final state [25]. Figure 8a shows the present mea-
surement of the dispersion as a function of the inverse
multiplicity for the full minimum bias samples.

The correlation curve has a slope that varies across
4
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multiplicities, particularly at
√
s = 1800 GeV. The

dispersion versus inverse multiplicity for the soft and
hard samples, shown in Figs. 8b and 8c, confirms that
this effect is related to the contribution of jet pro-
duction, which, as discussed in [26], increases event-
by-event fluctuations. The plots show only statistical
uncertainties.
Comparing our soft sample results with the full

MB results [22], where hard jet production has a
much lower cross section than at Tevatron energies,
we note that our points, unlike those in [22], drop
at high multiplicity (multiplicity �7). Since statis-
tical fluctuations vary linearly with the multiplicity,
the drop we observe indicates that final-state par-
ticle correlations change with multiplicity. Moreover
the results plotted in Fig. 8b are consistent with an
extrapolation to zero at infinite multiplicity. These
observations support the idea that asymptotically the
event mean pT has no dynamical fluctuations.1)

Finally, the dispersion as a function of the inverse
multiplicity for the soft samples has a constant ratio
at the two energies, a fact which is not true for the
hard samples.

8. CONCLUSION

Assuming that hard parton interactions in p̄p
scattering eventually develop into final-state particles
observable as clustered within jet cones and pushing
the cluster identification threshold as low as possible,

1)It has been observed [27] that this method cannot exclude the
possibility of opposite sign correlations that perfectly cancel
each other.
PH
we separate minimum bias events into subsamples
enriched in soft or hard collisions. Comparing the
behavior of the two samples at two energies, we
obtain the following results.

The multiplicity distributions of soft interac-
tions follow KNO scaling going from

√
s = 630 to

1800 GeV. This is not true for those of the hard
subsample. The pT distribution at fixed multiplicity
in the soft sample is also energy invariant, a property
which was unexpected. By this, wemean that themo-
mentum distribution in the soft sample is determined
only by the number of charged particles in the final
state, independently of the CM energy.

The mean pT as a function of the charged mul-
tiplicity in the soft samples scales remarkably well
with energy. In addition, the mean pT increases with
multiplicity even in the soft sample, where hard parton
interactions are at most strongly suppressed. Neither
feature is predicted by current theoretical or phe-
nomenological models.

The dispersion of the 〈pT 〉ev shows a nonlinear
dependence on the inverse multiplicity, an observa-
tion not previously reported. The rise at multiplicity
greater than ∼ 10 is essentially due to the presence
of hard parton interactions. In the same multiplicity
region, the slope of the dispersion in the soft sam-
ple extrapolates to zero at infinite multiplicity. This
means that asymptotically there are no dynamical
correlations in the event mean pT . The ratio of the
dispersion in the soft sample at the two energies is flat
as a function of multiplicity, a feature not exhibited by
the hard sample.
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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All the distributions and correlations studied using
the soft subsample are compatible with the hypothe-
sis of invariance with the CM energy, which is a new
result. We conclude that the dynamical mechanism of
inelastic multiparticle production in soft interactions,
at least in this energy interval, is invariant with CM
energy and that the properties of the final state are
determined only by the number of (charged) particles.
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Abstract—The law of large numbers is used for estimation of the longitudinal phase-space integral for big
values of particle numbers. A fully completed analytic expression of the phase-space integral is obtained.
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We propose a new method for estimating the
phase-space integral at n→ nmax =

√
s/m:

Zn =
∫ 


n∏
i=1

d3ki

2
√
k2

i +m2


 (1)

× δ4
(
P −

∑
ki

)
fn(k1, . . . , kn),

where fn is the amplitude module squire and P ≡
(E, 0, 0, 0) is the total momentum. We work in the
center-of-mass (CM) system. The integrals of such
a type arise when the topological cross sections are
calculated. We will examine the simplest case when
fn looks as follows:

fn(k1, . . . , kn) =
n∏

i=1

exp
(
−r20k2

t,i

)
, (2)

where kt,i is the transverse momentum of the ith
particle and r0 is the phenomenological transverse
radius. This choice means the assumption that the
secondaries are produced independently of each other.
The transverse momentum cutoff is compatible with
the present experimental data. Attempts to calculate
the integrals (1) have a long history [1–10]. With
the factorized amplitude (2), the dominant problem
descended from the energy–momentum conservation
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δ function in (1). In order to avoid this difficulty, Ka-
jantie and Karimaki [1] introduce the Fourier trans-
formation for the δ function and use a saddle point
method for calculating the Fourier transform. Lurcat
and Mazur [2] use the Laplace transformation for
the integrand, normalize it, and then interpret it as
a frequency function. The latter was approximated
by the Edgeworth series, retaining only the first few
terms. An analogous technique with small modifica-
tions for a special case of fn was used by Krzywicki
as well as Bilash [3–5]. A number of attempts use
theMonte Carlo (MC)method [8–10]. It is necessary
to emphasize that all the aforementioned approaches
present an algorithm of numerical calculations.

The basis of our method consists in the expansion
of (1) in terms of universally independent functions.
Then we will use the law of large numbers for their
estimation. In this way, we find for (1) a completely
analytic expression. It is important to build a fast
generator of events if n→ nmax � 1.

The produced particles have small momenta at
n→ nmax. One can neglect the motion of the CM
frame in this limit. For this reason, we neglect the δ
function for the law of conservation of momentum:

δ4

(
P −

n∑
i=1

ki

)
→ δ

(
E −

n∑
i=1

√
k2

i +m2

)
. (3)

Performing integration over spherical angles, we
come to the expression

Zn(E) = (π/2)n (4)

×
∫ 


n∏
i=1

d(k2
t,i)dkz√

k2
t,i + k2

z,i +m2
e−r2

0k2
t,i




× δ

(
E −

n∑
i=1

√
k2

t,i + k2
z,i +m2

)
,
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Fig. 1. Examples of statistical distribution of Ts(n) functions.
where kz,i is the longitudinal and kt,i is the trans-
verse momentum. Then we introduce the parti-
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 20
cle energy as the independent variable. As a re-
sult,
Zn(E) = (π/r0)n[m(nmax − n)]n−1 (5)

×




n∏
i=1

1∫
0

dyiF
(
r0m

√
(nmax − n)yi((nmax − n)yi + 2)

)
 δ

(
1 −

∑
yi

)
,

where F (x) is the Dawson integral:

F (x) = e−x2

x∫
0

et
2
dt. (6)

The Dawson integral can be presented in the following form:

F
(
r0m

√
(nmax − n)y((nmax − n)y + 2)

)
=

√
y exp{a0 + a1y + a2y

2 + . . .}, (7)
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where the coefficients

as =
1

2πi

∫
C

dζζ−s−1 ln
{
F
(
r0m

√
(nmax − n)ζ((nmax − n)ζ + 2)

)
/
√
ζ
}
. (8)
After the substitution of (7) into (5) we obtain

Zn(E) = (π/r0)n[m(nmax − n)]n−1 (9)

×




n∏
i=1

1∫
0

dyi
√
yi


 δ

(
1 −

∑
yi

)

× exp{n[a0 + a1T1(n) + a2T2(n) + . . .]},

where Ts(n) is

Ts(n) =
1
n

n∑
i=1

ys
i . (10)

Since we plan to calculate the integral (9) by the
MC method, it is reasonable to investigate the sta-
tistical distributions of functions (10) with the con-
straint

∑
yi = 1. The calculations were performed for

different values of s and n. As can be seen from Fig. 1,
for relatively small values of s, the distribution tends
to the normal type, but for relatively big values of s,
the distribution tends to the Poissonian type.

We cannot find the exact expression for the dis-
tribution law of functions (10). Nevertheless, we can
find an acceptable approximation for extremum points
P

of the distribution of functions Ts(n):

1
s+ 1

(
2
n

)s

. (11)

We also find the limits of the area where the most
significant values of Ts(n) are grouped:(

1
s+ 1

(
1.7
n

)s

,
1

s+ 1

(
2.3
n

)s)
. (12)

Let us imagine that we calculate our integral (9)
by the MC method. At every step, we must randomly
select a group of nonnegative numbers y1, y2, . . . , yn

with the constraint
∑
yi = 1. Then one must substi-

tute these numbers into (9). As a result, the maxi-
mal number of items would have the value of Ts(n)
coinciding with expression (11). Consequently, if we
neglect small contributions, then one may change
functions Ts(n) in (9) by the corresponding value (11)
and carry out the exponent from the integral (9).

After this procedure, the remaining integral has
the form 


n∏

i=1

1∫
0

dyi
√
yi


 δ

(
1 −

n∑
i=1

yi

)
. (13)
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It is easily calculable if the hyperspherical coordinates

y1 = ρ cos2(ϕn−1) . . . cos2(ϕ2) cos2(ϕ1), (14)

y2 = ρ cos2(ϕn−1) . . . cos2(ϕ2) sin2(ϕ1),
...

yn−1 = ρ cos2(ϕn−1) sin2(ϕn−2),

yn = ρ sin2(ϕn−1)

are introduced. As a result,


n∏
i=1

1∫
0

dyi
√
yi


 δ

(
1 −

n∑
i=1

yi

)
(15)
F ATOMIC NUCLEI Vol. 67 No. 1 200
=
(Γ(3/2))n−1

Γ(3n/2)
.

The final expression has the form

Zn(E) =
π(3n−1)/2

r0Γ(3n/2)

[
m(nmax − n)

2r0

]n−1

enW (2),

(16)

where
W (t) =
n

t

t/n∫
0

ln
[

1
√
y
F
(
r0m

√
(nmax − n)y((nmax − n)y + 2)

)]
dy. (17)
Figure 2 shows three distributions of
(1/n) ln[Zn(E)] for various values of parameter t. As
is seen from the graph, the differences are significant
for small n (<5000). Thus, we find an area of validity
of our Eq. (16).

Generalization for another form of fn (2) is not a
complicated procedure.

It is interesting to calculate the limit r0 → 0:

Qn(E) = lim
r0→0

Zn(E). (18)
For this purpose, Eq. (5) was used, and because of
the property lim

x→0
F (x)/x = 1, we obtain

Qn(E) = πnm2n−1(nmax − n)3(n−1)/2 (19)

×




n∏
i=0

1∫
0

dyi

√
yi((nmax − n)yi + 2)




× δ
(
1 −

∑
yi

)
.

4
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Then we expand the square root in (19) into the series

√
yi((nmax − n)yi + 2) = exp




∞∑
j=0

ajyj


 , (20)

where

a0 =
1
2

ln 2, aj = (−1)j+1 1
2j

(y
2

)j
. (21)

Using an analogous method, we obtain the fol-
lowing expressions for the “normalized” phase-space
integral Zn(E):

Zn(E) = Zn(E)/Qn(E) (22)

=

{
1

r0m
√

2(nmax − n)
exp(W (2) − U(2))

}n

,

where

U(t) =
1
2

[
(2 − t)

4
(nmax − n)

n
(23)

+
(

1 +
2n

t(nmax − n)

)
ln
(

1 +
(nmax − n)t

2n

)
− 1
]
.

In Fig. 3, you can see the behavior of Zn(E) for
various values of the parameter t.

The method for estimating the phase-space inte-
gral using the law of large numbers allows one to
obtain an analytic expression. It is very significant
when we build a fast event generator.
PH
As would be expected, the dependence on the
cutting parameter r0 vanishes at the asymptotic on
multiplicity n→ nmax, but it is significant in the case
where n has a finite value.
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Abstract—In a few years, the LHC will provide proton–proton and nucleus–nucleus collisions at the
highest c.m. energies available so far in the laboratory, up to 14 TeV in the case of proton–proton collisions.
This regime corresponds to energies of cosmic rays of about 1017 eV, above the so-called “knee region” in
the cosmic-ray flux. A summary of main features of the machine will be presented, concentrating on the
various running scenarios foreseen. An overview of the approved experiments and their baseline coverage,
as well as possibilities for extensions, will be given. The latter could provide a better coverage of the
forward region (small angles with respect to the beam direction) and might give valuable information to
help in our understanding of extended air showers induced by cosmic rays in the atmosphere of the Earth.
c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The LHC is designed to be a discovery machine,
providing proton–proton collisions at the highest
c.m. energy with a very large luminosity. Among
the primary goals is the understanding of the ori-
gin of electroweak symmetry breaking, which could
manifest itself in the observation of one (or more)
Higgs boson(s). The LHC will also vastly extend
the potential for discovery of new physics beyond
the Standard Model, extending the mass scale up to
several TeV for direct observations. In addition, the
experiments are designed with the goal of performing
precision measurements within the Standard Model
(and of new processes as well—if found).
Due to its capability of colliding various beam

species, the LHC will offer a unique possibility of
studying strong interaction properties at the (future)
energy frontier and probe further quantum chromo-
dynamics (QCD) as the fundamental theory of strong
interaction. These data are of importance (especially
for pp collisions) to properly understand background
processes for searches and precision measurements.
They could also help in the understanding and inter-
pretation of cosmic-ray-induced extended air show-
ers, as discussed later in this contribution.
As shown in Fig. 1, pp collisions show the highest

multiplicities in the central region (|η| < 5).1) How-

∗This article was submitted by the author in English.
**e-mail: Stefan.Tapprogge@cern.ch
1)Pseudorapidity η = − log tan(θ/2), which for massless par-
ticles coincideswith the rapidity y = 0.5 log[(E + pz)/(E −
pz)].
1063-7788/04/6701-0145$26.00 c©
ever, the largest energies are found in the forward
region (corresponding to very small scattering angles
with respect to the beam direction; e.g., |η| > 5 im-
plies θ < 10 mrad). As will be shown later, it is this
region that is of most interest and at the same time the
most challenging for experimental instrumentation. It
is worth noting that a c.m. energy of

√
s = 14 TeV for

pp collisions corresponds to an incident proton energy
of about 1017 eV in the laboratory frame.

The following section describes the layout and
parameters of the LHC, including a discussion of
the running scenarios presently foreseen. This is fol-
lowed by a brief description of the five experiments,
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summarizing the baseline coverage. Next, a list of
possible and important measurements at the LHC
in the context of cosmic-ray-induced air showers is
presented, followed by a discussion of instrumental
aspects for extending the baseline coverage.

2. LHC MACHINE AND RUNNING
SCENARIOS

The LHC (see Fig. 2) will be installed in the former
LEP tunnel, which is located as far as 100 m below
the surface and has a circumference of about 27 km.
It will consist of two rings, where the beams can
be brought into collision at four interaction points.
In order to reach a c.m. energy of

√
s = 14 TeV for

pp, more than 1200 superconducting dipole magnets
with a nominal field strength of 8.3 T are needed to
bend the protons. The design luminosity will be L =
1034 cm−2 s−1, to be reached by filling the machine
with 2835 bunches, each containing about 1011 pro-
tons. The separation between two bunch crossings
will be 25 ns. It is feasible to run the machine at lower
values of

√
s, down to about 2 TeV, and thus make

it possible to obtain overlap with proton–antiproton
collisions at Tevatron.
Furthermore, the LHC is designed to provide nu-

cleus–nucleus collisions. In the case of Pb + Pb
collisions, a c.m. energy of 1148 TeV (corresponding
to an energy of 2.75 TeV per nucleon) can be reached
P

at a luminosity of L = 1027 cm−2 s−1. Collisions of
lighter ions are possible as well, e.g., of Sn, Kr, Ar,
and O. In addition, the LHC can operated in pA
mode, colliding protons on nuclei. In this case, the
c.m. system of the collision will not be at rest in
the laboratory frame, but shifted by up to one unit
in rapidity. Luminosities foreseen for pA collisions
should range from L = 7.4 × 1029 cm−2 s−1 for pPb
up to L = 1.0 × 1031 cm−2 s−1 for pO collisions.
Most of the time, the LHC is expected to be oper-

ated in pp mode. Approximately one month per year
should be devoted to the studies of nucleus–nucleus
and proton–nucleus collisions. Furthermore, shorter
dedicated runs with special conditions should take
place, e.g., for TOTEM to perform a precise measure-
ment of the total cross section.

3. LHC EXPERIMENTS

Two big underground caverns (at interaction
points 1 and 5) have been excavated for two general
purpose experiments, ATLAS and CMS, which are
optimized for high-pT physics. The ALICE experi-
ment will be situated at interaction point 2, dedicated
to the study of heavy-ion collisions. Point 8 will be
taken by LHCb, aiming at the study of b-hadron
physics. Furthermore, the TOTEM experiment (to
be installed at point 5) will measure the total cross
section in pp collisions.
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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For most experiments, the design phase has been
finished and the mass production of their components
(especially in the case of ATLAS and CMS) is well
under way, in some cases even close to completion. In
the following, a brief overview of the main features of
each experiment is given.

3.1. ALICE

The ALICE [1] detector, as shown in Fig. 3, will
reuse the magnet of the L3 experiment. The cen-
tral element of ALICE will be a huge time projec-
tion chamber (TPC), allowing precise tracking in
the high-multiplicity environment of central heavy-
ion collisions. Its coverage will be |η| < 1. Inside the
magnet, further components are foreseen for photon
detection, for electron–positron pair detection, and
for multiplicity measurements (the latter using Si
detectors covering the region of −5.4 < η < 3.0), as
well as for particle identification (via time-of-flight
and transition radiation).

Outside of the magnet, a dedicated muon spec-
trometer (2.4 < η < 4.0) with a separate dipole mag-
net is situated on one side of the experiment. ALICE
will also have detectors in the machine tunnel: a zero-
degree calorimeter to measure, e.g., the centrality of
the heavy-ion collision.
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
3.2. ATLAS

ATLAS [2] is a general purpose experiment, shown
in Fig. 4, optimized for high-pT physics. Surrounding
the interaction point, several tracking detectors will
measure charged particles and reconstruct (primary
and secondary) vertices. Closest to the beam, three
layers of Si pixel sensors will be placed, followed by
four layers of Si strip detectors. Further out, there
will be a straw tube tracker (TRT), which can detect
transition radiation to identify electrons. All these
components are situated inside a solenoid magnet
with a field of 2 T. The tracking detectors (inner
detector) cover the region up to |η| < 2.5 and are
surrounded by calorimetry, extending up to |η| < 4.9.
In the barrel region, a fine-grained liquid argon (LAr)
accordion calorimeter is foreseen as the electromag-
netic part, followed by a tile scintillator calorimeter as
the hadronic compartment. In the endcap and forward
region, LAr technology is used again. Outside of the
calorimeters, an open air-core toroid magnet system
is situated, interleaved with muon detectors, to pro-
vide detection of muons and a stand-alone measure-
ment of their momentum in the region |η| < 2.7.

The overall size of ATLAS is about 40 × 22m and
its weight will be about 7000 t. More details on the
expected performance of ATLAS can be found in [3].
4
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3.3. CMS

CMS [4] is the other general purpose detector and
is shown in Fig. 5. As ATLAS, it has been optimized
for the detection of high-pT leptons, photons, and
P

jets (with and without b tagging) and measurement
of missing transverse energy. The tracking is based
on an all-silicon system, where the interaction point
is surrounded with layers of pixel detectors. The re-
mainder of the tracking volume is made of layers of Si
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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strip detectors. The tracking coverage extends up to
|η| < 2.5. Surrounding the tracker, a PbWO4 crystal
electromagnetic calorimeter is situated, which is fol-
lowed by a scintillator sandwich hadronic calorime-
ter. All of these components are located inside a
large solenoid magnet, providing a field of 4 T. The
calorimetric coverage is extended up to |η| = 5 by a
forward calorimeter, instrumented with quartz fibers.
The return yoke is instrumented for muon detection,
covering the region |η| < 2.5.
CMS will have a size of 22 × 15m and a weight of

about 13 000 t.

3.4. LHCb

The LHCb [5] layout (as shown in Fig. 6) re-
sembles a forward spectrometer, although LHCb will
take data from colliding proton bunches. The inter-
action point will be surrounded by a precise vertex
detector, followed by a tracking system, including
a dipole magnet. LHCb will have various possibil-
ities for particle identification, including two ring-
imaging Čerenkov (RICH) detectors, electromag-
netic and hadronic calorimetry, and a muon system.
The acceptance region extends over 1.9 < η < 4.9.
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
3.5. TOTEM
The primary goal of TOTEM is to measure the

total cross section via the luminosity-independent
method, which requires the simultaneous determina-
tion of elastic scattering (under small angles) and of
the rate for inelastic interactions.
TOTEM will thus have two types of detectors (as

shown in Figs. 7 and 8): firstly, detectors to mea-
sure charged particles from inelastic events in the
region 3 < |η| < 7, and, secondly, detectors to mea-
sure leading protons (e.g., from elastic scattering) at
distances of 100–200 m from the interaction point in
the machine tunnel (using so-called Roman pots).
TOTEM will be installed at interaction point 5, and
the inelastic detectors will be located inside the CMS
experiment.

3.6. Summary on Phase-Space Coverage

The baseline design of the experiments, as de-
scribed above, will allow one (although not always
in the same experiment) to measure the production
of identified particles in the region −2.5 < η < 4.9,
where ATLAS and CMS should be able to reach
pT values of O(1 GeV) for the region of |η| < 2.5.
Both ALICE and LHCb will extend this reach down
4
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to O(0.1 GeV), although mostly only in the regions
|η| < 1 (ALICE) and 1.9 < η < 4.9 (LHCb).
Furthermore, the charged multiplicity will be

measured by ALICE in the region −5.4 < η < 3 and
by TOTEM in the region 3 < |η| < 7. The energy
flow will be covered by ATLAS and CMS for |η| < 5.
ALICE will be able detect leading neutrons and
TOTEMwill measure (at least during dedicated runs)
leading protons as well.

4. COSMIC-RAY-INDUCED AIR SHOWERS
AND RELEVANT MEASUREMENTS AT LHC

In Fig. 9, the flux of cosmic rays is shown as
observed from extended air showers created in the
Earth’s atmosphere. The observed spectrum extends
in a power-law form over many orders of magnitude,
more than 10 in energy and more than 30 in flux,
without showing any clear structures. Of very spe-
cial interest are events seen at the upper end of the
P

spectrum, with energies of more than 1019 eV. The
LHC will probe the energy region of about 1017 eV
in pp collisions and about 1018 eV in Pb + Pb col-
lisions, extending the reach by up to three orders
of magnitude beyond the one of Tevatron. This will
provide access to the energy region above the so-
called “knee,” where the spectrum changes its slope.
It is important to note that the available statistics

at LHC will be enormous, in comparison to the ob-
served rate of cosmic rays in this energy regime. For
the region of the so-called “ankle” (about 1018 eV),
only one cosmic-ray event is expected per km2 per
year, whereas at LHC a rate of 1 Hz of accepted
events will provide a sample of 107 events per year.
The interpretation of the extended air showers

observed on the Earth’s surface aims at a precise
determination of the energy and of the species of the
incident particle creating the shower in the atmo-
sphere. Figure 10 shows three examples of air show-
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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Fig. 9. Cosmic ray flux.
ers, one initiated by a photon, one by a proton, and
one by an iron nucleus of the same energy (1014 eV).
The differences in the shower development and in
the composition of the observed particles are visible.
The unfolding from the observed particles and their
properties needs, however, precise models of hadronic
interaction, which in turn rely on extrapolation from
existing accelerator measurements. It is expected that
the uncertainties will be reduced once the range of
extrapolation becomes smaller.
As an example, the upper part of Fig. 11 shows the

fractional energy xlab = E/Elab of leading hadrons
produced in pp̄ collisions at a proton energy Elab =
1017 eV. Clearly visible are the differences in the pre-
diction of the four models shown. The lower part of
this figure shows the predicted number of charged
particles produced in inelastic interactions of protons
(Elab = 1019 eV) on a nitrogen nucleus for three mod-
els. Again, clear differences are observed, indicating
that the existing data do not constrain the hadronic
OF ATOMIC NUCLEI Vol. 67 No. 1 20
interaction models enough and that further measure-
ments at higher energy are most welcome.
Some of the most important measurements to be

performed at the LHC include
measurement of the total pp cross section,
measurement of the fraction of diffractive dissoci-

ation to the total cross section,
measurement of the forward (and also central) en-

ergy flow,
measurement of event multiplicities in the forward

region,
momentum spectrum of leading particles.
Of special importance for these measurements is

the forward region, since, e.g., the behavior of the
inelastic interactions and the spectrum of leading par-
ticles in this region determines the energy transport
through the atmosphere and thus strongly influences
the air shower development. It is important to point
out that present models indicate that measurements
04
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of only the central region (for properties such as en-
ergy flow and multiplicities of inelastic events) are not
sufficient, as the models do not predict a consistent
behavior between changes in the central region and
the forward region. For a more detailed discussion
of relevant measurements and their importance, see
[6, 7].

5. INSTRUMENTAL ASPECTS

Although two types of possible extensions in the
detector coverage can be distinguished, i.e., the mea-
surement of leading particles and the detection and
measurement of particles produced under small an-
gles in inelastic interactions, several aspects regard-
ing instrumentation details will be similar, as in both
cases a detection close to the beam (pipe) is required.
The measurement of leading particles has to occur at
large distances from the interaction point, as these
particles are either scattered under very small angles
or lose only a small fraction of their momentum and
P

thus leave the beam envelope only far away from their
production point. An increase in the acceptance for
particles from inelastic events has to happen mostly
within the experimental caverns (before the first mag-
netic elements of the accelerator) and thus needs to be
done very close to the beam, in order to have access
to small scattering angles.

5.1. Leading Particle Measurements

The measurement of elastic scattering down to
very small values of the momentum transfer −t
(which is necessary for a precise determination of
the total cross section, as discussed in [8]) requires a
special optics setup of the machine, where the beams
are no longer strongly focused at the interaction point
(to obtain the highest luminosity). The layout of the
interaction regions 1 and 5 allows for instrumentation
to be installed at distances of about 150 and 210 m
from the interaction point (see Fig. 8). For this special
optics setup, elastic scattering should be measurable
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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down to values of at least −t ≈ 10−2 GeV2. In
addition, the instrumentation in this region would
give coverage for diffractively scattered protons with
a momentum loss of about 2% or more. In order
to reach smaller values of the momentum loss, one
would have to go to distances of about 400 m,
where presently no warm space for instrumentation
is foreseen. The upper limit in momentum loss is—
for a given location—determined by the apertures
of the beam pipe and the machine element between
the interaction point and the location of the Roman
pot. For the positions mentioned above, momentum
losses of up to about 20% should be detectable.

The detection of leading neutrons can be per-
formed in a so-called “zero-degree” calorimeter,
which would be installed after the beams are sepa-
rated (to match to the two-beam pipe structure in
the arcs of LHC). ALICE foresees having such a
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
device, as mentioned above. For ATLAS and CMS,
there are ongoing studies investigating the possibility
of instrumenting an absorber (TAN) at a distance of
about 140 m from the interaction point.

5.2. Inelastic Event Measurements
Besides the measurement of charged multiplic-

ity, where the combination of all experiments should
cover up to |η| < 7, an extended coverage for themea-
surement of the energy flow (up to |η| < 8) could be
achieved by installing additional calorimeters inside
the experimental cavern, e.g., of CMS. This would be
done close to the beam pipe at a distance of about
18 m from the interaction point (or maybe by in-
strumenting the TAS absorber, which is situated at
the transition between the experimental caverns of
ATLAS or CMS and the machine tunnel). The avail-
ability of both a calorimeter and tracking detectors in
4
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front of it would allow for limited particle identification
capabilities, such as measurements of electrons and
possibly photons.

5.3. Detector Concepts

Leading protons have been and are usually mea-
sured using silicon or scintillating fiber detectors, lo-
cated in a movable casing (Roman pot), which also
provides the separation from the beam vacuum. After
stable beam conditions are reached, the pot is moved
as close as possible to the circulating beam to provide
the best acceptance for small-angle elastic scattering
as well as for small-momentum-loss protons.

As the available space for additional instrumen-
tation will often be very limited (e.g., inside the ex-
perimental caverns), a new detector concept has been
developed, the microstation [9]. Its conceptual design
is shown in Fig. 12. The basic idea is to perform
the measurement inside the beam pipe, to obtain the
closest possible approach of the sensor to the circu-
lating beam. The design aims at a lightweight and
very compact component (integrated with the beam
pipe). It has to respect several requirements from the
machine point of view, such as compatibility with
the machine vacuum and no significant additional
impedance to be introduced by the components. The
sensor planes will be very precisely movable in a
reproducible way, implemented by using inchworm
motors built out of ceramic elements. This movement
also has to be extremely reliable, as the microstation
might be deployed in regions where access is difficult.
The sensor is foreseen to be silicon based. Depending
on the location and the type of measurement, it could
be either of the Si strip type or of the Si pixel type,
the latter in the case of larger particle densities (i.e.,
for measurements of inelastic event properties). For
these sensors, special emphasis has to be given to a
minimization of inactive areas close to themechanical
P

edge of the sensor, which would increase the effec-
tive distance to the beam center, from where onward
measurements would be possible. A fully functional
prototype for validation of the above requirements is
presently under construction.

6. CONCLUSION

Starting in a few years, the LHCwill offer excellent
prospects for studies of strong interaction in proton
and nucleus collisions at the future energy frontier. Its
c.m. energy will extend the accelerator reach by up
to three orders of magnitude in energy beyond what
is available today, going up to equivalent energies of
about 1017 eV for protons and about 1018 eV for lead
ions in the laboratory frame.
Although the presently approved detectors cover a

large part of the phase space for particle production,
the truly forward region (small scattering angles with
respect to the beam direction) is not yet addressed
sufficiently well enough to be able to provide the max-
imal possible information. This information could be
very useful to help in the understanding of extended
air showers induced by cosmic rays. The ideas de-
scribed in this contribution are presently being dis-
cussed within the experiments, with the aim to assess
the feasibility of such extensions and to work towards
sound technical designs. It has to be clear that such
extensions cannot compromise the baseline detector
performance for the high-pT discovery and precision
physics program. The experimental communities are
open to additional suggestions and invite participa-
tion and contributions in this challenging enterprise.
It should not be forgotten that, so far, cosmic

rays offer the only access to energies several or-
ders of magnitude above what will be available in
the foreseeable future from accelerator experiments.
Improvements in the understanding of, e.g., cosmic-
ray-induced air showers might thus also provide ad-
ditional insight into particle physics.
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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Abstract—Experimental data on interactions of sulfur and oxygen nuclei with photoemulsion nuclei at
energies of 200 and 60 GeV/nucleon are analyzed with the help of a continuous wavelet transform.
Irregularities in pseudorapidity distributions of narrow groups of the secondary shower particles in these
interactions are observed upon application of the second-order derivative of a Gaussian as a wavelet. The
irregularities can be interpreted as the existence of preference emission angles of groups of particles. Such
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positions of the observed peculiarities on the pseudorapidity axis coincide with those found by Dremin et al.
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In the last decade, a new type of mathematical
analysis of data, so-called wavelet analysis, has be-
come very popular in various branches of science and
engineering [1–4]. Mainly, it is applied for analysis
of time series coming from geophysics, meteorol-
ogy, astrophysics, and so on (applications in aviation,
medicine, and biology see in [5]).

Thewavelet decomposition or wavelet transform of
a function f(x) is its decomposition on an orthogonal
functional family of special form [6]:

WΨ(a, b)f =
1√
CΨ

∞∫
−∞

f(x)Ψa,b(x)dx, (1)

Ψa,b(x) ≡ a−1/2Ψ
(
x− b

a

)
.

Here, Ψ is called a wavelet, b is a translation param-
eter, a is a dilation parameter or a scale, and CΨ is a
normalizing constant:

CΨ = 2π

+∞∫
−∞

|Ψ̃(ω)|2|ω|−1dω,

where Ψ̃(ω) is the Fourier transform of Ψ(x).
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The derivatives of the Gaussian function are often
used as wavelets,

Ψ(x) ≡ gn(x) = (−1)n+1 dn

dxn
e−x2/2,

n > 0, Cgn = 2π(n− 1)!.

The first two wavelets are well known:

g1(x) = −xe−x2/2, g2(x) = (1 − x2)e−x2/2.

The second one is called a Mexican hat wavelet
(MHAT).

As can be seen, the wavelet transform puts a func-
tion of two variables, WΨ(a, b), in correspondence
to a function of one variable, f(x). Until recently,
a presentation and an analysis of a function of two
variables was quite a difficult job, and only modern
computers with their 3D graphics allowed one to
implement completely themethod of wavelet analysis.

There is a discrete analogy of the continuous
wavelet transform (see [6]). It was used in elementary
particle physics for the study of events of cosmic-ray
interactions with matter—in the analysis of particle
pseudorapidity distributions [7]. The wavelet coeffi-
cients (WΨ(a, b)) of energy distributions predicted
by different models of multiparticle production were
studied in [8]. The possibilities of wavelet analysis in
searching for manifestation of the disoriented chiral
condensate in the pseudorapidity distributions of the
neutral particle fraction were considered in [9].

In [10], the wavelet transform was used for pattern
recognition in Pb + Pb interactions at the energy
of 158 GeV/nucleon. Structures were found in the
2004 MAIK “Nauka/Interperiodica”
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Fig. 1.Wavelet spectra of test example.
angular distributions of secondary particles that can
be interpreted as irradiation of Cherenkov gluons. The
last publications in this research are devoted to exper-
imental search for the disoriented chiral condensate in
nucleus–nucleus interactions [11].

Most of the aforementioned papers suffer from the
apparent lack of quantitative results caused either by
uniqueness of natural phenomenon or by low statis-
tics of analyzed data. It is connected partly with spe-
cific properties of the wavelet analysis itself (see [12]).
A regular method to apply wavelet analysis in particle
physics is needed. Our paper presents experience in
using the wavelet transform for analysis of more than
2000 interactions of nuclei with nuclei at high ener-
gies.

Experimental data were obtained during horizon-
tal irradiation of NIKFI BR-2 nuclear photoemulsion
with sulfur and oxygen nuclei with energies of 200 and
60 GeV/nucleon at the CERN SPS. The sensitivity
of the emulsion was about 30 grains per unit length
of 100 µm for single charged particles with minimal
ionization.

Primary interactions were found by along-track
double scanning: fast in the forward direction and
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
slow in the backward direction. Fast scanning was
performed at a velocity excluding any discrimination
of events in the number of heavily ionizing tracks;
slow scanning was carried out to find events, if any,
with a little changed and unbiased projectile nucleus.
Upon rejecting events of electromagnetic dissociation
and purely elastic scattering in the total sample, 884
events of S + Em and 504 events of O + Em at
the energy of 200 GeV/nucleon, and 884 O + Em
interactions at the energy of 60 GeV/nucleon were
selected for further analysis. In each event, the polar
angles θ and azimuthal angles ϕ were measured.

Shower particles, or so-called s particles—single
charged particles with a velocity β = v/c ≥ 0.7—
are considered in this study. The s particles consist
mainly of produced particles and single charged
nuclear fragments. A special separation of single
charged fragments was not done.

According to [10], the distribution of secondary
particles on the pseudorapidity η = − ln(tan(θ/2)) in
an event was given as

f(η) =
dn

dη
=

1
N

N∑
i=1

δ(η − ηi), (2)
4
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Fig. 2.Wavelet analysis of s-particle pseudorapidity distribution in S + Em interactions at the energy of 200 GeV/nucleon.
where N is the multiplicity of s particles in the event,
and ηi is the pseudorapidity of the ith particle.

A wavelet transform of the function (2) gives

WΨ(a, b) =
1
N

N∑
i=1

a−1/2Ψ
(
ηi − b

a

)
. (3)

Thus, the function of two variables is brought into
P

correspondence with each particle. Wavelet spectra of
the event (WΨ(a, b)) is a sum of such functions.

As an example, Fig. 1 presents wavelet spectra
of an event with six particles having pseudorapidi-
ties η1 = 1, η2 = 2.75, η3 = 3.25, η4 = 5, η5 = 6, and
η6 = 7. The values of translation parameter b (or η)
are put on the X axis; dilation parameter a, on the
Y axis. The values of the wavelet coefficients are
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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Fig. 3. Distributions of the extreme points of the scalograms of the S + Em events at the energy of 200 GeV/nucleon.
depicted using a gray-level scale: the high values of
the coefficients are of light shade, while the lower ones
are darker. As can be seen, in g2 wavelet spectra at a
scale lower than 0.3, all particles are distinguished.
At a scale larger than 0.5, particles 2 and 3 cannot
be resolved. At a > 1, particles 4, 5, 6 cannot be re-
solved. At a > 2, one could expect a fusion of particles
1, 2, and 3. However, this does not take place due to
the small yield of particle 1 in the wavelet spectra at a
large scale. Thus, the wavelet transform of g2 allows
one to study the particle clusterization.

Let us note that the positions of the local maxima
of WΨ(a, b) (a � 0.5 and b = 3, a � 1 and b = 6) on
the b axis are connected with positions of the centers
of the groups of particles 2, 3 and 4, 5, 6. The cor-
responding scales reflect the width of the groups on
the pseudorapidity axis. Positions of the local minima
give the centers of the pseudorapidity splits between
the groups. Thus, the wavelet transform allows one to
select a group of particles.

We started our analysis with study of the particle
distribution on the pseudorapidities in all interactions.
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
The histogrammed distribution for S + Em interac-
tions at the energy of 200 GeV/nucleon is presented
in Fig. 2. There are also g2 and g4 wavelet spectra at
different scales. It should be noted that the wavelet
transform was applied to raw experimental data, not
to the histogrammed distribution. Thus, a fine struc-
ture of the spectra can be observed at small scales.
The structure becomes more regular at large scales
and turns into the wavelet function in the limit of large
a. At a ∼ 0.4, one can see three maxima in the g2

spectra at η ∼ 2, 4, and 8. It seems that the maximum
at η ∼ 2 is connected with the particle production in
the target fragmentation region; the maximum at η ∼
4, with the particle production in the central region;
and the maximum at η ∼ 8, with spectator fragments
of the projectile nucleus. In reality, the three maxima
only reflect what can be seen with the naked eye—the
left wing of the distribution is different from the right
one. One can clearly see a change in the slope on the
right wing at η ∼ 6. At smaller scales, the structure is
richer and does not allow such a simple interpretation.
In order to find selected scales in the interactions and
4
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to analyze the fine structure of the events, we turned
to a study of the energy density and scalogram.

The spectrum of the energy density (WΨ(a, b)2)
reflects peculiarities of the WΨ(a, b) function and can
be used for searching the particle group, though the
definition of maxima and minima of the function is
quite a complicated task. Therefore, at the first stage,
we concentrated our attention on the energy distribu-
tion on scales, on scalogramEW (a) =

∫
WΨ(a, b)2db

because it is a 1D function.
Scalograms reflect characteristic features of an

event. For example, the scalogram of the g2 spectrum
for the test example has a minimum at a ∼ 1.1, asso-
ciated with an average distance between the groups
of the particles 2, 3 and 4, 5, 6, and a maximum
at a ∼ 0.5, connected with the most compact group
of particles 2, 3. It is possible to write an analytical
expression for the scalogram using the g2 wavelet and
the distribution of the form (2):

S(a) =
1

32
√
πa4

(4)

×
N∑

ij=1

[
∆4

ij − 12a2δ2 − 12a4
]
e−∆4

ij/(4a2),

∆ij = ηi − ηj .

It is seen that the scalogram is a statistical aver-
aged squared distance between particles. Thus, we
expected that an analysis of the scalograms would
allow us to find characteristic scales.
PH
Distributions of local minimum and maximum po-
sitions in the scalograms of the events of S + Em
interactions at the energy of 200 GeV/nucleon are
given in Fig. 3. Though there are some irregularities
in the distributions, we cannot say that they have
a statistically guaranteed meaning. In addition, the
analysis of connection between amin and amax and
characteristics of the real events did not show any
regularity. However, we believe that the study of a
larger volume of experimental data will produce inter-
esting results.

The next step of our study was a search for ex-
tremum points of functionWΨ(a, b) of the real events.
Distributions of points on the dilation scale in our in-
teractions are presented in Fig. 4. At first glance, the
distributions have no characteristic peculiarities—
bumps or pits. We can only remark that the distri-
butions cannot be described by a simple exponential
function. It is necessary to use at least two exponents
in fitting the distributions. Simulation of pp inter-
actions with the help of the HIJING program [13]
has shown that the appearance of an exponent with
a larger slope is connected with production of jets
of particles. Thus, we consider our distributions as
a manifestation of jet existence in nucleus–nucleus
interactions.

Research on the distributions of the local maxi-
mum of WΨ(a, b) on b gives more interesting results.
Figure 5 shows the distributions of all our interac-
tions at amax ≥ 0.05 (1), amax ≥ 0.1 (2), amax ≥ 0.2
(3), and amax ≥ 0.3 (4). As can be seen, the pecu-
liarities of the distributions at η ∼ 1.5, η ∼ 2, η ∼ 3,
η ∼ 3.5, and η ∼ 5 are located at the same positions
for different interactions. The peculiarities, as can
be seen, are connected with narrow groups, where
amax < 0.05. We interpret them as the existence of
preferred emission angles of the groups of particles.
Let us note that the positions of some irregularities
found by us coincide with those observed early in [10]
in the study of Pb + Pb interactions at the energy
of 158 GeV/nucleon. Unlike [10], where 5 mostly
central events were analyzed, we present the results
for more than 2000 events.

Research on narrow groups of particles with help
of traditional methods was the third step. Figure 6
shows a distribution on a pseudorapidity interval be-
tween neighboring particles in an event. It was ob-
served that there were pairs of particles with close
pseudorapidities, ∆ < 10−5! Their number increases
statistical fluctuations. The distribution of the centers
of the pairs on η has two bumps at η ∼ 3 and 4. Thus,
we can conclude that the peculiarities of the wavelet
spectra observed by us at small scales are connected
with the narrow groups of particles.

One can suppose that such pairs occur due to data
input error when two or three entries in the event
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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record correspond to the same particle. In this case,
such ghost "particles" must have identical η and ϕ.
The fraction of these pairs is lower than 20% among
all the observed narrow pairs. The other pairs have
different values of azimuthal angles. The distribu-
tion of the particles of the narrow groups on ϕ has
no clear peculiarities and reflects the methodological
drawback of the photoemulsion experiments—a poor
identification of particles flying perpendicularly to the
emulsion plate (at ϕ ∼ 0◦ and 180◦). The distribution
of the azimuthal angle difference of the particles of the
narrow group has no irregularities either. Therefore,
these pairs cannot belong to a jet of particles. The
nature of such pairs is not clear to us.

SUMMARY
(i) The continuous wavelet transform has been

used for the analysis of more than 2000 events of nu-
cleus–nucleus interactions at high energies (S + Em
and O + Em interactions at energies of 200 and
60 GeV/nucleon).
04
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(ii) It is shown that the maxima of WΨ(a, b) ob-
tained with the help of the g2 wavelet are associated
with the groups of particles.

(iii) It has been found that the distribution of the
group of particles on scales in the interactions under
study is heterogeneous, which can be caused by jet
production.

(iv) It is observed that the distributions of the
groups on pseudorapidities have irregularities; there
are preferences of emission angles of the groups.

(v) Pairs of particles with close pseudorapidities,
∆ < 10−5, have been found for the first time.

The nature of the peculiarities observed by us is
not yet clear.
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Abstract—The generating functional for probabilities is derived for the scalar model of Yang–Mills fields
in terms of functional integrations. The example of 2 → 2 scattering is shown and problems that arise are
mentioned. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The aim of the paper is to describe the first at-
tempts to construct the event generator for very high
multiplicity hadron processes. It will be based on a
newly developed approach, namely, so-called topo-
logical QCD [1].

The method of derivation of the generating func-
tional for probabilities will be illustrated by the scalar
model of Yang–Mills fields. It is known (see review
paper [2]) that the ansatz Bµ(x) = iσµν∂ν lnu(x) re-
duces the Yang–Mills theory to the scalar conformal
field theory. For this reason, we will consider the the-
ory with Lagrangian

L =
[
1
2
(∂µu)2 −

g

4
u4

]
(1)

+
[
1
2
(∂µϕ)2 − m

2

2
ϕ2

]
− κuϕ2.

The field ϕ corresponds to external particles, and for
simplicity we restrict ourselves to the lowest order
over it. In some sense, (1) represents the scalar Yang–
Mills theory, where u is the “gauge” field and ϕ is
the “quark” field. We will suppose, therefore, that
the asymptotic states are composed from pairs of the
field ϕ.

The quantization is performed in the vicinity of
nontrivial classical solution uc. The corresponding
perturbation theory (the scalar version of topologi-
cal QCD) describes the expansion over the inverse
coupling constant, 1/g. For this purpose, the trans-
formation to “collective variables” (they will have the
meaning of action–angle variables) will be realized.

∗This article was submitted by the authors in English.
1)Institute of Physics, Tbilisi, Georgia; Joint Institute for Nu-
clear Research, Dubna, Moscow oblast, 141980 Russia.

**e-mail: joseph@nusun.jinr.ru
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The idea of such transformation of quantum variables
has been widely discussed (see, e.g., [3]).

In Section 2, we define the generating functional.
Section 3 presents quantization in terms of the col-
lective variables. The explicit expression of the gen-
erating functional for probabilities and the example of
2 → 2 scattering are shown in Section 4. In conclu-
sion, Section 5 presents a brief discussion of results.

2. GENERATING FUNCTIONAL

We will derive in this section the explicit formulas
for the generating functional. The formalism of the
generating functional was used by number of authors
and it will be important for us.

2.1. Generating Functional for Multiple Production
Phenomena

We will consider the quantity

ρ(z, α) =
∞∑

m,n=1

1
m!n!

∫
dωm(p; zi, αi) (2)

× dωn(q; zf , αf )|am,n(p, q)|2,
where

dωm(p; z, α) =
m∏

k=1

d3pke
iαpkz(pk)

(2π)32ε(pk)
,

ε(p) =
√

p2 +m2,

is the Lorentz-covariant phase-space element, z(p)
is some “good” weight function, and am,n(p, q) is the
m-into-n-particles transition amplitude.

The generating functional ρ(z, α) can be used as
the event generator for the description of accelerator
experiments. For example, if

ρm→n(p, q;α)
2004 MAIK “Nauka/Interperiodica”
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=
m∏

k =1

δ

δzi(pk)

n∏
k =1

δ

δzf (qk)
ρ(z, α)

∣∣∣∣∣
z =0

,

then the total cross section can be written as

σn(a1 + a2 → f) =
1
J(s)

×
∑
n

∫
d4αi

(2π)4
d4αf

(2π)4
eiP (αi+αf )

× ρ2→n(p1, p2; q1, . . . , qn;α)
n∏

k=1

d3qk,

where J(s) is the standard normalization factor.

The reduction formula for the amplitude looks as
follows:

am,n(p1, . . . , pm; q1, . . . , qn) (3)
P

= (−i)m+n
m∏

k = 1

φ̂(pk)
n∏

k =1

φ̂∗(qk)Z[φ]

∣∣∣∣∣
φ =0

.

Here, the symbol “∧” denotes the variational deriva-
tive:

φ̂(p) =
∫
d4xe−ipx δ

δφ(x)
,

Z[φ] =
∫
DϕeiSC+

(ϕ)−iVC+
(ϕ+φ),

where C+ is the Mills complex time contour [4],

t→ t+ iε, ε→ +0, −∞ ≤ t ≤ +∞.

Inserting (3) into (2), one finds
ρ(z, α) =
∞∑

m,n

1
m!n!

m∏
k=1

[∫
d3pke

iαipkzi(pk)
(2π)32ε(pk)

φ̂+(pk)φ̂∗−(pk)
]

×
n∏

k=1

[∫
d3qke

iαf qkzf (qk)
(2π)32ε(qk)

φ̂∗+(qk)φ̂−(qk)
]
Z[φ+]Z∗[φ−]

∣∣∣∣∣
φ±=0

.

Summation overm and n can be done. As a result,

ρ(z, α) = eN+(φ̂;αi,zi)+N−(φ̂;αf ,zf )ρ0[φ]
∣∣∣
φ±=0

, (4)

where

N+(φ̂;αi, zi)

= exp
[∫

d3peiαipzi(p)
(2π)32ε(p)

φ̂+(p)φ̂∗−(p)
]
,

N−(φ̂;αf , zf )

= exp
[∫

d3qeiαf qzf (q)
(2π)32ε(q)

φ̂∗+(q)φ̂−(q)
]
,

ρ0[φ] = Z[φ+]Z∗[φ−].

2.2. Unitarity Condition

Our basic idea consists in considering the prob-
ability instead of the amplitude. It is useful because
of the existence of the unitary condition SS+ = I.
Indeed, the amplitude Amust satisfy the condition

S = I + iA ⇒ iAA∗ = A−A∗.

Therefore, since the observables are
∼〈in|A|out〉〈out|A∗|in〉, there is no necessity to know
H

the phase of 〈in|A|out〉 or, what it is the same, there is
no necessity to calculate the real part of the amplitude
〈in|A|out〉.

We will consider the scalar gu4 conformal field
theory with Lagrangian (1). Therefore,

ρ0[φ] =
∫
Du+Dϕ+ exp

[
iSC+(u+)

+ iS0C+(ϕ+) − iVC+(u+, ϕ+ + φ+)
]

×
∫
Du−Dϕ− exp

[
− iSC−(u−) − iS0C−(ϕ−)

+ iVC−(u−, ϕ− + φ−)
]
,

where

SC(u) =
∫
C

d4x

[
1
2
(∂µu)2 −

g

4
u4

]
,

S0C(ϕ) =
∫
C

d4x

[
1
2
(∂µϕ)2 − m

2

2
ϕ2

]
,

VC(u, ϕ) = κ
∫
C

d4xu(x)ϕ(x).

For the sake of simplicity, let us consider the low-
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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est order over ϕ:

ρ0[φ] =
∫
Du+e

iSC+
(u+)−iVC+

(u+,φ+) (5)

×
∫
Du−e

−iSC−(u−)+iVC− (u−,φ−).

Since the choice of contour C± unambiguously de-
fines the choice of φ±, we will consider one quantity φ
such that φ = φ+(t ∈ C+) and φ = φ−(t ∈ C−).

Instead of the two independent fields u+ and u−,
we introduce

u± = u± e
with the boundary condition∫

C+

dx∂µ(u+∂
µu+) =

∫
C−

dx∂µ(u−∂µu−).

We extract a linear term with respect to e in the
exponent

SC+(u+ e) − SC−(u− e) − VC+(u+ e, φ)

+ VC−(u− e, φ) = 2Re
∫

C+

dx
δS(u)
δu

e+ S̃(u, e).

We will assume that terms ∼iIm
∫
C+
dx are propor-

tional to ε→ +0, and therefore they will be omitted.
The expansion over e looks as follows:

exp[iSC+(u+ e) − iSC−(u− e) − iVC+(u+ e, φ)

+ iVC−(u− e, φ)] = exp


−i

∫

C+

dxĵ(x)ê′(x)

+
∫

C−

dxĵ(x)ê′(x)




 exp

[
2iRe

∫
dxj(x)e(x)

]

× exp
[
2iRe

∫
dx
δS(u)
δu

e(x)
]

exp[iS̃(u, e′)],

where, as usual, ĵ(x) and ê′(x) are the corresponding
variational derivatives. The auxiliary variables j(x)
and e′(x) must be set to zero at the end of all calcula-
tions.

Inserting this expansion into (5), one has

ρ0[φ] = e−iK̂(j,e′)
∫
DuDe

× exp
[
2iRe

∫
dx (δS(u)/δu + j(x)) e(x)

]
eiS̃(u,e′),

where the power series over the operator

K̂(j, e) =
∫

C+

dxĵ(x)ê(x) +
∫

C−

dxĵ(x)ê(x)
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gives the quantum perturbation series.
Performing the integration overDe, we obtain

ρ0[φ] = e−iK̂(j,e)

∫
DM(u)eiS̃(u,e)

∣∣∣∣
j,e= 0

, (6)

DM(u) =
∏
x

duδ
(
∂2

µu+ gu3 − j
)
. (7)

By means of the evident identity

1 =
∫
Dpδ(p− u̇),

the measure (7) can be rewritten as

DM(u) = DM(u, p) (8)

=
∏
x

du(x)dp(x)δ
(
u̇− δHj

δp

)
δ

(
ṗ+

δHj

δu

)
,

whereHj is the total Hamiltonian

Hj(u, p) =
∫
d3x

(
1
2
p2 +

1
2
(∇u)2 − g

4
u4 − ju

)
.

3. FACTOR SPACE

As is seen from (8), the integral over u is defined
by the strict, regular, and real solution of the inhomo-
geneous Hamiltonian equation. The latter presents
a definite problem and it is useful to construct the
perturbation theory in terms of the collective vari-
ables [3]. In the present section, we will show our
realization of this idea.

3.1. Classical Solution

In accordance with topological QCD, the largest
contribution is given by those field configurations that
maximally violate the symmetry of the action.

The conformal invariant equation

−δS(u)
δu

≡ �u+ gu3 = 0

has the O(4) ×O(2) invariant solution [2]. The
O(4)×O(2) group is the maximal compact subgroup
of theMinkowski conformal group and, therefore, this
is the solution that gives the largest contribution.
It is regular everywhere in Minkowski space and it
possesses finite energy and action.

In our parametrization, it looks as follows:
√
−guc(x) =

[
4a2/((x − x0)2 − a2)2

+ 4a2((x− x0)µλµ)2
]1/2
, g < 0,

where x0 is an initial position, a > 0 is a scale fac-
tor, and λµ is the restricted constants of integration:
λµλ

µ = 1.
4
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The Lorentz transformation can be written as

t′ = |λ0|t− sgn(λ0)λkxk,

x′i = xi + sgn(λ0)λi

(
sgn(λ0)λkxk

|λ0| + 1
− t
)
,

(9)

where the primed frame is the CM frame of uc, where
λi = 0, and the unprimed one is moving with velocity
vi = λi/λ0.

The classical energy and momentum can be easily
calculated with the help of the transformation (9):

E =
∫
d3x

{
1
2
(u̇c)2 +

1
2
(∇uc)2 +

1
4
gu4

c

}

=
π2

2|g|a |λ0| =
π2

2|g|a

√
1 + λ2

i ,

Pi =
∫
d3xu̇c∂iuc =

π2

2|g|asgn(λ0)λi.

For a better conception of uc, let us show some
graphics. The classical solution depends on x2 and
(x · λ). It is an invariant function under rotations
about the direction of the vector λ. So it is convenient
to plot uc against r =

√
x2 and angle θ = x̂λ, as is

shown in Fig. 1. Figure 2 presents time evolution
of the solution in the CM frame, λ = 0. Figure 3
presents the time evolution of the solution with λ �= 0.

3.2. Explicit O(4) ×O(2) Invariance

In the CM frame, uc looks as follows:

uc(x) =

√
−4a2/g

(x2 − a2)2 + 4a2t2
.

Let us introduce new variables

ζ0 = x0, ζ1 = x1, ζ2 = x2, ζ3 = x3,

ζ5 =
1
2a

(a2 + x2), ζ6 =
1
2a

(a2 − x2).
PH
They define a six-dimensional hypertorus [5]{
ζ21 + ζ22 + ζ23 + ζ25 = ζ20 + ζ26 ,
ζ5 + ζ6 = 1.

In these variables, the classical solution has explicitly
O(4) ×O(2) invariant form

√
−guc = (ζ20 + ζ26 )−1/2.

To obtain these variables for general case, one should
use the Lorentz transformation (9):

ζ0 = xµλ
µ, ζ1 =

x1λ0 − x0λ1√
1 + λ2

2 + λ2
3

,

ζ2 =
x2 + λ3(x2λ3 − x3λ2) − λ2xµλ

µ√
1 + λ2

2 + λ2
3

√
1 + λ2

3

,

ζ3 =
x3 − λ3xµλ

µ√
1 + λ2

3

,

ζ5 =
1
2a

(a2 + x2), ζ6 =
1
2a

(a2 − x2),

where
λ2

0 = 1 + λ2
1 + λ2

2 + λ2
3.

3.3. Mapping

The measure (7) contains the equation of mo-
tion with arbitrary quantum source j(x). It is hard
to find the general solution to this equation if uc is
the nontrivial function, uc = uc(x). For this reason,
we will map our quantum problem into the flat and
homogeneous manifold. It is the factor space of the
variables (a, λ, x0) ≡ (ξ, η).

In order to do the mapping

uc : (u, p)(x, t) → (ξ, η)(t),

we start from the integral

ρ0[φ] = e−iK̂(j,e)

∫
DM(u, p)eiS̃(u,e)

∣∣∣∣
j,e=0

, (10)

where the measure

DM(u, p) =
∏
x

du(x)dp(x)δ
(
u̇− δHj

δp

)
(11)

× δ
(
ṗ+

δHj

δu

)
.

Inserting the identity

1 =
1

∆(uc, pc)

∫ ∏
t

dξ(t)dη(t) (12)

× δ (u(x) − uc(ξ(t), η(t))) δ (p(x) − pc(ξ(t), η(t))) ,
into (10), where (u, p)c are some given functions, we
must assume that the determinant ∆(uc, pc) �= 0. It
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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Fig. 2. Time evolution, λ = 0.

Fig. 3. Time evolution, λ �= 0.
is important to take into account that both mea-
sures (10) and (12) are δ-like. This allows us to
change the integration order and first to perform the
integration over (u, p):

DM(ξ, η) =
1

∆(uc, pc)

∏
t

dξ(t)dη(t) (13)

× δ
(
u̇c −

δHj(uc, pc)
δpc

)
δ

(
ṗc +

δHj(uc, pc)
δuc

)
.

The δ functions can be rewritten identically in the
form ∏

t

δ

(
u̇c −

δHj

δpc

)
δ

(
ṗc +

δHj

δuc

)
(14)

=
∏

t

δ

(
∂uc

∂ξ
ξ̇ +

∂uc

∂η
η̇ − δHj

δpc

)

× δ
(
∂pc
∂ξ
ξ̇ +

∂pc
∂η
η̇ +

δHj

δuc

)

=
∫ ∏

t

dξ̄dη̄δ

(
ξ̄ −
{
ξ̇ − δhj

δη

})

× δ
(
η̄ −
{
η̇ +

δhj

δξ

})
δ

(
∂uc

∂ξ
ξ̄ +

∂uc

∂η
η̄

+
{
∂uc

∂ξ

δhj

δη
− ∂uc

∂η

δhj

δξ

}
− δHj

δpc

)
δ

(
∂pc
∂ξ
ξ̄

+
∂pc
∂η
η̄ +
{
∂uc

∂ξ

δhj

δη
− ∂uc

∂η

δhj

δξ

}
+
δHj

δuc

)
.
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Here, we introduce the function hj = hj(ξ, η) defined
by the equalities

{uc, hj}ξ,η =
δHj(uc, pc)

δpc
, (15)

{pc, hj}ξ,η = −δHj(uc, pc)
δuc

,

where the Poisson brackets are

{X,Y }ξ,η =
∂X

∂ξ

∂Y

∂η
− ∂X
∂η

∂Y

∂ξ
.

