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The effect of multiple scattering on the decay of high-energy particles has been studied. The self-
consistent method for the calculation of decay rates of particles undergoing multiple elastic
collisions in an equilibrium medium has been developed. Influence of multiple scattering on the
decay rate of a neutral pion in a hadron gas has been studied. ©1999 American Institute
of Physics.@S1063-7761~99!00107-9#
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1. INTRODUCTION

The study of nuclear matter generated in the collisions
ultrarelativistic heavy ions makes it necessary to determ
the effect of scattering medium on the decay of high-ene
particles .1–7 The photons and various leptons~such as elec-
trons and neutrinos! produced in such matter carry informa
tion about the state of the studied medium. One of the m
channels in which such particles are generated is the dec
nuclear matter.

The influence of the medium on the particle decay wid
has been investigated extensively.1,3,7–11In those studies the
polarization effects in QCD3,7,8and QED were examined.8–11

In investigating decays in a dense nuclear matter, howe
one should take into account the polarization effects m
tioned above and the multiple scattering of particles in
matter. If the temperatureT of the medium is sufficiently low
so that polarization effects can be ignored, and if the fluct
tions of particle energy due to multiple scattering are on
order of T, then the influence of the medium on the dec
rate is largely determined by multiple collisions of a deca
ing particle.

In this paper we report the results of an experimen
study of the decay of elastically multiply scattered partic
in an equilibrium medium. The decay rate for such partic
has been calculated. If the decaying particle is ultrarelati
tic, multiple scattering leads to the strong broadening of
state under certain conditions. On the basis of the develo
method for the calculation of decay rates for particles in
media, the decay of neutral pion in an equilibrium hadr
gas has been studied. It turned out that under certain co
tions multiple scattering results in the considerable incre
of the decay rate in the channelsp0

˜2g andp0
˜ge1e2.

2. DECAY RATE OF A PARTICLE IN A SCATTERING
MEDIUM

Consider a particle of massM with spins that undergoes
multiple elastic pair collisions in an equilibrium medium.
the quasi-classical approximation, when the particle wa
length is much smaller than its free path, the widthg(x,p) of
the particle state is given12 by the standard formula

g~x,p!522 Im $S ret~x,p!%, ~1!
11063-7761/99/89(1)/4/$15.00
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whereS ret is the retarded self-energy in the formalism of t
Keldysh graphic technique,13 x5(t,r ) is the 4-coordinate,
andp5(p0,p) is the 4-momentum.

In order to calculate the observed widthG of the particle
decay in the matter, one should sum and average Eq.~1! over
the initial and final states of particles and then average it o
the observation timest:

G57
2

t
Im H E

0

t

dtE d3r E d4p

~2p!4

3Tr $S ret~x,p!G21~x,p!%J , ~2!

where G21(x,p) is the Green’s function of the decayin
particle in the Keldysh graphic technique,13 the plus and mi-
nus signs refer to the Bose and Fermi statistics, respectiv
and the normalization volumeV51.

Suppose that the effect of the particle scattering on
decay vertex is weak, and the interaction among decay p
ucts in the final state is negligible.1! Then the retarded self
energy is identical to the self-energy corresponding to
particle decay in vacuum:

~S ret!ab5Svac
ab~p!, ~3!

wherea andb are spin variables.
By substituting the latter expression into Eq.~2! and

using the equation13,14 relating the Green’s function
G21(x,p) to the distribution functionn(t,r ,p) of particles
in the equilibrium medium, we obtain for the width of th
decaying particle on the mass surface

G5
1

t
Im H E

0

t

dtE d3p

E
Tr @Svac

ab~p!%ab#

3E d3r

~2p!3
n~ t,r ,p!J , ~4!

were%a,b is the polarization density operator of the deca
ing particle, p0[E5Ap21M2 is the particle energy, and
n(t,r ,p) is the distribution function of particles that satisfie
the Boltzmann kinetic equation.13,15

Note that the expression in the brackets in Eq.~4! is a
scalar; therefore, it depends only on the masses of the de
© 1999 American Institute of Physics
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2 JETP 89 (1), July 1999 A. V. Koshelkin
ing particles and decay products. Moreover, the te
Tr@Svac

ab(p)%ab# is proportional to the width of the decayin
particle in vacuum. These circumstances allow us to rew
Eq. ~4! in the form

G5
MGvac

t E
0

t

dt E
0

`

p2dp
F~E,t !

E
, ~5!

whereGvac and the functionF(E,t) are given by the formu-
las

Gvac~p!5
1

M
Im $Tr $Svac

ab~p!%ab%%, ~6!

F~E,t !5E dVp E d3r

~2p!3
n~ t,r ,p!. ~7!

Thus, the calculation of the width of decaying partic
undergoing multiple elastic collisions in an equilibrium sc
tering medium reduces to the parameterE21 averaging over
certain distribution which has to be calculated. Note t
^E21&.M 21 in the case of decay of nonrelativistic particle
and the effect of scattering on decays of such particle
negligible.

Suppose that the relaxation time in the mediumt rel

!min$t,G21% is much smaller2! than both the observatio
time t and reciprocal decay widthG21. Then we describe
the states of the decaying particle in the medium in terms
the static approximation,17,18 in which the medium return to
its initial state almost immediately after each individual c
lision. Since the particle distribution function is included
the formula for the decay width in the integral with respect
coordinates and momenta of the particle, we obtain the
lowing expression for the functionF(E;t) after integrating
the Boltzmann equation over the solid angle in the direct
of p and overr :

]F~E;t !

]t
5E

E2Emax

E1Emax
dE8E d3p1

3E dVp

ds~E2E8;E;p1!

dE8dVp

v f eq~p1!

3$F~E8;t !2F~E;t !%, ~8!

whereds(E2E8;E,p1) is the cross section of an individua
pair scattering event in the medium,f eq(p1) is the equilib-
rium distribution function of particles in the medium,Emax is
the maximal energy transferred in an individual collision b
tween two particles in the matter,E andE1 are energies of
the colliding particles,v5As(s24M2)/2EE1 , p5(E,p),
p15(E1 ,p1), p85(E8,p8), ands5(p1p1)2.

In the case where the matter is in thermodynamic eq
librium and all collisions between particles are elastic,
energyuE2E8u imparted by a particle in one individual co
lision is smaller than the medium temperatureT. Expanding
the scattering integral on the right side of Eq.~8! in the small
parameteruE2E8u/E!1, we then obtain

]F~E;t !

]t
5^«2&

]2F~E;t !

]E2
, ~9!
te

-

t
,
is

f

l-

n

-

i-
e

where^«2& is the average of the energy transferred per u
time. In deriving the latter equation, we have taken into
count the fact that the scattering cross section is the e
function of the transferred energy. The parameter^«2& is
determined by the equation

^«2&5E d3p1dVp E
0

Emax
dE8

ds~E8;E,p1!

dE8dVp

v f eq~p1!E82.

~10!

This parameter is the function of the instantaneous p
ticle energy. Nonetheless, since the medium is in thermo
namic equilibrium and since only elastic collisions occur, t
particle energy is constant, on the average, and it is affe
by fluctuations whose amplitude is the function of tim
Therefore, let us assume in our approximation that^«2& is a
function of time, but not of the particle energy. Solving E
~9! with the initial condition

F~E;t50!5 f 0~E!h~E2M !, ~11!

we obtain

F~E;t !5
h~E2M !

A4p*0
t dt8^«2&~ t8!

E
M

`

dE8

3H expF 2
~E2E8!2

4E
0

t

dt8^«2&~ t8!G
1expF 2

~E1E822M !2

4E
0

t

dt8^«2&~ t8!G J f 0~E8!, ~12!

where f 0(E) is the distribution function which determine
the state of the decaying particle at the initial moment, a
h(E) is the unit step function.19

Substituting the calculated functionF(E;t) in Eq. ~5!,
we obtain the following expressions for the decay rateW in
the scattering medium:

W5Gt5MGvacE
0

t dt

A4pE
0

t

dt8^«2&~ t8!

E
0

` p2dp

E~p!

3E
M

`

dE8H expF 2
~E2E8!2

4E
0

t

dt8^«2&~ t8!G
1expF 2

~E1E822M !2

4E
0

t

dt8^«2&~ t8!G J f 0~E8!. ~13!

Note that in the case of small occupation numbers
density of particle states in an equilibrium medium has
fairly sharp peak at energiesE;T, whereT is the tempera-
ture of the medium. Therefore the width of the peak in t
integrand in Eq.~12! is determined by the relation betwee
the particle energy fluctuation due to multiple scattering,
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E
0

t

dt8^«2&~ t8!,

and the temperatureT of the medium. If the energy fluctua
tions are such that

E
0

t

dt8^«2&~ t8!@T,

the multiple scattering is strong and leads to a consider
broadening of the particle state in the medium, wherea
the opposite limiting case,

E
0

t

dt8^«2&~ t8!!T,

the effect of the scattering medium is negligible.
Further, let us discuss the application of this method

the calculations of decay rates of specific particles in sca
ing media.

3. DECAY OF A NEUTRAL PION IN AN EQUILIBRIUM
SCATTERING MEDIUM

Consider the effect of elastic multiple scattering on d
cays of neutral pions,p0

˜2g andp0
˜e1e2g, in an equi-

librium pion gas. Investigation of such decays, which a
among sources of thermal gamma rays and lepton pairs
of interest for studies of nuclear media generated in co
sions of high-energy heavy ions.2,17,20Since the characteris
tic temperatures of equilibrium pion gases are low (T<200
MeV! ~Refs. 17 and 20! in comparison with the excitation
energies of both quark (;Tc>250 MeV! and hadron de-
grees of freedom (;m%5770 MeV!, the effect of scattering
on the decay vertex and polarization effects can be igno

The calculation of widths of decaysp0
˜2g and p0

˜e1e2g in the approximation of partially conserved axi
current21 gives

dGvac

dMl
5

4e2

3pMl
4M6

~M22Ml
2!3~Ml

212m2!

3~Ml
224m2!1/2Gp0

˜2g ,

Gp0
˜2g58 eV, ~14!

where M and m are the pion and electron masses, resp
tively; Ml5up11p2u is the invariant mass of a lepton pai

In the case where the pion gas temperatureT;200 MeV
~Refs. 2, 17, and 20! we treat the particles of the medium a
ultrarelativistic. Then the energy transferred in one collis
is smaller than the gas temperature:Emax;T(M /T)2!T, and
the scattering cross sectionds @see Eq.~10!# is the slow
function2,20 of the energy of colliding pions, sô«(t)& is
approximately constant.

Substituting the decay widths in vacuum given by E
~14! in the equation for the particle decay rate in the scat
ing medium and performing all necessary integrations,
obtain
le
in

o
r-

-

e
re

i-

d.

c-

n

.
r-
e

Wp0
˜2g5

M

p1/2T
Gp0

˜2gH 2^«2&1/2t3/2

3T
1

T2

^«2&

3FexpS ^«2&t

T2 D EA^«2&t/T

`

dx

3exp~2x2!2
Ap

2
1

A^«2&t

T G J , ~15!

dW

dMl
5

4e2

3pMl
4M6

~M22Ml
2!3~Ml

212m2!

3~Ml
224m2!1/2Wp0

˜2g , ~16!

whereT is the temperature of the medium, andt is the ob-
servation time. In deriving Eqs.~15! and ~16! we assumed
that the initial state of the decaying pion is described
Boltzmann’s distribution functionf 0(E) with temperatureT,
and the pions are ultrarelativistic.

Let us analyze the resulting expression for the pion
cay rate in the medium in the main channelp0

˜2g ~the
decay channelp0

˜e1e2g is analyzed similarly!.
If the fluctuations of particle energy due to multiple sca

tering are smaller than the temperature of the medium, t
A^«2&t/T!1. Integrating for small values of the lower inte
gration limit in Eq.~15!, we obtain

Wp0
˜2g5

Mt

2T
Gp0

˜2gH 11
^«2&t

2T2 1OS F ^«2&t

T2 G 3/2D J .

~17!

It follows from Eq. ~17! that multiple scattering of particle
in the medium leads to insignificant increase of the de
rate in comparison with the situation of thep0

˜2g decay in
vacuum.

In the opposite limit case of relatively large fluctuatio
(A^«2&t/T>1), we derive the following expression from
Eq. ~15!:

Wp0
˜2g5

Mt

p1/2T
Gp0

˜2gH 2A^«2&t

3T
1OS T

A^«2&t
D J .

~18!

The latter equation indicates that the large fluctuations
energy lead to the strong increase of the decay rate~by the
factor A^«2&t/T@1) due to multiple elastic scattering o
pions in the matter.

In a more realistic situation where the pion gas tempe
ture T5130–140 MeV, the decay rate should be calcula
numerically using Eqs.~13! and~14!. The estimation of̂«2&
as the product of the frequency of pion collisions17,20and the
maximum energy transferred in one collision between p
ticles gives^«2&.const51.131024 GeV2/Fm. Performing
integration in Eqs.~13! and ~14!, we obtain
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W~a!

W~a50!
5H 1.25, ifT5140 MeV;

1.23, ifT5135 MeV;

1.21, ifT5130 MeV,
~19!

whereW(a50) is the decay rate in vacuum.
In conclusion, let us discuss the agreement between

widths of neutral pion states in the scattering medium ca
lated above and the experimental data on collision of he
ions S–Au and Pb–Au at energies of 200 GeV/nucleon.22,23

These data can be compared by estimating the relative y
of electron–positron pairs of small energies, whose m
sources are the reactionsp0

˜e1e2g andh˜e1e2g. Note
that in the real situation the characteristic temperatureT of
the hadron medium is within 150 MeV, and theh-meson
mass is 547 MeV; therefore, the broadening of its state
to multiple elastic scattering is negligible. Then the ratio b
tween the yieldsdNp0 of lepton pairs due to the decayp0

˜e1e2g anddNh of lepton pairs generated in the reactio
h˜e1e2g provides information about the broadening
pion states in the matter. The experimental data derived f
measurements22,23 give dNh /dNp0.0.27. Calculations give
dNh /dNp0;0.37 in the absence of scattering effects17 and
dNh /dNp0;0.30 with allowance for the pion state broade
ing due to multiple scattering in the medium with tempe
tureT5130 MeV. Thus, the agreement between the calcu
tions and experimental data on the neutral pion decay in
hadron gas is satisfactory.

4. CONCLUSIONS

In the reported work we investigated the effect of m
tiple scattering on particle decay in an equilibrium mediu
The method of calculation of decay rates of particles un
such conditions has been developed. The calculated d
rate depends strongly on the temperature of the medium
on the parameters characterizing particle scattering in
medium. We found that in the dense, hot medium in
equilibrium state, when decaying particles are ultrarelativ
tic and their energies are comparable with the temperatur
the medium, multiple elastic scattering leads to the consid
able increase in the decay rate of particles in the medi
whereas in the case of low-energy particles the effect of s
tering medium is negligible.

The influence of multiple scattering on the decay rate
a neutral pion in an equilibrium pion gas has been stud
The broadening of states of this particle in the experim
tally observable range of temperatures has been calculate
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comparison between calculations of the yield of electro
positron pairs in collisions of high-energy heavy ions a
experimental data indicates that the agreement between t
results is satisfactory.

I wish to thank D. N. Voskresenskii for the discussion

* !E-mail: koshelkn@gpd.mephi.msk.su
1!The application limits of the model under discussion is determined b

specific situation in which a decay takes place. In particular, when
neutral pion decays in an equilibrium hadron gas~see below!, this approxi-
mation applies when the medium temperature is lower than the temp
ture of the phase transition between the hadron gas and quark–g
plasma,Tc>250 MeV.

2!The validity of this inequality depends on the dynamics of the nucl
medium generated in collisions of high-energy heavy ions, which expa
isentropically,16 being in a quasi-equilibrium state.
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The dynamic Jahn–Teller effect is studied for a charged fullerene molecule C60
2 with allowance

for spin-orbit coupling. The system of self-consistent equations describing the interaction
of an electron and the molecular vibrations in the event of spin-orbit splitting of the electronic
level is solved analytically. A novel type of nonlinear vibrations occurring in such a
system is described. It is shown that with spin-orbit coupling taken into account, the static Jahn-
Teller configurations in the C60

2 molecule are unstable even in the limit of strong electron-
vibronic coupling and that the symmetry of the atomic configuration of the unperturbed C60

molecule is restored under time averaging. ©1999 American Institute of Physics.
@S1063-7761~99!01607-8#
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1. INTRODUCTION

One of the problems of the physics of fullerenes, who
symmetry belongs to that of the highest-symmetry po
group I h , is the understanding of the nature of the Jah
Teller effect in the various excited states of the C60 molecule.
The vibrational properties of fullerenes have been ext
sively studied in experiments1–10 in view of their importance
for optical applications. In particular, the behavior of t
high-frequency modeAg is an indication of an excess num
ber of electrons in the molecule, while theHg modes can
shift, broaden, or disappear entirely. The high symmetry
the C60 molecule is the reason for the degeneracy of
states of the electron subsystem and the vibrational s
system of the molecule. An ‘‘excess’’ electron in C60 occu-
pies the first excited state with the symmetry oft1u and ‘‘dis-
tributes’’ itself over the molecule surface. It is assumed t
the electron-vibronic coupling substantially changes suc
state of the C60

2 molecule. The interaction of an electron o
cupying the lowest unoccupied threefold degenerate mole
lar orbital t1u and the fivefold degenerate vibrational mod
Hg gives rise to polaronlike states and to Jahn-Teller dis
tions of the molecule.11–13 Here the configurations of th
molecules with minimum energy form multiplets. Thus, t
symmetry of the ground state lowers, but the degenerac
the electronic levels is not lifted completely, and the elect
subsystem of the C60

2 molecule remains very sensitive to pe
turbations. Typical calculations done in the Born
Oppenheimer approximation allow obtaining the effect
potential energy as a function of the static configuration
the ions.14 In this case the zero-point vibration energy mu
be much lower than the energy of the Jahn–Teller splitt
of an electronic level. It is assumed that in the opposite c
we have the dynamic Jahn–Teller effect.

Experimental studies suggest that for an isolated60

molecule the Jahn–Teller effect is dynamic.4,5,8,10A possible
consequence of dynamic symmetry breaking is the m
tiphonon structure of the lines observed in Raman and
1071063-7761/99/89(1)/5/$15.00
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spectra3,4 and in the data on electron spin resonance.10 Usu-
ally, to adjust the ground-state energy, the energy of
zero-point vibrations is added. For instance, in Refs. 11–
the calculations were begun by determining the positions
the minima in the potential well obtained in the strong co
pling limit. The dynamical problem is solved with allowanc
for electron tunneling in the configuration space between
wells through the potential barriers surrounding the
minima. It is difficult to solve this problem systematicall
since the effective potential itself is determined by the el
tron wave function. Electron correlation effects have a
been considered.15 Ihm16 and Auerbachet al.17 studied the
dynamic Jahn–Teller effect in charged fullerenes in terms
the Berry phase with allowance for pseudorotations. Ps
dorotations arise as a result of rapid movements of deform
regions on the molecule surface, and the motion of in
vidual atoms is limited by the proximity to their symmetr
positions in the neutral C60 molecule.

The present paper proposes a novel semiclassical va
of the theory of the dynamic Jahn–Teller effect. We w
examine the complete dynamic lifting of the degeneracy
the static Jahn–Teller levels due to spin-orbit coupling. Su
coupling generates self-consistent vibrations of the m
ecules that mix the electronic states with spin flip. In a si
plified model of the C60

2 molecule that allows for one vibra
tional multipletHg interacting with the electron in statet1u

and for spin-orbit coupling, we will derive the exact sol
tions of a nonlinear system of dynamical equations that
scribe the temporal evolution of the ground state witho
resorting to perturbation-theory techniques. We will sho
that the static ground state is unstable against spin-orbit
turbations even in the strong coupling limit. We will als
find an expression for the renormalization of the intram
lecular phonon frequency and its nonlinear splitting.

2. MODEL

The model allows for the interaction ofp-electrons with
vibrations of the C60 molecule, since all other electronic lev
© 1999 American Institute of Physics



e

e

e
e

e

a
o
n
i-
flip
o

de

h

n
-

m

of

in

r-
tic

sical

at
ssi-
er
ng
ues

108 JETP 89 (1), July 1999 A. A. Remova
els are located~on the energy scale! at distances that ar
much larger than the energies of theHg modes and their
perturbation can be ignored. As in Ref. 17, we will consid
a one-electron state related to a single vibrational modeHg

of frequencyv0 , and instead of the symmetry group of th
frustrum of an icosahedron we will assume that the symm
try is spherical. Thent1u and Hg can be described by th
spherical functions$Y1k%k521

1 and$Y2m%m522
2 , respectively.

The main goal of this work is to provide a semiclassic
description of the dynamic instability of the ground state
the C60

2 molecule, the instability being caused by electro
vibronic and spin-orbit coupling. We will study the redistr
bution of charge over the molecule surface, electron spin
and vibrational motion of the molecule with the passage
time. The LagrangianL of such a process has the form

L5Lph1Lel1Lel,el–vib1Ls–o. ~1!

Here

Lel5
i\

2 E S c*
]c

]t
2c

]c*

]t DdV2E c* E0cdV, ~2!

Lvib5
m

2 E ]h

]t

]h*

]t
dV2

k

2 E hh* dV, ~3!

Lel2vib5lE c* ~h1h* !cdV, ~4!

where m is the effective mass,k is the rigidity, *c* cdV
51, dV5sinududf, and u and f are the angles of the
spherical system of coordinates. Under the condition

(
m521

1

cm~ t !cm* ~ t !51, ~5!

the representation of the wave functionc of the electronic
level t1u with an energyE0 has the form

c5 (
k521

1

ck~ t !Y1k~u,f!. ~6!

Group-theoretical analysis shows that the eight mo
Hg and the two modesAg of the fullerene molecule can
interact with an electron in a state with the symmetry oft1u .
Here we will consider one such mode,Hg , with the fre-
quency

v05Ak/m. ~7!

The rotation of the molecules as a whole is ignored. T
electron-vibronic interactionLel–vib in ~4! is local and
rotation-invariant,12 with l the constant of this interaction. I
~1!, Ls–o is the spin-orbit coupling energy. To within an un
important constant,

Ls–o5A^ l̂–ŝ&. ~8!

For a spherical molecule of radiusRm we have18

A'S Ze2

\c D 2 r a

Rm

me4

\2 ,
r

-

l
f
-

,
f

s

e

where r a is the radius of the carbon atom. The quantu
numbersl ands are fixed, and in averaging in~8! we must
allow for the fact that, in contrast toŝ, the projections ofl̂ are
not equally probable, since the probabilityucmu2 of the pro-
jection m occurring is time-dependent. The projections
ĵ5 l̂1 ŝ are not equiprobable either:

^ ĵ2&5(
j ,n

j ~ j 11!bj ,nbj ,n* . ~9!

where bj ,n is the probability amplitude of the vectorĵ5 l̂
1 ŝ having the valuej and the projectionn. Then, allowing
for the quantum mechanical rule of vector summation
terms of Clebsch–Gordan coefficients^ l ,m;s,M u j ,n&, we
obtain

bj ,n5
1

A2s11
(

j 52(us1 l u),M ,m

s1 l

cm* ^ l ,m;s,M u j ,n&. ~10!

Substituting~10! in ~9! yields

^ ĵ2&5
1

2s11 (
j ,n,m,m8

j ~ j 11!cmcm8
* ^ j ,nu l ,m;s,M &

3^ j ,nu l ,m8;s,M 8&, ~11!

m,m852 l ,...,,0,...,l , j 5us2 l u,...,l ,...,s1 l ,

M ,M 852s,...,,0,...,s, M5n1m, M 85n1m8.

With allowance for~9!–~11!, the expression~8! for l 51 and
s51/2 becomes

Ls–o5A
&

2
c0* ~c11c21!1c.c. ~12!

As shown below, thêŝ–l̂& coupling is the cause of the pe
turbations that result in the dynamic splitting of the sta
Jahn-Teller level with the lowest energy.

We will assume that the vibrational fieldh of the C60
2

molecule is time-dependent and can be described by clas
means:

h5 (
k522

2

rk~ t !Y2k~u,f!, ~13!

whererk(t) is the amplitude of thekth spherical harmonic.
If the amplitude of the atomic vibrations is much smaller th
the interatomic distances at equilibrium positions, the cla
cal description of a vibronic mode is meaningful. In oth
words, we will assume that we are dealing with stro
electron-phonon coupling and perturbation-theory techniq
do not work.

Substituting~5!, ~6!, and~13! in ~1!–~4!, we find that

Lel5
i\

2 (
m521

1 S cm*
dcm

dt
2cm

dcm*

dt D 2E0 (
m521

1

cmcm* ,

~14!

Lph5
m

2 (
m522

2
drm

dt

drm*

dt
2

k

2 (
m522

2

rmrm* , ~15!
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Lel–ph5l (
k522

2

(
m521

1

(
n521

1

rkcmcn* F~k,m,n!1c.c.,

~16!

where the$F(k,m,n)%k522,m521,n521
2,1,1 are defined in terms

of Clebsch–Gordan coefficients:

F~k,m,n!5
1

31/4A 5

4p
^1,m;1, nu2, k&^1,0;1,0u2,0&.

3. BASIC EQUATIONS AND THE SOLUTION

Substituting~12! and ~14!–~16! in ~1! and introducing
the dimensionless parameters

l̃5
l

m
, a5S 5p\

2l̃2m
D 3

, b5
1

A5p
l̃a2,

V0
25

A5pv0
2b

l̃
~17!

we arrive at a set of Lagrange equations19 for the system
under consideration:

d2v22

dt2 52V0
2v221A3

2
c̃21c̃1* ,

d2v21

dt2 52V0
2v211A3

2
~ c̃21c̃0* 2 c̃0c̃1* !,

d2v0

dt2 52V0
2v01S c̃0c̃0* 2

1

2
c̃21c̃21* 2

1

2
c̃1c̃1* D , ~18!

d2v1

dt2 52V0
2v12

)

2
~ c̃21* c̃02 c̃0* c̃1!,

d2v2

dt2 52V0
2v21A3

2
c̃21* c̃1 ,

i
dc̃21

dt
5

1

2
c̃21v02A3

2
c̃1v222

)

2
c̃0v212Ãc̃0 ,

i
dc̃0

dt
5
)

2
~ c̃21v11 c̃1v21!2 c̃0v02Ã~ c̃11 c̃21!, ~19!

i
dc̃1

dt
5

1

2
c̃1v01A3

2
c̃21v22

)

2
c̃0v12Ãc̃0 ,

(
m521

1

c̃m~t!c̃m* ~t!51, ~20!

where

c̃m5cm exp
iE08t

\
, E085aE0 ,

Ã5A
& a

2\
, vk5

rk

b
, t5

t

a
. ~21!

Here and in what follows we do not write the comple
conjugate equations. The nonlinear system of dynamic eq
 a-

tions ~18!–~20! has one exact solution, whose properties
discussed below. We seek this solution in the form

v225gA3

2
c̃21c̃1* , v215g

)

2
~ c̃21c̃0* 2 c̃0c̃1* !,

v05gS c̃0c̃0* 2
1

2
c̃21c̃21* 2

1

2
c̃1c̃1* D , ~22!

v152g
)

2
~ c̃21* c̃02 c̃0* c̃1!, v25gA3

2
c̃21* c̃1 .

Substituting~22! in ~19! yields

2 i
dc̃21

dt
5

3

4
gF2c̃21S c̃1c̃1* 1

1

6D2 c̃1* c̃0
2G2Ãc̃0 ,

2 i
dc̃0

dt
5

3

4
gF22c̃1c̃21c̃0* 1 c̃0S c̃0c̃0* 1

1

3D G2Ã~ c̃211 c̃1!,

~23!

2 i
dc̃1

dt
5

3

4
gF2c̃1S c̃21c̃21* 1

1

6D2 c̃21* c̃0
2G2Ãc̃0 .

The values of the electron-phonon coupling constantg in
~22! and ~23! are determined below.

One of the exact solutions of the nonlinear system
equations~20! and ~23! for finding c̃m(t) has the form of
harmonic oscillations with frequencies

v15
3g

4
A12a* a, v2,35v16&Ã, ~24!

where a is an arbitrary constant such thata* a<1. At the
same time, the probability amplitudesc̃m(t) are found to be
coupled by the condition

c̃0
222c̃21c̃15a exp$2igt%. ~25!

Under this condition, the system of equations~23! reduces to
a linear one and the solution has the form of harmonic os
lations. However, the amplitudes of these oscillations dep
on the frequencyv and the superposition principle does n
apply. Moreover, such electronic self-oscillating states m
be coupled self-consistently to atomic density oscillatio
only if the resulting solution, according to~22!, satisfies the
system of equations~18!, which is possible if

~2v i !
22V0

21
1

g
50, i 51,2,3. ~26!

We will limit ourselves to two important cases in~24!:
aa* 50 andaa* 51. In the absence of spin-orbit couplin
(A50) the first case corresponds to the upper level in
Jahn–Teller static configuration of the C60

2 molecule. When
aa* 51 holds we are dealing with the lowest stationary lev
~on the energy scale!. In both cases, spin-orbit coupling pro
duces self-consistent electronic transitions and vibration
the atoms in the molecule with frequenciesV1 and V2 in
dimensionless variables:

V15
aA

\
, V252V1 . ~27!

For aa* 51 we have
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c̃15
exp$ igt%

A6
S exp$ iV1t%

&
1

exp$2 iV1t%

&
1 i D ,

c̃05
exp$ igt%

A6
~exp$ iV1t%2exp$2 iV1t%!,

c̃215
exp$ igt%

A6
S exp$ iV1t%

&
1

exp$2 iV1t%

&
2 i D ;

Rev61 and Imv62 oscillate with the frequencyV1 ; and
Rev62, Im v61, and Rev0 oscillate with the frequency 2V1 .
These two frequencies appear simultaneously, and the
average of the vibrational field~13!, h̄, vanishes and henc
the initial symmetry of the undeformed molecules will b
restored~on the average!. Similar solutions were obtained fo
the caseaa* 50.

The strong coupling limit requires thatg/V0@1 and
g/V1,2@1. From~27! it follows that these two conditions ar
met if either V0!1 and V1,2!1 or V0'V1,2. The case
V05V1,2 is highly improbable and we will ignore it. A sys
tem with V0,V1,2 undergoes a radical transformation a
will also be ignored, since the spin-orbit coupling constan
small andA/\v0'V1,2/V0!1.

Mathematically, the system of nonlinear equations~19!
and ~20! has a bifurcation solution. Under any infinite
weak perturbationA the system becomes unstable and s
oscillations set in. The mechanism of excitation of such
cillations is soft, so that we can say that dynamically t
system is stable. The phase space of the solutions of
system contains at least two stable limit cycles and two
stable bifurcation points.20 One of these points fixes th
steady state with the lowest energy for the deformed60

2

molecule. Under a spin-orbit perturbation of the system t
state becomes unstable.

4. DISCUSSION

This paper studies the electron-vibronic states o
charged C60 molecules with allowance for spin-orbit cou
pling. It is assumed that a real configuration of atoms can
described by a continuous distribution of the atomic den
over the spherical surface of the molecule. The spher
functions$Y1m%m521

1 are used to represent the wave functi
of the threefold degenerate electronic statet1u coupled to the
atomic vibrations of the fivefold degenerate levelHg . The
functions$Y2k%k522

2 characterize the corresponding vibron
mode. The electron-phonon coupling is introduced in the
dinary way.12,18 In addition to electron-phonon coupling, th
dynamic ‘‘mixing’’ of electronic states due to spin flip fo
difference projectionsm of the electron orbital angular mo
mentum l̃ is also accounted for.

The solution~27! obtained in Sec. 3 and the importa
results are depicted in Figure 1, which shows the transi
from the electronic statet1u (E0) of the undeformed C60

2

molecule to the dynamic Jahn–Teller state~the hatched sec
tion!; E1 and E2 are the split electron energy levels of th
atomic configurations of reduced symmetry of the deform
e

s
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y
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d

C60
2 molecule, which arises because of the static Jahn–Te

effect. These two steady states are unstable with respe
spin-orbit coupling. If the degeneracy of the initial stateE0 is
threefold, the degeneracies of the levelsE1 andE2 are two-
fold and threefold, respectively. As a result of spin-orbit co
pling, the degeneracy of the upper Jahn–Teller level,E2 , is
lifted in the static limit, too; the lower levelE1 splits only
dynamically ~according to the Kramers theorem!. The
hatched section in Fig. 1 corresponds to the electronic st
that result from time-dependent ‘‘mixing’’ of levels and sp
flip. The electronic states vary with time with probabilit
amplitudesc1(t), c21(t), andc0(t) within a certain energy
interval. The length of this interval is determined by the sp
orbit coupling constant@see Eq.~8!#. As shown in Sec. 4, the
electronic transitions are accompanied by self-consis
stable vibrations of the charge distributed over the molec
surface and of the atoms in the molecule and by electron
flip. Similar vibrations arise a result of transitions betwe
the split states of the levelE2 . The vibrations are nonlinea
but harmonic.

The time average of these vibrationsv i is zero and hence
the time average of the symmetry of the atomic configurat
of the molecule turns out to be the same as for a undeform
molecule, while the symmetry of the electronic states is co
pletely broken.

This treatment is valid if quantum vibrations can be i
nored. For this to be true, the zero-point vibration ene
must be much lower than the static Jahn–Teller splitting o
level. It is also assumed that static splitting is larger th
dynamic splitting, since the new vibrational modesV1,2 are
classical by assumption. The amplitudes of the vibrations
limited due to the smallness of the spin-orbit coupling co
stant. This means that the electron-phonon coupling cons
is large and the condition for the Born–Oppenheimer
proximation is met (g'1/V0

2@1).

5. CONCLUSION

We have proposed a variant of the semiclassical tre
ment of the Jahn-Teller effect for the C60

2 molecule that fa-
cilitates an understanding of the nature of some excited e
tronic states in fullerenes. There are still many difficulties
directly verifying this effect by experiments. The metho
developed in the present paper was used to derive exp
sions for the Jahn–Teller splitting of intramolecular phon
frequencies ofHg and to explain one of the multiphoto
singularities in the Raman and IR spectra of fullerene co
pounds. The consequences of the Jahn–Teller effect

FIG. 1. Dynamic splitting of levels of the Jahn–Teller system C60
2 .
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manifest themselves in the data on electron spin resonan10

In particular, the modeHg may disappear completely, an
instead two modes with lower frequencies that differ by
factor of two appear. The occurrence of such singulari
cannot be explained if one remains within the framework
the static Jahn–Teller effect or the common dynamic effe

These novel nonlinear vibrations result from the sp
orbit coupling, so that they must be accompanied by fa
slow electron spin flips. The vibrations occur near the po
tions of equilibrium of the undeformed molecule, while th
static Jahn–Teller configuration of atoms in C60

2 is unstable
even in the Born–Oppenheimer approximation. More th
that, the ground state of an isolated C60

2 molecule is time-
dependent. The Jahn–Teller effect may become static in
crystalline structure of fullerites or fullerides.21 In these
cases the degeneracy of the Jahn–Teller ground state is
completely by the crystalline field.

Thus, the ground state of an isolated electron-vibro
system of the C60

2 molecule with spin-orbit coupling is rep
resented by closed cycles in the phase space, which ens
periodic motion near unstable steady-state solutions.
originating nonlinear vibrations are accompanied by ene
transfer from the electron subsystem to the vibrational s
system when the spin degrees of freedom are excited.

In conclusion we note that allowance for rotations of t
molecule as a whole leads to similar effects. Here the C
olis splitting of levels acts as spin-orbit coupling. Most r
sults are valid in the latter case, too; they can be of use
experimental studies of the Jahn–Teller effect for a fre
rotating C60

2 molecule.

The work was supported by a grant from the Superc
ductivity Council of the Russian Academy of Scienc
~Project 96107!.
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Nonsecular contribution to the decay of spin-echo signals of quadrupolar nuclei in
magnetically ordered materials
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We analyze the influence of fluctuations of the nonsecular part of the spin Hamiltonian on the
decay of ordinary and multiquantum signals of the two-pulse spin echo in a quadrupole
spin system with an inhomogeneously broadened spectral line. Expressions are obtained for the
rate of decay of an echo in the case of selective excitation of a signal from quadrupole
nuclei with arbitrary spin. These expressions are then used to analyze the experimentally observed
ordinary and multiquantum echo signals from quadrupole nuclei with spinI 53/2 (53Cr,
63Cu, and65Cu! in ferromagnetic chromium chalcogenide spinels. ©1999 American Institute of
Physics.@S1063-7761~99!02107-1#
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1. INTRODUCTION

Nuclear magnetic resonance~NMR! is a method of in-
vestigating magnetically ordered materials that allows on
obtain information on a microscopic level about the sta
and dynamic properties of both the crystalline lattice and
electron spin system.1,2 The main capabilities of NMR in
magnetically ordered materials are well known.1,2 They are
based on the fact that the main interaction probed by NMR
the interaction of the nuclear magnetic moments with
local hyperfine magnetic fields created by the nonzero e
tronic magnetization. An important feature of NMR in ma
netically ordered materials is a natural inhomogene
broadening of the spectral line. In spin systems with an
homogeneously broadened spectral line, when using tw
more exciting pulses, one observes echo signals, whose
mation is described by the Hahn mechanism.1 In the simplest
case of two pulses separated by a time intervalt, the echo
signal is formed at the timet52t ~the time t is measured
from the time of onset of the first exciting pulse!.

Nuclei with spinI .1/2 can take part in electric quadru
pole interactions. As a rule, in magnetically ordered mat
als quadrupole interactions are weaker than the magneti
teractions and lead to quadrupole splitting of the NM
spectra. In addition, quadrupole interactions can lead to
appearance of multiquantum echo signals, whose forma
time differs fromt52t ~Refs. 3–7!.

Multiquantum echo signals were first observed in no
magnetic compounds.3 Multiquantum echo signals were late
detected in ferromagnets.4–7 It has been shown, in particula
that the quadrupole satellites are suppressed in NMR spe
recorded with the help of multiquantum echo signals.4 It was
also noted that increasing the time interval between the
citing pulses leads to a more rapid decay of the multiqu
tum echo in comparison with the ordinary echo att52t
~Ref. 4!. The decay of the additional echo signals from t
quadrupole nuclei, formed at times between the excit
pulses comparable with the inverse width of the spectral l
1121063-7761/99/89(1)/7/$15.00
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was analyzed in Refs. 6 and 7. However, detailed studie
the relaxation properties of the multiquantum echo sign
were not performed.

At present, the theory of magnetic relaxation for sp
systems with inhomogeneous broadening of the spectral
is well developed for the case where quadrupole interacti
are absent.1,8–10 In this case, the relaxation interactions c
be represented as interactions of the resonant spins wit
effective magnetic field which is a stochastic function
time. The interaction of the nuclear spin system with a flu
tuating magnetic field is treated as a perturbation of the m
interaction, which is an interaction with a static magne
field.

Relative to the static field, the nuclear magnetization a
the fluctuating magnetic field can be separated into long
dinal and transverse components. The random process,
rule, is characterized by two parameters: the correlation t
tc and the amplitude of the fluctuationss. Rapid fluctuations
(stc

21@1) of the longitudinal component of the effectiv
magnetic field are the reason for the exponential decay of
transverse component of the magnetization. The decay ra
characterized by the transverse relaxation timeT2. Rapid
fluctuations of the transverse component of the effect
magnetic field lead to an exponential recovery of the lon
tudinal component of the magnetization with characteris
time T1, the longitudinal relaxation time. In addition, th
transverse fluctuations lead to decay of the transverse c
ponent of the magnetization. In the case where all the re
ation processes are due exclusively to the transverse fluc
tions, the relationT252T1 is satisfied.

In the case of magnetic relaxation in a quadrupole s
system in the presence of fluctuating magnetic fields it
necessary to take into account fluctuations of the elec
quadrupole interactions. The main interaction is represen
as a sum of the interaction of the nuclear spins with the st
magnetic field and the secular part of the static electric qu
rupole interactions. The relaxation interactions are the in
© 1999 American Institute of Physics
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actions of the nuclear spins with the fluctuating magnetic
electric fields.

Relative to the main interaction, the relaxation Ham
tonian can be separated into a secular and a nonsecular
The influence of the secular fluctuations on the decay of
two-pulse echo signals from the quadrupole nuclei was th
retically investigated in Ref. 11 in the spectral diffusio
model. The theoretical results of Ref. 11 were successf
applied in Ref. 12 to analyze the experimentally observ
decay of two-pulse echo signals from53Cr ~quadrupole! nu-
clei in the ferromagnet CdCr2Se4 :Ag.

Our aim in the present paper is to analyze the effec
fluctuations of the nonsecular part of the spin Hamiltonian
the decay of a two-pulse echo in an inhomogeneously bro
ened quadrupolar spin system. The theoretical results
tained in this study are utilized to analyze the experiment
observed decay of ordinary and multiquantum echo sign
from copper and chromium nuclei in ferromagnetic ch
mium chalcogenide spinels.

2. THEORY

We write the Hamiltonian of the main interaction~in
units \51! as

H052v0I z1vQF I z
22

I ~ I 11!

3 G , ~1!

wherev05gB, g is the gyromagnetic ratio,B is the mag-
netic induction,vQ is the magnitude of the quadrupole spl
ting of the NMR spectrum, andI is the particle spin.

We represent the Hamiltonian describing the fluctuatio
of the nonsecular part of the magnetic and electric inter
tions as1

H1~ t !52v1~ t !I 22v2~ t !I 11V1~ t !~ I 2I z1I zI 2!

1V2~ t !~ I 1I z1I zI 1!1W1~ t !I 2
2 1W2~ t !I 1

2 .

~2!

The coefficientsv6(t) describe the fluctuations of the tran
verse component of the local magnetic field at the nucle
andV6(t) andW6(t) are the fluctuations of the nonsecul
part of the quadrupole interaction.

Treating the HamiltonianH1(t) as a perturbation of the
main HamiltonianH0, we calculate the response pulses w
the help of the density matrix operatorr(t) in the interaction
representation:9

r* ~ t !5exp~ iH 0t !r~ t !exp~2 iH 0t !, ~3!

H1* ~ t !5exp~ iH 0t !H1~ t !exp~2 iH 0t !. ~4!

Assuming thatH1(t) varies in time much faster thanr* (t),
at early times we obtain9

r* ~ t !5r* ~0!1 i E
0

t

@r* ~0!H1* ~ t8!#dt8

2E
0

tE
0

t8
@@r* ~0!H1* ~ t9!#H1* ~ t8!#dt8dt9. ~5!
d
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For the transverse magnetization of one spin ensem
with the same law of variationH1(t), i.e., with one realiza-
tion of the random process, the mean value of the transv
magnetization is calculated with the help of the density m
trix operator

^M 1~ t !&5Tr $r~ t !I 1%5am
1exp@ i t ~Em112Em!#

3^mur* ~ t !um11&. ~6!

Here m is the magnetic quantum number~i.e., I zum&
5mum&); Em5^muH0um& are the eigenvalues of the unpe
turbed HamiltonianH0 ; am

65AI (I 11)2m(m61), i.e.,
I 6um&5am

6um61&. In order to find the response of the e
tire spin system, it is necessary to average expression~6!
over the ensemble of ensembles, i.e., over all realization
the random process. We denote such an average by a
above the expression.

In the calculation of the transverse magnetization
need to calculate expressions of the type^mur* (t)um8& us-
ing the explicit form ofr* (t) from Eq. ~5!. We assume tha
the random quantities in the relaxation Hamiltonian~2! fluc-
tuate independently of one another:

g1~ t8! f 2~ t9!5g2~ t8! f 1~ t9!5H 0, gÞ f ,

K f~T!, g5 f .
~7!

Here by g6(t) and f 6(t) we meanv6(t) and V6(t) or
W6(t). The correlation functionK f(T), as usual, depends o
T5ut92t8u for any choice oft8 and falls off rapidly with
growth of T.

Calculation of ^mur* (t)um8& using the ‘‘quantum-
mechanical’’ expansion of unity 15(um&^mu and the ex-
plicit form of the relaxation Hamiltonian~2! gives rise to
factors of the form

Jf~a,b,c,d!5E
0

tE
0

t8
f 1~ t8! f 2~ t9!exp@ i t 9~Ea2Eb!

2 i t 8~Ec2Ed!#dt8dt9. ~8!

Transforming from the variablet9 to the variableT and ex-
tending the limits of integration overT to the range from
2` to 1`, we obtain

Jf~a,b,c,d!5E
0

tE
2`

`

K f~T!exp@ iT~Ea2Eb!#

3exp@ i t 8~Ea2Eb2Ec1Ed!#dT dt8. ~9!

If Ea2Eb2Ec1EdÞ0, thenJf is an oscillating function of
time t. The appearance in the expression for^mur* (t)um8&
of oscillating terms is equivalent to the appearance of
additional shift of the resonance frequency that results fr
taking into account the relaxation contribution of the no
secular terms of the spin Hamiltonian in the Redfield theor9

In our analysis of the decay of the echo signal we disreg
the oscillating terms. In addition, we will assume the me
values of all oscillating quantities to be zero.

For a5c andb5d from Eq. ~9! we obtain
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Jf~a,b!5
Jf~a,b,a,b!

t

5E
2`

`

K f~T!exp@ iT~Ea2Eb!#dT. ~10!

The quantityJf(a,b) has the meaning of a spectral dens
of the random process at the frequencyva,b5Ea2Eb .

Omitting cumbersome intermediate manipulations,
present the final result for the mean value of the matrix e
ment of the density matrix operator

^mur* ~ t !um8&5@12S~m,m8!t#^mur* ~0!um8&, ~11!

where

S~m,m8!5am
1am11

2 Jv~m11,m!1am21
1 am

2Jv

3~m21,m!1am8
1 am811

2 Jv~m8,m811!

1am821
1 am8

2 Jv~m8,m821!

1am
1am11

2 @2m~m11!1~m11!2

1m2#JV~m11,m!1am21
1 am

2@2m~m21!

1~m21!21m2#JV~m21,m!

1am8
1 am811

2
@2m8~m811!1~m811!2

1m82#JV~m8,m811!1am821
1 am8

2
@2m8~m8

21!1~m821!21m82#JV~m8,m821!

1am
1am11

1 am11
2 am12

2 JW~m12,m!

1am21
1 am22

1 am
2am21

2 JW~m22,m!

1am8
1 am811

1 am811
2 am812

2 JW~m8,m12!

1am821
1 am822

1 am8
2 am821

2 JW~m8,m822!.

~12!

We are interested in the response of the spin system
two-pulse input. For the transverse component of the m
netization at the timet after termination of the second exci
ing pulse, we obtain

^M 1~ t !&5am
1^muR2

1um8&^m8uR1
1r~0!R1

2um9&

3^m9uR2
2um11&exp@ i t ~Em112Em!

1 i t~Em92Em8!#@12S~m,m11!t#

3@12S~m8,m9!t#. ~13!

Here the operatorsRj
6 describe the evolution of the spi

system acted on by thej th exciting pulse (j 51,2), t is the
time interval between exciting pulses,r(0) is the density
matrix at the time of onset of the first exciting pulse@r(0)
}I z#.

Apart from the last two factors, expression~13! is iden-
tical to the Solomon formula3 for the two-pulse response of
quadrupole spin system without fluctuating fields. It
known3–5 that the condition of equality of the argument
e
-

a
g-

the exponent in expression~13! to zero defines the time o
formation of the echo signal in an inhomogeneously bro
ened spin system:

te5kt5
Em82Em9
Em112Em

t. ~14!

Here the timete is measured from termination of the seco
exciting pulse.

The relaxation contribution of the nonsecular fluctu
tions is described by the last two factors in expression~13!.
Since the expression for the transverse magnetization
based on expression~5!, which is valid for smallt and t,
expression~13! can be considered as the series expansion
some relaxation function int andt to linear terms. However
the specific form of the relaxation function cannot be rigo
ously derived directly from expression~13!. On the other
hand, in the Redfield theory,9 constructed on the basis of th
same assumptions as the calculations given above, diffe
tial equations of motion of the magnetization vector are o
tained in the form of the Bloch equations. It is known th
these equations describe the exponential decay of an
signal. On the basis of what has been said above, we ass
that the last two factors in expression~13! are expansions o
the exponentials to linear terms. Thus, dropping the ave
ing notation, we obtain for the amplitude of the echo sign
formed at the timet5(k11)t ~the timet is measured from
the time of onset of the first pulse!

M 1~t!5M 1~0!expF2
~k11!t

T2
G , ~15!

whereT2 is the transverse relaxation time due to fluctuatio
of the nonsecular part of the spin Hamiltonian

T2
215

1

k11
@kS~m,m11!1S~m8,m9!#. ~16!

In the derivation of expression~15! we took into account tha
for an echo signal formed at the timet5(k11)t the total
relaxation time is equal to the sum of the time intervat
between pulses and the time intervalkt between the second
pulse and the echo signal.

3. DISCUSSION OF THEORETICAL RESULTS

Expressions~16! and ~12! allow us to obtain the relax-
ation time for an arbitrary echo signal in a system with ar
trary spin. In this caseJf(m,m8)5Jf(m8,m) for any f, as
follows from symmetry of the correlation function relative
time inversionT.

First let us consider the well-known case of decay of
echo signal in a spin system withI 51/2. In this case a single
echo signal is formed at the timet52t for m521/2,
m851/2, andm9521/2. Using~12! and ~16!, we obtain

T2
2152JvS 1

2
,2

1

2D , ~17!

in good agreement with the well-known result for the tran
verse relaxation time due to fluctuations of the transve
component of the local magnetic field.8,9
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TABLE I. Transverse relaxation rate for quadrupolar nuclei with spinI 53/2.

Echo signal

Transverse relaxation rateT2
21

Nonsecular contribution

Secular contribution

Gaussian process Lorentzian proce

Echo 2t

m5
1
2, m85

3
2,

m95
1
2

~LF quadrupole satellite!

4Jv(
1
2,2

1
2)16Jv(

3
2,

1
2)124JV(

3
2,

1
2)

112JW(
3
2,2

1
2)112JW(

1
2,2

3
2)

sV
2 tcV14sQ

2 tcQ sV1sQ

Echo 2t

m52
3
2, m852

1
2,

m952
3
2

~HF quadrupole satellite!

4Jv(
1
2,2

1
2)16Jv(2

1
2,2

3
2)

124JV(2
1
2,2

3
2)112JW(

3
2,2

1
2)

112JW(
1
2,2

3
2)

sV
2 tcV14sQ

2 tcQ sV1sQ

Echo 2t

m52
1
2, m85

1
2,

m952
1
2

~central transition!

8Jv(
1
2,2

1
2)13Jv(2

1
2,2

3
2)13Jv(

3
2,

1
2)

112JV(2
1
2,2

3
2)112JV(

3
2,

1
2)

112JW(
2
3,2

1
2)112JW(

1
2,2

3
2)

sV
2 tcV sV

Echo 4t

m52
1
2, m85

3
2,

m952
3
2

~central transition!

6Jv(
1
2,2

1
2)13Jv(2

1
2,2

3
2)13Jv(

3
2,

1
2)

112JV(2
1
2,2

3
2)112JV(

3
2,

1
2)

112JW(
3
2,2

1
2)112JW(

1
2,2

3
2)

3sV
2 tcV

3
2sV
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However, of greatest interest for us is the case of a qu
rupole nucleus with spinI 53/2 since most of the availabl
experimental results on observation of multiquantum e
signals were obtained for just such nuclei. In the calculat
of the transverse relaxation time we will consider echo s
nals formed at the timet52t at the frequency of the centra
transition and at the frequencies of the quadrupole satell
We also take into account the multiquantum echo formed
the frequency of the central transition at the timet54t
~Refs. 4 and 5!.

Table I gives the magnetic quantum numbers cor
sponding to each of the echo signals, and expressions fo
transverse relaxation time obtained using expressions~12!
and~16!. In addition, Table I gives expressions for the tran
verse relaxation rate due to fluctuations of the secular pa
the spin Hamiltonian. These latter expressions are base
results of Ref. 10 in the limiting cases of fast Gauss–Mark
and fast Lorentz–Markov processes of spectral diffusi
Here we used the following notation:sV and tcV for the
amplitude of the fluctuations and the correlation time for
longitudinal component of the local magnetic field;sQ and
tcQ for the amplitude of the fluctuations and the correlati
time of the secular part of the Hamiltonian of the quadrup
interactions. The restriction to fast processes is dictated
the fact that only in the limiting casesVtcV

21@1 or sQtcQ
21

@1 will an increase in the time interval between the exciti
pulsest lead to exponential decay of the echo~15!. For both
relations between the correlation time and the amplitude
the fluctuations the decay of the echo is nonexponential.

It follows from the results presented in Table I that t
fluctuations of the nonsecular part of the spin Hamilton
contribute to the decay of the signals of the nuclear spin e
not only at the frequencies of the quadrupole satellites,
also at the frequency of the central transition. At the sa
d-
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time, there is no contribution from the fluctuations of th
secular part of the quadrupole Hamiltonian at the freque
of the central transition.11

On the basis of the data in Table I it is possible to intr
duce a parameterR, equal to the ratio of the transverse r
laxation rate for the 4t echo to the relaxation rate of the 2t
echo at the frequency of the central transition

R5T2
21~4t!/T2

21~2t!. ~18!

For fast Gauss–Markov and fast Lorentz–Markov proces
of spectral diffusion the parameterR takes the valuesR53
andR51.5, respectively. In the case where the decay of
echo signals is caused exclusively by fluctuations of the n
secular part of the quadrupole Hamiltonian, we haveR51. If
the dominant contribution toT2

21 is governed by the spectra
density of the fluctuations of the transverse component of
local magnetic field at the frequency of the central transit
(61/2↔71/2), then R50.75. In general, for nonsecula
fluctuations 0.75<R<1. Thus, the dimensionless parame
R can be used as a criterion to determine the type of re
ation process.

Also note that to analyze the relaxation contribution d
to fluctuations of the nonsecular part of the spin Ham
tonian, it has been traditional to use a correlation function
the form

K f~T!5s f
2exp~2uTu/tc f!, ~19!

where the subscriptf, as before, can take one of three po
sible values:v, V, andW; s f is the amplitude of the fluctua
tions, andtc f is the correlation time of thef th term of the
Hamiltonian~2!. Substituting expression~19! in Eq. ~10!, we
obtain
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Jf~m,m8!5
2s f

2tc f

11vmm8
2 tc f

2
, ~20!

where the frequencyvmm85uEm2Em8u ~in units \51! is
determined by the energy levels of the unperturbed Ham
tonian ~1!.

4. NMR OF 63Cu AND 65Cu IN CuCr 2S4 : Sb NUCLEI

To investigate the echo signals from copper nuclei in
ferromagnet copper sulfochromite, we used a pulsed inco
ent NMR spectrometer. We examined polycrystalli
CuCr1.98Sb0.02S4 samples atT577 K in the absence of a con
stant external magnetic field.

It is known13 that in undoped CuCr2S4 the spectral lines
having their maximum amplitude near the frequencies 10
and 107.9 MHz correspond to resonances of the copper
topes63Cu and65Cu. In NMR spectra recorded on the 2t
echo signal in CuCr1.98Sb0.02S4 we detected two spectra
lines corresponding to the two copper isotopes. However,
positions of the spectral maximum in the doped compou
are shifted toward lower frequencies by 0.15060.05 MHz,
which is due to a weakening of the exchange interacti
brought about by the introduction of Sb ions.

Along with the ordinary two-pulse echo signal formed
the timet52t, we detected an additional echo signal in t
doped compound att54t. The maximum amplitude of the
4t echo signal is observed at frequencies correspondin
the maximum amplitude of the 2t echo. Both copper iso
topes are quadrupole nuclei, and the spin of each of th
I 53/2. For such nuclei the echo signal formed at the ti
t54t can be considered as a multiquantum echo. The
perimentally observed peculiarities of formation of an ad
tional echo signal at 4t indicates that the given echo signal
indeed a multiquantum signal.5

The formation of multiquantum echo signals is possi
in the case where the magnitude of the quadrupole split
of the NMR splitting is nonzero. Ferromagnetic copper s
fochromite has a spinel structure in which the copper io
occupy tetrahedral sites. The local symmetry of these site
cubic, and the gradient of the electric field for such sites
an ideal lattice should be equal to zero. The experiment
observed lowering of the local symmetry of the tetrahed
sites is apparently due to the influence of the Sb impurity
other defects of the crystalline lattice.

Forgoing a detailed analysis of the NMR spectra of
copper nuclei, let us consider the relaxational properties
ordinary and multiquantum echo signals. To investigate p
cesses of nuclear magnetic relaxation, we measured the
pendence of the amplitude of the echo signal on the t
interval between the exciting pulsest. Exponential decay
was observed for all the investigated echo signals. The de
rate T2

21 was determined by fitting the experimentally o
served dependences of the amplitudes of the echo signa
the time interval using expression~15!. Values ofT2

21 ob-
tained for the frequencies of the spectral maxima of thet
echo are given in Table II.

The value of the parameterR52.0860.32, obtained on
the basis of the data in Table II, does not allow us to ass
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a preference to any of the random processes considered
however, it allows us unambiguously to reject the Lorent
Markov process of spectral diffusion. To interpret the expe
mental results, we assume that the decay rate of the e
signals (T2

21) has both a secular (T2s
21) and a nonsecula

(T2n
21) contribution, and that this is valid for the ordinary an

for the multiquantum echo:

T2
21~2t!5T2s

21~2t!1T2n
21~2t!, ~21!

T2
21~4t!5T2s

21~4t!1T2n
21~4t!. ~22!

Thus, we obtain the following relation between the nonse
lar and secular contributions to the decay of the 2t echo:

T2n~2t!

T2s~2t!
5

Re2Rn

Rs2Re
, ~23!

whereRs and Rn are the values of the parameterR for the
secular and nonsecular fluctuations, andRe is the experimen-
tally observed value of the parameterR. Assuming that the
secular contribution is due to the Gauss–Markov proce
and substituting numerical values, we obta
T2n(2t)/T2s(2t)'1. This result implies that the contribu
tions to the decay rate of the two-pulse echo due to fluct
tions of the secular and nonsecular parts of the spin Ha
tonian are comparable in magnitude.

