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Abstract—The Voss random addition algorithm is modified for simulation of a stochastic fractal function that
describes the distribution of the capillary system characteristics in a locally inhomogeneous porous medium
with regard to porosimetry data. The influence of the dispersion function shape and the density of pores on the
distribution of the capillary equivalent diameter in a given domain is analyzed. © 2005 Pleiades Publishing,
Inc.
A wide range of structural and thermal physical
properties, the ease of producing intricate parts, the
developed internal surface, and intense heat exchange
all make it possible to apply powder capillary–porous
materials in various environments.

To work out physically correct methods for thermal
and hydraulic simulation of devices containing porous
elements, it is necessary to have reliable information on
the internal structure of and mass and energy transfer in
penetrable materials.

An important stage in solving these problems is
development of an effective algorithm to simulate the
distribution of the equivalent diameter (as well as any
other parameter of a porous medium) from the general-
ized characteristics of the medium in a given region.

Note that some of the researchers who examined the
structure of capillary–porous materials considered the
characteristic dimensions of a porous medium as a
whole [1, 2]. However, when studying the dynamics of
fluids in the internal channels of voids, one has to take
into account the size and velocity profile distributions
over the cross section of the channel and also a decrease
in the effective cross-sectional area of the channel due
to local flow separation from the walls. Therefore,
it seems to be worthwhile using the notion of the
equivalent diameter (by analogy with noncircular chan-
nels), which has gained acceptance in applied hydrody-
namics [3].

At present, there are strong grounds to believe that
most locally inhomogeneous penetrable structures have
the properties of stochastic self-similarity in a certain
range of characteristic scales [4].

One of the most efficient procedures for construct-
ing a spatial distribution with fractal characteristics is a
generalization of the random addition algorithm, which
was first proposed by Voss at a Conference on Funda-
mental Algorithms in Computer Graphics (Berlin,
1985) [5].
1063-7842/05/5002- $26.00 ©0141
The basic version of the Voss algorithm represents a
recursive sequence of the additions of the initial values
of some pseudorandom function di – 1 with increments
∆di that obey an unbiased normal distribution law with
given rms deviation σi. A change in the number of
points is specified by the partition coefficient

(1)

where ∆li and ∆li – 1 are the increments of an indepen-
dent variable for two sequential generations of the frac-
tal curve. For constructing a one-dimensional Voss
curve, we have to require that the dispersion of the
increments of a dependent variable meet the relation-
ship

(2)

where σ2(di) is the dispersion of the increments of the
dependent variable for an ith generation of the random
addition sequence and H is the Hurst exponent (which,
in the general case, belongs to the open interval H ∈
(0; 1)).

For this procedure to be algorithmically realized for
each element from the range of a current-generation
function, it is convenient to use a recursive representa-
tion in the form of a normally distributed pseudoran-
dom number with a mathematical expectation that is
equal to the value of the previous-generation function
and with a dispersion that is determined from (2).

The number of points for determination of a fractal
function from generation to generation also has a recur-
sive representation where partition coefficient (1) has
the form

(3)

Let us complete the set of Eqs. (2) and (3) by an
expression for a dimensionless spatial resolution δ(di)

r ∆li/∆li 1– ,=

σ2 di( ) r2Hσ2 di 1–( ),=

N di( ) rN di 1–( ).=
 2005 Pleiades Publishing, Inc.
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normalized to the amplitude values of variable di:

(4)

where da and db are the minimal and maximal values in
the range of independent variable di.

The independent solution of Eqs. (2) and (3) in view
of spatial resolution (4) (Fig. 1a) shows that the stan-
dard realization of the Voss algorithm implies a mono-

δ di( ) db di–( )/ db da–( ),=
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Fig. 1.  and Ni vs. current spatial resolution δi obtained

by using the (a) standard and (b) modified Voss random
addition algorithm. (–s–) and (–h–) refer to σ2(di) and
(−n−) and (–,–), to N(di). The basic parameters for these
distributions are as follows. (a) δ(da) = 1.000 and δ(da)' =

0.833; (–s–) H = 0.600 and σ2(db) = 0.268; and (–n–) r =

0.500, N(da) = 1.638 × 104, and N(da)' = 0.410 × 104. (b)

(−s−) ασ = 8.0, βσ = 2.5, and (σ2)max = 0.320; (–h–) ασ =

3.0, βσ = 1.7, (σ2)max = 0.181; (–n–) αN = 8.0, βN = 2.5,

and N(da) = 1.638 × 104; and (–,–) αN = 3.0, βN = 1.7, and

N(da) = 1.638 × 104.

σi
2

tonic increase in the number of points, N(di), in each
next generation of stochastic fractal function di with a
similar monotonic decrease in the dispersion σ2(di) of
its additional amplitude values ∆di.

In addition, we note that this random addition algo-
rithm admits a trivial generalization for the case of con-
structing a fractal function of two or more independent
variables.

The realization of such a function for two values of
maximal spatial resolution δ(da), with all other param-
eters unchanged, is exemplified in Fig. 2a (δ(da) =
0.833) and 2b (δ(da) = 1.000). The minimum value of
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Fig. 2. Two realizations of the standard Voss random addi-
tion algorithm for stochastic fractal function d(x, y) that
describes the distribution of the equivalent hydraulic diam-
eter of voids in a locally inhomogeneous porous medium.
The basic parameters for these realizations are the follow-
ing: (a) σ2(db) = 0.268, δ(da) = 0.833, and N(da) = 0.410 ×
104; (b) σ2(db) = 0.268, δ(da) = 1.000, and N(da) = 1.638 ×
104. For both realizations, r = 0.500 and H = 0.600.
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the spatial resolution was kept constant (δ(db) = const)
in all the realizations.

As applied to simulation of penetrable powder
porous materials with a given grain composition, this
means that, in the former case, the finest grains are
excluded from the initial material.

The initial state of the function generating a pseudo-
random number sequence, which governs the local dis-
tribution of increments ∆di of the desired function, was
set to be identical in both cases.

However, when using this algorithm in applications
where the spatial structure of locally inhomogeneous
capillary networks is to be simulated, one has to take
into account the distributions of σ2(di) and N(di) at dif-
ferent spatial resolution levels in real porous materials.

Experimental data on the structural characteristics
of porous materials used in machine building [2, 6]
indicate that the behavior of the dispersion function and
the equivalent capillary diameter density function differ
from that shown in Fig. 1a.

A typical distribution of the equivalent pore diame-
ter in powder porous materials is shown in Fig. 3. The
materials studied were BrOF10-1 tin–phosphor cast
bronze (State Standard 1.90054-72) (Fig. 3a) and
12Kh18N10T stainless steel (State Standard 5632-72)
(Fig. 3b). The experimental curves were obtained using
the method of invasive mercury porosimetry at the Bau-
man State Technical University [6].

According to the test results, the voidage versus the
equivalent pore diameter for all fractions no finer than
a current fraction is given by

(5)

where ∆Vk is a voidage increment due to the current
fraction di of the porous material when the mercury
pressure increases and V0 is the total volume of the
porous sample studied.

In Fig. 3, curve –,– shows the integrated depen-
dence of the total number of pores, N(di), on their
equivalent diameter for all fractions no finer than the
current fraction. This curve is constructed from the
experimental dependence Π(di) under the following
assumptions: (i) the pore size within a fraction is con-
stant and equal to the mean equivalent diameter for the
fraction, (ii) the pores are spherical and may intersect
each other, and (iii) the fraction of the volume that is
lost when two pores intersect is equal to, or larger than,
half a smallest pore.

In this case, the lower estimate of the number of
pores for each fraction depends on voidage ∆Vi due to
this fraction,

(6)

Π di( )
Σk i–

n ∆Vk

V0
--------------------,=

N di( ) 2
∆Vi 6×

πdi
3

------------------.=
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Analysis of distribution functions N(di) obtained by
jointly solving Eqs. (5) and (6) indicates that the exper-
imental data are best fitted by a family of integral beta-
distribution functions [7],

(7)

Here, α and β are the distribution parameters and
B(α, β) is the beta function defined by the integral rela-
tionship

(8)

N di( ) 1
B α β,( )
------------------- di( )α 1– 1 di–( )β 1– di( ).d

da

di
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Fig. 3. Integral distributions of (h) voidage Πi and (,)
number of pores Ni for the main fractions vs. mean equiva-
lent diameter di. The basic parameters for the samples under
study are the following: (a) porous bronze, d0 = 25 mm, h0 =

20 mm, Π0 = 0.260, and N0 = 6.067 × 107; (b) porous stain-
less steel, d0 = 20 mm, h0 = 10 mm, Π0 = 0.111, and N0 =

0.858 × 107.
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where

is the variable of integration.

The approximations of the number of pores versus
equivalent diameter dependence, N(di), using Eqs. (7)
and (8) are exemplified in Fig. 1b.
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Fig. 4. Two realizations of the modified Voss random addi-
tion algorithm for stochastic fractal function d(x, y) that
describes the distribution of the equivalent hydraulic diam-
eter of voids in a locally inhomogeneous porous medium.
The distributions of the basic parameters for these realiza-
tions over spatial resolution levels are shown in Fig. 1b.
Structurally, the realizations correspond to the samples
(Fig. 3) of the (a) porous bronze (ασ = αN = 3.0 and βσ =
βN = 1.7) and (b) porous stainless steel (ασ = αN = 8.0 and
βσ = βN = 2.5).
When simulating the dispersion distribution over
spatial resolution levels, we used the relationship

(9)

for the differential beta function. Here, I(di) is the indi-
cator of the event {di < dx}, which has the form of the
piecewise constant function

In all the cases under consideration, the coefficients
of the σ2(di) distribution were taken to be identical to
those of the N(di) distribution, ασ = αN and βσ = βN.

With such a choice, function  is asymmetric and
peaks in the range where the gradient of function Ni

reaches a maximum (Fig. 1b). Such behavior satisfac-
torily agrees with the experimental differential distribu-
tions of pores over their equivalent sizes in the materi-
als under study [6].

Two realizations of the modified Voss algorithm

using distribution functions Ni and  in the form of (7)
and (9) are shown in Fig. 4. Structurally, these realiza-
tions correspond to the parameters of the samples,
namely, the porous bronze (Fig. 4a) and the porous
stainless steel (Fig. 4b). The only discrepancy is in the
total number N0 of equivalent pores, which form the
capillary structure of the samples.

The total number of pores in real porous materials is
extremely large. Subject to the above assumptions, it is
determined from porosimetry data as the integral sum
of the number of pores over all fractions. The lower
estimates are as follows: for a cylindrical sample of the
porous bronze (d0 = 25 mm, h0 = 20 mm, and voidage
Π0 = 0.260), the number of pores is N0 = 6.067 × 107;
for a sample of the porous stainless steel (d0 = 20 mm,
h0 = 10 mm, and Π0 = 0.111), we have N0 = 0.858 × 107.

When simulating the capillary system of a porous
body with the Voss algorithm, we restricted the dimen-
sion of the computational grid to  = (128)2 = 1.638 ×
104 in order to cut the machine time.

This restriction means a decrease in the linear
dimensions of the region being simulated; in the two-
dimensional case, this decrease is proportional to the
ratio

(10)

where  and l0 are the characteristic linear dimensions
of the virtual (simulated) and real regions, respectively.

Solving Eq. (10) for unknown variable  yields
lower estimates of the characteristic linear dimensions

σ2 di( ) 1
B α β,( )
------------------- di( )α 1– 1 di–( )β 1– I di( ),=

I di( )
1, di dx<
0, di dx.≥




=

σi
2

σi
2

N0'

µ0
l0'

l0
---

N0'

N0
------,= =

l0'

l0'
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of the regions shown in Fig. 4: for the porous bronze
simulant with l0 = d0 = 25 mm, we obtain  =
0.411 mm; for the porous stainless steel simulant at l0 =
d0 = 20 mm, we get  = 0.874 mm.

Thus, when compared with the standard version, the
modified Voss algorithm, which takes into account the
behavior of the structural indices in real capillary–
porous materials on various spatial scales, substantially
changes the structure of the resulting capillary system.

First, the small value and the slow increase of index 
in the range of low spatial resolutions δi produce a more
uniform stochastic distribution of equivalent diameters.
This is because the portion of coarser fractions
decreases and basic fluctuations of function d(x, y) shift
toward medium scales. Second, the sharp decline in

index  in the range of high δi considerably smoothes
stochastic function d(x, y), because the finest fractions
become minor contributors to the resulting equivalent
diameter distribution.

CONCLUSIONS
The modified version of the Voss algorithm offers a

high flexibility, which is very important in applied
research. The beta functions applied to simulate the dif-
ferential and integral distributions allow one to repro-
duce most practically important smooth functions in a
limited interval. Moreover, these functions may be
specified in tabular form (e.g., based on empirical data)
without any restrictions and missing values may then be
found by interpolation using reference points. No
restrictions are also imposed on interpolation methods.

l0'

l0'

σi
2

σi
2
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It is shown that a porous structure under study can be
reproduced from porosimetry data as fully as desired.
Owing to its recursive structure, the modified algorithm
generates stochastically self-similar realizations of a
multidimensional fractal function with characteristics
specified in a given domain of the space of independent
variables. The aforesaid suggests that the procedure
proposed in this work could be helpful in theoretical
and applied studies of locally inhomogeneous porous
structures. However, a relationship between the fractal
characteristics of a function thus obtained and the
parameters of the initial distributions has yet to be reli-
ably established.
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Abstract—The probe-forming system of a nuclear scanning microprobe based on the parametric multiplets of
quadrupole lenses is optimized. The optimization is aimed at creating an ion probe with energy of several MeV
that produces a micrometer spot on the target at a current of ~100 pA. The influence of different geometric and
physical parameters on the ion–optical properties of the probe-forming systems considered is determined. The
optimization is carried out by varying the parameters specifying a given parametric multiplet, and its efficiency is
found from a quality criterion that takes into account the beam current for given sizes of the spot and target. The beam
parameters at the entrance to and at the exit from the ÉGP-10 electrostatic tandem accelerator (produced by the
VNIIÉF) are involved in the optimizing calculations. These are the maximal energy, normalized brightness,
transport conditions, and chromatic inhomogeneity of the beam (i.e., the energy straggling of beam particles).
Allowance is also made for the parasitic components of the magnetic quadrupole lens field, which arise because
of quadrupole symmetry breaking by technological and physical reasons. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Electrostatic accelerators (EAs), which were ini-
tially developed for solving the problems of experimen-
tal nuclear physics, continue to be promising for vari-
ous fields of science and technology. In the first place,
this is because the beams used in EAs are highly mono-
chromatic and their energy can be smoothly varied. An
interesting application is an EA-based nuclear scanning
microprobe (NSMP) intended for studying the structure
and elemental composition of various, including bio-
logical, materials by such matured methods as particle-
induced X-ray emission (PIXE), nuclear reaction anal-
ysis (NRA), Rutherford back scattering (RBS), and
others. NSMPs have found wide utility in producing
parts for micromachines [1] and in precision ion
implantation [2]. The need for a probe using focused
ion beams with energy of several MeV that produces a
micrometer spot on the target has stimulated design of
probe-forming systems (PFSs) capable of providing the
desired parameters. Experience gained by the research-
ers engaged in electron microscopy studies, where
focusing units generate axisymmetric fields, may help
little in the case of an NSMP because of the high energy
of the beam. In most advanced nuclear microprobes, a
magnetic quadrupole lens serves as a basic focusing
element. According to [3], the relativistic effects should
be taken into consideration when the particle velocity v
1063-7842/05/5002- $26.00 0146
is such that v /c > 0.2, where c is the speed of light. For
protons with energy of 14 MeV, v /c ≈ 0.17. Therefore,
the charged particle motion here is assumed to be non-
relativistic. The power of a magnetic quadrupole lens
depends on the dimensionless excitation κ of a hyper-

bolic-shape pole piece: κ = LE . Here, W2

is the quadrupole component, which is governed by the
field gradient in the direction transverse to the
optical axis; LE is the effective length of the lens field;
m and q are the ion charge and mass, respectively; and
V is the potential difference across the accelerating gap.
Unlike axisymmetric lenses, the power of a quadrupole
lens can be raised by increasing not only the field gra-
dient but also the effective length of the lens field.
Hence, there are no major restrictions on the beam
energy. Since quadrupoles can focus in only one trans-
verse direction, the stigmatic focusing of the beam on
the target is provided with multiplet systems consisting
of several lenses. The arrangement of quadrupoles in a
multiplet is shown in Fig. 1.

The PFS itself consists of object and angular colli-
mators, focusing elements, and the target. Their posi-
tion on the optical axis is specified by geometric param-
eters a, g, ai, l, and LE, (i), where a is the object distance,
i.e., the distance between the object and angular colli-
mators; g is the working distance, i.e., the distance

W2 2q/mV
© 2005 Pleiades Publishing, Inc.
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between the exit boundary of the effective field of the
last lens to the target plane; ai specifies the position of
an ith lens; l is the length of the system; and LE, (i) is the
effective length of the field of the ith lens.

Each of the lenses is fed by a current source that pro-
vides the distribution of the quadrupole component
W2, (i)(z) along the optical axis (z axis). The local Carte-
sian coordinate system of each of the lenses is related
to the optical axis z of the lens and its planes of quadru-
pole antisymmetry. The optical axes of the lenses are
aligned with the optical axis Z of the laboratory coordi-
nate system. The local coordinate systems of the lenses
may either coincide with the laboratory system or be
rotated through ±90° about the Z axis.

The PFS thus defined will be called the PFS based
on the parametric multiplets of magnetic quadrupole
lenses. Here, variable parameters may be the number N
of lenses in the system and the number n of independent
power suppliers; parameters l, a, ai, g, and LE, (i) are
defined above. Triplets (N = 3) and quadruplets (N = 4)
of magnetic quadrupole lenses with two independent
power suppliers (n = 2) are today well understood and
extensively used. The triplet that has found the widest
recognition and, in particular, is used in the microprobe
at the Oxford laboratory [4] is fed as follows: the first
and second lenses are fed by one source, and the third
one is fed independently by another source. The local
coordinate system of the second lens is rotated through
±90° about the Z axis of the laboratory coordinate sys-
tem. In the PFS known by the name Russian quadruplet
(N = 4) [5], the first and fourth lenses are fed from one
source and the second and third ones, from another
independent source. The local coordinate systems of
the second and fourth lenses are rotated through ±90°
about the Z axis of the laboratory coordinates. The sys-
tems with N > 4 and n > 2 are yet little understood. The
quintuplet (N = 5, n = 2) of magnetic quadrupole lenses
is applied in microprobes in Melbourne [6] and Sydney
[7].

When optimizing the PFS, we consider the beam
parameters (the energy E0, normalized brightness b,
and ion energy straggling δE = ∆E/E0) provided by the
ÉGP-10 VNIIÉF accelerator. The dimensions of the
lenses and their fields take into account the magnetic
properties of the material. In the process of PFS operat-
ing parameter optimization, the geometric parameters
of the system are varied. The analysis also includes the
nonlinear effects associated with both intrinsic and par-
asitic aberrations due to technological imperfections.
The optimal PFS meets a quality criterion that is
defined as the current provided by the system when the
beam is focused into a spot of a given size.

ION–OPTICAL PROPERTIES 
OF PROBE-FORMING SYSTEMS

By the ion–optical properties of a PFS, we mean the
demagnification and aberration coefficients. Aberra-
TECHNICAL PHYSICS      Vol. 50      No. 2      2005
tions include first-order chromatic aberrations; third-
order intrinsic aberrations; and second- and third-order
parasitic aberrations, which are due to the sextupole
and octupole parasitic components of the lens field. The
parasitic components arise when technology-related
inaccuracies in fabricating the magnetic circuits and
coils break the quadrupole symmetry of the field.

Field gradient W2, (i)(z) in each of the lenses must
keep the stigmatism of the system for given parameters
of a parametric multiplet. The aberrations were calcu-
lated by the matrizant method [8]. In terms of matrix
methods, the aberrations of the entire system are found
by calculating those of each active element. Our
approach to calculating the aberrations of a magnetic
quadrupole lens with regard to contributions from the
parasitic components of the lens field [9] is based on the
axial field model. It is assumed that there is a rectilinear
optical axis in the lens along which the field vanishes,
|B| = 0. This approximation implies that the particles do
not change the direction of motion at the entrance to
and the exit from the lens. In the local Cartesian system
(x, y, z) the field generated by a magnetic quadrupole
lens in the pole gaps is described by the scalar magnetic
potential

(1)

where W2(z) is the major quadrupole component, W3(z)
and U3(z) are the major and skew parts of the sextupole
parasitic component, and W4(z) and U4(z) are the major
and skew parts of the octupole parasitic component.

The coordinate system (x, y, z) that is related to the
optical axis of the lens and the planes of antisymmetry
of major quadrupole component W2(z) is termed the
intrinsic coordinate system. Accordingly, components
W3(z), U3(z), W4(z), and U4(z) are called the compo-
nents of the intrinsic parasitics of a magnetic quadru-
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Fig. 1. Arrangement of quadrupole lenses in a multiplet.
(1) Object and (2) target.
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pole lens. Expression (1) is obviously a superposition
of the fields of 2n-pole multipoles (n = 2, 3, 4, …)
where each of the multipole fields has its own local
coordinate system coincident with its optical axis and
planes of antisymmetry. Noncoincidence of this local
coordinate system with the planes of antisymmetry
because of rotation about the optical axis causes extra
skew component Un(z) to appear. Since the parasitic
multipole components are of random character, their
local coordinate systems are freely oriented, i.e., are not
related to the local coordinate system of the quadrupole
component. Hence, they have both a major, Wn(z), and
skew, Un(z), component at n > 2. Thus, any minor rigid
transformation of the lens is bound to redistribute the
multipole components and/or to contribute to the para-
sitics of the dipole component and/or to the parasitics of
the skew quadrupole component. The allowable level of
the parasitics due to technological inaccuracies in lens
fabrication, as well as field quadrupole symmetry
breaking because of variously fed polar pieces, is con-
sidered in [9, 10].

The matrizant method maps the phase space (x, x', y,
y') where the position and direction of motion of a par-
ticle in a magnetic field are described onto the space of
phase moments. To calculate the mapping matrix for
our magnetic quadrupole lens (whose field is described
by scalar magnetic potential (1)), we represent the
space of phase moments by the vector

(2)

Here, x and y are the deviations of the beam particles
from the optical axis, x' and y' are the angles between
the velocity vector projections onto planes x0z and y0z
and the z axis (these angles specify the direction of par-
ticle motion), and δ = (p – p0)/p0 is the relative deviation
of the particle momentum p from the mean value p0.

In the matrizant method, the evolution of vector X
along the z axis is given by

(3)

Here, R(z/z0) is the matrizant (the matrix mapping the
coordinates of the 38 × 38-dimensional phase moment
space from plane z0 onto a plane with coordinate z)
where the first and third rows contain a complete set of
the linear properties of the magnetic quadrupole lens
and aberrations (including chromatic aberrations, sec-
ond- and third-order aberrations due to the sextupole
and octupole components, and all intrinsic geometric
aberrations of the third order). For the rectangular dis-
tribution of the field components W2(z), Wi(z), and Ui(z)
(i = 3, 4), an analytic representation of the matrizant
was obtained.

X x x' y y' xδ x'δ yδ y'δ x2 xx' x'2 y2 yy',, , ,, ,,,,, , , ,(=

y'2 xy x'y xy' x'y' x3 x2x' xx'2 x'3 xy2 xyy',,, ,,, ,,,,,

xy'2 x'y2 x'yy' x'y'2 y3 y2y' yy'2 y'3 yx2 yxx',,, ,,, ,,,,

yx'2 y'x2 y'xx', y'x2 )T
.,,

X z( ) R z/z0( )X z0( ).=
Based on the aforesaid, the program PROBFORM
was developed, which makes it possible to determine
the ion–optical properties of PFSs from the parametric
multiplets of magnetic quadrupole lenses. The program
was carefully tested on analytical models. The test
results were compared with those of other authors and
checked experimentally [11].

QUALITY CRITERION FOR A PROBE-FORMING 
SYSTEM

Since, in our work, the ion–optical properties of a
PFS imply the demagnification and aberration coeffi-
cients, PFS optimization is aimed at designing systems
with high demagnification and low aberration coeffi-
cients, since a high demagnification decreases the spot
on the target, while aberrations, conversely, increase.
Unfortunately, high demagnifications considerably
enhance aberrations in all PFSs. Therefore, PFS optimi-
zation means finding a tradeoff between these coeffi-
cients for a particular system. By varying the parame-
ters of parametric PFSs, one usually seeks for a system
where the tradeoff between these coefficients maxi-
mizes the current density in the spot on the target. The
current density in the spot is therefore taken as the qual-
ity criterion for PFSs. In other words, those systems are
preferable that provide a maximal current at the target
for a given size of the beam. Such a criterion meets the
requirements of the chemical or physical analysis tech-
niques that extract information from interaction events
between beam particles and target atoms. Clearly, the
rate of such events is in direct proportion to the number
of particles incident on the spot per unit time, but the
spot itself must be minimized in order to adequately
examine the element distribution in the material. There-
fore, the current density on the spot is limited from
above in a number of applications. In this case, the min-
imal size of the spot on the target at a fixed current is
taken as the quality criterion [12, 13]. It is known that
I ≈ bεΕ, where I is the current and b, ε, and Ε are the
normalized brightness, emittance, and energy of the
beam, respectively. Since the normalized brightness
characterizes the ion source and beam transport system
and so depends on a specific accelerator design, a func-

tional relationship d = (ε) (where d is the minimal
beam size at given emittance ε) should be known for
each general-purpose PFS. From physical consider-

ations, it follows that function (ε) monotonically
increases (d grows with ε). Then, the inverse depen-
dence ε = (d) can be constructed by seeking for the
maximal emittance of the beam with its size on the tar-
get fixed. A method based on this principle was sug-
gested in [14]. This method of finding the maximal
beam emittance is realized in the MaxBEmit numerical
code and allows one to determine the maximum emit-
tance provided by a PFS when its beam is focused into
a spot of a given size.

d̂*

d̂*

ε̂*
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SELECTION OF OPTIMAL PARAMETERS
FOR A PROBE-FORMING SYSTEM

We investigated the effect of various geometrical
and physical parameters on the ion–optical properties
of the PFS based on the parametric multiplets of mag-
netic quadrupole lenses, using the quality criterion sug-
gested above. With this criterion, one can choose the
optimal PFS design for the ÉGP VNIIÉF electrostatic
accelerator. The choice relies upon the following rea-
soning. It was shown [9, 15] that the Russian quadru-
plet is of higher performance than the Oxford triplet
and the increase in the number of the lenses to five does
not cause a significant increase in the current density on
the target. Therefore, the PFS chosen uses the multiplet
like the Russian quadruplet (N = 4, n = 2). Previous
investigations [15] let us argue that, if the beam ion
energy straggling in accelerators is δE ~ 10–3, the per-
formance of such PFSs is virtually independent of their
length in the range 2 < l < 9 m and they cannot provide
a submicron resolution at a current of ≈100 pA when
used in PIXE, RBS, and NRA studies. This is because
chromatic aberrations will necessitate smaller size col-
limators to be used in order to provide a submicron
beam on the target; accordingly, the current will
decrease. Therefore, it makes no sense to take
long PFSs (l = 7–9 m), which offer a high demagnifica-
tion (D ≈ 100). The resolution is also limited by a rela-
tively low normalized brightness of the beam, b ≈
1 pA/(µm2 mrad2 MeV), which is typical of tandem
accelerators with the standard ion source of duoplasma-
tron type. Finally, the arrangement of the microprobe
channel should also be taken into consideration.

Based on the aforesaid, the length l = 4 m of the PFS
was taken as the basic length of the NSMR. For the
given basic length, it remains to determine the follow-
ing parameters of the system: a, the object distance;
g, the working distance; LE, (1) and LE, (2), the effective
lengths of the lenses; ra, the radius of the lens aperture;
and Wi/W2 and Ui/W2 (i = 3, 4), the allowable relative
levels of the field parasitic components in magnetic
quadrupole lenses.

These parameters will specify the PFS that is opti-
mal in terms of the maximum current for a given size of
the spot on the target.

It was shown [9] that the allowable relative levels of
the field parasitic components in the magnetic quadru-
pole lenses used in the PFSs based on the Oxford triplet
and Russian quadruplet are W3/W2 = U3/W2 =
0.000375 cm–1 and W4/W2 = U4/W2 = 0.000538 cm–2,
respectively. The aperture radius depends on the accu-
racy of positioning of the pole piece that can be pro-
vided in magnetic circuit fabrication. Our equipment
(an electric spark machine with auxiliary facilities) pro-
vides a pole piece positioning accuracy of ±5 µm. Cal-
culations show that the parasitics will fall into the
allowable range in magnetic quadrupole lenses with an
TECHNICAL PHYSICS      Vol. 50      No. 2      2005
aperture radius of 6.5 mm at a pole piece positioning
accuracy of < ±5 µm.

Figure 2 shows the PFS characteristics versus
parameters a, LE, (1), and LE, (2). Figure 1a plots the max-
imal emittance provided by the systems being consid-
ered when a beam of 14-MeV H+ ions is focused into a
square spot of size d = 1.8 µm at the given working dis-
tance g = 20 cm (parasitic aberrations are disregarded).
In Fig. 1b, the vertical axis is magnetic induction B that
provides the desired beam parameters on the target for
given lengths of the lenses. The lengths of the lenses
should be selected such that the maximal induction at
the pole meets the requirement B < 0.27 T (in this case,
we fall into the range of linearity of the pole piece mate-
rial characteristics) and that the systems using such
lenses provide a maximal emittance.

It follows from Fig. 2 that the systems with the
effective lens lengths LE, (1) = 12.15 cm and LE, (2) =
9.65 cm offer the maximal emittance and satisfy the
restrictions on the maximal magnetic induction at the
pole piece. These lengths were taken as the basic
dimensions of magnetic quadrupole lenses in the PFS.
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Fig. 2. Maximal emittance ε* and maximal magnetic induc-
tion B at the pole piece of the quadrupole lenses in PFSs vs.
parameters a, LE, (1), and LE, (2).
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Fig. 3. Maximal emittance ε* and maximal magnetic induc-
tion B at the pole piece of the quadrupole lenses in PFSs vs.
parameters a and g. The effective lens lengths are LE, (1) =
12.5 cm and LE, (2) = 9.65 cm.
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Fig. 4. Maximal emittance ε* in PFSs vs. object distance a
and different levels of the field parasitic components in the
magnetic quadrupole lenses.
Figure 3 plots the same parameters of the systems as
in Fig. 2 against g and a. As working distance g
increases, so does the emittance, but magnetic induc-
tion B at the pole piece also grows, falling outside the
allowable range (the range of linearity). Moreover, it is
anticipated that the NSMP will employ an x–y ferro-
magnetic scanning unit with implicit pole pieces of
active length 12 cm. Their design is similar to that

Parameters of the basic probe-forming system (the Russian qua-
druplet of magnetic quadrupole lenses) for the EGP VNIIÉF
accelerator

System length l, cm 400.0

Lens effective lengths LE, (1), cm 12.15

                                   LE, (2), cm 9.65

Lens spacing in doublets a2 = a4, cm 3.0

Doublet spacing a3, cm 129.0

Lens aperture radius ra, cm 0.65

Working distance g, cm 20.0

Object distance a = a1, cm 201.4

Maximal magnetic induction at pole
Bmax, T (E = 14 MeV)

0.269

Demagnifications: Dx 27.2(27.2)

Dy 27.2(27.2)

Chromatic aberrations, µm/mrad/%: 〈x/x'δ〉 –607(–606)

〈y/y'δ〉 –125(–124)

Intrinsic spherical aberrations,
µm/mrad3: 〈x/x'3〉

807(840)

   〈x/x'y'2〉 177(123)

   〈y/y'3〉 16(19)

   〈y/y'x'2〉 177(123)

Parasitic aberrations due to allowable sextu-
pole components, µm/mrad2: 〈x/x'2〉 –92

〈x/x'y'〉 –17

〈x/y'2〉 3

〈y/x'2〉 –8

〈y/x'y'〉 6

〈y/y'2〉 3

octupole components, µm/mrad3: 〈x/x'3〉 370

〈x/x'y'3〉 –63

〈y/y'3〉 7

〈y/y'x'2〉 –63

Collimator size for focusing H+ beam,
E = 14 MeV

Square spot on target d = 1.8 µm, I = 100 pA

Object collimator, 2rx [µm] 27

2ry [µm] 25

Square spot on target d = 0.6 µm, I = 1.7 pA

Object collimator, 2rx [µm] 8

2ry [µm] 9
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described in [16]. To avoid lens aberrations, which
cause beam parameter degradation at the edge of the
raster, the scan unit is placed downstream of the last
lens. For a maximal deflecting field of 0.02 T and work-
ing distance g = 20 cm, a necessary scan length of
±300 µm is provided. Analysis shows that, with such a
scanning scheme, the increase in the beam diameter at
the edge of the raster is no more than 2% and is related
primarily to the chromatic inhomogeneity of the beam.
Therefore, g = 20 cm is the lower limit of the working
distance from both the physical and technological
points of view.

Figure 4 shows the maximal emittance as a function
of object distance a for lens lengths LE, (1) = 12.15 cm
and LE, (2) = 9.65 cm, working distance g = 20 cm, and
different levels of the field parasitic components. The
system with a = 201 cm, which is the least sensitive to
the parasitic components, is taken as the basic one.

The table summarizes the ion–optical properties, as
well as the geometrical and physical parameters, of the
basic PFS using the Russian quadruplet of magnetic
quadrupole lenses. The parasitic aberrations are listed
for the maximal permissible levels of the sextupole and
octupole components of the lens fields. The aberration
coefficients are designated starting from the map of the
particle coordinates on the plane (xo, yo) of the object
collimator onto the plane (xt, yt) of the target,

where  are the aberration
coefficients, α = {x, y}; i, j, k, l, m = 0, 1, 2, 3, ….

In the column showing the demagnifications, as well
as the chromatic and intrinsic spherical aberrations, the
related values calculated with the PRAM program are
presented in the parentheses for comparison.

Thus, we optimized the PFS based on the parametric
multiplets of magnetic quadrupole lenses. As a quality
criterion of the system, the beam current at a given size
of the spot on the target was taken. This value was the
target function in the optimization problem. The geo-
metric and physical parameters of the optimal PFS for
the ÉGP VNIIÉF accelerator. The rated beam size on
the target is 1.8 × 1.8 µm at a current of ≈100 pA,

α t … Aijklm
α[ ] xo

i xo'
j
yo

k yo'
lδm …,+ +=

Aijklm
α[ ] α /xix' jyky'lσm〈 〉=
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energy of 14 MeV, normalized brightness of
≈1 pA/(µm2 mrad2 MeV), and beam ion energy strag-
gling of 10–3.
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Abstract—The properties of the exponential Abelian transform (EAT), which is defined as the exponential
Radon transform (ERT) of a radially symmetric object just as the Abelian transform is the Radon transform of
a radially symmetric object, are considered. A new approach to deriving the inverse EAT directly from the
inverse ERT is suggested. The problems of numerical implementation of the EAT are discussed, including the
problem of loss of information from deep-seated regions of the object, which is nonexistent in the case of the
conventional Abel transform. The results obtained may be useful for reconstructing the spatial distribution of
axisymmetric or spherically symmetric radiation sources. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Computerized tomography is now a mature domain
of science with its own scope of problems and solution
methods [1–4]. Central in computerized tomography
are the Radon transform [5], which arises in transmis-
sion tomography, for instance, in determining the spa-
tial distribution of the radiation attenuation coefficient,
and the exponential Radon transform [6–8], which is
used in single-photon emission tomography when, for
instance, the spatial distribution of radiation sources is
sought. As applied to radially symmetric functions, the
associated transformations are of particular impor-
tance. It turns out that the Radon transform of a radially
symmetric function is the Abelian transform, which
was well known before Radon and is today widely used
in various domains of science [9]. At the same time, the
exponential Radon transform of a radially symmetric
function [10], which it is natural to call the exponential
Abelian transform (EAT), has long been in disfavor,
possibly because of the scarcity of relevant works.

The history of the integral Abelian transform (inte-
gral Abelian equation) dates back to 1823, when Niels
Henrik Abel generalized the well-known problem of
tautochrone. He obtained an integral equation of form

(1)

and found its solution (the inverse transform)

(2)

g x( ) f t( )
x t–

-------------- td

0

x

∫=

f x( ) 1
π
--- d

dx
------ g t( )

x t–
-------------- t.d

0

x

∫=
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At present, the term the Abelian equation (a gener-
alized Abelian equation) is usually referred to any
equation of form

(3)

(where 0 < α < 1 and a > 0) having a solution like

(4)

Integrating by parts, one obtains the inversion for-
mula

(5)

Of frequent occurrence is another form, which may
be called the “exterior” Abelian transform in contrast to
“interior” Abelian transform (3),

In this case, the inversion formula is

(6)

g x( ) f t( )
x t–( )α------------------ td

a

x

∫=

f x( ) απsin
π

--------------- d
dx
------ g t( )

(x t)1 α––
----------------------- t.d

a

x

∫=

f x( )

=  
απsin

π
--------------- g a( )

x a–( )1 α–
------------------------

1

x t–( )1 α–
----------------------- d

td
----g t( ) td

a

x

∫+ .

g x( ) g t( )
t x–( )α------------------ t.d

x

+∞

∫=

f x( ) απsin
π

--------------- d
dx
------ 1

t x–( )1 α–
-----------------------g t( ) td

x

+∞

∫–=
 2005 Pleiades Publishing, Inc.



        

EMISSION TOMOGRAPHY OF RADIALLY SYMMETRIC OBJECTS 153

                                       
or, after integration by parts,

(7)

ABELIAN TRANSFORM IN TRANSMISSION 
TOMOGRAPHY

The integral methods of transmission computerized
tomography (TCT) are based on the Radon transform
[3, 4]

(8)

where δ(·) is the Dirac delta.

Here, as is customary in computerized tomography,
we introduce fixed, (x, y), and rotating, (ξ, ζ), coordi-
nate systems (see Fig. 1), which are related as

(9)

For a radially symmetric function s(x, y) =

s( ) = s(r) in the polar coordinate system

(10)

Radon transform p(ξ, θ) turns into a particular case of
Abelian transform p(ξ),

(11)

where η(·) is the Heaviside unit step function.

Using general inversion formula (6) for the Abelian
transform, one can write the inverse transform for (11)
as

(12)

Integrating (12) by parts yields

(13)
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Here, the regularity condition at infinity, p(ξ)  0 as
ξ  +∞, is certainly assumed to be met.

Note that, in his classical papers [11, 12], Cormack
proposed an inversion formula different from (12) and
(13), namely,

(14)

However, integration by parts brings formula (14) to
form (13), as could be expected.

Of particular interest is derivation of the inverse
Abelian transform directly from the inverse Radon
transform. As the initial inversion formula, let us take
the one that corresponds to the filtered back projection
method [3, 4],

(15)

Here, h(·) is a filter function that admits an integral rep-
resentation in the form of the inverse Fourier transform
that exists on the class of generalized functions,

(16)

where p(1/ξ2) is a generalized function [13] that acts in
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Fig. 1. Fixed, (x, y), and rotating, (ξ, ζ), coordinate systems
used in the tomographic reconstruction of function s(x, y).
(1) Projection line.
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accordance with the rule

(17)

and v.p. means integration in the sense of the Cauchy
principal value.

Then,

(18)

which is the inverse Radon transform in the Radon form
[5].

In the case of radial symmetry, p(ξ, θ) = p(ξ) and,
passing to the polar coordinates, we have

(19)

Note that p(ξ) is an even function, while dp(ξ)/dξ is
an odd function. Since

(20)

where  is the signum function, the inverse Radon
transform yields the inverse Abelian transform in form
(13),

(21)
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EXPONENTIAL ABELIAN TRANSFORM 
IN EMISSION TOMOGRAPHY

The integral methods in emission computerized
tomography (ECT) are based on the exponential Radon
transform [3, 4]

(22)

where µ is the coordinate-independent coefficient of
linear attenuation of radiation.

For instance, for the gammas from the 99mTc radio-
nuclide with an energy of 140 keV in water, we have
µ ≈ 0.15 cm–1. For the radially symmetric function s(x,

y) = s( ) = s(r) considered above, exponential
Radon transform p(ξ, θ) turns into the exponential Abe-
lian transform p(ξ),

(23)

In contrast to [10], we will derive the inverse expo-
nential Abelian transform directly from the inverse
exponential Radon transform. According to the filtered
back projection method [4, 8], we have

(24)

where hµ(·) is a filter function that also has an integral
representation in the form of the inverse Fourier trans-
form that exists on the class of generalized functions:

(25)

Here, sinc(x) ≡ sinx/x.
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Then, the inverse exponential Radon transform can
be written in the Radon form as

(26)

In the case of radial symmetry, p(ξ, θ) = p(ξ) and,
passing to polar coordinates (10), we find

(27)

It can be demonstrated that

(28)

Finally, we arrive at the inverse exponential Abelian
transform in the form

(29)
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NUMERICAL IMPLEMENTATION 
OF THE INVERSE EXPONENTIAL ABELIAN 

TRANSFORM

When numerically implementing the inverse expo-
nential Abelian transform, one faces a number of prob-
lems that introduce distortions into the results obtained.
Among such distortions are, first of all, those due to the
ill-posedness inherent in the problem of solving inte-
gral equations of the second kind. In practice, this
makes the results unstable when the right-hand side has
a statistic error. In this paper, no consideration is given
to such distortions, since, on the one hand, they have
been extensively discussed in the literature (see, e.g.,
[14]) and, on the other hand, this topic calls for separate
investigation.

Distortions of another type are due to the structure
of the object itself; e.g., they may arise because of dis-
continuities at the boundaries of or inside the object
(Fig. 2). Such distortions can be effectively corrected
by considering each of them as an additive component
proportional to the amount of a discontinuity. Such a
correlation works well if the statistical noise is low; if it
is high, general methods of regularization of ill-posed
problems in combination with distortion correction
techniques should be applied.

Next, distortions may be associated with intrinsic
peculiarities of a particular problem. In the case of the
exponential Abelian transform, the loss of information
from deep-seated regions of the object is an example.
For the conventional Abelian transform, when µ = 0,
this problem does not arise. The Fourier image of filter

1.2

1.0

0.8

0.6

0.4

2 4 6 8 10
r, cm

0.2

0

s, arb. units

Fig. 2. Correction of the distortions associated with discon-
tinuities in the radiation source distribution function. The
solid line shows the original function; the dashed line, the
function reconstructed without correction. The function
reconstructed with correction coincides with the original
function.
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function (25),

(30)

is shown in Fig. 3a. In calculations, function Hµ(χ)
should be multiplied by some apodizing function A(χ)
that regularizes the ill-posed problem of finding the
inverse EAT. Even without the apodizing function, the
maximal size of domain R being discretized and dis-
cretization interval ∆r specify the lowest, χmin, and
highest, χmax, spatial frequencies in the Fourier space.
In essence, this corresponds to introduction of the
apodizing function presented in Fig. 3b. Then, with
regard to the apodizing function, the Fourier image of
the filter function depends on a relationship between µ
and χmin (see Fig. 3c). If µ < χmin, the lowest of low spa-
tial frequencies is equal to χmin; for µ > χmin, it equals µ.
In the latter case, information is partially lost and the
object reconstructed is distorted. Physically, this means
that the radiation from very deep-seated areas of the
object is not detected at all. Since the lowest spatial fre-
quency corresponds to the maximal size of the object,
attention should be paid to a proper relationship

Hµ χ( )

=  
1

2π
---------- hµ ξ( )e iχξ– ξd

∞–

+∞

∫ 1

2 2π
-------------- χ η χ µ–( ),=

Hµ(χ)

A(χ)

Hµ(χ)A(χ)

–µ µ0 χ

χ–χmax –χmin χmin χmax0

1

–χmax –µ –χmin–µ 0 χmin χmaxµ µ χ

(a)

(b)

(c)

Fig. 3. (a) Fourier image of the filter function, (b) apodizing
function, and (c) Fourier image of the filter function with
regard to the apodizing function.
between the object size and the radiation attenuation
coefficient.

The aforesaid is illustrated by Fig. 4. As long as µ <
χmin, the original function is restored almost exactly
(Fig. 4a). When µ > χmin, the function reconstructed
contains distortions (Fig. 4b), which build up as the
truncated part of the spatial frequency band expands
with µ. Even if this part is about 10%, the distortions
become unallowably large (Fig. 4c).

CONCLUSIONS

The basic properties of the exponential Abelian
transform as a generalization of the classical Abelian
transform are considered. A new approach to deriving
the inverse exponential Abelian transform directly from
the inverse exponential Radon transform is suggested.
The problems of numerical implementation of the
inverse exponential Abelian transform are discussed.
The principal distinction between the exponential Abe-

0 2 4 6 8 10

0.5

1.0

1.5

2.0
s, arb. units

0 2 4 6 8 10

0.5

1.0

1.5

2.0

0 2 4 6 8 10

0.5

1.0

1.5

2.0
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(b)

(a)

Fig. 4. Effect of the radiation attenuation coefficient on the
quality of reconstruction of the radiation source distribution
function. The solid line, the original function; the dashed
line, the function reconstructed. µ = (a) 0.5χmin =
0.005χmax, (b) 5χmin = 0.05χmax, and (c) 10χmin = 0.1χmax.
TECHNICAL PHYSICS      Vol. 50      No. 2      2005



EMISSION TOMOGRAPHY OF RADIALLY SYMMETRIC OBJECTS 157
lian transform and the conventional Abelian transform
is that the radiation (information) from very deep-
seated regions of the object is partially lost in the
former case. The results obtained may be useful in
reconstructing the spatial distribution of axisymmetric
or spherically symmetric radiation sources, e.g., in
diagnostics of fuel elements for nuclear reactors, as
well as of other objects.
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Abstract—Nonlinear second- and fourth-order corrections to the critical Tonks–Frenkel parameter (which
characterizes the stability of the uniformly charged flat surface of an ideal conducting incompressible fluid) are
found by asymptotic calculations of the fifth order of smallness in ratio of the wave amplitude to the capillary
constant of the fluid. A nonlinear integral equation for the time evolution of the unstable wave amplitude is
derived and solved. It turns out that the linear stage of instability development takes a major part of the total
time, while the nonlinear stage is very short. It is shown that the characteristic time of instability development
on the fluid surface is a rapidly decreasing function of the initial amplitude of a virtual wave and the overcritical
surface charge (i.e., the excess of the charge over the critical value). © 2005 Pleiades Publishing, Inc.
(1) Investigation into the physical mechanisms of
instability development on the charged flat fluid surface
is of both scientific and applied interest (see, for exam-
ple, [1–9] and Refs cited therein). Most of the theoreti-
cal studies has been conducted in an approximation lin-
ear in amplitude of deformation of the flat fluid surface.
Works reflecting the nonlinear essence of this phenom-
enon have appeared only recently [10–15]. Yet, many
issues concerning its nature still remain unclear. In par-
ticular, mechanisms behind the formation of Taylor
cones have not been covered to date. By Taylor cones,
researchers mean protrusions arising on the charged
fluid surface at the nonlinear stage of instability devel-
opment. These protrusions emit finely dispersed highly
charged droplets from their tops, thereby removing an
extra charge [1–8]. A qualitative model of protrusion
formation was proposed by Tonks as early as in 1936
[1]. Numerical analysis of the protrusions was dis-
cussed in [10, 16]. However, nobody has tried to evalu-
ate the characteristic time of Taylor cone formation
from the very beginning of instability development on
the charged fluid surface. The instability growth rate as
a parameter characterizing the growth time of a protru-
sion is inappropriate. The fact is that it adequately
describes the growth of the protrusions only at the lin-
ear (initial) stage, i.e., as long as the height (amplitude)
of a protrusion remains much less than its transverse
linear size, whereas a Taylor cone is an essentially non-
linear object. In this work, we calculate the characteris-
tic time of Taylor cone formation following the scheme
used earlier in the analysis of the nonlinear stages of the
evolution of a highly charged drop [17, 18] and of an
uncharged drop subjected to a high uniform external
electrostatic field [19].
1063-7842/05/5002- $26.00 0158
(2) Let an ideal perfectly conducting incompressible
fluid with a density ρ occupy the space z ≤ 0 in the Car-
tesian coordinate system. The fluid experiences the
action of a gravitational field (g || –nz, where nz is the
unit vector in the direction of the z axis). The equilib-
rium (undisturbed by wave motion) flat surface of the
fluid (which coincides with plane XOY) borders a vac-
uum, experiences the action of surface tension forces
with a surface tension coefficient γ, and bears a uni-
formly distributed electric charge with a density σ. The
wave motion of fluid molecules generates small-ampli-
tude capillary waves on the free fluid surface, so that its
shape becomes a function of coordinate and time: z =
ξ(x, t). The mathematical statement of the problem of
nonlinear capillary–gravitational waves on the free uni-
formly charged fluid surface has the form

Here, ϕ(r, t) is the potential of the fluid velocity field,
Φ(r, t) is the potential of the electrostatic field above the
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fluid, p(r, t) is the pressure field in the fluid, and ∆ is the
Laplacian.

It is also necessary to formulate the initial condi-
tions of the problem. The solution of nonlinear prob-
lems with arbitrarily postulated initial conditions is a
challenge. Therefore, it is reasonable to specify the ini-
tial conditions in such a way that the result of the solu-
tion has a form that is as simple as possible. To this end,
we suppose that a capillary–gravitational wave on the
fluid surface is a travelling sinusoidal wave in a first
approximation in small wave amplitude; that is, its pro-
file has the form

where a and ω are the amplitude and frequency of the
wave, respectively, and k is the wavenumber.

We assume that the wave amplitude is much smaller

than the capillary constant of the fluid, α = , so
that ratio a/α is natural to take as a small parameter in
the following asymptotic analysis. It is also assumed
that all second- and higher order additions to the wave
profile, which are proportional to cos(kx – ωg) and may
appear due to the nonlinearity of the problem, are equal
to zero.