We will assume that
hj(ξ, η) = Hj(uc, pc). (16)

Just in this case, uc(x, ξ, η) is the classical solution
and, as a result, (ξ, η) would be the factor manifold.

Then, using (14) and (15), we obtain∏
x

δ

(
u̇c −

δHj

δpc

)
δ

(
ṗc +

δHj

δuc

)

=
∏
x

dξ̄dη̄δ

(
ξ̄ −
{
ξ̇ − δhj

δη

})

× δ
(
η̄ −
{
η̇ +

δhj

δξ

})
δ

(
∂uc

∂ξ
ξ̄ +

∂uc

∂η
η̄

)

× δ
(
∂pc
∂ξ
ξ̄ +

∂pc
∂η
η̄

)
.

Under the assumption that ∆(uc, pc) �= 0, the last
two δ functions would give only solutions ξ̄ = 0 and
04
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η̄ = 0. Therefore,∏
x

δ

(
u̇c −

δHj

δpc

)
δ

(
ṗc +

δHj

δuc

)
(17)

= ∆c(ξ, η)δ
(
ξ̇ − δhj

δη

)
δ

(
η̇ +

δhj

δξ

)
,

where

∆c(ξ, η) =
∫
dξ̄dη̄δ

(
∂uc

∂ξ
ξ̄ +

∂uc

∂η
η̄

)

× δ
(
∂pc
∂ξ
ξ̄ +

∂pc
∂η
η̄

)
.

As a result, using (13) and (17), we obtain

DM(u, p) = DM(ξ, η) (18)

=
∏

t

dξdηδ

(
ξ̇ − δhj

δη

)
δ

(
η̇ +

δhj

δξ

)
,

where hj(ξ, η) is defined by Eq. (16).
Strictly speaking, performing a transformation,

one must conserve the dimension of the measure, i.e.,

dimD(u, p) = dimD(ξ, η).

This means that D(ξ, η) ∼ DΩ, where DΩ is the
differential measure of none of the dynamical vari-
ables [1]. The absorption of the integral overDΩ, in a
sense, is equivalent to the renormalization procedure
of the canonical quantization schemes of the field
theories. For this reason, we omitDΩ in (18).

3.4. Quantization Scheme

We will introduce the pair of conjugate parameters

ξ(t) = t+ x0,

η(t) =
π2

2a
|λ0|

(19)

as the collective variables. While the other parame-
ters (λi, x0i) will be the C-number parameters. The
integration over them gives the zero-mode volume.

From Eq. (6), using Eq. (18), we obtain

ρ0(φ) = e−iK̂(j,e)

∫
dΩ
∏

t

dξdηδ

(
ξ̇ − δhj

δη

)

× δ
(
η̇ +

δhj

δξ

)
eiS̃(uc,e),

where dΩ = d3λd3x0. This choice of dynamical vari-
ables (19) gives the following total transformed
Hamiltonian:

hj = η −
∫
d3xuc(x; ξ, η;λ)j(x, t).
PH
It is useful to introduce the projection of j onto the
ξ and η axes. The result looks as follows:

ρ0(φ) = e−iK̂(jξ,eξ)e−iK̂(jη ,eη) (20)

×
∫
dΩ
∏

t

dξdηδ
(
ξ̇ − 1

)
δ (η̇) eiS̃(uc,ec),

where

ec = eη
∂uc

∂ξ
− eξ

∂uc

∂η
,

uc = uc

(
x; ξ(t) + t+

∫
dt′θ(t− t′)jξ(t′), η(t)

+
∫
dt′θ(t− t′)jη(t′);λ

)
.

Noting that∫ ∏
t

dX(t)δ(Ẋ) =
∫
dX(0) ≡

∫
dX0,

one may perform the remaining integrations:

ρ0(φ) = e−iK̂(jξ,eξ)e−iK̂(jη ,eη) (21)

×
∫
dΩdξ0dη0eiS̃(uc,ec),

where

uc = uc

(
x; ξ0 + t+

∫
dt′θ(t− t′)jξ(t′), η0

+
∫
dt′θ(t− t′)jη(t′);λ

)
,

and in our case

S̃(uc, ec) = −2κRe
∫
dxφ2ec

− 2gRe
∫
dxuce

3
c .

4. PARTICLE PRODUCTION

4.1. Generating Functional in the Factor Space

Now, let us insert (21) into (4):

ρ(z, α) = eN+(φ̂;αi,zi)+N−(φ̂;αf ,zf )

× e−iK̂(jξ,eξ)e−iK̂(jη ,eη)

∫
dΩdξ0dη0

× exp
[
−2iκRe

∫
dxφ2ec − 2igRe

∫
dxuce

3
c

]
.

We suppose that the observables are the pairs
produced from one point and, therefore, we make the
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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replacement φ2(x) → φ(x). Then we obtain the gen-
erating functional for pair production probabilities:

ρ(z, α) = e−i�K̂(jξ,η ,eξ,η) (22)

×
∫
dΩdξ0dη0e−N(αi,zi)−N(αf ,zf )

× e(−2ig/�)Re
∫

dxuce3
c

∣∣∣∣
jξ,η ,eξ,η= 0

,

where

N(αi, zi) = 4�
2κ2

×
∫
d3peiαipzi(p)
(2π)32ε(p)

∣∣∣∣∣∣∣
∫

C+

dxe−ipxec(x)

∣∣∣∣∣∣∣
2

,

N(αf , zf ) = 4�
2κ2

×
∫
d3qeiαf qzf (q)
(2π)32ε(q)

∣∣∣∣∣∣∣
∫

C+

dxeiqxec(x)

∣∣∣∣∣∣∣
2

.

4.2. Elastic Scattering

Let us show an example: 2 → 2 scattering. Us-
ing (22), we get

ρ2→2(p1, p2; q1, q2) (23)

=
44

�
16κ8eiαi(p1 + p2)eiαf (q1 + q2)

(2π)122ε(p1)2ε(p2)2ε(q1)2ε(q2)
e−iK̂(jξ,η ,eξ,η)
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×
∫
d3x0dξ0dη0d

3λ|Γ(p1, ec)|2|Γ(p2, ec)|2

× |Γ∗(q1, ec)|2|Γ∗(q2, ec)|2

× e−2i�2gRe
∫

dxuce3
c

∣∣∣
jξ,η ,eξ,η=0

.

Here, the quantum-perturbation-generating operator
is

K̂(jξ,η, eξ,η) =
∫

C±

dt
(
ĵξ êξ + ĵη êη

)

and

Γ(p, ec) =
∫

C+

d4xe−ipxec(x),

Γ∗(q, ec) =
∫

C+

d4xeiqxec(x),

ec = eη
∂uc

∂ξ0
− eξ

∂uc

∂η0
,

uc = uc

(
x + x0; ξ0 + t+

∫
dt′θ(t− t′)jξ(t′), η0

+
∫
dt′θ(t− t′)jη(t′);λ

)
,

√
−guc(x, ξ, η, λ) =

{
4h2<2/[(η2(ξ2 − x2) − <2)2 + 4η2<2(ξ

√
1 + λ2 − xiλ

i)2]
}1/2

,

where < =
π2

2

√
1 + λ2.

It is evident from (23) that

uc ∼
1
√
g

⇒ ρ2→2 ∼ �
16

g4
C1 +

�
18

g5
C2

+
�

20

g6
C3 + . . . .

5. CONCLUSION
The compact expression (22) for the generating

functional is analytically strict and allows us to deal
with an arbitrary number of particles in the initial and
final states. It has the form of a perturbation series
that is generated by the operator exp(−iK̂).

As has already followed from 2 → 2 scattering,
the lowest order over K̂ in expression (23) has a
large, factorially increasing, number of integrals. We
analyze these terms in order to divide the problem into
computable elementary parts that can be used for the
fast evaluation of contributions.

In addition, we suppose that, within the limit of a
high number of produced particles when equilibrium
occurs, it is possible to make a good approximation
and substantially simplify the expression.
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Abstract—Within the quantum-mechanical theory of fission, wave functions for fragments of binary
nuclear fission and amplitudes of partial fission widths are constructed with allowance for a strong
nonsphericity of fragment-interaction potentials. It is shown that, in the strong-coupling approximation,
the symmetry axes of fission fragments are oriented along the symmetry axis of a fissile nucleus. The
structure of the fragment-interaction potentials is analyzed, and the mechanism that is responsible for the
alignment of the spins and relative orbital angular momenta of fission fragments and which explains the
emergence of high fragment-spin values in experiments is substantiated. The mechanisms in question are
generalized to the case of ternary nuclear fission. The fragment-interaction potentials and fragment wave
functions are investigated, along with the partial fission widths with respect to the ternary fission of nuclei.
c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A quantum-mechanical theory of the spontaneous
and low-energy induced fission of nuclei was devel-
oped in [1, 2]. This theory treats fission as the decay
of a quasistationary state of a fissile nucleus within
a time-independent formalism that is based on the
theory of nuclear reactions [3], the unified theory of
the nucleus [4], and the theory of open Fermi systems
[5] and which was successfully tested in describing
the protonic, alpha, and cluster decays of nuclei (see
[6, 7], [8], and [9], respectively). This theory of fission
relies on A. Bohr’s concept of transition fission states
[10] and on the application of the adiabatic approx-
imation [1, 2, 6] to states of the nucleus that has
already undergone disintegration. In the theory, the
amplitudes of partial fission widths and fission phases
depending on the spins, relative orbital angular mo-
menta, and intrinsic states of fission fragments are
introduced in a natural way, the law of conservation
of the total fissile-nucleus spin being rigorously taken
into account.

The angular distributions of fragments originating
from low-energy photofission were analyzed within
the proposed theory of binary fission, and it was found
that these distributions deviate from the distributions
predicted by A. Bohr’s formula [10]. This result made
it possible to substantiate [11] the appearance of high
values of relative orbital angular momenta and spins
of fission fragments in the experiment reported in [12].
By using experimental data on the binary fission of

*e-mail: kadmensky@phys.vsu.ru
1063-7788/04/6701-0170$26.00 c©
some nuclei, the values of P-even and P-odd asym-
metries in the angular distributions of a third particle
emitted in the ternary fission of the same nuclei in
(n, f) reactions induced by polarized cold neutrons
were predicted in [13, 14] on the basis of the theory
of ternary fission [2]. The structure of the potential
of the interaction between a third particle and fission
fragments originating in ternary nuclear fission was
analyzed in [15], and the angular distributions of a
third particle with respect to the direction of light-
fission-fragment emission were investigated there.

In the strong-coupling approximation [10] and
with the aid of the fact that A. Bohr’s formula [10]
describes well the experimental angular distributions
of fragments originating from binary nuclear fission,
the developed theory of fission [1, 2] made it possi-
ble to conjecture, with allowance for the quantum-
mechanical uncertainty principle for orbital angular
momenta and the angles of particle emission, that the
symmetry axes of fission fragments are aligned with
the symmetry axis of the nucleus undergoing fission
and that fission fragments are emitted predominantly
along or against the direction of the symmetry axis of
this nucleus.

In analyzing, in the present study, the wave
functions for fragments from binary and ternary
nuclear fission, a strong nonsphericity of fragment-
interaction potentials is taken consistently into ac-
count in order to validate the ideas formulated above
and to introduce the mechanism of orientation pump-
ing of high values of relative orbital angular momenta
and spins of fission fragments.
2004 MAIK “Nauka/Interperiodica”
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2. FISSILE-NUCLEUS WAVE FUNCTION
IN THE ASYMPTOTIC REGION OF BINARY

FISSION

Let us consider the binary fission of an axisym-
metric nucleus, which, in the case of equilibrium de-
formations, is described by the wave function ΨJπM

σK ,
where J is the nuclear spin; M and K are the spin
projections onto, respectively, the z axis in the lab-
oratory frame and the nuclear-symmetry axis, which
coincides with the z′ axis in the intrinsic coordinate
frame; π is parity; and σ stands for other quantum
numbers, including the atomic weight A and the
charge Z of the nucleus. The asymptotic behavior of
this wave function in the vicinity of the point where
the nucleus disintegrates into fission fragments can
be represented as [13, 14]

ΨJπM
σK →

∑
tq

bJπ
tσKc

Jπ
qtKΨJπM

qK , (1)

where bJπ
tσK is the amplitude describing the transition

of the wave function ΨJπM
σK in the process of fissile-

nucleus evolution associated with the variation of the
deformation parameters of the nucleus to the wave
function ΨJπM

tK for the transition fission state defined
at the saddle point of the deformation potential of the
fissile nucleus [10] and cJπ

qtK is the amplitude of the
transformation of the transition fission state tK into
the fission mode qK defined in the vicinity of the point
where the nucleus disintegrates into fission fragments
[16] and characterized by the wave function ΨJπM

qK .
Since, for the fission process that is asymmetric in
the charges and masses of nascent fission fragments,
the corresponding fission mode is associated with an
axisymmetric pearlike shape of the fissile nucleus at
finite values of static octupole-deformation parame-
ters, the wave function ΨJπM

qK can be represented in
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the form [10]

ΨJπM
qK =

√
2J + 1
16π2

[(1 − δK,0){DJ
MK(ω)χπ

qK(ξ)

(2)

+ (−1)J+KDJ
M−K(ω)χπ

qK
(ξ)}

+ δK,0

√
2DJ

M0(ω)χ
π
qn(ξ)],

where DJ
MK(ω) is a generalized spherical harmonic

depending on the Euler angles (α, β, γ) ≡ ω charac-
terizing the orientation of the axes of the fissile nu-
cleus with respect to the axes of the laboratory frame.
For the fissile nucleus, the intrinsic functions χπ

qn(ξ)
forK = 0 andχπ

qK(ξ) forK �= 0, which depend on the
intrinsic coordinates of the nucleus, ξ, are given by

χπ
qn(ξ) =

1√
2
(ψqn(ξ) + πp̂ψqn(ξ))i(1−π)/2, (3)

χπ
qK(ξ) =

1√
2
(ψqK(ξ) + πp̂ψqK(ξ))i(1−π)/2,

where p̂ is the operator of reflection of spatial coor-
dinates and the functions ψqn(ξ) and ψqK(ξ) are not
parity eigenstates and correspond to a pearlike shape
of the fissile nucleus. We have χqK(ξ) = τχqK(ξ),
where τ is the time-inversion operator and the func-
tion χqn(ξ) is an eigenfunction of the operator τ for
the eigenvalue n = (−1)J [10].

Upon the scission of the fissile nucleus and the
formation of binary-fission fragments, the fission-
mode wave function ΨJπM

qK (2) goes over to the wave

function (ΨJπM
qK )as, which, by using the methods of

the unified theory of the nucleus [4] and of the theory
of open Fermi systems [5], can be recast into the form
(ΨJπM
qK )as =

〈
GJπM (x,R;x′, R′)

∣∣∣Q̂(H − E)P̂
∣∣∣ΨJπM

qK (x′, R′)
〉
, (4)
where R is the absolute value of the radius vector
R = R1 − R2 characterizing the relative motion of
fission fragments, Ri being the c.m. coordinate of the
ith fragment (i = 1, 2; A1 ≤ A2), and x stands for the
set of all coordinates of the fissile nucleus, with the
exception of the coordinate R.

Formula (4) involves the divergent Green’s func-
tion GJπM (x,R;x′, R′), which is a solution to the
equation

Q̂(H − E)Q̂GJπM (x,R;x′, R′) (5)

= δ(x− x′)δ(R −R′),
where H and E are, respectively, the total Hamil-
tonian of the fissile nucleus and its energy and the
projection operator Q̂ has the form Q̂ = 1− P̂ , with
the operator P̂ being given by

P̂ =
∑

s

∣∣ΨJπM
s

〉 〈
ΨJπM

s

∣∣.
The wave functions ΨJπM

s form a complete orthonor-
malized basis of multiparticle shell functions that
participate in the formation of stationary and quasi-
stationary states of the fissile nucleus (including the
σπJMK state under study) in the shell region of
4
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the configuration space spanned by the coordinates
(x,R), where the fissile nucleus has a compact shape
and has not yet undergone a transition to fission
channels.

If use is made of the orthogonal-projection method
[17], the operators Q̂(H − E)P̂ and Q̂(H − E)Q̂ ap-
pearing in (4) and (5) can be replaced, by respectively,
the operatorH and the operator (H̃ − E), where H̃ =
H0 + Ṽ with Ṽ = V + χP̂ ; here, V is the fission-
fragment-interaction potential, H0 is the Hamilto-
nian for noninteracting fragments, and χ→ +∞. In
this case, one can introduce the complete orthonor-
malized basis of eigenfunctions ΨJπM±

a (x,R) of the
Hamiltonian H̃ that correspond to continuous ener-
gies Ea,

(H̃ −Ea)ΨJπM±
a (x,R) = 0, (6)

and represent the solution to Eq. (5) in the form [3]

GJπM (x,R;x′, R′) =
∑

a

∫
dna

dEa
dEa (7)

× ΨJπM+
a (x,R)Ψ∗JπM−

a (x′, R′)
Ea − E + iδ

,

where the addition of (+iδ) in the denominator on
the right-hand side of Eq. (7) results in that only
divergent spherical waves appear in the asymptotic
expression for the Green’s function (7) and where
integration with respect to Ea is performed with al-
lowance for the energy density dna/dEa of states a.
The action of the operator χP̂ in Eq. (6) results in
that the wave functions ΨJπM±

a become orthogonal
to the fission-mode wave functions ΨJπM

qK and under-
go damping in the shell region of the fissile nucleus.
These functions describe the potential scattering of
fission fragments on each other, in which case there
can arise only quasimolecular optical resonances (but
not multiparticle resonances corresponding to nu-
clear states in the shell region).

The solution to Eq. (6) can in turn be represented
in the form [3]

ΨJπM±
a (x,R) = ϕJπM

a (x,R) +
∑

b

∫
dEb

dnb

dEb
(8)

×
ϕJπM

b (x,R)
〈
ϕ∗JπM

b (x′, R′) |T±|ϕJπM
a (x′, R′)

〉
Eb − Ea ± iδ

,

where ϕJπM
a (x,R) is an eigenfunction of the unper-

turbed Schrödinger equation (H0 − Ea)×
ϕJπM

a (x,R) = 0 and T± denotes the T matrix that
satisfies the equation

T± = Ṽ + Ṽ
1

Ea −H0 ± iδ
T. (9)
P

Following the method proposed in [3], we first
construct the wave function ϕa(x,R) that is not pure
in the total spin J and which is normalized to a delta
function of energy. It is taken in the form

ϕa(x,R) ≡ ϕkccβMF
(x,R) (10)

=
1

(2π)3/2

√
kcMc

�2
eikc·RUcβMF

,

where kc is the wave vector of the relative motion of
fission fragments in the c ≡ σ1π1K1σ2π2K2 channel
with kc =

√
2McQc/�2, Qc and Mc being, respec-

tively, the energy and the reduced mass of fragments;
β ≡ J1J2F ; and UcβMF

is the channel-spin function
having the form

UcβMF
=

{
ΨJ1π1M1

σ1K1
(ω1, ξ1)ΨJ2π2M2

σ2K2
(ω2, ξ2)

}
FMF

.

(11)

Here, ΨJiπiMi
σiKi

(ωi, ξi) is the wave function for the ith
axisymmetric fission fragment; it does not involve
static odd (including octupole) deformations and has
the form (2) [10], where one must replace the sub-
scripts JMqπKωξ by the subscripts JiMiσiπiKiωiξi
and the intrinsic wave functions χπ

qK , χπ
qK

, and χπ
qn

by the corresponding intrinsic wave functions χπi
σiKi

,
χπi

σiKi
, and χπi

σini
for fission fragments.

Expanding the exponential function eikc·R in a
series in spherical harmonics, we recast the wave
function (10) into the form

ϕkccβMF
=

√
2
π

√
kcMc

�2

∑
L

iLY ∗
LML

(Ωkc) (12)

× YLML
(ΩR)jL(kcR)UcβMF

,

where jL(kcR) is a spherical Bessel function and the
solid angle ΩR ≡ (θR, ϕR) determines the direction of
the radius vector R in the laboratory frame.

Substituting expression (12) into Eq. (8), per-
forming integration with respect to Eb and Ωkb

with
allowance for the relation dnb/dEb =MbkbdΩkb

, and
using the technique developed in [3], we can then
obtain the function ΨJπM±

a (x,R) that is pure in spin
and which is normalized to a delta function of energy.
The result is

ΨJπM±
α (x,R) =

∑
α′

UJπM
α′ (x)

fJπ±
α′α (R)
R

, (13)

where the channel function UJπM
α (x) characterized

by a specific value of the total spin J of fission frag-
ments has the form

UJπM
α (x) =

{
UcβMF

iLYLML
(ΩR)

}
JM
, (14)
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with α ≡ cβL, the set of coordinates x being defined
as x ≡ ω1, ξ1, ω2, ξ2,ΩR. The amplitude fJπ±

α′α (R) ap-
pearing in Eq. (13) satisfies the set of coupled radial
equations(

d2

dR2
− L

′(L′ + 1)
R2

+ k2
c′

)
fJπ±

α′α (R) (15)

− 2Mc′

�2

∑
α′′

Ṽ JπM
α′α′′ (R)fJπ±

α′′α (R) = 0,

Ṽ JπM
α′α′′ (R) = 〈UJπM

α′ |Ṽ |UJπM
α′′ 〉 (16)

with the boundary conditions fJπ±
α′α (R) → 0 for R→

0 and

fJπ±
α′α (R) → ∓ 1

2i

√
2
π�vc

(17)

×
{
exp

[
∓i

(
kcR− Lπ

2

)]
δα′α

∓ SJπ±
α′α exp

[
±i

(
kc′R− L

′π

2

)]}

forR→ ∞; here, vc = �kc/Mc. In formula (17), SJπ±
α′α

are the S-matrix elements that describe the scatter-
ing of fission fragments on each other and which are
related to the operators T± (9) by the equation [3]

SJπ±
α′α = δα′α (18)

∓ 2πi
〈
j̃L′(kc′R)UJπM

α′
∣∣T±∣∣ j̃L(kcR)UJπM

α

〉
,

where j̃L(kcR) =
√

2kcMc/π�2jL(kcR). Upon the
substitution of the wave function (13) into formula
(7) and performing integration with respect to the
energy Ea, we can obtain the Green’s function
GJπM (x,R;x′, R′) in the asymptotic region R→ ∞.
The result is

GJπM (x,R;x′, R′) =
∑
α

UJπM
α (x)

√
Mc

�2kc
(19)

×
exp

[
i

(
kcR− Lπ

2

)]
R

∑
α′

〈
UJπM

α′ (x′)
f̃Jπ−

α′α (R′)
R′

∣∣∣∣∣.
In the limit R→ ∞, the wave function (ΨJπM

qK )as (4)
is then given by

(ΨJπM
qK )as =

∑
α

UJπM
α (x) (20)

×
exp

[
i

(
kcR− Lπ

2

)]
R

√
ΓJπ

qKα

�vc
,
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where the partial-fission-width amplitude
√

ΓJπ
qKα is

defined as√
ΓJπ

qKα =
√
2π

∑
α′

〈
UJπM

α′
f̃Jπ−

α′α (R)
R

|H|ΨJπM
qK

〉
.

(21)

Formula (21) takes into account the character of
fission-fragment interaction more correctly than the
analogous formula for the partial-width amplitude√

ΓJπ
qKα in [1].

3. MECHANISM OF ALIGNMENT
OF THE SYMMETRY AXES OF FISSION

FRAGMENTS WITH THE SYMMETRY AXIS
OF THE FISSILE NUCLEUS

In order to obtain deeper insight into the relation-
ship between the orientation of the symmetry axes of
axisymmetric fission fragments and the orientation of
the symmetry axis of the axisymmetric fissile nucleus,
we use the method proposed in [1].

The structure of formula (21), which determines
the partial-fission-width amplitude, leads to a serious
problem. This formula involves an integral with
respect to all (3A− 3) coordinates ω, ξ of a fissile
nucleus; the wave function ΨJπM

qK (ω, ξ) depends on
these coordinates, but the function
UJπM

α′ f̃Jπ−
α′α (R)/R, which also appears in the integral

in question, corresponds to already formed fission
fragments and depends on the (3A− 3) coordinates
ω1, ξ1, ω2, ξ2, and R, which do not include the
coordinate ω. In order to overcome this difficulty,
we can go over, in the functions DJ1

M1K1
(ω1) and

DJ2
M2K2

(ω2), which appear in the fission-fragment

wave functions ΨJ1π1M1
σ1K1

and ΨJ2π2M2
σ2K2

, to the intrinsic
coordinate frame of the fissile nucleus by using the
Wigner transformation

DJi
MiKi

(ωi) =
∑
K ′

i

DJi

MiK ′
i
(ω)DJi

K ′
iKi

(ω′
i), (22)

where ω′
i are the Euler angles determining the ori-

entation of the symmetry axis of the ith fragment
with respect to the symmetry axis of the fissile nu-
cleus. Substituting formula (22) into the channel
function UJπM

α (14) and multiplying it by a contin-
uous function ϕ(ω21) depending on the Euler angles
ω21 of the second fragment with respect to the sym-
metry axis of the first fragment and satisfying the
condition ϕ(0) = 1, one can obtain a new channel
function UJπM

α (x1), which, upon the multiplication
by the function f̃Jπ−

α′α (R)/R, becomes dependent on
4
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the set of coordinates x1, R ≡ ω, ω21, ω′
1, ω′

2, ξ1,
ξ2, and R. With an eye to performing integration in
formula (21) with respect to the coordinates ω and
ξ and under the assumption that, for the sponta-
neous and low-energy induced fission of nuclei, the
main contribution to the partial-width amplitude (21)
comes from the components of the fissile-nucleus
HamiltonianH that are diagonal in the intrinsic wave
functions for fission fragments, it is natural to rep-
resent the set of intrinsic coordinates ξ of the fissile
nucleus in the form ξ ≡ ω21, ξ1, ξ2,R, where the co-
ordinates ξ1 and ξ2 correspond to the intrinsic co-
ordinates of fission fragments in the channel func-
tion UJπM

α (x1). In this case, the set of coordinates
on which the channel functionUJπM

α′ (x1)f̃Jπ−
α′α (R)/R

depends will include two extra (with respect to the
set of coordinates ξ) coordinates ω′

1 and ω′
2, which,

in performing integration involving this function in
formula (21), can be considered as parameters on

which the partial-width amplitude
√

ΓJπ
qKα(ω

′
1, ω

′
2)

obtained in this case depends. Upon the substitution
of the channel functions UJπM

α (x1) and the ampli-

tudes
√

ΓJπ
qKα(ω

′
1, ω

′
2) into formula (20), the resulting

wave function (ΨJπM
qK (ω, ω12, ω

′
1, ω

′
2, ξ1, ξ2,R))as will

then also become dependent on two extra variables
ω′

1 and ω′
2. In order to compensate this dependence,

it is necessary, in going over [1] from the multidi-
mensional flux density jJπM

qK (ω, ω12, ω
′
1, ω

′
2, ξ1, ξ2,R)

obtained by using the wave function in the asymp-
totic form (ΨJπM

qK (ω, ω12, ω
′
1, ω

′
2, ξ1, ξ2,R))as to the

observed fission-fragment flux density jJπM
qK (R) in the

direction of the radius vector R, to perform integration
with respect to the extra coordinates ω′

1 and ω′
2 in ad-

dition to the integration with respect to the variables
ω, ω12, ξ1, and ξ2.

Before performing the aforementioned integra-
tion, we explicitly isolate, in the partial-fission-width

amplitude
√

ΓJπ
qKα(ω

′
1, ω

′
2) (21), the overlap integral

Aπ
qKc of the intrinsic functions for fission fragments

and a fissile nucleus; that is,

Aπ
qKc(ω, ω12, ω

′
1, ω

′
2,R) (23)

=
∫
dξ1dξ2χ

∗π1
σ1K1

(ξ1(ω1))χ∗π2
σ2K2

(ξ2(ω2))χπ
σK(ξ(ω)),

where the relation between the intrinsic coordinates
ξ1, ξ2, and ξ and the symmetry axes of the corre-
sponding nuclei that is associated with the use of the
strong-coupling approximation in constructing the
intrinsic wave functions for axisymmetric deformed
nuclei on the basis of the generalized model of the
nucleus [10] is present in an explicit form. If the
P

atomic weights (Ai) of fission fragments are rather
large (Ai � 1), it can be stated that, even in the
presence of a neck in the prescission configuration of
a fissile nucleus, the overlap integral (23) will have, to
a high degree of precision, the form

Aπ
qKc(ω, ω12, ω

′
1, ω

′
2,R) (24)

= Aπ
qKc(R)δ1/2(ω′

1)δ
1/2(ω′

2)δ
1/2(ω12),

where δ1/2(x) is the amplitude of the delta function
δ(x).

Upon the substitution of this overlap integral
into the integral in (21), the partial-width amplitude√

ΓJπ
qKα(ω

′
1, ω

′
2) takes the form√

ΓJπ
qKα(ω

′
1, ω

′
2) =

√
ΓJπ

qKα(0, 0)δ
1/2(ω′

1)δ
1/2(ω′

2).
(25)

The presence of the delta-function amplitudes
in (25) makes it possible to calculate the observed
flux density jJπM

qK (R) in a simplified form by us-
ing the modified channel functions UJπM

α (x̄) and

the modified partial-width amplitudes
√

Γ̄Jπ
qKα. The

functions UJπM
α (x̄), which depend on the set of

coordinates x̄ ≡ ω, ξ1, ξ2,R, are obtained from the
channel functions UJπM

α (x) (14) under the condition

ω1 = ω2 = ω. The amplitudes
√

Γ̄Jπ
qKα are given by

formula (21), where integration is performed with
respect to the set of variables ω, ω12, ξ1, ξ2, and
R; the modified channel functions UJπM

α (x̄) and the
function δ1/2(ω12)ΨJπM

qK (ω, ξ) are used instead of

the channel functions UJπM
α (x) (14) and the wave

function ΨJπM
qK (ω, ξ), respectively; and the fissile-

nucleus Hamiltonian H(ω1, ξ1, ω2, ξ2,R) is replaced
by the same Hamiltonian at ω1 = ω2 = ω. The ra-
dial functions f̃Jπ−

α′α (R) entering into the integral in
(21) are now calculated by solving a set of coupled
equations that belongs to the type in (15), but
in which the fission-fragment-interaction potential
V (ω1, ξ1, ω2, ξ2,R) is replaced in the matrix element
Ṽ JπM

α′α′′ (R) (16) by the same potential at ω1 = ω2 = ω.
The physical meaning of the result obtained in this

way is as follows. Because of the effect of the strong-
coupling approximation [10], the fission-fragment
axes are oriented strictly along the symmetry axis
of a fissile nucleus. The presence of a neck in the
prescission configuration of a fissile nucleus can lead
to some small deviations of the Euler angles ω1 and
ω2 from the Euler angles ω. However, the stiffness co-
efficients for these deviations at A1, A2 � 1 are very
large, which leads to very high energies of bending
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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vibrations in the prescission configuration of a fissile
nucleus. Because of the condition ω1 = ω2 = ω, there
are virtually no similar vibrations in the region of
already formed fission fragments as well. Since the
condition ω1 = ω2 = ω was used in [1], the results of
that study remain in force.

4. STRUCTURE OF THE POTENTIAL
DESCRIBING THE INTERACTION

OF BINARY-FISSION FRAGMENTS

The potential Vc(R, ω1, ω2) that describes the in-
teraction of fragments originating from the binary
fission of nuclei and which is diagonal in the chan-
nel index c can be represented as the sum of the
Coulomb potential V Coul

c (R, ω1, ω2) and the nuclear
potential V nucl

c (R, ω1, ω2). For the nuclear potential
V nucl

c (R, ω1, ω2), one can use the real part of the av-
eraged optical nuclear potential of fission-fragment
interaction. As was shown within the theory of open
Fermi systems [5], this potential coincides with the
generalized Hartree–Fock potential. The respective
expression was constructed in [18] on the basis of the
theory of finite Fermi systems [19] for zero-range ef-
fective interactions in the particle–hole channel. The
result can be written as

V nucl
c (R, ω1, ω2) = A1A2C0

[
Fin − Fex

ρ0
(26)

×
(∫

ρ21(r)ρ2(R + r)dr +
∫
ρ1(r)ρ22(R + r)dr

)

+ Fex

∫
ρ1(r)ρ2(R + r)dr

]
,

where C0, Fin, Fex, and ρ0 are constants [19] and the
vectors r and (R + r) are drawn from the centers of
mass of the corresponding fragments.

Let us represent the single-particle nucleon den-
sity in an axisymmetric deformed fragment as

ρi(r) = ρ0

[
1 + exp

(
r −RAi(r, ωi)

a

)]−1

, (27)

where

RAi(r, ωi) = R0
Ai

[
1 + β(i)

2 B(r, ωi)
]
. (28)

If use is made of the Wigner transformation from the
intrinsic coordinate frame of the respective fragment
to the laboratory frame, the quantity B(r, ωi) is given
by

B(r, ωi) = Y20(θi) =
∑
m

D∗2
m0(ωi)Y2m(Ωr), (29)

where θi is the angle between the vector r and the
symmetry axis of the ith fragment. Considering that
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the deformation parameters β(i)
2 of fission fragments

are rather small, we expand the functions ρi(r), ρ2i (r),
ρi(R + r), and ρ2i (R + r) in series in these parameters
to the first-order terms. By way of illustration, we
present the expansion of the function ρi(R + r):

ρi(R + r) = ρ0i (|R + r|) (30)

+
∂ρ0i (|R + r|)
∂R0

Ai

R0
Ai
β

(i)
2 B(R + r, ωi) + ....

For the function Y2m(ΩR+r) appearing in the defi-
nition of the quantity B(R + r, ωi), we can use the
formula [20]

Y2m(ΩR+r) =
1

|R + r|2

×
∑
LM

SLR
2−LrL(−1)LYLM (Ωr)Y2−L,m−M (ΩR),

where

SL =
[

(4π)5!
(2L+ 1)(5− 2L)!

]1/2

C2m
(2−L)L(m−M )M .

By expanding functions of |R + r| that enter into for-
mulas of the type in (30) in series in the spherical
harmonics

Yl0(θrR) =
∑
m

Ylm(ΩR)Y ∗
lm(Ωr)

√
4π

2l + 1

and substituting the resulting expansions into for-
mula (26), we can represent the potential
V nucl

c (R, ω1, ω2) in the form

V nucl
c (R, ω1, ω2) = V nucl

c0 (R) (31)

+
2∑

i=1

V nucl
ci (R)β(i)

2 B(R, ωi)

(θrR is the angle between the vectors r and R).
The Coulomb potential of fission-fragment inter-

action, V Coul
c (R, ω1, ω2), is given by

V Coul
c (R, ω1, ω2) = Z1Z2e

2 (32)

×
∫ ∫

ρ1(r1)ρ2(r2)
|R + r1 − r2|

dr1dr2.

Since the conditionR > |r1 − r2| is satisfied upon the
scission of a fissile nucleus into fission fragments, the
function |R + r1 − r2|−1 can be expanded in a series
in powers of |r1 − r2|/R. To the second-order terms
inclusive, we have

|R + r1 − r2|−1 =
1
R

+
R(r1 − r2)

R3
(33)

+
3(R, r1 − r2)2 −R2(r1 − r2)2

2R5
+ ....
4
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Substituting the expansion in (33) into (32), consid-
ering that the fragment densities possess the property
ρ(ri) = ρ(−ri) because of parity conservation, and
using expansions of the type in (30), we can reduce
the potential V Coul

c (R, ω1, ω2) to a form that is similar
to that which was previously obtained in [18]. The
result is

V Coul
c (R, ω1, ω2) =

Z1Z2e
2

R
(34)

+
3
5
Z1Z2e

2

R3

2∑
i=1

β
(i)
2 (R0

Ai
)2B(R, ωi).

5. MECHANISM OF ALIGNMENT OF SPINS
AND RELATIVE ORBITAL ANGULAR

MOMENTA OF FISSION FRAGMENTS

The nonspherical part of the fission-fragment-
interaction potential Vc(R, ω1, ω2) given by (31) and
(34) does not depend on the quantities

N I(ω1, ω2) =
∑
m

DI
m0(ω1)D∗I

m0(ω2),

which are associated with the direct interaction of the
fission-fragment spins with each other. In the po-
tential Vc(R, ω1, ω2), such dependences arise only in
small terms of second and higher orders in the defor-

mation parameter β(i)
2 . This means that the structure

of the fission-fragment-interaction potential cannot
lead to the appearance of the mechanism considered
in [21], where the orientation pumping of the fission-
fragment spins was due to the emergence of terms
depending on structures of the formN I(ω1, ω2).

The nonsphericity of the fission-fragment-inte-
raction potential Vc(R, ω1, ω2) is entirely due to terms
that linearly depend on the quantities B(R, ωi) given
by (29) with the substitution of R for r, which describe
the coupling of the relative angular momenta and
spins of fission fragments.

In order to obtain deeper insight into this cou-
pling, we will investigate in greater detail the proper-
ties of the quantity B(R, ωi), which does not change
the projection of the spin of a fission fragment onto
its symmetry axis, because it involves the Wigner
function D∗2

m0(ωi) corresponding to zero value of this
projection. Since the quantity B(R, ωi) is a scalar
(that is, it remains invariant upon going over from
one coordinate frame to another) because of a scalar
character of the fission-fragment-interaction poten-
tial Vc(R, ω1, ω2), it does not change the total spin of
the system undergoing fission. Indeed, the quantity
B(R, ωi) can be represented in the form

B(R, ωi) =
√
4π (35)
P

×
∑
mJ

CJ0
22−mmY2−m(βi, αi)Y2m(θR, ϕR)δJ,0,

where βi and αi are the Euler angles appearing in
the definition of ωi. It directly follows from the rep-
resentation in (35) that the total spin J related to
the quantity B(R, ωi) is equal to zero. Therefore,
the nonspherical terms of the potential Vc(R, ω1, ω2),
which are associated with the quantity B(R, ωi), can
change the relative orbital angular momentum L of
fission fragments by the positive-parity quantity ∆Li,
provided that the spin of the ith fragment, Ji, changes
simultaneously by the quantity ∆Ji = −∆Li, the pro-
jections of the spin ∆Ji and of the relative orbital
angular momentum ∆Li onto the symmetry axis of
the ith fragment being equal to zero. The inclusion
of nonspherical terms of the potential Vc(R, ω1, ω2)
may lead to the emergence of a mechanism that
generates high values of the relative orbital angu-
lar momentum and spins of fission fragments. In
order to understand the nature of this mechanism,
we make use of the results presented in the preced-
ing section, where we have shown that, because of
the effects of the strong-coupling approximation for
the intrinsic wave functions of fission fragments and
a fissile nucleus, the symmetry axes of the fission
fragments are aligned with the symmetry axis of the
nucleus undergoing fission. It immediately follows
that the fission-fragment-interaction potential must
be calculated under the condition ω1 = ω2 = ω, in
which case one can represent this potential in the
form Vc(R, θω) (where θω is the angle between the
direction of the radius vector R and the symmetry
axis of the nucleus undergoing fission) and determine
it with the aid of formulas (31) and (34), where the
quantity B(R, ω) is substituted for B(R, ωi). But in
this case, the mechanism generating relative orbital
angular momenta and spins of fragments that was
proposed in [18] and which is associated with the
emergence of bending vibrations of fission fragments
with respect to the radius vector R, whose direction
is actually assumed to be coincident with the direc-
tion of the symmetry axis of the nucleus undergoing
fission, cannot be realized in principle. Instead of
this mechanism, there arises a mechanism aligning
the relative orbital angular momentum and spins of
fission fragments that is associated with oscillations
of the radius vector R about the symmetry axis of the
nucleus undergoing fission.

The above alignment mechanism may be due to
the nonsphericity of the Coulomb barrier that, upon
the summation of the nuclear potential V nucl

c (R, θω)
and the Coulomb potential V Coul

c (R, θω) of fission-
fragment interaction, emerges at minimal values of
the modulus of the radius vector R = Rm(θω) (which
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004



MECHANISMS OF BINARY AND TERNARY LOW-ENERGY FISSION OF NUCLEI 177
are dependent on the angle θω), where the nuclear
potential V nucl

c (R, θω) virtually vanishes,

Rm(θω) = R0
A1

(1 + β(1)
2 Y20(θω)) (36)

+R0
A2

(1 + β(2)
2 Y20(θω)) + s.

Here, the quantity s is associated with the presence
of a neck in the prescission configuration of the nu-
cleus undergoing fission and is estimated [18] at s =
0.5 fm and the radius R0

Ai
can be represented as

R0
Ai

= 1.4A1/3
i fm. Expanding the spherical harmonic

Y20(θω) in a series in the angles θω to first-order
terms, we recast the quantity Rm(θω) (36) into the
form

Rm(θω) = Rm −
√

5
4π

3
2

2∑
i=1

R0
Ai
β

(i)
2 θ

2
ω.

Upon substituting this value of Rm(θω) into expres-
sion (34) for the potential V Coul

c (R, θω) at ω1 = ω2 =
ω and expanding the respective potential in powers of
θ2ω to first-order terms, we can derive an expression
for the maximum of the Coulomb barrierBCoul(θω) as
a function of the angle θω . The result is

BCoul(θω) = BCoul
0 +

Cθ2ω
2
, (37)

where

BCoul
0 =

Z1Z2e
2

Rm
(38)

×
{
1 +

1
R2

m

2∑
i=1

(R0
Ai

)2
(

9
20π

)1/2

β
(i)
2

}
,

C =
Z1Z2e

2

Rm

√
5
4π

2∑
i=1

β
(i)
2

[
3R0

Ai

Rm
− 9

5
(R0

Ai
)2

R2
m

]
.

(39)

Relating the atomic weights Ai and the nuclear
charges Zi to the mass and charge asymmetries
(∆A = A2 −A1 and ∆Z = Z2 − Z1, respectively) of
fission fragments as

A1 =
A−∆A

2
, A2 =

A+∆A
2

, (40)

Z1 =
Z −∆Z

2
, Z2 =

Z + ∆Z
2

,

we can expand the functions in (37) in powers of
∆Z/Z and ∆A/A. Considering that the maximum
values of ∆Z/Z and ∆A/A for the spontaneous and
low-energy induced fission of A ≈ 240 nuclei are
about 0.2, one can retain, in this expansion, only
terms of zeroth order of smallness, whereupon, for the
quantities C and Rm, one obtains the values of C ≈
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100 MeV and Rm = 17 fm atA1 = A2 = A/2 ≈ 120,

Z1 = Z2 = Z/2 ≈ 46, and β(1)
2 ≈ β(2)

2 ≈ 0.3.

For small angles θω, the Schrödinger equation for
the relative orbital motion of fission fragments in the
intrinsic coordinate frame of a fissile nucleus can be
represented, by analogy with [21], in the form[

− �
2

2MR2
m

1
θω

∂

∂θω

(
θω

∂

∂θω

)
− �

2

2MR2
m

1
θ2ω

∂2

∂ϕ2
ω
(41)

+
Cθ2ω
2

− ε
]
Ψε(θω, ϕω) = 0,

where M is the reduced mass of fission fragments,
M = mA/4 � 60m, m being the nucleon mass. So-
lutions to Eq. (41) describe oscillations of the direc-
tion of the radius vector R about the symmetry axis of
a fissile nucleus in the angles θω. For the ground state
of these oscillations, the energy is ε = ε0, the corre-
sponding wave function Ψ0(θω, ϕω) normalized with
respect to the phase-space element sin θωdθωdϕω be-
ing given by

Ψ0(θω, ϕω) =
√
γ

π
exp

[
−γθ

2
ω

2

]
, (42)

where γ =Mε0R2
m/�

2 = 196 and ε0 = �
√
C/M =

0.5 MeV.
For the Schrödinger Eq. (41) at the fixed radius

vector R = Rm to be applicable to the problem being
considered, it is necessary that, over a time period
commensurate with the period of oscillations T =
�/ε0, the distance R between the centers of mass
of fission fragments whose relative velocity is v(R)
change by a quantity much less than Rm, this cor-
responding to fulfillment of the condition

�

ε0

v(Rm)
Rm

=
Ekin(Rm)

ε0 [k(Rm)Rm]
� 1, (43)

where Ekin(Rm) and k(Rm) are, respectively, the
kinetic energy and the wave vector of the rela-
tive motion of fragments at R = Rm [Ekin(Rm) =
(Qc −BCoul

0 − ε0), with Qc being the energy of the
relative motion of fragments for the fission channel
c being investigated]. If, for the quantity Ekin(Rm),
one uses the estimate from [22],Ekin(Rm) ≤ 10 MeV,
the left-hand side of the inequality in (43) assumes a
value not exceeding 0.2, which is quite sufficient for
fulfillment of condition (43).

Expanding the function in (42) in terms of spheri-
cal harmonics YL0(θω, ϕω), one can obtain [23]

Ψ0(θω, ϕω) =
∑
L

bLYL0(θω, ϕω), (44)
4
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where

bL =
(2L+ 1)
γ

(2L+ 0.5)4

γ2
exp

{
−(2L+ 0.5)2

γ

}
,

(45)

with
∑

L b
2
L = 1. It follows that the angular compo-

nent of the wave function for the relative motion of
fragments can be represented in the form (44), which
reflects the fact that, in the case where the radius
vector R is aligned with the symmetry axis of the
nucleus undergoing fission, the relative orbital angu-
lar momenta L of fission fragments have vanishing
projectionsKL onto this symmetry axis (KL = 0).

The wave function (44) was used in constructing
fission widths and angular distributions of binary-
fission fragments in [1, 13–15], where it was corrected
to take into account the law of parity-conservation
in fission. For a pearlike shape of a fissile nucleus
described by the wave function (4), this law leads to
the selection rule (−1)L = π, whence it follows that,
instead of the function in (44), it is necessary to use a
function of the form

Ψ0(θω, ϕω) =
∑
L

bLYL0(θω, ϕω)
[
1 + π(−1)L

2

]
.

(46)

In order to describe the normalized (to unity) am-
plitude of the angular distribution of nuclear-fission
fragments in the intrinsic coordinate frame, use was
made in [1] of a function Ψ0(θω, ϕω) that differs from
that in (46) only by the sharp-cutoff approximation;
that is,

Ψ0(θω, ϕω) (47)

=
∑
L

b̃LΘ(Lm − L)YL0(θω, ϕω)
[
1 + π(−1)L

2

]
,

where Θ(Lm − L) is the Heaviside step function and

b̃L =
√
2L+ 1 (48)

×
[∑

L

(2L+ 1)Θ(Lm − L)
[
1 + π(−1)L

2

]]1/2

.

If the maximum value Lm in formula (47) is found
from the condition requiring the coincidence of the
expectation values 〈L〉 and 〈L(L+ 1)〉 calculated by
the formulas

〈L〉 =
∑
L

Lb2L, 〈L(L+ 1)〉 =
∑
L

L(L+ 1)b2L

for the distributions in (46) and (47), there arises, for
Lm, the estimate Lm ≈ 2

√
γ ≈ 30. So large a value

of Lm is rather close to that which lies in the range
20 < Lm < 25 and which was found in [11] from an
PH
analysis of the deviations of the angular distribu-
tions of photofission fragments from the distributions
predicted by A. Bohr’s formula [10], which arises
if use is made of the wave functions (46) and (47)
for γ, Lm → ∞. As was indicated in [11], the values
obtained above for Lm make it possible to substanti-
ate an approximate validity of A. Bohr’s formula [10]
and to explain the origin of high values observed
experimentally in [12] for the average spins of fission
fragments. It should be noted that the values found for
Lm may increase somewhat upon taking into account
nonzero temperatures T0 for the prescission fissile-
nucleus configuration occurring in a thermodynamic
equilibrium [18]. For the spontaneous and low-energy
induced fission of nuclei, however, the temperature T0

must be much less than 1 MeV, which is not expected
to change the values obtained above for Lm strongly.

With the aid of these results, one can consistently
substantiate the computational formulas used in [1,
13–15] to describe the properties of binary fission of
nuclei and to confirm the ideas of nuclear fission that
were developed in [24].

6. STRUCTURE OF WAVE FUNCTIONS
AND PARTIAL-WIDTH AMPLITUDES
FOR TERNARY FISSION OF NUCLEI

By using the methods of the unified theory of the
nucleus [4], the theory of open Fermi systems [5],
and the theory of three-body nuclear reactions [25,
26] and the results presented in [2], the asymptotic
form (ΨJπM

qK )as of the wave function ΨJπM
qK for the

fission mode of ternary fission in the region where two
fragments and a third particle (below, we take an al-
pha particle for a third one) have already been formed
can be represented, as in the case of binary fission,
by formula (4), where the divergent Green’s func-
tion GJπM (x̃, ρ; x̃′, ρ′) now depends on the three-
particle set of coordinates x̃ and ρ. The coordinates
x̃ ≡ ω1, ξ1, ω2, ξ2,Ωr,ΩR, ε and ρ take into account
the appearance of the radius vector r characterizing
the motion of the alpha particle with respect to the
center of mass of two ternary-fission fragments and
having the form

r = R3 −
A1R1 +A2R2

A1 +A2
.

The coordinates ρ and ε are given by [25, 26]

R =
√
Mc

Ma
ρ sin ε, r =

√
Mc

Mb
ρ cos ε,

where the angle ε varies within the range 0 ≤ ε ≤ π/2
and the quantitiesMa,Mb, andMc have the form

Ma =
A1A2

A1 +A2
m, Mb =

A3(A1 +A2)
A

m,
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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Mc =
√
MaMb.

All of the results obtained above for the binary
fission of nuclei and given in formulas (13)–(21) can
now be generalized to the case of ternary nuclear
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
fission if, instead of the two-particle channel func-

tion UJπM
α (x) (14), we use the three-particle channel

function UJπM
α̃ (x̃) in the form
UJπM
α̃ (x̃) =

{{{
ΨJ1π1M1

σ1K1
(ω1, ξ1)ΨJ2π2M2

σ2K2
(ω2, ξ2)

}
FMF

iLYLML
(ΩR)

}
J0M0

ilYlMl
(Ωr)

}
JM

YcλLl(ε)
sin ε cos ε

,

(49)
where the subscript α̃ is defined as α̃ = αlλ; l is the
relative orbital angular momentum of the third parti-
cle; the subscript λ takes the values of λ = 0, 1, 2...;
and the function YcλLl(ε), which is normalized in the
space of the angles ε, is expressed in terms of Jacobi
orthogonal polynomials [25, 26]. Instead of the func-
tion fJπ−

α′α (R)/R (15), it is then necessary to use the

function f̃Jπ−
α̃′α̃ (ρ)/ρ5/2 that is normalized to a delta

function of energy and which, at kc =
√

2McQc/�2

and vc = �kc/Mc (where Qc is the total energy of the
relative motion of fission fragments in the channel c),
is obtained by solving the set of coupled equations(

d2

dρ2
+ k2

c′

)
f̃Jπ−

α̃′α̃ (ρ) (50)

− 2Mc′

�2

∑
α̃′′

Ṽ JπM
α̃′′α̃′ (ρ)f̃Jπ−

α̃′′α̃′(ρ) = 0,

with the boundary condition f̃Jπ−
α̃′α̃ (ρ) → 0 for ρ→ 0

and the boundary condition

f̃Jπ−
α̃′α̃ (ρ) → 1

2i

{
exp

[
i

(
kcρ−

L0π

2

)]
δα̃′α̃ (51)

+ exp
[
−i

(
kc′ρ−

L′
0π

2

)]
SJπ−

α̃′α̃

}

for ρ→ ∞, where L0 = L+ l + 2λ+ 3/2. In for-
mula (51), SJπ−

α̃′α̃ is an element of the three-particle

S matrix. The matrix element Ṽ JπM
α̃′′α̃′ (ρ) in (50)

is given by formula (16), where it is necessary to
replace the two-particle channel functions UJπM

α (x)
by the three-particle functions UJπM

α̃ (x̃) and the
two-particle potentials V (x,R) by the corresponding
three-particle fission-fragment-interaction potentials
V (x̃, ρ). In this case, the asymptotic expression
(ΨJπM

qK )as for the fission-mode wave function ΨJπM
qK

in the limit ρ→ ∞ can be represented in the form

(ΨJπM
qK )as =

∑
α̃

UJπM
α̃ (x̃) (52)
×
exp

[
i

(
kcρ−

L0π

2

)]
ρ5/2

√
ΓJπ

qKα̃

�vc
,

where the partial-fission-width amplitude
√

ΓJπ
qKα̃ for

the three-body fission channel α̃ is given by (21) with
the above substitutions.

7. STRUCTURE OF THE INTERACTION
OF FRAGMENTS ORIGINATING

FROM THE TERNARY FISSION OF NUCLEI

If one employs the method of extra coordinates,
which was applied above to the case of binary nu-
clear fission, it can be shown that, because of the
effect of the strong-coupling approximation [10], the
symmetry axes of fragments originating from ternary
fission are aligned with the symmetry axis of the
fissile nucleus—that is, ω1 = ω2 = ω, as in the case
of binary fission. The potential Vc(R, θω) representing
the interaction of ternary-fission fragments coincides
with the analogous potential Vc(R, θω) of the inter-
action of binary-fission fragments, the latter being
given by Eqs. (31) and (34) at ω1 = ω2 = ω; upon
going over to three-particle variables, it becomes de-
pendent on the quantities ρ and ε via the relation
R =

√
Mc/Maρ sin ε.

The potential Vα(R, r, ω) describing the inter-
action of an alpha particle and two ternary-fission
fragments can be represented as the sum of the
Coulomb potential V Coul

α (R, r, ω) and the nuclear
potential V nucl

α (R, r, ω). In the c.m. frame of the fissile
nucleus, where its c.m. coordinate is

R0 =
4Rα +A1R1 +A2R2

A
= 0,

there arise simple relations between the relative coor-
dinates R and r and the c.m. coordinates R1, R2, and
Rα of fission fragments; that is,

R1 = R01 −
4r
A
, R2 = −R02 −

4r
A
,

Rα =
A1 +A2

A
r, (53)
4
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R01 =
A2

A1 +A2
R, R02 =

A1

A1 +A2
R,

Rα − R1 = r− R01, Rα − R2 = r + R02.

In the approximation where an alpha particle is
treated as a pointlike object, the Coulomb potential
V Coul

α (R, r, ω) describing the interaction of the alpha
particle with ternary-fission fragments can then be
represented in the form [15]

V Coul
α (R, r, ω) = 2e2

∑
i

Zi

∫
ρi(ri)dri

|Ri − Rα + ri|
, (54)

where ri is the proton coordinate reckoned in the ith
fission fragment from its c.m. coordinate and ρi(ri)
is the normalized (to unity) proton density in the ith
fragment. Since the alpha particle is emitted from
the small neck of the prescission configuration of a
fissile nucleus, the conditions ri/R < 1 and r/R < 1
are satisfied in the region of intense alpha-particle
interaction with ternary-fission fragments after their
formation. Expanding the potential (54) in a series
in powers of ri/R and r/R to second-order terms
inclusive and in a series in powers of the charge and
mass asymmetries of fission fragments, ∆Z/(Z − 2)
and ∆A/(A− 4), to the first nonvanishing terms and
using the expansions of the densities of fission frag-

ments in powers of their deformation parameters β(i)
2

to first-order terms of smallness of the form (30), we
can arrive at [15]

V Coul
α (R, r, θrR) =

2(Z − 2)e2

R
(55)

+
8(Z − 2)e2

R2
r

√
4π
3
Y10(θrR)

(
∆Z
Z − 2

+
2∆A
A− 4

)

+
16(Z − 2)e2

R2
r2

√
4π
5
Y20(θrR)

− (Z − 2)e2

R3

24
5

2∑
i=1

(R0
Ai

)2β(i)
2 Y20(θω),

where θrR is the angle between the vectors r and R.
The first and the fourth term in the potential (55)

are independent of the coordinate r and can be added,
as small corrections, to the potential Vc(R, θω) de-
scribing the interaction of ternary-fission fragments.
As to the second and the third term in formula (55),
which are dependent on the coordinate r, they specify
the true Coulomb potential V Coul

α (r,R, θrR) of the
interaction between the alpha particle and ternary-
fission fragments in the region of r values being con-
sidered.

In order to construct the nuclear potential
V nucl

α (R, r, ω) of alpha-particle interaction with ter-
nary-fission fragments, we can make use of the
P

method that was proposed in [18, 19] and which was
previously employed to construct the nuclear poten-
tial V nucl

c (R, θω) of interaction of these fragments.
This yields

V nucl
α (R, r, ω) = 4C0 (56)

×
{
Fin − Fex

ρ0

[
ρ21(r− R01) + ρ22(r− R02)

]

+ Fex [ρ1(r− R01) + ρ2(r− R02)]

}
.