5. NMR OF 53Cr IN CdCr 2S4 : Ag

Abelyashevet al.12 reported the results of an experime
tal study of the decay of the 2t echo signal from53Cr nuclei
in the ferromagnet Cd0.985Ag0.015Cr2Se4 at T54.2 K. A the-
oretical analysis was carried out within the framework of t
theory of spectral diffusion based on results of Ref. 11.
particular, it was shown in Ref. 12 that the Gauss–Mark
process of spectral diffusion allows one to explain the
perimentally observed dependence of the transverse re
ation time on the frequency. The solid curve1 in Fig. 1
represents the calculated dependence obtained in Ref. 1
fitting the experimental data.

In the present paper we investigate the decay of a m
tiquantum 4t echo from53Cr nuclei in the same sample tha
was used in Ref. 12. We have established experimentally
at T54.2 K the decay of a multiquantum 4t echo is expo-
nential and that the relaxation time takes different values
different points of the spectrum. The values of transve
relaxation time obtained by fitting the experimentally o
served dependences with expression~15! are plotted in Fig. 1
by open and filled circles versus the frequency.1!

As follows from the data plotted in Fig. 1, the frequen
dependence of the relaxation timeT2 for the 4t echo differs
from the dependence for the 2t echo. To interpret the experi

TABLE II. Transverse relaxation rate in CuCr1.98Sb0.02S4 .

Nucleus T2
21, ms21

Echo 2t Echo 4t

63Cu (1.7260.07)31023 (3.5760.35)31023

65Cu (1.7460.07)31023 (3.6060.35)31023
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mentally observed frequency dependence of the relaxa
time T2 measured for the 4t echo, we assume that the dec
of this signal is due to fluctuations of the nonsecular par
the spin Hamiltonian.

Cadmium selenochromite has the structure of a nor
spinel, in which the chromium ions occupy octahedral sit
The local symmetry of these sites is trigonal, and the re
nance frequency depends on the angleu—the angle between
the electron magnetization vector and the crystallograp
direction ^111&. The NMR signal at different frequencies
created by nuclei of ions with different values ofu.

The coefficients entering into the Hamiltonian~2! also
depend on the angleu, specifically,v6}sin2u, V6}sin2u,
andW6}sin2u ~Ref. 1!. Following Ref. 12, we assume tha
the source of the fluctuations is orientational inhomogen
of the electronic magnetization vector. Thus, the amplitu
of the fluctuations is determined by the derivative of t
corresponding coefficient of the angleu: s f;u] f /]uu, where
f takes the valuesv, V, and W. Keeping the terms in the
Hamiltonian ~2! with v6 and V6 , from expressions~16!,
~12!, and ~20! we obtainT2

21}cos22u. The solid curve2 in
Fig. 1 was obtained using the dependence

T2
21~u!5A1B cos2 2u. ~24!

The coefficientsA and B were chosen so as to achiev
the best fit of the calculated dependence~24! to the experi-
mentally observed frequency dependence ofT2 for the 4t
echo. The coefficientA in expression~24! takes into accoun
the isotropic contribution to the decay of the echo signal. T
relation between the angleu and the resonance frequencyn is
given by the relation

n5n01nA~3 cos2 u21! ~25!

where n0544.0760.03 MHz, and nA520.5560.02 MHz
~Ref. 12!. The fitted dependences in Fig. 1 correspond
A'6.7631023 ms21 andB'23.2631023 ms21.

As follows from the data plotted in Fig. 1, in the larg
part of the frequency spectrum~the filled circles in Fig. 1!
the fluctuations of the nonsecular part of the spin Ham

FIG. 1. Frequency dependence of the transverse relaxation time of53Cr
nuclei in Cd0.985Ag0.015Cr2Se4 at T54.2 K: open and filled circles — experi
mental points for the 4t echo; curves1 and18 — Gauss–Markov process o
spectral diffusion~1 — theoretical dependence for the 2t echo from Ref. 2,
18 — theoretically expected value for the 4t echo!; 2 — nonsecular contri-
bution to decay of the 4t echo~experimental points fitted by the theoretic
dependence~24!.
n
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tonian due to orientational inhomogeneity of the electro
magnetization vector provide a good description of the f
quency dependence of the relaxation time.

According to the data in Table I and expression~10!, the
contribution of the terms of Hamiltonian~2! with coefficients
v6 and V6 is proportional to the spectral density of th
random process at the frequenciesv0 and v062vq while
the contribution of the term with coefficientsW6 is deter-
mined by the spectral density of the random process at
frequency 2(v06vq). Clearly, a situation is realized in
CdCr2Se4 :Ag, where the dominant contribution to decay
the multiquantum echo signals is determined by the spec
density of the random process at the resonance frequen

The decay of the echo signals formed at the timet
52t is determined by the Gauss–Markov process of spec
diffusion, which is reflected by the solid curve1 in Fig. 1. It
follows from the data of Table I that the transverse relaxat
time for the multiquantum 4t echo in this case should b
three times as small. The theoretically expected value ofT2

for the 4t echo in the case of the Gauss–Markov proces
reflected by the dotted curve18 in Fig. 1. As follows from
the data plotted in Fig. 1, the Gauss–Markov process is
sponsible for the decay of the 4t echo only in the high-
frequency region of the spectrum~the open circles in Fig. 1!.

To interpret the above results, we assume that there
two types of53Cr nuclei in CdCr2Se4 :Ag. The main contri-
bution to the magnetic relaxation of nuclei of the first type
due to fluctuations of the secular part of the spin Ham
tonian. From these nuclei is observed the 2t echo, whose
properties are discussed in Ref. 12. The multiquantumt
echo from nuclei of the first type is observed experimenta
only in the high-frequency region~the open circles in Fig. 1!.
The absence of an echo in the low-frequency region is du
the low intensity of the signal, and in the intermediat
frequency region it is attributable to the inordinately sh
relaxation time~the dotted curve18 in Fig. 1!.

Magnetic relaxation of53Cr nuclei of the second type i
due to fluctuations of the nonsecular part of the spin Ham
tonian. The signal from these nuclei is observed as a mu
quantum 4t echo in the intermediate-frequency region. T
absence of a signal in the high-frequency region is due to
inordinately short relaxation time~the solid curve2 in Fig.
1!. The absence of a signal in the low-frequency region
due to the short relaxation time and the low intensity of t
signal. In our discussion of the theoretical results we no
that in the case where the decay of the echo is due to n
secular fluctuations, the relaxation time for the 2t echo is the
same or somewhat smaller than the relaxation time for thet
echo. It follows from a comparison of the solid curves1 and
2 in Fig. 1 that the 2t echo from the second type of nuclei
not observed experimentally because of the small value
T2.

A possible reason for the appearance of two types
nuclei may be the following. Doping with silver leads to th
appearance of Cr41 ions as a result of valence compensatio
These ions are not localized, but migrate in some vicinity
the impurity ion Ag1. For the low concentrations of the si
ver impurity considered by us the regions of migration of t
Cr41 ions which belong to various impurity centers do n
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FIG. 2. Cation distribution in CdCr2Se4 :Ag.
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overlap each other~Fig. 2!. Type-I 53Cr nuclei belong to
Cr31 ions which are located outside the regions of migrat
of the Cr41 ions. Type-II 53Cr nuclei belong to Cr31 ions
which are located in the regions of migration of the Cr41

ions. Division of the nuclei into two types according to th
results of our study of magnetic relaxation in impurity ma
nets is similar to the division made in Ref. 14.

6. CONCLUSIONS

The formation of nuclear spin echo signals in magne
cally ordered materials with quadrupole nuclei is genera
accompanied by a selective excitation, in which each of
echo signals is observed separately from the others. Sep
observation is ensured by different formation times of
signals, and for the same formation times separate obse
tion is possible because of formation of the quadrupole sp
trum at different frequencies. In our theoretical analysis
did in fact consider the situation of selective excitation sin
each echo signal was characterized by its own set of m
netic quantum numbersm, m8, and m9. A consequence o
selective excitation was the fact that decay of the echo
described by one exponential.

In the discussion of the experimental results we dem
strated that in an analysis of the rate of decay of the e
signals it is necessary to take into account both secular
nonsecular contributions toT2

21. In general, various mecha
nisms may be responsible for the fluctuations of the sec
and nonsecular parts of the spin Hamiltonian. Therefore,
secular and nonsecular fluctuations should, in general
characterized by coherence times and a different amplit
of the fluctuations.

We have demonstrated here the use of the theore
results obtained by us for the analysis of experimental d
for quadrupole nuclei with spinI 53/2. However, these re
sults can be used for quadrupole nuclei with any spin.
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Electron polarization in quantum wells in a strong variable field
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The wave function of an electron in a symmetric double quantum well placed in a strong time-
periodic electric field is found, expressions for quasienergy functions are derived, and the
dependence of the dipole moment on the average electric field is analyzed for the case where the
average field remains constant. In the case of slow monotonic variation of the ‘‘constant’’
component of the electric field, the Schro¨dinger equation is solved by the WKB method. It is found
that the dependence of the dipole moment on the average field is of a clearly nonlinear almost-
periodic nature and that in the event of adiabatic monotonic variation of the average
field there is a periodic relocation of the electron density from well to well with a small frequency
proportional to the rate of variation of the average field. ©1999 American Institute of
Physics.@S1063-7761~99!01507-3#
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1. INTRODUCTION

Studies of the electron dynamics in quantum wells a
vated by variable external fields are of undisputable inte
from the standpoint of exposing the potential of mode
nanostructures and electron devices based on such struc
The methods developed in such studies make it possibl
directly control the wave function of electrons in quantu
wells by varying the parameters of a classical external e
tromagnetic field.1 In this paper we will examine the effect
of electron polarization in a symmetric double quantum w
placed in a strong time-periodic external field with a fin
average value.

Earlier, in relation to heterostructures, the concept o
double quantum well was used to investigate the phen
enon of dynamic localization of the electron wave functi
in one well initiated by a sinusoidal external field,2–4 while
in Refs. 5–7 the dipole moment of the system was calcula
and the possibility of emission of low-frequency dipole r
diation by such a structure was investigated. In Ref. 8 it w
found that dynamic localization and the related emission
low-frequency dipole radiation are possible in any perio
field ~not necessarily sinusoidal!, provided that the field is
strong enough. The oscillations of the electron wave pac
and the electromagnetic radiation generated by these os
tions were observed in experiments.9–11 Finally, in Refs. 1
and 12 the dependence of the electron distribution in
wells on the way in which the external periodic field
switched on was studied.

In the above papers the attention was focused on es
lishing the conditions imposed on the amplitude and f
quency of the external field needed for ‘‘locking’’ the wav
packet in one well, or the regime of low-frequency elect
magnetic radiation generation. At the same time, it is s
unclear how a constant voltage applied to the structure
fects the quantum dynamics of a system driven by hi
power laser light. Gorbatsevichet al.1 and Dakhnovskii
et al.6 studied the dynamics of the well populations in t
1191063-7761/99/89(1)/10/$15.00
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presence of a constant external field, and in Ref. 8 it w
shown that the constant component has a stabilizing effec
the existence of states in the region of one well. On
whole, however, an analysis of the dependence of the ab
effects on the external constant field has yet to be done.
present paper is probably the first attempt of such an an
sis.

2. EQUATIONS OF EVOLUTION OF THE SYSTEM

We will examine the electron dynamics in the symmet
structure of two quantum wells separated by an impenetra
barrier in the presence of a strong time-periodic electric fi
E directed along the axis of the structure. We will assu
that below the top of the barrier there are only two ene
levels of the unperturbed system,E0,156\D/2 ~the zero of
energy is chosen exactly midway between the levels!, with
the ‘‘distance’’\D determined by the tunnel integral throug
the separating barrier~the integral is exponentially small!.
We will define the symmetric and antisymmetric wave fun
tionsx0,1(j) corresponding to these energies so thatx0(x) is
always positive andx1(x) is positive only ifx.0.

Since the distance from the lower energy levels to
next levelE2 is much larger than the energy splitting\D, we
will use the two-level approximation throughout the pap
assuming, naturally, that the external field is unable to m
the high-lying levels with the lower levels. Thus, we mu
impose the restriction\D!V01!E2 , whereV015eEx01 is
the matrix element of the perturbation in the dipole appro
mation, andx01 is the coordinate’s matrix element. Th
above inequalities concretize the idea of a strong field:
field must be so strong that the matrix element of the per
bation is much larger than the distance between the lev
\D.

Finally, we will require that the frequencyv of the ex-
ternal field be much smaller thanE2 /\. This will enable us
to exclude resonant transitions to higher levels.
© 1999 American Institute of Physics
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Since we are using the two-level approximation,
would seem natural to look for the wave function of a p
ticle in the form of an expansion in the basis consisting
the two stationary states of the unperturbed system. I
clear, however, that this is unlikely to be the most conveni
expansion in the presence of a strong variable field. Si
below we are interested in the spatial charge distribution
more appropriate basis is

CL~x!5
x0~x!2x1~x!

&
, CR~x!5

x0~x!1x1~x!

&
,

where the functionsCL,R(x) are completely localized in the
left and the right well, respectively, in accordance with t
definition of the stationary-state functionsx0,1(x).

We can now write the wave function of the system a
linear superposition of the orthonormal vectorsCL,R(x) with
coefficients that are time-dependent and have yet to be
termined:

C~x,t!5CL~t!expH i E «~t!dtJ CL~x!1CR~t!

3expH 2 i E «~t!dtJ CR~x!. ~1!

Here we have introduced the dimensionless time varia
t5Dt, while «(t) is the ratio of the perturbation matri
element to the transition energy\D and is a periodic func-
tion with a dimensionless periodT52pD/v. We immedi-
ately note that«(t) consists of two parts: the constant part«̄,
which is the value of«(t) averaged over the period, and th
variable part«̃(t), whose average is zero. For convenien
the exponential phase factors in the expansion coefficien
~1! are written explicitly.

Although CL(x) and CR(x) are not eigenfunctions o
the operator of a physical quantity, we can attach a defi
physical meaning to the coefficientsCL,R(t) ~more pre-
cisely, to the squares of their absolute values!. If we define
the probability of finding the electron in the left or right we
as the integral

WL(R)5E
2`(0)

0(`)

dxuC~x,t!u2,

we can easily show that, to within terms whose magnitud
determined by the overlap integral*CL(x)CR(x)dx, the
probabilityWL,R(t) coincides with the square of theabsolu
values ofCL,R(t). The value of the overlap integral is give
by the differencex0

2(x)2x1
2(x), which, as shown in Ref. 13

is small in the parameter (\D/E2)1/2, and according yo the
initial assumptions this ratio is the smallest parameter in
problem. In our future calculations we will ignore quantiti
of this order.

Plugging~1! into the Schro¨dinger equation yields a pai
of equations describing the evolution of the coefficie
CL,R(t):

i
dCL

dt
52

CR

2
expH 22i E «~t!dtJ ,
t
-
f
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t
e
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e
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i
dCR

dt
52

CL

2
expH2i E «~t!dtJ . ~2!

Since«̃(t) is a periodic function, we can expand the exp
nentials in~2! in a Fourier series:

expH2i E «~t!dtJ 5expH2i E «̄dtJ (
n52`

`

mn

3exp$ icn%exp$2 inVt%,

where V52p/T, and mn and cn are the coefficient and
phase of the Fourier expansion, which are related by
formula

mn exp$ icn%5
1

T E
0

T

dt expH i S nVt12E «̃~t!dt D J .

The explicit expressions for the Fourier coefficientsmn were
obtained in Ref. 8 by the method of stationary phase. H
we will not discuss all the calculations done in Ref. 8—w
will only mention the main results.

In accordance with their definition, the coefficientsmn

depend only on the amplitude of the variable part of t
perturbation~we denote it by«0! and are independent of«̄.
When the amplitude«0 is large, which is the case in ou
problem, themn always decrease with increasing«0 either as
a power function~as«0

21/3 or «0
21/2! or exponentially. In both

cases the Fourier coefficientsmn turn out to be small, and
this fact substantially simplifies the solution of the proble

Representing the exponentials in Eqs.~2! by Fourier se-
ries, we obtain on the right-hand sides of these equation
set of terms with phases of the formcn1*(2«̄2nV)dt.
Obviously, when the difference 2«̄2nV is of orderV, all
harmonics in Eqs.~2! are rapidly oscillating functions, and
their average effect on the system is essentially nil. But i
n5 l the differenceu2«̄2nVu is much smaller thanV, the
l th term acquires a ‘‘slow’’ phase and the effect of thisl th
harmonic may be resonant~see, e.g., Ref. 14., p. 180!. The
case of resonant excitation of a two-level system is the m
interesting one, and we will discuss it later in this paper.

The condition for resonance,

2«̄5 lV, ~3!

has a clear physical meaning. The constant component o
perturbation moves the energy levels of stationary sta
apart by a distance of approximately 2«̄, provided that
2«̄@1. Hence to couple these levels in a resonant manne
system needs exactly the same energy as one photon~or
several photons! of the external field has. Thel th harmonic
of the Fourier expansion is in full agreement with this r
quirement, and it is this harmonic that couples these t
levels.

Note, however, that we are speaking of thel th harmonic
of the exponential exp(2i*«̃(t)dt) rather than thel th har-
monic of the perturbation. When the amplitude of the fun
tion «̃(t) is a quantity of order the distance 2«̄ between the
levels or is even greater than this distance, the contributio
the resonant transition is provided not only by one-pho
processes with the frequencylV but also by various multi-
photon processes with a finite difference in the energies
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the emitted and absorbed photons equal tolV. Thus, the
Fourier coefficientm l appears to be the amplitude of all the
resonant processes. In the case of small perturbations«0 it
can easily be verified directly that the coefficientm l de-
scribes a one-photon process involving thel th harmonic of
the perturbation.

Obvious, the system of equations~2! can easily be
solved when the average value of the perturbation is clos
a resonant value and the condition~3! is met either exactly or
at least approximately, i.e.,u2«̄2 lVu!V. In this case we
need only keep the ‘‘slow’’ resonant term on the right-ha
sides of Eqs.~2! ~the l th harmonic of the Fourier series!, the
term that makes the main contribution to the evolution of
expansion coefficientsCL,R(t).

Obviously, knowing the expansion coefficientsCL,R(t)
and hence the wave function only in the vicinity of thel th
resonance is not enough to be able to analyze their de
dence on«̄ over the entire range of variation of the consta
component of the perturbation. Such analysis requires kn
ing the laws that govern the transition from one resonanc
another through the nonresonant region, and this knowle
cannot be supplied by the one-resonance approxima
alone.

Of course, one could solve the system~2! near thel th
and (l 11)st resonances and in the nonresonant region.
then the problem arises of combining all these express
into one expression that would be valid over the entire ra
under investigation, which probably is impossible from t
mathematical viewpoint.

For this reason we will develop an entirely new meth
of solution, which will be called the two-resonance appro
mation. The approach is based on the idea of keeping
neighboring harmonics in~2! rather than one harmonic, wit
frequencies that are closest to the frequency of the trans
between the energy levels. For instance, iflV&2«̄&( l
11)V, we must keep thel th and (l 11)st harmonics. Equa
tions ~2! then become

i
dCL

dt
52

CR

2 S m l expH 2 ic l2 i E ~2«̄2 lV!dtJ
1m l 11expH 2 ic l 112 i E ~2«̄2~ l 11!V!dtJ D .

i
dCR

dt
52

CL

2 S m l expH ic l1 i E ~2«̄2 lV!dtJ
1m l 11expH ic l 111 i E ~2«̄2~ l 11!V!dtJ D . ~4!

Clearly, the solution of this system~if it can be obtained!
will have all the necessary properties. At values of 2«̄ close
to lV this solution coincides with that obtained in the on
resonance approximation discussed earlier. At values of«̄
close to (l 11)V the solution coincides with that obtained
the one-resonance approximation, but near the (l 11)st reso-
nance. It is also clear that a more general solution of
form yields universal quasienergy functions of the syst
over the entire region separating the resonances and a
plete picture of the dependence of the quasienergies on«̄.
to
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It is easy to verify that the error of the two-resonan
approximation is of the same order of smallness as the e
of the ordinary resonance approximation. As in the on
resonance approximation, in deriving~4! from ~2! we dis-
carded the nonresonant harmonics with small Fourier coe
cients,mn!1, and this formally determines the order of th
error.

Note that in a certain sense allowing for the (l 11)st
harmonic near thel th resonance~or for thel th harmonic near
the (l 11)st resonance! is superfluous, since these harmoni
are nonresonant and can be discarded, as well as the
nonresonant harmonics. The only reason for keeping th
harmonics in Eqs.~4! is to obtain equations that describe th
dynamics of the system in the entire interval between
neighboring resonances. The fact that these harmonics
come nonresonant in turn guarantees that in our calculat
there will be no significant buildup of error and that the err
will become no larger than the Fourier coefficientsmn .

3. QUASIENERGY FORMALISM IN THE TWO-RESONANCE
APPROXIMATION

We begin by solving Eqs.~4! under the assumption tha
the average value of the perturbation remains unchanged
hence the system Hamiltonian is strictly periodic in tim
with a period equal to that of the external fieldT52p/V. It
is well known15 that in this case it is convenient to use th
formalism of quasienergies and quasienergy functions w
the property Un(x,t1T)5Un(x,t)exp$2inT%, where n,
which is defined to within the frequencyV of the external
field, is called the quasienergy. The quasienergy functi
corresponding to different quasienergies form an orthon
mal basis, and the particle wave function can be expande
this basis. Since in a two-level system the number
quasienergies is equal to two~we will denote them byn6!,
the basis of the quasienergy functions is also tw
dimensional. As a result we arrive at an expansion

C~x,t!5A1U1~x,t!1A2U2~x,t!, ~5!

whereA6 are the expansion coefficients.
Since the wave functionC(x,t) and the quasienergy

functionsU6(x,t) are assumed normalized, the squares
the absolute values of the expansion coefficientsA6 must
sum to unity. Moreover, the coefficients in the expansion
the basis of the quasienergy functions a
time-independent,15 in contrast to the expansion in any oth
base functions as, say, in~1!. In accordance with the ordinar
rules of quantum mechanics, we can attach a definite ph
cal meaning to the squares of the absolute values of the
efficientsA6 : they define the probability of finding the sys
tem in a given quasienergy state with the correspond
quasienergy.

We will now consider to the problem of calculating th
quasienergy functions and the quasienergies. The quas
ergy functionUn(x,t) must be a Bloch-type solution of th
Schrödinger equation. In accordance with these requireme
and with allowance for the structure of the expansion~1!, we
seek the coefficientsCL,R(t) in the form
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CL~t!5 f ~t!expH 2 i S n1
d

2D tJ ,

CR~t!5g~t!expH 2 i S n2
d

2D tJ , ~6!

whered52«̄2 lV. For the sake of definiteness we will a
sume that the orderl of the resonance is even. In this ca
the functionsf (t) and g(t) ~which have yet to be found!
must ~according to the Floquet theorem! be periodic with a
period equal to that of the external field,T, and can be ex-
panded in Fourier series:

f ~t!5 (
n52`

`

f n exp$2 inVt%,

g~t!5 (
n52`

`

gn exp$2 inVt%.

Substitutingf (t) andg(t) into ~4!, we arrive at an infinite-
dimensional system of algebraic equations for finding
Fourier coefficientsf n andgn :

S n1
d

2
1nV D f n1

m l exp$2 ic l%

2
gn

1
m l 11 exp$2 ic l 11%

2
gn1150,

S n2
d

2
1nV Dgn1

m l exp$ ic l%

2
f n

1
m l 11 exp$ ic l 11%

2
f n2150. ~7!

Generally speaking, solving the system of equations~7!
is extremely difficult, since many harmonics contribute to t
functions f (t) and g(t). But if we require that the param
etersm l and m l 11 be small, which is the case in a stron
variable field, the sequences of thef n and gn decrease rap
idly with respect to one of the coefficients, which is th
largest, both in the direction of increasing numbersn and in
the direction of decreasing numbersn. Here keeping only
one expansion coefficient~at most two! and discarding all
the others turns out to be sufficient.

By solving the system of equations~7! ~see the Appen-
dix! we find two quasienergy valuesn656n belonging to
the first Brillouin zone, where

n5
d22Ad2~V2d!21~2d2V!~m l

2~d2V!1m l 11
2 d!

2~2d2V!
.

~8!

One can easily establish that forudu!V andud2Vu!V the
quasienergies~8! become the ordinary quasienergies of t
one-resonance approximation~the analog of the Rabi fre
quency!:
e

e

n655 6
Ad21m l

2

2
, udu!V,

6
V2A~d2V!21m l 11

2

2
, ud2Vu!V

. ~9!

The complete pattern of the dependence of the quasiene
n6 on 2«̄/V corresponding to the general expression~8! is
depicted in Fig. 1.

We see that the quasienergy branches are closest a
l th resonance@condition~3!# and are farthest within the firs
Brillouin zone at values of«̄ corresponding to the next (l
11)st resonance. However, such ‘‘repulsion’’ of quasie
ergy levels within one zone automatically results in th
‘‘attraction’’ to the quasienergy levels belonging to th
neighboring zones, which are obtained by translation of
first Brillouin zone up or down the quasienergy axis byV.
Obviously, the minimum distance between the quasiene
branches is achieved at points of resonance and is equalm l

or m l 11 .
Note that the fragment of then6vs.2«̄ dependence de

picted in Fig. 1 can easily be continued outside the inter
of values of«̄ for which the calculations were carried ou
since the dependence is almost-periodic in 2«̄ with a period
equal to 2V. For instance, to continue the functionn6(2«̄)
to the second half of the ‘‘period,’’ into the region (l

21)V<2«̄< lV, it is enough to replacem l 11 by m l 21 and
d by 2d in ~8!. After this we can extend the entire ‘‘period’
obtained in this way to any interval on the 2«̄ axis.

Small deviations from periodic behavior will be ob
served in a small neighborhood of the resonance points«̄
5nV, where the quasienergy branches are closest to e
other or to the zone boundaries. In these neighborhoods
dependence is determined primarily by the coefficientsmn

and, since generally themn are different, there can be n
strict periodicity.

Now we will derive the expressions for the quasiener
functionsU6(x.t). For this we must first determine the co
efficients f 0 , f 21 , g0 , andg1 from the system of equation
~A1! and the normalization condition, which we can write
u f 0u21u f 21u21ug0u21ug1u251. With allowance for the
smallness of the coefficientsg1 and f 21 for the branches
‘‘ 1’’ and ‘‘ 2’’, respectively, we have~at n15n!

FIG. 1. Dependence of quasienergies on the average field within the
Brillouin zone for the states ‘‘1 ’’ and ‘‘ 2 ’’ at m l /V50.05 andm l 11 /V
50.1.
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g0
(1)5S 11

m l
2

~2n1d!2 1
m l 11

2

~2n1d22V!2D 21/2

[G,

f 0
(1)52G

m l exp$2 ic l%

2n1d
,

f 21
(1)52G

m l 11 exp$2 ic l11%

2n1d22V
. ~10!

According to~10!, in the interval of values of«̄ consid-
ered here, the coefficientg0 always plays an important role
it is close to unity almost everywhere in the interval and o
at the interval endpoints rapidly decreases to almost z
The coefficientf 0 is important only near thel th resonance
and the coefficientf 2 , near the (l 11)st resonance.

Reasoning in a similar manner, we arrive at the follo
ing expressions in whichn252n:

f 0
(2)5G, g0

(2)52 f 0
(1)* , g1

(2)52 f 21
(1)* . ~11!

Here the asterisk indicates a complex-conjugate quan
Now the coefficientf 0 is important in the interval of value
of «̄, while the coefficientsg0 andg1 are important only at
the endpoints of the interval.

We substitute the expressions~10! and ~11! for the co-
efficient into~6! and the result in~1!. The quasienergy wave
functionsU6(x,t) are specified as follows:

U1~x,t!5exp$2 int%@~ f 0
(1)

1 f 21
(1) exp$ iVt%!exp$ if l~t!%CL~x!

1g0
(1) exp$2 if l~t!%CR~x!#.

U2~x,t!5exp$ int%@~g0
(2)1g1

(2) exp$2 iVt%!

3exp$2 if l~t!%CR~x!

1 f 0
(2) exp$ if l~t!%CL~x!#. ~12!

wheref l(t)5*( «̃(t)1 lV/2)dt.
Knowing the quasienergy functions~12! will enable us

to determine the dipole moment of an electron in t
quasienergy states and follow the dependence of the de
of polarization of the system on the magnitude of the c
stant external field.

4. ELECTRON POLARIZATION IN QUASIENERGY STATES

We will now calculate the dipole moment in quasiener
states. Using the definition of the dipole moment,

d(6)52e^U6~x,t!ux̂uU6~x,t!&.

the above expressions for the quasienergy functions, and
normalization condition, we arrive at expressions for the
pole moment in the states ‘‘1’’ and ‘‘ 2,’’ respectively:

d(6)56D56ex01~122G2!. ~13!

According to~13!, the dependence of the dipole momentD
on the double value of the constant component of the ex
nal field, 2«̄, is nonmonotonic and, more than that, almo
periodic~as noted earlier, strict periodicity occurs only if a
the coefficientsmn are the same!, with the ‘‘period’’ deter-
mined by the frequencyV of the variable component of th
o.

-

y.

ree
-

he
i-

r-
-

external field. Here in one ‘‘half-period’’ the dipole momen
is directed along the constant field and in the other it oppo
the field, in both cases reaching maximum values. Thus
one ‘‘half-period’’ these appears an antipolarization effe
develops due to the additional action of the strong varia
field on the electron.

Let us discuss theDvs.2«̄ dependence in detail by usin
the quasienergy functions~12!. To this end we follow the
behavior of the degree of localization of one quasiene
function, e.g.,U1(x,t), as a function of«̄. Near thel th
resonance the coefficientsf 0 and g0 provide a sizable con-
tribution toU1(x,t). Here, as we move away from the res
nance into the region of smaller values of 2«̄, the coefficient
g0 very rapidly decreases to zero on a scaled;m l . while the
coefficient f 0 almost equally rapidly becomes almost equ
to unity. Thus, for negative values ofd such thatudu@m l ,
the functionU1(x,t) is almost completely localized in th
left well.

As we approach the exact equalityd50, the degree of
localization of the quasienergy function in the left well d
creases and a fraction of the wave function goes over to
right well. When the condition for resonance is met exac
the quasienergy functionU1(x,t) fills both wells to the
same extent. A further increase in 2«̄ causes a further filling
of the right well and depletion of the left well. In the limi
d@m l , the entire wave function is almost completely loca
ized in the right well.

In the entire range of values of 2«̄ between neighboring
resonances the functionU1(x,t) undergoes no substantia
change as long as 2«̄ is not too close to the next resonan
value (l 11)V. But if it is close to the resonance valuel
11)V, the coefficientsg0 and f 21 become important, with
the first decreasing and the second increasing as we m
closer to resonance. Thus, the weight of the functionsCR(x)
andCL(x) in the expression forU1(x,t) decreases and in
creases, respectively. At resonance the two wells are fi
equally, while as 2«̄ increases, the quasienergy function b
comes completely localized in the left well.

If we use~12! and~11!, we can easily see that the func
tion U2(x,t) behaves in a manner opposite to that
U1(x,t): when one is localized in the left well, the other
localized in the right well, and vice versa. For this reason
dipole moments of the states ‘‘1’’ and ‘‘ 2’’ differ only in
sign.

Obviously, each time a resonance is passed, the fu
tions U6(x,t) change their localization and complete
change the polarization of the given quasienergy state.

Thus, we draw the conclusion that for almost all valu
of «̄ the quasienergy functions coincide, to within unimpo
tant phase factors, with the functionsCL,R(x) localized in
the left and right wells, respectively. The exceptions are n
row resonant regionsu2«̄2nVu;mn!V where this asser-
tion is violated and the quasienergy functions become d
calized.

On the other hand, as mentioned earlier, the coefficie
in the expansion of the wave function in the basis of t
quasienergy functions@Eq. ~5!# always remain constant
Thus, if initially we prepare a wave function coinciding wit
one of the quasienergy functions~by setting one of the coef
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ficients in~5! equal to zero and the other equal to unity!, we
find that such an expansion is retained at all subsequent
ments in time and the wave function of the system alw
corresponds to the chosen quasienergy state. If, in addi
the value of the external field is such that the system is
from a resonance, the particle wave function becomes lo
ized in one well and remains there for an infinitely long tim

But if the value of 2«̄ lands in a narrow resonant regio
near an arbitrarynth resonance, the spatial distribution of th
charge in pure quasienergy states changes significantly
noted earlier, a characteristic feature of the resonant va
of 2«̄ is that at these points the two quasienergy branches
as close as possible, as shown in Fig. 1. In the zeroth
proximation, if we set the coefficientmn in the vicinity of the
nth resonance to zero, the quasienergy branches cros
points 2«̄5nV, which corresponds to degeneracy of t
quasienergies; in this case we speak of a quasienergy
nance. If the finiteness of themn is taken into account, the
degeneracy is lifted: the quasienergy levels split, so to sp
which is directly seen from~12!, e.g., in the case wher
d50. Obviously, the dipole moment of the system at poi
of resonance vanishes, a fact that also follows from~13!.

Speaking of the antipolarization effect, when the stru
ture is polarized in the direction opposite to the exter
electric field, we note the analogy between this phenome
and the effect predicted theoretically by Dakhnovskii a
Metiu16 and Aguado and Platero17 and detected experimen
tally by Aguado and Platero17 and Keayet al.,18 who called
it absolute negative resistance: a current flowing throug
double-well~three-barrier!16,17 or multiwell18 heterostructure
was found to be negative when the structure was irradia
by variable laser light, while the constant voltage applied
the structure was kept positive. Obviously, the two effe
are similar and are of purely quantum origin, related to el
tron dynamics in potential wells placed in periodic fields.

Finally, we will briefly discuss the case where all expa
sion coefficients in~5! are finite and the wave function of th
system is a superposition of two quasienergy states. Here
dipole moment is a function of time and can be written

d5d̄24ex01a1a2G2H m l

2n1d
cos~ c̄ l12nt!

1
m l 11

2n1d22V
cos~ c̄ l 111~2n2V!t!J . ~14!

where c̄n5cn2a, the parametersa1 , a2 , anda are, re-
spectively, the absolute values and phase difference of
coefficientsA1 and A2 , and d̄ is the time average of the
dipole moment,

d̄5~a1
2 2a2

2 !D, ~15!

defined by the population difference of the quasienergy l
els.

An analysis of~14! shows that the time dependence
the dipole moment does not always manifest itself, doing
only near resonance. For instance, near thel th resonance the
dipole moment is a slowly oscillation function of time with
small frequency 2n5Ad21m l

2, since the coefficient
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G2m l /(2n1d), which determines the amplitude of the fir
harmonic in~14!, is of order unity, while the amplitude o
the other harmonic with the frequencyV22n is insignificant
due to the smallness of the ratioG2m l 11 /(2n1d2V)
;m l /V!1.

Similarly, near the (l 11)st resonance the first harmoni
which becomes a rapidly oscillating function (2n'V). has a
small amplitude of orderm l /V!1, while the second har
monic becomes a slowly oscillating function with a fr
quency Am l 11

2 1(d2V)2!V and an amplitude of orde
unity.

In the nonresonant region both harmonics are small
the dipole moment is determined entirely by its avera
value. Here the double quantum is always found to be po
ized if the energy levels are not equally populated, and ma
mum polarization is achieved when only one level is pop
lated. But if the quasienergy levels are equally populated,
dipole moment vanishes.

5. ADIABATIC VARIATION OF THE AVERAGE FIELD

In Secs. 3 and 4 it was assumed that the average valu
the external field is constant and hence the external fiel
strictly periodic. This enabled us to develop a quasiene
formalism for describing the time evolution of the wav
function and to analyze the dependence of the dipole m
ment of the system on the constant component of the ex
nal field.

In particular, we found that there can be a state with
maximum static dipole moment corresponding to the loc
ization of the electron wave function in one well. One mu
bear in mind, however, that such a state can form not o
due to an external field of a certain type acting on the sys
but also due to a specific choice of the initial condition. B
specifying the wave function at the initial moment as one
the quasienergy functions we can ‘‘lock’’ the electron in o
well by a strong variable field. Any deviations from th
given initial condition cause breakdown of the localizati
regime and to a flow of charge from one well to the other
accordance with~14!.

But can we control the localization of the wave functio
by changing the well populations to the opposite valu
solely by adjusting the parameters of the external field?
an example we will take the regime of slow monotonic var
tion of the average field and follow the time evolution of th
electron density in the wells and the dipole moment of
system.

To be definite, we will assume that the average value
the perturbation increases adiabatically and select the or
in time when the value of 2«̄ is lV. Making the coefficient
m l so small thatd is much larger thanm l but still is small
compared toV, we obtain a solution of Eqs.~2! in the reso-
nance approximation near thel th resonance@see condition
~3!#. Discarding in Eqs.~4! all terms corresponding to th
( l 11)st resonance and expanding the slowly varying fu
tion «̄(t) up to terms linear int, we arrive at a system o
equations for the coefficientsCL,R(t):

i
dCL

dt
52

CR

2
m l exp$2 i ~c l2gt2!%,
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i
dCR

dt
52

CL

2
m l exp$ i ~c l1gt2!%, ~16!

where byg we have denoted the derivative of«̄(t) with
respect to timet.

We assume thatg is the small parameter of the problem
In particular, it must be much smaller that the characteri
frequency scale ofm l , which is equal to the smallest dis
tance between the quasienergy branches at 2«̄5 lV.

Since now the Hamiltonian operator is not a strictly p
riodic function of time, it is impossible to introduce the co
cepts of quasienergy and quasienergy wave function, an
other methods and tools should be used to solve the sy
of equations~16!. We reduce the system~16! of two first-
order differential equations to a single second-order equa
for, say, the coefficientCL :

C̈L12igtĊL1
m l

2

4
CL50. ~17!

where a dot stands for a time derivative. Allowing for th
fact that the coefficient of the first-order derivative is
slowly varying function of time, we use the WKB method
solve this equation.

We representCL(t) in the form

CL~t!5r~t!expH i E s~t!dtJ
and arrive at a system of equations forr ands:

2sṙ1rṡ12gtṙ50,

r̈2rs21
m l

2

4
r22gtrs50. ~18!

In the limit g50, the solution of these equations are co
stantsr(t) ands(t)5const. Allowing for the smallness o
g, we will assume that the functionsr(t) and s(t) are
slowly varying functions, their first derivatives are first-ord
quantities, and the second derivativer̈ is a second-orde
quantity.

Ignoring r̈ in the second equation in~18!, we find two
solutions:

s (6)~t!52gt6Ag2t21
m l

2

4
. ~19!

Substituting these solutions in the first equation in~18! yields

r (6)~t!5AAm l
214g2t262gt

2Am l
214g2t2

. ~20!

Estimates show that it is unnecessary to refine the solut
of Eqs. ~18! any further, since the corrections obtained
such a process are determined by integral positive powe
the parameterg and hence can be discarded.

The general solution of Eq.~17! and hence the initia
system~16!, which is a linear combination of the particula
solutions~19! and ~20!, is
ic

-

so
m

n

-

ns

of

CL~t!5~C1r (2) exp$2 iw%1C2r (1) exp$ iw%!

3expH 2 i S c l

2
1

gt2

2 D J ,

CR~t!5~C2r (2) exp$ iw%2C1r (1)

3exp$2 iw%!expH i S c l

2
1

gt2

2 D J . ~21!

whereC1 andC2 are arbitrary constants determined by in
tial conditions, and the phasew is a function of time:

w~t!5
t

2
Ag2t21

m l
2

4
1

m l
2

8g
ln

Am l
214g2t212gt

m l
.

The expressions~21! for the coefficientsCL,R(t) fully define
the wave function~1! of the system and make it possible
study the dependence of well populations on time for ar
trary initial conditions. For the ‘‘initial’’time it is natural to
select the timet˜2`, where the functionsr (6)(t) attain
their stationary values.

Strictly speaking, we must take such valuest,0 at
which utu is large compared tom l /2g but at the same time
the system is far from the (l 21)st resonance, i.e.,m l

!2gutu!V. Similarly, by infinitely large positive values o
t we mean such values at which the system has left thel th
resonance but is still far for the (l 11)st resonance, which is
ensured by the same inequality. To simplify notation, we w
write t˜6`, having in mind the large positive and neg
tive valuest in the above sense.

Suppose that att˜2` one well, say the left, is com
pletely populated, i.e.,uCL(2`)u51, which means that
CR(2`)50. Then we haveC250 and the coefficientC1 is
equal to unity~to within an insignificant phase factor!. As
noted earlier, the probability of the left or right well bein
filled is simply the square of the absolute value of the co
ficient CL(t) or CR(t). Hence in this case forWL(t) we
have

WL~t!5
Am l

214g2t222gt

2Am l
214g2t2

. ~22!

We see that as we move toward the condition~3! for
resonance, at whicht50, holds, the probability of the lef
well being populated monotonically decreases, remaining
ways larger than the probability of population of the oth
well. At t50 both wells are equally populated, and as«̄
increases further the occupation of the right well exceeds
of the left and finally amounts to 100%. Ast˜1`, the
probability WL vanishes, and this stable distribution of ele
tron density continues indefinitely~in real conditions it is
retained as long as 2«̄ does not approach the next resona
value (l 11)V, after which the entire charge gradually flow
into the left well!.

Such behavior of the electron density can be underst
if we use~21! and ~1! to set up the wave functionC1(x,t)
for this case. Here it occurs that there is no need to write
expression for the wave function explicitly, since the expr
sion coincides with earlier obtained formula forU1(x,t) in
~12! if we replace the constant parameterd with the time-
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dependent functiond(t)52gt, the productnt with w(t),
and drop the coefficientf 21

(1) , which is negligible near thel th
resonance.

Similarly, when the wave packet is entirely in the rig
well (t˜2`), the wave functionC2(x,t) coincides, to
within notation, with the quasienergy functionU2(x,t). The
time dependence of the wave functionC2(x,t) qualitatively
follows the dependence ofU2(x,t) on the average value o
the external field and hence the shift of the point of re
nance when«̄ varies slowly results in the flow of charg
from the right well to the left.

A further increase in«̄ may bring the system into th
region of the (l 11)st resonance, where the dynamics of t
two-level system is also described by equations of the fo
~16! but with a different value ofg calculated at the time
when 2«̄5( l 11)V. Obviously, the solution of these equ
tions is exactly the same as in the vicinity of thel th reso-
nance, and the passage of the point of the (l 11)st resonance
also gives relocates the wave packet from one well to
other. Hence, if for 2«̄, lV the wave packet was in the le
well, an increase in«̄ first shifts it to the right well~after 2«̄
becomes greater thanlV! and then back to the left well, afte
the system passes the next (l 11)st resonance.

Generally speaking, to be sure that the above statem
is true we should see whether the wave packet remains in
right well all the time that the value of«̄ belongs to the
nonresonant region. For this we must solve the equation
the two-resonance approximation@Eqs. ~4!# with a time-
dependent«̄, which has not been done due to the complex
of such calculations. It is clear, however, that in the nonre
nant region all the harmonics in~2!, including those left in
~4!, are found to be ‘‘rapid’’ for slow variations of«̄, and
their averaged effect is essentially nil. This means that
coefficientsCL,R(t) and hence the probabilitiesWL,R(t) will
actually retain their values over the entire range of variat
of «̄ between two neighboring resonances.

Thus, a slow variation of the average field in addition
a periodic field of a large amplitude lead to relocation of t
electron wave packet from one well to the other as a resu
passage of a point of resonance, just as in weak fields the
a transition from one energy level to another under a s
variation of the frequency of the external field.19

Finally, if the initial state corresponds to an arbitra
distribution of the electron density in the wells, the wa
function is a linear combination of the functionsC1(x,t)
and C2(x,t) with the coefficientsC1 and C2 in ~21!:
C(x,t)5C1C1(x,t)1C2C2(x,t). In accordance with the
normalization condition, the sum of the squares of the ab
lute values of the coefficientsC1 andC2 is always equal to
unity. The functionsC1,2(x,t) can be called adiabati
quasienergy functions and the quantityn(t)
5Ag2t21m l

2/4, the adiabatic quasienergy near thel th reso-
nance.

It is well known that an adiabatic perturbation does n
cause transitions between stationary states of a quantum
tem. L. D. Landau~see Ref. 14, p. 237! obtained an estimate
for the probability of a transition from one stationary state
another initiated by a slowly varying perturbation, and t
probability proved to be exponentially small. In our case, d
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to the strong periodic field, there are no stationary state
the system. Here the quantum states are quasienergy s
and the quantum number characterizing the given state is
quasienergy.

The expressions for the wave functions derived in t
paper, which are almost the same as the expressions fo
quasienergy functions, indicate that the fact that an adiab
perturbation does not change the quantum state of a sy
is true not only for stationary states but can also be gene
ized to quasienergy states, which effectively replace
states with a definite energy in the presence of a perio
external field.

Obviously, the dipole moment of the system is also d
scribed by the expressions~13!–~15!, where «̄ should be
replaced by a slowly varying function of time. Correspon
ingly, in view of the assumed monotonic dependence of«̄ on
t ~for the sake of simplicity and definiteness, we assume
this dependence is strictly linear!, the time dependence of th
dipole moment in a given adiabatic quasienergy state
follow the dependence on the value of the average fie
however, with allowance for the small proportionality coe
ficient g, this dependence will be strongly ‘‘elongated
along the time axis.

As noted earlier, the functionD(2«̄) is almost periodic.
Actually, the aperiodicity of this function manifests itse
only near the resonant values of«̄ and is revealed by the fac
that the functionD(2«̄) in the vicinity of each point 2«̄
5nV has a its own characteristic step widthmn . All the mn

are small quantities, with the result that all steps in t
D(2«̄) dependence are very steep. For this reason we
assume that deviations from periodicity also occur with
narrow intervals on the 2«̄ axis near resonance.

Let us write the functionD(2«̄) as a sum of two terms
Dvs.2«̄5D0(2«̄)1D̃(2«̄). One of the terms,D0(2«̄), is a
strictly periodic function with the period 2V. It can be de-
fined by the standard expression for the dipole moment@Eq.
~13!#, replacing the different coefficientsmn in this expres-
sion by an average valuem, the same for all resonances. Th
second term,D̃(2«̄), represents the deviation ofD(2«̄) from
a strictly periodic function, and since this deviation is impo
tant only in a near region near a point of resonance,
function D̃(2«̄) has the shape of a sequence of equidist
bursts, each of which has its own amplitude and characte
tic width defined by the small Fourier coefficientmn .

If we now allow for the time dependence of the avera
field, the dipole moment becomes a function of time. He
in view of the linear dependence of«̄ on t, the function
D0(t) is still periodic, but its period is much large tha
before,V/g@1, which corresponds to a frequency

l5
2pg

V
. ~23!

In view of its irregularity, the aperiodic part of the dipol
moment yields a continuous spectrum, which contains
possible frequencies. The bursts of the functionD̃(t) will
now have a characteristic width along the time axis equa
m l /g and hence will be smooth~recall thatg is the smallest
parameter in the problem!, but their width is still much
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smaller than the distanceV/2g between the bursts. For thi
reason the amplitudes of the harmonics belonging to the c
tinuous spectrum can be assumed negligible compared to
harmonics of the periodic component.

Thus, the slow linear buildup of the average value of
external field and the permanent periodic field results i
smooth and almost-periodic flow of the electron density fr
one well to the other. Obviously, such a double-well stru
ture with a periodic flow of charge is a classical dipole c
pable of emitting electromagnetic energy at its natural f
quency. In our case emission of radiation is possible
frequencies that are integral multiples of the frequency~23!
of charge oscillations in the wells, since the law of variati
of the dipole momentD0(t) as a function of time is periodic
but not harmonic.

Two remarks are in order. First, Eq.~23! implies that the
fundamental frequencyl is much smaller than the externa
field frequency or the transition frequency between the lev
of the unperturbed system, which in our notation is equa
unity. As shown in Sec. 4@formula ~14!#, small oscillations
of the dipole can be generated even for a permanent ave
value of the external field, but the lowest possible freque
is mn . In our case, however, when the average value of
perturbation is a linear of time, the frequency is determin
by the rateg of variation of the average field, which b
assumption is much smaller thanmn .

Second, what is important is that the value of the f
quency of the emitted radiation can easily be controlled,
can be varied, if necessary, within broad limits by chang
the rateg of increase of the average value of the exter
field.

Hence the action on the system of a variable field
frequencyV accompanied by a slow variation of the avera
field may lead to low-frequency generation of electroma
netic dipole radiation, one of the main parameters of whi
the frequency, can be controlled by the external field itse

6. CONCLUSION

Let us summarize the main results of our investigatio
In calculating the quasienergies and quasienergy fu

tions for a particle in a strong periodic external field with
finite average value, we used the novel method of the t
resonance approximation. The method is based on allow
for the effect of two neighboring resonances~rather than one
resonance! on the quantum dynamics of a system. The tw
resonance approximation made it possible to obtain and
lyze the dependence of the electron dipole moment on
size of the average value of the external field in almost
entire range of average values, in contrast to the ordin
resonance approximation valid only near a resonance.

In pure quasienergy states the dipole moment of the
tem is an almost-periodic function of the constant volta
applied to the system. At all points of resonance, 2«̄5nV,
the dipole moment is found to be zero, while in the nonre
nant regions it reaches its maximum possible positive
negative values due to the complete localization of the e
tron wave function in one well. When the constant exter
field applied to the system is positive, the polarization of
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double-well structure may oppose the external field, and
have the antipolarization effect.

When the average field varies adiabatically, we used
WKB method of obtain an expression for the electron wa
function and found that the problem of the excitation of
system that is in a certain quasienergy state coincides
the problem of the excitation of a system that is in state w
a definite energy.14 In particular, it was found that an adia
batic increase of the average field does not make the sys
leave the quasienergy state in which it was initially; it on
gradually changes the structure of the wave function of
given state. It was also found that an increase in«̄ that ini-
tiates the passage of a point of resonance ‘‘shifts’’ the reg
of localization of the quasienergy wave function from the l
well to the right, or vice versa, in view of which the electro
density can be made to periodically flow from well to we
provided that the particle wave function is chosen att˜
2` in the form of one of the quasienergy functions.

APPENDIX

Let us find the expression for the quasienergy in
interval lV&2«̄&( l 11)V. We will assume thatd!V,
which corresponds to thel th resonance. Using~7!, we can
easily see that the coefficientsf 0 and g0 provide the main
contribution in this range: their values are of order unity. T
coefficientsf 21 andg1 are proportional toml 11 ~quantities
of first order of smallness!, the coefficientsf 1 and g21 are
determined by the productm lm l 11 ~second order of small-
ness!, etc. Near the (l 11)st resonance the principal coeffi
cients are eitherf 0 andg1 or g0 and f 21 ~depending on the
quasienergy branch!, while the other coefficients are at th
most first-order quantities. In the intermediate region b
tween the resonances the main coefficient isf 0 or g0 .

Hence in the interval of variation of«̄ of interest to us
between thel th and (l 11)st resonances and near the res
nances proper, all coefficients except the four coefficie
f 0 , f 21 , g0 , andg1 always turn out to be small and can b
ignored. For this reason, if in Eqs.~7! we discard all the
coefficients except the above four, we arrive at a closed s
tem of equations:

S n1
d

2
2V D f 211

m l 11 exp$2 ic l 11%

2
g050,

S n1
d

2D f 01
m l exp$2 ic l%

2
g01

m l 11 exp$2 ic l 11%

2
g150,

m l 11 exp$ ic l 11%

2
f 211

m l exp$ ic l%

2
f 01S n2

d

2Dg050,

m l 11 exp$ ic l 11%

2
f 01S n2

d

2
1V Dg150. ~A1!

If we nullify the determinant of the system~A1! we obtain
two quasienergy values that differ only in sign, with ea
corresponding to its own quasienergy state:
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n656
1

&
AS V2

d

2
D 2

1
m l 11

2

2
1

m l
21d2

4
2AF S V2

d

2
D 2

2
m l

21d2

4
G2

1V2m l 11
2 . ~A2!
d

o

Plugging ~A2! in Eq. ~A1!, we find that for the state ‘‘1’’
the coefficientg1 is small in the entire intervallV&2«̄&( l
11)V, while for the state ‘‘2’’ the coefficient f 21 is al-
ways small. We will use this fact to simplify~A2!, since it is
rather cumbersome in the present form.

Let us consider the state ‘‘1.’’ If we ignore g1 and drop
the last equation in~A1!, we arrive at the equation

n31n2S d

2
2V D2

n

4
~d21m l

21m l 11
2 !

2S d

2
2V D d21m l

2

4
2

m l 11
2 d

8
50. ~A3!

A simple analysis of~A2! shows that the deviationsn(d)
from the linear dependencen15d/2 are always small an
reach maximum values near resonances, where they am
to quantities of orderm l andm l 11 , respectively.

Hence, puttingn5d/21h, whereh!1 ~of orderm l or
m l 11!, in ~A3! and ignoring third-order quantities,h3

;hm l
2;hm l 11

2 , we arrive an ordinary quadratic equati
for h:

h2~V22d!1hd~V2d!1
m l

2

4
~d2V!1

m l 11
2

4
d50.

Solving it and allowing for the fact that for the state ‘‘1’’
the quasienergy differs only in sign, we arrive at~8!.
ount
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Perturbation of atomic energy levels by a metal surface
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The energy level shifts of one-electron atomic particles H, He1, Li11, etc. which interact with a
metal surface have been investigated. In the approximation of image charges, an operator
describing perturbations of atomic levels has been obtained. By numerically solving the
Schrödinger equation, we have calculated energy levels of H(1s), H* (n52), and C51(n)
as functions of the distance between an atom and surface. Asymptotic behavior of atomic levels
at large distances from the surface has been studied. The linear Stark effect for excited
states, which was earlier mentioned by A. V. Chaplik, has been found and investigated in detail.
© 1999 American Institute of Physics.@S1063-7761~99!01707-2#
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1. INTRODUCTION

Thermonuclear research has stimulated an interes
studies of collisions of slow (v,108 cm/s), multiply charged
ions with metal surfaces. Numerous investigations1–20 have
revealed that there is a strong probability that slow, multi
charged ions can be neutralized before colliding with a s
face ~above the surface!, and that this neutralization gene
ates ‘‘hollow atoms’’ with vacant internal shells and occ
pied outer shells. An inverse process, namely, destructio
highly excited Rydberg atoms near a metal surface, w
studied in experiments,21–24where Rydberg states were ge
erated by laser radiation. The theoretical description of s
effects requires shifts of atomic energy levels due to the p
ence of metal because the rates of electron exchange bet
atoms and metal surfaces essentially depend on t
shifts.17

This paper reports on calculations of energy level sh
in one-electron~hydrogen-like! ions H, He1, Li11, . . . ,
A(Z21)1 in the approximation of image charge. The obje
tive is to determine the perturbation operator responsible
these shifts. Earlier8,14–17 the problem of hydrogen level
near a metal surface was investigated, but the problem
correct form of the perturbation operator has not be
solved. In order to determine this operator, we will analy
in the next section the image charge approach in the con
of calculation of atomic energy levels. This analysis is ind
pensable because one can hardly find in the classical ele
static problems25–28 a system similar to an atom, when th
mass of one particle~electron! is smaller than that of anothe
particle ~nucleus! by a factor of almost 2000.

Asymptotic shifts of atomic levels in the limit of larg
separations between atoms and metal surfaces has been
ied. In the case of a hydrogen-like ion with a nonvanish
dipole moment, we have found a linear Stark effect~previ-
ously mentioned by Chaplik17!, which is similar to the effect
of a uniform electric field or the interaction with an ion. Th
magnitude of this effect is also finite when a neutral hyd
gen atom interacts with a metal surface, even though
atom is acted upon by its neutral image. The correct in
1291063-7761/99/89(1)/11/$15.00
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pretation of this effect requires a perturbation operator w
ten in a correct form.

2. OPERATOR OF ATOMIC LEVEL PERTURBATION

Shifts of atomic levels are determined by a perturbat
generated by a metal and acting only on the electron if i
topic effects, which are proportional tom/M!1, wherem
andM are the electron and nucleus masses, respectively,
be ignored. Therefore, potentials of interactions between
metal, on the one hand, and the electron and nucleus, on
other, should be calculated separately. The total energ
the atom in this case is the sum of the energies of the e
tron and nucleus. The potential energy of a classical po
like particle is the work done in the process of its movem
in vacuum from infinity to a certain point near the met
surface. The potential energy of one isolated particle~elec-
tron or nucleus! near a metal surface is well known.25–28The
problem is in finding the electron’s potential energy in t
presence of the nucleus, as well as the potential energy o
nucleus in the presence of an electron. Obviously, the po
tial energy of each particle is notably affected by the pr
ence of another particle owing to the infinite polarizability
the metal.

The potential energy of a system of charged partic
depends on relative coordinates of particles and their p
tions with respect to the metal surface, and is independen
the trajectories along which they move to the metal. T
method of calculating the potential energy which is the m
obvious is considering the motion of an atom as a whole
the metal surface with a constant relative radius-vector
connects the nucleus and electron, so that both the elec
and nucleus move in the direction perpendicular to the s
face.

For a system of two real particles, an electrone and
nucleusZ, their imagesẽ and Z̃ are introduced in the ap
proximation of image charges,25–28and we have a system o
four particlese, ẽ, Z, and Z̃ instead of the atom1 metal
system. The potential energyVeZ̃ of interaction between the
real electron and the nucleus image is equal to the work
© 1999 American Institute of Physics
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VeZ̃52E
Se

`

FeZ̃dSe52E
Se

`

FeZ̃ cosu dSe ,

~1!

cosu5
2Se2z

u2R1r u
, FeZ̃5

e2Z̃

u2R1r u2
,

where Se is the distance between the electron and surf
~here the vectorSe is turned perpendicular to the surface a
is directed towards the electron!, FeZ̃ is the magnitude of the
repulsive force between the electron and the image of
nucleus,u is the angle between the force and electron d
placementdSe along vectorSe , i.e., the angle between th
vectors 2R1r andSe ; andz is the component of the vecto
r perpendicular to the surface, which defines the direction
the z-axis ~Fig. 1!. In the approximation of image
charges,25–28the forceFeZ̃ is identical to the Coulomb repul
sive force between two chargese and Z̃.

The integral in Eq.~1! can be transformed to

VeZ̃52
e2Z̃

4 E
Se

` d@~2Se82z!2#

@~2Se82z!21h2#3/2
,

after which it can be calculated analytically. Hereh is the
component of vectorr perpendicular to vectorR. Bothh and
z are independent of the integration variableSe8 . Note that
this transformation does not apply if vectorr is not constant
when the atom is driven towards the surface. The interac
energy between the real nucleus and electron image,VZẽ can
be written in a similar form, and after elementary integrati
we have both these energies:

VeZ̃5
Ze2

2u2R1r u
, VZẽ5

Ze2

2u2R2r 8u
. ~2!