In a zeroth approximation in small parameter a/α,
the free fluid surface is unperturbed and described by
the equation z = 0, the fluid is quiescent, and the electric
field is uniform throughout the space:

Substituting these expressions into the initial equa-
tions gives

The perturbation ξ of the free surface, velocity field
potential ϕ, and electric potential Φ are unknown func-
tions in the problem. We shall seek them in the form of
expansions in small parameter,
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(3) We will solve the problem by the method of
many scales [14, 20–22] in the fifth order of smallness
in wave amplitude using dimensionless variables such
that g = γ = ρ = 1 (consequently, the capillary constant
of the fluid is also equal to unity, α = 1). Then, the pro-
file of a capillary–gravitational wave will take the form

(1)

(all variables in (1) are designated as before, except for
the small parameter, which is denoted by a). Here,

ξ a kx ω a2δ2 a4δ4+ +( )t–[ ]cos=
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and W is the dimensionless Tonks–Frenkel parameter
characterizing the stability of the free fluid surface
against the surface charge.

The expression for X5 is omitted, because it is awk-
ward and has an insignificant influence on the profile of
the resulting wave. In the limit W  0 (i.e., σ  0),
expression (1) for the shape of a nonlinear wave on the
free charged surface of an ideal fluid coincides with the
known expression [21, 22] for the shape of nonlinear
capillary–gravitational waves on the uncharged surface
of an ideal fluid up to the third order of smallness.

From (1), it is seen that amplitude factor X22 multi-
plying the second-order correction builds up resonantly
at k = k2 = 1/(21/2) and factor X33 multiplying the third-
order correction, at k = k2 and k = k3 = 1/(31/2). The
amplitude factor X44 of the fourth-order correction has
three resonances: at k = k2, k = k3, and k = k4 = 1/(41/2).
It was shown [20] that, in an approximation quadratic
in wave amplitude (when there is only one resonant
wave number k = k2), the resonant interaction causes
energy transfer from longer waves with wavenumbers
k = k2 to shorter ones with k = 2k2. It is also seen from
expression (1) that energy transfer takes place not only
under the third-order resonance conditions mentioned
above but also at k = k3: the energy is transferred from
longer waves with wavenumbers k = k3 to shorter waves
with k = 3k3. In the fourth order of smallness, one more
resonance is observed, namely, at k = k4. Here, the
energy is transferred from the waves with k = k4 to those
with k = 4k4.

It is also seen that the frequency correction that is
proportional to δ2 involves the amplitude squared and
the frequency correction proportional to δ4, the ampli-
tude in the fourth power. These corrections influence
the frequencies in the third and fifth orders of small-
ness, respectively (which can be shown by expanding
acos[(ω + a2δ2 + a4δ4)t] in powers of a2δ2 and a4δ4).

The nonlinear corrections to the frequency, as well
as amplitude factors X22, X33, X42, and X44, have reso-
nant form (i.e., their denominators have factors vanish-
ing at certain wavenumbers). This means that the appli-
cability of expression (1) near wavenumbers k = k2,
k = k3, and k = k4 is limited, since the amplitude factors
multiplying frequency corrections δ2 and δ4 and ampli-
tude coefficients X22, X33, X42, and X44 must be on the
order of O(1).

The fundamental frequency is equal to (ω + a2δ2 +
a4δ4). The critical conditions under which the free fluid
surface is unstable against self-charge are the follow-

X44
k3 1 k2 2kW–+( )

48 1 2k2–( )2
1 3k2–( ) 1 4k2–( )

--------------------------------------------------------------------------- 16 128kW–(=

+ 77k2 128k2W2 160k3W 248k4– 288k4W2–+ +

+ 288k5W 12k6 ),–
ing: (i) vanishing of the square of the frequency Z, Z2 =
(ω + a2δ2 + a4δ4)2, of the virtual wave and (ii) vanishing
of the derivative of frequency Z with respect to wave
number. The first condition yields critical Tonks–Fren-
kel parameter W∗ ; the second, the wavenumber k∗  of
the most unstable wave [2, 23]. In the framework of the
linear model, the critical values of W∗  and k∗  are
related as [20]

(2)

In the nonlinear problem being solved, we will seek
for nonlinear corrections to Tonks–Frenkel parameter
W that is critical in terms of instability development
under the assumption that condition (2) is met and the
wave with k = 1 becomes unstable. To do this, we rep-
resent W in the form of the expansion

(3)

Substituting this expansion into the equation Z2 = 0,
one can readily obtain by the method of successive
approximations that w2 = 11/10 and w4 = 51/160. Thus,
it turns out that the critical value of parameter W at
which the flat charged surface of an ideal fluid becomes
unstable depends on the amplitude of the virtual wave,
which loses stability, giving rise to Tonks–Frenkel
instability. In full-scale experiments, the free fluid sur-
face exhibits an infinite spectrum of capillary waves

with an amplitude on the order of  (κ is the Bolt-
zmann constant, T is the absolute temperature of the
fluid), which are generated by the thermal motion of
fluid molecules. It is these waves that play the role of
virtual waves [2]. It is easy to see that, for most real flu-
ids, the amplitude of such waves at reasonable temper-
atures (i.e., at which the fluid exists) amounts to half an
angstrom or, in our dimensionless variables, ~10–8. In
terms of instability development on the charged flat
fluid surface, such a small wave amplitude means that
the critical instability conditions follow from the linear
theory: k∗  = 1 and W∗  = 2. As for the nonlinear correc-
tions (see (3)), their influence shows up as an increase
in the amplitude growth rate, which is amplitude-
dependent. This phenomenon is discussed in detail
below.

(4) Assume that, at the zero time (t = 0), parameter
W at the uniformly charged free fluid surface is equal to
the critical value predicted by the linear theory, W = 2.
Then, according to the linear theory, the squared fre-
quency of the wave with k = 1 and an infinitesimal
amplitude vanishes [2],

(4)

This circumstance as such does not yet mean that
the wave becomes unstable, because, according to the
linear theory, the instability growth rate of such a wave
is equal to zero. The fact is that, in the linear theory, the
dispersion relation does not contain the wave amplitude

W* k* k*
1– , k*+ 1.= =

W* 2 w2a2– w4a4.+≈

κT /γ

ω2 k 1 k2 kW–+( ).=
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and all the components of the dispersion relation are of
the zeroth order of smallness. The nonlinear analysis
performed above shows, however, that the critical value
of parameter W depends on the wave amplitude and
decreases with increasing amplitude according to (3).
This means that the electric field near the fluid surface
(which is characterized by parameter W) exceeds the
critical value and, hence, that the instability growth rate
for a wave with an amplitude as small as desired is other
than zero. The excess of parameter W over its critical
value is defined by the difference between W∗  ≈ 2 –
w2a2 + w4a4 and W = 2. In other words, the squared fre-
quency of the wave is given by

(5)

that is, the wave becomes unstable with an instability

growth rate χ, where χ = a  according to
(5). If one takes into consideration that the amplitude of
the unstable wave increases with time, this relationship
gives the growth rate as a function of amplitude a(t),
which increases with time:

(6)

It should be emphasized that relationship (3) (which
follows from the nonlinear analysis) is used for deriv-
ing an analytical expression for the linear parameter
characterizing the time evolution of the unstable wave,
i.e., the growth rate.

Since the amplitude of the wave is a function of
time, the instability growth rate also depends on time
(see (6)), χ = χ(t). This means that the amplitude
increases with time as

(7)

that is, considerably faster than by the normal exponen-
tial law, and, consequently, will rapidly go beyond the
domain of applicability of the expansions in small
parameter that were used in the derivation of (7).

To find an amplitude variation law applicable for
any amplitude values, consider a sequence of amplitude
values a taken in time steps ∆ti (i = 1, 2, 3, 4, …) such
that expression (7) applies within each of them. It
should be noted that (7) is valid only if amplitude
growth rate da/dt is linearly related to amplitude a(t).
The width of step ∆ti will be found from the condition
that an increase in the growth rate increment within this
step, χi – χi – 1, is much smaller than the increment at the
end of the preceding step; that is, ∆χ ≡ χi – χi – 1 ! χi – 1.
Then, the value of χi may be considered invariable
within step ∆ti and the increment ∆ai of the amplitude
may be calculated with relationship (7).

ω2 –w2a2 w4a4,+≈

w2 w4a2–( )

χ a t( ) w2 w4a t( )2–( ).=

a t( ) a0 χt( )exp=

=  a0 a t( ) w2 w4a t( )2–( )t[ ] ,exp
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Let, at W = 2, the wave with k = 1 become unstable
and its amplitude start to increase with growth rate χ1 =

a0 . For a time ∆t1, the amplitude a0 =

 of the initial virtual wave increases to a1 =
a0exp(χ1∆t1). According to (6), the growth rate will

then increase to χ2 = a0 . Within the next
time step ∆t2, the amplitude will grow with such a rate
to a2 = a1exp(χ2∆t2). At the end of step ∆t2, the growth

rate will be χ3 = a2 . Within the following
time step ∆t3, the amplitude will grow by the law a3 =
a2exp(χ3∆t3).

Thus, for an ith time step ∆ti, we obtain

(8)

Now, we substitute into (8) the expression for ai – 1,
which is expressed via ai – 2. The latter, in its turn, is
expressed via ai – 3 and so on down to a0. Eventually,
instead of (8) we will have

Passing to the limit ∆tm  0 (m  ∞) in this
expression, we arrive at

Let us substitute into this expression relationship
(6), which relates the growth rate to the amplitude:

(9)

Thus, we have derived the nonlinear integral equa-
tion for time-varying wave amplitude a(t). To find a
solution to Eq. (9), we take the logarithm of (9),

and differentiate the resulting expression with respect
to t,

Separating the variables, we get

w2 w4a0
2–( )

κT

w2 w4a1
2–( )

w2 w4a2
2–( )

ai ai 1– χ i∆ti( ).exp=

ai a0 Σm 1=
i χm∆tm( )[ ] .exp=

a t( ) a0 χ t( ) td

0

t

∫ .exp=

a t( ) a0 a t( ) w2 w4a t( )2–( ) td

0

t

∫ .exp=

a t( )/a0( )ln a t( ) w2 w4a t( )2–( ) td

0

t

∫=

da t( )
a t( )dt
--------------- a t( ) w2 w4a t( )2–( ).=

da

a2 w2 w4a2–( )
-------------------------------------- dt.=
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Integration yields

or

(10)

From expression (10), it follows that the character-
istic time τ of instability development (the characteris-
tic time of nonlinear increase of the amplitude, which
can be determined as the time at which expression (10)
reaches a maximum) has the form

(11)

Considering the instability development of the vir-
tual wave (beginning from its thermal amplitude at W =
2), we can argue that the characteristic time of ampli-
tude growth is very long. Specifically, in terms of our
dimensionless variables, it reaches ~108; in the dimen-
sional variables, for example, for water bordering a
vacuum, this time is as long as 2.5 × 104 s, i.e., about
7 h (the characteristic scale of dimensionless time is

; that is, τ ≡ t ). For other fluids or their
mixtures, this time may somewhat change depending
on the interfacial tension coefficient, densities of the
media, and temperature. However, the order of magni-
tude of the characteristic time remains the same, since
just the physical parameters listed above influence the
thermal amplitude of virtual waves and the scales on
which the quantities are made dimensionless. This is in
qualitative agreement with the observations of Taylor
and McIwan [8], who noted that the linear stage of
instability development is many times longer than the

w2 w4a0
2–( )

w2a0
--------------------------------

w2 w4a t( )2–( )
w2a t( )

---------------------------------------– t=

a t( ) w2
w2 w4a0

2–( )
w2a0

-------------------------------- t–
 
 
 

2

w4

w2
------+

 
 
 
 

1–

.=

τ
w2 w4a0

2–( )
w2a0

--------------------------------.=

ρg3/γ ρg3/γ

0.5

20 30
t

1.0

1.5 123

a

10

Fig. 1. Dimensionless amplitudes of nonlinearly growing
waves with the dimensionless wavenumber k = 1 as func-
tions of dimensionless time (expression (10)) for W = 2 and
initial amplitudes a0 = (1) 0.03, (2) 0.10, and (3) 0.30.
nonlinear stage, during which the amplitude of emitting
protrusions (Taylor cones) on the charged fluid surface
rapidly increases. Nevertheless, the authors of experi-
mental works [3, 24] did not report a long delay of
instability development, although this fact is hard to
escape the researchers' attention. This suggests that, in
those experiments, instability developed on the virtual
wave, whose amplitude is considerably larger than that
of the wave due to the thermal motion of fluid mole-
cules.

Figure 1 demonstrates the time dependencies of the
amplitudes of nonlinearly increasing waves that were
calculated at various initial amplitudes far exceeding
the thermal one. Along with the delay of instability
development mentioned above, one can also see that the
amplitude of a nonlinearly increasing wave passes
through a maximum and then decreases. The maximum
amplitude of the nonlinear wave is independent of its
initial amplitude but depends on a relationship between
the coefficients multiplying the second- and fourth-
order nonlinear corrections. This is because these cor-
rections to the critical Tonks–Frenkel parameter have
opposite signs (see (3)). If the second-order correction
alone is taken into consideration, the limitation on the
amplitude (see Fig. 1) is removed and the amplitude
grows to infinity. This circumstance is most likely to be
associated merely with a limited applicability of the
relationships derived; that is, they rapidly fall outside
the domain where expansion (3) is uniformly applica-
ble. As the amplitude grows, the fourth- and second-
order corrections become equal to each other, causing
the maxima in the curves and then (at long times)
the former correction is responsible for amplitude
damping.

(5) One more factor causing the unstable wave to
rapidly build up is the overcritical electric field strength
(surface charge density σ) applied to the unperturbed
fluid surface. In experiments, the critical conditions for
instability development are usually stated by relation-
ship (2) for well-conducting fluids. In real well-con-
ducting fluids, the time of Maxwell relaxation of an
electric charge must be much shorter than the charac-
teristic time of instability development in order to pre-
vent the electric potential of the fluid surface from
being equalized faster than the surface deformation is
complete. In most of the experiments known (see, e.g.,
[8, 24]), this requirement was met but the critical insta-
bility conditions differed from (2) and depended on the
experimental conditions (in [24], the critical conditions
depend on the characteristic time of rise of the electric
field strength near the fluid surface). This allows us to
suppose that the electric field in the experiments [8, 24]
somewhat exceeded the critical value W∗  = 2; conse-
quently, the instability growth rate of the virtual wave
was governed by two factors: the excess of parameter W
over its critical value and nonlinear corrections (3).
Therefore, we will repeat the line of reasoning similar
to that in Sect. 4 of this paper, taking into account that
TECHNICAL PHYSICS      Vol. 50      No. 2      2005
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Tonks–Frenkel parameter W exceeds its critical value
W∗  by ∆W and, thus, contributes to the growth rate. In
this case, instead of (6), the instability growth rate of
the charged surface of an ideal incompressible fluid
will take the form

Then, instead of (9), the amplitude of the unstable
wave as a function of time is given by the nonlinear
integral equation

which has the solution

(12)

where

Figure 2 plots the amplitudes of the nonlinearly
increasing waves against time that were calculated by
(12) at various ∆W = W – W∗  and the initial thermal
amplitude a0 = 10–8 of the virtual waves. It is easy to see
that the curves in Fig. 2 are qualitatively similar to those
presented in Fig. 1. The discrepancy is only quantita-
tive: as was mentioned above, the characteristic time of
instability development at ∆W = 0 and a0 = 10–8 is very
large, t ~ 108, while, at high W ≠ 0 and a0 = 10–8, the
dimensionless characteristic time of instability devel-
opment may be very short, t = 10–100. The latter value
is in good agreement with the experimental data in [8,
24]. However, the accuracy of measurement of the elec-
tric field in [8, 24] is doubted, since there is reason to
think that parameter W in the experiments [8, 24]
exceeded the critical value by a certain value ∆W. It is
seen from Fig. 2 that variation of excess ∆W from sev-
eral percent to 100% of W∗  influences the process phe-
nomenology (the instability development time) only
slightly. In other words, only when the characteristic
time of instability development is ≈2.5 × 104 s (i.e.,
when the instability at W = W∗  = 2 is due to virtual
waves of thermal nature) can measurements of the crit-
ical conditions for instability development on the
charge surface of a conducting fluid be considered cor-
rect. Only in this case does it make sense to believe that
the true field strength is measured and that the wave
with k = α–1 becomes unstable, as follows from the the-
ory [2].

It is worth emphasizing that the curves in Fig. 2, as
well as those in Fig. 1, are meaningful only if the ampli-
tude a(t) < 1. At larger values of a(t), expansion (3)

χ ∆W a t( )2 w2 w4a t( )2–( )+ .=

a t( ) a0 ∆W a t( )2 w2 w4a t( )2–( )+ td

0

t

∫ ,exp=

a t( ) 4∆WF t( )
1 w2

2 4∆Ww4+( )F t( )2 2w2F t( )–+
-------------------------------------------------------------------------------------,=

F t( )
a0

2 ∆Wt( )exp

2∆W w2a0
2 2 ∆W ∆W w2a0

2 w4a0
2–+( )+ +

-------------------------------------------------------------------------------------------------------.=
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loses uniformity, which is central to our reasoning.
Nevertheless, the presence of the maxima in the curves
a = a(t) allows us to qualitatively investigate the depen-
dence of the characteristic time τ of instability develop-
ment on excess W and the initial amplitude a0 of the vir-
tual wave. To do this, we take into account that the
curves a(t) sharply increase and assume that the posi-
tions of the maxima may be taken as adequate estimates
of the characteristic time of instability development.
We also take into account that the derivative da(t)/dt
vanishes at the maxima, which makes it possible to find
characteristic time τ = τ(a0, ∆W) as a function of the
physical quantities we are interested in, namely, excess
∆W over the Tonks–Frenkel parameter and initial
amplitude a0 of the virtual wave:

The plots of the function τ = τ(∆W) at a0 = const that
were constructed for different ranges of ∆W using this
expression are presented in Figs. 3a–3c. The depen-
dence τ = τ(a0) would be more informative when calcu-
lated at ∆W = 0; however, the function τ = τ(a0, ∆W)
obtained diverges at ∆W  0. Therefore, we will find
the desired functional relation by equating the time
derivative of amplitude a(t) (given by expression (10),

τ 1

2 ∆W
---------------- w2a0

2 2∆W+( ) 16∆Ww2a0
2([–{ln=

+ 16 ∆W( )2 a0
4 w2

2 12w4∆W–( ) ) 2 ∆W+ +

× w2a0
2 ∆W w4a0

4–+ 16∆Ww2a0
2(

+ 16 ∆W( )2 a0
4 3w2

2 4w4∆W–( ) ) ] / 2a0
4 ∆W[+

× w2a0
2 ∆W w4a0

4–+ –w2
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2 2∆W+( ) w2
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Fig. 2. Dimensionless amplitudes of nonlinearly growing
waves with the dimensionless wave number k = 1 and
dimensionless initial amplitude a0 = 10–8 as functions of
dimensionless time (expression (12)) at W = 2 + ∆W, where
∆W (the excess over the critical Tonks–Frenkel parameter) =
(1) 0.1, (2) 0.2, (3) 0.3, (4) 0.5, (5) 0.75, (6) 1, and (7) 2.
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Fig. 3. Dimensionless time τ of instability development as a
function of parameter ∆W for the wave with k = 1 and a0 =
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Fig. 4. Dimensionless time τ of instability development as a
function of the initial wave amplitude for k = 1, ∆W = 0, and
W = W∗ = 2.
which was derived just for the case ∆W = 0) to zero.
Eventually, we arrive at

which coincides with (11). This dependence is illus-
trated in Fig. 4. It is easy to see that, at W = 2 (∆W = 0),
the a0 dependence of the characteristic time of instabil-
ity development on the charged flat surface of a fluid,

τ ≈ 1/a0 , differs little from the pure hyperbolic
function over a wide range of the initial amplitude,
10−8 ≤ a0 ! 1.

The dependences τ = τ(∆W) and τ = τ(a0) substanti-
ate the conclusions drawn above from indirect esti-
mates that the characteristic time of instability develop-
ment may be short (less than a second) only if the initial
amplitude considerably (by four orders of magnitude)
exceeds the thermal amplitude (or, in other words, if
∆W ≥ 10–4). This circumstance should be taken into
account in further experimental verifications of the crit-
ical conditions for Tonks–Frenkel instability in order to
accurately measure the time of instability develop-
ment—a physical quantity that has eluded the attention
of researchers.

(6) Above, we have derived the time dependence of
the amplitude of the unstable wave with k = 1 at W ≈ 2.
The fact that, according to (1), not only the wave with
the wavenumber k = 1 but also those with k = 2, 3, 4,
and 5 become unstable because of the nonlinear inter-
action calculated up to the fifth order of smallness has
remained in the shade. However, it would be of interest
to see how the amplitudes of the waves with k = 2–5
vary with time.

Without going into details, we assume (as a first
approximation to a solution of the problem stated) that
the dependence a = a(t) derived above for the wave with
k = 1 holds for the second- and higher order amplitude
corrections to a fundamental solution. It is also
assumed that the quadratic-in-a corrections to the fre-
quencies of the waves with k = 2 and 3 in (1) vary in a
similar manner. These assumptions are based, first, on
the very classical procedure of seeking for nonlinear
corrections to the fundamental wave, which was speci-
fied at the zero time [15, 21, 22] in the form of an
asymptotic expansion in its amplitude a. Second, at the
value of the Tonks–Frenkel parameter that is adopted in
this work (W ≈ 2), the waves with k ≥ 2 are stable
against the surface charge and their amplitudes grow
only through the nonlinear interaction with the funda-
mental wave with k = 1.

In the next approximation, it should be taken into
account that the field strength at the ridges of the waves
increases with wave amplitude. When the amplitude of
the fundamental wave with k = 1 becomes sufficiently
large, the shorter wave with k = 2 appearing at the ridge
of the fundamental wave may become unstable in terms

τ a0( )
w2 w4a0

2–
w2a0

---------------------------,=

w2
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of the linear analysis (i.e., criterion (2) is satisfied). The
instability of the shorter wave means that the Tonks–
Frenkel parameter averaged over the half-cycle of the
wave with k = 2 exceeds W∗  = 2.5 at the ridge of the
growing wave with k = 1 will. As the wave amplitude
rises further, the same may occur with a still shorter
wave (with k = 3). However, such a possibility is not
obvious and calls for special detailed analysis.

(7) Let us recall a result obtained from the analysis
of instability of drops against self- and induced charges
[17–19]. In this case, the variation of the characteristic
dimensional time t∗  of instability development with the
amplitude ζ0 of the initial perturbation of the equilib-
rium shape (the perturbation was specified in the form
ζ0P2cosθ, where P2cosθ is the Legendre polynomial) is
shaded by the strong dependence of t∗  on the radius R
of the drop (the radius dependence had the form t∗  ~

R4/ζ0. At R ~ 10–2 cm (such was the size of drops tested
for stability against self-charge in the experiments [5])
and ζ0 ~ 10–8 cm, we obtain R4/ζ0 ~ 1. Therefore, the
strong dependence of the characteristic time of instabil-
ity development on the initial amplitude near the criti-
cal value of the Tonks–Frenkel parameter (W = W∗  = 2),
which was found in this work, is inherent to the flat
charged surface of a fluid.

(8) The fact that the characteristic time of Tonks–
Frenkel instability development is long (and, conse-
quently, the velocity of fluid surface motion is very
low) when the virtual wave amplitudes are infinitesimal
sheds light on the influence of the fluid viscosity on the
instability development mechanism. Indeed, for a most
part of the characteristic time, the unstable surface
moves very slowly. Accordingly, the dissipative energy
losses are low and may be neglected. The fluid surface
moves fast only at the final stage of instability develop-
ment, the duration of which is much shorter than the
total characteristic time of the process. Let us expand
the time dependence of the wave amplitude (expression
(10)) in powers of a0t up to the quadratic term,

It is seen that this expansion is asymptotically cor-

rect for times ∆t ≤ (1/a0 ). Comparing this interval
with the total time of instability development given by
(11), we find that the duration of the linear stage is a
good approximation of the total time of the process.
The characteristic velocity of the fluid surface, V =

a t( ) a0 a0
2 w2t---+





≈

+ 0.5a0
3 3t2 w4

w2
------– w2 t2 w4

w2
2

------– 
 –





.

w2
TECHNICAL PHYSICS      Vol. 50      No. 2      2005
, is very low throughout the linear stage. Early
in the nonlinear stage, when the velocity is approxi-
mated well by the term quadratic in a0t, the acceleration
of the fluid surface, 2a2w2, is also minor. Consequently,
the influence of the fluid viscosity on the characteristic
time of instability development is weak.

Finally, the fact that the linear and quadratic (in a0t)
stages of instability development are long implies the
asymptotic validity of the results (in particular, of the
integral equations derived for the time evolution of the
unstable wave amplitude).

CONCLUSIONS

The characteristic time of instability development
on the uniformly charged flat surface of an ideal incom-
pressible conducting fluid can be subdivided into two
stages: a stage of instability initiation, or the linear
stage, covering a major part of the total time and
depending on the initial conditions (on the initial ampli-
tude of the virtual wave and the excess over the critical
Tonks–Frenkel parameter at the initial instant), and a
very short nonlinear stage when the unstable wave
amplitude increases infinitely.
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Abstract—Physical processes accompanying the flow of a conducting bubble liquid in crossed electric and
magnetic fields are considered. Based on the general equations of mechanics of multiphase media, we develop
a one-dimensional model of the flow of and heat exchange in a compressible bubble liquid when the phases are
not in thermal and velocity equilibrium. The model is numerically investigated. It is demonstrated that, when
the bubble liquid flows along the electromagnetic force vector, the bubbles lag behind the carrying flow and are
compressed and warmed up. This causes oscillations of the bubble volume, as well as oscillations of the param-
eters of both the disperse and carrying phase. In particular, the compression of the bubbles reduces the volu-
metric gas content, as well as increases the effective conductivity of the flow and the electromagnetic force in
the downstream direction. This sets conditions for crisis of the bubble flow when the electromagnetic force
expels the bubbles against the main stream. On the basis of the solutions obtained, the efficiency of a gas com-
pressor is calculated. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Nonmachine compression of gases and vapors is of
great interest in different areas of industry, since it
allows for implementation of inverse thermodynamic
cycles and offers possibilities of developing new-gener-
ation compressors, refrigerators, and thermal pumps for
various engineering systems. In particular, it was pro-
posed [1–3] that a gas be compressed in a magnetohy-
drodynamic (MHD) pump containing a low-tempera-
ture liquid metal like the gallium–indium–bismuth
eutectic. For this purpose, the gas phase was injected
into the liquid metal to form a bubble structure.

Gas bubbles in a stream subjected to the field of an
electromagnetic force experience the action of inertial
forces; expulsive forces in the pressure gradient field,
which are directed opposite to the stream; and forces
retarding the flow around the bubbles (drag forces) in
their relative motion, which are codirected with the
stream. If the drag force exceeds the expulsive electro-
magnetic force, the bubbles are carried by the flow
toward the high pressure zone and, hence, are com-
pressed. Otherwise, they will stop inside the channel,
which results in their accumulation and makes the bub-
ble structure unstable, or be expulsed from the mag-
netic field zone. The dynamic processes of the bubble
flow are superposed on the processes of gas–liquid heat
exchange and on the electromagnetic processes associ-
ated with a change in the effective conductivity due to
a varying volumetric gas content in the flow when the
bubbles are compressed.
1063-7842/05/5002- $26.00 0167
Designing a gas compressor (including performance
evaluation) is possible only by solving a system of
equations of motion and heat exchange for a bubble
flow.

1. STATEMENT OF THE PROBLEM

Our aim is to calculate the distribution of kinematic,
dynamic, thermodynamic, and electric parameters of a
monodisperse bubble flow in the adiabatic channel of a
conductive MHD pump with a constant cross-sectional
area (l × b = const, where l is the electrode spacing and
b is the distance between the insulating walls). The
pump is placed in a uniform magnetic field B(0, 0, B)
(B = const), which abruptly vanishes at the ends of the
channel of length L. It is assumed that magnetic Rey-
nolds numbers are small, Rem ! 1. Voltage U across the
channel electrodes, magnetic field induction B, and the
flow parameters at the entrance to the channel (x = 0)
are assumed to be given. To solve this problem, let us
invoke the equations of mechanics of a two-phase
medium.

Consider the Rayleigh–Lamb system of the continu-
ity equations for momenta and heat inflow, as well as
the conditions of joint deformation of the phases in a
collision-free monodisperse bubble medium where the
carrying phase (i = 1) is a viscous incompressible con-
ductive liquid and the disperse phase (i = 2) is an ideal
gas [4]. Complemented with the expressions for the
Ampére force and differential Ohm’s law, the system
© 2005 Pleiades Publishing, Inc.
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has the form (phasewise)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9, 10)

(11)

Here, ρ1 and  are the reduced and true densities of an
ith phase, respectively; vi is the velocity; n is the numer-
ical concentration of the bubbles; a is the bubble radius;
αi is the volume content of the ith phase; Ti is the tem-
perature; pi is the pressure; wa is the radial velocity of
the interface; σeff is the effective conductivity of the
bubble medium; P1∗  is the spherical component of the
surface stress tensor in the collision-free bubble flow;

 are the components of the viscous stress tensor in
the carrying flow; g is the gravitational force density;
f1 is the density of the electromagnetic force acting on
the carrying phase in a unit volume of the mixture; f∗  is
the action of the carrying phase on the disperse one due
to different velocities of the phases; q1∗  is the reduced

heat flux density;  is the heat flux in the ith phase at
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qΣi
the interface; ρ1A1 is the viscous stress power in the car-
rying flow in a unit volume of the mixture; qjv and qjr

are the densities of volume heat release sources due to
the conductive and eddy electric currents; fm is the iner-
tial force of apparent masses that acts on a bubble; fe is
the expulsive force due to the nonpotentiality of the
electromagnetic force bear a bubble; fµ is the drag force

(retarding the flow around a sphere); j1 and  are the
reduced and true densities of the electric current,
respectively; E is the electric field strength; and Σ is the

surface tension coefficient. Functions ϕ1 = (1.1  –

α2)/α1, ϕ2 = (1.5  – 1.3α2)/α1, and ϕ3 = α2/α1 take
into consideration the fact that the flow contains many,
rather than one, bubbles [4]. Factor 2/3 in Eq. (4)
appears as a result of averaging the electromagnetic force
due to the eddy currents over the spherical surface [5].

We average the differential Ohm’s law over the rep-
resentative volume of the bubble flow, taking into
account that the conductive phase occupies a fraction
α1 of the mixture volume V and that the conductivity

 of the disperse phase is equal to zero,

(12)

Here, σeff = α1  + α2  is the effective conductivity

of the bubble structure and σ∗  = σeff/  is the effective
conductivity coefficient given by [6]

(13)

The interfacial forces due to different velocities of
the phases can be written as follows [4].

The inertial force of the apparent masses is

(14)
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and the drag force retarding the flow around the bubbles
is

(15)

where

and
C = C(Re12) =

[4, 8]. Here, Re12 = 2a|v1 – v2|/  and Haa = aB .
In crossed electric and magnetic fields, a bubble expe-
riences the action of force fe due to the nonuniform cur-
rent spread near the sphere [9],

It should be noted that the above system of equa-
tions is not closed, since heat fluxes  at the interface,
reduced heat flux density q1∗ , the tangential compo-

nents  of the stress tensor, and the dissipative func-
tion are not specified.

In the case of a one-dimensional steady flow, the
missing relationships may be replaced by empirical
dependences closing the system.

2. ONE-DIMENSIONAL MODEL 
OF A COMPRESSIBLE BUBBLE FLOW

For a steady flow, we average the above system of
equations, using the methods of hydraulic theory [10]
and assuming that all the parameters are uniform over
the cross sections, and rearrange the equations
obtained.

From the equations of phase continuity and state of
gas, as well as from the law of conservation of gas mass
in a bubble, reduced gas content α∗  = α2(ζ)/α2(0) in the
flow can be expressed as

(16)
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Here, ζ = x/L is the reduced longitudinal coordinate and
the reduced temperature and pressure of the disperse
phase are given by

Condition (3) of joint deformation of phases can be
transformed to

(17)

where a∗  = a(ζ)/a(0) is the reduced radius of a bubble.
The numbers Π1 and Π2 of the problem, characteristic
velocity w0 for radial small-scale displacements, and
phase slip coefficient S are expressed as

In the reduced coordinates, generalized Rayleigh–
Lamb equation (4) takes the form

(18)

Here, the Weber number, Reynolds number, and Hart-
mann number are specified by the conditions at the
entrance to the MHD channel,

and D is the hydraulic diameter of the channel.
In Eq. (8) for the heat inflow to the disperse phase,

the heat fluxes from the carrying phase to the interface
and from the interface to the disperse phase will be
described by the Newton–Richmann heat transfer law.
Heat transfer coefficients βi involved in this law will be
found through the Nusselt number. For smoothly vary-
ing flows, the dimensionless equations of heat transfer
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in either phase are described by the expressions [4]

where the Peclet number, Reynolds number, and
Prandtl number are given by

Here,  and λi and ci are the thermal con-

ductivity and specific mass heat capacity of an ith
phase, respectively.

With interphase heat exchange described in this
way, energy equation (8) reduces to the equation for gas
pressure in a bubble

(19)

To rearrange energy equation (7) for the carrying
phase, we assume that the channel walls are adiabatic
and the heat transfer along the flow via heat conduction
is much less than the convective heat transfer. On the
right-hand side of Eq. (7), we take into account the vis-
cous dissipation of energy in small-scale radial and
translational displacements [4]. The work of viscous
forces over a large-scale translational displacement is
included in terms of the homogeneous model of bubble
flow, i.e., through the hydraulic friction coefficient,
with regard to the presence of a magnetic field by for-
mulas given in [11, 12]. The Joule dissipation due to
eddy currents around the bubbles is calculated by for-
mulas given in [5], and that due to conduction currents
is found under the assumption that the channel elec-
trodes are equipotential surfaces. For such a channel,
the equation of continuity for the carrying phase
implies that the product α1(ζ)v 1(ζ) is constant along the
stream. Then, in a channel kept under a constant volt-
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age ((U(ζ) = const), the ratio between the electromotive
force of magnetic induction, E = α1v 1Bl, and electrode
voltage U = El is also constant: E/U = α1v 1B/E = const.
Represent this constant in the form (1 – θ)σ∗ (0). Then,
the Ohm’s law in terms of the effective current density
in a bubble medium is written as follows:

It should be noted that compression of the bubbles
along the channel is attended by a decrease in the vol-
ume gas content in the flow and an increase in the effec-
tive conductivity. In a channel kept at a constant volt-
age, this causes an increase in the electric current den-
sity and electromagnetic force density in the
downstream direction.

To clarify the physical meaning of parameter θ,
assume that the flow is single-phase. Then, α1 = 1,
σ∗ (ζ)/σ∗ (0) = 1 (ζ ∈  [0; 1]), and the Ohm’s law takes
the form

In this formula, parameter θ augments the channel
electric efficiency ηe = v 1Bl/U to unity. In what follows,
parameter θ is assumed to be specified. In the above
writing, the Ohm’s law allows one to calculate the Joule

dissipation caused by conduction currents qjv = /σeff.
With these remarks taken into account, energy equation
(7) transforms to a temperature equation for the carry-
ing phase,

(20)
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The Eckert number, Reynolds number Rea, and
Peclet number Pea are given by

The temperature T2∗  of the disperse phase is
uniquely defined by gas pressure p2∗  in a bubble and its
radius a∗  from the equation of state

(21)

To describe the motion of a bubble flow, it is more
convenient to use, instead of the equations for phase
momenta, the momentum equation for the whole mix-
ture (which is obtained by adding up Eqs. (5) and (6))
and momentum equation (6) for the disperse phase.
Averaging these equations by the methods of the
hydraulic theory (with regard to the expression for the
spherical component of the reduced stress tensor for a
one-dimensional flow [4]) and neglecting the mass
forces related to the gas phase density, one arrives at a
system of equations for the phase slip coefficient and
the pressure in the carrying flow,

Denote the right-hand sides of these equations by F1
and F2, respectively. Assuming that the determinant of
the system is nonzero, ∆ = A1B2 – A2B1 ≠ 0, we solve the
system for the unknown derivatives and find

(22)

(23)

The coefficients and functions on the right-hand
sides of these equations are given by the expressions
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where δ = cos(g, i).
For the horizontal flow under consideration, δ = 0

and the Euler number is specified by the conditions at

the entrance to the channel, Eu1 = p1(0)/ (0).

Thus, we have come to a normal system of differen-
tial equations (17)–(20), (22), and (23) that is comple-
mented by two dependences (16) and (21). The
unknowns here are a∗ , the bubble radius; w∗ , the radial
velocity; p1∗  and p2∗ , the phase pressures; T1∗  and T2∗ ,
the phase temperatures; S, the phase slip coefficient;
and α∗  = α2(ζ)/α2(0), the reduced gas content.

For a bubble flow nonuniform in velocities and tem-
peratures at the entrance to the channel, the initial con-
ditions for the desired functions are specified in the
form

(24)

3. NUMERICAL INVESTIGATION 
OF A COMPRESSIBLE BUBBLE FLOW

The system of equations with initial conditions (24)
was numerically integrated by the fourth-order Runge–
Kutta method. Spatial step δζ was chosen such that the
results of numerical integration would remain the same
even if it were half as large. Our aim was to study the
effect of the flow and electromagnetic field parameters

Q2

α1

α1
2 0( )

-------------- Π1
2 p2* Eu1 p1*–

2
We1
---------- 1

a*
------– Π1

2w*
2+ 

 =

+
1
4
--- 1 S–( )2

α1
------------------ 1

2α1
---------

α2

α1
----- 1 S–( )2 1 S2–( )– 

  ,+

ρ1
0v 1

2

ζ 0: S 1, a* 1, w* 0, p1* 1,= = = = =

p2* = 1, α* = 1, T1* = T2* = 1, T1 0( ) = T2 0( ).

5

4

3

2

1

0 0.80.60.40.2 ζ

1

2

3

5

4

Fig. 1. Distributions of the reduced parameters of the bub-
ble flow along the MHD channel.
on gas compression in the bubbles. Variable parameters
were magnetic field induction B, load parameter θ, the
velocity v 1(0) of the carrying flow at the entrance to the
MHD channel, bubble initial radius a0, and initial gas
content α2(0) at the entrance to the channel of fixed
geometry (l = 50, b = 10 mm, L = 1 m). In the calcula-
tions, gallium and nitrogen were taken as the carrying
phase and disperse phase, respectively.

Figures 1–3 show the solutions to the system of
equations for a bubble flow in a constant-voltage chan-
nel that were obtained for the gas content at the
entrance to the channel α2(0) = 20%, bubble initial
radius a0 = 0.25 mm, magnetic field induction B =
0.25 T, the carrying flow velocity at the entrance
v 1(0) = 3 m/s, and load parameter θ = 0.3.

In Fig. 1, the distributions of the desired functions
along the length of the MHD channel are depicted:
curve 1 stands for S(ζ); curve 2, for a∗ (ζ); curve 3, for
a∗ (ζ); curve 4, for p1∗ ; and curve 5, for p2∗ . Figure 2
plots function w∗ (ζ) for the oscillating phase of the pro-
cess, and Fig. 3 plots temperature functions T1∗ (ζ)
(curve 1) and T2∗ (ζ) (curve 2).

The curves in Fig.1 illustrate that the gas bubbles lag
behind the carrying phase when moving in the flow.
Note that the smaller the bubble radius, the closer the
phase slip coefficient to unity (≈0.9 for curve 1). The
reduced radius of the bubble decreases in the down-
stream direction (curve 2), which indicates that the gas
in the bubble is compressed. At the entrance to the
channel, the reduced gas content of the flow first
increases and exceeds unity. Then, as the bubbles
become compressed, it decreases and attains a value of
0.5 at the exit from the channel. The increase in the
reduced gas content at the entrance of the MHD chan-
nel is due to the stagnation of the disperse phase and the

w*

–2 ·10–6

–4 ·10–6

–6 ·10–6

–8 ·10–6

0.0150.0100.005 ζ

Fig. 2. Distribution of the reduced radial velocity of the
interface over the initial section of the channel.
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corresponding increase in its local concentration (curve 3).
The pressures of both the liquid and gas phases grow
downstream, the liquid pressure (curve 4) everywhere
exceeding the gas pressure (curve 5).

The difference between the pressures gives rise to a
small-scale flow of the liquid around the bubble with
velocity w∗ (ζ) at the interface. At the entrance to the
channel, this radial velocity oscillates (see Fig. 2).
However, the magnetic field rapidly damps the oscilla-
tions and, as the bubbles are compressed further, the
radius of the bubbles and the radial velocity vary
smoothly. The carrying phase temperature (Fig. 3,
curve 1) increases along the MHD channel insignifi-
cantly, so that the carrying phase behaves like a thermo-
stat, accumulating the heat being released during the
compression of the disperse phase. The disperse phase
temperature first rises (Fig. 3, curve 2) and then
decreases, while everywhere remaining higher than the
liquid temperature. This decrease can be explained by
more intense heat removal due to a rise in the heat trans-
fer coefficient when the bubble radius decreases
because of compression.

Figure 4 shows the variation of the carrying phase
pressure with channel length ζ for various initial gas
contents: curve 1 corresponds to α2(0) = 1%; curve 2,
to α2(0) = 5%; curve 3, to α2(0) = 10%; and curve 4, to
α2(0) = 20%. The other parameters are a0 = 0.25 mm,
v 1(0) = 2 m/s, θ = 0.2, and B = 0.25 T. At a low gas con-
tent in the flow, the dependence p1∗ (ζ) becomes linear,
which is typical of single-phase flows. As the gas con-
tent increases, the dependence p1∗ (ζ) becomes nonlin-
ear, which suggests that the second phase starts influ-
encing the flow. In particular, the current density grows
along the channel: the compression of the bubbles
decreases the volume fraction of the gas phase in the
flow, which raises the effective conductivity of the flow
and, hence, the current density.
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Fig. 3. Distribution of the reduced temperature in the phases
along the MHD channel.
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The influence of the initial radius a0 of the bubble on
the compression pattern is illustrated by Fig. 5, which
shows the dependence of the bubble radius on length ζ
for various a0: curve 1 is drawn for ζ = 1 mm; curve 2,
for 0.8 mm; curve 3, for 0.5 mm; and curve 4, for
0.1 mm. Here, magnetic field induction B = 0.3 T, load
parameter θ = 0.1, α2(0) = 30%, and v 1(0) = 2 m/s. As
follows from these curves, smaller bubbles undergo
stronger compression. On the one hand, the current
density in a small-bubble flow is higher, parameter θ
being the same. Indeed, small bubbles travel in the
MHD channel with a larger phase slip coefficient S;
accordingly, the local gas content is lower compared
with that in a large-bubble flow and, hence, the conduc-
tivity of the small-bubble flow and the current density
in it are higher. That is why a small-bubble liquid flows
in the field of a high gradient of electromagnetic pres-
sure. On the other hand, smaller bubbles undergo a
higher bubble pressure 2Σ/a than larger ones. It should
also be noted that, with an increase in the bubble initial
radius, the dependence a∗ (ζ) starts oscillating. The
enlargement of this dependence for curve 2 is depicted
in the inset to Fig. 5. The oscillation of the bubble vol-
ume gives rise to oscillation of other parameters of the
flow, namely, the phase slip coefficient, the reduced gas
content, and, as a consequence, the current density.
However, a rise in the magnetic field induction effec-
tively damps these oscillations over the initial section
of the MHD channel. The flow parameters also start
oscillating when the velocity of the carrying flow
grows. For instance, if velocity v 1(0) changes from 2 to
3 m/s for curve 3, sustained oscillations of the parame-
ters throughout the MHD channel are observed.

Figure 6 demonstrates the distribution of the
reduced gas content along the length of the MHD chan-
nel for load parameter θ = 0.1 (curve 1), 0.2 (curve 2),
and 0.3 (curve 3). The other parameters are B = 0.25 T,
α2(0) = 20%, v 1(0) = 2 m/s, and a0 = 0.5 mm. An
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Fig. 4. Distribution of the reduced pressure in the carrying
flow along the channel for various gas contents.
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increase in parameter θ (i.e., an increase in the electro-
magnetic force density) generates sustained oscilla-
tions of the bubbles.

Figure 7 plots the distribution of the reduced density
F∗  = f1(ζ)/f1(0) of the electromagnetic force along the
MHD channel for B = 0.3 T, α2(0) = 30%, θ = 0.1,
v 1(0) = 2 m/s, and a0 = 0.8 mm. The electromagnetic
force oscillations are caused primarily by the oscilla-
tions of the bubble volume.

4. ESTIMATION OF THE GAS COMPRESSION 
EFFICIENCY IN AN MHD COMPRESSOR

Solution of the system of equations for a bubble
flow allows one to evaluate the energy performance of
an MHD compressor. Indeed, from the dependence
α∗ (ζ), one can determine the velocity of the carrying
phase

the current density

and the electromagnetic force density

The electromagnetic force power in the active zone
of the channel is
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Fig. 5. Variation of the bubble reduced radius along the
channel.
and the electric current in the active zone of the channel
is given by the integral

The electric current through the end zones of the
channel is calculated through the geometric conductiv-
ity C of the longitudinal effect [10],

and the electrode voltage, through load parameter θ,

The Joule dissipation in the end and active zones of
an MHD channel is

The electric power in the active zone of the channel

is  = NEM + NJ; the electric power supplied to the

channel, Ne =  + Nend.
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Fig. 6. Distribution of the reduced gas content along the
channel for various load parameters.
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The mass flow rates of the phases are calculated
from the conditions at the entrance to the channel,

The specific work of pressure forces in the expanded
thermodynamic system (the work of compression and
pushing) is given by

where ϑ(p) is the specific volume of the gas and tem-
perature T2∗  is determined from a solution to the equa-
tion system for a bubble flow.

The useful power delivered to the gas flow by the

compressor is  = ln, and the useful power of the
carrying flow is

where ∆pend∗  is pressure losses in the end zones of the
magnetic field due to the transverse effect that are given
in terms of the dynamic pressure of the carrying flow at
the entrance to the channel.

The total useful power of an MHD compressor is

N =  + , and the power supply equals Ne. The
ratio between these powers gives the total efficiency of
an MHD compressor,

Here, factor ηi, which is equal to the ratio between the
useful power and the electromagnetic power, may be
called the internal efficiency. Then, ηi1 and ηi2 are the
internal efficiencies as applied to the liquid and gas
phases, respectively; ηe is the electric efficiency; and
ηend is the “end” efficiency. The efficiency of an MHD
compressor itself is η02 = ηi2ηeηend.

For b = 10 mm, l = 50 mm, L = 1000 mm, B = 0.3 T,
θ = 0.1, a0 = 0.8 mm, v 1(0) = 2 m/s, α2(0) = 30%, C =
0.022, and p1(0) = 105 Pa, the calculated characteristics
of a constant-voltage MHD compressor were found to
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be as follows: the specific work ln = 9.8 × 104 J/kg; the
nitrogen mass flow  = 0.349 g/s; the useful power in

terms of the gas phase  = 34 W; the useful power in

terms of the liquid phase  = 12.8 W; the total useful
power of the compressor N = 47 W; the electric power
supply Ne = 85 W; the internal efficiencies ηi = 0.83,
ηi1 = 0.225, and ηi2 = 0.6; the electric efficiency ηe =
0.853; the end efficiency ηend = 0.783; the total effi-
ciency in terms of the liquid phase η01 = ηi1ηeηend =
0.15; the total efficiency in terms of the gas phase η02 =
ηi2ηeηend = 0.41; and the total efficiency of the MHD
compressor η0 = ηiηeηend = 0.55. Note that, with an
increase in load parameter θ, the pressure ratio grows
but the efficiency decreases, all other parameters of an
MHD compressor being the same. For instance, when
θ = 0.3 and 0.4, p1∗ (1) = 5.83 and 9.21, respectively.

For each geometry and each set of the parameters of
the MHD channel, there exists a limiting value θmax of
the load parameter above which expulsive electromag-
netic forces exceed the drag forces retarding the flow
around the sphere even at the entrance to the channel.
In this situation, a bubble flow becomes impossible;
i.e., we are facing the problem of crisis of flow. Another
type of crisis may be observed in a channel with U =
const, as follows from numerical analysis: the bubbles
are impeded by the increasing electromagnetic expul-
sion force inside the channel. As a consequence, the
local gas content attains a limiting value and a bubble
flow collapses.

The method of gas compression considered in this
work was tested experimentally [13]. It was found that,
along with the stable bubble flow, there exist critical
modes of MHD compressor operation, which are asso-
ciated with electromagnetic expulsion of the bubbles
against the carrying stream.

CONCLUSIONS

(1) A system of equations that describes the flow of
and heat exchange in a compressible bubble liquid sub-

ṁ2
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0.5
0.60.40.2 ζ
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Fig. 7. Distribution of the reduced density of the electro-
magnetic force in the bubble flow along the MHD channel
at U = const.
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jected to an electromagnetic force field in the channel
of a conductive MHD pump is derived. Its solutions
found by numerical methods using the hydraulic
approach demonstrate the stability of gas compression
along the stream.

(2) It is demonstrated that an increase in the initial
gas content, velocity of the carrying flow, bubble initial
radius, or magnetic field induction causes the parame-
ters of a bubble flow in the MHD channel to oscillate.

(3) Under certain operating conditions, a crisis of
the bubble flow arises. It is stipulated either by electro-
magnetic expulsion of the bubbles against the main
stream or by an increase in the local gas content when
the bubbles are impeded by expulsive electromagnetic
forces.