Expanding the potential (56) in a series in powers of
r/R and retaining terms to second order of smallness
inclusive, we can isolate, in the resulting potential
V nucl

α (R, r, ω), the term V nucl
α (R, 0, ω), which arises

in (56) at r = 0 and which is a small correction
to the nuclear fission-fragment-interaction potential
Vc(R, θω). We can expand, in a series in the angle θω,
terms in the potential (56) that depend on the coordi-
nate r and discard terms proportional to θ2ω because
they are small corrections to the term Cθ2ω/2 for the
nonspherical Coulomb barrier (37). In this case, the
true nuclear potential that describes alpha-particle
interaction with ternary-fission fragments and which
is associated with the coordinate r proves to be inde-
pendent of the angle θω and assumes the form

V nucl
α (r,R, θrR) = r

√
3
4π
Y10(θrR) (57)

×
{
4C0

(Fin − Fex)
ρ0

×
[
−∂(ρ̄1(R01))2

∂R01
+
∂(ρ̄2(R02))2

∂R02

]

+ 4FexC0

[
−∂ρ̄1(R01)

∂R01
+
∂ρ̄2(R02)
∂R02

]}

+
1
6
r2

[√
5
π
Y20(θrR) + 1

]{
4C0

(Fin − Fex)
ρ0

×
[
∂2(ρ̄1(R01))2

∂R2
01

+
∂2(ρ̄2(R02))2

∂R2
02

]

+ 4FexC0

[
∂2ρ̄1(R01)
∂R2

01

+
∂2ρ̄2(R02)
∂R2

02

]}
,

where ρ̄i(R) is the density of the spherical ith frag-

ment of radius R̄Ai = R0
Ai

(1 +
√

5/4πβ(i)
2 ). If one

expands the resulting potential (57) in a series in the
charge- and mass-asymmetry parameters of fission
fragments, ∆Z/(Z − 2) and ∆A/(A− 4), to the first
nonvanishing terms, then that term in this poten-
tial which involves Y10(θrR) will be a linear func-
tion of the parameters ∆Z/(Z − 2) and ∆A/(A− 4),
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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while the term featuring Y20(θrR) can be treated as
that which is independent of these parameters. In
this case, the potential V nucl

α (r,R, θrR) (57) will have
symmetry that is coincident with the symmetry of
the Coulomb potential V Coul

α (r,R, θrR) (55), which
was constructed above, apart from the fact that, in
V nucl

α (r,R, θrR), there arises a spherically symmetric
term that is proportional to r2, which is independent
of θrR, and which is due to the presence of unity in

the sum
[√

5/πY20(θrR) + 1
]

appearing in expres-

sion (57).
The appearance of an alpha particle introduces

virtually no changes in the potential Vc(R, θω) of
ternary-fission-fragment interaction in relation to
the analogous potential describing the interaction of
binary-fission fragments; the potentials
V Coul

α (r,R, θrR) and V nucl
α (r,R, θrR) are independent

of the angles θω and change only slightly as the
radius vector R changes by a small quantity that is
necessary for the realization of condition (43), under
which the mechanism of alignment of the vector R
along the symmetry axis of a fissile nucleus comes
into play. In view of this, the above mechanism
of alignment will be realized, nearly without any
distortions, for ternary nuclear fission as well. In
this case, the motion of the alpha particle emitted
in ternary fission can be treated, to a high degree of
precision, as its motion in the field of the “dumbbell”
that is formed by elongated fission fragments, whose
intrinsic symmetry axes coincide with the symmetry
axis of the parent nucleus, and which becomes more
extended with time. By using the ideas developed
above, the angular component of the wave function
describing the relative motion of the three fragments
in ternary fission in the intrinsic coordinate frame of a
fissile nucleus, Ψ(Ωr,ΩR, ω), can be represented, in
the asymptotic region ρ→ ∞, in the form of the prod-
uct of the wave function Ψ0(θω, ϕω) (46) describing
the relative angular motion of the fragments, which
is virtually undistorted by the emergence of the alpha
particle, and the wave function Ψα(θrR) describing
the angular motion of the alpha particle with respect
to the direction of fragment motion; that is,

Ψα(θrR) =
∑

l

bl(ε)Yl0(θrR), (58)

where the coefficients bl(ε) depend on the angles ε,
which determine the energy of the alpha particle in the
asymptotic region [25, 26]. A similar representation
of the wave function Ψ(Ωr,ΩR, ω) for ρ→ ∞ was
used previously in [2] in describing the experimental
angular distributions of alpha particles [27] originat-
ing from the ternary fission of unpolarized nuclei and
in calculating the coefficients of P-odd and P-even
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
asymmetries (see [13] and [14], respectively) in the
ternary fission of nuclei.

8. CONCLUSION

This study has demonstrated the potential of the
quantum-mechanical theory of fission for describing
the mechanisms and properties of the spontaneous
and low-energy induced binary and ternary fission of
nuclei. The results obtained here, together with the
results reported in [1, 2, 13–15], make it possible to
trace fission dynamics after the scission of a fissile
nucleus into fragments, including the derivation of
information about the neutron and radiative modes of
fission-fragment decay.
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Abstract—TheGreen’s functionmethod is used to derive general equations for describing effects of pairing
in Fermi systems where there are two types of interaction, two-particle and quasiparticle–phonon interac-
tion. These equations generalize Bardeen–Cooper–Schrieffer theory to the case of complex configurations
involving “strong” phonons. In the approximation of weak coupling to phonons, realistic equations that
make it possible to describe excited states of nonmagic even–even nuclei with allowance for a single-
particle continuum and complex configurations of the two quasiparticles ⊗ phonon type are formulated
for the first time. These equations are solved for an isovector E1 resonance in the stable isotope 120Sn and
in the unstable isotopes 104,132Sn. It is shown that complex configurations must be taken into account in
order to describeE1 excitations—in particular, in a broad energy region around the nucleon binding energy.
c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the majority of S.T. Belyaev’s studies devoted
to nuclear physics, he considered nuclei that involve
pairing and, in almost all of them, consistently em-
ployed the Green’s function method, which, as could
have been seen even from those studies and as was
confirmed later on, proved to be quite seminal for a
further development of the microscopic theory of the
nucleus [1–4].

The inclusion of complex configurations is one of
the main trends in the development of the modern
theory of the nucleus.1) The development of nuclear-
physics experiments—first of all, the improvement
of the experimental resolution—and the need for ex-
plaining the widths of giant resonances and other fea-
tures of nuclei required taking into account complex
configurations in the microscopic theory of the nu-
cleus (for an overview, see [5–7]). The quasiparticle–
phonon model [5], which relies on the Hamilto-
nian formalism, proved to be the most advanced in

*e-mail: litva@aport.ru
1)By complex configurations in nuclei involving effects of pair-
ing, we mean, for the sake of definiteness, those that are
more complicated than 1qp ⊗ phonon configurations in odd
nuclei and those that are more complicated than one-phonon
or 2qp configurations in even–even nuclei, these three types
being taken into account in the quasiparticle (qp) random-
phase approximation (QRPA). We imply here, above all,
complex configurations featuring phonons, since the analysis
of phonon-free complex configurations, which are obtained
by means of the substitution phonon → 2qp, is more com-
plicated and less clear physically.
1063-7788/04/6701-0183$26.00 c©
the quantitative aspect. Over the past decade, the
Green’s function method has been used as a basis
for developing a quantitative approach for magic
nuclei [7] that takes simultaneously into account all
three mechanisms of giant-resonance formation—
namely, those that are associated with 1p1h con-
figurations (RPA), a single-particle continuum, and
complex configurations of the 1p1h⊗ phonon type. It
was shown that this approach (generalized theory of
finite Fermi systems), which is a direct generalization
of Migdal’s theory of finite Fermi systems [8] to the
case of the aforementioned complex configurations,
describes successfully not only the total widths of
resonances but also their gross structure. There
naturally arises the question of generalizing such an
approach to the case of nuclei where pairing effects
are present.

Complex configurations were taken into account
in quite a general form in the studies of Belyaev and
Zelevinsky [2, 4], where the corresponding general
formulas were obtained for calculating the properties
of both even–even and odd nuclei involving effects of
pairing. Those studies appeared well ahead of their
time. In particular, those authors showed that it is
necessary to take complex configurations into ac-
count explicitly (see, for example, [4]), in contrast
to what was done in the theory of finite Fermi sys-
tems [8], where complex configurations were included
effectively in an integral form through phenomeno-
logical parameters of the theory. On the other hand,
experience gained in theoretical analyses and, what is
more important, experiments revealed that, in order
2004 MAIK “Nauka/Interperiodica”
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to explain specific experimental data, it is necessary
to single out and consider particular complex con-
figurations and, when possible, to invoke available
additional approximations.

The present article reports on a continuation of the
studies described in [9–12] and devoted to generaliz-
ing the theory of finite Fermi systems in such a way as
to take explicitly into account complex configurations
in nuclei where pairing is present. The emergence of
a second, quasiparticle–phonon, mechanism of pair-
ing [9], in addition to the usual Bardeen–Cooper–
Schrieffer mechanism, is one of the most interesting
results that are obtained upon consistently taking
into account complex configurations in the particle–
particle channel. This mechanism owes its existence
to the appearance of a second, quasiparticle–phonon,
interaction in the problem and is similar to the pairing
mechanism studied by Eliashberg [13] in solid-state
physics, albeit the nature of phonons in nuclear mat-
ter is totally different from that in solid bodies. The
mechanism considered by Eliashberg corresponds to
the case of strong coupling to phonons and reduces
to the usual Bardeen–Cooper–Schrieffer mechanism
in the limit of weak coupling. In nuclei featuring
unfilled shells, the case of strong coupling is realized
in both nucleon subsystems (see [14]). Therefore, it
is necessary to consider this mechanism. Moreover,
an analog of the Migdal–Eliashberg approximations
used in Eliashberg’s theory should probably be aban-
doned in dealing with such nuclei. An analysis of this
type may be of interest for other strongly interacting
Fermi systems as well.

The ensuing exposition is organized as follows. In
Section 2, we consider some general relations for Fer-
mi systems containing an odd number of particles and
featuring two types of interaction. Relevant equations
for even–even nuclei involving effects of pairing are
derived in Section 3 with allowance for 2qp⊗ phonon
configurations. These equations are solved for the
isovector E1 resonance in the stable nucleus 120Sn
and in the unstable nuclei 104,132Sn.

2. GENERAL RELATIONS

2.1. General Solutions for Odd Nuclei: “Purification”
and Effective Mass

Excited states of an odd Fermi system where pair-
ing effects are present are determined by solving the
set of equations for the normal (causal) Green’s func-
tionsG and Gh and the anomalous Green’s functions
F (1) and F (2), these equations involving the mass
operators Σ and Σh for the former and the mass
operators Σ(1) and Σ(2) for the latter (for the sake
of simplicity, we will use a unified notation in the
following—for example, Σi). Each of the operators
P

symbolized as Σi can be represented as the sum of
two terms such that the energy dependence is com-
pletely absorbed in one of them (M i) [10–12]:

Σ(ε) = Σ̃ +M(ε), Σ(1)(ε) = Σ̃(1) +M (1)(ε), (1)

Σh(ε) = Σ̃h +Mh(ε), Σ(2)(ε) = Σ̃(2) +M (2)(ε).

It is then convenient to write formal solutions to the
set of equations for the above Green’s functions in
the form (in the diagonal approximation in the single-
particle index of the λ representation)

η = ±
√
ε2λn + ∆2

λn, (2)

ελn =
ε̃λ +Mevλ(η)

1 + qλ(η)
, ∆(2)

λn =
∆̃(2)

λ +M
(2)
λ (η)

1 + qλ(η)
,

where qλ(η) = −Moddλ(η)/η; Mev(ε) and Modd(ε)
are, respectively, the even and the odd part of the
single-hole mass operator M(ε); and η is a root of
the corresponding secular equation, this root being,
in general, characterized by two indices, λ and n
(number of solution).

The quantities Σ̃i and M i in relations (1) and (2)
are not specified. We only assume that the opera-
tors M i involve quasiparticle–phonon interaction,
although, in other cases, M i may contain an ef-
fective or a bare two-particle interaction. The case
of weak coupling in nuclei that feature pairing—it
corresponds to the presence of a small parameter
in the system, g2 < 1, where g is the dimensionless
phonon-production amplitude—was quantitatively
studied in [9, 10]. But in the general case of strong
coupling to phonons, all single-particle Green’s func-
tions appearing in Σ̃i and M i must be exact. Apart
from this complication, there arises the well-known
problem of taking into account corrections to the
corresponding vertex. As was indicated by Belyaev
and Zelevinsky [2, 4], each correction to the vertex
involves a 6j coefficient such that, for a first approx-
imation, one can disregard all corrections, with the
exception of the first-order correction containing one
6j coefficient (this correction was written explicitly
in [12]). By applying the technique of matrix Green’s
functions that were employed in [1], we can easily find
that, in this approximation, the quantitiesM i assume
the form (here and below, we present onlyM andM (2)

and disregard pair phonons)

M(ε) = M r(ε) +Mv(ε), (3)

M (2)(ε) = M (2)r(ε) +M (2)v(ε),

where the rainbow diagrams and corrections to the
vertex are denoted by M ir (rainbow) and M iv (ver-
tex), respectively. The equivalent graphical form of
these relations is
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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These relations are also valid for other strongly
interacting Fermi systems both at zero and at nonzero
temperature (up to the temperature Tc of a phase
transition from a superconducting to a normal
state)—for example, for fullerides (see the study
of Grimaldi et al. [15], who considered the case
of Σ̃i = 0 and who presented diagrams for M i at
T = Tc).

In a similar form, relations (2) were obtained in [16]
in the approximationM i = M ir (rainbow diagrams).
For an infinite system treated in the same approxima-
tion and for the case of ε̃λ = ∆̃λ = 0, such relations
were derived in Eliashberg’s study [13], which was
seminal for the development of the microscopic theory
of conventional superconductors. For nuclei, Hahne
et al. [17] constructed a procedure for isolating, in
an effective particle–particle interaction, a phonon
term that leads to the emergence of the quantity
M (2) = M (2)r and implemented this procedure nu-
merically for the 18O nucleus.

The inclusion of corrections to the vertex means
that one goes far beyond Eliashberg’s theory. For
nuclei, the role of these corrections (crossed graphs)
in the formation of features of low-energy neutron–
nucleus scattering was quantitatively estimated
(without allowance for pairing) by Samoilov and
Urin [18], who found that the relative contribution
of the two-phonon crossed graph does not exceed
25–50%, as a rule, but that it may amount to 100%
in some rare cases. In their later study [19], how-
ever, those authors reproduced previous qualitative
arguments in favor of disregarding crossed graphs.
Since it is very difficult to assess crossed graphs
quantitatively, the corresponding three-level model
with pairing was studied in [20], and the distribution
of the single-particle strength for the j = 11/2 state
was calculated there. It was found that the two-
phonon correction to the vertex makes a noticeable
contribution—in particular, the spectroscopic factor
for the dominant level decreases from 0.49 to 0.40.

For an analysis of pairing, that solution to the set
of equations for the Green’s functions is of greatest
interest which has the form (2) and which corre-
sponds to low-lying single-particle levels in an odd
nucleus where pairing effects are present. These lev-
els, which are referred to as dominant ones, have
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
the greatest spectroscopic factor. They are given by
Eqs. (2) for fixed (“dominant”) n [9, 10]; that is,

Eλ = ±
√
ε2λ + ∆2

λ, (5)

ελ =
ε̃λ +Mevλ(Eλ)

1 + qλ(Eλ)
, ∆(2)

λ =
∆̃(2)

λ +M
(2)
λ (Eλ)

1 + qλ(Eλ)
,

where qλ(Eλ) = −Moddλ(Eλ)/Eλ. Using these rela-
tions and knowing observed {ελ,∆λ}, one can find
the “purified” values {ε̃λ, ∆̃λ}, which determine the
purified single-particle basis in all equations featuring
complex configurations. This procedure for determin-
ing {ε̃λ, ∆̃λ} makes it possible to avoid the double
counting of that part in the quasiparticle–phonon in-
teraction which appears in the quantitiesM i. As can

be seen from Eqs. (5), the observed gap∆(2)
λ involves

contributions both from the two-particle interaction

(in ∆̃(2)
λ ) and from the quasiparticle–phonon inter-

action (in ∆̃(2)
λ and in M

(2)
λ )—that is, there are in

general two pairing mechanisms (see also Subsec-
tion 2.2).
A general description of pairing makes it possible

to single out its role in various physical quantities
and its mechanisms more clearly. By way of example,
we will consider general formulas for the effective
nucleon mass. As is well known, it is convenient to
represent this quantity in the form [8, 21]

m∗(ε)
m

=
mk(ε)
m

mω(ε)
m

, (6)

so that, at the Fermi boundary (ε = µ, p = pF), we
have

mω(r)
m

=
[
1 − ∂Σ(r, p, ε)

∂ε

]
F
, (7)

mk(r)
m

=
[
1 + 2m

∂Σ(r, p, ε)
∂p2

]−1

F
,

where Σ is the quantity to which the single-particle
mass operator reduces in the mixed representation [8]
and which determines the exact Green’s function G.
As was shown in [12], the general equation for G in
nuclei that involve pairing can be recast into the form
(diagonal approximation)

G = G̃+ G̃(M +Mel)G, (8)
4
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whereMel,

Mel = −(Σ(1)ḠhΣ(2) − Σ̃(1)G̃h
0Σ̃(2)), (9)

is the general expression for the mass operator re-
sponsible for the pairing mechanism additional to the
mechanism described by the term Σ̃(1)G̃h

0Σ̃(2), which,
in the limit M i = 0, corresponds to the Bardeen–
Cooper–Schrieffer mechanism (see also the next sec-
tion). The Green’s functions Ḡh and G̃h

0 were defined
in [12].

It can be seen from Eq. (8) that Σ = M +Mel
in nonmagic nuclei. From this relation and from (7),
we then obtain, under the assumption that Mel(∆ =
0) = 0, the contribution of pairing to the effective
mass in the form

m
pair
ω

m
=

mω

m
− mω(∆ = 0)

m
=

∂M

∂εF
(10)

− ∂M(∆ = 0)
∂εF

+
∂Mel

∂εF
,

m
pair
k

m
=

mk

m
(11)

− mk(∆ = 0)
m

=
[
1 + 2m

∂(M +Mel)
∂p2

F

]−1

−
[
1 + 2m

∂M(∆ = 0)
∂p2

F

]−1

.

In magic nuclei, we haveMel = 0; therefore, one can
calculate the quantitiesmω andmk by the formulas

mω

m
= 1 − ∂M(∆ = 0)

∂εF
, (12)

mk

m
=
[
1 + 2m

∂M(∆ = 0)
∂p2

F

]−1

.

With the aid of these formulas, one can calculate, for
each nucleus, the observed effective nucleon mass,
which is phenomenologically defined at the Fermi
surface as a quantity that is close to the free nucleon
mass.

2.2. Case of Rainbow Diagrams

Let us consider the case ofM i = M ir andM iv =
0; in contrast to the linearized version studied in [9,
10], this case is essentially nonlinear. In this approxi-
mation, we will derive a few equations for ∆̃λ and∆λ.

By definition, the quantities Σ̃i in (1) are indepen-
dent of the energy variable ε; therefore, the quantity
Σ̃(2), for example, can be represented in the form
(diagonal approximation)

Σ̃(2)
λ = ∆̃λ =

∑
λ′

Wλλ̄λ′λ̄′

∫
dε

2πi
F

(2)
λ′ (ε), (13)
P

where W is a new ε-independent particle–particle
interaction that is different from the well-known
phenomenological particle–particle interaction ap-
pearing in the standard Bardeen–Cooper–Schrieffer
equation.

In order to derive an equation for ∆̃λ, we make use
of a spectral representation for the function F (2) [22];
that is,

F
(2)
λ (ε) =

∑
n

√
S+

λnS
−
λn (14)

×
(

1
ε− Eλn + iδ

− 1
ε+ Eλn − iδ

)
,

where S±
λn are the residues corresponding to the par-

ticle and hole components of the Green’s functionG,

S±
λn =

(1 + qλn)(Eλn ± ελn)
Θ̇λ(Eλn)

. (15)

Here,

Θλ(ε) = (ε− ε̃λ −Mλ(ε))(ε + ε̃λ +Mh
λ (ε)) (16)

− (∆̃λ +M
(2)
λ (ε))2,

and an overdot denotes differentiation with respect to
energy (see also [10]). From (13) and (14), we find for
∆̃λ that

∆̃λ =
∑
λ′n

Wλλ̄λ′λ̄′

√
S+

λ′nS
−
λ′n (17)

=
∑
λ′n

Wλλ̄λ′λ̄′
∆λ′n(1 + qλ′n)

Θ̇λ′(Eλ′n)
,

which is a generalization of the Bardeen–Cooper–
Schrieffer equation to the case of strong coupling
and which, in the limit where all M (i) vanish, re-
duces to the Bardeen–Cooper–Schrieffer equation
(in that case, Θ̇λ = 2Eλn = 2Eλ). It should be em-
phasized that, in the absence of phonon exchange in
the particle–particle channel (M (2) = 0), the relation
∆λ = ∆̃λ(1 + qλ(Eλ))−1 follows from (5) for the ob-
served gap; that is, both factors involve a contribution
of the quasiparticle–phonon interaction.

The role of the quasiparticle–phonon interaction
and of the corresponding two pairing mechanisms
can be analyzed in an alternative way. In the approx-
imation of rainbow diagrams that is considered here,
the Green’s function F (2) satisfies the equation [10]
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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where Gc stands for the Green’s function allowing
for pair correlations. Substituting Eq. (18) into (13),
we can isolate, in ∆̃λ, the contributions of two
mechanisms, the Bardeen–Cooper–Schrieffer and
the quasiparticle–phonon mechanism; that is,

∆̃λ = ∆̃(0)
λ + ∆̃phon

λ , (19)

where ∆̃(0)
λ corresponds to the Bardeen–Cooper–

Schrieffer mechanism for the renormalized (“puri-
fied”) interaction,

∆̃(0)
λ =

∑
λ′

Wλλ̄λ′λ̄′

∫
dε

2πi
F̃

(2)
λ′ (ε) (20)

=
∑
λ′

Wλλ̄λ′λ̄′
∆̃(0)

λ′

2
√
ε̃2λ′ + (∆̃(0)

λ′ )2
,

and where ∆̃phon
λ involves the contribution of the

quasiparticle–phonon interaction. In the weak-coup-
ling approximation (g2 < 1), a calculation of these
quantities for 120Sn was performed in [9], where it
was found that the averaged contributions of the

quantities ∆̃(0)
λ and ∆̃phon

λ amount to 74 and −5%,
respectively, of the observed value of the pairing gap;
therefore, the contribution of the term involvingM (2)

in (5) and corresponding to phonon exchange in the
particle–particle channel is 31% of the observed gap.
A value that is quantitatively close to the last one
was obtained for the same nucleus in [23], where the
nonlinear problem formulated above has already been
addressed. This similarity comes as no surprise, since
the case of weak coupling (g2 < 1) is realized in the
120Sn nucleus [10].

Let us now derive an equation for observed ∆λ
with the aid of the spectral representation (14). Sub-
stituting Eq. (14) into (2) and employing Eq. (17), we
obtain

∆λ =
1

1 + qλ(Eλ)

∑
λ′n′

√
S+

λ′n′S
−
λ′n′ (21)

×
{
Wλλ̄λ′λ̄′ +

∑
s

|gs
λλ′ |2

2(Eλ′n′ + ωs)
E2

λ − (Eλ′n′ + ωs)2

}
,
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where Eλ =
√
ε2λ + ∆2

λ, g
s
λλ′ is the amplitude de-

scribing the production of an s phonon, and ωs is its
energy.

The formulas obtained above for ∆̃λ and∆λ are of
interest for the case of strong coupling to phonons—
for example, this is so for nuclei involving doubly
unfilled shells, in which case there exist “strong” 2+

1
phonons with g > 1.

To conclude this section, we emphasize once
again that, according to our definition, “purification”
consists in eliminating, from observables, only those
terms in the exact mass operators Σi that are de-
pendent on the energy variable ε. It is possible to
define Σ̃i in (1) in an alternative way—for example,
to include the observables ελ and ∆λ in Σ̃i (this
is precisely what is done in the non-self-consistent
QRPA approach, where M i = 0 by definition). But
upon the inclusion of complex configurations, double
counting can then be avoided only via subtracting
that contribution from M i which is contained in
the observables ελ and ∆λ. Our version is more
convenient if for no other reason than the fact that
our purified basis {ε̃λ, ∆̃λ} is a phenomenological
analog of the Hartree–Fock–Bogolyubov basis.
Concurrently, the procedure of deriving {ε̃λ, ∆̃λ} from
{ελ,∆λ} (see [10]) is quantitatively more satisfactory,
since, from the observables {ελ,∆λ}, one extracts
the contribution of precisely those—and only those—
phonons that are explicitly taken into account in
complex configurations.Within the existing approach
that involves self-consistency [23, 24], where this
self-consistency is ensured at the RPA level and
where complex configurations are calculated on the
basis of the same self-consistent scheme, it remains
unclear which complex configurations are contained
in the single-particle scheme obtained in this way.
In all probability, this problem could only be solved
upon formulating and implementing a self-consistent
approach that would take complex configurations into
account explicitly.
4
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3. INCLUSION OF COMPLEX
CONFIGURATIONS IN NONMAGIC

EVEN–EVEN NUCLEI
IN THE APPROXIMATION OF WEAK

QUASIPARTICLE–PHONON COUPLING

A method for taking into account two quasipar-
ticles ⊗ phonon configurations in nonmagic even–
even nuclei was formulated in [11]. This method
makes it possible to calculate the contribution to the
resonance width from the fragmentation of simple
excitations over such configurations. A numerical
implementation of the method in question is hindered
primarily by the fact that the expressions for the
multicomponent propagator contain second-order
poles, in which case there arise nonphysical results
for relevant cross sections. In the same study ([11]), a
procedure was proposed for eliminating such poles,
and this procedure was implemented for a simple
schematic model. In calculations for actual nuclei,
it turned out, however, that this procedure is not
always sufficient. In the present section, we propose
a somewhat different approach to solving the problem
in question. It will be shown that, by consistently
considering “hazardous” diagrams of each type, one
can sum them in all orders in the phonon-production
amplitude.

3.1. Basic Relations

We will calculate the cross section for electric
L-pole photoabsorption. We have

σL(E) =
8π3(L+ 1)e2

L[(2L + 1)!!]2

(
E

�c

)2L−1

SL(E),

where the strength function

SL(E) = −2L + 1
π

Im
∑
S,τ

δS0eτ (22)

×
∞∫
0

drrJ+2δρS,τ (r;ω),

ω = E + iη, η → +0,

is expressed in terms of the change δρ in the den-
sity matrix for the nuclear system under study in an
external field, L is the orbital angular momentum of
the electric excitation being considered, S is the spin
index (S = 0, 1), τ is the isotopic index (τ = n, p),
J = L for L ≥ 1, and eτ is the local nucleon charge.

For the quantity δρ, one solves a set of equations
in the coordinate representation. Upon separating the
coordinate dependence, this set of equations assumes
the form

δρS,τ (r1;ω) = δρ
(0)
S,τ (r1;ω) (23)
PH
−
∑
S′,τ ′

∞∫
0

dr2 r
2
2A

(τ)L
LS,LS′(r1, r2;ω)

×Fττ ′
S′ (r2)δρS′,τ ′(r2;ω),

δρ
(0)
S,τ (r1;ω) = −eτ

∞∫
0

dr2r
J+2
2 A

(τ)L
LS,L0(r1, r2;ω),

(24)

where F is the amplitude of effective particle–hole
interaction. This amplitude is parametrized according
to the theory of finite Fermi systems; that is,

Fττ ′
S (r) = δττ ′ C0

[
δS,0(f + f ′) + δS,1(g + g′)

]
(25)

+ (1 − δττ ′) C0

[
δS,0(f − f ′) + δS,1(g − g′)

]
,

where f(r) and f ′(r) are given by interpolation for-
mulas involving the parameters fex, fin, f ′

ex, and f
′
in.

In the problem being considered, the radial part of

the particle–hole (ph) propagator, A(τ)L
LS,LS′(r1, r2;ω),

has the form

A
(τ)L
LS,LS′(r1, r2;ω) = A

cont(τ)L
LS,LS′ (r1, r2;ω) (26)

+A
disc(τ)L
LS,LS′ (r1, r2;ω),

where Acont is that part of the propagator which de-
scribes transitions from paired levels of the discrete
spectrum to the continuum, pairing being disregarded
in the continuum itself,

A
cont(τ)L
LS,LS′ (r, r′;ω) = −

∑
1

δττ1v
2
1R1(r)R1(r′) (27)

×
∑
l2j2

TLSS′
12

[
Gτ

l2j2(r, r
′;µτ −E1 + ω)

+ (−1)S+S′
Gτ

l2j2(r, r
′;µτ − E1 − ω)

]
.

Here, the partial-wave components Gτ
lj of the radial

part of theGreen’s function without pairing are calcu-
lated exactly, whichmakes it possible to take fully into
account the single-particle continuum at the RPA
level. The quantity Adisc is that part of the propagator
which includes pairing corrections to Acont near the
Fermi surface—that is, in that part of the spectrum
where the Cooper gap does not vanish—and compo-
nents that describe more complicated configurations
involving phonons, Aphon:

A
disc(τ)L
LS,LS′ (r, r′;ω) =

disc∑
12

δττ1δττ2R1(r) (28)

×R2(r′)R1(r′)R2(r)TLSS′
21

[
v2
1(1 − v2

2)
ω + E1 + E2
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− (1 − v2
1)v

2
2

ω − E1 −E2
+

v2
2

ω + µτ − ε1 −E2

− v2
1

ω − µτ + ε2 + E1
+ (−1)S

∆1∆2

4E1E2

×
(

1
ω + E1 + E2

− 1
ω − E1 − E2

)]

+A
phon(τ)L
LS,LS′ (r, r′;ω).

Here, the symbol
∑disc

12 denotes summation over
the discrete part of the single-particle basis; 1 ≡
(τ1, n1, l1, j1) is the set of single-particle quantum
numbers in a spherical nucleus, the projection of the
total angular momentum being excluded from this
set; v2

1 are the occupation numbers of quasiparticle
states; and TLSS′

12 are the products of the reduced
matrix elements of spherical tensor operators,

TLSS′
12 =

1
2L+ 1

(29)

× 〈j1l1||TLLS ||j2l2〉〈j1l1||TLLS′ ||j2l2〉.

Let us now consider the quantity Aphon. The
general expressions for this quantity were presented
in [11]. Here, we will address a realistic particular case
of the general approach, disregarding nonpole terms
in single-quasiparticle Green’s functions and, hence,
ground-state correlations caused by quasiparticle–
phonon coupling. It will be shown that, in this case,
one can eliminate, from the propagator, second-
order poles by summing infinite series of Feynman
diagrams of each class.

Without allowance for the ground-state correla-
tions, the total propagator in the λ representation has
the form

A121′2′(ω) =
u1v2

ω −E12

{
δ11′δ22′ +

1
ω −E1′2′

(30)

×
[
δ22′

∑
3,s

gs
13(g

s
1′3)

∗

ω − E23 − ωs
X11′33

+ δ11′
∑
3,s

gs
2′3(g

s
23)

∗

ω − E13 − ωs
X22′33 −

∑
s

gs
11′(g

s
22′)

∗

×
(

1
ω − E1′2 − ωs

+
1

ω − E12′ − ωs

)
X121′2′

]}

× (u1′v2′ + v1′u2′ P̂ ),

where u1 =
√

1 − v2
1 and E12 = E1 + E2. It can be

seen from (30) that, in the approximation where there
is no dynamical coupling to the particle–particle
channel, this propagator consists of two terms, a
normal and an anomalous one. The latter involves the
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operator P̂ transforming the vertex V into V h. The
factors

X121′2′ = u1u2u1′u2′ + u1v2u1′v2′ (31)

+ v1u2v1′u2′ + v1v2v1′v2′

arise upon summation of four diagrams of each type
(that is, those that differ from one another only in the
quasiparticle occupation numbers and which have the
same pole structure), whereby one takes into account
all 2qp combinations that are possible within our
approximations. Further, we rewrite the normal term
of the propagator in (30), isolating terms containing
second-order poles; that is,

Anorm
121′2′(ω) = δ11′δ22′

{
u2

1v
2
2

ω − E12
(32)

+
u2

1v
2
1

(ω − E12)2

[∑
3,s

|gs
13|2

ω − E23 − ωs
X1133

+
∑
3,s

|gs
23|2

ω − E13 − ωs
X2233

− 2
∑

s

gs
11(g

s
22)

∗

ω − E12 − ωs
X1212 −

∑
s

gs
12(g

s
21)

∗u2v1

u1v2

×
(

1
ω − E22 − ωs

+
1

ω − E11 − ωs

)
X1221

]}

− (1 − δ11′δ22′)(1 − δ12′δ1′2)

× u1u
′
1v2v

′
2X121′2′

(ω − E12)(ω −E1′2′)

∑
s

gs
11′(g

s
22′)

∗

×
(

1
ω −E1′2 − ωs

+
1

ω − E12′ − ωs

)
.

Four terms in the bracketed expression on the right-
hand side of (32) represent the components of the
propagator that involve a right- and a left-hand in-
sertion and two phonon-exchange components. They
obviously correspond to the graphs in which 1 = 1′,
2 = 2′, 1 = 2′, and 2 = 1′ and always involve second-
order poles if we restrict our consideration to the g2

approximation. We now examine such graphs in the
next order in the phonon-production amplitude. In
the fourth order in g, or, which is equivalent, in the
second order inM , the graph involving the left-hand
insertion yields

Dl;1
2;12 =

∫
dε

2πi
G+

1 (ε)M+
1 (ε)G+

1 (ε)M+
1 (ε) (33)

×G−
2 (ε− ω) =

u2
1v

2
2

(ω −E12)3
∑
3,s

|gs
13|2u2

1u
2
3

ω − E23 − ωs

×
∑
4,s

|gs
14|2u2

1u
2
4

ω − E24 − ωs
.

4
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Similar expressions can be obtained for all other Dl;i
2

involving anomalous Green’s functions. Performing
summation over all possible 2qp configurations, we
find for left-hand insertions that

Dl
2;12 =

∑
i=1,4

Dl,i
2;12 =

u2
1v

2
2

(ω − E12)3
(34)

×
∑
3,s

|gs
13|2X1133

ω −E23 − ωs

∑
4,s

|gs
14|2X1144

ω − E24 − ωs
.

In the third order inM , we have

Dl
3;12 =

u2
1v

2
2

(ω − E12)4
∑
3,s

|gs
13|2X1133

ω − E23 − ωs
(35)

×
∑
4,s

|gs
14|2X1144

ω −E24 − ωs

∑
5,s

|gs
15|2X1155

ω − E25 − ωs
,

and so on. We can see that the infinite sum

Dl
12 = Dl

0;12 + Dl
1;12 + Dl

2;12 + . . . (36)

=
u2

1v
2
2

ω − E12

[
1 +

1
ω − E12

∑
3,s

|gs
13|2X1133

ω − E23 − ωs

+

(
1

ω − E12

∑
3,s

|gs
13|2X1133

ω − E23 − ωs

)2

+

(
1

ω − E12

∑
3,s

|gs
13|2X1133

ω − E23 − ωs

)3

+ . . .

]

is formally a power series that converges for

|q| =
∣∣∣∣ 1
ω − E12

∑
3,s

|gs
13|2X1133

ω − E23 − ωs

∣∣∣∣ < 1. (37)

It follows that, within the region of convergence, the
sum in question has the form

Dl
12 =

u2
1v

2
2

ω − E12 −
∑
3,s

|gs
13|2X1133

ω − E23 − ωs

. (38)

Similar results are obtained for the infinite sums of
the components involving right-hand insertions and
the components involving a transverse phonon. Thus,
we are able to take into account, in all orders, the
propagator components involving all possible com-
binations of insertions and transverse phonons and
depending on two indices. With allowance for the
aforesaid, the normal part of the propagator assumes
the form

Anorm
121′2′(ω) = δ11′δ22′

u2
1v

2
2

ω − E12 − C12
(39)

− (1 − δ11′δ22′)(1 − δ12′δ1′2)
PH
× u1u
′
1v2v

′
2X121′2′

(ω − E12)(ω −E1′2′)

∑
s

gs
11′(g

s
22′)

∗

×
(

1
ω −E1′2 − ωs

+
1

ω − E12′ − ωs

)
,

where

C12 =
∑
3,s

|gs
13|2X1133

ω − E23 − ωs
+
∑
3,s

|gs
23|2X2233

ω − E13 − ωs
(40)

− 2
∑

s

gs
11(g

s
22)

∗X1212

ω − E12 − ωs
−
∑

s

gs
12(g

s
21)

∗u2v1

u1v2

×
(

1
ω − E22 − ωs

+
1

ω − E11 − ωs

)
X1221.

The anomalous part of the propagator is obtained in
a similar way by means of the simultaneous substitu-
tions u1′ → v1′ and v1′ → u1′ and a multiplication by
the corresponding phase coefficient.

3.2. Calculation of the Isovector E1 Resonance
in the 104,120,132Sn Isotopes

In our calculations, we took into account the Jπ =
2+, 3−, 4+, 5−, and 6+ collective low-lying phonons,
whose properties were determined by solving the set
of equations of the theory of finite Fermi systems in
the λ representation. The single-particle continuum
was taken into account at the QRPA level according
to the method developed in [25].
We employed the effective Landau–Migdal par-

ticle–hole interaction, whose parameters are well
known and quite universal for medium-mass and
heavy nuclei. This makes it possible to describe giant
multipole resonances in unstable nuclei. For these
parameters, we took the following well-known values
(for more details, see [7]):

fin = −0.002, f ′
in = 0.76, f ′

ex = 2.30, (41)

g = 0.05, g′ = 0.96, C0 = 300 MeV fm3.

In calculating the features of low-lying phonons, the
parameter fex was chosen in such a way as to obtain
the best fit to their positions known experimentally
for the 120,132Sn nuclei. As a result, it turned out
that fex values range between−3.3 and−4.9. For the
unstable nucleus 104Sn, we set fex = −4.0.
In calculating the dipole-photoabsorption cross

section, the additional forced-matching procedure
developed in [25] to eliminate and suppress the ghost
dipole state associated with themotion of the center of
mass was used for effective particle–hole interaction.
The single-particle wave functions and levels for

104Sn were calculated with the standard Woods–
Saxon potential. For 120Sn, we made a rough fit of
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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Fig. 1.Cross section for dipole photoabsorption in 104Sn:
(solid curve) results of the full calculation with allowance
for complex configurations and (dashed curve) results of
the QRPA calculation with allowance for a continuum.

the parameters of the mean-field potential to single-
particle levels known from experiments. These levels
were obtained by using data reported in [26]. The
energies of single-particle levels in 132Sn were fitted
to values quoted in [27].

Taking into account the law of particle-number
conservation and using the diagonal-pairing approx-
imation, we calculated the matrix elements of the
Cooper gap∆ν according to the equation

ĵν∆ν = −
∑
ν′

Γξ
νν′

ĵν′∆ν′

2Eν′
, (42)

where ĵν =
√

2j + 1, ν standing for the set of single-
particle quantum numbers that does not include the
projection of the angular momentum. The matrix ele-
ments of the quantity obtained by renormalizing, ac-
cording to the theory of finite Fermi systems, the local
amplitude of interaction in the two-particle channel
are given by

Γξ
νν′ = γξ

0(−1)lν+lν′
ĵν ĵν′

4π

∞∫
0

drr2R2
ν(r)R2

ν′(r),

(43)

γξ
0 =

C0

ln(cp/ξ)
, ξ =

√
ξ1ξ2,

where C0 = 300MeV fm3 and cp is a phenomenolog-
ical parameter that was set to 1 MeV in our calcula-
tions. The quantities ξ1 and ξ2 determine the bound-
aries of the basis in which one solves the gap equation
and which includes states in the unfilled (valence)
shell (in the case of nuclei featuring effects of pairing),
as well as states in two shells below the valence shell
and states in two shells above it.
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
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Fig. 2. As in Fig. 1, but for 120Sn.
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Fig. 3. As in Fig. 1, but for 132Sn.

In Figs. 1–3, the solid curves represent the dipole-
photoabsorption cross sections calculated with al-
lowance for complex configurations. Also shown
there for the sake of comparison are the results of
the corresponding СQRPA (continuum quasiparticle
random-phase approximation) calculations. Both
types of calculation were performed by using the
smearing-parameter value of 400 keV. The calcula-
tions revealed that the use of the propagator where
terms corresponding to ground-state correlations are
discarded leads to a sum rule that is nearly coincident
with its CQRPA value. The resonance width was
computed as the width of a Lorentz distribution
that approximates a model strength function [28].
The mean resonance energy Ē was defined as Ē =√
m1/m−1, where mk is the kth moment of the

strength function.

The integrated features of the calculated curves
are compiled in the table. From Figs. 1–3 and from
the table, it can be seen that, for all nuclei stud-
ied here, the resonance width increases by a factor
of 2 to 3 upon the inclusion of complex configura-
4
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Integrated features of the isovectorE1 resonance in tin isotopes

Isotope 104Sn 120Sn 132Sn

Method 1 2 1 2 1 2

EWSR [%] 108.5 108.2 99.9 99.2 94.4 94.3

Ē [MeV] 13.5 15.2 14.8 14.2 14.1 13.0

Γ [MeV] 5.7 1.7 4.7 2.1 3.6 2.1

σ0 [mb] 187 668 238 512 309 541

σint (0–15 MeV) [%] 32 38 26 39 52 55

σint (0–12 MeV) [%] 17 8 16 13 27 21

σint (0–Ē) [%] 23 44 25 29 43 36

σint (0–Ē/2) [%] 1.7 0.26 3.9 0.40 1.9 0.76

Note: The following notation is used in the table: EWSR is σint divided by the value of the classical model-independent sum rule,

σcl = 60
NZ

A
mb MeV; Ē is the mean resonance energy; Γ is the resonance width; σ0 is the maximum of the Lorentz distribution;

and σint(0−E) stands for the relevant cross sections integrated over the corresponding energy intervals. Columns 1 and 2 present the
results of, respectively, the full calculation with allowance for complex configurations and the CQRPA calculation.
tions and agrees well with the experimental value
of Γexpt = 4.9 MeV for 120Sn from [30]. This is one
of the main results of the present study. Within the
energy interval 0–30 MeV, which was investigated
here, the degree to which the Thomas–Reiche–Kuhn
sum rule is exhausted for 120Sn and 132Sn is 99.9
and 94.4%, respectively, and this is quite a satisfac-
tory and natural result, since, in contrast to the ap-
proach used in [7], our present calculations disregard
ground-state correlations caused by complex config-
urations. For the nuclei being investigated, the mean
resonance energy also increases upon the inclusion
of complex configurations; for 120Sn, the result for
it with allowance for them agrees satisfactorily with
experimental data: Ētheor = 14.8 MeV versus Ēexpt =
15.4 MeV [29]. The above trends for the energy-
weighted sum rule (EWSR) and for Ē are not ob-
served in 104Sn, and this may be due to some flaws in
the single-particle scheme, which, in contrast to the
cases of 120Sn and 132Sn , could not be fitted here to
experimental data.

In connection with the general interest in low-
lying E1 excitations (pygmy dipole resonance), we
have calculated the integrated contributions of theE1
strength within various intervals over the low-lying
slope of an E1 resonance with and without allowance
for complex configurations (see table). As can be seen
from the figures and from the table, complex configu-
PH
rations lead to a very sizable and irregular increase in
the strength within the intervals 0–12 MeV and 0–
Ē/2. This means that it is necessary to take complex
configurations into account in the energy region of a
presumed pygmy dipole resonance.

4. CONCLUSION

In Section 2, we have performed a general analysis
of the case where a Fermi system in which pairing
may occur is governed by interactions of two types,
two-particle interaction in the particle–particle chan-
nel and quasiparticle–phonon interaction that corre-
sponds to strong coupling to phonons. Attention has
been given primarily to the particle–particle channel
and to a description of pairing in the case of any com-
plex configurations involving phonons. The relations
derived in the course of this analysis are not closed,
at least in the sense that the problem of formulating
equations for phonons has been skipped. Even if one
could formulate such equations for superfluid sys-
tems, an implementation of this scheme at the nonlin-
earity level adopted in the present study would hardly
be a realistic task (for magic nuclei, an attempt at
formulating such a scheme was undertaken in [30]).
Therefore, it seems reasonable to extract the proper-
ties of “strong” phonons from experimental data.
We have been able to isolate, in a general form, the

contributions to the observable pairing gap from two
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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mechanisms, a mechanism of the Bardeen–Cooper–
Schrieffer type and the quasiparticle–phonon mecha-
nism. Among other things, we have shown that, even
if quasiparticle–phonon interaction is absent in the

particle–particle channel (M (2)
λ = 0), there is a con-

tribution from the quasiparticle–phonon interaction
both to the observable gap, ∆λ, and to its purified
counterpart, ∆̃λ, so that the analysis of the problem
in the general, nonlinear, case remains quite involved
under these conditions inclusive.

In Section 3, the Green’s function method has
been used to formulate realistic equations in the
weak-coupling approximation (g2 < 1) for describ-
ing excitations in an even–even Fermi system that
may exhibit pairing effects. On the basis of these
equations, one can in principle calculate the fea-
tures of states in such a systems up to energies of
25 to 30 MeV, simultaneously taking into account
the continuous spectrum, QRPA configurations,
and complex configurations of the two quasiparti-
cles⊗ phonon type. After some simplifications (non-
diagonal phonon-exchange graphs and ground-state
correlations induced by the quasiparticle–phonon
interaction were disregarded, and the procedure for
purifying single-particle properties was not imple-
mented), the isovector E1 resonance in the stable
isotope 120Sn and the unstable isotopes 104,132Sn
has been calculated on the basis of this approach. In
summary, all three mechanisms of giant-resonance
formation—decay into simple configurations of the
discrete spectrum, particle emission into the con-
tinuous spectrum, and fragmentation over complex
configurations—have been simultaneously taken into
account for the first time ever in our approach for
nuclei that involve pairing. Reasonably good agree-
ment with experimental data has been obtained,
which demonstrates the validity of our approach.
In connection with keen interest in low-lying E1
excitations, we have studied the behavior of the E1
strength function at energies below the resonance
maximum. By means of a direct comparison with the
results of the CQRPA calculations performed within
the identical scheme, it has been shown that complex
configurations must be taken into account in order
to describe E1 excitations over a broad energy region
around the nucleon binding energy.
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Abstract—We consider the anapole moment of 11Be and demonstrate that the contribution to it of
the 1p1/2 level, which is anomalously close to the ground state, is essentially compensated for by
the contribution of the continuum. Our estimate for this anapole moment is κ(11Be) � (0.07–0.08)gn.
c© 2004 MAIK “Nauka/Interperiodica”.
1. The anapole moment (AM) is a special mag-
netic multipole arising in a system that has no definite
parity [1]. The corresponding magnetic field looks like
that created by a current in a toroidal winding.

For many years, the anapole remained only a
theoretical curiosity. The situation has changed due
to the studies of parity nonconservation (PNC) in
atoms. Since these tiny PNC effects increase with the
nuclear charge Z, all the experiments are performed
with heavy atoms. The main contribution to the
effect is independent of nuclear spin and caused
by the parity-violating weak interaction of electron
and nucleon neutral currents. This interaction is
proportional to the so-called weak nuclear charge
Q which is numerically close (up to the sign) to
the neutron number N . Thus, in heavy atoms, the
nuclear-spin-independent weak interaction is addi-
tionally enhanced by about two orders of magnitude.
Meanwhile, the nuclear-spin-dependent effects due
to neutral currents not only lack the aforemen-
tioned coherent enhancement, but are also strongly
suppressed numerically in the electroweak theory.
Therefore, the observation of nuclear-spin-dependent
PNC phenomena in atoms had looked absolutely
unrealistic.

However, it was demonstrated [2, 3] that these
effects in atoms are dominated not by the weak
interaction of neutral currents, but by the electro-
magnetic interaction of atomic electrons with nuclear
AM. Since the magnetic field of an anapole, like
that of a toroidal winding, is completely confined
inside the system, the electromagnetic interaction
of an electron with the nuclear AM occurs only
as long as the electron wave function penetrates

∗This article was submitted by the authors in English.
**e-mail: khriplovich@inp.nsk.su
1063-7788/04/6701-0195$26.00 c©
the nucleus. In other words, this electromagnetic
interaction is as local as the weak interaction itself,
and in this sense they are indistinguishable. The
nuclear AM is induced by PNC nuclear forces and
is therefore proportional to the same Fermi constant
G = 1.027 × 10−5m−2 (we use the units � = 1,
c = 1; m is the proton mass), which determines the
magnitude of the weak interactions in general and
that of neutral currents in particular. The electron
interaction with the AM, being of an electromagnetic
nature, introduces an extra small factor into the effect
discussed, the fine-structure constant α = 1/137.
Then, how does it appear that this effect is dominat-
ing?

The answer follows from the same picture of a
toroidal winding. It is only natural that the interaction
discussed is proportional to themagnetic flux through
such a winding, and hence in our case it is propor-
tional to the cross section of the nucleus, i.e., toA2/3,
where A is the atomic number. Indeed, a simple-
minded model calculation leads to the following ana-
lytical result for the dimensionless effective constant
κ which characterizes the anapole interaction in units
ofG [3]:

κ =
9
10
g
αµ

mr0
A2/3. (1)

Here, g is the effective constant of the P-odd inter-
action of the outer nucleon with the nuclear core,
µ is the magnetic moment of the outer nucleon,
and r0 = 1.2 fm. In heavy nuclei, the enhancement
factorA2/3 is close to 30 and compensates essentially
for the smallness of the fine-structure constant α.
As a result, κ is not so small in heavy atoms; it is
numerically close to 0.3.

The nuclear AM was experimentally discovered in
1997 [4]. This result for the total effective constant
2004 MAIK “Nauka/Interperiodica”
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of the PNC nuclear-spin-dependent interaction in
133Cs is

κtot(133Cs) = 0.44(6). (2)

If one subtracts from this number the nuclear-spin-
dependent contribution of neutral currents, as well as
the result of the combined action of the “weak” charge
Q and the usual hyperfine interaction, the answer for
the anapole constant is

κexp(133Cs) = 0.37(6). (3)

Thus, the existence of an AM of the 133Cs nucleus is
reliably established.

This result provides valuable information on PNC
nuclear forces. Of course, to this end, it should be
combined with reliable nuclear calculations. The
most detailed theoretical predictions for this AM can
reasonably be summarized, at the so-called “best
values” for the parameters ofP-odd nuclear forces [5],
as follows [6, 7]:

κtheor(133Cs) = 0.15–0.21. (4)

There are good reasons to consider this prediction
sufficiently reliable, at the accepted values of the P-
odd nuclear constants.

The comparison of the theoretical value (4) for the
cesium AMwith the experimental result (3) indicates
that the “best values” of [5] somewhat underesti-
mate the magnitude of P-odd nuclear forces. In no
way is this conclusion trivial. The point is that the
magnitude of parity-nonconserving effects found in
some nuclear experiments is much smaller than that
following from the “best values” (see review [8]). In all
these experiments, however, either the experimental
accuracy is not high enough, or the theoretical inter-
pretation is not sufficiently convincing. The experi-
ment [4] looks much more reliable in both respects.
Still, further experimental investigations of nuclear
AMs are certainly of great interest.

2. In principle, the AM can be enhanced not
only due to large A, but also in the case when,
anomalously close to the ground state of a nu-
cleus, there is an opposite-parity level of the same
angular momentum. In this connection, attention
was attracted in [9, 10] to exotic halo nuclei. In
particular, the exotic neutron-rich halo nucleus 11Be
was considered therein. In this nucleus, the outer
odd neutron is in the state 2s1/2, its only bound
excited level being 1p1/2 (the well-known “inversion
of levels”). The anomalously small energy sepa-
ration between these two levels of opposite par-
ity,

|∆E| = E(1p1/2) − E(2s1/2) = 0.32 MeV, (5)
P

enhances by itself their P-odd mixing and, thus, the
AMof this nucleus. As pointed out in [9, 10], the small
binding energy of the odd neutron,

|∆E0| = 0.50 MeV, (6)

affects the AMadditionally, but in two opposite direc-
tions. On the other hand, it suppresses the overlap of
the odd-neutron wave function with the core and thus
suppresses the mixing of the 2s1/2 and 1p1/2 levels
due to the weak-interaction operator, which has the
form

W =
G√
2
gn

2m
{σ · p, ρ(r)}; (7)

here gn is the effective constant of the P-odd in-
teraction of the outer neutron with the nuclear
core, σ and p are the momentum and spin oper-
ators of the outer neutron, and ρ(r) is the spher-
ically symmetric core density. On the other hand,
the small binding energy enhances the matrix el-
ement of r in the anapole operator of the neu-
tron,

a =
πeµn

m
r × σ, (8)

where µn = −1.91 is the neutron magnetic mo-
ment.

The detailed calculation which takes into account
the P-odd mixing of the ground state only with the
1p1/2 level results in the following value for the effec-
tive anapole constant [10]:

κ1(11Be) = 0.17gn. (9)

Indeed, this value is 15 times larger than that given
by the estimate (1) for A = 11 (the neutron constant
gn is poorly known by itself, most probably gn � 1).
Certainly, this enhancement of an AM in a light nu-
cleus would be of serious interest even if its possible
experimental implications are set aside.

However, such a strong enhancement of AM, as
given in (9), in a loosely bound nucleus does not
look natural. In particular, nothing of the kind hap-
pens in the deuteron. Even in the limit of vanishing
binding energy, when the energy interval between the
deuteron s state and the continuum p states tends to
zero, the deuteron AM in no way is enhanced [11] (see
also [12]). As to the problem of 11Be discussed here,
we argue below that a strong cancellation between
the contribution of the bound 1p1/2 state [accounted
for in (9)] and that of the continuum (omitted therein)
takes place, resulting in a serious suppression of the
estimate (9).

3.Westart with the general expression for the AM,
as induced by operators (7) and (8):
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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〈0|a|0〉 =
G√
2
πeµg

2m2

∑
n

〈0|r × σ|n〉〈n|{σ · p, ρ(r)}|0〉 + 〈0|{σ · p, ρ(r)}|n〉〈n|r × σ|0〉
E(2s1/2) − En

. (10)
To estimate the sum, we use at first the closure ap-
proximation, which is facilitated here by the same
(negative) sign of all energy denominators. After ex-
tracting some average value of denominators, −∆̄
(∆̄ > 0), and using the completeness relation, the
sum (10) reduces to

〈0|a|0〉 = − G√
2
πeµg

2m2∆̄
〈0|{[r × σ], {σ · p, ρ(r)}}|0〉.

(11)

Thus, the arising effective operator transforms as fol-
lows:

{[r × σ], {σp, ρ(r)}} = 4(l + σ)ρ(r), (12)

where l is the orbital angular momentum of the va-
lence nucleon. (It is rather amusing that we arrive
here at the same combination l + σ which enters
the expression for the magnetic moment of a bound
electron.)

In our case of 11Be, l = 0 and σ = 2I, where I is
the spin of the nucleus. Thus, here the expression for
AM reduces to

〈0|a|0〉 = − G√
2

4πeµngn

m2∆̄
〈0|ρ(r)|0〉I. (13)

With the standard prescription (see [3]) of deleting
from the expression for 〈0|a|0〉 the factors (G/

√
2)I

and multiplying the rest by eI(I +
1)(−1)I+1/2−l/(I + 1/2), we arrive finally at the fol-
lowing expression for the effective anapole constant:

κ =
3παµngn

m2∆̄
〈0|ρ(r)|0〉. (14)

The expectation value 〈0|ρ(r)|0〉 was calculated by
us with the same ground-state wave function

R2s(r) =
23/2a2[1 − (r/a)2] exp(−r/r0)
r
3/2
0

√
45r40 + 2a4 − 12a2r20

,

r0 = 1.45 fm, a = 2 fm,

and core density

ρ(r) = ρ0 exp(−r2/R2
c), ρ0 = 0.20 fm−3,

Rc = 2 fm,

as those used in [10]. Thus, the obtained expectation
value is

〈0|ρ(r)|0〉 = 0.052ρ0 = 0.01 fm−3. (15)
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Now, if ∆̄ is identified with the smallest energy inter-
val E(1p1/2) − E(2s1/2) = 0.32 MeV, the numerical
result is

κ(∆̄ = 0.32 MeV) = −0.036gn. (16)

The comparison of (16) with (9) demonstrates
that, in the last estimate, the negative contribution of
continuum states outweighs the positive one of 1p1/2,
with a small net result which only slightly exceeds, if
at all, the typical value of κ as given by (1).

As expected, the small binding energy strongly
suppresses 〈0|ρ(r)|0〉 as compared to ρ0 itself [see
(15)]. However, the expected enhancement of the ma-
trix element of r in the anapole operator (8) is not
operative in (16) since on average this r is eaten up
by p in the weak-interaction operator (7). And the
strong suppression of 〈0|ρ(r)|0〉 compensates in (16)
for the enhancement due to small energy intervals.

Estimate (16) can be improved considerably in
the following way. Its comparison with (9) demon-
strates that, with ∆̄ = 0.32 MeV, the contribution of
the continuum to κ constitutes

κc(∆̄ = 0.32 MeV) = −0.036gn − 0.17gn (17)

= −0.206gn.

With the continuum threshold at ∆̄ = |∆E0| =
0.50 MeV, the continuum contribution is certainly
overestimated by (17). However, κc can be easily
recalculated for more reasonable values of ∆̄ just by
multiplying (17) by 0.32/∆̄.

Combining the thus obtained improved values of
κc with (9), we arrive at the following estimates for
the anapole moment of 11Be:

∆̄,MeV κ(11Be)

0.6 0.060gn

0.7 0.076gn

0.8 0.088gn.

(18)

We believe that, with all the uncertainties of our
estimates (18) for the anapole moment of 11Be, they
are more reliable than (9). Most probably, the real
value of κ(11Be) is around (0.07–0.08)gn ; i.e., it is 2–
3 times smaller than (9).
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Abstract—A three-fluid hydrodynamic model is introduced for simulating heavy-ion collisions at incident
energies between a few and about 200 AGeV. In addition to the two baryon-rich fluids of two-fluid models,
a new model incorporates a third, baryon-free (i.e., with zero net baryonic charge), fluid, which is created in
the midrapidity region. Its evolution is delayed due to a formation time τ , during which the baryon-free fluid
neither thermalizes nor interacts with the baryon-rich fluids. After formation, it thermalizes and starts to
interact with the baryon-rich fluids. It is found that, for τ = 0, the interaction strongly affects the baryon-
free fluid. However, at reasonable finite formation time, τ � 1 fm/c, the effect of this interaction turns out
to be substantially reduced, although still noticeable. Baryonic observables are only slightly affected by the
interaction with the baryon-free fluid. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nearly fifty years have passed since the pa-
per “Relativistic Kinetic Equation” by Belyaev and
Budker was published [1]. The proposed relativis-
tic formulation of the distribution function and the
kinetic equation with small-angle scattering have
been included inmany textbooks and found numerous
applications in atomic physics and electron–positron
plasma. Recently, a generalized relativistic kinetic
equation of this type was implemented for describing
the partonic evolution in very early stages of a heavy-
ion collision at ultrarelativistic RHIC energies [2]. In
the present paper, we address more moderate, but
nevertheless highly relativistic, energies, i.e., up to
those reached at the CERN SPS. The relativistic
kinetic equation is used in a peculiar way, namely, to
derive a coupling term for three-fluid hydrodynamic
equations.

Two-fluid hydrodynamics with free-streaming ra-
diation of pions was advanced first in [3, 4]. The initial
stage of heavy-ion collisions definitely is a highly
nonequilibrium process. Within the hydrodynamic
approach, this nonequilibrium is simulated by means
of a two-fluid approximation, which takes care of

∗This article was submitted by the authors in English.
1)Russian Research Centre Kurchatov Institute, pl. Kurchato-
va 1, Moscow, 123182 Russia.