In general, integration in Eq.~1! should be performed
separately for specific values of vectorr . Since the calcula-
tion scheme under discussion is applicable for arbitrarr
values, Eq.~2! and subsequent formulas~3!–~6! are valid for
arbitrary r .

Adding to Eq.~2! the energies of interaction between t
electron and nucleus, on the one hand, and their images
the other,

Veẽ52
e2

2u2R1r2r 8u
, VZZ̃52

Z2e2

4R
, ~3!

which are calculated similarly, we obtain the total energ
of interaction between the metal, on the one hand, and
electron,Vel(r , R), and nucleus,Vnuc(r , R), on the other:

FIG. 1. Coordinates of an electrone, nucleusZ, and their images for a
hydrogen-like ion near a metal surface.
e

e
-

f

n

on

s
e

Vel[Veẽ1VeZ̃52
e2

2u2R1r2r 8u
1

Ze2

2u2R1r u
, ~4!

Vnuc[VZZ̃1VZẽ52
Z2e2

4R
1

Ze2

2u2R2r 8u
. ~5!

Each term in Eqs.~4! and ~5! is half of the similar term for
interaction between two real particles, because in calcula
the work needed to drive a particle one should perform in
gration over the distance through which it has been driven
the surface, but not over the distance between the par
and its image. If an atom is driven to a surface, its image a
moves from the metal depth to its surface. When the dista
between an atom and surface changes byDR, the distance
between the atom and its image varies by 2DR.

The full energy of interaction between the atom a
metal surface should be written in the form

Vtot5Vel1Vnuc

52
Z2e2

4R
2

e2

2u2R1r2r 8u
1

Ze2

2u2R1r u
1

Ze2

2u2R2r 8u
.

~6!

Owing to the symmetry between an object and its mir
image, the following equality applies:u2R1r u5u2R2r 8u;
therefore, interaction energiesVeZ̃ and VZẽ have identical
magnitudes and signs:VeZ̃5VZẽ , but these are interaction
between the metal and different particles, namely, the e
tron and nucleus, respectively. An important point is th
these cross terms describe interactions of the electron
nucleus with the metal, namely, with electrons and ions
the metal. The atomic electron generates on the metal sur
a positive charge composed of particles inherent to the me
The nucleus interacts with this charge, and the termVZẽ

describes this interaction. Using the symmetry between
particles and their mirror images, one can formally expr
the functionVZẽ(R,r8) in terms of the electron coordinate
but this expression would not mean that it is the energy
the atomic electron. The termVzẽ is calculated by integrating
the force acting between the metal and atomic nucleus. In
same way, the termVeZ̃ is calculated by integrating the forc
acting between the metal and atomic electron; therefore,
a part of the electron potential energy, although it is a fu
tion of the nuclear coordinates.

Let us discuss an alternative way of the motion of
atom from infinity to the surface and demonstrate that
potential energies of the electron and nucleus, given by E
~4! and~5!, are the same. First, let the nucleus move towa
the surface and be fixed at finite distanceR from the surface
~Fig. 1!. Then we have only the interaction between t
nucleus and its image,VZZ̃ , given by the second part of Eq
~3!, and the electric field outside the metal is that genera
by the dipole$Z,Z̃%. If the electron is moved to the surface
a very high velocity,v@108 cm/s, there is not enough tim
to generate the electron image charge on the metal surf
In this case~and only in this case! the electron interacts with
the dipole field$Z, Z̃% and its interaction with the metal i
determined by the interaction with the nucleus at rest. T
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interaction ise2Z/u2R1r u, i.e., it coincides with the las
term in Eq.~6!. By analogy with the physics of atomic co
lisions, this approximation for interaction between an el
tron and metal can be called static potential approximat
In the case of adiabatically slow motion of the electron to
metal surface, this approximation is very rough because
metal polarizability is infinite.

If the electron approaches the metal1 fixed nucleus
system adiabatically slowly, there is enough time to gene
on the metal surface the charge due to the electron imag
this case, two charges simultaneously approach the sur
instead of one. Concurrently with the real electron, its ima
moves to the surface from the metal bulk. Then the w
done to drive the electron to the surface not only change
potential energy, but also changes the potential energy o
nucleus due to the interaction between the nucleus and e
tron image. The total work ise2Z/u2R1r u, as in the case o
fast electron motion, but it should be divided between t
components, the electronic and nuclear ones. Owing to
symmetry of the mirror image discussed above, these
components are equal; i.e., the electronic and nuclear po
tial energies each equal half the total work. This means
Eqs.~4! and~5! are also valid, as was expected, in the case
sequential approach of the nucleus and then the electro
the surface.

Equations~4! and ~5! describe the potential energies
two parts of one system, namely, the electron and nucleu
one atom that interacts with the metal surface. They can
easily generalized to the case of a larger number of partic
Consider one simple case of such a generalization. Imagi
nucleus with an atomic numberZ as a system ofZ protons
concentrated at one point~the presence of neutrons does n
affect its interaction with the metal!. According to Eqs.~3!,
~4!, and ~5!, the energies of attraction between each pro
and its image, and with images of other protons, are equa
21/4R. Thus, the energy of attraction of one proton to alZ
proton images is2Ze/4R, and the total energy of attractio
between the nucleus and metal is the sum of all proton
ergies. The summation reduces to multiplication of one p
ton energy by the total number of protons, i.e., the to
energy is2Z2e2/4R, as was expected. This calculation ju
tifies Eqs.~4! and ~5!.

Classical equations describing the motion of the atom
center of mass and interatomic motion can be written in
general form

~M1m!R̈CM5FZẽ1FZZ̃1FeZ̃1Feẽ,

m r̈5FeZ1
M

M1m
~FeZ̃1Feẽ!2

m

M1m
~FZZ̃1FZẽ!,

where Fi is the force due to thei th interaction introduced
previously, andm5mM/(M1m). Ignoring the small terms
of the order ofm/M!1, we obtain the equation for the in
teratomic motion:

mr̈52FeZ2FeZ̃1Feẽ1O~m/M !,

the right-hand side of which is the sum of forces acting o
on the electron. These classical equations clearly indic
that, in calculating interatomic energies to within the ra
-
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m/M;5.4531024, one can ignore the forces acting on th
nucleus, whereas all forces should be taken into accoun
calculating the total energy of the atom.

In earlier works8,14–17 the nucleus potential energy wa
equated to the energy of its attraction to its imag
2Z2e2/4R, both in the presence and in the absence of
electron, whereas the electron energy consisted of th
terms: Veẽ, VeZ̃ , and VZẽ . In other words, the
interaction8,14–17 between the nucleus and electron imag
VZẽ(r 8, R), was attributed to the electronic component.
follows from the analysis given above that this incorrect
terpretation can be attributed to the highly nontrivial subtle
of the issue under discussion: owing to the infinite me
polarizability, the interaction of any charged particle with t
metal surface is essentially modified by the presence of o
particles near the surface.

3. WAVE EQUATION FOR A HYDROGEN-LIKE ION
PERTURBED BY A METAL SURFACE

In accordance with Eq.~4!, the wave equation for deter
mination of electron levels in the adiabatic approximatio
i.e., at low atom velocities, is

@Ĥat1V̂eẽ~r ,R!1VeZ̃~r ,R!2E~R!#c~R,r !50, ~7!

whereĤat is the Hamiltonian of the isolated atom:

Ĥat52
¹2

2
2

Z

r
. ~8!

Below we will use the system of atomic units, unless sta
otherwise, such thate25\5m51.

We treat the heavy atomic nucleus as a classical po
like particle, whereas the atom’s electron has an exten
wave function, and hence an extended distribution of
charge density, while the image of this density generated
the metal also has an extended distribution:

%̃ ẽ~r 8!5 image$%e~r !%, %e~r ![uc~r !u2. ~9!

Here we have normalization conditions

E %e~r !d3r 5E u%̃ ẽ~r 8!ud3r 851.

The simple functional relation~9! uniquely determines the
image charge distribution inside the metal, given the r
charge distribution outside the metal volume. The total el
tric field component parallel to the metal surface equals z
if each element of the real charge,dq(r )5%e(r )d3r , at point
r has its counterpart of the equal magnitude but oppo
sign,dq̃(r 8)5%̃ ẽ(r 8)d

3r 8, at pointr 8, which is a mirror re-
flection of pointr .25–28Calculation of the interaction energ
between real and image charges, however, requires a m
complicated mathematical procedure. The interaction
tween the nucleus and its image in the metal was calcula
in the previous section as a sum of interactions between
protons and all their images. In the case of an exten
charge distribution, summation is replaced with integrati
The potentialV̂eẽ(R, r ) in Eq. ~7! generated at pointr out-
side the metal by the entire charge of the electron image



l-

av
th

d
o
-
a

to

l
is-

s
rg

on

in
th
is

s

-

we

ion
con-

en-
is

ide
tal,

the

the
rgy
etal
rmi

of
ave
ese
c-
the
ter
de-

132 JETP 89 (1), July 1999 M. I. Chibisov and A. V. Ro tman
V̂eẽ~R,r !52E %̃ ẽ~r 8!d3r 8

2 u2R1r2r 8u
. ~10!

It thus follows that Eq.~7! is, in general, a nonlinear integra
differential equation. The image charge density in Eqs.~7!
and ~10! is uniquely related to the real charge density@Eq.
~9!#, and the latter equals the absolute value of the w
function squared. The total energy of interaction between
electron and its image is

Weẽ~R!5E V̂eẽ~R,r !%e~r !d3r

52E E %e~r !%̃ ẽ~r 8!d3r 8d3r

2 u2R1r2r 8u
, ~11!

so that each charge elementdqe(r ) of the real electron in-
teracts with the full charge of the electron image~as should
be in accordance with the electrostatic laws25–28!, but not
only with its own imagedq̃ẽ(r 8). The vectorsr andr 8 in Eq.
~11! should be treated as independent variables unrelate
the laws of mirror reflection. The approximation based
the wave equation~7! and Eq.~10! is a usual Hartree ap
proximation, which is commonly used in calculations of p
rameters of atomic and molecular systems.25 In our specific
case, this approximation is applied to the system of an a
1 its image with the reflection conditions~9!.

The interaction between the atomic nucleus and meta
determined by Eq.~5! integrated over the charge density d
tribution inside the metal due to the electron image,%̃e(r 8):

V̄nuc~R!52
Z2

4R
1

Z

2E %̃ ẽ~r 8!dr 8

u2R2r 8u
. ~12!

The integral-differential equation~7! is unlikely to be
solved analytically. In the case of multiply charged ion
Z@1, discussed in this paper, the total interaction ene
between the electron and its image,Weẽ, is a small param-
eter since it is independent ofZ. Then we can use in the
zeroth-order approximation, instead of Eq.~7!, the equation

S 2
D

2
2

Z

r
1

Zeff

r 2
2E0~R! Dc050, ~13!

wherer 25u2R1r u is the distance between the real electr
and the image of the nucleus, andZeff is defined as

Zeff[Z/2. ~14!

The functionsc0 andE0(R) are zeroth-order parameters
the perturbation theory applied to this specific case. In
first order of the perturbation theory, the electron energy

E~R!.E0~R!1Weẽ
0

~R!1••• . ~15!

Here Weẽ
0 (R) is given by Eq.~11!, where charge densitie

due to the real electron,%e
0 , and its image,%̃e

0 , calculated in
the zeroth-order approximation should be substituted.

In the elliptic coordinatesj, h, andw:

j5
r 21r

2R
, h5

r 22r

2R
, 1<j<`,
e
e

by
n

-

m

is

,
y

e

21<h<1, 0<w<2p, ~16!

where w is the angle of rotation around theZZ̃ axis, the
variables can be separated in Eq.~13!, and we have the sys
tem of two ordinary differential equations29

c0~j,h,w!5
N U~j!V~h!

A~j221!~12h2!

eimw

A2p
, ~17!

d2U

dj2
1F2R2E0j212~Z2Zeff!Rj1A

j221
2

m221

~j221!2GU50,

~18!

d2V

dh2
1F22R2E0h212~Z1Zeff!Rh2A

12h2
2

m221

~12h2!2GV50,

~19!

whereA is the separation constant, andN is the normaliza-
tion constant.

In order to obtain a wave functionc0 that would behave
in a regular manner at infinity and at the atomic nucleus,
should satisfy the boundary conditions29

U~j51!50, U~j5`!50, V~h51!50. ~20!

In the case of two real Coulomb centers, the wave funct
should also tend to zero near the second center, so the
dition V(h521)50 should also be satisfied.29 In the case
of interaction with a metal surface, the second Coulomb c
ter with chargeZeff is fictitious. The real screening charge
distributed over the metal surface.25–28 On the metal surface
at h50 and inside the metal,h,0, we set the wave function
to zero:

V~h<0!50. ~21!

This condition forbids the atom’s electron to penetrate ins
the metal. If the electron energy is in a band gap of the me
condition ~21! holds. But if E(R) coincides with a band of
electron states in the metal, and this energy is below
Fermi level in the metal,E(R),«F , then the atom’s elec-
trons cannot move inside the metal in accordance with
Pauli principle because all the states below the Fermi ene
are occupied by metal’s electrons. Suppose that the m
temperature is zero or, at least, much smaller than the Fe
energy. Formally, one should substitute in Eq.~7! the metal
potential for the electron image potential, then the solution
this equation should be nonvanishing but equal to the w
function of a metal electron of the same energy. Since th
two functions are identical, we determine the full wave fun
tion symmetrized with respect to exchanges between
electrons of the atom and metal in the form of the Sla
determinant, which is zero because two columns of this
terminant are identical. Hence follows condition~21! for this
case. The validity of boundary condition~21! will be dis-
cussed in detail in Sec. 6.

We have solved the system of equations~17!–~19! with
boundary conditions~20! and ~21! using the predictor-
corrector numerical technique30 for a hydrogen atom in the
ground state, H(1s), and in the lowest excited state, H(n
52), and also for a carbon ion with charge five, C51(n
59), with one electron excited to leveln59. The electron
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binding energy of this level~the ionization potential!, which
equals 6.047 eV, is very close to the work function for m
metals, so a C51(n59) ion can be formed with a high prob
ability as a result of a collision of a bare C61 nucleus with a
metal surface through capture of a band electron in the m
The probability of this process essentially depends on
location ofE(R) levels ~which is the reason for calculatin
these levels!. The energy eigenvalueE0(R) and separation
constantA were derived from the condition of compatibilit
between Eqs.~18! and ~19!, i.e., by finding the values o
E0(R) andA at which both the solution of Eq.~18! and that
of Eq. ~19! satisfy boundary conditions~20! and ~21! ~Ref.
29!. The calculations are plotted in Figs. 2–6 and will
discussed in the following sections.

In order to calculate the electron energy in the first or
of the perturbation theory using Eq.~15!, which takes into
account the interaction between the electron and its ima
one should determine the image charge density as a func
of coordinates. The reflection of each point outside the m
with elliptic coordinates (j, h, f) is a point with elliptic

FIG. 2. Energy of the hydrogen ground state H(1s) as a function of the
distance to the surface. The results of the zeroth-order approxima
E0(R) @without interaction between the electron and its image,Weẽ(R)]: ~1!
our numerical calculations;~2! asymptotic expression~34! for Z51:
E0(R)520.511/4R. The results of the first-order approximation,E(R)
5E0(R)1Weẽ(R): ~3! our numerical calculations;~4! asymptotic value
from Eq. ~41!: E(R)520.5. The results reported by other authors: cros
from Ref. 8, rhombi from Ref. 16, and squares from Ref. 14.

FIG. 3. EnergiesE0(R) of the excited staten52 of the hydrogen atom in
the zeroth-order approximation@without Weẽ(R)] as functions of the dis-
tance to the surface. Termn151, n250: ~1! our numerical calculations;~2!
asymptotic expression from Eq.~34!: E0

as(R)520.12511/4R23/8R2

13/8R31••• Term n150, n251: ~3! our numerical calculations;~4!
asymptotic expression~34!: E0(R)520.12511/4R13/8R213/8R31•••

The size of the lowest excited orbitn52 in the unperturbed hydrogen atom
is about 8 a.u. AsR˜`, the energies ofn52 terms tend to20.125 a.u.
t

al.
e

r

e,
on
al

coordinates (j, 2h, f) inside the metal. In accordance wit
the image charge approximation,25–28the densities of the rea
electron charge and of its image at these two points sho
be equal:

%̃ ẽ~j,2h,f!5%e~j,h,f! ~0<h<1!. ~22!

This condition unambiguously determines the electron im
charge density; therefore, we can write

%e~j,h!5
N2

2p

U2~j!V2~h!

~j221!~12h2!
~0<h<1!, ~23!

%̃ ẽ~j8,h8!5
N2

2p

U2~j8!V2~2h8!

~j8221!~12h82!
~21<h8<0!.

~24!

In accordance with the boundary condition~21!, the function
V(h) is nonzero only at the positive values of its argume

n,

s

FIG. 4. EnergiesE(R) of the excitedn52 states of the hydrogen atom i
the first-order approximation,E(R)5E0(R)1Weẽ(R), as functions of the
distance to the surface. Termn151, n250: ~1! our numerical calculations;
~2! asymptotic expression~41b!: E(R)520.12513/8R223/2R31•••

Term n150, n251: ~3! our numerical calculations;~4! asymptotic expres-
sion ~41b!: E(R)520.12523/8R223/2R31••• The orbit size in the low-
est excited termn52 in the unperturbed atom is about 8 a.u. AsR˜`, the
energy of then52 terms tends to20.125 a.u.

FIG. 5. EnergiesE0(R) of the extreme components of the excitedn59
state of carbon ion C51(Z56) in the zeroth-order approximation@without
Weẽ(R)] as functions of the distanceR to the surface. Termn158, n2

50: ~1! our numerical calculations;~2! asymptotic expression~34!:
E0(R)520.22(2)11.5/R213.5/R21128.25/R31••• Term n150, n2

58: ~3! our numerical calculations;~4! asymptotic expression~34!:
E0(R)520.22(2)11.5/R213.5/R21128.25/R31••• The orbit size in the
n59 term of the carbon ion is;27 a.u. AsR˜`, the energies of these
terms tend to22/9520.22(2) a.u.
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The real electron charge density%e in this case is nonzero
only outside the metal, and the charge density of its ima
%̃ ẽ , is nonzero only inside the metal.

The volume element expressed in the elliptic coordina
defined by Eq.~16! is dt5R3(j22h2)djdhdw, and the
interaction between the electron and its image is descr
by the formula

Weẽ
0

~R!

52
N4R6

4p E
0

1

dhE
0

1

dh8E
1

`

djE
1

`

dj8E
0

2p

df

3
U2~j!U2~j8!V2~h!V2~h8!~j22h2!~j822h82!

~j221!~12h2!~j8221!~12h82! r 12~j,j8,h,h8,f!
,

~25!

where

r 125R@j21j821h21h8222~12jhj8h8!

12cos~f!A~j221!~12h2!~j8221!~12h82! #1/2

~26!

is the distance between two arbitrary points (j, h, w) and
(j8, h8, w8) located inside and outside the metal, resp
tively, and these points are not related by the rules of mir
reflection in the metal surface;f5w2w8, and the variable
substitutionh8˜2h8 has been performed in the integran
in Eq. ~25!. The functionWeẽ

0 (R) was calculated by formula
~25! with functionsU and V found by solving numerically
the system of equations~18! and ~19!.

4. ASYMPTOTIC EXPANSION

At large distancesR between the atom and metal surfac
the energyE(R) of the atom’s electron can be expanded
inverse powers ofR. The distanceR should be much large
than the average size of the electron orbit in question.

FIG. 6. EnergiesE(R) of the extreme components of the excitedn59 state
of carbon ion C51(Z56) in the first-order approximationE(R)5E0(R)
1Weẽ(R). Term n158, n250: ~1! our numerical calculations;~2!
asymptotic expression~41!: E(R)520.22(2)11.25/R29/R2145/R31•••
Term n150, n258: ~3! our numerical calculations;~4! asymptotic expres-
sion ~41!: E(R)520.22(2)11.25/R19/R2145/R31••• The orbit size in
then59 term of the carbon ion is.27 a.u. AsR˜`, the energies of these
terms tend to22/9520.22(2) a.u.
e,

s

d

-
r

,

e

interaction between the atom and metal surface is wea
such distances and can be treated by the perturbation the

At large R the elliptic coordinates near the atom can
approximated by parabolic coordinates29 m, n, andw:

m5r ~11cosu!, n5r ~12cosu!, ~27!

whereu is the angle between the vectorsr and R ~the azi-
muthal anglew is the same for both coordinate systems!, and
the atom is described in terms of the zero-order wave fu
tions c00 in the parabolic coordinates31

c005
A2Z3/2

n2
f n1mS Zm

n D f n2mS Zn

n D eimf

A2p
, ~28!

where

f pm~r!5
1

umu!A~p1umu!!
p!

F~2p,umu11,r! e2r/2r umu/2,

~29!

whereF is the degenerate hypergeometric function.25 An im-
portant point for further analysis is that the electron in the
states has constant dipole,d, and quadrupole,Q, moments1!

~Refs. 29 and 31!:

d[2E uc00~r !u2r cosud3r 52
3n~n12n2!

2Z
, ~30!

Q[2E uc00~r !u2r 2~3cos2u21!d3r 52
n

2Z2
$~m12!

3~m13!@n15~n11n2!#115~m13!~n1
22n1

1n2
22n2!110~n1

323n1
212n11n2

323n2
212n2!

23n@6n1n21~m11!~3n22m21!#%. ~31!

In Eq. ~31! m is the absolute value of the magnetic quantu
number, i.e.,umu.

In the first order of the perturbation theory, we have

E~R!.E001~Vel!005E001^c00* ~r !uV̂eẽ1V̂eZ̃uc00~r !&,
~32!

where the energy of the unperturbed atomE0052Z2/2n2.
The interaction between the atom and metal, i.e., the in
action between the atom and its image on the metal surf
has features that distinguish it from the interaction betwe
an atom and a real particle, i.e., another atom or a molec
For this reason, a detailed analysis of the result
asymptotic expansion is given below.

The interaction between the real electron and the nuc
image,V̂eZ̃ , does not explicitly depend on the electron ima
coordinates. At largeR this interaction can be expanded
follows:

V̂eZ̃5
Z

2

1

u2R1r u

5
Z

2 S 1

2R
2

rcosu

~2R!2
1

r 2

~2R!3

3cos2u21

2
1••• D .

~33!
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Multiplication of Eq. ~33! by the probability density%e(r )
for the real electron and integration yield an expansion
energyE0(R) in the zeroth-order approximation~without the
interaction between the electron and its image, see the
vious section!:

E0~R!5E001^c00* ~r !uV̂eZ̃uc00~r !&

52
Z2

2n2
1

Z

4R
1

Zd

8R2
2

ZQ

32R3
1••• . ~34!

The interaction between the electron and its image has
following expansion:

2
1

2u2R1r2r 8u
.2

1

4R
1

rcosu

8R2
2

r 2~3cos2u21!

32R3

2•••2
r 8cosu8

8R2
2

r 82~3cos2u821!

32R3

2•••2
rr 823rr 8 cosu cosu8

16R3
1•••,

~35!

whereu andu8 are the polar angles of the vectorsr andr 8.
Expansion~35! is a function of the coordinates of the re
electron and its image. In order to calculate the matrix e
ment of this operator, one should determine the electron
age charge distribution%̃ ẽ(r 8), given the charge distribution
of the real electron in the parabolic coordinate system.
cordingly, we consider a second parabolic coordinate sys
with the origin at the nucleus image:

m85r 8~11cosu8!, n85r 8~12cosu8!, ~36!

such that the angleu8 is measured with respect to the vect
R, as in the case of the first parabolic coordinate sys
introduced for the real electron, and the azimuthal anglew is
the same for both coordinate systems. The mirror reflec
transforms lines m5const1 and n5const2 to lines
n85const1 andm85const2 . This means that the point with
coordinates (m, n, w) in the first coordinate system is re
flected into the point with coordinates (n, m, w) in the sec-
ond coordinate system. For the wave functions~28! and~29!
in the parabolic coordinates, the permutationm↔n is
equivalent to the exchange of indicesn1↔n2 . This means
that the charge distribution in the electron image is de
mined by the same function as that of the real electron,
with the interchanged parabolic quantum numbers:

%̃ ẽ;(n,n1,n2,umu)~m8,n8,w8!5%e;(n,n2,n1,umu)~m8,n8,w8!, ~37!

where %e is the absolute value of the wave function~31!
squared.

Since the charges of the electron and nucleus cha
their signs as a result of the mirror reflection, there is the p
sign in front of the integrals in definitions of the image d
pole and quadrupole moments:

d̃[E %̃ ẽ~r 8!r 8cosu8d3r 85d, ~38!
f
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m
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Q̃[E %̃ ẽ~r 8!r 82~3cos2u821!d3r 852Q, ~39!

whereas the sign in front of the integrals in definitions for t
real electron is minus@see Eqs.~30! and ~31!#.

Since the integral in Eq.~38! is antisymmetrical with
respect to the permutationn1↔n2 @see Eq.~30!#, we can see
that d̃5d, i.e., the dipole moment of the electron whose st
is determined by the parabolic wave functions~28! does not
change after its mirror reflection from the metal surface25

Note that in the states described by Eqs.~28! and ~29! only
thez-component of the dipole moment is nonzero:dzÞ0, but
dx5dy50. In general, the parallel components of the dipo
moment, if they do not equal zero, change their signs a
result of the mirror reflection:d̃x52dx , d̃y52dy ~Ref. 25!.
The quadrupole moment changes its sign after reflect
Q̃52Q, since the integral in Eq.~39! is symmetrical with
respect to the permutationn1↔n2 @Eq. ~31!#.

By substituting expansion~35! in the integral in Eq.
~11!, we obtain an expansion of the full interaction betwe
the electron and its image

Weẽ~R!.2
1

4R
2

2d

8R2 1
2Q24d2

32R3 1••• ~R˜`!.

~40!

Adding Eqs.~34! and ~40!, we obtain an expansion for th
electron energy

E~R!52
Z2

2n2
1

Z21

4R
2

3n~n12n2!

8R2 S Z22

2Z D
2

~Z22!Q14d2

32R3
1••• ~R˜`!. ~41!

Let us discuss the results. Recall that in the expansio
the interaction between the two charge distributions the m
term of the Coulomb interaction is due to the direct inte
charge interaction (}R21); then follow the terms describing
the interactions between the real charge and image dip
and the image charge and real dipole (}R22), etc. First, let
us consider the interaction between the electron and its
age@Eq. ~40!#. Only this interaction depends on the char
distributions due to the electron and its image.

The first term on the right-hand side of Eq.~40!,
21/4R, is due to the Coulomb attraction between the to
charges of the electron and its image. The second term in
~40! is due to two interactions: between the real charge
image dipole, and between the image charge and real dip
It is clear that since both the magnitudes and signs of th
terms are equal, they are added, but are not canceled out
image charge has the sign opposite to that of the real cha
therefore, the electric fields generated by these charges
the same direction on the connecting line. For a nega
charge, both these fields are directed from the metal to
charge, and for a positive charge both fields are direc
towards the metal surface. In both cases, these field re
exist only in the space outside the metal. In the electric fi
F, the dipole energy is2dF; therefore, both terms due to th
charge-dipole interaction are identical: their magnitudes
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signs are equal. The same result can be obtained for the
interactions between the charge and the quadrupole, w
also are added.2!

The first term in the expansion of the total electron e
ergy ~41! is the electronic energy of the unperturbed ato
The second term in Eq.~41! is due to the interaction betwee
the real electron and imageq̃ of the total charge of the ion
q[Z21. Sinceq̃52q and q.0, this interaction is repul-
sive and drives the electron level in the ion towards the c
tinuum states.

Of the greatest interest is the third term in Eq.~41!,
which is due to the sum of the charge–dipole interaction
can be expressed as a sum of two terms:

~Z22!d

8R2
5

q d

8R2
2

d

8R2
~q[Z21!, ~41a!

where the first term is due to the interaction between the
dipole and the full ion charge image, and the second is du
the interaction between the real electron and image dip
The third term in Eq.~41! can be interpreted as a linear Sta
effect of a hydrogen-like ion in an electric field generated
the ion image. An interesting point, however, is that th
effect does not vanish in the case of the neutral hydro
atom,Z51. It follows from Eq.~41a! that atZ51 only the
first term turns to zero, whereas the second term does
vanish and, moreover, is independent ofZ. For the neutral
hydrogen atom,Z51, Eq. ~41! takes the form

E~R!52
1

2n2
1

3n~n12n2!

16R2

2
9n2~n12n2!22Q~n,n1 ,n2!

32R3
1••• ~R˜`!,

~41b!

whereQ(n,n1 ,n2) is given by Eq.~31!. The second term on
the right-hand side of Eq.~41b! is the same as for a hydroge
atom in a uniform electric field with the strength proportion
to R22 or for interaction with a positively charged ion a
distanceR. The possibility of this effect for a neutral atom
near a metal surface was first indicated by Chaplik,17 who
studied tunneling of an electron from a highly excited ato
into a metal. The numerical factor in the second term on
right of Eq. ~41b! is a factor of 2 smaller than the respecti
factor in Chaplik’s formula,17 since the perturbation operato
@Eq. ~3! in Ref. 17# is twice as large as that in our equation

An interesting question is why the linear Stark effe
takes place when a neutral atom interacts with its own n
tral image, similarly to the case of an atom in a homog
neous electric field or when it interacts with a charged p
ticle such as an ion. When an excited hydrogen at
interacts with a real particle equipped with a constant dip
moment, the second term on the right of Eq.~41b! also takes
place, but it is a function of the dipole moment of the seco
particle, which is independent of the hydrogen dipole m
ment. In this case, the interaction between the full charge
the hydrogen electron and the dipole~and the other moment
of the second particle! is independent of all quantum param
wo
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eters of the hydrogen atom; therefore, the states of the la
are not mixed up. On the other hand, the image dipole g
erated by interaction with metal is fully determined by t
real dipole. Any change in the real dipole also changes
image dipole. Because of this strong correlation between
real and image dipoles, the asymptotic expansion of the
ergy of an atom interacting with a metal surface@Eq. ~41!#
has a character radically different from that of two intera
ing real particles, namely, all coefficients in expansion~41!
depend only on quantum parameters of the real atom sin
is acted upon by its own image generated on the metal
face. As a result, the interaction between the zeroth-or
moment or the total charge of the real electron~which is the
same for all real statesun,n1 ,n2 ,m&, i.e., independent of the
quantum numbersn, n1 , n2 , andm) and the image dipole
moment depends on the quantum numbersn, n1 , n2 , andm
because the parameters of the image dipole depend on
numbers. This interaction brings about transitions betw
different hydrogen states. Thus, the correlation between
real and image moments is the cause of the linear Stark
fect in a neutral hydrogen atom near a metal surface.

Equation~41! clearly shows that the level splitting du
to the Stark effect has a nontrivial dependence on the ato
numberZ. In the helium ion He1(n) (Z52) there is no such
effect since the factor in front of the third term on the righ
hand side of Eq.~41! vanishes. For the neutral hydroge
atom (Z51) and hydrogen-like ions Li21, Be31, . . . (Z
53, 4, . . . ) thefactor in front of the third term in Eq.~41!
is nonzero, so the effect should take place. Note that in
neutral hydrogen atom Stark components withn1.n2 have
higher energies than components withn1,n2 , whereas in
ions with Z.2 the arrangement of levels is different: com
ponents withn1.n2 are lower than those withn1,n2 .

The existence of the Stark effect in hydrogen-like io
placed close to metal surfaces is important for applicatio
In many experiments, beams of atoms in Rydberg sta
moving near metal surfaces are used. Interaction with m
leads to transitions between Rydberg sublevels. The char
dipole interaction responsible for these transitions@the third
term in Eq.~41!# decreases with the distance to the surfa
fairly slowly, }R22, and can lead to a notable mixing be
tween Rydberg states~see the next section!.

The fourth term on the right-hand side of Eq.~41! is for
the same reason~correlation between real and image dipole!
different from a similar term for the case of interaction b
tween two real~therefore independent! atoms. The dipole–
dipole interaction, which is proportional to the product
two dipole moments,d1d223(nd1)(nd2), is proportional in
Eq. ~41! to the atom’s dipole moment squared,d2. The total
charge–quadrupole interaction, (Z22)Q/32R3, is also a
function of only one quadrupole momentQ. This interaction
is zero for He1 (Z52) and nonvanishing for the neutra
hydrogen atom and Li21, Be31, . . . ions, just as in the cas
of the dipole–charge interaction.

The asymptotic expansion of the energy of interact
between the nucleus and the metal surface averaged ove
spatial charge distribution in the electron image is
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Enuc~R!52
Z2

4R
1^c00* uV̂Zẽuc00&

52
Z~Z21!

4R
1

Zd

8R2
2

ZQ

32R3
1••• ~42!

The first term on the right describes the Coulomb interact
between the nuclear chargeZ and that of the ion image
2(Z21). The two following terms are due to the interactio
of the nucleus with image dipole and quadrupole momen

The expansion of the energy of interaction between
entire atom, which consists of the electron and the nucle
and the metal is

Etot~R!5E~R!1Enuc~R!

52
Z2

2n2
2

~Z21!2

4R
1

~Z21!d

4R2

2
~Z21!Q12d2

16R3
1••• ~43!

It is clear that for the neutral atom (Z51) the second and
third terms on the right of Eq.~43! turn to zero. The only
nonzero term in Eq.~43! in this case is that due to th
dipole–dipole interaction,2d2/8R3 if the dipole moment
dÞ0.

5. MIXING OF HYDROGEN-LIKE RYDBERG STATES NEAR
A METAL SURFACE

Many experiments deal with beams of metastable hyd
gen atoms H(2s). Near a metal surface, the hydrogen ato
can transfer from state 2s to state 2p, which rapidly relaxes
to the ground state 1s with emission of a photon. Let u
investigate in detail the rate of 2s↔2p transitions in the
hydrogen atom near the metal surface.

Let a metastable hydrogen atom H(2s) start its motion
along the metal surface at large distanceR at the timet50,
so that we could use the asymptotic expressions for the
ergies of atomic levels given in the previous section. T
wave functions of atomic steady states near the metal sur
are described by the functions in the parabolic coordina
cn1 ,n2 ,m(m,n,w). The coordinate wave functions in sphe
cal coordinates,c2s(r ) and c2p(r ), for the states with the
principal quantum numbern52 are expressed as linear com
binations of the coordinate functions in the parabolic coor
nates:

c2s5
1

A2
~c0101c100!, c2p5

1

A2
~c0102c100!. ~44!

If the atom is in the state 2s at t50, then at the timet>0 its
state is described by the function

C~r ,t !5
1

A2
Fc100expS 2 i E

0

t

E10dt8D
1c010expS 2 i E

0

t

E01dt8D G , ~45!
n

.
e
s,

-

n-
e
ce
s

i-

whereE10 andE01 are the energies of statesun151,n250&
and un150,n251&, respectively@see Eq.~41!#. The prob-
abilities of detecting the atom in states 2s and 2p at t>0 are

P2p~ t !5u^c2puC~r ,t !&u25sin2
D~ t !

2
, ~46!

P2s~ t !5u^c2suC~r ,t !&u25cos2
D~ t !

2
, ~47!

where

D~ t ![E
0

t

~E102E01!dt8. ~48!

Probabilities~46! and ~47! vary with time as a result of in-
terference between statesu1,0,0& and u0,1,0&, which have
different energies. According to Eq.~41!, for n52 the dif-
ference between energies of Stark components isE102E01

53/4R2. If the atom travels along the surface,R5const(t)
and D(t)53t/4R253L/4R2v, where L is the distance
through which the atom has moved along the surface anv
is its velocity. For the complete 2s˜2p transition we need
D5p, and the distance through which the atom sho
travel in order to complete its transition isLp5(4p/3)vR2

~in atomic units!. Equation~41! yields correct parameters o
the Stark splitting as long as it is larger than the fine struct
splitting. For n52 the splittingDE0 between levels 2p3/2

and 2p1/2 in an unperturbed hydrogen atom isDE0

50.365 cm2154.5331025 eV51.6631026 a.u. ~Ref. 32!.
The distance at which the Stark splitting is equal toDE0 is

R05A 3

4DE0
.3.531026 cm.670 a.u.

At R.R0 the Stark effect becomes quadratic,E102E01

}R24. If the atom velocity isv5108 cm/s and the distance
to the surface isR5R0 , then the required travel distance
Lp5531025 cm. The time of this travel istp5Lp /v55
310211s, which is much shorter than the radiation lifetim
of the 2p-state:t2p21s.1.631029 s. We can conclude tha
an atom in the 2s-state moving a distance of;600a0 from
the surface should travel through half a micrometer
31025 cm) to complete its transition to the 2p-state. If an
atom travels along the surface through a distance m
larger than half a micrometer, thenD@ t(L)#@p and the atom
undergoes multiple 2s˜2p˜2s transitions.

6. DISCUSSION

The boundary condition~21! used in our calculations is
approximate. Calculations based on this condition can be
curate if the surface region makes a small contribution to
energies of levels under discussion. This condition is va
a fortiori if the electron orbit size is much larger than th
surface region thickness, which is usually within two to thr
Bohr radii in different metals. Such is the situation, for e
ample, in case of collisions between excited atomic partic
and a metal surface. For example, the sizes of electron o
of C51(n59) andH(n52) are;27a0 and;8a0 , respec-
tively. Note that in this case condition~21! leads to a correct
description of atomic levels even though the electron orbi
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strongly deformed by the interaction with metal. If the orb
size is of order of the surface layer thickness, which is
case in the hydrogen ground state, H(1s), the distance be-
tween the atom and surface should be larger than the o
size. In this case, the electron wave function is exponenti
small near the surface because of the large barrier that s
rates the atom and metal, and the surface layer has
effect on the energy of the atomic electron. If the electr
energy is higher than the Fermi level, condition~21! is also
satisfied at large distances between the atom and meta
the same reason.

The approximation of image charge applies to the c
of large distances between the atom and metal. Usually
conditionR@RD is discussed; hereRD is the Debye radius
which equals the Bohr radiusa0 times a factor of 1 or 2. A
more restrictive condition, however, is the smallness of
perturbation of the metal conduction electrons, namely,
additional density of the image charge on the surface sho
be much smaller than the charge density in the unpertur
metal. The density of degenerate conduction electrons ca
estimated using the formula33–35 n0(«F)52A2«F

3/2/3p2. For
an isolated chargeZ the image charge density on th
surface25–28 is Dn(%,R)52(ZR/2pRD)/(%21R2)3/2,
where% is the distance measured along the surface from
perpendicular line drawn through the charge. Using
maximum value of this density at%50, we obtain the con-
dition

R@R0AZ, R0[1.5«F
25/8. ~49!

For most metals,R0 is within .(4210)a0 . For cesium~or
any metal whose surface more than 60% is coated with
sium! the Fermi energy«F51.5 eV50.055 a.u., so we hav
R059.2a0 . This value is six times the Debye radius for m
tallic cesium,RD

Cs.1.54a0 . For the carbon ion withZ56 the
distance from the cesium surface should be larger t
22.5a0 , which is a factor of 14.6 larger thanRD

Cs.
If R;R0AZ, the perturbation in the electron density

the metal cannot be ignored. The potential barrier betw
the atom and surface is lowered, and electrons from
metal can transfer to the atomic ion more easily. This eff
was previously studied in detail,2 and it turned out that, ow-
ing to this neutralization effect, the acceleration of t
atomic ion near the surface caused by its attraction to
image charge is terminated at distances much larger than
Debye radius and equal to approximately 2R0AZ.

The result of our calculations are plotted in Figs. 2–
Figure 2 shows the ground-state level 1s of hydrogen in
comparison with calculations by other authors. Our calcu
tions for the 1s level are close to the unperturbed val
E00513.6 eV at distancesR>4a0 . On the other hand, the 1s
energy level calculated by other authors8,14–16 follows the
function E1s(R).E00(`)11/4R at large distances and rise
to 1.90 eV aboveE00 at R54a0 . It follows from our calcu-
lations @Eq. ~41!# that deviation of the levelE(R)2E00

.1/4R is possible for an atomic ion with unit charge, fo
example, He1. But for a neutral atom,Z51, the Coulomb
term (Z21)/4R is zero. The image of a neutral particle in
metal is a neutral particle, and interaction between two n
tral particles cannot contribute a Coulomb term to the le
e
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energy. In the earlier calculations,8,14–16a fraction of the po-
tential energy of the nucleus due to its interaction with t
electron image,VZẽ , was attributed to the electron energ
At larger distances, this interaction has an asymptotic beh
ior 1/4R, and it is precisely this term that causes t
Coulomb rise of the hydrogen ground level proportional
1/4R found in Refs. 8 and 14–16 forZ51.

Figure 2 also shows the results of our calculations of
energyE0(R) for the hydrogen ground state 1s in the zeroth-
order approximation. This energy does not include inter
tion between the electron and its image and was calcula
by numerically solving the system of equations~18! and
~19!. The asymptotic expansion of energy~34! at Z51 con-
tains the Coulomb term 1/4R due to the repulsion betwee
the electron and proton image. ForR.4a0 , our calculations
of E0(R) are in good agreement with calculations8,14–16 for
the total 1s level. Previously8 the energy of the 1s level was
calculated using the electric potential on the metal surfa
whereas our calculations are based on condition~21!. The
agreement between these calculations indicates that the
face layer contributes little to the electron energy of the h
drogen atom in the 1s state at distances from the surfa
larger than 4a0 .

Figures 3 and 4 show energies of excited states of
hydrogen atom (n52). One can see that the calculations
the zeroth order and first order of the perturbation the
~shown in Figs. 3 and 4, respectively! differ considerably.
The energies of the electron interaction with its image a
with the nucleus image are values of the same order for b
the ground state 1s and the excited states withn52 of the
hydrogen atom.

Figures 4–6 show the results of our calculations for
excited state of the C51(n59) ion. Figure 5 shows elec
tronic energies calculated in the zeroth-order approximat
and Fig. 6 shows these energies calculated in the first o
of the perturbation theory. The differences between the
ergies plotted in these graphs are small because the ener
electron interaction with its image is small in comparis
with its interaction with the nucleus image. The numeric
calculations are compared in these graphs with asympt
expansions in the limit of large distances from the surface
is clear that the asymptotic expressions are close to num
cal calculations at distances down to the orbit size; he
asymptotic formulas can be used in calculating energies
other C51 levels, as well as levels of other AZ1 ions. The
levels in Figs. 4–6 are driven upwards, and this tendenc
due to the repulsion between the electron and nucleus im
whose energy at large distances is (Z21)/4R. Since the sec-
ond Coulomb center, which is the nucleus image, has
effective chargeZeff5Z/2 in Eq. ~13!, in the limit R˜0 the
total charge of two centers is equal to2Z/2 and all states are
bound. From the levels that are above the Fermi energy
electron can tunnel into the metal.17,19 At the same time, an
atomic ion approaching the metal surface cannot captu
resonant electron to these levels. This capture of an elec
from the conduction band requires that additional energy
imparted to the electron.36

We have calculated the energies of the C51 ion for
R>50a0 ~Figs. 4–6!. According to the condition~52! and
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the calculations of Ref. 2, the distances to the metal sur
should satisfy the conditionR>2R0AZ, which means in the
case of cesium~see above! that R.45a0 .

The Rydberg states of hydrogen-like ions and of the n
tral hydrogen atom are strongly mixed near a metal surfa
At large distances from the surface, the amplitude of t
mixing is approximately the same as the mixing caused b
charged atomic ion,17 when the splitting between Stark com
ponents is proportional toR22. This effect is caused by in
teractions of two types: 1! the interaction between the con
stant dipole moment of the real atom with the image of
total ion charge generated on the metal surface; 2! the inter-
action between the real electron charge and the dipole
ment of the atom image. For the neutral hydrogen atom,
former interaction is zero, but the latter is nonvanishing a
responsible for the Stark effect under discussion. The sig
each interaction is opposite for allZ.1, and the magnitude
depend onZ. Since for the He1 ion the magnitudes of thes
two interactions are equal, the Stark effect in this ion is ze

We express our profound gratitude to A. V. Chaplik f
very helpful discussions. The work was supported by
Russian Fund for Fundamental Research~Project No. 96-15-
96815! within the program of support for leading scientifi
schools.

* !E-mail: chib@qq.nfi.kiae.su
1!The origin of the coordinate system is set at the nucleus.
2!It is remarkable that in the asymptotic expansion of the total interac

operator~6! for a neutral atom (Z51) all moments of odd orders, in
particular, the dipole moment, turn to zero. The reason is that Eq.~6!
describes the total interaction between the metal, on the one hand, an
nucleus and electron, on the other, and the latter two have opposite c
signs. Therefore, the total interaction of the electron and the proton
the dipole image turns to zero in operator~6!, i.e., before averaging ove
the spatial charge distributions.

1H. Winter, Europhys. Lett.18, 207 ~1992!.
2J. Burgdörfer and F. Meyer, Phys. Rev. A47, R20 ~1993!.
3F. W. Meyer, S. H. Overbury, C. C. Havener, P. A. Zeijlmans v
Emmichoven, and D. M. Zehner, Phys. Rev. Lett.67, 723 ~1991!.

4F. W. Meyer, S. H. Overbury, C. C. Havener, P. A. Zeijlmans v
Emmichoven, J. Burgdo¨rfer, and D. M. Zehner, Phys. Rev. A44, 7214
~1991!.

5J. Burgdörfer, P. Lerner, and F. W. Meyer, Phys. Rev. A44, 5674~1991!.
6F. W. Meyer, C. C. Havener, and P. A. Zeijlmans van Emmichoven, P
Rev. A 48, 4476~1993!.

7F. W. Meyer, L. Folkerts, I. G. Hughes, S. H. Overbury, D. M. Zehn
P. A. Zeijlmans van Emmichoven, and J. Burgdo¨rfer, Phys. Rev. A48,
4479 ~1993!.
ce

-
e.
s
a

e

o-
e
d
of

.

e

n

the
rge
th

s.

8S. A. Deutscher, X. Yang, and J. Burgdo¨rfer, Phys. Rev. A55, 466~1997!.
9J. Das, L. Folkerts, and R. Morgenstern, Phys. Rev. A45, 4669~1992!.

10J. Das and R. Morgenstern, Phys. Rev. A47, R755~1993!.
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The aggg vertex and three-photon axion decay in an external magnetic field
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The axion vertexaggg, the probability of three-photon axion decay in an external magnetic
field, and the cross section of the crossing processag˜2g, which CP invariance forbids in
vacuum, are calculated for the first time. It is shown that in superstrong magnetic fields
B@F05m2/ueu54.41•1013 G the probability of three-photon decay is greater than the probability
of two-photon decay. The astrophysical aspects of the questions examined are discussed.
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1. INTRODUCTION

The necessity of the existence of an axion as a pseu
scalar goldstone boson, explaining theCP invariance of
strong interactions,1 is now generally accepted. To give th
axion real standing laboratory experiments are now be
conducted or planned,2,3 while previously the axion param
eters were estimated only on the basis of astrophysical
cosmological considerations. Thus, the first laboratory e
mate of the upper limit of the axion–photon coupling co
stant in an experiment based on the Primakov effect w
conversion of solar axions into photons in a coherent in
action with a crystal lattice was given in Ref. 2 asgagg

,2.7•1029 GeV21. The limit on gagg was obtained irre-
spectively of the axion massma right up to the upper limit
;1 keV. An experiment on the conversion of solar axio
into x-ray photons in a system of strong magnetic fie
could be realized in the very near future.3

The most reliable data on the values of the axion para
eters are still based on cosmological and astrophysica
sults. For example, the possible axion mass range is pr
cated on existing ideas about the rate at which stars
energy~upper mass limit! remaining unchanged and on th
axion contribution to the nonbaryonic component of the
visible mass of the universe~lower limit!:4

1026 eV&ma&1023 eV. ~1!

The main axion production channel in the interior regions
stars and collapsed objects could be the Primakov effect5 and
possibly a synchrotron mechanism due to the presenc
strong magnetic fields. However, the only decay channe
considered to be the two-phonon channela˜2g with the
decay probability per unit time7

W2g5
gagg

2 ma
4

64pq0
, gagg5

e2cg

2p f
, ~2!

wheree25a51/137,q0 is the axion energy,cg is a constant
depending on the model and is of the order of 1, andf is the
energy scale for breaking of the Peccei–Quinn symmet1

However, strong magnetic fields of the order of and grea
than the characteristic Schwinger field8 F05m2/ueu54.41
31013 G ~m — electron mass! can exist in extreme astro
131063-7761/99/89(1)/5/$15.00
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physical situations~the Big Bang, neutron stars!, where the
axion component of the invisible mass was mainly forme
Such fields can fundamentally change the characteristic
decays by influencing the propagator factors of the elect
loop, which makes the main contribution to the amplitu
because of the very small mass of the charged fermion. S
cifically, three-photon decaya˜3g ~see Fig. 1!, which CP
invariance forbids in vacuum, becomes possible. The st
ture of the axion vertex in the diagrams is determined by
adopted form of the axion–electron interaction Lagrangia9

Lae5
ce

2 f
~Cgmg5C!

]a

]xm
, ~3!

wherece;1 is a constant.
In the present paper the amplitude and probability

three-photon axion decay in a magnetic field and the cr
section of the crossing processag˜2g are calculated for
the first time, and it is shown that in fields with inductio
B@F0 the probability of three-photon decay of relativist
axions is greater than the probability of two-photon deca

The exposition is organized as follows. The form of t
Green’s function for the Dirac equation in a magnetic fie
including the asymptotic limit of superstrong fields, is pr
sented together with a discussion of the algebra ofg̃ matrices
in two-dimensional space, in Sec. 2. The form of the (aggg)
vertex in a magnetic field is obtained in Sec. 3, and
probability of the decaya˜3g and the cross section of th
inelastic processag˜gg are obtained in Sec. 4. The resul
obtained, including the astrophysical aspects, are analyze
the last section.

2. GREEN’S FUNCTION FOR THE DIRAC EQUATION IN AN
EXTERNAL MAGNETIC FIELD AND THE ALGEBRA OF
232 g̃ MATRICES

The solution of the singular Dirac equation

~ i ]̂2eÂ2m!G~x,y!5d~x2y! ~4!

in an external constant and uniform magnetic field with
duction B in the special gauge of theA potential can be
written as
© 1999 American Institute of Physics
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G~x,y!5expF2
ig

2
~x11y1!~x22y2!GG~x2y!, ~5!

whereg5ueBu and the 3 axis is oriented along the vectorB.
It is convenient to use for the Fourier transformG(p) of the
function G(x2y), which depends only on the coordina
difference, the representation

G~p!5
1

ghE0

1

dtS 11t

12t D
h

exp~2dt !H ~ p̂ i 1m!

3FP2~12dt !2
h

11t G2h p̂'J ~6!

obtained in Ref. 10. Here

h5~p i
2 2m2!/2g, p i

2 5p0
22p3

2 ,

d5p'
2 /g, p'

2 5p1
21p2

2 , p̂ i 5g0p01g3p3 , ~7!

p̂'5g1p11g2p2 ,

andP25(12 ig1g2)/2 is the operator projecting spin on
direction opposite to the field. The expansion of the funct
~6! in the field in an invariant form in terms of the fiel
tensorF has the form

G~p!5G02
ie

2
G0S gF

]

]pDG01 . . . ,

G05
p̂1m

p22m2
. ~8!

In the strong-field limitB@F0, the integrand in the ex
pression~6! must be formally expanded into powers ofh ~in
the inverse field!. This expansion is valid if the integrals ove
the two-dimensional momentum in the subspace~0, 3! on the
electron massm converges. The leading term, employed b
low, of the expansion is

G~p!52e2dP2

p̂ i 1m

p i
2 2m2

. ~9!

As noted in Ref. 11, this procedure actually ‘‘two
dimensionalizes’’ the mathematical apparatus of the the
Specifically, for loop diagrams, the expression remaining
ter Gaussian-type integrals overp' are performed reduces t
a two-dimensional expression in the subspace~0, 3!, since
vertex factors of the formP2gaP2 and P2gag5P2 are
different from zero only fora50 and 3,g0g3 playing the
role of the matrixg5 sinceP2g5P25P2g0g3. Finally, the
presence of the operatorP2 decreases the dimension of th
g matrices to 232, after whichP2 can be dropped, denotin
the 232 matrices by the symbolg̃a ~a50,3!, while g̃5

5g̃0g̃3. The function
-

y.
f-

Gs~p!5
p̌1m

p i
2 2m2

, p̌5g̃0p01g̃3p3 , ~10!

plays the role of the Green’s function in two-dimension
space. It enters in the matrix elements of the correspond
diagrams~see Sec. 3!.

It can be shown11 that an expanded variant of Furry’
theorem holds in two-dimensional space — the matrix e
ments of loop diagrams with an odd number of vertices v
ish irrespective of theirP classification~vector of pseudovec-
tor!. As a result, diagrams with an even number of vertic
are linear functions of the field,12 whereas diagrams with od
number of vertices~even beyond the two-dimensional a
proximation! approach a constant, indicating that the form
predominate in fieldsB@F0.

We note also that the maximum divergence in tw
dimensional expressions of the vacuum diagrams is loga
mic, and in all cases which we have considered previous
cancels in accordance with the condition for applicability
the expansion~9! ~the only exception arises in the calculatio
of the electron mass operator,13 where the method works to
logarithmic accuracy in the field!.

The two-dimensionalization of the mathematical appa
tus can be explained physically by the suppression of
transverse excitations of virtual electrons in fieldsB@F0

with the Landau ground state making the dominant contri
tion.

The algebraic relations used below for theg̃ matrices
follow from their basic reduction property:

g̃ag̃b5g̃ab1g̃5«ab, ~ g̃5!51, ~11!

whereg̃ab5(1,21) is the metric tensor in the subspace~0,
3!, and«ab is the absolutely antisymmetric tensor in~0, 3!
with the values«0352«3051 and«005«3350. The identi-
ties

«ab«rs5g̃asg̃br2g̃ag̃bs, ~12a!

g̃ab«rs1«abg̃rs5g̃br«as1«rbg̃as, ~12b!

g̃a~ g̃a1
. . . g̃a2n11

!g̃a50 ~12c!

greatly simplifies the procedure for calculating the traces

1

2
Tr~ g̃ag̃bg̃rg̃s!5g̃abg̃rs1g̃asg̃br2g̃arg̃bs,

1

2
Tr~ g̃5g̃ag̃bg̃rg̃s!5g̃ab«rs1«abg̃abg̃rs, ~12d!

and so on.
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3. THE aggg VERTEX IN A CONSTANT AND UNIFORM
MAGNETIC FIELD

The aggg vertex corresponds to the three diagrams
Fig. 1, and the complete interaction Lagrangian is a sum
the expression~3! and the electrodynamic parte(CgaC)Aa

with the operators represented in the Furry picture and
electron loop making the dominant contribution. Noting th
the phase factor in Eq.~5! in a loop with an even number o
vertices cancels, we shall determine the matrix elemen
the processa˜3g in terms of theS-matrix element as

^ f uSu i &5
~2p!4d~q2k2k82k9!

2q02k02k082k09
M , ~13!

M5Maa8a9e* ae* a8e* a9, ~13a!

whereq is the momentum of the axion,k, k8, k9 ande, e8,
e9 are the momenta and polarization vectors of the photo
and the pseudotensorMaa8a9 has the form

Maa8a95
2 iece~4p!3/2

6 f E d4yE d4xE d4x8

3exp@ i ~kx1k8x82qy!#Tr @gaG~x

2x8!ga8G~x8!ga9G~2y!q̂g5G~y2x!#

1 two photon permutations. ~14!

For fieldsB!F0 , in the low-energy approximation with
respect to the momenta of the external lines~as compared
with the electron massm!, the nonzero contribution accord
ing to the ‘‘standard’’ Furry theorem corresponds to an o
number of interactions with the field in the loop. From gau
and Lorentz invariance considerations the pseudote
Maa8a9 is, to within numerical factors, in first orders in th
field

Maa8a95
e4ce

f m4 F $F ^ e^ k3%aa8a91
1

F0
2

3$F3
^ e^ k3%aa8a91 . . . G , ~15!

where in the bracketse[emnab is the absolutely antisym
metric tensor, and the direct-product symbols in the bra
denote gauge-invariant combinations of the form

~k9F̃ !a9@ka8ka82gaa8~kk8!#,

~k9F !a9emnaa8k
mk8n,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

in the first term and
f

e
t

of

s,

d
e
or

s

~k9F̃ !a9~k8F !a8~kF!a ,

~k9F̃F2!a9@ka8ka82gaa8~kk8!#,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

in the second term, and so on (F̃ — dual tensor!. In this
approximation there is no need to calculate the ten
Maa8a9 exactly, since the corresponding decay probabi
W3g in any case is small compared with the probabilityW2g

~see Sec. 4!.
The situation is completely different in the strong-fie

limit B@F0. Here detailed calculations are required. Sub
tuting into Eq.~14! the expression

G~z!5
1

~2p!4E d4pG~p! exp@2 i ~pz!#

with G(p) from Eq. ~9! and integrating the loop over a
variables except for the two-dimensional momentum us
the two-dimensional representation of the Green’s funct
~10! in accordance with the method described in Sec. 2,
obtain

Maa8a95
2e3ceg

3Ap f
Jaa8a9 , ~16!

Jaa8a95I aa8a9~k,k8,k9!1I a8aa9~k8,k,k9!

1I aa9a8~k,k9,k8!, ~16a!

I aa8a9~k,k8,k9!5
i

pE d2p•
1

2
Tr@ g̃5q̌Gs~p!g̃aGs

3~p1k!g̃a8Gs~p1k1k8!g̃a9Gs

3~p1q!#;

q5k1k81k9; a,a8,a950,3. ~16b!

The symmetrized expressionJaa8a9 vanishes to first or-
der of the expansion ofI aa8a9 in terms of the momenta, a
should happen because of gauge invariance.

The exact result for the two-dimensional rank-2 pseud
ensorI aa8a9 in the form of a triple integral over the Feyn
man parameters is
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I aa8a9~k,k8,k9!

52E
0

1

dx1E
0

x1
dx2E

0

x2
dx3H 2

m4

~m22m̃2!3
@qa«a8a9

1~q«!ag̃a8a9#1
m2

~m22m̃2!2
~q«!a8g̃aa92

m2

~m22m̃2!3

3@2«aa8ka9
(2)

~k (3)q!2g̃aa8~k (2)«!a9~k (3)q!