(4) The total energy conversion efficiency of an
MHD compressor may amount to 40–45%.
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Abstract—The profile of a periodic capillary–gravitational wave propagating over the surface of a viscous
finite-conductivity fluid is found in a second-order approximation in initial deformation amplitude. When the
finiteness of the rate with which the potential of the fluid smoothes out as capillary–gravitational waves travel
over its free surface is taken into account, the intensity of nonlinear interaction between the waves changes. This
intensity is found to depend on the electric charge surface density, conductivity of the fluid, and wavenumbers.
The finiteness of the potential smoothing rate influences the nonlinear interaction between the waves nonmono-
tonically. © 2005 Pleiades Publishing, Inc.
In a series of recent works concerned with the
asymptotic nonlinear analysis of periodic capillary–
gravitational waves on the flat surface of a deep fluid
[1–4], a mathematical apparatus making it possible to
correctly include the finiteness of the fluid viscosity
was developed. The profile of a nonlinear periodic cap-
illary–gravitational wave traveling on the free surface
of a viscous perfectly conducting fluid and the effect of
the charge uniformly distributed over the fluid surface
on the wave profile were considered in detail. It was
shown that second-order correction A to the initial
deformation amplitude as a function of dimensionless
wavenumber k (i.e., the dependence A = A(k)) behaves
in a resonance-type manner and has a maximum near

wavenumber k∗  = 1/  ≈ 0.707. It is near this value of
k that the nonlinear character of the wave motion shows
up most vividly. The height of the peak of amplitude A,
which characterizes the intensity of the internal reso-
nant nonlinear interaction between the waves, depends
on the fluid viscosity [1]: as the viscosity decreases, the
peak monotonically grows and tends to infinity in the
ideal fluid limit. It was demonstrated [2–4] that the
intensity of the nonlinear resonant interaction is a com-
plicated function of the surface charge density, the
square of which is proportional to Tonks–Frenkel
parameter W (this parameter characterizes the stability
of the fluid free surface against the charge uniformly
distributed over it). In the line W = (k + k–1)/2 lying on
the parameter plane (k, W), amplitude A has a minimum
tending to zero as the viscosity drops to zero.

With the fluid viscosity adequately taken into
account, one can trace the effect of relaxation phenom-
ena, which generate stresses tangential to the free sur-
face, on the nonlinear interaction between capillary–
gravitational waves and on nonlinear corrections to the
wave profiles. In this work, we study how the finiteness

2
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of the rate of electrostatic potential smoothing over the
free surface influences the nonlinear capillary–gravita-
tional wave motion.

1. PROBLEM DEFINITION

Let a viscous incompressible fluid placed in the
gravitational field occupy the semi-infinite space z ≤ 0
and plane 0xy of the Cartesian system (with axis 0z
directed oppositely to the force of gravity) coincide
with the equilibrium flat free surface of the fluid. The
mass density, kinematic viscosity, surface tension coef-
ficient, and conductivity of the fluid are designated as ρ,
ν, γ, and σ, respectively. We assume that the surface
bears a uniformly distributed electric charge with sur-
face density χ0. The surface diffusion coefficient and
the surface mobility of the charges are designated as D
and µ, respectively, and the fluid permittivity is εf. Our
goal is to find the profile of a planar periodic capillary–
gravitational traveling wave with wavenumber k = 2π/λ
(λ is the wavelength) at an arbitrary time moment t > 0.
At the zero time (t = 0), the wave starts propagating
over the free surface of the fluid in the positive direction
of axis 0x. It is assumed that the motion of the fluid is
independent of coordinate y and that the amplitude of
the fundamental harmonic in the expansion of the peri-
odic wave profile in Fourier series over spatial period λ
is known and equals η. We also take into account that,
as the wave propagates, the electric charge is redistrib-
uted over the deforming free surface with a characteris-
tic time comparable to the oscillation period of the
wave. In other words, the surface charge density
becomes a function of time and the horizontal coordi-
nate, χ = χ(t, x).

Mathematically, the problem of finding the velocity
field of the fluid, electrostatic potential, and profile of a
© 2005 Pleiades Publishing, Inc.
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nonlinear capillary–gravitational wave traveling over
the charged free surface of the fluid is stated as follows:

Here, ∆ is the Laplacian, ex and ez are the respective unit
vectors along the axes, and n and t are the unit vectors
of the outer normal and tangent to the free surface dis-
turbed by the wave motion of the fluid (an equation for
the surface disturbed takes the form z = ξ ≡ ξ(t, x); ana-
lytical expressions for n and t are given in the Appen-
dix). Below, we will apply the technique common to the
problems of nonlinear periodic waves [1–6]: the initial
conditions will be determined in the course of solution
so as to simplify a final result as much as possible and
obtain the expression that is the most convenient for
subsequent qualitative analysis of the profile.

In the statement adopted, the following functions
are to be found: ξ = ξ(t, x), the profile of the free sur-
face; u = u(t, x, z) and v  = v(t, x, z), the horizontal and
vertical components of velocity field U(t, x, z), respec-
tively; p = p(t, x, z), the pressure distribution in the
fluid; Φin = Φin(t, x, z) and Φout = Φout(t, x, z), the electric
field potentials inside and outside the fluid, respec-
tively; and χ = χ(t, x), the electric charge surface den-
sity. Parameters η, k, ρ, g, ν, γ, χ0, σ, D, µ, and εf serve
as input data.

2. CONSTRUCTION OF AN ASYMPTOTIC 
SOLUTION

Let us take advantage of the technique described in
[3, 4] to find a solution to the problem of nonlinear

∂tU U —⋅( )U+  = 
1
ρ
---—p– ν∆U g; U+ +  = uex v ez;+

divU 0; ∆Φout 0; ∆Φin 0;= = =

z ξ : ∂tξ u∂xξ+ v ;= =

p 2ρν n n —⋅( )U( )–
1

8π
------ —Φout( )2 εf n —⋅( )Φin( )2–(+

+ εf 2–( ) t —⋅( )Φin( )2 )
γ∂xxξ

1 ∂xξ( )2+( )3/2
----------------------------------;–=

–ρν t n —⋅( )U( ) n t —⋅( )U( )+[ ] χ t —⋅( )Φin– 0;=

Φout Φin;=

∂tχ σ n —⋅( )Φin χUndivS n( ) divS χUτt( )+ + +

+ µdivS χEinτ
t( ) DdivS gradS χ( )( )+ 0;=

χ 1
4π
------ n —⋅( )Φout εf n —⋅( )Φin–( );–=

z ∞: u 0; v 0; —Φin 0;–

z ∞: ∇Φ out E0ez; E0– 4πχ0.=
waves in a viscous incompressible fluid in the form

Here, the quantities with sub- and superscripts 1 and 2
refer to first- and second-order amplitude corrections.

With the expansions for ξ, u, v, p, Φout, Φin, and χ,
one can easily construct the first- and second-order
problems (see [3, 4]):

ξ
u

v

p

Φout

Φin

χ 
 
 
 
 
 
 
 
 
 
 

0

0

0

–ρgz
E0

2

8π
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E0z–

0
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4π
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 
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 
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v 2
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2( )
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O v 1
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( )

O Φin
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O χ1
2( ) 

 
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 
 
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 
 
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;=

ξ1 η f t( ) kx ωt–( ); f 0( )cos 1.= =

∂tUm
1
ρ
---— pm ν∆Um–+ Vm;=

divUm 0; ∆Φout
m( ) 0; ∆Φin

m( ) 0;= = =

z ξ : ∂tξm v m– f 1m;= =

pm ρgξm– 2ρν∂zv m–
E0

4π
------∂zΦout

m( )– γ0∂xxξm+ f 2m;=

ρν ∂zum ∂xv m+( )
E0

4π
------∂xΦin

m( )+ f 3m;=
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m( ) E0ξm– Φin

m( )– f 4m;=
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E0

4π
------∂xum+

σ∂zΦin
1( ) D∂xxχm– µ

E0

4π
------∂xxΦin

1( )–+ f 5m;=

χm
1

4π
------ ∂zΦout
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For m = 1, the above relationships state the first-
order problem, for which V1 = 0 and fn1 = 0 (n = 1–6).
For m = 2, we are dealing with the second-order prob-
lem. The related quantities V2 and fn2 (n = 1–6)
expressed through the first-order solution are given in
the Appendix.

3. SOLUTION OF THE PROBLEM 
IN THE APPROXIMATION QUADRATIC 

IN PERIODIC TRAVELING WAVE AMPLITUDE

According to the routine practice in solving the
problems of this class (see, e.g., [3, 4]), the next step is
the solution of the problem in the first- and second-
order approximations. In this way, we will obtain an
expression for the profile of a periodic capillary–gravi-
tational traveling wave in the second-order approxima-
tion in η:

(1)

Here, S is the complex frequency that is derived from a
dispersion relation when the first-order problem is
solved and M0 and M1 are calculated during the solution
of the second-order problem (see the Appendix).

Alternatively, expressions (1) can be written in the
form

(2)

It should be noted that the expressions for M0 and
M1 given in the appendix involve the reciprocal of the
conductivity, r = 1/σ, instead of conductivity σ. Such a
replacement simplifies asymptotic passage to the limit
of a perfectly conducting fluid (σ  ∞ ⇒  r  0),
for which the charge relaxation phenomenon is absent.
In addition, as a numerical parameter characterizing the
surface charge density on the flat free equilibrium sur-
face of a fluid, we take dimensionless Tonks–Frenkel

z ∞: um 0; v m 0; ∇Φ in
m( ) 0;–

z ∞: ∇Φ out
m( ) 0.

ξ η θ δt( )expcos=

+ 2η2 Re ζ( ) 2θ( )cos Im ζ( ) 2θ( )sin–[ ] 2δt( );exp

θ ωt kx; ω– Im S( ); δ Re S( ); ζ
M1

M0
-------.= = = =

ξ η θ δt( )expcos η2A 2θ φ+( ) 2δt( );expcos+=

A 2 Re ζ( )2 Im ζ( )2+ ;=

φ

Im ζ( )
Re ζ( )
-------------- 

  ; if Re ζ( ) 0>arctan

π
2
---; if Re ζ( ) 0=

Im ζ( )
Re ζ( )
-------------- 

 arctan π; if Re ζ( )+ 0.<










=

TECHNICAL PHYSICS      Vol. 50      No. 2      2005
parameter [7, 8]

(3)

Thus, quantities S, M0, and M1 are functions of ini-
tial parameters ρ, g, γ, ν, k, W, r, D, µ, and εf.

The complex frequency is calculated by the formula

(4)

where

(ω0 is the frequency of infinitesimal-amplitude capil-
lary waves with wavenumber k on the free surface of an
ideal perfectly conducting fluid),

is the capillary constant, and α is a dimensional root of
the dimensionless dispersion relation that corresponds
to a capillary–gravitational wave (for the complete dis-
persion relation and the choice of a proper root, see the
Appendix).

It is known [8] that parameter W characterizes the
stability of the uniformly charged flat surface of a fluid
against its self-charge. In going to a perfectly conduct-
ing ideal fluid (ν, r  0), the relationship for the com-
plex frequency S takes the form S = ±iω0 (since α = ±i).
Therefore, when

(5)

that is,

the electric forces at the ridges of waves with wave-
number k = 1/a dominate over the surface tension
forces (even in the first order of smallness), making the
charged surface of the fluid unstable against its self-
charge [7–9]. The motion of the free surface ceases to
be a wave motion, since ω = 0. From (5), it readily fol-
lows that all wavenumbers k > 0 are stable if 0 ≤ W < 2.

In view of the aforesaid, we will study the profile of
wave (1) under the assumption that 

(6)

Then, parameter δ has the meaning of the damping
decrement of the wave in the first order of smallness
and asymptotic approximations (1) and (2) for the wave
profile remain homogeneous in the limit η  0 at any
time t > 0.

According to (2), in a quadratic approximation, the
profile of a nonlinear periodic capillary–gravitational
wave traveling over the free surface of a fluid is the sum
of the leading (proportional to η) term (k wave) and the
nonlinear-interaction-related correction, which is pro-
portional to η2 (2k wave). Amplitude factor A in (2)

W 4πχ0
2/ ρgγ E0

2/ 4π ρgγ( ).= =

S ω0α ρ g γ ν k W r D µ εf, , , , , , , , ,( );=

ω0
2 kg 1 ak( )2 akW–+( )=

a γ/ρg=

W
1

ak
------ ak+ ω0

2 0 S⇒<⇒> ω0 ,±=

Im S( ) ω≡ 0, Re S( ) δ 0,>≡=

W
1

ak
------ ak+< Im S( )⇒ ω 0, δ≠ Re S( ) 0.<= =
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serves as a measure of the intensity of interaction
between these waves.

In the calculations, we used the dimensionless vari-
ables such that ρ = g = γ = 1; the other quantities were
measured in terms of their characteristic scales:

4. EFFECT OF CHARGE RELAXATION 
ON THE INTENSITY OF NONLINEAR 

INTERACTION BETWEEN WAVES

To study the effect of the finite conductivity of a
fluid on the intensity of nonlinear interactions between
the waves, we assume for simplicity that the diffusion
coefficient D and the mobility µ of charge carriers equal
zero (the terms proportional to them play a noticeable
role only in the case of poorly conducting fluids like
liquid hydrogen or helium [10–12]). This assumption
implies that the electric charge relaxation in a fluid is
totally governed by its conductivity. Dimensionless vis-
cosity ν and permittivity εf are set equal to 0.1 and 50,
respectively.

The family of curves A = A(k) depicted in Fig. 1 for
different r is constructed in that wavenumber range
where the charge relaxation effect is the most pro-
nounced (we recall that A(k) is the amplitude factor
multiplying the second-order correction to the profile
of the nonlinear capillary–gravitational wave). For the
given Tonks–Frenkel parameter (W = 1), the variation
of r from 0 to 1 does not change the resonance-like
shape of curves A = A(k) but insignificantly (by 6%)
decreases the absolute value of the peak and somewhat
shifts it toward lower wavenumbers k. It is easy to
check that the charge relaxation affects the nonlinear

k*
1
a
---; η* a; ζ*

1
a
---; r* a

g
---;= = = =

ν* ga3; D* ga3; µ*
1

ρ
-------.= = =

0.16

2|ζ|

1.2 k0.80.6

0.12

1
2

3 4

Fig. 1. Dimensionless amplitude factor A = A(k) ≡ 2|ζ(k)|
multiplying the second-order correction to the wave profile
vs. dimensionless wavenumber k for W = 1 and dimension-
less fluid conductivity r = (1) 0, (2) 0.1, (3) 0.5, and (4) 1.0.
interaction intensity more appreciably in the case of
short waves. It is also noteworthy that the value r = 1
refers to poorly conducting fluids (for which the
assumption D = µ = 0 is applicable with some reserva-
tions). For example, the conductivity of ethyl alcohol is
r = 1.3 × 10–3 in terms of the dimensional variables
adopted.

Yet, the surface charge density (parameter W)
affects the dependence A = A(k) in the case of poorly
conducting fluids (r = 1), as well as of perfectly con-
ducting ones, nonmonotonically (Fig. 2). As W grows
from values close to zero to W = 1, the nonlinear inter-

0.4

1

1.2

2|ζ|

k1.40.80.6

2

3

4

5

0.8

(a)

2

1.2

2|ζ|

k1.40.80.6

8

7

6

5

3
(b)

2

1.2

2|ζ|

k

8

7

6

5

3
(c)

0.80.6

Fig. 2. Dimensionless amplitude factor A = A(k) ≡ 2|ζ(k)|
multiplying the second-order correction to the wave profile
vs. dimensionless wavenumber k for r = 1 and surface-
charge-related parameter W = (1) 0.1, (2) 0.3, (3) 0.5,
(4) 0.7, (5) 1.0, (6) 1.3, (7) 1.5, and (8) 1.8. (a) W ≤ 1,
(b) W ≥ 1, and (c) 0.5 ≤ W ≤ 1.8.
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0.3

0.2
1.0

2|ζ|

W1.10.9

0.4

Fig. 3. Dimensionless amplitude factor A = A(W) ≡ 2|ζ(W)|
multiplying the second-order correction to the wave profile
vs. dimensionless parameter W, which characterizes the sta-
bility of the fluid free surface against its uniformly distrib-
uted self-charge, for k = 0.73 and dimensionless fluid con-
ductivity r = 0 (dashed line), 0.1 (thick line),0.5 (dash-and-
dot line), and 1.0 (thin line).
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action intensity first declines (Fig. 2a) (the second-order
correction amplitude A(k) in the interval 0 ≤ W ≤ 1
decreases) and then substantially grows in the interval
1 ≤ W ≤ 2 (Fig. 2b). The interaction intensity is minimal
at W ≈ 1 (Fig. 2c). From Fig. 3, which plots curves A(W)
at different conductivities and k = 0.73 (at this value of
k, curves A(k) peak in the range where the nonlinear
interaction is the most intense), it follows that this min-
imum for poorly conducting fluids is deeper.

Figure 4 plots amplitude A versus conductivity r for
k = 0.73 and different values of Tonks–Frenkel param-
eter W. It is easy to see that this dependence noticeably
depends on the surface charge (Tonks–Frenkel parame-
ter) both qualitatively and quantitatively. It also follows
from Fig. 4 that curves A = A(r) run most smoothly at
W ≈ 1. That is why the peak value of amplitude A(k)
smoothly declines as parameter r increases (see Fig. 1).
Figure 5, where a family of curves A = A(k) calculated
1.0794
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Fig. 4. Dimensionless amplitude factor A = A(z) ≡ 2|ζ(z)| multiplying the second-order correction to the wave profile vs. dimension-
less fluid conductivity r for dimensionless wavenumber k = 0.73 and different values of W.
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for W = 1.8 is depicted, demonstrates that the mono-
tonic decrease in nonlinear amplitude correction A with
increasing r persists only for k > 0.8 and that the mono-
tonicity breaks off in the range where the nonlinear
mode interaction is the most intense (k ≈ k∗ ). However,
the absolute variation of amplitude A with magnitude of
r is insignificant: in Fig. 5, the change exceeds the
thickness of the lines only slightly. It should also be
noted that, for W > 1, the interaction intensity has a dip
at other-than-zero values of r (Fig. 4); i.e., this dip
meets the case of finite-conductivity fluids.

CONCLUSIONS

The finiteness of the fluid conductivity most signifi-
cantly influences the nonlinear interaction of capillary–
gravitational waves with wavenumbers higher than k∗  =

1/  ≈ 0.707 (the doubled square of this value equals
unity divided by the capillary constant squared). The
shape of the curves plotting the intensity of the nonlin-
ear interaction between separate harmonics constitut-
ing a nonlinear capillary–gravitational wave versus the
fluid conductivity appreciably depends on the surface
charge density. As the charge density approaches a
value that is critical in terms of Tonks–Frenkel instabil-
ity, there appears a nonzero value of the conductivity at
which the mode interaction intensity is minimal. For
finite-conductivity fluids, the resonance wavenumber at
which the nonlinear wave interaction is the most
intense is somewhat smaller than for perfectly conduct-
ing fluids. The fluid conductivity affects the nonlinear
interaction intensity to a far less extent than the surface
charge: when the conductivity varies over wide limits,
the interaction intensity changes within several percent,

2

2

1.2

A

k0.8

3

0.6

Fig. 5. Dimensionless amplitude factor A = A(k) ≡ 2|ζ(k)|
multiplying the second-order correction to the wave profile
vs. dimensionless wavenumber k for W = 1.8 and dimen-
sionless fluid conductivity r = 0 (continuous line), 0.2
(dashed line), and 0.75 (dotted line).
while the variation of the surface charge density in the
subcritical range causes a several-fold change in the
interaction intensity.

APPENDIX: AUXILIARY QUANTITIES 
AND RELATIONSHIPS

(i) The unit vectors tangent and normal to the per-
turbed free surface of the fluid:

(ii) The right-hand sides of the relationships that
state the second-order problem:

n
∂xξ
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-----------------------------ex–
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∂xξ

1 ∂xξ( )2+
----------------------------ez.+=
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1
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(iii) Coefficients Mj:

where
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-----------------------------------------------------------------------------------------------------







;

aout = 1

–
r

4πG
-----------

k q–( ) ω0
2 S2 2νk2 S k2D+( )+ +( ) Sk3D+

k S 2νk k q–( ) r
4πG
-----------

E0
2k

4πρ
---------- k q–( )–+ 

 
-----------------------------------------------------------------------------------------------------;

ain = r
4πG
-----------–

×
k q–( ) ω0

2 S2 2νk2 S k2D+( )+ +( ) Sk3D+

k S 2νk k q–( ) r
4πG
-----------

E0
2k

4πρ
---------- k q–( )–+ 

 
-----------------------------------------------------------------------------------------------------;
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and i is the imaginary unit.
(iv) The dimensionless dispersion relation has the

form

where

In the general case, the dispersion relation has two
pairs of complex conjugate roots. To avoid awkward-
ness, we will consider only waves propagating in the
positive direction of axis 0x. To this end, we take the
roots with positive imaginary parts. One such root cor-
responds to a capillary gravitational wave, while the
other, to a wave due to the relaxation of the surface
electric charge.

Let these roots be known for given β = β∗ , E = E∗ ,
∆ = ∆∗ , M = M∗ , and R = R∗ . If we put β = β∗ , E = E∗ ,
∆ = ∆∗ , M = M∗ , and R = 0 in the dispersion relation
(i.e., if we consider a perfectly conducting fluid, for

q k2 S
ν
---+ ;=

ω0
2 kg 1 ak( )2 akW–+( ); a

γ
ρg
------;= =

E0 2 πW ρgγ,=

F α β R E ∆ M εf, , , , , ,( ) α β2+ ;=

Re F α β R E ∆ M εf, , , , , ,( )( ) 0,>



F α β R E ∆ M εf, , , , , ,( )

=  
α 2β2+( )2

1 R α2 1 2β2 2α ∆+( )+ +( )E2

α 1 R 1 εf+( ) α ∆+( ) EM+( )+( )
----------------------------------------------------------------------------–+ 

 

4β3 1 R α2 1 2β2 2α ∆+( )+ +( )E2

α 1 R 1 εf+( ) α ∆+( ) EM+( )+( )4β4
----------------------------------------------------------------------------------------–

 
 
 

------------------------------------------------------------------------------------------------------------------------;

β νk2

ω0
--------; R

rω0

4π
--------;= =

∆ Dk2

ω0
---------; E

E0k

ω0 4πρ
---------------------; M µ 4πρ.= = =
which the relaxation wave is absent), there will be only
one root with a positive imaginary part. Then, varying
R from 0 to R∗ , we trace the variation of the root found
(the procedure is accomplished numerically). At R =
R∗ , this root will equal to one of those found previously
and, thus, correspond to a capillary–gravitational wave.
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Abstract—The difference between internal nonlinear three-mode degenerate and Raman resonances is found
for the first time: in the former case, the energy spent on the initial deformation of a drop is only transferred
from lower to higher modes; in the latter case, it is transferred in both directions. It turns out that degenerate
resonances are slightly sensitive to the physical quantities that are responsible for the exact positions of the res-
onances (i.e., to the amount of electric charge). A deviation from the resonant value only changes the fraction
of the energy the modes exchange and the time of resonant energy exchange: the interaction itself remains res-
onant. © 2005 Pleiades Publishing, Inc.
(1) Among the effects related to nonlinear oscilla-
tions of a charged conducting incompressible liquid
drop, internal nonlinear resonant interaction between
oscillation modes occupies a prominent place, to judge
by the number of publications concerned with this
issue. From the pioneering works [1–5], appearing
20 years ago, to this day [6–18], more than three-
fourths of the articles touching upon the problem of
nonlinear oscillations of a charged drop have been
devoted to the internal resonant interaction in one way
or another. The fact is that resonant interaction provides
the fastest and most efficient redistribution of the initial
deformation energy of the drop between the modes
excited via nonlinear interaction. To put otherwise, res-
onant interaction exerts a decisive effect both on the
development of nonlinear oscillations (and, accord-
ingly, the generation of their related acoustic and elec-
tromagnetic radiations [12, 14]) and on the disintegra-
tion of the drop that bears a near-critical (in terms of
linear stability) charge [2, 5, 9, 11, 15, 17]. In spite of a
great deal of articles devoted to resonant mode interac-
tion, many related issues remain to be understood, the
direction of resonant energy transfer between modes
among them. Degenerate three-mode resonances,
where one of two modes interacts with the other twice,
were discovered and studied first [1–3]. It was argued
[10, 16] that the energy in such resonances is trans-
ferred only from lower to higher modes, which, gener-
ally speaking, is inconsistent with the concept of disin-
tegration instability as applied to three-mode interac-
tions [19]. Furthermore, it was found [13] that
disintegration instability may occur at truly three-mode
resonances (secondary Raman resonances), specifi-
cally, that there are a number of resonant situations
when the energy is transferred from two higher modes
to a third (lower) one. However, the parameters of such
an interaction (the time and amount of interaction) have
1063-7842/05/5002- $26.00 0185
not been explored. In [17], where four-mode interac-
tions were studied, it was also demonstrated that energy
may be transferred from higher to lower modes but the
intensity of such transfer is low, since these interactions
have the third order of smallness. Energy transfer from
higher modes of nonlinear oscillations to lower ones
(more specifically, to the fundamental mode) is of spe-
cial interest in view of the mechanism of corona-initi-
ated lightning discharge near a coarse highly charged
drop, which is being discussed in the literature [15, 18].

In this work, we perform a detailed study of the
energy transfer between modes that occurs in degener-
ate and secondary Raman resonances under three-mode
interaction.

(2) Consider the time evolution of the surface of a
nonlinearly oscillating drop of an ideal incompressible
conducting liquid. The drop has a radius R, density ρ,
surface tension coefficient γ, and charge Q that is uni-
formly distributed over the surface. At the zero time t =
0, the equilibrium shape of the drop experiences an axi-
symmetric perturbation of fixed amplitude that is much
smaller than the radius of the drop. Our aim is to find
the spectrum of oscillations of the drop at t > 0.

We assume that the drop is axisymmetric from the
initial time on, so that the equation of its surface in the
spherical coordinate system with the origin placed at
the center of the drop has the form

(1)

(we use dimensional variables such that ρ = R = γ = 1).
The flow of the liquid in the drop is assumed to be

potential with a velocity field potential ψ(r, t). Velocity
field V(r, t), in turn, is specified by a potential gradient:
V(r, t) = grad(ψ(r, t)). If the hydrodynamic velocity of
the liquid in the drop is taken to be much lower than the

r θ t,( ) 1 ξ θ t,( ); ξ  ! 1.+=
© 2005 Pleiades Publishing, Inc.
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propagation velocity of electromagnetic interactions,
the electric field of charge Q near the drop can be
assumed to be electrostatic. Then, it can be described
by potential Φ(r, t), which is related to field strength E
as E = –grad(Φ).

Mathematically, the problem is stated as

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

Here, ∆ is the Laplacian.

Since conditions (8) and (9) must be fulfilled at any,
including initial, time instant, they define (at t = 0) the
amplitudes of the zeroth and first modes in the expan-
sion of the equilibrium (spherical) shape of the drop,
ξ(θ), in Legendre polynomials. This means that the
amplitudes of both modes cannot be taken arbitrarily:
they will depend on the initial deformation.

In expressions (6)–(11), µ = cosθ; ∆p is the differ-
ence in the pressures inside and outside the drop in
equilibrium; n is the unit normal vector to surface (1);
ε is the amplitude of a small initial perturbation of the
surface (the small parameter of the problem); Pi(µ) are
the ith-order Legendre polynomials; hi are the coeffi-
cients specifying the partial contribution of an ith vibra-
tional mode to the total initial perturbation; Ξ is a set of

∆ψ r t,( ) 0; ∆Φ r t,( ) 0;= =

r 0: ψ r t,( ) 0;

r ∞: grad Φ r t,( )( ) 0;

r 1 ξ θ t,( ): 
∂ξ
∂t
------+ ∂ψ

∂r
-------

1

r2
----∂ψ

∂θ
-------;–= =

∆p
∂ψ
∂t
-------–

1
2
--- —ψ( )2–

1
8π
------ —Φ( )2+ divn;=

Φ r θ t, ,( ) const;=

r2 r θsind θd ϕd

V

∫ 4
3π
------,=

V 0 r 1 ξ θ t,( ), 0 θ π, 0 ϕ 2π≤ ≤ ≤ ≤+≤ ≤[ ] ;=

er r3 r θ θ ϕddsind⋅
V

∫ 0;=

1
4π
------ n —Φ⋅( )ds

S

∫°– Q,=

S r 1 ξ θ t,( ), 0 θ π, 0 ϕ 2π≤ ≤≤ ≤+=[ ] ;=

t 0: ξ θ( ) ξ0P0 µ( ) ξ1P1 µ( ) ε hiPi µ( );
i Ξ∈
∑+ += =

hi

i Ξ∈
∑ 1;

∂ξ θ t,( )
∂t

------------------- 0.= =
the numbers of initially excited vibrational modes; and

(12)

are the constants that are found from conditions (8) and
(9) at the zero time (in (12), they are given accurate to
the third order of smallness in ε).

(3) To find a solution to the problem stated, we will
take advantage of the method of many scales (used to
solve similar problems considered in [2, 5–7, 9–18]).
Desired functions ξ(θ, t), ψ(r, t), and Φ(r, t) are repre-
sented as series in powers of small parameter ε and are
assumed to be independent not merely of time t but of
various ε-defined times Tm ≡ εmt:

(13)

We will restrict our analysis to a quadratic approxi-
mation and seek for dependences of the desired quanti-
ties on time scales T0 and T1.

Substituting expansions (13) into set (2)–(11) and
equating the terms of the same power of ε, we arrive at
a set of boundary-value problems for functions ξ(m),
ψ(m), and Φ(m). Obviously, each of functions ψ(m) and
Φ(m) must satisfy linear equations (2).

In the zeroth order of smallness, we obtain expres-
sions for the electrostatic potential near an equilibrium
(spherical) drop with charge Q, Φ(0) = Q/r.

The first- and second-order solutions to Eqs. (2) that
satisfy boundedness conditions (3) and (4) are written
in the form

(14)

First- and second-order corrections to the equilib-
rium surface of the drop are also represented as expan-

ξ0 ε2 hi
2

2i 1+( )
-------------------

m 1=

∞

∑– O ε3( );+≈

ξ1 ε2 9ihi 1– hi

2i 1–( ) 2i 1+( )
--------------------------------------

i Ξ∈
∑– O ε3( )+≈

ξ θ t,( ) εmξ m( ) θ T0 T1 …, , ,( );
m 1=

∞

∑=

ψ r t,( ) εmψ m( ) r θ T0 T1 …, , , ,( );
m 1=

∞

∑=

Φ r t,( ) εmΦ m( ) r θ T0 T1 …, , , ,( ).
m 0=

∞

∑=

ψ m( ) r θ T0 T1, , ,( ) = Dn
m( ) T0 T1,( )rnPn µ( ) m = 1 2,( );

n 1=

∞

∑

Φ m( ) r θ T0 T1, , ,( ) Fn
m( ) T0 T1,( )r n 1+( )– Pn µ( ).

n 0=

∞

∑=
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sions in Legendre polynomials:

(15)

Substituting solutions (14) and (15) at m = 1 into the
set of first-order boundary conditions that is derived
from (5)–(7) and carrying out necessary transforma-
tions, we arrive at differential equations for coefficients

(T0, T1):

(16)

A solution to (16) is a set of harmonic functions with
T1-dependent coefficients:

(17)

where c.c. hereafter stands for complex conjugate and

(T1) and (T1) are real functions for which the
dependence on T1 can be found by only solving the
problem in the next order of smallness.

From conditions (9) and (10), which are written in
the approximation linear in small parameter ε, it fol-
lows that

(18)

Note that, formally, expressions (18) do not contra-
dict Eqs. (16) at n = 0 and 1.

Satisfying initial conditions (1) in the first-order
approximation in ε, we get

(19)

Now we substitute first-order solutions (17) and
(18), as well as solutions (14) and (15) at m = 2, into the
set of second-order boundary conditions (that has
been found from (5)–(7)) and, after tedious transforma-
tions, come to an equation for unknown coefficients

(T0, T1):

ξ m( ) θ T0 T1, ,( ) = Mn
m( ) T0 T1,( )Pn µ( ) m = 1 2,( ).

n 0=

∞

∑

Mn
1( )

∂Mn
1( ) T0 T1,( )
∂T0

2
--------------------------------- ωn

2Mn
1( ) T0 T1,( )+ 0;=

ωn
2 n n 1–( ) n 2+( ) W–( ); W

Q2

4π
------.= =

Mn
1( ) T0 T1,( ) An

1( ) T1( ) iωnT0( )exp c.c.,+=

An
1( ) T1( ) an

1( ) T1( ) ibn
1( ) T1( )( ) n 2≥( ),exp=

an
1( ) bn

1( )

M0
1( ) T0 T1,( ) 0; M1

1( ) T0 T1,( ) 0.= =

ai
1( ) 0( ) 1

2
---hi; bi

1( ) 0( ) 0 i Ξ∈( );= =

an
1( ) 0( ) 0; bn

1( ) n( ) 0 n Ξ∉( ).= =

Mn
2( )

∂Mn
2( ) T0 T1,( )
∂T0

2
--------------------------------- ωn

2Mn
1( ) T0 T1,( )+ 2iωn

dAn
1( ) T1( )

dT1
-----------------------–=
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(20)

Here,  and  are the Clebsch–Gordan coef-
ficients. They are other than zero if the subscripts meet
the conditions

(21)

Therefore, only those oscillation modes whose
numbers meet (21) will be excited in the second-order
approximation.

(4) From the second part of (20), it follows that, if
any three surface oscillation modes with numbers p, q,
and k meet one of the relationships

(22)

then, these modes start resonantly interacting, accord-
ing to the general idea of the method of many scales. In
this case, one may speak of the secondary (i.e., second-
order) Raman resonance.

Note that, according to (16), the frequencies ωn of
the surface eigenmodes depend on the self-charge of
the drop (i.e., on parameter W). For Wcr = 4, the funda-
mental mode (n = 2) frequency vanishes, and a further
increase in W makes the surface of the drop unstable
against the self-charge. Therefore, the secondary reso-
nances affect the nonlinear oscillations of the drop and
merit study only if relationships (22) are valid at W <
Wcr. Such a resonance was first discovered [2] in the
case ω6 = 2ω4, and later it was shown [11, 13, 15] that
the number of such resonances at W < 4 is large
(reaches several hundreds for p, q, k < 100).

Let subscript n refer to the second-order modes that
are excited because of nonlinear interaction and sub-
scripts k, p, and q, to the resonantly coupled modes.

(i) Consider the case when n ≠ k, p, q (i.e., when
mode n drops out of any resonance relationship) and the

× iωnT0( )exp γlmn ωlωmη lmn+( ){
m = 2

∞

∑
l 2=

∞

∑+

× Al
1( ) T1( )Am

1( ) T1( ) i ωl ωm+( )T0( )exp

+ γlmn ωlωmη lmn–( )Al
1( ) T1( )Am

1( ) T1( )

× i ωl ωm–( )T0( )exp c.c.+ } ;

γijn = Kijn ωi
2 n i– 1+( ) 2n j j 1+( ) 1–( ) ( j i 1+( )-+ +

– i 2i 2n– 7+( ) 3 )n
W
2
-----+ α ijn

1
i
---ωi

2 n
W
2
-----+ ;+

η ijn Kijn
n
2
--- i– 1+ 

  α ijn
1
i
--- 1 n

2 j
-----+ 

  ;+=

Kijn Ci0 j0
n0[ ] 2

;=

α ijn i i 1+( ) j j 1+( )Ci0 j0
n0 Ci 1–( ) j1

n0 .–=

Ci0 j0
n0 Ci 1–( ) j1

n0

i j= n i j+( ); i j n+ +( )≤ ≤ 2g.=

ωp ωq+ ωk, ωk ωq+ ωp,= =
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condition of eliminating secular and small-denomina-
tor terms from a solution to Eq. (20) has the simple
form

Substituting (T1) expressed through scalar func-

tions (T1) and (T1) (see (18)) into this equality
and requiring that the real and imaginary parts of the
resulting expression vanish, one can easily check that

These equalities imply that (T1) and (T1) are
independent of slow time T1 and may be taken to be
equal to their constant initial values (see (19)) in the
second-order approximation. First-order coefficients

(t) (see expression (17)) in expansion (15) of the
perturbation ξ(1)(θ, t) of the equilibrium surface shape
in Legendre polynomials will take the form

(23)

where δn, i is the Kronecker symbol.

The amplitudes of the second-order corrections that
are obtained by solving Eq. (20) will then have the form

(24)

(ii) To analyze Eq. (20) for n = k, p, q, we introduce
an offset parameter σ ~ O(1) that reflects the proximity
of the difference ωp – ωq to frequency ωk and can be
determined from the expression

(25)

Note that one may relate the offset parameter to the
self-charge of the drop (or to parameter W), implying
that the oscillation frequency may be controlled and, in
particular, detuned from the exact resonance frequency
by varying the self-charge of the drop.

dAn
1( ) T1( )
dt

----------------------- 0.=

An
1( )

an
1( ) bn

1( )

dan
1( ) T1( )
dt

----------------------
dbn

1( ) T1( )
dt

---------------------- 0.= =

an
1( ) bn

1( )

Mn
1( )

Mn
1( ) t( ) δn i, hi ωit( ); i Ξ; n k p q,, ,≠∈cos=

Mn
2( ) t( ) hih j λ ijn

+( ) 1
2
--- ωn ωi ωj+ +( )t 

 sin




j Ξ∈
∑

i Ξ∈
∑=

× 1
2
--- ωn ωi– ωj–( )t 

 sin λ ijn
–( ) 1

2
--- ωn ωi ωj–+( )t 

 sin+

× 1
2
--- ωn ωi– ωj+( )t 

 sin




n 2; n q p k, ,≠≥( );

λ ijn
±( ) γijn ωiωjη ijn±( ) ωn

2 ωi ωj±( )2–( ) 1–
.≡

ωp ωq– ωk 1 σk+( ).=
With (25) substituted into (20), the right of (20) con-
tains the terms involving the following factors:

Then, for n = k, p, q, the conditions for eliminating
secular terms from a solution to (20) can be written as

(26)

Equating the real and imaginary parts of expressions
(26) to zero and introducing function

(27)

we arrive at a set of differential equations for real func-

tions (T1), (T1), (T1), (T1), (T1), and

(T1):

(28)

i ωp ωq–( )T0( )exp i ωk εωkσ+( )T0( )exp=

=  iσωkT1( ) iωkT0( );expexp

i ωk ωq+( )T0( )exp i ωp εωkσ–( )T0( )exp=

=  i– σωkT1( ) iωpT0( );expexp

i ωp ωk–( )T0( )exp i ωq εωkσ+( )T0( )exp=

=  iσωkT1( ) iωqT0( )exp .exp

–2iωk

dAk
1( ) T1( )
dt

-------------------- Λ pqk
–( ) iσωkT1( )Ap

1( ) T1( )Aq
1( ) T1( )exp+  = 0;

–2iωp

dAp
1( ) T1( )
dt

------------------- Λkqp
+( ) i– σωkT1( )Ak

1( ) T1( )Aq
1( ) T1( )exp+  = 0;

–2iωq

dAq
1( ) T1( )
dt

------------------- Λ pkq
–( ) iσωkT1( )Ap

1( ) T1( )Ak
1( ) T1( )exp+  = 0;

Λ lmn
±( ) γlmn γmln+( ) ωlωm η lmn γmln+( ).±=

βk
1( ) T1( ) σωkT1 bk

1( ) T1( ),–=

ak
1( ) βk

1( ) ap
1( ) bp

1( ) aq
1( )

bq
1( )

2ωk

dak
1( ) T1( )

dT1
---------------------- Λ pqk

–( ) ap
1( ) T1( )aq

1( ) T1( ) ϕkpq
1( ) T1( )( );sin=

2ωkak
1( ) T1( )

dβk
1( ) T1( )

dT1
----------------------

=  2ωk
2ak

1( ) T1( )σ Λpqk
–( )+ ap

1( ) T1( )aq
1( ) T1( ) ϕkpq

1( ) T1( )( );cos

2ωp

dap
1( ) T1( )

dT1
---------------------- Λkqp

+( ) ak
1( ) T1( )aq

1( ) T1( ) ϕkpq
1( ) T1( )( );sin–=

2ωpap
1( ) T1( )

dbp
1( ) T1( )

dT1
----------------------

=  –Λkqp
+( ) ak

1( ) T1( )aq
1( ) T1( ) ϕkpq

1( ) T1( )( );cos

2ωq

daq
1( ) T1( )

dT1
---------------------- Λ pkq

–( ) ap
1( ) T1( )ak

1( ) T1( ) ϕkpq
1( ) T1( )( );sin=
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Relationships (19) serve as initial conditions for
Eqs. (28). From the requirement that set (28) be self-
consistent at t = 0, we find that, if one of modes k, p, and
q is lacking in the spectrum Ξ of the initially excited
modes (i.e., its amplitude equals zero at the zero time),
its phase at t = 0 equals π/2 rather than being arbitrary.
Eventually, the initial conditions for set (28) can be
written in the compact form

(29)

For resonantly interacting modes k, p, and q, the
first-order coefficients in expansion (15) are written as
(see (17))

(30)

where coefficients (T1), (T1), (T1), (T1),

(T1), and (T1) are the solutions to set (28) with
boundary conditions (29).

It should be noted that, in the approximation used
(up to the second order of smallness), three modes res-
onantly interact only if at least two of them are present
in the spectrum Ξ of the modes excited at the zero time;
that is, the amplitudes of these modes must be other
than zero at t = 0. The third mode, even having the zero
initial amplitude, appears in the first-order spectrum
when its number satisfies the conditions p + q + k is an
even number and |p – q| ≤ k ≤ (p + q) (for p, q ∈ Ξ ; k ∉
Ξ). Both conditions result from the requirement that

coefficients , , and  in Eqs. (28) vanish.

Figure 1 shows the evolution of the first-order
amplitudes of the fourth, fifth, and seventh modes reso-
nantly interacting at W = 1.649 when the fourth and
seventh modes are responsible for the initial deforma-
tion. The calculation was made by formulas (28)–(30)
for ε = 0.3. It is seen that the fifth mode, which is absent
in the initial spectrum, results from resonant energy
transfer from the seventh (highest) mode. It is also seen
that the energy of the seventh mode is partially trans-
ferred to the fourth mode as well, the amplitude of
which grows synchronously with the amplitude of the
fifth mode. In other words, we observe energy transfer
from the higher mode to the lower ones according to the
concept of disintegration instability.
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(iii) Consider now the case of degenerate resonance,
where one of the modes interacts twice with another,
i.e., where ωs = 2ωk.

Proceeding in the same way as above, we obtain
expressions for the first-order time-dependent coeffi-
cients in expansion (15):

(31)

where real functions (εt), (εt), (εt), and

(εt) are solutions to the set of differential equations

(32)

Ms
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Fig. 1. Dimensionless amplitudes  of the fourth, fifth,

and seventh nonlinear capillary oscillation modes of the
charged drop that are in exact resonance (W = 1.649) vs.
dimensionless time. The thin, bold, and dash-and-dot lines
refer, respectively, to the seventh, fifth, and fourth modes.
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Fig. 2. Dimensionless amplitudes of the resonantly interacting fourth and sixth modes vs. dimensionless time. W = (a) 2.66667
(exact resonance), (b) 1.5, (c) 2.5, (d) 3.0, and (e) 3.9. The thin and bold lines refer, respectively, to the fourth and sixth modes.
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From relationships (19), it follows that set (32)
allows the following combinations of the initial condi-
tions:

If k ∉ Ξ  and s ∈ Ξ  (i.e., if (0) = 0 and (0) =
hs/2), modes s and k do not resonantly interact in the

s k,[ ] Ξ : as
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approximation used, since it follows from set (32) at
t = 0 that

that is, amplitudes  and  retain their initial val-
ues.

Figure 2a shows the time evolutions of the ampli-

tudes (t) and (t) of the resonantly interacting
fourth and sixth modes in the position of exact reso-
nance, Wr = 2.66667, for ε = 0.3. Here, at the zero time,
the fourth mode alone is excited, while the sixth mode
is absent (its amplitude is zero). Note that, if the sixth
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mode alone is excited at the zero time, the resonant
buildup of the fourth mode does not take place. Figu-
res 2b–2e demonstrate the same dependences for dif-
ferent (other than Wr) values of parameter W, which
defines offset σ.

It follows from Fig. 2 that the nonlinear interaction
between the modes is of a resonance character for any
W < Wcr = 4. This means that the frequency offset is
small when W varies in the range considered. An
increase in the absolute value of the offset parameter
causes a decrease in (i) the time of resonant interaction,
which depends on the time it takes for the mode ampli-
tude to reach a maximal value; (ii) the time period over
which the energy is in a resonantly growing mode; and
(iii) the part of the energy that is transferred from an ini-
tially excited mode to that growing resonantly (the
complete energy exchange is observed only at the exact
resonance). To this must be added that the mode of ini-
tially zero amplitude acquires a first-order amplitude
upon resonant buildup, although the resonant interac-
tion itself shows up only in the second order of small-
ness.

(5) The conclusion that the resonance conditions
depend on the self-charge of the drop only slightly can
be generalized for the case of several resonance interac-
tions proceeding simultaneously [20]. Let any, e.g., a
jth mode be involved in several resonant interactions at
W < 4 that differ in interacting modes and the values of
W corresponding to exact resonances. For example, the
jth mode participates in two resonance situations: j, i, k
at Wr = C1 and j, n, m at Wr = C2, where C1, C2 < 4.
Then, the excitation of the jth mode causes the modes
involved in both resonance situations (ith, kth, nth, and
mth) to resonantly interact with it. The amplitudes of
the modes resonantly building up through the interac-
tion with the jth mode in either combination will
depend on offset parameter W in a given situation (i.e.,
on the difference between W and its resonant values C1

and C2). For example, among the first ten modes, the
fourth one may take part in the following resonant
interactions: at W = 0.612, it may resonantly interact
with the sixth and eighth modes; at W = 1.649, with the
fifth and seventh modes; at W = 2.66667, twice with the
sixth mode (the generate resonance considered above);
and at W = 3.623, with the third and fifth modes
[16, 17]. Thus, at any W < 4, the fourth mode may vir-
tually interact with all the modes listed above, with the
degree of interaction (the fraction of the transferred
energy) being dependent on the offset in each of the
possible combinations.

Consider the situation where mode k participates in
two resonance interactions (one two-mode degenerate
and one three-mode nondegenerate) simultaneously.
Let the offset parameters for these resonance situations
TECHNICAL PHYSICS      Vol. 50      No. 2      2005
be σ1 and σ2:

Analyzing this situation in the same way as above,
we find that the first-order amplitudes for modes p, q,
and k have the form of (28). For mode s, we get

Functions (εt) from this expression and (εt)
from (28) are defined as

The set of differential equations for real functions

(εt), (εt), (εt), (εt), (εt), (εt),

(εt), and (εt) includes the third, fourth, fifth,
and sixth equations of set (28), as well as the equations
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Fig. 3. Dimensionless amplitudes  of the resonantly

interacting fourth, fifth, sixth, and seventh modes vs. dimen-
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heavy, bold, and dash-and-dot lines refer, respectively, to
the seventh, sixth, fifth, and fourth modes.
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(33)

The initial conditions for this set are given by (29)
where j = k, p, q, s.

Figure 3a shows the time dependences of the reso-
nantly interacting modes, including the resonantly
growing fifth and sixth modes, for the same initial con-
ditions as in Fig. 1. It is remembered that, in Fig. 1, the
fourth, fifth, and seventh modes are under the exact res-
onance conditions and the initial deformation is speci-
fied by the fourth and seventh modes. The curves in
Fig. 3 were calculated using set (33) complemented by
the third, fourth, fifth, and sixth equations of set (28). It
is seen that the energy is transferred from the seventh
mode to all the lower number modes. It is interesting
that, being in degenerate resonance with the fourth
mode, the sixth mode builds up via taking the energy of
the fourth mode [10] (see also Fig. 2). Nevertheless, as
follows from Fig. 3, the fourth-mode amplitude does
not decrease; on the contrary, it even slightly increases
synchronously with the fifth and sixth modes. In other
words, the energy transferred from the seventh mode to
the fourth one not only compensates for the energy
losses of the fourth mode (a part of its energy was
gained by the sixth mode) but even increases its energy.

Figure 3b shows the results of the same calculations
for W = 2.66667, i.e., when the fourth and sixth modes
come into exact degenerate resonance (the initial con-
ditions are the same as in Fig. 3a). Here, unlike Fig. 3a,
both the fourth and the seventh modes give up their
energy and the time dependences of the amplitudes of
the resonantly growing fifth and sixth modes become
asymmetric.

CONCLUSIONS

When Rayleigh parameter W, which is related to the
self-charge of the drop) is subcritical (W < 4 for the fun-
damental mode), the frequency offset of the modes
being excited is insufficient for nonlinearly interacting
modes to be in resonance at any W irrespectively of the
exact resonance values of W (Wr). In this case, the offset
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influences only the fraction of the energy being trans-
ferred and the transfer time.

When the self-charge of the drop is small, disinte-
gration of a nonlinearly oscillating drop may be related
to the resonant transfer of the capillary oscillation
energy from higher to lower modes.

Under the three-mode resonance conditions, disin-
tegration instability is observed only for Raman reso-
nances. For degenerate resonances, this effect is absent.
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Abstract—The quasi-fluid flow of microdispersed solids at the stage of rapid dynamic high-pressure loading
under the conditions of the Bridgman effect is considered in terms of the hydrodynamic approach. Under these
conditions, the effective dynamic viscosity of the rapidly flowing solid medium is estimated to be η = 1–3 Pa s,
which is typical of only low-viscous fluids. The time of dynamic loading at the stage of rapid compression in
the Bridgman effect is estimated as t = (3–6) × 10–6 s, which agrees well with the available experimental data.
© 2005 Pleiades Publishing, Inc.
(1) Strong quasi-static compression of insulators
and semiconductors between open Bridgman anvils
(Fig. 1) in many cases causes volume fracture, which is
accompanied by fast ejection of the material in the
microdispersed state from the compression system
[1−3]. Such explosive instabilities appear when the
elastic energy of a body heavily compressed at high
pressures (P = 0.1–10 GPa) is converted to the mechan-
ical work of superfast volume relief once certain critical
P–T parameters have been reached in the system [4–6].
Each material has its own characteristic pressure and
temperature thresholds at which this type of instability
occurs. Therefore, the Bridgman effect (BE) conditions
[4] are well suited to studying the mechanical stability
of insulators at high pressures. Also, the Bridgman
effect gives the unique chance to estimate the ultimate
mechanical stability of minerals, which may reside
in the seismic areas of the Earth’s crust or in rock-
impact-prone underground workings, in laboratory
conditions [4].