2)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.
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1063-7788/04/6701-0199$26.00 c©
the finite stopping power of nuclear matter [5, 6],
and simultaneously describes the entropy genera-
tion at the initial stage. The radiated pions form
baryon-free matter in the midrapidity region, while
two baryon-rich fluids simulate the propagation of
leading particles. The pions are the most abundant
species of the baryon-free matter which may contain
any hadronic and/or quark–gluon species including
baryon–antibaryon pairs.
The first applications of the two-fluid model [7, 8]

to the description of heavy-ion collisions in a wide
range of incident energies, from those of SIS to SPS,
were quite successful. One of the advantages of the
hydrodynamic models is that they directly address
the equation of state (EoS) of nuclear matter, which
is of prime interest for this domain of physics. In
particular, we have shown [9] recently that the ex-
perimental excitation function of the directed flow is
well described by the mixed-phase EoS in contrast to
earlier predictions of the two-phase bag-model EoS.
In these 3D hydrodynamic simulations, we describe
the whole process of the reaction, i.e., the evolu-
tion from the formation of a hot and dense nuclear
system to its subsequent decay. This is in contrast
to numerous other simulations, which treat only the
expansion stage of a fireball formed in the course of
the reaction, while the initial state of this dense and
hot nuclear system is constructed from either kinetic
simulations or more general, albeit model-dependent,
assumptions (e.g., see [10, 11]).
However, the approximation of free-streaming pi-

ons, produced in the midrapidity region, was still ir-
ritating from the theoretical point of view, in partic-
2004 MAIK “Nauka/Interperiodica”
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ular, because the relative momenta of the produced
pions and the leading baryons are in the range of
the∆ resonance for the incident energies considered.
This would imply that the interaction between the
produced pions and the baryon-rich fluids should be
strong. The free-streaming assumption relies on a
long formation time of produced pions. Indeed, the
proper time for the formation of the produced particles
is commonly assumed to be on the order of 1 fm/c
in the comoving frame. Since the main part of the
produced pions is quite relativistic at high incident
energies, their formation time should be long enough
in the reference frame of calculation to prevent them
from interacting with the baryon-rich fluids. How-
ever, this argument is qualitative rather than quan-
titative and, hence, requires further verification. The
first attempt to do this was undertaken by the Frank-
furt group [12], which started to explore an opposite
extreme. They assumed that the produced pions im-
mediately thermalize, forming a baryon-free fluid (or a
“fireball” fluid, in terms of [12]), and interact with the
baryon-rich fluids. No formation time was allowed,
and the strength of the corresponding interaction
was guessed rather than microscopically estimated.
This opposite extreme, referred to as a (2 + 1)-fluid
model and not quite being justified either, yielded
results substantially different from those of the free-
streaming approximation. Thiswas one of the reasons
why in subsequent applications the Frankfurt group
neglected the interaction between baryon-free and
baryon-rich fluids, while keeping the produced pions
thermalized [13], thus effectively restoring the free-
streaming approximation. However, the assumed im-
mediate thermalization of the fireball fluid together
with the lack of interaction with baryon-rich fluids
still was not a consistent approximation.

In this paper, we would like to return to the prob-
lem of verification of the free-streaming approxima-
tion for the produced pions. To do this, we extend the
two-fluid model of [3, 4, 7–9] to a three-fluid model,
where the created baryon-free fluid (which we call a
“fireball” fluid, according to the Frankfurt group) is
treated on equal footing with the baryon-rich ones.
However, we allow a certain formation time for the
fireball fluid, during which the constituents of the
fluid propagate without interactions. Furthermore, we
estimate the interaction between fireball and baryon-
rich fluids by means of a relativistic kinetic equation
and elementary cross sections.

In this paper, we consider incident energies in the
range from a few to about 200 AGeV (i.e., from AGS
to SPS energies). The interest in this energy range
was recently revived in connection with the project of
the new accelerator facility at GSI SIS200 [14]. The
goal of the research program on nucleus–nucleus
PH
collisions at this planned facility is the investiga-
tion of nuclear matter in the region of incident en-
ergies (Elab � 10–40 A GeV), in which the highest
baryon densities and highest relative strangeness at
moderate temperatures are expected. Here, the QCD
phase diagram is much less explored, both experi-
mentally and theoretically, as compared to the higher
energy region characterized by higher temperatures,
but lower net baryon densities, where lattice QCD
calculations [15] and a large body of experimental
data from SPS (CERN) [16] and RHIC (BNL) [17]
are available by now.

2. THREE-FLUID HYDRODYNAMIC MODEL

Unlike the one-fluid hydrodynamic model, where
local instantaneous stopping of projectile and target
matter is assumed, a specific feature of the dynamic
three-fluid description is a finite stopping power
resulting in a counterstreaming regime of leading
baryon-rich matter. Experimental rapidity distri-
butions in nucleus–nucleus collisions support this
counterstreaming behavior, which can be observed for
incident energies between a few and 200 A GeV. The
basic idea of a three-fluid approximation to heavy-ion
collisions [3, 4, 18] is that, at each spacetime point
x = (t,x), the distribution function of baryon-rich
matter, fbr(x, p), can be represented as a sum of two
distinct contributions,

fbr(x, p) = fp(x, p) + ft(x, p), (1)

initially associated with constituent nucleons of the
projectile (p) and target (t) nuclei. In addition, newly
produced particles, populating the midrapidity region,
are associated with a fireball (f ) fluid described by the
distribution function ff (x, p). Note that both baryon-
rich and fireball fluids may consist of any type of
hadrons and/or partons (quarks and gluons), rather
than only nucleons and pions. However, here and
below, we suppress the species label on the distri-
bution functions for the sake of transparency of the
equations.
With the above-introduced distribution functions

fα (α = p, t, f ), the coupled set of relativistic Boltz-
mann equations looks as follows:

pµ∂
µ
xfp(x, p) = Cp(fp, ft) + Cp(fp, ff ), (2)

pµ∂
µ
xft(x, p) = Ct(fp, ft) + Ct(ft, ff ), (3)

pµ∂
µ
xff(x, p) = Cf (fp, ft) (4)

+ Cf (fp, ff ) + Cf (ft, ff ),

where Cα denote collision terms between the con-
stituents of the three fluids.We have omitted intrafluid
collision terms, like Cp(fp, fp), since below they will
be canceled anyway. The displayed interfluid collision
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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terms have a clear physical meaning: Cp/t(fp, ft),
Cp/t(fp/t, ff ), and Cf (fp/t, ff ) give rise to friction
between p, t, and f fluids, and Cf (fp, ft) takes care
of particle production in the midrapidity region. Note
that, up to now, we have made no approximation,
except for hiding intrafluid collision terms.
Let us proceed to approximations which justify

the term “fluids” already used. We assume that con-
stituents within each fluid are locally equilibrated,
both thermodynamically and chemically. In particu-
lar, this implies that the intrafluid collision terms are
indeed zero. This assumption relies on the fact that
intrafluid collisions are much more efficient in driving
a system to equilibrium than interfluid interactions.
As applied to the fireball fluid, this assumption re-
quires some additional comments, related to the con-
cept of a finite formation time. During the formation
proper time τ after production, the fireball fluid propa-
gates freely, interacting neither with itself nor with the
baryon-rich fluids. After this time period, the fireball
matter thermalizes locally and starts to interact with
both itself and the baryon-rich fluids. Being heated
up, these three fluids may contain not only hadronic
but also deconfined quark–gluon species, depending
on the EoS used.
The above assumption suggests that interaction

between different fluids should be treated dynamically.
To obtain the required dynamic equations, we first
integrate the kinetic Eqs. (2)–(4) over momentum
and sum over particle species with the weight of
baryon charge. This way, we arrive at equations of the
baryon-charge conservation

∂µJ
µ
α (x) = 0 (5)

for α = p and t, where Jµ
α = nαu

µ
α is the baryon

current defined in terms of baryon density nα and
hydrodynamic 4-velocity uµ

α normalized as uαµu
µ
α =

1. Equation (5) implies that there is no baryon-
charge exchange between p and t fluids, as well as
that the baryon current of the fireball fluid is identi-
cally zero, Jµ

f = 0. Integrating kinetic Eqs. (2)–(4)
over momentum with weight of 4-momentum pν

and summing over all particle species, we arrive at
equations of the energy–momentum exchange for
energy–momentum tensors T µν

α of the fluids

∂µT
µν
p (x) = −F ν

p (x) + F ν
fp(x), (6)

∂µT
µν
t (x) = −F ν

t (x) + F ν
ft(x), (7)

∂µT
µν
f (x) = F ν

p (x) + F ν
t (x) − F ν

fp(x) − F ν
ft(x),

(8)

where the F ν are friction forces originating from in-
terfluid collision terms in kinetic Eqs. (2)–(4). F ν

p and
F ν

t in Eqs. (6) and (7) describe energy–momentum
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loss of baryon-rich fluids due to their mutual friction.
A part of this loss |F ν

p − F ν
t | is transformed into

thermal excitation of these fluids, while another part
(F ν

p + F ν
t ) gives rise to particle production in the

fireball fluid [see Eq. (8)]. F ν
fp and F

ν
ft are associated

with friction of the fireball fluid with the p and t fluids,
respectively. Note that Eqs. (6)–(8) satisfy the total
energy–momentum conservation

∂µ(T µν
p + T µν

t + T µν
f ) = 0. (9)

As described above, the energy–momentum ten-
sors of the baryon-rich fluids (α = p and t) take the
conventional hydrodynamic form

T µν
α = (εα + Pα) uµ

α uν
α − gµνPα (10)

in terms of the proper energy density εα and pressure
Pα. For the fireball, however, only the thermalized part
of the energy–momentum tensor is described by this
hydrodynamic form:

T
(eq)µν
f = (εf + Pf ) uµ

f uν
f − gµνPf . (11)

Its evolution is defined by an Euler equation with a
retarded source term

∂µT
(eq)µν
f (x) =

∫
d4x′δ4

(
x− x′ − UF (x′)τ

)
(12)

×
[
F ν

p (x′) + F ν
t (x′)

]
− F ν

fp(x) − F ν
ft(x),

where τ is the formation time, and

Uν
F (x′) =

F ν
p (x′) + F ν

t (x′)
|Fp(x′) + Ft(x′)|

(13)

is a free-streaming 4-velocity of the produced fire-
ball matter. In fact, this is the velocity at the mo-
ment of production of the fireball matter. According
to Eq. (12), the energy and momentum of this matter
appear as a source in the Euler equation only later,
at time U0

F τ after production, and in different space
point x′ − UF (x′)τ , as compared to the production
point x′. At first glance, one can immediately simplify
the right-hand side of Eq. (12) by performing integra-
tion with the δ function. However, this integration is
not that straightforward, since the expression under
the δ function, x− x′ − UF (x′)τ = 0, may have more
than one solution with respect to x′. The latter would
mean that the matter produced at several different
spacetime points x′ simultaneously thermalizes at the
same spacetime point x. This is possible due to the
nonlinearity of the hydrodynamic equations.

The residual part of T µν
f (the free-streaming one)

is defined as

T
(fs)µν
f = T µν

f − T
(eq)µν
f . (14)
4



202 RUSSKIKH et al.
The equation for T (fs)µν
f can easily be obtained by

taking the difference between Eqs. (8) and (12). If
all the fireball matter turns out to be formed before
freeze-out, then this equation is not needed. Thus,
the three-fluid model introduced here contains both
the original two-fluid model with pion radiation [3, 4,
7–9] and the (2 + 1)-fluid model [12, 13] as limiting
cases for τ → ∞ and τ = 0, respectively.
The nucleon–nucleon cross sections at high en-

ergies are strongly forward–backward peaked. In this
case, the Boltzmann collision term can be simplified
significantly, since the involved 4-momentum transfer
is small. The small-angle-scattering expansion of the
collision integral results in the relativistic Fokker–
Planck equation, as first derived by Belyaev and Bud-
ker [1]. Precisely this equation was used in [5] to
estimate the friction forces, F ν

p and F ν
t , proceeding

from only NN elastic scattering. Later, these friction
forces were calculated [19] on the basis of (both elas-
tic and inelastic) experimental inclusive NN cross
sections
F ν

α = ρpρt

[
(uν

α − uν
ᾱ)DP +

(
uν

p + uν
t

)
DE

]
, (15)

α = p and t, p̄ = t and t̄ = p. Here, ρα denotes the
scalar densities of the p and t fluids,

DP/E = mN V pt
rel σP/E(spt), (16)

wheremN is the nucleon mass, spt = m2
N

(
uν

p + uν
t

)2
is the mean invariant energy squared of two colliding
nucleons from the p and t fluids, V pt

rel = [spt(spt −
4m2

N )]1/2/(2m2
N ) is the mean relative velocity of the

p and t fluids, and σP/E(spt) are determined in terms
of nucleon–nucleon cross sections integrated with
certain weights (see [3, 4, 7, 8, 19] for details). It
was found in [19] that a part of these friction terms,
which is related to the transport cross section, may be
well parametrized by an effective deceleration length
λeff with a constant value λeff ≈ 5 fm. However, there
are reasons to consider λeff as a phenomenological
parameter, as was pointed out in [7]. Indeed, as is seen
from Eq. (16), this friction is estimated only in terms
of nucleon–nucleon cross sections, while the excited
matter of baryon-rich fluids certainly consists of a
great number of hadrons and/or deconfined quarks
and gluons. Furthermore, these quantities may be
modified by in-medium effects. In this respect, DP/E

should be understood as quantities that give a scale of
this interaction.
Equations (5)–(7) and (12), supplemented by a

certain EoS and expressions for friction forces F ν ,
form a full set of equations of the relativistic three-
fluid hydrodynamic model. To make this set closed,
we still need to define the friction of the fireball fluid
with the p and t fluids, F ν

fp and F ν
ft, in terms of

hydrodynamic quantities and some cross sections.
PH
3. INTERACTION BETWEEN FIREBALL
AND BARYON-RICH FLUIDS

Our aim here is to estimate the scale of the fric-
tion force between the fireball and baryon-rich fluids,
similar to that done before for baryon-rich fluids [19].
To this end, we consider a simplified system where
all baryon-rich fluids consist only of nucleons, as the
most abundant component of these fluids, and the
fireball fluid contains only pions.
For incident energies from 10 (AGS) to 200AGeV

(SPS), the relative nucleon–pion energies are in the
resonance range dominated by the ∆ resonance. To
estimate this relative energy, we consider a produced
pion, being at rest in the center of mass (c.m.) of the
colliding nuclei, qπ = {mπ, 0, 0, 0}c.m. Baryon-rich
fluids decelerate each other during their interpenetra-
tion. This means that the nucleon momentum should
be smaller than the incident momentum, |pN | <
|{mNγc.m,pc.m}|, where γc.m is the gamma factor of
the incident nucleon in the c.m. frame. Calculating
the invariant relative energy squared s = (p + q)2 at
Elab = 158 A GeV, we obtain s1/2 < 1.8 GeV. This
range of s precisely covers the resonance region,
1.1 < s1/2 < 1.8 GeV [20]. At Elab = 10 A GeV, we
arrive at s1/2 < 1.3 GeV, which is also within the
resonance region. At even lower incident energies, the
strength of the fireball fluid becomes so insignificant,
as compared with thermal mesons in the p and t
fluids, that the way of treating its interaction with
the baryon-rich fluids does not significantly affect
the observables. For the same reason, we do not
apply any special prescription for the unification of
the fireball fluid with the baryon-rich fluids, since this
may happen only at relatively low incident energies
Elab < 10 AGeV.
The resonance-dominated interaction implies that

the essential process is absorption of a fireball pion
by a p- or t-fluid nucleon with formation of an R
resonance (most probably ∆). This produced R res-
onance still belongs to the original p or t fluid, since
its recoil due to absorption of a light pion is small.
Subsequently, thisR resonance decays into a nucleon
and a pion already belonging to the original p or t fluid.
Symbolically, this mechanism can be expressed as

Nα + πf → Rα → Nα + πα.

As a consequence, only the loss term contributes to
the kinetic equation for the fireball fluid.
Proceeding from the above consideration, we write

the collision term between fireball-fluid pions and α-
fluid nucleons (α = p or t) as follows:

Cf (fα, ff ) (17)

= −
∫

d3q

q0
WNπ→R(s)f (eq)f (x, p)fα(x, q),
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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where s = (p + q)2,

WNπ→R(s) = (1/2)[(s −m2
N −m2

π)2

− 4m2
Nm2

π]1/2σNπ→R
tot (s)

is the rate of producing a baryon R resonance, and
σNπ→R
tot (s) is the parametrization of experimental
pion–nucleon cross sections [20]. Here, only the dis-
tribution function of formed (and, hence, thermalized)

fireball pions, f (eq)f , enters the collision term, since
the nonformed particles did not participate in the
interaction by assumption.

Integrating Cf (fα, ff ) weighted with the 4-mo-
mentum pν over momentum, we arrive at

F ν
fα(x) =

∫
d3q

q0

d3p

p0
pνWNπ→R(s) (18)

× f
(eq)
f (x, p)fα(x, q)

� WNπ→R(sfα)
mπu

0
f

(∫
d3q

q0
fα(x, q)

)

×
(∫

d3p

p0
p0pνf

(eq)
f (x, p)

)
= Dfα

T
(eq)0ν
f

u0
f

ρα,

where we replaced p0 and s with their mean values,
〈p0〉 = mπu

0
f and sfα = (mπuf + mNuα)2, and in-

troduced the transport coefficients

Dfα = WNπ→R(sfα)/(mNmπ) (19)

= V fα
rel σ

Nπ→R
tot (sfα).

Here, V fα
rel = [(sfα −m2

N −m2
π)2 − 4m2

Nm2
π]1/2 ×

(2mNmπ)−1 denotes the mean invariant relative
velocity between the fireball and the α fluids. Thus,
we have expressed the friction F ν

fα in terms of the

fireball-fluid energy–momentum density T 0ν
f , the

scalar density ρα of the α fluid, and a transport
coefficient Dfα. Note that this friction is zero until

the fireball pions are formed, since T (eq)0ν
f = 0 during

the formation time τ .

In fact, the above treatment is an estimate of the
friction terms rather than their strict derivation. This
peculiar way of evaluation is motivated by the form
of the final result (18). An advantage of this form is
that mπ and any other mass do not appear explicitly,
and hence this form allows a natural extension to any
content of the fluid, including deconfined quarks and
gluons, under the assumption that Dfα represents
just a scale of the transport coefficient.
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4. SIMULATIONS OF NUCLEUS–NUCLEUS
COLLISIONS

The relativistic 3D code for the above-described
three-fluid model was constructed by means of mod-
ifying the existing two-fluid 3D code of [3, 4, 7–9].
In actual calculations, we used the mixed-phase EoS
developed in [21–23]. This phenomenological EoS
takes into account a possible deconfinement phase
transition of nuclear matter. The underlying assump-
tion of this EoS is that unbound quarks and gluons
may coexist with hadrons in the nuclear environment.
In accordance with lattice QCD data, the statistical
mixed-phase model describes the first-order decon-
finement phase transition for pure gluon matter and
crossover for one with quarks [21–23].
We performed simulations of nucleus–nucleus

collisions Pb +Pb atElab = 158AGeV and Au +Au
at Elab = 10.5 A GeV. The general dynamics of
heavy-ion collisions is illustrated in Fig. 1 by the
energy-density evolution of the baryon-rich fluids
(εb = εp + εt, in the c.m. frame of colliding nuclei)
in the reaction plane of the Pb + Pb collision. Dif-
ferent stages of interaction at relativistic energies are
clearly seen in this example: two Lorentz-contracted
nuclei (note the different scales along the x and z
axes in Fig. 1) start to interpenetrate through each
other, reach a maximal energy density by the time ∼
1.1 fm/c, and then expand predominantly in the lon-
gitudinal direction, forming a “sausage-like” freeze-
out system. At this and lower incident energies, the
baryon-rich dynamics is not really disturbed by the
fireball fluid and hence the cases τ = 0 and 1 fm/c
turn out to be indistinguishable in terms of εb.
In Fig. 2, the dynamic evolution of the fireball

energy density (εf , in the c.m. frame of the colliding
nuclei) in the reaction plane of the Pb+Pb collision at
impact parameter b = 2 fm is shown for two values of
the formation time, τ = 0 (the left column of panels)
and 1 fm/c (the right column of panels). It starts to
form near the time moment when the maximal energy
density εb is reached. The f-fluid evolution indeed
looks like that for an expanding fireball; its density
depends significantly on the formation time.
To quantitatively reveal the role of the interaction

between fireball and baryon-rich fluids, we followed
the evolution of the total energy released into the
fireball fluid,

E
(released)
f (t) =

t∫
0

dt′
∫

d3x′
(
F 0

p (x′) + F 0
t (x′)

)
(20)

[cf. Eq. (8)], and the total energy retained in the fire-
ball fluid (both thermalized and nonthermalized) after
4
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Fig. 1. Time evolution of the energy density, εb = εp + εt, for the baryon-rich fluids in the reaction plane (xz plane) for the
Pb + Pb collision (Elab = 158 AGeV) at impact parameter b = 2 fm. Shades of gray represent different levels of εb as indicated
at the right side of each panel. Numbers on this palette show the εb values (in GeV/fm3) at which the shades change. Arrows
indicate the hydrodynamic velocities of the fluids.
interaction,

E
(tot)
f (t) =

∫
d3xT 00

f (t, x) =

t∫
0

dt′
∫

d3x′ (21)

×
(
F 0

p (x′) + F 0
t (x′) − F 0

fp(x
′) − F 0

ft(x
′)
)

[cf. Eq. (8)], in the c.m. frame of two colliding nuclei.
Results of the calculation are presented in Fig. 3.
P

To provide a common scale, the quantity E
(released)
f

calculated with the formation time τ = 100 fm/c is
presented in all the panels. The τ = 100 fm/c case
practically implies absence of interaction between
the fireball and baryon-rich fluids and the equality
E
(tot)
f = E

(released)
f , because T

(eq)00
f = 0 and hence

F 0
fp = F 0

ft = 0 [cf. Eq. (18)].
First, we see that the energy release into in the
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Fig. 2. The same as in Fig. 1, but for the fireball-energy density (εf in the c.m. frame of the colliding nuclei) for two formation
times, τ = 0 (the left column of panels) and 1 fm/c (the right column of panels).
fireball fluid occurs only during a short time of inter-
penetration of colliding nuclei. As was expected, at
zero formation time τ = 0, the interaction with the
baryon-rich fluids strongly affects the fireball fluid: it
reduces its total energyE(tot)f as compared to the case

without interaction (i.e., τ = 100 fm/c). Even the re-
leased energyE(released)f drops. This effect results from
additional stopping of baryon-rich fluids associated
with friction with the fireball fluid. Because of this
additional stopping, the baryon-rich fluids produce
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
less secondary particles (and those produced are less
energetic). Naturally, this effect is more pronounced
at the energy 158 A GeV, since the amount of pro-
duced secondary particles is much larger in this case
than that at lower energies.

At realistic values of the formation times, τ = 0.5
and 1 fm/c, the effect of the interaction is substan-
tially reduced. This happens because the fireball fluid
starts to interact only near the end of the interpene-
tration stage. As a result, by the end of the collision
4
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Fig. 3. Time evolution of the total energy released into the fireball fluid, E(released)
f (solid curves), and the total energy kept in

the fireball fluid after interaction, E(tot)
f (dash-dotted curves). Two nucleus–nucleus collisions Pb + Pb at Elab = 158 A GeV

(three upper panels) and Au + Au atElab = 10.5 AGeV (three bottom panels), both at zero impact parameter, were calculated
with different formation times τ indicated in the panels. The upper dashed curves in all six panels representE(released)

f calculated

with the formation time τ = 100 fm/c.
process, it loses only 10% of its available energy
E
(released)
f at Elab = 158 A GeV and 30% at Elab =

10.5 A GeV. Certainly, this effect should be observ-
able in mesonic quantities, in particular, in such fine
observables as directed and elliptic flows. The global
baryonic quantities stay practically unchanged at fi-
nite τ . Indeed, E(released)f remains almost the same as

at τ = 100 fm/c.
The energy content of the baryon-rich fluids ex-

ceeds that of the fireball by an order of magnitude
at Elab = 158 A GeV (3440 GeV) and even more at
Elab = 10.5 A GeV (929 GeV). Therefore, the inter-
action with the fireball fluid does not substantially
change the global baryonic quantities. As for refined
baryonic observables, our preliminary calculations of
the directed nucleon flow show no changes at Elab =
10.5 A GeV and only slight changes in the midra-
pidity region at Elab = 158 A GeV. This means that
our previous results on the nucleon directed flow and
its excitation function, obtained within the two-fluid
model [9], are not affected by the interaction between
the baryon-rich and fireball fluids.
P

5. CONCLUSION

In this paper, we have developed a three-fluid
model for simulating heavy-ion collisions in the
range of incident energies between a few to about
200 A GeV. In addition to two baryon-rich fluids,
which constitute the two-fluid model [3, 4, 7–9],
a delayed evolution of the produced baryon-free
(fireball) fluid is incorporated. This delay is governed
by a formation time, during which the fireball fluid
neither thermalizes nor interacts with the baryon-
rich fluids. After the formation, it thermalizes and
comes into interaction with the baryon-rich fluids.
This interaction is estimated from elementary pion–
nucleon cross sections.
The hydrodynamic treatment of heavy-ion colli-

sions is an alternative to kinetic simulations. The
hydrodynamic approach has certain advantages and
disadvantages. Lacking the microscopic feature of
kinetic simulations, it overcomes their basic assump-
tion, i.e., the assumption of binary collisions, which
is quite unrealistic in dense matter. It directly ad-
dresses the nuclear EoS that is of prime interest
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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in heavy-ion research. Furthermore, our three-fluid
model uses only friction forces instead of a vast body
of differential cross sections of elementary processes,
which are generally unknown experimentally. Natu-
rally, we have to pay for all these pleasant features
of hydrodynamics: the treatment assumes that the
nonequilibrium stage of the collision can be described
by the three-fluid approximation. However, all the
assumptions used are quite transparent and can be
tested numerically.

We have simulated relativistic nuclear collisions
within the 3D code based on the relativistic three-
fluid hydrodynamics combined with the EoS of the
statistical mixed-phase model of the deconfinement
phase transition, developed in [21–23]. We performed
calculations of nucleus–nucleus collisions Pb + Pb
at Elab = 158 A GeV and Au + Au at Elab =
10.5 A GeV. To reveal the role of the interaction
between fireball and baryon-rich fluids, we examined
the evolution of global quantities of the fireball fluid.

For zero formation time (τ = 0), the interaction
strongly affects the fireball fluid: it considerably re-
duces its total energy as compared to that without
interaction. However, for realistic reasonable finite
formation time, τ ≈ 1 fm/c, the effect of the interac-
tion is substantially reduced. The fireball fluid loses
only 10% of its available energy atElab = 158 AGeV
and 30% at Elab = 10.5 A GeV. Certainly, this effect
should be observable in mesonic quantities, in par-
ticular, in such sensitive observables like directed and
elliptic flows. Since the energy content of the baryon-
rich fluids is much higher than that of the fireball
fluid, global baryonic quantities remain insensitive
to this interaction. As our preliminary calculations
show, even directed nucleon flow remains practically
unaffected by this interaction. In particular, this fact
justifies our previous results on directed nucleon flow
and its excitation function, obtained within the two-
fluid model [9].
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Abstract—The paper contains a description of the main trends in very high multiplicity physics. The
incident energy dissipation into the secondaries is considered as a thermalization phenomenon. An
experimental fact is that the particle production process is stopped at such an early stage that the mean
multiplicity is nothing but the logarithm of incident energy. This phenomenon is considered as an indication
of the absence of complete thermalization in the most probable inelastic processes. A quantitative definition
of thermalization phenomenon is offered and the very high multiplicity domain where the thermalization
must occur is discussed. The physical consequences and model predictions of the thermalization effect
are considered. A short review of the latest publications on very high multiplicity physics is also offered.
c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interest in very high multiplicity (VHM)
hadron processes has become so many-sided that it
is time to give a general description of the situation
in this field. The trends can be divided into three
sectors. They are purely theoretical, experimental,
and intermediate, where the theoretical efforts are
directed toward the VHM experiment.

The paper is based mainly on the talks presented
at the VHMPhysics Workshops held in Dubna in the
years 2000–2002 [1]. It must be mentioned from the
very beginning that there has been no experimental
information concerning VHM high energy hadron
reactions until now.Moreover, there are no theoretical
predictions for such processes even on the model
level either. For these reasons, the spectrum of efforts
presented in [1] is broad.

We would like to start from the well-known exper-
imental fact that high-energy hadron collisions are,
for the most part, inelastic; see Fig. 1, where the
experimental value of total and elastic cross sections
are shown.

Having the multiparticle state, the idea to intro-
duce thermodynamic methods for describing hadron
interactions seems fruitful. It is important to notice
here that the thermalization means the possibility of
using the equilibrium thermodynamics phenomenol-
ogy. Actually, one must be careful with this idea. The
reason why this is not trivial will be the main subject
of discussion.

∗This article was submitted by the author in English.
**e-mail: sisakian@jinr.ru
1063-7788/04/6701-0002$26.00 c©
Attempts to introduce thermodynamic notions
into multiple production physics have a long history.
The first so-called “thermodynamical model” was
proposed by Fermi and Landau in the 1950s [2, 3].
It was assumed that particle production may be con-
sidered as the process of cooling of the incident high-
temperature state. The reason for cooling is a ten-
dency to equilibrium with the environment. Indeed,
this process takes place in a “zero-temperature” vac-
uum and, therefore, the results of cooling should be
the state with zero-momentum particles. In this case,
the hadron mean multiplicity would be approximately
equal to the total incident energy and, therefore, the
multiplicity would have reached its maximal value
nmax =

√
s/m, where

√
s is the total c.m. energy and

m � 0.2 GeV is the characteristic hadron mass.
But we know that the mean hadron multiplicity is

only a logarithm or the second power of the logarithm
of total incident energy (see Fig. 2), where the best
fit of the power dependence, n̄(s) ∼

√
s, is shown for

comparison.

Therefore, something prevents the dissipation of
the incident energy into the produced particle masses
and, for this reason, the thermalization does not taken
place. Here the term "thermalization" means the uni-
form distribution of perturbation over all degrees of
freedom. At the same time, fluctuations must have a
Gaussian character.

In other words, we would like to offer for discussion
the most important question of hadron dynamics from
our point of view: Why is the process of incident
energy dissipation stopped at such an early stage that
themeanmultiplicity is comparably small and, for this
reason, complete thermalization does not occur?
2004 MAIK “Nauka/Interperiodica”
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constraint: σtot � ln2 s.
1.1. Role of Symmetry Constraints

We know, at least qualitatively, the answer to this
question: the reason why the mean hadron multiplic-
ity is much smaller than nmax is hidden in the sym-
metry constraints. Namely, one may hope that this is
an effect of underlying non-Abelian gauge symmetry
recorded in Yang–Mills field theory.
Therefore, the purpose of the present paper is

to discuss the most intriguing question of hadron
physics: the dynamical consequence of the non-
Abelian gauge symmetry of Yang–Mills field theory.
One of the known consequences of this symmetry
is the color charge confinement. Another one is the
incomplete thermalization and, as a result, smallness
of the total hadron multiplicity.
In the most inelastic hadron processes, thermal-

ization is not produced and it is impossible to use
the methods of thermodynamics for them. But it can
be proved that, at VHM, the final state is completely
thermalized. Thus, we would like to provide for the
condition where the Fermi–Landau model works. It
is evident that such a condition is realized in nature
extremely rarely.
This also means that, in the VHM region, one

may use “rough” thermodynamic parameters, “tem-
perature,” “chemical potential,” etc., for a complete
description of the system. For instance, in this case,
one may completely describe the energy distribution
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
of the system knowing only the mean energy of sec-
ondaries [4, 5].
Therefore, the confinement forces, as the symme-

try constraints, should not act in the VHM region.
This conclusion is crucial in our further consider-
ations since it considerably simplifies the multiple
production picture.
It is interesting to note that, on the other hand,

the system of color charges must be considered as
a plasma state in the case of absence of confinement
forces.
Moreover, the thermalized state is calm. This

means that the kinetic forces are not important in
comparison with the potential ones. This situation
is the best to observe collective phenomena.

1.2. References

The phenomenology of VHM events was formu-
lated in the papers published in [6]. It includes two
basic ideas. The first one gives the classification of
asymptotics over multiplicity and the physical in-
terpretation of the classes. This interpretation ex-
cludes from consideration final-state interactions, for
instance, the Bose–Einstein correlation [7]. The pa-
pers [8, 9] fill this deficiency. It was shown [9] that
final-state interaction can cardinally change the mul-
tiplicity distribution tail. The experimental investiga-
tion of this prediction will be performed during the
4
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experiment at U-70 (Protvino) (see [10]). We would
also stress the efforts toward the experiment pub-
lished in [11].
An idea was proposed [12] that measurements in

the VHM region may be performed “roughly” (see
also [13]). For instance, it is quite possible to have
the multiplicity with some, but definite, error. One
may also generalize the inclusive approach, combin-
ing particles into groups and considering the group
as a “particle,” and so on. The effectiveness of such a
formulation of the experimental program was shown
in [14].
The paper [4] contains a qualitative feature of

VHM physics. The main question is: How much
confidence may predictions of perturbative QCD and
existing multiperipheral models in the VHM region
have?We have found that pQCD cannot be used even
if the VHM production process is hard. Experimental
investigation of the range of validity of pQCD pre-
dictions has been performed in [15]. The point is that
it is hard to use the leading logarithm approximation
P

(LLA) ideology [16] in the VHM region. That is why
a new perturbation theory has been built [17–20].

One can hope that the VHM domain is much
“simpler” from the theoretical point of view than the
traditional domain of n ∼ n̄(s) [4]. Nevertheless, at-
tempts to find new characteristics of inelastic colli-
sions are extremely important. The “wavelet” analy-
sis [21] is a corresponding example.

2. DEFINITION OF THE VHM REGION

It is natural that just the mean multiplicity defines
the scale of multiplicities. Then, generally, we wish to
consider the processes with multiplicity

n � n̄(s),

where n̄(s) is the mean multiplicity. The VHM do-
main can be better specified while considering the
details of production processes.
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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One may also introduce the inelasticity coefficient
E − εmax

E
,

where E is the total energy in the c.m. frame and εmax
is the energy of the fastest particle in the same frame.
Then, VHM events mean

1 − E − εmax
E

� 1.

Thus, the produced particle momentum would be
comparatively small.
At the same time, we would like to exclude the

influence of the phase space boundaries. For this rea-
son, we would assume that the multiplicity cannot be
too large:

n � nmax = E/m, m ≈ 0.2GeV.

From the experimental point of view, the VHMdo-
main includes extremely rare processes (see Fig. 3).
For this reason, the B range of multiplicity in Fig. 3
seems not to be attainable.
The fact that A is the multiperipheral dynamics

domain and C represents the deep asymptotics over
multiplicity must be noted. We will call the domain C
the VHM domain and it is defined from the condition
that thermalization is attained.

2.1. VHM Phenomenology

The kinematics conditions are changed with mul-
tiplicity and it is natural to expect a change in the par-
ticle production mechanism [22]. One may consider
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 20
 

III

II

I
 

n

 
µ

 
(
 
n
 
)

Fig. 4. “Chemical potential” µ = 〈ε〉 ln(σn/σtot) vs.mul-
tiplicity. Case I corresponds to the multiperipheral model;
case II is predicted by the QCD jet; III is a case where the
vacuum is unstable against particle production. The latter
case may include a situation with final-state interactions.
To distinguish this possibility, one should investigate the
analytical properties of µ over n.

the result presented in [23] as experimental confirma-
tion of this idea.
It can be shown that only three classes of asymp-

totics can be realized:
The cross section falls faster than any power of the

exponent of (−n):
(I)multiperipheral interactions: σn < O(e−n);
The cross section falls as the exponent:

(II) hard processes: σn = O(e−n);
The cross section falls slower than any power of

the exponent:

(III) vacuum instability: σn > O(e−n).
Therefore, one may neglect the factors in front of

exp{−n}, and, since the cross section is extremely
small at n � n̄(s), it is natural to estimate cross sec-
tions only with logarithmic accuracy. In other words,
we propose measuring the quantity

µ(n) = −〈ε〉 1
n

ln
σn

σtot
,

where 〈ε〉 is the mean energy of secondaries. Then,
one may distinguish the following possibilities in the
region of large multiplicities (see Fig. 4):

(I):
∂

∂n
µ(n) > 0, (II):

∂

∂n
µ(n) = 0,

(III):
∂

∂n
µ(n) < 0.

Case (I) corresponds to the multiperipheral model;
case (II) is predicted by the QCD jet; (III) is the
case where the vacuum is unstable against particle
production.
The latter may include the situation with final-

state interactions. To distinguish this possibility,
one should investigate the analytical properties of µ
over n.
04
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3. THERMODYNAMICS

The multiple production amplitude, generally, is a
function of (3n− 4) variables. This number is too high
even if n ∼ n̄(s) since at LHC energies n̄(s) � 100.
One may write

T (z, s) =
∑

n

znσn(s)/σtot(s) = eC(z,s).

Then, there exists the decomposition

C(z, s) =
∑

k

(z − 1)kCk(s)/k!,
P

where Ck is the binomial moment, C1(s) = n̄(s).

Figure 5 shows that the higher multiparticle
correlators become important with rising energy and
multiplicity. Indeed, the straight line corresponds
to the Poisson distribution. The deviation from the
straight line means that the multiplicity distribution
is wider than the Poissonian. In this case, the higher
Ck should be taken into account and, accordingly,
we lose the hope to describe the hadron dynamics
completely.

Therefore, it is important to find conditions where
the number of essential variables is sufficiently small.
This condition will define the “thermalization” region.
Now, one of the most important results of our investi-
gations is the following: if

|Kl(E,n)| � |K2(E,n)|l/2, l = 3, 4, . . . , (1)
where Kl is the ordinary l-particle energy correlator,
then the energy spectrum of produced particles is de-
fined by one parameter, 1/β, which is themean energy
of produced particles. It is important that (1) be the
criterion of thermalization. In practice, this means
that, without checking this condition, it is impossible
even to discuss the thermodynamic property of the
system.

The correlation functions are usually defined as
follows:

K2(n,E) = 〈ε2;n,E〉 − 〈ε1;n,E〉,
K3(n,E) = 〈ε3;n,E〉 − 3〈ε2;n,E〉

× 〈ε1;n,E〉 + 2〈ε1;n,E〉3,

etc., E =
√
s. Here,
〈εl;n,E〉 =
∫
ε(q1)d3q1ε(q2)d3q2 · · · ε(ql)d3ql{d3lσn(E)/d3q1d

3q2 · · · d3ql}∫
d3q1d3q2 · · · d3ql{d3lσn(E)/d3q1d3q2 · · · d3ql}
is the l-particle mean energy and

d3lσn(E)/d3q1d
3q2 · · · d3ql

is the corresponding differential cross section.
In conclusion, we can show that, if inequality (1)

holds true, then the system of produced particles may
be described using the formalism of thermodynam-
ics. This important conclusion is general; it weakly
depends on details of the dynamics. In other words,
the proof of this statement is formal for the hadron
system and uses only one fact that the fluctuations in
the thermalized state must be Gaussian.
Having a quantitative definition of the equilibrium

state, one may investigate predictions of the existing
theories. First of all, we can prove that the system
should be equilibrium in the domain B. It is easy to
find what we have in the domain B:

|K3(E,n)|
|K2(E,n)|3/2

∼ 1
n
.

This estimate is a model-independent conclusion.

3.1. Theory

Now let us consider the question: Can we predict
a tendency to the thermalized state? Considering the
production as a process of thermalization, let us re-
view the possible mechanisms of hadron production.
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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First of all, the most popular in hadron physics
is the multiperipheral model. It describes the “soft”
channel of hadron production. The phase space do-
main, corresponding to the Regge production mech-
anism, is shown in Fig. 6. It means that the lon-
gitudinal momenta of secondaries are large, but the
transverse ones are small. Until now, there has been
no well-established quantitative theory of these pro-
cesses.
The second model is based on perturbative QCD

and it describes the “hard” channel. The typical kine-
matics is the same as in deep inelastic scattering
(DIS) processes. It means that, opposite to Regge,
the DIS kinematics, shown in Fig. 6, assumes that
the transverse momenta of secondaries are large and
the longitudinal momenta are relatively small.
As has been explained above, the hard kinematics

must dominate in the VHM region. But it is impor-
tant to note that the VHM region does not overlap
either Regge or DIS regions (see Fig. 6). This means
that, for Regge and DIS theories, one cannot apply
the ordinary formalism in the VHM domain.
We would like to explain the last conclusion in

detail. This would also explain why the thermalization
effect is important for hadron physics.

3.2. Multiperipheral Model

The main statement of the Regge multiperipheral
model appears as the condition that the transverse
momentum of secondaries is restricted.
Then the amplitude in the one-Pomeron Born ap-

proximation

Aab(s, t) = igagb(s/s0)α(t)−1,

α(t) = α(0) + α′(0)t, 0 < α(0) − 1 � 1,

α′(0) = 1GeV−2, s0 = 1GeV2,

describes the experimental data well at intermediate
energies.
Multiplicity distribution: In the Pomeron Born ap-

proximation, the topological cross section

σn(s) = σtote
−n̄(s)(n̄(s))n/n!

This distribution has a sharpmaximumat n � n̄(s) ≈
a ln(s/s0). Thus, for the production of n � n̄(s)
particles, one should consider the exchange of ν ∼
n/n̄(s) Pomeron.
But this production mechanism is restricted.

Thus, the contribution of the diagramwith ν Pomeron
exchange gives, since the diffraction radii increase
with s, a decrease with ν in the mean value of the
impact parameter: b̄2 � 4α′ ln(s/s0)/ν ∼ α′n̄(s)/ν.
On the other hand, the number of necessary Pomeron
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
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exchanges ν ∼ n/n̄(s). As a result, b̄2/α′ ∼ n̄2(s)/n.
Therefore, if the transverse momentum of created
particles is a restricted quantity, i.e., b̄2/α′ � 1, then
the Pomeron mechanism of the particle production is
valid if n � n̄2(s).
In the framework of the multiperipheral model, the

cross section must fall sharply at

n > n̄2(s)

since there is no interaction at b̄2 < α′ in this model.
Therefore, the multiperipheral picture is applicable

if, and only if, the multiplicity is smaller than the
square of the mean multiplicity. From outside of this
region, the cross section must fall rapidly.

3.3. Perturbative QCD

Now let us consider the creation of n parti-
cles (gluons) in the DIS kinematics. We calculate
Dab(x, q2;n), where∑

n

Dab(x, q2;n) = Dab(x, q2)

and Dab(x, q2) is the probability of finding parton b
with virtuality q2 < 0 in the parton a of ∼ λ virtual-
ity, λ � Λ and αs(λ) � 1. One also should assume
that x is sufficiently small, (1/x) � 1, to have the
phase space of produced particles sufficiently large.
Then Dab(x, q2) is described by the ladder diagrams
of Fig. 7.

One can conclude that the LLA is applicable in the
VHM domain until the diffusion time τ is sufficiently
large:

τ = ln(−q2/λ) � ln(1/x) � ω(τ, z), (2)
4
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where

ω(τ, z) =
∑
n

zn

τ∫
τ0

dτ ′

τ ′
wg

n(τ ′), ω(τ, 1) = ln τ/τ0,

is the generating function of the gluon jet multiplicity
distribution. It is important to note here that allwg

n(τ)
are positive. It is a function with a sharp maximum at
lnn � ln n̄j(τ) ∼

√
τ . Therefore, to have n � n̄j(τ)

jet mean multiplicity, one should choose z > 1.
For this reason, inequality (2) cannot be satisfied

in the VHM region. Indeed, one always may find such
large n � n̄j(τ) that, for fixed q2, inequality (2) fails.
The reason why this DIS kinematics, based on

the LLA assumption, cannot be considered in the
VHM region leads to the evident conclusion that, in
order to have the thermalized state, the mean values
of the transverse and longitudinal momenta must be
close to each other. Just this dynamical condition is
in contradiction with LLA ideology.

4. SCENARIO FOR VHM PROCESS
Our multiple production scenario is the following:
The multiperipheral model is applicable for n less

than ns. Rough estimation gives ns ∼ n̄2(s). One
may expect that, at high energies, ns is smaller than
n̄2(s).
When the multiplicity exceeds ns (Fig. 8), one

should take into account the hard processes. This
means the production of (mini)jets and dominance
of Fig. 7 diagrams. Thus, this contribution may be
described in the framework of the LLA.
But in the VHM region, where the multiplicity

exceeds nh > ns, the LLA cannot be used since all
components of the particle momentum are compara-
ble to each other in this domain.
We will define the VHM region as the multiplicity

domain where one may use the thermodynamic de-
scription.
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4.1. Prediction of Existing Generators of Events
It is evident that neither in the Regge nor in the

DIS kinematics can one see the thermalization phe-
nomena and the VHM state cannot be achieved by
these production mechanisms. Let us consider the
generator-of-events prediction to demonstrate this
conclusion. It is enough to use the experience of
existing generators of events since they absorb all
known information for multiplicity smaller than nh.
The PYTHIA prediction for ratio K3 to K2 is

shown in Fig. 9. Notice that it does not predict even
a tendency to equilibrium. This is no wonder since
PYTHIA is based on the phenomenology of hadron
peripheral interactions. We can conclude that the in-
vestigation in the VHMdomain will allow us to define
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Fig. 9. PYTHIA:K3/K2.
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Tevatron data (E-735 Group) [24]. This result is in strong
contradiction with the multiperipheral model.

the range of applicability of the peripheral picture of
hadron interaction.
Figure 10 shows a prediction of the HIJING gen-

erator of events for the K3/K2 ratio. The slight ten-
dency to equilibrium in this model is explained by the
fact that this generator includes rescattering based on
the possibility of taking into account more accurately
the phenomena of scattering at the higher angles.

5. CONCLUSION

At the end, we would like to mention the following
issues.

Rough Description

We adhere to the position that only rough mea-
surements can be performed in theVHMdomain. The
reasons are as follows:
(i) The VHM cross sections are extremely small.
(ii) The multiplicity is hardly a measurable param-

eter.
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
(iii) It is practically impossible to restore the VHM
kinematics completely.
These conditions will be taken into account in the

VHM generator of events.

Experimental Program

Notice that our prediction that the VHM pro-
cesses are “hard,” i.e., that the VHM dynamics in-
cludes the production of highly virtual and extremely
slow partons, has an immediate experimental confir-
mation (see Fig. 11), where the E-735 Group data
from Tevatron show that the hadron-production pro-
cesses become harder with rising multiplicity.
First of all, it seems important to investigate the

following problems experimentally:
(i) The thermalization problem;
(ii) Quantitative definition of the range of validity

of the LLA in the VHM domain.
It was mentioned that the VHM problem high-

lights the most sensitive questions of hadron physics.
(A) Phase transition in the colored state. The

VHM gives a good chance for it, since the state is
“calm” and “cold.” The latter means that the inter-
action energy is larger than the kinetic one if we have
the VHM final state.
(B) The “preconfinement”VHMstate represents

equilibrium colored plasma. This means that it can
be characterized by a few global parameters. In this
sense, it will be the “state.”
(C) Measurement of the ratio R = 〈p‖〉/〈p⊥〉 =

π/4. For the isotropic case, where the end of produced
particle momenta is located on the sphere.
(D) The process of VHM production must be

“fast.” In this case, the isotope spin orientation may
be frozen randomly. Experimentally, it looks like large
fluctuations of the charge: if C = nch/n0 is the ratio
of the number of charged to neutral particles, then an
4
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“anomalous” (non-Gaussian) distribution over C is
expected.
It must be noted in the end that
(i) There is a definite indication that thermalization

exists in heavy-ion collisions.
(ii) The estimate of the threshold value of multi-

plicity, nh, exceeds the possibility of the LLA of per-
turbative QCD.Moreover, existing models are unable
to find nh.
(iii) The established S-matrix interpretation of a

necessary and sufficient condition of thermalization
is important from the experimental point of view. In
addition, it allows one to show that thermalization
occurs, at least, in the deep asymptotics over n.
(iv) New perturbation theory, topological QCD,

which conserves the topology of Yang–Mills fields,
was constructed. It is important that it includes
pQCD as an approximation.
Various experimental approaches to VHMphysics

are widely discussed in the ATLAS, CDF, CMS [25],
and STAR collaborations.
The construction of the “fast generator” of VHM

events is the largest problem. It is also necessary to
investigate the ideology of VHM triggers in detail.
It must be noted once more that only in the frame-

work of a statistical approach is there any hope to de-
scribe completely the inelastic hadron reactions. But
at the same time, we would like to stress that, gen-
erally speaking, actually not all that many-particle
state can be described using thermodynamic meth-
ods. Such attempts may lead to a wrong conclusion:
first of all, one must take into consideration the nec-
essary and sufficient conditions of thermalization.
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Abstract—The paper contains a discussion of the criteria of applicability of statistical methods in
multiparticle-production processes. The main attention is devoted to thermalization phenomena, while
the energy is uniformly distributed over the dynamical degrees of freedom and the energy correlators are
relaxed. It is argued that this condition must be satisfied in the deep asymptotics over multiplicity, and
the very high multiplicity (VHM) domain is defined as the region where this thermalization condition is
satisfied but for moderate multiplicities. A model-independent classification of the multiplicity asymptotics
and their physical content is proposed. It is shown explicitly that existing multiparticle-production models
are not able to predict the range of the VHM domain. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is now accepted that the main road of par-
ticle physics development is the Standard Model.
However, it is obvious to expect the existence of
other ways, less important at first sight, but permit-
ting new interesting phenomena to be observed. The
multiparticle-production phenomenon can be one of
them.

But the multiparticle production phenomena seem
to be uninteresting because of a very large number of
involved degrees of freedom. This is definitely so and
it must be mentioned also that, to all appearances,
a gap between the strict theory based on the non-
Abelian gauge symmetry and the obvious hadron
multiple production phenomenology never would be
surmounted for this reason. We will return to this
question in Section 3.

Then the attempts to find the kinematical con-
dition(s) where the multiparticle-production process
becomes describable seem crucial. The most popular
condition is based on the asymptotic freedom. It as-
sumes hardness of the interaction. This allows one to
investigate only the “local” properties of the hadron.

We discuss another possibility. In this connec-
tion, let us remember that statistical physics deals
very well with the enormous number of degrees of
freedom (particles). It is natural to engage this rich
experience to describe the multiparticle-production
phenomenon.

∗This article was submitted by the authors in English.
1)Institute of Physics, Georgia Academy of Sciences,
Tbilisi, Georgia, and Joint Institute for Nuclear Research,
Dubna, Moscow oblast, 141980 Russia; e-mail:
joseph@nusun.jinr.ru

2)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia; e-mail: sisakian@jinr.ru
1063-7788/04/6701-0021$26.00 c©
The main attention will be concentrated on equi-
librium since, presumably, only it can be described
completely. The appearance of such a state in hadron
inelastic collisions will be considered as a phe-
nomenon which can be examined experimentally and
may be predicted theoretically.

Multiparticle production may be considered as the
process of kinetic energy dissipation of colliding par-
ticles into the mass of produced particles. To use this
interpretation, one must consider the final-state par-
ticles as the probes through which the measurement
of the state of interacting fields is performed [1]. Then,
one can consider the multiplicity as a measure of
entropy S. Onemay expect, therefore, that, in the very
highmultiplicity (VHM) domain, the entropy exceeds
its maximum. For this reason, we will define here the
VHM final state through the equilibrium condition.

Using thermodynamic terminology, we investi-
gate in this case the production and properties of
the comparatively cold final state of interacting fields.
One may expect that, in this condition, the system
becomes calm. This is one more argument why we
expect equilibrium in the VHM domain.

In the Conclusion, we consider the VHM pro-
cesses as the only ones whose complete theory can
be constructed. Discussing the thermalization phe-
nomenon, we actually try for the condition in the
framework of which this theory would work.

The phenomenology and an idea of a rough (sta-
tistical) description of the VHM processes were for-
mulated in our first publications [2]. Later on, we
accumulated our main ideas on the VHM theory in
the review paper [3]. The definite connection with
the idea of N.N. Bogolyubov concerning transition to
equilibrium was described in [4].

The preferable processes at n ∼ n̄ are saturated by
excitation of the nonperturbative degrees of freedom.
2004 MAIK “Nauka/Interperiodica”
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These soft processes are described by the creation
of quarks and gluons from the vacuum: the kinetic
motion of partons leads to increasing, because of
confinement phenomenon, polarization of the vac-
uum and in result to its instability concerning quark
creation [5]. In other words, there is a long-range
correlation among hadron constituents at n ∼ n̄.

The most popular field-theoretical description of
statistical systems at a finite temperature is based
on the formal analogy between imaginary time and
inverse temperature β (β = 1/T ) [6]. This approach
is fruitful, if we do not want to clear up the dynamical
aspects [7, 8]. The further attempts led to the real-
time finite-temperature field theory [9–13].

2. CLASSIFICATION OF ASYMPTOTICS
OVER MULTIPLICITY

We will use the following quantitative definition of
the high-energy VHM hadron reactions under dis-
cussion. Let εmax be the energy of the fastest particle
in the given frame and let E be the total incident en-
ergy in the same frame. Then the difference (E− εmax)
is the energy spent on the production of less energetic
particles. It is useful to consider the inelasticity coef-
ficient

κ = 1 − εmax

E
≤ 1. (2.1)

It defines the portion of spent energy. Therefore, we
wish to consider processes with

1 − κ � 1, (2.2)

and the particles produced would have comparatively
small energies. Using the energy conservation law,
the produced hadron multiplicity n is defined by the
inequality

n(1 − κ) > 1. (2.3)

Thus, (2.2) means roughly the VHM region.

Following the natural condition at finite CM ener-
gies,

√
s,

n � nmax =
√
s/mh, mh � 0.2 GeV, (2.4)

we will assume that

1 − κ 	 mh/E. (2.5)

Therefore, the kinetic energy of produced particles in
our processes would not be arbitrarily small.

It seems useful from the very beginning to elab-
orate a general point of view on the processes in the
VHM domain. This would allow one, without going
into details, to estimate the possibility of observing
new phenomena.
PH
2.1. The Thermodynamic Limit

We will introduce the generating function

T (s, z) =
nmax∑
n=1

znσn(s), (2.6)

s = (p1 + p2)2 	 m2, nmax =
√
s/m.

This step is natural, since the number of particles is
not conserved in our problem. Thus, the total cross
section and the averaged multiplicity will be

σtot(s) = T (s, 1) =
∑

n

σn(s), (2.7)

n̄(s) =
∑
n

n(σn(s)/σtot(s)) =
d

dz
lnT (s, z)

∣∣∣∣
z=1

.

At the same time, the inverse Mellin transform
gives

σn =
1
n!

∂n

∂zn
T (s, z)

∣∣∣∣
z=0

(2.8)

=
1

2πi

∮
dz

zn+1
T (s, z)

=
1

2πi

∮
dz

z
exp(−n ln z + lnT (s, z)).

The essential values of z in this integral are defined by
the equation (of state)

n = z
∂

∂z
lnT (z, s). (2.9)

Taking into account the definition of the mean mul-
tiplicity n̄(s), given in (2.7), we can conclude that, in
the solution to (2.9), zc is equal to one at n = n̄(s).
Therefore, z > 1 is essential in the VHM domain.

The asymptotics over n (n � nmax is assumed) are
governed with exponential accuracy by the smallest
solution zc of (2.9) because of the asymptotic estima-
tion of the integral (2.8):

σn(s) ∝ e−n ln zc(n,s). (2.10)

Let us assume that, in the VHM region and at
high energies,

√
s → ∞, there exists such a value of

zc(n, s) that we can neglect in (2.6) the dependence
on the upper boundary nmax. This formal trick with
the thermodynamic limit allows us to consider T (z, s)
as a nontrivial function of z for finite s.

Then, it follows from (2.9) that

zc(n, s) → zs at n ∈ VHM, (2.11)

where zs(s) is the leftmost singularity of T (z, s) in the
right-half plane of complex z. One can say that the
singularity of T (z, s) attracts zc(n, s) if n ∈ VHM.
We will put this observation in the basis of the phe-
nomenology of VHM processes.
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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It must be emphasized once more that actually
T (z, s) is regular for arbitrary finite z if s is finite.
But zc(n, s) behaves in the VHM domain as if it is
attracted by the (imaginary) singularity zs. And just
this zc(n, s) defines σn in the VHM domain. We want
to note that actually the energy

√
s should be high

enough to use such an estimation.

2.2. Classes and Their Physical Content

One can notice from the estimation (2.10) that σn

weakly depends on the character of the singularity.
Therefore, it is enough to classify only the possible
positions of zs. We may distinguish the following
possibilities:

(A) zs = 1 : σn > O(e−n), (2.12)

(B) zs = ∞ : σn < O(e−n),

(C) 1 < zs < ∞ : σn = O(e−n);

i.e., following this classification, the cross sectionmay
decrease (A) slower than, (B) faster than, or (C) as an
arbitrary power of e−n. It is evident that, if all these
possibilities may be realized in nature, then we should
expect the asymptotics (A).

The cross section σn has a meaning of the n-
particle partition function in the energy representa-
tion. Then T (z, s) should be a grand partition func-
tion. Taking this interpretation into account, as fol-
lows from the Lee–Yang theorem, T (z, s) cannot be
singular at |z| < 1.

At the same time, direct calculations based on the
physically acceptable interaction potentials give the
following restriction from above:

(D) σn < O(1/n). (2.13)

This means that σn should decrease faster than any
power of 1/n. It should be noted that our classification
predicts rough (asymptotic) behavior only.

One may notice (2.10) that

− 1
n

ln
σn(s)
σtot(s)

= ln zc(n, s) + O(1/n). (2.14)

Using thermodynamic terminology, the asymptotics
of σn is governed by the physical value of the activity
zc(n, s). One can also introduce the chemical poten-
tial µc(n, s). It defines the work needed for creation
of one particle, ln zc(n, s) = βc(n, s)µc(n, s), where
ε̄(n, s) = 1/βc(n, s) is the mean energy of produced
particles. Thus, one may introduce the chemical po-
tential if and only if βc(n, s) and zc(n, s) may be used
as the “rough” variables.

Then the above-formulated classification has a
natural explanation. Thus, the class (A) may be re-
alized if and only if the system is unstable. In this
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
case zc(n, s) is a decreasing function of n. The class
(B) means that the system is stable against particle
production and the activity zc(n, s) is an increasing
function of n. The asymptotics (C) cannot be realized
in equilibrium thermodynamics.

We will show that the asymptotics (B) reflects
the kinematics of multiperipheral processes: created
particles form a jet moving in the CM frame with
different velocities along the directions of incoming
particles, i.e., with restricted transverse momen-
tum. The asymptotics (A) assumes condensation-
like phenomena. The third-type asymptotics (C) is
predicted by stationary Markovian processes with
pQCD jets kinematics.

This interpretation of classes (2.12) allows us to
conclude that we should expect reorganization of pro-
duction dynamics in the VHM region: the soft chan-
nel (B) of particle production should yield to the hard
dynamics (C) if the ground state of the investigated
system is stable against particle production. Other-
wise, we will have asymptotics (A).

Let us consider now in detail the physical content
of this classification.