2g̃aa8ka9
(2)

~k (3)«q!2«aa8~k (2)«!a9~k (3)«q!

1~q«!aka8
(1)ka9

(2)
1qa~k (1)«!a8ka9

(2)
1qaka8

(1)
~k (2)«!a9

1~q«!a~k (1)«!a8~k (2)«!a92q2~k (1)«!ag̃a8a9

1q2ka
(1)«a8a912~q«k!ka

(1)g̃a8a922~q«k!

3~k (1)«!a«a8a91~q«k!g̃aa8~k (2)1k (3)!a9

1~qk!«aa8~k (2)1k (3)!a91~qk!g̃aa8~k9«!a9

1~q«k!«aa8~k9«!a9#

2
1

~m22m̃2!3
@~q«k!~ka

(1)ka8
(2)ka9

(3)

1ka
(1)~k (2)!«a8~k (3)«!a91~k (1)«!aka8

(2)
~k (3)«!a9

1~k (1)«!a~k (2)«!a8ka9
(3)

!2~qk!~~k (1)«!aka8
(2)ka9

(3)

1ka
(1)~k (2)«!a8ka9

(3)
1ka

(1)ka8
(2)

~k (3)«!a9

1~k (1)«!a~k (2)«!a8~k (3)«!a9!#J . ~17!

In Eq. ~17! and below in this section all contractions an
scalar products are two-dimensional in the space~0, 3!. For
brevity, the following notation has been introduced:

m̃25k2~12x21x3!~x22x3!1~q1k9!2~12x11x2!

3~x12x2!1q2x1~12x1!22k~q2k9!~x22x3!

3~x12x2!22~kq!~x22x3!~12x1!22q~q2k9!

3~x12x2!~12x1!, ~17a!

k5k~x22x3!1~q2k9!~x12x2!1q~12x1!,

k (1)5k2k, k (2)5k2q1k9, k (3)5k2q.

In principle the expressions~16! and ~17! hold in the entire
regiong@q0

2 , m2, but in practice it is possible only to stud
the low-energy approximation, where all momenta are m
less than the electron mass. In this case the simple resu

Jaa8a95
4q2

15m6
~k«!a~k8«!a8~k9«!a9 ~18!

is obtained from Eqs.~17! and ~16a! after complicated cal-
culations. This expression is explicitly gauge-invariant

Jaa8a9k
a5Jaa8a9k

8a85Jaa8a9k
9a950. ~18a!
h

We note thatJaa8a9 is proportional to the fifth power of
the momenta, though in principle the condition~18a! does
not rule out a cubic combination, which, however, vanish
identically in a specific calculation.

If the state of linear polarization of a photon is chara
terized by the vector

ea5~k«!a /Ak2 ~19!

and the orthogonal vector, then the latter does not contrib
at all because of the two-dimensionality of the contractio
Thus for ‘‘nonsterile’’ polarization states the matrix eleme
is

M5Maa8a9

~k«!a

Ak2

~k8«!a8

Ak82

~k9«!a9

Ak92

52
8e3ce~B/F0!

45Apm4f
q2k'k'8 k'9 . ~20!

Here the relation~12a! was used and the fact thatAk2

5k' , wherek' is the component of the photon momentu
transverse to the field, is taken into account. As indicated
Sec. 2,M increases linearly with the field.

4. THREE-PHOTON AXION DECAY AND THE INELASTIC
PROCESS ga˜gg IN A MAGNETIC FIELD

In the regionF!F0 (F — field amplitude! it is easy to
obtain, using the expressions~13! and~15!, to within numeri-
cal factors and taking account of the significant powers
the small parameters the probability of three-photon ax
decay summed over the polarization states of the photon

W3g.
a3ce

2ma
2m2

f 2q0
Fa1S F

F0
D 2S ma

m D 6

1a2x2S ma

m D 4

1a3x4S ma

m D 2

1a4x6G , ~21!

whereai are numerical coefficients and

x5
Ae2~qF2q!

m3
!1. ~22!

Comparing the expressions~21! and~2! shows that only
the contribution of the last term in Eq.~21! can compete with
the probability of two-photon decay, but it is less than t
corresponding field corrections toW2g .

If the tensor~15!, just as in the two-dimensional varian
~18!, is proportional to the fifth power of the momenta, th
this result only becomes stronger, since additional small f
tors will appear in the expression~21!.

We now consider the case of superstrong fields, wh
the matrix element is determined by the expression~20!. The
integral overk9 removes thed function, and to integrate ove
k8 it is convenient to orient the axis of the spherical coor
nate system along the vectorp5q2k. The calculations yield
the following expression for the probability of three-photo
axion decay per unit time as a distribution over the mom
tum of a single photon:
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W3g5
4a3ce

2~q2!2

453~2p!5f 2m8q0
S B

F0
D 2E d3k

2k0
k'

2

3@~p2!21p2p'
2 1p'

4 #. ~23!

Here the index' once again denotes the vector compone
that are perpendicular to the field,q2 and p2 are squares in
the subspace~0, 3!, and the expression forW3g is addition-
ally divided by 3! because the photons are indistinguisha

Next, orienting the axis of the spherical coordinate s
tem along the vectorq, the limits of integration over the
photon energy are determined by the relation

0<k0<
ma

2

2~q02uqu cosu!
, ~24!

and the final result is

W3g5
a3ce

2ma
2~q'

2 1ma
2!2

84•903~2p!4f 2m8q0
S B

F0
D 2

~4q'
6 16q'

4 ma
2

18q'
2 ma

413ma
6!. ~25!

In the limiting cases of an axion at rest (q'50) and an
ultrarelativistic axion (q'@ma) the corresponding probabili
ties are

W3g5
a3ce

2ma
12~B/F0!2

28•903~2p!4f 2m8q0

, ~25a!

W3g5
a3ce

2ma
2q'

10~B/F0!2

21•903~2p!4f 2m8q0

, ~25b!

The cross section of the inelastic processag˜gg can
be easily found using the expressions~20! and ~23! and is

s5
a3ce

2k'
2 ~ma

21q'
2 !2~B/F0!2

9•153~2p!2f 2m8~q0k02q–k!
@~p2!21p2p'

2 1p'
4 #,

~26!

wherep5q1k.

5. DISCUSSION

It was shown in Ref. 14 that forB@F0 the two-photon
decay probabilityW2g no longer depends on the field, diffe
ing from the probability~2! in the absence of a field by th
formal substitutioncg˜ce . In other words, a superstron
field restores the isotropy of the space with respect to
decaya˜2g, as a result of which the relativistic factorq'

n is
absent in the expression forW2g , in contrast to Eq.~25b!.
This and the proportionality ofW3g to the square of the field
together make it possible for the three-photon axion de
channel to predominate over the two-photon channel. On
basis of these remarks and Eqs.~2! and ~25b! we obtain

W3g

W2g
.2.5•1029S q'

m D 10S m

ma
D 2S B

F0
D 2

. ~27!

As one can see,W3g /W2g*1 for hard axions (q'

&m) in the assumed mass range~1!. For example,
s

e.
-

e

y
e

W3g /W2g;10 for q'50.1m, ma51023 eV, andB510F0,
not to mention smaller values ofma from the ‘‘window’’ ~1!
or large values of the magnetic induction.

Of course, here there is no contradiction with perturb
tion theory, since the probabilitiesW(2n11)g and W2ng of
decay into odd and even numbers of photons, respectiv
decrease with increasingn, but because of the specific natu
of the decays in superstrong fieldsW(2n11)g.W2ng can hold
for all n for the indicated values of the parameters.

As is well known,9 the axion lifetime with respect to
two-photon decay is greater than the age of the Universe,
this also holds in superstrong magnetic fields.14 For this rea-
son, the processa˜2g plays no role on the astrophysica
level. Using Eq.~25b!, we represent the lifetime with respe
to three-photon decay as

t3g.S f /ce

1010GeV
D 2S 1023 eV

ma
D 2S m

q'
D 9S F0

B D 2

•3•1033 s.

~28!

If t3g is to be comparable to the time of existence
superstrong magnetic fields during the epoch of the
Bang, thenB*1015F0 for hard axionsq';m, which is
hardly possible. Therefore the astrophysical aspects of
three-photon axion decay process are quite problema
Careful estimates show that this is also true for the ot
channel, whose cross section is given by Eq.~26!, for ‘‘van-
ishing’’ of an axion.

I thank Yu. O. Yakovlev for technical assistance.
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Approximating the shape of the magneto-thermoelectric power~TEP! DS(T,H) measured in
Bi2Sr2CaCu2Oy by an asymmetric linear triangle of the formDS(T,H).Sp(H)6B6(H)(Tc2T)
with positiveB2(H) andB1(H) defined below and aboveTc , we observe thatB1(H)
.2B2(H). To account for this asymmetry, we explicitly introduce the field-dependent chemical
potentialm(H) of holes into the Ginzburg–Landau theory and calculate both an average
DSav(T,H) and fluctuation contributionDSfl(T,H) to the total magneto-TEPDS(T,H). As a
result, we find a rather simple relationship between the field-induced variation of the
chemical potential in this material and the above-mentioned magneto-TEP data aroundTc , viz.
Dm(H)}Sp(H). © 1999 American Institute of Physics.@S1063-7761~99!01807-7#
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As is well-known,1,2 the variation of the chemical poten
tial m of free carriers in an applied magnetic fieldH provides
direct information about the magnetization structure insid
superconducting sample. Namely, the field-induced cha
of the chemical potential in superconducting state rea3

Dm(H)[m(H)2m(0)52M (H)H/n, whereM (H) is the
field-induced magnetization andn is the carrier number den
sity. At the same time, due to the existence of the so-ca
compensation effect,4 it is rather difficult to observe field-
induced modulations ofm in bulk samples, since in equilib
rium any field-induced variations ofm will be completely
canceled by similar variations caused by the magnetostric
changes of the volume. However, this compensation does
occur in thin films1,2 and oriented powders.5 Thus we can
expect to see significant changes ofm(H) in layered~aniso-
tropic! structures as well. On the other hand, in view of th
carrier-sensitive nature, thermopower~TEP! measurements
seem to be the most adequate tool for probing the fie
induced changes of the chemical potentials. Indeed, TEP
sults have already proved to be useful for providing reas
able estimates for such important physical parameters as
Fermi energy, Debye temperature, interlayer spacing et6,7

Studying the observable magneto-TEPDS(T,H)5S(T,H)
2S(T,0) also provides important insights into different a
pects of the material in the mixed state7–9 ~when Hc1!H
!Hc2!. When experimental results are presented in the fo
of DS(T,H) one observes that its temperature depende
has aL-like shape asymmetric aroundTc where it reaches its
magnetic field-dependent peak valueSp(H)[DS(Tc ,H).
Then for small fields, approximating the shape ofDS(T,H)
by the asymmetric linear triangle of the form8

DS~T,H !.Sp~H !6B6~H !~Tc2T!, ~1!
1401063-7761/99/89(1)/4/$15.00
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with positive slopesB2(H) and B1(H) defined forT,Tc

andT.Tc , respectively, one finds~see Fig. 1! that B1(H)
.2B2(H) in the vicinity of Tc .

In the present paper, using the Ginzburg–Landau the
and utilizing some typical magneto-TEP data7,8 on textured
Bi2Sr2CaCu2Oy , we discuss the mixed-state behavior of t
magneto-TEP@and in particular the origin of the asymmetr
given by Eq.~1!# in terms of the corresponding behavior
the chemical potential in applied magnetic field.

It is well-known7–9 that for external fieldsH such that
Hc1!H!Hc2 and for the Ginzburg–Landau paramet
k @1, the magneto-TEPDS(T,H) is proportional to the
strength of the external field. To describe the observed
havior of the magneto-TEP both below and aboveTc , we
can roughly present it in a two-term contribution form7

DS~T,H !5DSav~T,H !1DSfl~T,H !, ~2!

where the average termDSav(T,H) is assumed to be nonzer
only belowTc ~since in the normal state the TEP of high-Tc

superconductors~HTSCs! is found to be very small8,9! while
the fluctuation termDSfl(T,H) should contribute to the ob
servableDS(T,H) for T.Tc . In what follows, we shall dis-
cuss these two contributions separately within the mean-fi
theory approximation.

MEAN VALUE OF THE MAGNETO-TEP: DSav„T,H…

Assuming that the net result of the magnetic field is
modify the chemical potential~Fermi energy! m of quasipar-
ticles, we can write the generalized GL free energy fun
tional G of a superconducting sample in the mixed state

G @c#5a~T!ucu21
b

2
ucu42mucu2. ~3!
© 1999 American Institute of Physics
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Here c5ucueif is the superconducting order paramet
m(H) stands for the field-dependent in-plane chemical
tential of the quasiparticles;a(T,H)5a(H)(T2Tc) and the
GL parametersa(H) and b(H) are related to the critica
temperature Tc , the zero-temperature BCS gapD0

51.76kBTc , the out-of-plane chemical potential~Fermi en-
ergy! is mc(H), and the total particle number densityn as
a(H)5b(H)n/Tc52D0kB /mc(H). In fact, in layered su-
perconductors,m5mc /g2.mab* (Jcd/2\)2, whered and Jc

are the interlayer distance and coupling energy within
Lawrence–Doniach model, andg5mc* /mab* is the mass an-
isotropy ratio. The magnetic field is applied normally to t
ab-plane where the strongest magneto-TEP effects
expected.9 In what follows, we ignore the field dependen
of the critical temperature since for all fields under disc
sion Tc(H)5Tc(0)(12H/Hc2).Tc(0)[Tc .

As usual, the equilibrium state of such a system is de
mined from the minimum-energy condition]G /]ucu50
which yields forT,Tc

uc0u25
a~H !~Tc2T!1m~H !

b~H !
. ~4!

Substitutinguc0u2 into Eq.~3! we obtain for the average fre
energy density

V~T,H ![G @c0#52
@a~H !~Tc2T!1m~H !#2

2b~H !
. ~5!

In turn, the magneto-TEPDS(T,H) can be related to the
corresponding difference of the transport entropies,7,8 Ds
[]DV/]T, as DS(T,H)5Ds(T,H)/en, where e is the
charge of the quasiparticles. Finally the mean value of
mixed-state magneto-TEP reads~below Tc!

DSav~T,H !5Sp,av~H !2Bav~H !~Tc2T!, ~6!

with

Sp,av~H !5
Dm~H !

eTc
, ~7!

FIG. 1. A typical pattern of the observed8 magneto-TEPDS(T,H) of
Bi2Sr2CaCu2Oy at H50.12 T. The best fit to the data points according
Eq. ~1! yields Sp(H)50.1660.01mV/K for the peak, andB2(H)50.012
60.001mV/K2 andB1(H)50.02760.003mV/K2 for the slopes.
,
-

e

re

-

r-

e

and

Bav~H !5
8D0kBDm~H !

eTcg
2m2~0!

. ~8!

Before we proceed to compare the above theoretical find
with the available experimental data, we first have to e
mate the corresponding fluctuation contributions to the
servable magneto-TEP, both above and belowTc .

MEAN-FIELD GAUSSIAN FLUCTUATIONS OF THE
MAGNETO-TEP: DSfl„T,H…

The influence of superconducting fluctuations on t
transport properties of HTSCs~including TEP and electrica
conductivity! has been extensively studied for the past f
years~see, e.g., Refs. 10–14 and further references there!.
In particular, it was found that the fluctuation-induced beha
ior may extend to temperatures more than 10 K higher t
the correspondingTc . Let us consider now the region nea
Tc and discuss the Gaussian fluctuations of the mixed-s
magneto-TEPDSfl(T,H). Recall that according to the theor
of Gaussian fluctuations,15 the fluctuations of any observ
able, which is conjugate to the order parameterc ~such as
heat capacity, susceptibility, etc.! can be presented in term
of the statistical average of the square of the fluctuation a
plitude ^(dc)2& with dc5c2c0 . Then the TEP above~1!
and below~2! Tc have the form

Sfl
6~T,H !5A^~dc!2&65

A

Z E ducu~dc!2e2S@c#, ~9!

whereZ5*ducue2S@c# is the partition function withS@c#
[(G @c#2G @c0#)/kBT, andA is a coefficient to be defined
below. Expanding the free energy density functionalG @c#

G @c#'G @c0#1
1

2 F]2G

]c2 G
ucu5uc0u

~dc!2, ~10!

around the mean value of the order parameterc0 , which is
defined as a stable solution of equation]G /]ucu50, we can
explicitly calculate the Gaussian integrals. Becauseuc0u2 is
given by Eq. ~4! below Tc and vanishes a
T>Tc , we obtain finally

Sfl
2~T,H !5

AkBTc

4a~H !~Tc2T!14m~H !
, T<Tc ~11!

and

Sfl
1~T,H !5

AkBTc

2a~H !~T2Tc!22m~H !
, T>Tc . ~12!

As we shall see below, for the experimental range of para
eters under discussion.m(H)/a(H)@uTc2Tu. Hence, with a
good accuracy we can linearize Eqs.~11! and~12! and obtain
for the fluctuation contribution to the magneto-TEP

DSfl
6~T,H !.Sp,fl

6 ~H !6Bfl
6~H !~Tc2T!, ~13!

where
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Sp,fl
2 ~H !52

AkBTcDm~H !

4m2~0!
, Sp,fl

1 ~H !522Sp,fl
2 ~H !, ~14!

and

Bfl
2~H !52

3AkB
2TcD0Dm~H !

g2m4~0!
, Bfl

1~H !522Bfl
2~H !.

~15!

Furthermore, it is quite reasonable to assumeSp
25Sp

1[Sp ,
whereSp

25Sp,av1Sp,fl
2 andSp

15Sp,fl
1 . Then the above equa

tions yield an explicit expression for the constant parame
A, namely A54m2(0)/3ekBTc

2. This in turn leads to the
following expressions for the fluctuation contributio
to peaks and slopes through their average counterp
@see Eqs.~7! and ~8!#: Sp,fl

1 (H)5(2/3)Sp,av(H), Sp,fl
2 (H)

52(1/3)Sp,av(H), Bfl
2(H)52(1/2)Bav(H), and Bfl

1(H)
5Bav(H). Finally, the total contribution to the observab
magneto-TEP reads@cf. Eq. ~1!#

DS~T,H !5Sp~H !6B6~H !~Tc2T!, ~16!

where

Sp~H !5
2Dm~H !

3eTc
, B1~H ![Bfl

1~H !52B2~H !, ~17!

and

B2~H ![Bav~H !1Bfl
2~H !5

4D0kBDm~H !

eTcg
2m2~0!

. ~18!

Let us compare now these theoretical expressions with t
cal experimental data8 on textured Bi2Sr2CaCu2Oy for the
slopesB6(H) and the peakSp(H) values forH50.12T~see
Fig. 1!: Sp50.1660.01mV/K, B250.01260.001mV/K2

andB150.02760.003mV/K2. First we notice that the cal
culated slopesB1(H) aboveTc are twice their counterpart
below Tc , i.e., B1(H)52B2(H) in a good agreement with
the observations. Usingg.55 andd51.2 nm for the anisot-
ropy ratio and interlayer distance in this material,9,13,16 we
obtain reasonable estimates of the field-induced change
the in-plane chemical potential~Fermi energy! Dm(H)
@along with its zero-field valuem~0!# and the interlayer cou
pling energy Jc , namely, m(0).1.6 meV, Dm(H)
.0.02 meV, andJc.4 meV. Furthermore, relating the field
induced variation of the in-plane chemical potential to t
change of the corresponding magnetizationM (H), viz.,

Dm~H !52
M ~H !H

nh
, ~19!

whereM (H) for Hc1!H!Hc2 has the form3 ~recall that the
lower critical field for this material is Hc1

5(f0/4plab
2 )ln k .40G with lab.250 nm, jab.1 nm,

andk .250!

m0M ~H !5
2f0

)lab
2

2H lnF 3f0

4plab
2 ~H2Hc1!G J 22

2H,

~20!

we obtainnh.2.5•1027m23 for the hole number density in
this material, in reasonable agreement with the other e
r

rts

i-

of

ti-

mates of this parameter.17 Figure 2 showsDm(H) calculated
according to Eq.~19! with the experimental data points de
duced@via Eq. ~17!# from the magneto-TEP measuremen
on the same sample.7 As is seen, the data are in a goo
agreement with the model predictions. Finally, using t
above parameters~along with the critical temperature!, we
find that m(H)/a(H).100 K which justifies the use of the
linearized Eq.~13! since, as is seen in Fig. 1, the observ
magneto-TEP practically vanishes foruTc2Tu>15 K.

To summarize, to probe the variation of the chemic
potentialDm(H) of quasiparticles in anisotropic materials
an applied magnetic field, we calculated the mixed-st
magneto-thermopowerDS(T,H) in the presence of field-
modulated charge effects nearTc . Using the available
magneto-TEP experimental data on textur
Bi2Sr2CaCu2Oy , the field-induced behavior of the in-plan
Dm(H) was obtained along with reasonable estimates for
zero-field value~Fermi energy! m(0), interlayer coupling
energyJc , and the hole number densitynh in this material.
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Collapse of resonance in quasi-one-dimensional quantum channels
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Zh. Éksp. Teor. Fiz.116, 263–275~July 1999!

We study the resonance structure of the conductance~transmissivity! of a quasi-one-dimensional
channel that contains an attractive impurity of finite dimensions and derive an exact
expression for the scattering matrix. We show that an impurity of finite dimensions may cause a
set of Fano resonances to appear in the transmissivity. We also find that due to the coherent
interaction the Fano resonances can collapse and discrete levels may appear in the continuum.
Finally, we establish the wave function of the discrete levels and study the channel
transmissivity in the critical regime. ©1999 American Institute of Physics.
@S1063-7761~99!01907-1#
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1. INTRODUCTION

Lately nanotechnology methods have been used to
duce quasi-one-dimensional channels, or elect
waveguides.1 A remarkable property of such channels is t
quantization of conductance.2,3 This means, for instance, tha
the dependence of conductivity on the electron Fermi ene
acquires steps. In such channels artificial scatterers or im
rities can be created, which makes it possible to control
transmissivity of the waveguide.4 The effect of short-range
impurities on the transmissivity was studied earlier and
was found that such impurities lead to quantum erosion
transmissivity. Chu and Sorbello,5 Bagwell,6 and Tekman
and Ciraci7 found that short-range impurities generate dips
the transmissivity, while impurities of finite dimensions
the transverse direction may lead to the appearance of a
metric resonances.8

In the present paper we study the scattering of elec
waves in a quasi-one-dimensional waveguide by an impu
of finite dimensions. We derive an exact expression for
scattering matrix. If the impurity is short-range in the long
tudinal direction, it gives rise to an asymmetric resonan
~Fano resonance! related to the existence of a virtual level
the low-lying bands continuum.9 For the first time we study a
situation where the impurity generates a large number
levels. New coherent effects may arise in the process:
interaction of levels immersed in the continuum, and c
lapse of resonances. The physics of Fano resonances d
substantially from that of ordinary Breit–Wigner resonanc
We show that Fano resonance may disappear at certain~criti-
cal! parameters of the system. Here the collapse of re
nances is accompanied by the appearance of discrete l
in the continuum, for which levels we find the wave functio
and show that it is normalizable.
1441063-7761/99/89(1)/7/$15.00
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2. MODEL OF IMPURITY AND THE SCATTERING MATRIX

We examine the scattering of electron waves in a qu
tum waveguide of widthW aligned with thex axis. Suppose
that the confinement potential acting in the transverse~lat-
eral! direction is described by a functionVc(y) and the im-
purity potential by a functionV(x,y). The electron wave
function is found by solving the Schro¨dinger equation

2
\2

2m S ]2

]x2 1
]2

]y2DC~x,y!1Vc~y!C~x,y!

1V~x,y!C~x,y!5EC~x,y!, ~1!

wherem is the effective electron mass.
Let us derive the exact expression for the scattering m

trix of an electron in a waveguide containing an impurity
finite size. Here we use the model of a two-dimensional w
examined earlier in Refs. 10 and 11~Fig. 1!. The impurity
potential can be written

V~x,y2Ys!52VattuS La

2
2uxu D uS Wa

2
2uy2Ysu D , ~2!

whereu(x)50 for x,0 andu(x)51 for x.1, Xs50 and
Ys are the coordinates of the center of the well, andVatt is its
depth.

In calculating the scattering matrix it is convenient
use two different bases: the wave functionswn(y) of a per-
fect waveguide (V(x,y)50), which can be found by solving
the equation

H 2
\2

2m

]2

]y2 1Vc~y!J wn~y!5Enwn~y! ~3!

(En is the energy of traverse motion!, and the wave function
in the potentialVtr(y)52Vattg(y)1Vc(y); we denote the
© 1999 American Institute of Physics
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wave functions and energy levels of an electron in the
tentialVtr(y) by x j (y) andEj

tr , respectively. The base func
tions wn(y) andx j (y) are related by a matrixU defined as
follows:

Un, j5E wn~y!x j~y!dy. ~4!

The solution of Eq.~1! can be written

c~x,y!5( FAn expH iknS x1
La

2 D J
1Bn expH 2 iknS x1

La

2 D J Gwn~y!

for x,2 La/2 , ~5!

c~x,y!5( @aj exp$ iq jx%1bj exp$2 iq jx%#x j~y!

for 2 La/2,x,La/2 , ~6!

c~x,y!5( Cn exp$ ikn~x2 La/2!wn~y!% for x.La/2 ,

~7!

where the quantities kn5A2m(E2En)/\2 and qj

5A2m(E2Ej
tr)/\2 act as the wave vectors of the partic

outside and inside the region occupied by the impurity,
spectively.

Note that solutions with realkn and qj correspond to
propagating waves, while solutions with imaginarykn

5 i uknu and qj5 i uqj u represent nonuniform waves. Th
boundary conditions give rise to equations for the wave a
plitudes, which can be conveniently written in matrix form

d21a1db5U~A1B!,

q~d21a2db!5Uk~A2B!,

da1d21b5UC,

q~da2d21b!5UkC, ~8!

where we used matrices with elements

FIG. 1. Schematic of a quantum waveguide containing an attractive im
rity.
-

-

-

~k!n,n85kndnn8 , ~q!n,n85qndnn8 ,

~d!n,n85exp$ iun%dnn8 , ~9!

andun5qnLa/2 are the phases of the waves; the wave a
plitudesa, b, A, B, andC are considered infinite vectors.

After excluding the intermediate amplitudea andb from
~8!, we can find the elements of the scattering matrix. W
introduce the amplitude transmission matrix byC5tA . Then
Eqs.~8! yield

MC5A. ~10!

The matrixM has the form

M5 1
4U

21@~11 k̂21q!D21~11q21k̂!1~12 k̂21q!

3D~12q21k̂!#U, ~11!

wherek̂5UkU21, andD5d2. The way in which matrixM
is written clearly shows thatM is similar to the correspond
ing amplitude in the one-dimensional case.12 It is convenient
to write the transmission matrix as

t5M215
MC

T

det~M !
, ~12!

whereMC is the cofactor~adjoint! of M .
It is well known that the poles of the scattering matr

tn,n8(E), obtained as a result of analytic continuation in t
energyE, determine the bound states or resonances in
system. The total conductanceG of the electron waveguide
is expressed in terms of the channel transmissivityT by the
Büttiker–Landauer formula13,14

G5
2e2

h
T, T5 (

n,n8

kn

kn8
utn,n8u

2, ~13!

where the sum is over all open channels. Equation~12! sug-
gests that the analytic properties of the transmission am
tude as a function of energy are fully determined~in the
given problem! by the structure of the matrixM . Here the
poles oft can be found from

det~M !50, ~14!

and the zeros follow from the equations

@MC#n,m50, n,m51,2,..., ~15!

The inversion symmetry of the adopted impurity potent
makes it possible to factorizeM :

M5U21MaM sU, ~16!

where we have introduced the matrices

M s5
1
2@2~d2d21!1~d1d21!q21k̂#, ~17!

Ma5 1
2@2~d2d21!1 k̂21q~d1d21!#. ~18!

Hence we can write Eq.~14! as two equations:

det~M s!50 ~19!

for poles in the case of symmetric states, and

det~Ma!50 ~20!

for poles in the case of antisymmetric states.

u-
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3. BREIT–WIGNER AND FANO RESONANCES IN A
QUANTUM CHANNEL

We begin with the limit whereWa5W. From ~4! it fol-
lows thatU5I , whereI is the identity matrix. This mean
that in this limit the problem becomes one-dimension
sinceM is diagonal. Equation~11! can be written

~M !n,n85
1

4 F S 11
qn

kn
D S 11

kn

qn
Dexp$22iun%1S 12

qn

kn
D

3S 12
kn

qn
Dexp$2iun%Gdnn8 , ~21!

whereun5qnLa/2. This equation can easily be used to fi
the transmission matrixtn,n8(E)5tn(E)dnn8 . It is conve-
nient to write the amplitudetn(E) as

tn~E!

5
ikn /qn

~sinun1 i ~kn /qn!cosun!~2cosun1 i ~kn /qn!sinun! .

~22!
For E.En , the wave vectorskn and qn are real. Suppose
that the well is deep:Vatt@En andkn /qn!1. In this case the
zeros of the denominator are approximately determined

sinun, j50, un, j5p j , j 51,2,..., ~23!

or by

cosun, j50, un, j5
p

2
~2 j 11!, j 50,1,... . ~24!

The first equation has the solution

En, j5En2Vatt1S 2p

La
D 2 \2 j 2

2m
. ~25!

NearEn, j we expand the denominator oftn,n8 approximately
~for symmetric states!, assuming thatE5En, j1« in ~22!:

sinun1 i ~kn/qn! cosun'un j8 ~«1 iGn j!cosun , ~26!

where

Gn j5
kn~En, j !

qn~En, j !un j8
, un j8 5

]un~E!

]E U
E5En, j

, cosun'61.

An expansion near the second solution of Eq.~24! yields a
similar expression for the denominator of the amplitud
Hence forE.En the poles of the scattering amplitude lie
the complex plane, and near the poles the amplitude has
structure of a Breit–Wigner resonance:

tn,n~E!5
iGn j

E2En j1 iGn j
. ~27!

We now continue the amplitude into the complex ene
plane. If the energy is in the intervalEn2Vatt,E,En ~for
the sake of definiteness we assume thatVatt,En2En21),
kn5 i uknu is imaginary andqn is real. In this case the ampli
tude has poles on the real energy axis, and their positions
determined by~19! and~20! for symmetric and antisymmet
ric states, respectively:
l,

.

he

y

re

tanun52 i
kn

qn
, cotun5 i

kn

qn
. ~28!

Thus, as Eq.~28! implies, we can find two types of pole. Fo
E,En the amplitudetn(E) has poles at real energies. Whe
the energy is below the subband withn>1, these poles land
in the continuum of the lowest subbands. Below we will s
that in the quasi-one-dimensional regime, whenWa,W
holds, the interaction between the discrete levels and
continuum is the reason for the formation for Fano re
nances. At the same time, due to the interaction with
states of the continuum, the Breit–Wigner resonances shi
the complex plane.

Now we examine the situation where the size of t
impurity, La , is smaller than the electron wavelength alo
the channel,La!qn

21 . Expanding Eq.~11! in the parameter
Laqn

21 , we easily find that

M5~ ik!21@ ik1v#, ~29!

wherev5(La/2)U21q2U. This case can be analyzed both b
perturbation techniques and by numerical methods~the de-
tails of calculations can be found in Ref. 8!. Here are the
conclusions important for our analysis below. If we allo
only for the diagonal elements ofv, we arrive at a set of
poles that split off each subband of size quantization. Allo
ance for off-diagonal elements leads to the interaction of
levels that have split off the subbands withn.1 with the
continuum of the low-lying bands and to a shift of the leve
in the complex plane. However, in contrast to the on
dimensional case, the scattering amplitude has zeros~in ad-
dition to poles!, and in the weak coupling regime a zero a
a pole lie close to each other in the complex plane. In p
ticular, for E1,E,E2 , near a zero and pole the amplitud
can be represented as

t11~E!;
E2E0

E2ER1 iG
, ~30!

where E0 , ER , and G are the parameters of a Fan
resonance.9 According to Nöckel and Stone,15 for a system
with inversion symmetry, the transmissivityT115ut11u2 can
be written

T11~E!5
1

11q2

~«1q!2

«211
, ~31!

where«5(E2ER)/G, and q5(ER2E0)/G. Depending on
the parameters of the system, the dimensionless asymm
parameterq, which is the ratio of the distanceuE02ERu
between zero and pole to the resonance widthG can be much
larger or much smaller than unity. In the limitq!1 formula
~31! yields a dip, while in the opposite caseq@1 it yields a
peak in the transmissivity, with the transmissivity probabil
at the peak being exactly unity.

Thus, when the electron is scattered by a short-ra
attractive impurity, the scattering amplitude near virtual le
els has the structure of a Fano resonance.
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4. COLLAPSE OF FANO RESONANCES

It is well known that the interaction of discrete leve
with the continuum in multichannel atomic systems giv
rise to a universal resonance curve for the lifetime of qua
bound states and excitations.9 In Ref. 8 we showed that this
happens in the case of the transmission amplitude in a q
tum channel with a short-range impurity. An impurity o
finite dimensions generates a large number of levels in
continuum. One should expect nontrivial interactions b
tween levels and nontrivial behavior of asymmetric re
nances. In atomic systems the interaction between levels
sults in an overlap of resonances. Earlier Mies16 discussed
such effects by using a phenomenological approach.
goal is to study the effect of the interaction of resonances
the tunneling of electrons though multilevel configuration
We limit ourselves to the energy intervalE1,E,E2 , since
earlier we found8 that it is in this energy interval that tota
reflection of electrons is possible when the particle ene
coincides with the energy of the zero of a Fano resonan

Qualitative reasoning suggests that a deep impurity
yield dramatically new effects. Clearly, a two-dimension
well generates a set of levels in the intervalE1,E,E2 , and
in the case of a well of finite depth these levels lie in t
interval (E22Vatt,E2). If we ignore the interaction betwee
the electronic states belonging to different channels, Eq.~28!
implies that the levels corresponding to symmetric and a
symmetric states are determined, respectively, by the e
tions

tanun5
uknu
qn

, cotun52
uknu
qn

. ~32!

Since in this case we haveE2
tr,E2 , the levels lie in the

interval (E2
tr ,E2) and their interaction with the continuum

gives rise to a set of Fano resonances. Obviously, these
nances can interact with each other. Such interaction is
present for Breit–Wigner resonances, with the resonan
repelling each other. What makes the case of Fano r
nances so different is that the zeros, while moving in
complex plane, may collide with poles. Below we will se
that this leads to two interesting consequences. First,
resonances narrow, which means that the regimeq!1 in
~31! may be replaced byq@1. This is accompanied by th
appearance of a peak in transmissivity, with the transmis
ity probability at the peak being exactly unity. Second, th
are critical values of the parameters of the system at wh
the resonances disappear entirely, accompanied by the
pearance of discrete levels in the continuum.

To illustrate the predicted effect, we analyze the simpl
situation where the well size in the transverse direction,Wa ,
is much smaller thanLa :

Vtr~y!52
\2u

m
d~y2Ys!1Vc~y!, ~33!

with u5mVattWa /\2. For such a model the energy of tran
verse motion can be found by solving the equation

sinkW52
u

k
sinkYs sink~W2Ys!, ~34!
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where k5A2mE/\2. From ~34! it follows that when the
coupling parameteru is zero, we have the solutionEj

tr

5Ej , with Ej5p2\2/(2mW2), but whenu is finite, we have
a set of levels with energiesEj

tr,Ej . Below we list the re-
sults of numerical calculations for which the the impuri
parameters were taken to beWa50.1 W andVatt56.37E1 .
For the sake of orientation we give only the first three lev
of transverse motion determined by the numerical solution
Eq. ~34!: E1

tr520.60E1 , E2
tr53.19E1 , and E3

tr58.99E1 .
Hence, we should expect Fano resonances in the energ
terval 3.19E1,E,4.0E1 and Breit–Wigner resonances, i
the interval 1.0E1,E,3.19E1 . Figure 2 depicts the trans
missivity of a channel with an attractive impurity. The Fan
resonance structure in the transmissivity is clearly visible
the intervalE2

tr,E,E2 , while the Breit–Wigner resonance
are clearly visible in the intervalE1,E,E2

tr .
Now we study the transmissivity analytically, and fo

E2
tr,E,E2 we keep to resonantly interacting channels.

the regionuxu,La/2 we leave two propagating modes wi
wave vectors q15A2m(E2E1

tr)/\2 and q2

5A2m(E2E2
tr)/\2. In the regionuxu.La/2 ~outside the im-

purity! we leave a propagating solution withk1

5A2m(E2E1)/\2 and a nonuniform solution withk2

5 i uk2u, uk2u5A2m(E22E)/\2.
An approximate expression for the scattering matrix c

be obtained from~12!. The transmission amplitudet11 be-
tween the open channels can be written

t115
@MC#11

det~M s!det~Ma!
. ~35!

The poles of symmetric states can be found from

det~M s!

5 i S 2 i sinu11
k1

q1
cosu1D S 2sinu21

uk2u
q2

cosu2D
3U11U222 i S 2 i sinu21

k1

q2
cosu2D

FIG. 2. Transmissivity of a channel with a finite impurity~the impurity
parameters areVatt56.37E1 and Wa50.1W!. The Fano resonances ar
clearly visible for 3.19E1,E,4.0E1 and the Breit–Wigner resonances, fo
1.0E1,E,3.19E1 .
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3S 2sinu11
uk2u
q1

cosu1DU12
2 50, ~36!

and those of antisymmetric states, from

det~Ma!

5 i S 2 i sinu11
q1

k1
cosu1D S sinu21

q2

uk2u
cosu2D

3~U21!11~U21!222 i S 2 i sinu21
q2

k1
cosu2D

3S sinu11
q1

uk2u
cosu1D ~U21!12~U21!2150. ~37!

An analysis of the equations for the poles shows that ge
ally these equations have two sets of complex-valued s
tions, which is similar to the one-dimensional case. Ho
ever, in the quasi-one-dimensional case the amplitudes h
zeros, which can be found by solving the equation@MC#11

50 or, in greater detail,

q2 sin 2u2S 2tanu21
uk2u
q2

D S cotu21
uk2u
q2

DU22~U21!22

2q1 sin 2u1S 2tanu11
uk2u
q1

D S cotu11
uk2u
q1

D
3U12~U21!2150. ~38!

Since the coefficients of these equations are real forE2
tr,E

,E2 , the equations have real-valued solutions. Here
transmission amplitude vanishes. Figure 3 depicts the en
dependence of the cofactor for three characteristic impu
sizes:L51.27W, 7.64W, and 11.46W. Hence Eqs.~36! and
~37! determine the poles and the solutions of Eq.~38! deter-
mine the zeros~or dips! in the transmission. For the energ
interval E1,E,E2

tr we must rewrite~38!, assuming thatq2

5 i uq2u. Clearly, in this case the zeros are shifted into
complex plane.

FIG. 3. Energy dependence of the cofactor for the characteristic impu
sizes:L51.27W ~dotted curve!, L57.64W ~solid curve!, and L511.46W
~dashed curve!. The zeros of the cofactor determine the zeros of the tra
mission amplitude. The other parameters of the impurity are the same
Fig. 2.
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An important observation is that Eq.~36! @or ~37!# can
have a solution for a real energy simultaneously with~38!. In
the symmetric case this occurs when

tanu25
uk2u
q2

, ~39!

tanu15
uk2u
q1

. ~40!

Thus, Eqs.~39! and~40! should have a simultaneous solutio
in the energy intervalE2

tr,E,E2 . Here we have a two-
parameter spectral problem. For the spectral parameters
convenient to take the energyE and the impurity sizeLa , or
the spectral pair (E,La). Note that for an arbitrary value o
the parameterLa , Eq. ~39! determines the levels in a one
dimensional well,13 but these levels lie belowE2 . Hence the
levels acquire a finite width, since they interact with the co
tinuous spectrum of the states of the subbandn51. The level
width may vanish when Eqs.~39! and ~40! have a common
solution. Thus, when the system parameters coincide w
the values of the spectral parameter@E( j ),La( j )#, discrete
levels appear in the continuum of states of the quant
channel.

Using Eqs.~39! and ~40!, we can easily show that th
spectral parameters are given by the expressions

E~ j !5E2
tr1~E22E2

tr!cos2 a~ j !, ~41!

La~ j !5
2

p
W

a~ j !

cosa~ j ! F E1

E22E2
trG1/2

, j 51,2,..., ~42!

where the parametersa( j ) are the solutions of

f ~a!5Ad1cos2 a tanF a

cosa
Ad1cos2 a G2sina50,

~43!

with d5(E22E1)/(E22E2
tr). Figure 4 depicts the characte

istic function f (a). We see that Eqs.~39! and ~40! have
~simultaneously! an infinite set of solutions. In the same wa
antisymmetric solutions are possible if

cotu252
uk2u
q2

, ~44!

ty

-
in

FIG. 4. The characteristic function. The critical parameters are determ
by the zeros of the characteristic function.
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FIG. 5. Energy dependence of the transmissivity for the critical valueLc

[La(3)53.1901W of the impurity size~the other parameters of the impu
rity are the same as in Fig. 2!. The resonance disappears atE5Ec(3)
53.255E1 , but the transmissivity remains finite.
cotu152
uk2u
q1

. ~45!

From unitarity it follows that the zerosE2
tr,E,E2 of the

cofactor must coincide with the poles. Equation~38! shows
that it is valid when Eqs.~39! and ~40! @or Eqs. ~44! and
~45!# are valid. This implies that the Fano resonance disa
pear at certain~critical! values of the parametersLa( j ), val-
ues at whichG50 andE05Ep hold for the parameters of a
resonance in Eq.~30!.

To illustrate the effect of disappearance of resonanc
or collapse of resonances, we turn to Fig. 5, which depi
the energy dependence of the transmissivity for one of t
critical impurity sizes (Lc[La(3)53.1901W). The critical
valueLc was calculated by Eqs.~39! and~40! with the depth
of the well fixed,Vatt56.37E1 . Figure 6 depicts the energy
dependence of the transmissivity near the critical energy
several values of the impurity size: La

53.06W, 3.12W, 3.1901W, and 3.25W. The results show
ity

f

he
FIG. 6. Energy dependence of the transmissiv
for several values of the impurity size~La

53.06W,3.12W,3.1901W, and 3.25W) near the
critical sizeLc53.1901W ~the other parameters o
the impurity are the same as in Fig. 2!. At the
critical length the resonance disappears~in Fig. 6c
the transmissivityT is unity for the selected en-
ergy interval!. The resonance reappears when t
impurity size passes the critical valueLc ~Fig. 6d!.
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that whenLa reaches the critical valueLc , the Fano reso-
nance disappears but the transmissivity remains finite at
critical energy valueEc(3)53.255E1 . Figure 6d shows tha
resonances appear again when the impurity size passe
critical value. Clearly, the resonance collapses because o
coherent interaction of counterpropagating waves inside
region occupied by the impurity.

For orientation we point out that if a two-dimension
channel of widthW contains an impurity, for the impurity
parameters used above the critical size isLa(0)51.10W,
and the minimum critical energy isEc5E(0)53.48E1 ,
whereE15p2\2/2mW2.

To make the picture clearer we write the wave functi
of the discrete levels explicitly and show that the functi
can be normalized. The symmetric solution of Eq.~1! can be
written as

cc~x,y!5a1 cos~q1x!x1~y!1a2 cos~q2x!x2~y!

for uxu,
La

2
, ~46!

cc~x,y!5C1 expH uk2uS x2
La

2 D J w2~y! for x.
La

2
.

~47!

The boundary conditions imply that the solution determin
by ~46! and ~47! is valid if Eqs.~39! and ~40! are valid.

Similarly, for the antisymmetric solutions we have

cc~x,y!5b1 sin~q1x!x1~y!1b2 sin~q2x!x2~y!

for uxu,
La

2
, ~48!

cc~x,y!5D1 expH uk2uS x2
La

2 D J w2~y! for x.
La

2
,

~49!

which are valid if ~44! and ~45! are valid. There exists a
simple physical interpretation of the localized solution—it
a standing wave with an amplitudea1 between two Fano
‘‘mirrors’’ and a nonuniform mode in channeln52. Since
outside the impurity the wave function decreases expon
tially, it can be normalized. On the other hand, for the sa
critical parameter the channel may contain a propagating
lution of the form ~5!–~7!. Thus, we have found that tw
types of state may coexist at the same energy: one loca
state and one propagating state.

5. CONCLUSION

We have analyzed the passage of a particle throug
quantum waveguide containing an attractive impurity.
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finding the exact solution for the scattering matrix we ha
shown that the impurity generates a set of quasibound sta
which manifest themselves as resonance–antiresonance
in the transmissivity. When the impurity is short-range,
single Fano resonance can be observed in the transmiss
For an impurity of finite dimensions a new coherent effe
occurs, where at certain~critical! values of the parameters o
the system the resonances collapse. As a result, for the
cal parameters of the system the continuum acquires disc
levels. The transmissivity changes dramatically in the p
cess, which can be verified in experiments involving lo
dimensional channels with impurities. By way of an e
ample, we point to an interesting paper by Yamada a
Yamamoto,4 who proposed a method for producing artifici
impurities in a quantum channel.
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Nonlinear percolation conductivity and negative differential resistivity in microcrystalline
PbTe layers with an adjustable potential well

V. D. Okunev* ) and N. N. Pafomov
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The effect of electric fields on the electrical conductivity of PbTe films with block sizes smaller
than the Debye screening length is studied. As the temperature is varied, a readjustment of
the potential well is observed due to thermal spread of barriers with heightw,kT and the
expansion of higher barriers. Spatial ensembles, which consist of several blocks that
increase rapidly with temperature, are established for eachT. This process leads to an increase in
the height of the potential barriers as the linear size of these ensembles increases. This
determines the potential well in these films and their nonlinear properties, which originate in the
nonlinear percolation conductivity of a microscopic crystalline system with intergranular
barriers. A comparison with the experimental data of Shklovski� shows that the scale length of
the spatial inhomogeneitya53.731026 cm atT54.2 K corresponds to the average
block size. The value ofa increases with temperature, reaching 531024 cm atT5240 K. This
mechanism for electrical conductivity is compared with the hopping conductivity with a
variable hopping length. The negative differential resistance in the structures examined here is
found to be electrothermal in nature. ©1999 American Institute of Physics.
@S1063-7761~99!02007-7#
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1. INTRODUCTION

The basic reasons for the essentially continuous ris
the interest of researchers in systems with disordered s
tures in recent decades are well known. On one hand,
search on microcrystalline, nanocrystalline, granulat
amorphous, glassy, and other similar materials is stimula
by the possibilities which been discovered in the course
studying the effect of inhomogeneities and, as a rule, of
localized states associated with them, on the electrical
optical properties of these systems.1–5 Studies of different
aspects of the influence of the structural features of dis
dered systems on the localization of electronic states pla
important role in the development of the physics of the c
densed state. On the other hand, interest in disordered
tems is stimulated by advances in practical application
related materials. Experience shows that extending the s
trum of the structural states of matter can yield qualitativ
new results, even when working with traditional materia
Finally, this area has recently been rather strongly, altho
indirectly, influenced by research on quantum-well effects
media with correlated siting of clusters with order
structure.6–9

Materials with a microcrystalline structure are of ind
pendent scientific interest with stable domains of applicati
and they have been well studied. Since the theoretical m
els for their behavior are regarded as well developed, th
objects are often used as models for studying various p
nomena in other types of disordered systems.3,10–19This may
apply to models of structure and to mechanisms for electr
conductivity or optical absorption.

Many of the standard models are obtained by compa
1511063-7761/99/89(1)/12/$15.00
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the objects under study with microcrystalline samples wh
have rather large grains whose size greatly exceeds the
bye screening length. At the same time, the most impor
generalizations often have to be carried out for much sma
grain sizes and, therefore, much smaller inhomogeneity s
lengths, where such comparisons are not adequately justi
This refers directly, for example, to amorphous and gla
materials, whose structure and properties have long b
modelled using microcrystalline systems. The popularity
the various microcrystalline or cluster models changes w
time, but the need for them has remained fairly stable.

The experience gained by studying the effects obser
in microcrystalline films and in bulk samples is useful, bo
for creating new models, and for choosing analogs for ot
forms of materials with disordered structures. It can also
of interest for studying structures with extremely small siz
active elements and a high packing density in crystals w
perfect long-range order.

Of the published data on the structure and properties
semiconductors with microcrystalline structure, the m
complete information is on polycrystalline silicon. Progre
in research on other materials, including narrow-gap mat
als, has been more modest. Published reports of researc
polycrystalline semiconductors of the IV–VI group most
concern special cases20–25 and usually do not deal with the
general problems typical of microcrystalline systems. As
rule, they contain little data demonstrating a relationship
tween the electrical parameters of films and their structu
and do not take full account of the influence of the poten
well peculiar to microcrystalline systems on charge carr
transport. The reasons for this are quite understandable.
© 1999 American Institute of Physics
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IV–VI semiconductors are a very interesting group
materials26–28and have been a source of enthusiasm for s
eral generations of researchers. At the same time, becau
the small band gap of the major representatives of these
terials and their high concentration of intrinsic char
carriers,26,27 they are considered to be of little interest
studies of the phenomena observed in microcrystalline
tems. When films of the narrow-band IV–VI semiconducto
are mentioned, their advantages are customarily taken to
clude the closeness of the actual parameters to those o
corresponding single crystals, while the specific proble
intrinsic to microcrystalline systems are usually ignored.
addition, even for films with grain sizesD;1026 cm, the
small barrier heights in PbTe and other materials mak
possible to ignore the features of microcrystalline syste
resulting from the presence of regions of surface sp
charge near the grain boundaries. In particular, this applie
determining the main parameters of films using Hall coe
cient measurements, at and below room temperature. Fo
ample, in the literature there are reports that the mobility
charge carriers in microcrystalline PbTe films with gra
sizesD.250 Å atT577 K is close to the carrier mobility in
the best single crystal specimens,29 although it is clearly
known that charge carrier mean free path in them gre
exceeds the average grain size. When there is an exp
dependence of the electronic properties of a film on the g
size,30,31 data of this kind should be interpreted more ca
fully.

As for their nonlinear conductivity, despite the possib
observation of negative differential resistivity, this group
materials has been of almost no interest to researchers a
very limited number of papers32–35are devoted to this topic
At the same time, it is evident that narrow-band semicond
tors may turn out to be useful in measurements at low te
peratures, where it is difficult to work with wide-gap mat
rials and there are strict limits on the parameters and meth
that can be used for these materials.

As a rule, the theoretical models apply to microcryst
line samples whose grain size substantially exceeds the
bye screening length.36 Within the volume of these grains
the internal electric field strength is zero, and the free car
concentration is the same as the carrier concentration
single crystal with a similar impurity concentration. At th
same time, as noted above, it is often necessary to deal
polycrystalline samples with much smaller grain sizes, wh
the results obtained for large grains may not seem adequ
justified and, in principle, incorrect.

In this paper we present some data on the lo
temperature nonlinear conductivity of microcrystalline Pb
films on glass substrates with inhomogeneities smaller t
the Debye screening length. Possible mechanisms for
nonlinear properties and negative differential resistivity
these samples are discussed.

2. SUMMARY OF THE CHARACTERISTICS OF THE
SAMPLES AND EXPERIMENTAL PROCEDURE

Polycrystalline PbTe layers on glass substrates are
tinguished by the large variety of their properties and o
f
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served effects, which are caused primarily by the poss
variation in the average grain size over 4-5 orders
magnitude.30,31,37 The electronic properties of the sampl
are then related directly to the structure of the films. T
classical and quantum-well effects observed during stud
of the electrical conductivity of these structures are of int
est for the physics of microcrystalline systems, as well as
specific practical developments. As for the technology, it
not difficult to reproduce these results: it is sufficient to e
sure the specified temperature and growth rate. Recall, a
the importance of the film thickness, since the structure
microcrystalline PbTe films and, therefore, the sample pr
erties are determined, to a substantial extent, by the ela
stresses at the interface boundary, which, in turn, are rel
to the degree of mismatch between the lattice parameter
materials which come into contact and by the thickness
the films.

The polycrystalline PbTe films studied here were gro
by dc cathode sputtering of a stoichiometric target in an
gon atmosphere with deposition of the sputtered mate
onto substrates of cover glass with a thickness of appr
mately 100mm. The rate of film growth was held constant
about 4 Å/s. The target material was a cylinder of height
cm and diameter 2 cm, cut from an ingot of single crys
p-type PbTe with a resistivity of about 0.1V•cm at room
temperature. The current density at the target was 531024

A/cm2 and the power dissipated by the target was 6 W. T
target was cooled by liquid nitrogen; the growth~substrate!
temperature was held near room temperature, at 29362 K.
Sputtered film electrodes of Pt0.8Mo0.2 alloy, obtained by
sputtering of platinum and molybdenum together, were u
as ohmic contacts and ensured linear current-voltage cha
teristics of films with small grains (D,1024 cm!. All the
electrical measurements were made for direct current;
conductivity type of the films was determined by the therm
emf method. The structural state of the samples was m
tored by x-ray techniques: the diffraction pattern obtained
a Debye chamber was analyzed.

Polycrystalline PbTe films grown on glass substra
turn out to have a structural disequilibrium,30,31 and their
parameters can vary substantially during storage under o
nary conditions~annealing at room temperature!. The struc-
tural transformations observed during aging are caused
two main factors: the tendency of a polycrystalline system
change its surface energy~this can be achieved by an in
crease in the grain size! and the competing process asso
ated with the existence of elastic stresses owing to the p
ence of the film-substrate interface. The direction of t
structural changes depends on the average grain sizeD in the
original films, which, in turn, is determined by the grow
temperature and thickness of the grown layers.31 If D
,1026 cm, then the grains become larger. WhenD.1026

cm, fragmentation involving the breakup of large crystallit
into blocks is observed. As a result, regardless of the fi
thickness and the average initial value ofD, the grain size
approachesD* .1026 cm in the course of aging. It turns ou
that the unit cell parameter in layers withD.1026 cm cor-
responds to the lattice parameter of single crystal PbTe.37

In films with grain sizesD.1026 cm, the electrical
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properties of the samples are caused mainly by scatterin
charge carriers at the grain boundaries. Some specific me
nisms for scattering at the surface of a crystal have b
examined elsewhere.38 For D,1026 cm, the total surface
area of the grains contained in unit volume isS}1/D; there-
fore, the density of localized states at their boundaries,Ns

5g/D, is fairly high (Ns.831020 for D5131026 and
Ns.431021 cm23

• eV21 for D5231027 cm!,30 and
jump conductivity is observed in samples of this type at l
temperatures with the participation of these states, which
be interpreted as conduction along the grain boundar
Within the interval 4.2 K,T,50 K, hopping conductivity
with a variable hopping length is observed and in the ra
50 K,T,200 K, hopping conductivity between neare
neighbors with a constant activation energy is observe30

For D;1027 cm, the lattice parameter and band gap
found to depend on the average grain size.30,37

During the electrical conductivity measurements, m
of the films of micron and submicron thickness (d,5 mm!
obeyed Ohm’s law or the deviations from linearity in th
current-voltage characteristics were small. The curre
voltage characteristics of the finely crystalline films were l
ear over wide ranges of variation in the temperature
electric field strengths. A significant nonlinearity in the co
ductivity was observed only in large crystalline samples w
grain sizesD.1024 cm and at temperatures below 300 K.
similar structure and the corresponding properties could
reproduced only in rather thick (d57210 mm! films. Be-
cause of the significant anisotropy in their growth, the av
age grain size for these samples was always at least a
times greater than the thickness of layers with a polycrys
line structure.31

In accordance with an analysis of the first data on
nonlinear conductivity of microcrystalline PbTe layers,
was already clear, in general outline, that the nonlinear pr
erties of coarse crystalline films are related to the existe
of potential barriers at the grain boundaries, but the spec
mechanism for this phenomenon was not understood fo
long time. This situation was cleared up only after detai
studies of the electrical properties of samples at low temp
tures, which involved different structural states of microcry
talline PbTe films, were carried out regularly over a period
five years.

These measurements always indicated that, as the
perature was lowered, the current-voltage characteristic
samples withD5(225)31023 cm became nonlinear. Th
critical electric field, at which a nonlinear dependence of
current on the voltage began to be observed, fell as the t
perature was reduced and turned out to be very low.
example, in freshly prepared films atT.80 K, a nonlinear
conductivity was observed in fields above 50 V/cm. Furth
increases in the electric field led to the appearance of
ments with a stable S-type negative differential resistivity
the current-voltage characteristic, but this, unfortunately, w
accompanied by substantial, irreversible hysteresis in
current as a function of voltage. X-ray structural analy
showed that the hysteresis in the current-voltage charact
tics is caused by irreversible changes in the structure of
films associated with their fragmentation,31 i.e., the breakup
of
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of large grains into smaller ones. This fragmentation, wh
is mostly stimulated by stresses at the film-substrate in
face, ultimately leads to a division of each of the origin
grains into 1062107 blocks with sizes on the order of 1026

cm and fairly perfect interface boundaries. Because of
change in the film properties during aging and the impos
bility of making a correct measurement of the characteris
of freshly prepared samples, we were forced to delay a st
of their behavior in strong electric fields until no further i
reversible changes in their parameters could be observed
measurements at moderate currents.

The measurements were made on polycrystalline fi
with p-type conductivity~the equilibrium hole concentration
in the bulk of the large grains wasp05531016 cm23) ~Ref.
30! and a thickness of 7–10mm, grown on glass substrate
at room temperature. The average grain size in as-gro
samples was (225)31023 cm ~Ref 31!. The deviations of
the current-voltage characteristics of diodes fabricated fr
these films from Ohm’s law showed up most distinct
Samples with the following geometry were used: their len
was 0.07 cm, their cross-sectional area was (4.225.5)
31024 cm2 with contacts, as in Refs. 30 and 31, in the for
of film electrodes made by sputtering a Pt0.8Mo0.2 alloy.