Two stages may be distinguished in the Bridgman
effect. At the first stage, an insulator is slowly (quasi-
statically) loaded with a rate dP/dt < 0.1 GPa/s to a cer-
tain threshold at which it fails throughout the volume,
passing into the microdispersed state. The second stage
starts when the microdispersed material becomes simi-
lar to a quasi-fluid and, being subjected to a high
pressure, is explosively (totally or partially) ejected out
of the compression system with a velocity v e = 0.5–
2.0 km/s [4].

The fast quasi-fluid flow of a material between
Bridgman anvils during the ejection [6–15] allows one
to use the Bridgman effect for effective activation-free
modification of nonmetals. Unlike the other modifica-
tion methods, such a mechanochemical high-pressure
approach enables keeping the mean pressure and the
ambient temperature constant during the process. In
1063-7842/05/5002- $26.00 0193
addition, it excludes the penetration of equipment-
related chemical impurities into an agglomerate or
alloy to be produced. Moreover, in the Bridgman effect
conditions, one can easily control the mechanochemi-
cal processes, changing the excitation threshold of the
explosion by varying the temperature [6–8] or placing
the samples in electric fields with various amplitudes
and frequencies [16–22].

The purpose of this work is to estimate the effective
values of the viscosity, as well as the time of dynamic
loading, of materials in the Bridgman effect. These esti-
mates may be helpful in predicting the intensity of
mechanochemical interactions in the reagents and gain-
ing a better insight into the nature of the Bridgman
effect.

(2) The superplasticity of materials under the criti-
cal conditions of nonuniform compression between
Bridgman anvils may be associated with a substantial
decrease in their viscosity when explosive breaking of
atomic bonds results in local heating of grain bound-
aries [23]. In this case, the superplastic flow of a dis-
persed material may be in many ways similar to the vis-
cous flow. Therefore, such a quasi-fluid flow can be
described in terms of the hydrodynamic approach
[24, 25]. However, as applied to the BE-related pro-
cesses, this approximation seems to be formal. Accord-
ing to the available experimental data, materials sub-
jected to dynamic loading under the BE conditions usu-
ally do not melt, while are substantially heated (by
several tens or hundreds of degrees, depending on the
conditions) [26, 27].

Consider a model of the quasi-fluid flow of a dis-
persed body at the instant of its fast compression
between Bridgman anvils. The quasi-fluid film being
compressed is between two surfaces rapidly approach-
ing each other, which tend to squeeze the viscous quasi-
fluid out of the gap between them (Fig. 2). If the sur-
© 2005 Pleiades Publishing, Inc.
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faces are flat and move parallel to each other along the
normal to them and if the fluid between them is incom-
pressible and has an effective dynamic viscosity η, the
pressure distribution can be described by a set of
Navier–Stokes equations with appropriate boundary
conditions. In the general case, when the velocity and
pressure fields are nonstationary and depend on time
only through a generalized coordinate h (the thickness
of the fluidlike film), this set of equations is reduced to
the Reynolds equation. Solving it, we can find the

3 2

1

4

v  = 0.5 – 2.0 km/s

Pc

Fig. 1. Compression of sample 1 between two Bridgman
anvils 2 with superhard inserts 3, which generate the explo-
sive effect with fast ejection 4 of the material out of the sys-
tem.

h(t)

z

x

y

S

P

Fig. 2. Compression of a fluid film between two plates by
applying a pressure P. The thickness h of the film depends
on time, h = h(t). S is the hydrodynamic contact area.

Characteristic values of the parameters in Bridgman-effect
experiments

Parameter Typical value Refs.

h0 ≈4 × 10–4 m [4–22]

h ~10–4 m [4–22]

Pc ~109 Pa [4–22]

R ≈2.5 × 10–3 m [15–22]

(0.5–1.5) × 103 m/s [4]

vn ≈ (h0/R) (0.8–2.4) × 102 m/s –

η 0.8–2.6 Pa s (6)

t (3–6) × 10–6 s (2)

v e
0

v e
0

velocity v n of the approaching plates as a function of
initial load P and the effective viscosity [28],

(1)

Here, the hydrodynamic contact area is equal to the
effective cross-sectional area S = (3/4)πR2 of the anvils
of radius R. The time it takes for the quasi-fluid film
thickness to decrease from initial thickness h0 to an
intermediate thickness h (at a given load P) is found
from the simple relationship

(2)

Note that the viscosity may increase considerably
with pressure P and substantially drop with increasing
temperature T. The estimates that follow are based on
the qualitative relationship

(3)

which, in particular, can be applied for describing the
viscosity of melts [29]. Here, k is the Boltzmann con-
stant and V0 is the volume of a microvoid that coincides
(in order of magnitude) with the volume occupied by
particles in the melt, V0 = (0.5–2.0) × 10–29 m3. This
qualitative relationship is also applicable to a flow of
disperse particles if we assume that the surfaces of
micrometer particles are molten at the instant of ejec-
tion.

(3) Let us estimate the effective dynamic viscosity
of materials rapidly flowing between the anvils at the
instant the Bridgman effect is observed. At normal tem-

perature, the ejection velocity  ≈ (R/h)v n is propor-
tional to the velocity v n of the anvils (see Eq. (1)). Then,
we have

(4)

Using the available experimental data for the param-
eters relevant to the conditions of Bridgman instability
(see table), we obtain η0 = 0.8–2.6 Pa s (the effect of
high pressure on the dynamic viscosity is disregarded).
This value is typical of a low-viscosity fluid, such as
glycerin (~0.85 Pa s), in order of magnitude; is three
orders of magnitude higher than the viscosity of water
at its melting point (≈0.002 Pa s [30]); and is five to
eight orders of magnitude lower than the viscosity of a
molten oxide glass (~109 and ~106 Pa s, respectively,
for SiO2 and B2O3 [29]). Next, for typical values of the
parameters, the time of dynamic loading (without
regard to the effect of high pressure) is t0 = (1–4) ×
10−7 s, as follows from Eq. (2). This value is one order
of magnitude lower than the estimate given in [4]. This
time is likely to control the rates of mass transfer and
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chemical reactions. Such an assumption is also based
on estimates of the relaxation times in chemical trans-
formations observed in the Bridgman effect, ~10–6 s
[4, 5, 9–13].

Fractionation of chemical elements under the BE
conditions [15] may indicate that microparticles
enriched by different elements that have entered into
the quasi-fluid flow with different rates. This supposi-
tion may explain the fractionation in GeSe2 disk sam-
ples [15], where the local Se concentration at the
periphery of the disk that remained in the anvils after
the explosive effect was 10–15% higher than the Se
concentration at the center. It is worth comparing the
melting points of Se, TSe = 170–217°C, and Ge, TGe =
936°C. This observation means that the viscosity of Se-
enriched fine particles may be much lower than that of
Ge-enriched particles at the same pressures and tem-
peratures (see Eq. (3)).

Because of low values of effective dynamic viscos-
ity, a material placed in the BE conditions may become
heterogeneous; i.e., it may so happen that the material
in the quasi-fluid stratifies and some of the layers flow
with a still lower viscosity. Then, it becomes clear that
the reason for an extremely high rate of various chemi-
cal reactions and other interactions is the ultrahigh
mobility of the elements under high pressures. It is
quite possible that the reactions in the BE conditions
will proceed to completion, as observed in [9–13]. Cer-
tainly, the rate of the reactions is bound to depend on
the initial temperature of the reaction mixture, since the
threshold pressure of the Bridgman effect is tempera-
ture dependent. To a first approximation, this depen-
dence appears as [6, 20, 22]

(5)

where P0 is the BE threshold at room temperature and
A is a parameter depending on the structure of the mate-
rial, energy parameters, and so on.

Therefore, according to Eqs. (3)–(5), the effective
dynamic viscosity of the material may depend on tem-
perature and pressure as

(6)

and vary as shown in Fig. 3 for the parameters listed in
the table and A ~ 103 Pa/K. The flow rate of the quasi-
fluid between the anvils (and, correspondingly, the
ejection velocity) versus the initial temperature of the
sample with regard to a high pressure in the loading
system may be estimated from Eqs. (1), (5), and (6) in
the form

(7)

The run of this dependence is shown in Fig. 4. Using
Eqs. (2), (5), and (6), one can also find the impact load-
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ing time with allowance for the high-pressure effect, t =
(3–6) × 10–6 s. In order of magnitude, this value agrees
well with the time found experimentally [4].

(4) Thus, studying the low-viscous flow of solids in
the microdispersed state under the conditions of the
Bridgman effect, we managed to estimate their effec-
tive viscosity, η = 1–3 Pa s. In other words, under extre-
mal conditions, the effective viscosity of solid dis-
persed media is comparable to that of low-viscous flu-
ids, such as glycerin. Basically, the mobility of
chemical elements may be extremely high under such
conditions, including high pressures. A high mobility
of the elements is likely to greatly intensify chemical
reactions and other interactions under the conditions of
the Bridgman effect, as was demonstrated in [9–15].
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Fig. 3. Temperature dependence of the effective dynamic
viscosity for the rapid flow between Bridgman anvils with
(solid line) and without (dashed line) allowance for the
effect of pressure on the viscosity.

Fig. 4. Effect of the initial temperature on the flow rate of
the quasi-fluid between Bridgman anvils with allowance for
the high pressure effect.
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Abstract—The shock adiabat of porous stilbene (1,2-diphenylethylene) up to the pressure P = 41 GPa and the
dynamic compressibility of this material in reflected shock waves up to 77 GPa are studied experimentally. The
run of the expansion isentropes of stilbene down to 0.1 GPa is determined. The experimental findings are used
to construct a semi-empiric equation of state of stilbene for a wide range of high-energy states. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

The equation of state of a material exposed to pulsed
high-energy actions is of great interest for high energy
density physics [1–4]. The behavior of materials in
compression shock waves and adiabatic expansion
waves provides valuable information for checking the
adequacy of theoretical models or describing the ther-
modynamics of extreme states on a semi-empirical
basis over a wide range of the phase diagram [1, 3, 4].

In this work, we report data for the compressibility
of porous stilbene C6H5CH=CHC6H5 (1,2-diphenyleth-
ylene) in shock waves of intensity up to P = 41 GPa, as
well as systematize the states of the material upon
repeat dynamic loading up to P = 77 GPa and in waves
of adiabatic unloading down to P = 0.1 GPa. The earlier
[5] and newly found data are generalized in the form of
a semi-empiric equation of state.

EXPERIMENTAL METHODS AND RESULTS

Test porous samples (cylindrical pellets) were pre-
pared by pressing of flakes. The density of stilbene
crystals under normal conditions is ρ0 = 1.16 g/cm3. In
our experiments, it varied from ρ00 = 1.13 to
0.85 g/cm3. Shock waves were generated through cop-
per, aluminum, or iron screens by steel striking rods,
which were accelerated to 5–6 km/s by the detonation
products of condensed explosives. With the shock wave
amplitude in the screen fixed, determination of wave
velocity D (accurate to ≈1.5%) in the sample makes it
possible to find mass velocity U and pressure P from a
known dynamic adiabat of the screen by the reflection
method [4]. The measurements were made by the con-
tact electrical method, and the signals from the sensors
were recorded on a fast-response oscilloscope. In the
1063-7842/05/5002- $26.00 0197
experiments, the diameter and thickness of the samples
were 12 and 3 mm, respectively. Table 1 lists the
dynamic compressibility values for stilbene with ρ00 =
0.85 g/cm3 that were averaged over six to eight inde-
pendent measurements, and Fig. 1 shows the associated
data points in D–U coordinates.

In the experiments with reflected shock waves and
adiabatic expansion waves, the initial density of the
samples was ρ00 = 1.13 g/cm3. The velocity D∗  of the

4
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D, km/s

U, km/s

1
2

8

4 6

a

b

Fig. 1. Shock adiabats for the stilbene samples with the ini-
tial porosity mp = ρ0/ρ00 = (a) 1.027 and (b) 1.365. Wavy
segments show the onset of physicochemical transforma-
tion. Data points are taken from (1) [5] and (2) this work.
© 2005 Pleiades Publishing, Inc.
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shock waves was measured in obstacles with different
dynamic impedances that were placed behind the sam-
ples. From these measurements, the parameters of the
initial states were found. Data points on the repeat
shock adiabats were obtained by reflection from obsta-
cles (aluminum, Teflon) for which the dynamic adia-
bats are known and that are more rigid than the test
material. The low pressure (high rarefaction) range was
studied with soft dynamic obstacles (polyethylene,
polystyrene foamed plastic of different density, as well
as argon and air under atmospheric pressure) for which
the shock adiabats are well known (see, e.g., [6]). In
most of the experiments, the 2-mm-thick test samples
of 38-mm diameter were covered not only by 3-mm-
thick pellets of 12-mm diameter made of the obstacle
materials but also by pellets made of the test material
itself in order to keep track of the initial state parame-
ters. The parameters of the initial and final states in the
condensed obstacles were measured using the reflec-
tion method with the shock wave velocity recorded by
contact electrical sensors. In the case of argon, the opti-
cal radiation emitted from the shock wave front was
recorded by optical methods. When the air obstacle was

Table 1.  Experimental data for the shock compressibility of
Stilbene

U, km/s D, km/s P, GPa ρ, g/cm3

0.98 2.64 2.199 1.3518

1.85 4.29 6.746 1.4945

2.34 4.97 9.885 1.6063

3.24 6.06 16.689 1.8266

4.44 7.24 27.324 2.1979

4.95 7.89 33.197 2.2811

5.47 8.79 40.869 2.2505

Note: ρ00 = 0.85 g/cm3, mp = 1.365.
used for relieving, the velocity U of the free surface of
the sample upon passing the first shock wave through it
was measured by the electrical contact sensors. In this
case, the wave front velocity D∗  in the air obstacle was
measured, and pressure P behind the front was found
from the known shock adiabat for air. The experimental
techniques and approaches used in this paper were
described at greater length in [6], where isentropic
expansion of shock-compressed materials was consid-
ered. The experimental data for repeat shock compres-
sion and adiabatic expansion of stilbene are summa-
rized in Table 2, and the data points, each being the
average of six to eight independent measurements, are
applied on the P–U diagram (Fig. 2).

MODEL OF THE EQUATION OF STATE

On the pressure–volume–energy surface, the early
[5] and newly obtained shock-wave data for stilbene
show the run of only two shock adiabats (for the sam-
ples with ρ00 = 1.13 and 0.85 g/cm3). Our data for repeat
shock compression and isentropic expansion shed new
light upon the stilbene behavior at high energy densi-
ties. Similar experiments performed earlier on metals
[3, 6–9], Plexiglas and Teflon [10], polystyrene and
Fenilon [11, 12], and carbon [13, 14] confirm the valid-
ity of the thermodynamic description of a new (previ-
ously uncovered) range of densities and pressures.
However, a bare handful of experimental data and some
theoretical uncertainty regarding the behavior of
organic substances at high energy densities impose sub-
stantial restrictions on the form of the semi-empiric
potential and necessitate using a simplified model of
the equation of state with few adjustable parameters.

In generalized form, the caloric model of the equa-
tion of state [11, 15], in terms of which the thermody-
Table 2.  Experimental data for repeat shock compression and adiabatic expansion of stilbene

Material of obstacle
Adiabats R1 and S1 Adiabats R2 and S2 Adiabats R3 and S3

D*, km/s U, km/s P, GPa D*, km/s U, km/s P, GPa D*, km/s U, km/s P, GPa

Aluminum 8.97 2.68 65.147 9.22 2.87 71.710 9.42 3.01 76.840

Teflon 6.82 2.91 43.463 7.41 3.26 52.903 8.22 3.75 67.507

Stilbene 7.394 3.83 32.0 7.878 4.10 36.5 8.598 4.58 44.5

Polyethylene – – – 8.95 4.12 33.924 – – –

Foamed plastic 0.74 7.11 4.31 22.677 – – – 8.26 5.12 31.295

Foamed plastic 0.39 6.91 5.04 13.582 7.23 5.29 14.916 8.02 5.88 1.840

Foamed plastic 0.16 – – – 8.02 6.29 8.071 – – –

Argon – – – 9.04 8.05 0.130 – – –

Air – – – 8.64 8.23 0.092 – – –

Note: Figures by the foamed plastics are densities in g/cm3. ρ00 = 1.13 g/cm3, mp = 1.027.
TECHNICAL PHYSICS      Vol. 50      No. 2      2005



        

DYNAMIC COMPRESSIBILITY, RELEASE ADIABATS, AND THE EQUATION OF STATE 199

                                          
namic properties of stilbene are described, is given by

(1)

where Ec(V) and Pc(V) = –dEc/dV are the elastic compo-
nents of energy and pressure at T = 0 K and Γ(V, E) is
the coefficient that takes into account the contribution
of thermal components to the equation of state.

The volume dependence of the elastic compression
energy is represented in the potential [7–9]

(2)

where σc = V0c/V, V0c is the specific volume at P = 0 and
T = 0 K, and B0c is the value of bulk modulus Bc =
−VdPc/dV at σc = 1.

Quantity Ed, which has the meaning of the charac-
teristic energy of destruction, is found from the normal-
ization condition Ec(V0c) = 0, which yields Ed =
B0cV0c/mn. The derivative of the bulk modulus with
respect to pressure,  = dBc/dPc, at σc = 1 provides a
relationship between coefficients m and n in the form
n =  – m – 2. Parameters V0c, B0c, and  are found
by iteration so as to fit (under normal conditions) the
tabulated value of specific volume V = V0, as well as
adiabatic sound velocity CS = CS0 and the derivative of

isentropic bulk modulus BS = –V(∂P/∂V)S = /V with

respect to pressure (  = (∂BS/∂P)S = ), which are
determined from dynamic measurements. Exponent m
in formula (2) is taken such that the resulting equation
of state provides the best fit to the experimental data
obtained in forward and backward shock waves.

Similarly to the caloric model [7, 8], the dependence
of coefficient Γ on volume and energy is stated as 

(3)

here, σ = V0/V, function γc(V) refers to the range of low
thermal energies, and γi characterizes a heavily heated
condensed substance (high energy range). Energy of
anharmonicity Ea specifies the thermal energy of transi-
tion from one limiting case to the other and is found
from data of dynamic high-pressure experiments.

The volume dependence of the elastic component γc
of Γ is given by [11, 15]

(4)

where
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E0 is the specific internal energy, and γ0 is Grüneisen
coefficient γ = V(∂P/∂E)V under normal conditions.

It is easy to check that dependence (4) provides the
fulfillment of the condition γ(V0, E0) = γ0, as well as
yields the asymptotics γc = 2/3 in the limiting cases of
low and high compressions. Adjustable parameters σn

and σm in expression (4) are taken so as to provide an
optimal fit to experimentally found dynamic compress-
ibilities and release isentropes of the porous samples.

RESULTS OF CALCULATION

The experimental data for stilbene obtained earlier
[5] and in this work suggest that the material undergoes
a physicochemical transformation at the front of
intense shock waves. In the shock adiabat for the solid
samples, this transformation starts at P ≈ 15 GPa and
results in a considerable decrease in the density (by
≈20%) and compressibility. Such transformations,
which are triggered by intense dynamic loading and
cause a drastic consolidation of the material, are typical
of the class of aromatic substances [11, 12, 16–22].
They are routinely explained by bond breaking in the
initial compound with the formation of a slightly com-
pressible mixture of diamond-like carbon and various
low-molecular components [23]. In this work, the ther-
modynamic properties of stilbene are studied in terms
of caloric model (1)–(4) separately for the states before
and after the transformation. The density and bulk mod-
ulus of the transformation products under normal con-
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Fig. 2. Experimental (data points) and calculated (lines)
shock adiabats (Hm), repeat compression curves (R), and
expansion isentropes (S) of stilbene. The curves marked by
the asterisk refer to the transformation products. (3) Adia-
bats R1 and S1; (4), R2 and S2; and (5) R3 and S3. For (1) and
(2), see Fig. 1.
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ditions, which are necessary for constructing the equa-
tion of state, were found from the shock-wave experi-
ments performed at pressures above the pressure range
of the transformation. The coefficients of the equations
of state that optimally generalize the available thermo-
dynamic data for stilbene and for the products of its
transformation are given in Table 3.

As follows from Fig. 1, the equations of state
derived in this work fit well the shock compressibility
of the solid and porous stilbene samples throughout the
range of the kinematic parameters. When calculating
the parameters of the shock adiabats corresponding to
the material transformed, we took into account the
effective initial porosity of stilbene, which may influ-
ence the density of the transformation products. It
should be noted that the combined analysis of the cal-
culated adiabats and experimental data made it possible
to find the parameters of state of the transformation
products under normal conditions with a high degree of
reliability.

1.0

P, GPa

σ

1
2

1.4 1.8

a

b

3
4
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80

Hm

Pc*

Hm*
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R*60

40

20

0
2.2

Fig. 3. Phase diagram of stilbene at high densities and pres-
sures. For designations, see Fig. 2. Pc is the elastic compres-
sion curve at T = 0 K.

Table 3.  Coefficients in the equation of state for stilbene

V0 V0c B0c m n σm σn γ0c γi Ea

0.862 0.857 12.136 2.3 0.9 0.8 1 0.7 0.5 30

0.57* 0.568 28.7 3.95 1.05 0.575 1 0.75 0.5 70

Note: Coefficients in the lower row, which is marked by asterisk,
refer to the products of physicochemical transformation of
stilbene under shock wave loading. The coefficients are
given in the basic units of measure: P = 1 GPa, V = 1 cm3/g,
and E = 1 kJ/g
Figure 2 shows the calculated shock adiabats for
stilbene, as well as the curves of repeat loading and the
expansion isentropes for the transformation products.
Comparing the calculation results with the experimen-
tal data, we can argue that the equations of state con-
structed reliably determine the material parameters at
pressures higher and lower relative to the shock adiabat.
The same is true for the whole range of densities and
pressures that was used in the compression experi-
ments, as follows from Fig. 3, which compares the cal-
culated adiabats with the data points obtained in the for-
ward and backward (reflected) shock waves.

The P–σ diagram depicted in Fig. 3 demonstrates
the domain of high-energy states occurring in the
reflected compression and unloading (release) waves
versus the parameters of the shock adiabats for the sam-
ples of different initial porosity. The extent of the
domain is considerable both toward cold curve Pc
(repeat adiabats R) and toward the rarefied gaseous
phase (isentropes S). It should be noted that the initial
states for the release isentropes are the dissociated
states, which arise under intense dynamic loading.
These isentropes persist up to rarefied gaseous states at
a pressure P ≈ 0.1 GPa and density ρ ≈ 0.3ρ0. In this
parameter domain, any noticeable steps in the thermo-
dynamic functions or any hydrodynamic anomalies that
might be related to phase transitions in the products of
stilbene transformation in the release wave were not
observed (Fig. 2).

To conclude, our experimental data cover the previ-
ously unstudied range of densities and pressures. The
constructed equations of state for stilbene and the prod-
ucts of its transformation fit well the available data
gained in high-energy experiments. Therefore, these
wide-range equations will be helpful in numerically
simulating the effect of intense energy fluxes on a mate-
rial.
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Abstract—The one-dimensional boundary-value problem of determining the stationary temperature field of a
thermoelectric branch is numerically solved for the case of a maximal temperature difference. The Fermi energy
distribution over the thermoelectric branch is calculated in terms of the quantum statistics of carriers. Homoge-
neous and inhomogeneous thermoelectric branches are considered. © 2005 Pleiades Publishing, Inc.
The low efficiency of thermoelectric coolers holds
back their production. Therefore, improvement of the
thermoelectric figure of merit is among the most impor-
tant problems of semiconductor materials science. The
values of this parameter that have been reached up to
now are still very far from the theoretical limits [1].
Moreover, even today’s figure of merit of thermoelec-
tric materials is not used in full measure. Application of
thermoelectric materials in cooling devices depends on
their operating temperature interval. Accordingly, the
material of choice is that offering the highest figure of
merit under given temperature conditions. Therefore,
there arises the need to optimize the properties of ther-
moelectric materials using various optimization
approaches. In this work, we consider optimization of
the thermoelectric material properties in the operating
temperature range of a thermoelement.

As is known, the basic quality criterion of a thermo-
electric material is its figure of merit [2]

(1)

where α is the differential thermal emf, σ is the electric
conductivity, and χ is the thermal conductivity.

Parameter Z as a function of temperature and carrier
concentration is usually calculated under the assump-
tion that either the lattice or electron component of the
thermal conductivity can be ignored. In the latter case,
expressions for the kinetic effects are analytically easy
in the case of nondegenerate carriers and the thermo-
electric figure of merit may be calculated [2]. However,
these calculations are not rigorous; rather, they are esti-
mates of the parameter. In addition, it is good to bear in
mind that the most important thermoelectric materials
feature weak degeneracy in the range where the figure
of merit reaches a maximum [3].

Let us find the optimum chemical potential under
which Z reaches a maximum value. For this purpose,

Z
α2σ
χ

---------,=
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we will calculate the thermoelectric figure of merit for
a one-band semiconductor for the case of moderately
degenerate carriers obeying the quadratic dispersion
law. From liquid-nitrogen temperature on, carrier scat-
tering by lattice vibrations dominates even in heavily
doped semiconductors. Therefore, we will consider
carrier scattering only by acoustic phonons. The charge
carrier mobility, lattice thermal conductivity, and the
scattering parameter are assumed to be independent of
the carrier concentration.

Using the one-band approximants given in [4], we
calculate the differential thermal emf,

(2)

charge carrier mobility,

(3)

electric conductivity,

(4)

thermal conductivity,

(5)

and Lorentz number,

(6)

Here,

are the Fermi integrals [4], where f0 = [1 + exp(x – η)]–1 is
the equilibrium distribution function. The effective
mass of carriers was taken to be equal to 0.5m0.
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Let the lattice (phonon) component of the thermal
conductivity depend on temperature in the form

(7)

The absolute values of the carrier mobility and lat-
tice thermal conductivity were taken to be close to
those in the best thermoelectric materials, which have a
room-temperature figure of merit near 3 × 10–3 K–1. For
scattering by acoustic phonons, the dependence of the
carrier mobility on temperature and effective mass has
the form [4]

(8)

The results of numerical calculation of the thermo-
electric figure of merit versus the reduced Fermi energy
at temperatures from 100 to 300 K are presented in
Fig. 1. As the temperature rises, the reduced Fermi level
decreases, reaching –0.87 at room temperature. The
value of the reduced Fermi level thus obtained is usu-
ally taken to be optimal.

However, one should always bear in mind that the
thermoelectric figure of merit can be used only if the
kinetic coefficients are temperature independent [2];
otherwise, it cannot be viewed as a reliable criterion of
thermoelectric efficiency. Therefore, to calculate the
thermoelectric branch efficiency, we apply another
approach. Under the steady-state conditions with
allowance for the Thomson effect, the temperature field
of a one-dimensional adiabatically isolated homoge-
neous thermoelectric branch is described by the station-

χph const/T .=

u m* 5/2– T 3/2– .∼
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Fig. 1. Thermoelectric figure of merit vs. the reduced Fermi
level at (1) 100, (2) 150, (3) 200, (4) 250, and (5) 300 K.
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ary equation of heat conduction

(9)

with the boundary conditions

(10)

where y = Jl/S, l is the length of the branch, S is the
cross-sectional area of the branch, and J is the current
in the branch. Coefficients α, σ, and χ are calculated by
formulas (2), (4), and (5), respectively.

Since the boundary-value problem given by (9) and
(10) is nonlinear, it was solved numerically. Simulta-
neously, numerical optimization in terms of current and
carrier concentration was performed. The position of
the reduced Fermi level was found from the expression
for the carrier concentration [4]

(11)

The reduced Fermi level varied between –4 and 2.5.
The temperature field and reduced Fermi level that

were calculated for a thermoelectric branch operating
in the conditions of maximal temperature difference are
presented in Figs. 2 and 3, respectively. It is of interest
to compare both approaches. From Figs. 1 and 3, it fol-
lows that the optimum values of the reduced Fermi
energy, which determine the positions of the maxima of
Z (Fig. 1), even fall beyond the range of variability of
the reduced Fermi level along the thermoelectric
branch (Fig. 3), although generally the reduced Fermi
level increases with decreasing temperature. Thus, one

d
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  y2

σ
---- yT

dα
dT
-------dT

dx
------–+ 0=
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αyT x 0= , T x 1= T1,= =

n
8π
3h3
-------- 2m*kT( )3/2F3/2 η( ).=

300

250

200

150

100

T, K

1.0
x

0.80.60.4

1

2

3

4

5

0.20

Fig. 2. Temperature distribution in the unloaded thermo-
electric branch at hot end temperatures of (1) 100, (2) 150,
(3) 200, (4) 250, and (5) 300 K.
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can conclude that the performance of a thermoelectric
branch intended for operation in a given temperature
interval can be optimized by optimization of the bound-
ary-value problem. Figure 2 shows the temperature dis-
tributions along the thermoelectric branch for the opti-
mum values of the reduced current under the maximal
temperature difference conditions. In this regime, the
temperature reaches a maximum at the hot end of the
branch. Therefore, the heat flux at the hottest point is
absent. A vague mirror similarity between the tempera-
ture curves in Fig. 2 and the dependences of the reduced
Fermi level in Fig. 3 stands out. Such behavior of the
reduced Fermi level is apparently explained by the fact
that the charge carrier concentration in the branch is
fixed in the framework of the one-band model.

Actually, the kinetic coefficients in thermoelectric
materials are temperature-dependent; therefore, in
order that a thermoelectric branch be optimized in the
entire temperature range, it must be inhomogeneous.
The thermoelectric efficiency may be raised by using
thermoelectric branches that are inhomogeneous along
their length [5]. It has been established that the thermal
efficiency is improved if the electric conductivity
increases and the thermopower decreases from the hot
to cold end. Such a conclusion was drawn from the
study of graded-property thermoelements as a limiting
case of composed thermoelement [6]. The electric con-
ductivity distribution along the length that improves the
branch efficiency was also found. It turned out to be
linear.

The calculation of the thermoelectric branch effi-
ciency by solving the boundary-value problem was
demonstrated by Ivanova and Rivkin [7]. When solving
this problem in the variational statement using the max-

0.4

0.2

0

–0.2

–0.4
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0.80.60.4

1

2

3

4

5

0.20
–0.6

Fig. 3. Distribution of the reduced Fermi energy along the
unloaded branch at different hot-end temperatures.
(1−5) The same as in Fig. 2.
imum principle of Pontryagin, they had to linearize the
initial conditions. It was also assumed that the ther-
mopower, thermal conductivity, and electric conductiv-
ity depend on temperature only slightly. It was found
that the optimal charge concentration distribution along
the branch is also linear.

The author of this paper solved this problem in a
somewhat different formulation with allowance for a
temperature dependence of the kinetic coefficients and
the linear distribution of the charge carrier concentra-
tion [8, 9]. The regimes of maximal temperature differ-
ence and maximal cooling capacity were considered.
Eventually, it was found that the linear distribution of
the carrier concentration increases both the temperature
difference across and the cooling capacity of a thermo-
electric branch. The weak point in the studies cited is
that they use classical statistics, while thermoelectric
materials feature a weak degeneracy of carriers. There-
fore, quantum statistics should be invoked to solve this
problem. The stationary temperature field of a one-
dimensional adiabatically isolated inhomogeneous
thermoelectric branch is described by the stationary
equation of heat conduction (with allowance for the
Thomson effect and distributed Peltier effect)

(12)

with the same boundary conditions as (10), where y =
Jl/S and coefficients α, σ, and χ are calculated by for-
mulas (2), (4), and (5), respectively.

The boundary-value problem given by (10) and (12)
was solved numerically, and the solutions obtained
were numerically optimized in terms of current. Since
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Fig. 4. Distribution of the reduced Fermi energy along the
thermoelectric branch at T1 = 300 K for the linear distribu-
tion of the carrier concentration. n0/n1 = (1) 1, (2) 1.5, (3) 2,
(4) 3, (5) 4, and (6) 5.
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the optimal distribution of the carrier concentration for
the nonlinear problem is impossible to find, we will
consider particular distribution functions of charge car-
riers along the branch. It was argued [6, 7] that the opti-
mal distribution is linear; therefore, the linear law of the
carrier concentration distribution,

(13)

will be considered first. Here, g = 1 – 1/k, where k =
n0/n1 is the ratio of the concentrations at the cold and
hot ends. Let this ratio vary in the interval 1 ≤ k ≤ 5.

For an inhomogeneous branch, the distribution of
the reduced Fermi level depends on k (Fig. 4) and so
does the temperature difference, which increases with k
but nonlinearly: as the concentration drop increases, the
temperature difference tends to saturation. As is seen
from Fig. 5 (curves 2, 3), the temperature is no longer
maximal at the hot end of the branch and the heat flux
from the hot end rises, since the temperature gradient at
this point is other than zero. To avoid this, the region of
heat absorption in the distributed Peltier effect should
be shifted toward the cold end of the branch. Accord-
ingly, the carrier concentration distribution must be
changed. Specifically, the carrier concentration near the
hot end of the branch must be kept unchanged and the
region where the concentration varies sharply must be
shifted to the cold end. This can be achieved if the car-
rier concentration distribution obeys the exponential
law,

(14)

n n0 1 gx–( ),=

n n0 b ax–( )exp c+( ),=
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Fig. 5. Temperature distribution along the thermoelectric
branch at T1 = 300 K for the linear distribution of the carrier
concentration. n0/n1 = (1) 1, (2) 2, and (3) 5.
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where n0 is the carrier concentration at the cold end of
the branch, b = (k – 1)/k(1 – exp(–a)), and c = (1 – k ×
exp(–a)/k(1 – exp(–a)).

The distribution of the reduced Fermi energy along
an exponentially inhomogeneous branch is demon-
strated in Fig. 6. The concentration gradient lowers the
temperature at the cold end, because a lower tempera-

0.5
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0.80.60.4

1

2

3
4

5

0.20

–2.0

Fig. 6. Distribution of the reduced Fermi energy along the
thermoelectric branch at T1 = 300 K, n0/n1 = 5, and the car-
rier concentration distributions obeying (1) the linear law
and exponential law with a = (2) 1, (3) 3, (4) 5, and (5) 10.
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Fig. 7. Maximal temperature difference across the branch
vs. the ratio n0/n1 of the carrier concentrations at the hot and
cold ends at T1 = 300 K and the carrier concentration distri-
butions obeying (1) the linear law and exponential law with
a = (2) 1, (3) 3, (4) 5, and (5) 10.
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ture is needed in this case to compensate for the Joule
heat in this region. Figure 7 plots the temperature dif-
ference against the concentration drop for various con-
centration distributions along the branch. Curve 1
describes the linear distribution; the other, exponential
distributions with different constants a in the exponent.
The concentration drop being the same, the maximal
temperature difference increases with constant a in the
exponent.

To conclude, we showed that the thermoelectric fig-
ure of merit as an adjustable parameter in optimization
of the charge concentration can be used only at the (ini-
tial) stage of thermoelectric material selection. The
final stage of optimizing the carrier concentration in the
operating temperature interval of a thermoelement
implies the solution of an optimal boundary-value
problem even for a homogeneous branch. The linear
distribution of the charge carrier concentration along
the branch is not optimal: a thermoelectric branch with
exponential distribution of the carrier concentration
offers a higher efficiency.
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Abstract—The mean electrical characteristics of an insulating matrix composite that contains unidirectional
fibers of two sorts are calculated analytically. The fibers differ in physical properties and in cross-sectional area.
They form alternating layers and make the material anisotropic. The calculations are based on finding an exact
solution to the problem of interaction between cylindrical bodies in an external electric field. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

This paper concerns the electrical properties of a
composite insulator that represents a matrix reinforced
by long cylindrical fibers of two sorts having different
permittivities and radii. The fibers are parallel to each
other and form a cubic lattice (a square array in the
cross section). Each sort of the fibers is arranged into
alternating layers. Although individually the compo-
nents of the composite are isotropic, the composite as a
whole is anisotropic. The electrical performance of
such composites is of interest in studying a number of
natural objects and for developing composites to be
applied in electrical engineering, mechanics, and ther-
mal physics [1–4].

The calculation of the effective permittivity tensor is
carried out by the standard procedure: first, local elec-
tric fields in the system are calculated and then they are
spatially averaged. It suffices to calculate the field in
one cell of the periodic structure, since the structure is
regular. A cell is chosen such that its sides coincide with
equipotentials and field lines. An exact solution to the
problem of interaction between two parallel cylinders
in an external magnetic field is of great importance in
calculating the local electric field [5], which can be
found in an approximation of any order. However, as
the accuracy of calculation rises, the analytical expres-
sions for the effective parameters become awkward and
much more difficult to visualize. To shed light on the
behavior of the mean characteristics of the structure, it
suffices to consider the case of low inclusion concentra-
tions, which simplifies the mathematics and still yields
comprehensible results.

LOCAL AND MEAN ELECTRIC FIELDS

Let us consider an infinite dielectric medium of per-
mittivity ε1 with a doubly periodic arrangement of uni-
1063-7842/05/5002- $26.00 0207
directional cylindrical fibers of permittivities ε2 and ε3
and radii r1 and r2. The cross-sectional plane of the
fibers is subdivided into square cells with period h. The
fiber axes pass through the vertices of the cells. Either
sort of the inclusions is arranged into rows that period-
ically alternate along the x axis (Fig. 1). The concentra-
tions of the inclusions in the material, s1 and s2, are
given by the expressions

(1)

A uniform external electric field is directed nor-
mally to the fiber axes.

s1 πr1
2/2h2, s2 πr2

2/2h2.= =

x

y

2h

h

0

ε3

h

ε1

2h

ε2

Fig. 1. Fragment of an insulating composite with cubic
packing of long circular fibers (square array of the fibers in
the cross section).
© 2005 Pleiades Publishing, Inc.
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Under these conditions, the electric field in the
material is two-dimensional and can be calculated in
any approximation. The calculation scheme is as fol-
lows. The electric field inside and near an inclusion is
determined as a result of its interaction with each of the
other inclusions in the system. The paired interactions
are then summed using an exact solution to the model
problem of interaction between two parallel cylindrical
bodies with arbitrary permittivities and radii that are
subjected to a uniform electric field [5]. The interplay
of the inclusions is mathematically expressed through
dipole–dipole interaction. These are image dipoles
located inside the circles that bound the cylindrical
inclusions on a plane. The number of the dipoles is infi-
nitely large, but their moments indefinitely decrease
with increasing order. If the concentration of the inclu-
sions is small, as assumed in this work, the calculations
may be restricted to the one-dipole approximation. In
this case, the interaction between only the first dipoles
is taken into account. These dipoles are placed at the
centers of the circles and have the highest moment;
hence, they are the major contributors to the interplay
of the inclusions in the system. To refine the results of
the calculations, the second, third, etc., dipoles should
be included. Their moments and coordinates are
defined by specified parameters of the system and are
found from simple relationships.

Following this calculation scheme, we write expres-
sions for the electric field in a square cell. To be defi-
nite, we place the origin of the rectangular coordinate
system on the axis of an inclusion with permittivity ε2.
If only the first image dipoles are taken into account,
the electric field is given by the following expressions:

near the inclusion,

(2)

inside the inclusion,

(3)

Here,

  (ν = 1, 2) (4)

is the complex electric field intensity, E0 = E0x – iE0y is
the external uniform electric field intensity (the bar
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above E0 means complex conjugation), and

   ν = 2, 3 (5)

is the parameter describing the relative permittivity of
each sort of the inclusions.

It follows from relationship (5) that

(6)

In Eqs. (2) and (3), amn are the coordinates of the
dipoles located at the centers of the inclusions with per-
mittivity ε2 and radius r1 (except for the dipole of the
inclusion in which the electric field is determined; i.e.,
at the origin) and bmn are the coordinates of the dipoles
located at the centers of the inclusions with permittivity
ε3 and radius r2, At the x axis, we have, according to
Fig. 1,

at the y axis,

outside the axes,

where m, n = 1, 2, ….
Below, when calculating the effective parameters of

the system, we will need an expression for the electric
field inside and near an inclusion with permittivity ε3.
In this case, one may use Eqs. (2) and (3), making the
substitution

(7)

Such a substitution shifts the origin to the center of
an inclusion with dielectric permittivity ε3.

Equations (2) and (3) include the interaction of the
inclusions in a first approximation. If the concentration
of the inclusions is so small that their interplay is insig-
nificant, the double sums in Eqs. (2) and (3) can be
neglected. As a result, we obtain

(8)

In this case, the electric field is uniform in all the
inclusions. Expressions (8) (and similar formulas for an
inclusion with permittivity ε3) define the electric field in
the composite in a zeroth approximation.

To find the effective parameters of the system, it is
necessary to spatially average the local electric fields in
a plane normal to the fiber axes,

(9)

Here,  is a symmetric effective permittivity tensor
that has two components, εeff, xx and εeff, yy.

Owing to the regular structure of the composite, it
suffices to average the electric field in one cell that cov-

∆1ν
ε1 εν–
ε1 εν+
--------------- 1– ∆1ν 1≤ ≤( );=

∆1ν ∆ν1.–=

amn 2mh, bmn± h 2m 1–( );±= =

amn 2nh;±=

amn h 2m in±±( ), bmn h 2m 1–( )± in±[ ] ,= =

E2 z( ) E3 z( ), ∆12 ∆13, r1 r2.

E1 z( ) E0 E0∆12r1
2z 2– , E2 z( )– E0 1 ∆12+( ).= =

D〈 〉 ε̂ eff E〈 〉 .=

ε̂eff
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ers inclusions of both sorts. The cell of choice for the
calculations is a rectangle like that shown in Fig. 2. If
the external field is aligned with the x axis (E0 = E0x) in
this case, segments OV and UW will be equipotentials
and segments OU and VW, field lines. If the external
field is aligned with the y axis (E0 = iE0y), segments OU
and VW are equipotential lines, while OV and UW are
field lines. Thus, depending on the external field direc-
tion, the potential remains unchanged at one boundaries
of cell OUWV and the tangential electric field on the
others. In this case, the calculation of the mean field
simplifies and reduces to taking of contour integrals.

Let the external electric field be directed along the x
axis in the system; that is, E0 = E0x. Then, the mean val-
ues of the field can be expressed by

(10)

Note that, in (10), the values of field E1x(x) differ
over the intervals [r1, h/2] and [h/2, h – r2] in the same
way as was mentioned when substitutions (7) were
introduced. The calculations yield

(11)

Here, A1 and B1 are the constants that are numerically
found by the formulas

(12)

Dx〈 〉 2
h
--- ε2 E2x y( ) yd

0

r1

∫ ε1 E1x y( ) yd

r1

h/2

∫+ ,=

Ex〈 〉 1
h
--- E2x x( ) xd

0

r1

∫ E1x x( ) xd

r1

h/2

∫+=

+ E1x x( ) xd

h/2

h r2–

∫ E3x x( ) xd

h r2–

h

∫+ .

Dx〈 〉 ε 1 1 2 2 A1–( )∆12r1
2– 2B1∆13r2

2+[=

– 2∆12
2 r1

2Ψ1 r1( ) 2∆12∆13r2
2φ1 r1( )– ] .

A1 4 1

1 16m2+
---------------------- 1

1 4m2–
------------------+

m 1=

∞

∑




–=

+
1 2n+

1 2n+( )2 16m2+
-----------------------------------------

n 1=

∞

∑
m 1=

∞

∑

+
1 2n–

1 2n–( )2 16m2+
-----------------------------------------





0.893051,=

B1 4
1

1 4 2m 1–( )2+
------------------------------------

m 1=

∞

∑




–=
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Functions Ψ1(r1) and φ(r1) are given by

(13)

Hereafter, formulas are written in relative values

where ε0 is the permittivity of vacuum (the asterisks
will be omitted in subsequent expressions for brevity).

It is worth noting that formula (11) is asymmetric in
equivalent parameters ∆12, ∆13 and r1, r2. This is
because the expression for 〈Dx〉  depends on the way this
value is calculated. In (11), the flux of vector D on seg-
ment OV in the calculation cell (Fig. 2) is specified by
the integrals in (10). Performing the same (equivalent)
calculations on segment UW, we come to

(14)

+
1 2n+

1 2n+( )2 4 2m 1–( )2+
-------------------------------------------------------

n 1=

∞

∑
m 1=

∞

∑

+
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1 2n–( )2 4 2m 1–( )2+
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


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r1
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--------------------
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----------------+
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∞

∑




–=

+
r1 n+

r1 n+( )2 4m2+
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r1 n–
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------------------------------------+

n 1=

∞

∑
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∞

∑




,

φ1 r1( ) 2
r1

r1
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----------------------------------
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∞

∑


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–=

+
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--------------------------------------------------

n 1=

∞

∑
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+
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
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------------,= = =
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– 2∆13
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Fig. 2. Cell used to calculate the effective parameters.
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Although expressions (11) and (14) differ in form,
they, in fact, define the same value 〈Dx〉  (this can be
checked by direct calculations) and pass into each other
when the parameters are changed as ∆12  ∆13 and
r1  r2.

Let us determine 〈Dx〉  as an arithmetic mean,

(15)

where subscripts OV and VW indicate the ranges of
integration.

Eventually, we get the expression

(16)

where

(17)

As is seen, Eq, (16) is symmetric with respect to
parameters ∆12 and ∆13, r1 and r2 and will be used in fur-
ther calculations in such a form.

Calculations of the electric field following the
scheme described above lead to the following expres-
sion:

(18)

Here, constants A2 and B2 are given by

(19)

Functions Φ2(r1, r2) and Ψ2(r1, r2) in Eq. (18) have
the form

     

Dx〈 〉 1
2
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∞
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∞
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

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Φ2 r1 r2,( ) r1
2φ2 r2( ) r2

2φ2 r1( ),+=
(20)

where

(21)

Expressions (16) and (18) allow for determination
of the component εeff, xx of the effective permittivity ten-
sor. The second component of the tensor, εeff, yy, is found
by similar calculations. One should consider the same
cell OUVW as before, but the external electric field is
now directed along the y axis: E0 = iE0y.

The mean values of the electric field, 〈Dy〉 and 〈Ey〉 ,
are determined from the integral relations

(22)

Following the above computational scheme, we
obtain

(23)

It is easy to see that the mean values of the field sat-
isfy the symmetry transformations [6]

(24)
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∞
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∑

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These relationships make it possible to check the
validity of calculation.

EFFECTIVE PERMITTIVITY TENSOR

In the cross section of the fiber axes, the averaged
properties of the material are described by the symmet-
TECHNICAL PHYSICS      Vol. 50      No. 2      2005
ric effective permittivity tensor

(25)

Using formulas (16), (18), and (23), we can find the
components of tensor  that appear in Eq. (9),

ε̂eff
εeff,xx 0

0 εeff,yy

.=

ε̂eff
(26)

εeff,xx ε1

1 2α ∆12s1 ∆13s2+( )– ∆12∆13Φ1 r1 r2,( )– ∆12
2 r1

2Ψ1 r1( )– ∆13
2 r2

2Ψ1 r2( )–

1 2β ∆12s1 ∆13s2+( ) ∆12∆13Φ2 r1 r2,( ) ∆12
2 r1

2Ψ2 r1( ) ∆13
2 r2

2Ψ2 r2( )+ + + +
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------,=

εeff,yy ε1

1 2β ∆12s1 ∆13s2+( )– ∆12∆13Φ2 r1 r2,( ) ∆12
2 r1

2Ψ2 r1( ) ∆13
2 r2

2Ψ2 r2( )+ + +

1 2α ∆12s1 ∆13s2+( ) ∆12∆13Φ1 r1 r2,( )– ∆12
2 r1

2Ψ1 r1( )– ∆13
2 r2

2Ψ1 r2( )–+
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------.=
Here, s1 and s2 are the concentrations of the inclusions
of either sort (see formula (1)) and α and β are con-
stants given by

(27)

The above formulas yield a number of particular
results that are noteworthy.

(1) If the fibers have the same permittivity, ε2 = ε3
(∆12 = ∆13), expressions (26) are transformed to the
form

(28)

Here, s = s1 + s2 is the total inclusion concentration and
functions Ω1, 2(·) are expressed as

(29)

Based on formulas (28) and (29), one can conclude
that the permittivity of the two-phase system remains
anisotropic, since the radii of the cylindrical fibers
arranged into rows alternating along the x axis are dif-
ferent.

(2) The two-phase material remains anisotropic
even if fibers of one sort are present. Assuming ε3 = ε1
(∆13 = 0) or r2 = 0, which is the same thing, we obtain

(30)

α 1
π
--- 2 A1– B1–( ), β 1

π
--- 2 A2 B2+ +( )= =

α β 1=+ , α 0.7047=( ).

εeff,xx ε1

1 2αs∆12– ∆12
2 Ω1 r1 r2,( )–

1 2βs∆12 ∆12
2 Ω2 r1 r2,( )+ +

----------------------------------------------------------------,=

εeff,yy ε1

1 2βs∆12– ∆12
2 Ω2 r1 r2,( )+

1 2αs∆12 ∆12
2 Ω1 r1 r2,( )–+

-----------------------------------------------------------------.=

Ω1 r1 r2,( ) Φ1 r1 r2,( )– r1
2Ψ1 r1( )– r2

2Ψ1 r2( ),–=
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2Ψ2 r1( ) r2

2Ψ2 r2( ).+ +=

εeff,xx ε1

1 2αs1∆12– ∆12
2 r1

2Ψ1 r1( )–

1 2βs1∆12 ∆12
2 r1

2Ψ2 r1( )+ +
----------------------------------------------------------------,=

εeff,yy ε1

1 2βs1∆12– ∆12
2 r1

2Ψ2 r1( )+

1 2αs1∆12 ∆12
2 r1
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----------------------------------------------------------------.=
In this case, the anisotropy of the inhomogeneous
material is caused by the fact that the fibers are
arranged into rows in the y-axis direction, which alter-
nate with a period of 2h along the x axis. The spacings
between neighboring inclusions in the longitudinal and
transverse directions are different.