(A) zs = 1zs = 1zs = 1. It is known that the singularity zs = 1
reflects the first-order phase transition [14]. To find
σn for this case, we will adopt Langer’s analysis [15].
Introducing the temperature 1/β instead of total en-
ergy

√
s, we can use the isomorphism with the Ising

model. For this purpose, we divide the space volume
into cells, and if there is a particle in a cell, we will
write (−1). In the opposite case, it will be (+1). This is
the model of “lattice gas” well described by the Ising
model. We can regulate the number of down-looking
spins, i.e., the number of created particles, by the
external magnetic field H. Therefore, z = exp{−βH}
and H is the chemical potential.

One can find the energy representation using the
Fourier transformation:

ρ(E, z) =
∫
Γ

dβ

2πi
eEβR(β, z), (2.15)

where the contourΓ is chosen along the complex axis.
The corresponding partition function in the con-

tinuous limit [15] (see also [16]) has the form

R(β, z) =
∫

Dµ exp
(
−
∫

dx (2.16)

×
{

1
2
(∂µ)2 − εµ2 + αµ4 − λµ

})
,

where ε ∼ (1 − βc/β) and λ ∼ H , with critical tem-
perature 1/βc.

If βc > β, there is no phase transition and the
potential has one minimum at µ = 0. But if βc < β,
4
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there are two degenerate minima at µ± = ±
√
ε/2α

if λ = 0. Switching on H < 0, the left minimum at
µ− ∼ −

√
ε/2α becomes absolute and the system will

tunnel into this minimum (see also [17]). This process
describes particle creations as a process of spins over-
turnings.

Equation (2.9) gives at n → ∞
ln zc ∼ n−1/3 > 0.

As a result,

σn ∼ e−an2/3
> O(e−n), a > 0,

i.e., decreases slower than e−n. A semiclassical cal-
culation shows that the functional determinant is sin-
gular atH = 0. It must be emphasized that, in our use
of the Ising model description, the chemical potential
deforms the ground state. Consequently, the semi-
classical approximation is applicable since ln zc � 1,
i.e., since the processes of spin overturnings are rare
in the high-multiplicity region. It is easy to show in
this approximation [15] that the functional determi-
nant is singular at H = 0, i.e., at z = 1.

Note that zc decreases to one with n. This unusual
phenomenon must be explained. The mechanism of
particle creation considered above describes “the fate
of false vacuum” [17]. In the process of decay of the
unstable state, clusters of a new phase of size X
are created. If the cluster has dimension X > Xc,
its size increases since the volume energy (∼X3) of
the cluster becomes greater than the surface tension
energy (∼X2). This condition defines the value of
Xc. The wall of “critical” clusters will accelerate; i.e.,
the work needed to add one particle to the cluster
decreases withX > Xc. This explains the reason why
zc decreases with n. Notice here that, at a given
temperature, ln zc is proportional to the Gibbs free
energy per one particle.

The described mechanism of particle creation as-
sumes that we have prepared the equilibrium system
in the unstable phase atµ+ ∼ +

√
ε/2α, and, going to

another state at µ− ∼ −
√
ε/2α, the system creates

the particles. The initial state may be the QGP and
the final state may be the hadron system. Therefore,
we must describe the way how the quark system is
prepared.

Following the Lee–Yang picture of the first-order
phase transition [14, 16], there is no transition in a fi-
nite system (the partition function cannot be singular
for finite nmax). This means that the multiplicity (and
the energy) must be high enough to see the described
phenomena.

(B) zs = ∞zs = ∞zs = ∞. Let us return to the integral (2.16) to
investigate the case βc > β. In this case, the potential
P

has one minimum at µ = 0. The external field H cre-
ates the mean field µ̄ = µ̄(H), and the integral (2.16)
should be calculated expanding it near µ = µ̄. As a re-
sult, in the semiclassical approximation (µ̄ increases
with increasing n),

lnR(β, z) ∼ (ln z)4/3.

This gives ln z̄ ∼ n3 and lnσn ∼ −n4, i.e., σn <
O(e−n).

There is also another possible way to interpret the
case (B). For this case, we can set

lnT (z, s)/σtot = n̄(s)(z − 1) + O((z − 1)2) (2.17)

at |z − 1| � 1. The experimental distribution of
lnT (z, s) for various energies shows that the contri-
butions ofO((z − 1)2) terms increase with energy [1].
It is assumed in the Born approximation that

ln t(z, s) = n̄(s)(z − 1).

There are various interpretations of this series, e.g.,
the multiperipheral model, the Regge pole model, the
heavy color string model, the QCD multiperipheral
models, etc. In all these models, n̄(s) = b1 + b2 ln s,
b2 > 0. The second ingredient of the hadron Standard
Model is the assumption that the mean value of mo-
mentum transfer of created particles 〈k〉 = const, i.e.,
is an energy- (and multiplicity) independent quantity.
It can be shown that, under these assumptions,

lnT (z, s)/σtot =
∑
n

cn(s)(z − 1)n, (2.18)

c1 ≡ n̄,

is regular at finite values of z [1] and is able to give pre-
dictions confirmed by experiments. Inserting (2.18)
into (2.9), we find, taking into account regularity of
T (z, s), that z̄(n, s) is an increasing function of n.
Consequently,

σn < O(e−n) (2.19)

for the hadron in the Standard Model.
Notice also that the Standard Model has a finite

range of validity: beyond n ∼ n̄2, the model must
be changed since it is impossible to conserve 〈k〉 =
const at higher multiplicities [18].

(C) 1 < zs < ∞1 < zs < ∞1 < zs < ∞. Let us assume now that, at
z > 1,

T (z, s) ∼
(

1 − z − 1
zc − 1

)−γ

, γ > 0. (2.20)

Then, using the normalization condition
(∂T (z, s)/∂z)|z=1 = n̄j(s), we can find that zc(s) =
1 + γ/n̄j(s). The singular structure (2.20) is im-
possible in the “Standard Model” because of the
condition 〈k〉 = const. But if |z − 1| � 1, we have
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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estimate (2.17). The difference between the Standard
Model and (C) is seen only at 1 − (z − 1)/(zc −
1) � 1, i.e., either the asymptotics over n or in the
asymptotics over energy. The singular structure is
familiar for logistic equations of QCD jets, e.g., [19].

In the considered case zs = zc + O(n̄j/n) and at
high energies (n̄j(s) 	 1),

σn ∼ e−γn/n̄j = O(e−n). (2.21)

Therefore, comparing (2.19) and (2.21), we can
conclude that, at sufficiently high energies, i.e., if
n̄j 	 n̄ and n̄j � nmax, where n̄ is the Standard
Model mean multiplicity, the mechanism (C) must
dominate in the asymptotics over n.

It is the general, practically model-independent,
prediction. From the experimental point of view, it
has the important consequence that, at high ener-
gies, there is a wide range of multiplicities where the
Standard Model mechanism of hadron production is
negligible. In other words, the cold colored final state
of high multiplicity processes is the dynamical con-
sequence of jets and Standard Model mechanisms.
In the transition region between the “soft” of the
Standard Model and “hard” of jets, one can expect
the dominance of “semihard” processes of minijets.

The multiplicity distribution in jets has an inter-
esting property noted many decades ago by Volterra
in his mathematical theory of populations [20]. In
our terms, if the one-jet partition function has the

singularity at z(1)
c (s) = 1 + γ/n̄j(s), then the two-jet

partition function must be singular at

z(2)
c (s) = 1 +

γ

n̄j(s/4)
> z(1)

c (s),

and so on. Therefore, at high energies and n > n̄j(s),
the number of jets must be minimal (with exponential
accuracy). This means that, at n → ∞, the processes
of hadron creation have a tendency to be Markovian
(with increase in mean transverse momentum 〈k〉)
and only in the last stage can the (first-order) phase
transition (colored plasma)→ (hadrons) be seen.

One can say that, in the asymptotics over n, we
consider a process of thermalization which is so fast
that the usual confinement forces are “frozen” and do
not play an important role in the final colored state
creation.

3. THERMALIZATION CONDITIONS

The following sign of “equilibrium” will be consid-
ered. First of all, it is intuitively evident that thermal
equilibrium means the uniform distribution of energy
over all degrees of freedom. Then the system is in a
macroscopic thermal equilibrium if the energy flows in
it are relaxed [1]. On the other hand, the condition of
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vanishing of the energy correlators and the condition
of relaxation of the macroscopic energy flows seem
equivalent since distant points of the macroscopic
energy flow should be correlated. Then the relaxation
of the flow would lead to the smallness of the mean
value of the corresponding correlator. This conclusion
reminds one of the Bogolyubov principle of vanishing
of correlations.

Our idea may be illustrated by the followingmodel.
At the very beginning of the 20th century, the couple
P. Ehrenfest and T. Ehrenfest proposed a model to
visualize Boltzmann’s interpretation of irreversibility
phenomena in statistics. The model is extremely sim-
ple and fruitful [21]. It considers two boxes with 2N
numerated balls. Choosing number l = 1, 2, . . . , 2N
randomly, one must take the ball with the label l from
one box and put it into the other. Starting from the
highly nonequilibrium state with all balls in one box,
there is tendency to the equalization of the number
of balls in the boxes (see [21]). Thus, irreversible flow
toward the preferable (equilibrium) state is seen. One
can hope [21] that this model reflects a physical reality
of nonequilibrium processes with the initial state very
far from equilibrium. A theory of such processes with
a (nonequilibrium) flow toward a state with maximal
entropy should be sufficiently simple to give definite
theoretical predictions.

The early models were based on the assumption
that the final state of inelastic hadron processes has
maximal entropy n̄(s) ∼ nmax [22]. But actually the
hidden constraints stop the process of thermalization
at comparably early stages. The result of this is a
small value of the hadron mean multiplicity, n̄(s), i.e.,
n̄(s) � nmax.

3.1. Quantitative Definition of Equilibrium
Let us define the conditions when the fluctuations

in the vicinity of βc are Gaussian. Firstly, to estimate
the integral (2.15) at z = zc in the vicinity of the
extremum, βc, we should expand ln ρn(β +βc) over β:

ln ρn(β + βc) = ln ρn(βc) −
√
sβ (3.1)

+
β2

2!
∂2 ln ρn(βc)

∂β2
c

− β3

3!
∂3 ln ρn(βc)

∂β3
c

+
β4

4!
∂4 ln ρn(βc)

∂β4
c

− . . . .

Secondly, let us expand the exponent in the inte-
gral (2.15) over the lth derivatives, l = 3, 4, . . ., of
ln ρn(βc). As a result, if only the third derivative is
taken into account, then the kth term of the pertur-
bation series looks as follows:

ρn,k ∼
{

∂3 ln ρn(βc)/∂β3
c

(∂2 ln ρn(βc)/∂β2
c )3/2

}k

Γ
(

3k + 1
2

)
.

(3.2)
4
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Therefore, because of Euler’s Γ((3k + 1)/2) function,
the perturbation theory near βc leads to the asymp-
totic series. Considering them as the asymptotic one,
we may estimate it by the first term if and only if

∂3 ln ρn(βc)/∂β3
c � (∂2 ln ρn(βc)/∂β2

c )3/2. (3.3)

One may write this condition as the approximate
equality

∂3 ln ρn(βc)/∂β3
c ≈ 0. (3.4)

If this condition is satisfied, then the fluctuations are
Gaussian with dispersion

∼
∣∣∂2 ln ρn(βc)/∂β2

c

∣∣1/2

[see (3.1)].
Let us consider now (3.4) in detail. We will find

that this condition means the following approximate
equality:

ρ
(3)
n

ρn
− 3

ρ
(2)
n ρ

(1)
n

ρ2
n

+ 2
(ρ(1)

n )3

ρ3
n

≈ 0, (3.5)

where ρ(k)
n means the kth derivative over β. For iden-

tical particles,

ρ(k)
n (βc) = nk(−1)k (3.6)

×
∫

dΓn(βc, q1, q2, . . . , qn)
k∏

i=1

ε(qi).

The left-hand side of (3.5) is the three-point corre-
lator K3 since dΓn(βc, q1, q2, . . . , qn) is a density of
states for given β:

dΓn(βc, q1, q2, . . . , qn)

= dΩn(q)|an(q1, q2, . . . , qn)|2
n∏

i=1

e−βε(qi),

dΩn =
n∏

i=1

d3qi

(2π)3 · 2ε(qi)
, ε(q) = (q2 + m2)1/2,

(3.7)

and an is the n-particle amplitude. Then,

K3 =
1

ρn(βc)

∫
βc

dΓn

3∏
i=1

ε(qi) (3.8)

− 3
ρ2

n(βc)

∫
βc

dΓn

2∏
i=1

ε(qi)
∫
βc

dΓnε(q3)

+
2

ρ3
n(βc)

3∏
i=1

∫
βc

dΓnε(qi),

where the index βc means that averaging is performed
with the Boltzmann factor exp{−βcε(q)}.
PH
As a result, to have all fluctuations in the vicinity of
βc Gaussian, we should have Km ≈ 0, m ≥ 3. Note,
as follows from (3.3), the set of minimal conditions
actually looks as follows:

|Kl| � |K2|l/2, l ≥ 3. (3.9)

If the experiment confirms these conditions, then, in-
dependently of the number of produced particles, the
final-state energy spectrum is defined with sufficiently
high accuracy by one parameter βc and the energy
spectrum of particles is Gaussian. Under these con-
ditions, one may return to the statistical and hydro-
dynamical models.

But if the inequality does not hold, then one must
take into account the third correlator K3, fourth cor-
relator K4, etc. The corresponding series is asymp-
totic, with zero convergence radii. This means that,
if (3.9) does not hold, then βc loses its physical mean-
ing in this case. Therefore, if βc exists, then one may
omit theKl, l = 3, 4, . . ., dependence. Otherwise, one
must take them into account and the problem be-
comes nonintegrable. From all evidence, just this sit-
uation is realized at n ∼ n̄(s) (see the next section).

3.2. Deep Asymptotics over Multiplicity: Dilute Gas
Approximation

Let us consider the deep asymptotics over multi-
plicity, when produced particle momentum

|qi| � mh. (3.10)

In this case, one may ignore the momentum depen-
dence in the amplitudes. This reminds one of the
dilute gas approximation considered in statistics.

In the dilute gas approximation,

∆Γn ∼ |an|2
n∏

i=1

dεi(ε2i −m2
h)1/2e−βεi . (3.11)

Then,

Kl(E,n) =
∂l

∂βl
c

(3.12)

× ln

{∫ n∏
i=1

dεi(ε2i −m2
h)1/2e−βc(E,n)εi

}
.

The approximation (3.10) means that 0 < (εi/mh) −
1 � 1. Then it is easy to find that theK3-to-K2 ratio
is small in the dilute gas approximation. For example,

R3 ∼ 1/n. (3.13)

This result proves our general statement that, at least,
in the deep asymptotics over n, the produced particle
system must obey the property of a completely ther-
malized state.
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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4. RELAXATION OF CORRELATIONS:
MODEL PREDICTIONS

The symmetries may prevent equilibrium since
they can lead to nonvanishing distant correlations if
the symmetry is local. Following the terminology of
Schwinger [3], there should not be special correla-
tions among degrees of freedom of the system if the
phenomenon of equilibrium is sought.

This question is important because of the hid-
den constraints of the underlined non-Abelian gauge
symmetry. Nevertheless, existence of multiple pro-
duction means that the colored parton system is not
completely integrable, i.e., that the spacetime local
non-Abelian gauge and attendant conformal symme-
tries are unable to produce enough constraints to de-
press the thermalization process completely. In other
words, in hadron dynamics, the hidden constraints
are weak in the sense that they may be switched
off through the choice of special external kinematical
conditions.

We will illustrate these ideas by considering the
multiperipheral and deep inelastic scattering kine-
matics. The symmetry in both cases is realized in a
different way, but the result is the same: particles are
uniformly distributed (over rapidity in the multipe-
ripheral model or over transverse momentum in the
deep inelastic scattering kinematics).

4.1. Multiperipheral Kinematics

The leading energy asymptotics Pomeron contri-
bution reflects the kinematics, where the longitudi-
nal momentum of produced particles is large and is
strictly ordered. Thus, in terms of rapidities ξi ∼ ln εi,
the multiperipheral kinematics means that

ξ1 < ξ2 < . . . < ξm < ξ. (4.1)

At the same time, particle transverse momentum is
restricted: q2

⊥ ≤ 0.2 GeV2. The energy conservation
law in this kinematics has the form:∏

εi ∼ E :
∑

ξi = ξ, (4.2)

where ξ is the total rapidity. For this reason, it is
natural to consider the rapidity fluctuations instead
of energy. So, we will introduce β as the Lagrange
multiplier of the rapidity conservation law (4.2).

It was found that multiperipheral kinematics dom-
inates inclusive cross sections f(s, pc). Moreover, the
created particle spectra do not depend on s at high
energies in the multiperipheral region:

f(s, pc) = 2Ec
dσ

d3pc

=
∫

dt1dt2s1s2φ1(t1)φ2(t2)
(2π)2s(t1 −m2)2(t2 −m2)2

,
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s1s2(−p2
c⊥) = st1t2.

Here, s1 = (pa + pc)2, s2 = (pb + pc)2, pc = αcpa +
βcpb + pc⊥, and φi(ti) are the impact factors of
hadrons. Thus, the particle c forgets the details of its
creation. It is found experimentally that the ratio

f(π+p → π− + . . .)
σ(π+p)

(4.3)

=
f(K+p → π− + . . .)

σ(K+ + p)
=

f(pp → π− + . . .)
σ(pp)

is universal [23].
The total cross section is written in the multipe-

ripheral model in the form

σab
tot(ξ) = gaP (ξ)gb, (4.4)

where the Pomeron propagator

P (ξ) = e∆ξ (4.5)

and the LLA gives [24]

∆ = α(0) − 1 =
12 ln 2
π

αs ≈ 0.55, (4.6)

αs = 0.2.

But the subsequent correction gives ∆ ≈ 0.2. The
one-particle inclusive spectra of the particle c of ra-
pidity ξ1 produced in the collision of particles a and b
can be written in the form

fab
c (ξ, ξ1) = gaP (ξ − ξ1)ψcP (ξ1)gb = gaψcg

be∆ξ,
(4.7)

where the conservation law (4.2) and the defini-
tion (4.5) were used.

Upon the suppression of the indices, the two-
particle spectra takes the form:

f2 = gP (ξ1)ψP (ξ2)ψP (ξ3)g, (4.8)

ξ1 + ξ2 + ξ3 = ξ, ξi ≥ 0.

Generally,

fk = g

{
k∏

i−1

P (ξi)ψ

}
P (ξk+1)g,

k+1∑
i=1

ξi = ξ. (4.9)

Noting the normalization condition

1
k!

∫ k+1∏
i=1

dξiδ

(
ξ −

k+1∑
i=1

ξi

)
fk =

∞∑
n=k

n!
k!(n − k)!

σn,

one may use the Mellin transform to write

T (z, s) = gP(0, ξ; z)g, (4.10)

where the superpropagator

P(0, ξ; z) = e(z−1)n̄(s). (4.11)
04
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It is evident that (4.11) leads to the Poisson distribu-
tion:

Pn(0, ξ) = e−n̄(s) n̄(s)n

n!
, n̄(s) = ψξ. (4.12)

Therefore, we start the description by considering
the production of noncorrelated particles. Indeed,
ω(ξ, z) = lnP(0, ξ; z) can be considered as the gen-
erating function of particle number correlators: Cl =
∂lω(ξ, z)/∂zl, where, if the inclusive correlators are
considered, then one must take z = 1 at the very end
of calculations. Inserting P(0, ξ; z) from (4.11), we
find that Cl = 0 for all l > 1.

But it must be mentioned that, nevertheless, the
restrictions (4.1) introduce energy correlations of the
produced particles. We will see as a result that the
energy correlatorsKl, l ≥ 3, will be large as compared
with |K2|. Therefore, the condition of the uniform
distribution of particles over the rapidity (4.1) creates
strong correlations over rapidities, i.e., over the longi-
tudinal momentum.

One may notice that just the Mellin transform is
useful. Thus,

F1(ξ, z) = gP(0, ξ − ξ1; z)ψP(0, ξ1 ; z)g (4.13)

= g2ψP(0, ξ; z)

is the generating function of the one-particle exclu-
sive spectrum. The inverse Mellin transform defines
the one-particle spectrum in the n-particle environ-
ment:

F1
n(ξ) = g2ψPn(0, ξ). (4.14)

Consequently the two-particle spectrum generating
function looks as follows:

F1(ξ, z) = gP(0, ξ3; z)ψP(0, ξ2 ; z)ψP(0, ξ1 ; z)g
(4.15)

= g2ψ2P(0, ξ; z), ξ1 + ξ2 + ξ3 = ξ.

In conclusion,

F l(ξ, z) = g2ψlP(0, ξ; z),
l+1∑
i=1

ξi = ξ, (4.16)

is the l-particle exclusive spectrum generating func-
tional. Notice the ξi independence of P(0, ξ; z).

Let us calculate now

ρ(l)
n (ξ) =

∞∫
0

dΓl
n(ξ)

l∏
i=1

ξi, (4.17)

where, as follows from (4.16),

dΓl
n(ξ) = ψlPn(0, ξ)

l+1∏
i=1

dξiδ

(
l+1∑
i=1

ξi − ξ

)
. (4.18)
P

Therefore,

ρ(l)
n (ξ) =

ψlξ2l

(2l)!
Pn(0, ξ) (4.19)

and

ρn(βc) = Pn(0, ξ). (4.20)

Having (4.19) and (4.20), one can find that, for exam-
ple,

K2 =
ρ
(2)
n

ρn
− ρ

(1)2
n

ρ2
n

=
−5ψ2ξ4

4!
(4.21)

and

K3 =
ρ
(3)
n

ρn
− 3

ρ
(2)
n

ρn

ρ
(1)
n

ρn
+ 2

ρ
(1)2
n

ρ3
n

=
316ψ3ξ6

6!
.

(4.22)

Therefore, theK3-to-K2 ratio is large,

R3 =
K3

|K2|3/2
=

316
6!

(
4!
5

)3/2

> 1, (4.23)

and it is a ξ- and n-independent number. One may
find that

Rl > 1 (4.24)

for all l ≥ 3. Therefore, the multiperipheral models are
not able to show even the tendency to equilibrium.

4.2. Deep Inelastic Scattering Kinematics

The deep inelastic scattering (DIS) structure
function Dab(x, q2) is described in the LLA by the
contribution of the ladder diagrams. From a qualita-
tive point of view, this means the approximation of a
randomwalk over the coordinate ln(1/x) and the time
is ln |q2|. The leading contributions, which are able to
compensate for the smallness of αs(λ) � 1, give the
integration over a wide range over the mass |k| of real,
i.e., timelike gluons. At the same time, the masses are
strongly ordered:

λ2 � k2
1 � . . . � κ2

ν � −q2, (4.25)

where ν is a number of steps (timelike gluons) of the
ladder.

If the time needed to capture the parton into the
hadron is ∼(1/λ), then the gluon should decay if
k2

i 	 λ2. This leads to the creation of QCD jets. The
mean multiplicity n̄j in the QCD jets is high if the
gluon mass |k| is high: ln n̄j ∼

√
ln(k2/λ2).

Raising themultiplicitymay (i) raise the number of
jets ν and/or (ii) raise the mean value of the mass of
jets ¯|ki|. We will see that mechanism (ii) will be favor-
able. But raising themean value of gluonmasses, |ki|,
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decreases the range of integrability over ki. For this
reason, the LLA becomes invalid in the VHMdomain
and the next-to-leading-order corrections should be
taken into account.

Indeed, let Fab(x, q2;ω) be the generating func-
tional:

Fab(x, q2;ω) =
∑

ν

∫
dΩν(k)

×
ν∏

i=1

ωri(k2
i )
∣∣ar1r2...rν

ab (k1, k2, . . . , kν)
∣∣2 ,

where ar1r2...rν
ab is the production amplitude of ν par-

tons (ri = (q, q̄, g)) with momenta (k1, k2, . . . , kν) in
the process of scattering of parton a on parton b;
dΩν(k) is the phase space element; and ωr(k2) is the
“probe function,” i.e., the correlation functions

N r1r2...rν
ab (k2

1 , k
2
2 , . . . , k

2
ν ;x, q2)

=
ν∏

i=1

δ

δωri(k2
i )

lnFab(x, q2;ω)

∣∣∣∣∣
ω=1

.

The generating functional is normalized on the DIS
structure functionDab(x, q2),

Fab(x, q2;ω = 1) = Dab(x, q2).

We will consider the approximation when the cutting
line passes only through the steps of the ladder dia-
gram. In this case, Dab(x, q2) has a meaning of the
probability of finding parton a in parton b.

It is useful to consider the Laplace image over
ln(1/x):

Fab(x, q2;ω) =
∫

dj

2πi

(
1
x

)j

Fab(j, q2;ω). (4.26)

Then, taking into account the above-mentioned con-
ditions, one may find the DGLAP evolution equation:

t
∂

∂t
Fab(j, t;ω) =

∑
c,r

ϕr
ac(j)ω

r(t)Fcb(j, t;ω),
(4.27)

where t = ln(|q2|/Λ2),

ϕr
ac(j) ≡ ϕac(j) =

1∫
0

dx xj−1 P r
ac(x),

and P r
ac(x) are the regular kernels of the Bethe–

Salpeter equation for pQCD [18]. Equation (4.27)
coincides at ωr = 1 with the habitual equation for
the Laplace transform of the structure function
Dab(x, q2). When Eq. (4.27) was being derived, only
one additional assumption was used for our problem,
ωr = ωr(k2).
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The dominance of gluon contributions for the case
x � 1 must be taken into account, and for this rea-
son, we will omit all parton indices. One may find the
solution to (4.27) in terms of the ν-gluon correlation
functions N (ν). Omitting the t dependence in the
renormalized constant αs, let us write

F(j, t;ω) = D(j, t) exp

{∑
ν

1
ν!

∫ ν∏
i=1

dti(ω(ti) − 1)

×N (ν)(t1, t2, . . . , tν ;x, t)

}
,

where ti = ln(k2
i /λ

2
i ). In the VHM domain, where

x � 1 is important, one must consider (j − 1) � 1.
Then,

N (1)(t1; j, t) = ϕ(j) ∼ 1
j − 1

	 1.

The second correlator

N (2)(t1, t2; j, t)

= O

(
max

{(
t1
t

)ϕ(j)

,

(
t2
t

)ϕ(j)

,

(
t1
t2

)ϕ(j)
})

is negligible at (j − 1) � 1 since [see (4.25)] t1 <
t2 < t. Therefore, in the LLA,

F(j, t;ω) = D(j, t) exp


ϕ(j)

t∫
t0

dt1(ω(t1) − 1)


 .

Taking ω(t) = const, one finds that F(j, t;ω) has
the Poisson distribution with the mean multiplicity
∼ϕ(j)t.

If the quantity

ω(t, z), ω(t, 1) = 1, t = ln(k2/λ2),

is the generating function of the preconfinement
(close to the mass shell �λ) parton multiplicity
distribution

ωn(t) =
∂n

∂zn
ω(t, z)

∣∣∣∣
z=0

,

then, using the parton–hadron correspondence idea,
as follows from derivation of F(j, t;ω), the quantity

F(j, t;ω) = D(j, t) (4.28)

× exp


 1
j − 1

t∫
t0

dt(ω(t, z) − 1)




is the generating function for the hadron multiplicity
distribution in the DIS processes calculated in the
framework of the LLA.
4
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Inserting (4.28) into the integral (4.26), one can
find that, if

ω̄(t, z) ≡
t∫

t0

dt ω(t, z),

then
j − 1 = {ω̄(t, z)/ ln(1/x)}1/2

are essential. Thus, the mobility
{ln(1/x)/ω̄(t, z)} 	 1 (4.29)

decreases with z or, what is the same, with the mul-
tiplicity n. This is the reason why the LLA for the
considered DIS kinematics has a restricted range of
validity in the VHM region.

Nevertheless, in the frame of LLA conditions,
as follows from (4.28), the generating functional
Fab(x, t; z) has the following estimate:

lnFab(x, t; z) ∝ {ln(1/x)ω̄(t, z)}1/2. (4.30)

Therefore, since the coupling is a constant,

lnFab(x, t; z = 1) = lnDab(x, t) ∝ (t ln(1/x))1/2.

This is a well-known result. Therefore, one should
take into account the screening effects (see [18]).

Nevertheless, the kinematics described by (4.30)
cannot predict tendency to equilibrium.

5. CONCLUSION
Summarizing the results, one may conclude the

following:
(i) If the hadron amplitudes are regular in the zero

momentum limit, then, at least, in the deep asymp-
totics over multiplicity, i.e., in the nonrelativistic limit,
one must see complete thermalization.

(ii) Existing multiple production models are not
able to predict even tendency to thermalization. But
it must be noted that the models have a finite range
of application in the VHM domain. Experimental in-
formation in the VHM domain seems crucial for this
reason.

(iii) The description of multiparticle-production
processes in a finite neighborhood of the mean multi-
plicity n̄(s) requires a large number of correlators. For
this reason, the VHM domain, where the correlators
vanish, is important.
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Received April 30, 2003

Abstract—We have suggested a new approach to the development and use of Monte Carlo event
generators in high-energy physics (HEP). It is a component approach where a complex numerical model is
composed from standardized components. Our approach opens a way to organize a library of HEP model
components and provides a great deal of flexibility for the construction of powerful and realistic numerical
models. To support this approach, we have designed the NiMax software system (framework) that is written
in C++. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The full description of high-energy hadronic and
nuclear interactions from first principles of quan-
tum chromodynamics (QCD) is rather limited. As
a rule, we are able to obtain the QCD predictions
for the short-distance processes, where interaction
takes place with large momentum transfer. It makes
the task of development and use of the QCD mo-
tivated phenomenological models very important.
Such models are extremely popular for predictions
of new phenomena and analysis of obtained exper-
imental data. In addition, the design, construction,
and performance of experimental detectors require
careful numerical simulations. The Monte Carlo
(MC) phenomenological models often referred to as
MC event generators are standard tools to perform
such simulations [1].

The most widely used model codes were writ-
ten in Fortran. Nevertheless, many physics centers
have turned now to using object-oriented languages
(C++, Java) for the development of physics-related
software, because object-oriented programming has
many advantages as compared with traditional pro-
cedural coding (see, e.g., [2]).

In this paper, we present an object-oriented sys-
tem to use and develop numerical models. We refer
to our system as the NiMax system. The main idea
of this software system is to support the component
approach to the development and use of numerical
models [3]. The component can represent either a
model of single physical process, e.g., hadron elastic
scattering, or a model of a very complicated physical

∗This article was submitted by the authors in English.
**e-mail: Nikolai.Ameline@phys.jyu.fi
1063-7788/04/6701-0031$26.00 c©
phenomenon, e.g., ultrarelativistic heavy-ion colli-
sion.
For the NiMax system, we distinguish two cate-

gories: component developers and component users.
We consider a component user as the person who
interacts with the components by means of a user
interface without writing and modifying the compo-
nent codes. Thus, the created components are re-
quired to allow productive user work without touch-
ing component codes and, therefore, without learning
any programming languages. On the other hand, we
require that the built components have the ability to
be used as usual C++ classes by the component
developers without any limitations as compared with
normal C++ programming. A component developer
needs detailed knowledge of the component structure,
component life cycle, and data event configurations.
In this talk, we would like to provide a brief explana-
tion of the system as well as the work of the compo-
nent users and component developers. The interested
reader can find a more detailed explanation in [3],
which served as an early release of the systemmanual.

2. SYSTEM UNDERSTANDING

The component concept is a central concept of
the NiMax system (see Fig. 1). We made an attempt
to formalize numerical components as construction
blocks for numerical applications that are stored as
extendable collections.
Any numerical component could be divided into an

interface part and the part implementing the compo-
nent algorithm. The interface parts include different
methods and related data that allow collaboration
among components and component collaborations
with users. The interface methods and data are di-
vided into five standard groups and are referred to
2004 MAIK “Nauka/Interperiodica”
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Fig. 1. An architectural overview of the NiMax system.
as the input, tuning, output, matching, and runtime
interfaces. Bymeans of the input, tuning, and runtime
interfaces, a user can request components to fulfill
some actions, handle their parameters, and control
their execution processes, respectively. By means of
the output and matching interfaces, the components
are able to write and read data in data files and
exchange data with other components. Thus, only
through the outlined standard interfaces does a com-
ponent communicate with the system users. There-
fore, it offers for the users only a limited number of
standard operations.
Such a situation dictates a component developer

to follow definite rules during a component imple-
mentation. On the other hand, these rules can easily
be taken into account by means of the component
wizards that facilitate writing of the component in-
terface parts and interface documentation. The com-
ponent developers should mostly work on the imple-
mentation of particular component algorithms. In the
case of developing composite components, there are
very important questions about the subcomponent
control, their collaboration, and their collaboration
with the users. Particularly, the subcomponent col-
laboration should allow substitution of variable im-
plementation of different algorithms (e.g., alternative
components) via a graphical user interface. Thus,
it is essential that suggested interfaces support the
mechanisms for subcomponent control and their col-
laboration and do not pose limitations for normal
C++ programming during the development of the
composite component algorithms.
To increase the productivity of component devel-

opers, the components that are related to a partic-
ular application domain and some software such as
common classes, functions, and data that are shared
by these components are packaged into application
P

modules. For the component developers, it is more
natural and efficient to work on the codes of compo-
nent algorithms within a component-related software
environment than on the isolated codes. On the other
hand, the components from an application module
are only visible and accessible to system users. Thus,
the application modules fulfill a twofold function: they
offer useful software for component developers and
hide it from component users.

We can classify different types of components ac-
cording to the presence or absence of a particular in-
terface or interfaces. For example, we distinguish so-
called executable components with input or matching
interfaces from general components that have neither
input nor matching interfaces and cannot be exe-
cuted. Particularly, it is important that the system
user be able to assemble the executable components
into pipeline component nets for common execution.

In spite of the different algorithms, any component
belongs to either data event generator or data event
processor or data event converter groups. A data
event is a configured portion of data that can be gen-
erated by a component to be stored on disk or sent to
other components. A data event can also be received
by a component for converting or further processing
(analytical analysis of data). Thus, data events are
considered as units of data for data exchanges. Any
data event consists of data event channels (at least
one) that are considered as units for data processing.

The system includes a data file. Thus, a compo-
nent can write and read the data events in the data file.
The data file has several views. The most important of
them are the view of data event configurations that
allows structural data analysis to be performed and
the view of data from data events. Some data events
and groups of data event channels are considered
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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by the system as predefined data events and prede-
fined data event channels. The system offers special
services for the user to deal with such events and
groups of channels. Particularly, it allows for users
to perform graphical analysis of the data. The idea of
predefined data events opens a possibility to create
special graphical user interfaces for particular appli-
cation domains.
The component user works bymeans of the graph-

ical user interface (GUI) that is developed in accor-
dance with the document—view technology (see [4]).
Each document object (component, data file, compo-
nent net, etc.) is connected with one or several views
that display data and allow editing.
We have developed a large set of classes to support

component control, management, and development
and data management and visualization. This set of
classes is thought of as a framework. Its application
programming interface (open arrows in Fig. 1) links
together the components, application modules, data
files, component nets, and GUI.

3. NiMax APPLICATION LAYERS

Within the NiMax system, all application soft-
ware is organized into three abstraction layers: the
application data types, application components, and
application modules. Each layer of the application
software partially builds upon the layers below. The
uppermost layer consists of the application modules
that are complete user applications and considered as
distribution units. The modules can either be com-
pletely independent and self-sufficient on the level of
source codes (i.e., no external implementations are
required to execute their components) or be con-
nected with other modules for some applications. For
system users, the modules are prepared as dynami-
cally linked libraries. As we have already stated, with
the exception of the components, all module software,
as well as the application data types, is hidden from
the system users. The components from a module
or different modules can be composed into compos-
ite components or component nets in a variety of
ways. The component algorithm of each particular
application module can be tuned and different im-
plementations of it can be interchanged at runtime,
enabling the component user to obtain the required
algorithm properties. This provides a great degree of
flexibility for the construction of powerful and realistic
numerical applications.
We consider the application modules as develop-

ment units. They are parts of component projects that
include in addition the module and component devel-
opment tools. Component related software that can
be used by many components substantially facilitates
the component development process, increases the
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
developer’s productivity, and also has the benefit of
efficient use of computer resources. Thus, new com-
ponents with their own peculiarities can more easily
be developed. The application module idea makes
it possible to create scalable systems from separate
blocks as well.
The lowermost layer contains the application data

type (ADT) classes. For the developers of the compo-
nent algorithms, application data type classes are the
most important ingredients of the modules. They rep-
resent real objects and many operations on them from
application domains and allow rapid development of
robust component algorithms. The subset of ADT
classes is the so-called data transfer classes. They
include methods to write and read configured data
events and facilitate the development of the compo-
nent input and output. We are working on a library of
the application data type classes that will include par-
ticle, field, material, solid, and tracer classes. These
classes will allow developers to work efficiently on
different component algorithms from many problem
domains related to radiation transport in composite
media.

4. COMPONENT INTERFACES

We consider any component as a set of stan-
dardized interfaces between its numerical algorithm
and the outside world. An interface includes several
methods and some related data.
By means of the input interface, a user sends a

request for a component and provides necessary input
data to fulfill this request. The request, as well as input
data, is provided in the form of an input map [3]. On
the other hand, an input map can be understood as
the user request on some action that is completed by
a list of parameters that must be specified by users
before the component execution.
The tuning interface makes it possible for com-

ponent users to tune the component with the aim
of obtaining reliable results from its execution. By
means of this interface, the user has access to compo-
nent parameters. In the present version of the system,
any component parameters are presented by a list
of simple data types. The input interface and tuning
interface have many similarities from the developer’s
point of view (the same classes in use [3], the same
data structures in use).
The result of component execution is obtained by

means of the output interface. This interface assists
either in writing component output data in the data
file or in sending component output data to other
components. The output data are produced as con-
figured data events and have a tree structure in the
common case [3].
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A component can also read necessary input data
from the data file or receive it from another compo-
nent by means of the matching interface. It allows a
component to select data according to its matching
configuration [3]. A particular matching configuration
is realized as a matching map.
We have also developed a runtime information in-

terface. It is used to obtain and control component
runtime messages [3]. By means of such messages,
the numerical components inform about their exe-
cution processes during the run session. The run-
time information is simple text-based information.
There are three types of runtime messages: informa-
tion messages, warning messages, and error mes-
sages. The information messages are used to tell
about the normal execution process. The warning
messages inform a user about potential errors or other
situations that are able to destroy the normal exe-
cution process. The execution process will continue
after the appearance of the warning messages. The
error messages appear when the execution process is
aborted.
The system allows an extension of the existing

interfaces as well as addition of new ones. By adding
more standard component interfaces, we can extend
the application area of the NiMax system.
In addition to the outlined standard interfaces,

each particular component has its application pro-
gramming interface (API), which implements the
component functionality and can be called directly
or indirectly by means of the component interface
methods.
Each component interface is complemented by at

least one view. These views help a component user
to perform many actions on the component state (see
the graphical user interface section).

5. COMPONENT PROPERTIES

Besides standardized interfaces and views, the
system components have other common elements.
Each component has its own component factory
to create the component objects and includes the
component static information, which is needed for
component object creation. Any component has its
unique identifier. The knowledge of a component’s
identifier helps us to obtain full information about the
component. Particularly, the composite component
aggregating (see below) other components should
include their proxies [3].
The observation of many common component ele-

ments allowed us to develop the component frames [3]
with aim of producing so-called skeleton components
simply by editing a particular component frame. Such
a frame can be thought of as the component template
that is supporting a correct programming style. Thus,
P

a component developer needs to design only the com-
ponent application algorithm. To help a component
developer, we created a component wizard similar to
the Microsoft Visual C++ 6.0 class wizard [4]. The
component wizard is the code generator that pro-
duces a component skeleton by means of the dialog
windows.
A component developer can extend the functional-

ity of a ready component by applying the inheritance
mechanism [3] that is supported by our system. The
interfaces of a base component and derived com-
ponent are joined as well as their public APIs. For
example, the component inheritance is a convenient
way to add either new input maps or new matching
maps.
A new composite component can be developed

by the aggregation of existing components [3]. A
composite component can include several aggregated
components. A particular component can include the
tree of aggregated components. The tuning and out-
put interfaces of aggregated components are simply
joined to the relevant aggregating component inter-
faces.
There are several important features of the sug-

gested aggregation mechanism. The component user
is able to see the composite component structure and
has access to any subcomponents by means of the
GUI. There are no limitations to creating an efficient
component code, e.g., as compared with the standard
C++ coding for the developer, which is working on
the creation of a component by aggregation of other
components. The APIs of aggregated components
are called directly. In this case, the component coding
is even simplified; e.g., no efforts are required to create
and destroy the aggregated component objects.
The inheritance and aggregation mechanisms

provide a unique possibility for the composite compo-
nent users to change its algorithm without touching
the component source code and its recompilation. We
refer to this possibility as the runtime substitution of
subcomponents in the aggregating components.
Each component should be accompanied with its

documentation. The component documentation in-
cludes the names of component authors, descriptions
of component applicability, its input maps, parame-
ters, subcomponents in use, numerical algorithm, etc.
The component documentation is realized as a set of
html files.
Writing of the component documentation is a very

important part of the component development pro-
cess. We offer documentation frames and a documen-
tation wizard (for the Windows platform only) for the
component developers. The component documenta-
tion frames allow a developer to present information
with the standard appearance. They are similar to the
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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component frames discussed below and developed in
the complement of model component frames.

6. APPLICATION MODULES

Several implemented components can share com-
mon data, functions, and classes that are related to
a particular application domain. For a component
developer, it is more natural and more efficient to work
on the component code within some component-
related software environment than on an isolated
component code. It allows more efficient use of the
computer resources by the developer. We suggest
packaging of built components with their related
software into modules [3] that are referred to as
application domain modules. We consider these
modules as developer’s units. In addition to the
components, application data types and data transfer
classes (see below) are the most important members
of the applicationmodules. The application data types
represent key abstractions from the problem domain
and operations on that are used to manipulate the
types. The development of MC event generators is
our problem domain. Thus, most of the ADT objects
are counterparts of real high-energy physics objects
(particle, parton, nucleus, string, etc.). We have
also created module frames that are similar to the
component frames to support implementation of the
module structures.
The application modules can be self-sufficient on

the level of source code; i.e., no external methods,
external implementations, etc., are required to com-
pile and execute module components. It allows us
to use these modules as the units for distribution.
By compilations, they are prepared as dynamically
linked libraries (DLLs) for the users of our system.
Only the components from an application module
are visible and accessible to the users. The module
independence does not forbid use of components from
other modules. It does not pose any limitation on
the inheritance and aggregationmechanisms. For ex-
ample, it does not forbid subcomponent substitution
if an aggregated subcomponent and its alternative
subcomponent belong to different DLLs.
A large set of hadronic model components have al-

ready been implemented and included in the hadronic
modules [3]. It allows their users to perform simu-
lation of particle and nuclear interactions in a wide
high-energy range and for a large set of projectiles
and targets.

7. DATA EVENTS

Any numerical component deals with data. It can
generate a very large bulk of data and store it on a disk
for further analysis and visualization. It can read data
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
from a disk and process it. The collaborative work of
several components requires data exchange. To fulfill
these needs, we have suggested the idea of a data
event [3].

A data event is a portion of data that only consists
of values of simple data types (int, float, double, etc.).
Any data event has its own definition. The definition
includes a unique identifier and describes data event
configuration.
The data event definition is a tree of data channel

definitions. The data channel definition includes the
channel identifier, its type, and its name, and more
information can be added. A data event is not a C++
object; i.e., it is not an instance of a definite class. The
data of a data event can be placed into memory or
stored on disk according to the data event definition.
We have suggested [3] the concept of predefined

data events and channels. These events and channels
are associated with definite services that are offered to
the system users. The predefined channels and pre-
defined group of channels have fixed configurations
(similarity with C++ objects) and the system user is
not able to change their configurations. To deal with
such data events, the framework needs to know only
their identifiers; e.g., the framework knows (due to the
unique identifier) how to display table and graphical
views for the predefined histogram and plot chan-
nels. The component parameters, input maps, and
proxy sets are other examples of the predefined data
events representing component states. The frame-
work knows how to display and execute such prede-
fined data events.

7.1. Data File

A component can write and read data events in
the data file. The data file has its header, which is
needed to identify the file and facilitate the navigation
through it. The data file is separated into two parts:
the data event configuration part and the data part.
The presence of the data event configurations in the
data file allows a system user or a component to
perform a very flexible selection of data. We refer to
it as structural data selection. The data event con-
figuration part has its own header and includes the
list of event definitions with their unique identifiers.
The event configuration header keeps some statistical
information about the data events. The data part con-
sists of the data records, where the tree-structured
data are written. Each data record has its own header,
where the information to help for navigation through
the data is stored.
For system users, we have created several views

for the data file. The most important of them is the
data configuration view and data view.
4
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8. DATA TRANSFER CLASSES

Many of the implemented components can be con-
sidered as generators or converters of the data events.
The data transfer classes (DTC) help the component
developers to facilitate design and implementation of
the component outputs and inputs and, hence, to
pay more attention to development of the component
algorithms.
The DTC library has a hierarchical structure,

because it is very convenient to have base classes
that either factorize common properties of all objects
of this hierarchy or collect most of the operations
needed to manage these objects. These classes help
to implement universal numerical algorithms. The
degree of universality of an algorithm is determined by
the amount of needed input/output information. The
most universal algorithms are those that use objects
of the node data transfer class as input and output.
We should note that data transfer classes are es-

sentially the same as ADT classes, which we dis-
cussed before. By introducing the data transfer term
for a subset of ADT classes, we should stress their
importance for data management. Within our system,
we have no strict recommendations on how to build
such classes. The most important thing is that any
object of a data transfer class should support a seri-
alization, i.e., this class needs methods to write in the
data file and read from the data file its object states.

9. COMPONENT NETS

A component could receive the data events pro-
duced and sent by other components. Thus, several
components can be assembled into an event-oriented
net to perform collaborative work.
The produced data events have tree structures

that are described by data event configurations.
The framework analyzes event configurations and
searches the necessary data configuration for a com-
ponent. We refer to this process as the matching of a
data configuration [3]. If the necessary configuration
is found, we refer to this situation as observation of an
entry point into the component input data.
The necessary data configurations for a given

component are described by the component matching
configurations or matching maps. The component
developer can offer several matchingmaps. It provides
room for the component user to tune this component
by registering a chosen matching map as the default
one.
It is important to stress the following. The ability

of a component to recognize necessary data obtained
from the data file or from other components does not
require the component developer either to learn or use
system classes (objects) or to have knowledge about
P

the data source (the data file, other components).
The component developer does not need to learn the
configurations of data events that can be received by
the component. He or she has to know how to create
the configurations of the required input data.
We distinguish two different situations for com-

ponent collaboration through standard output and
matching interfaces [3]. The first one is that a com-
ponent writes its output data events in the data file
and another component reads these data from the
data file. We consider this situation as component
collaboration through the data file bus, having inmind
a hardware analogy. For this type of interaction, the
component objects are completely isolated from each
other.
The second situation is that one component pro-

duces a data event output, which will be received by
another component as an input. We consider this sit-
uation as component collaboration by the data event
bus. For this type of interaction, the components are
executed inside a common process.
A set of components that collaborate through the

standard output and matching interfaces by sending
and receiving data event messages and are connected
in sequence to process numerical data is referred to as
an event-oriented net [3].
Figure 2 demonstrates an example of a net. Here,

component C1 produces two events having config-
urations C1E1 and C1E2; then, components C2 and
C3 receive data of those events that are selected in
accordance with the matching configurations C2M1

and C3M1, respectively. These components produce
new data events configured as C2E1 and C3E1, re-
spectively. The last events are written in the data file.
We consider only nets whose component execu-

tion order is defined by data flows; i.e., we consider
only so-called pipeline nets. For pipeline nets, a sys-
tem user does not need to write and compile the event
control procedure. Any net includes the component
that is executed first. We refer to this component as
the start or main component. It reads its input by
the input or matching interface. Thus, during a net
assembly, the system user has to outline participat-
ing components, point out the start component, and
provide information about pairs of collaborating (con-
nected) components. Any component or subcompo-
nent from the net could write its output in the data
file.
Any net is presented by theNiMax system file. The

file consists of two parts. The first part can be consid-
ered as a net definition part. The second part includes
the event control procedure. This file is constructed
on the basis of the information obtained from a user
through a net view.
We should note that very often a net consists of

only one component and, if we are going to perform
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004



DEVELOPMENT AND APPLICATION 37

PHYSI
 

C

 

1

 

C

 

2

 

C

 

3

 

C

 

1

 

E

 

1

 

C

 

2

 

M

 

1

 

C

 

1

 

E

 

2

 

C

 

3

 

M

 

1

 

C

 

2

 

E

 

1

 

C

 

3

 

E

 

1

Fig. 2. An event-oriented net.
a component execution, we always deal with the net
file.

10. NiMax FRAMEWORK METHODS

The full description of the framework and other
classes that belong to the NiMax system requires
a separate paper or manual. Here, we would like to
explain in brief the framework functionality offered by
the control and navigation methods.

There are many methods to control the compo-
nent life cycle. In spite of the fact that the com-
ponent life cycle consists mostly of internal frame-
work processes, which are hidden from the system
users, we would like to share an idea about it. There
are many possibilities for the user to influence the
component life cycle. It includes several phases: the
component instance creation phase, editing phase,
execution phase, and destruction phase.

Before starting the component object creation
procedure, the framework creates an environment for
the component object. The context of this environ-
ment defines the optional variables, which are set to
default values, and output and input files, if they will
be used. The user is able to modify these optional
variables by means of the user interface; e.g., the
user can either set his own default parameters and
input and matching maps or suppress the output of
some data events or suppress the runtime information
output. In the case of a composite component, the
aggregating component instance is created first.
Then, the framework creates aggregated component
instances. In order to create any component object,
the framework needs to know only the component’s
identifier. It uses aggregated component identifiers
to look for their factories. If a factory is not found,
the framework tries to find an alternative component
according to the component proxy definitions and the
component hierarchy. The user is able to control this
CS OF ATOMIC NUCLEI Vol. 67 No. 1 200
process by changing the context object and enabling
or disabling component substitution.
The destruction phase for the created component

objects is fulfilled in the reverse order as compared to
the construction phase without user influence.
During the component editing phase, the user is

able to edit parameters and input maps as well as re-
configure the component’s output. The check meth-
ods are called to control the editing consistency. In the
case of inconsistency, these methods send warning
messages and set the inconsistent variables back to
the default values.
The framework helps the system users to execute

net files and controls these processes. The framework
allows the user to execute several nets as different
processes at the same time or can have several exe-
cution processes of one net, e.g., different component
parameters in use, at the same time.
The framework helps to fulfill component librarian

functions. Particularly, it allows the user to see the
total list of components included in the system and to
register a required component. This component view
shows static information, because the component ob-
jects are not created yet. The framework allows the
user to look through net files as well.
Tree structures are heavily used in our system,

e.g., the tree structure of composite components and
tree structure of data events. Thus, the methods
to navigate through a composite component and
through a data file are very similar.
Using file navigation methods, a model developer

is also able to write adapter or driver tools to transform
the format of the data written to the system data
file into data formats that are acceptable for external
packages.
Besides the runtime information and different in-

formation messages that can appear during a com-
ponent life cycle, the system user could be offered
more detailed help information. Any object of our
4
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framework, such as a component, parameter, and
error message, has its own unique identifier. It opens
a possibility to bind these identifiers with HTML files
describing the objects. Thus, the user can get help
from “inside” a code by means of a unique identifier,
e.g., through warning and error message identifiers,
the framework finds and opens the HTML files related
to the detailed descriptions of these messages.

11. NiMax GRAPHICAL USER INTERFACE

When the NiMax system is started, the main win-
dow will appear. This window includes many views.
These views allow a user to work on model com-
ponents, nets, and data files, as well as to obtain
necessary help.

11.1. Component and Net Navigation

The available model components and component
nets are displayed for the system users. There are
three different views of the total component list for
the users: by categories (default view) to see the
components from different application categories, by
modules (DLLs) to see the DLL component con-
tents, and by hierarchies to see the component in-
heritance relations. The component views also show
the component types that are defined by the presence
or absence of particular standard interfaces [3]. The
icons mark the component types. A file browser and
selector fulfills the net navigation and offers access to
component nets by the open command from the file
menu.

11.2. Working on Component States

By means of the component interface views, the
framework offers the component user the option to
change a component state. The user can see, register
(instead of the default input map), and edit compo-
nent input maps, as well as see and edit component
parameters. The user always has the option to use
the default parameter values. The user also has ac-
cess to any parameter of any subcomponent inside a
composite component.
A subcomponent can be substituted by another

subcomponent if they have a common base compo-
nent. To see that components have a common base
component, the user can use the component hierar-
chy view. Thus, inside a composite component, an ag-
gregated component can be substituted by an alter-
native component without coding, i.e., using the user
interface. The component user can perform substitu-
tion inside any subcomponent. It is a way to change
and update the application algorithm of a composite
component.
P

If a component is expected to produce output,
the component user has the option to reconfigure
the output. The total events or only some selected
channels can be disabled for this output. In the case
of a composite component, the output reconfiguration
can be performed for any subcomponent.
If a component is expected to receive data ei-

ther from another component or from the data file,
the component user has the option to choose and
register a suitable matching map. There is also the
option to check if a matched data configuration will
be produced by another collaborated component or if
it really exists in the attached data file.

11.3. Net Assembling and Editing

The user can open a component net file for editing.
He or she can create a new component net file as a
starting point of the component net assembly. The
system provides an environment, e.g., the name of the
output file, for the net assembly and execution.
All available components are displayed and the

user can launch several of them in a net for col-
laborative work. Then the user should connect them
one by one to their output and matching connectors.
The nets are arranged so that the data stream flows
from left to right across the screen. Providing the
links between the component connectors, the user is
able to reconfigure component outputs and to choose
suitable matching maps. Some components can be
removed from the net file as well. Finally, the user can
save the net file by giving it a particular name.

11.4. Net Execution Control

The net user has the option to reset an execution
environment for a net before its execution.
The user can obtain information about current

states of the execution processes, select a process,
and perform some actions on it, e.g., kill a selected
process and save its runtime information.
By means of runtime messages, the net compo-

nents inform about their execution processes during
the run session. The user has the option to control the
runtime information output.

11.5. Working on Data Files

It is possible to visualize data file content bymeans
of the data file views. The data events as well as their
channels can be selected through the data configu-
ration view. After selection, one can perform different
operations on data, e.g., copy, cut, and protect against
component access.
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11.6. Working on Histograms and Plots

One- and two-dimensional histograms with fixed
partitions and two-dimensional plots can be created
and visualized. Histogram statistics are implemented
as bin content statistics. The average and root-mean-
square values are calculated as well. Bin errors are
always computed taking weights into account. All
histogram objects can store bin values and errors as
different types, and the user has the option to make
some choice among these types. For any histogram
object, the user can work on its table view. One-
dimensional histograms also have a graphical view.
Two-dimensional histograms have the cell graphical
view. The plots are presented by the table and scatter
plot graphical views.
The user can apply different operations on the

selected data of any view. Selection methods are dif-
ferent for different views. For example, the user can
use amouse to select the content of bins for table view
of a histogram object, and for graphical views, we offer
a brush tool.

11.7. Obtaining Help

The help subsystem based on the HTML Help
Workshop has been developed for the Windows plat-
forms [4]. There are two types of help: system help,
i.e., help information to assist in the system usage,
and component help. Help topics related to the Ni-
Max system describe how to handle a component,
how to process data, etc. Help topics related to a par-
ticular component include information about compo-
nent parameters, its input maps, its output events,
etc. Navigation through the help can be done using
contents and keywords.

12. CONCLUSION

We have suggested a new approach to develop,
assemble, and use numerical models in high-energy
physics. It is a component approach where a complex
numerical model is composed of simpler components
that are included in application modules.
We have formulated a standard component by sep-

arating the component interface part and component
numerical algorithm part. Any component is con-
sidered as a set of standard interfaces between its
algorithm and the outside world.
We have suggested a unit of configured data: the

data event. A component can produce data events,
write them in a data file for further analysis and visu-
alization, read data events from a data file, and receive
data events from other components. The developed
data file allows the storage of a very large quan-
tity of differently structured data and fast navigation
through these data.
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Several components can be composed into a com-
posite model component or a component net in a
variety of ways, and new components with their own
peculiarities can be added. It offers a great deal of
flexibility for the construction of a powerful numeri-
cal model. Each particular component can be tuned
and different implementations of the component al-
gorithm can be interchanged at runtime, enabling
a model user to obtain the needed model properties
without redesigning a model and writing the model
code.

To support this approach, we have developed the
NiMax software system. The NiMax system is an
object-oriented program written in C++. Its central
part is the framework that controls all the system’s
internal processes and provides interaction between
the graphical user interface and the rest parts.

The framework supports many GUI services to
provide convenient and productive user sessions. For
example, the user is able to launch required compo-
nents and component nets. He or she is able to per-
form a controlled editing of component and subcom-
ponent parameters, substitution of subcomponents
within a composite component, and reorganization
of component and subcomponent outputs. The user
can assemble and edit different component nets and
execute them as separate processes. The user is able
to perform structural, analytical, and graphical selec-
tions of the data produced and written in the data
files. He or she can build and visualize histograms and
plots.

We have developed different component and mod-
ule frames, application data types, and data transfer
class libraries to facilitate creation and distribution
of component codes. Component functionality is ex-
tendable by the inheritance mechanism and reusable
by the component aggregation mechanism.

We have applied the NiMax system for a particu-
lar class of numerical models: MC event generators.
Many MC model components that are parts of the
hadronic modules have been implemented.

In addition to fundamental studies, the NiMax
system could be a laboratory for the development and
use of specific engineering modules for simulations
to find solutions of practical radiation transport prob-
lems as well as for specific educational modules that
are essential to teach particle, nuclear, and radia-
tion physics. We could also apply it for analytical,
structural, and graphical analysis of generated and
acquired data, where the data file, data file views
and data file control, and navigation methods can be
considered as an independent data file system having
its own applications.
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Abstract—Wavelets are widely used now for the analysis of local scales (or frequencies) important in
physical events, biological objects, natural phenomena, etc. They provide unique information about scales
at different locations. In particular, they are used for analysis of patterns in the phase space of very high
multiplicity events. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Wavelets have become a necessary mathematical
tool in many investigations. They are used in those
cases where the result of the analysis of a particular
signal1) should contain not only the list of its typical
frequencies (scales) but also knowledge of the definite
local coordinates where these properties are impor-
tant, i.e., the size and location of its fluctuations. In
particular, the secondary particle distributions within
the available phase space for the very high multiplicity
events can be studied and the corresponding patterns
defined by the particle correlations found.