The figures shown here apply to samples obtained fr
a 9-mm-thick film. The average grain size in a freshly pr
pared film wasD5531023 cm, which is 5.5 times the
thickness of the polycrystalline layer in Ref. 31. X-ray stru
tural analysis showed that the average block sizeD* in the
samples was about 231026 cm after aging for three year
~annealing at room temperature under natural conditio
which causes the reduction in grain size!. The sample geom-
etry and measurement technique are illustrated in Fig. 1

We have shown previously that the electrical propert
of polycrystalline PbTe layers in weak electric fields a
closely related to their potential well and that the latter is,
turn, related to the structure, primarily, the average gr
size.30 Perhaps, this applies to an even greater degree to
nonlinear conductivity. It would be impossible to overloo
that the current-voltage characteristics of diodes fabrica
from coarse crystalline films for studying their behavior
strong electric fields are related in a most direct fashion
changes in the film structures as they age. Fragmenta
~note again that here we mean the breakup of large crys
lites into fine blocks!, accompanied by the appearance
new boundaries and an increase in the number of pote
barriers in the way of the charge carriers, causes a substa
rise in the threshold voltageUt (Ut is defined at the cutoff
point, where the differential resistancedU/dI50.! and a
drop in the threshold currentI t . The threshold powerWt

5UtI t decreases. For some of the samples,Wt was found to
decrease by several factors. This is quite clear from the d
shown in Fig. 2.

In principle, control measurements taken during the
ing of the films showed that the relationship between
current-voltage characteristics of the samples and the po
tial well, which is determined by the film structure an
changes as they age, is rather obvious. Within 6–8 mon
after fabrication of the films, it was possible to obta
current-voltage characteristics with segments of stable ne
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154 JETP 89 (1), July 1999 V. D. Okunev and N. N. Pafomov
tive resistance without any special problems. With time,
the average block size decreased and the number of bl
increased, a continuous rise in the resistance of the sam
which is accompanied by a drop in the threshold current
a rise in the threshold voltage, is observed. The thresh
power~for fixed temperature! decreased. Two such states a
shown in Fig. 2. If the current-voltage characteristics of
samples were taken with sufficiently high load resistanc

FIG. 1. Geometry of the microcrystalline PbTe samples with anS-shaped
current-voltage characteristic and the measurement setup.

FIG. 2. Current-voltage characteristics (T577 K! of a PbTe film sample 11
months ~curves 1! and 33 months~curves 2! after fabrication. The film
thickness is 931024 cm, the distance between electrodes is 731022 cm,
and the cross-sectional area is 531024 cm2.
s
ks
es,
d
ld

e
s,

i.e., close to a current source regime, then the hysteresis
nomena observed between forward and reverse currents
small ~curves1 and 2 in Fig. 2! or are essentially not ob
served at all. There were also no signs of the formation
current filaments.

At high currents, a segment with a negative different
resistance is followed by another segment with a posit
differential resistance. The appearance of this segm
should not be regarded as something unusual, since its p
ence is even predicted by a purely thermal breakdo
theory.39 However, high currents, which facilitate furthe
fragmentation, produced irreversible changes in the curr
voltage characteristic, and led to a rise inUt and a drop inI t .
Figure 3~curve2! shows a current-voltage characteristicT
525 K! for the same sample as in Fig. 2, but after seve
high-current measurement cycles. The initial state before
high-current measurements, which corresponds to
current-voltage characteristic of curve2 in Fig. 2, was ob-
tained atT577 K and is shown as curve1. It can be seen
that the changes in the parameters of the current-volt
characteristic are substantial. Thus, during measuremen
currents beyond the threshold, we usually restricted
analysis to relatively low currents through the sample, wi
out reaching the segment with a positive differential res
tance.

With decreasing resistance of the load in series with
power supply and sample, a switching effect is observ
~from a high resistance to a low resistance state and b
again when the current through the sample is being lowe!
along the load curve. The hysteresis phenomena bec
much more substantial in this case~Fig. 3, curve2!.

FIG. 3. Current-voltage characteristic (T525 K! before~curves1! and after
~curves2! several measurement cycles at high currents.
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3. CURRENT-VOLTAGE CHARACTERISTICS OF SAMPLES
AT DIFFERENT TEMPERATURES AND THEIR
NONLINEAR CONDUCTIVITY IN THE SUBTHRESHOLD
REGION

The state corresponding to curve2 in Fig. 2 is already
quite stable and a complete cycle of studies of the effec
electric fields on the electrical conductivity of the film can
conducted using it. Figure 4 shows a series of static curr
voltage characteristics of the sample which were measure
different temperatures and which correspond to this str
tural state, in which the film parameters are essentially c
stant in time for ordinary storage conditions. Segments w
a stable negative differential resistance show up at temp
tures below 250 K. In the entire range of temperatures s
ied, down toT54.2 K, no signs of current filament forma
tion were observed. For operation at moderate currents, t
are hardly any hysteresis effects. AtT.77 K, a sharp in-
crease in the threshold current is observed, and the segm
with a negative differential resistance become ever less c
spicuous as the temperature is raised. The absolute ma
tude of the derivativedU/dI decreases rapidly with increas
ing T, and forT.250 K formation of a negative differentia
resistance is suppressed altogether.

The subthreshold current-voltage characteristics at t
peratures below 250 K are highly nonlinear. The availa
data on polycrystalline semiconductors indicates that
most probable mechanisms for the nonlinearity are relate
the presence of potential barriers at grain~block! boundaries.
In contrast with the wide-gap semiconductors with micro
rystalline structures, for narrow-gap materials that also h
small-sized blocks the direct relationship between electr
conductivity and the presence of potential barriers at
boundaries of the inhomogeneities is not too obvious
must be clarified.

FIG. 4. Current-voltage characteristics of a PbTe sample after aging fo
months at room temperature for different measurement temperatures~K!: ~1!
8, ~2! 20, ~3! 30, ~4! 40, ~5! 77, ~6! 100, ~7! 140, ~8! 170, ~9! 200, and~10!
240.
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According to the effective medium theory, for weak an
strong electric fields, the electrical conductivity of a pol
crystalline film is determined by the sum of two terms:

s5sH1sG , ~1!

where sH is the electrical conductivity across the gra
boundaries, andsG is that for the barrier transport mecha
nism. In general,sH can also be the sum of two terms, th
hopping term and the band term, when low-resistance lay
exist at the grain boundaries.28 We shall not consider the
latter mechanism here, since it is not observed in the fi
we have studied.

Since potential barriers for electrons or holes develop
a result of the localization of the latter at the grain boun
aries, there are no free carriers at the boundaries and, in
case,sH is obviously caused by hopping conductivity in
volving the localized states. The average hopping length
hopping conductivity with a variable hopping length is
function of temperature:3,5

l ~T!5a21j~T!5a21~T0 /T!1/4, ~2!

whereT0 is a well-known parameter in Mott’s law, anda21

is the length of the localized states. Given the possible va
of a21 and T0 ~Ref. 30!, we find that the average jum
length in the films studied here is, at most, 80 Å. Therefo
according the data of Ref. 30, we can ignore hopping c
ductivity in films with grain sizes greater than 1026 cm and
the mechanism for the nonlinearity for the current-volta
characteristics must be found in the intercrystallite poten
barriers at the grain~block! boundaries.

Theoretical discussions of phenomena at interfaces u
ally consider the contact of a semiconductor with
semiconductor,40–44 which actually consists of two Schottk
barriers connected in opposition.36,45 In a theory that pro-
vides a satisfactory description of the electrical conductiv
of polycrystalline semiconductors with grain sizes grea
exceeding the Debye screening lengthLD5(kTxx0 /
q2p0)1/2, wherex is the dielectric constant,x0 is the permi-
tivity of free space, andq is the electronic charge, they ar
treated as a set of intercrystalline barriers~bicrystals! with
identical properties. It should be noted that the transit
from a bicrystalline to a polycrystalline material does n
change the results essentially in this case. Many year
experimental studies have shown that this is entirely acc
able when working with weak electric fields. Here an av
age barrier heightw appears in the calculations.

The situation changes fundamentally for microcryst
line samples in strong electric fields. Here, also, the alre
inhomogeneous character of the polycrystalline syst
caused primarily by the spread in the height of the barrier
the grain boundaries can greatly change the resulting e
tions. The scatter in the barrier heights is related to a cha
in the form and size of the microcrystallites, their mutu
orientation, and the degree to which the localized states
filled at the grain boundaries. As a number of theoretical a
experimental studies46–51have shown, the randomness of th
potential well of inhomogeneous semiconductors can lea
a fundamentally new effect – nonlinear percolation cond
tivity in strong electric fields. Nonlinear percolation condu

3
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tivity has been observed experimentally51 in photosensitive
layers of PbS, an IV–VI material with properties close
those of PbTe. However, in contrast with the results d
cussed here, the data presented in Ref. 51 apply to ordi
polycrystalline samples with micron-sized grains.

This effect involves the onset of deviations from Ohm
law much sooner in randomly inhomogeneous systems
in systems with more or less periodic variations in the p
tential of equal amplitude. In addition, while there is an e
ternal similarity in the functional dependence of the curr
on the voltage for the Schottky effect and for nonlinear p
colation conductivity, the nonlinearity of the current-volta
characteristic in the latter case is very much greater than
a homogeneous sample with a Schottky barrier, since
local electric field strength in inhomogeneous samples ca
considerably higher than the measured average.

The behavior of a single barrier in a strong electric fie
is, to a great extent, determined by the Schottky effect.
cording to the theory of the Schottky effect caused by lo
ering a potential barrier in an electric field,36 the current
through the sample is

I 5AT2exp~2w/kT!exp@~q3/4pxx0!1/2F1/2/kT#, ~3!

whereA is the Richardson constant,w is the barrier height,
and F is the electric field strength. However, experimen
indicate that the nonlinearity coefficient for an inhomog
neous polycrystalline system can be an order of magnit
higher than b5(q3/4pxx0)1/2 in Eq. ~3! or the Poole-
Frenkel coefficientb5(q3/pxx0)1/2 ~Ref. 50!.

According to the landmark paper of Shklovski�,47 the
current in a randomly inhomogeneous system is

I 5I 0 exp@~CqFaV0
n!1/(11n)/kT#, ~4!

whereV0 is the amplitude of the fluctuations in the potent
well, n'0.9, andC50.25; a is the scale length of the spatia
inhomogeneity.

Equation~4! is valid for the range of electric fields de
termined by the inequalityV0@qFa@kT(kT/V0)n. The
conditionV0@kT must also be satisfied. If the critical inde
n is replaced by unity, then Eq.~4! can be rewritten in the
form

I 5I 0 exp~bF1/2/kT!, ~5!

whereb5(CqaV0)1/2. Later this theory was developed d
rectly for microcrystalline systems with intergranul
barriers.46,48 The authors of Refs. 46 and 48, while confirm
ing the validity of Shklovski�’s basic assumptions and con
clusions, nevertheless find that these relations provide a
ter description of the behavior of polycrystallin
semiconductors in strong electric fields. However, des
this critique46,48 of Shklovski�’s results, as regards their ap
plication to inhomogeneous polycrystalline systems in h
fields, on comparing the theory and experiment we w
compelled to restrict the analysis to Shklovski�’s work, not
solely because of its clarity and evident advantages for a
lyzing experimental data. In the calculations in Refs. 46 a
48 it was assumed thatLD!a. For our samples, this cond
tion is clearly not satisfied: even atT54.2 K, the Debye
screening length is 731026 cm, or three times the averag
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block size. Shklovski�’s theory47 does not contain such stric
requirements for the potential well and is, we believe, m
universal. In accordance with Ref. 49, the theory and exp
ment were compared at rather high electric fields.

As the theory predicts, the current-voltage characteris
of these samples deviate anomalously early from Ohm’s l
The critical value ofF is 0.3 V/cm atT54.2 K, 0.7 V/cm at
T515 K, and about 5 V/cm atT577 K. It should be recalled
that in as-grown samples, these values were one or two
ders of magnitude higher because of the enhanced inho
geneity of the microcrystalline films as they fragment due
the breakup of coarse grains into finer blocks.

In the region where their conductivity depends on t
electric field strength, the current-voltage characteristics
these samples actually correspond to a dependence o
form ln I}F1/2 over a wide temperature range~Fig. 5!. As
Fig. 5 shows, the segments of the current-voltage charac
istic which are consistent with the nonlinear percolation co
ductivity theory shift toward higher electric fields as the te
perature is lowered. The deviation of the experimentaI
5I (F1/2) curves from the theoretical dependence~5! is
caused by ohmic segments in low fields and the developm
of a negative differential resistance in high fields. The e
perimental values ofb, consistent with the theory for low
temperatures, are 5–7 times the values calculated for
Poole-Frenkel effect@(1.021.9)31025 eV1/2

•cm1/2 in the
temperature interval 4.2–300 K#. As the temperature is
raised, because of the rapid rise inb with temperature, this
difference increases by more than two orders of magnit
~Fig. 6, curve2!.

The average barrier heightw, which determines the con
ductivity of a microcrystalline medium at a given temper
ture and, therefore,V0 in Eq. ~5! which corresponds roughly
to w, can be determined from the temperature variation in
electrical conductivitys in low electric fields shown in Fig.
7, assuming that

s}exp~2w/kT!. ~6!

The electrical conductivity of highly inhomogeneous med
has been examined in Ref. 5. In terms of the basic conc
of the percolation theory,w characterizes the average heig
of the barriers, which form a critical sublattice in the ra

FIG. 5. Subthreshold portions of the current-voltage characteristics
diode at different temperatures~K!: ~1! 8, ~2! 20, ~3! 40, ~4! 77, ~5! 90, ~6!
100, ~7! 150, ~8! 200, and~9! 240.
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domly inhomogeneous medium under consideration. The
fect of the intrinsic conductivity at low temperatures can
ignored.30,31 This is also quite clear from the data shown
Fig. 8, on comparing the behavior ofw5w(T) with the tem-
perature dependence of the optical band gap. The hop
conductivity is not observed in these samples. This last
ture is well illustrated by the curves shown in Fig. 7: t
conductivity of these samples decreases with aging over
entire temperature range, while hopping conductivity sho
increase ass} exp(2D*1/3) when the average block sizeD*
is reduced.30

The dependence ofw on T in Fig. 8 ~curve1! shows that
the barrier height increases almost linearly withT at low
temperatures, i.e.,

w}Tt, ~7!

where t.0.96–0.97, while at higher temperatures (T>240
K! w5w(T) has a saturation dependence. AtT.240 K, the
temperature dependence of the conductivity is obviou
caused by the temperature dependence of the intrinsic
ductivity.

The Schottky barriers formed when metals are in con
with single crystal PbTe have an effect on the electrical c
ductivity of the samples up to somewhat higher tempe

FIG. 6. Temperature variations in the spatial inhomogeneity scale le
a ~1! and nonlinearity coefficientb ~2!.

FIG. 7. Temperature variations in the electrical conductivity of a micr
rystalline PbTe film in a weak electric field 8 months~curve 1! and 33
months~curve2! after fabrication.
f-

ng
a-

he
d

ly
n-

ct
-
-

tures. The properties of contacts between single crystan-
and p-type PbTe and various metals~In, Cu, Ag, Au! have
been studied in detail.52 It was shown52 that the height of the
Schottky barrier is independent of the work function of t
metal and varies in the range 0.175–0.200 eV, or 0.5–
timesEg for PbTe at room temperature. As the temperat
is lowered, the barrier height decreases in accordance
the reduction in the band gap.

4. MECHANISM FOR READJUSTMENT OF THE POTENTIAL
WELL AS THE SAMPLE TEMPERATURE IS VARIED

AssumingV05w and knowingb, one can use Eq.~5! to
find the scale lengtha of the spatial inhomogeneity. AtT
54.2 K, a is 3.731026 cm, which is still substantially
greater than the possible tunnelling length for charge carr
in PbTe. The quantitya53.731026 cm is already close to
the average block sizeD* 5231026 cm found by x-ray
structural analysis31 and indicates that Shklovski�’s theory47

applies to our results. The inequalityV0@qFa@kT(kT/
V0)n holds solidly in the entire range of temperatures stud
here.

However, becausea increases with temperature, an in
tially quite unexpected situation arises. Thus, for example
8 K the value ofa increases to 6.431026 cm and reaches
531024 at 240 K. The dependence ofa on T is plotted in
Fig. 6 ~curve1!. This behavior of the system originates in th
relationship between the potentialw and the scale lengtha of
the inhomogeneity. The relationship between the poten
and the inhomogeneity scale length is apparently typica
any system on a mesoscopic scale, where the scale le
varies from a few nanometers to several tens of nanome
This situation is fundamentally independent of the particu
type of structure, whether we are speaking of nanocrystal
systems of quantum dots.9

It should be noted that the results presented here ca
used for films with arbitrary grain~block! size or inhomoge-
neity scale length to determine the temperature above w
the conductivity of the samples no longer depends on
electric field strength.

FIG. 8. Average height of the intercrystallite barriers,w ~1!, kT ~2!, and
Eg/2 ~3! as functions of temperature.th

-
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If the grain size is sufficiently large andD@LD , then
the solution of the Poisson equation for the one-dimensio
case,

]2V

]x2
52

q

xx0
NA ~8!

is36

V~x!52
qNA

xx0
S Wx2

1

2
x2D2wbp , ~9!

where V(x) is the potential,wbp is the potential barrier
height,W is the width of the space charge layer,NA is the
acceptor concentration, andx is the coordinate. This situatio
is illustrated in Fig. 9a. Ap-type semiconductor is bein
considered, as in our particular case. On the thermodyna
equilibrium band energy diagram shown in Fig. 9a,EF is the
Fermi energy,Ec is the energy corresponding to the botto
of the conduction band, andEv is the energy correspondin
to the ceiling of the valence band. If the scale lengtha of the
spatial inhomogeneity is small and the second boundar
x5a does not affect the potential distribution, then fora
!W Eq. ~9! yields

V~a!.2
qNA

xx0
Wa2wbp . ~10!

The height of the potential barrier,

w~0!52wbp2V~a!.
qNA

xx0
Wa, ~11!

is proportional toa in this case. If we assume the existen
of a symmetric barrier atx5a ~Fig. 9b!, then the solution of
the Poisson equation~8! must be taken in the form

FIG. 9. Band energy diagrams of ap-type polycrystalline semiconductor
a—a@W, b a,W, c as in b, but in a strong electric field.
al

ic

at

V~x!52
qNA

xx0
FWx2

1

2
x2G2

qNA

xx0

3FW~a2x!2
1

2
~a2x!2G2wbp . ~12!

We obtain an expression for the height of the potential b
rier which differs from Eq.~11!:

w~0!5w~a!5V~0!2VS a

2D5V~a!2VS a

2D5
qNA

xx0

a2

4
.

~13!

An analogous result was obtained in Ref. 41, where the k
nel was approximated by a sphere of radiusr 0. The space
charge is concentrated in a layer fromr 1,r 0 to r 0; i.e., r 0

2r 1 has the significance of a screening length. The heigh
the potential barrier is given by

w~r 0!5
2pqNA

3xx0
S r 0

21
2r 1

3

r 0
23r 1

2D . ~14!

For r 150 we have, as in Eq.~13!, a quadratic dependence o
the potential barrier height on the grain size,

w~r 0!5
2pqNA

3xx0
r 0

2 . ~15!

As the data of Fig. 10 show, however, in the entire range
variation ofa the relation between the height of the potent
barrier and the scale length of the spatial inhomogeneit
close to a linear dependence, which can be approximate
a power law of the form

w}ah, ~16!

whereh.0.94. The height of the barrier is determined
the inhomogeneity scale lengtha5a(T) and, as the data o
Fig. 8 imply, is a function of temperature. Clearly, the tem
perature dependence of the band gapEg cannot be the reaso
for the dependence~16! with h.1. On the other hand, sinc
Eg in PbTe increases as the temperature rises,27,53one should
rather expect Eq.~16! with h.2. The reason for this as
sumption can be understood if we note that all the meas
ments of the sample parameters were made in strong ele
fields. This is clearly evident for the one-dimensional ca

FIG. 10. Relationship between the average intercrystallite barrier heigw
and the spatial inhomogeneity scale lengtha.
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~Fig. 9c!. In an electric field the potential distribution i
highly distorted toward one of the barriers compared to
equilibrium case. If, for example, we consider an inhomo
neity of sizea5a1, then it is evident from Fig. 9c that th
barrier atx50 makes the main contribution and then, as E
~11! implies, w}a. In addition, since the measurements a
made in strong electric fields, there is an inevitable reduc
in the barrier height in the electric field for each individu
barrier due to the Schottky effect. This is qualitatively u
derstandable from the change in the potential distribution
Fig. 9c, while the quantitative changes should obey Eq.~3!.

As for the mechanism for the rapid increase in the spa
inhomogeneity scale lengtha as the temperature rises, he
the main contribution is from the ‘‘vanishing’’ or, more pre
cisely, the thermal smearing out of small barriers w
heightswmin,kT. Judging from the relationship betweenw
andkT, i.e., given thatw.4kT, we may conclude that dur
ing current flow, not only the barriers with heightswmin

,kT, but also the barriers whose average heightw,4kT, do
not participate. The same applies to barriers of heighw
.4kT. The primary contribution is from barriers of heigh
w'4kT, which form a critical sublattice and determine th
electrical conductivity of this randomly inhomogeneous m
dium with an adjustable potential well. In the casea,W,
space charge layers of the barriers whose heightwmax@kT
propagate to regions with vanishing barriers. It is not
chance that the relationship betweenw and T in Fig. 8 is
extremely close to linear, especially at low temperatures.
total surface area of the blocks united in these unique
sembles~or clusters! decreases with temperature and, as f
charge carriers are trapped by surface states, the spe
charge per unit surface area increases.

As they propagate in the space which previously
longed to lower barriers, the barriers at the boundaries of
large blocks simultaneously increase in amplitude. This p
cess continues untilW exceedsa/2. When the conditionW
,a/2 is satisfied, the dependence ofw on T should saturate
subsequently following the dependence ofEg on T, which in
our case occurs atT.230 K ~Fig. 8, curve1!. The calculated
value ofW5(2xx0w/qp0)1/251.731024 cm for T5230 K,

FIG. 11. Scheme for readjustment of the potential well as the tempera
changes:T3.T2.T1.
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in good agreement with the valuea/252.131024 cm found
by analyzing the electrical measurement data in accorda
with the Shklovski� theory. We regard this fact as one of th
most weighty arguments in favor of using the Shklovs�
theory for analyzing our experimental data. The depende
of x on T was taken into account when calculatingW.55

Since the band gapEg in PbTe increases considerably mo
slowly thankT @from 0.19 eV atT54.2 K to 0.32 eV atT
5300 K ~Refs.27 and 53!#, the increase inEg with tempera-
ture only facilitates the growth of ‘‘high’’ barriers. As a re
sult, the change in the height distribution function of t
barriers changes the paths of the current flow in the system
such a way that the nonlinear conductivity includes tem
rary configurational ensembles which determine the spa
inhomogeneity scale length and within which the number
blocks increases constantly with temperature. This proces
illustrated schematically in Fig. 11. The height of the barrie
increases in this case much more rapidly than the increas
Eg with T, while the reduction in their number leads to
continuous rise in the nonlinearity coefficientb with T.

5. ELECTRICAL CONDUCTIVITY IN STRUCTURES WITH
AN ADJUSTABLE POTENTIAL WELL AND HOPPING
CONDUCTIVITY WITH A VARIABLE HOPPING LENGTH

Given the rise in the activation energy for electrical co
ductivity in our film samples with increasing temperature,
is meaningful to compare the observed mechanism for e
trical conductivity in microcrystalline systems that have
adjustable potential well with hopping conductivity when t
hopping length is variable. This is especially appropria
since the theory of hopping conductivity based on perco
tion theory5 also deals with a critical sublattice that chang
with temperature and plays a key role in deriving the ba
equations.

If, in accordance with the known activation dependen
for the specific resistivity of a semiconductor of the formr
5r0 exp(DE/kT), whereDE5] ln r/](kT)21, we define a lo-
cal activation energy for hopping conductivity with a var
able hopping length of the formd«5] ln r/](kT)21 ~Ref.
54!, then for the temperature dependence of the local act
tion energyd« we obtain

d«5
1

4
kT0

1/4T3/45
1

4
~T0 /T!1/4kT. ~17!

However, despite an outward similarity in the temperatu
variations of the local activation energiesd«5d«(T) and
w5w(T), it is obvious that there is, in fact, no analogy he
at all and we are dealing with completely different condu
tivity mechanisms. The mechanism under consideration h
as for the overwhelming majority of other microcrystallin
systems with semiconductor conductivity, is caused by
perbarrier transport of charge carriers, and, in our case,
existence of a temperature dependence for the local ac
tion energy~according to Eq.~7!, w}T0.96) is the result of a
potential well that adjusts itself with temperature and t
dependence of the barrier height on the linear sizea of the
resulting ensembles~clusters!. The hopping mechanism i

re
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FIG. 12. Electrical resistivitys in weak electric fields
~1!, threshold currentI t ~2!, and threshold voltageUt

~3! as functions of temperature. The inset shows t
average intercrystallite barrier heightw ~4! and activa-
tion energiesDEI ~5! andDEU ~6! as functions of tem-
perature.
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based on tunnelling of carriers between two localized sta
which differ in energy by the energy of a phonon.

The difference between these mechanisms become
pecially evident when the behavior of the inhomogene
scale lengtha is compared with that of the characteristic si
of the critical sublattice in the theory of hoppin
conductivity,5,56

L05 l ~T!jc
n.a21jc

11n , ~18!

wherel (T)5a21jc(T)5a21(T0 /T)1/4 is the average jump
length,a21 is the radius of the localized state, andn.0.9 is
the exponent on the correlation length. This length (L0)
plays an important role in the theory of all effects associa
with hopping conductivity, including in the behavior of hop
ping conductivity in strong electric fields.56,57 This shows
that, in contrast with the inhomogeneity scale lengtha,
which increases linearly or superlinearly with temperature
the microcrystalline system under consideration,L0 has an
reciprocal temperature dependence and decreases with r
temperature according to the power law

L0}jc
11n}T20.47. ~19!

6. NEGATIVE DIFFERENTIAL RESISTANCE

An idea of the mechanism for the negative different
resistance can be obtained from the well-tested procedur
comparing the dependences of the threshold voltageUt and
currentI t on T with the temperature dependence of the el
trical conductivitys in a weak electric field~see Fig. 12!.
The changes in the threshold parametersUt and I t are small
in the interval 8–40 K. Raising the temperature above 40
substantially increases the rate at whichUt and I t change
with temperature. This pertains largely to the temperat
dependence of the threshold currentI t . Figure 12 shows tha
the threshold voltageUt and threshold currentI t vary much
more slowly withT than doess5s(T). A quantitative cri-
terion can be found if we write the temperature dependen
of s, Ut , andI t in the conventional forms

s}exp~2w/kT!, Ut}exp~DEU/kT!,

I t}exp~2DEI /kT!,
s

es-
y

d

n

ing

l
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-

K

e
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wherew, DEU, andDEI , in turn, depend on the temperatu
and, therefore, on local activation energies with the cor
sponding temperature dependences. The temperature de
dences ofw, DEU, andDEI are shown in the inset in Fig. 12
for comparison.

The similarity in the functionsDEU5DEU(T) and w
5w(T) indicates an explicit relationship between the mec
nisms for the negative differential resistance and therm
processes in our samples. The activation energyDEU, how-
ever, varies in the range~0.12–0.20)w in the entire tempera-
ture interval. At the same time, for a purely thermal mech
nism for the negative differential resistance, it should
equal to 0.5w ~Ref. 39!. Similarly, instead of equalling 0.5w,
DEI for the thermal mechanism varies in the range~0.21–
0.31)w. Given the above arguments, it must be assumed
in this case the mechanism for the negative differential re
tance is electrothermal, with a field component determin
by the nonlinear percolation conductivity of the microcry
talline samples. It is obvious from the smallness ofDEU that
electron processes make a large contribution. It is greate
the temperature range 20–30 K, whereDEU andDEI form a
minimal fraction ofw. At lower temperatures, the resistanc
of the barriers are low and at high temperatures, the thre
old currents are too high. Given that the activation energ
DEU for Ut as a function ofT vary little over the entire
temperature range studied here@they vary in the range
~0.12–0.20)w], the contribution of thermal processes to th
development of a negative differential resistance in this te
perature range is essentially constant. The data of Fig
show that a negative differential resistance can be obse
in these films at temperatures up to 240–250 K, beyo
which thermal generation of charge carriers of both signs
a transition to intrinsic conductivity will destroy the sta
with a negative differential resistivity and liquidate the no
linear conductivity in these samples.

The data of Fig. 3 can serve as important evidence o
electrothermal mechanism for the negative differential re
tance. The curves in that figure refer to entirely differe
structural states, and their resistances measured at 25 K
in weak electric fields, differ by four orders of magnitude.
the same time, the curves essentially merge in the segm
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with a negative differential resistance at currents;1024 A;
i.e., the resistance of this sample is the same in both st
tural states. This means that for the same scattered po
~which is large in this segment, according to the data sho
here!, which produces high enough temperatures in the
tive region, the scale length of the spatial inhomogeneity t
determines the magnitude of the resistance and therefore
resistance of the sample, is the same regardless of the s
tion at low temperatures. Here it is also important that all
remaining parameters, and primarily those related to
sample geometry, remain constant.

7. CONCLUSIONS

We have cited some evidence of the unusual behavio
polycrystalline samples in strong electric fields, when
inhomogeneity scale length~grain and block sizes! is much
shorter than the Debye screening length. The data prese
here show that this unusual behavior of polycrystall
samples in the nonlinear percolation conductivity regime
caused by a potential well that readjusts itself with tempe
ture. In this case, the height of the potential barrier and
inhomogeneity scale length are functions of temperatu
These effects could be observed because of a succe
combination of the structure of the test samples~small blocks
with perfect interfaces formed during fragmentation
coarse grain films and capable of joining together easily i
ensembles consisting of a different number of these bloc!
and the experimental conditions. We have also found g
agreement between the experimental data and the theo
Shklovski�. Two major indications of this agreement shou
be noted. First, as shown in Sec. 4, at low ('4.2 K! tem-
peratures the inhomogeneity scale lengtha53.731026 cm
found by analyzing the experimental data in accordance w
Shklovski�’s theory actually does approach its minimu
value, which equals the average block size (D* .231026

cm! after fragmentation of coarse crystalline (D.531023

cm! films. The other unique ‘‘reference’’ point is the inho
mogeneity scale length determined by using the formu
proposed by Shklovski� at high temperatures, when the tem
perature dependence of the average potential barrier he
~Fig. 8! begins to saturate. This occurs when, as the temp
ture rises, the linear size of the spatial ensembles,a, becomes
comparable to the widthW of the space charge layer i
single-crystal samples as the number of blocks increa
The calculatedW51.731024 cm is in good agreement with
the valuea/252.131024 cm atT5230 K found by analyz-
ing electrical measurement data in accordance w
Shklovski�’s theory. Subsequently the barrier height ess
tially ceases to rise with temperature, and the system be
ior becomes similar to the well-studied behavior of coa
crystalline samples with grain sizes much greater than
Debye screening length. In narrow-gap semiconductors
phenomenon can be observed only at low temperatures,
as the gaps of polycrystalline semiconductors increase,
upper bound can evidently be shifted toward higher temp
tures.

As the data presented here imply, the negative differ
tial resistance is caused by an electrothermal mechan
c-
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This is indicated by a quantitative analysis of the temperat
variations inUt andI t in Fig. 12. A further weighty proof of
the importance of thermal processes in the developmen
the negative differential resistance is the closeness of the
current-voltage characteristics for different structural sta
of the same sample shown in Fig. 3 for high (;1024 A!
currents. We believe that these current-voltage characte
tics are a good illustration of the feasibility of the mechanis
proposed here for the readjustment of the potential well.

We thank Z. A. Samo�lenko for the x-ray structura
analyses of the samples.
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Hard soliton excitation regime: Stability investigation
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The problem of the stability of one-dimensional solitons in the hard regime of soliton excitation,
where the matrix element of the four-wave interaction has an additional smallness, is
studied. It is that shown for optical solitons striction can weaken the Kerr nonlinearity. It is
shown that solitons with a finite amplitude discontinuity at the critical soliton velocity, equal to the
minimum phase velocity of linear waves, are unstable while solitons with a soft transition
remain stable with respect to one-dimensional perurbations. Two- and three-dimensional solitons
near threshold are unstable with respect to modulation perturbations. ©1999 American
Institute of Physics.@S1063-7761~99!02207-6#
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1. INTRODUCTION

This paper is devoted to a study of hard and soft soli
excitation regimes~in other words — sub- and supercritic
bifurcations! accompanying a change in the soliton veloc
v — one of the main characteristics of a soliton. It is w
known that if the velocityv of a moving object is such tha

vk5k–v, ~1.1!

wherev5vk is the dispersion law for linear waves andk is
the wave vector, then such an object will lose energy
Cherenkov radiation. This also applies fully to solitons
localized stationary formations. They cannot exist if the re
nance condition~1.1! is satisfied. Hence follows the first, an
simplest, selection rule for solitons: The soliton veloc
must be either less than the minimum phase velocity of
ear waves or greater than the maximum phase velocity.
boundary separating the region of existence of solitons fr
the resonance region~1.1! determines the critical soliton ve
locity vcr . As is easy to see, this velocity is the same as
group velocity of linear waves at the point where the strai
line v5kv is tangent to the dispersion curvev5vk ~in the
multidimensional case — the point of tangency of the pla
v5k•v to the dispersion surface!. If the tangency occurs
from below, then the critical velocity determines the ma
mum soliton velocity for this parameter range and, co
versely, for tangency from abovevcr is the same as the mini
mum phase velocity. Two regimes are possible in cross
this boundary: soft or hard excitation, in other words, sup
or subcritical bifurcation.

It has been determined previously1–5 that near the criti-
cal velocity solitons in the soft excitation regime behave i
universal manner. This universality is manifested, in the fi
place, as a square-root velocity dependence of the so
amplitude, as is typical for second-order phase transitio
making this phenomenon similar to second-order phase t
sitions. However, an important distinction from phase tra
sitions is manifested in the shape of a soliton. The shap
also universal: As the velocity approaches the critical val
1631063-7761/99/89(1)/10/$15.00
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the soliton shape acquires the form of an envelope soliton
the nonlinear Schro¨dinger equation~NLSE!. This behavior
occurs for any spatial dimension.

This isue was first considered for gravity-capillary su
face waves on deep water. One-dimensional soliton solut
were first found numerically in Ref. 1. Later, a bifurcation —
a transition from periodic solutions to a soliton solution
was studied in Refs. 2 and 3 using normal forms. The s
tionary NLSE for gravity-capillary wave solitons was d
rived in Ref. 4. In Ref. 5 it was shown that this mechanis
can be extended to optical solitons. It followed from th
work, essentially, that this mechanism occurs for waves
arbitrary nature.

The question of whether the bifurcation is super- or su
critical depends on the character of the nonlinear interact
The soft transition regime occurs with focusing nonlinear
when the productv9T,0, wherev95]2v/]k2 is the second
derivative of the frequency with respect to the wave vect
evaluated at the point of tangencyk5k0 , andT is the value
of the matrix elementTk1k2k3k4

of the four-wave interaction

for ki5k0 . If v9T.0, which corresponds to a defocusin
nonlinearity, there are no solitons — localized solutions
with amplitude vanishing smoothly asv˜vcr . In the theory
of phase transitions this corresponds to a first-order ph
transition, and in the theory of turbulence, using Landa
terminology,6 it corresponds to a hard regime of excitatio
In the present case the transition through the critical velo
is accompanied by a discontinuity in the soliton amplitud
The magnitude of the jump is determined by the next high
order terms in the expansion of the Hamiltonian. Just as
first-order phase transitions, in the situation of the gene
position universality of soliton behavior is no longer assur
However, when the hardness of this transition is small,
tention can be confined to the next approximation in
expansion of the Hamiltonian and all other terms can
neglected. In phase transitions this corresponds to a fi
order phase transition close to a second-order transit
which occurs, for example, near a tricritical point. As show
in Ref. 7, this situation arises for one-dimensional intern
© 1999 American Institute of Physics
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wave solitons propagating along a density jump in liqui
According to Ref. 7 the matrix elementT in this case van-
ishes for density ratior1 /r25(2128A5)/11. Near this
point the authors of Ref. 7 were able to perform a compl
bifurcation analysis for solitons using the method of norm
forms.

In the present paper, the Hamiltonian description~con-
cerning this subject, see the recent review in Ref. 8, as w
as Ref. 5! is used to obtain a closed description of solito
near the critical velocity, and the stability of solitons wi
respect to modulation disturbances is studied on the bas
a nonstationary generalized nonlinear Schro¨dinger equation.
It should be noted that in contrast to the method of norm
forms, which is extensively used in Refs. 2, 3, 7, and 9
study bifurcations of solitons, the Hamiltonian approach
fundamental for investigating soliton stability. In the meth
of normal forms, the introduction of envelopes is not uniq
as a result of which, after averaging, the Hamiltonian eq
tions of motion lose their original Hamiltonian structure.

As will be shown below, the expansion of the Ham
tonian for solitons with hard bifurcation near threshold d
fers substantially from the expansion for the soft regim
Terms containing the so-called Lifshits invariant10 which
plays an important role for first-order phase transitions,
present in this expansion. In the context of solitons, the L
shits invariant gives rise to a nonlinear coordinate dep
dence of the soliton phase~in optics it is called a chirp!.

It is shown below that only one-dimensional solitons a
stable in the soft transition regime. Two- and thre
dimensional solitons are subject to modulation instabil
For hard transitions this same instability also occurs for tw
and three-dimensional solitons.

Using integral estimates of the Sobolev type in th
multiplicative variant~Galiardo–Neirenberg inequalities! it
is shown that only one-dimensional solitons with weak
traction are stable in the Lyapunov sense. For these solit
for a fixed number of particles~intensity!, the Hamiltonian is
bounded from below and, correspondingly, the solito
themselves realize its minimum, which by virtue
Lyapunov’s theorem implies their stability. It should b
noted that the existence of stable localized structures — s
tons — due to a relatively weak four-wave interacti
against the background of strong attraction (;ucu6), which
leads to collapse~see, for example, Ref. 11!, is related to the
phenomenon of weak localization.12

Solitons with a finite discontinuity in amplitude at th
transition point are strictly unstable with respect to sm
perturbation, where there is no contribution from the Lifsh
invariant. The stability criterion for these solutions has t
form of the Vakhitov–Kolokolov criterion13 for the NLSE:

]Ns /]l2.0, ~1.2!

whereNs is the number of particles in the soliton solutio
and«52l2,0 is the energy of the bound state — a soliton.
For a positive derivative, i.e., when the addition of a sin
particle decreases the energy«, the soliton is stable. In the
opposite case, where level expulsion occurs asN increases,
the soliton is unstable. When the contribution from the L
shits invariant is nonzero, the instability criterion~1.2! for
.
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solitons with weak repulsion is only a necessary criterio
However, solutions of this type are unstable with respec
finite perturbations.

The criterion~1.2! makes solitons with weak attractio
stable in the entire range ofl2. This is in complete agree
ment with the Lyapunov stability analysis.

This paper is organized as follows. The nonstation
generalized nonlinear Schrodinger equation is derived
Sec. 2. Here the effect of the spatial dimension on soli
stability in the soft excitation regime is discussed. Spec
cally, it is shown that stable solitons can exist only in t
one-dimensional case. For this reason, in what follows
shall focus on only one-dimensional solitons. In Sec. 3
exact analytic expressions for a one-dimensional soliton
lution with an amplitude jump at the transition point a
found. The next section is devoted to the Lyapunov stabi
of solitons. Using exact integral estimates, it is establish
that the Hamiltonian has a lower limit only for solitons wit
weak attraction (Tv9,0). A soliton realizes the minimum
of H and is Lyapunov-stable, i.e., not only with respect
small disturbances but also with respect to finite dist
bances. In this case this criterion can, and must, be viewe
an energy principle. Specifically, hence it is easy to see
merging of solitons is energetically favorable~note that
merging is impossible for the integrable NLSE!. As a rule,
this process will be accompanied by radiation~see Ref. 14!,
since all the conservation laws can be satisfied only for v
exceptional dispersion dependences of the energy of the
tons on the momentum and number of particles.

The question of linear stability is investigated in Sec.
The Hamiltonian approach is also very helpful here —
greatly simplifies the entire derivation of the analog of t
Vakhitov–Kolokolov criterion.

The final section is devoted to an application to optic
solitons in optical fibers. Specifically, it is shown that th
striction mechanism can decrease the four-wave matrix
ment, due to the Kerr effect, and in principle can change
sign.

2. BASIC EQUATIONS

Let us consider a nonlinear medium where waves
propagate. We shall assume that the medium is purely c
servative, and its nonlinear oscillations can be described
the Hamiltonian

H5E vkuaku2dk1H int , ~2.1!

wherevk is the dispersion law of low-amplitude waves,ak

are the amplitudes of the waves, and the HamiltonianH int

describes the nonlinear interaction of the waves.
The equations of motion of the medium can be written

terms of the amplitudesak in the standard manner

]ak

]t
1 ivkak52 i

dH int

dak*
, ~2.2!

so that in the absence of an interaction the system consis
a set of noninteracting oscillators~waves!:
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ak~ t !5ak~0!e2 ivkt.

The equation~2.2! describes dynamics in thek represen-
tation. The inverse Fourier transform

c~x,t !5
1

~2p!d/2E ak~ t !eik–rdk ~2.3!

must be performed to return to thex representation.
Ordinarily, the functionc(x,t) is related with the char-

acteristics of the medium~fluctuations of the density an
velocity of the medium, electric and magnetic fields, and
on! by linear transformation~see, for example, Ref. 8!. It is
important that ifc(x,t) is a periodic function of the coordi
nates, then its spectrumak(t) consists of a set ofd functions.
For localized distributionsc(x,t) ˜0 as uxu˜`, the Fou-
rier amplitudeak(t), being a localized function ofk, does
not containd-function singularities.

Let us now consider the solution of Eq.~2.2! in the form
of a soliton propagating with constant velocityv:

c~x,t !5c~x2vt !.

In this case the entire dependence ofak on the timet is
contained in the oscillating exponent:

ak~ t !5cke
2 ik–vt,

where by virtue of Eq.~2.2! the amplitudeak will satisfy the
equation

~vk2k–v!k52
]H

]ck*
[ f k . ~2.4!

The differencevk2k–v appearing in this equation will be
positive for allk if the soliton velocity is less than the min
mum phase velocity

uvu,min~vk /k!. ~2.5!

Conversely, the difference will be negative for allk if the
soliton velocity is greater than the maximum phase veloc

uvu.max~vk /k!. ~2.6!

We shall show that a soliton solution is possible if the co
dition ~2.5! @or ~2.6!# is satisfied. Let us assume the oppos
to be true — let the condition~2.5! be satisfied, i.e., the
equation

vk5k–v ~2.7!

possesses a solution. For simplicity, we shall assume th
is unique:k5k0 . Then, sincexd(x)50, the homogeneou
linear equation

~vk2k–v!Ck50

possesses a nontrivial solution in the form of a monoch
matic wave

Ck5Ad~k2k0!.

In this case Eq.~2.4! admits ~in accordance with the Fred
holm alternative! the representation

ck5Ad~k2k0!1
f k2 f k0

vk2k–v
. ~2.8!
o

:

-

it

-

This equation, in contrast to Eq.~2.4!, contains a free param
eter — the complex amplitudeA. It can be solved, for ex-
ample, by iterations, takingAd(k2k0) as the zeroth term. It
is important that as a result of iteration harmonics which
multiples ofk5k0 will appear in the solution because of th
nonlinearity. The solution so obtained will consist of a co
lection of d functions. Correspondingly, in thex representa-
tion the solution will be a periodic function of the coord
nates, i.e., it will be nonlocalized. Hence follows the fir
selection rule for solitons: The differencevk2k–v must be
sign-definite, which is equivalent to the requirements~2.5! or
~2.6! of the absence of Cherenkov radiation.

In this entire scheme, however, there is an import
exception. Having represented Eq.~2.4! in the form~2.8!, we
have actually assumed that the singularity in the express

f k

vk2k–v
~2.9!

is nonremovable. This may not be the case — the singula
in the denominator in Eq.~2.9! could cancel with the nu-
merator, i.e., it could be removable.5 For example, this hap-
pens for the classic soliton of the KdV equation, for equ
tions which are generalizations of the KdV equation,15 for a
combination of the one-dimensional NLSE and the MKd
equations5,16 generated by the same Zakharov–Sha
operator,17 and so on. In all of these cases cancellation
curs as a result of thek dependence of the matrix element
However, even in this case, after the resonance~2.7! is re-
moved, the selection rule for solitons remains the same
the part remaining in the denominator must be sign-defin

In what follows the singularities in Eq.~2.9! will be
assumed nonremovable in the forbidden region, and the
havior of the soliton solution as the soliton velocity a
proaches the critical value will be studied. For definiteness
will be assumed that the planev5k–v is tangent to the dis-
persion surfacev5vk from below, i.e., the criterion~2.5!
holds. Let tangency occur at the pointk5k0 . Then, instead
of Eq. ~2.8!, in the allowed region

ck5
f k

vk2k–v
.

As the velocityv approaches the critical valuevcr , the
denominator in this expression becomes small near the p
of tangency, so thatck possesses a sharp peak at this poi

ck5F1

2
vabkakb1k0~vcr2v !G21

f k . ~2.10!

Here vab5]2v/]ka]kb is a symmetric, positive-definite
tensor of the second derivatives, evaluated atk5k0 , andk
5k2k0 .

It is evident from Eq.~2.10! that asv approaches the
critical velocity the width of the peak narrows as}Avcr2v,
and the distribution corresponding to the main peakk5k0

approaches a monochromatic wave. On account of the n
linearity the spectrum contains harmonics which are m
tiples of k5k0 . If it is assumed that the amplitude of th
soliton vanishes smoothly asv˜vcr ~which would corre-
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spond to a second-order phase transition!, then the solution
c(x) ~or, equivalently,ck) can be sought as an expansion
terms of harmonics:

c~x8!5 (
h52`

`

cn~X!eihk0•x8, x85x2vt. ~2.11!

Here the small parameter

l5A12v/vcr ~2.12!

and the ‘‘slow’’ coordinateX5lx8 are formally introduced,
so thatcn(X) is the amplitude of the envelope ofnth har-
monic. The assumption that the soliton amplitude vanis
continuously atv5vcr means that the leading term of th
series in Eq.~2.11! corresponds to the first harmonic, and
other harmonics are small in the parameterl. This is the
condition under which the nonlinear Schro¨dinger equation is
derived~see, for example, Refs. 5, 18, and 19!. In the case at
hand, in leading order inl we arrive at the stationary NLSE
~compare with Ref. 5!

2k0vcrl
2c11

1

2
vab

]2c1

]Xa]Xb
1Buc1u2c150, ~2.13!

whereB is related with the matrix elementT̃k0k1k2k3
of the

four-wave interaction as

B52~2p!dT̃k0k0k0k0
. ~2.14!

In this approximation the leading term in the interacti
Hamiltonian has the form

H int5
T̃k0k0k0k0

2 E ck* ck1
* ck2

ck3
dk1k12k22k3

dkdk1dk2dk3

52
B

2E uc1u4dx, ~2.15!

and the overtilda signifies that renormalization of the ver
by the three-wave interaction is taken into account in
matrix element — in the case at hand the interaction with
zeroth and second harmonics. As we have already no
vab in Eq. ~2.13! is a symmetric positive-definite tensor. F
this reason, performing a rotation to its principal axes a
carrying out the corresponding extensions along each a
Eq. ~2.15! can be put into the standard form

2l2c1Dc2mucu2c50, ~2.16!

wherem5sign(T̃vaa).
Hence it follows, in the first place, that solitons~focus-

ing nonlinearity! are possible only ifm is negative~the prod-
uct T̃vaa is negative! and, in the second place, that the a
plitude of the solitons is proportional to

l5A12v/vcr,

i.e., the amplitude vanishes according to a square-root
the size of the soliton increasing as the velocity approac
the critical value inversely as this factor.

The number of particles~or intensity! in a soliton solu-
tion as a function ofl has the form
s

l

x
e
e
d,

d
is,

-

w,
es

N5E ucu2dx5l22dE ug~j!u2dj, ~2.17!

whered is the dimension of the space andg(j) satisfies the
equation

2g1Dg1ugu2g50.

In the one-dimensional caseg5A2 sechj and, correspond-
ingly, N54l. In the two-dimensional caseN is independent
of l on the entire family of solitons, while in the three
dimensional caseN decreases with increasingl. The depen-
dence ofN on l2 is determining from the standpoint of sol
ton stability. It is obvious that the most dangero
disturbances will be those having wave numbers close
k5k0 moving together with the soliton, i.e., modulation-typ
disturbances. To include the time dependence in the a
aged equations the amplitudescn in the expansion~2.11!
must be assumed to depend not only on the ‘‘slow’’ coor
nateX but also on the slow timeT5l2t. Then a multiscale
expansion gives the nonstationary analog of the NLSE

ic t2l2c1Dc2mucu2c50 ~2.18!

instead of the stationary NLSE~2.16!. The soliton stability
problem for this equation has been well studied~see, for
example, Refs. 5 and 20!. We shall recall the basic assump
tions.

The equation~2.18! as an equation for envelopes inher
the canonical Hamiltonian form~2.2!

i
]c

]t
5

dH̃

dc*
, ~2.19!

where the Hamiltonian

H5l2N1E ~ u¹cu22ucu4!dr ~m521! ~2.20!

arises as a result of averaging the initial Hamiltonian. T
equation~2.18! preserves, besidesH, the total numberN of
particles~adiabatic invariant!, so that solitons are stationar
points of the energy functionalE5H2l2N for a fixed num-
ber of particles:

d~E1l2N!50.

Hence it can be shown following Ref. 20 that a solito
realizes the minimum energy only in the one-dimensio
case, while ford>2 solitons are a hyperbolic point. Thi
means that solitons are stable only in the one-dimensio
case, while in the two-dimensional~critical! and three-
dimensional cases solitons are unstable and can be co
ered as separatrix solutions separating collapsing solut
from diffracting solutions.21

This is probably the simplest method for explaining t
well-known empirical fact that solitons, as a rule, exist on
in one-dimensional systems. For multidimensional syste
stable solitons are rare and can appear as a result of
topological constraints or a mechanism that removes C
enkov singularities~which is discussed in the present pape!.
The latter, as is easy to understood, is due to the existenc
a certain class of symmetry.
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In the present work we shall focus our attention main
on solitons arising in the hard excitation regime, which
observed when the coefficientm in Eq. ~2.16! is positive. In
this case Eq.~2.16! no longer possesses stationary localiz
~vanishing at infinity! solutions. In order for them to exist i
is necessary to take account of the next higher-order term
the expansion of the Hamiltonian relative to the parame
Dk/k0 , whereDk is the width of the main peak. If the jum
in the soliton amplitude atv5vcr is large~of the order of 1!,
then the entire series must used and it is no longer possib
count on a systematic theory based on an expansion o
Hamiltonian. Only if the matrix elementT̃k0k0k0k0

5T̃0 is
small, i.e., there is an additional smallness compared with
supercriticality~and as a result the jump is also small!, it is
sufficient in this case to retain several of the next terms in
expansion. We shall study only one-dimensional solito
since, as we have seen above, multidimensional solitons
unstable for a soft transition. This same tendency also
mains in hard regimes. It is easy to see that in this situa
two terms make the main contribution to the interacti
Hamiltonian. The first term is a correction to the local fou
wave Hamiltonian2B/2* ucu4dx. It arises because a term
linear ink i5ki2k0 is retained in the expansion of the matr
elementT̃k1k2k3k4

T̃k1k2k3k4
5T̃01

]T̃

]k1
~k11k2!1

]T̃*

]k1
~k31k4!

5T̃01ReS ]T̃

]k1
D ~k11k21k31k4!.

Here

]T̃

]k1
[

]T̃k1k2k3k4

]k1
U

ki5k0

.

As a result, the Hamiltonian of the four-wave interacti
in the envelope approximation can be written in thex repre-
sentation as

H (4)5pE H T̃0ucu412i ReS ]T̃

]k1
D ~cx* c2cxc* !ucu2J dx.

~2.21!

The expressioni (cx* c2cxc* ) in this integral is well
known in the theory of phase transitions~see Ref. 10! — it is
the so-called Lifshits invariant.

The second term — local inc — is a six-wave interac-
tion

H (6)52CE ucu6dx. ~2.22!

As will be evident from what follows, the interactio
constantC can be both negative and positive — the com
nation of both contributions~2.21! and~2.22! will be impor-
tant.

The total Hamiltonian in dimensionless variables w
depend on three constantsm, b, andC
d

in
r

to
he

e

e
,
re

e-
n

-

H5l2N1E F ucxu21
m

2
ucu4

1 ib~cx* c2cxc* !ucu22Cucu6Gdx. ~2.23!

The constantm is assumed to be small, and the constantsb
andC do not contain any additional smallness.

The equations of motion forc that correspond to this
Hamiltonian can be written according to Eq.~2.19! as

ic t2l2c1cxx2mucu2c13Cucu4c14ibucu2cx50.
~2.24!

Besides the energyE5H2l2N and the number of particles
this equation also conserves the total momentum

P5
i

2E ~cx* c2cxc* !dx.

3. SOLITON SOLUTIONS

The stationary~independent oft) soliton solutions of Eq.
~2.24! will be determined from the following ordinary differ
ential equation:1!

2l2c1cxx2mucu2c13Cucu4c14ibucu2cx50.
~3.1!

This equation can be integrated easily, if the amplitu
r 5ucu and phasew5argc are introduced instead ofc:
c5reiw. Next, substitutingc in Eq. ~3.1! and separating rea
and imaginary parts we obtain for the imaginary part t
equation

wx52br 2. ~3.2!

After eliminating the phase, the equation forr reduces to
Newton’s equation

2r xx52]U/]r ~3.3!

with the potential

U52l2r 22
m

2
r 41C1r 6,

where the interaction constantC is renormalized asC15C
1b2. Then Eqs.~3.2! and ~3.3! can be integrated using th
energy integral:

r 25
4l2

A16l2C11m2 cosh~2lx!2m
, ~3.4!

w52
b2

AC1

tan21FA16l2C11m2 e2lx2m

4lAC1
G . ~3.5!

This soliton-type solution exists only ifC1.0.2! It is inter-
esting to note that the renormalization of the interaction c
stantC is due to theb term in the Hamiltonian. This can b
seen directly from Eq.~2.23!, rewriting H in terms of the
amplitude and phase as

H5l2N1E F r x
21r 2~wx1br 2!21

m

2
r 42~C1b2!r 6Gdx.

~3.6!
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It is also easy to see that the soliton solution~3.4! is a sta-
tionary point ofH. Indeed, the variation ofH with respect to
w leads to Eq.~3.2!, and Newton’s equation~3.3! arises as a
result of varyingH with respect tor.

The solutions~3.4! and ~3.5! with l50 andm.0 de-
generate into a soliton with power-law decay9

r lim
2 5

2m

m2x214C1

,

w lim52
b

AC1

tan21
mx

2Ab21C
. ~3.7!

Thus, as the velocity passes throughvcr , the soliton un-
dergoes a jump. The amplitude of the soliton has its ma
mum value at the jump

A25m/2C1 .

This value of the jump is easily found from Eq.~3.6!.
As l increases, the amplitude of the soliton grows a

cording to a square-root law, and the soliton size decrea
asl21.

An important feature of the solution~3.4! is the exis-
tence of a nonlinear coordinate dependence~called a chirp in
optics! of the phasew. The maximum change in phase~from
2` to 1` in x)

Dw52
bp

Ab21C

is reached at the jump forv5vcr . It can be both greater an
less thanp, depending on the sign of the constantC.

The solution ~3.4! can also be used for negative b
small values ofm. In this case, as should be, the solito
solution softly splits off zero at the pointv5vcr . Its ampli-
tude then grows for largel exactly in the same manner a
for m.0.

The integral characteristics of both solutions~with
m.0 and m,0) are different. Thus, the total number
particles in the soliton solution form.0,

N5
2

AC1
Fp

2
2tan21H A16l2C11m22m

4lAC1
J G ,

reaches its maximum valueNcr5p/AC1 at l50 and de-
creases smoothly toNcr/2 asl˜` ~see Fig. 1!. For negative
m the number of particlesN for small l increases asl and
then asymptotically approachesN5Ncr/2 from below. It is

FIG. 1. N versusl for soliton solutions: The top curve corresponds to we
repulsion and the bottom curve corresponds to weak attraction.
i-

-
es

important that the derivatives]N/]l has different signs: For
solitons with a jump this derivative is negative, while fo
solitons withm,0 it is positive.

4. LYAPUNOV STABILITY OF SOLITONS

As noted above, both types of solitons~with m.0 and
m,0) are stationary points of energyE with a fixed number
of particles,

d~E1l2N!5dH50, ~4.1!

where the energy in accordance with Eq.~3.6! is given by the
expression

E5E F r x
21

m

2
r 42~C1b2!r 61r 2~wx1br 2!2Gdx.

~4.2!

As is well known~see, for example, Ref. 20!, in the case
of Hamiltonian systems a stationary point will be Lyapuno
stable if it yields a minimum or maximum of any integral o
motion, for example, the energy.

In the case at hand, if we find conditions for which th
energy will have a lower limit with a fixed number of pa
ticles ~it is obvious thatE unbounded from above!, the sta-
tionary point corresponding to the minimum ofE will be
stable. Since the solution of the variational problem~4.1! is
unique~up to a constant phase factor! for fixed l2, which is
equivalent to fixingN, the soliton solution~3.4! will by
Lyapunov-stable in this case.

We shall now consider scale transformations of the s
ton solution

cs~x!˜
1

Al
csS x

l D ,

that preserve the number of particles. Under such a trans
mation the energyE will be a function of the scaling param
eter l:

E5~ I 12C1I 2!
1

l 2
1

mI 3

2l
,

where

I 15E r x
2dx, I 25E r 6dx, I 35E r 4dx.

~We note that the last integral in the expression for the
ergy ~4.2! is identically zero at the soliton solution.! By vir-
tue of Eq.~4.1!

]E

] l U
l 51

50 or I 12C1I 252
m

4
I 3 .

Hence it follows, in the first place, that the soliton ener
likewise depends strongly on the constantm:

E5
m

4
I 3 ~ I 3.0!.
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This quantity is positive for solitons with weak repulsio
(m.0) and negative for solitons with weak attractio
(m,0). In the second place, form.0 the energyE as a
function of the scaling parameterl,

E52
m

4
I 3S 1

l 2
2

2

l D ,

is unbounded asl˜0, and for weak attraction it possesses
minimum corresponding to the soliton solution.

We shall now show that the energyE for m,0 has a
lower limit for all deformations that leaveN unchanged.

Let us consider the integral*r 6dx5I 2 . This integral can
be estimated using the Sobolev–Galiardo–Nierenberg
equality in terms of the integralI 15*r x

2dx and the number
of the particlesN:

E r 6dx<MN2E r x
2dx. ~4.3!