(3) If the parameters of the system are such that the
equality

(31)

is satisfied, Eqs. (26) take the form

(32)

where

(33)

As is seen, the components of the effective permit-
tivity tensor do not contain first-order parameter ∆12 but
still retain the anisotropic properties.

At equal concentrations of the phases (s1 = s2),
equality (31) implies that their permittivities are related
as

(34)

(4) If all the fibers have the same radii and permit-
tivities, the two-phase material demonstrates isotropic
properties because the inclusions are located in the ver-
tices of the square cell (in this case, the same formulas
for the effective permittivity are derived if a square of
side h/2 is taken as a calculation cell). The electrical
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1 ∆12
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2 Γ2 r1 r2,( )+

----------------------------------------,=
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----------------------------------------,=
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----Φ1 r1 r2,( ) r1
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Γ2 r1 r2,( )
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----– Φ2 r1 r2,( ) r1
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performance of such a system has been studied in detail
in numerous papers tracing back to Rayleigh’s classical
work [7].

CONCLUSIONS
The present-day theory of composite insulators cov-

ers largely two-phase isotropic materials in which the
matrix contains one sort of inclusion. Such systems are
easy to treat analytically and, therefore, have been stud-
ied most thoroughly. The insertion of two or more com-
ponents allows for development of insulating materials
with varied properties and structures. Investigation into
multicomponent systems is still in its infancy.

The effective parameters of the material considered
in this paper are calculated in the case when the inter-
action between the inclusions is described by only the
first dipoles in an infinite set of dipoles with decreasing
magnitudes of the moments. If an exact description of
the system’s properties is needed, higher order dipoles
should be taken into account. Such a need arises, for
example, when the inclusions are closely packed or
when the difference between the permittivities of the
matrix and inclusions is large. The following calcula-
tion scheme may then be suggested. The interaction
between neighboring inclusions is considered in detail
(i.e., a large number of image dipoles is taken into
account), while the interplay of widely spaced inclu-
sions is considered approximately (by taking into
account several initial image dipoles or even one
dipole). With such an approach, the mean parameters of
the composite material still can be described analyti-
cally. The results of simulation corroborate the effi-
ciency of the calculations performed. The fact is that, as
the dipole order grows, the dipole moments decrease
drastically, especially for widely spaced inclusions.
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Abstract—The formation of the interface between the GaAs(100) single-crystal surface and PTCDA and
NTCDA organic semiconductors is investigated. The method of total current spectroscopy makes it possible to
trace the formation of the interfacial electronic structure. The two organic materials and the GaAs substrate are
bonded together when the π electron cloud of an aromatic ring spreads toward the substrate. This modifies the
electronic states of interfacial organic molecules and generates a dipole at the interface. © 2005 Pleiades Pub-
lishing, Inc.
INTRODUCTION

Organic semiconductors have recently received
widespread attention, and now they are finding increas-
ing application, e.g., in various devices. In their struc-
ture and principle of operation, they may be direct ana-
logues of the conventional (inorganic) semiconductor
devices or have a radically new design (e.g., multilayer
light-emitting devices [1]).

Electronic processes occurring both in the bulk of a
semiconductor and at the contact of the semiconductor
with a dissimilar material are to a large extent responsi-
ble for the operation of semiconductor devices. The
contact properties are crucially dependent on phenom-
ena taking place at the interface, a near-contact region
with electronic properties distinct from those in the
bulk due to interaction between the contacting materi-
als. Electronic states at the interface may undergo con-
siderable modification. In particular, new interfacial
states may appear or the intrinsic states of contacting
material change [2–4]. This may lead to electron charge
transfer in a certain direction relative to the interface,
which shows up as a bending of the energy band in the
contacting materials and the polarization of organic
molecules.

In this work, we study thin films of two well-known
organic semiconductors, 1,4,5,8-naphthalene tetracar-
boxydianhydride (NTCDA) and 3,4,9,10-perylene tet-
racarboxydianhydride (PTCDA), that are formed on the
GaAs(001) surface. While the interaction of organic
molecules with metals and elementary semiconductors
is well understood [5–8], the interface between organic
semiconductors and binary semiconductors is poorly
known [9]. The materials considered in this work
(Fig. 1), polyaromatic compounds with extra carboxy-
dianhydride groups, are the most extensively studied
and widely used organic semiconductors.
1063-7842/05/5002- $26.00 0213
The method of total current spectroscopy (TCS)
makes it possible to study the structure and density of
unoccupied electronic states at the organic–inorganic
interface (at various film thicknesses starting from sub-
monolayer coverages) and the surface potential. In
addition, this method is nondestructive, which is
extremely important for organic molecules.

EXPERIMENTAL

The organic films were deposited in situ in a vacuum
chamber maintained under an extralow pressure (5 ×
10–8 Pa) during the deposition and spectral measure-
ments. The chamber was equipped with a four-grid
electron energy analyzer, which enabled us to apply
solid surface analysis techniques such as TCS, Auger
electron spectroscopy (AES), and low energy electron
diffraction (LEED). In the TCS mode (the basic one
used in the experiments), a parallel electron beam of
given energy was directed onto the sample surface and
the current in the sample circuit was recorded as a func-
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Fig. 1. Chemical configuration of (1) PTCDA and
(2) NTCDA molecules.
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tion of the incident electron energy [10]. The energy of
the probing beam was varied in the range 0–30 eV, and
the current density was about 10–6 A/cm2. The fine
structure was resolved by recording the first derivative
of the current with respect to energy (S(E) = dI(E)/dE)
using incident electron energy modulation and a differ-
entiating phase detector. The electron beam was
directed normally to the surface and focused to a diam-
eter of 0.2–0.4 mm.

As was found previously for the case of molecular
solids, which NTCDA and PTCDA films refer to, the
fine structure of the total current spectrum reflects the
density of unoccupied electronic states above the vac-
uum level [11]. If the energy of incident electrons cor-
responds to the allowed band of the sample material,
the coefficient of electron transfer from the vacuum to
the sample increases and, as a result, so does the current
in the sample circuit. When the energy of incident elec-
trons becomes equal to the energy gap, the coefficient
of electron transfer and the current decline. For organic
molecules, the electronic states of solids studied by
TCS are the π* and σ* orbitals of the molecules. With
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Fig. 2. Evolution of the total current spectra in the course of
PTCDA film deposition: (1) total current spectrum of the
pure GaAs substrate, (2–6) variation of the spectrum with
the film thickness, (7) total current spectrum of the PTCDA
film formed, and (8, 9) difference curves (curves 8 and 9 are
obtained by subtraction of the substrate spectrum from
spectra 2 and 3, respectively). The difference curves are
enlarged fivefold.
the TCS method, one can also keep track of the surface
potential of the sample [10].

Before deposition, the sample surface was specially
conditioned. Prior to being placed into the chamber, the
GaAs single crystal was first chemically etched in HF
to remove the oxide film and then rinsed in distilled
water. However, the Auger spectra taken from the sur-
face thus prepared showed that it is heavily contami-
nated by carboniferous impurities. Therefore, the sur-
face was cleaned further using ion etching and subse-
quent annealing until the carbon peaks in the Auger
spectra completely disappeared. In the following exper-
iments, the secondary cleaning of the substrate was per-
formed by ion etching. The total current spectrum of
the surface cleaned in such a manner was in good agree-
ment with the well-known spectra for the single-crystal
GaAs(001) surface [12]. It should be noted that the
composition of the surface subjected to different
actions (deposition and thermal desorption of organic
molecules, ion etching, and heating) varied and some-
what differed from the stoichiometric one. This varia-
tion caused corresponding variations in the total current
spectrum of the clean GaAs substrate (though only the
relative intensities of different spectral features varied,
with their energy positions remaining unchanged) and
in the work function.

The films were grown by thermal sublimation of the
organic molecules followed by deposition onto the sub-
strate. The configuration of NTCDA and PTCDA mol-
ecules is shown in Fig. 1. (For details of growing
PTCDA and NTCDA films, see [11, 13, 14].) Our
experimental setup made it possible to record the total
current spectra in situ, i.e., immediately during the film
growth.

In addition to the molecular film growth experi-
ments, experiments aimed at removing the films by
thermal desorption were carried out. To this end, the
structure was heating to a certain temperature and then
the total current spectrum was measured. Series of such
measurements with the successively increasing heating
temperature were performed for either type of mole-
cule.

RESULTS AND DISCUSSION

The families of the spectra recorded as the film
thickness was successively increased are presented in
Fig. 2 for the PTCDA (curves 1–7) and in Fig. 3 for the
NTCDA (curves 1–9). Both spectra vary with the film
thickness in the same manner: namely, the spectral fea-
tures characteristic of the organic compounds continu-
ously grow, while those characteristic of the substrate
decay. When the film thickness reaches a certain value,
the total current spectrum stops varying and takes the
form typical of the volume phase of the compounds.
The PTCDA spectrum has the following main features:
A1 (5.8 eV), A2 (6.9 eV), B1 (9.5 eV), B2 (11.3 eV), C1
(14.7 eV), C2 (16.7 eV), C3 (19.1 eV), and D (31 eV)
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(Fig. 2, curve 7). This spectrum was in good agreement
with the spectra taken from PTCDA films deposited on
other substrates [13, 14]. The basic features in the
NTCDA spectrum were A (6.3 eV), B1 (8.5 eV), B2
(9.9 eV), C (12.4 eV), D (16.1 eV), E (22.6 eV), and F
(28.8 eV) (Fig. 3, curve 9). This spectrum also agrees
well with the previous results [14].

To gain a better insight into the interaction of the
organic molecules with the substrate, the spectra were
processed as follows. From the spectrum taken at a cer-
tain thickness of the film, the appropriately scaled spec-
trum of the substrate was subtracted. The scaling proce-
dure takes into account that the contribution from the
substrate drops with increasing film thickness [3, 4].
The scaling factor was calculated from that feature in
the total current spectrum of the substrate which does
not overlap with a spectral feature of the deposit. Then,
the intensity of this feature was measured both in the
spectrum of the film having a certain thickness and in
the spectrum of the pure substrate. The ratio of these
two values was used as the scaling factor at a given
thickness of the film. In order to increase the accuracy
of finding the scaling factor, it was calculated for sev-
eral features and the results obtained were averaged.

The difference curves are presented in Fig. 2 for the
PTCDA (curves 8, 9) and in Fig. 3 for the NTCDA
(curves 10–12). It is seen that they, in general, are sim-
ilar to the total current spectra of the compounds. In
particular, the difference curves for both compounds
contain the same features as the NTCDA and PTCDA
spectra. Moreover, the similarity between the differ-
ence curves and the spectra becomes more evident at
higher energies (E > 14 eV for the NTCDA and E >
20 eV for the PTCDA, respectively). However, there
are also noticeable discrepancies between the differ-
ence curves and the spectra of the compounds. For
example, feature B2 is missing in the case of PTCDA
(Fig. 2) and maxima C1–C3 merge into one maximum.
The same is basically true for the NTCDA curves: one
maximum instead of B1 and B2 and weaker maximum C.

Such dissimilarities between the interfacial total
current spectra and the spectra taken from the volume
phase of the materials under study (the latter character-
ize the materials as such) indicate that the film–sub-
strate interaction alters the molecular orbital configura-
tion. In the case of PTCDA/GaAs and NTCDA/GaAs,
several features in the interfacial total current spectra
merge into one and the spectra shift along the energy
axis (relative to the total spectra). This testifies that the
interface electronic states are the modified electronic
states of the initial macromolecules. At the same time,
interface states that are untypical of the macromole-
cules do not form, as distinct from the case when such
films are deposited on the copper substrate [5].

At low energies (less than 8 eV), two circumstances
regarding the difference curves should be taken into
account. First, since the beginning of the spectrum
involves the decay of the primary peak [10], whose
TECHNICAL PHYSICS      Vol. 50      No. 2      2005
position may vary with the surface potential, subtrac-
tion of one spectrum from another may introduce a
great error. Second, the free path of electrons in solids
to a great extent depends on their energy [15], increas-
ing drastically at low energies. Therefore, the signal
from the low-energy features of the deposit is visual-
ized at larger thicknesses as compared with the high-
energy features. Accordingly, the error in the low-
energy part of the difference curves increases consider-
ably and the curves themselves become irregular.

There is another trend in the spectra of the
PTCDA/GaAs and NTCDA/GaAs interfaces early in
their formation. The spectral features characteristic of
the substrate shift toward higher energies as the concen-
tration of the molecules on the surface increases, the
total shift between the curve from the pure substrate
and the final curve where the GaAs features still persist
being about 0.4 eV. Such a shift is due to the bending of
bands in the substrate, and the direction of the shift sug-
gests that a negative charge is transferred to the semi-
conductor surface. Early in the interface formation, the
work function first decreases slightly (by 0.1–0.2 eV)
and then starts to increase. By the time the band bend-
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Fig. 3. Evolution of the total current spectra in the course of
NTCDA film deposition: (1) total current spectrum of the
pure GaAs substrate, (2–8) variation of the spectrum with
the film thickness, (9) total current spectrum of the NTCDA
film formed, and (10–12) difference curves (curves 10, 11,
and 12 are obtained by subtraction of the substrate spectrum
from spectra 2, 3, and 4, respectively). The difference
curves are enlarged fivefold.
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ing in the substrate reaches 0.4 eV, the work function
approaches the value typical of the substrate. This is
because molecules on the surface take a positive charge
and a dipole arising between the molecules and the sub-
strate surface compensates for the change in the work
function. As for the spectral features typical of the mol-
ecules deposited, their energy positions somewhat fluc-
tuate early in the interface formation (the fluctuations
are most distinctly seen in the difference curves for the
NTCDA, Fig. 3). The fluctuations are likely to reflect
the fact that both competing processes described above
(namely, the negative charging of the substrate surface
and the positive charging of the molecules deposited)
occur simultaneously. As the film grows further, the
interfacial dipole is screened and the work function of
the sample becomes equal to the value typical of the
deposit.

Thus, physically, the formation of the electronic
structure at the PTCDA/GaAs and NTCDA/GaAs
interfaces exhibits two specific features: (i) the electron
density is transferred from the molecules to the sub-
strate and (ii) the deposit–substrate interaction involves
electron states with energies of up to 11 eV. This energy
range is occupied largely by the π*-orbitals of aromatic
rings of the molecules [11]. It follows from the afore-
said that the basic mechanism of interaction of NTCDA
and PTCDA molecules with the GaAs surface is
spreading of the π electron cloud of the aromatic rings
from the molecules to the substrate. The thickness of
the interface was roughly estimated as 3 nm, which cor-
responds to two to three monolayers for both PTCDA
and NTCDA. This value is smaller than the thickness of
the copper–deposit interface [2], where the molecules
interact with the surface via oxygen-to-copper bonding.

The experiments where the macromolecules depos-
ited were thermally desorbed from the GaAs surface
indicate that the molecules partially decompose rather
than being completely desorbed. As a result, features
typical of both pure GaAs and amorphous carbon [16]
appear in the total current spectrum even after high-
temperature (750 K) annealing. NTCDA molecules are
desorbed from the surface more readily than PTCDA
molecules. PTCDA–substrate bonds are stronger than
NTCDA–substrate bonds, possibly because of a larger
size of the aromatic ring and, hence, a larger number of
bond-forming π electrons.

CONCLUSIONS
The formation of the interface between organic

macromolecular NTCDA and PTCDA films and the
GaAs(100) substrate was investigated. Using the
method of total current spectroscopy, we kept track of
the occurrence of unoccupied electronic states by
increasing the film thickness starting from submono-
layer coverages. It was found that molecule-to-sub-
strate bonding, which is due to π electrons of the aro-
matic rings of the molecules, modifies π and π* elec-
tronic states of the molecules at the interface. Because
of the larger number of π electrons in a PTCDA mole-
cule, it is bonded to the substrate more strongly. There-
fore, PTCDA molecules partially decompose during
annealing in the desorption experiments.
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Abstract—A process of fabricating microcavities and photon crystals in GaAs structures by means of electron
lithography and reactive ion etching is described. Two types of structures, with micropillars and with photon
crystals, are considered. The latter structures have the form of a square or hexagonal array of holes in a planar
waveguiding structure. The minimal diameter of the micropillars is 100 nm, and their height is 700 nm. The
size of the holes in the photon crystals and the photon crystal period are controllably varied from 140 to 500 nm
and from 400 to 1000 nm, respectively. The etch depth of the crystals is more than 350 nm. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

Semiconductor cavities are of both scientific and
applied interest, since they are viewed as promising ele-
ments for optoelectronic devices. The semiconductor
cavity is a structure in which the electromagnetic field
is quantized in one, two, or three directions. The elec-
tromagnetic field in the microcavity can be confined
using distributed Bragg reflectors or by means of total
internal reflection. Specifically, in a three-dimensional
microcavity, which is referred to as a micropillar, the
light is confined in the vertical direction by using upper
and lower distributed Bragg mirrors; in the horizontal
direction, due to total internal reflection from the air–
semiconductor interface. Using microcavities, one can
control the intensity of light–material interaction via
increasing or decreasing the overlap between electro-
magnetic field modes and/or between the electron wave
functions. It has been shown theoretically [1] that a
radiator placed in a microcavity may exhibit enhanced
spontaneous recombination (the Purcell effect). At
present, microcavities are being widely used in
advanced optoelectronic devices, such as vertical
microcavity surface-emitting lasers and resonance
light-emitting diodes.

Quantum dots (QDs), which are produced by the
method of self-organization in the process of growth,
offer a number of properties that make them very prom-
ising as an active medium of semiconductor cavities.
Since carriers are spatially confined in an ideal quan-
tum dot, its electron spectrum consists of a number of
discrete levels separated by forbidden gaps and resem-
bles the electron spectrum of an atom. The small width
of the radiation lines of a single QD makes it possible
to observe the Purcell effect in a semiconductor micro-
1063-7842/05/5002- $26.00 ©0217
cavity [2]. It seems very attractive to place quantum
dots into microcavities to create sources of single pho-
tons [3].

Development of next-generation lasers and light-
emitting diodes based on photon crystals is another
intriguing field of research [4]. The photon crystal is a
semiconductor or insulating periodic structure with a
period comparable to the radiation wavelength. In this
medium, photons form a band structure that is similar
to the band structure of electrons in a solid. These crys-
tals may serve as very efficient one-dimensional or two-
dimensional distributed Bragg mirrors. In a microcav-
ity surrounded by such a distributed two-dimensional
mirror, the radiation of the active material may be
totally concentrated into one allowed mode. It is
expected that such a possibility will help to design a
light-emitting device that combines the advantages of a
laser (coherent and weakly divergent radiation) and
light-emitting diode (the absence of a threshold) [5].
Photon crystals with quantum wells or quantum dots
may be used as active elements, e.g., lasers or light-
emitting diodes [6]. Optical integrated circuits based on
microcavities and photon crystals are currently under
development with the aim of creating a quantum com-
puter.

MICROCAVITY FABRICATION 
TECHNOLOGY

To create sources of radiation that are based on the
Purcell effect and also sources of single photons, small-
size microcavities (it is best if they contain only one
QD) are necessary. A typical average spacing between
InAs/GaAs QDs produced by the self-organization
technique in the process of growth is about 100 nm.
 2005 Pleiades Publishing, Inc.
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Fig. 1. Microcavity fabrication process: (a) application of a
350-nm-thick PMMA layer, (b) electron-beam lithography,
(c) PMMA development, (d) evaporation of a 30-nm-thick
nickel layer, (e) PMMA liftoff, (f) reactive ion etching of
the semiconductor, and (g) nickel mask stripping.

20 kV 00000 300 nm (a)

PhC Zasv2 23''

5-293 170 s 31''

20 kV 00000 100 nm (b)

Fig. 2. SEM image of (a) the nickel-mask-covered array of
mesas 140 nm in diameter and (b) a single mesa 140 nm in
diameter.
This value determines the desired diameter of the
micropillar.

The micropillars were made by optical and electron-
beam lithography, as well as by chemical and reactive
etching. First, a mask of AZ 5214 organic resist was
applied on the surface of the structure by optical lithog-
raphy. Through this mask, the whole structure except
for 100 × 100-µm squares several millimeters apart was
etched off. Then, mesa arrays were formed in these
squares. The absence of the active material in the
regions between the mesa arrays excludes photolumi-
nescence from these regions under optical measure-
ments.

Further, the sample was covered by a positive elec-
tron resist (≈350-nm-thick polymethylmethacrylate
(PMMA) film, Fig. 1a) and electron-beam lithography
was performed on a CamScan Series 4-88 DV 100
scanning electron microscope (Fig. 1b). The beam was
controlled by a high-resolution eight-channel digital
card built around a 16-bit DAC (ADLINK PCI-6208V).
We devised a Delphy 5-written software that applies a
voltage to the deflection system of the electron gun in
150-µV steps and also controls the exposure time per
feature by applying voltage pulses of desired duration
to the electron beam modulator. The lithography condi-
tions were optimized by patterning groups of features
with different periods (from 0.35 to 10 µm) and differ-
ent exposure times (from 50 to 1000 µs depending on
the proximity of adjacent features). The optimum beam
current was 10–30 pA at an accelerating voltage of
15 kV.

Since PMMA is not plasma-resistant, it cannot be
used as a mask for reactive ion etching. Therefore, after
developing the PMMA film (Fig. 1c), we evaporated a
≈30-nm-thick nickel layer (Fig. 1d) and lifted off the
PMMA in dimethylformamide (Fig. 1e). The nickel
layer that remained on the surface after the liftoff
served as a mask in subsequent reactive ion etching.

In this work, reactive ion etching was carried out in
an RDE-300 (Alcatel, France) computerized diode-
type rf plasma etcher. The etching parameters were
chosen such that the lateral surfaces of the structure are
vertical and contain a small number of etching-induced
defects. The etching conditions were the following
(Fig. 1f): the gas components were taken in the ratio
Cl2 : BCl3 : Ar = 1 : 4 : 16 sccm, the gas pressure in the
reactor was 1 Pa (the reactor was preevacuated to a
pressure of 5 × 10–4 Pa), and the self-bias voltage was
200 V. Under these conditions, the average etching rate
was ≈90 nm/min and the etch depth was 0.5–1.5 µm,
depending on the parameters of the structure. The
micropillar diameter-to-height ratio was 1 : 6, with the
anisotropy of the wall remaining high. At the final stage
of the process, the nickel mask left on the micropillar
surfaces was removed by chemical etching (Fig. 1g).
Figure 2 shows the SEM (CamScan) images of an array
of mesas 140 µm in diameter and a single mesa 140 µm
in diameter with the nickel mask intact.
TECHNICAL PHYSICS      Vol. 50      No. 2      2005
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PROCESS OF FABRICATING TWO-
DIMENSIONAL PHOTON CRYSTALS

Since production of three-dimensional semiconduc-
tor photon crystals is right now a bugaboo, two-dimen-
sional photon crystals have gained a wider application.
Such crystals represent a two-dimensional square or
hexagonal array of holes in a semiconductor structure.
Two-dimensional photon crystals made in an epitaxial
waveguiding structure are the most promising for appli-
cation in optoelectronics. Here, the electromagnetic
wave is confined in the direction parallel to the hole
axes due to the waveguide effect. It has been shown that
a hexagonal photon crystal has a photon band forbidden
for the TE mode [7].

The technology of two-dimensional semiconductor
photon crystals is in many respects similar to the micro-
cavity fabrication process illustrated in Fig. 1. At the
same time, the two technologies somewhat differ. In the
former case, a 20-nm-thick nickel layer is evaporated
on the surface before PMMA application. Then, a pos-
itive PMMA resist is applied and electron-beam lithog-
raphy is accomplished. After the PMMA layer has been
developed, the sample is etched with an argon beam.
The difference in the rates of Ar etching for the nickel
and PMMA layers is not too large. Therefore, the nickel

20 kV 00000 300 nm (a)

PhC 150 s 41''

20 kV 00000 300 nm (b)

210 s 11''

Fig. 3. SEM images of the (a) square and (b) hexagonal
photon crystals.
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layer could be completely removed on those areas
where the PMMA is absent. A mask for subsequent
reactive ion etching is thus formed. The etch parameters
for the photon crystals were chosen so as to make the
walls vertical and smooth and also to minimize the con-
centration of nonradiative recombination centers on the
semiconductor surface. Figures 3a and 3b show the
images of the prepared photon crystals with square and
hexagonal arrays of holes. The period of the “square”
photon crystal is 660 nm, and the hole diameter is
320 nm. In the “hexagonal” photon crystal, the hole
spacing and hole diameter are 800 and 420 nm, respec-
tively. The holes are circular and have even edges. The
examination of the cleaved surface of the crystals
showed that the etch depth equals 350 nm and the walls
are vertical and smooth.

CONCLUSIONS

A process of fabricating AlGaAs/GaAs-based semi-
conductor microcavities and photon crystals by elec-
tron lithography and reactive ion etching is described.
The minimum mesa size is about 100 nm, which
allowed us to fabricate single-quantum-dot microcavi-
ties. The hole spacing and the hole diameter in the pho-
ton crystals vary from 400 to 1000 nm and from 140 to
500 nm, respectively. This corresponds to the wave-
length range 800–1300 nm, which is now common in
fiber-optic communication lines. The tentative optical
study of mesas and photon crystals the active region of
which contains quantum dots suggests that reactive ion
etching degrades the optical grade of the material insig-
nificantly.
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Abstract—The possibility of measuring the hydrogen impurity concentration in dense gas mixtures by coher-
ent anti-Stokes Raman scattering (CARS) is studied. In this technique, biharmonic laser pumping based on
stimulated Raman scattering (SRS) in compressed hydrogen is used. Because of the interference between the
coherent scattering components from buffer gas molecules and molecules of the impurity to be detected, the
signal recorded may depend on the hydrogen concentration by a parabolic law, which has a minimum and
makes the results uncertain. It is shown that this uncertainty can be removed if the frequency of the biharmonic
laser pump, which is produced by the SRS oscillator, somewhat differs from the frequency of molecular oscil-
lations of hydrogen in the test mixture. A sensitivity of 5 ppm is obtained as applied to the hydrogen–air mixture
under normal pressure. The coefficients of the nonresonance cubic hyperpolarizability of molecules and atoms
are measured relative to nitrogen in a number of gas media. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Selective and rapid diagnostics of hydrogen in con-
densed media is presently a challenge in applications
[1–6]. Also, in physical experiments on the interaction
of hydrogen with metals, alloys, and semiconductors,
there often appears the need for express monitoring of
molecular hydrogen in gas mixtures [7]. Such experi-
ments are aimed, for example, at finding ways for pre-
venting tritium leakage through the thermonuclear
reactor walls or at devising coatings to protect steel
from hydrogenation, embrittlement, and fracture. Usu-
ally, such experiments determine the nonstationary
flow rate of hydrogen, which diffuses through a mem-
brane to a vacuum chamber, with a gage at a constant
evacuation rate of a vacuum pump. In another simple
method, hydrogen bubbles on the exit side of a mem-
brane that is in contact with glycerin or alcohol are
observed through a microscope. Clearly, these, as well
as the other available methods (such as mass-spectro-
metric and chromatographic methods and also the
unique selective method, which evaluates the hydrogen
content in a gas mixture by measuring the deflection of
a probing laser beam from the surface of a passive pal-
ladium film sensor heated by the modulated radiation of
an argon laser [2]), are finding limited application and
do not allow researchers to perform many physical
experiments where real-time remote selective monitor-
ing of hydrogen in gas mixtures is required. Therefore,
for these and some other experiments (i.e., those that
study hydrogen emission from metals during pulsed
laser melting [8]), a simplified version of the CARS
method where biharmonic laser pumping (BLP) is
1063-7842/05/5002- $26.00 0220
induced by SRS in compressed hydrogen [9–12] is
promising. In this regard, it is of interest to further
refine this nonlinear optical SRS–CARS method of
hydrogen diagnostics in gas mixtures. It should be
noted that the SRS–CARS method may become attrac-
tive for diagnosing other gases owing to hollow micro-
structured optical waveguides that have been recently
developed [13], which open unique possibilities in non-
linear optics and substance spectroscopy [14, 15].

The purpose of this work is to study the effect of
interference between nonlinear susceptibilities on
SRS–CARS monitoring of the hydrogen concentration
in dense gas mixtures.

1. THEORY

CARS is a four-photon parametric process in which
two laser beams of frequencies ωp and ωs are mixed in
a medium characterized by cubic nonlinear susceptibil-
ity χ(3). As a result of the mixing, a coherent directional
radiation at the anti-Stokes frequency ωa = 2ωp – ωs is
generated [16, 17]. In SRS–CARS hydrogen diagnos-
tics, the medium is probed by biharmonic laser pump-
ing at frequencies ωp and ωs, which meet the condition
of approximate resonance

(1)

where ΩH2–BG is the frequency of the Q01 (1) vibrational
transition of the hydrogen that is in a hydrogen–buffer
gas mixture of density ρH2–BG (Fig. 1).

ωp ωs– ΩH2–BG,≈
© 2005 Pleiades Publishing, Inc.
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The biharmonic laser pumping is produced in an
SRS oscillator by focusing a high-power monochro-
matic laser radiation at a frequency ωp into a cell con-
taining compressed hydrogen at a pressure PH2 (ωp –
ωs = ΩH2–H2, ΩH2–H2 < Ω0, where ΩH2–H2 and Ω0 are the
frequencies of the Q01 (1) vibrational transition in
hydrogen at pressure PH2 and at the gas pressure
reduced to zero, respectively). The intensity Ia of scat-
tered radiation at frequency ωa is given by the relation-
ship

(2)

where Ip and Is are the radiation intensities at frequen-
cies ωp and ωs, respectively; χ(3)R = nH2γr is the cubic
resonance susceptibility of gas molecules under study;
χ(3)NR = nBGγBG is the cubic nonresonance susceptibility
that is due to electrons mostly of buffer gas molecules
participating in a scattering event; γr and γBG are the
cubic hyperpolarizabilities of the gas being detected
and buffer gas (BG), respectively; and nH2 and nBG are
the concentrations of impurity hydrogen in the mixture
and of buffer gas molecules, respectively (it is supposed
that nH2 ! nBG). Cubic resonance susceptibility χ(3)R is
given by [16]

(3)

where Γ is the half-width at half maximum of the

Raman transition line,  is the difference between the
populations of the levels, and dσ/do is the molecular
cross section of spontaneous Raman scattering in this
transition.

As follows from expressions (2) and (3), when
ρH2−BG ! 1 Amagat unit (a rarefied gas mixture), non-
resonance contribution χ(3)NR may be neglected and the

value of [Ia/ Is]1/2 in expression (2) linearly depends
on hydrogen concentration nH2. However, when a low
hydrogen concentration in a buffer gas is measured at
atmospheric pressure (nonresonance contribution χ(3)NR

is significant), the dependence of [Ia/ Is]1/2 on nH2 may
become nonlinear because of interference between the
nonlinear susceptibilities. Since the CARS process is
coherent, the contributions from molecules of different
types to the scattered signal intensity interfere instead
of being added up [16]. This circumstance is notewor-
thy when monitoring hydrogen impurity concentrations
in gases. As far as we know, this issue as applied to
SRS–CARS diagnostics of hydrogen in gas mixtures
has not been touched upon by other authors.

Ia χ 3( )R χ 3( )NR+
2
Ip

2Is,∼

χ 3( )R 1
3
---∆k

n2πnH2c4

hΓωs
4

--------------------dσ
do
------ Γ

ΩH2–BG ωp ωs–( )– iΓ–
---------------------------------------------------------,=

∆k
n

Ip
2

Ip
2
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In view of expression (3), formula (2) can be recast
as [18]

(4)

where b is a dimensional coefficient,

(5)

(6)

As follows from formula (4), Ia/ Is is a monotoni-
cally increasing function of nH2 at ∆ ≤ 0. However, if
∆ > 0, function (4) has a minimum if the impurity con-
centration is

(7)

In the absence of impurity molecules, the SRS–
CARS signal is determined by nonresonance scattering
by buffer gas particles,

(8)

At ∆ > 0, introduction of hydrogen to a buffer gas
decreases the signal, whose minimum is found from the
expression

(9)

As the hydrogen concentration increases further, the
signal monotonically grows. Thus, at ∆ > 0, analytical
results are uncertain, since, at low impurity concentra-
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--------------------------------------.=
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Fig. 1. Energy levels of the Q01 (1) Raman vibrational tran-
sition in hydrogen that is in (a) the SRS oscillator and (b) a
rarefied gas mixture, as well as the quantum diagrams that
illustrate the (a) SRS and (b) CARS methods.
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J = 1
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J = 1
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tions (nH2 < 2 ), the same signal is produced by two
hydrogen concentrations. This uncertainty is elimi-
nated when ∆ ≤ 0.

It should be noted that, according to (8), the slope of

the experimental [Ia/ Is]1/2 versus nBG dependence is
proportional to the nonresonance hyperpolarizability
γBG of buffer gas particles. This fact allows ratios
between the cubic hyperpolarizability coefficients of
different gas particles to be determined.

2. EXPERIMENTAL TECHNIQUE

The experiments were carried out following the
optical scheme for SRS–CARS hydrogen diagnostics
described in [12]. A simplified version of the experi-
mental scheme is illustrated in Fig. 2. As pump oscilla-
tor 1, we used a single-wavelength passively

Q-switched (with the help of a LiF :  crystal)
YAG : Nd3+ laser. The polarization extraction of the
radiation was accomplished with a one-active-element
resonator [19]. The radiation of this laser was converted
to the second harmonic with the help of a KTP crystal.
The peak energy at the wavelength λp = 532 nm was
40 mJ; the FWHM τp, 16 ns; and the beam divergence,
about 0.6 mrad. Deflecting mirror 2 and lens 3 (F1 =
0.66 m) focused the radiation onto SRS cell 4 (L1 =
0.86 m) filled with compressed molecular hydrogen at
a pressure of 4 bar (T = 295 K). BLP generated in cell 4
as a result of SRS at the Q01 (1) vibrational transition
was collimated by lens 5, separated out from other SRS
components with filter 6, and focused onto measuring
cell 10 (L2 = 0.21 m) by objective lens 9 (F2 = 0.1 m).
The BLP intensity was attenuated, if necessary, by set
of filters 8. The anti-Stokes component arising in cell
10 as a result of one-dimensional CARS was directed to
the entrance of monochromator 13 by lens 11 and prism
12. Then, the signal was detected by photomultiplier 14
and multichannel system 15 of laser energy detection,
which was linked to IBM PC 16 [7]. After being split
by beam splitter 7, part of the BLP was focused by lens
17 onto the center of reference cell 18 kept at a constant
pressure of 4 bar. The anti-Stokes scattering component
arising in reference cell 18 was frequency-selected by
set of filters 20 and directed to photodiode 21 by

nH2
min

Ip
2

F2
–

1

2
34567891011

12

13

14
15

16

17
18
19
20
21

Fig. 2. Optical scheme of the experiment.
lens 19. This additional optical path (elements 17–21)
was used to normalize the signal generated in measur-
ing cell 10 and to eliminate the effect of SRS-exciting
laser intensity fluctuations. It should be noted that,
essentially, reference optical path 17–21 allows one to
measure the SRS–CARS signal in the measuring cell,

which is proportional to (Ia/ Is)1/2, without measuring
the BLP component intensities.

Prior to performing the experiments, the measuring
cell was evacuated to a pressure of less than 0.1 kPa.
Then, a buffer gas (air, nitrogen, argon, helium, carbon
dioxide, neon, propane, ethane, or SF6 gas) was
injected into the measuring cell to a certain pressure
PBG. Pressure PBG in the measuring cell was measured
with an elastic element pressure gage. The initial
hydrogen concentration in the gases listed was prelim-
inary measured with a chromatograph and was less than
1 ppm. When measuring the nonresonance background
radiation as a function of buffer gas pressure PBG, the

signal (Ia/ Is)1/2 being measured was calibrated against
the signal from air. To this end, the buffer gas was
pumped out of the cell after the measurements and air
was supplied to the cell at room temperature and atmo-
spheric pressure. Then, other conditions being the
same, the nonresonance background from the air was
measured to perform the calibration.

To study the interference between coherent scatter-
ing contributions from buffer gas molecules and mole-
cules of the impurity, molecular hydrogen was injected
in portions using a chromatographic syringe into the
measuring cell containing the buffer gas under a certain
pressure. Once a portion of the molecular gas had been
introduced, the measurements were taken after no less
than 15 min for the buffer gas and the hydrogen injected
to uniformly mix together in the cell. The experiments
were performed at room temperature.

3. RESULTS AND DISCUSSION

First, we studied nonresonance signal [Ia/ Is]1/2 as
a function of buffer gas pressure PBG. The results are
shown in Fig. 3. For helium, air, argon, carbon dioxide,

SF6 gas, and nitrogen, the [Ia/ Is]1/2 versus PBG curves
are nearly linear but incline to the abscissa axis at dif-
ferent angles. The nonresonance background is the low-
est for helium (Fig. 3, curve 8) and neon (not shown in
Fig. 3), while that for ethane and propane is many times
higher. It should be noted that such a significant differ-
ence in nonresonance background basically makes it
possible to study gas interdiffusion by the SRS–CARS
technique, for example, the diffusion of ethane, pro-
pane, and SF6 gas in helium and neon. In Fig. 3, the

[Ia/ Is]1/2 versus PBG curves for ethane and propane are
essentially nonlinear. This may be related to the nonlin-
ear pressure dependence of the particle density at a
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2

Ip
2

Ip
2

Ip
2

Ip
2
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given temperature in these gases. The experimental
data presented in Fig. 3 may be used to calculate the
ratios of the nonresonance hyperpolarizabilities of par-
ticles in the gases studied. The results are summarized
in the table.

In the experiments on interference between coher-

ently scattered signals, the dependence of I = Ia/ Is on
the hydrogen impurity concentration at various pres-
sures of the buffer gases (nitrogen, argon, helium, air,
carbon dioxide, neon, propane, ethane, and SF6 gas)

was studied. As an example, Figs. 4 and 5 plot Ia/ Is

against the molar concentration CH2 of hydrogen with
ethane (Fig. 4) and argon (Fig. 5) pressure taken as a

parameter. At the ethane pressure Peth = 0.12 bar, Ia/ Is

is a monotonically increasing function of CH2 (Fig. 4,
curve 1). However, at higher ethane pressures in the
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2

Ip
2
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Fig. 3. Nonresonance signal [Ia/ Is]
1/2 versus buffer gas

pressure PBG for (1) propane, (2) ethane, (3) nitrogen,
(4) SF6 gas, (5) carbon dioxide, (6) argon, (7) air, and
(8) helium.
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measuring cell (Peth = 0.2, 0.3, 0.52, 0.76, and 1 bar),
the introduction of hydrogen in small amounts
decreases the SRS–CARS signal. At a certain value of

CH2, , depending on Peth, the scattered signal
becomes minimal and subsequently grows with CH2 by
a parabolic law. Thus, for ethane, the scattered signal is
an ambiguous function of the hydrogen concentration
even at a pressure of 0.2 bar (and above): at small levels

of signal Ia/ Is, the same signal corresponds to two
hydrogen concentrations. In fact, in Fig. 4 (curve 5), two

hydrogen concentrations in ethane,  and , pro-
duce the same signal, I(1), (2). It also follows from Fig. 4
that the higher Peth, the higher the hydrogen concentra-

tion that minimizes Ia/ Is as a function of CH2. Similar
results were also obtained for the mixtures of hydrogen
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Fig. 4. SRS–CARS signal (Ia/ Is) versus molar concentra-

tion CH2 of hydrogen at an ethane pressure of (1) 0.12,
(2) 0.20, (3) 0.30, (4) 0.52, (5) 0.76, and (6) 1.0 bar.
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with argon, nitrogen, air, carbon dioxide, propane, and

SF6 gas. For all these mixtures, Ia/ Is monotonically
increases with CH2 at pressures below 0.1 bar. However,
the critical pressure above which the signal versus
hydrogen concentration dependence becomes ambigu-
ous depends on the buffer gas. In particular, for ethane,
the critical pressure equals 0.2 bar (Fig. 4, curve 2),

while for argon, Ia/ Is is a monotonically increasing
function of CH2 at pressures below 0.5 bar (Fig. 5, curve 1).
Remarkably, for the H2–helium and H2–neon mixtures,

the experimental curves Ia/ Is(CH2) monotonically
increase throughout the range of buffer gas pressures
(from 0 to 1 bar).

These experimental results agree with formula (4) if
the fact that parameter ∆ depends both on the hydrogen
pressure in the SRS oscillator and on the pressure of the
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Fig. 5. SRS–CARS signal (Ia/ Is) versus molar concentra-

tion CH2 of the hydrogen impurity at an argon pressure of
(1) 0.48, (2) 0.60, (3) 0.76, and (4) 1.0 bar.

Ip
2

gas mixture is taken into account. Indeed, considering
that the pressure in the gas mixture is essentially the
pressure of a buffer gas and using the results from [20],
we can express ∆, in a first approximation, as

(10)

where aH2–H2 is the coefficient that characterizes the sift
of the ΩH2–H2 energy level due to collisions between
hydrogen molecules (aH2–H2 < 0), ρH2–H2 is the hydrogen
density in the SRS oscillator, aH2–BG is the coefficient
characterizing the shift of the ΩH2–BG energy level due
to collisions between hydrogen molecules and buffer
gas particles, and ρH2–BG is the density of the hydrogen–
buffer gas mixture.

According to [20–22], coefficient aH2–BG for the H2–
Ar and H2–N2 mixtures is negative; for the H2–He and

∆
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Γ
------------------------------------------------------------------,=

40

0 40
cH2, ppm

80 120 160 200

80

120

160 (b)

5

0

10

20

25 (a)

15

Ia/I
2
pIs

Fig. 6. SRS–CARS signal (Ia/ Is) versus relative concen-

tration cH2 of hydrogen in air under atmospheric pressure.
The curves were obtained with the SRS oscillator cell filled
with (a) pure H2 and (b) H2 (84%)–Ar (16%) gas mixture at
a pressure of 4 bar (T = 295 K).
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H2–Ne mixtures, it is positive. Consequently, for the
H2–Ar and H2–N2 mixtures, ∆ is negative at small
ρH2−BG and positive when ρH2–BG is large. According to
(4), this means that the experimental function

Ia/ Is(CH2) increases monotonically with hydrogen
impurity concentration when buffer gas density ρBG is
low (Figs. 4 and 5, curve 1). At higher concentrations

ρBG that meet the condition ρBG ≥ , where  is a
certain critical buffer gas density, this function behaves
in a different manner. As CH2 rises, the measured signal

Ia/ Is first declines, takes a minimum value, and then
increases monotonically (Fig. 4, curves 2–6; Fig. 5,
curves 2–4).

For the H2–He and H2–Ne mixtures, coefficient
aH2−BG is positive. Consequently, parameter ∆ for these
mixtures is negative at all ρBG. Then, formula (4)

implies that the signal Ia/ Is increases monotonically
with the concentration of hydrogen in helium or neon at
any pressure of the mixture. This speculation is con-
firmed by the experimental results obtained.

Critical buffer gas density , above which Ia/ Is

as a function of the hydrogen concentration shows a
minimum, may be raised either by increasing the
hydrogen pressure in the SRS cell or by adding a buffer
gas that decreases the frequency of the Q01 (1) vibra-
tional transition (e.g., argon). The dependence

Ia/ Is(cH2) (where cH2 = nH2/N is the relative hydrogen
concentration and N = 2.68 × 1019 particles/cm3 is the
Loschmidt number) experimentally found for air under
atmospheric pressure with the help of the SRS oscilla-
tor at PH2 = 4 bar (Fig. 6a) exhibits a minimum. The
same dependence obtained with the cell of the SRS
converter (T = 295 K) at a total pressure of the H2
(84%)–Ar (16%) mixture of 4 bar monotonically grows
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2

Buffer gas-to-nitrogen nonresonance hyperpolarizability
ratio γBG/γN2 at λp = 532 nm (obtained in this work) and λp =
694.3 nm (calculated from the data in [16])

Buffer gas γBG/γN2,
λp = 532 nm

γBG/γN2,
λp = 694.3 nm [16]

N2 1 1

He 0.06 0.064

Ne 0.07 –

Air 0.98 –

Ar 1.3 1.14

CO2 1.5 1.34

SF6 2.0 1.84

NH3 4.7 –

C2H6 5.3 4.6

C3H8 12.0 –
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(Fig. 6b). Thus, the concentration of hydrogen in dense
gas mixtures can be uniquely determined by appropri-
ately choosing the composition and pressure of a
hydrogen–buffer gas mixture in the SRS cell. The
application of the computerized laser system for SRS–
CARS diagnostics [7] and optimization of the gas com-
position and pressure in the cell of the SRS oscillator
allowed us to achieve the sensitivity of hydrogen detec-
tion in air at atmospheric pressure as high as 5 ppm.
This value is more than one order of magnitude better
than that obtained in [10].

CONCLUSIONS

In this work, we report the results for gas mixture
diagnostics by the SRS–CARS technique. The depen-
dence of the nonresonance SRS–CARS signal on the
pressure of various gases is studied. Interference
between the resonance and nonresonance nonlinear
susceptibilities is shown to significantly affect the sig-
nal recorded when low hydrogen concentrations in
dense gas mixtures are monitored by the SRS–CARS
technique. Because of this effect, in gas mixtures (such
as H2–Ar, H2–N2, H2–C2H6, and others) where the fre-
quency of the Raman vibrational transition in H2
decreases with increasing gas mixture pressure, the
scattered signal intensity versus hydrogen concentra-
tion becomes ambiguous after a certain pressure has
been reached. In H2–He and H2–Ne mixtures, where the
frequency of this vibrational transition increases with
pressure, the ambiguity is absent. It is shown that the
ambiguity in the SRS–CARS signal can be removed
through a frequency offset of the biharmonic laser
pumping and by appropriately choosing the pressure
and composition of the compressed gas in the SRS
oscillator.
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Abstract—Experimental data for the photoanisotropy kinetics in azo dyes embedded in various polymer matri-
ces are reported. The Weigert effect in these dyes is shown to depend on the polarized actinic radiation wave-
length and matrix constitution. The effect of dark relaxation in the dyes is found. © 2005 Pleiades Publishing,
Inc.
Light-sensitive media that become anisotropic when
exposed to polarized light find application in polariza-
tion holography [1]. An example of such anisotropic
media is organic azo dyes embedded in polymeric
matrices. Previous studies [2, 3] showed that the photo-
anisotropic properties of these media depend on the
constitution of the matrix and dye. Under normal con-
ditions, most azo dyes exist as a combination of trans-
and cis-isomers, the former prevailing because of their
greater volume. When absorbed, the energy of visible
or near-UV photons is insufficient for N–N bond break-
ing in a dye molecule; however, the absorbed energy
loosens the bond to the point where the end groups may
rotate around it, giving rise to coordination trans- or
cis-isomerism [4]. Further irradiation raises the con-
centration of cis-isomers and decreases that of trans-
isomers. Once the irradiation has been terminated, cis-
isomers spontaneously turn into energetically more
favorable trans-isomers. Although the quantum yield of
cis- and trans-isomers in solid matrices is two to three
times higher than in liquid solutions, the efficiency of
the reverse transition does not depend on the aggrega-
tive state of the medium and recovery to the initial state
may be difficult under certain conditions [5].

Irradiation by linearly polarized light considerably
increases the probability that those randomly oriented
dye molecules the oscillation axes of which make a
small angle with the oscillation axis of the electric vec-
tor of the light will take part in photochemical reac-
tions. According to the phenomenological model, the
number of elementary cells oriented within dθ near θ is

After the action of the polarized light, the number of
the cells remaining in the initial state will be

dN
N
π
----dθ.=

dN' θ( ) e
ρ H1 H2+( )–

dN θ( )=
1063-7842/05/5002- $26.00 0227
on the assumption that a photochemical reaction obeys
the exponential law. Here, N is the total number of the
cells and ρ is the photochemical reaction efficiency.
Then, the number of cells of the same orientation that
have reacted with the light is given by

During irradiation by linearly polarized light, a mol-
ecule enters into a photochemical reaction and changes
orientation until the orientation of its absorbing oscilla-
tor becomes nearly orthogonal to the polarization of the
incident radiation [6].

The photoinduced anisotropy was measured in real
time with a photometric setup that writes anisotropy
data at the wavelength λ = 4416 Å and reads them out
at λ = 6328 Å in one measurement cycle. The measur-
and in this work was effective anisotropy Aeff, which
equals the magnitude of the anisotropic invariant of the
Jones matrix:

where κd( ), κd∆(nτ), and κd∆n are, respectively, the
average absorption, dichroism, and birefringence of the
medium.

Anisotropic invariant |γ2| is numerically equal to the
transmission of the sample placed between two crossed
polarizers in the case when the induced anisotropy axis
and the axis of one polarizer make an angle of 45°.
From the expression for Aeff, it follows that this param-
eter takes into account the net contribution of dichro-
ism, birefringence, and scalar absorption to the induced
anisotropy [7].

Based on experimental data, we constructed kinetic
curves Aeff = f(t) and calculated the photoanisotropic
sensitivity. This sensitivity is defined as the reciprocal

dN'' θ( ) dN θ( ) dN' θ( ).–=

Aeff γ2=

=  
1
2
--- 2κd nτ( )–{ } κ d∆ nτ( )cosh κd∆ncos–[ ] ,exp

nτ
© 2005 Pleiades Publishing, Inc.
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of the exposure that is necessary for Aeff to exceed an
initial level Q0 by a certain amount Qcr, the so-called
photoanisotropic sensitivity criterion:

It is usually assumed that Q0 = 0.3, which reflects
the sensitivity threshold of most of the devices, and
Qcr = 0.2. The photoanisotropic sensitivity character-
ized in such a way makes it possible to contrast various
photoanisotropic materials (the same dye embedded in
different matrices and the same matrix incorporating
different dyes). The dark relaxation was estimated from
parameter τ1/2, which is the time period over which Aeff

is halved.