The wavelet basis is formed by using dilations
and translations of a particular function defined on
a finite interval. Its finiteness is crucial for the local-
ity property of the wavelet analysis. Commonly used
wavelets generate a complete orthonormal system of
functions with a finite support. That is why, by chang-
ing the scale (dilations), they can distinguish the local
characteristics of a signal at various scales, and by
translations they cover the whole region in which it is
studied. Due to the completeness of the system, they
also allow for the inverse transformation to be properly
done. That is why, e.g., one can ask such a question
as how the high-multiplicity event would look if only
correlations of a definite scale are left in this event.
This is demonstrated below.

The locality property of wavelets gives a substan-
tial advantage over the Fourier transform, which pro-
vides us only with knowledge of the global frequencies
(scales) of the object under investigation because the

∗This article was submitted by the author in English.
**e-mail: dremin@lpi.ru
1)The notion of a signal is used here for any ordered set of

numerically recorded information about some processes, ob-
jects, functions, etc. The signal can be a function of some
coordinates, be it the time, the space, or any other (in general,
n dimensional) scale.
1063-7788/04/6701-0041$26.00 c©
system of basic functions used (sine, cosine, or imag-
inary exponential functions) is defined over an infinite
interval.

It has been proven that any function can be written
as a superposition of wavelets, and there exists a nu-
merically stable algorithm to compute the coefficients
for such an expansion. Moreover, these coefficients
completely characterize the function, and it is pos-
sible to reconstruct it in a numerically stable way
by knowing these coefficients. The discrete wavelets
cannot be represented by analytical expressions (ex-
cept for the simplest one) or by solutions of some
differential equations, and instead are given numer-
ically as solutions of definite functional equations
containing rescaling and translations. Moreover, in
practical calculations, their direct form is not even
required, and only the numerical values of the co-
efficients of the functional equation are used. This
is a very important procedure, called multiresolution
analysis, which gives rise to the multiscale local anal-
ysis of the signal and fast numerical algorithms. Each
scale contains an independent nonoverlapping set of
information about the signal in the form of wavelet
coefficients, which are determined from an iterative
procedure called the fast wavelet transform. In combi-
nation, they provide its complete analysis and simplify
the diagnosis of the underlying processes. See the
extended review on wavelets in [1].

2. WAVELETS FOR BEGINNERS

Each signal can be characterized by its averaged
(over some intervals) values (trend) and by its varia-
tions around this trend. Actually, physicists dealing
with experimental histograms analyze their data at
different scales when averaging over different size
intervals. This is a particular example of a simplified
wavelet analysis treated in this section. To be more
definite, let us consider the situation where an exper-
imentalist measures some function f(x) within the
2004 MAIK “Nauka/Interperiodica”
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interval 0 ≤ x ≤ 1, and the best resolution obtained
with the measuring device is limited to 1/16th of the
whole interval. Thus, the result consists of 16 num-
bers representing the mean values of f(x) in each of
these bins and can be plotted as a 16-bin histogram.
It can be represented by the formula

f(x) =
15∑

k=0

s4,kϕ4,k(x), (1)

where s4,k = f(k/16)/4, andϕ4,k is defined as a step-
like block of the unit norm (i.e., of height 4 and
widths 1/16) different from zero only within the kth
bin. For an arbitrary j, one imposes the condition∫
dx|ϕj,k|2 = 1, where the integral is taken over the

intervals of the lengths ∆xj = 1/2j and, therefore,
ϕj,k have the form ϕj,k = 2j/2ϕ(2jx− k) with ϕ de-
noting a steplike function of the unit height over such
an interval. The label 4 is related to the total number
of such intervals in our example. At the next coarser
level, the average over the two neighboring bins is
taken. Up to the normalization factor, we will denote
it as s3,k and the difference between the two levels as
d3,k. To be more explicit, let us write the normalized
sums and differences for an arbitrary level j as

sj−1,k =
1√
2
[sj,2k + sj,2k+1], (2)

dj−1,k =
1√
2
[sj,2k − sj,2k+1],

or for the backward transform (synthesis)

sj,2k =
1√
2
(sj−1,k + dj−1,k), (3)

sj,2k+1 =
1√
2
(sj−1,k − dj−1,k).

Since, for the dyadic partition considered, this dif-
ference has opposite signs in the neighboring bins
of the previous fine level, we introduce the function
ψ which is 1 and −1, respectively, in these bins and
the normalized functions ψj,k = 2j/2ψ(2jx− k). This
allows us to represent the same function f(x) as

f(x) =
7∑

k=0

s3,kϕ3,k(x) +
7∑

k=0

d3,kψ3,k(x). (4)

One proceeds further in the same manner to the
sparser levels 2, 1, and 0 with averaging done over
the interval lengths 1/4, 1/2, and 1, respectively. The
sparsest level with the mean value of f over the whole
interval denoted as s0,0 provides

f(x) = s0,0ϕ0,0(x) + d0,0(x)ψ0,0(x) (5)
P

+
1∑

k=0

d1,kψ1,k(x) +
3∑

k=0

d2,kψ2,k(x)

+
7∑

k=0

d3,kψ3,k(x).

The functions ϕj,k(x) and ψj,k(x) are normalized by
the conservation of the norm, dilated and translated
versions of them. In the next section, we will give
explicit formulas for them in a particular case of Haar
scaling functions and wavelets. In practical signal
processing, these functions (and more sophisticated
versions of them) are often called low- and high-pass
filters, respectively, because they filter the large- and
small-scale components of a signal. The subsequent
terms in Eq. (5) show the fluctuations (differences
dj,k) at finer and finer levels with larger j. In all
the cases (1)–(5), one needs exactly 16 coefficients
to represent the function. In general, there are 2j

coefficients sj,k and 2jn − 2j coefficients dj,k, where
jn denotes the finest resolution level (in the above
example, jn = 4).

All the above representations of the function f(x)
[Eqs. (1)–(5)] are mathematically equivalent. How-
ever, the latter one representing the wavelet analyzed
function directly reveals the fluctuation structure of
the signal at different scales j and various locations
k present in a set of coefficients dj,k, whereas the
original form (1) hides the fluctuation patterns in the
background of a general trend. In practical applica-
tions, the latter wavelet representation is preferred
because, for rather smooth functions, strongly vary-
ing only at some discrete values of their arguments,
many of the high-resolution d coefficients in relations
similar to Eq. (5) are close to zero (compared to the
“informative” d coefficients) and can be discarded.
Bands of zeros (or close to zero values) indicate those
regions where the function is fairly smooth.

At first sight, this simplified example looks some-
what trivial. However, for more complicated functions
and more data points with some elaborate forms of
wavelets, it leads to a detailed analysis of a signal
and to possible strong compression with subsequent
good quality restoration. This example also provides
an illustration of the very important feature of the
whole approach with successive coarser and coarser
approximations to f called multiresolution analysis
and discussed in more detail below.

3. BASIC NOTIONS AND HAAR WAVELETS

To analyze any signal, one should, first of all,
choose the corresponding basis, i.e., the set of func-
tions to be considered as “functional coordinates.” In
most cases, we will deal with signals represented by
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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square integrable functions defined on the real axis.
For nonstationary signals, for example, the location
of that moment when the frequency characteristics
have abruptly been changed is crucial. Therefore, the
basis should have a compact support; i.e., it should be
defined on a finite region. Wavelets have this property.
Nevertheless, with them it is possible to span the
whole space by translation of the dilated versions of
a definite function. That is why every signal can be
decomposed in a wavelet series (or integral). Each
frequency component is studied with a resolution
matched to its scale.

Let us try to construct functions satisfying the
above criteria. An educated guess would be to relate
the function ϕ(x) to its dilated and translated version.
The simplest linear relation with 2M coefficients is

ϕ(x) =
√

2
2M−1∑
k = 0

hkϕ(2x− k) (6)

with the dyadic dilation 2 and integer translation k. At
first sight, the chosen normalization of the coefficients
hk with the “extracted” factor

√
2 looks somewhat

arbitrary. Actually, it is defined a posteriori by the
traditional form of fast algorithms for their calculation
[see Eqs. (20) and (21) below] and normalization of
functions ϕj,k(x), ψj,k(x). It is used in all the books
and papers.

For discrete values of the dilation and translation
parameters, one gets discrete wavelets. The value of
the dilation factor determines the size of cells in the
lattice chosen. The integer M defines the number of
coefficients and the length of the wavelet support.
They are interrelated because, from the definition of
hk for orthonormal bases

hk =
√

2
∫
dxϕ(x)ϕ̄(2x− k), (7)

it follows that only finitely many hk are nonzero if ϕ
has a finite support. The normalization condition is
chosen as

∞∫
−∞

dxϕ(x) = 1. (8)

The function ϕ(x) obtained from the solution of this
equation is called a scaling function.2) If the scaling
function is known, one can form a "mother wavelet"
(or a basic wavelet) ψ(x) according to

ψ(x) =
√

2
2M−1∑
k=0

gkϕ(2x − k), (9)

2)It is often also called a “father wavelet,” but we will not use
this term.
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where

gk = (−1)kh2M−k−1. (10)

The simplest example would be for M = 1 with
two nonzero coefficients hk equal to 1/

√
2, i.e., the

equation leading to the Haar scaling function ϕH(x):

ϕH(x) = ϕH(2x) + ϕH(2x− 1). (11)

One easily gets the solution of this functional equa-
tion

ϕH(x) = θ(x)θ(1 − x), (12)

where θ(x) is the Heaviside step function equal to 1
at positive arguments and 0 at negative ones. The ad-
ditional boundary condition is ϕH(0) = 1, ϕH(1) =
0. This condition is important for the simplicity of
the whole procedure of computing the wavelet coeffi-
cients when two neighboring intervals are considered.

The “mother wavelet” is

ψH(x) = θ(x)θ(1 − 2x) − θ(2x− 1)θ(1 − x), (13)

with boundary values defined as ψH(0) = 1,
ψH(1/2) = −1, ψH(1) = 0. This is the Haar wavelet
known since 1910 and used in functional analysis.
Namely, this example has been considered in the
previous section for the histogram decomposition.
This is the first one of a family of compactly supported
orthonormal wavelets Mψ : ψH = 1ψ. It possesses
the locality property since its support 2M − 1 = 1 is
compact.

The dilated and translated versions of the scaling
function ϕ and the “mother wavelet” ψ

ϕj,k = 2j/2ϕ(2jx− k), (14)

ψj,k = 2j/2ψ(2jx− k) (15)

form the orthonormal basis, as can be (easily for Haar
wavelets) checked.3)

The Haar wavelet oscillates, so that
∞∫

−∞

dxψ(x) = 0. (16)

This condition is common for all the wavelets. It is
called the oscillation or cancellation condition. From
it, the origin of the name wavelet becomes clear. One
can describe a “wavelet” as a function that oscillates
within some interval like a wave but is then localized
by damping outside this interval. This is a necessary

3)We return back to the general case and therefore omit the
index H because the same formula will be used for other
wavelets.
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condition for wavelets to form an unconditional (sta-
ble) basis. We conclude that, for special choices of co-
efficients hk, one gets the specific forms of “mother”
wavelets, which give rise to orthonormal bases.

The wavelet coefficients sj,k and dj,k can be calcu-
lated as

sj,k =
∫
dxf(x)ϕj,k(x), (17)

dj,k =
∫
dxf(x)ψj,k(x). (18)

However, in practice their values are determined from
the fast wavelet transform described below.

These coefficients are referred to as sums (s) and
differences (d), thus being related to mean values and
fluctuations. If only the terms with d coefficients in (5)
are considered, the result is called the wavelet expan-
sion. For the histogram interpretation, this procedure
would imply that one is not interested in average
values but only in the histogram shape determined by
fluctuations at different scales.

4. MULTIRESOLUTION ANALYSIS
AND DAUBECHIES WAVELETS

Though the Haar wavelets provide a good tutorial
example of an orthonormal basis, they suffer from sev-
eral deficiencies. One of them is the bad analytic be-
havior with an abrupt change at the interval bounds,
i.e., their bad regularity properties. By this, we mean
that all finite rank moments of the Haar wavelet are
different from zero—only its zeroth moment, i.e., the
integral (16) of the function itself, is zero. This shows
that this wavelet is not orthogonal to any polynomial
apart from a trivial constant. The Haar wavelet does
not have good time-frequency localization. Its Fourier
transform decays like |ω|−1 for ω → ∞.

The goal is to find a general class of those func-
tions which would satisfy the requirements of locality,
regularity, and oscillatory behavior. Note that, in some
particular cases, the orthonormality property some-
times can be relaxed. They should be simple enough
in the sense that they are sufficiently explicit and
regular to be completely determined by their samples
on the lattice defined by the factors 2j .

The general approach that respects these proper-
ties is known as the multiresolution approximation.
This works in practice when applied to the problem
of finding the coefficients of any filter hk and gk.
They can be directly obtained from the definition and
properties of the discrete wavelets. These coefficients
are defined by relations (6) and (9). The orthogonality
of the scaling functions, of wavelets to the scaling
functions, and of wavelets to all polynomials up to the
power (M − 1) and the normalization condition can
PH
be written as equations for hk which uniquely define
them (see [1]). For M = 2, they lead to the following
values of coefficients:

h0 =
1

4
√

2
(1 +

√
3), h1 =

1
4
√

2
(3 +

√
3), (19)

h2 =
1

4
√

2
(3 −

√
3), h3 =

1
4
√

2
(1 −

√
3).

These coefficients define the simplest D4 (or 2ψ)
wavelet from the famous family of orthonormal Dau-
bechies wavelets (D2M ) with finite support. For filters
of higher order in M , i.e., for higher rank Daubechies
wavelets, the coefficients can be obtained in the same
manner. The wavelet support is equal to 2M − 1.
It is wider than for the Haar wavelets. However,
the regularity properties are better. The higher order
wavelets are smoother compared to D4.

5. FAST WAVELET TRANSFORM

The fast wavelet transform allows one to proceed
with the entire computation within a short time in-
terval because it uses a simple iterative procedure.
Therefore, it is crucial for all work with wavelets.

The coefficients sj,k and dj,k carry information
about the content of the signal at various scales and
can be calculated directly using formulas (17), (18).
However, this algorithm is inconvenient for numerical
computations because it requires many (N2) opera-
tions, whereN denotes the number of sampled values
of the function. We will describe a faster algorithm.
In practical calculations, only the coefficients hk are
used, without referring to the shapes of wavelets.

In real situations with digitized signals, we have
to deal with finite sets of points. Thus, there always
exists the finest level of resolution where each interval
contains only a single number. Correspondingly, the
sums over k will get finite limits. It is convenient
to reverse the level indexation under the assumption
that the label of this fine scale is j = 0. It is then
easy to compute the wavelet coefficients for sparser
resolutions j ≥ 1. Multiresolution analysis naturally
leads to a hierarchical and fast scheme for the compu-
tation of the wavelet coefficients of a given function. In
general, one can get the iterative formulas of the fast
wavelet transform

sj+1,k =
∑
m

hmsj,2k+m, (20)

dj+1,k =
∑
m

gmsj,2k+m, (21)

where

s0,k =
∫
dxf(x)ϕ(x− k). (22)
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These equations yield fast algorithms (so-called pyra-
mid algorithms) for computing the wavelet coeffi-
cients, asking now just for O(N) operations to be
done. Starting from s0,k, one computes by iteration all
other coefficients provided the coefficients hm, gm are
known. The explicit shape of the wavelet is not used
in this case anymore.

The remaining problem lies in the initial data. If
an explicit expression for f(x) is available, the co-
efficients s0,k may be evaluated directly according to
(22). But this is not so in the situation where only dis-
crete values are available. In the simplest approach,
they are chosen as s0,k = f(k).

6. THE FOURIER AND WAVELET
TRANSFORMS

As has been stressed already, the wavelet trans-
form is superior to the Fourier transform, first of all,
due to the locality property of wavelets. The Fourier
transform uses sine, cosine, or imaginary exponential
functions as the main basis. It is spread over the
entire real axis, whereas the wavelet basis is localized.
An attempt to overcome these difficulties and im-
prove time localization while still using the same basis
functions is made by the so-called windowed Fourier
transform. The signal f(t) is considered within some
time interval (window) only. However, all windows
have the same width.

In contrast, the wavelets ψ automatically pro-
vide the time (or spatial location) resolution window
adapted to the problem studied, i.e., to its essential
frequencies (scales). Namely, let t0, δ and ω0, δω be
the centers and the effective widths of the wavelet ba-
sic function ψ(t) and its Fourier transform. Then, for
the wavelet family ψj,k(t) (15) and, correspondingly,
for wavelet coefficients, the center and the width of
the window along the t axis are given by 2j(t0 + k)
and 2jδ. Along the ω axis, they are equal to 2−jω0

and 2−jδω . Thus, the ratios of widths to the center
position along each axis do not depend on the scale.
This means that the wavelet window resolves both the
location and the frequency in fixed proportions to their
central values. For the high-frequency component of
the signal, it leads to quite a large frequency extension
of the window, whereas the time location interval is
squeezed so that the Heisenberg uncertainty rela-
tion is not violated. That is why wavelet windows
can be called Heisenberg windows. Correspondingly,
the low-frequency signals do not require small time
intervals and admit a wide window extension along
the time axis. Thus, wavelets localize well the low-
frequency “details” on the frequency axis and the
high-frequency ones on the time axis. This ability of
wavelets to find a perfect compromise between the
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
time localization and the frequency localization by
automatically choosing the widths of the windows
along the time and frequency axes well adjusted to
the location of their centers is crucial for their success
in signal analysis. The wavelet transform cuts up
the signal (functions, operators, etc.) into different
frequency components and then studies each compo-
nent with a resolution matched to its scale, providing
a good tool for time-frequency (position-scale) local-
ization. That is why wavelets can zoom in on singu-
larities or transients (an extreme version of very short
lived high-frequency features!) in signals, whereas
the windowed Fourier functions cannot. In terms of
traditional signal analysis, the filters associated with
the windowed Fourier transform are constant band-
width filters, whereas the wavelets may be seen as
constant relative bandwidth filters whose widths in
both variables linearly depend on their positions.

The wavelet coefficients are negligible in the re-
gions where the function is smooth. That is why
wavelet series with plenty of nonzero coefficients rep-
resent really pathological functions, whereas “nor-
mal” functions have “sparse” or “lacunary” wavelet
series and are easy to compress. On the other hand,
the Fourier series of the usual functions have a lot
of nonzero coefficients, whereas “lacunary” Fourier
series represent pathological functions.

Thus, these two types of analysis can be consid-
ered as complementary rather than overlapping.

One can already start the signal analysis with
above procedures. However, there are several techni-
cal problems that will not be mentioned here. They are
described at some length in the cited review paper.

7. APPLICATIONS

Wavelets have become widely used in pure and
applied science. Here, we describe just two examples
of wavelet application to analysis of one- and two-
dimensional objects (see [1]).

The single-variable example is provided by the
time variation of the pressure in an aircraft compres-
sor. The goal of the analysis of this signal is motivated
by the desire to find the precursors of a very danger-
ous effect (stall + surge) in engines leading to their
destruction. It turns out that the dispersion of the
wavelet coefficients can serve as a precursor of this
effect. Let us mention that a similar procedure has
been quite successful in analysis of other engines and
of heartbeat intervals and in diagnosis of a disease.

Two-dimensional wavelet analysis can be used for
recognition of shapes of objects. It has been applied,
e.g., to pattern recognition of fingerprints (this helps
to save a lot of computer memory, in particular) and
of erythrocytes and their classification. It was also
used for analysis of patterns in very high multiplicity
4
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events. Lead–lead collisions at 158 GeV/c with mul-
tiplicities exceeding 1000 charged particles were an-
alyzed in two-dimensional phase space and wavelet
coefficients for low scales j < 6 were omitted. Then,
the long-range images of events were obtained by the
inverse transform. They showed some quite peculiar
features of long-range correlations, in particular, the
ringlike structure reminding one of Cherenkov rings.

Many other examples can be found in the cited
paper and on Web sites.

8. CONCLUSIONS

The beauty of the mathematical construction of
the wavelet transformation and its utility in practical
P

applications attract researchers from both pure and
applied science. Moreover, the commercial outcome
of this research has become quite important. We have
outlined a minor part of the activity in this field.
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Abstract—Within a geometrical model developed in earlier papers, a change of regime, or a “knee,” is
predicted in the multiplicity distributions at large multiplicities. The position and motion of this knee is
related to geometrical and KNO scaling and their violation, in particular, the rise of the ratio σel/σt, as well
as to the transition from shadowing to antishadowing, expected at LHC energies. c© 2004 MAIK “Nau-
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As pointed out in a series of recent papers [1], the
dynamics of rare processes with very high multiplic-
ities (VHM) may be quite different from the rest of
the events. In this paper, we present our predictions
concerning the behavior of the multiplicity distribu-
tions Ψ(z) near their high-z border. Our model, in
principle, is applicable to any z, but here we ignore
the shape of the small and moderate z, concentrating
on the rightmost edge ofΨ(z).

Our knowledge about high-energy multiplicity
distributions comes from the data collected at ISR,
the Spp̄S collider (UA1, UA2, and UA5 experiments)
and the Tevatron collider (CDF and E735 experi-
ments). It should be noted that the recent results from
the E735 collaboration taken at the Tevatron [2] do
not completely agree with those obtained by the UA5
collaboration at comparable energies at the Spp̄S
collider [3].

Note that the delicate features ofΨ(z) at very large
multiplicities near the large-z edge can be better seen
if the variable z is used instead of n.

On the theoretical side, it became common [4–
7] to approximate the observed distributions by the
convolution of two binomial distributions, account-
ing for the general bell-like shape of P (n) with the
observed structures (knee and possible oscillations)
superimposed.

One of the hottest issues in this field is the dy-
namics of the VHM [8], which is close to the kine-
matical limit imposed by the phase space. The VHM
events are very rare, making up only about 10−7 of
the total cross sections at the LHC energy, which

∗This article was submitted by the authors in English.
†Deceased.
**e-mail: jenk@gluk.org
1063-7788/04/6701-0047$26.00 c©
makes their experimental identification very difficult.
An intriguing question is the possible existence of
a cutoff in the VHM region, beyond z = n/〈n〉 ≈ 5,
where 〈n〉 is the mean multiplicity. In our opinion, a
better understanding of the underlying physics can
be inferred only in a model involving both elastic
and inelastic scattering related by unitarity. Such an
approach has been advocated in a series of papers [9–
11], summarized in [12].
After a brief summary of the main ideas within this

approach, we analyze the relation of the distribution
of secondaries and the behavior of the elastic and
total cross sections with the possible transition from
shadowing to antishadowing [13].
We show that the existence of the cutoff at high

multiplicities in the distribution of Ψ(z) is related to
the validity of the GS and KNO scaling.
The basic idea of the geometrical approach to the

multiple production used in the present paper is that
the number of the secondaries at a given impact pa-
rameter ρ, n(ρ, s) is proportional to the amount of the
hadronic matter in the collision or the overlap function
G(ρ, s),

〈n(ρ, s)〉 = N(s)G(ρ, s), (1)

where N(s) is related to the mean multiplicity, not
specified in this approach, and G(ρ, s) is the overlap
function related to the elastic scattering by unitarity,

Imh(ρ, s) = |h(ρ, s)|2 +G(ρ, s), (2)

where h(ρ, s) is the elastic amplitude in the impact
parameter representation. Unitarity, a key issue in
this approach, enters in the definition of both the
elastic amplitude and the inelastic overlap function.
In u-matrix unitarization (see [12] and references

therein),

Gin =
Imu

1 + 2Imu+ |u|2 , (3)
2004 MAIK “Nauka/Interperiodica”
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where u is the elastic amplitude (input, or the "Born
term").

We use a dipole (DP) model for the elastic scat-
tering amplitude, exhibiting geometrical features and
fitting the data. After u-matrix unitarization, the elas-
tic amplitude reads (see [12])

h(ρ, s) =
u

1 − iu
, (4)

where u(y, s) = ige−y , y =
ρ2

4α′L
, and L ≡ ln s.

Remarkably, the ratio of the elastic to total cross
sections in this model,

σel
σt

= 1 − g

(1 + g) ln(1 + g)
, (5)

fixes the (energy-dependent) values of the parame-
ter g. Typical values of g for several representative
energies are quoted in [12].

Rescattering corrections to Gin(ρ, s) here will be
accounted for phenomenologically according to the
following prescription (see [12] and earlier reference
therein):

Gin(ρ, s) = |S(ρ, s)|G̃in(ρ, s), (6)

where S(ρ, s) is the elastic scattering matrix related
to the umatrix by

S(ρ, s) =
1 + iu(ρ, s)
1 − iu(ρ, s)

. (7)

This procedure is not unique. For example, it al-
lows the following generalization (see [12] and the
earlier reference therein):

Gin(ρ, s) = |S(ρ, s)|αG̃α(ρ, s), (8)

where α is a parameter, varying between 0 and 1.

We assume

〈n(ρ, s)〉 = N(s)G̃α
in(ρ, s). (9)

The moments are defined by (see [12] and earlier
references therein)

〈nk(s)〉 =
Nk(s)

∫
Gin(ρ, s)(Gα

in(ρ, s))
kd2ρ∫

Gin(ρ, s)d2ρ
. (10)

Now, we insert the expression for the DP with the u-
matrix unitarization (4) into (10) to get

〈nk(s)〉 =
Nk(s)(1 + g)

g
(11)

×
g∫

0

dx

(1 + x)2

((1 + x

1 − x

)α x

(1 + x)2

)k

.

P

The mean multiplicity 〈n(s)〉 is defined as

〈n(s)〉 =
N(s)(1 + g)

g
(12)

×
g∫

0

xdx

(1 + x)4
(1 + x

1 − x

)α
=
N(s)
a

.

For the distributions, we have

P (n) =
1 + g

g

g∫
0

dx

(1 + x)2
(13)

× δ

(
n−N

(1 + x

1 − x

)α x

(1 + x)2

)
.

The integration in (13) gives

ψ(z) = 〈n〉P (n) =
1 + g

g

x(1 − x)
z(1 + x)[(1 − x)2 + 2αx]

,

where z = n/〈n〉.
Since the above integral is nonzero only when the

argument of the δ function vanishes,

n = N

(
1 + x

1 − x

)α
x

(1 + x)2
,

one gets a remarkable relation

z =
αx

(1 + x)2−α(1 − x)α
. (14)

To calculate the distribution Ψ(z), one needs the
solution to (14). It can be found explicitly for two
extreme cases, namely, α = 0 and α = 1. Otherwise,
it can be calculated numerically.
The maximal value of z, corresponding to x = g (x

varies between 0 and g), can be found as

zmax =
αg

(1 + g)2−α|1 − g|α . (15)

It can be seen from (15) that zmax is a constant
if g is energy independent. In the interval between 53
and 900GeV, the experimentally observed ratio σel/σt

varies from 0.174 to 0.225, implying the variation of
g from 0.489 to 0.702, and is uniquely determined
by the above ratio. This monotonic increase in g(s)
in turn pushes zmax(s) outwards, terminating when
g reaches unity (according to [12], this will happen
around 10 TeV, i.e., at the future LHC), beyond which
the term |1 − g| in (15) will start rising again, pulling
zmax(s) back to smaller values (i.e., zmax(s) has its
own maximum in s at g = 1).
The unusual behavior of zmax(s) is not the only

interesting feature of the present approach. This effect
can be related to the behavior of the ratio σel/σt.
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004



VERY HIGH ENERGY MULTIPLICITY DISTRIBUTIONS 49
As argued by Troshin and Tyurin (see [13]), σel/σt

may pass the so-called black disc limit and continue
rising in a new “antishadowing”mode of the u-matrix
unitarity approach (multiplicity distributions were not
considered in that paper). According to recent cal-
culations [14], the transition from shadowing to anti-
shadowing will also occur in the LHC energy region.
To summarize, we found a regularity connecting

the geometrical properties in high-energy dynamics
(GS and KNO scaling) with the dynamics of the
high-multiplicity processes. We showed, in particu-
lar, that the exact geometrical or KNO scaling, imply-
ing constant g in our model, results in a cutoff at large
z of the distribution function Ψ(z). Any departure
from scaling (energy dependence of g in our model)
shifts the point zmax according to Eq. (15). Within
the present accelerator energy domain (ISR, SPS,
Tevatron), g varies from about 0.5 to about 0.8. It
will reach the critical value g = 1 at LHC, where
we predict a change of the regime: zmax(s) will start
decreasing and the black disc limit will be exceeded
(which, as shown in [13, 14], is not equivalent to the
violation of the unitarity limit, but means transition
from shadowing to antishadowing).
Finally, it should be noted that we use many model

assumptions that decrease the predictive power of our
calculations. These assumptions mostly concern the
way absorption corrections are introduced and the
assumption of the local (δ function) dependence of
multiplicities on the impact parameter. Both assump-
tions as well as others can be modified. As a result, we
expect quantitative rather than qualitative changes in
the results.
The most drastic approximation used in our cal-

culations was the use in Eq. (13) of a delta-function
distribution in the impact parameter, making possible
explicit calculations. The sharp (delta-function) de-
pendence of the multiplicity on the impact parameter
resulted in an equally sharp and unrealistic cutoff in
the multiplicity distributions at the largest z. It is
obvious that physics (multiplicity distributions) can-
not be discontinuous. Actually, this cutoff is expected
to transform, after smoothing of the delta function
in Eq. (13), into a change of the regime in the dis-
tribution Ψ(z). In other words, after replacement of
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
the delta function in (13) by a Gaussian or a Breit–
Wigner-like dependence on the impact parameter, a
mild asymptotic tail will appear in Ψ(z). The relevant
integrals are to be calculated numerically.

Thus, we predict an experimentally measurable
change of Ψ(z)’s slope near zmax(s). This effect can

be revealed by measuring the local slope
d ln Ψ(z)
d ln z

within finite bins in z, close to zmax(s).
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INTRODUCTION

QCD is extremely rich in various phenomena and
very challenging both theoretically and experimen-
tally. Within the hard QCD domain (processes in-
volving large momentum transfers), one deals with
production of jets, photons, W and Z bosons, and
heavy flavor quarks. Perturbative QCD calculations
are straightforward, but, if precision better than 10%
is desired, they must typically go beyond the leading
order and soon become very difficult. The soft QCD
phenomena are usually associated with jet fragmen-
tation, hadronization, diffractive processes, under-
lying event structure, etc. Perturbative calculations
here are even more problematic, if possible at all,
and, often, one needs to make a leap to new, prefer-
ably QCD-motivated, constructs (e.g., Pomeron) or
come up with approximate methods of resumma-
tion of perturbative terms in all orders [e.g., MLLA
(modified leading log approximation) and BFKL] or,
as a last resort, develop completely phenomenolog-
ical tools such as hadronization schemes in various
Monte Carlo models.

Also, QCD can be viewed in a broader context of
the Standard Model (SM) and its various extensions.
Measurements of the key SM parameters, at first
glance not directly connected to QCD, are, neverthe-
less, often limited by the level of our understanding of
QCD processes (e.g.,MW , (g − 2), ε′/ε). Even more
intriguing, the new physics at hadron colliders, if any,
is likely to be born via QCD processes (e.g., con-
sider production mechanisms for Higgs and SUSY
particles), and, at the same time, the background to
this new physics is likely to be from QCD processes
as well. So learning and understanding details of the
QCD phenomena is vital in searching for signs of
what might be beyond the SM.
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TEVATRON RUN I

I will start from the b-quark production cross sec-
tion in proton–antiproton collisions. Figure 1 shows
the CDF results and the theoretical prediction as they
stood in 2001 [1]. The discrepancy between experi-
ment and the NLO QCD calculations was a factor of
2.9 ± 0.2 ± 0.4, or ∼4.2σ, which, naturally, prompted
searching for explanations beyond the SM [2]. Since
then, the NLO calculations of the b-quark production
were extended to include the NLL resummation as
well as the improved B-meson fragmentation func-
tion as obtained at LEP. The net result is shown in
Fig. 2 [3]. One can see that the data points remain
where they were two years ago, while the theoretical
curve has moved up and the discrepancy is now 1.7.

Another highly controversial result that even made
newspaper headlines was the apparent excess of
high-ET jets reported by CDF. The inclusive jet cross
section dσ/dET agreed with the pQCD calculation
for ET = 50–300 GeV (over six orders of magnitude
in cross section), but seemed to start departing from
the theory at higher transverse jet energies—Fig. 3
[4]. To make the situation even more entangled, the
D0 data [5] fell right in between the CDF and theory
points and were consistent with the theory and, at the
same time, with CDF. Immediately, it was pointed out
that the angular distributions of dijets (Fig. 4 [6]) did
not call for the presence of any, albeit very exotic, new
physics such as quark compositeness. At the same
time, it was also shown that the poor knowledge of
gluon PDF at large xmight be responsible for the dis-
crepancy. Recently, the CTEQ Collaboration released
a new set of PDF fits, CTEQ6M, that included H1,
ZEUS, CDF, and η-dependent D0 results, and, also,
new methods of treating the experimental systematic
errors. As a result, both the D0 and CDF data from
Run I are now in an amazingly good agreement with
the theory and with each other (Figs. 5 and 6 [7]).

Now, I will turn to a few examples of QCD results
still awaiting resolution. The first example is a large
2004 MAIK “Nauka/Interperiodica”
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excess of three- and four-jets events with all jets
being relatively soft as reported by D0 (Fig. 7 [8]). In
addition to the excess, the jets seem to have a different
spectrum of the overall misbalance in comparison to
Monte Carlo predictions (Fig. 8 [8]). However, these
discrepancies apparently can be removed by tweaking
some of the Monte Carlo parameters [9], but there
are no guarantees that such tuning would not cause
problems somewhere else.

Another troublesome measurement is too small
an inclusive jet cross section in proton–antiproton
collisions with a c.m. energy of 630 GeV. To reduce
the sensitivity to PDFs, one can consider a ratio of
inclusive cross sections at

√
s = 630 and 1800 GeV

r = [dσ/dxT (630)]/[dσ/dxT (1800)], where xT =
P

ET /(
√
s/2) (Fig. 9 [10]). In addition to being sys-

tematically ∼15% below the theory, the CDF and D0
data seem to have very different trends at xT < 0.1.

These two last discrepancies might be linked to the
uncertainties in relating the experimental and theo-
retical definitions of jets—inherently different entities,
given our limited abilities in handling multiparton
states within the pQCD framework. A good illustra-
tion for this issue is the recent CDF and D0 attempts
to switch to the kT -jet-finding algorithm [11] as an
alternative to the cone algorithm [12] commonly used
for Run I data analyses. The kT algorithm was a
standard at LEP and HERA and proved to be very
successful. Unexpectedly, both CDF and D0 encoun-
tered a problem that still remains: despite the fact
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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that both the kT algorithm with D = 1 and the cone
algorithm withR = 0.7 give nearly identical inclusive
jet cross sections within the NLO framework, when
applied to data, the kT algorithm gives a substantially
larger cross section and strongly disagrees with NLO
QCD (Fig. 10 [13]). The work on understanding this
setback is in progress.

The inclusive photon cross section provides for
means to study QCD physics without having to deal
with the problems associated with the jet-finding al-
gorithms. However, the results here do not seem
to follow the theory either. Both CDF and D0 da-
ta indicate that the photon ET spectrum is notice-
ably steeper than predicted by the theory (Fig. 11
[14])—a fact also observed way back by the UA2
Collaboration [15]. Varying PDFs and renormaliza-
tion/factorization scales does not seem to help in
this case. New ad hoc ideas (e.g., kT smearing of
the primary partons due to soft-gluon radiation) have
been put forward to help consolidate the theory and
experiment. Nevertheless, it is clear that more work
needs to be done.

Switching gears to soft QCD physics, I will con-
tinue with jet fragmentation phenomena, the inher-
ently soft process largely driven by gluon emissions off
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 20
a primary parton and giving rise to a jet. Such gluons
typically have transverse momenta of 200–300 MeV
with respect to the jet direction. The controversy
here is just the opposite to the examples discussed
earlier—it is in amazingly good agreement with the
experiment and the resumed pQCD calculations, also
known as MLLA. The fit of data yields a value for the
MLLA phenomenological kT -cutoff scale as low as
∼200 MeV (Figs. 12 and 13 [16])—the scale at which
pQCD language is hardly applicable at all.

The ratio of hadron multiplicities in gluon and
quark jets is yet another example of the 10-year-long
odyssey that began at LEP in 1991 [17] and has lasted
since then with more than ten papers published, the
most recent one after the closing of LEP [18]. The
measurements were inconsistent and ranged from
r ∼ 1.1 to ∼1.5 (with typically very small errors).
The CDF result, r = 1.6 ± 0.2 (Fig. 14 [19]), coming
from a completely different environment and obtained
using different techniques, will help settle the ordeal
related to this measurement.

The next example that I have selected for this note
is the diffractive phenomena. There have been a num-
ber of various subprocesses measured at Tevatron
04
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both by CDF and D0 (single and double diffraction,
hard diffraction, double-Pomeron exchange, etc.),
all indicating that the diffractive cross sections at
Tevatron were substantially smaller than one would
naively expect by extrapolating the results obtained
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at smaller energies. Figure 15 is a representative
example illustrating this discrepancy [20]. A number
of models have been suggested to account for the
difference, but there does not seem to be a common
agreement on how to deal with this issue.

Another soft QCD example is the structure of the
underlying event, for which there is not any quantita-
tive theory—all one has at hand is just a few Monte
Carlo generators with various knobs to tune, and it
is not uncommon that the default parameters fail to
describe data (Fig. 16 [21]). As will be discussed
below, the underlying event process will be of special
importance at LHC, and the lack of a theory becomes
ever more frustrating.

TEVATRON RUN II AND LHC

Tevatron Run II has a c.m. energy
√
s = 2.0 TeV

(up from 1.8 TeV in Run I). The design luminosity (to
peak by 2006 at ∼5 × 1032 cm−2 s−1) should allow
collecting 15 000 pb−1 worth of data by the year 2008
(Run I total was about 100 pb−1). The short-term
goal of 2000 pb−1 is often referred to as Run IIa. The
CDF and D0 detectors were substantially upgraded.
By the time of the conference, the accumulated lu-
minosity remained below 50 pb−1 per detector and,
therefore, significantly new results were still in the
domain of the future.

To give sense to what kind of QCD results one
might expect from Tevatron Run II, I give below just
PH
a few examples. With Run IIa statistics, one should
be able to measure the jet inclusive spectra well be-
yond 400 GeV. The number of events with jet ET >
400 GeV will be on the order of 500 (cf. 11 in Run I).
The factor of 20 in the statistics comes from the
luminosity and the additional factor of 2.5 comes from
the increase in the c.m. energy (Fig. 17 [22]). With the
full 15 fb−1 statistics (all Run II), one can advance in
the diphoton cross section up to ET ∼ 600 GeV (cf.
∼200 GeV in Run I) (Fig. 18 [22]). TheB physics will
doubly benefit: first, from the large luminosity and,
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second, from detector upgrades (a much improved
vertex detector at CDF; a newly added vertex detector
and a new magnetic field tracker at D0). All statis-
tically limited results from Run I will be substantially
improved over the next few years.

LHC will deliver 14-TeV proton–proton collisions
with the target luminosity of 1034 cm−2 s−1 and is to
become the facility for precision QCD studies—what
P

LEP was for the electroweak theory. Figures 19 [23]
and 20 [24] are just two illustrations of the fantastic
prospects. However, to take full advantage of these
opportunities, the ATLAS and CMS experimentalists
must push the limits of detector technology and have
set goals to achieve ∼2% jet energy resolution (cf.
∼10% at Tevatron Run I) and ∼1% energy scale
accuracy (cf. ∼5% at Tevatron Run I). In addition,
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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one should realize that, once the full luminosity is
achieved, there will be on average 20 minimum bias
events in each bunch crossing and this will imply
substantial experimental challenges for QCD stud-
ies: the multiple collision background will sum up
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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to about 10 charged tracks and ∼15 GeV of energy
flow within a jet cone of R ∼ 0.5. Unfortunately, the
poor understanding of the underlying and minimum
bias events results in large uncertainties in current
modeling of this background at LHC (Fig. 21 [25]).

As discussed in the Introduction, any search for
new physics is intimately connected to QCD. Accu-
rate measurement of the jet inclusive cross sections
will allow one to set ∼30–40 TeV limits [26] on quark
compositeness (or discover it!). Figure 22 [27] gives
a representative example of how ∼700-GeV squarks
and sgluons would manifest themselves in multijet
events with large missing ET .

CONCLUSIONS

Hadron colliders provide us with a wealth of data
for studying hard and soft QCD processes. Although
some of the questions that emerged from the Tevatron
Run I data analyses seem to have found explanations
over the last few years, there are still a few remain-
ing controversies awaiting their resolution. The Teva-
tron Run II is ramping up now and soon will provide
many more insights, while LHC, once turned on, will
become the ultimate machine for precision tests of
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
QCD. Searches for new physics at both Tevatron
Run II and LHC will not be possible without good
understanding of QCD that, very likely, will give rise
to these new phenomena and, at the same time, be the
major source of the background to them.

REFERENCES

1. CDF Collab., hep-ph/0111359.
2. E. L. Berger et al., Phys. Rev. Lett. 86, 4231 (2001).
3. C. Paus, in Proceedings of the ICHEP2002, Ams-

terdam.
4. CDF Collab., Phys. Rev. D 64, 032001 (2001).
5. D0 Collab., Phys. Rev. Lett. 82, 2451 (1999).
6. CDF Collab., Phys. Rev. Lett. 77, 5336 (1996); 78,

4307(E) (1997).
7. D. Stump, in Proceedings of the ICHEP 2002, Am-

sterdam.
8. D0 Collab., hep-ex/0106072.
9. D0 Collab., hep-ex/0207046.

10. J. Dittmann, in Proceedings of the ICHEP2002,
Amsterdam, The Netherlands, July 2002.

11. S. D. Ellis and D. E. Soper, Phys. Rev. D 48, 3160
(1993); S. Catani, Yu. L. Dokshitzer, M. H. Seymour,
and B. R. Webber, Nucl. Phys. B 406, 187 (1993).

12. J. Huth et al., in Proceedings of Research Direc-
tions for the Decade, Snowmass, 1990, Ed. by
E. L. Berger (World Sci., Singapore, 1992).

13. U. Bassler, in Proceedings of the ICHEP2002, Am-
sterdam.

14. CDF Collab., Phys. Rev. D 65, 112003 (2002).
15. UA2 Collab., Phys. Lett. B 263, 544 (1991).
16. CDF Collab., FERMILAB-PUB-02-096 (to be pub-

lished in Phys. Rev. D).
17. OPAL Collab., Phys. Lett. B 265, 462 (1991).
18. OPAL Collab., Eur. Phys. J. C 23, 597 (2002).
19. A. Pronko, APS Meeting, Albuquerque, New Mex-

ico, 2002.
20. K. Goulianos and J. Montanha, Phys. Rev. D 59,

114017 (1999).
21. R. Filed, in Proceedings of the Workshop on TeV-

Scale Physics, Cambridge, UK, 2002.
22. J. Huston, in Proceedings of the Workshop on TeV-

Scale Physics, Cambridge, UK, 2002.
23. J. Proudfoot, in Proceedings of the ICHEP2002,

Amsterdam.
24. ATLAS Detector and Physics Performance TDR,

25 May 1999, Fig. 15-2.
25. ATLAS Detector and Physics Performance TDR,

25 May 1999, Fig. 15-12.
26. ATLAS Detector and Physics Performance TDR,

25 May 1999, p. 939.
27. ATLAS Detector and Physics Performance TDR,

25 May 1999, Fig. 20-4.
4



Physics of Atomic Nuclei, Vol. 67, No. 1, 2004, pp. 62–68. From Yadernaya Fizika, Vol. 67, No. 1, 2004, pp. 63–69.
Original English Text Copyright c© 2004 by Kozlov.

VERY HIGH MULTIPLICITY PHYSICS
Finite-Temperature Bose–Einstein Distribution Functions
of Identical Particles*

G. A. Kozlov**

Joint Institute for Nuclear Research, Dubna, Moscow oblast, 141980 Russia
Received April 30, 2003

Abstract—We study the evolution properties of propagating identical particles produced at a finite tem-
perature in a randomly distributed environment. The lower bound on the spacetime size of the multiparticle
production region and the correlation chaoticity are derived. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The investigation of particle collisions with high
multiplicity is a central feature of modern particle
physics. An interest in (charged) particles “moving”
in an environment of quantum fields taking into ac-
count the relations between quantum fluctuations
and chaoticity is expressed by particle physicists.

One of the most important tasks of multiparticle
studies is to analyze fluctuations and correlations
such as the Bose–Einstein correlation (BEC) [1,
2] of produced particles. This is a rather instruc-
tive tool to study high-multiplicity hadron pro-
cesses in detail. The most recent reviews on BEC
can be found in [3]. We understand the multipar-
ticle production as the process of colliding par-
ticles where the kinetic energy is dissipated into
the mass of produced particles [4]. We consider
the incident energy

√
s � Λ, where Λ means the

quantum chromodynamics scale. Phenomenological
models [5–9] describing the crucial properties of
multiparticle correlations are very useful for sys-
tematic investigations of the properties caused by
the fluctuations and correlations. By considering
them, one can obtain the characteristic properties
of the internal structure of the disordering of pro-
duced particles in order to extract information on
the spacetime size of the multiparticle production
region, to estimate the lifetime of the particle emit-
ter, etc. The analysis of the correlation and dis-
tribution functions was used in [7] to understand
the possible views on quark–gluon plasma forma-
tion.

In this paper, we present a model to describe
high-multiplicity effects at finite temperature. The
most distinctive point of our model is that both the

∗This article was submitted by the author in English.
**e-mail: kozlov@thsun1.jinr.ru
1063-7788/04/6701-0062$26.00 c©
distribution and the correlation functions are taken
into account at a quantum level (the operators of pro-
duction and annihilation are used) with the random
source contributions coming from the environment. It
is well known that the cross section of the production
of N particles at a given c.m. energy

√
s of two

colliding particles with momenta p and p̄ is defined
as

σN (s) =
∫

dΩNδ
4


p+ p̄−

N∑
j=1

qj


 |AN (p, q)|2,

where AN is the N-particle production amplitude,
qj are the 4-momenta of produced particles, and
ΩN is a phase space. In a simple nonrelativistic
case, the multiplicity N depends on the mean kinetic

energy ε =
3
2
kT at temperature T as N = (

√
s+

ε)/(m + ε), where k is the Boltzmann constant and
m is the mass of a particle. We define the average
mean multiplicity 〈N̄〉 (as a natural scale of the
produced particle multiplicityN ) via the multiparticle
correlation function w(k) as 〈N̄ 〉 =

∫
dkw(k), where

k is the spatial momentum of a particle. Follow-
ing a natural way, we suppose 〈N̄ 〉 � N , while
N � N0 =

√
s/M , where M ∼ O(0.1 GeV). The

main object in this investigation is the multiparticle
thermal distribution function W̃ (kµ) related to 〈N〉
as

W̃ (kµ) = 〈N〉f(kµ) = 〈N〉〈b+(kµ)b(kµ)〉β, (1)

where 〈N〉 is defined as the scale of the multiplicity
N at four-momentum kµ (µ is the Lorenz index);
the normalized distribution function f(kµ) is finite,
i.e.,

∫
d4kf(kµ) < ∞; and the label β in (1) means

the temperature T (of the phase space occupied by
operators b+(kµ) and b(kµ)) inverse. The nature of
2004 MAIK “Nauka/Interperiodica”
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the operators b+(kµ) and b(kµ) will be clarified in
Section 3.

At present no (phenomenological) model can fit
the experimental data and no analysis from first prin-
ciples is in sight for BEC. As a new theoretical idea,
we use a method that combines different fields of
physics to describe BEC in the multiparticle produc-
tion processes:

(i) a semiphenomenological transport theory that
is formulated by means of an operator-field evolution
equation of the Langevin type [7–10];

(ii) an axiomatic quantum field theory [11] in terms
of distributions (generalized functions) [12];

(iii) a statistical distribution theory.
We formulate an evolution model of dual rep-

resentation in Section 2. In this paper, we claim
that the observation of the spacetime size effect
in the multiparticle production is derived via the
multiparticle correlation and distribution functions
as well as the so-called chaoticity which will be
introduced in Section 3. The multiparticle correlation
function formalism concerns the statistical physics
based on the Langevin-type equation. This equa-
tion, introduced in Section 3, is considered as a
basis for studying the approach to the equilibrium
of the particle(s). It is assumed that a heat bath
being in essence infinite in size for all times remains
in equilibrium as well. We use a method applied
to the model where a relativistic particle moving
in the Fock space is described by a number of
representations underlying the second quantization
formulation of the canonical field theory. We deal
with a microscopic look at the problem with the
elements of quantum field theory at a stochastic
level with the semiphenomenological noise embed-
ded into the evolution dissipative equation of mo-
tion. The statistical distribution of the particles will
be discussed in Section 4. We conclude in Sec-
tion 5.

2. THE MODEL OF DUAL
REPRESENTATION

WITHIN THE DISSIPATIVE DYNAMICS

Let us suppose that the evolution of particles pro-
duced at high energies is described by the solutions
of the model Hamiltonian where any physical system
of particles is described by the doublet of field oper-
ators. We introduce the dual states in the eigenbasis
{|k〉, |k(ε)〉} of the HamiltonianH , where 0 ≤ ε < ∞
is identified as the frequency representing the energy
of the object and |k〉 is a discrete eigenstate. We con-
sider the simple dual model where H is given within
the damped harmonic oscillator

H = H0 +Hi, (2)
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
where

H0 = ε0|k〉〈k| +
∞∫
0

dεε|k(ε)〉〈k(ε)|, (3)

Hi = ρ

∞∫
0

dεg(ε)[|k(ε)〉〈k| + |k〉〈k(ε)|], (4)

〈k|k〉 = 1, 〈k|k(ε)〉 = 〈k(ε)|k〉 = 0,

〈ε|ε′〉 = δ(ε − ε′).

Here, we identify |k〉, |k(ε)〉 and 〈k|, 〈k(ε)| with the
special mode operators of annihilation a, b(ε) and cre-
ation a+, b+(ε), respectively, e.g., for “quarks” and
“gluons” or their combinations. In the interaction
Hamiltonian (4), ρ is the coupling constant, while
g(ε) provides the transition between discrete and con-
tinuous states.

The equations of motion obeying (2) with (3) and
(4) are

idtak(t) = ε0ak(t) + ρ

∞∫
0

dεg(ε)bk(ε, t),

idtbk(ε, t) = εbk(ε, t) + ρg(ε)ak(t),

where the label k means |k| as the momentum. We
demand that ak(t) and bk(ε, t) meet the following
natural conditions:

ak(t)a+
k (t) +

∞∫
0

dεbk(ε, t)b+k (ε, t) < ∞,

[a+
k (t)]+ = ak(t), [b+k (ε, t)]+ = bk(ε, t).

The next step is to establish relations between the
variables and couplings of the model (2) and the phe-
nomenological constants, e.g., the frequency E and
the damping constant κ involved in the dissipative
dynamics given by the Boltzmann-type equations in
the relaxation time approximation:

dt〈ak(t)〉
〈ak(t)〉

= −(iE + κ), (5)

dtwk(t) = dt〈a+
k (t)ak(t)〉 = −2κ[wk(t) − n(β)].

(6)

Here,

dt〈ak(t)〉 = −iε0〈ak(t)〉 − ρ2

∞∫
0

dεg2(ε)

×
t∫

τ

ds〈ak(s)〉 exp[−iε(t− s)],
4
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〈ak(z)〉 = −iρ
z∫

τ

dx〈σk(x)〉 exp[−iε0(z − x)],

σk(t) =

∞∫
0

dεg(ε)bk(ε, t),

n(β) = [exp(ε0β) ± 1]−1

as τ → −∞. One can conclude that the phenomeno-
logical constants E and κ in (5) and (6) are nothing
else but ε0 and 2πρ2g2(ε0), respectively, i.e., the mi-
croscopic parameters coming from the model Hamil-
tonian (2).

3. THE MODEL

The investigation of BEC is one of the most chal-
lenging topics in modern physics to analyze theoreti-
cally such phenomena based on the general principles
of quantum field theory (QFT) at finite temperature.
However, such complicated phenomena are rather
far from the basic features of QFT to be connected
together. Hence, one needs to introduce an approxi-
mate semiphenomenological model that enables one
to clarify the details of correlations in terms of basic
variables and some parameters embedded into this
model.

Suppose the phase space of produced hadrons
consists of many “quantum” cells where a number
of the (canonical) operators a(kµ) and its Hermitian
conjugate a+(kµ) are localized. Since the nature
of the operators a(kµ) and a+(kµ) is unknown,
one can consider them as some mode operators
which can in principle be composed of any other
operators. Hence, the operator a(kµ) (a+(kµ)) de-
scribes a special matter mode that is excited in a
cell. For simplicity, one can identify the operator
a(kµ) with a single boson or fermion operator. The
system of “quantum” cells interacts with a more
extended system that is supposed to be a thermal
bath in which the energy of a system containing
“quantum” cells is dissipated. In a simple version,
the heat bath is considered as a large number of
independent harmonic oscillators given by the op-
erators ĉ (ĉ+) obeying the standard Hamiltonian
Hβ =

∑
i ωi(ĉ+i ĉi + 1/2). On the semiphenomeno-

logical level, we suppose that the rather complicated
multiparticle interaction process is replaced with
a single-particle operator b = a+R propagation
derived by a systematic operator A and disturbed
by a random force F1 = F + P . R is a random
source operator, while P gives a stationary external
force.
P

Considering the “propagation” of a particle with
momentum k in the quantum equilibrium phase
space under the influence of a random force coming
from surrounding particles, the dissipative dynamics
of the relevant system is described by an equation
containing only the first-order time derivatives of the
dynamic degrees of freedom, the operators b(k, t) and
b+(k, t) [7–9]:

i∂tb(k, t) = F1(k, t) −A(k, t). (7)

Here, the interaction of particles under consideration
with the surroundings as well as providing the prop-
agation is given by the operator A(k, t) defined as the
one closely related to the dissipation force:

A(k, t) =

+∞∫
−∞

K(k, t− τ)b(k, τ)dτ.

An interplay of particles with the surroundings is em-
bedded into the interaction complex kernel K(k, t),
while the real physical transitions are provided by
the random source operator F (k, t) with the zeroth
value of the statistical average, 〈F 〉 = 0. The random
evolution field operatorK(k, t) stands for the random
noise and it is assumed to vary stochastically with a
δ-like equal time correlation function

〈K+(k, τ)K(k′, τ)〉 = 2(πl)1/2ξδ(k − k′),

where both the strength of the noise ξ and the positive
constant l → ∞ define the effect of the Gaussian
noise on the evolution of particles in the thermalized
environment.

The formal solution to Eq. (7) in the operator form
in the four-momentum spacetime S(R4) (kµ = (ω =
k0, kj)) is b̃(kµ) = ã(kµ) + R̃(kµ), where the oper-
ator ã(kµ) is expressed via the Fourier-transformed
operator F̃ (kµ) and the Fourier-transformed kernel
function K̃(kµ) as ã(kµ) = F̃ (kµ)[K̃(kµ) − ω]−1,
while the function R̃(kµ) ∼ P [K̃(kµ) − ω]−1. We
suppose in our model that the heat bath (an en-
vironment) is an assembly of damped oscillators
coupled to the produced particles, which in turn
are distributed by the random force F̃ (kµ). In addi-
tion, there is the assumption that the heat bath is
statistically distributed. The random force operator
F (k, t) can be expanded by using the Fourier inte-
gral

F (k, t) =

+∞∫
−∞

dω

2π
ψ(kµ)ĉ(kµ)e−iωt,

where the formψ(kµ)ĉ(kµ) is just the Fourier operator
F̃ (kµ) = ψ(kµ)ĉ(kµ), and the canonical operator
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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ĉ(kµ) obeys the commutation relation[
ĉ(kµ), ĉ+(k′µ)

]
± = δ4(kµ − k′µ).

The function ψ(kµ) is determined by the condition
(the canonical commutation relation with the opera-
tors ĉ(kµ), ĉ+(k′µ) is taken into account)

+∞∫
−∞

dω

2π

[
ψ(kµ)

K̃(kµ) − ω

]2

= 1.

We formulate distribution functions of the produced
particles in terms of a point-to-point equal-time
temperature-dependent thermal correlation function
of the two operators

w(k,k′, t;T ) = 〈a+(k, t)a(k′, t)〉β
= Tr[a+(k, t)a(k′, t)e−Hβ ]/Tr(e−Hβ).

The standard canonical commutation relation[
a(k, t), a+(k′, t)

]
± = δ3(k − k′)

at every time t is used as usual for Bose (−) and Fermi
(+) operators.

The probability of finding the particles in the mul-
tiparticle production region with momenta k and k′ in
the same event at time t is

C2(k,k′, t) = W (k,k′, t)/[W (k, t)W (k′, t)].

Here, the one-particle thermal distribution function
in a simple version fluctuates only its normalization,
e.g., themeanmultiplicity 〈N〉,W (k, t) = 〈N〉f(k, t)
defining the single spectrum, while W (k,k′, t) =
〈N(N ′ − δij)〉f(k,k′, t) for i and j types of particles.
Here, δij = 1 if i = j and 0 otherwise. Distribution
functions f(k, t) and f(k,k′, t) look like

f(k, t) = 〈b+(k, t)b(k, t)〉
and

f(k,k′, t) = 〈b+(k, t)b+(k′, t)b(k, t)b(k′, t)〉,
respectively.

The ratio function C2 leads to enhanced probabil-
ity for emission of identical particles, which is given in
S(R4) [11, 12] as follows:

C2(kµ, k
′
µ;T ) = ξ(N)[1 +D(kµ, k

′
µ;T )], (8)

where

ξ(N) =
〈N(N ′ − δij)〉

〈N〉〈N ′〉 .

The two-particle BEC function Ξ(kµ, k
′
µ) looks

like

Ξ(kµ, k
′
µ) = 〈ã+(kµ)ã(k′µ)〉
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=
ψ∗(kµ)ψ(k′µ)

[K̃∗(kµ) − ω][K̃(k′µ) − ω′]
〈ĉ+(kµ)ĉ(k′µ)〉.