This inequality can be improved by seeking the small
value of the constantM. For this, following Ref. 5, we con-
sider the functional

M @c#5
I 2

I 1N2
.

Its minimum value determines the best constant. To find it
stationary points need to be considered and the point giv
a minimum value of the functionalM @c# should be found. It
is easy to see that this variational problem,dM50, is
equivalent to finding the soliton solutions for thec6 model:

2c1cxx13c550.

This equation has a unique solutionc51/Acosh 2x, whence
the best constant is simply found as

Mbest5~2/p!2.

As a result, the inequality~4.3! can be rewritten as

E r 6dx<S N

N1
D 2E r x

2dx, ~4.4!

whereN15p/2.
Next, substituting this inequality into Eq.~4.2! we obtain

for the energyE the estimate

E>F12C1S N

N1
D 2G E r x

2dx

1E r 2~wx1br 2!2dx1
m

2E r 4dx. ~4.5!

Hence form.0 follows that the energyE is bounded by zero
if the coefficient in front of the integralI 1 is positive. This
gives an upper bound on the number of particles

N,
p

2AC1b2
5

Ncr

2
. ~4.6!

We recall thatNcr/2 is the lower bound for the soliton
family ~3.4! with m.0. Therefore for such solitons it is im
possible to draw any conclusion about their stability. Ho
n-

t

ll
g

-

ever, for soliton solutions withm,0 the inequality~4.6!
holds and, as will be seen from the estimates made below
is sufficient to prove that such solutions are stable.

Thus, let m,0 in Eq. ~4.5!. According to Ref. 5, we
have*r 4dx

E r 4dx<
1

A3
S E r x

2dxD 1/2

N3/2.

Next, substituting this estimate into Eq.~4.5! we obtain

E>F12C1S N

N1
D 2G I 12

umu

2A3
N3/2I 1

1/21E r 2~wx1br 2!2dx

>2
umu2N3

8A3
F12C1S N

N1
D 2G .

The latter inequality holds only if the criterion~4.6! is
satisfied. This means that the energyE has a lower limit if

N,Ncr/2,

which is compatible with the entire region of existence
solitons with m,0. It should be noted that form50 the
NLSE ~2.23! is, as is said, a critical equation. For this no
linearity (;ucu6 in H) collapse is possible if the energyE is
negative. IfN,Ncr/2, dispersion completely smears out th
solution. However, a small negative correction to the Ham
tonian fundamentally changes the situation. A relative
weak four-wave interaction against the background of stro
attraction (;ucu6), leading to collapse~see, for example,
Ref. 11!, is responsible for the existence of stable coup
stationary states — solitons. Weak localization appears.12

5. LINEAR STABILITY OF SOLITONS

The preceding analysis has answered the question of
bility only for solitons with weak attraction. From this an
swer it is impossible to draw any conclusion about the s
bility of solitons with weak repulsion (m.0). In this section
we shall consider this question, investigating the linear pr
lem of stability.

We shall seek a solution of Eq.~2.23! in the form

c5~r 1a!ei (f1a)'~r 1a1 ir a!eif, ~5.1!

wherer andf are the soliton solution~3.4! and~3.5!, anda
anda are small deviations of the amplitude and phase of
soliton, respectively.

Linearizing Eq.~2.3! it is easily found that the dynamic
of the perturbationsa and a is determined by the Hamil-
tonian equations

2r
]a

]t
5

dH̃

da
, 2r

]a

]t
52

dH̃

da
. ~5.2!

Here H̃5d2H is the second variation of the Hamiltonia
~3.4!

H̃5^auLua&1E r 2~ax12bra !2dx, ~5.3!

where the~Schrödinger! operatorL is given by the expres-
sion
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L52
]2

]x2
1l212mr 2215C1r 4. ~5.4!

If the quadratic formd2H is sign-definite, then the soliton
solution will be stable. We note that the second term inH̃
~5.3! is positive. Then the positiveness of the entire quadr
form is determined by the average value of the operatorL:

^auLua&.

In this expression the average is taken not with respec
arbitrary statesua& but only with respect to those states th
are orthogonal tour &:

^r ua&50. ~5.5!

This orthogonality condition is a consequence of the con
vation of the number of particles and is one of the solvabi
conditions for the linear system~5.2!. In this case, finding the
stability criterion for solitons~2.23! is identical to the
Vakhitov–Kolokolov derivation13 ~see also Ref. 20! for the
NLSE without theb term. To determine the sign it is nece
sary to find the spectrum of the operatorL

Lj5Ej1Cr. ~5.6!

Here C is an indefinite Lagrangian multiplier, which is de
termined from the solvability condition~5.5!.

Next, expandingj in terms of the eigenfunctions of th
operatorL (Lcn5Encn) and using the solvability condition
~5.5!, it is easy to obtain the dispersion relation

f ~E![(
n

8
^r ucn&^cnur &

En2E
50. ~5.7!

Here the prime on the sum means that the term withE150
is omitted from the sum because the~shear! eigenmode
c15r x (Lr x50) is orthogonal tor. The functionr x pos-
sesses a single zero, so that belowE1 50 the operatorL
possesses only one level corresponding to the ground s

Let us now consider the functionf (E) between the
ground levelE0,0 and the first positive levelE2 . In the
entire range this function grows monotonically from2` at
E0 to 1` at E2 . Therefore if f (0).0, the spectrum of the
operatorL has a negative eigenvalue and therefore the a
age value of the operatorL can be negative. Forf (0),0 the
average ofL is always positive.

To find the sign off (0), it is easy to see that

f ~0!5(
n

8
^r ucn&^cnur &

En
[^r uL21ur &.

Next, differentiating Eq.~3.3! with respect tol2 we obtain

L
]r

]l2
52r or

]r

]l2
52L21r .

Substituting this relation gives13

f ~0!52
1

2

]N

]l2
. ~5.8!

Therefore if]N/]l2.0, the quadratic form will be positive
definite. This situation occurs for solitons with weak attra
ic

to
t

r-

te.

r-

-

tion, and as a result they are stable. This conclusion is
complete agreement with the results of the preceding sec

For solitons with weak repulsion (m.0) the criterion
~5.8! gives a sign-indefiniteness of the quadratic formH̃.
This is a necessary condition for instability. This criterion
also sufficiently only in the caseb50, where the average
value ofL in Eq. ~5.3! can be interpreted as a potential e
ergy, and the integral*r 2ax

2dx can be interpreted as th
kinetic energy.

Certain arguments can be given in support of the f
that a soliton with weak repulsion is nonetheless unstable
bÞ0 also. The average value ofL can be made negative b
taking fora the eigenfunctionj with E,0. For a given value
of j it is always possible to find a phasea such that the
integral

E r 2~ax12bra !2dx

vanishes. Thus the HamiltonianH̃ can be made negative
which can be regarded physically as sufficient for instabili
However, strictly speaking, this still requires a definite pro
which the present author still cannot provide. An exam
that refutes this argument is well known. The Hamiltoni
H52p2/22q2/2 gives the equation of motion for the usu
stable oscillator even thoughH is negative. However, it can
be asserted absolutely that instability will remain for sm
values ofb. Whether or not a threshold with respect tob
exists is still unknown, but it is likely. To shed light on th
question we turn to the linear equations~5.2!, rewriting them
in the new variables

p5ra and gx5ax12bra.

In these variables the equations of motion have the form

]g

]t
14br 2

]g

]x
52

1

r
L

1

r
p, ~5.9!

]p

]t
52

]

]x
r 2

]

]x
g. ~5.10!

For b50 this reduces to an equation for the perturbat
amplitudea

]2

]t2
a52L0La ~5.11!

with

L052
1

r

]

]x
r 2

]

]x S 1

r D ,

whence the criterion~5.8! was first derived~compare with
Refs. 13 and 20!. It is important that the operatorL0 in Eq.
~5.11! is nonnegative~sinceL0r 50 and the functionr itself
has no zeros!. Therefore since the operatorL has a negative
eigenvalue, the right-hand side of Eq.~5.11! gives for a soli-
ton with weak repulsion on the whole a negative ‘‘eigenv
ue,’’ making the soliton absolutely unstable.
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For bÞ0 an additional convective-type term appeared
Eq. ~5.9!. This term can change the character of the insta
ity itself. Whether or not convection can stabilize the ins
bility is still unclear.

But despite the uncertainty with the linear stability,
should be noted that a soliton with weak repulsion is alw
unstable with respect to finite disturbances. This follow
specifically, from the fact that under scaling transformatio

cs˜
1

z1/2
csS x

z D ,

leaving the number of particlesN unchanged the energ
E5H2l2N as a function of the scaling parameterz with
N.Ncr/2 has no lower bound asz˜0. The latter, as is wel
known ~see, for example, the reviews Refs. 18 and 22!, is a
criterion for wave collapse.

6. CONCLUDING REMARKS

In conclusion, we would like to discuss the possibility
the occurrence of the hard regime of soliton excitation
optics. Since in three- and two-dimensional media solito
are unstable near the threshold for modulation instability,
only possibility of realizing this regime is an optical fiber.

As is well known ~see, for example, Refs. 23 and 24!,
the Kerr constant is positive for most media, including gla
For this reason, there are two possibilities for changing
character of the interaction~from attraction to repulsion!.

The first possibility is due to a decrease in the mat
element itself as a result of the three-wave interaction.
glasses, the symmetry precludes an intrinsic quadratic n
linearity and the corresponding nonlinear susceptibility t
sor x i jk[0.25 Therefore striction — the interaction of ligh
with sound — remains the only process. The equations
obtained in Ref. 26 can be used to assess the role of
mechanism:

ic t5
dH

dc*
, nt5

dH

dF
, F t52

dH

dn
, ~6.1!

wherec is the ~dimensionless! envelope of the electromag
netic field,n are low-frequency density fluctuations, andF is
the hydrodynamic potential. Here the HamiltonianH consists
of the Hamiltonian of electromagnetic waves

H5E S 2 ivgrc* cx1
v9

2
ucxu22ucu4Ddx, ~6.2!

the Hamiltonian of acoustic oscillations

H5
1

2E ~cs
2n21Fx

2!dx ~6.3!

and the sound–light interaction Hamiltonian

H5E gnucu2dx. ~6.4!

In these expressionsvgr is the group velocity of high-
frequency electromagnetic waves,cs is the velocity of sound,
l-
-

s
,
s

s
e

.
e

n
n-
-

st
is

andg is the interaction constant of HF and LF waves and
proportional to the density derivative]«/]n0 of the permit-
tivity. The Kerr constant is normalized to 1.

The equations of motion, following from this Hamil
tonian, for the HF and LF waves are

i ~c t1vgrcx!1
1

2
v9cxx1ucu2c5gnc,

ntt2cs
2nxx5gucuxx

2 .

In this system the difference between the group velocity
an electromagnetic wave, which is of the order of the vel
ity of light, and the sound velocitycs is important:
vgr@cs . The latter means that an electromagnetic pulse
the density fluctuations induced by it will move mainly wit
the group velocity. For this reason, we have forn the local
intensity dependence

n5
g2

vgr
2

ucu2.

It is important to underscore that the ponderomotive fo
leads not to the formation of a dip in the density but rather
an increase in density. As a result, the four-wave matrix
ement is renormalized as

T~[21!˜211
g2

vgr
2

,

decreasing in value.
Therefore the striction mechanism can weaken the fo

wave matrix element, due to the Kerr effect, and in princip
change its sign.

The second possibility is a transition from the region
anomalous dispersion into the region of normal dispersi
so that the sign of the dispersionv9 changes. The secon
variant is most easily implemented experimentally, but
four-wave matrix elementT, as a rule, does not change sig
and it does not have a small constantm. For this reason, both
variants require glasses doped with definite additives
increase the striction constantg. The glasses chosen mu
have maximum gains for Mandel’shtam–Brillouin scatte
ing. Such optical fibers would be interesting not only fro
the standpoint of observing the solitons investigated in
present paper, but also for studying one-dimensional w
collapse.
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1!We recall that by construction these solitons move with a constant ve

ity. The equation~2.24! itself, however, contains a larger class of localize
solutions. However, these solutions are all nonstationary — their phase
group velocities are different.

2!Here we do not analyze solutions withC1,0 andm,0.
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Dynamics of large-amplitude solitons
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The interaction and generation of solitons in nonlinear integrable systems which allow the
existence of a soliton of limiting amplitude are considered. The integrable system considered is
the Gardner equation, which includes the Korteweg–de Vries equation~for quadratic
nonlinearity! and the modified Korteweg–de Vries equation~for cubic nonlinearity! as special
cases. A two-soliton solution of the Gardner equation is derived, and a criterion, which
distinguishes between different scenarios for the interaction of two solitons, is determined. The
evolution of an initial pulsed disturbance is considered. It is shown, in particular, that
solitons of opposite polarity appear during such evolution on the crest of a limiting soliton.
© 1999 American Institute of Physics.@S1063-7761~99!02307-0#
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1. INTRODUCTION

The Korteweg–de Vries equation, which was discove
in 1895 for waves in water, is the most popular model
describing nonlinear waves in a weakly dispersive mediu
It essentially served as the first testing grounds for prov
the particle-like properties of a nonlinear wave field in t
form of stable solitons and the integrability of the evoluti
problem using a method based on the inverse problem
scattering theory, which provided proof of the exclusive ro
of solitons in the asymptotic representation of a wave field
large times. The Korteweg–de Vries equation is obtained
first-order perturbation theory for a small wave amplitu
and weak high-frequency dispersion; therefore, it is ap
cable to the description of diverse wave motions in the oc
and the atmosphere, in plasmas and astrophysics, and in
linear communication lines. It can be represented in the m
general form as

]u

]t
1~c1au!

]u

]x
1b

]3u

]x3
50, ~1!

wherec, a, andb are constants, which are determined by t
specific details of the physical problem. In some cases th
is no quadratic nonlinearity, and then the modifi
Korteweg–de Vries equation is obtained in first-order pert
bation theory:

]u

]t
1~c1a1u2!

]u

]x
1b

]3u

]x3
50. ~2!

In particular, such an equation is obtained for elect
magnetic surface waves in an electric field,1 for waves in
quantum-well films,2 and for internal waves in an ocean wi
definite stratification.3 The modified Korteweg–de Vrie
equation can also be solved exactly by a method based o
inverse problem of scattering theory,4 and solitons and kinks
1731063-7761/99/89(1)/9/$15.00
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~shock-like drops! also determine the asymptotic represen
tion of the wave field here. If the quadratic nonlinearity
nonzero, cubic nonlinearity is obtained in the next order
perturbation theory and can be retained in the equation a
with the ensuing corrections for dispersion, including nonl
ear dispersion~see, for example, Ref. 5!. Equations of this
type have essentially only now begun to be studied.6,7 How-
ever, it is clear from general arguments that within pertur
tion theory the effects associated with small higher-or
corrections should be small and should not lead to fun
mental changes in the form, for example, of solitons~al-
though it is also understood that new features, for exam
inelasticity of the interaction of solitons and their slow d
struction as a result of radiation effects, can also appe!.
Nevertheless, there are situations where the coefficient
the quadratic nonlinearity can be so small that the quadr
and cubic nonlinearities are of the same order of magnitu
and, at the same time, there is no need to take into acc
the next orders with respect to dispersion. The expan
Korteweg–de Vries equation derived here

]u

]t
1~c1au1a1u2!

]u

]x
1b

]3u

]x3
50 ~3!

is called the Gardner equation, and in cases where eithe
the nonlinear coefficients is equal to zero, it gives Eqs.~1!
and ~2!, respectively.

The purpose of this paper is to demonstrate some n
physical effects associated with the generation and inte
tion of large-amplitude solitons, where the quadratic and
bic nonlinearities are of the same order of magnitude.

Apparently, the Gardner equation~3! was first derived
rigorously within the asymptotic theory for long intern
waves in a two-layer fluid with a density jump at th
interface.8,9 The corresponding expressions for the coe
© 1999 American Institute of Physics
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cients in this equation have the form~in the approximation of
a small density jump!

c5Ag
Dr

r

h1h2

h11h2
, b5

ch1h2

6
, a5

3c

2

h12h2

h1h2
,

~4!

a152
3c

8h1
2h2

2 ~h1
21h2

216h1h2!,

whereu is the vertical displacement of the interface,h1 and
h2 are the thicknesses of the upper and lower layers, res
tively, Dr/r is the relative height of the density jump, andg
is the acceleration of gravity. As can be seen from~4!, the
coefficient of the quadratic nonlinearity can change s
when h1;h2 ~and this leads to the interesting features
soliton transformation in the case of a tilted boundary;
Refs. 10–12!, while the coefficient of the cubic nonlinearit
is negative. The formulas for the coefficients in Eq.~3! were
recently generalized to arbitrary density stratification of
fluid,13 and it was shown that the coefficient of the cub
nonlinearity can be of either sign.3 If it is assumed that the
depths of the layers are roughly equal to one another
much smaller than the wavelength, and that the wave am
tude is small compared with the depth, the quadratic
cubic nonlinearities can be considered small and compar
to one another (au/c;a1u2/c!1), as well as to the disper
sion. Since both nonlinearities are then of the same orde~in
traditional disturbance schemes the cubic nonlinearity is
ways smaller than the quadratic analog!, we can refer to
large-amplitude waves in this sense~we note that in the ‘‘ev-
eryday’’ sense such ocean waves can have large amplit
amounting to tens of meters!. In this paper we examine th
case in which the coefficient of the cubic nonlinearity
negative, as in a two-layer fluid (a1,0).

As we know, the single-soliton solution of the Gardn
equation can easily be found in an explicit form:

u~x,t !5
6bG2

a

1

11A11~6a1bG2/a2!cosh@G~x2Vt!#
,

V5c1bG2, ~5!

whereG21 is the effective soliton width. WhenG is small,
the solution~5! describes a Korteweg–de Vries soliton wi
an amplitudeA53bG2/a ~its polarity is specified by the
sign of the coefficient of the quadratic nonlinearity!, and as
G˜a/(6ua1ub)1/2, the soliton acquires a rectangular sha
~Fig. 1! with the limiting amplitude

Alim52a/a1 . ~6!

It is convenient to normalize the wave field to the lim
ing amplitude, as well as to vary the distance and ti
scales:

v~y,t!52
a1

a
u~x,t !, y5A2

a2

6ba1
~x2ct!,

t5bS 2
a2

6ba1
D 3/2

t. ~7!
c-

n
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Then the Gardner equation can be rewritten in the dim
sionless form

]v
]t

16v~12v !
]v
]y

1
]3v

]y3
50, ~8!

and the soliton will have positive polarity with an amplitud
from zero to unity.

It should first be noted that the generalized Miu
transformation9

Q52v1v21vy ~9!

reduces Eq.~8! to the ‘‘classical’’ Korteweg–de Vries equa
tion

Qt26QQy1Qyyy50 ~10!

and thereby proves the integrability of the Gardner equa
by a method based on the inverse problem of scatte
theory9,14 and, therefore, the elastic character of soliton c
lisions. Nevertheless, ‘‘reconstruction’’ of the functio
v(y,t) in terms ofQ(y,t) requires solving the Riccati equa
tion ~9! and cannot be expressed in a simple form. On
other hand, the simple replacement of variables

v51/21w ~11!

reduces the Gardner equation~8! to the modified
Korteweg–de Vries equation relative tow(y,t) and also per-
mits the use of the known exact solutions of this equatio

Here we examine the interaction of solitons and th
appearance from an initial pulsed disturbance. Soliton in
actions and the evolution of the initial perturbation are illu
trated by numerical simulation results.

2. SOLITON INTERACTIONS

2.1. Obtaining multisoliton solutions using Darboux
transformations

Since the Garner equation can be reduced to the m
fied Korteweg–de Vries equation using the replacement~11!,
its N-soliton solution can be sought as the solution of t
modified Korteweg–de Vries equation on a pedestal, as
done in Ref. 15 within a method based on the inverse pr
lem of scattering theory. We use a different method, which
based on Miura and Darboux transformations16 and which is
described in Ref. 17, to obtain a two-soliton solution. T
method can be described as follows.

FIG. 1. Forms of solitons with various amplitudes.
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As we know, the Korteweg–de Vries equation is t
consistency condition for the system of equations~the so-
calledL2A Lax pair!

L̂C5lC,
~12!

ÂC5Ct ,

where

L̂52
]2

]y2
1Q~y,t!, ~13!

Â524
]3

]y3
16Q

]

]y
13

]Q

]y
. ~14!

The first equation in the system~12! is the stationary Schro¨-
dinger equation with the timet appearing as a paramete
The second equation describes the time dependence o
solution. The consistency condition for the system~12!,
which is obtained by eliminatingC and which transforms
the system~12! into the Korteweg–de Vries equation~10!,
has the form

L̂t5@Â,L̂#, ~15!

where@Â,L̂#5ÂL̂2L̂Â is an operator commutator. It is als
known that theL2A pair is covariant with respect to Dar
boux transformations:

Q̃5Q22sy , s5
C1y~y,l1!

C1~y,l1!
,

~16!

C̃~y,l!5S ]

]y
2s DC~y,l!,

whereC(y,l) andC̃(y,l) are general solutions of the sta
tionary Schro¨dinger equation with the potentialsQ(y) and
Q̃(y), respectively, andC1(y,l1) is the particular solution
with the potentialQ(y) and the eigenvaluel5l1. The trans-
formed potentialsQ̃(y,t) are new nontrivial solutions of Eq
~10!. This known procedure makes it possible to obtain m
tisoliton solutions of the Korteweg–de Vries equation.

It was noted in Ref. 17 that if the function

w~y,t!5
Cy~y,t!

C~y,t!
~17!

is included in the treatment and if expressions forQ andQy

are found from the first equation in the system~12! and sub-
stituted into the second equation of the system, the modi
Korteweg–de Vries equation relative tow(y,t) must hold
for consistency of theL2A pair:
the

l-

d

wt26~l1w2!wy1wyyy50. ~18!

This is not difficult to prove. Thus, applying the Darbou
transformations, we find new solutions of the modifi
Korteweg–de Vries equation@and the Gardner equation afte
the replacement~11!#, i.e., the functionsw(y,t), along with
new solutions of the ordinary equation.

The generalized formulas derived by Crum,18 which per-
mit elimination of the intermediate mathematical operatio
are valid for multiple application of a Darboux scheme. F
twofold application they have the form

Q̃̃5Q22
]2

]y2
lnW2~C1 ,C2!,

C̃̃5
W3~C1 ,C2 ,C!

W2~C1 ,C2!
,

where

W25UC1 C2

C18 C28
U, W35UC1 C2 C

C18 C28 C8

C19 C29 C9
U , ~19!

and the derivative of the functions is taken with respect
the variablesy.

2.2. Two-soliton solution of the Gardner equation

In order to obtain the single-soliton solution of the Gar
ner equation on the basis of Darboux transformations,
must select the potential

Q51/4, ~20!

the ‘‘seed’’ function

C15cosh@~G1/2!~y2d12G1
2t!#, ~21!

where

d15~1/G1!tanh21G1 , ~22!

and the general solution

C5exp@2~y2G1
2t!/2# ~23!

@we selectedl50, eliminating the superfluous term in Eq
~18!#.

Then, following formulas~16!, we have

s5
G1

2
tanhFG1

2
~y2d12G1

2t!G ,
Q̃5

1

4
2

G1
2

2cosh2@~G1/2!~y2d12G1
2t!#

, ~24!
w1~y,t!52
1

2
1

G1
2

11cosh@G1~y2d12G1
2t!#1G1sinh@G1~y2d12G1

2t!#
. ~25!
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Next, substituting~25! into ~11! and using~22!, we ob-
tain the single-soliton expression for the dimensionless G
ner equation~8!:

v1~y,t!5
G1

2

11A12G1
2cosh@G1~y2G1

2t!#
. ~26!

The soliton ~26! attains its limiting amplitude asG1

˜1. In this case it is convenient to represent the soli
expression in the form of a combination of a kink and
antikink:

v1~y,t!5
1

2
@ tanhZ12tanhZ2#,

Z65
G1

2
~y2G1

2t6d1!, ~27!

whered1 corresponds to the half-width of the limiting sol
ton.

It is convenient to illustrate the appearance of the pot
tial ~20! in our case using a transformation in the Miura for

Q5w21wy , ~28!

which transforms the solutions of Eq.~18! into solutions of
the Korteweg–de Vries equation. Substituting~17! into ~28!,
we obtain the first equation of the system~12! with l50,
i.e., the consistency condition for theL2A pair in which
w(C) and Q are related by~28! is Eq. ~18! without the
‘‘velocity’’ term. As can easily be seen, the potential~20! is
the level at which the Korteweg–de Vries soliton obtain
from the solution of the Gardner equation after the trans
lly
x

li-
ar

ic
on
o
g

te

he
d-

n

-

r-

mations~11! and ~28! propagates. If we use a Miura tran
formation in the form ~9!, we should chooseQ50 and
l521/4 in the stationary Schro¨dinger equation. This gives
the same result, but is more convenient for finding the te
poral behavior of the solutions from~14!.

To obtain the two-soliton solution of the Gardner equ
tion, we must select a second ‘‘seed’’ solution:

C25sinh@~G2/2!~y2d22G2
2t!#, ~29!

where

d25~1/G2!tanh21G2 . ~30!

The two-soliton solution thus obtained from formula
~19! and ~17! ~see Appendix A! can be written as

v2~y,t!5
1

2
~G2

22G1
2!S 1

G2 cothZ212G1 tanhZ11

2
1

G2 cothZ222G1 tanhZ12
D , ~31!

Zj 65
G j

2
~y2G j

2t6d j !,

where G2.G1.0 are arbitrary parameters, which speci
the widths of the individual solitons at infinite separatio
from one another, andd j are defined in~22! and ~30!. The
two-soliton expression~31! was obtained using Hirota’s
method in Ref. 19 and is presented to describe the interac
of a soliton with a kink introduced in Ref. 1. As in the ca
of a single soliton, the expression~31! can be rewritten in
another form, which ‘‘decouples’’ the solitons:
v2~y,t!5
G2

22G1
2

~G2 cothZ212G1 tanhZ11!~G2 cothZ222G1 tanhZ12!

3S G1
2

11A12G1
2cosh@G1~y2G1

2t!#
2

G2
2

12A12G2
2cosh@G2~y2G2

2t!#
D . ~32!
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Thus, a two-soliton solution has been found analytica
The interaction of two solitons is investigated in the ne
section.

2.3. Interaction of two solitons

As expected, the interaction of two solitons with amp
tudes smaller than the limiting value follows the famili
scenario in the Korteweg–de Vries equation@within ~31!#: if
the difference in amplitudes is large, the larger soliton, wh
has a higher velocity, simply overtakes the smaller solit
forming a single-humped figure at the maximum moment
interaction; if the difference in velocities is small, the trailin
~larger! soliton imparts energy to the leading~smaller! soli-
ton and is slowed, while the leading soliton is accelera
~amplitude exchange takes place between the solitons!. The
case in which one of the solitons~the one which is behind!
has an amplitude close to the limiting value and the ot
.
t

h
,
f

d

r

soliton ~the one which is out in front! has a ‘‘normal’’ am-
plitude is most interesting. Even if the leading soliton
small, the amplitude of the ‘‘combined’’ wave formed durin
the interaction does not exceed the limiting value and a
characteristic of an exchange interaction appears on it.20 The
interaction process for fairly close amplitude values is sho
in Fig. 2 ~the amplitude ratio is 0.7!: the smaller soliton
interacts with the leading edge of the limiting soliton~which
moves faster! and flips over on its apex, moves freely alon
it, and then ‘‘slides’’ down the trailing edge of the limiting
soliton, recovering its original polarity.

The existence of a soliton of negative polarity on t
crest of a limiting soliton can be understood already from
Gardner equation~3!: its solution on the pedestalu5Alim

satisfies the same Eq.~3!, but with the opposite sign for the
quadratic nonlinearity, which leads to the appearance o
soliton of negative polarity. At the same time, as can be s
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FIG. 2. Interaction of a limiting soliton with a large-amplitude soliton~the amplitude ratio is 0.7!: a — dynamics with time; b — at various moments in tim
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from Fig. 2b, the small soliton interacts successively w
each edge of the limiting soliton, each of which can be
terpreted as a kink and an antikink. The interaction o
soliton with a kink~antikink! in its ‘‘pure form’’ accompa-
nied by change in polarity has already been analy
numerically1 for the modified Korteweg–de Vries equatio
to which the Gardner equation can be reduced rigorously
the replacement~11!. Successive collisions, first with a kin
and then with an antikink, should lead to restoration of
original polarity of the soliton, as follows from~31!. Thus,
the dip on diagrams of interacting solitons can be interpre
as a soliton of negative polarity.

The exact two-soliton solution~31! permits finding a cri-
terion which determines the type of interaction realized. D
ing an interaction between solitons there is a moment w
the two-soliton solution becomes symmetric with respec
the coordinate. As follows from the expression~31!, this mo-
ment corresponds to the timet50. In order to determine the
type of soliton interaction, i.e., overtaking or exchange,
must calculate the second derivative of this interaction at
central point (y50). A positive value of the derivative cor
responds to an exchange interaction~the presence of a de
pression!, and a negative value corresponds to overtaki
Performing the calculations, we can see~see Appendix B,
Sec. B.1! that the following condition must be satisfied fo
an overtaking interaction:

A2,
3r 21

3r 212r 2
: ~33!

where r 5A1 /A2 (0,A1,A2,1), andA1 and A2 are the
soliton amplitudes. For small-amplitude solitons the critic
-
a

d

y

e

d

-
n

o

e
e

.

l

ratio is r 51/3, as in the case of the interaction of ‘‘qua
dratic’’ solitons;21 as the amplitude of the larger soliton in
creases, the critical ratio decreases, and the limiting sol
always interacts with another soliton according to an
change scenario~Fig. 3!. Thus, the exchange interactio
dominates for solitons with larger amplitudes.

As in the case of Korteweg–de Vries solitons, the heig
of the central point of the two-soliton solution at th
‘‘saddle’’ point of the interactionv2 (y50, t50), at which
a symmetric figure forms, is equal to the difference betwe
the soliton amplitudesA22A1 ~see Appendix B, Sec. B.2!.
In the case where one of the solitons tends to the limit
soliton (G2˜1), the expression~31! reduces to the first soli-
ton of opposite polarity moving at the level of the limitin

FIG. 3. Overtaking~region 1! and exchange~region 2! interaction of two
solitons on the parameter plane.
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FIG. 4. Destruction of smooth~a! and abrupt~b!
negative pulsed disturbances.
t
e
t

I
in
om
t
n
a
in
ds
g
-

th
te

he
a
.
h
on
e

e

.e
at

t
ng
et
d

th
in

of
e-

le,

l

the

de
ua-
ty
os-
s

ve
cu-
-
on
amplitude~Appendix B, Sec. B.4!. It follows from an analy-
sis of the dependences of the values of the highest poin
the symmetric distribution on the amplitude of the larg
soliton for various values ofr that the solution does no
exceed the limiting amplitude and thatr 51/3 must be cho-
sen to minimize the symmetric wave field.

Solitons acquire a phase shift during an interaction.
the case where one of the solitons is close to the limit
soliton, the appearance of a phase shift clearly follows fr
the conservation of mass in the Gardner equation: when
smaller soliton reaches the peak of the limiting soliton a
its polarity reverses, the deficiency appearing in the m
integral is compensated by a forward shift of the interact
edge of the limiting soliton. As the smaller soliton descen
the mass excess is offset by forward shift of the trailing ed
of the limiting soliton. To find its magnitude we must exam
ine the soliton first before the interaction and then after
interaction. The phase shift appearing during a soliton in
action can be found from Eq.~31! ~as is seen in Fig. 2a!:

Dy1,256
2

G1,2
ln

G21G1

G22G1
~34!

~see Appendix B, Sec. B.3!. In Ref. 15 the phase shift~34!
was found from the asymptotic solution, and in Ref. 1 t
phase shift for the interaction of the small soliton with
shock wave was found from the integrals of the equation

Thus, the criterion which distinguishes between t
types of interaction is the critical ratio between the solit
amplitudes, which is a function of the amplitude of the larg
soliton. If this parameter does not exceed the critical valu~a
large difference between the amplitudes!, the interaction be-
tween the solitons occurs without the formation of a dip, i
overtaking occurs. If, conversely, the parameter is gre
than the critical value~similar amplitudes!, a dip appears
against the background of a large wave at the momen
collision, i.e., only an exchange interaction occurs. Excha
between a small soliton and a large soliton can be interpr
as successive interactions of the small soliton with each e
of the limiting soliton~a kink and an antikink! with a change
in its polarity in the intermediate stage. The amplitude of
wave at any moment in time does not exceed the limit
value.
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3. DECAY OF THE INITIAL DISTURBANCE

3.1. Destruction of a negative pulse

As we know, the Korteweg–de Vries equation~1! and
the modified Korteweg–de Vries equation~2! with negative
nonlinearity have self-similar solutions, and the structure
each solution has the form of a certain function which d
forms with time according to a definite law. For examp
after the replacement

w~y,t!5~3t!21/3v~z!, z5~3t!21/3y ~35!

is made in the modified Korteweg–de Vries equation~18!
~we setl50 in it!, the functionv(z) satisfies the equation

vzz52v31zv1a, ~36!

where a is an arbitrary constant.21 Equation~36! is called
Painlevé’s second equation~PII), and its solutions are specia
functions, i.e., Painleve´ transcendental functions.

The Korteweg–de Vries equation~10! also has such a
self-similar solution.22 After the replacement

Q~y,t!52~3t!22/3q~z!, z5~3t!21/3y, ~37!

the functionq(z) satisfies the equation

qzzz16qqz2~2q1zqz!50, ~38!

whose solutions are uniquely related to the solutions of
Painlevé’s second equation:22

q52vz2v2, v5
qz1a

2q2z
. ~39!

In the case ofa50 ~wherev˜0 asz˜6`) the transcen-
dental functionv(z) acts as an Airy function.22

A pulsed disturbance of the modified Korteweg–
Vries equation and a pulse in the Korteweg–de Vries eq
tion with polarity opposite to the sign of the nonlineari
~i.e., in the case where the appearance of a soliton is imp
sible! evolve, transforming into the self-similar solution
~37! and ~35!, respectively.

In the case of the Gardner equation, when both~the qua-
dratic and the cubic! nonlinearities are present, a negati
pulse~a hyperbolic secant was used in the numerical cal
lations! will also evolve like the self-similar solutions pre
sented~Fig. 4!, although the solution of the Gardner equati
cannot be written in a form such as~35! or ~37!.
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3.2. Evolution of a positive pulse

The decay of a positive initial disturbance with an a
plitude smaller than the limiting value follows the scena
of the Korteweg–de Vries equation: the initial disturban
breaks down into a group of solitons~or a single soliton! and
an oscillating tail. Interesting features appear as an in
disturbance with an amplitude exceeding the limiting va
decays~Fig. 5!. In this case two steep drops appear in t
first stage and are associated with the cubic nonlinearity@in a
pure form relative to the 1/2 level: the solution of the Ga
ner equation~8! on this pedestal satisfies the modifie
Korteweg–de Vries equation, for which solutions in the fo
of drops, i.e., quasishock waves, are valid#. Then the genera
tion of small-scale waves begins on each drop, some of th
transform into solitons, and their polarity can be differe
depending on the pedestal on which they are generated~Fig.
5a! ~the polarity of a soliton in the Gardner equation depen
on the pedestal on which it forms: positive solitons form
0,v`,1/2, and negative solitons form at 1/2,v`,1). The
negative solitons subsequently interact on the wave c
with an antikink and descend from the limiting solito
changing their polarity and superimposing themselves on
group of solitons formed by generation of the antikink~Figs.
5b and 5c!. One limiting soliton, several small solitons, and

FIG. 5. Evolution of an initial disturbance with an amplitude exceeding
limiting value: a — initial disturbance~thick line! and formation of a group
of solitons on the crest of a limiting soliton; b — formation of a limitin
soliton and a group of solitons behind it; c — dynamics of the solution w
time.
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group of small-scale waves form on the asymptote. This p
cess was briefly described in our previous paper.20 Expan-
sion of an initial disturbance with a ‘‘superlimiting’’ ampli
tude leads to the formation of a broader limiting soliton.

The formation of a limiting soliton was predicted alread
by the inverse problem of scattering theory in Ref. 24, b
the intermediate stage with the formation of solitons of d
ferent polarity was not considered.

Thus, the existence of a limiting amplitude for the so
ton solution in integrable nonlinear systems leads to n
effects in the interaction of solitons and their generation fr
initial disturbances. The case of the appearance of a limi
soliton associated with the formation and propagation
solitons of opposite polarity on its crest, as well as the c
of the interaction of a limiting soliton with another one, a
extremely interesting.
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APPENDIX A: DERIVATION OF THE TWO-SOLITON
SOLUTION USING DARBOUX TRANSFORMATIONS

To obtain the expression forv2(y,t) which we are seek-
ing, we must plug the functions~29! into the expressions
~19! and use the definitions~22! and ~30! for d1,2:

W25
1

2
~G2C1C282G1C18C2!

5
1

4cosh~G2d2!cosh~G1d1!
@sinh~G2d21G1d1!

3cosh~Z222Z12!1sinh~G2d2

2G1d1!cosh~Z221Z12!#, ~A1!

W35
C

8
@~G2

22G1
2!C1C21G1~G2

221!

3C18C21G2~12G1
2!C1C28#

5
C

16 cosh2~G2d2!cosh2~G1d1!

3@sinh~G2d21G1d1!cosh~Z212Z11!

1sinh~G2d22G1d1!cosh~Z211Z11!#. ~A2!

From formulas~11! and ~17! we have

v2~y,t!5
1

2
1

C̃̃y~y,t!

C̃̃~y,t!
, ~A3!

where the functionC̃̃(y,t) is defined in~19!. From~A3! we
obtain

e
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v25
W̃38

W̃3

2
W28

W2
, W̃35

W3

C
, ~A4!

W285
sinh~G2d21G1d1!sinh~G2d22G1d1!

8cosh2~G2d2!cosh2~G1d1!

3@sinh~Z222Z12!1sinh~Z221Z12!#, ~A5!

W̃385
sinh~G2d21G1d1!sinh~G2d22G1d1!

32 cosh3~G2d2!cosh3~G1d1!

3@sinh~Z212Z11!1sinh~Z211Z11!#. ~A6!

Substituting~A1!, ~A2!, ~A5!, and ~A6! into ~A4!, we
have

v2~y,t!5
1

2

cosh2~G2d2!2cosh2~G1d1!

cosh2~G2d2!cosh2~G1d1!

3S 1

tanh~G2d2!cothZ212tanh~G1d1!tanhZ11

2
1

tanh~G2d2!cothZ222tanh~G1d1!tanhZ12
D .

~A7!

Using ~22! and ~30! again, we obtain the two-soliton
solution ~31!; another form of the solution~32! is obtained
by converting the terms in~A7! to forms with a common
denominator.

APPENDIX B: FEATURES OF THE TWO-SOLITON
SOLUTION

B.1. ‘‘Exchange–overtaking’’ boundary

In order to determine a criterion which distinguishes b
tween the exchange and overtaking interactions, we m
calculate the second derivative of the two-soliton solut
with respect to the coordinate at the point (y50, t50). It is
convenient to rewrite~31! in the form

v2~y,0!5
G2

22G1
2

2
@ f ~y!1 f ~2y!#, ~B1!

where

f ~y!5FG2cothS G2

2
~d21y! D2G1tanhS G1

2
~d11y! D G21

.

~B2!

By virtue of ~B1!

v29~y,0!5~G2
22G1

2! f 9~y!, ~B3!

f 8~y!5
1

2 FG2cothS G2

2
~d21y! D

2G1tanhS G1

2
~d11y! D G22H G2

2Fcoth2S G2

2
~d21y! D

21G1G1
2F12tanh2S G1

2
~d11y! D G J , ~B4!
-
st
n

f 9~0!5
1

2 FG2cothS G2d2

2 D2G1tanhS G1d1

2 D G22S v1
2

v2
1v3D ,

~B5!

where

v15G2
2coth2S G2d2

2 D2G1
2tanh2S G1d1

2 D1G1
22G2

2 ,

v25G2cothS G2d2

2 D2G1tanhS G1d1

2 D , ~B6!

v35G2
3cothS G2d2

2 D F12coth2S G2d2

2 D G
1G1

3tanhS G1d1

2 D F tanh2S G1d1

2 D21G .
Thus, we find that at the moment of closest approach

the solitons~the timet50) at the center of the two-soliton
equation (y50)

v29~0,0!5
v1

2/v21v3

2@G2coth~G2d2/2!2G1tanh~G1d1/2!#
. ~B7!

Going over to the soliton amplitudes

Aj5
G j

2

11A12G j
2

, j 51,2, 0<Aj<1 ~B8!

and using~22! and ~30!, we have

tanh
G jd j

2
5

Aj

G j
, j 51,2. ~B9!

Substituting ~B8! and ~B9! into ~B6!, we can rewrite
~B7! as

v29~0,0!}22A2@A2
2~r 322r 222r 11!

1A2~r 218r 23!26r 12#, ~B10!

wherer 5A1 /A2.
Thus, in order to determine the sign of the second

rivative, we must solve a quadratic equation. The condit
for a ‘‘single-humped’’ symmetric distribution (v29(0,0)
.0) is

A2,
3r 21

3r 212r 2
. ~B11!

B.2. Height of the central point of the symmetric distribution

The height of the central point is determined from t
expression~31! with the coordinatesy50 andt50:

v2~0,0!5
G2

22G1
2

G2coth~G2d2/2!2G1tanh~G1d1/2!
. ~B12!

Using ~22!, ~30!, ~B8!, and~B9!, from ~B12! we obtain

v2~0,0!5
A2~22A2!2A1~22A1!

22A22A1
5A22A1 . ~B13!



n
te

on
as

a

n,

-

eo-

v,

l.

-

181JETP 89 (1), July 1999 A. V. Slyunyaev and E. N. Pelinovski 
B.3. Phase shift

Let us consider the soliton with the index 2~the one
which overtakes the smaller soliton!. Its form ast˜2` is
found from ~31!:

v2~y,t!'
1

2
~G2

22G1
2!S 1

G2cothZ211G1

2
1

G2cothZ221G1
D . ~B14!

Utilizing the identity

G2cothS G2z

2 D1G1[
AG2

22G1
2cosh@~G2z1D!/2#

sinh~G2z/2!
,

~B15!

where

D

2
5tanh21

G1

G2
, ~B16!

from ~B14! we obtain

v2~y,t!'
G2

2 F tanhS Z211
D

2 D2tanhS Z221
D

2 D G .
~B17!

Long after the interaction (t˜`)

v2~y,t!'
1

2
~G2

22G1
2!S 1

G2cothZ212G1

2
1

G2cothZ222G1
D , ~B18!

and with allowance for~B15! and ~B16!

v2~y,t!'
G2

2 F tanhS Z212
D

2 D2tanhS Z222
D

2 D G .
~B19!

Thus, the total phase shift is

D52tanh21
G1

G2
. ~B20!

During the interaction the larger, overtaking, solito
traverses the interaction region, having a velocity grea
than its normal velocity~see Fig. 2!. After treating the other
soliton in a similar manner, we can easily see that it, c
versely, slows in the interaction region, acquiring a ph
shift 2D, and instead of~B15! for this soliton we must use
the identity

G22G1tanhS G1z

2 D[
AG2

22G1
2cosh@~G1z2D!/2#

cosh~G2z/2!
.

~B21!

Representing the phase shift as the coordinate shift

Dyj5
2

G j
D, ~B22!

taking into account the different signs ofD for different soli-
tons, and switching from a hyperbolic function to a log
rithm, we obtain formula~34!.
r

-
e

-

B.4. Soliton at the base of a limiting wave

As the second soliton approaches the limiting solito
G2˜1 and the two-soliton expression~31! can be written as

v2~y,t!'
12G1

2

2 S 1

12G1tanhZ11
2

1

212G1tanhZ12
D ,

~B23!

Z165
G1

2
~y2G1

2t6d1!.

Using ~B21! and ~B22!, we rewrite~B23!:

v2~y,t!'
1

2
A12G1

2S coshZ11

coshZ12
1

coshZ12

coshZ11
D . ~B24!

Using ~22! again, we obtain a soliton on a pedestal:

v2~y,t!'12
G1

2
~ tanhZ112tanhZ12!. ~B25!
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Space-time dynamics of ultrashort pulses in vacuum
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An analytical study is made of the evolution of spatially bounded pulses whose length amounts
to several periods of the field oscillations. An equation is analyzed that describes
unidirectional~reflectionless! propagation of light pulses in vacuum. The method of moments is
used to find the variations in length, effective width of the wave field, and other
characteristic averaged parameters of a pulse along its propagation path. A broad class of self-
similar solutions describing the focusing of the light pulses is found. Finally, by direct
integration of the starting equation it is shown that a horseshoe-shaped precursor forms near the
leading edge of the pulse. ©1999 American Institute of Physics.@S1063-7761~99!00407-2#
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1. INTRODUCTION

Studies of propagation of electromagnetic radiation w
a spectral width of order the carrier frequency have stim
lated interest in the prospects for using such pulses.
advantages of broadband signals are well-known from ra
and radio communications.

1,2
Probing objects with light sig-

nals produces much more information than in the case
radio-frequency pulses.1–3 In contrast to quasimonochro
matic radiation, the use of pulses whose length amount
only a few oscillation periods of the field makes it possible
form wave structures for which the effects of diffractio
smearing are weakened substantially.4–8 Such structures
have become known as electromagnetic projectiles.5 The ad-
vances of optoelectronics in generating microwave radia
with a spectral width of order of several terahertz have fou
applications in tomography.3 Possibilities are discussed o
using such electromagnetic pulses to accelerate cha
particles.9

The goal of the present work is a further study of t
features of the space-time evolution of light pulses
vacuum, for which the common approximation of slow
varying amplitudes proves inapplicable. In contrast to Re
5–8, we will use an approximation corresponding to Fres
diffraction of the wave field, which makes it possible to d
scribe the evolution of the field in detail. In Sec. 2 we fo
mulate the equations and derive some integral relations
needed in the future investigation. Section 3 is devoted to
method of moments used in analyzing the effective pu
parameters. In Secs. 4 and 5 we discuss the exact solutio
the starting equation. First we will give solutions in se
similar form that describe the transverse focusing of
pulses. Then we will analyze an equation obtained by
rectly integrating the starting equation for the case of
axisymmetric distribution of the wave field.

2. STATEMENT OF THE PROBLEM AND GENERAL
RELATIONSHIPS

Let us examine the propagation of an electromagn
field in vacuum along thez axis. The wave equation describ
ing this process is
181063-7761/99/89(1)/6/$15.00
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]2c

]z2 1D'c2
1

c2

]2c

]t2 50, where D'5
]2

]x2 1
]2

]y2 . ~1!

We seek the solution of this equation in the formc
5c(z,t5ct2z,r1). Assuming that the shape of the puls
changes little along the path of pulse propagation, we ar
at the equation

]2c

]z]t
5

1

2
D'c. ~2!

In deriving this equation we used the approximation

]2c

]z]t
@

]2c

]z2 ,

which is a common way of simplifying Eq.~1!. Using this
approximation is equivalent to allowing for the Fresnel d
fraction of a packet of electromagnetic radiation along
transverse coordinate. It is natural, therefore, that in the c
of a quasimonochromatic pulse,c5ck exp$ikt%, Eq. ~2!
yields the well-known parabolic equation for the slow
varying complex-valued amplitude of the wave fiel
ck(t,z,r').

Equation~2! resembles an equation obtained as a re
of the Brittingham transformation~t5ct2z, h5ct1z, and
r'5r' ; see Refs. 7 and 11!. The difference is that Eq.~2! is
an approximate equation. What makes Eq.~2! preferable is
that it is a first-order evolutionary equation and the fie
dynamics is determined by the initial distribution along t
characteristic linez50. This equation can be generalize
fairly easily to the case where the nonlinearity and dispers
of the medium is taken into account. For examp
the linear part of the Khokhlov–Zabolotski�

12 and
Kadomtsev–Petviashvili13 equations has the form of Eq.~2!.

Using the Lagrangian of Eq.~2! with the density

L5
1

2

]c

]t

]c

]z
2

1

4
~¹'c!2, ~3!
© 1999 American Institute of Physics
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and the usual variational procedure,14 we arrive at the fol-
lowing constants of motion conserved in the evolution of
system:

I 5E S ]c

]t D 2

dt dr' , ~4!

P5E ]c

]t
¹'c dt dr' , ~5!

H5E ~¹'c!2 dt dr' . ~6!

The fact that such relationships exist is due to the tran
tional symmetry of Eq.~2!. In the case of a quasimonochro
matic pulse these relationships become the well-known~for
the parabolic equation! integral relationships~for the energy,
momentum, and Hamiltonian! integrated with respect tot.

Integrating~3! with respect tot, we arrive at the equa
tion

]c

]z
5

1

2
D'q, q5E

2`

t

c~ t8,r' ,z! dt8, ~7!

which yields a number of relationships that will prove use
in our further discussions. Multiplying~7! by 2c, we obtain
one more conservation law,

]

]z
c2 5div c¹'q2

]

]t

~¹'q!2

2
. ~8!

This implies that the quantity4

E c2 dr' dt5I 2 ~9!

is conserved in the case of a localized distribution of
wave field only if4

E
2`

`

c~z,r' ,t!dt50. ~10!

Thus, the area under the curve for the pulse field,
~10!, is zero at each point in space. In other words, for allr'

andz the temporal spectrum of the pulse contains no zer
harmonic. Indeed, the velocity of propagation of a static fi
is zero, with the result that the field remains near the sou
of radiation.

When the leading edge of the pulse is steep~e.g., att
50!, Eq. ~7! and condition~10! show that the field distribu-
tion at the leading edge,

c~z,r' ,t50!5c0~r'!,

does not change along the path of pulse propagation.4

Note that our investigation has yielded two integral
lationships expressing conservation laws, Eqs.~4! and ~9!,
which in the case of a quasimonochromatic pulse reduce
single constant of motion corresponding to the conserva
of the number of photons in the parabolic equation. Su
degeneracy occurs because in the approximation of slo
varying amplitudes there are no precursors. The presenc
two constants of motion reflects a more realistic situation
e

a-
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3. AVERAGED DESCRIPTION OF THE WAVE FIELD

As in the case of the parabolic equation,15 the use of the
method of moments makes it possible to derive a numbe
relationships that describe the dynamics of the wave fie
The starting point is the equation of continuity,

]

]z S ]c

]t D 2

5div'S ]c

]t
¹'c D2

1

2

]

]t
~¹'c!2 . ~11!

This equation can be derived by multiplying Eq.~2! by
]c/]t and transforming the right-hand side of the result
follows:

]c

]t
D'c5div'S ]c

]t
¹'c D2¹'c

]

]t
~¹'c! .

Integrating Eq.~11! with respect todt and dr , we readily
obtain ~4!.

We begin with the first moments,

E tS ]c

]t D 2

dr dt5^t&, E r S ]c

]t D 2

dr dt5^r &,

which describe the motion of the center of mass of the w
field ]c/]t. Combining Eq.~11! and the expressions~5! and
~6! for constants of motion, we easily arrive at the followin
relationships for these moments:

]^t&
]z

5
H

2
5const, ~12!

]^r &
]z

52P5const. ~13!

Clearly, the center of mass moves along a straight l
determined by the initial conditions~e.g., atz50!. For an
axisymmetric wave field (P50), the center of mass move
along thez axis at less than the speed of light. Thus, t
diffraction of the wave field (¹'cÞ0) effectively reduces
the velocity of propagation of the packet of electromagne
radiation.

The second moments

E t2S ]c

]t D 2

dr dt5^t2&, E r'
2 S ]c

]t D 2

dr dt5^r'
2 &

give the effective~longitudinal and transverse! dimensions of
the wave field. Their evolution is described by a secon
order equation. To find this equation we must know not o
the integral relationships~4! and~5! but also the dependenc
of the rate of variation of the corresponding integral expr
sions on (]c/]t)¹'c and (¹'c)2.

First we consider the equation for the pulse length^t2&.
Multiplying Eq. ~11! by t2 and integrating with respect todt
anddr , we arrive at the equation

]

]t
^t2& 5E t~cx

21cy
2!dt dr' . ~14!

The equation for the rate of variation ofcx
21cy

2 can easily
be derived from~7!. Multiplying the latter byt, integrating,
and performing ordinary transformations, we find that
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]

]z E t~cx
21cy

2!dt dr'5
1

2 E ~D'q!2dt dr' , ~15!

whereq is defined in~7!. Thus, the pulse length increas
according to the law

d2^~t2^t&!2&
dz2 5

1

2 E ~D'q!2dt dr'.0. ~148!

More information can be extracted by studying the var
tion of the transverse dimensions of the wave field. For
ample, Eq.~11! yields

]

]z E x2cx
2dt dr'522E xS ]c

]t

]c

]x Ddt dr' . ~16!

An equation for the variation of a component of the mome
tum density, (]c/]t)¹c, can easily be found from~2! and
~7!. Multiplying the derived equation byx and performing
the necessary transformations, we arrive at the simple e
tion

]

]z E xctcxdt dr'52
H

2
. ~17!

Similar transformations can be done for the rate of va
tion of ^y2&. The result is

]2

]z2 E r'
2 ct

2dt dr'52H. ~18!

Thus, as in the case of the parabolic equation,11,15 the effec-
tive transverse size of an axisymmetric wave field increa
as follows:

^r'
2 &5^r 0

2&1Hz2, ~19!

where^r 0
2& is the characteristic size atz50.

Comparing~12! and ~19!, we find that

^r'
2 &22z^t&5^r 0

2&, ~20!

which is a formula that links the effective scales^r'
2 & and

^t&. Equation~20! can be interpreted in the following man
ner. The wavefront of the starting equation~1! is spherical:

r 21z22c2t25const. ~21!

In terms of the variables used below~r , z, and t5ct2z!,
Eq. ~21! can be written as

r 222tz1t25const. ~22!

In the approximation described by Eq.~2! we can ignore the
term t2 in ~22!. The wavefront becomes parabolic. Avera
ing ~22! under these conditions, we arrive at the same
pression~20!, which was derived by the method of momen
We see that the variableh5r 222tz becomes a self-simila
variable of Eq.~2!. Similar relationships can be derived fo
the moments of the functionc2. These, however, prove to b
less informative, since their variations are not related to
integral expressions~4!–~6!.

4. SELF-SIMILAR STRUCTURES

The above relationships were derived without knowi
the exact solution of the equation and describe the beha
-
-

-

a-

-

s

-
.

e

ior

of the characteristic parameters~moments! of a spatially lo-
calized distribution of the wave field. Let us examine t
wave structures of self-similar form,

c5w~z,h5r 222zt!. ~23!

Inserting~23! in the starting equation~2!, we can easily find
an equation for the self-similar function:

2z
]2w

]z ]h
5h

]2w

]h2 1
]w

]h
. ~24!

This equation has a particular solution

wb5zb/hb11 . ~25!

We will use the following fact to find the admissible value
of b. The starting equation is translationally symmetric inz
and t. The complex generalization of~25!, i.e., z˜z1 iz0

andt˜t1 i t0 , has the form

wb5
~z1 iz0!b

@r 222~z1 iz0!~t1 i t0!#b11 . ~26!

In contrast to~25!, this expression has no singularity atr 2

52tz and describes a bounded distribution of the wave fi
if t0z0.0. The condition~10!, which states that the spec
trum of the localized solution~26! contains no zeroth har
monic, holds if

b.0. ~27!

Here the complex-valued wave field~26! describes the fo-
cusing of a spatially localized pulse nearz'0. The param-
eterz0 determines the characteristic size of the focal regi
and t0 is the length of the incident pulse (z@z0). For in-
stance, atb51 the distribution of the field is

w15H 4~z1 iz0!Ft2
r 2z

2~z21z0
2!

1 i S t01
r 2z0

2~z21z0
2! D G

2J 21

. ~28!

We see that the wave field is at its maximum att*
'r 2z/2(z21z0

2). The pulse length~the characteristic longi-
tudinal size of the field! tp't01r 2z0/2(z21z0

2) increases
with the distance from the axis of the system. The field d
tribution along the axis (r 50) is described by the relation
ships

Rew152
2t0t

z0~t21t0
2!2 , Im w152

t22t0
2

z0~t21t0
2!2 at z50,

~29!

Rew15
t22t0

2

z0~t21t0
2!2 , Im w152

2t0t

z~t21t0
2!2 as z˜6`.

~30!

Equation ~30! shows that when the pulse passes the fo
plane, the amplitude distribution of the field is restored a
the phase changes byp. Here the change in the sign of th
solution agrees with the invariance of the starting equat
under the transformationsz˜2z and t˜2t. In the focal
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plane ~z'0 and x!z0!, the real part of the solution~29!
acquires the structure of the imaginary part asz˜` and the
imaginary part, the structure of the real part. This proc
corresponds to phase change ofp/2.

By using superposition we can substantially increase
number of self-similar solutions. In particular, for integr
values ofb, we can use an expansion in a Taylor~Laurent!
series inz/h and easily obtain an expression for the soluti
of the starting equation:

w5
1

z1 iz0
f S r 2

2~z1 iz0!
2t2 i t0D . ~31!

This can be verified by simply plugging~31! into Eq. ~2!.

5. SPACE-TIME EVOLUTION OF THE WAVE FIELD

The self-similar structures treated here are similar
Gaussian wave beams in quasioptics~see, e.g., Ref. 12!.
These structures are ‘‘single-scale’’ and do not reflect
specific features of the problem related to the presenc
two conserved quantities,~4! and~9!. To illustrate these fea
tures we will examine the evolution of a pulse with a ste
leading edge. In the case of an axisymmetric wave field,
solution of Eq.~2! can be written

c5E
0

`E
2`

`

w~v!R~x!

3expH i
x2

2v
z1 ivtJ J0~xr ! dx dv, ~32!

where

w~v!5
1

2p E c~r 50,z50,t!exp$2 ivt% dt

is the spectrum of the pulse along the axis of the systemr
50) at z50, and R(x) is the spectrum of the transvers
distribution of the field atz50. For a pulse that is Gaussia
along the transverse coordinate, exp$2r2/2a2%, we have

R~x!5a2 expH 2
x2a2

2 J . ~33!

Integrating~32! with respect tox, we find that in this
case

c5E
2`

`

w~v!
a2

a22 iz/v
expH 2

r 2

a22 iz/v
1 ivtJ dv.