In this work, we studied polymeric matrices with
different activities (gelatin, polyacrylic acid (PA), a
PA–caprolactam (CL) polymeric complex, nitrocellu-
lose (NC), an epoxy polymer (EP), polyvinyl pyrroli-
done (PVP), polyvinyl alcohol (PVA), polystyrene
(PS)) and 14 azo dyes. The concentrations of the dyes
and polymers were 0.3 and 3%, respectively. The
homogeneous solutions of the dyes and polymers were
mixed together and applied on glass substrates. The
thickness of the films dried was ≈10 µm.

S HQ Q0 Qcr+={ } 1– , Q Aeff.log= =
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Fig. 1. Photoanisotropy kinetics Aeff = f(t) in the gelatin
matrix for dyes (1) chrome yellow “K,” (2) chrome yellow
“Z,” (3) MPY, (4) MPY “M,” (5) AYF, (6) chrysophenine,
and (7) bright yellow.

t, s
Consider the photoanisotropic properties of each of
the matrix–dye systems in detail. The gelatin matrix is
neutral. It has the form of a globule with a variable
space between individual fragments of a gelatin macro-
molecule. The water-soluble dyes considered in this
work dissociate in an aqueous solution and may either
add to amphoteric gelatin molecules or diffuse in the
free space between individual fragments of a gelatin
molecule [8].

A specific feature of photoanisotropy in this matrix
is that the accumulation of the cis-forms proceeds grad-
ually; that is, it takes a considerable time for anisotropy
to reach a maximum. The reverse process, cis-to-trans
dark relaxation, proceeds very slowly, since the mate-
rial properties are stable. In the samples covered by a
water-proof layer, the induced anisotropy persists for a
long time. Therefore, this material is used in polariza-
tion holography, in production of polarization optics
and anisotropic diffraction gratings, etc. It seems likely
that the stability of the material is associated with a
decrease in the free volume of the rigid matrix, which
hinders molecule reversal. The fact that the induced
anisotropy disappears upon moistening of the sample
favors this supposition. The material is reversible, i.e.,
allows for multiple data write/read. The photoanisot-
ropy may be erased by exposing the samples to radia-
tion of the same wavelength but orthogonal polariza-
tion (Figs. 1a, 1b).

Figure 1 shows that mordant monoazo dyes chrome
yellow “K” and chrome yellow “Z” (curves 1, 2) exhibit
a rapid rise in the effective anisotropy (relatively high
values of Aeff) even early in the illumination. After the
illumination, the curves asymptotically fall.

In mordant pure yellow (MPY) diazo dye (curve 3),
as well as in its methyl analogue MPY “M” (curve 4),
the number of possible structural isomers grows, pro-
viding a high absolute value of Aeff. The same fact, in
our opinion, decreases the light sensitivity of the mate-
rial and causes a rapid increase in the anisotropy with
exposure. The dark relaxation proceeds very slowly.

The light sensitivity of the diazo dyes acid yellow
for fulling (AYF) (curve 5), chrysophenine (curve 6),
and bright yellow (curve 7) is low, and so is the absolute
value of the induced anisotropy early in the illumina-
tion. However, earlier studies [9] indicate that high
exposures result in a drastic increase in the effective
anisotropy. This to a greater extent refers to bright yel-
low dye, where a hydroxyl group is bonded to an azo
group, making the formation of hydrogen bridges pos-
sible. Because of these competing factors, the anisot-
ropy at low exposures is low. At high exposures, the
effect of trans–cis isomerism becomes appreciable.
Therefore, the photoanisotropy greatly increases in
chrysophenine and AYF (Fig. 1b), since the electron
donation power of a hydroxyl group is much higher
than that of an ethoxy group.

PVA and PS are neutral hydrogen-containing matri-
ces. In both, small dye molecules interact with seg-
TECHNICAL PHYSICS      Vol. 50      No. 2      2005
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ments of polymer macromolecules, presumably via van
der Waals forces and diffusion of the small molecules
into the free volume in the macromolecules (Figs. 2, 3).

For all the dyes embedded in these matrices, Aeff rap-
idly grows early in the illumination. The sensitivity of
these materials reaches 50 J/m, and the dark relaxation
takes from 4.5 to 20 s.

PVP, NC, EP, PA, and the PA–CL complex are
chemically active matrices. The PVP matrix with dyes
tropeolin 00, metanil yellow, chrome yellow “K,”
chrome yellow “Z,” MPY, and MPY “M” offers a high
sensitivity and high absolute values of effective anisot-
ropy Aeff. Here, the quick rise in the anisotropy may be
attributed to the fact that, owing to the nitrogen atom
present in a pyrrole ring of the polymeric molecule, it
may form complexes with the dye molecules and
isomerization due to polarized photons is facilitated
[10].

Figure 4 shows the kinetic curves of the effective
anisotropy for the dye–PVP systems. For diazo dyes,
such as MPY and MPY “M,” embedded in PVP, the run
of the curves is the same as for these dyes in the gelatin
matrix: the absolute value of Aeff grows with exposure
and becomes considerable within 15–20 min after the
beginning of illumination.

Let us turn to NC, which also is a chemically active
matrix. Its chemical activity is apparently related to the
presence of nitrogen atoms and shows up in a change in
the absorption spectra of the dyes compared with their
absorption spectra in the inactive matrices.

Figure 5 demonstrates the kinetic curves of the
effective anisotropy in NC. The run of the curves is
nearly identical for all the dyes, but curve 1 for dime-
thyl yellow dye increases very steeply at low exposures.
The light sensitivity of the material is fairly high,
50 J/m. Further illumination increases the photoanisot-
ropy only slightly, and saturation is observed at rela-
tively low absolute values of Aeff. The time of dark
relaxation is roughly the same, ≈13 s.

The epoxy polymer is a polymeric phenolic ether
with epoxy end groups, which are highly reactive and
readily enter into a chemical reaction, breaking the
bonds.

As follows from Fig. 6, the photoanisotropy rapidly
increases early in the illumination and, consequently,
the sensitivity of this dye–matrix system is high,
≈100 J/m. The absolute value of the photoanisotropy is
also appreciable, ≈37%. The dark relaxation lasts
≈1 min, indicating that the molecules of the dye in the
modified state are stable.

The next chemically active matrix in which all the
water-soluble dyes were embedded was the specially
synthesized PA–CL complex (for the synthesis proce-
dure, see [11]). The interaction of the dyes with this
matrix depends on their structures. The absorption
spectra of acid monoazo dyes (metanil yellow, tropeo-
lin 00, and methyl orange) exhibit a bathochromic shift
TECHNICAL PHYSICS      Vol. 50      No. 2      2005
because of their interaction with the matrix. The spectra
of the dyes brilliant yellow, chrysophenine, and AYF
are modified in a more complicated way. The mordant
dyes in the CL matrix are somewhat bleached, which
also follows from their absorption spectra. The spectra
of the dyes Indian yellow and azoflavin N remain
unchanged.

The irradiation of these samples by linearly polar-
ized light induces a noticeable anisotropy, although the
light sensitivity of these dyes in the CL matrix is mod-
erate, indicating that isomerization competes with a
chemical reaction in these systems (Fig. 7). The time of
dark relaxation has a significant spread: from 1 s for
chrome yellow “K” (curve 5) to 40 s for AYF (curve 6).

The last of the matrices studied was the PA matrix.
In its chemical properties, PA is akin to polybasic satu-
rated acids. The interaction of the dyes with this matrix
is similar to the interaction with the CL matrix but is
more pronounced. Because of the acidity of this matrix,
molecules of dyes tropeolin 00, metanil yellow, and
methyl orange are protonated with the formation of a
quinoid benzene ring. The bathochromic shift here is
more pronounced. Similarly, the bleach of the mordant
azo dyes is more intense. The absorption spectra of the
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Fig. 2. Photoanisotropy kinetics Aeff = f(t) in the PVA
matrix for dyes (1) methyl orange, (2) tropeolin 00,
(3) methyl yellow, (4) MPY “M,” and (5) alizarin yellow.

Fig. 3. Photoanisotropy kinetics Aeff = f(t) in the PC matrix
for dyes (1) dimethyl yellow and (2) methyl red.
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dyes brilliant yellow and chrysophenine are irregular.
The samples exhibit a wide variety of colors.

The dyes whose molecules incorporate strongly
accepting groups, such as NO2 and NO nitrogroups,
have nearly the same color in both the initial and proto-
nated state. These are Indian yellow and azoflavin N.

The irradiation of samples with all the dyes consid-
ered by actinic radiation from a He–Cd laser (λ =
441.6 nm) does not induce anisotropy, irrespective of
whether their absorption spectra are modified or not.

Thus, we can state with assurance that the chemical
reaction with the PA matrix makes the photochemical
reaction of cis–trans isomerization impossible in all the
dyes studied in this work. In these dyes, this reaction is
a basic photochemical reaction responsible for photo-
anisotropy [12].

Our results suggest that the matrix is of crucial
importance in development of a photoanisotropic mate-
rial.

All the matrices used in this work can be subdivided
into those entering into a chemical reaction with dye
molecules and those that are chemically inactive.

The latter form multicomponent complexes with
dye molecules. Sometimes, the resulting effect is bene-
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Fig. 4. Photoanisotropy kinetics Aeff = f(t) in the PVP
matrix for dyes (1) tropeolin 00, (2) chrome yellow “K,”
(3) metanil yellow, (4) MPY “M,” and (5) MPY.
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ficial: the photoanisotropic activity and light sensitivity
of the dye–polymer system are improved. Such matri-
ces are PVP, NC, and the epoxy polymer.

It seems that complexation does not modify the
molecular constitution of the dyes in these systems and
irradiation by linearly polarized actinic light favors
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Fig. 5. Photoanisotropy kinetics Aeff = f(t) in the nitrocellu-
lose matrix for dyes (1) dimethyl yellow, (2) methyl red, and
(3) benzyl orange. 

Fig. 6. Photoanisotropy kinetics Aeff = f(t) in the epoxy
polymer matrix for dimethyl yellow dye.
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Fig. 7. Photoanisotropy kinetics Aeff = f(t) in the PA–CL
matrix for dyes (1) tropeolin 00, (2) metanil yellow,
(3) Indian yellow, (4) azoflavin N, (5) chrome yellow “K,”
(6) AYF, (7) bright yellow, and (8) MPY “M.” The vertical
bars indicate the beginning of relaxation.
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photoisomerization and, accordingly, imparts to them
photoanisotropic properties.

In a number of cases, chemical reactions in the dye–
polymer system change the π-electron constitution of
dye molecules with the formation of the resonant
quinoid structure.

If isomerization competes with the formation of the
quinoid–hydrazone form of a dye, actinic radiation will
induce anisotropy but its absolute value, as well as the
light sensitivity of the material, will be low. The PA–CL
polymer is an example of such matrices.

If isomerization is completely suppressed, as in the
PA matrix, polarized light does not cause anisotropy.

In the neutral matrices, such as gelatin, PVA, and
PS, the free volume between fragments of a polymer
macromolecule where small dye molecules may diffuse
is of particular importance. The photoanisotropic prop-
erties of such materials will depend on their isomeriza-
tion facility, i.e., on the rigidity of the matrix, tempera-
ture, moisture content, etc.

Research in this area is being continued. Related
results will be reported in following publications.
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Abstract—A heat wave resulting from the absorption of laser radiation in the core of an optical fiber is studied
using a nonstationary 2D heat conduction equation. The velocity of the wave as a function of the laser intensity
is determined, and the threshold intensity generating the heat wave is calculated. At high intensities, the velocity
of the wave can be qualitatively described by a well-known formula from combustion theory; i.e., the velocity
is shown to be proportional to the square root of the radiation intensity. The analytical threshold laser intensities
closely agree with the available experimental data. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

It has long been known that intense laser radiation
may have a dramatic impact on the physical parameters
of a transparent condensed medium [1]. In particular,
when the laser intensity exceeds a certain threshold, the
absorption factor increases steeply. Under the condi-
tions of optical discharge in condensed media [2, 3] or
gases [4], this gives rise to an absorption wave propa-
gating toward the laser radiation.

In recent years, much interest has arisen in the same
phenomenon in optical fibers [5–15]. If the absorption
factor rises somewhere in a fiber, heating of this place
further enhances the absorption. Due to the heat con-
duction process, such a heat absorption wave (HAW)
propagates toward the laser radiation.

Previously, the HAW was considered in a simplified
stationary 1D approximation using a coordinate system
related to the wave [7, 8]. In this study, HAW analysis
is based on a nonstationary 2D heat conduction equa-
tion. The dependences of the HAW velocity on the laser
intensity are derived, and the threshold intensities at
which the HAW arises are determined.

MATHEMATICAL MODEL

Heat conduction equation. A nonstationary 2D
model of an HAW in the cylindrical coordinates (r, z)
within the rectangular domain 0 ≤ r ≤ r1, 0 ≤ z ≤ l
(r1 and l are the outer radius and length of the fiber,
respectively) is described by the heat conduction equa-
1063-7842/05/5002- $26.00 0232
tion

(1)

and the radiation transfer equation

(2)

Here, z is the coordinate along the fiber, r is the radial
coordinate, cp(T) is the specific heat at constant pres-
sure, I is the intensity (energy flux density) of the laser
radiation, α(T) is the absorption factor, k(T) is the ther-
mal conductivity, and ρ(T) is the density of the mate-
rial. The time dependence of the intensity is embodied
in the time dependence of the temperature. The temper-
ature dependence of the absorption factor was chosen
as follows:

where αp is the peak value of the absorption factor, Tp is
the temperature at which α reaches a peak value, and
T1 is the temperature at which the absorption starts rap-
idly growing. We assume that (Tp – T1) ! Tp, so that the
results are virtually independent of T1. According to
[7, 8], we put αp = 560 cm–1 and Tp = 2000°C. If αp is
far from this value, the result of calculation become
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inconsistent with experimental data. We also take T1 =
1700°C.

The dependence of the specific heat on temperature
and on the parameters of the phase transition was rep-
resented in the form

Here, function c0(T) describes the temperature depen-
dence of the specific heat in the absence of the phase
transition,

is the discontinuity of the specific heat at the point of
the phase transition, Tm is the melting point, Tp is the
temperature at which the absorption steeply increases,
∆Hm is the heat of melting, and ∆Hp is the heat of the
phase transition when the absorption is enhanced. The
value of ∆T0 characterizes the width of the phase tran-
sition.

For glass, we used the following values of the
parameters in our calculation [7, 8, 16]: ρ(T) =
2.2 g/cm3, k = 0.02 W/(cm K), c0(T) = 0.74 J/g K, Tm =
1600°C, Tp = 2000°C, ∆Hm = 142 J/g, ∆Hp = 142 J/g,
∆Tm = 100 K, and ∆Tp = 100 K.

Boundary and initial conditions. It is assumed that
radiation of intensity I0 enters the medium at z = 0; i.e.,
I(t, 0, r) = I0(r). Then, from Eq. (2), we have

However, this expression is inconvenient for numer-
ical integration, since it contains the desired quantity
T(t, z). In the calculations, a step radial distribution of
the input intensity was therefore used: I0(r) = I0 at r < r0
and I0(r) = 0 at r ≥ r0. Heat removal from the fiber sur-
face was assumed to be absent,

The initial conditions corresponded to the step dis-
tribution: T(t, z, r)|t = 0 = T0 at z < zp and T(t, z, r)|t = 0 = Tp
at z ≥ zp. Here, zp is the coordinate of the point where
the initial perturbation occurs. The temperature was set
equal to T0 = 20°C.

SOLUTION ALGORITHM 
FOR THE 2D PROBLEM

Let us construct a five-point finite-difference sec-
ond-order approximant for Eq. (1) using a spatial grid
uniform in the z direction with a step hz and a grid

cp T( ) c0 T( ) ∆c T Tm ∆Tm ∆Hm,, ,( )+=

+ ∆c T Tp ∆Tp ∆Hp,, ,( ).

∆c T T0 ∆T0 ∆H,, ,( )
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quasi-uniform in the r direction [16, 17],

Then, for an internal grid node (i, j) (1 < i < Nr, 1 <
j < Nz), we have

where

and hri = ri + 1 – ri, and  is the midpoint of the quasi-

uniform grid interval, which is found via the same
transformation ψ that specifies the grid itself:

Taking into consideration that, at r = 0, Eq. (1)
appears as

and that the Neumann boundary conditions are set on
the boundaries, we obtain the difference scheme coeffi-
cients at the corresponding boundaries in the following
form:
for i = 1, …, Nr,
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Fig. 1. Isotherms spaced at 500°C intervals (temperature
values in 1000°C are shown by the curves): (a) I0 =
1 MW/cm2 and t = 80 µs (P = 0.5 MW, r0 = 4 µm) and
(b) I0 = 4 MW/cm2 and t = 210 µs (P = 4 MW and r0 =
4 µm).
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Fig. 2. Temperature distributions T(t, z , r = 0) along the
fiber at different time instants: (a) I0 = 1 MW/cm2, P =
0.5 MW, r0 = 4 µm, and t = (1) 10, (2) 38, (3) 66, and (4) 80;
(b) I0 = 4 MW/cm2, P = 4 MW, r0 = 4 µm, and t = (1) 10,
(2) 90, (3) 170, and (4) 210.
Thus, we arrive at the evolutionary problem

where

Applying the method of splitting of spatial variables
[18] to this problem, we construct an absolutely stable
implicit scheme of first-order accuracy,

where n and ∆t are the number and length of the time
step, respectively.

Each of the three-point difference equations
obtained are easy to solve by the factorization (sweep)
method.

RESULTS AND DISCUSSION

HAW propagation. Typical isotherms and temper-
ature distributions along the fiber axis for the cases of
low and high laser intensities are illustrated in Figs. 1
and 2, respectively. As expected, there is a temperature
peak propagating toward the laser beam. After the peak,
the temperature declines, since absorption in a layer

 = 18 µm thick and cooling via heat conduction
decrease the laser intensity. At a lower intensity, cool-
ing is stronger and the peak is more distinct.

The velocity v f of the HAW front was determined
from the time dependence of the front coordinate z(t),
which, in turn, was found from the equality T(t, r = 0,
zf) = Tp (Figs. 2, 3). The dependence zf (t) was closely
approximated by the linear function zf (t) = v f t + const,
and v f was found from its slope. The calculation results,
along with the experimental data [15], are presented in
Fig. 4.

The HAW velocity. In combustion theory, the flame
propagation rate is proportional to the square root of the
specific power of energy release [19]. The correspond-
ing expression, which is also used in discharge propa-
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gation theory [2], in our case, has the form

(3)

A slightly different expression for the HAW front
velocity was proposed in [7, 8],

(4)

where v f0 = kαp/2ρcp characterizes the linear growth of
the front velocity with laser intensity in weak fields and
Ich = kαp(T – T0)/4 is the intensity at which the linear
dependence changes to the root one. For the calculation
parameters in Fig. 4, we have v f0 = 0.034 m/s m/s and
Ich = 5.8 × 10–3 MW/cm2.

At I0 @ Ich, formula (4) coincides with (3). In con-
trast to the latter, formula (4) includes the energy spent
on heating the mixture. The results of our calculation of
front velocity v f in the absence of cooling agree with
the calculations by formula (4) when the intensity con-
siderably exceeds the threshold (see below). However,
expressions (3) and (4) yield close results (Fig. 4) under
the conditions considered. The effect of cooling turns
out to be more significant.

Threshold intensities. We determined threshold
intensity Ith for various values of r0 (Fig. 5). At I0 < Ith,
the heat wave is absent. An estimate of the threshold
intensity, Ith1, can be found by equating the absorbed
power αpIth1 with the effective heat removal (6(Tp –

T0)k)/ . As a result, we arrive at

(5)

In our calculation, the threshold was estimated for a
velocity of 0.1 m/s. The values given by formula (5),
our estimates, and the threshold intensities measured in
[12] are compared in Fig. 5. It is seen that, for the

v f kαpI0/ Tp T0–( )/ ρcp( ).=

v f v f 0 I0/Ich( ) 1+ 1–( ),=
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2

I th1

6 Tp T0–( )k
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Fig. 3. Time dependences of the heat wave front coordinate
zf that is defined as the point where T(t, zf , r = 0) = Tp =

2000 K. I0 = 4 MW/cm2, P = 4 MW, and r0 = 4 µm. The dot-
ted line depicts the dependence zf(t) = v ft + const, where
v f = 0.29 m/s.
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parameter values considered, estimator (5) yields val-
ues that are roughly twice those obtained by the numer-
ical calculation. At the same time, the calculation is in
good agreement with the experimental data.

CONCLUSIONS

Our calculations demonstrate that a heat absorption
wave traveling along a fiber core can be fairly accu-
rately described by a nonstationary 2D equation of heat
conduction combined with a stationary equation for

1

0.1 1

v f, m/s

I0, MW/cm2

10

10 100

1

2
3 4 5 6 7

Fig. 4. HAW front propagation velocity vs. the laser inten-
sity. Curves (1) and (2) show the results of calculation by
formulas (3) and (4), respectively; curves (3)–(7) are the
numerical results for core radius r0 = 50, 20, 10, 4, and
2 µm, respectively. The symbols are data points for SiO2–
GeO2 fibers with an outer radius of 125 µm [12]. The differ-
ence ∆n between the refractive indices at the axis and
periphery of the fiber is (×) 0.04, (+) 0.009, and (h) 0.0015;
core diameter d = (×) 3.3, (+) 5.75, and (h) 11.05 µm.

2

0 10

Ith, MW/cm2

d0, µm
20 30 40 50

4

Fig. 5. Threshold laser intensity vs. core diameter d0. The
symbols are data points [12]; the solid line, numerical cal-
culation; and the dashed line, estimate by formula (5).
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laser intensity. For intensities far exceeding a threshold,
the HAW velocity is closely approximated by a well-
known formula from combustion theory, i.e., is propor-
tional to the square root of the radiation intensity. The
threshold value can be estimated (in order of magni-
tude) by comparing the amount of heating with that of
heat removal. The analytical value of the threshold is in
good agreement with the experimental value.

The analytical wave velocity versus laser intensity
dependences and the threshold intensities are consistent
with the available experimental data.
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Abstract—Computer analysis of the arbitrary source image obtained in 3D electron–optic systems is per-
formed. The systems involve electrostatic fields focusing and deflecting electron beams. Specifically, the struc-
ture of a net electron beam from an extended source at the crossover is examined. It is shown that the spread
function of the source, which characterizes the imaging quality of the system most fully, may serve as a primary
computational criterion. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Fast processes, such as plasma and ballistic pro-
cesses, thermonuclear fusion, etc., are basically studied
with pulsed electron–optic converters, among which
instruments offering a subpicosecond time resolution
and introducing minor image distortions are attracting
increasingly more attention. In analytical models of
electron–optic systems (EOSs), the imaging quality is
usually characterized by the shape of a spot of confu-
sion in an appropriate cross section of the electron
beam coming from a point source (emitter) and by the
current density distribution over this spot (the spread
function of a point source) [1]. However, the analytical
studies are basically restricted to paraxial beams in axi-
symmetric EOSs. This means that the point-spread
function cannot be considered as a measure of resolu-
tion of the instrument in terms of an analytical model.
The fact is that, on the one hand, wide (instead of parax-
ial) beams are currently used according to modern tech-
nology’s requirements and, on the other hand, deflect-
ing plates and diaphragms used in the system break its
axial symmetry. Under such conditions, only direct
computer simulation of beam-forming and beam-
deflecting fields followed by wide beam trajectory anal-
ysis can adequately describe EOS operation.

Today, preference is given to two types of EOSs
with a subpicosecond resolution. In the former case,
both focusing and scanning of the image are accom-
plished by means of an electric field alone. In the latter,
a magnetic lens focuses the image, while an electric
field scans. A great number of electrodes and their var-
ious configurations necessitate the solution of 3D field
problems, which are difficult to solve even in the
steady-state case. Moreover, the diameter of the spot of
confusion in the focusing systems may be several
orders of magnitude smaller than the characteristic type
of the instrument. In the EOS design that is considered
below, the cathode-to-screen distance (the longitudinal
1063-7842/05/5002- $26.00 0237
dimension of the converter) is 300 mm and the trans-
verse dimension of the converter is 60 mm. At the same
time, an elementary electron beam may be constricted
to a circle of diameter d = 0.01–0.20 mm in the screen
plane (the diameter of the circle depends on the point
emitter position and the scanning potential). Therefore,
finding the spread function, which is defined just on the
spot of confusion, requires an exact calculation of many
beam electron trajectories in the 3D electromagnetic
field with the accuracy of solution of the field problem
matched to the accuracy of trajectory analysis. Note
also that the domain of definition of the point-spread
function in the computer model is discrete and so must
be smoothed by digital techniques of processing 2D
discrete signals. Therefore, engineers employing com-
puter models usually discard studying the spread func-
tion in favor of the resolution of the instrument, which
is a much rougher criterion incompletely meeting the
present-day requirements and inadequately reflecting
the structure of the image.

In part 1 of this work, we study the imaging quality
in typical multielectrode EOSs operating in the electro-
static regime. The second part of this work is devoted to
3D EOSs, where image transfer is accomplished by
means of a stationary electromagnetic field.

BASIC DIAGRAM OF AN ELECTRON–OPTIC 
SYSTEM

The EOS efficiency depends on a variety of physical
processes, each being responsible for the image struc-
ture in one way or another. It therefore seems reason-
able to consider the most significant processes specify-
ing the image structure in most EOS designs. Such pro-
cesses are certainly image scanning, diaphragming, and
adjustment of the instrument.

Figure 1 projects the basic diagram of a particular
EOS design onto two orthogonal planes containing the
© 2005 Pleiades Publishing, Inc.
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optical axis. Here, S1 is the cathode; S2, accelerating
electrode; S3, focusing electrode; S4, anode chamber;
S5, deflectors; S6, shutters; S7–S9, slit diaphragm; and
S10, screen. We assume that all electrodes Si (i = 1–10)
are conducting and are under given potentials. In this
case, an electrostatic field is induced in the EOS.

COMPUTER MODEL OF AN ELECTRON–OPTIC 
SYSTEM WITH AN ELECTROSTATIC FIELD

As applied to EOSs of a general type [2–5], fast and
exact numerical solution algorithms may be con-
structed in terms of the finite-group method (FGM),
which exploits the local symmetries of the system’s
subsystems and iterative joining. The basic versions of
the FGM are presented in [6–16]. In addition, for elec-
trostatic-field (hereafter, electrostatic) EOSs, efficient
algorithms of trajectory analysis that are based on adap-
tive (beam-attending) spatial computational grids [17]
have been developed [2, 3]. Therefore, we will high-
light only basic points in describing a computer model
of electrostatic EOSs.

Consider set {Si} of N conducting screens Si(Si are
the electrodes of a desired EOS) under the assumption
that {Si} constitute multiply connected surface S in
three-dimensional space R3,

(1)

and that each screen j (j = 1, 2, …, N) is under a given
potential. Then, if E = {Ei} (i = 1, 2, 3) is the vector of
the electric field induced by the set S of screens, we
have Ei(x) = –∂ϕ(x)/∂xi, where x = {xi} are the Cartesian
coordinates of point x in R3 and ϕ(x) is the potential of
field E that satisfies the Laplace equation subject to the
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150
Dirichlet conditions on S:

(2)

Here, (x) is the characteristic function of a set of
points on surface Si and ∆ is the Laplacian.

A solution to boundary-value problem (2) may be
represented as the potential

of a simple fiber with density u(x), x ∈  S, that satisfies
the boundary integral equation of the first kind

(3)

where dµ(x) is the contraction of an element of the
Euclidean space onto surface S and |x – x1| is the Euclid-
ean distance between points x and x1.

A numerical solution to Eq. (3) is constructed in
terms of the FGM version that employs finite groups of
symmetries discontinuously acting on surfaces Si and
takes into account the invariance of operators Aii =

(x)A (x) (the contraction of A on Si) under trans-
formation of these groups.

The characteristics of EOSs, including the point-
spread function, are determined by trajectory analysis.
Namely, the electron trajectories in the electrostatic
field are described through the Cauchy problem for a
set of ordinary differential equations

(4)

where r is the radius vector of a particle with mass m
and charge e and t is the transit time.

In turn, the initial conditions of particle escape dis-
tinguish the initial velocities of the electrons emitted
from a point by magnitude and direction. Such a distri-
bution, characterizing a specific cathode, is usually
found experimentally.

Let P be a point from which electrons leave a cath-
ode (point emitter). It is routinely assumed in simula-
tion that the probability of a particle escaping within a
solid angle dω at an angle θ to normal np varies as
coskθdω, k = 1, 2, 3, … (k = 1 corresponds to the Lam-
bert law). Unless otherwise stated, we below consider
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bundles of N equiprobable trajectories obeying the
angular distribution law cos3θ on assumption that the
escape energy of the electrons is the same (the energy
spread in the source is disregarded).

The properties of the image will be studied on a par-
ticular surface s, where s may be a screen, image sur-
face, or given secant plane, with the electrons emitted
from point P on the cathode being gathered within a
segment dsp on surface s.

Let (τ1, τ2, τ3) be a set of orthogonal coordinates that
is chosen in such a way that surface s is a part of coor-
dinate surface τ3 = const. In this case, each of the elec-
tron trajectories {τi}, i = 1, 2, …, N, emerging from
cathode point P on surface s is described by coordinates

{( , )}. Then, the spreading center  = ( , ) of

an elementary beam and the rms deviation σ (or ,
k = 1, 2, in coordinate-wise form) from the center of
gravity are given by

(5)

where |τi – | is the Euclidean distance between points
τi and  (τi,  ∈  s).

The rms deviation from the center of gravity gives
an estimate (rather accurate in the case of axisymmetric
EOSs) of only the size of the spot of confusion (seg-
ment dsp). The shape and structure of this spot for an
elementary electron beam can be judged from the
spread function Sp(τ) for point emitter P, which is deter-
mined as follows:

(6)

Point-spread function Sp(τ) is a function of continu-
ous argument τ ∈  s with the discrete domain of defini-
tion. Such functions are inconvenient for analysis and
visualization. Instead of Sp(τ), we will consider approx-
imating functions Sp(i, j). To construct them, we insert
the spot of confusion dsp (Sp(τ) ≡ 0 at τ ∉  dsp) into a
rectangle dsp the center of which coincides with the
spread center  of electron beam {τi}. This rectangle is
covered by a uniform rectangular grid

(7)

where {M1} and {M2} are sets of integers that are taken
so that the spread center  of the beam is the center of
the rectangular mesh ω00.
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Assigning the values equal to the number of elec-
trons falling into a mesh ωij to Sp(i, j), we obtain the
desired approximating function.

Spread functions Sp(i, j) characterize the spatial
structure of an elementary electron beam fairly ade-
quately. However, the entire information on the beam
structure that is contained in these functions may be
extracted by applying smoothing digital filtering. The
essence of this procedure will be understood by visual-
izing the values of some of the spread functions.

Below, the digital processing of spread functions
Sp(i, j) uses separation adaptive digital filters of 2D sig-
nals that are based on discrete B splines. Smoothing fil-
tering is carried out in the interactive mode: first, a dis-
crete scaling B spline is prescribed and then sharpening
digital iterative filtering is accomplished. Earlier, such
a procedure of smoothing 2D pulsed signals was
applied in computer analysis of inverse multidimen-
sional problems of unsteady heat conduction [18].
Hereafter, the digitally processed spread functions

Sp(i, j) are designated as (i, j).

When numerically analyzing the structure of images
transferred by EOSs, we considered not only elemen-
tary but also net beams, which comprise all the elec-
trons emitted from a given set {Pk} of cathode points.
By analogy with elementary beams, net beams are also

characterized by appropriate spread functions S(τ), (i,
j), and Sp(i, j).

It should be noted in conclusion that spread func-
tions Sp(τ) (Sp(i, j)) characterize the spatial structure of
an electron beam and can be used to estimate only the
spatial (technical) resolution of the instrument. How-
ever, the electron trajectories in our EOS model are
functions of the coordinates and time. Consequently,
we may consider functions Sp(τ, t) (Sp(i, j, t)) instead of
Sp(τ) (Sp(i, j)) and thus obtain an estimate of the time
resolution of the instrument. This issue calls for special
investigation.

IMAGE STRUCTURE IN AXISYMMETRIC 
EOSs

Computer analysis of the image structure in the 3D
EOSs under consideration is a preliminary to numerical
simulation of an axisymmetric EOS consisting of elec-
trodes S1–S4 (Fig. 1). Electrodes S5–S9 inside anode
chamber S4 are omitted from consideration.

A computer model of axisymmetric EOSs that is
based on numerical solution algorithms for one-dimen-
sional boundary integral equations from the potential
theory (these algorithms provide a high accuracy of
constructing axisymmetric electrostatic fields) and on
trajectory analysis methods could be elaborated and
program-implemented only after the work by
Antonenko [19] had been published (1964). The early

Ŝp
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routines of this type appeared in the United States in the
mid-1970s.

Below, we give the results of computer analysis of
the real axisymmetric EOS design (see above) that are
necessary for further discussion.

Numerical simulation data for axisymmetric EOSs
as representatives of multielement three-dimensional
structures (Fig. 1) may also help in optimizing com-
puter analysis of these structures. Numerical experi-
ments have shown that the external electric field gener-
ated by electrodes S1–S4 penetrates into anode chamber
S4 insignificantly. In turn, the electric field inside the
anode chamber, which is generated by electrodes S5 and
S6, is damped near the circular hole of chamber S4. In
other words, the interaction between these fields is
weak and local. This makes it possible to perform a
comparative calculation using two program packages
intended for simulating axisymmetric and 3D EOSs.
Such a calculation greatly simplifies the selection of a
set of boundary elements on desired boundary surface
S formed by all the electrodes of a 3D EOS and pro-
vides effective control of the 3D simulation accuracy.
To do this, the structure formed by electrodes S1–S4 is
simulated using the program package for analysis of
axisymmetric systems. When trajectory analysis is car-
ried out, the number of calculation points on the gener-
atrix of the surface of revolution Sv, Sv = , and
the mesh spatial size in the attendant grid are selected
so as to fit a given calculation accuracy ε (e.g., ε =
0.1%). Then, using the program package for analysis of
3D EOSs, the desired EOS design (Fig. 1) is simulated
with electrodes S5–S9 grounded (i.e., these electrodes
are under the potential of anode chamber S4). Here, a

set of boundary elements on surface S, S = ,
and an appropriate attendant grid are selected in such a
way that the results of simulation using the two pack-
ages coincide within an error not exceeding ε. If neces-
sary, the set of boundary elements and the attendant
grid are refined by applying low scanning potentials on
electrodes S5 and S6. It should be emphasized that
results of simulation must include all computable EOS
parameters and characteristics (from the magnification
to the point-spread function).

(i) Crossover. In focusing EOSs, the net electron
beam (i.e., the beam of the electrons emitted from all
cathode points) has a minimal cross-sectional area
(crossover) in some plane (the plane of crossover). In
the analytical models of EOSs, much attention is paid
to the crossover position and the current density in it.
For axisymmetric EOSs, it was found [1] that the cur-
rent distribution over the crossover is Gaussian. Analyt-
ical and experimental data of this sort are of great value
for EOS designers.

Consider cylindrical coordinate system (r, ψ, z) that
is related to Cartesian system XYZ depicted in Fig. 1.
Let the net electron beam consist of six elementary

Sii 1=
4∪

Sii 1=
9∪
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beams issuing out of cathode points (rk, ψ = π/2, z = 0),
where rk = kmm and k = 0, 1, …, 5; that is, all emitters
(emitting points) lie on the positive Y semiaxis. It is also
assumed that each of the elementary beams (the elec-
tron escape energy U0 = 0.35 eV) may trace 512
equiprobable trajectories with the escape angle distri-
bution law cos3θ. The potential difference between the
cathode (S1) and anode chamber (S4) is 15 kV.

The values of the spread function S(i, j) of the net
beam in the crossover are visualized in Fig. 2a and its
isolines, in Fig. 2b. The visualization of the spread
function (Fig. 2a) seems to carry little information,
while Fig. 2b, which plots the S(i, j) isolines, gives
insight into the shape and sizes of the spot of confusion
of the net beam in the crossover (the maximal size of
the spot is 0.8 × 1.0 mm). In addition, it is clearly seen
from Fig. 2b that the elementary beams are not com-
pletely coincident in the Y direction (complete coinci-
dence takes place in EOSs with magnetic focusing,
where the crossover area is larger; see part II of this
work). However, neither the plot of function S(i, j)
(Fig. 2a) nor its isolines (Fig. 2b) give a comprehensive
idea of the net beam structure in the crossover.

The structure of the net beam in the crossover
became evident after function S(i, j) had been digitally
processed by means of adaptive B-spline-filters. Fig-
ures 2c and 2d show, respectively, the isolines and val-

ues of function (i, j) (function S(i, j) after digital pro-
cessing).

Since the cathode points generating the net beam
under consideration lie on the same ray passing through
the center of the cathode and a solution to the problem
stated is invariant under transformations from rotation

group C∞, the plot of (i, j) (Fig. 2d) lets us conclude
that the digitally processed point-spread functions of
the net beams emitted from cathode points (rn, ψm, z =
0) (where rn = nR/N; ψm = 2π(m – 1)/M; n = 1, 2, …, N;
m = 1, 2, …, M; and R is the radius of the cathode) will
have the bell-shaped (near-Gaussian) form in the cross-
over. This assertion was confirmed experimentally.

(ii) Structure of elementary beams. The behavior
of the net beam in the working region of an axisymmet-
ric EOS sheds light not only on the crossover parame-
ters but also on other EOS characteristics of applied
interest. Among them is, in particular, the image sur-
face, since the centers of gravity  (i = 0, 1, …, 5) of
the focused elementary beams constituting the given
net beam lie on the generatrix of the image surface. The
potentials of electrodes S2 and S3 (the potentials of S1
and S4 are fixed, see above) are taken such that the ele-
mentary beam that escapes from the cathode with the
radial coordinate r2 = 2 mm is focused on the screen.
Note that the image surface is approximated fairly well
by an ellipsoid of revolution and that the beams with
radial escape coordinates r < (>) r2 are focused behind

Ŝ

Ŝ

τ i
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(before) the screen plane. This fact is embodied in the
respective spread functions.

Figure 3a shows the values (on the left) and isolines
(on the right) of the spread function (i, j) of point
emitter P0 = P (r0 = 0, ψ = π/2, z = 0) on the screen. Fig-
ure 3b shows the same for the spread function (i, j)
of point emitter P2 = P (r2 = 2 mm, ψ = π/2, z = 0);
Fig. 3c, for the spread function (i, j) of point emitter
P4 = P (r4 = 4 mm, ψ = π/2, z = 0). Similarly, Figs. 4a–
4c visualize the values and isolines of spread functions

(i, j), (i, j), and (i, j) (i.e., functions (i, j),
where k = 0, 2, and 4, after adaptive B-spline digital fil-
tering), respectively.

Only the central beam has a regular structure
(Fig. 3), which is due to the initial conditions of elec-
tron escape from the cathode. Even a small offset of an
emitting point (emitter) from the cathode center (by
several hundredths of a millimeter) causes a rapid
breakdown of the structure. At the same time, spread

functions (i, j) (k = 0, 2, or 4) on the image surface
had a clearly cut bell-shaped form, which deforms as
the emitter is displaced from the cathode center
(Fig. 4b). The spread functions of the elementary
beams that are focused behind the screen plane (r <
2 mm) appear on the screen as a flattened-top bell
(Fig. 4a), while the bell-shaped spread functions of the
beams focused before the screen plane (r > 2 mm) have
a diffuse base (substrate) (Fig. 4c). Thus, in electro-
static axisymmetric EOSs, the structures of the elemen-
tary beams that are focused before and behind the
image surface radically differ and the change takes
place fairly rapidly. It should be noted that, in the mag-
netic focusing instruments where focusing is provided
by a dc coil, the beams behave in the same manner (see
part II of this work).

EFFECT OF SCANNING ON THE IMAGE 
STRUCTURE

Let us see how the fields scanning the image that is
formed in an electrostatic EOS influence the structure
of the elementary beams constituting the net beam con-
sidered in the previous section (these fields are gener-
ated by the potential applied to deflecting plates S5,
Fig. 1). Scan potential ϕ is applied to deflecting plates
S5 in two, one-phase (asymmetric) and two-phase
(symmetric), modes. In the former case, one of the
plates is under the (zero) potential of the anode cham-
ber (i.e., is grounded). In the latter, the potentials
applied to the plates are equal in magnitude but differ in
sign (relative to the potential of the anode chamber). We
will assume that the elementary beams being scanned
are emitted from cathode points Pk (x = 0, yk = kmm, z =
0; k = 0, 1, …, 5) and consider the image structure on
both the image surface and screen. The beam focus is

Sp0

Sp2

Sp4

Ŝp0
Ŝp2

Ŝp4
Spk

Ŝpk
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Fig. 3.
determined from the minimum of rms deviation σϕ(k)
from the center of gravity (k). Then, we will analyze

the dependence of spread functions (i, j) ( (i, j))
on scan potential ϕ.

(i) For the symmetric scan mode and potentials ϕ =
±0, ±100, ±200, and ±300 V, the values of rms deviation

σϕ(k) and the Cartesian coordinates ( , , ) of

τϕ

Spk

ϕ( ) Ŝpk

ϕ( )

xk
ϕ( ) yk

ϕ( ) zk
ϕ( )
the centers of gravity (k) (k = 0, 1, …, 5) of the ele-
mentary beams on the image surface are given (in mil-
limeters) in Table 1.

Note that, for scan potentials ϕ = , , ,

and , the quantities listed in Tables 1 and 2
remain virtually unchanged (for coordinate x, the scan
direction, this is true up to sign).

τϕ

0+− 100+− 200+−

300 V+−
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Fig. 4.
It follows from Tables 1 and 2 that the depth of the
image surface along coordinate z (the optical axis of the
system) is about 22.2 mm but the values of σϕ(k) for the
elementary beams (i.e., for ϕ and k fixed) on the image
surface and on the screen in general (ϕ ≠ 0) vary insig-
nificantly (a considerable depth of focus of the image).
As the scan potential increases, the resolution of the
instrument drops on both the image surface and screen
TECHNICAL PHYSICS      Vol. 50      No. 2      2005
(by a factor of 1.5–5 at the edge of the screen). Yet, the
resolution of the structure simulated remains high in
this scan mode.

Table 3 lists the values of rms deviation σϕ(k) and

the Cartesian coordinates ( , , ) (k = 0, 1, …,
5) of the centers of gravity of the elementary beams on
the image surface for the one-phase scan mode with ϕ =

xk
ϕ( ) yk

ϕ( ) zk
ϕ( )
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Table 1.  Image surface (two-phase mode)

ϕ\k 0 1 2 3 4 5

0 V σϕ(k) 0.004 0.019 0.013 0.001 0.003 0.003

0 V 0 0 0 0 0 0

0 –2.22 –4.51 –6.63 –8.71 –10.90

255.5 254.9 257.1 253.2 250.5 250.4

+100 V σϕ(k) 0.007 0.019 0.015 0.007 0.008 0.007

–100 V 5.98 5.97 6.1 5.95 5.82 5.82

0 –2.10 –4.30 –6.31 –8.27 –10.33

245.6 245.4 248.6 244.8 241.6 241.5

+200 V σϕ(k) 0.012 0.021 0.020 0.013 0.015 0.015

–200 V 11.81 11.84 12.17 11.85 11.53 11.50

0 –2.09 –4.29 –6.30 –8.21 –10.23

243.7 244 248.1 244.2 240.1 239.6

+300 V σϕ(k) 0.024 0.03 0.032 0.027 0.026 0.025

–300 V 16.68 16.69 17.37 16.85 16.40 16.33

0 –1.98 –4.13 –6.03 –7.86 –9.77

235.3 235.3 240.8 236.5 232.7 232

xk
ϕ( )

yk
ϕ( )

zk
ϕ( )

xk
ϕ( )

yk
ϕ( )

zk
ϕ( )

xk
ϕ( )

yk
ϕ( )

zk
ϕ( )

xk
ϕ( )

yk
ϕ( )

zk
ϕ( )

Table 2.  Screen (two-phase mode)

ϕ\k 0 1 2 3 4 5

±0 V σϕ(k) 0.013 0.022 0.020 0.009 0.006 0.006

0 –2.11 –4.24 –6.36 –8.49 –10.61

±100 V σϕ(k) 0.007 0.019 0.016 0.007 0.01 0.009

5.99 6 6 6 6 6.01

0 –2.11 –4.24 –6.35 –8.49 –10.61

±200 V σϕ(k) 0.012 0.021 0.02 0.014 0.017 0.017

11.99 12 12 12 12.01 12.02

0 –2.11 –4.24 –6.36 –8.50 –10.63

±300 V σϕ(k) 0.028 0.033 0.033 0.030 0.032 0.031

18 18.01 18.01 18.01 18.02 18.04

0 –2.12 –4.26 –6.38 –8.52 –10.66

yk
ϕ( )

xk
ϕ( )

yk
ϕ( )

xk
ϕ( )

yk
ϕ( )

xk
ϕ( )

yk
ϕ( )
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Table 3.  Image surface (one-phase mode)

ϕ\k 0 1 2 3 4 5

200 V σϕ(k) 0.026 0.032 0.036 0.036 0.032 0.034

0 V 6.38 6.21 5.72 5.72 5.91 5.88

0 –2.15 –4.01 –6.01 –8.25 –10.30

255.7 251.4 239.5 239.5 244 243

400 V σϕ(k) 0.066 0.069 0.078 0.079 0.074 0.076

0 V 13.11 12.32 10.17 10.36 11.30 11.16

0 –2.12 –3.59 –5.46 –7.88 –9.72

260.5 250.7 224.4 226.6 237.9 236

600 V σϕ(k) 0.081 0.084 0.091 0.092 0.089 0.092

0 V 17.86 15.97 12.95 13.2 14.73 14.46

0 –1.86 –3.12 –4.74 –6.96 –8.53

246.2 230.7 205.9 207.9 220.2 217.8

xk
ϕ( )

yk
ϕ( )

zk
ϕ( )

xk
ϕ( )

yk
ϕ( )

zk
ϕ( )

xk
ϕ( )

yk
ϕ( )

zk
ϕ( )
200, 400, and 600 V. The values of σϕ(k) on the screen
are presented in Table 4.

For ϕ = –200, –400, and –600 V in the asymmetric

mode, the associated values of σϕ(k) and ( , ,

) differ from those listed in Tables 3 and 4 insignif-
icantly.

The extent of the image surface along the z coordi-
nate in this mode is much larger, ≈51.2 mm, than in the
symmetric scan mode. As in the case of the two-phase
mode, the values of σϕ(k) for a specific beam on the
image surface and on the screen are comparable and the
drop in the resolution with increasing scan potential is
even higher: by a factor of 4–17 at the edge of the
screen.

Tables 1 and 3 (as well as 2 and 4) imply that the
two-phase scan mode is two to three times more effi-
cient in terms of the imaging quality than the one-phase
mode, at least in the EOS design under consideration.
For the deflecting system in magnetic-focusing EOSs,
the results are qualitatively the same (see part II of this
work).

(ii) The rms deviation may serve to estimate only the
area of the spot of confusion (for an elementary or net
beam) and makes it possible to reveal the factors that
have the most obvious effect on the image structure.
The image structure itself is most fully characterized by
the spread functions.

Figure 3 demonstrates the values and isolines of

spread functions (i, j) for point emitters P0 = P (x =

xk
ϕ( ) yk

ϕ( )

zk
ϕ( )

Spk

ϕ( )
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0, y = 0, z = 0), P2 = P (x = 0, y = 2 mm, z = 0), and P4 =
P (x = 0, y = 4 mm, z = 0) when plates S5 are grounded
(ϕ = ±0). In Fig. 4, the values and isolines of functions

(i, j) (functions (i, j)) after filtering) are shown.

Consider the effect of the scan potential on the structure
of these beams.

For the scan potential ϕ = ±300 V in the symmetric
scan mode, Fig. 5 shows the isolines of spread func-

tions (i, j) (k = 0, 2, 4) (left-hand column) and the

values of (i, j) (right-hand column). Figures 5a–
5c correspond to emitters P0, P2, and P4, respectively.

Figures 6a–6c present the isolines of (i, j) (left-

hand column) and the values of (i, j) (right-hand

Ŝpk

0( )
Spk

0( )

Spk

300±( )

Ŝpk

300±( )

Spk

600( )

Ŝpk

600( )

Table 4.  Screen (one-phase mode)

ϕ\k 0 1 2 3 4 5

0.029 0.032 0.038 0.038 0.032 0.034

0.069 0.069 0.085 0.083 0.075 0.077

0.081 0.086 0.116 0.11 0.096 0.1

200 V

0 V 
 

400 V

0 V 
 

600 V

0 V 
 
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Fig. 5.
column) for point emitters Pk (k = 0, 2, 4) in the one-
phase scan mode at ϕ = 600 V.

Figures 3–6 validate the conclusions regarding the
rms deviation that the area of the spot of confusion in a
given cross section of an elementary electron beam
depends on the scan mode and potential, as well as on
the point emitter position. However, the rms deviation
characterizes only a circle (coordinate-wise an ellipse)
containing most electrons of the beam but cannot
inform us about the true shape and a fortiori structure
of the spot of confusion. For example, the spot of con-
fusion for the undeflected central beam is close to a cir-
cle of radius r ≈ σ0(0) = 0.013 mm (Figs. 3a, 4a). When
the deflecting plates are under potential ϕ = ±300 V in
the symmetric scan mode, the related spot of confusion
on the screen is heavily extended along the scan direc-
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Fig. 6.
tion (Fig. 5a) (accordingly, (0) = 0.028 mm and

(0) =0.003 mm). Such an ellipse with the semi-
axis a = 0.028 mm and b = 0.003 mm, which is centered
at the center of gravity of the beam, encircles about
70% of the trajectories. The same is also true for the
other elementary beams being scanned (Figs. 3–6).