Taking into account the trick with the δ4(kµ − k′µ)
function being replaced by a δ-like consequence like
Ω(r) exp[−(k− k′)2r2] [12], one can get the following
expression for theD function:

D(kµ, k
′
µ;T ) = λ(kµ, k

′
µ;T ) exp(−q2/2) (9)

× [n(ω̄, T )Ω(r) exp(−q2/2) + R̃∗(k′µ)R̃(kµ)

+ R̃∗(kµ)R̃(k′µ)],

where

λ(kµ, k
′
µ;T ) =

Ω(r)
f̃(kµ)f̃(k′µ)

n(ω̄, T ),

ω̄ =
1
2
(ω + ω′),

while q2 ≡ Q2r2 and the function Ω(r)n(ω;T ) ×
exp(−q2/2) in (9) describes the spacetime size of the
multiparticle production region. Choosing the z axis
along the pp or p̄p collision axis, one can set

q2 = (r0 ·Q0)2 + (rz ·Qz)2 + (rt ·Qt)2,

Qµ = (k − k′)µ, Q0 = εk − εk′ , Qz = kz − k′z,

Qt = [(kx − k′x)2 + (ky − k′y)
2]

1/2
,

Ω(r) =
1
π2

r0 · rz · r2
t ,

where r0, rz , and rt are timelike, longitudinal, and
transverse “size” components of the multiparticle
production region. To derive (9), the Kubo–Martin–
Schwinger condition

〈a(k′, t′)a+(k, t)〉
= 〈a+(k, t)a(k′, t− iβ)〉 exp(−βµ)

has been used (µ is the chemical potential), and the
thermal statistical averages for the ĉ(kµ) operator
should be represented in the form

〈ĉ+(kµ)ĉ(k′µ)〉 = δ4(kµ − k′µ)n(ω, T ),

〈ĉ(kµ)ĉ+(k′µ)〉 = δ4(kµ − k′µ)[1 ± n(ω, T )]

for Bose (+) and Fermi (−) statistics, respectively;
n(ω, T ) = {exp[(ω − µ)β] ± 1}−1. Formula (9) indi-
cates that the chaotic multiparticle source emanating
from the thermalized multiparticle production region
exists. It is easy to see that the correlation functions
containing the random force functions F (k, t) carry
quantum features in the thermalized stationary equi-
librium, namely,

〈F (k, t)F+(k′, t′)〉 = δ3(k− k′)Γ1(k,−∆t),
4
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Γ1(k,−∆t) =
∫

dω

2π
|ψ(kµ)|2[1 ± n(ω, β)]

× exp(−iω∆t),

∆t = t− t′;

〈F+(k, t)F (k′, t′)〉 = δ3(k − k′)Γ2(k,∆t),

Γ2(k,∆t) =
∫

dω

2π
|ψ(kµ)|2n(ω, β) exp(iω∆t).

Quantitative information (longitudinal rz and trans-
verse rt components of the multiparticle production
region, the temperature T of the environment) could
be extracted by fitting theoretical formula (9) to the
measured D function and estimating the errors of
the fitted parameters. Hence, the measurement of the
spacetime evolution of the multiparticle source would
provide information on the multiparticle process and
the general reaction mechanism. The temperature of
the environment enters into formula (9) through the
two-particle correlation function Ξ(kµ, k

′
µ;T ). For-

mula (8) looks like the fitting CF ratio using a source
parametrization:

CF(r) = const[1 + λF(r)

× exp(−r2
t ·Q2

t /2 − r2
z ·Q2

z/2)],

where rt(rz) is the transverse (longitudinal) radius
parameter of the source with respect to the beam
axis and λF stands for the effective intercept pa-
rameter (chaoticity parameter) which has a general
dependence of the mean momentum of the observed
particle pair. Here, the dependence on the source
lifetime is omitted. The chaoticity parameter λF is
temperature-dependent and positive and is defined
by

λF(r) =
|Ω(r)n(ω̄;T )|2

f̃(kµ)f̃(k′µ)
.

The correlation function Ξ(kµ, k
′
µ),

Ξ(kµ, k
′
µ) = Ω(r)n(ω̄;T ) exp(−q2/2),

defines uniquely the size r of themultiparticle produc-
tion region. There is no satisfactory tool to derive the
precise analytic form of the random source function
R̃(kµ), but one can set [8, 9, 13]

R̃(kµ) = [α〈ã+(kµ)ã(kµ)〉]1/2
,

where α is of the order O(P 2/n(ω, T )|ψ(kµ)|2). Fi-
nally, one can obtain

D(q2;T ) =
λ̃1/2(ω̄;T )

(1 + α)(1 + α′)
e−q2/2 (10)

×
[
λ̃1/2(ω̄;T )e−q2/2 + 2(αα′)1/2

]
,

P

where λ̃(ω̄;T ) = n2(ω̄;T )/[n(ω;T )n(ω′;T )]. It is
easy to see that, in the vicinity of q2 ≈ 0, one can
get the full correlation if α = α′ = 0 and λ̃(ω̄;T ) = 1.
Setting α = α′ in (10), we find the formal lower
bound on the spacetime dimensionless size of the
multiparticle production region of the bosons

q2 ≥


 1

1 +
1
2

√
λ̃

α · α′




×


ln

[
2
√
λ̃αα′

B(1 + α)(1 + α′)

]2

+

√
λ̃

αα′




at (k − k′)2 ≤ 2/r2, where B means the maximal
value of C2 atQ = 0, otherwise

q2 ≥ 2 ln

[
2
√
λ̃αα′

B(1 + α)(1 + α′)

]

at (k − k′)2 � 2/r2.

4. STATISTICAL DISTRIBUTIONS

From a widely accepted point of view at high
energies, there are two channels, at least, for the
multiparticle production where produced particles
occupy the multiparticle production region consisting
of i elementary cells. These main channels are (a) a
direct channel, which assumes that all particles pj

are produced directly within quark (q)–antiquark
(q̄) annihilation or gauge-boson fusion, e.g., qq̄ →
pjpj . . .; (b) an indirect channel, which means that
the particles are produced via the decays of inter-
mediate vector bosons χ∗ in both heavy and light
sectors in the kinematically allowed region, e.g., qq̄ →
χ∗χ∗, . . . → pjpj, . . .. All the produced particles are
classified by the like-sign constituents that are la-
beled as p+, p−, p0 subsystems, where p: µ, π,K . . ..
The mean multiplicity 〈N〉 and the mean energy
〈E〉 of the pj subsystem are defined as [5] 〈N〉 =∑

j

∑
mj

mjζ
(mj)
j and 〈E〉 =

∑
j

∑
mj

mjεjζ
(mj)
j ,

where εj is the energy of a p particle in the jth elemen-

tary cell and ζ(mj)
j stands for the probability of finding

mj p particles in the jth cell and is normalized as∑∞
mj=0 ζ

(mj)
j = 1. In the direct channel for produced

charged mesons, 〈N〉 is defined uniquely for a given β
as

〈N〉 = 2
∑

j

[exp(εjβ) − 1]−1,
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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while 〈E〉 looks like

〈E〉 =
1
3
√
s =

∑
j

εj
exp(εjβ) − 1

.

Going into y-rapidity space in the longitudinal phase
space with a lot of cells of equal size δy, the energy εj
should be expressed in terms of the transverse mass

mt =
√

〈kt〉2 +m2
p (〈kt〉 and mp are the transverse
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
average momentum and the mass of the p parti-
cle):

εj(s) =
mt

2
[gj(s̃) + g−1

j (s̃)], s̃ =
s

4m2
t

,

gj(s̃) = (
√
s̃+

√
s̃− 1) exp[−(j − 1/2)δy].

Here, the four-momentum of the p particle is given
as
kµ =
(√

〈kt〉2 +m2
p cosh y, kt cosϕ, kt sinϕ,

√
〈kt〉2 +m2

p sinh y
)
,

where the azimuthal angle is in the range 0 < ϕ < 2π.
Our model produces an enhancement of C2(Q,β) in
the sufficiently small region of Q where C2 is defined
only by the model parameters α and α′ and the mean
multiplicity 〈N(s)〉 at the fixed value of β, namely,
(α = α′):

C2(Q,β) � ξ(〈N〉)


 1 +

√
λ̃(ω̄, β)

(1 + α)2
(11)

×
[√

λ̃(ω̄, β) + 2α−
(√

λ̃(ω̄, β) + α

)
Q2r2

] 
 .

It is clear that the C2(Q,β) function atQ2 = 0,

C2(Q,β) � ξ(〈N(s)〉)
[
2 −

(
α

1 + α

)2
]
,

cannot exceed 2 because of α �= 0 and ξ(N(s)) < 1
even at large multiplicity. The Boltzmann behavior
should be realized in the case where α → ∞; i.e.,
the main contribution to the fluctuating behavior
of the C2(Q,β) function should come from the
random source contribution [see (9) and (10)]. We
have found that the enhancement of the C2(Q,β)
function, mainly the shape of this function, strongly
depends on the transverse size rt of the phase
space and has a very weak dependence on the δy
size of a separate elementary cell. Increasing rt

makes the shape of the C2(Q,β) function more
crucial.

Obviously, ξ(〈N(s)〉) is the normalization con-
stant in (8), where 〈N(s)〉 should be derived at the
origin ofQ2 precisely from C2(Q = 0, β) ≡ C20(s) as

〈N(s)〉 � 1
ε
, where

ε = 1 − C20(s)

2 −
(

α

1 + α

)2
can be extracted from the experiment at some chosen
value of α (α = 0 should be taken into account as
well). On the other hand, the C2(Q,β) function al-
lows one to measure α = α′ which parameterizes the
random source contribution as well as the splitting
between α and α′. Neglecting the random source
contribution (i.e., setting α = α′ = 0), we can esti-
mate the chaoticity λ̃(ω̄, β) bymeasuringC2(Q,β) as
Q2 → 0.

In fact, the theoretical prediction thatD(Q,β) > 0
means that, in the multiparticle production region,
one should select the single boson “dressing” of some
quantum numbers, and the particles near it in the
phase space will be “dressed” with the same set of
quantum numbers. The amount of such neighboring
particles has to be as high as possible. This allows
a cell to be formed in the spacetime occupied by the
equal-statistics particles only. Such a procedure can
be repeated while all the particles occur in the mul-
tiparticle production region. This leads to the space-
time distribution of produced particles in the phase-
space cells formed only for bosons. In fact, there is
no restriction of the number of bosons occupying the
chosen elementary cells. It means that the D(Q,β)
function is defined for all orders.

5. SUMMARY AND DISCUSSION

We investigated the finite temperature BEC of
identical particles in multiparticle production using
the solutions to the operator field Langevin-type
equation in S(R4), the quantum version of the
Nyquist theorem, and quantum statistical methods.
We presented the crucial role of the model in de-
scribing BEC via calculations of the distribution
functions as functions of the mean multiplicity and

chaoticity at each four-momentum
√
Q2

µ. Based on

this model, one can compare the effects on single
particle spectra and the multiparticle distribution
4
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caused by the multiparticle correlations. There are
several parameters in the model: β, δy, α(α′). One
can focus on the statement that the deviation of
the D(Q,β) function from zero at finite values of
the physical variables q2 and the model parameter
α indicates that the multiparticle production region
should be considered as the phase space consisting
of elementary cells (each with the size δy) which
are occupied by particles of identical statistics. The
Boltzmann behavior of the C2 function (11) is avail-
able only at sufficiently large values ofα, whichmeans
the leading role of the random source contribution
to the distribution function. An important feature of
the model is getting information on the spacetime
structure of the multiparticle production region. We
are able to predict the source size as well as the
intercept parameter—the chaoticity λ. We have found
that the distribution function C2(Q,β) depends on
the number of elementary cells defined by equal size
δy in the rapidity y space.

There is no doubt that the best check of any model
could be made if various kinds of high-energy exper-
imental data on multiparticle correlations were well
reproduced by the model under consideration.
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VERY HIGH MULTIPLICITY PHYSICS
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Abstract—We present the results of the study of the energy correlators K2(n) and K3(n) and their ratio
R3(n) as a function of the hadron multiplicity at the LHC. The PYTHIA generator has been used. PYTHIA
predicts that R3(n) is not dependent on multiplicity. K2(n), K3(n), and the R3(n) ratio can be studied at
ATLAS. c© 2004 MAIK “Nauka/Interperiodica”.
The investigation of very high multiplicity (VHM)
events is a very important task for high-energy
physics [1]. The purpose of this study is to calculate
the energy correlators K2(n, s) and K3(n, s) and the
ratio R3(n, s) = |K3(n, s)|2/3/|K2(n, s)| as a func-
tion of hadron multiplicity at ATLAS [2]. The theory
predicts that the R3(n, s) ratio tends to equilibrium
for VHM events [1].

We will call very high multiplicity events ones
for which the condition n(s) � n̄(s) is fulfilled,
where n is the number of hadrons in an event, n̄
is the mean multiplicity of hadrons, and

√
s is the

c.m.s. energy. Figure 1 shows the distribution of
〈n〉P (n), where P (n) = σn/σtot, as a function of the
secondary particle multiplicity represented in units
of the mean multiplicity. The points are the results
of the E735 (FNAL) experiment at 1.8 TeV with
〈n〉 = 44 [3]. The A region corresponds to multipe-
ripheral kinematics where n ∼ n̄(s). The B region
is the thermodynamical region corresponding to the
approximation of the noninteracting gas where n→
nmax(s). The maximum possible number of hadrons
is equal to nmax(s) =

√
s/mπ, where mπ is the pion

mass. The C region corresponds to VHM events.
The cross section of such a process is significantly
smaller than 10−7σtot at 2 TeV. The thermodynamical
description of the final-state events in high-energy
physics is possible upon fulfillment of the condition of
Bogolyubov’s principle of vanishing correlators [4]:
Rl(n, s) = |Kl(n, s)|2/l/|K2(n, s)| 	 1, where l =
3, 4, . . ., Kl(n, s) is the l-particle energy correlator

∗This article was submitted by the authors in English.
1)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia, and Institute of Physics, National
Academy of Sciences of Belarus, Minsk, Belarus.

**e-mail: Iouri.Koultchitski@cern.ch
1063-7788/04/6701-0069$26.00 c©
for the n-particle event. Two- and three-particle
correlators are defined as

K2(n, s) = 〈([ε1;n, s] − 〈ε;n, s〉)([ε2;n, s]
−〈ε;n, s〉)〉

and

K3(n, s) = 〈([ε1;n, s] − 〈ε;n, s〉)([ε2;n, s]
−〈ε;n, s〉)([ε3;n, s] − 〈ε;n, s〉)〉,

where εi is the energy of the ith particle and 〈ε;n, s〉
is the mean energy.

PYTHIA has been used for this investigation [5].
For the simulation of the trigger events, the hard
processes have been used: qiqj → qiqj , qiq̄i → qj q̄j ,
qiq̄i → gg, qig → qig, gg → qiq̄i, gg → gg, where q
are quarks and g are gluons. The main background
for the VHM events at the LHC will be the soft
processes. There will be ≈23pp interactions in the
25 ns of one interaction of bunches at the full LHC
luminosity (1034 cm−2 s−1). The time of the data
collection will be 125 ns, for example, for the elec-
tromagnetic calorimeter. Therefore, about 115 soft
background events will be written, which are called
“pileup,” simultaneously with the trigger event. The
inelastic processes have been used for the simulation
of pileup events.

Figure 2 (left) shows the results of calculations
of the average energy and the correlators

√
K2(n)

and 3
√
K3(n) on the GeV scale as a function of the

hadron multiplicity at 14 TeV. The values of
√
K2(n)

have signs of K2(n). As can be seen, K2(n) and
K3(n) tend to zero at nh → 500. The dependence of
the R3(n) ratio on nh is given in Fig. 2 (right). The
PYTHIA predictions are given for theA region shown
in Fig. 1. The average value of the R3(n) ratio does
not depend on the hadron multiplicity and is equal
to 1.23. There is no tendency to equilibrium in this
2004 MAIK “Nauka/Interperiodica”
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Fig. 1.Multiplicity distribution 〈n〉P (n) in the KNO scaling form at 1.8 TeV.
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Fig. 2. The average energy (triangles), the correlators
√

K2(n) (crosses) and 3
√

K3(n) (stars) on the left side, and the R3(n)
ratio (black circles) on the right side as a function of the multiplicity at 14 TeV. The black squares on the right side are the
theory supposition for the very high multiplicity region.
region. This can be understood as PYTHIA is based
on the multiperipheral model [1].

Harder events have been selected taking into ac-
count the experimental trigger conditions. The re-
quirement on the transverse parton momentum pq

t ≥
pq,min

t has been used, where pq,min
t ≥ 500 GeV. This

has led to the multiplicity increasing to ≈ 800. How-
ever, no tendency to equilibrium is observed, although
the R3(n) ratio decreases to 1.1 for pq

t ≥ 2000 GeV.

The investigation of behavior of the VHMevents is
planned for ATLAS (LHC) [2] by using its calorime-
ter [6]. This calorimeter has beautiful energy resolu-
tion σ/E = (42%/

√
E + 1.8%) ⊕ 1.8/E in the bar-
P

rel region [7]. Only charged particles with trans-
verse momentum more than ≈ 1.5–2 GeV reach the
calorimeter because of the strong magnetic field (2 T)
of the solenoidal magnet. Therefore, only hadrons
with pt ≥ 2 GeV in the region |η| ≤ 2.5 have been
selected. The physics events satisfying the condi-
tion pq

t ≥ pq,min
t for partons have been simulated for

decreasing background pileup events. The obtained
distributions of the correlators K2(n) andK3(n) as a
function of multiplicity taking into account the pileup
are similar to the ones shown in Fig. 2 (left). As a
result of using the cuts pt ≥ 2GeV and |η| ≤ 2.5, the
maximum multiplicity decreases to ≈ 300 hadrons
per event. As before, there is no tendency to equi-
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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Fig. 3. The average energy (triangles), the correlators
√
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K3(n) (stars) on the left side, and the R3(n)
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librium for the R3(n) ratio, R3(n) = 1.21 for pq
t ≥

2000 GeV. It is important to note that it is not nec-
essary to take into account the detector acceptance
because the correlations are small and equal for all
particles in the VHM region.

Use of calorimetric information is assumed for
determining the energy correlators in the ATLAS
experiment. There is the projective geometry for
calorimeter towers. The initial transverse dimension
of a hadronic calorimeter tower is equal to η × φ =
0.1 × 0.1. The hadronic shower size is larger than
one calorimeter tower size [8]. Signals from each
tower have been used in the calculations separately.
The ATLFAST program [9] has been used for the
simulation.

Figure 3 (left) shows the dependence of the aver-
age energy and the energy correlators

√
K2(n) and

3
√
K3(n) for energy in calorimeter towers as a func-

tion of multiplicity of working towers and using the
cuts pt ≥ 1.5 GeV and |η| ≤ 3.5. The values of the
correlators lead to 5 GeV for nh → 500. The obtained
distributions are also similar to the ones shown in
Fig. 2 (left). The dependence of the R3(n) ratio as a
function of working towers is shown in Fig. 3 (right).
There is no tendency for the R3(n) ratio to decrease
when nh increases. The value of this ratio is equal
to 1.28 and coincides with the above results [Fig. 2
(right)].

The results of the study of the energy correlators
K2(n) and K3(n) and their ratio R3(n) as a function
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 20
of the hadronmultiplicity at 14 TeV are presented. It is
shown that the value of the ratio does not depend on
multiplicity and it is slightly more than unity. Thus,
PYTHIA does not predict tendency to equilibrium,
R3(n) 	 1, at high multiplicity. It is shown that the
pileup background and the change in the particle
energy to the detected ones in the ATLAS calorimeter
towers have a negligible effect onR3(n).
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Abstract—Recent results on particle momentum and spin correlations are discussed in view of the role
played by the effects of quantum statistics, includingmultiboson and coherence phenomena, and final-state
interaction. Particularly, it is demonstrated that the latter allows for (i) correlation femtoscopy with unlike
particles; (ii) study of the relative spacetime asymmetries in the production of different particle species (e.g.,
relative time delays or spatial shifts due to collective flows); and (iii) study of the particle strong interaction
hardly accessible by other means (e.g., in ΛΛ system). c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The momentum correlations of particles at small
relative velocities are widely used to study space-
time characteristics of the production processes, thus
serving as a correlation femtoscope. Particularly, for
noninteracting identical particles, like photons or, to
some extent, pions, these correlations result from
the interference of the production amplitudes due to
the symmetrization requirement of quantum statis-
tics (QS) [1, 2]. There exists [3] a deep analogy of
the momentum QS correlations of photons with the
spacetime correlations of the intensities of classical
electromagnetic fields used in astronomy to measure
the angular radii of stellar objects based on the super-
position principle—so-called HBT intensity interfer-
ometry [4].1)

∗This article was submitted by the author in English.
**e-mail: lednicky@fzu.cz
1)This analogy is sometimes misunderstood and the momen-
tum correlations are mixed up with the spacetime HBT
correlations in spite of their orthogonal character and the
failure of the superposition principle for correlations of iden-
tical fermions. In fact, in spite of the common QS origin
of the momentum correlations of identical particles and the
spacetime HBT correlations (allowing for a generalization
of the latter to any type of identical bosons or fermions),
the corresponding correlation measurements differ in prin-
ciple [3] (see also [5]). The former, being the momentum–
energy measurement, yields the spacetime picture of the
source, while the latter does the opposite. In particular, the
dependence of the number of coincident two-photon counts
on the distance between detectors (a quantum analogy of the
HBTmeasurement) provides information on the characteris-
tic relative three-momenta of emitted photons and so, when
divided by themean detectedmomentum, on the angular size
of a star, but, of course, no information on the star radius or
lifetime.
1063-7788/04/6701-0072$26.00 c©
The momentum QS correlations were first ob-
served as an enhanced production of the pairs of
identical pions with small opening angles (GGLP
effect [1]). Later on, Kopylov and Podgoretsky [2]
settled the basics of correlation femtoscopy; partic-
ularly, they suggested studying the interference effect
in terms of the correlation function and clarified the
role of the spacetime characteristics of particle pro-
duction in various physical situations.

Themomentum correlations of particles emitted at
nuclear distances are also influenced by the effect of
final-state interaction (FSI) [6–8]. Thus the effect of
the Coulomb interaction dominates the correlations
of charged particles at very small relative momenta (of
the order of the inverse Bohr radius of the two-particle
system), respectively suppressing or enhancing the
production of particles with like or unlike charges.
Though the FSI effect complicates the correlation
analysis, it is an important source of information al-
lowing for the coalescence femtoscopy (see, e.g., [9–
12]), the correlation femtoscopy with unlike parti-
cles [8, 13] including access to the relative spacetime
asymmetries in particle production [14] and a study of
particle interaction hardly accessible by other means.

We do not touch here the fluctuation measures
that are closely related to particle correlations in mo-
mentum space and carry important information on
the dynamics and spacetime evolution of the produc-
tion process (see [15] for a recent review).

The rest of the paper is organized as follows. In
Section 2, we briefly review the formalism of parti-
cle correlations at small relative velocities. The basic
concepts of femtoscopy with identical and nonidenti-
cal particles, including access to the relative space-
time shifts in the emission of various particle species,
and some recent results are reviewed in Sections 3,
2004 MAIK “Nauka/Interperiodica”
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5, and 7. In Section 4, we discuss the present the-
oretical and experimental status of the multiboson
and coherence phenomena in multiparticle produc-
tion. Recent results from correlationmeasurements of
the strong interaction in various two-particle systems
are reviewed in Section 6. In Section 8, we briefly
discuss spin correlations as a new femtoscopy tool.
We conclude in Section 9.

2. FORMALISM

The ideal two-particle correlation function
R(p1, p2) is defined as a ratio of the measured two-
particle distribution to the reference one which would
be observed in the absence of the effects of QS and
FSI. In practice, the reference distribution is usually
constructed by mixing the particles from different
events of a given class, normalizing the correlation
function to unity at sufficiently large relative veloci-
ties.
Usually, it is assumed that the correlation of two

particles emitted with a small relative velocity is
influenced by the effects of their mutual QS and
FSI only2) and that the momentum dependence of
the one-particle emission probabilities is inessential
when varying the particle four-momenta p1 and p2

by an amount characteristic for the correlation due to
QS and FSI (smoothness assumption). Clearly, the
latter assumption, requiring the components of the
mean spacetime distance between particle emitters
much larger than those of the spacetime extent of the
emitters, is well justified for heavy-ion collisions.
The correlation function is then given by a square

of the properly symmetrized Bethe–Salpeter am-
plitude in the continuous spectrum of the two-
particle states, averaged over the four-coordinates
xi = {ti, ri} of the emitters and over the total spin S
of the two-particle system [8]. After the separation
of the unimportant phase factor due to the c.m.s.
motion, this amplitude reduces to one depending
only on the relative four-coordinate ∆x ≡ x1 − x2 =
{t, r} and the generalized relative momentum q̃ =
q − P (qP )/P 2, where q = p1 − p2, P = p1 + p2, and
qP = m1

2 −m2
2; in the two-particle c.m.s., P = 0,

q̃ = {0, 2k∗}, and ∆x = {t∗, r∗}. At equal emis-
sion times of the two particles in their c.m.s. (t∗ ≡
t∗1 − t∗2 = 0), the reduced nonsymmetrized amplitude
coincides with a stationary solution ψS(+)

−k∗ (r∗) of the
scattering problem having, at large distances r∗,

2)Besides events with large phase-space density fluctuations,
this assumption also may not be justified in low-energy
heavy-ion reactions when the particles are produced in a
strong Coulomb field of residual nuclei. To deal with this
field, a quantum adiabatic (factorization) approach can be
used [16].
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the asymptotic form of a superposition of the plane
and outgoing spherical waves (the minus sign of the
vector k∗ corresponds to the reverse in time direction
of the emission process). The Bethe–Salpeter ampli-
tude can usually be replaced by this solution (equal
time approximation),3) so, for nonidentical particles,

R(p1, p2)
.=
∑
S

ρ̃S〈|ψS(+)
−k∗ (r∗)|2〉S ; (1)

for identical particles, the amplitude in Eq. (1) enters
in a symmetrized form:

ψ
S(+)
−k∗ (r∗) → [ψS(+)

−k∗ (r∗) + (−1)SψS(+)
k∗ (r∗)]/

√
2.
(2)

The averaging in Eq. (1) is done over the four-
coordinates of the emitters at a given total spin S of
the two-particles; ρ̃S is the corresponding population
probability,

∑
S ρ̃S = 1. For unpolarized particles

with spins s1 and s2, the probability ρ̃S = (2S +
1)/[(2s1 + 1)(2s2 + 1)]. Generally, the correlation
function is sensitive to particle polarization. For
example, if two spin-1/2 particles are initially emitted
with polarizationsP1 andP2, then [8]

ρ̃0 = (1− P1 · P2)/4, ρ̃1 = (3 + P1 · P2)/4.
(3)

3. FEMTOSCOPY WITH IDENTICAL
PARTICLES

For identical pions or kaons, the effect of the
strong FSI is usually small and the effect of the
Coulomb FSI can be in the first approximation simply
corrected for (see [17] and references therein). The
corrected correlation function is determined by the
QS symmetrization only [see Eq. (2) and replace
the nonsymmetrized amplitude with the plane wave
eiq∆x/2]:

R(p1, p2) = 1 + 〈cos(q∆x)〉. (4)

Its characteristic feature is the presence of the inter-
ference maximum at small components of the rela-
tive four-momentum q with the width reflecting the
inverse spacetime extent of the effective production

3)For noninteracting particles, the nonsymmetrized Bethe–
Salpeter amplitude reduces to the plane wave eiq̃∆x/2 ≡
e−ik∗·r∗ , which is independent of the relative time in the
two-particle c.m.s. and so coincides with the corresponding
equal-time amplitude. For interacting particles, the equal
time approximation is valid under the condition [8] |t∗| �
m2,1r

∗2 for sgn(t∗) = ±1, respectively. This condition is
usually satisfied for heavy particles like kaons or nucleons.
But even for pions, the t∗ = 0 approximation merely leads
to a slight overestimation (typically < 5%) of the strong
FSI effect and it doesn’t influence the leading zero-distance
(r∗ � |a|) effect of the Coulomb FSI.
4
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region. For example, assuming that, for a fraction λ of
the pairs, the pions are emitted independently accord-
ing to one-particle amplitudes of a Gaussian form
characterized by the spacetime dispersions r2

0 and τ
2
0 ,

while, for the remaining fraction (1− λ) related to
very long-lived sources (η, η′,K0

s , Λ, . . . ), the relative
distances r∗ between the emitters in the pair c.m.s.
are extremely large, one has

R(p1, p2) = 1 + λ exp
(
−r2

0q
2 − τ2

0 q
2
0

)
(5)

= 1 + λ exp
(
−r2

0q
2
T − (r2

0 + v2τ2
0 )q

2
L

)
,

where qT and qL are the transverse and longitudi-
nal components of the three-momentum difference q
with respect to the direction of the pair velocity v =
P/P0. One may see that, due to the on-shell con-
straint [2] q0 = v · q ≡ vqL (following from the equal-
ity qP = 0), strongly correlating the energy difference
q0 with the longitudinal momentum difference qL, the
correlation function at vτ0 > r0 depends substantially
on the direction of the vector q even in the case of a
spherically symmetric spatial form of the production
region.
Note that the on-shell constraint makes the q

dependence of the correlation function essentially
three-dimensional (particularly, in pair c.m.s., q∆x =
−2k∗ · r∗) and thus makes impossible a unique
Fourier reconstruction of the spacetime characteris-
tics of the emission process. However, within realistic
models, the directional and velocity dependence of
the correlation function can be used to determine
both the duration of the emission and the form of
the emission region [2], as well as to reveal the
details of the production dynamics (such as collective
flows; see, e.g., [18, 19] and the reviews [20, 21]).
For this, the correlation functions can be analyzed
in terms of the out (x), side (y), and longitudinal
(z) components of the relative momentum vector
q = {qx, qy, qz} [22, 23]; the out and side denote
the transverse, with respect to the reaction axis,
components of the vector q; the out direction is
parallel to the transverse component of the pair three-
momentum. The corresponding correlation widths
are usually parametrized in terms of the Gaussian
correlation radii Ri,

R(p1, p2) = 1 + λ (6)

× exp(−R2
xq

2
x −R2

yq
2
y −R2

zq
2
z −R2

xzqxqz),

and their dependence on pair rapidity and transverse
momentum is studied. The form of Eq. (6) assumes
azimuthal symmetry of the production process [20,
22]. Generally, e.g., in the case of correlation analysis
with respect to the reaction plane, all three cross
terms qiqj contribute [24].
It is well known that particle correlations at high

energies usually measure only a small part of the
P

spacetime emission volume, being only slightly sensi-
tive to its increase related to the fast longitudinal mo-
tion of particle sources. In fact, due to limited source
decay momenta p(s) of a few hundredMeV/c, the cor-
related particles with nearby velocities are emitted by
almost comoving sources and thus at nearby space-
time points. In other words, the maximal contribution
of the relative motion to the correlation radii in the
two-particle c.m.s. is limited by the moderate source
decay length τp(s)/m. The dynamical examples are
sources-resonances, color strings, or hydrodynamic
expansion. To substantially eliminate the effect of
the longitudinal motion, the correlations can be an-
alyzed in terms of the invariant variable qinv ≡ Q =
(−q̃2)1/2 = 2k∗ and the components of the momen-
tum difference in pair c.m.s. (q∗ ≡ Q = 2k∗) or in the
longitudinally comoving system (LCMS) [25]. In the
LCMS, each pair is emitted transverse to the reaction
axis so that the generalized relative momentum q̃ co-
incides with q∗ except for the component q̃x = γtq

∗
x,

where γt is the LCMS Lorentz factor of the pair.
Particularly, in the case of one-dimensional boost

invariant expansion, the longitudinal correlation ra-
dius in the LCMS reads [19] Rz ≈ (T/mt)1/2τ ,
where T is the freeze-out temperature, τ is the proper
freeze-out time, and mt is the transverse particle
mass. In this model, the side radius measures the
transverse radius of the system, while, similar to
Eq. (5), the square of the out radius gets an additional
contribution (pt/mt)2∆τ2 due to the finite emission
duration ∆τ . The additional transverse expansion
leads to a slight modification of the pt dependence
of the longitudinal radius and to a noticeable decrease
in the side radius and the spatial part of the out radius
with pt. Since the freeze-out temperature and the
transverse flow also determine the shapes of the mt

spectra, the simultaneous analysis of correlations and
single-particle spectra for various particle species
allows one to disentangle all the freeze-out charac-
teristics (see [20] for a review). It appears that, with
increasing energy of heavy-ion collisions from AGS
and SPS up to the highest energies at RHIC, the
data show rather weak energy dependence [26] and
point to a kinetic freeze-out temperature somewhat
below the pion mass, a strong transverse flow (with
the mean transverse flow velocity at RHIC exceeding
half the velocity of light [27]), a short evolution time
of 8–10 fm/c, and a very short emission duration
of about 2 fm/c. The short evolution and emission
duration at RHIC are also supported by the correla-
tion analysis with respect to the reaction plane [28].
The small time scales at RHIC were not expected in
transport and hydrodynamic models [29, 30] and may
indicate an explosive character of particle production
(see, e.g., [31, 32]). In fact, the RHIC data can be
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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described in the so-called blast wave model [33, 34]
assuming a strong three-dimensional expansion with
a sharp boundary of the freeze-out density profile in
transverse plane. The same model with ∼ 15% lower
mean transverse flow velocity is also consistent with
the SPS data [35].

4. MULTIBOSON AND COHERENCE
EFFECTS

In present and future heavy-ion experiments at
SPS, RHIC, and LHC, many hundreds or thousands
of pions can be produced per unit rapidity interval.
Since pions are bosons, there can be multiboson ef-
fects enhancing the production of pions with low rela-
tive momenta, thus increasing the pion multiplicities,
softening their spectra, and modifying the correlation
functions (see [36–38] and references therein). In
particular, it was shown [37] that the width of the low-
pt enhancement due to Bose–Einstein (BE) conden-
sation decreases with the system size as r−1/2

0 and
this narrowing makes easier the identification of this
effect among others. For events of approximately fixed
multiplicity, the multiboson effects can be triggered
by decreasing correlation strength and a dip in the
two-pion correlation function at intermediate relative
momenta [37, 38].
Though the present data do not point to any spec-

tacular multiboson effects, one can hope to observe
new interesting phenomena like boson condensation
or speckles in some rare events or in eventually over-
populated kinematic regions with the pion density in
six-dimensional phase space, f = (2π)3d6n/d3pd3x,
of the order of unity. An example is a rapidly expand-
ing system with the entropy much smaller than in the
case of total equilibrium. Then a strong transverse
flow can lead to rather dense gas of soft pions in
the central part of the hydrodynamic tube at the final
expansion stage (see, e.g., [39]). Another reason can
be the expected formation of a quark–gluon plasma
or mixed phase. Due to large gradients of temperature
or velocity, the hydrodynamic layer near the boundary
with vacuum can decay at a large phase space density
and lead to pion speckles even at moderate transverse
momenta [40].
In the low-density limit (f � 1), the mean phase

space density at a given momentum p can be es-
timated as the mean number of pions interfering
with a pion of momentum p (rapidity y and trans-
verse momentum pt) and building the BE enhance-
ment in the two-pion correlation function [41, 42]:
〈f〉p ∼ π3/2N(p)/V , where N(p) = d3n/d3p and
V = rxryrz is the interference volume defined in
terms of the outward (rx), sideward (ry), and longi-
tudinal (rz) interferometry radii. Typically, 〈f〉p ∼ 0.1
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for midrapidities and pt ∼ 〈pt〉 [41]. The data are also
consistent with the phase space density of pions near
the local thermal equilibrium [43, 44].
At AGS and SPS energies, the interference vol-

ume V seems to scale with dn/dy (see, e.g., [44, 45]),
pointing to the freeze-out of pions at a constant phase
space density. This trend is, however, questioned by
recent STAR data from RHIC, indicating an increase
in the freeze-out phase space density with energy
(a slight increase in V is not sufficient to balance
∼ 50% increase in dn/dy as compared with SPS)
and centrality [46]. Extrapolation of the RHIC phase
space density measurements to low transverse mo-
menta predicts 〈f〉p close to unity for central events,
suggesting that significant multiboson effects can be
present at low pt at RHIC.
According to lattice Monte Carlo calculations in-

cluding dynamical fermions, deconfining phase tran-
sition leading to a quark–gluon plasma (QGP) phase
of matter is accompanied by restoration of chiral sym-
metry. Subsequent phase transition into the hadronic
phase can be revealed, particularly, through substan-
tial delays in particle emission and/or through the
coherent component of the pion radiation. This com-
ponent would be characterized by a narrow Poisson
multiplicity distribution, contrary to wide multiplicity
fluctuations in the usual BE condensate. The pions
in the coherent state may appear from the decay of
a quasi-classical pion field (the order parameter of
the phase transition), the latter possibly being related
to the spontaneous chiral symmetry breaking via the
formation of the disoriented chiral condensate (DCC)
(see [47] and [48] for a review).
The most plausible mechanism of DCC forma-

tion is a fast expansion of hot QGP resulting in a
rapid suppression of thermal fluctuations (quench-
ing), which in turn triggers a dramatic amplification
of soft pion modes. The detection and study of DCC
are expected to provide valuable information about
the chiral phase transition and vacuum structure of
strong interactions. DCC formation is usually ex-
pected to be associated with large event-by-event
fluctuations in the ratio of neutral to charged pions in
a certain phase-space domain. The search for these
fluctuations at CERN SPS has so far resulted in
setting only an upper limit on the production of a
single DCCdomain [49]. The absence of experimental
evidence for isospin fluctuations has been, however,
recently claimed to be in agreement with a presum-
ably more realistic picture of an “unpolarized” DCC
with the Fourier modes of the field randomly oriented
in isospin space (instead of being aligned as in the
original DCC scheme) [50]. The search for other
DCC signatures like low-momentum pion clusters
is therefore important. Particularly, one can exploit
04
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the impact of the admixture of coherent radiation on
the QS and Coulomb correlations of like and unlike
pions [51]. Other possibilities of experimental investi-
gations of BE condensate and DCC phenomena have
been discussed, e.g., in [52, 53].
The presence of the coherent pions (or pions emit-

ted in the same quantum state) manifests itself also as
a suppression of the BE correlations of two or more
identical pions [7, 54–56]. Unfortunately, there are
also other reasons leading to the suppression of parti-
cle correlations. Besides the experimental effects like
finite resolution and particle misidentification (which
can be corrected for), presumably the most important
one is the contribution of the particles emitted by
long-lived sources [57], leading to the appearance of
the parameter λ < 1 in Eqs. (5) and (6). Also, the
usual Gaussian parametrizations of the QS correla-
tion functions may be inadequate and lead to λ < 1
in the presence of sources with moderate but very
different spacetime characteristics [57–59].
In principle, the effect of long-lived sources can

be eliminated in a combined analysis of two-pion
and three-pion correlation functions. The measured
quantity is the genuine three-pion correlation nor-
malized with the help of the three two-pion contribu-
tions—its intercept measures the chaotic or coherent
fraction [60]. The first such measurements have been
performed only recently in heavy-ion experiments at
CERN SPS [61, 62] and RHIC [63] and in e+e−

collisions at LEP [64]. The most accurate ones at
RHIC and LEP indicate a dominant chaotic fraction,
though the systematic errors allow for a substantial
coherent component. Some sources of the systematic
errors, e.g., the simplified treatment of the two-body
Coulomb and strong FSI, can be overcome. However,
others, e.g., the approximate (factorization) treatment
of the multiparticle FSI or the insufficiently differ-
ential analysis of the three-pion correlation function,
can hardly be avoided at present computational and
experimental possibilities.

5. FEMTOSCOPY WITH UNLIKE PARTICLES

The complicated dynamics of particle production,
including resonance decays and particle rescatter-
ings, leads to an essentially non-Gaussian tail of the
distribution of the relative distances r∗ of the par-
ticle emitters in the pair rest frame. Therefore, due
to different r∗ sensitivity of the QS and strong and
Coulomb FSI effects, one has to be careful when
analyzing the correlation functions in terms of simple
models. Thus, the QS and strong FSI effects are
influenced by the r∗ tail mainly through the suppres-
sion parameter λ already for distances of the order of
the inverse q resolution (typically, some tens of fm),
while the Coulomb FSI is sensitive to distances as
P

large as the pair Bohr radius |a|; for ππ, πK, πp,
KK, Kp, and pp pairs, |a| = 387.5, 248.6, 222.5,
109.6, 83.6, and 57.6 fm, respectively. Clearly, the
usual Gaussian parametrizations of the distributions
of the components of the distance vector r∗ may
lead to inconsistencies in the treatment of QS and
FSI effects (the Coulomb FSI contribution requiring
larger effective radii). These problems can be at least
partially overcome with the help of transport code
simulations accounting for the dynamical evolution of
the emission process and providing the phase space
information required to calculate the QS and FSI
effects on the correlation function.
Thus, in a preliminary analysis of the NA49 cor-

relation data from central Pb + Pb 158 A GeV colli-
sions [65, 66], the freeze-out phase space distribution
was simulated with the RQMD v. 2.3 code [67]. The
correlation functions were calculated using the code
of [8], weighting the simulated pairs by squares of
the corresponding wave functions. The dependence
of the correlation function on the invariant relative
momentum Q = 2k∗ was then fitted according to the
formula [65]

R(Q) = norm · [purity · RQMD(r∗ → scale · r∗)
(7)

+ (1− purity)];

to account for a possible mismatch in 〈r∗〉, the depen-
dence on the r∗-scale parameter was introduced us-
ing the quadratic interpolation of the points simulated
at three scales chosen at 0.7, 0.8, and 1. The fitted val-
ues of the purity parameter are in reasonable agree-
ment with the expected contamination of∼ 15% from
strange particle decays and particle misidentification.
The fitted values of the scale parameter indicate that
RQMD overestimates the distances r∗ by 10–20%.
Similar overestimation has also been observed when
RQMDpredictions are compared with the NA49 data
on pp and π±π± correlations [68–70].
Recently, there appeared data on pΛ correlation

functions fromAu+Au experiment E895 at AGS [71]
and Pb + Pb experiment NA49 at SPS CERN [72].
As the Coulomb FSI is absent in the pΛ system, one
avoids here the problem of its sensitivity to the r∗

tail. Also, the absence of the Coulomb suppression
of small relative momenta makes this system more
sensitive to the radius parameters as compared with
pp correlations [73]. In spite of rather large statistical
errors, a significant enhancement is seen at low rel-
ative momentum, consistent with the known singlet
and triplet pΛ s-wave scattering lengths. In fact, the
fits using the analytical expression for the correlation
function (originally derived for the pn system [8]) yield
for the AGS data [66] the purity of 0.5± 0.2 and the
Gaussian radius of 4.5± 0.7 fm. For the NA49 data,
the fitted parameters are [72] 0.17 ± 0.11 and 2.9 ±
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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0.7 fm. The fitted AGS purity is consistent with the
product of the estimated one, while the NA49 purity
is about one standard deviation too low. When the
NA49 purity is fixed at the estimated value of 0.33, the
Gaussian radius increases by about 1 fm and becomes
3.8 ± 0.4 fm [72]. The fitted AGS and NA49 radii are
in agreement with the radii of 3–4 fm obtained from
pp correlations in heavy-ion collisions at GSI, AGS,
and SPS energies.

6. CORRELATION MEASUREMENT
OF STRONG INTERACTION

In the case of poor knowledge of the two-particle
strong interaction, which is the case for meson–
meson, meson–hyperon, or hyperon–hyperon sys-
tems,4) it can be improved with the help of correlation
measurements.
In heavy-ion collisions, the effective radius r0 of

the emission region can be considered much larger
than the range of the strong-interaction potential.
The FSI contribution is then independent of the
actual potential form [75]. At small Q = 2k∗, it is
determined by the s-wave scattering amplitudes
fS(k∗) [8]. For |fS | > r0, this contribution is of the
order of |fS/r0|2 and dominates over the effect of QS.
In the opposite case, the sensitivity of the correlation
function to the scattering amplitude is determined by
the linear term fS/r0.
The possibility of a correlation measurement of

scattering amplitudes has been demonstrated [66]
in a recent analysis of the NA49 π+π− correla-
tion data within the RQMD model. For this, the
strong-interaction scale has been introduced (sim-
ilar to the r∗ scale), redefining the original s-wave
π+π−scattering length f0 = 0.232 fm: f0 → sisca ·
f0. The fitted parameter sisca = 0.63 ± 0.08 appears
to be significantly lower than unity. Recent BNL
data on Kl4 decays also point to a similar shift
(∼ 20%) [76]. These results are in agreement with the
two-loop calculation in the chiral perturbation theory
with a standard value of the quark condensate [77].
Recently, also the singlet ΛΛ s-wave scattering

length f0 has been estimated [66, 72] on the basis
of fits of the NA49 ΛΛ data. Using the analytical
expression for the correlation function [78] (originally
derived for the nn system [8]) and fixing the purity
of direct Λ pairs at the estimated value of 0.16 and
varying the effective radius r0 in the acceptable range
of several fm, one gets [72], e.g., f0 = 2.4 ± 2.1 and

4)The ΛΛ system is of particular interest in view of an ex-
perimental indication of the enhanced ΛΛ production near
threshold [74] and its possible connection with the six-quark
H dibaryon problem.
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3.2 ± 5.7 fm for r0 = 2 and 4 fm, respectively (we
use the same sign convention as for meson–meson
and meson–baryon systems). Though the fitted re-
sults are not very restrictive, they likely exclude the
possibility of a large positive singlet scattering length
comparable to that of ∼20 fm for the two-nucleon
system.
Important information also comes from ΛΛ cor-

relations at LEP [79]. Here, the effective radius r0
is substantially smaller than the range of the strong
interaction potential, so the ΛΛ correlation function
is sensitive to the potential form and requires one to
account for waves with orbital angular momentum
up to l ∼ 20 [80]. In [79], the strong interaction has
been neglected and the observed decrease of the ΛΛ
correlation function at small Q has been attributed
solely to the effect of the QS (Fermi–Dirac) suppres-
sion. The correlation function has been fitted by the
expression5)

R = 1− 1
2
λ(1 + P2) exp(−r2

0Q
2), (8)

corresponding to the simple Gaussian distribution
of the components of the relative distance vector r∗

characterized by a dispersion 2r2
0. The fitted results

are, however, unsatisfactory for two reasons [80]: (i)
the parameter λ = 1.2± 0.2 [neglecting in Eq. (8) the
P2 polarization term on a percent level] is signifi-
cantly higher than the value of ∼ 0.5 expected due
to the feed-down from Σ0 and weak decays; (ii) the
parameter r0 = 0.11 ± 0.02 fm appears to be smaller
than the string model lower limit of ∼ 0.2 fm. There-
fore, the observed anticorrelation at small Q can be
considered as direct evidence for a repulsive core in
the ΛΛ interaction potential.6) In fact, reasonable fits
can be achieved using the Nijmegen singlet poten-
tial NSC97e [81], rescaling the triplet one from [82],
and neglecting spin–orbit and tensor couplings. For
example, at a fixed λ = 0.6, the fitted radius takes an
acceptable value r0 = 0.29 ± 0.03 fm [80].

7. ACCESSING RELATIVE SPACETIME
ASYMMETRIES

The correlation function of two nonidentical par-
ticles, compared with identical ones, contains a fun-
damentally new piece of information on the relative

5)The singlet and triplet contributions to the correlation
functionR = Rs + Rt areRs,t = ρ̃s,t[1 ± λ exp(−r2

0Q
2)],

where ρ̃s,t depend on the Λ polarization P according to
Eq. (3) withP1 = P2 = P .

6)The repulsive core arises due to the exchange of vector
mesons and is present, e.g., in various Nijmegen potentials
used for the analysis of the double Λ hypernuclei. The core
height and width are about 9 GeV and 0.4 fm, respectively.
The s-wave scattering length (effective radius) ranges from
about 0.3 (15) to 11 (2) fm.
4
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spacetime asymmetries in particle emission such as
mean relative time delays in the emission of various
particle species [14]. It can be particularly useful in
searches for the effects of the quark–gluon plasma
phase transition like delays between the emission of
strange and antistrange particles due to the process of
strangeness distillation from the mixed phase. Impor-
tant information is also contained in the spatial part of
the asymmetry related, in particular, to the intensity of
the collective flow [66].
Since the information on the relative spacetime

shifts enters the two-particle wave function through
the terms odd in k∗ · r∗ ≡ p∗

1 · (r∗1 − r∗2), it can be
accessed by studying the correlation functions R+i

andR−i with, respectively, positive and negative pro-
jection k∗i of the momentum k∗ = p∗

1 = −p∗
2 onto a

given direction i, or the ratio R+i/R−i. For example,
i can be the direction of the pair velocity or any of the
out (x), side (y), and longitudinal (z) directions. Note
that, in the LCMS system,

r∗x ≡ ∆x∗ = γt(∆x− vt∆t), (9)

r∗y ≡ ∆y∗ = ∆y, r∗z ≡ ∆z∗ = ∆z,

where γt = (1− vt
2)1/2 and vt = Pt/P0 are the pair

LCMS Lorentz factor and velocity. One may see that
the asymmetry in the out (x) direction depends on
both space and time asymmetries 〈∆x〉 and 〈∆t〉. In
the case of a dominant Coulomb FSI, the intercept of
the correlation function ratio is directly related to the
asymmetry 〈r∗i 〉 [83, 84] (see also [85]):

R+i/R−i ≈ 1 + 2〈r∗i 〉/a, (10)

where a = (µz1z2e2)−1 is the Bohr radius of the two-
particle system taking into account the sign of the
interaction (zie are the particle electric charges and
µ is their reduced mass).
At low energies, the particles in heavy-ion colli-

sions are emitted with characteristic emission times
of tens to hundreds of fm/c, so that the observ-
able time shifts should be of the same order [14].
Such shifts have indeed been observed with the
help of the R+/R− correlation ratios for proton–
deuteron systems in several heavy-ion experiments
at GANIL [86], indicating, in agreement with the
coalescence model, that deuterons are on average
emitted earlier than protons.
For ultrarelativistic heavy-ion collisions, the sen-

sitivity of the R+/R− correlation ratio to the rela-
tive time shift 〈∆t〉 (introduced ad hoc) was stud-
ied for various two-particle systems simulated using
transport codes [85]. The scaling of the effect with
the spacetime asymmetry and with the inverse Bohr
radius a was clearly illustrated. It was concluded
that the R+/R− ratio can be sensitive to shifts in
particle emission times of the order of a few fm/c.
P

Motivated by this result, the correlation asymmetry
for the K+K− system has been studied in a two-
phase thermodynamic evolution model and the sensi-
tivity to the production of the transient strange quark-
matter state has been demonstrated even if it decays
on strong-interaction time scales [87]. The method’s
sensitivity to the spacetime asymmetries arising also
in the usual multiparticle production scenarios was
demonstrated for AGS and SPS energies using the
transport code RQMD [65, 83, 84]. At AGS en-
ergy, Au + Au collisions have been simulated and
πp correlations have been studied in the projectile
fragmentation region where proton directed flow is
most pronounced and where the proton and pion
sources are expected to be shifted relative to each
other both in the longitudinal and in the transverse
directions in the reaction plane. It was shown [84]
that the corresponding R+/R− ratios are sufficiently
sensitive to reveal the shifts; they were confirmed
in the directional analysis of the experimental AGS
correlation data [88].
At SPS energy, the simulated central Pb + Pb

collisions yield practically zero asymmetries for the
π+π− system, while, for π±p systems, the LCMS
asymmetries are 〈∆x〉 = −6.2 fm, 〈∆y〉 = 〈∆z〉 =
0, 〈∆t〉 = −0.5 fm/c, and 〈∆x∗〉 = −7.9 fm in the
symmetric midrapidity window7) [83] and 〈∆x〉 =
−5.2 fm, 〈∆y〉 = 0, 〈∆z〉 = −6.5 fm, 〈∆t〉 =
2.9 fm/c, and 〈∆x∗〉 = −8.5 fm for the NA49 ac-
ceptance (shifting the rapidities into the forward
hemisphere) [65]. In addition, 〈x〉 increases with
particle pt or ut = pt/m starting from zero due to
kinematic reasons. The asymmetry arises because
of a faster increase with ut for heavier particles. The
nonzero positive value of 〈x〉 = 〈rtx̂〉 (x̂ = pt/pt and
rt is the transverse radius vector of the emitter) along
with the hierarchy 〈xπ〉 < 〈xK〉 < 〈xp〉 is a signal of a
universal transversal collective flow [65, 66]. To see
this, one should simply take into account that the
thermal transverse velocity βT is smaller for heavier
particles and thus washes out the positive shift due
to the transversal collective flow velocity βF to a
lesser extent. More explicitly, in the nonrelativistic
approximation, the transverse velocityβt = βF +βT ;
in the out-side decomposition, βt = βt{1, 0}, βF =
βF {cos φr, sinφr}, and βT = βT {cos φT , sinφT }.
Due to the azimuthal symmetry, the angles φr and
φT are uniformly distributed, and the vector of the
transversal collective flow velocityβF is parallel to the
transverse radius vector rt = rt{cosφr, sin φr} and
its magnitude depends only on rt: βF = βF (rt). To

7)〈∆y〉 = 0 due to the azimuthal symmetry and 〈∆z〉 = 0 in
a symmetric midrapidity window due to the symmetry of the
initial system.
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calculate 〈x〉, one has to average over four variables
rt, φr, βT , and φT . At a fixed transverse velocity vector
βt, only two of them (e.g., rt, φr or rt, βT ) are inde-
pendent. In particular, β2

T = β2
t + β2

F − 2βtβF cosφr ,
so the destructive effect of the thermal velocity βT on
the out shift is clearly seen:

〈x〉 = 〈rt cosφr〉 =
〈
rt
β2

t + β2
F − β2

T

2βtβF

〉
. (11)

The maximal out shift 〈x〉max = 〈rt〉 corresponds to
zero thermal velocity. The shift vanishes when the
width of the contributing interval |βt − βF | ≤ βT ≤
βt + βF becomes negligible compared with the char-
acteristic width of the thermal distribution, e.g., at
βt → 0 or βF → 0, or for very light particles; the angle
φr is then decorrelated from βT and so distributed
uniformly in the full angular interval (−π, π).8) As a
result, in the case of a locally equilibrated expansion
process, one expects a negative asymmetry 〈∆x〉 ≡
〈x1 − x2〉 provided m1 < m2. Moreover, this asym-
metry vanishes in both limiting cases: βF � βT and
βF � βT .
These conclusions agree with the calculations

in the longitudinal-boost invariant hydrodynamic
model. Thus, assuming a linear nonrelativistic trans-
versal flow velocity profile βF = β0rt/r0, the local
thermal momentum distribution characterized by the
kinetic freeze-out temperature T , and the Gaussian
density profile exp(−r2

t /(2r2
0)), one confirms a faster

rise of 〈x〉 with βt for heavier particles {see the
nonrelativistic limit of Eq. (30) in [89]}:

〈x〉 = r0
βtβ0

β2
0 + T/mt

. (12)

The maximal magnitude of the asymmetry 〈x1 −
x2〉 at β1t = β2t = vt is achieved for an optimal
value of the flow parameter β0 = T/(m1tm2t)1/2 =
T/(γ2

t m1m2)1/2; e.g., for πp pairs at vt = 0.6 (close
to a mean LCMS velocity of low-Q πp pairs in the
NA49 experiment at SPS [65]) and T = 120 MeV,
the optimal value β0 = 0.27. The SPS data on
particle spectra and interferometry radii in central
Pb + Pb collisions at 158 A GeV are consistent
with the parameters β0 ≈ 0.35, r0 ≈ 6 fm, and T ≈
120 MeV with uncertainties of 10–20% [20, 35,
90]. The corresponding out asymmetry for πp pairs
〈∆x〉 = 〈xπ − xp〉 ≈ −4 fm at vt = 0.6. As for the
longitudinal and time shifts, in the longitudinal-
boost invariant hydrodynamic model, z = τ sinh η
and t = τ cosh η, where τ is the proper freeze-out

8)Note that, irrespective of the thermal width, the side shift
〈y〉 = 〈rt sin φr〉 = 0, since, due to azimuthal symmetry, the
angles φr and−φr contribute with the same weights.
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time and η is the emitter rapidity. At a given pt, the
LCMS η distribution of the contributing emitters
is given by the thermal law exp(−mt cosh η/T ).
Being symmetric, it predicts vanishing longitudinal
shift: 〈z〉 = 〈τ sinh η〉 = 0. To estimate the time shift,
for mt > T , one can write cosh η ≈ 1 + η2/2 and

get 〈t〉 ≈ τ

(
1 +

1
2
T/mt

)
.9) For central Pb + Pb

collisions at SPS, τ ∼ 8 fm/c and the relative time
shift 〈∆t〉 = 〈tπ − tp〉 ≈ 3 fm/c. This shift is about
the same as predicted by RQMD for the asymmetric
NA49 rapidity acceptance. The magnitude of the rel-
ative out shift in the pair rest frame (determining the
observable asymmetry), 〈∆x∗〉 ≈ −7 fm, is, however,
lower than in RQMD due to ∼ 20% lower magnitude
of 〈∆x〉.
In fact, the NA49 data on the R+x/R−x ratio

for π+p and π−p systems show consistent mirror
symmetric deviations from unity, their size of several
percent, and the Q dependence being in agreement
with RQMD calculations corrected for the resolution
and purity [66, 70, 72]. A similar pattern of correlation
asymmetries has been reported also for π±K± and
π±K∓ systems in the STAR experiment at RHIC.
They seem to be in agreement with hydrodynamic-
type calculations with a stronger transverse flow than
at SPS and a boxlike density profile (blast wave), and
somewhat lower than RQMD predictions [34, 46].

The finite widths of particle rapidity distributions
require, however, a violation of the boost invariance.
It can be parametrized by a Gaussian dispersion∆η2

of the LCMS η distribution centered at −Y , where
Y is the CMS pair rapidity; e.g., the data on central
Pb + Pb collisions at 158 A GeV are consistent with
∆η = 1.3 [20]. As a result,

〈z〉 ≈ −τY (1 + ∆η2mt/T )−1 (13)

and 〈t〉 acquires a Y -dependent contribution
1
2
τY 2(1 + ∆η2mt/T )−2. For the asymmetric NA49

rapidity acceptance, the mean πp pair rapidity Y ∼
1.5, 〈zπ − zp〉 ≈ −2.8 fm, and the πp time shift at Y =
0 is increased by ∼ 0.7 fm/c. This is in qualitative
agreement with the RQMD predictions for the rapid-
ity dependence of the longitudinal and time shifts. The
magnitude of the Y -dependent shifts in the hydro-
dynamic model is, however, substantially smaller. In
addition, the LCMS emission times in RQMD are a
factor of 2–3 larger and show substantial dependence
on the transverse velocity [65]. These differences may

9)One also recovers the expression for the LCMS interferom-
etry longitudinal radius squared [19]: R2

z = 〈(z − 〈z〉)2〉 ≈
τ 2T/mt up to a relative correctionO(T/mt).
4



80 LEDNICKÝ
point to the oversimplified spacetime evolution picture
in the hydrodynamic model. Particularly, the neglect
of the rt dependence of the proper freeze-out time and
of the longitudinal acceleration during the evolution
may not be justified [20, 89].