~34!

5.1. Evolution of the pulse on the axis of the system „r 50…

At r 50 Eq. ~34! shows that as the pulse propagates
the system (zÞ0), the spectrum of the field acquires a po
at v5 iz/a2. The pulse structure is described by the integ

c~r 50,z,t!5E
2`

` w~v!exp$ ivt%

v2 iz/a2 dv. ~35!

To take an example, let us study pulses whose ini
shape is

c~r 50,z50,t!5cn5Ln exp$2t%, ~36!
s

e

o

e
of

p
e

(

l

l

whereLn is a Laguerre polynomial defined on the interv
0,t,`. For n>1 this shape meets condition~10!. Note
that the spectral component of the field at the frequencyv
50 is zero@see Eq.~35!# for all zÞ0. Hence even for pulse
with w(v50)Þ0 the area under the curvec(r 50,z
510,t) proves to be zero. For example for a pulse who
shape is given by~36! at n50 we have

c~r 50,z50,t!5c05H 0, 2`,t,0,

exp~2t!, 0Þt,`.
~37!

Integration of~37! gives

c~r 50,z,t!5
exp~2t!2~z/a2!exp~2zt/a2!

12z/a2 . ~38!

Thus, as a pulse propagates in the system, its shape
quires two scales. The amplitude of the part of the field w
the shape of the incident pulse varies according to the
(12z/a2)21. The characteristic time scale of the seco
term (exp$2zt/a2%) is determined by the transverse size
the field atz50 and falls off ast i;a2/z as the pulse propa
gates in the system. At a distance

zF5a2 ~39!

equal to the Fresnel length for a a field with a frequencyn
determined by the duration of the incident radiationn
51), tp becomes equal to the characteristic time scale of
initial distribution. As a result the shape of the pulse b
comes

c~r 50,z5a2,t>0!5L1 exp~2t!, ~40!

whereL1512t is the first Laguerre polynomial. Note that
pulse initially (z50) shaped as~40! is transformed in the
process of propagation intoc(z5a2)5L2 exp$2t%, where
L25122t1t2/2 is the second Laguerre polynomial. Th
follows from the fact that for initial distributions of the form
~36! the order of the pole in~35! at z5a2 increases by unity,
with the result that the shape of the pulse is determined
the polynomialLn11 . Since the functions~36! are not or-
thogonal, it is impossible to draw a more general conclusi

In the limit z@zF5a2 the amplitude of a field whose
shape is that of the incident pulse@the first term in~38!#
decreases asz21, just as it does in the case of a quasimon
chromatic pulse. The characteristic time scale of the sec
term becomes smaller than the length of the initial pul
whose amplitude is independent ofz. This part of the field is
sometimes called the diffraction precursor.4 Formula~38! de-
scribes the formation of such a precursor.

Let us examine the energy characteristic of the field
the axis of the system,

W5E
2`

`

c2~r 50,z,t!dt.

If we usec in the form ~38! and integrate, we arrive at th
expression

W~z!5
1

2~11z/a2!
. ~41!
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Thus, in the limitz@a2 the energy of the pulse on the ax
@Eq. ~41!# decreases in inverse proportion toz. Obviously,
such a gradual decrease is due to the presence of a prec
The structure of this precursor is determined by the pole
v5 iz/a2 in the integrand of~35!. Clearly, the precursors ar
the same for all initial distributions of the form~36!, with the
result that the energy of the field on the axis (r 50) of such
formations decreases according to thez21 law. This slow
decrease of the pulse energy along the path of pulse pr
gation ~slower than z22! has become known as th
electromagnetic-projectile effect5 and is due to the presenc
of higher harmonics in the pulse (v˜`), for which the
geometrical-optics approximation is valid. The length of t
path along which this law is valid is determined by the leng
of the leading edge of the pulse,tp (tp!1), and for z
.a2/tp the decrease becomes more rapid (W}z22).

5.2. Dynamics of the spatial distribution

To study the spatial structure we need to known the
tegral~34!, which cannot be evaluated in closed form. Ho
ever, we can get an idea of the dynamics of the spatial
tribution by analyzing the coefficients of the Taylo
expansion of the wave field in powers ofr 2:

c5 (
n50

`

cn~z,t!S r 2

2 D n

. ~42!

The simplest way to find the functionscn is to use Eq.
~2! directly. Substituting~42! in ~2! and equating the coeffi
cients ofr 2n, we obtain the recurrence relation

cn115
1

~n11!2

]2cn

]z ]t
. ~43!

Thus, all the expansion coefficients are found by direc
differentiating the wave field on the axis of the system@Eq.
~35!#, c05c(r 50,z,t). Note that these coefficients me
condition ~10!: the area under the curvecn11 is zero
(*2`

` cn11 dt50) on the path of pulse propagation alongz.
For a pulse of initial shape~37!, we substitute~38! in

~43! and find the expression for the coefficient ofr 2:

c152
b@~b2z!1b~12b!t#exp~2bt!1exp~2t!

a2~12b!2 ,

~44!

whereb5z/a2. The coefficients~43! can be calculated in a
similar manner.

In the two most interesting cases,b51 and b@1, the
expressions for the coefficientscn simplify substantially. For
instance, at a distancez5a2 corresponding to the Fresne
length (b51), we have

cn5~21!n
Ln11~t!

n! a2n exp~2t!. ~45!

As a result we find that the space-time structure is descr
by the expression

c5 (
n50

`

~21!nS r 2

2a2D n Ln11~t!

n!
exp~2t!. ~46!
sor.
at

a-

-
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y

d

The fairly rapid convergence of the coefficients~45! makes it
possible to drop all but a few terms in the series~46! when
the problem is analyzed qualitatively.

At the leading edge (t'0) the series~42! in powers of
r 2/2 is alternating and describes the field distributi
exp$2r2/2a2%. The roots of the Laguerre polynomialsLn ,
which determine the behavior of the coefficients in the se
~42!, are given by the well-known16 expression

tm5
j m
2

2~2n11!
F11

j m
2 22

24~2n11!
G , ~47!

wherem is the order of the root, andj m is the root of the
zeroth-order Bessel functionJ0( j ). On the system axis (r
50) the field vanishes and changes sign att51. The study
of the roots~47! shows that there are ranges oft in which
two successive expansion coefficients have the same s
For example, for 1.t.0.7, the coefficientsc0 andc1 are
positive, and allowance for higher-order terms inr 2 facili-
tates localization of the field distribution in the transver
direction. This means that fairly strong inhomogeneities
the wave field are concentrated near the trailing edge of
pulse (t51).

At distancesz much larger than the Fresnel lengthz
@a2 andb@1), Eq. ~44! yields

c1'2
L1~zt/a2!

a2 expS 2
zt

a2D . ~48!

The dependence ofc1 on the self-similar variableh
5zt/a2 simplifies the recurrence relation~43! substantially.
More than that, using the well-known functional relatio
ships for the Laguerre polynomials,17 we can derive expres
sions similar to Eqs.~45! for the coefficientscn of the Taylor
series~42!:

cn5~21!n
Ln~zt/a2!

n! a2n expS 2
zt

a2D . ~49!

Note that the coefficientc0 , which describes the behavior o
the field on the system axis (r 50), is not self-similar. In the
limit z@a2,

c052
a2

z
exp~2t!1expS 2

zt

a2D . ~50!

Now let us examine the spatial structure of the part
the field that refers to the diffraction precursor. If in~50! we
ignore the first term, we get

cpr5 (
n50

`
~21!nLn

n!

zt

a2 S r 2

2a2D n

expS 2
zt

a2D . ~51!

If we now use the formula for the generating function of t
Laguerre polynomials,17 we arrive at the expression

cpr5I 0 S 2Azt

a2

r 2

2a2D expS 2
r 2

2a2 2
zt

a2D , ~52!

whereI 0 is the modified Bessel function.
In view of the linearity of the starting equation, we co

clude that~52! is a solution of Eq.~2!. The structure of this
solution reflects the symmetry of the equation under int
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change ofz and t. The presence of translational symmet
(z˜z1 iz0 and t˜t1 i t0! makes it possible, as in Sec.
to carry out a complex generalization of the solution~52!. In
a way similar to~28!, this solution describes the transver
focusing of a spatially bounded pulse nearz'0.

The solution~52! shows that a field localized near th
leading edge (t>0), for r @a is localized near the parabol
r 252zt,

cpr~r @a!'
a

~2ztr 2!1/4expF2
~r 2A2zt!2

2a2 G , ~53!

with a characteristic transverse scale of ordera and a time
~longitudinal! scale of ordera2/z. The amplitude value of
the field (r 5A2zt) decreases along the path of pulse pro
gation according to the law

cpr}
1

Azt
, ~54!

i.e., much slower than by thez21 law for quasimonochro-
matic pulses

We have studied some aspects of the evolution of s
tially bounded pulses with a spectral width on the order
the carrier frequency in the process of unidirectional~reflec-
tionless! propagation in vacuum. As in the case of quasim
nochromatic radiation, it is possible to analyze the variat
in the characteristic parameters of the light pulse by
method of moments. We have shown that the center of m
of the wave field moves in a straight line with a group v
locity less than the speed of light and that the effective tra
verse size increases in proportion toz. We find a broad class
of self-similar solutions that modify structures having t
form of Gaussian wave beams in quasioptics for light puls

For initial distributions of a more general form it i
shown that a diffusion precursor is formed in the process
pulse propagation. The spatial structure of this part of
field is horseshoe-shaped@see Eq.~53!#. The amplitude of
the field decrease slower than it does in the case of a qu
monochromatic pulse.
-

a-
f

-
n
e
ss
-
s-

s.

f
e

si-

The author is grateful to the researches at the Institut
Applied Physics of the Russian Academy of Sciences
especially to A. G. Litvak, V. E. Semenov, A. I. Smirnov
and A. A. Balakin for fruitful discussions. The work wa
supported by Grants from the Russian Fund for Fundame
Research~Grants 98-02-17205 and 99-02-16399!.

* !E-mail: mironov@appl.sci-nnov.ru

1H. F. Harmuth,Nonsinusoidal Waves for Radar and Radio Communic
tion, Academic Press, New York~1981!.

2L. D. Bakhrakh and A. A. Bliskavitski�, Usp. Fiz. Nauk162~12!, 160
~1992! @Sov. Phys. Usp.35, 1086~1992!#.

3D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, IEEE J. of selec
topics in Quan. Elect.2, 679 ~1996!.
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Fine structure of splitting of the separatrix of a nonlinear resonance
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This report is a continuation of an analysis, initiated elsewhere$V.V. Vecheslavov and B. V.
Chirikov, Zh. Éksp. Teor. Fiz.114, 1516~1998! @JETP86, 823 ~1998!#%, of the effect
of splitting of the separatrix of a nonlinear resonance for the model of standard mapping, based
on results of direct measurements of the splitting anglea(K), whereK is the system
parameter. Measurements were made in the previously used wide range 0.1*a*102208 (1>K
>0.0004), but with significantly higher relative~better than 10250) and average
(;10255) accuracy. This procedure made it possible to substantially refine the effects observed
in Ref. 1 and construct qualitatively new empirical dependences providing reliable
extrapolation of the data obtained for the angle and the invariant in the intermediate asymptotic
limit K&1022 beyond the limits of the investigated region. The results obtained by us
can be useful for further development of the theory of separatrix splitting and formation of the
stochastic layer of a nonlinear resonance. ©1999 American Institute of Physics.
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1. STATE OF THE PROBLEM

The interaction of nonlinear resonances and the cha
regimes of dynamical Hamiltonian systems arising as a re
are among the most important and complicated problem
the contemporary theory of nonlinear oscillations.2–5 Usu-
ally, the initial states of the system are chosen near one o
resonances, which is assumed to be the main or leading r
nance, and the others are treated as perturbations. In m
cases the problem reduces to an examination of a dynam
model which can be interpreted as a pendulum~the main
resonance! subjected to the action of periodic or quasipe
odic forces. In the vicinity of the separatrix of the main res
nance chaotic nonlinear oscillations arise as a result of
action of almost any perturbation, no matter how weak.2–5

Studies in this field are generally accompanied by wi
scale numerical experiments, in which instead of differen
equations in continuous time it is much more effective to u
their discrete analogs, namely, mappings.1–5 A simple but
extraordinarily interesting and very popular model of th
kind is Chirikov’s so-called standard map:2

p̄5p1K•sinx, x̄5x1 p̄. ~1.1!

Here p and x are the action–angle variables, andK is the
only parameter of the model which characterizes the effec
the perturbation in the period of the mappingT52p/V51.

Many papers, including ours, focused on the study of
chaotic dynamics of the standard mapping. Before discus
the new results obtained by us it would be fitting to brie
review the main definitions and the state of the problem.

The leading resonance of system~1.1! can be described
by the Hamiltonian of a ‘‘pendulum’’

H1~p, x!5
p2

2
1K cosx. ~1.2!
1821063-7761/99/89(1)/6/$15.00
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Recall that in the case of strong nonlinearity such a sim
form of the resonance Hamiltonian turns out to be univers2

The most important characteristic of a pendulum~1.2! for the
problem under discussion is the separatrix

ps562v0 sin
x

2
, H1

(s)5v0
25K ~1.3!

the singular trajectory, which separates oscillations of
phase~in resonance! from its rotations~out of resonance!. In
fact, Eqs.~1.3! describe two spatially coincident branches
the time limits t˜1` and t˜2`, respectively. Each
branch is an asymptotic trajectory with infinite period of m
tion, which departs from the position of unstable equilibriu
~a saddle point! and returns to it. Almost any perturbation, n
matter how weak, splits the separatrix into two intersect
trajectories, which, as before, depart from the saddle poin
opposite directions, but never return to it~this effect was
described qualitatively by Poincare´ in the last century!.6 The
two branches of the split separatrix intersect, in particular
the anglea at x5p ~the central intersection! and some
ps(p)'p052v0 @see Eqs.~1.3!#. The free ends of the spli
separatrix form an infinite number of loops of unbounded
growing length,6,7 which, however, fill up a bounded an
narrow region along the unperturbed separatrix, ther
forming the so-called stochastic layer—a nucleus and sou
of the chaos of nonlinear oscillations.2–5,8,9The most impor-
tant characteristic of this layer from the viewpoint of app
cations is the energy half-widthws5H/K21, which, how-
ever, can be found only approximately.2 In this regard, it is
important to mention that for the standard map~1.1! the
angle a of the central intersection of the branches of t
separatrix turns out to be the only exact parameter of ch
that can be calculated with arbitrary accuracy.
© 1999 American Institute of Physics
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Significant progress in the study of the splitting of t
separatrix of the standard map was achieved relatively
cently ~1984!. It was connected with the appearance o
series of mathematical papers,10–12 in which the anglea was
determined quite accurately by numerical solution of an a
iliary equation from which an exponential factor was elim
nated. Note that the work of physicists of this period and
earlier periods2–5,8,9has been mainly oriented toward stud
ing the effect of violation of adiabaticity and finding approx
mate estimates of the dimensions of the chaotic layer.

For the asymptotic (l5 2p/AK ˜`) value of the split-
ting anglea`5a(`) Lazutkin et al.10 obtained the expres
sion

a`5pL
e2pl/2

K
, ~1.4!

in which an important numerical characteristic of the sta
dard mapping,L, is used~in Ref. 1 it was proposed to call i
the Lazutkin constant!.

It should be noted that a correction factorf ; 1 is used
in the theory of the chaotic layer developed by Chiriko2

~1979!. The physical meaning of this factor is to allow fo
effects of higher-order perturbing resonances: for the s
dard mapping. He also obtained a first estimatef ' 2.15 nu-
merically. The Lazutkin constant encountered later turn
out to be related to this factor by the formulaL516p3 f
@see formula~1.16! in Ref. 1 and the commentary on it#;
therefore, any refinement of the constantL is simulta-
neously a refinement of the factorf in the theory of the sto-
chastic layer. The most accurate of the values of this cons
published to date, to the best of our knowledge, is@formula
~4.14! in Ref. 1#

L51118.8277059409007784151463932356663310227.
~1.5!

Lazutkin et al.10 have also estimated the correction
a` in the intermediate asymptotic region 0,K!1:

ca~l!5
a~l!

a`
21, ~1.6!

which was later studied in detail in Ref. 1 and will be co
sidered in this paper~see Secs. 2 and 3!.

The next big step in the study of this problem was ma
by Gelfreich et al.,11, where the dependence~1.6! was repre-
sented in the form of an asymptotic series in appropr
powers of a small parameter. The values of the first f
coefficients of this series were determined by numerical
lution of auxiliary equations.

This theory introduced the important change of variab
(K, a)˜(h, s), where

h~K !5 lnS 11
K

2
1AK1

K2

4 D ' AK ~1.7!

is a positive characteristic index of the tangent~linearized!
map ~1.1! at the unstable fixed pointx5p50,

s~h!5n~h!sina ~1.8!
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is the simplectic invariant, andn(h) is a norm of the tangen
vectors.

An approximate solution of the problem was found
Ref. 11. This solution can be written as a correction to
invariant@by analogy with the correction~1.6! to the angle#:

cs~h!5s~h!/s`21, ~1.9!

wheres`54a` @see Eq.~1.4!#.
It is important to emphasize that these ‘‘correction

give the most complete description of the intermedi
asymptotic behavior and their study enables one to elucid
the ‘‘fine structure’’ of splitting of the separatrix and forma
tion of the stochastic layer.

Just recently, a fundamentally different approach to
problem, based on the results of direct measurements o
separatrix-splitting angle of the standard map~1.1! over a
very wide range of variation of the parameterK: 1>K
>0.0004 (1*h*0.02): 0.1*a*102208 with guaranteed
relative accuracy better than 10225 and average accurac
;10230 was realized in Ref. 1. Accordingly, we developed
special technique implementing a software package,13 which
realized the full potential of the standard computer langu
FORTRAN with arbitrary numerical accuracy~the number
of significant digits of the mantissa in the decimal repres
tation of a real number in Ref. 1 reached 300!. To compare it
with the theory developed in Ref. 11, we also calculated
invariant s ~1.8!; here the functionn(h) ~an analytical ex-
pression for it is not known! was determined numerically
using a special computer program.14

In line with the theory developed in Ref. 11, the corre
tions ~1.6! for the angle and~1.9! for the invariant were
sought in the form of a finite series in even powers ofh

c̃~h!5a~0!1 (
m51

M

a~m!h2m . ~1.10!

In order to facilitate direct comparison of the experimen
data with the results of Ref. 11 for the invariant, in additi
to the finite series~1.10!, we also used a representation in t
form of a Taylor series

s

s`
L5L1 (

m51

`

b~m!h2m, b~m! 5 a~m!m! L.

~1.11!

The least-squares method has been widely used in
search for the coefficients of series~1.10! and the construc-
tion of empirical dependences~see, e.g., Ref. 15!; a special
importance was attributed to monitoring the accuracy of
calculations and to obtaining a reliable estimate of the err
of the results.

The theory developed in Ref. 11 was confirmed in R
1, both qualitatively@series of the form~1.10!# and quantita-
tively ~see Table II in Ref. 1!. The construction of simple
empirical dependences~4.2! of the expansion coefficients o
series~1.10! on the indexm can be assumed to be one of th
more important results of this study. With them is connec
the possibility of extrapolating these series beyond the lim
of the region of direct measurements. The unreliability
such an extrapolation, however, was also noted in Ref
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FIG. 1. Results of an interpolation of empirical data on the se
ratrix splitting angle~triangles! and the invariant~circles!: dc(h)
is the deviation of the correction from the intermedia
asymptotic limit~1.10!, common logarithm. The downward slop
ing lines are the first term of the residual term~3.5!; curves1, 2,
and 3 plot the exponential deviations~see Sec. 3!. The upper
dashed lines show the total correctionsc(h) for the angle~1.6!
and the invariant~1.9!, respectively.
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since the higher coefficients withm58,9,10, both for the
angle and for the invariant, clearly deviate from the assum
dependences~see Fig. 3 in Ref. 1 and the commentary!.
These deviations were called ‘‘anomalies, whose nature
mains an open question and requires further study.’’ Jump
ahead, let us clarify the reason for the appearance of th
‘‘anomalies,’’ which was clarified later. The relative acc
racy of measurements of the angle 10225 used in Ref. 1 turns
out ~as paradoxical as it may seem! to be insufficient to cal-
culate the necessary number of coefficients for reliable
trapolation~see Sec. 2!.

Any extrapolation, even an pproximate one, facilita
not only identification but also interpretation of the chara
teristic properties of the intermediate asymptotic behav
which can be of substantial assistance in advancing
theory of separatrix splitting and formation of the stochas
layer of a nonlinear resonance. For this reason, it w
deemed necessary to extend the analysis of the model o
standard map based on direct measurements of the spl
angle initiated in Ref. 1.

In this paper we investigate the problem of separa
splitting for the standard mapping within the previous wi
range of variation of the splitting angle 0.1*a*102208 (1
>K>0.0004), but with significantly higher relative accura
~better than 10250) and average accuracy (;10255). This
factor, together with the extremely accurate value of the
zutkin constant~1.5!, has made it possible not only to refin
the effects observed earlier in Ref. 1~Sec. 2!, but also to
obtain qualitatively new empirical dependences ensuring
liable extrapolation of series~1.10! for the angle and
the invariant beyond the limits of the investigated regi
~Sec. 3!.

2. RESULTS OF MEASUREMENTS

In the measurements of the angle we used the sch
described in detail in Ref. 1: the central intersection point
the branches of the separatrixxs5p, ps(p) is sought; then
two points are calculated, one on each side of it. This ma
d
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it possible to fit the branches by second- and fourth-deg
polynomials and calculate two values of their angle of int
section:a2 and a4. In general, some numberNa of first
significant digits~with allowance for the roundoff! in the
values ofa2 anda4 coincide. We were able to reach value
of Na>50, which gave a relative accuracy of the angle
worse than 10250. Actually, the relative accuracy in the in
termediate asymptotic region proved to be somewhat hig
and stood on average at;10255 ~see Fig. 1!.

Following this scheme, we found the dependencea(K)
for 104 values of the perturbation parameter in the inter
1>K>0.0004, which provided the initial empirical materi
for all subsequent analysis. The value of the angle was
corded to 100 significant digits, which ensured an accur
of processing of the results much higher than the accurac
the experimental data~see below!.

It was noted in Ref. 1 that the main difficulty of inter
polating using a series of the form~1.10! is that different
terms of this series differ by many orders of magnitude a
the matrix of the normal system of equations of the lea
squares method for searching for the coefficientsa(m) in
~1.10!, as a rule, turns out to be degenerate in its compu
representation. It became necessary not only to subject
data to a final processing with accuracy;102100, but also to
introduce a change of scale of the variables of the probl

(h,c̃)˜(H5Sh, C5Sc̃), where the scale factorS@1 had
to be suitably chosen. However, in Ref. 1 we had to d
with ten coefficients~1.10!, whereas in the present work th
number grew to seventeen~see Tables I and II! and the
simple change of scale ceased to help. The problem
successfully solved by inverting the direct matrix by fir
partitioning it into blocks~see, e.g., Ref. 16!, where the di-
mensions of the blocks also had to be suitably chosen. Re
that in the least-squares method the diagonal elements o
inverse matrix determine the weights with which the erro
of the unknown quantities are summed, and therefore
inversion operation could not be eliminated.15

As was noted in Ref. 1, the number of terms of the ser
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M accessible in practice was bounded from above by er
of calculation due mainly to the ‘‘noise’’ caused by the fini
accuracy of the empirical dataa(h). A radical increase in
this accuracy~from 10225 to 10250) and, as a result, a radica
reduction of the level of this ‘‘noise’’ made it possible t
increase the number of coefficients found in the present w
to M517 ~versus 10 in Ref. 1!. With further increase ofM,
we not only do not obtain new coefficients, but we lose
ones we already have~see Fig. 1 in Ref. 1!.

The accuracy of the empirical dependence~1.10! is char-
acterized by the root-mean-square error

TABLE I. Coefficientsaa(m) of series~1.10! for the angle.

m aa(m) D ^d&

1 20.233376428864381610627639715
651844925562242 0.397310241 0.384310242

2 20.290818155124688860367364364
03046408113 0.370310236 0.334310237

3 20.014824955534894051786788200
5854733 0.212310232 0.177310233

4 0.043182190148644921649679410
03978 0.836310229 0.647310230

5 20.041519239478427464679586098 0.241310225 0.171310226

6 20.131373309408107983341741 0.525310222 0.342310223

7 20.319169849155133631687 0.885310219 0.525310220

8 21.060531457633276423 0.117310216 0.630310217

9 24.38156420631767 0.122310212 0.593310214

10 221.62868101831 0.101310209 0.440310211

11 2126.24207274 0.662310207 0.255310208

12 2861.834118 0.337310204 0.115310205

13 26810.600 0.131310201 0.395310203

14 261716.8 0.380310101 0.100310100

15 26.3755310105 0.771310103 0.178310102

16 27.15310106 0.981310105 0.199310104

17 21.3310108 0.591310107 0.107310106

Note.For the number of digits of the coefficient exceeding the width of
column, the remaining digits are written in the same column, one row low

TABLE II. Coefficientsb(m) of series~1.11! for the invariant.

m bs(m) D ^d&

1 18.59891195820929735881714904
1692488164817654712988 0.113310244 0.142310245

2 24.34114127056816253677582933
04979013479225149 0.158310240 0.183310241

3 24.18326375909189413723327235
65031001721936 0.199310236 0.212310237

4 24.93413959073087940856342052
930157 0.226310232 0.219310233

5 210.6454864428182042353564212
15457 0.230310228 0.203310229

6 235.8600816693504759710595553 0.209310224 0.166310225

7 2177.6036528919052715929381 0.169310220 0.121310221

8 21239.435334988728110840 0.121310216 0.769310218

9 211806.115613907542005 0.757310213 0.427310214

10 2149425.48996254799 0.412310209 0.204310210

11 22454832.5606990 0.193310205 0.835310207

12 251297631.6298 0.762310202 0.286310203

13 21.339922127310109 0.248310102 0.802310100

14 24.3097121310109 0.647310105 0.178310104

15 21.6850310112 0.126310109 0.295310107

16 27.88310113 0.166310112 0.331310110

17 24.9310115 0.110310115 0.191310113
rs

rk

e

Dc5^~c~h!2 c̃~h!!2&1/2, ~2.1!

where the angular brackets denote averaging over the in
polation interval. Clearly, we cannot use the entire empiri
interval as this interval since the power-law depende
~1.10! in the theory developed in Ref. 11 characterizes o
the intermediate asymptotic limit. Therefore, the deviatio

dc~h!5c~h!2 c̃~h! ~2.2!

contains the most valuable and interesting information ab
the additional nonadiabatic effects not comprehended in
theory. Thus, as in Ref. 1, it was necessary in a given se
empirical data to also choose the optimal interpolation int
val (h12h2), whereh150.02 was the minimum value in th
initial data. The smallest value ofDc ~2.1!, together with the
accuracy of the found coefficients of series~1.10!, served as
the main criterion here~see Tables I and II!.

The quality of the interpolation worsened not only wh
h2 was increased, as was noted above, but also when it
decreased due to the small contribution of the higher pow
of h for small value ofh, and also due to a decrease in t
numberNp of points participating in the interpolation. Th
main results were obtained using the standard interpola
of minimizing the variance (Dc)2 @see~2.1!# and are pre-
sented in Tables I and II and Fig. 1.

The accuracy of the found coefficients, as in Ref. 1, w
estimated by two different methods. First, the standard
viation ~root-mean-square error! of the interpolation was
calculated14, ^d& ~column 4 in the tables!, i.e., the expected
error of the coefficients of the random mean-square erro
the initial empirical data. To take errors of a different natu
into account, namely systematic errors, the values of the
efficients were also determined as means over several in
polations with a different number of data points in eac
Np520228 for the angle andNp525235 for the invariant.
In fact, these values are listed in the tables~column 2!. A
relatively weak dependence of the means onNp served as the
main criterion in our choice of these two groups. As the er
we adopted the root-mean-square error of the values of
coefficients in a group,D ~column 3 in the tables!. It can be
seen that the error in a group is greatest~and therefore de-
fining! in all cases. The difference in the two errors is
definite indication of substantial systematic errors. The v
ues of the root-mean-square errors in a group probably
determine the number of reliable decimal places of the co
ficients.

3. DISCUSSION OF RESULTS AND CONCLUSIONS

Following the scheme laid out in Ref. 1, let us consid
first of all the behavior of the coefficients of expansio
~1.10!, starting with the data in Tables I and II.

Let us begin from the fact observed in Ref. 1 that t
ratio of the coefficients of the angle and the invariant has
exponential form ~the straight line passing through th
squares in Fig. 2!:

aa /as~m!5R egm , R50.747160.0539 ,

g51.357960.0089 . ~3.1!

r.
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Taking this into account, and the analysis presented in R
1, we can describe the interpolated dependences by mea
the approximate expressions

as~m! '
As

mp
~11Qeqm! ~3.2a!

for the invariant~the curve passing through the circles in F
2! and

aa~m! ' AsR
egm

mp
~11Qeqm! ~3.2b!

for the angle~the curve passing through the triangles in F
2!. Using the values ofR andg from Eqs.~3.1!, we replace
the coefficients for the angleaa(m) by their reduced values

ãa~m!5
aa~m!

R
e2gm5

As

mp
~11Qeqm! . ~3.3!

Comparison of expressions~3.2a! and ~3.3! shows that find-
ing the values of the unknown quantitiesAs , p, Q, andq
by the least-squares method can be done by using a c
bined set$as(m),ãa(m)% after first removing some of the
first terms from it which clearly deviate from the interpolat
dependence~see Fig. 2 and Tables I and II!. In fact, the
interpolation was not done over the coefficients themselv
but over the common logarithms of their absolute values~see
Fig. 2!. The interpolation involved 29 points and yielded t
following results:

As520.0157160.00480, p53.18860.171,

Q52.2243102569.9331026, q51.12760.028.
~3.4!

The root-mean-square error of this interpolation was'0.092,
and results of this interpolation are plotted in Fig. 2.

Comparison of expressions~3.2! ~they correspond to the
solid curves in Fig. 2! with ~4.2! from Ref. 1, which corre-
spond to the dashed curves in Fig. 2, shows that proces
substantially more accurate and more extensive experime

FIG. 2. Variation of the coefficients of the intermediate asymptotic lim
~1.10! for the angleaa ~triangles!, the invariant (as) ~circles!, and their ratio
aa /as ~squares!. The solid curves plot the empirical dependences~3.1! and
~3.2! based on the data of our work. The thick points inside the symbols
m<10 mark the values of the coefficients from Ref. 1, the dashed lines
the interpolated dependences obtained there.
f.
of

.

.

m-

s,

ng
tal

data obtained by us leads to qualitatively different expe
mental dependences in regard to the ratio of the coefficie
of series~1.10! because of the appearance in expressi
~3.2! of the additional factor@11Qexp(qm)#. For m,8,
however, the two families of curves are quite similar. It
interesting to note that dependence~3.1! for the ratio of the
coefficients of the angle and the invariant did not unde
any change.

It is important to emphasize that since the empirical e
pressions~3.2! obtained here in the intermediate asympto
limit h&0.1 do not demonstrate any ‘‘anomalies’’~see Fig.
2!, their use is not limited to the number of coefficients a
tually found. This makes it possible, with the help of~3.2!
and ~3.4!, to estimate quite accurately the residual terms
series ~1.10! not included in the interpolation~the solid
downward-sloping lines in Fig. 1!:

R~h,M !5 (
m5M11

`

a~m! h2m 'a~M11!h2M12 . ~3.5!

The above analysis of the coefficients makes it poss
to more completely represent the global behavior of the
vestigated dependences. First of all, both series—the se
for the angle and the series for the invariant—diverge wit
the investigated range for someh.hcr : for the anglehcr

'exp(2(g1q)/2)'0.287, and for the invarianthcr'exp
(2q/2)' 0.569. However, the character of these dep
dences for 1*h*0.1 ~before the intermediate asymptot
region! is qualitatively different.

The variation of the invariant is very well described by
‘‘cascade of exponentials.’’ The first of these exponenti
~curve1 in Fig. 1!

udc1~h!u'63e2p2/h , ~3.6!

which was discovered and received a clear explanation
Ref. 1, significantly exceeds the residual term~3.5!. It de-
scribes the perturbation of the separatrix by a more dis
resonance with frequency 2V54p. The simple theory devel-
oped in Ref. 2 predicts a pre-exponential factor of 8, i.
almost an order of magnitude less. This difference, howe
is completely explainable by a very complicated~in the case
under consideration! system of resonances of higher appro
mations.

The second exponential~curve 2 in Fig. 1, the interpo-
lation is over 34 points, the root-mean-square error'0.13!

udc2~h!u5A2e2b2 /h , log~A2!5223.4560.11,

b253.51260.017, ~3.7!

in contrast, is found entirely below the residual term. T
mechanism of its appearance for the present state of
theory is completely unclear. The similarity of the value
the factor b2 in the argument of the exponential top is
noteworthy.

A curious situation arises for the angle: in the region
divergence of the series representing it, no singularities
anomalies are observed in the behavior of the functionca(h)
or its deviationdca(h) from the interpolation. Moreover, the
latter is described completely satisfactorily by the resid
term~3.5!, which is also represented in Fig. 1 only by its fir

r
ot



n

n

a

-

187JETP 89 (1), July 1999 V. V. Vecheslavov
term. Here the transition to the intermediate asymptotic
gion is realized by the exponential~curve 3 in Fig. 1, the
interpolation is over 22 points, the root-mean-square e
'0.12!:

udc3~h!u5A3e2b3 /h , log~A3!5215.8460.15,

b352.90660.018. ~3.8!

In this case, the value of the factorb3 in the argument of the
exponential is also close top.

All these arguments, taken collectively, show that t
behavior of the angle and the invariant at large values oh,
h;1, differs substantially from their behavior in the inte
mediate asymptotic region,h&0.1

In conclusion, we point out that the data obtained by
in many ways confirm and refine the conclusions and res
of our earlier study~Ref. 1!. But what should probably be
considered to be the main result here is the constructio
qualitatively new experimental dependences~3.1!–~3.4!,
which makes it possible to reliably extrapolate series~1.10!
beyond the limits of the investigated region of direct me
surements. This factor, in our view, can markedly adva
further development of the current state of the theory
separatrix splitting and formation of the chaotic layer of
nonlinear resonance.

I am deeply grateful to B. V. Chirikov for discussion
and advice. This work was carried out with the partial fina
cial support of the Russian Fund for Fundamental Rese
~Grant No. 97-01-00865!.
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Photon echo and stimulated photon echo study of various collisional-relaxation
channels
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Collisional relaxation in SF6 gas and its mixtures with He and Xe is studied by photon echo and
stimulated photon echo methods from the standpoint of the possibility of identifying the
contributions of different types of collisions. The nonexponential nature of the kinetic curve of
the photon echo is clearly observed for pure SF6 , it is weaker in the mixture SF61Xe,
and it is virtually completely absent for high degrees of dilution of SF6 with helium. These features
can be explained on the basis of estimates, made from experimental data, of the critical
delay between the exciting pulses~for which the nonexponential behavior should be most strongly
manifested!. In pure SF6 it is possible to distinguish the contribution of the inelastic channel
~rotational relaxation! and the contribution of weak collisions. To distinguish successfully the
relaxation channels in mixtures with buffer gases a heavier buffer gas and a much better
time resolution must be used. It is shown that data obtained on the orientation and alignment
relaxation rates by the stimulated photon echo method can serve as an upper limit for
the rates of inelastic processes which cannot be measured by the photon echo method. The
combined use of photon echo and stimulated photon echo methods made it possible to obtain data
on the cross sections for elastic and inelastic scattering of the collisional pairs SF6– SF6 ,
SF6– Xe, and SF6– He. © 1999 American Institute of Physics.@S1063-7761~99!00507-7#
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1. INTRODUCTION

The shape of an isolated spectral line of a neutral ga
determined by the translational motion of the particles~inho-
mogeneous line broadening — Doppler effect, line narro
ing — Dicke effect!, the interaction of particles with externa
electromagnetic fields or zero-point vibrations of the fie
~splitting or shift of a spectral line due to the dynamic Sta
effect or natural line broadening!, as well as by the interac
tion of particles in collisions~collisional homogeneous
broadening!. These processes can be closely interrelated,
ample being the control of the translational motion of p
ticles by laser radiation1 ~localization of atoms in the field o
a standing wave!, the detection of collisional transitions in
nonresonant radiation field2 ~radiative collisions!, and the ob-
servation of asymmetry of the Doppler contour due to
statistical dependence of collisions and translational mo
of the particles.3

The methods of nonlinear laser~so-called Doppler-free!
spectroscopy largely eliminate the contribution of trans
tional motion to line broadening, and performing expe
ments in weak electromagnetic fields decreases the cont
tion of field-induced defects to the natural line broadeni
which for molecular vibrational-rotational IR transitions
small by virtue of the low probabilities of spontaneous tra
sitions. For this reason, the methods of Doppler-free sp
troscopy of molecules make it possible to concentrate inv
tigations on homogeneous collisional line broadening.

Collisions change the internal state of the active part
~absorbing or emitting! and/or the state of the translation
241063-7761/99/89(1)/6/$15.00
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motion of the particle. A number of parameters of the act
particle can change in a single collision, so that distingui
ing individual types of collisions becomes problemat
Nonetheless, a description of collision types distinguished
the final result is often used. Collisions with interruption
the phase of the transition dipole moment, elastic scatte
by small angles~collisions with a change in the velocity o
translational motion!, depolarizing collisions~responsible for
destroying the polarization moments induced by polariz
radiation on degenerate resonance levels; these collis
characterize the asymmetry of the interaction potential of
particles!, as well as inelastic scattering~for vibrational-
rotational transitions this is mainly rotational relaxation! are
distinguished.

Knowing the contributions of different collisional relax
ation channels could be helpful for studying the characte
tic features of the interparticle interaction potentials and
investigating spectral line shapes. When stationary Dopp
free spectroscopy methods are used, information about c
sions is contained in the shape of the homogeneously br
ened line, and it could be quite difficult to distinguish th
contributions of various channels. Our aim in the pres
paper is to analyze the possibility of using nonstationa
coherent, Doppler-free spectroscopy to distinguish ela
and inelastic scattering channels of molecules.

This work was performed by photon echo and stimula
photon echo methods. The coherent nature of these phen
ena gives these Doppler-free spectroscopy methods a nu
of advantages over saturated-absorption methods:4 Under op-
timal echo excitation conditions coherent spectroscopy m
© 1999 American Institute of Physics
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ods give a large increase in the signal/noise ratio and
completely free of field-induced distortions.

2. MANIFESTATION OF VARIOUS INTERMOLECULAR
COLLISIONS IN PHOTON-ECHO PHENOMENA

Coherent transient processes, including photon
stimulated photon echo phenomena, have been success
used now for more than thirty years to investigate relaxat
processes in matter. For gases the theoretical descriptio
these phenomena is well developed.5,6 This makes it possible
to use the photon echo and a modification of this method
check theoretical models of collisional interaction of pa
ticles experimentally.

We shall present a qualitative picture of the formation
echo responses in a gas of two-level atoms under the ac
of unidirectional radiation pulses with the same frequenc

Modern photon echo theory is based on the semiclass
approximation. The state of the medium is described b
density matrix, and particle motion as well as relaxatio
processes are taken into account. The interaction with ra
tion is studied in the dipole approximation, and the radiat
field is assumed to be classical. The dynamics of the in
action of a quantum system with resonant radiation
well known to be determined by the Rabi frequen
x5d•E i /\, which characterizes the transition dipole m
mentd and the intensityE i of the electric field of the reso
nant electromagnetic radiation of theith pulse. If the dura-
tion of a pulse of resonant radiation is sufficiently short, th
under the action of the radiation field a two-level system c
complete only a part of the period of the Rabi oscillation
This result in the formation of nonequilibrium populations
energy levels and nonzero polarization of the medium.
important parameter of photon echo theory is the area of
exciting pulse

u i5E d•E i~ t !dt.

If echo formation occurs on a narrow spectral line, i.e., if t
width of the spectrum of the exciting radiation is greater th
the Doppler width, the largest deviation from the equilibriu
state is produced by a pulse with areau15p/2. Likewise, in
the opposite limiting case of echo formation on a wide sp
tral line there exists an optimal area of the exciting pulse
the formation of the photon echo signal.

At the moment when the exciting pulse ends, the p
ticles which have interacted with the exciting radiation a
have different velocity projectionsvz are in-phase. As a re
sult, a macroscopic polarization arises in the system. T
polarization engenders coherent spontaneous emission
the gas sample at the frequency of the exciting radiat
However, such a coherence state does not last long, s
particles belonging to different velocity groups emit at d
ferent frequencies, shifted relative to the line centerv0 by
the amountDv5v2v05kvz on account of the Dopple
effect. In a time of the order of the duration of the excitin
pulse after the pulse ends, the difference of the Dopp
phasesf5kvzt between particles moving different veloc
tiesvz increases linearly with time~Doppler dephasing!, as a
re
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result of which the coherent emission from the medium
cays. This dephasing phenomenon can be detected as a d
of free polarization agains the background formed by
trailing edge of the exciting pulse. Doppler dephasing do
not lead to irreversible damping of the excitation — the m
croscopic polarization of individual particles continues to e
ist.

The action of a second resonant pulse~if the photon echo
is formed on a narrow spectral line, the optimal pulse are
p) can change the sign of the phase for each particle. Fur
growth of Doppler phases according to the previous law~in
proportion to the timet and the velocity projectionvz) cre-
ates conditions for restoring the phasing of the radiation
the particles that have interacted with the second exci
pulse at a moment approximately equal to twice the de
time T12 between the exciting pulses. At this moment t
macroscopic polarization of the medium is restored a
spontaneous emission from the particles is detected as co
ent emission — the so-called photon-echo signal. The du
tion of the echo pulse is likewise of the order of the durati
of the exciting pulses.

The intensity of a photon echo is sensitive to inelas
collisions, as a result of which the particles leave the ene
levels participating in the formation of the photon echo, a
to elastic collisions changing the translational velocity~this
change affects the Doppler phases!. If the change in the lon-
gitudinal projection of the velocity is large, which corre
sponds to a strong-collisions model, the particles which h
undergone such collisions cannot then participate in the
mation of a coherent response. For small changes in the
locity ~weak collisions! the result depends on the delay tim
between the pulses. Such collisions can have a neglig
influence on the amplitude of the echo response for sh
delays and contribute to damping of the photon echo only
large delaysT12. As a result, nonexponential decay kineti
of a photon echo with increasing relaxation rate is obser
for long delays.7 The damping of a photon echo on the initi
section is determined by inelastic processes — rotationa
laxation, and the total contribution of elastic and inelas
scatterings characterizes the decay rate for long delaysT12.

The effect of a second pulse can be not only to cha
the sign of the Doppler phase, which is equivalent to a ph
jump by the amountDf522kvzT12. The second pulse als
converts the nonequilibrium values of the off-diagonal e
ments of the density matrix to on-diagonal elements, i
microscopic polarization into nonequilibrium populations
the energy levels. The Doppler phaseskvzT12 accumulated
up to this moment are stored in the populations of the ene
levels, and they can be stored in the medium for a long tim
determined by the irreversible relaxation of the energy l
els. A third pulse in the form of a traveling wave arrivin
with a time delayT23 after the second pulse can conve
these nonequilibrium populations once again into the o
diagonal components of the density matrix and produce
the phase jump mechanism described earlier the condit
required to observe a coherent echo response at the timt
5T23 12T12 — a stimulated photon echo. If an echo
formed on a narrow spectral line, the optimal areas of
three pulses for the amplitude of the stimulated photon e
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FIG. 1. a — Decay kinetics of the photon ech
signal in SF6 gas at pressure 2.5 mtorr. The gradu
change in the slope of the curve reflects the incre
ing role of elastic scattering by small angles wit
increasing delay time. The critical delay time is a
proximately 3.3ms. The straight lines are least
squares lines drawn through the points before a
after a delay of 3.3ms. b — Decay kinetics of the
photon echo signal in the gas mixture 2.5 mto
SF613.5 mtorr He. I 0 — Photon echo intensity at
the same SF6 pressure but without a buffer gas. Th
curve can be approximated by a straight line, sin
elastic and inelastic collisions appear in the ent
accessible range of delays. The line is a lea
squares line drawn through all experimental poin
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arep/2. It is obvious that a stimulated photon echo sho
be sensitive only to relaxation processes acting on the po
lations of the resonant energy levels during the delay t
T23 between the second and third exciting pulses. Weak e
tic collisions during this time interval should not affect th
amplitude of the stimulated photon echo.

Experiments in a molecular gas ordinarily employ d
generate transitions~typical angular momentaJ5102100).
This degeneracy must be taken into account when stud
the polarization properties of coherent responses. On
other hand, the polarization features of echo generation o
up new possibilities for studying the characteristic featu
of collisional interactions. Thus, in Ref. 8 it was sugges
that a stimulated photon echo be produced using light pu
with specially chosen polarizations, making it possible
study the so-called depolarizing collisions, which are sim
collisions that destroy the nonequilibrium polarization sta
~orientation, alignment, and others! formed on the magnetic
sublevels of degenerate resonant levels. In in this meth
investigation of the decay kinetics of a stimulated pho
echo as a function of the delay timeT23 makes it possible to
determine three collisional decay rates for the resonant q
tum levels:g (0) — the population relaxation rate,g (1) — the
orientation decay rate~the orientation of an energy level b
resonant polarized radiation corresponds physically to
production of a macroscopic magnetic-dipole moment in
medium!, and g (2) — the alignment decay rate~the align-
ment of an energy level corresponds to the induction o
macroscopic electric quadrupole moment in the sample!. The
differences in the values of these relaxation constants ma
possible to judge the presence or absence of asymmet
the interaction potential of the colliding particles.

The above-enumerated features of coherent trans
processes give hope that various types of collisions ca
principle be studied separately.

3. EXPERIMENTAL RESULTS

The experimental technique, based on the applicatio
radiation from a continuous-wave narrow-band frequen
tunable CO2 laser, a reference heterodyne laser, a system
electro-optic shutters for forming pulses, as well as la
locking and measurement automating systems, is descr
in detail in Ref. 4. The photon echo was investigated in
range of delaysT12 from 1.5 to 10ms in pur SF6 gas and in
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mixtures of SF6 gas with He and Xe buffer gases on th
transition P(33)A2

1 of the vibrational moden3 . The exciting
pulses were formed, using an electro-optic shutter, from
radiation of a continuous-wave CO2 laser with of the order
of 10 kHz linewidth and with generation frequency near t
center of the experimental transition in SF6 .

Figure 1a demonstrates the typical kinetics of the lo
rithm of the intensity of the photon echo in SF6 gas with a
nonlinear section at the beginning of the curve, attesting
nonexponential decay of the echo signal. As already m
tioned in Sec. 2, the nonexponential behavior for short del
between the exciting pulses is due to weak collisions. T
additional dephasing of the ensemble of excited particles
result of weak collisions is determined by the expression

df5kdvzT12,

wheredvz is the collision-induced change in the projectio
of the velocity. If df!1, then the contribution of velocity
changing collisions to the decay of the photon echo can
neglected and it can be assumed that the decrease o
photon echo with increasing delayT12 is determined only by
inelastic relaxation. On the other hand, the conditi
kdvzTc'p determines the critical delayTc between the
pulses, so that forT12.Tc the contribution of weak colli-
sions to decay of a photon echo can no longer be negle
and the decay rate reflects the total contribution of inela
processes and elastic scattering by small angles. Thus
T12,Tc the decay kinetics of a photon echo is determined
the relaxation rateg (0) of the nonequilibrium populations o
the energy levels~rotational relaxation!, and the sectionT12

.Tc makes it possible to measure the total relaxation ra

G tot5g (0)1Gvcc,

whereGvcc is the decay rate of the photon echo as a resul
elastic relaxation~velocity changing collisions!. In accor-
dance with this interpretation, both relaxation ratesg (0) and
Gvcc for pure SF6 gas can be determined in photon-echo e
periments performed for a wide range of delaysT12.

The decay kinetics of a photon echo in gas mixtures d
to collisions of resonant molecules with buffer-gas partic
is somewhat different from decay in a pure gas. For a m
ture with xenon it is still possible to distinguish at the start
the kinetic curve a deviation from exponential behavi
whereas in SF6– He collisions~for delaysT12.1.5 ms acces-
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TABLE I. Inelastic relaxation rateg (0) and the total rateG tot of elastic and inelastic processes measured by
photon echo method and estimates of the characteristic diffraction scattering angle and critical delaysTc .

Collision g (0), G tot , rW , lD , u, dvz , Tc ,
partners 106 s21

•torr21 106 s21
•torr21 Å Å 1023 rad cm/s 1026 s

SF6– SF6 <3664.5 49.866.3 8.3 0.03 3.6 145 3.4
SF6– Xe not measured 27.664.7 6.1 0.029 4.8 199 2.5
SF6– He not measured 44.266.7 3.8 0.13 3.5 4995 0.1
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sible experimentally! a monoexponential decay of the inte
sity of the photon echo is observed, as Fig. 1b demonstra

We shall endeavor to estimate the characteristic sca
ing angle as the diffraction angle,9,10 using the ratiou
5lD /rW , where the de Broglie wavelengthlD5\/mv rel ,
m is the reduced mass of the collision partners, andv rel

5A8kBT/pm is the relative average velocity. The Wei
skopf radiusrW can be determined from the experimen
data according to the formularW'0.365AG tot /nbufv rel,

11,12

where nbuf is the buffer-gas density. The diffraction
scattering angles calculated in this manner can be use
estimate the average change in the translational velocit
weak collisions according to the relationdvz'uv rel . In turn,
the velocity change in elastic scattering by small ang
makes it possible to estimateTc5p/kdvz and compare it
with the experimentally observed value.

Table I shows the values ofg (0), G tot , rW , lD , u, dv,
and Tc for the collisional pairs SF6– SF6 , SF6– He, and
SF6– Xe. Estimates of the critical delay show good agre
ment with experiment in pure gas, and they explain the w
nonexponential behavior in the mixture with xenon and
absence of such behavior in the mixture with helium. It c
be concluded from the results obtained that the investiga
of the decay kinetics of a photon echo in a wide range
delays makes it possible to distinguish elastic and inela
contributions, if both ranges of delays between the excit
pulses are accessible experimentally:T12,Tc andT12.Tc .
This condition is easier to satisfy by choosing a collisi
partner with a large mass.

The stimulated photon echo method provides anot
possibility for distinguishing different types of collisions.
stimulated photon echo was produced in SF6 gas on the same
transition P(33)A2

1(0)˜1 of the vibrational moden3 under
the action of resonant radiation pulses cut out, using an e
trooptic shutter, from continuous-wave linearly polarized
diation from a CO2 laser operating on the 10P(18) line. An
additional electro-optic crystal placed after the forming sh
ter made it possible to rotate by 90° the linear polarization
any of the three excitation pulses separated by time de

TABLE II. The results of stimulated photon echo measurements of
populationsg (0), orientationg (1), and alignmentg (2) relaxation rates.

Collision g (0), g (1), g (2),
partners s21

•torr21 s21
•torr21 s21

•torr21

SF6– SF6 (2963)•106 (3263)•106 (3863)•106

SF6– Xe not measured (1662)•106 (1662)•106

SF6– He not measured (3664)•106 (4764)•106
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T12 andT23. The intensity~amplitude! of the stimulated pho-
ton echo signal arising at the timet52T121T23 depends
quite strongly on the relative polarization of the excitin
pulses — it is highest when the polarization vectors of
three excitation pulses are parallel and lowest when the
larization plane of the first pulse is rotated. Optically hete
dyning was used to increase the sensitivity of detection
stimulated photon echo signals corresponding to rotation
the polarization of the first or second exciting pulses.13 The
working laser was tuned to the center of the transition
SF6 , and the laser heterodyne frequency was off set b
fixed amount using a frequency lock system. The strength
the detected signal is proportional to the amplitude of
electromagnetic field of the coherent response of the
dium.

The chosen vibrational-rotational transition in SF6

makes it possible to use the large angular momen
approximation6,8 (J is the angular momentum of a energ
level!. Another substantial simplification is due to the fa
that the relaxational characteristics of the upper and lo
levels of IR transitions are, as a rule, close in magnitude~as
is confirmed by the small contribution of phase-interrupti
collisions to the line broadening14,15!.

The collisional decay rates of the populationsg (0), the
orientation g (1), and the alignmentg (2) measured by the
stimulated photon echo method13 are presented in Table II.

For gas mixturesg (0) could not be measured by th
stimulated photon echo method because of the weaknes
the echo signals. However, the measured orientation
alignment relaxation rates can easily serve as an upper
for the inelastic relaxation rateg (0), since g (k)5g (0)

1G (k),8 where the positive additive correctionG (k) describes
the collisional decay of the multipole moments produced
degenerate resonant levels. Indeed, as one can see by
paring the ratesg (k) in Table II for pure SF6 , the population,
orientation, and alignment decay rates differ by 10–25%

We also call attention to the fact that the value obtain

e

TABLE III. Total cross sectionss tot and cross sections for elastic an
inelastic scatterings,svcc ands rot , obtained by comparative analysis of th
photon echo and stimulated photon echo experimental data. Estimates
gas kinetic cross sectionskin are presented for comparison.

Collision svcc , s rot , s tot , skin ,
partners Å2 Å 2 Å 2 Å 2

SF6– SF6 150<svcc<185 350<s rot<385 535 120
SF6– Xe 120<svcc<280 <160 280 95
SF6– He 20<svcc<105 <85 105 55
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for g (0) in polarized stimulated photon echo experiments
less than value obtained forg (0) from the initial section of
the kinetic curve of the standard photon echo (T12,Tc) and
presented in Table I. The reason for the discrepancy is
elastic collisions cannot be absolutely neglected even
times 0,T12,Tc ; such collisions are always present. Sin
their role increases withT12, it can be concluded that th
discrepancy in the values ofg (0) would not have been so
noticeable if it were possible to advance along the kine
curve of the photon echo to shorter delaysT12, which is
technically very difficult to accomplish. In addition, whe
the delay time decreases to approximately half the pulse
ration it becomes necessary to take account of the relaxa
during the application of a pulse.16

4. DISCUSSION

The data in Tables I and II make it possible to estim
the cross sections for inelastic~rotational! relaxation of SF6
in collisions with He and Xe as well as the cross sections
scattering of SF6 by small angles in collisions with thes
buffers, using the relationss rot5g (0)/nv rel and svcc5(G tot

2g (0))/nv rel . The results of these estimates are presente
Table III. The gas kinetic cross sections obtained for co
sional pairs from data on the viscosity and diffusion
gases17 in the hard-sphere model are also presented for c
parison.

It is evident from Table III that the elastic scatterin
cross section for a heavy active SF6 particle is greater for
collisions with a heavy buffer than for collisions with a ligh
buffer. This assertion is also true for the cross sections
inelastic processes.

Our experimental value ofs rot for SF6– SF6 collisions
was found to be at least three times greater than the valu
the gas-kinetic cross sectionskin calculated from the viscos
ity and diffusion coefficients. The relations rot'3skin fol-
lowing from Table III means that the relaxation of the no
equilibrium population of a rotational sublevel of SF6 is on
the average three times more frequent than gas-kinetic c
sions. This surprising fact for a nonpolar molecule can
explained if it is assumed that there exists an excha
mechanism of rotational relaxation.14

In the rotational relaxation model18 the average numbe
Zrot of gas-kinetic collisions required to establish equilibriu
with respect to the rotational states can be determined a

Zrot5
3~112b!2

8b
,

which holds for ‘‘rough sphere’’ molecules,18 which general
physical considerations show SF6 molecule to be. Hereb
5I /ma2, whereI is the moment of inertia of the active pa
ticles, m is the reduced mass, anda is the sum of the mo-
lecular radii of the colliding particles. If identical particle
collide ~the case of a pure SF6 gas!, thenb51/2, Zrot53, and
therefores rot'skin/3. This estimate differs by an order o
magnitude from the values obtained in our experiments.
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5. CONCLUSIONS

Photon and stimulated photon echo methods mak
possible to study different types of collisions: rotationa
inelastic collisions, elastic scattering by small angles, a
depolarizing collisions.

Our investigation of the decay kinetics of a photon ec
in a wide range of delays between the exciting pulses
demonstrated that it is possible to distinguish the contri
tions of the elastic and inelastic processes in the decay
photon echo. In addition, the sections of the kinetic curve
a photon echo with different decay rates are more clea
distinguishable in pure SF6 gas. For gas mixtures elastic an
inelastic processes can be distinguished by using a he
buffer gas.

For elastic and inelastic scatterings of SF6 in gas mix-
tures, the collision cross sections increase with the mas
the buffer particles.

The stimulated photon echo method made it possible
investigate depolarizing collisions by measuring the rel
ation rates of the populations, orientation, and alignme
The orientation and alignment relaxation rates measured
the stimulated photon echo method can be used to determ
the upper limit on the inelastic relaxation rates, which can
be measured directly by the photon echo method in mixtu
of SF6 with a buffer gas.

A combined analysis of the data obtained by photon a
stimulated photon echo methods gave a complete set of c
sections for elastic and inelastic processes for the collisio
pairs SF6– SF6 , SF6– Xe, and SF6– He.
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Éksp. Teor. Fiz.63, 1173~1972! @Sov. Phys. JETP36, 619 ~1973!#.

10V. P. Chebotayev and L. S. Vasilenko, Progr. Quant. Electr.8~2! ~1983!.
11A. P. Kol’chenko, S. G. Rautian, and A. M. Shalagin, Preprint No. 4

Institute of Nuclear Physics, Siberian Branch of the Soviet Academy
Sciences, Novosibirsk~1972!.

12V. P. Kochanov, S. G. Rautian, and A. M. Shalagin, Zh. E´ksp. Teor. Fiz.
72, 1358~1977! @Sov. Phys. JETP45, 714 ~1977!#.

13L. S. Vasilenko, N. N. Rubtsova, and E. B. Khvorostov, Zh. E´ksp. Teor.
Fiz. 113, 826 ~1998! @JETP86, 450 ~1998!#.



c

.

29JETP 89 (1), July 1999 Rubtsova et al.
14N. N. Rubtsova, Doctoral Dissertation in Physical and Mathematical S
ences, Novosibirsk~1997!.