Detailed investigation of the effect of scan fields on
the image structure in EOSs requires a large body of

σ 300±
x( )

σ 300±
y( )
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computing experiments. However, certain conclusions
can be drawn by comparing the spread functions shown
in Figs. 4–6. In the absence of the scan potential, spread

functions (i, j) (k = 0, 2, 4) for the elementary
beams emitted from points P0, P2, and P4 on the cath-
ode (Fig. 4) substantially differ from each other on the
screen, adequately reflecting the structure of the beams.
Next, in the symmetric (Fig. 5) and asymmetric (Fig. 6)

Ŝpk

0( )
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scan modes (the respective scan potentials are ϕ = ±300
and 600 V), the resolutions of the instrument at the edge
of the screen are nearly the same in the scan direction,
whereas the two-phase mode offers a much (several
times) higher resolution in the perpendicular direction.
Other features related to the beam structures (Figs. 4–
6) are less obvious and call for further analysis.

REFERENCES

1. W. Glaser, Grundlagen der Elektronenoptik (Springer,
Vienna, 1952; Gostekhizdat, Moscow, 1957).

2. S. K. Demin, S. I. Safronov, and R. P. Tarasov, Zh. Tekh.
Fiz. 68 (2), 97 (1998) [Tech. Phys. 43, 222 (1998)].

3. S. K. Demin, S. I. Safronov, and R. P. Tarasov, Zh. Tekh.
Fiz. 68 (7), 126 (1998) [Tech. Phys. 43, 861 (1998)].

4. S. I. Safronov and R. P. Tarasov, Zh. Tekh. Fiz. 69 (6), 1
(1999) [Tech. Phys. 44, 609 (1999)].

5. S. I. Safronov and R. P. Tarasov, Zh. Tekh. Fiz. 72 (9), 1
(2002) [Tech. Phys. 47, 1071 (2002)].

6. S. K. Demin and R. P. Tarasov, Zh. Vychisl. Mat. Mat.
Fiz. 29, 1308 (1989).

7. E. V. Zakharov, S. I. Safronov, and R. P. Tarasov, Dokl.
Akad. Nauk SSSR 314, 589 (1990) [Sov. Phys. Dokl. 35,
799 (1990)].
8. R. P. Tarasov, Zh. Vychisl. Mat. Mat. Fiz. 31, 1515
(1992).

9. R. P. Tarasov, Zh. Vychisl. Mat. Mat. Fiz. 33, 1815
(1993).

10. R. P. Tarasov, Radiotekh. Élektron. (Moscow) 44, 920
(1999).

11. E. V. Zakharov, S. I. Safronov, and R. P. Tarasov, Zh.
Vychisl. Mat. Mat. Fiz. 31, 40 (1992).

12. E. V. Zakharov, S. I. Safronov, and R. P. Tarasov, Zh.
Vychisl. Mat. Mat. Fiz. 35, 1582 (1995).

13. R. P. Tarasov, Zh. Vychisl. Mat. Mat. Fiz. 39, 943 (1999).
14. S. K. Demin and R. P. Tarasov, Mat. Model. 5, 113

(1993).
15. E. V. Zakharov, S. I. Safronov, and R. P. Tarasov, Zh.

Vychisl. Mat. Mat. Fiz. 33, 1030 (1993).
16. E. V. Zakharov, S. I. Safronov, and R. P. Tarasov, Zh.

Vychisl. Mat. Mat. Fiz. 38, 734 (1998).
17. L. V. Bad’in, Preprint No. 131, IPM AN SSSR (Institute

of Applied Mathematics, Moscow, 1982).
18. R. P. Tarasov, Zh. Vychisl. Mat. Mat. Fiz. 36 (11), 44

(1996).
19. O. F. Antonenko, Computing Systems (IM SO AN SSSR,

Novgorod, 1964), No. 12, pp. 39–47 [in Russian].

Translated by V. Isaakyan
TECHNICAL PHYSICS      Vol. 50      No. 2      2005



  

Technical Physics, Vol. 50, No. 2, 2005, pp. 249–258. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 75, No. 2, 2005, pp. 110–120.
Original Russian Text Copyright © 2005 by Bad’in, Zyuzin, Safronov, Slavnov, Tarasov.

                                                               

ELECTRON AND ION BEAMS,
ACCELERATORS

                      
Computer Analysis of the Source Image Structure 
in 3D Electron–Optic Systems: 

II. A Stationary Electromagnetic System
L. V. Bad’in, L. N. Zyuzin, S. I. Safronov, Yu. K. Slavnov, and R. P. Tarasov

Research Institute of Pulsed Technology, Moscow, 115304 Russia
e-mail: crabro@aport.ru

Received February 24, 2004; in final form, June 25, 2004

Abstract—Computer analysis of the image of an arbitrary (point or extended) source obtained in 3D electron–
optic systems is performed. The systems involve magnetostatic and electrostatic fields, which, respectively,
focus and deflect the electron beams. Two approaches to image scanning are considered where the scan poten-
tials are applied in two (symmetric and asymmetric) modes. It is shown that the spread function of the source,
which characterizes the imaging quality of the system most fully, may serve as a primary computational crite-
rion. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The electron–optic systems (EOSs), including the
scan units, of pulsed electron-to-optic image converters
where imaging is accomplished under the action of the
magnetic field produced by a dc coil may basically
offer a femtosecond time resolution. An integral stage
in designing magnetic (as well as electrostatic [1])
EOSs is computer analysis of them.

A 3D mathematical model of such an EOS is con-
structed on the assumption that the net electromagnetic
field in it is stationary. An axisymmetric magnetostatic
field here is produced by a dc coil, and an electrostatic
field (including that deflecting the electron beams) is
generated by the electrodes under given potentials. A
computer model of such EOSs is realized in the form of
a program package.

Below, a devised program package is used to ana-
lyze the effect of image scan modes (one-phase or
asymmetric and two-phase or symmetric) on the reso-
lution of a magnetic-focusing EOS. Image scanning is
carried out in two ways: using a pair of separate plates
and using a pair of plates with two (entrance and exit)
slit diaphragms.

1. BASIC DIAGRAM OF AN ELECTRON–OPTIC 
SYSTEM

The basic diagram of an EOS with magnetic focus-
ing and electrostatic scanning is depicted in Fig. 1.
Here, S1 is the cathode; S2, fine-mesh grid; S3, anode;
S4, deflecting plates; S5 and S6, slit diaphragms; S7,
screen; and S8, dc coil. Conducting electrodes Si (i = 1–
7) are under fixed potentials, S2 being assumed to be
transparent for electrons.
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2. COMPUTER MODEL 
OF AN ELECTRON–OPTIC SYSTEM 

WITH A STATIONARY ELECTROMAGNETIC 
FIELD

The electromagnetic field will be assumed to be sta-
tionary. Then, the electrostatic and magnetostatic prob-
lems can be solved separately.

The electrostatic field is generated by the electrodes
kept under given potentials. The statement of this field
problem and its numerical solution by the finite-group
method (FGM) are considered in [1].

Unlike a potential electrostatic field, a magneto-
static field of strength H is a vortex field. A numerical
solution to linear field problems of magnetostatics can
generally be obtained by solving boundary integral
equations.

A dc coil generates an axisymmetric magnetic field.
Such magnetostatic fields can be calculated by analyti-
cally extending the field from the axis of symmetry into
the interior of the domain. If H(r, z) = (Hr , 0, Hz) is the
strength of an axisymmetric magnetostatic field in the
cylindrical coordinate system (r, ϕ, z) and z is the axis
of revolution, the magnetic field components can be
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Fig. 1.
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represented as

(1)

It is assumed that the magnetic field distribution at
the axis of the system, Hz(0, z), either is set analytically
or is known from experimental data.

Such a technique, being rather simple, has found
wide application. At the same time, the procedure of
analytical extension is conditionally stable in numerical
terms. Therefore, an algorithm implementing relation-
ships (1) becomes of crucial importance.

The calculation scheme for analytical extension that
is embodied in the program package for EOS simula-
tion allowed us to construct a magnetic field in the
cylindrical domain 0 ≤ r ≤ (1/2)R, where R is the radius
of the anode chamber, with a high accuracy.

The characteristics of the system, as in the case of
electrostatic EOSs, are found by means of trajectory
analysis [1].

Electron trajectories in a stationary electromagnetic
field are described by the Cauchy problem for the set of
partial differential equations

(2)

where r is the radius vector of a particle with mass m
and charge e and c is the speed of light (for the initial
conditions of particle escape, see [1]).

In relativistic case (2), numerical integration of the
equations of motion is performed by standard (implicit
or explicit) second-order schemes involved in the finite-
difference method. It is essential that here, as in the case
of electrostatic EOSs, adaptive beam-attendant spatial
computational grids are used.

As before [1], the image of point emitter P on given
surface s will be characterized by the center of gravity
τ of the electron beam emitted, rms deviation σ of the
beam from center of gravity τ, and spread function Sp(i,
j) of the point emitter.

The calculation results will be visualized in Carte-
sian coordinate system XYZ where the origin is placed
at the center of the cathode and the Z axis is aligned
with the optical axis of the EOS; cylindrical coordinate
system r, ψ, z related to the XYZ system; and Cartesian
system X'Y'Z' to visualize the spread functions. Coordi-
nate system X'Y'Z' is obtained from XYZ by rotation
through the angle equal to the angle of rotation of the
image on the screen. In this case, the electrons emitted
from cathode points (0, y, 0) are collected on the screen
along the Y' axis provided that the plates are grounded.
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4
----Hz'' 0 z,( )– …,+=

Hz r z,( ) r
2
---Hz'– 0 z,( ) r3

16
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d
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  e∇ϕ x( )–
e
c
-- dr

dt
----- x t,( )H x( ) ,+=
3. IMAGE STRUCTURE IN AN AXISYMMETRIC 
ELECTRON–OPTIC SYSTEM

Unlike an electrostatic field, a magnetostatic field
imparts not only translational but also rotational motion
to electrons. This necessitates a close look at the elec-
tron gun of an EOS (an axisymmetric EOS without
scanning is meant, Fig. 1).

Imaging by means of the electron gun may be
viewed as bringing electrons emitted by point emitters
on the cathode surface to a net beam that has a minimal
cross-sectional area (crossover) in a certain plane Z = Zc

(the plane of crossover). In axisymmetric focusing
EOSs, the position of the crossover and the net beam
structure in the plane of crossover virtually completely
define the imaging quality, since, in these EOSs, the
electron trajectories downstream of the plane of cross-
over are close to straight lines. Therefore, computer
analysis of net beam passage through the EOS working
region (from the cathode to the screen) and approxima-
tion of the subsequent trajectories by straight lines give
a comprehensive estimate of the performance of the
electron gun. Such an approach is efficient in determin-
ing the shape and position of the image surface; image
structure on the image surface, screen, or any secant
plane of interest; angle of rotation of the image, magni-
fication on a given plane; position of the crossover and
the structure of the net beam in it; and position of the
scan unit. Moreover, one may also extract the time
characteristics with this approach (they are omitted
from the present consideration).

Below, we report computer analysis data on the
behavior of a net beam consisting of 11 elementary
beams in the working region of the electron gun (Fig. 1)
(the scan unit is under the potential of the anode cham-
ber, i.e., grounded). Each of the elementary beams that
is emitted from a cathode point (r, ϕ = const, r = 0, 0.5,
1.0, …, 5.0 mm) may trace 512 equiprobable trajecto-
ries on assumption that the probability of a particle
escaping within a solid angle dω at an angle θ to normal
np to point P varies as cos3θdω [1]. As follows from
computing experiments, this number of trajectories suf-
fices to study the structure of an elementary electron
beam in the EOS under consideration. We also assume
that the electrons have the same escape energy U0; that
is, the energy spread in the source is disregarded. The
results that follow were obtained for U0 = 4 eV and a
potential difference between the cathode (S1) and grid
(S2) of 10 kV.

(i) The parameters of the magnetic lens were
selected such that the beam emitted from the cathode
point with the radial coordinate r = r7 = 3 mm is focused
on the screen (i.e., the rms deviation σ7 from the center
of gravity τ7 of the beam is minimal). When focused,
the centers of gravity of the 11 beams lie on the gener-
atrix of a surface of revolution that is the image surface.
In this case, σi (i = 1, 2, …, 11) take values from the
segment [0.01, 0.15 mm] and the image surface is fairly
TECHNICAL PHYSICS      Vol. 50      No. 2      2005
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Fig. 2.
accurately approximated by part of an ellipsoid of rev-
olution.

Figures 2a and 2b show, respectively, the values and
isolines of the spread functions (i, j) of the point

emitter with the radial coordinate r11 = 5 mm (the edge
of the cathode) on the image surface. When visualized
on the image surface and a fortiori on the screen, the
spread functions of the elementary beams look much
different. It should be emphasized, however, that dis-
crete spread functions are hard to compare visually: an
extra smoothing procedure is needed.

Spread functions (i, j), k = 1–11, were smoothed

with the same B-spline digital filter [1]. Smoothed

spread functions (i, j) will be designated as (i, j),

k = 1–11.

Sr11

Srk

Srk
Ŝrk
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On the image surface, functions (i, j) have a well-
defined bell-shaped form, which somewhat deforms
with distance from the axis of the system. Figures 2c
and 2d demonstrate, respectively, the isolines and val-

ues of spread function (i, j). On the screen, function

(i, j) alone has a bell-shaped form. This is because
the beams emitted from cathode points ri, i = 1–6, are
focused behind the screen plane and those emitted from
points ri, i = 8–11, are focused before the screen.

Accordingly, functions (i, j), i = 1–6, on the screen
have the form of a flattened bell and bell-shaped func-

tions (i, j), i = 8–11, have a clearly cut substrate (dif-
fuse base).

The advanced digital processing techniques make it
possible to comprehensively analyze the image struc-
ture in an EOS by computer methods. For instance,

Ŝrk

Ŝrk
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Ŝri



252 BAD’IN et al.
Fig. 3.

(a) (b)

(c) (d)
Fig. 3a shows the “photograph” of the point emitter
image (r1 = 0, the center of the cathode) on the screen
with a 1000-fold magnification (the photograph was
obtained by digital processing methods); Fig. 3b, the
photograph of the point emitter with r11 = 5 mm; and
Figs. 3c and 3d, the photographs of the emitter r11 and
the emitter 0.01 mm distant. In Fig. 3c, the emitters lie
on the same ray passing through the center of the cath-
ode; in Fig. 3d, the emitters lie on a normal to this ray.
In both cases (Figs. 3c and 3d), the images on the screen
are separated, the separation being more distinct in
Fig. 3d.

(ii) Computer analysis of mathematical models that
are developed for technical systems (EOS in our case)
is of practical value if computation is carried out with
split-hair accuracy. It is, as a rule, assumed that the
mathematical model of a given system adequately
describes physical processes in it. It would be good to
compare the system’s characteristics found experimen-
tally and analytically; however, this is a challenge
sometimes for a number of reasons (relevant experi-
mental data are impossible to obtain, a high cost of the
experiment, rough measurements, etc.). At the same
time, computational tests, representative as they may
be, cannot serve as an undeniable indication of validity
of computer analysis. Moreover, a known test problem
that is fully adequate to a given mathematical model
usually can be selected only in simplest cases. Fortu-
nately, there is a test problem that is applicable (to a cer-
tain degree of confidence) to the EOS 3D mathematical
model under consideration.

Gaussian dioptrics assumes that systems with an
axisymmetric stationary electromagnetic field have a
cylindrical region G of small radius r = RG ! L (L is the
EOS length) that encircles the axis of revolution of the
system and where the radial components of the electro-
magnetic field linearly depend on r. If so, paraxial
monochromatic beams tracing smooth trajectories that
entirely fall into axial region G are focused into a point.
If, in addition, there exists an external electromagnetic
field that deflects the electron beams and weakly inter-
acts with the starting focusing field, the paraxial beam
is deflected as a whole, i.e., again is focused into a
point.

The EOS mathematical model considered in this
work is stated in a much more general manner than
Gaussian dioptrics. At the same time, if we assume that
cylindrical region G of radius RG is accessible to
machine calculation (RG/L > 10–5) and that the com-
puter model inaccuracy (associated with the need for
solving axisymmetric and 3D field problems and inte-
TECHNICAL PHYSICS      Vol. 50      No. 2      2005
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grating the equations of motion) is comparable to RG/L,
there appears a possibility of Gaussian dioptrics being
numerically implemented in the framework of the EOS
computer model mentioned above. To do this requires
that solid angle dω to which the elementary paraxial
beams are confined (180° in the previous calculations)
be considerably decreased.

Figure 4a shows the isolines of spread function
(i, j) for the central electron beam (r1 = 0) with solid

opening angle dω = 180° on the optimal image surface.
Here, the rms deviation of this beam, σ1(dω) =
σ1(180°) = 0.01 mm, is almost equal to the radius of the
spot of confusion. Having fixed all the basic parameters
of the elementary beam under consideration (the num-
ber of trajectories (512), the electron escape energy, and
the electron angular distribution), we will see how the
size of the spot of confusion varies with the opening
angle dω of the beam.

The threefold decrease in the opening angle (dω =
60°) does not cause any appreciable change in the spot
of confusion (Fig. 4b), and the characteristic size of this
spot for the electron beam with dω = 20° (Fig. 4c) is
only ≈2.2 times smaller than its initial value (for dω =
180°). At the same time, the central beam with dω = 10°
is focused to a “point of calculation” (Fig. 4d); that is,
the characteristic size of the spot of confusion on the
image surface becomes 200 times smaller than the ini-
tial value, σ1(10°) = 5 × 10–5 mm.

A shift of the point emitter from the cathode center
(dω = 10°) results in a rapid diffusion of the focus: the
beam emitted from the cathode point with the radial
coordinate r = 0.5 mm has a spot of confusion that is
comparable in size to the spot of the initial central beam
with dω = 180° (Fig. 4e). Then, when the scan poten-
tials applied to the deflecting plates equal ±30 V (the
slit diaphragms are under the potential of the anode
chamber, Fig. 1), the central paraxial beam (r1 = 0, dω =
10°) is deflected by 3 mm virtually as a whole (σ = 8 ×
10–5 mm). At the same time, as the scan potential rises
to ±100 V, the spot of confusion of the central paraxial
beam on the image surface substantially expands to σ ≈
0.004 mm (Fig. 4f).

Thus, the basic concepts of Gaussian dioptrics are
implemented in terms of our computer model of EOSs
with an electromagnetic field.

(iii) Investigation into the behavior of a bunch of
elementary beams as a whole (net beam) in the EOS
working region makes it possible to find the position of
the crossover and determine the net beam structure in it.
Other parameters that can be determined are the posi-
tion of the deflecting plates and an optimal angle
between them that eliminate vignetting, as well as the
angle through which the image should be rotated. To
illustrate the aforesaid, let us consider a bunch of six
elementary beams emitted from cathode points (r, ψ =
const), r = 0, 1, …, 5 mm. Each of the beams is assumed
to cover 32 equiprobable trajectories.

Sr1
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Figure 5 visualizes the structure of the net beam in
different cross sections (z = 0). Figure 5a refers to the
section where the effect of the magnetic field (rota-
tional moment) on the net beam becomes tangible. Fig-
ure 5b shows the net beam structure in the plane of
crossover. Figures 5c and 5d illustrate the situations
when the net beam, respectively, comes into and goes
out of the space between the deflecting plates. Figure 5e
demonstrates the net beam structure in a section
between the scan unit and screen. Finally, Fig. 5f visu-
alizes the net beam structure on the screen. Note the
angle of rotation of the image remains nearly constant
from the entrance to the deflecting space to the screen.
The transverse sizes of the net beam at the entrance to
and the exit from the deflecting space specify a minimal
distance between the deflecting plates that excludes
vignetting with the scan unit grounded.

4. EFFECT OF ELECTROSTATIC SCANNING 
MODES ON THE IMAGE STRUCTURE

Let us set the task of elucidating the influence of the
one-phase (asymmetric) and two-phase (symmetric)
scan modes on the image structure in an EOS. Two
types of scan units are considered: a pair of separate
deflecting plates and a pair of plates with slit dia-
phragms (Fig. 1). In the one-phase scan mode, one plate
is grounded and the other is under a given potential. In
the two-phase mode, the deflecting potentials are equal
in magnitude but opposite in sign.

(i) Separate deflecting planes. The EOS resolution
versus scan potential ϕ for the symmetric and asym-
metric scan modes was studied as follows. Given ϕ, six
elementary beams escaping the cathode (z = 0) with
escape coordinates (x = 0, yi; i = 0, 1, …, 5) were calcu-
lated (y0 = 0, y1 = 1, …, y5 = 5 mm). Each of the beams
consisted of 512 equiprobable trajectories (the electron
angular distribution for U0 = 4 eV is given above).
Then, the least rms deviation σϕ(i) (i = 0, 1, …, 5) was
calculated for each of the beams; that is, the focus of the
beams was found in terms of this criterion. The values
of σ0(i) (namely, σ0(0) = 0.009 mm, σ0(1) = 0.009 mm,
σ0(2) = 0.015 mm, σ0(3) = 0.013 mm, σ0(4) =
0.014 mm, and σ0(5) = 0.015 mm) correspond to the
case of the grounded plates (ϕ = ±0 V, axisymmetric
system), with the beam originating from point (x = 0,
y3 = 3 mm) being focused on the screen.

For the symmetric scan mode, Table 1 lists ratios
σϕ(i)/σ0(i) (i = 0, 1, …, 5) for scan potentials ϕ = ±90,
±180, , and  V.

From Table 1, one can see that the resolution on the
image surface may drop 1.33–5.10 times depending on
scan potential ϕ and the point emitter position. Column
X shows the values of coordinate x (the scan direction)
of the spread centers for all the six elementary beams
on the screen.

90+− 180+−
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For the asymmetric scan mode, ratios (i)/ (i)
(i = 0, 1, …, 5) for scan potentials ϕ = 180, 360, –180,
and –360 V are given in Table 2. In this case, the reso-

σϕ σ0

lution of the instrument on the image surface may drop
6–24 times depending on the scan potential and the
point emitter position.
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In the symmetric and asymmetric scan modes, the
image surfaces do not coincide and share a single line
of intersection, which is the generatrix of the image sur-
face in an axisymmetric EOS. Also, the deflection of
the elementary beam is virtually completely defined by
potential difference ∆ϕ between the deflecting plates
(columns X in Tables 1, 2). Consequently, the resolu-
tions of the instrument on the image surfaces that are
observed in the two scan modes can be well compared

Table 1.  Two-phase scan mode

ϕ, V\yi,
mm 0 1 2 3 4 5 X,

mm

±180 5.1 5.1 3.33 4.08 4.14 4.6 17.2

±90 1.78 1.89 1.67 2.15 2.36 2.8 8.65

±90 1.78 1.67 1.33 1.77 2.14 3 –8.65

5.1 4.89 3.2 3.85 3.79 4.93 –17.2180+−
if ∆ϕ is fixed. Ratio (i)/ (i) (where (i) and

(i) are the rms deviations in the one- and two-phase
scan modes, respectively) shows in which of the modes
and how much the resolution on the image surface is
higher.

The values of (i)/ (i) (i = 0, 1, …, 5) for ∆ϕ =
180, 360, –180, and –360 V are given in Tables 1 and 2.
As follows from these tables, the resolution on the
image surface is two to seven times higher under the
two-phase scan conditions. Moreover, the depth of the
image surface along the z coordinate is 13 mm in the
symmetric mode and 30 mm in the asymmetric one.
Thus, in the system under consideration, the two-phase
scan mode is several times more efficient in terms of
imaging.

(ii) Deflecting plates with slit diaphragms. The
EOS design (Fig. 1) the scan unit of which consists of
deflecting plates with two, entrance and exit, slit dia-

σ∆ϕ
1 σ∆ϕ

2 σ∆ϕ
1

σ∆ϕ
2

σ∆ϕ
1 σ∆ϕ

2
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phragms will be numerically analyzed following the
scheme used to analyze the design with a pair of sepa-
rated scanning plates (see the previous section).

For the symmetric scan mode and scan potentials
ϕ = ±90 and ±180 V, ratios σϕ(i)/σ0(i) (i = 0, 1, …, 5)
are listed in Table 3.

The results of calculation for ϕ = ±90 and ±180 V
are virtually identical to those for ϕ =  and  V
up to sign (Table 3, column X). Thus, the resolution of
the EOS design under consideration decreases two to
seven times on the image surface according to the scan
potential and point emitter position.

For the asymmetric scan mode and scan potentials
ϕ = 180, 360, –180, and –360 V, ratios σϕ(i)/σ0(i) (i = 0,
1, …, 5) are listed in Table 4.

Under these scan conditions, the resolution on the
image surface drops by a factor of 5–18.

90+− 180+−
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Comparing Tables 3 and 4 shows that, for the EOS
design considered, the resolution in the two-phase scan
mode may exceed that in the one-phase mode by a fac-
tor of four at most. Thus, diaphragming somewhat
reduces the difference between the two scan modes.
Because of this, it would be of interest to estimate the
effect of diaphragming on the resolution in either scan
mode.

It follows from Tables 1 and 3 that diaphragming in
the two-phase mode leads to an insignificant increase
(≈10%) in the resolution at the edge of the image sur-
face; in the remaining part of the image surface, the res-
olution, however, drops. In the one-phase mode, con-
versely, diaphragming improves the resolution by 30–
60% throughout the image field (Tables 2, 4).

The fact that diaphragming variously affects the res-
olution in the one- and two-phase scan modes is just the
reason why the resolutions approach each other in the
scan mode with diaphragming. At the same time, the
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depth of the image surface along the z coordinate is 11
and 27 mm for the symmetric and asymmetric scan
modes, respectively. Hence, in this case, too, the two-
phase mode seems much more preferable than the one-
phase regime. Such a conclusion is totally consistent
with the result for electrostatic EOSs [1].

(iii) Structure of the spot of confusion for an ele-
mentary electron beam. The σ criterion (σ is the rms
deviation of the trajectories from the center of gravity τ
of a beam) is a straightforward [1], reliable, and more
or less information-carrying criterion in simulating
EOSs with an electrostatic and stationary electromag-
netic field, in which the spot of confusion is near-circu-

Table 2.  One-phase scan mode

ϕ, V\yi,
mm 0 1 2 3 4 5 X, mm

14.89 14.22 9.67 12.54 14.71 16.93 17.2

9.44 9.56 6.13 8 8.79 10.27 8.65

12 12.11 7.66 9.77 10.64 11.73 –8.65

24.11 23.67 15.06 18.85 19.93 21.47 –17.2

360

0 
 

180

0 
 

180–

0 
 

360–

0 
 

Table 3.  Two-phase scan mode

ϕ, V\yi,
mm 0 1 2 3 4 5 X,

mm

±180 7.11 6.44 4.06 4.38 3.85 4.2 16.3

±90 4 2.33 2.4 2.46 2.21 2.6 8.2

Table 4.  One-phase scan mode

ϕ, V\yi,
mm 0 1 2 3 4 5 X,

mm

6.56 6.22 4.93 7.07 10.35 14 16.3

5 5 3.73 5.46 6.57 8.3 8.2

8.11 8.11 5.33 7.31 8.36 9.87 –8.2

17.33 17.1 12.85 14.77 16.43 18.53 –16.3

360

0 
 

180

0 
 

180–

0 
 

360–

0 
 
lar. Furthermore, this criterion is quite convenient for
comparative analysis of basically different operating
modes (designs), e.g., of those considered above (a sev-
eral-fold difference in resolution). At the same time,
scanning of the image not merely deforms but consid-
erably reconfigures the spots of confusion of point
emitters; consequently, it is necessary to replace the
rms deviation by a more informative criterion in study-
ing the image structure. The point-spread functions

before, Sp(i, j), and after, (i, j), the smoothing proce-
dure characterize the structure of the spot of confusion
of an electron beam most comprehensively [1].

In real EOSs, numerical image analysis requires that
a great number of spread functions (for different emit-
ters in order to gain a representative set of scan poten-
tials ϕ) to be known. Here, we will consider only the
spread function on the image surface for point emitter
P (x = 0, y = –5, z = 0) at scan potentials ϕ = ±0, ±180,
and –360 V (asymmetric scan mode) in the case of slit
diaphragm scanning (Fig. 1).

The values and isolines of the spread functions

before, (i, j), and after, (i, j), filtering at ϕ =
±0 V are given in Fig. 2. For the two-phase scan mode

at ϕ = ±180 V, the values and isolines of (i, j) are
given in Figs. 6a and 6b, respectively. Figures 6c and 6d

show the isolines and values of (i, j), respectively.

Similar information on spread functions (i, j) and

(i, j) in the asymmetric scan mode (ϕ = –360 V) is
visualized in Fig. 7.

Spread functions (i, j) (i = 1–3; Figs. 2a, 6a, 7a)
and especially their isolines (Figs. 2b, 6b, 7b) clearly
demonstrate that the rms deviation as a criterion for
studying the image structure is inappropriate. At the
same time, the isolines (Figs. 2c, 6c, 7c) and values

(Figs. 2d, 6d, 7d) of spread lines (i, j) (i = 1–3) cor-
roborate the validity of the scan mode analysis per-
formed above.

Note in conclusion that use of point-spread func-
tions greatly extends the potentialities of numerical
analysis when studying the image structure in various
EOS designs (Fig. 3) and makes it possible to study not
only stationary spatial characteristics but many of oth-
ers as well.
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Abstract—The influence of a gas atmosphere (O2 or air) on the transverse photovoltage (TPV) induced by
X-ray irradiation in CdI2 specimens is studied. It is shown that the TPV measured at 295 K in a vacuum grows
almost linearly with X-ray dose rate R. In a gas atmosphere, the TPV is of opposite sign and tends to saturation
when R exceeds 200 R/min. After evacuation of the system, the TPV value increases, attains a maximum, and
then abruptly drops (changing sign) to the initial “vacuum” value. Based on the results of this study and pub-
lished data, it is shown that such behavior of the TPV in CdI2 is related to X-ray-stimulated chemisorption pro-
ceeding by the acceptor mechanism. © 2005 Pleiades Publishing, Inc.
The processes induced by high-energy radiation at
the solid–air interface are today among the most topical
and yet poorly studied problems in radiation materials
science [1]. Interest in these processes is also heighten-
ing because of the search for promising materials for
high-sensitive gas analyzers [2].

The transverse photovoltaic effects arising in lay-
ered CdI2 crystals exposed to optical and X-ray radia-
tion in a vacuum were considered in [3–5]. In this study,
we investigate the influence of gases (O2 and air) on the
transverse photovoltage arising in X-ray-irradiated
CdI2 crystals.

Specimens from CdI2 crystals grown by the Bridg-
man–Stockbarger technique [6] were prepared and
studied in the same way as described in [3, 4]. The pho-
tovoltage was measured in the open-circuit mode, Uoc,
on the specimens prepared in the form of ~10 × 8 ×
(0.5–6.0)-mm parallelepipeds such that the normal to
the surface irradiated (10 × 8 mm) made an angle of 0°
and 45° with crystallographic axis C6. Ohmic contacts
made of K-13b silver paste were deposited on the 8 ×
(0.5–6.0)-mm lateral surfaces. The specimens with the
contacts were placed into a metallic cryostat, where the
measurements were performed at 295 K both in a vac-
uum and in the gas media. URS-55A equipment with an
VSV-2 copper-anode X-ray tube (U = 45 kV, I = 0–
12 mA) served as an X-ray source.

In the 0°-cut specimens measured in a vacuum, the
TPV value is almost independent of their thickness. For
both the 0°- and 45°-cut specimens measuring 10 × 8 ×
6 mm, the TPV grows linearly with dose rate R. Curve 1
in Fig. 1 shows this dependence for the 0°-cut speci-
men. The 45°-cut specimen is approximately 2.5 times
more sensitive to X rays. The TPV values measured on
the layered cadmium iodide crystals in a vacuum agree
with the data reported in [3–5, 7].
1063-7842/05/5002- $26.00 0259
X-ray irradiation of CdI2 crystals at atmospheric
pressure in air also generates a TPV. However, in this
case, the voltage is of opposite sign and tends to satura-
tion at R > 200 R/min (Fig. 1, curve 2). For the CdI2

specimens in the O2 atmosphere, the dependence is
similar but the saturated value of the TPV is 20–25%
higher. For the irradiation in air, the TPV induced in the
0°-cut specimen 0.5 mm thick is nearly half that mea-
sured in the 1.5-mm-thick specimen.

The dependence of the TPV generated in the 45°-cut
CdI2 crystal on the oxygen pressure at R = 700 R/min is
shown in Fig. 2. As the pressure decreases, the TPV
grows, peaks, and then abruptly drops, changing sign
and saturating at the initial (vacuum) level. In air, the

200 400 600

20

10

0

10

20

30

+

– R, R/min

1

2

U, mV

Fig. 1. TPV vs. R for the 0°-cut CdI2 crystal (1) in a vacuum
and (2) in air.
© 2005 Pleiades Publishing, Inc.
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run of the TPV versus pressure dependence is the same.
Such behavior is also typical of the 0°-CdI2 crystals.

When O2 is first introduced into the cryostat during
the irradiation and then is pumped off, the TPV exhibits
a spike. In addition, the voltage changes sign when the
gas is both introduced and pumped out. As compared to
the curve in Fig. 2, such a dependence shows an extra
peak at the instant of gas delivery.

It was found that the TPV resulting upon the X-ray
irradiation in oxygen strongly (nearly exponentially)
varies with temperature in the interval from 295 to
380 K. In the high-temperature range, the dependence
Uoc = f(R) becomes even linear at R > 150 R/min. With
a decrease in the crystal temperature to 295 K, the TPV
takes its initial value. Preirradiation of the specimens in
a vacuum does not affect their adsorptivity with respect
to air and oxygen either.

The results presented above suggest that a gas atmo-
sphere has a considerable effect on the value of a TPV
induced by X rays in CdI2 and may change its sign. It
was shown [3–5] that transverse photovoltaic effects in
layered CdI2 crystals exposed to optical or X-ray radia-
tion in a vacuum appear as the photogalvanic effect and
the transverse Dember effect [8], since the structure,
chemical bonds, and electric conductivity in these crys-
tals are highly anisotropic. The saturation of the TPV in
the gas media at 295 K and R > 200 R/min may be
attributed to competition between adsorption and the
process associated with the Dember mechanism [7],
with adsorption prevailing at high temperatures.

An intriguing feature of our observations is that the
R dependence of the TPV in CdI2 at 295 K under atmo-
spheric pressure (Fig. 1, curve 2) is similar to that taken
in a vacuum at 90 K [8]. At low temperatures, cadmium
diiodide has n-type conductivity, while at 295 K, unex-
cited cadmium iodide is a p-type semiconductor. Irradi-
ation by X rays at this temperature generates donor cen-
ters at the surface and the surface takes a negative
charge [8]. Sorption of acceptor-type gases (O2, NO2,

10–1 10–2 10–3 10–4

40

20

20

40

0
+

–

U, mV

P, Torr

Fig. 2. TPV vs. the oxygen pressure for the 45°-cut CdI2
crystal at R = 700 R/min.
N2O, or CO2) [9, 10] reduces the electron concentration
at the surface and lowers the conductivity of the speci-
men. Simultaneously, the concentration of holes near
the surface grows. The competition between the sorp-
tion on the surface and the generation of nonequilib-
rium charge carriers in the bulk specifies the sign and
absolute value of the TPV as a function of pressure in
the system [10].

Since the TPV takes the initial value and sign after
the gas has been pumped off, one can suppose that
X-ray-stimulated adsorption takes place on the surface
irradiated. The charge carriers trapped by surface
defects are likely to act as absorption centers, short-
lived defects playing a major part in the sorption pro-
cess [10].

The participation of free charge carriers in the
adsorption-related processes on the surface, as well as
the fact that these processes are temperature-activated,
suggest that the gases influence the transverse photoef-
fects via chemisorption [10–13]. It is implied that gas
particles are adsorbed on the surface, capturing free
electrons, rather than penetrate into the crystal [14].

The chemisorption produces a local surface energy
level, which is similar to normal impurity levels related,
for example, to surface defects [12, 13]. Localization of
charge carriers on surface electron states charges the
surface. If free carriers are present in the bulk, they are
redistributed so as to neutralize the surface charge. A
double electrical layer thus forms near the surface, with
its thickness depending on the concentration of free
carriers and ionized impurities.

Thus, the efficiency of chemisorption to a large
extent depends on the charge concentration near the
surface and on the density of surface states. Under sta-
tionary conditions, adsorption on the semiconductor
surface comes into equilibrium when two processes
equilibrate with each other: (i) exchange between parti-
cles adsorbed and the gas medium and (ii) electron
exchange between the electron–hole system of the crys-
tal and the adsorption-produced level [10–12]. In this
system, surface and bulk charges generate an intense
electric field directed normally to the surface irradiated.
Under sorption, electron (hole)-enriched or depleted
regions may be as deep as 0.5–50 nm [12].

The thinner the 0°-cut crystal, the more intense the
chemisorption on the rear surface due to X rays that
extend through the crystal. This generates an extra elec-
tric field opposing the field caused by the gas adsorp-
tion on the front surface. Competition between the
fields diminishes the TPV value. The increase in the
TPV early in the pumping may be due to the fact that
the absorption of X rays by the gas medium and charge
exchange between the particles adsorbed and the gas
weaken. The sharp fall of the TPV and reversal of its
sign during pumping are related to a decrease in the
number of particles adsorbed on the surface.
TECHNICAL PHYSICS      Vol. 50      No. 2      2005
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Abstract—Analysis of a simplified equation derived previously for small-scale velocity components shows
that any turbulent flow of an incompressible liquid becomes unstable against infinitesimal perturbations of
small-scale velocity components if the strain rate tensor for the large-scale velocity is high. Such a statement
comes into conflict with the classical stability theory, which specifically asserts that the Poiseuille flow in a cir-
cular tube is linearly stable against infinitesimal perturbations. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The behavior of a turbulent flow under shear is of
fundamental interest, since just this type of flow is most
frequently encountered in applications. The question
arises as to whether turbulence can be suppressed by
the shear induced by a large-scale flow [1]. Our analysis
based on an approximate equation for small-scale
velocity components [2] shows that shear always
enhances the turbulence in a linear approximation. On
the other hand, data following from the analysis of the
Orr–Sommerfeld equations indicate that the Poiseuille
flow in a circular tube is linearly stable against infinites-
imal velocity perturbations, however large the Rey-
nolds number, being unstable against finite-amplitude
perturbations [3, 4]. A possible physical explanation for
such a contradiction will be given in the last section.

LINEAR ANALYSIS OF SMALL-SCALE 
POLARIZATION FOURIER COMPONENTS OF 

THE VELOCITY IN ANISOTRPIC TURBULENCE

With viscous forces showing up on small scales
ignored, the instability depends on the positive real
parts of characteristic indices λ1, 2 involved in the linear
stability theory:

(1)

where P contains only strain rate components Sij =

(∂jUi + ∂iUj) (here, Ui is an ith component of the

large-scale velocity) and Q contains, in addition, the
components of large-scale vorticity vector Ω = curlU [2].

Evidently, the condition –P/2 > 0 suffices to induce
instability along some of the directions in the spectral
space. Hereafter, we will seek for the directions along
which quantity –P/2 is maximal. Note that the square

λ1 2,
P
2
---–

1
2
--- P2 4Q– ,±=

1
2
---
1063-7842/05/5002- $26.00 0262
root in expression (1) may only increase the value of λ1.
Rotating the coordinate system, one can bring symmet-
ric tensor S to a diagonal form, with eigenvalues S11,
S22, and S33 occupying the leading diagonal. They may
be ranked in descending order as

(2)

In view of the incompressibility condition, we have

(3)

In the spherical coordinate system, the expressions
for P and Q after straightforward transformations take
the form [2]

(4)

(5)

where θ ∈  [0, 2π] and η ∈  ,  are the angles in

the spherical coordinate system and W = curlU (W =
{Ω1, Ω2, Ω3}).

Let us introduce, for convenience, function

(6)

S11 S22 S33.≥ ≥

S11 S22 S33+ + 0.=

P
1
4
---

1
4
--- 2θcos–

3
4
--- 2ηcos–

1
4
--- 2η 2θcoscos– 

  S11=

+ 1
4
---

1
4
--- 2θcos

3
4
--- 2ηcos–

1
4
--- 2η 2θcoscos+ + 

  S22,

Q
1
4
--- 1 2θcos–( ) 1 2ηcos+( )S11

2–=

– S11S2 2ηcos
S22

2

2
------- 1 2θcos+( ) 1 2ηcos+( )–

+
1
4
--- θ ηΩ1coscos θ ηΩ2 ηΩ3sin+cossin+( )2,

π
2
---–

π
2
---

f
P

S11
-------, S11 0,>–=
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and seek its maximum in angular variables. In view of
(2), the explicit expression for function f will be

(7)

where α = S22/S11.
From (2) and (3), it follows that

(8)

Now we introduce new variables a = cos2θ and b =
cos2η (|a| ≤ 1, |b| ≤ 1). The relationships

(9)

(10)

are the necessary maximum conditions for function f in
the new variables.

At α = 1, the linear set of Eqs. (9) and (10) has no
solutions; at α ≠ 1, it has the unique solution

(11)

(12)
From (8) and (11), it follows that

(13)
With regard to the above restrictions imposed on

variables a and b (i.e., to their ranges of definition), we
conclude that, in the angular variables, function f may
reach a maximum only at the extremities of their ranges
of definition, i.e., on the sides of a unity square. Con-
sider four sides of this square in detail:

then, fmax = 1 at b = 1;

then, fmax = α at b = 1;

then, fmax = 1 at a = 1;

f –
1
4
--- 1

4
--- 2θcos

3
4
--- 2ηcos

1
4
--- 2η 2θcoscos+ + +=

+ α –
1
4
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4
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3
4
--- 2η 1

4
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TECHNICAL PHYSICS      Vol. 50      No. 2      2005
then, f = const.

Thus, for any α ∈  , 1 , there exists a positive

maximum of function f, fmax = 1. In other words, in a
coordinate system moving with local velocity U, any
flow of an incompressible liquid that has a locally
large-scale tensor S ≠ 0 becomes unstable against infin-
itesimal small-scale velocity perturbations provided
that S11 is large enough for viscosity forces to be over-
come [2]; that is,

(14)

Here, ν is the molecular viscosity and kmax = 2π /L,
where L is a scale that separates large-scale and small-
scale motions.

ANALYTICAL RESULTS ND 
CONCLUSIONS

Relationship (14) implies that, in a local coordinate
system moving with large-scale velocity U, any large-
scale flow of an incompressible liquid that exhibits
arbitrary large-scale vorticity Ω is linearly unstable
against infinitesimal perturbations of the small-scale
velocity, provided that strain rate tensor S for the large-
scale velocity is high (i.e., exceeds viscosity forces).
Then, the validity of the approach adopted in the clas-
sical stability theory becomes questionable. This
approach leads to the Orr–Sommerfeld equation, in
terms of which, specifically, the parabolic profile of the
Poiseuille flow in a circular tube reproduces the large-
scale and small-scale regions of the flow simulta-
neously (the parabolic or linear profile contributes to
the Fourier harmonics of small-scale vortices). Accord-
ingly, the small-scale velocity components are taken
into account twice. This raises the question: is the state-
ment of the classical theory that the Poiseuille laminar
flow is stable against infinitesimal velocity perturba-
tions [3, 4] correct? It would be of interest to experi-
mentally verify the results obtained in this paper, rela-
tionships (14) in the first place, by artificially generat-
ing small-scale harmonic perturbations like those
considered in [4].
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Abstract—Questions related to the effect of a plasma layer on the vortex structures in a gas flow are considered
for the case in which the layer forms in a turbulent flow or in a flow of a mixed type. It is shown that the onset
of a plasma layer in the turbulent flow leads to the efficient suppression of the low-frequency components of
the turbulent spectrum and to the displacement of the spectrum toward higher frequencies. © 2005 Pleiades
Publishing, Inc.
When a viscous gas flows along the surface of a thin
plate, a laminar or a turbulent boundary layer (or a layer
of mixed type) arises near the plate. In the case of a tur-
bulent flow or a flow of a mixed type, the flow structure
at the outer boundary of a viscous sublayer in an inho-
mogeneous turbulent region near the plate surface is
spontaneously destroyed. The substantial vorticity gen-
erated at the plate surface evolves into pronounced vor-
tices, which then move away from the surface sublayer
and carry with them the angular momentum into the
outer region [1]. In statistical models [2] used to
describe the physical processes occurring in developed
turbulence, it is assumed that such a flow is generated
by an ensemble of irregularly evolving vortex elements
(perturbations, inhomogeneities, etc.) with very differ-
ent sizes. In order of magnitude, the sizes of the largest
vortices are equal to the dimension of the region of tur-
bulent motion and the sizes of the smallest vortices are
equal to the dimension of the region across which the
momentum can be efficiently transported under the
action of molecular viscosity, which smoothes the
velocity gradients [3].

Some questions related to a viscous gas stream flow-
ing around a plasma sheet produced by a slipping dis-
charge were discussed in [4, 5]. In [4], the problem was
analyzed of how the plasma sheet affects the character
of the gas flow, as well as of the dependence of the vis-
cosity on the degree of gas ionization in the plasma
sheet. In [5], the issues regarding the dynamic evolution
of a slipping discharge at the surface of a dielectric
plate in a viscous gas flow were considered. The results
obtained in those papers show that, after the discharge
has come to an end, a plasma layer with a characteristic
temperature distribution over its cross section forms in
a boundary layer above the plate around which the gas
flows [5]. Figure 1 shows the profile of the normalized
temperature T/Tmax across the boundary layer at the
time t0 just after the termination of energy deposition in
1063-7842/05/5002- $26.00 ©0264
the slipping discharge (in the figure, δ* corresponds to
the maximum temperature Tmax [5]).

In order to gain insight into the effect of the plasma
region on the vortex structures, it is important to deter-
mine the relationship of the spatial scale of the smallest
vortices to the Debye screening length and the molecu-
lar mean free path because it might be necessary to take
into account molecular motions in order to describe sit-
uations in which the motions of the medium occur on
very short spatial scales. In turbulent flows at P0 ≈
1 atm, the average molecular mean free path is much
less than the sizes of the vortices [2, 3] and, in the case
under consideration, it is also less than the Debye
screening length (n ≈ 1012 cm–3, RD ≈ 2.5 × 10–4 cm), so
we can apply a fluid model [2]. If we consider a vortex
as a tube (Fig. 2), associate the angular velocity ωV with
the frequency fV, and define the period of the vortex by
the equality TV = 2π/ωV, then we can speak of a turbu-
lent flow spectrum whose width may amount to 10 kHz
and even more [3]. It is usually assumed that vortices of
vastly different sizes only slightly influence one

1.0

0.8

0.6

0.2 0.4 0.6 0.8 1.0
δ, mm

T/Tmax

δ*

0
0.4

Fig. 1. Profile of the normalized temperature T/Tmax over
the cross section of the boundary layer for Tmax ≈ 3000 K,
δ* ≈ 0.7 mm, and δ = 1 mm.
 2005 Pleiades Publishing, Inc.
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another; it is only vortices of comparable size that can
exchange energy. It was established that viscosity has
an insignificant impact on the motion and structure of
the main turbulent flow, but it plays a governing role in
the final stage of turbulent energy dissipation, when the
velocity gradients in small vortices are smoothed out by
viscous stresses [2]. If a plasma region arises within the
turbulent flow, then the energy of large-scale vortices
(such that their sizes are comparable to the transverse
size δ of the plasma region, see Fig. 2) can be lost
mainly because of the rotation of an electric dipole
formed by a vortex in the nonuniform electric field of
the plasma layer.

Let us examine this process in more detail. We
assume that, after the slipping discharge has come to an
end, it leaves a plasma region with a charged particle
density (at the time t0) of about n ≈ 1012 cm–3 [6]. At
later times, the plasma density decreases as a result of
diffusion toward the boundaries of the region. After the
plasma has relaxed to a quasineutral state (the charac-
teristic relaxation time being τM ~ (RD)2/4De, where De

is the electron diffusion coefficient [7]), the plasma
region of thickness δ is dominated by the ambipolar dif-
fusion of charged particles toward its outer boundaries.
Let there be a vortex with a characteristic angular
velocity ωV and characteristic radius RV (RV < δ*, see
Fig. 2) within a plasma layer of thickness δ*. We
assume that the density distribution of charged particles
over a cylinder of unit length with radius RV corre-
sponds to the density distribution of charged particles
inside the layer. In the one-dimensional case, the diffu-
sive flow of charged particles is directed along the nor-
mal to the wall (which is assumed to be in the XZ
plane). The cylinder rotates in the direction indicated in
Fig. 2. In this case, under the assumption that the cylin-
der rotates as a single entity, the lower density regions
lying inside the rotating cylinder will fall into higher
density regions lying outside the cylinder. In this case,
the charged particles will diffuse from the outer regions
(where their density is higher) into the regions inside
the cylinder (where their density is lower). The depth to
which the charged particles diffuse into the cylinder is
determined by the rotation velocity of the cylinder, the
electron diffusion velocity, the ambipolar diffusion
velocity, and the gradients of the charged particle den-
sities between the regions outside and inside the cylin-
der.

The accumulation of the electric charge at the sur-
face of the rotating cylinder results from diffusion
caused by the difference in the charged particle densi-
ties in the outer and inner layers just adjacent to the sur-
face of the cylinder. The depth to which the charged
paticles diffuse into the rotating vortex does not exceed
the Debye radius RD. Let us estimate the charge accu-
mulated at the cylinder surface. This charge is deter-
mined by the ambipolar electric field EA and also by the
ratio of the linear velocity ul of the surface of the rotat-
ing cylinder to the diffusion velocity uA of the charged
TECHNICAL PHYSICS      Vol. 50      No. 2      2005
particles. The temperature distribution over the cross
section of the boundary layer was calculated in our ear-
lier paper [5]. According to the results of those calcula-
tions, we have ∇ n/n @ ∇ T/T, which indicates that ther-
mal diffusion is unimportant. The ambipolar electric
field EA is described by the expression [8]

(1)

and the ambipolar diffusion velocity uA is equal to

(2)

where DA = 2T/miνin is the ambipolar diffusion coeffi-
cient, mi is the mass of an ion, νin is the ion–neutral col-
lision frequency (the plasma is assumed to be weakly
ionized and isothermal, Te = Ti = T ≈ 0.3 eV), and e is
the charge of an electron.