8. SPIN CORRELATIONS

Information on the system size and the two-
particle interaction can also be acquired with the help
of spin correlation measurements using as a spin
analyzer the asymmetric (weak) particle decay [65,
91, 92]. Since this technique requires no construction
of the uncorrelated reference sample, it can serve
as an important consistency check of the standard
correlation measurements. Particularly, for two Λ
particles decaying into the pπ− channel characterized
by the asymmetry parameter α = 0.642, the distri-
bution of the cosine of the relative angle θ between
the directions of the decay protons in the respective
Λ rest frames allows one to determine the triplet
fraction ρt = Rt/R, whereRt is the triplet part of the
correlation function [see the footnote in connection
with Eq. (8)]:

dN/d cos θ =
1
2

[
1 + α2

(
4
3
ρt − 1

)
cos θ

]
. (14)

Both correlation and spin composition measure-
ments were recently performed for two-Λ systems
produced in multihadronic Z0 decays at LEP [79,
93]. Except for a suppression at Q < 2 GeV/c, the
triplet fraction ρt was found to be consistent with the
value 0.75, as expected from a statistical spinmixture.
Such a suppression, as well as similar suppression of
the usual correlation function, is expected due to the
effects of QS and a repulsive potential core and points
to a small correlation radius r0 < 0.5 fm [80].

The spin correlations also allow for a relatively
simple test of the quantum-mechanical coherence,
based on Bell-type inequalities derived from the
assumption of the factorizability of the two-particle
density matrix, i.e., its reduction to a sum of the
direct products of one-particle density matrices with
the nonnegative coefficients [92]. Clearly, such a
form of the density matrix corresponds to a classical
probabilistic description and cannot account for the
coherent quantum-mechanical effects, particularly,
for the production of two Λ particles in a singlet state.
Thus, the suppression of the triplet ΛΛ fraction ob-
served in multihadronic Z0 decays at LEP indicates a
violation of one of the Bell-type inequalities ρt ≥ 1/2.
PH
9. CONCLUSION

Thanks to the effects of quantum statistics and
final-state interaction, the particle momentum and,
recently, also spin correlations give unique informa-
tion on the spacetime production characteristics and
the collective phenomena like multiboson and coher-
ence effects and collective flows. Besides the flow sig-
nals from single-particle spectra and like-meson in-
terferometry, rather direct evidence for a strong trans-
verse flow in heavy-ion collisions at SPS and RHIC
comes from unlike particle correlation asymmetries.
Being sensitive to relative time delays and collective
flows, the correlation asymmetries can be especially
useful to study the effects of the quark–gluon plasma
phase transition. The correlations also yield valuable
information on the particle strong interaction hardly
accessible by other means.
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21. T. Csörgö, Heavy Ion Phys. 15, 1 (2002).
22. M. I. Podgoretskii, Yad. Fiz. 37, 455 (1983) [Sov.

J. Nucl. Phys. 37, 272 (1983)]; R. Lednicky, Report
No. B2-3-11460, JINR (Dubna, 1978).

23. G. F. Bertsch, P. Danielewicz, and M. Herrmann,
Phys. Rev. C 49, 442 (1994); S. Pratt, in Proceed-
ings on Quark Gluon Plasma 2, Ed. by R. C. Hwa
(World Sci., Singapore, 1995), p. 700; S. Chapman,
P. Scotto, and U. Heinz, Phys. Rev. Lett. 74, 4400
(1995).

24. U. A. Wiedemann, Phys. Rev. C 57, 266 (1998).
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31. T. Csörgö and L. P. Csernai, Phys. Lett. B 333, 494

(1994).
32. A. Dumitru and R. D. Pisarski, Nucl. Phys. A 698,

444 (2002).
33. C. Adler et al. (STAR Collab.), Phys. Rev. Lett. 87,

182301 (2001).
34. F. Retiere et al. (STAR Collab.), in Proceedings

of CIPPQG’01, Palaiseau; nucl-ex/0111013; Nucl.
Phys. A 715, 591c (2003).

35. B. Tomasik, U. A. Wiedemann, and U. Heinz, nucl-
th/9907096; U. A. Wiedemann, Nucl. Phys. A 661,
65c (1999).

36. S. Pratt, Phys. Lett. B 301, 159 (1993); Phys. Rev. C
50, 469 (1994).

37. R. Lednicky et al., Phys. Rev. C 61, 034901 (2000).
38. U. Heinz, P. Scotto, and Q. H. Zhang, Ann. Phys.

(N.Y.) 288, 325 (2001).
39. S. V. Akkelin and Yu. M. Sinyukov, Phys. Lett. B 356,

525 (1995).
40. Yu. M. Sinyukov, B. Lorstad, and V. A. Averchenkov,

Z. Phys. C 49, 417 (1991).
41. G. F. Bertsch, Phys. Rev. Lett. 72, 2349 (1994).
42. Yu. M. Sinyukov and B. Lorstad, Z. Phys. C 61, 587

(1994).
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
43. J. Barrette et al. (E877 Collab.), Phys. Rev. Lett. 78,
2916 (1997).

44. D. Ferenc et al., Nucl. Phys. A 661, 374c (1999);
Phys. Lett. B 457, 347 (1999).

45. M. Gazdzicki, Nucl. Phys. A 590, 197c (1995).
46. R. L. Ray et al. (STAR Collab.), Nucl. Phys. A 715,

45c (2003).
47. J. D. Bjorken, Acta Phys. Pol. B 23, 637 (1992); 28,

2773 (1997); G. Amelino-Camelia, J. D. Bjorken, and
S. E. Larsson, Phys. Rev. D 56, 6942 (1997).

48. J. P. Blaizot and A. Krzywicki, Acta Phys. Pol. B 27,
1687 (1996).

49. M. Aggarwal et al. (WA98 Collab.), Phys. Lett. B
420, 169 (1998).

50. J. Serreau, hep-ph/0304011.
51. S. V. Akkelin, R. Lednicky, and Yu. M. Sinyukov,

Phys. Rev. C 65, 064904 (2002).
52. S. V. Akkelin and Yu. M. Sinyukov, Nucl. Phys. A

661, 613c (1999).
53. A. Bialas and K. Zalewski, Phys. Rev. D 59, 097502

(1999).
54. G. N. Fowler and R. M. Weiner, Phys. Lett. B 70B,

201 (1977); Phys. Rev. D 17, 3118 (1978).
55. R. Lednicky, V. L. Lyuboshitz, and M. I. Podgoretsky,

Yad. Fiz. 38, 251 (1983) [Sov. J. Nucl. Phys. 38, 147
(1983)].

56. V. L. Lyuboshitz, Yad. Fiz. 53, 823 (1991) [Sov. J.
Nucl. Phys. 53, 514 (1991)].

57. R. Lednicky and M. I. Podgoretsky, Yad. Fiz. 30, 837
(1979) [Sov. J. Nucl. Phys. 30, 432 (1979)].

58. R. Lednicky and T. B. Progulova, Z. Phys. C 55, 295
(1992).
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Abstract—The leading logarithmic approximation (LLA) for the scattering amplitudes in QCD is re-
viewed. The double-logarithmic asymptotics of scattering amplitudes is obtained as a solution to non-
linear evolution equations in the infrared cutoff. The DGLAP equation describes an evolution of parton
distributions with increasing parton virtuality. The evolution of the amplitudes with respect to the scale
in the longitudinal subspace is given by the BFKL equation. The gluon and quarks in QCD lie on
the Regge trajectories calculable in perturbation theory. Mesons and baryons are composite states of
Reggeized quarks. Similarly the Pomeron and Odderon are colorless ground states of Reggeized gluons.
In the case of multicolor QCD, the Reggeon field theory in LLA is completely integrable. The Reggeon
interactions in QCD are derived from a gauge-invariant effective action. In particular, next-to-leading
corrections to the BFKL equation in QCD and in supersymmetric gauge models are obtained in this way.
c© 2004 MAIK “Nauka/Interperiodica”.
EQUATIONS FOR THE AMPLITUDES
WITH INFRARED AND ULTRAVIOLET

CUTOFFS

BothDGLAP [1] and BFKL [2] equations are used
now to describe an experimentally observed growth of
partonic distributions at small x. The small-x asymp-
totics of structure functions is related to the behav-
ior of scattering amplitudes in the Regge limit of
large energies

√
s ∼ 1/x and fixed momentum trans-

fers
√
−t. In the leading logarithmic approximation

(LLA), the high-energy scattering amplitude is ob-
tained by summing the asymptotic contributions of
the Feynman diagrams in all orders of perturbation
theory.
In the case of double-logarithmic asymptotics

(DLA), we have

A(s, t) =
∞∑

k=0

ck(t)(g2 ln2 s)k. (1)

The simplest example of DLA is the Sudakov form
factor of the quark

Γ(q2) = exp
(
− g2

12π2
ln2(q2/m2)

)
.

Due to the asymptotic freedom in QCD, one can
verify the predictions of LLA in the region where the
effective coupling constant g is small for fixed values
of the DLA parameter g2 ln2 s. The colliding particle

∗This article was submitted by the author in English.
**e-mail: lipatov@thd.pnpi.spb.ru
1063-7788/04/6701-0083$26.00 c©
momenta pA and pB at high s = 2pApB satisfy the
condition p2

r = 0. Themomenta of the virtual particles
can be parametrized with the Sudakov parameters

k = βpA + αpB + k⊥.

The double-logarithmic asymptotics of ampli-
tudes of various processes of the quark scattering can
be obtained with the use of the method of infrared
evolution equations [3]. In the framework of this
method, an infrared cutoff µ over transverse momenta
of the virtual particles is introduced. Further, instead
of summing contributions of the Feynman diagrams,
one extracts in these diagrams the particle with the
smallest transverse momentum k⊥. In the case where
this particle is a gluon, it is possible to show with
the use of gauge invariance that the integration over
the momentum of the extracted gluon is factorized
in front of the same amplitude, but with the infrared
cutoff replaced by |k⊥|. In the case where the soft par-
ticles are quarks, the amplitude is written as a product
of three factors: the integral over momenta of the
extracted quarks and two scattering amplitudes with
smaller energies

√
sr (r = 1, 2, s1s2 ∼ s) and with a

new infrared cutoff µ → |k⊥|. Thus, one can obtain
nonlinear equations for the scattering amplitudes on
mass shell [3]. This method can also be used in the
weak interaction theory, for example, to calculate the
amplitude of the backward lepton scattering [3]

A =

i∞∫
−i∞

dj

2πi
1
a

d

dj
ln
(

exp
(
−a

ω2

4

)
Da(ω

√
−a)

)
,
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84 LIPATOV
where Da(x) is the parabolic cylinder function, a =
−2g′2/(3g2 + 9g′2), ω = 4πj/g′, and g, g′ are the
electroweak constants.
The DGLAP equation [1] is related to the renor-

malization group approach. Again, instead of cal-
culating and adding contributions of the Feynman
diagrams ∼(g2 ln(q2/m2))n, one extracts from all di-
agrams the particles with the biggest virtuality k2

playing the role of the ultraviolet cutoff for the 4-
momenta of all other virtual particles. The time pa-
rameter in the evolution equations here is the loga-
rithm of the particle virtuality. For matrix elements
of the twist-2 operators, we have a simple physical
interpretation in terms of the distributions ni(x) of
the partons i with the fixed Feynman parameter x =
k0/E in the infinite momentum frame E → ∞. The
DGLAP evolution equations have a clear probabilis-
tic interpretation similar to the equations of dynam-
ical balance in chemistry. It is possible to introduce
so-called quasi-partonic operators generalizing the
twist-2 operators [4]. Their matrix elements between
hadron states can be expressed in terms of the matrix
elements between partonic states averaged with the
parton correlation functions. The evolution equations
for the matrix elements of the quasi-partonic opera-
tors contain integral kernels for the twist-2 operators
and are similar to the Schrödinger equation for n
particles in one-dimensional space.

GLUON REGGEIZATION
AND MULTI-REGGE PROCESSES

In gauge theories, the dispersion method devel-
oped in [2] turns out to be the most powerful. Using
this approach, an approximate solution to the non-
linear bootstrap equations corresponding to S-matrix
unitarity was found in LLA. Inmulti-Regge kinemat-
ics, where the squared pair energies si = (ki−1 − ki)2
of produced particles are significantly bigger than
the squared momentum transfers −ti, the production
amplitudes have the form [2]

ALLA2→2+n = 2gT c1
A′AΓ1

sω1
1

t1
gT d1

c2c1 (2)

× Γ1
2,1

sω2
2

t2
× . . .× gT dn

cn+1cn
Γn

n+1,n

s
ωn+1

n+1

tn+1
gT

cn+1

B′B Γ2.

Here, ji = 1 + ωi = 1 + ω(ti) are the gluon Regge
trajectories and

ω(t) = −g2Nc

16π3

∫
dk

q2

k2(q− k)2
, (3)

t = −q2.

Infrared divergences in the Regge factors are can-
celed in σtot with analogous divergences in contri-
butions of real gluons. A, B and A′, B′, dr (r =
PH
1, 2, . . . , n) are color indices for initial and final glu-
ons, respectively. T c

ab = −ifabc are generators of the
gauge group SU(Nc) and g is the Yang–Mills cou-
pling constant. Further,

Γ1 =
1
2
eλ
νe

λ′∗
ν′ Γνν′

, (4)

Γr
r+1,r = −1

2
Γµ(qr+1, qr)eλr∗

µ (kr)

are the Reggeon–particle–particle (RPP) and Reg-
geon–Reggeon–particle (RRP) vertices, respec-
tively. The s-channel helicities are conserved for each
of two colliding particles.

The tensor Γνν′
can be written as the sum of two

terms [2]:

Γνν′
= γνν′+ − q2(n+)ν

1
p+

A

(n+)ν
′
, (5)

where we introduced the light-cone vectors

n− =
pA

E
, (6)

n+ =
pB

E
,E =

√
s/2, n+n− = 2,

and the light-cone projections k± = kσn±
σ of the

Lorentz vectors kσ. The first term is the light-cone
component of the Yang–Mills vertex. The second
(induced) term is a coherent contribution of the
Feynman diagrams in which there are no particles
in the t channel.
Similarly, the effective RRP vertex Γ (q2, q1) can

be represented as follows [2]:

Γσ(q2, q1) = γσ−+ − 2q2
1

(n−)σ

k−1
+ 2q2

2

(n+)σ

k+
1

. (7)

Again, the last two terms appear as coherent contri-
butions of the diagrams without any particles in t1
and t2 channels.
The total hadron cross section is obtained from the

square of ALLA2→2+n by summing over all final states
and integrating over the produced particle momenta.
According to the optical theorem, it can be expressed
through the imaginary part of the forward scattering
amplitude with the vacuum quantum numbers in the
t channel. It is convenient to write this amplitude in
terms of the t-channel partial wave fω(t):

A(s, t) = i |s|
∫

d ω

2πi
sωfω(t), (8)

t = −q2.

In turn, the hadron amplitude fω(t) in QCD can be
expressed through the product of the impact factors
ΦA,B describing the inner structure of the colliding
particles and the gluon–gluon partial wave fω de-
pending on the impact parameters ρ1, ρ2 and ρ1′ , ρ2′
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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of the initial and final gluons in the t channel. The
homogeneous BFKL equation for the Pomeron as a
compound state of two Reggeized gluons can be writ-
ten as a Schrödinger equation with the Hamiltonian:

H12 =
1

p1p∗2
ln |ρ12|2 p1p

∗
2 + ln |p1|2 + 2γ + (1 ↔ 2),

where γ is the Euler constant and ρ12 = ρ1 − ρ2. We
introduced here the complex coordinates ρk = xk +
iyk and their canonically conjugated momenta pk =

i
∂

∂ρk
. The kinetic energy

∑
i ln |pi|2 is proportional to

the Regge trajectories of the gluons, and the potential
energy coincides with the Green’s function ln |ρ12|2
(up to a similarity transformation). It is obtained by
the Fourier transform from the bilinear combination
of the RRP effective vertices [2]. The eigenvalues E
of the Hamiltonian H12 are related to the Pomeron
intercept ω governing the high-energy asymptotics
∼s1+ω ofA(s, t):

E = −8ωπ2

g2Nc
. (9)

It turns out [2] that, for the ground-state energy,
we have E0 = −8 ln 2 and, therefore, the total cross
section grows at large energies as sω0 , where ω0 =
g2Nc ln 2/π2. Thus, in LLA, we obtain the violation
of the Froissart theorem σtot < c(ln s)2, which is a
consequence of the fact that the scattering ampli-
tudes in this approximation do not satisfy all require-
ments following from the s-channel unitarity [2]. We
shall discuss below various methods to overcome this
drawback of LLA.

POMERON IN THE IMPACT-PARAMETER
SPACE

The amplitude for the hadron–hadron scattering
can be expressed in LLA in terms of the gluon–gluon
scattering amplitude whose t-channel partial wave
fω(ρ1, ρ2; ρ1′ , ρ2′) in the impact-parameter represen-
tation ρ is invariant under the conformal (Möbius)
transformations [5]

ρk → aρk + bρk

cρk + dρk
(10)

for arbitrary complex parameters a, b, c, and d pro-
vided that we use the complex coordinates ρ and ρ∗.
It can be written in the form [5]

fω(ρ1, ρ2; ρ1′ , ρ2′) (11)

=
+∞∑

n=−∞

+∞∫
−∞

(ν2 + n2/4)dν
[ν2 + (n − 1)2/4] [ν2 + (n + 1)2/4]
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× Gνn(ρ1, ρ2; ρ1′ , ρ2′)
ω − ω(ν, n)

,

where the quantity ω(ν, n) is the eigenvalue of the
BFKL equation [2]:

ω(ν, n) = −Ncg
2

2π2
Re
(
ψ

(
1 + |n|

2
+ iν

)
− ψ(1)

)
,

(12)

ψ(x) = Γ′(x)/Γ(x).

The Green’s function Gνn(ρ1, ρ2; ρ1′ , ρ2′) can be ex-
pressed in terms of products of hypergeometric func-
tions [6].
The composite field describing the BFKLPomeron

has the conformal weights

m =
1
2

+ iν +
n

2
, m̃ =

1
2

+ iν − n

2
(13)

with real ν and integer conformal spin n in accordance
with the fact that it belongs to the principal series of
irreducible unitary representations.
If we take into account the fact that the QCD

coupling constant decreases in the region of large
gluon virtualities k2 ∼ ρ−2 
 q2, we can calculate
from the BFKL equation the trajectories for an infinite
set of Regge poles situated at small ω [5].

INTEGRABILITY IN MULTICOLOR QCD

The Hamiltonian for the BFKL Pomeron has the
property of holomorphic separability [7]:

H12 = h12 + h∗12, (14)

where the holomorphic Hamiltonian is [7]

h12 =
1
p1

ln(ρ12)p1 +
1
p2

ln(ρ12)p2 (15)

+ ln(p1p2) − 2ψ(1).

One of the possible ways to unitarize the results of
LLA is to take into account the Feynman diagrams
with an arbitrary number of Reggeized gluons in the
t channel. In a generalized LLA, this problem is re-
duced to the solution to the Schrödinger equation
for compound states of n gluons. Because the color
structure of their eigenfunctions at largeNc is unique,
the total Hamiltonian H can be written as a sum of
the mutually commuting holomorphic and antiholo-
morphic operatorsH = (h + h∗)/2 [7], where

h =
n∑

i=1

hi,i+1. (16)

The eigenfunction has the property of holomorphic
factorization:

Ψ =
∑

ckrψk(ρ1, . . . , ρn)ψ̃r(ρ∗1, . . . , ρ
∗
n), (17)
4
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where ψk and ψ̃r are the solutions to the Schrödinger
equations in the holomorphic and antiholomorphic
subspaces corresponding to the same energies ε
and ε̃,

E =
1
2
(ε + ε̃).

These equations have the nontrivial integrals of mo-
tion [7]

t(θ) = trT (θ), [t(u), t(v)] = [t(θ), h] = 0, (18)

where θ is the spectral parameter of the transfer ma-
trix t(θ). The monodromy matrix T (θ) is constructed
from the product of the L operators

T (θ) = L1(θ)L2(θ) × . . .× Ln(θ) (19)

expressed in terms of the Möbius group generators

Lk(θ) =


θ + iρk∂k −i∂k

iρ2
k∂k θ − iρk∂k


 . (20)

The Hamiltonian and the integrals of motion are in-
variant under the duality transformation [8]

pr → ρr,r+1 → pr+1

combined with the transposition of operator multipli-
cation. The monodromy matrix parametrized as

T (θ) =


A(θ) B(θ)

C(θ) D(θ)




satisfies the Yang–Baxter bilinear equations. One can
apply the Bethe ansatz technique to find the rep-
resentation of the corresponding commutation rela-
tions [7]. For the transposed operator CT (θ), there
exists the pseudovacuum eigenstate [9]

CT (θ)Ω0 = 0, Ω0 =
n∏

k=1

ρ−2
k0 .

According to E. Sklyanin, the physical states can be
constructed according to the following prescription:

Ψ = −PQ(λ1) × . . .×Q(λn−1)Ω0,

where P is the total momentum of the n-Reggeon
state, λk are the operator roots of the equation

BT (λk) = 0,

Q(u) is the Baxter function satisfying the Baxter
equation

Λ(u)Q(u) = (u + i)nQ(u + i) + (u− i)nQ(u− i),

and Λ(u) is a polynomial of rank (n− 1) being an
eigenvalue of the transfer matrix t(u). The Baxter
function has poles at the imaginary integer points u =
il, and for the residues in these poles, one can write
P

a recursion relation [10]. The energy of the physical
state is expressed through the behavior of Q(u) near
the pole with l = 1. Lastly, the quantization of the
energy is related to the condition that the energy
should be the same for all solutions to the Baxter
equation having the same integrals of motion [10].
For the case of the Odderon (n = 3), one can use

the conformal ansatz [7]

ψ(ρ1, ρ2, ρ3; ρ0) =
(

ρ23

ρ20ρ30

)m

φ(x), (21)

where

x =
ρ12ρ30

ρ13ρ20
. (22)

In the x representation, the eigenvalue equation for
the integral of motion is the ordinary differential equa-
tion of the third order [7]

a1−mamφ(x) = Aφ(x),

where am is the duality operator [9]:

am = x(1 − x)(i∂)1+m.

For the most interesting case m = 1/2, the dual-
ity equation can be reduced to a one-dimensional
Schrödinger equation with the potential 1/r3/2 [8].
By imposing the single-valuedness condition on the
Odderon wave function (18) in the two-dimensional
space x, one can obtain the quantization of the eigen-
values ofA and the Odderon energy, corresponding to
the negative values of the Odderon intercept [11].
In [12], a new solution to the Schrödinger equa-

tion for the Odderon wave function with the intercept
ω0 = 0 was found. Physically, the new Odderon is
a composite state of a usual Reggeized gluon and
the Reggeon state with the same quantum numbers
but with an opposite signature. The duality symmetry
of the Reggeon interactions appearing at the large-
Nc limit can be interpreted as the symmetry between
these two-Reggeon states. The new solution has a
more singular behavior at small relative distances
than the old solutions. On such functions, the holo-
morphic separability of the Hamiltonian is broken,
which can be considered as a quantum anomaly.

EFFECTIVE ACTION FOR SMALL-x
PHYSICS IN QCD

The next-to-leading corrections to the BFKL
equation are important for finding the region of its
applicability including the intervals of energies and
momentum transfers fixing the scale for the QCD
coupling constant. Such corrections appear from the
quasi-multi-Regge processes in which the final-state
particles are separated in several clusters consisting
of an arbitrary number of gluons and quarks with a
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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fixed invariant mass; each group is produced with
respect to the others in multi-Regge kinematics. The
gauge-invariant effective action Seff local in a rapidity
interval (y0 − η, y0 + η) was constructed in [13]:

Seff(v,A±) = −
∫

d4xtr
[
1
2
G2

µν(v) (23)

+ (A−(v) −A−)jReg+ + (A+(v) −A+)jReg−

]
,

where the anti-Hermitian SU(Nc) matrices vσ and
A± describe, respectively, the usual and Reggeized
gluons. The Reggeon current jReg± is

j
Reg
± = ∂2

σA±, (24)

which guarantees that the gluon–Reggeon interac-
tion disappears on the mass shell k2 = 0. Moreover,
it makes it possible to interpret the composite fields
A±(v) as the quantities describing the emission of
gluons in the given interval of rapidity by particles
with different rapidities.
The fields A± are invariant,

δA± = 0, (25)

under the infinitesimal gauge transformation

δvσ = [Dσ, χ], Dσ = ∂σ + gvσ , (26)

with the gauge parameter χ decreasing at x → ∞,
but they belong to the adjoint representation of the
global SU(Nc) group.
The fieldsA± obey the additional kinematical con-

straints

∂+A− = 0, ∂−A+ = 0 (27)

in the quasi-multi-Regge kinematics where the
neighboring clusters differ significantly in their ra-
pidities: yk−1 − yk 
 η. The effective action describes
the self-interaction of real and virtual particles inside
each cluster and their coupling with neighboring
Reggeized gluons. The composite Reggeon field
A±(v) can be written in the explicit form

A±(v) = v±D
−1
± ∂± = −1

g
∂±U(v±), (28)

U(v±) =
P

2
e
− g

2

x±∫
−∞

dx′±v±
+

P̄

2
e

g
2

∞∫
x±

dx′±v±

,

where the integral operator D−1
± ∂± is implied to act

on a unit constant matrix from the left-hand side and
the symbol P means the ordering of the fields v in
the matrix product in accordance with an increase in
their arguments x′±. Because jReg in the momen-
tum representation contains the factor t = q2 killing
the pole in the neighboring Reggeon propagator, the
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 20
corresponding scattering amplitudes do not have si-
multaneous singularities in the overlapping channels
t and s.
Further, the physical results do not depend on η

due to cancellations between the integrals over the
invariant masses of the produced clusters and the in-
tegrals over their relative rapidities [6]. By expanding
the functional integral in g, one can reproduce the
above effective vertices for gluon–Reggeon interac-
tions.
The effective action Seff has a nontrivial stationary

point v = v̄ satisfying the classical equations. In the
Landau gauge in the first approximation of perturba-
tion theory, the classical solution coincides with A±.

To obtain the Reggeon action in the tree approx-
imation, we should substitute vσ → vσ in Seff. Fur-
ther, one can write the field v as a sum of its classi-
cal component ν and the small variation ε describ-
ing its fluctuations near the classical solution. The
Reggeon action in the semiclassical approximation
can be obtained if one would calculate the functional
integral over the quantum fluctuations ε (taking into
account the Faddeev–Popov ghosts). In particular,
one can find next-to-leading corrections to the BFKL
Pomeron.
The subsequent functional integration over A±

corresponds to the solution of the Reggeon field the-
ory defined in the two-dimensional impact-parameter
subspace with the rapidity playing the role of time. It
is important that, in the functional approach, the t-
channel dynamics of the Reggeon interactions turns
out to be in agreement with the s-channel unitarity
of the S matrix in the initial Yang–Mills model. In the
Hamiltonian formulation of the Reggeon calculus, the
wave function will contain components with an arbi-
trary number of Reggeized gluons. Nevertheless, one
can hope that at least some of the remarkable proper-
ties of the BFKL equation will remain in the general
case of the nonconserved number of Reggeized glu-
ons.
The effective action can also be constructed for the

Reggeized quarks interacting with the usual quarks
and gluons [14]. It can be used for the calculation of
the next-to-leading corrections to the quark Regge
trajectory and to other Reggeized quark vertices.

NEXT-TO-LEADING CORRECTIONS
TO THE BFKL POMERON IN QCD

AND IN SUPERSYMMETRIC MODELS

The generalized BFKL equation for the total cross
section can be written in the integral form as fol-
lows [15]:

σ(q1, q
+
1 ) = σ0(q1, q

+
1 ) (29)
04
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+
∫

dq+
2

q+
2

µ4−D

∫
dq2Kδ(q1,q2)σ(q2, q

+
2 ).

Here, the integration region for the longitudinal mo-
mentum q+

2 is restricted from above by a value pro-
portional to q+

1 :

q+
2 < δq+

1 . (30)

The intermediate infinitesimal parameter δ0 is intro-
duced instead of the above parameter η to arrange
the particles in the groups with strongly different
rapidities. The integral kernel Kδ(q1,q2) takes into
account the interaction among the particles inside
each group where δ plays role of the ultraviolet cutoff
in their relative rapidities. The kernelKδ is calculated
in perturbation theory [15].

The next-to-leading term in Kδ related to two-
gluon or two-quark production is proportional to the
square of the RRP vertices ψ integrated over the
invariant mass of the produced particles. It enters the
amplitude of the pair production in the central rapidity
region:

Aν1ν2...νn+−
d1d2....dnA′AB′B = −gp+

AT
c1
A′AδλAλA′ (31)

× 1
t1
ψν1ν2...νn+−

d1d2...dnc2c1

1
t2
gp−BT

c2
B′BδλBλB′ .

The Reggeon–particle vertex ψ can be calculated
using the Feynman rules for the above effective ac-
tion [13].

All other next-to-leading terms are related to the
virtual corrections to the gluon production amplitudes
in the multi-Regge kinematics. These contributions
are a one-loop correction to the RRP vertex and a
two-loop correction to the Regge trajectory. It was
verified that infrared divergences in the sum of all
contributions to the BFKL kernel are canceled. Fi-
nally, the next-to-leading corrections to the BFKL
kernel were expressed in terms of dilogarithm inte-
grals [15]. The BFKL equation with next-to-leading
corrections to its integral kernel was solved with the
use of the BLM procedure for fixing the argument of
the QCD running coupling constant, and the results
were compared with the experimental data on the
hadron production in the virtual photon collisions ob-
tained by the L3 group at CERN [16]. The theoretical
predictions for the total cross section are in agreement
with the experimental data.

The integral kernel for the BFKL equation in
the next-to-leading approximation is diagonalized
in [17]. It turns out that its eigenvalue contains
nonanalytic terms proportional to Kronecker symbols
δn0 and δn2, where n is the conformal spin of the
representation of the Möbius group.
PH
In supersymmetric gauge theories, the term δn2

is canceled. Moreover, in the extended N = 4 super-
Yang–Mills model, both Kronecker symbols disap-
pear and the eigenvalue is an analytic function of
n [17]. The anomalous dimensions of local operators
can be calculated from this eigenvalue as functions
of parameters ω ∼ g2 and n. In [17], it was argued
that the analytic continuation of the eigenvalue of
the BFKL kernel to negative values n = −k makes
it possible to calculate the residues of the anomalous
dimensions of the twist-2 operators in the poles situ-
ated at j = −k.
Therefore, all information about the DGLAP

equation in N = 4 supersymmetric gauge theory is
presumably contained inside the BFKL equation.
Moreover, it turns out that the Bukhvostov–Frolov–
Kuraev–Lipatov equation [4] for the anomalous di-
mensions of the quasi-partonic operators coincides
in this theory with the Schrödinger equation for the
integrable Heisenberg spin model [17]. Probably,
these properties are related to the Maldacena guess
that theN = 4model is dual to the superstring theory
on the anti–de Sitter space.
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Abstract—Multiparticle production in high-energy proton–proton collisions has been analyzed in the
framework of the strongly correlated quark model of the hadron structure elaborated by the author.
It is shown that inelasticity decreases at high energies and the violation of KNO scaling is a conse-
quence of total cross-section growth and increases with collision energy masses of intermediate clusters.
c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In inelastic hadronic interactions with multiparti-
cle production, only a fraction of collision energy is
converted into the production of secondaries. For the
quantitative estimation of this fraction, one can use
for a given interaction a characteristic, originating
from cosmic-ray physics, inelasticity, which can be
defined as

k1(s) =
M√
s
, (1)

where s is square of c.m. energy andM is the mass of
intermediate system which decays into final produced
particles. The remaining part of the incident energy
is carried away by the participant’s remnants—so-
called leading particles. From the experimental point
of view, more suitable is another definition of inelas-
ticity

k2(s) =
1√
s

∑
i

∫
dyµi

dni

dy
cosh y, (2)

where µi =
√
p2

Ti
+m2

i is transverse mass of a pro-

duced particle of type i and dni/dy is its measured
rapidity distribution. Fluctuation of inelasticity from
event to event leads to the distribution P (k) with
mean inelasticity 〈k(s)〉. The energy dependence of
inelasticity is a problem of great interest from both
theoretical and experimental points of view. There
is no consensus in the physical community on the
energy dependence of 〈k(s)〉. The decrease in inelas-
ticity with energy is advocated by some authors [1–4],
while others believe that inelasticity is an increasing

∗This article was submitted by the author in English.
**e-mail: genis@jinr.ru
1063-7788/04/6701-0090$26.00 c©
function of energy [5–8]. The question cannot be an-
swered by collider experiments. At ISR energies (23–
60 GeV), where the leading particle spectrum could
be measured, the inelasticity is defined to be about
0.5. In the collider experiments at higher energies
(SPS and Tevatron), leading particles are emitted in
an extremely forward cone and could not be measured
due to the presence of the beam pipe. Obviously,
multiplicity distributions are connected with inelas-
ticity distributions, and so one can study features
of multiplicity distributions, deriving information on
inelasticity or fraction of the initial energy converted
into particle production. As we know, scaled mul-
tiplicity distributions exhibit KNO [9] scaling up to
ISR energies, which is violated for higher energy
data (SPS), where they can be described approxi-
mately by a negative binomial distribution (NBD).
And again, at the highest SPS energy, 900GeV, there
is an evident deviation of multiplicity distributions
from the NBD. In this paper, we demonstrate that
there is a connection between the energetic behavior
of the shapes of scaled multiplicity distributions and
inelasticity distributions, which, in turn, is related to
the effect of the total cross-section growth. For this
purpose, we use geometrical considerations that are
justified by the following arguments. First, hadrons
are extended objects with a size of about 1 fm, and,
second, at high energies, the de Broglie wavelength
becomes small.

Our analysis is based on a model of hadron
structure called the strongly correlated quark model
(SCQM) [10], which is described in Section 2. In
Section 3, the model is applied to the calculation of
proton–proton total cross sections and the analysis
of multiparticle production.
2004 MAIK “Nauka/Interperiodica”
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2. STRONGLY CORRELATED QUARK
MODEL

The ingredients of the model are the following. A
single quark of a definite color embedded in a vacuum
starts to polarize its surroundings, resulting in the
formation of a quark and a gluon condensate. At the
same time, it experiences the pressure of vacuum
because of a zero point radiation field or vacuum
fluctuations that act on the quark, tending to destroy
the ordering of the condensate. Suppose that we place
the corresponding antiquark in the vicinity of the first
one. Owing to their opposite signs, color polarization
fields of the quark and antiquark interfere destruc-
tively in the overlapped space regions, eliminating
each other maximally at the midpoint between the
quarks. This effect leads to the decrease in conden-
sate density in the same space region and overbal-
ancing of the vacuum pressure acting on the quark
and antiquark from outer space regions. As a result,
an attractive force between the quark and antiquark
emerges and the quark and antiquark start to move
towards each other. The density of the remaining
condensate around the quark (antiquark) is identified
with the hadronic matter distribution. At maximum
displacement in the q̄q system corresponding to small
overlapping of polarization fields, the hadronic matter
distributions have maximum extent and magnitude.
The closer they are to each other, the larger the effect
of mutual destruction and the smaller the hadronic
matter distributions around the quarks and the larger
their kinetic energies. In that way, the quark and
antiquark start to oscillate around their midpoint. For
such interacting q̄q pair located on the X axis at a
distance of 2x from each other, the total Hamiltonian
is

H =
mq̄

(1 − β2)1/2
+

mq

(1 − β2)1/2
+ Vq̄q(2x), (3)

where mq̄ and mq are the current masses of the va-
lence antiquark and quark, β = β(x) is their velocity
depending on displacement x, and Vq̄q is the quark–
antiquark potential energy at separation 2x. It can be
rewritten as

H =
[

mq̄

(1 − β2)1/2
+ U(x)

]
(4)

+
[

mq

(1 − β2)1/2
+ U(x)

]
= Hq̄ +Hq,

where U(x) =
1
2
Vq̄q(2x) is the potential energy of the

quark or antiquark. The quark (antiquark) with the
surrounding cloud (condensate) of quark–antiquark
pairs and gluons, or hadronic matter distribution,
forms the constituent quark (CQ). It is natural to
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
assume that the potential energy of the quark (anti-
quark),U(x), corresponds to themassMQ of the CQ:

2U(x) = C1

∞∫
−∞

dz′
∞∫

−∞

dy′
∞∫

−∞

dx′ρ(x, r′) (5)

≈ 2MQ(x),

where C1 is a dimensional constant and hadronic
matter density distribution ρ(x, r′) is defined as

ρ(x, r′) = C2

∣∣ϕ(x, r′)
∣∣ (6)

= C2

∣∣ϕQ(x′ + x, y′, z′) − ϕQ̄(x′ − x, y′, z′)
∣∣ .

Here, C2 is a constant, ϕQ and ϕQ̄ are density profiles
of the condensates around the quark and antiquark
located at distance 2x from each other. Here, we con-
sider that the condensates around the quark and anti-
quark have opposite color charges. They are similar to
compressive stress and tensile stress (around defects)
in solids. The generalization to a three-quark sys-
tem in baryons is performed according to SU(3)color
symmetry: in general, a pair of quarks have coupled
representations

3 ⊗ 3 = 6 ⊕ 3̄ (7)

in SU(3)color, and for quarks within the same baryon,
only the 3̄ (antisymmetric) representation occurs.
Hence, the antiquark can be replaced by two cor-
respondingly colored quarks to get a color singlet
baryon, and destructive interference takes place be-
tween color fields of three valence quarks (VQs).
Putting aside the mass and charge differences and
spins of VQs, we may say that, inside the baryon,
three quarks oscillate along the bisectors of an
equilateral triangle. Therefore, keeping in mind that
the quark and antiquark in mesons and three quarks
in baryons are strongly correlated, we can consider
each of them separately as undergoing oscillatory
motion under the potential (5) in 1 + 1 dimension.
Hereinafter, we consider that the VQ oscillates along
the X axis, and the Z axis is perpendicular to the
plane of oscillation XY . Density profiles of conden-
sates around VQs are taken in the Gaussian form.
It has been shown in papers [11] that the wave
packet solutions to the time-dependent Schrödinger
equation for a harmonic oscillator move in exactly
the same way as corresponding classical oscillators.
These solutions are called “coherent states.” This
relationship justifies our semiclassical treatment of
quark dynamics.

We specify the mass of the CQ at maximum dis-
placement as

MQ(Q̄)(xmax) =
1
3
m∆ +mN

2
≈ 360 MeV,
4
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Fig. 1. (a) Potential energy of valence quark and mass of constituent quark; (b) "confinement" force.
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Fig. 2. Evolution of color charge density profile ϕ in the quark–antiquark system during half-period of oscillations; d = 2x is
a distance (in fm) between quark and antiquark depicted as dots.
where m∆ and mN are the delta–isobar and nucleon
masses, respectively. The parameters of the model,
namely, maximum displacement xmax and parameters
of theGaussian functionσx,y,z for the hadronicmatter
distribution around the VQ, are chosen inside the
following corridors:

xmax = 0.64–0.66 fm, (8)

σx,y = 0.24–0.28 fm, σz = 0.12–0.20 fm.

They are estimated by comparison of calculated and
experimental values of inelastic cross sections σin(s)
and the inelastic overlap function Gin(s, b) for pp and
p̄p collisions (see the next section). The current mass
of the VQ is taken to be 5 MeV. The behavior of
potential (5) evidently demonstrates the relationship
between constituent- and current-quark states in-
side a hadron (Fig. 1). At maximum displacement,
the quark is a nonrelativistic, constituent one (VQ
surrounded by the condensate), since the influence
of polarization fields of other quarks becomes min-
imal and the VQ possesses the maximal potential
energy corresponding to the mass of the CQ. At
the origin of oscillation, x = 0, the antiquark and
quark in mesons and three quarks in baryons, being
close to each other, have maximum kinetic energy
and correspondingly minimum potential energy and
mass: they are relativistic, current quarks (bare VQs).
This configuration corresponds to so-called “asymp-
P

totic freedom.” In the intermediate region, there is
an increase (decrease) in the CQ mass by dressing
(undressing) of VQs due to a decrease (increase) in
the destructive interference effect. The evolution of
color charge density profiles of the quark–antiquark
pair during the half-period of oscillation is shown in
Fig. 2. Here, we suppose that the quark color charge
is positive and the antiquark color charge is negative.

The proposed dynamical picture meets the local
gauge invariance principle. Indeed, destructive inter-
ference of color fields of the quark and antiquark in
mesons and three quarks in baryons depending on
their displacements can be treated as a phase rotation
of the wave function of a single VQ in color space ψc

on angle θ depending on the displacement x of the VQ
in the coordinate space:

ψc(x) → eigθ(x)ψc(x). (9)

The color phase rotation, in turn, leads toVQdressing
(undressing) by quark and gluon condensate that
corresponds to the transformation of a gauge field

Aµ(x) → Aµ(x) + ∂µθ(x). (10)

Here, we drop color indices of Aµ(x) and consider
each quark of specific color separately as changing
its effective color charge, gθ(x), in color fields of other
quarks (antiquark) due to the destructive interference.
Thus, gauge transformations (9), (10) map internal
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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Fig. 3. Evolution of a breather φ and its energy density profile ϕ during a half-period of oscillation. Scales are arbitrary.
(isotopic) space of a colored quark onto the coordinate
space. On the other hand, this dynamical picture of
VQ dressing (undressing) corresponds to chiral sym-
metry breaking (restoration). Due to this mechanism
of VQ oscillations, the nucleon runs over the states
corresponding to specific terms of the infinite series of
Fock space

|B〉 = c1|q1q2q3〉 + c2|q1q2q3q̄q〉 (11)

+ c3|q1q2q3g〉 . . . .
The proposed model has some important conse-
quences. Inside hadrons, the VQs and gluons and
quark–antiquark pairs accompanying them, as well,
are strongly correlated. Nucleons are nonspherical
objects: they are flattened along the axis perpendicu-
lar to the plane of quark oscillations.

From the form of the quark potential (Fig. 1), one
can conclude that the dynamics of a VQ corresponds
to a nonlinear oscillator and VQ in which its sur-
roundings can be treated as a nonlinear wave packet.
Moreover, our quark–antiquark system turned out to
be identical to the so-called “breather” solution to the
(nonlinear) sine-Gordon (SG) equation [12]. The SG
equation in 1 + 1 dimension in the reduced form for
scalar function φ(x, t) is given by

�φ(x, t) + sinφ(x, t) = 0, (12)

where x and t are dimensionless. The breather is
a periodic solution representing a bound state of
a soliton–antisoliton pair that oscillates around its
center of mass:

φbr(x, t) = 4 tan−1


 sinh

(
ut/
√

(1 − u2)
)

u cosh
(
x/
√

(1 − u2)
)

 ,
(13)
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where u is 4-velocity. During the oscillations of the
soliton–antisoliton pair, their density profile

ϕbr(x, t) =
dφbr(x, t)

dx
(14)

evolves like our quark–antiquark system; i.e., at the
maximal displacement, the soliton and antisoliton are
emphasizedmaximally, and at theminimum displace-
ment, they “annihilate” (Fig. 3). This similarity is
not surprising because our quark–antiquark system
was formulated in close analogy with the model of
dislocation–antidislocation, which in the continuous
limit is described by the breather solution to the SG
equation [13]. It can be shown that the soliton, an-
tisoliton, and breather obey relativistic kinematics,
i.e., their energies, momenta, and shapes are trans-
formed according to Lorentz transformations. Since
the above consideration of quarks as solitons is purely
classical, the important problem is to construct quan-
tum states around them. Although the soliton solu-
tion to the SG equation looks like an extended (quan-
tum) particle, the relationship between classical soli-
tons and quantum particles is not so trivial. The tech-
nique of quantization of classical solitons with the
use of various methods has been developed by many
authors. The best known of them is the semiclassical
method of quantization (WKB), which allows one to
relate classical periodic orbits (breather solution to
the SG) with the quantum energy levels [14].

Hereinafter, we adhere to our semiclassical model
(SCQM), applying it for analysis of cross sections
and multiparticle production in hadron–hadron col-
lisions.

3. HADRON–HADRON COLLISIONS
Different configurations of the quark content in-

side a hadron realized at the instant of collision re-
4
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Fig. 4. Different quark configurations realized inside colliding nucleons at the instant of a collision.
sult in different types of reactions. The probability of
finding any quark configuration inside the hadron is
defined by the probability of VQ displacement in a
proper frame of the hadron:

P (x)dx =
Adx√

1 −m2
q/ [Eq − U(x)]2

, (15)

where Eq is the total energy of the valence quark
(antiquark) and the constant A can be derived from
the normalization condition

∞∫
−∞

P (x)dx = 1. (16)

Configurations with nonrelativistic CQs (x � xmax)
in both colliding hadrons lead to soft interactions with
the nondiffractive multiparticle production in central
and fragmentation regions (Fig. 4a). Hard scatter-
ing with jet production and large-angle elastic scat-
tering take place when configurations with current
VQs (x � 0) in both colliding hadrons are realized
(Fig. 4b). The near current quark configuration in-
side one of the hadrons and CQ configuration inside
the second one result in single diffractive scattering
(Fig. 4c). And finally, intermediate configurations in-
side one or both hadrons are responsible for semihard
and double diffractive scattering (Fig. 4d). The same
geometrical consideration can be applied to deep-
inelastic scattering (DIS) processes if one assumes
that a real or virtual photon converts into a vector
meson according to the vector dominance model.

We apply our model to the calculation of proton–
proton and antiproton–proton cross sections at high
energies and demonstrate that the growth of the cross
section with energy is caused by a predominantly
PH
increasing contribution of peripheral interactions,
which, in turn, leads to decreasing inelasticity of
collisions. Then, we will show that the energetic
behavior of inelasticity distributions governs the
energetic behavior of scaled multiplicity distributions.

3.1. Cross Sections

To calculate cross sections, we used an impact
parameter representation, namely, the inelastic over-
lap function (IOF), which can be specified via the
unitarity equation

2Imf(s, b) = |f(s, b)|2 +Gin(s, b), (17)

where f(s, b) is the elastic scattering amplitude and
Gin(s, b) is the IOF. The IOF is connected with in-
elastic differential cross sections in impact parameter
space:

1
π

(dσin/db2) = Gin(s, b). (18)

Then the inelastic, elastic, and total cross sections
can be expressed via the IOF as

σin(s) =
∫
Gin(s,b)d2b, (19)

σel(s) =
∫ [

1 −
√

1 −Gin(s,b)
]2
d2b, (20)

σtot(s) = 2
∫ [

1 −
√

1 −Gin(s,b)
]
d2b. (21)

Since the IOF is related to the probability of inelastic
interaction at a given impact parameter, we carried
out Monte Carlo simulation of inelastic nucleon–
nucleon interactions. Inelastic interaction takes place
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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at a definite value of impact parameter b if the pro-
duced mass meets the following requirement:

M2
CF = 4MP γPMTγT (22)

×
∫
ρP (r)ρT (r− b)dr ≥ (M2

CF)min,

where MCF is the mass of the central “fireball” (CF)
produced in the overlapped region, ρP and ρT are
hadronic matter density distributions in projectile and
target hadrons, MP and MT are their masses, γP

and γT are gamma factors of the colliding hadrons,
and (M2

CF)min is the minimal mass of a fireball that
results in an inelastic event. This expression is a
modification of the Heisenberg assumption [15] on
the interaction of extended particles: we replaced in
his original formula the pion mass squared (on the
right-hand side) by (M2

CF)min. In our previous papers,
this quantity corresponded to the transverse mass of
the pion: m2

π⊥ = p2
⊥ +m2

π. Taking into account the
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energy dependence of the average momentum of pro-
duced particles and the increasing yield of minijets (as
treated in what follows), we parametrize the minimal
fireball mass as

(MCF)min = 0.3 + 0.03s1/4. (23)

Specifying the quark configurations in each collid-
ing hadron according to (15), we calculated Gin(s, b)
for particular values of the impact parameter b and
then, according to (21), total cross sections σtot. Fig-
ure 5 shows the results of the calculation for total
cross sections for proton–proton and antiproton–
proton collisions in a wide range of collision energies.
One can see that the model with fixed parameters
characterizing the geometrical size of hadrons de-
scribes the energetic behavior of σtot rather well. The
growth of the total cross section with energy coming
from the growth of the inelastic cross section is due to
the continuous tails of condensates (hadronic matter
distributions) around VQs not compensated by the
4
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destructive interference effect inside each interacting
particle. With rising collision energy, the overlap of
more peripheral parts of these tails makes it possible
to meet the requirement in (22) and consequently
results in an increasing effective size of the hadronic
matter distribution inside nucleons and, correspond-
ingly, an increasing radius of interactions. It can be
seen from the comparison of IOFs for ISR and SPS
energies that is given in Fig. 6. According to Eq. (18),
the difference GSPS

in −GISR
in exhibits a predominantly

peripheral increase in the inelastic cross section (and
thus in the total cross section, since σel/σtot is only
about 20%) that is centered around 1 fm (Fig. 6b).
As noted by the authors of the paper [17], at high
energies, colliding nucleons become blacker, edgier,
and larger ("BEL effect"). The model gives the linear
logarithmic energy dependence for total cross sec-
tions. At energies

√
s < 30 GeV, the calculated cross

sections were corrected for contributions of Regge
pole exchange by using the Donnachie and Land-
shoff parametrization [18]. An oscillatory motion of
VQs appearing as an interplay between constituent
and bare (current) quark configurations results in
fluctuations of the hadronic matter distribution in-
side colliding nucleons. The manifestation of these
fluctuations is a variety of scattering processes, hard
and soft, in particular, the process of single diffrac-
tion (SD). SD events correspond to the CQ config-
uration inside one colliding hadron and (semi)bare
quark configuration inside the other one. Our unified
geometrical explanation of diffractive, nondiffractive,
and DIS processes could give an answer to the long-
standing question: What is a Pomeron? Historically,
the concept of a Pomeron originating from a simple
Regge pole with the intercept a0 = 1 transformed into
a rather complicated object with relatively arbitrary
features and smooth meaning. To produce the rising
cross sections, it must have an intercept such that
a0 = 1 + ε. The fact that the parameter ε is universal,
independent of particles being scattered in hadronic
and DIS interactions, could tell us that the nature of
the cross-section growth is the same for all processes.
Our interpretation of the Pomeron is a geometrical
one. Both diffractive and nondiffractive particle pro-
ductions emerge from the disturbance (excitation)
of overlapped continuous vacuum polarization fields
(gluon and q̄q condensate) around VQs of colliding
hadrons, followed by the fragmentation process. The
type of interaction depends on quark configurations
inside a colliding hadron occurring at the instant of
the interaction and the value of the impact parameter.
Thus, what we used to call the Pomeron in the t chan-
nel is solely continuum states in the s channel and we
claim that the Pomeron is unique in elastic, inelastic
(diffractive and nondiffractive), and DIS processes.
PH
3.2. Multiparticle Production in Hadronic Collisions

According to our model, the configurations with
nonrelativistic constituent quarks (x � xmax) inside
both colliding hadrons lead to soft interactions with
multiparticle production in central and fragmentation
regions. The additional restriction by small impact
parameters selects central collisions when hadronic
matter distributions of colliding hadrons (quarks)
overlap totally. In this case, kinetic energies of col-
liding hadrons dissipate totally, converting into the
production of secondary particles that corresponds
to collision inelasticity close to 1 and very high
multiplicity in comparison with the mean one. We
will consider soft interactions and nondiffractive
multiparticle production, in particular. According to
the KNO hypothesis, the scaled multiplicity distribu-
tions, 〈n〉Pn(s), depend on the ratio of the number
of particles to the average multiplicity z = n/〈n〉 and
they are energy independent. From our geometrical
point of view, such behavior could be explained as
a superposition of relatively narrow distributions
corresponding to the particular impact parameters of
the collisions. Indeed, themultiplicity distribution can
be defined as

Pn(s) =

1∫
0

P (n|k)P [k(s)]dk, (24)

where P [k(s)] is inelasticity distribution and P (n|k)
is the probability of the production of n particles at the
given inelasticity k. Thus, if the conditional probabil-
ity P (n|k) is sufficiently narrow, then the shape of the
distribution Pn is defined by the shape of the inelas-
ticity distribution P [k(s)]. The inelasticity distribu-
tions are strictly connected with the impact parameter
distributions. KNO scaling holds (at least, approx-
imately) if the impact parameter distributions and,
consequently, inelasticity distributions are energy-
independent. As shown in the previous subsection,
the growth of inelastic and total cross sections with
energy in hadronic collisions is due to increasing ef-
fective sizes of interacting hadrons. To make a quan-
titative analysis of energetic dependence of multi-
plicity distributions, we performed, in the framework
of the SCQM, Monte Carlo simulation of inelastic
proton–proton interactions selecting nondiffractive
events. The process of simulation includes the follow-
ing steps:

(i) Applying Heisenberg prescription (22), we de-
fine the mass of CF (Fig. 7) produced in the proton–
proton collision at a particular impact parameter.
Quark configurations inside each proton at the in-
stant of the collision are specified randomly according
to the probability (15) that allows one to fix energies
and momenta of quarks inside both protons. Since
YSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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the mass of CF is formed by the overlap of hadronic
densities of individual CQs of colliding protons, we
know the energies and momenta of quarks in both
remnants, which we call, by convention, forward and
backward fireballs (FF and BF). The notion fireball
is applied by convention only because all fireballs,
CF, FF, and BF, can decay in a string-like manner
and there is no sharp boundary between secondaries
emitted from fireballs in the rapidity space for non-
diffractive events. Then we calculate the effective
masses of FF and BF (Fig. 7):

MFF =

√√√√( 3∑
i=1

E′
i

)2

−
(

3∑
i=1

ki

)2

, (25)

MBF =

√√√√( 6∑
i=4

E′
i

)2

−
(

6∑
i=4

ki

)2

, (26)

where E′
i and ki are energies and momenta of CQs

after the collision.
(ii) We assume that each fireball breaks up, in

general, into clusters. Here, the bremsstrahlung anal-
ogy is used; namely, at the instant of the collision, a
proton (electron) loses the energy dumping fraction
of its hadronic (electromagnetic) field by means of
the emission of clusters (photons). To simulate the
masses of the clusters, we apply the result of [19] for a
cluster mass spectrum

P (mcl) = (mcl/m0) exp(−mcl/m0), (27)

following from the statistical nature of the cluster
emission. Our next assumption is that masses of
clusters increase with the collision energy. This is
dictated by the necessity to take into account such
peculiarities of multiparticle production as the growth
of a rapidity distribution plateau, the increasing trans-
verse momenta of secondaries, and the increasing
yield of minijets. We parametrize the energy depen-
dence of the average mass of clusters as

〈mcl〉 = 0.3 + 0.09s1/4. (28)

Notice that we have chosen the same energetic de-
pendence for the minimal fireball mass in Heisenberg
prescription (23) except for the value of the slope
parameter.

(iii) Given the positions of the centers of mass
of each fireball in rapidity space and kinematically
allowed rapidity (sub)spaces for the breaking up of
each fireball into clusters, we simulate the momenta
for each generated cluster in the proper frame of the
corresponding fireball. The bremsstrahlung mech-
anism of the fireball fragmentation corresponds to
statistically independent emission of clusters with
limited transverse momenta. Therefore, we apply the
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
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Fig. 7. Fireball picture of multiparticle production in
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cylindrical phase-space model according to which the
rapidity of the ith cluster is defined as

yi = ξYi, (29)

where ξ is random number uniformly distributed in
the interval [0, 1]. The allowed rapidity interval, Yi, is
given by

Yi = ln(M2
F /(µcl)

2
i ),

where (µcl)2i = (mcl)2i + p2
⊥i, the transverse mass of

the cluster i. Moreover, the rapidity interval for frag-
mentation of the CF, Y CF

i , is restricted by the require-
ment

Y CF
i ≤ Y FF − Y BF, (30)

where Y FF and Y BF are rapidities of FF and BF,
respectively. The transverse momenta of the clusters
are generated according to the distribution

f(p2
⊥) ∝ exp(−bp2

⊥). (31)

The energy of the remnant baryon in the proper frame
of FF (BF) is defined by the total energy of two
quarks closest to each other in rapidity space; i.e., the
kinematic characteristics of the baryon are connected
to those of the diquark.

(iv) Since our clusters are identified with minijets,
they should decay in a jetlike manner. One could as-
sume that these minijets are formed by the fragmen-
tation of the excited sea quark–antiquark pair. Hence,
we can approximate the spectrum of cluster decay
using data on the electron–positron annihilation pro-
vided that the cluster mass is identified with the c.m.
energy of an electron and positron: mcl =

√
se+e− .

One can apply for this purpose any of the appropriate
Monte Carlo generators. The axis of the decaying jet
is generated to be directed isotropically. And, finally,
4
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the model meets energy–momentum conservation
requirements for all products of a reaction.

Calculated in such a manner, the multiplicity dis-
tributions in the KNO form and the energetic depen-
dence of the mean multiplicity for charged particles
are shown in Figs. 8 and 9. Given all characteristics
of produced particles in the event, we can calculate
inelasticity k2 (2). Its distributions for pp interactions
at different collision energies are shown in Fig. 10.
The inelasticity distribution evolves with energy in
P

such a way that its maximum position shifts to lower
values of inelasticity at higher collision energies. It
means that the higher the collision energy, the lower
the average inelasticity (Fig. 11). Analyzing the mul-
tiplicity distribution at different energies, one can see
that the position of its maximum shifts to lower values
of scaled multiplicities and the contribution of high
multiplicities increases, while the collision energy in-
creases. According to Eq. (24), the multiplicity dis-
tribution can be expressed via the conditional multi-
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 2004
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plicity distribution at a particular inelasticity and the
inelasticity distribution. The conditional multiplicity
distribution at the particular inelasticity, in turn, is
built from multiplicities of clusters emitted from FF,
BF, and CF andmultiplicities going from the clusters’
fragmentation. If the inelasticity distribution and (av-
erage) mass of the clusters do not depend on the colli-
sion energy, then the scaled multiplicity distributions
will not depend on energy either and KNO scaling will
take place. The shift of the position of the maximum
of the inelasticity distribution with the energy growth
shifts the position of the scaled multiplicity distribu-
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 1 200
tion. On the other hand, masses of clusters growing
with collision energy lead to the narrowing of available
rapidity space and, consequently, to the violation of
Feynman scaling. This effect is most obviously ex-
hibited at inelasticities close to 1 and causes the tail
of the multiplicity distribution to shift upward at high
multiplicities. To summarize, we claim that the mean
inelasticity decreases with energy, and the violation
of KNO scaling is a consequence of the growth of
inelastic and total cross sections and of masses of
emitted clusters with energy.
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