Under these circumstances, the electron–neutral
collision frequency in air is equal to νen = 4 × 109 P0 s–1

and the ion–neutral collision frequency is equal to νin =

( )νen = 2 × 107 P0 s–1, where P0 is the air pressure
in torr [9].

Using formulas (1) and (2), we can determine the
dipole moment of a vortex in an inhomogeneous
plasma layer. The extent of charge separation in the
ambipolar field EA in region I in Fig. 2 is determined by
the depth l to which the charged particles diffuse into
the inner layer just adjacent to the surface of the rotat-
ing vortex. For ωV = 0, the depth l is on the order of
RD(EA/ED), where ED = T/eRD. Under the conditions
adopted above, we have RD ≈ 2.5 × 10–4 cm. For n ≈
1012 cm–3, this yields the following value of the maxi-
mum surface charge density: σ0 ≈ 6.3 × 105e cm–2. The
charge density profile in the plasma layer is given by
the expressions [8]

(3)

where νi ≈ π2DA/4(δ*)2 is the rate of ionizing collisions
[8]. The angular distribution of the surface charge den-

EA T /e( )∇ n/n,≈

uA DA∇ n/n,–=

m/M

n = nmax X ν i/DA( ), δ* ν i/DAcos  = π/2,

Y

δ

δ∗
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Vx(Y)

ωV
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Fig. 2. Schematic cross section illustrating the position of
the vortex in a plasma layer of thickness δ.



266 MINAEV, RUKHADZE
sity over the surface of the cylinder has the form σ =
σ0cosθ.

In the ambipolar electric field EA, a vortex having
such a surface charge density distribution rotates with
the angular velocity ωV . As a result of this rotation, the
dipole moment of the vortex is averaged out. Under our
conditions, we have EA ≈ 2.6 × 10–2 V/cm, νen ≈ 3 ×
1012 s–1, νin ≈ 1.5 × 1010 s–1, DA ≈ 2Di ≈ 7.2 × 10–1 cm2/s,
De ≈ 78 cm2/s, σ0(max) ≈ 6.9 × 105e cm–2, and νi = 7 ×
102 s–1.

The dipole moment P is equal to [10]

(4)

A dipole having such a moment rotates in the ambi-
polar electric field EA of the plasma layer; in this case,
the dipole moment is inversely proportional to the rota-
tion velocity ω.

Hence, a steady distribution of the charges forming
the dipole is established at the expense of the energy of
the rotating vortex. Let us estimate the energy lost by a
vortex with a dipole moment P during its rotation in the
ambipolar electric field EA. Provided that the viscous
friction can be ignored, the portion W of the kinetic
energy lost by the rotating vortex is determined by the
energy lost by the dipole rotating in the field EA. The
energy lost during the time that a vortex of radius RV =
δ/2, rotating with an angular velocity ω = 1 rad/s, exe-
cutes one revolution is equal to Wmax ≈ 10–14 J. The
kinetic energy of a vortex of the same size is equal to

P EAσ0RV
2 /2.=
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Fig. 3. Dependence of the quantities W (solid curve) and WK
(dashed curve) on f for a fixed value of RV .
WK ≈ 2.5 × 10–18 J. The dependence of the energies WK

and W on f = ω/2π is illustrated in Fig. 3.
The results obtained above show that (i) the kinetic

energy lost by a vortex in a plasma layer is determined
by the dipole moment and angular velocity, (ii) the
energy lost by a vortex of fixed radius decreases in
inverse proportion to the angular velocity, and (iii) the
kinetic energy of a vortex increases in direct proportion
to the square of the angular velocity. Hence, the forma-
tion of a plasma layer in the turbulent flow region leads
to the efficient suppression of the low-frequency com-
ponents of the turbulent spectrum, thus resulting in the
displacement of the spectrum toward higher frequen-
cies, i.e., toward the frequency range in which the
energy of the vortices is efficiently dissipated by vis-
cous friction.
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Abstract—By accurately measuring the position of the peaks in the ion mass spectrum of residual gases, it is
found that the peaks are associated with hydrocarbon ions. The “mass defect” spectrum is close to that obtained
analytically. The deviations observed are related to the presence of the 13C isotope and nonsaturation of bonds
in the ions recorded. The experimental data obtained may be used as a reference in impurity microanalysis, in
calibrating the mass scale of mass spectrometers, and in checking the theory of mass spectrum analysis. © 2005
Pleiades Publishing, Inc.
The sensitivity of commercial spectrometers pro-
duced in the Commonwealth of Independent States
allows direct (without concentration or using reference
mixtures) analysis of microimpurities at a level of 1–
10 ppm. Impurity ion identification is facilitated in the
presence of reference masses (peaks), as which some of
the residual gas peaks may be used. The positions of the
remaining peaks must also be known, since they may
merge with the impurity peaks.

The basic goal of this work is to identify the mass
spectra of residual gases in the mass interval 300–500,
which partially covers the mass spectrum of fragments
of a uranium hexafluoride molecule or a molecule of
heavy partially or completely substituted haloid hydro-
carbons. Calibration of the mass scale in this case is
similar to the calibration used in determining the
masses of metastable uranium hexafluoride ions [1].

The measurements were made with an MI-1201
AGM mass spectrometer in the ion count regime,
which was equipped with a secondary emission multi-
plier and did not need any hardware refinement. Since
the instrument is delivered by the vendor with a control
and data acquisiton program compatible with MS-
DOS, we devised a program with similar functionality
in the software environment Delphi for the operational
system Windows 9x/NT/2000. In particular, the pro-
gram allows for determination of the position of a peak
and its width at a given height and mass calibration
using two peaks. The standard service of the software
environment allows one to look through spectrum frag-
ments. Among the drivers, there is the one starting the
1063-7842/05/5002- $26.00 0267
program in MS-DOS. The Windows operational sys-
tems make network control of the instrument and pro-
gram authorization (in the case of Windows NT/2000)
possible.

The mass spectrum may be stored as a file written in
the format of the program or as a text file containing
two columns of figures.

The processing of the mass spectrum, including the
determination of the position, heights, and widths of the
peaks; the background level; and the associated errors,
is accomplished by another (processing) program [2].
The processing program splits the mass spectrum into
peak-containing areas and approximates each of the
peaks by a Gaussian function with the least squares
method. It also allows correction of the mass scale
using known (reference) lines. Also, the time of pro-
cessing of the mass spectrum is calculated.

Both programs complemented by the user’s manual
and the mass spectrum considered in this work are
available from the site http: //www.mp.dpt.ustu.ru./mass
spectrometry/.

The measurements were performed without cooling
the traps of the magnetic discharge pumps at a pressure
of ≈3 × 10–6 Pa (the reading of a vacuum gage), an
emission current from the cathode of 0.1 mA, and an
ionization voltage of 50 V. For the ion masses to be
measured with a high accuracy, the mass spectrum was
recorded with a step of 0.01 u and an integration time
of 0.1 s under a continuously varying magnetic field.
The basic reason for the systematic drift of the mass
scale was probably heating of the uncooled magnet dur-
ing its long-term operation in the large mass range.
© 2005 Pleiades Publishing, Inc.



 

268

        

KALININ 

 

et al

 

.

                                                                           
To identify the mass spectrum, specifically to locate
the molecular ion peaks, it was processed by the pro-
gram mentioned above [2]. The mass scale was cali-
brated against the highest and narrowest peaks, which
were 3 u distant from the molecular peaks on either side
(the reason for such an effect will be clarified below).

The calibration (correction) curve for the positions
of the peaks that were calculated by the program was
approximated by a parabola with a standard deviation
not exceeding 10 mmu (1 mmu = 10–3 u). Then, the
mass spectrum was refined (corrected) by taking into
account the parameters of the parabola.

The position of the peaks in the mass spectrum thus
obtained is convenient to describe by introducing the
notion of ion mass defect (see [3, 4, p. 76]). The mass
defect is defined as the difference between the mass
expressed in atomic mass units and the mass number.
The mass defect spectra of residual hydrocarbons (one
was derived (measured) from the mass spectrum cor-
rected and the other was calculated using the tabulated
values of the masses, which ignore the isotope compo-
sition) are presented in Fig. 1. The sharp variation of the
mass defect in the spectrum measured is due to changes
in the ion composition,

(1)

Figure 1 also shows a fragment of the spectrum cal-
culated for C27Hx ions where the concentration of
unsaturated bonds exceeds the minimal necessary value
for the given mass.

The qualitative agreement of the spectra indicates
the adequate identification of the mass spectrum. The
increasing and more irregular discrepancy observed at
masses above 480 u is due to the depression of the
peaks. The discrepancy is most pronounced near the
molecular ion masses. This is because most of the

CxHy Cx 1+ Hy 11– .
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Fig. 1. Measured and calculated defect mass spectra for
residual hydrocarbons. M, mass; dM, mass defect; 1, calcu-
lated spectrum; 2, measured spectrum; and 3, ions with a
high concentration of unsaturated bonds.
molecular ions constituting the peaks next to the molec-
ular peaks (on the side of larger masses) contain the 13C
isotope; therefore, the points of the mass defect spec-
trum that correspond to these peaks lie above the spec-
trum calculated. In this case, change (1) in the isotope
composition turns into

(2)

For example, peaks 381 and 409 (Fig. 2) almost
completely consist of the molecular ions 13C12C26H56

and 13C12C28H60, respectively. For these ions, the devi-
ation from the spectrum calculated is 85 mmu. The
height of 13C isotope-containing peak 381 that was cal-
culated from the height of peak 380 (with allowance for
the isotopic contribution of the latter to peak 379) coin-
cides with the measured height (accurate to the mea-
surement error). This means that peak 381 consists only
of molecules containing the 13C isotope. That is why the
mass defects for peaks 380 and 381 are close to each
other.

The fact that the molecular peaks with masses 380
and 408 are high (which indicates the stability of
C27H56 and C29H60 molecules against electron impact)
needs special consideration. The interplay between the
peaks discussed above shows up not only near the
molecular ions but also when the change 12C  12CH
in the ion composition (the mass defect increases by
7.8 mmu) gives way to the change 12C  13C (the
increase by 4.5 mmu).

Ions with a high concentration of unsaturated bonds
(Fig. 1) basically may greatly influence the mass defect.
In our case, however, such ions are present in small
amounts, as follows from the moderate deviations from
the calculation data, including the deviation related to
the change in the isotope composition. The influence of
such ions is yet seen in the reduction of the mass defects

C12 C13 .
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M, u
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Fig. 2. Fragment of the mass spectrum of residual hydrocar-
bons. The positions of the molecular ions are indicated.
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for the peaks lying on the other (smaller mass) side of
the molecular peaks. The reduction is distinct, e.g., near
peak 366. One more piece of evidence that the ions with
a high concentration of unsaturated bonds are contribu-
tors to the mass defect is the broadening of the peaks
subject to influence of such ions.

Therefore, when calibrating the mass scale of a
mass spectrometer, one should select high narrow
peaks far away from molecular peaks. If, in our case,
the calibration masses met the formula MnH2n – 6, the
standard deviation of the calibration (correction) curve
would have reduced twofold to become 5 mmu.
TECHNICAL PHYSICS      Vol. 50      No. 2      2005
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Abstract—Emission characteristics of a high-current pulsed discharge in xenon are studied experimentally.
The study is aimed at developing a source of spontaneous UV radiation (with λ ≤ 250 nm) for controlling high-
voltage crystalline diamond switches. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Spontaneous emission sources based on pulsed or
continuous-wave discharges in gases or gas–vapor mix-
tures have found widespread application [1–4]. Of
great promise are pulsed UV lamps based on a freely
expanding high-pressure discharge (the so-called glob-
ular pulsed lamps) [4]. Distinctive features of such
lamps are the short pulse duration, the high emission
power, a fairly high (a few electronvolts) temperature of
the discharge plasma, the broad emission spectrum
containing a continuum component, and the low dis-
charge volume that enables the efficient optical focus-
ing of radiation onto an irradiated object. As compared
to discharges in other noble gases, discharges in xenon
are characterized by the highest electric field and the
lowest potential drop across the electrode sheaths. This
feature makes discharges in xenon most promising
from the standpoint of the lamp efficiency [1]. It is rea-
sonable to employ the advantages of xenon globular
lamps in developing inexpensive efficient emission
sources for controlling high-voltage crystalline dia-
mond switches [5–7]. It has been shown that such
switches can be controlled by an electron beam [8] or a
UV laser [9]. However, the use of lasers or electron
accelerators in commercial switches is inexpedient
because of their high cost. In this context, the develop-
ment of an inexpensive pulsed UV source for control-
ling a crystalline diamond switch is a challenging prob-
lem. It is necessary that the bulk of the emission energy
of such a source lie in the wavelength range of λ ≤
250 nm, which corresponds to the fundamental absorp-
tion band of crystalline diamond (λ ≤ 225 nm), as well
as to the impurity absorption band [10, 11]. It is also
desirable that the pulse duration of such a source be no
longer than a few microseconds.

This paper, which is a continuation of [12], is
devoted to studying the emission characteristics of the
plasma of a freely expanding discharge in xenon.
1063-7842/05/5002- $26.00 0270
EXPERIMENTAL SETUP AND MEASUREMENT 
TECHNIQUE

The experimental setup consisted of a storage
capacitor bank and a high-voltage generator loaded on
a pulsed gas-discharge lamp. The cylindrical quartz
lamp with an inner diameter of 20 mm was filled with
xenon. The interelectrode distance was 5 mm. The
transmittance of the lamp wall in the spectral range of
200–250 nm was no less than 85%.

The discharge circuit consisted of pulsed lamp F,
storage capacitor C0, and trigatron switch S (Fig. 1).
Capacitor C0 was charged through resistance R. The
charging voltage U0 was 12 kV; the storage capacitance
C0 was either 3.3 or 233 nF; and the natural oscillation
period of the discharge circuit was 0.08 or 0.85 µs,
respectively.

The system for recording the discharge emission
consisted of an FÉK-22SPU coaxial phototube and an
EPP2000C-25 spectrometer (manufactured by Stellar-
Net Inc., USA) equipped with a CCD array photodetec-
tor. The spectrometer was used to record the emission
spectrum (in relative units) in the 200- to 850-nm spec-
tral range. The FÉK-22SPU, with the known absolute
spectral sensitivity in the 200–650 nm spectral range,

R F

L

S

U0
C0

Fig. 1. Discharge circuit.
© 2005 Pleiades Publishing, Inc.
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was used to monitor the time evolution of the emission
power. The combined data from the EPP2000C-25 and
FÉK-22SPU allowed us to record the emission spec-
trum in absolute units within the spectral sensitivity
range of the FÉK-22SPU.

The discharge glow was photographed with a Sensi-
Cam CCD camera. To synchronize the discharge igni-
tion with the operation of the CCD camera, the dis-
charge gap was illuminated with radiation from a weak
spark discharge in air. The discharge current and volt-
age were monitored with a current shunt and a resistive
voltage divider, respectively.

A diamond switch was modeled by a IIa-type crys-
talline diamond photodetector manufactured by the
Alameda Applied Sciences Corporation. The electric
circuit of the photodetector was similar to that used in
[9] and consisted of a detector, a storage capacitor, and
a load resistance. The charging voltage of the storage
capacitor was 250 V.

EXPERIMENTAL RESULTS 
AND DISCUSSION

In our experiments, we recorded the waveforms of
the discharge current and voltage, the emission power
and spectrum of the discharge, and the time evolution
of the visible discharge glow.

Figure 2 shows the waveforms of the current and
voltage for a discharge in xenon (for C0 = 233 nF and
U0 = 12 kV) at a pressure of 550 Torr, as well as the time
evolution of the emission power from the discharge and
the power deposited in the discharge. It can be seen that
more than 70% of the deposited energy is supplied in
the first half-period of the discharge current oscilla-
tions. About 36% of the energy stored in the capacitor
C0 was deposited in the discharge, whereas the rest of
energy was dissipated in the switch. The emission
energy within the wavelength range of 200–250 nm
was 4.2% of the energy deposited in the discharge. The
total emission energy within the 200- to 850-nm wave-
length range under study was ~1 J, the peak emission
power being ~500 kW. The full width at half-maximum
(FWHM) of the discharge emission pulse was 1.6 µs.
The emission power reached its maximum ~700 ns
after the discharge ignition. The discharge afterglow
lasted over a few microseconds.

The discharge emission spectrum is shown in Fig. 3.
It can seen that most of the emission energy falls into
the UV region.

Photographing a discharge in xenon (for τ ≈ 0.85
and 0.08 µs) with a CCD camera (see Fig. 4) showed
that the breakdown of the discharge gap was almost
always multichannel. Individual channels then
expanded and, after ~200 ns, merged together.

As is known [3], the spatial distribution of radiation
from pulsed lamps is mainly determined by the distri-
bution of the emission intensity over the plasma vol-
TECHNICAL PHYSICS      Vol. 50      No. 2      2005
ume. Therefore, it is of interest to study the time evolu-
tion of the plasma glow.

Figure 4a illustrates the time evolution of the dis-
charge glow at C0 = 233 nF and p = 550 Torr. It can be
seen that the discharge glow becomes more uniform as
the glowing region expands.

For a much smaller storage capacitance, the plasma
glow remained spatially nonuniform till the end of the
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Fig. 2. Waveforms of the discharge current I, discharge volt-
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Fig. 3. Energy spectrum of the discharge emission.
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(a)

(b)

0–100 ns 100–200 ns 200–300 ns 600–700 ns 1.2–1.3 µs 2.7–2.8 µs

0–100 ns 100–200 ns 200–300 ns 500–600 ns 1.0–1.1 µs 2.5–2.6 µs

Fig. 4. Photographs of a discharge for C0 = (a) 233 and (b) 3.3 nF.
glow. This can be seen in Fig. 4b, which shows a series
of photographs of a discharge for C0 = 3.3 nF, U0 =
12 kV, and p = 550 Torr. The FWHM of the glow is
220 ns. The glow intensity is maximal within the first
150 ns, when there are several discharge channels.

The photographs of the discharge glow allowed us
to estimate the radius of the discharge channel, the rate
at which it expands, and the averaged (over the dis-
charge cross section) current density (Fig. 5), as well as
to determine the time behavior of the discharge bright-
ness. The estimates for C0 = 233 nF are shown in Fig. 2.

200

0 2
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t, µs
3 41

400

0

600

800

2

0

3

4

1

1
2

3

R, mm; dkR/dt, km/s

Fig. 5. Time evolution of (1) the discharge current density,
(2) the discharge channel radius, and (3) the expansion rate
of the discharge channel. The circles show the measured
discharge channel radii.
These results are valid starting from the instant t ~
200 ns, after which there is only one discharge channel
(the discharge brightness and the current density were
calculated using the approximate time dependence of
the discharge channel radius).

When a crystalline diamond detector was illumi-
nated with the discharge radiation (at C0 = 233 nF, τ =
1.1 µs, and p = 550 Torr), the waveform of the current
pulse in the detector circuit differed from the waveform
of the emission pulse (Fig. 6). The reason is that the
time evolution of the emission power in the spectral

0.2

2

ID; Pout, arb. units

t, µs
0 4 6 8

0.4

0.6

1.0

0.8

Fig. 6. Waveforms of the detector current ID (dotted curve)
and discharge emission power Pout (solid curve).
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range of λ ≤ 300 nm (recorded by the detector) was not
the same as that in the wavelength range of 200–650 nm
(recorded by the FÉK-22SPU). In [13], under similar
conditions, the emission pulse in the wavelength range
of 200–300 nm was also observed to be shorter than
that in the range of 200–650 nm.

CONCLUSIONS

We have studied the spectral, energy, and temporal
characteristics of a pulsed discharge in xenon. The time
evolution of the discharge glow has been studied using
a CCD camera. At a pressure of 550 Torr, the emission
energy in the 200- to 850-nm wavelength range was
~1 J, and in the 200- to 250-nm wavelength range, it
was ~0.3 J, the conversion efficiency of electric energy
into radiation being 4.2%. The maximal discharge
brightness was >400 kW/(sr cm2), and the peak emis-
sion power was ~500 kW. The results obtained open up
prospects of using pulsed xenon lamps to control high-
voltage crystalline diamond switches.
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Abstract—A new type of hologram that elaborates upon the simplest (Gabor) on-axis hologram is suggested.
The new approach makes it possible to eliminate the projected image distortions typical of the Gabor hologram.
Specifically, based on a reference-free thick hologram, an on-axis holographic screen that does not transmit the
zeroth order is prepared. In addition, this screen does not produce a halo and the conjugate image. It allows for
recording in one spectral range and reconstruction in another, thereby greatly simplifying the choice of a light-
sensitive record medium. With this screen, a color image can be projected. © 2005 Pleiades Publishing, Inc.
Elaborating upon the concept of recording the
Gabor hologram for creating image-projecting screens,
we have conceived the idea of using a reference-free
volume hologram for this purpose. The essence of the
idea is that, during recording the reference-free holo-
gram of a diffuser, phase modulation may suppress the
zeroth order in the image reconstructed. The scheme for
recording such a screen is depicted in Fig. 1. Diffuser D

is illuminated by coherent radiation . When interfer-
ing, the rays scattered from points P1, P2, P3, … of dif-
fuser D produce a complicated interference pattern,
which is recorded on light-sensitive film F. The struc-
ture thus obtained is called the reference-free holo-
gram. Each point of an object (diffuser) recorded on
such a hologram, e.g., point P2, may be viewed as a
coherent source relative to the remaining points of the
object (P1, P3, …). The entire hologram H can be rep-
resented as a sum of subholograms sh1, sh2, sh3, …:

.

Each of the subholograms may be independently
read by one of the points of the diffuser. In this case,
this point can be viewed as a reference source for the
given hologram.

The scheme for reconstructing image DR of diffuser
D, which serves as a visibility zone when 2D images
are projected, is shown in Fig. 2. Hologram H with the
image of the diffuser is illuminated by the radiation

from point , which coincides with one of the points
(point P2 in this case) of the image of diffuser D (Fig. 1)
recorded on the hologram. Interacting with an appropri-
ate subhologram, this radiation reconstructs virtual
image DV of diffuser D. Lens L behind hologram H
converts virtual image DV to real image DR.

l 0

H sh1 sh2 sh3 …+ + +=

P2
'
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The scheme for 2D image projecting with such a
screen is shown in Fig. 3. Projection lens Lp placed at

the position of point  (Fig. 1) projects image I of a
scene onto screen H. Lens L behind the screen produces

P2
'

l0

P2

P3

P1

D

F, H

Fig. 1. Scheme for recording the diffuse screen. D, diffuser
illuminated by coherent radiation ; (P1, P2, P3, …), sep-
arate points of diffuser D; and F, light-sensitive film record-
ing hologram H.

l 0

P'2

DV H L
DR

Fig. 2. Scheme for reconstructing image DR of the diffuser,

which serves as a visibility zone. H, hologram; , position

of the point reference source used to reconstruct the image
of diffuser D recorded on the hologram; DV, virtual image
of diffuser D; and L, lens converting the virtual image DV of
diffuser D to its real image DR.

P2
'

© 2005 Pleiades Publishing, Inc.



        

ON-AXIS DIFFUSE SCREEN 275

                                                              
real image DR of diffuser D. Image DR serves as visibil-
ity zone VZ, through which observer h sees the image I
of the scene focused on screen H.

In the experiments, a thick (0.10–0.15 mm) layer of
self-developing bichromated gelatin sensitive in the
blue range [1–3] was used as a recording medium. Data
recorded on this material are visualized (developed)
directly during exposure and are fixed when kept in the
dark for several days. Thus, recording of the diffuser
hologram may be controlled immediately during expo-
sure.

Figure 4 demonstrates the experimental setup used
for recording and reconstruction of the screens. Lens L0
focuses the laser radiation into point S and then pro-
duces an illuminated spot of diameter ED = 10 mm on
diffuser D. Diffuser D made by the special technology
scatters the light within a small angle (about 0.03 rad).
As a result, the diameter EH of the illuminated spot on
the surface of light-sensitive film F is about 20 mm.
Using the directional diffuser, one can completely uti-
lize the energy of the radiation exposing light-sensitive
film F.

Specifically, early in the exposure, only the zeroth

order (bright point , which is the image of point P2

produced by lens L) is seen at the center of the plane of
visibility zone VZ (Fig. 4). As the exposure increases,
the point image of the zeroth order diffuses and the vis-
ibility zone is uniformly filled with diffuse light. Point
images related to higher diffraction orders were absent.
So were a halo and the conjugate image of the diffuser.

The most interesting feature of the reference-free
volume hologram obtained in our experiments is that,
being recorded by the radiation with λ = 442 nm, it
allows reconstruction by the radiation with λ = 633 nm.
Such an effect, which comes into conflict with the
selectivity rules the volume hologram obeys, may be
explained by the fact that hologram H includes not only
the subhologram corresponding to point P2 but also
many subholograms corresponding to other points of
diffuser D.

The fact that the reference-free hologram can be
reconstructed by radiation of a wavelength much differ-
ent from the recording wavelength virtually means that
the hologram may be recorded in the sensitivity range
of the photographic film and then be used to project
color images.

Thus, having taken the Gabor hologram as the basis,
we devised a new type of hologram that is capable of
compensating for the projected image distortions typi-
cal of the Gabor hologram. Specifically, based on the
reference-free thick hologram, an on-axis holographic
screen was developed that does not transmit the zeroth
order. Nor does this screen produce a halo and the con-
jugate image. Also, it allows for recording in one spec-
tral range and reconstruction in another. Such a feature

P2
'
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simplifies the choice of a record medium and makes it
possible to project a color image through the screen.
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L
HIP2LpI0

DR
h

VZ

Fig. 3. Scheme for projecting 2D images by means of the
screen developed. Lp, projection lens placed at the position

of point  (Fig. 1); L, lens producing real image DR of dif-

fuser D, which is visibility zone VZ for observer h; and I0,
image of scene I focused on screen H.

P2
'

VZ

h

DRL
DS

P'2
L0 P2

ED
EHF, H

Fig. 4. Experimental setup used to record and reconstruct
the on-axis screens. L0, lens focusing the laser radiation into
point S; D, highly directional diffuser with an illuminated
spot of diameter ED; F, light-sensitive film in the plane of
which the diffuse light spot has a diameter EH; L, lens pro-
ducing the real image DR of the diffuser during reconstruc-
tion (here, the diffuser serves as visibility zone VZ for
observer h).
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Abstract—The electron dynamics in a quasi-one-dimensional ballistic ring that is subjected to two rf electric
fields that have mutually orthogonal polarizations and lie in the plane of the ring is considered. The mean dipole
moment and the ring radiation intensity are calculated. The condition for spontaneous symmetry breaking, as a
result of which the dipole moment of the system acquires a constant component, is found. © 2005 Pleiades Pub-
lishing, Inc.
Advances in the technology of mesoscopic struc-
tures are encouraging experimental and theoretical
investigation into low-dimensional one-electron sys-
tems, specifically, quasi-one-dimensional rings (see,
e.g., [1, 2]). Most of the related works were devoted to
quantum phenomena. It has been shown [3–9], how-
ever, that quasi-one-dimensional rings also offer
intriguing classical electrodynamic properties. In this
work, we study the response of an electron placed into
a quasi-one-dimensional ring to two external electro-
magnetic (EM) waves with mutually orthogonal polar-
izations that propagate along the normal to the plane of
the ring (the electric vectors of the waves lie in the
plane of the ring).

Consider a planar ring of radius R (the thickness of
the ring is small compared with its radius) that repre-
sents a quantum well between two concentric potential
barriers. Along the radius, the electron is assumed to
execute quantum motion; along the circumference, its
motion is classical. We also assume that the free path of
the electron is much larger than 2πR (ballistic motion)
and the wavelengths far exceed the diameter of the ring.
Then, in the dipole approximation, the electron experi-
ences the action of only the electric fields of the waves,

(1)

It is assumed that, at the zero time t = 0 (the fields
are absent), the electron has energy W and circulates
along the circumference. The equation of motion of the
electron in the ring has the form

(2)

where  = |e|E1, 2/(mR), e and m are the charge and
effective mass of the electron, α1, 2 = β1, 2 ± π, and ϕ is
the angular coordinate measured from the Ox axis
(which is parallel to field E1).

E E1 ω1t β1+( )sin E2 ω2t β2+( )sin,{ }= .

ϕ̇̇ Ω1
2 ϕ ω1t α1+( )sinsin+

– Ω2
2 ϕ ω2t α2+( )sincos 0,=

Ω1 2,
2
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Field E is assumed to be radio-frequency: ω1, 2 @
ωslow (ωslow is the frequency of the “slow” component of
the electron motion, see below). To gain insight into the
slow motion of the electron, we will make use of the
Kapitsa averaging method [10], which assumes that ϕ =
Φ + ξ, where Φ and ξ characterize the slow motion and
high-frequency oscillations, respectively. The slow

motion obeys the equation mR2  = –∂Ueff/∂Φ, where

(3)

is the effective potential energy and A = 0 if ω1 ≠ ω2 or
A = (1/2)cos(α1 – α2) if ω1 = ω2.

Let us consider a number of special cases following
from expression (3).

(1) If ω1 ≠ ω2, we get from (3)

(4)

If /ω1 > /ω2, potential energy (4) has minima

at Φ = 0 and Φ = π. If /ω1 < /ω2, the potential
energy is minimal at Φ = ±π/2.

(2) If ω1 = ω2 = ω, we have from (3)

(5)

Φ̇̇

Ueff mR2 1
4
---

Ω1
2

ω1
------ 

 
2 Ω2

2

ω2
------ 

 
2

– Φsin
2





=

+
Ω1

2Ω2
2

2
-------------A Φ 1

ω1
2

------ 1

ω2
2

------– 
  1

2
--- 1

ω1
2

------ 1

ω2
2

------+ 
  2Φsin–





Ueff
mR2

4
----------

Ω1
2

ω1
------ 

 
2 Ω2

2

ω2
------ 

 
2

– Φ.sin
2

=

Ω1
2 Ω2

2

Ω1
2 Ω2

2

Ueff
mR2

4ω2
---------- Ω1

4 Ω2
4–( ) Φsin

2[=

– Ω1
2Ω2

2 α1 α2–( ) 2Φsincos ] ,
 2005 Pleiades Publishing, Inc.



QUASI-ONE-DIMENSIONAL BALLISTIC RING 277
which yields

(6)

if Ω1 = Ω2 = Ω .
If α1 – α2 ≠ ±π/2, potential energy (6) has minima at

Φ = π/4 and Φ = 5π/4.
(3) If ω1 = ω2 = ω and α1 – α2 = ±π/2 (elliptically

polarized EM wave), expression (3) takes the form

(7)

(4) If /ω1 = /ω2, it follows from (3) that Ueff =
0 at ω1 ≠ ω2 and/or α1 – α2 = ±π/2.

From expression (4) for the potential energy, we
obtain an equation for the slow (averaged over rf oscil-
lations) electron motion:

(8)

A solution to equation of motion (8) subject to the

initial conditions Φ0 = Φ(0) and  = (0) =
R−1(2W/m)1/2 has the form

(9)

where

(10)

λ = 0 if /ω1 > /ω2 or λ = π/2 if /ω1 < /ω2,

(11)

(12)

sn(χ, k) is the elliptic sine, and F(χ, k) is the elliptic
integral of the first kind [11].

The fundamental frequency of the slow motion of
the electron is given by

(13)
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where K(χ) is the complete elliptic integral of the first
kind [11].

The specific (per electron) dipole moment (relative
to the center of the ring) and the ring radiation intensity
are expressed as [12]

(14)

(15)

The ring radiation intensity is found by substituting
(9) into (15),

(16)

The mean radiation intensity is given by

(17)

where function G(q) has the form

(18)

and E(χ) is the complete elliptic integral of the second
kind [11].

At q ! 1, the electron weakly oscillates and G(q) ≅
q2/2; then, (17) yields

(19)

At q @ 1 (i.e.,  ! ), we have q2 . / ;

therefore, G(q) ≅  q4, (ω0q)4 ≅  , and (17) yields

(20)

Expression (20) coincides with the expression for
the emission of an electron describing a circle of radius
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R with a constant angular velocity [12] that corresponds

to energy W = R2 m/2.

Consider function 〈I〉(q) where q is a function of

either /  or Φ0:

(21)

where

Φ̇0
2

Φ̇0
2 ω0

2

I〈 〉 I0
G q( )

q4
------------ 1 M q( )

1
4
---M2 q( )+ + , Φ0 fix=( ),=
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1 2 Φ0 λ–( )cos–( )
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Fig. 1. 〈I〉/I0 vs. q = q( / ) at Φ0 = π/4.Φ̇0
2

ω0
2

Fig. 2. 〈I〉/I0 vs. q = q(Φ0) at /  = 0.45.Φ̇0 ω0
or

(22)

where B(q) = 2(q2 /  – 1).

Figures 1 and 2 plot the curves 〈I〉/I0(q) for /ω1 >

/ω2 that are constructed by formulas (21) and (22),
respectively.

The mean dipole moment 〈P〉 of the ring is found by
substituting (9) into (14) and averaging the result over
period Tslow = 2π/ωslow. At q > 1, we have 〈P〉 = {0, 0}.
At q < 1, two cases are possible:

for /ω1 > /ω2 and

for /ω1 < /ω2. This effect can be explained as fol-
lows. When exposed to the electric field of an incident
EM wave, the slow motion of the electron is motion
inside a well in the two-well potential relief (see (4)). At
q > 1, the energy of the electron exceeds the height of
the potential barrier between the two wells and the elec-
tron overcomes the barrier. At q < 1, the electron oscil-
lates within one well. Thus, at q = 1, the symmetry
spontaneously breaks and the dipole moment of the
system may acquire a constant component (optical rec-
tification) [3].

If the ring contains N electrons, the expressions for
P and 〈P〉 are multiplied by N and those for I and 〈I〉 , by
N2 (provided that Φ0 and  are the same for all elec-
trons).

Let us make numerical estimates. For R = 5 ×
10−5 cm, m = 0.1me (me is the mass of a free electron),
W = 2 × 10–3 eV, ω1 = 1013 s–1, ω2 = 1014 s–1, E1 = 1.5 ×
104 V/cm, and E2 = 3 × 103 V/cm, we have Ω1 ≈ 2.30 ×
1012 s–1, Ω2 ≈ 1.03 × 1012 s–1, ω0 ≈ 3.73 × 1011 s–1,

/ω0 ≈ 0.45, and /ω1 > /ω2. For Φ0 = π/4 and
the parameter values listed above, we obtain q ≈ 0.84
(see (12)) and ωslow ≈ 2.82 × 1011 s–1 (see (13)). Thus, it
follows from (21) and (22) that 〈I〉/I0 ≈ 8.06. For the EM
wave frequencies used in this work, the inequality
ω1, 2 @ ωslow, which is the condition necessary for the
Kapitsa averaging method to apply, holds. For the elec-
tron collision frequency ν = 5 × 109 s–1, we have 2πν !

I〈 〉 I0
G q( )

q4
------------ 1 B q( )

1
4
---B2 q( )+ + ,=

Φ̇0
2
/ω0

2 fix=( ),

ω0
2 Φ̇0

2

Ω1
2

Ω2
2

P〈 〉 eR
π

2K q( )
---------------± 0,

 
 
 

=

Ω1
2 Ω2

2

P〈 〉 eR 0
π

2K q( )
---------------±,

 
 
 

=

Ω1
2 Ω2

2

Φ̇0

Φ̇0 Ω1
2 Ω2

2
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ωslow, which means that the ballistic approximation
works well in description of the electron dynamics in
the ring.
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Abstract—The behavior of surface polaritons that can propagate along a flat interface between a polarized
Dirac vacuum and a normal metal is studied. Dispersion relations for the surface wave are derived for different
field polarizations, and the frequency domains where this wave may exist are found. It is shown that a constant
electric field polarizing a Dirac vacuum can be determined from experiments on surface wave excitation. ©
2005 Pleiades Publishing, Inc.
Electromagnetic waves propagating along flat inter-
faces between materials with different insulating prop-
erties continue to be a subject of keen interest [1–3]. It
is known that a surface H wave (P polarization) may
propagate along the interface between media with pos-
itive and negative permittivities (ε1 and –|ε2|, respec-
tively), which decays on both sides of the interface [4].

The term surface wave was first introduced in the
context of the theory of rf wave propagation over the
terrestrial surface. As early as in 1907, Zenneck [5, 6]
theoretically showed that a slow rf wave may travel
over conducting areas of the terrestrial (or sea) surface.
Basically, this wave is similar to that propagating along
a conductor.

The optical properties of free electron bunches
[7; Sects. 13, 48] allow investigation of their internal
structure. According to Dirac [8], vacuum may be con-
ceived as a set of free electrons occupying negative-
energy levels. It is shown in this work that, considering
surface polaritons at the polarized Dirac vacuum–nor-
mal metal interface, one can study very high constant
electric fields E0 < Ecr = m2c3/e" = 1.3 × 1016 V/cm (oth-
erwise, i.e., for E0 > Ecr, breakdown of the vacuum will
take place).

A Dirac vacuum polarized by field E0 exhibits not
only insulating but also magnetic properties. Its permit-
tivity and permeability tensors have the form [9]

(1)

(2)

where R = α/360π2  and α = e2/"c.

ε1ij 1 8πRE0
2+( )δij 16πRE0iE0 j,+=

µ1ij 1 8πRE0
2–( )δij 56πRE0iE0 j,+=

Ecr
2
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Note that formulas (1) and (2) apply to both constant
and variable fields if the frequency of the latter is ω !
mc2/" [10].

The permittivity of a normal metal is given by
[11, 12]

(3)

where ωp = (4πne2/m*)1/2 is the electron plasma fre-
quency, n is the electron density, e is the electron
charge, m* is the effective mass of an electron, and τ is
the electron relaxation time (the time between collision
of electrons with defects or impurities).

Formula (3) for the permittivity describes the contri-
bution of intraband transitions to the permittivity of a
gas of near-free electrons in a metal or n-semiconduc-
tor. In high-purity metals, τ ~ 10–9 s; for typical metals,
ωp ~ 1016 s–1 [12]. Therefore, in the range of positive
dispersion τ–1 ! ω < ωp, where ω = 1015–1016 s–1, the
imaginary part of permittivity (3) may be safely
neglected and the decay may be considered weak.
Then, permittivity (3) becomes a real and negative
function of frequency,

(4)

and the metal represents a surface-active medium [13].
As a metal, it is convenient to take an alkali metal,

e.g., Na, with a spherical Fermi surface, which provides
the isotropy of its permittivity. The permeability of a
nonmagnetic metal is µ2ij = δij.

Consider the propagation of a surface electromag-
netic H wave along the polarized Dirac vacuum–normal
metal interface. Let the interface be plane xy. We
assume that the wave propagates along the x axis and
field H is directed along the y axis. For P-polarized
waves, which are proportional to exp(–iωt), with non-

ε2ij ε2δij 1 ωp
2/ω– ω i/τ+( )[ ]δ ij,= =

ε2ij ε2δij ωp
2/ω2 1–( )δij,–= =
© 2005 Pleiades Publishing, Inc.
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zero components {Ex, Hy, Ez}, the Maxwell equations
have the form

(5)

where D = E and B = H.
Let the half-space z > 0 be filled with a polarized

Dirac vacuum with a positive ( ) permittivity and the
half-space z < 0, with a normal metal with a negative
( ) permittivity. The field in the wave decaying at
infinity (z  ±∞) is sought in the form

(6)

(7)

where k, κ1, and κ2 are real. The boundary condition
H1(z = 0) = H2(z = 0) has been already satisfied, and the
continuity condition for Ex yields a dispersion relation
k = k(ω),

(8)

or

(9)

∂Hy/∂z i ω/c( )Dx, ∂Hy/∂x i ω/c( )Dz,–= =

∂Ex/∂z ∂Ez/∂x– i ω/c( )By,=

ε̃ µ̃

ε̃1

ε̃2

H1 H0 ikx κ1z–( ) at z 0,>exp=

H2 H0 ikx κ2z+( ) at z 0,<exp=

1
ε1xx

--------
∂H1

∂z
---------- 1

ε2
----

∂H2

∂z
---------- at z 0= =

κ1

ε1xx

--------
κ2

ε2
-------.=
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It will be seen below that κ2 > κ1. Then, the inequal-
ity |ε2| > ε1xx is a necessary condition for the surface
waves to exist. This inequality imposes an upper limit
on the allowable frequency range: ω < ωp/(1 + ε1xx)1/2.
Consequently, the surface wave frequency must satisfy
the inequalities τ–1 ! ω < ωp/(1 + ε1xx)1/2.

From Maxwell equations (5) for field (7), it follows
that

(10)

Now let us assume that E0 (polarizing field) = (E0x,
0, 0). According to Maxwell equations (5) for field (6),
an expression for κ1 for this direction of the polarizing
field takes the form

(11)

In view of (10) and (11), dispersion relation (9) is
expressed as

κ2
2 k2 ωp

2 ω2
–

c2
------------------.+=

κ1
2 1 24πRE0x

2+( )=

× k2

1 8πRE0x
2+

----------------------------
ω2

c2
------ 1 8πRE0x

2–( )– .
(12)

k2 ω( ) ω2

c2
------=

×
1 8πRE0x

2+( ) ωp
2 ω2

–( ) 1 8πRE0x
2–( )ωp

2 32πRE0x
2 ω2+[ ]

ωp
2 ωp

2 2ω2–( ) 32πRE0x
2 ω4 1 6πRE0x

2+( )–
----------------------------------------------------------------------------------------------------------------------------------------

 
 
 

.

Then, the surface wave frequency must satisfy the
inequalities

If the polarizing field is aligned with the y axis, E0 =
(0, E0y, 0), κ1 appearing in field (6) is given, according

τ 1–
 ! ω ωp/ 2 1 12πRE0x

2+( ).<
to (5), by

(13)

and, in view of (10), we come to the dispersion relation

κ1
2 1 8πRE0y

2+( )=

× k2

1 8πRE0y
2+

----------------------------
ω2

c2
------ 1 48πRE0y

2+( )– ,
(14)

k2 ω( ) ω2

c2
------=

×
1 8πRE0y

2+( ) ωp
2 ω2

–( ) 1 48πRE0y
2+( )ωp

2 – 40πRE0y
2 ω2[ ]

ωp
2 ωp

2 2ω2–( ) 16πRE0y
2 ω4 1 4πRE0y

2+( )–
--------------------------------------------------------------------------------------------------------------------------------------------

 
 
 

.

In this case, the surface wave frequency must satisfy
the inequalities

If the polarizing field is aligned with the z axis, E0 =
(0, 0, E0z), κ1 appearing in field (6) is given, according

τ 1–
 ! ω ωp/ 2 1 4πRE0y

2+( ).<
to (5), by

(15)

κ1
2 1 8πRE0z

2+( )=

× k2

1 24πRE0z
2+

-------------------------------
ω2

c2
------ 1 8πRE0z

2–( )–
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and, in view of (10), we come to the dispersion relation

(16)

k2 ω( ) ω2

c2
------=

×
1 24πRE0z

2+( ) ωp
2 ω2

–( ) 1 8πRE0z
2–( )ωp

2 16πRE0z
2 ω2+[ ]

ωp
2 ωp

2 2ω2–( ) 32πRE0z
2 ω4 1 6πRE0z

2+( )–
------------------------------------------------------------------------------------------------------------------------------------------

 
 
 

.

In this case, the surface wave frequency must satisfy
the inequalities

It is seen from dispersion relations (12), (14), and
(16) that the field polarizing a Dirac vacuum causes the
dependence of the surface wave frequency spectrum on
its polarization.

The figure shows the dispersion curves for the sur-
face polaritons that are obtained by numerically solving
dispersion relations (12), (14), and (16). The difference
between the spectrum branches, which is due to the dif-
ferent directions of the field polarizing the Dirac vac-
uum, is the most pronounced at frequencies close to
ω = ωp/(1 + ε1xx)1/2. From expression (10) for κ2 and dis-
persion relations (12), (14), and (16), it follows that the
penetration depth of the electromagnetic field of the

surface wave into the metal is δ =  ≈ c/ωp =

c/vFks @ rTF, where vF = 105–106 cm/s is the Fermi

velocity of electrons and  = rTF is the Thomas–Fermi
radius. On the other hand, the free path of an electron in

τ 1–
 ! ω ωp/ 2 1 4πRE0z

2+( ).<

κ2
1–

3

ks
1–

1

2

6

5

4

3

0.1 0.2 0.3 0.4 0.5 0.6
ω/ωp

ck/ωp

0.70

Wavevector ck/ωp vs. reduced frequency ω/ωp for surface
polaritons. The bottom curve is the solution to dispersion
relation (12); the middle curve, to dispersion relation (14);
and the top curve, to dispersion relation (16). The parameter

values are ε1xx ≈ 1, R  = 10–3, R  = 2 × 10–3, and

R  = 3 × 10–3. The allowable frequency range is 10–5 ≤
ω/ωp ≤ 0.7.

E0x
2

E0y
2

E0z
2

a metal is 1 = τvF = τωprTF @ rTF. The ratio δ/l =
(c/vF)/ωpτ is on the order of 10–3–10–2. Since δ ! 1, it
may be considered that a surface wave in a metal expe-
riences the anomalous skin effect.

The waves with dispersion relations (12), (14), and
(16) are Zenneck surface waves [5, 6] propagating
along the flat polarized Dirac vacuum–normal metal
interface with the frequencies in the visible range.

If the volume of a polarized Dirac vacuum is exper-
imentally accessible, the contribution of the polarizing
field is the easiest to determine by measuring either the
optical birefringence for linearly polarized light or the
angle of rotation of polarization ellipse for elliptically
polarized light [9]. If only the surface of a Dirac vac-
uum is accessible in an experiment, one readily finds

the contributions R , R , or R  to the permit-
tivity and permeability of a polarized Dirac vacuum
from dispersion relations (12), (14), or (16) by optically
exciting surface waves.

It is easy to check that the propagation of surface E
waves (S polarization) with components {Hx, Ey, Hz)
along such an interface is impossible.
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In Memory of Sergeœ A. Kornilov
S.A. Kornilov, Dr. Sci., Prof., Honored Scientist of
the Russian Federation, and a member of the editorial
board of the Tekhnicheskaya Fizika journal, died Octo-
ber 27, 2004, after a serious disease.

Kornilov was born July 4, 1927, in Tambov in the
family of a serviceman. In 1938, his father was sub-
jected to repression, and Sergeœ and his mother left
Tambov for Leningrad. In spring 1942, being seriously
ill after the blockade winter, Kornilov was conveyed to
the “continent” on the last trip. After the war, he entered
the Moscow Institute of Steel and Alloys. However,
dreaming of the sea from childhood, he made a decision
to leave the Moscow institute for the Leningrad Ship-
Building Institute but was not admitted because of his
bad eyesight. He entered the Leningrad Polytechnical
Institute, Department of Physics and Mathematics, and
graduated from that institute in 1950. In 1954, he
defended his Cand. Sci. dissertation and, in 1968, doc-
toral dissertation. In 1974, Kornilov became the head of
the Chair of Radio Engineering and, in 1975, the dean
of the Department of Radio Physics. From 1978 to
1993, he worked as the head of the Chair of Electron
and Quantum Devices at the Bonch-Bruevich Electro-
technical Institute of Communication. In the last few
years, he worked in this chair as a professor.

Kornilov is the author of 120 scientific publications,
including 2 monographs. Forty disciples of Kornilov
1063-7842/05/5002- $26.00 0284
have defended Cand. Sci. dissertations, and two of
them doctoral dissertations.

The scientific activity of Kornilov was intimately
related to industry. In 1958, he founded a laboratory of
microwave electronics at the Chair of Radio Engineer-
ing, Leningrad Polytechnical Institute, which met the
orders of the Ministry of Electronic Industry of the
Soviet Union and became the forge of brainpower for
this branch of industry. Initially, the laboratory
designed and created microwave tubes. The unique
K-11 frequency-multiplier klystron, with a frequency
multiplication factor of 11, was produced by the Svet-
lana factory for more than 30 years.

From 1960 to his last days, the basic field of Kor-
nilov’s scientific interest was the physics of noise and
fluctuation in electron tubes and solid-state electron
devices. A specific feature of the scientific school
founded by Kornilov was unity of theory and experi-
ment. He developed the quasi-static method of fluctua-
tion analysis for microwave devices, as well as the ade-
quate noise models of amplifier, multiplier, and reflex
klystrons; magnetrons and amplitrons; and oscillators
and amplifiers based on tunnel diodes, avalanche
diodes, bipolar and field-effect transistors, and Gunn
diodes. In addition, Kornilov developed the noise mod-
els of microwave mixers and detectors based on Schot-
tky-barrier diodes. Finally, he devised high-precision
techniques for noise and fluctuation measurement,
which are used in the industry as state standards, spe-
cifically, by manufacturers of high-sensitive and ultra-
low-noise microwave systems.

Kornilov was a highly educated person. He knew
German and English. At the age of forty, he started
studying Spanish and leaned this language perfectly.
He was enthusiastic about poetry and began to translate
Spanish poems. Literary men consider Kornilov’s
translations of M. Lorca and O. Pasa into Russian as the
best of those currently available. Some of the transla-
tions were published in the Vsemirnaya Literatura
journal. A small collection of the Lorca poems trans-
lated by Kornilov was issued by the Boreœ publishing
house.

Those who knew Sergeœ A. Kornilov will remember
him as a man of mighty intellect and high moral princi-
ples.

Editorial Board
© 2005 Pleiades Publishing, Inc.
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