15L. S. Vasilenko and N. N. Rubtsova, Laser Phys.7, 903 ~1997!.
16A. V. Durrant and J. Manners, Opt. Acta31, 1167~1984!.
17Reference Data on Physical Quantities, edited by I. S. Grigor’ev and E. Z
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A new method is proposed for describing selective excitation as the addition of information to a
thermodynamic system of atoms, decreasing the entropy of the system as a result. This
information approach is used to calculate the light-induced drift velocity. The computational
results are in good agreement with experimental data. ©1999 American Institute of Physics.
@S1063-7761~99!00607-1#
s i
o

e
on
a
o

f
e
a
d
T
iti
a

ex
s

o
or

ll’s

a

y
h
in
a

h
ow
e
cle

l-
t-
rs

tly
pler

nd
n of
f at-
ince
e to
a-

of
wn
s is
ho-
irre-

res-
an
, so
re.
n
the

be
rtur-
ted.
not
n-
rted
ure
g in
the
rk

opy
nfor-
1. INTRODUCTION

The observance of the second law of thermodynamic
for all practical purposes, never considered in the study
the interaction of laser radiation with matter. It is assum
that this law is observed automatically because of the str
increase in the entropy of the photons. Since this law is
inequality for strongly nonequilibrium processes, it cann
be used to calculate some parameters on the basis o
other parameters. However, in certain cases of selective
citation and of the collective process which it engenders,
atomic system whose internal energy remains constant an
which no heat is transferred can be studied separately.
action of the laser radiation can be described as the add
of information to the system. Light appears to mark the
oms that possess a prescribed property. In such a system
process is close to equilibrium, and the inequality in the
pression for the second law of thermodynamics become
equality.

In Ref. 1 a generalized formulation of the second law
thermodynamics is proposed for an isolated system. Acc
ing to Ref. 1, the entropy increasedH together with the
informationdI entering the system satisfy the inequality

dH1dI>0, ~1!

where

I 5kB(
i

Pi ln Pi ~2!

is the information. The termdI is added in connection with
the discussion of the influence of the so-called Maxwe
demon.

The second law of thermodynamics without the inform
tion term, which, conventionally, can be neglected sincekB

is small, is ordinarily used to describe various thermod
namic processes. In the present paper it is shown that w
information is recorded on each atom of the system the
dicated term plays an important large role and can decre
the entropy.

As an example of such a process we shall consider lig
induced drift, which was predicted in Ref. 2 and has n
been well studied.3–6 The crux of the effect is that ther
appears a directed macroscopic flux of absorbing parti
301063-7761/99/89(1)/5/$15.00
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which interact with a traveling light wave and undergo co
lisions with buffer-gas particles. Most experiments on ligh
induced drift have been performed with alkali-metal vapo
in an inert-gas atmosphere.

Laser radiation with frequencyv8 close to the frequency
v0 of the main transition of an atom excites predominan
atoms having a velocity such that the corresponding Dop
frequency shiftk•v (k is the wave vector! compensates the
frequency offsetv82v0 . Therefore a dip near the velocityv
appears in the velocity distribution of atoms in the grou
state and a corresponding peak appears in the distributio
the atoms in the excited state. The average velocities o
oms of each kind are nonzero and oppositely directed. S
the excited atoms are subject to a greater resistance du
the buffer gas, the total flux of gas interacting with the r
diation is likewise nonzero.

The question of the entropy change in such a system
atoms and photons is briefly considered in Ref. 7. It is sho
there that the entropy decrease in the system of atom
much smaller than the entropy increase in the system of p
tons. The total entropy increases, and the process is
versible.

However, the atoms can be studied separately. The p
sure in experiments with light-induced drift is much less th
atmospheric pressure, and the temperature is near 400 K
that the ideal-gas model is quite applicable to the mixtu
The interaction cross section~which changes when a photo
is absorbed! does not appear in the equations describing
behavior of the thermodynamic parameters. Hence it can
assumed that this ideal gas is not subject to external pe
bations and that the system is thermodynamically isola
The entropy and internal energy of such a system do
change. But the light-induced drift itself testifies that the e
tropy decreases, since part of the internal energy is conve
into ordered motion, as a result of which the temperat
decreases. This contradiction can be resolved by keepin
mind that the light adds to the system information about
direction of motion of the particles. Light appears to ma
the atoms moving in a prescribed direction. Then the entr
decrease in the system does not exceed the amount of i
mation entering the system.
© 1999 American Institute of Physics
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2. SECOND LAW OF THERMODYNAMICS FOR
AN ADIABATICALLY ISOLATED SYSTEM

The characteristic transition time to the drift state
identical to the free-flight timet of a metal atom. When this
time has elapsed, the velocities of the atoms change,
information is lost and rerecorded by a new flux of photo
At such short times heat-exchange with the thermostat ca
neglected and the system can be assumed to be adiabat
closed. In addition, drift with a constant velocity is an eq
librium process. Then the expression~1! becomes an equality

dH52dI. ~3!

3. THE ENTROPY CHANGE AND THE DRIFT VELOCITY

According to the law of conservation of momentum, t
flux of metal atoms~sodium in most experiments! is com-
pensated by an opposite flux of the buffer gas:

umNanNa5ugmgng , ~4!

whereu andug are the velocities andmNa andmg the masses
of the molecules, andnNa andng are, respectively, the con
centrations of sodium and buffer gas. Since entropy is a
tive, the entropy change can be written as

DH5NgDHg1NNaDHNa,

whereNNa andNg are the numbers of metal and buffer-g
atoms, respectively. In the mixtures employed, the me
concentration is more than 106 times lower than the buffer
gas concentration. No large changes in the entropy of
metal occur. Therefore the second term can be neglected
the buffer-gas concentration can be assumed to be the s
as the mixture concentrationn.

The ideal gas model can be used to determine the
tropy change. Then we have per mole

DH5
3

2
R ln

Tf

Ti
,

whereTi andTf are the initial and final temperatures andR
is the universal gas constant.

The appearance of a macroscopic flux with drift veloc
ug means~for constant internal energy of the system! that the
temperature decreases by the amountmug

2/3kB . Then

DH5
3

2
R ln S 12

2ug
2

3vg
2D , ~5!

wherevg
2 is the mean-square thermal velocity of the buffe

gas atoms.
Substituting the expression~3! into Eq.~5! and then into

Eq. ~4! gives the drift velocity as a function of the informa
tion:

u5
mgn

mNanNa
Avg

2F12expS 2DI

3 D G . ~6!
nd
.
be
ally

i-

al

e
nd
me

n-

-

4. INFORMATION AND THE PROBABILITY OF ABSORPTION
OF A PHOTON

The information recorded on each sodium atom is de
mined by the expression

i ~P!5kB@P ln P1~12P!ln~12P!#, ~7!

whereP is the probability that an atom moving in one of tw
directions will be marked by being transferred into an e
cited state. In what follows, we shall study a on
dimensional problem and we shall assume the velocity to
its projection on the direction of propagation of the beam

Since information is recorded on each sodium atom,
amount of information added to the system isnNA times
greater (n is the fraction of sodium atoms in the mixture an
NA is Avogadro’s number!.

From Eq.~7! follows

DI 5nR@P ln P1~12P!ln~12P!#. ~8!

The maximum amount of information will be added
the system if a wide-band laser radiation marks all me
atoms moving in the same direction and does not mark
atom moving in a different direction, i.e., ifP51/2. This is
possible if the spectrum of the laser radiation ‘‘covers’’ e
actly half the Doppler spectrum, i.e., the laser spectrum
cays rapidly in the wings. This same conclusion can
drawn on the basis of a complicated kinetic investigation5

We shall now calculate the probabilityP of information
begin recorded on a single atom about the direction of m
tion of the atom.

The information recording time is the time interval du
ing which the velocity of an atom does not change mu
This time is close tot, if the buffer-gas atoms are heavie
than the metal atoms and one collision is sufficient for inf
mation about velocity to vanish. In the general case it
t(11mNa/mg).

The number of photons with frequencyv ~wavelength
l) entering the region of interaction with an atom over th
time is determined by the expression8

M5
J

\v
stS 11

mNa

mg
D ,

where J is the radiation intensity ands is the interaction
cross section neglecting Doppler broadening, since the la
will be taken into account separately, and collision broad
ing, since phase interruption does not occur over the fr
flight time. Then

s5
l2Dv

4Dv l
,

whereDv is the natural linewidth andDv l is the width of
the laser spectrum.

Each of these photons interacts with an atom with pr
ability PD , taking account of the dependence of the tran
tion frequency of an atom on its velocity. The probabilityPD

is given by Maxwell’s distribution~since the frequency and
velocity are uniquely related by the relationv2v0

52pv/l):
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PD5A exp
~v2v0!2

a2
,

wherea52pA2kBT/mNal
2 and A is a normalization con-

stant.
What is the probability of a given direction bein

marked? The difficulty of this question is due to the fact th
the absorbed photon contributes information not only ab
the direction of motion of the particle but also abo
the velocity of the particle. To take account of the effect
the velocityv of the marked particles on the drift velocit
u it is convenient to representv in the discrete form
v i5Dv@v/Dv#, where @x# is the integer part ofx and
Dv5lDv/2p plays the role of the resolving power of th
radiation measuring the velocity. We shall consider the c
Dv!Av2. Then the motion of a single particle with velocit
v i is equivalent to the motion ofi quasiparticles each movin
with velocity Dv in the same direction. Thus, we obtain
gas of quasiparticles with velocitiesDv and2Dv differing
only by the direction of motion. The interaction can be a
sumed to mark one of thei such particles but with a
i 5@v/Dv# times greater probability

Pi5Auv i2v0uexp
~v i2v0!2

a2
. ~9!

Here we took account of the fact thatv/Dv5(v2v0)/Dv
and we have incorporated allv i-independent factors into th
normalization constant. To sum the probabilities~9! in order
to calculate the normalization constant, it is convenient
use the fact thatDv!a and to switch to integration. We
obtain

Pi5
Dv

a2
uv i2v0uexp

~v i2v0!2

a2
.

Switching back to continuous frequencies does not in
duce any substantial changes:

P~ int!5
Dv

a2
uv2v0uexp

~v2v0!2

a2
~10!

is the probability that one photon, which has entered
region of interaction with an atom, interacts with the ato
~int! and records information about the direction of motion
this atom.

It is necessary that over the free-flight time the inter
tion has occurred an odd number of times, since if the fi
interaction transfers the atom into an excited state, then
second interaction leads to induced emission, the third in
action once again excites the atom, and so on. Therefor
even-numbered interactions erase information. The ave
number of interactions isP(int)M . The probability of the
number of interactions being odd is probability ifP(int)M
;1. Then the probability of three or more interactions can
neglected. We obtain the probability that over the free-flig
time information about the direction of motion of an ato
will be recorded on the atom and not erased:

P5P~ int!M @12P~ int!#M21. ~11!
t
t
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Substituting the expression~11! into Eq. ~8! and then
into Eq. ~6! we find the frequency dependence of the dr
velocity. This dependence has a characteristic, centros
metric relative to the point (v0,0), tilda-shaped form. The
expression~6! makes it possible to find analytically the op
timal radiation intensity and the optimal pressurep ~on
which the free-flight time depends ast;1/p).

5. THREE-LEVEL MODEL OF LIGHT-INDUCED DRIFT

The dependences of the drift velocity on the frequen
and intensity of the laser radiation and on the type and p
sure of the buffer gas have been obtained in Ref. 6, wh
experimental results on light-induced drift of sodium in ine
gases~zenon, argon, and helium! are presented. To compar
the above-described theory with experiment, a more reali
scheme of Na levels, taking account of the hyperfine splitt
of the 32S1/2 ground state into two levels —F1 with degen-
eracy g153 and F2 with degeneracyg255 (Dvh f s

52p•1772 MHz) — must be considered. This splitting is
the same order of magnitude as the Doppler broadenin
the spectral lines and introduces an uncertainty in the rec
ing of information about the direction of motion of a sodiu
atom.

The probability of excitation of an atom is once aga
given by Eq.~11!, but Eq.~10! cannot be used to determin
P(int). The fact that an electron can undergo a transit
from the levelF1 or from the levelF2 with probabilities

P15
Dvg1

~g11g2!Apa
exp

~v2Dvh f s!
2

a2

P25
Dvg2

~g11g2!Apa
exp

v2

a2
, ~12!

respectively, must be taken into account. The frequenc
measured with respect to the frequency of the transition
quency from theF2 level. The probabilityP(int) is given by
the sum ofP1 andP2 :

P~ int!5
Dv

~g11g2!Apa
S g1 exp

~v2Dvh f s!
2

a2
1g2 exp

v2

a2D .

~13!
If the ground state is split, the interaction itself does n

uniquely mark the direction of motion of an atom, as ha
pened in the two-level model. ThereforeP(int) does not de-
termine the information recorded on an atom, but rathe
simply gives the number of atoms participating in the reco
ing of information. The information itself is determined b
the conditional probabilityP(t dir/int) of error-free~t! deter-
mination of the direction~dir! provided that an interaction
occurred at frequencyv. The expression~8! can be rewritten
as

DI 5nRP i~P@ t dir/int!#. ~14!

If an interaction has occurred at a frequency in the int
val v6Dv/2, then there are only two possible variants: T
direction of a particle is determined incorrectly~f! or cor-
rectly ~t!:
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P~ t dir/int!512P~ f dir/int!. ~15!

It is simpler to findP(f dir/int) as

P~ f dir/int!5
P~ f dir!

P~ int!
,

whereP(f dir) is the probability that the interaction occurs
frequencyv and in the process the direction of motion of t
atom which has interacted with the light will be indicate
incorrectly.

Evidently, the direction of motion of the marked ato
depends on the type of ground state:F1 or F2. Once again
there are only two variants: the type of ground state is de
mined uniquelyP(1) or nonuniquelyP(2). HenceP(f dir)
can be represented as

P~ f dir!5(
j 51

2

P~ f dir/ j !P~ j !.

P(1) is the sum of the probabilities that the type of t
particlesF1 andF2 is determined uniquely:

P~1!5P1~12P2!1P2~12P1!,

FIG. 1. Drift velocity u versus the offsetv of the laser frequency. Compu
tational results~lines! and experimental data6 ~dots!: 1 — helium (D),
p510 torr, J512 W/cm2; 2 — argon (d), p58.1 torr, J58 W/cm2; 3 —
xenon (s), p52.1 torr, J512 W/cm2.

FIG. 2. Drift velocity versus the laser radiation intensityJ. Computational
results~lines! and experimental data6 ~dots!: 1 — helium (D), p56 torr,
v51.1 GHz;2 — argon (d), p58.1 torrv520.3 GHz;3 — xenon (s),
p51.4 torr, v51.1 GHz.
r-

whereP1 and P2 are given by the expressions~12!. Corre-
spondingly, the probability of nonunique determination is

P~2!52P1P2

and has a maximum between the frequencies of the tra
tions from the levelsF1 andF2.

If the ground state is determined uniquely, the probab
ity of an error in determining the direction is zero:

P~ f dir/1!50.

If the level is not determined uniquely, the probability
an error in determining the direction is the same as the pr
ability of determining any direction. We have similarly to th
expression~10!

P~ f dir/2!5
Dv

~g11g2!a2Ug1~v2Dvh f s!

3exp
~v2Dvh f s!

2

a2
1g2v exp

v2

a2U . ~16!

Substituting the expression~15! into Eq. ~14! and the
expression~14! into Eq. ~6! gives the frequency-dependenc
of the drift velocity.

In Figs. 1–4 the theory is compared with the results
the experiment described in Ref. 6.

To obtain the theoretical curves the ration of the sodium
and buffer-gas concentrations was treated as an adjus
parameter, since its value was not given in Ref. 6. Howev
it should be noted that this parameter alone makes it poss
to obtain the correct dependences of the drift velocity on f

FIG. 3. Drift velocity versus the pressurep for xenon withJ510 W/cm2

andv51.15 GHz.

FIG. 4. Drift velocity versus the type of buffer gas,p55.4 Torr,
J512 W/cm2, andv51.1 GHz.
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different parameters for xenon and argon. For helium
transition time to the drift state is also an adjustable para
eter, since the approximations employed are inapplicabl
the mass of a metal atom is much greater than the mass
buffer-gas molecule.

The drift velocity y as a function of the offset of the
laser frequencyv, measured from the frequency of the tra
sition F2, is shown in Fig. 1 for various buffer gases, rad
tion intensitiesJ, and pressuresp.

It is evident that the theoretical and experimental res
for argon and xenon are in good agreement with one anot
In contrast to the similar curves in the two-level model, o
plot becomes asymmetric.

For helium the theory gives only an approximate d
scription, since if the mass of the buffer-gas atoms is sma
cannot be assumed that information about the direction
motion of a metal atom is erased after one collision. T
discrete-time description is not completely applicable
such systems.

Figure 2 shows the drift velocity as a function of th
laser radiation intensityJ.

The drift velocity increases with the radiation intens
up to a certain value corresponding to saturation. Satura
is possible beacues over the free-flight time an atom
interact twice with the radiation. This leads to induced em
sion and erasure of information. The existence of a ma
mum in the drift velocity as a function of pressure can
explained similarly.

Figure 3 shows the drift velocity as a function of pre
surep for xenon. Finally, Fig. 4 shows the drift velocity as
function of the type of buffer gas.

An important result is that agreement with the expe
mental data is achieved neglecting many seemingly imp
tant factors, for example, neglecting the change in the s
tering cross section of an atom on absorption of a photon
neglecting the real, complicated structure of the energy
els of sodium. This is because the drift velocity is expres
in terms of the thermodynamic parameters and therefore
not depend on many ‘‘model refining’’ parameters, just
it does not depend on the positions and velocities of e
particle.
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Generalizing this result, it can be stated that the beha
of a complicated~i.e., described by a large number of diffe
ent parameters! system is similar to that of a random system
The complexity could be due not only to the large number
particles, but it can also be due to the large number of fac
influencing the process. Such a complicated system sh
be described by statistical laws in the language of thermo
namic parameters.

6. CONCLUSIONS

The foregoing analysis has shown that there exist r
physical processes whose description requires the second
of thermodynamics in the generalized formulation given
Stratonovich, i.e., taking account of the information enter
the system. One such process is selective laser excitatio
metal atoms in a buffer gas. Taking account of the inform
tion introduced into the gas mixture makes it possible
calculate the light-induced drift velocity and to obtain go
agreement with the experimental data on the basis of a c
paratively simple model. It has been shown that a thermo
namic system can mean not only a system consisting o
large number of particles but also a system described b
large number of parameters.

I am deeply grateful to Yu. A. Kravtsov for an interes
ing discussion and a number of valuable remarks and B
Grishanin and A. S. Chirkin for reading the manuscript a
for helpful suggestions for improving it.
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The nonlinear Schro¨dinger equation, where the nonlin
earity corresponds to an effective attraction, arises in m
physical problems. It appears that such an equation was
obtained in an investigation of strong Langmuir turbulen1

and in the problem of self-focusing of wave beams.2 Subse-
quently, the nonlinear Schro¨dinger equation was actively in
vestigated irrespective of the physical problem giving rise
it.3 In dimensionless variables the nonlinear Schro¨dinger
equation~NLS! is ordinarily written in the simple form

i
]c

]t
1Dc1ucu2sc50, ~1!

wherec is a scalar function in ad-dimensional space andD
is the Laplacian operator.

The uniform statec5aexp(ia2st) is unstable with re-
spect to infinitesimal disturbances for anys.0 @the disper-
sion law isv25K2(K222sa2s), c5(a1dc)exp(ia2t)].

For sd,2, it appears that states of the form

c (r ,t)5exp~2 ivt !c̃~r !,

where c̃(r ) is a periodic function of the coordinates, a
realized. Forsd>2 Eq. ~1! possesses solutions with a si
gularity at a finite timet0 . We shall investigate such solu
tions below. The equation~1! conserves the total number o
‘‘particles’’ and the total energy. We find for the particle flu
density j n the standard equation

j n5 i ~c¹c* 2c* ¹c!, ¹[grad. ~2!

The energyEV in a volumeV is given by the expression

EV5
1

2 EV
ddr H u¹cu22

1

11s
ucu2(11s)J . ~3!

Using Eqs.~1! and ~3! we easily find

]EV

]t
5

1

2 ES
S ¹c*

]c

]t
1

]c*

]t
¹c DdS. ~4!

The equations~2! and ~4! will be used below to obtain
the singular solutions of Eq.~1!.

We shall seek the collapsing solution of Eq.~1! in a
d-dimensional space in a spherically symmetric form

c~r ,t !5ŵ~r,t !exp~ ix~r,t !!, ~5!
351063-7761/99/89(1)/6/$15.00
y
rst

o

wherer5ur u and ŵ is a real function.
In contrast to Refs. 1 and 3, we shall seek the collaps

solution in the form

ŵ~r,t !5l (t)
d/2w~rl~ t !! ~6!

without imposing any preliminary constraints on the pha
x.

Let N(r0 ,t) be the number of particles inside a sphere
radiusr0 . Then Eqs.~2!, ~5!, and~6! give

]N~r0 ,t !

]t
5ar0

]l

]t
~r0l!d21w2~r0l!

522a
]x

]r
ldr0

d21w2~r0l!, ~7!

wherea[a(d) and is determined from the relations

dV5adrrd21, S(r)5ard21, a5
2pd/2

G~d/2!
. ~8!

In Eq. ~8! S(r) is the area of a sphere of radiusr. From Eq.
~7! we find

r0

]l

]t
522

]x

]r
l. ~9!

The general solution of this equation is

x~r,t !5x0~ t !2
r2

4l

]l

]t
, ~10!

where the functionsx0(t) andl(t) depend only on the time
t.

Another equation — expressing the quality of the ene
flux through a surface to the change in the energy flux ins
the volume — arises from Eqs.~3! and ~4!:

yd21H w8~y!S yw8~y!1
d

2
w (y)D2

y

2l2
w (y)

2 S ]x0

]t

2
y2

4l2

]

]t S 1

l

]l

]t D D J 5
1

2
ydF ~w8!21

y2w2

4l6 S ]l

]t D
2

2
lds22

w2(11s)G1Ey

dyyd21H ~w (y)8 !2
11s 0

© 1999 American Institute of Physics
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1
w2

8l
y2F ]

]t S 1

l4 S ]l

]t D
2D G Y

]l

]t
2

dslds22

2~11s!
w2(11s)J , ~11!

wherey5r0l. Let us assume thatl(t) is a power-law func-
tion of the form

l;~ t02t !2n. ~12!

Then from Eq.~11! we find

1

l4

]

]t S 1

l

]l

]t D;~ t02t !4n22,

1

l6 S ]l

]t D
2

;~ t02t !4n22,

1

l F ]

]t S 1

l4 S ]l

]t D
2D G Y ]l

]t
;~n21!~ t02t !4n22. ~13!

From Eqs.~13! it follows that there exist two values of th
parametern, n51 andn51/2, for which Eq.~11! can pos-
sess an exact solution in the case of the critical dimens
ds52. If dsÞ2, then there exists one distinguished value
the parametern,

n5
2

21ds
, ~14!

for which the time-dependence of the ‘‘leading-order’’ term
is the same. Setting the sum of these terms to zero in
region ds.2 gives an equation for the collapsing functio
in the leading-order approximation.

For the critical dimensionds52 it follows from Eqs.
~13! that the values of the parametern fall into two subre-
gions,n,1/2 andn.1/2.

The behavior of the function (t02t)4n22 changes at the
boundary (n51/2) of these regions.

We shall now consider the most interesting case of
critical dimensionds52. We shall investigate first the pa
ticular valuesn51 and 1/2 for which the system of equ
tions ~10! and ~11! possesses an exact solution.

a. n51. In this case@see Eq.~13!#

l5
C

t02t
. ~15!

From Eq.~11! follows an equation for the phasex0(t):

]x0

]t
5C2l2, x0~ t !5

C2C2

t02t
1const. ~16!

Using Eqs.~15! and ~16!, Eq. ~11! can be written as

S y2d/211
]

]y
~yd/2w! D H 1

yd21

]

]y S yd21
]w

]y D
2C2w1w2s11J 50. ~17!

A simple check shows that the function
n
f

he

e

c~r,t !5l (t)
d/2w~rl~ t !!expH iC2C2

t02t
2

ir2

4~ t02t !
1 i constJ

~18!

is an exact collapsing solution of Eqs.~1!, where the function
w(r) is a solution of the ordinary differential equation

1

rd21

]

]r S rd21
]w

]r D2C2w1w2s1150. ~19!

It follows from Eq. ~19! that a ~normalized! solution
decreasing rapidly at infinity exists only forC2.0. This so-
lution has been obtained and investigated in Refs. 4–6.

We note that forC2.0 two types of asymptotic behav
ior are possible at infinity:

w;~C2!1/2s1A sin~A2sC2r1const!/r (d21)/2,

which arises on a two-parameter family of solutions, and

w;
const

r (d21)/2
exp~2AC2r!,

which can be realized only on a one-parameter family
solutions.

We shall now consider the second family of solutions
Eqs.~10! and ~11! corresponding to the casen51/2.

b. n51/2. In this case@see Eq.~13!#

l25
C

t02t
,

]x0

]t
5C2l2, x052C2C ln~ t02t !1const.

~20!

Using Eqs.~20!, Eq. ~11! can be put into the form

H y2d/211
]

]y
~yd/2w!J H 1

yd21

]

]y S yd21
]w

]y D
2C2w1

y2w

16C2
1w2s11J 50. ~21!

We shall examine the solutionw of Eq. ~21! that causes
the expression in the second set of braces to vanish:

1

rd21

]

]r S rd21
]w

]r D2C2w1
r2w

16C2
1w2s1150. ~22!

This equation corresponds to the motion of a particle in
field with the potentialU, shown in Fig. 1, to which a term
depending on the dimensiond of the space must be added

1

r2

~d21!~d23!

4
. ~23!

In the regionr!1 we find from Eq.~21! a solution that
is regular at the origin:

w5A1
r2A

2d
~C22A2s!1

r4A

4~d12!

3F 1

2d
~C22A2s!~C22~2s11!A2s!2

1

16C2G1 . . . ,
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whereA.0 is an arbitrary constant. In the regionr@1 the
asymptotic behavior ofw is determined by the expression

w;
B

rd/2
sinH r2

8C
22CC2 ln r1constJ ,

whereB is a constant that depends on$A, C, C2%. It is easy
to verify that for all values of the constants$A, C, C2% the
function w has no singularities at finite values ofr.

There exists a region of values of the parametersC, C2 ,
and w(0) where the solution of Eq.~22! outside of the po-
tential barrier is exponentially small. Let

r* [r* ~C,C2 ,w~0!! ~24!

be the first zero of the functionw(r). We set

w̃~r!5H w~r! for r,r* ,

0 for r.r* .
~25!

Then the collapsing solutionc(r,t) of Eq. ~1! is given by
the expression

c~r,t !5l (t)
d/2w̃~rl~ t !!expH 2 iCC2 ln~ t02t !

2
ir2

8~ t02t !
1 i constJ 1c1~r,t !, ~26!

wherec1(r,t) is the solution of the linear inhomogeneo
equation

i
]c1

]t
1Dc11ucu2sc11s@ ucu2sc11ucu2(s21)c2c1* #

2S ]w (r)

]r D
r*

l (t)
d/211 expH 2 iCC2ln~ t02t !

2
ir2

8~ t02t !
1constJ dS r2

r*

l (t)
D50, ~27!

FIG. 1. Form of the potential energyU52w4/32r 2/16C2 for Eq. ~22!,
$A,C,C2%5$3.4,1,1%, d53.
c1(r,t* )50, andt* is the onset time of collapse.
We note that increasing the parameterC increases the

width of the subbarrier region and at the same time decre
sharply the probability of formation of an initial fluctuatio
leading to collapse. Therefore fluctuations for whi
C;C2;1 andC2 passes near the top of the potential barr
evidently are most likely to lead to collapse.

The values of the functionw in three-dimensional spac
(d53) are presented in Fig. 2 for two sets of paramet
$A, C, C2% — $3.4, 1, 1% and$5.5937, 2, 1.5%. The values of
r* and w8(r* ) are, respectively,$r* 54.815, w8(r* )
520.082% and$r* 513.13,w8(r* )522.63•1023%.

c. n.1/2. In this case

l~ t !5
C

~ t02t !n
,

]x0

]t
5C2l2. ~28!

For n.1/2 only the ‘‘leading-order’’ terms in Eq.~11!,
which grow most rapidly as the singular pointt0 is ap-
proached, can be set equal to zero. Using Eqs.~28! and~11!
we obtain the following equation for the functionw:

H y2d/211
]

]y
~dd/2w!J H 2C2w1w2s11

1
1

yd21

]

]y S yd21
]w

]y D J 50. ~29!

The collapsing solution of Eq.~1! for n.1/2 has the form

c~r,t !5l (t)
d/2w~rl~ t !!expH iC2C2

~2n21!~ t02t !2n21

2
ir2n

1 i constJ 1c1~r,t !, ~30!

FIG. 2. The functionw for the parameters$A,C,C2%5$3.4,1,1% ~1! and
$5.5937, 2, 1.5% ~2!.
4~ t02t !
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wherew(r) is the solution of Eq.~19! ~for it the expression
in the second set of braces in Eq.~29! vanishes!, and the
functionc1 is the solution of the linearized equation~1! with
right-hand side arising as a result of the nonvanishing of
small residual terms in Eq.~11!. A detailed investigation of
the functionc1 will be given separately.

d. n,1/2. Vanishing of the leading terms in Eq.~1!
gives the equation

H y2d/211
]

]y
~dd/2w!J H 2C2w1

n~12n!

4
y2wJ 50, ~31!

where

l5
C

~ t02t !n
,

]x0

]t
5

C2

C2
~ t02t !2n22. ~32!

Vanishing of the expression in the second set of brace
Eq. ~31! does not lead to a nontrivial solution.

e. We shall now consider the case of supercritical dim
sion ds.2. In this case
-

e

in

-

n5
2

21ds
, l5

C

~ t02t !n
,

]x0

]t
5

C2

l2~ t02t !2
,

1

l

]l

]t
5

n

t02t
. ~33!

Substituting the expressions~33! into Eq. ~11! and equating
to zero the terms which are of leading order in the param
(t02t)21, we obtain an equation for the functionw

H y2d/211
]

]y
~yd/2w!J H 2C2w1

n~12n!

4
y2w

1Cds12w2s11J 50. ~34!

From Eq.~34! we find
w~y!5H FC22
n~12n!

4
y2G1/2sY Cd12/s, y,2S C2

n~12n! D
1/2

,

0, y.2S C2

n~12n! D
1/2

.

~35!
-

Thus fords.2 the collapsing solutionc(r,t) is

c~r,t !5l (t)
d/2w~rl~ t !!expH 2

inr2

4~ t02t !

1
iC2

~122n!C2~ t02t !122n
1 i constJ 1c1~r,t !,

~36!

where the functionw(r) is determined by Eq.~35!. Just as in
the casec @Eq. ~30!#, the functionc1(r,t) is the solution of
the linearized equation~1! with right-hand side arising be
cause of the nonvanishing of the residual terms in Eq.~11!.
A detailed investigation of the functionc1 will be given
separately.

For s51 a solution of the form~33! and ~35! in the
three-dimensional case has been obtained in Ref. 7.

f. Weak collapse.
In the supercritical region (sd.2) Eq. ~1! can have

exact collapsing solutions of the form

c~r,t !5lñw~rl!exp~ ix!, ~37!

where l5l(t), x5x(r,t), and ñ is a constant. For
ñÞd/2 Eq. ~7! for the phase assumes the form

22
]x

]r
5

r

l

]l

]t
1

2ñ2d

w2~y!

1

yd21

1

l2

]l

]t E0

y

dy yd21w2~y!.

~38!
From Eqs.~3! and ~37! we find

EV5
a

2 E
0

r

dr rd21

3H w2l2ñS ]x

]r D 2

1l2ñ12~w8!22
l2ñ(11s)

11s
w2(11s)J ,

]EV

]t
5al2ñrd21H ~ ñw1yw8!w8

]l

]t
1

]x

]t

]x

]r
w2J . ~39!

For all terms in Eqs.~38! and ~39! to have the same time
dependence the following conditions must be satisfied:

ñs51, x~r,t !5x0~ t !1x̃~rl!,

1

l3

]l

]t
5const,

]x0

]t
;

1

l

]l

]t
. ~40!

From Eqs.~40! we find

l5
C

At02t
, x0~ t !52

C1

2
ln~ t02t !,

1

l3

]l

]t
5

1

2C2
,

]x0

]t
5

C1l2

2C2
. ~41!

We now consider the cased53, s51. Using Eqs.~41!, Eqs.
~38! and~39! for the phasex̃ and modulusw can be put into
the form
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x̃81
1

4C2 S y2
1

y2w2E0

y

dy y2w2D 50,

1

y2

]

]y S y2
]w

]y D1w32
w

2C2
~C11yx̃8!2w~x̃8!250.

~42!

We note that any solution of the system of equations~42! is
an exact solution of the nonlinear equation~1!. Let

Z5E
0

y

dy y2w2. ~43!

The modulusw and phasex̃ are related simply with the
function Z as

w5
AZ8

y
, x̃852

yZ82Z

4C2Z8
, ~44!

and the functionZ itself is a solution of the ordinary differ
ential equation8

Z-2
~Z9!2

2Z8
1

2~Z8!2

y2
2

1

C2 S C1Z82
y

4C2
~yZ82Z!D

2
~yZ82Z!2

8C4Z8
50. ~45!

In the regiony!1 we obtain from Eq.~45!

Z~y!5Ay31
y5

15S 3AC1

2C2
29A2D 1 . . . , ~46!

whereA.0 is an arbitrary constant. In the regiony@1 the
solution of Eq.~45! is

Z5By2
2BC2C1

y
1

2BC4

y3
~B22C1

2!1 . . . ~47!

The equation~45! admits the existence of poles of the for

Z;2
2y0

2

y02y
. ~48!

However, for A.0 it is impossible to reach such a pol
Since the only possible asymptotic solution of Eq.~45! in the
limit y˜` is determined by Eq.~47!, there exists a three
parameter family of solutions of Eq.~1! of the form ~37!.
These parameters are$A, C, C1%. Just as in the caseb, the
region of physical collapse is bounded: The onset timet* of
collapse corresponds toy,y* . For y.y* we must set
w(y.y* )50, which will result in the appearance of outg
ing waves. For the appropriate choice of the parametersA, C,
and C1 it is possible to makew(y* )/w(0)!1, even if
y* &1. Weak collapse has been studied in Refs. 7 and 9.
have shown that the problem of weak collapse reduce
solving a single ordinary differential equation for the re
function Z, and the solutions form a three-parameter fam
Figures 3 and 4 show the functionsw(y) and x̃8(y) for two
sets of parameters: (A,C,C1)54,2,2 and (A,C,C1)53,1,1.
The ratio w(0)/w(y* ) for the parameters in Fig. 3 i
w(0)/w(y* )571.3 andy* 52.26.
e
to
l
.

g. Weak collapse for arbitrary$d,s%. Once again@Eq.
~43!# we set

Z5E
0

y

dy yd21w2~y!, w~y!5
AZ8

y(d21)/2
. ~49!

The equation for the phase~38! assumes the form

x̃852
yZ81~2/s2d!Z

4C2Z8
. ~50!

An equation for the modulusw(y) can be easily obtained
from Eqs.~1! and ~37!:

FIG. 3. The functionsw and x̃8 for the parameters$A,C,C1%5$4,2,2%.

FIG. 4. The functionsw and x̃8 for the parameters$A,C,C1%5$3,1,1%.
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1

yd21

]

]y S yd21
]w

]y D2wF C1

2C2
1

y

2C2
x̃8G

2w~x̃8!21w2s1150. ~51!

Substituting into Eq.~51! the explicit expressions for th
functionsw and x̃ @Eqs. ~49! and ~50!# we obtain a single
equation for the real functionZ:

Z-2
~Z9!2

2Z8
2

~d21!~d23!

2y2
Z82

1

C2 FC1Z8

2
y~yZ81~2/s2d!Z!

4C2 G2
~yZ81~2/s2d!Z!2

8C4Z8

1
2~Z8!s11

y(d21)s
50. ~52!

The equation~52! is an extension of Eq.~45! to arbitrary
values of$d,s%. There exist three values of the parame
ñ.0 such that fory˜0 the functionZ can be expanded in
the series

Z~y!5Ayñ1A2yñ121 . . . . ~53!

1. The valueñ5d22/s.0 can occur only ifd.2(1
11/s). Then the coefficientA is a single-valued function o
ñ

A[A( ñ)5
~d2 ñ !~ ñ1d24!

4ñ
. ~54!

2. The valueñ5d obtaines for arbitrary dimension an
arbitraryA.0.

3. The valueñ542d obtains only ford,2. The coef-
ficient A.0 is arbitrary. All solutions have the sam
asymptotic behavior fory˜`:

Z5yd22/sS B2
B1

y2
1 . . . D . ~55!
r

Just as in the case$d53, s51%, for arbitrary$d,s% w
must be cut off fory.y* . The most appropriate point fo
this is the position of the deep minimum of the functionw.
Evidently, only the values of the parameters$A, C, C1% for
which such a minimum exists can be realized.

For the critical dimensionds52 exact solutions of the
nonlinear Schro¨dinger equation which have a singularity at
finite time t0 were obtained. These solutions correspond
the parametersn51 and 1/2. It was shown that collapsin
solutions also exist forn.1/2.

Exact solutions of the NLS which describe weak co
lapse in the supercritical regionsd.2 were obtained. These
solutions form a three-parameter family$A,C,C1%.

A collapsing solution arises in a bounded region
space, and an initial distribution of a special form is requir
in order for a singularity to arise. In numerical simulation
in real physical objects collapse will arise from fluctuatio
that lead to collapse and that appear with close to maxim
probability.
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6G. M. Fra�man, Zh. Éksp. Teor. Fiz.88, 390~1985! @Sov. Phys. JETP61,
228 ~1985!#.

7V. E. Zakharov and E. A. Kuznetsov, Zh. E´ksp. Teor. Fiz.91, 1310~1986!
@Sov. Phys. JETP64, 773 ~1986!#.

8Yu. N. Ovchnikov, JETP Lett.69, 418 ~1999!.
9V. E. Zakharov and L. N. Shur, Zh. E´ksp. Teor. Fiz.81, 2019~1981! @Sov.
Phys. JETP54, 1064~1981!#.

Translated by M. E. Alferieff



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 89, NUMBER 1 JULY 1999
Simple analytical representation for Delbru ¨ ck scattering amplitudes at high energies
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We use a new representation for the semiclassical Green’s function of the Dirac equation in the
Coulomb field to find an exact~in the parameterZa) expression for the amplitudes of small-
angle Delbru¨ck scattering of high-energy photons. The values of these amplitudes agree with those
obtained in earlier calculations, but the structure of the expressions is much simpler than
that of previously known representations, which makes numerical calculations much easier.
© 1999 American Institute of Physics.@S1063-7761~99!00807-0#
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In recent years the process of Delbru¨ck scattering1 ~the
coherent photon scattering in the electric field of atoms
virtual electron-positron pairs! has been thoroughly studie
by theoretical and experimental methods.2 From the theoret-
ical viewpoint, the process is interesting because of the
portant role of the higher-order terms in the perturbatio
theory series in the parameterZa(Zueu is the nuclear charge
a5e251/137 is the fine-structure constant,e is the electron
charge, and\5c51). The range of high photon energie
v@m (m is the electron mass!, is especially important in
studies of Delbru¨ck scattering by experimental methods.
significant increase in the accuracy of measuring the D
brück scattering cross section was achieved in a rec
experiment3 conducted at the G. I. Budker Nuclear Phys
Institute with 140–450-MeV photons in the 2.6 to 16.6 mr
scattering-angle range. Exact~in Za) expressions for the am
plitudes of Delbru¨ck scattering in the Coulomb field, vali
for v@m and small scattering angles, were obtained
Cheng and Wu,4–6 who summed the perturbation diagram
for the interaction with the external field in a certain appro
mation. In Refs. 7 and 8 these amplitudes were found
using the semiclassical Green’s function of the Dirac eq
tion in the Coulomb field. In Refs. 9 and 10 the semiclass
Green’s function of the Dirac equation was obtained for
arbitrary spherically symmetric decreasing field, making
possible to calculate the Delbru¨ck scattering in a screene
potential.

Recently a successful experiment was conducted at
G. I. Budker Nuclear Physics Institute to observe anot
nonlinear QED effect, the splitting of a photon in the elect
field of an atom~the preliminary results of this experimen
can be found in Ref. 11!. Exact~in Za) expressions for the
amplitudes of photon splitting, valid forv@m, can be found
in Refs. 12–14, where a new representation for the semic
sical Green’s function that substantially simplifies the p
cess of calculating the amplitudes was derived. In the pre
paper the calculation method developed in Refs. 12–1
used to find the amplitudes of Delbru¨ck scattering at high
energies (v@m) and small photon scattering angles. As e
pected, the values of the amplitudes obtained by the n
formulas coincide with those known from earlier calcu
411063-7761/99/89(1)/4/$15.00
a

-
-

l-
nt

y

-
y
-
l

n
t

he
r

s-
-
nt
is

-
w

tions. However, the new representations of amplitudes
much simpler when used in numerical calculations, sin
they contain integrals of lower multiplicities.

As shown in Ref. 9, it is convenient to write the De
brück scattering amplitude in a form that contains t
Green’s functionD(r ,r 8u«) of the squared Dirac equation,

D~r1 ,r2u«!5K r1U 1

P̂ 22m21 i0
Ur2L ,

whereP̂ 5g0(«1Za/r )2gp, with p52 i“.
In terms of the functionsD(r ,r 8u«), the amplitude of the

process has the form9

M5 iaE dr1 dr2 exp$ i ~k1•r12k2•r2!%

3E d«Tr@~2e2* •p22ê2* k̂2!D~r2 ,r1uv2«!#

3@~2e1•p11ê1k̂1!D~r1 ,r2u2«!#12iae2* –e1

3E dr exp$ i ~k12k2!–r%E d«Tr D~r ,r u«!, ~1!

wheree1 and k1 (e2 and k2) are the polarization and four
momentum of the initial~final! photon, andp1,252 i“1,2. In
the limit v@m the main contribution to the cross section
the process is provided by momentum transfersD;m,
which corresponds to small photon scattering angles. In
case the contribution of the last term in~1! to the amplitude
can be ignored, since it depends solely on the momen
transfer vectorD5k22k1 , and the amplitude forv@D is
proportional tov ~see, e.g., Ref. 2!.

The uncertainty relation implies that the lifetime of
virtual electron–positron pair ist;ur22r1u;v/(m21D2)
and that the characteristic impact parameters arer;1/D.
Hence forv@D@m2/v the angles between the vectorsk1 ,
k2 , r2 , and2r1 are small and we can use the correspond
expansion. The characteristic values of the angular mom
tum arel;vr;v/D@1, so that the semiclassical approx
mation holds. In the case of a screened Coulomb poten
the effect of screening manifests itself only in the lim
© 1999 American Institute of Physics
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D;r c
21!m, where the screening radius in the Thoma

Fermi model isr c;(ma)21Z21/3. In the present paper w
limit ourselves to momentum transfersD@m2/v,r c

21 ,
which provide the principal contribution to the total cro
secion of the process. Note that this restriction is not requ
in calculating Coulomb corrections, and the expressions
tained in the present paper for these corrections are valid
all D!v. A modification of the Born amplitude forD
;m2/v was studied by Cheng and Wu,5 and a thorough
discussion of the effect of screening can be found in Ref

In view of momentum conservation,M (Z50)}d(k1

2k2), i.e., for the case at hand (DÞ0) we haveM (Z50)
50. It is convenient to subtract from the integrand forM in
~1! its value atZ50. It is for this difference that the abov
statement of the smallness of the angles betweenr2 and
2r1 , which contribute the most to the integral, is valid.

A convenient representation forD(r1 ,r2u«), the semi-
classical Green’s function for the squared Dirac equation
the Coulomb field, was obtained in Refs. 12 and 13. For
case of small angles between the vectors2r1 andr2 we have
~the z axis is directed so that it forms a small angle with t
vector r2)

D~r1 ,r2u«!5
ik

8p2r 1r 2
exp$ ik~r 11r 2!%E dq F11Za

a–q

kq2G
3expH ik

q2~r 11r 2!

2r 1r 2
1 ikq–~u11u2!J

3S 4r 1r 2

q2 D iZal

, ~2!

wherea5g0g, k25«22m2, l5«/k, andq, u1 , andu2 are
two-dimensional vectors in thexy plane, withu15r1' /r 1

andu25r2' /r 2 . Formula~2! contains only elementary func
tions, and the anglesu1 and u2 enter only in the factor
exp$iq–(u11u2)%. Hence representation~2! of the Green’s
function is very convenient for calculations.

We direct thez axis parallel to the vectork1 . Note that
in the small-angle approximation there is no need to all
for corrections to the transverse part of the polarization v
tor e2 , and the longitudinal part ofe2 can be expressed i
terms of the traverse part by employing the relatione2–k2

50, i.e., (e2)z52e2–D/v. Thus, the transverse part of th
polarization vector of the final photon with a given helici
can be replaced by the polarization vector of a photon pro
gating along thez axis and having the same helicity. Belo
we use the notatione for this vector in the case of positiv
helicity; the polarization vector with negative helicity ise* .
Then, to describe Delbru¨ck scattering, we need only find tw
helical amplitudes,M 11 and M 12 . The other two,M 22

andM 21 , can be found by interchanginge ande* .
Substituting~2! in ~1!, we expand the amplitudes for th

case of small angles, whendr1 dr2'r 1
2r 2

2 dr1 dr2 du1 du2 .
Calculating the trace of theg-matrices and evaluating th
elementary integral with respect tou1 andu2 , we obtain
d
b-
or

.

n
e

-

a-

M52
ia

v2 E
0

v

d« «kE
0

` dr1

r 1
E

0

` dr2

r 2

3E E dq1 dq2

~2p!2 F S q1

q2
D 2iZa

21Gexp$ iF% T. ~3!

Here

F5
1

2 F S 1

r 1
1

1

r 2
DQ21

«2k

v
Q–D1q–D2m2~r 11r 2!G ,

~4!

the functionT for different polarizations has the form

T115
2Q2

r 1r 2
2

v2

2«k S 1

r 1
1

1

r 2
D F S 1

r 1
1

1

r 2
DQ222i G ,

T125
4

r 1r 2
~e–Q!2, ~5!

and we have introduced the notationk5v2«, Q5q1

1q2 , and q5q12q2 . To arrive at ~3!, we integrated by
parts with respect toq1 andq2 , so that the entire dependenc
on Za is contained in the factor (q1 /q2)2iZa21. We also
replaced variables according tor 1,2˜(«k/v)r 1,2. The ex-
pression forT11 in ~5! can be made simpler if in~3! the
variablesr 1 and r 2 are replaced~temporarily! by the vari-
ablesR5r 1r 2 /(r 11r 2) and t5r 1 /r 2 and the term in the
square brackets in~5! proportional toQ2 is integrated by
parts with respect toR. The result is

T115
2Q2

r 1r 2
1

v2m2

2«kr 1r 2
~r 11r 2!2. ~6!

Further transformations amount to the following. We pa
from the variablesq1 andq2 to the variablesq andQ. Then
the integral with respect toq becomes

J5E dq

Q2 F S uq1Qu
uq2Qu D

2iZa

21GexpH 2
i

2
q–DJ . ~7!

As shown in Ref. 12, this integral can be transformed int

J5E dq

D2 F S uq1Du
uq2Du D

2iZa

21GexpH 2
i

2
q–QJ . ~8!

Using this representation and the parametrization

expH i
Q2

2r 1
J 5 ir 1E dx

2p
expH 2 i

r 1x2

2
2 iQ–xJ , ~9!

wherex is a two-dimensional vector lying in the same pla
as Q, we can easily evaluate the integrals in~3!, first with
respect tor 1 , then with respect toQ, and finally with respect
to r 2 . As a result we obtain

H M 11

M 12
J 52

iam2

p2D2v2 E
0

v

d«E dq F S q1

q2
D 2iZa

21G
3E dx

~x21m2!2~v21m2!2 Hm2~«21k2!1v2x–v
4«k~e–v!2 J ,

~10!

where q65uq6u, q65q6D, and v5x1q/21D(«
2k)/2v.
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For further integration it is convenient to write~10! in a
different form. Using the identities

m2

~v21m2!2 5
1

2
“v

v

v21m2 5“q

v

v21m2 ,

v

~v21m2!2 52
1

2
“v

1

v21m2 52“q

1

v21m2

and integrating by parts with respect toq, we find that

H M 11

M 12
J 5

2a~Za!m2

p2D2v2 E
0

v

d«E dq S q1

q2
D 2iZa

3E dx

~x21m2!2~v21m2! S q1

q1
2 2

q2

q2
2 D

3Hv2x2~«21k2!v
4«k~e–v!e J . ~11!

Using Feynman parametrization of the denominators,
evaluate the integral with respect tox and in the integral with
respect to« introduce the variables52«/v21. The result is

H M 11

M 12
J 5

4a~Za!m2v

pD2 E
21

1

dsE dq S q1

q2
D 2iZa

3E
0

1 tdt

@ t~12t !~q1sD!214m2#2 S q1

q1
2 2

q2

q2
2 D

3H @ t~12s2!22#~q1sD!

2t~12s2!~e,q1sD!e J . ~12!

The integration with respect toq is done by a trick used in
Refs. 13 and 14. We multiply the integrand in~12! by

1[E
21

1

dy dS y2
2q–D

q21D2D
5~q21D2!E

21

1 dy

uyu
dS S q2

D

y D 2

2D2S 1

y2 21D D , ~13!

change the order of integrating with respect toq andy, and
implement the shiftq˜q1D/y. After all this is done, the
integral with respect toq can easily be evaluated. Changin
the variabley5tanh(t2t0), where

t05
1

2
ln

B1~11s!2

B1~12s!2 , B5
4m2

D2t~12t !
, ~14!

we find that integrating with respect tot reduces to calculat
ing two integrals~the same integrals as in Ref. 14! expressed
in terms of the derivative of the Legendre function,Pn8(x):

F 15a2E
0

`

dt
cosht cos~2Zat!

~sinh2 t1a2!3/2

5
2pa2

sinh~pZa!
Im PiZa8 ~2a221!,
e

F 25a2E
0

`

dt
sinht sin~2Zat!

~sinh2 t1a2!3/2

52
2pa2

sinh~pZa!
RePiZa8 ~2a221!, ~15!

where a254B/@(B1(11s)2)(B1(12s)2)#. Note thata2

<1 for all s andB.0.
The final expressions for the Delbru¨ck scattering ampli-

tudes are

M 115 i
a~Za!v

8m2 E
0

1

dsE
0

1

dt a2t@22t~12s2!#

3@4sBsin~2Zat0!F 1

1@B22~s221!2#cos~2Zat0!F 2#, ~16!

M 125 i
a~Za!v~e–D!2

4m2D2 E
0

1

dsE
0

1

dt a2t~s221!

3@4sB~12t !sin~2Zat0! F 11@B2~223t !

12B~s211!~122t !2~s221!2t#cos~2Zat0! F 2#.

Let us now discuss the asymptotic behavior of the D
brück scattering amplitudes forD!m andD@m, which fol-
lows from ~16!. The simplest calculation in this represent
tion is that of the asymptotic expression forD!m, in the
limit B;m2/D2@1, a2'4/B!1, and the functionsF 1,2 are

F 1'1, F 2522Zaa2@ ln a1C1Rec~11 iZa!#,

where C50.577 . . . is Euler’s constant, andc(x)
5d ln G(x)/dx. Also, t0;1/B!1. Inserting the asymptotic
expressions forF 1,2 in ~16! yields

H M 11

M 12
J 5 i

4a~Za!2v

m2 E
0

1

dsE
0

1

t dt F1

2
ln

m2

t~12t !D2 2C

2Rec~11 iZa!G H @22t~12s2!#
2~12s2!~3t22!~e–D!2/D2J .

~17!

Calculating the elementary integrals, we find that form2/v
!D!m we have

M 115 i
28a~Za!2v

9m2 F ln
m

D
1

41

42
2C2Rec~11 iZa!G ,

M 125 i
4a~Za!2v~e–D!2

9m2D2 . ~18!

To establish the asymptotic behavior of the amplitud
in the limit D@m, it is convenient to start with~12!. The
region 12t;m2/D2!1 provides the main contribution to
the integral. If in~12! we evaluate the integral with respect
t in this approximation, we get



y

th

ry

ic
as

-
vel-
lly
at

-

E.
ha-

nd

44 JETP 89 (1), July 1999 Li et al.
H M 11

M 12
J 5

a~Za!v

pD2 E
21

1

dsE dq

~q1sD!2 S q1

q2
D 2iZa

3S q1

q1
2 2

q2

q2
2 D H 2~11s2!~q1sD!

2~12s2!~e,q1sD!eJ . ~19!

We then use the identity~13! to evaluate the elementar
integrals with respect toq and, finally, with respect tos.
Then we change variables,y5tanht, and forD@m obtain

M 115 i
4a~Za!v

3D2 E
0

`

dt sin~2Zat!

3S 423 tanh
t

2
2tanh3

t

2 D
5 i

8av

3D2 H 12
2pZa

sinh~2pZa!
@12~Za!2#J ,

M 125 i
16a~Za!v~e–D!2

D4 E
0

` dt sin~2Zat!

sinh2 t
~t cotht21!

5 i
16a~Za!2v~e–D!2

D4 @12Za Im c8~12 iZa!#. ~20!

The asymptotic formulas~18! and~20! coincide with the
results obtained in Refs. 6 and 8. We also found that
numerical values of the amplitudes~16! coincide ~as ex-
pected! with the results obtained in Refs. 6–8 for arbitra
momentum transfers and values ofZa.

Each expression for the amplitudes in~16! is a double
integral and is simpler than the results of Refs. 6–8, in wh
the multiplicity of the integrals is higher. Hence the formul
in ~16! are very convenient for tabulation.
e

h

Thus, in this paper, using Delbru¨ck scattering as an ex
ample, we have shown that the method of calculation de
oped for the photon splitting problem can be successfu
used to solve various QED problems in the Coulomb field
high energies.

* !E-mail: A.I.Milshtein@inp.nsk.su
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In this paper the procedure of large-scale averaging of the magnetic-field diffusion equation with
the a-term curla(r ,t)B(r ,t) is used to show that a nonuniform distribution of the turbulent
helicity fluctuations~more precisely, the fluctuations of the coefficienta! with a zero average value
gives rise to large-scale amplification of the initial magnetic field. A detailed study is
carried out of the dependence of the resulting large-scalea effect on the characteristics of the
correlator^^a(r ,t)a(r 8,t8)&& in a rotating medium with a nonuniform distribution of the
angular velocityv5v(r,z) ~r is the distance for the rotation axisz!. The effect of helicity
fluctuations and the diffusion coefficient on the turbulent diffusion process is also
investigated. ©1999 American Institute of Physics.@S1063-7761~99!00907-5#
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1. INTRODUCTION

It is well known that amplification of the initial magneti
field in a turbulent medium requires the presence of helic
i.e., the helicity correlatorh(1,2)[^u(1)–curlu(2)& must be
finite. The caseh.0 corresponds to right-handed helicit
while h,0 corresponds to left-handed helicity. Such a m
dium may be isotropic, but it certainly must be reflectio
asymmetric. The amplification mechanism was develo
primarily by Parker1 and Steenbecket al.2 and is described
in detail in the monographs cited in Refs. 3–5. A straightf
ward qualitative explanation of the turbulent magnetic d
namo can be found in Ref. 6. It is based on the fact t
chaotic helical movements generate an average emf^E& par-
allel or antiparallel to the average magnetic field:^E&
5a^B&. According to this common notation, the phenom
enon became known as thea effect. Note thata}(2h), i.e.,
left-handed helicity gives rise to induction of a current^ j &
parallel to the average field̂B&, while right-handed helicity
gives rise to induction of a current opposing^B&. The induc-
tion of such a current is the reason for the amplification
the average magnetic field̂B&. The existence of thea ef-
fecthas been confirmed by experiments.7

The initial equation describing the evolution of the ma
netic field is the induction equation

S ]

]t
2Dm¹2DB~r ,t !5curl@u~r ,t !B~r ,t !#, ~1!

whereDm5c2/4ps is the molecular~ohmic! diffusion coef-
ficient, s is the electrical conductivity of the plasma, an
u(r ,t) is the Eulerian velocity of motion of matter. Th
Navier-Stokes equation, which we will not write here, rela
u(r ,t) and B(r ,t), so that actually the velocityu(r ,t) is a
functional of B(r ,t), and vice versa. For weak magnet
fields (B2/8p!ru2/2) one usually ignores the effect ofB on
turbulence and considers Eq.~1! in the kinematic represen
tation, where the ensemble of turbulent velocitiesu(r ,t)
451063-7761/99/89(1)/11/$15.00
,

-
-
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-
-
t

f

-

s

5U(r ,t)1u8(r ,t) (U5^u& and ^u8&50) is assumed fixed
The quantitiesu0

25^u82(r ,t)&, t0 , and R0 characterize the
average amplitude of the turbulent velocity, the average l
time of correlations of Eulerian velocities, and the avera
length of such correlations. Sometimes the auxiliary para
eter t05R0 /u0 is used~it is known as the reversal time o
turbulent vortices!. The average magnetic field^B& is defined
as the average value over the volume'L3 and over the
averaging timeT0 , which are much larger that the chara
teristic lengthR0 and lifetimet0 of correlations of turbulent
movements~if the reversal time of the turbulent vortice
meets the conditiont05R0 /u0!t0 it is sufficient to require
that T@t0!.

By averaging Eq.~1! and assuming that the average fie
^B& is a smooth function on distances'R0 and times't0

~or 't0 if t0!t0) one can obtain~see Refs. 3–5! the equa-
tion of diffusion for the average magnetic field:

S ]

]t
2Dm¹2D ^B&1curlD~r ,t !curl̂ B&

2curla~r ,t !^B&2curl@U~r ,t !^B&#50, ~2!

whereU(r ,t) is the velocity of regular motion of the liquid
or gas. Note that the coefficients of turbulent diffusio
D(r ,t), and thea effect,a(r ,t), in this equation can depen
on ^B& parametrically, since the turbulent velocity fie
u(r ,t) depends onB. Kichatinovet al.8,9 used the functional
dependence ofD(r ,t) and a(r ,t) on u(r ,t) but, in solving
the Navier-Stokes equation, allowed for the fact that the fi
u(r ,t) depends onB. The derivation of Eq.~2! from Eq. ~1!
requires only that the average field^B& be smooth, so that we
can take it outside the integral sign. Then under the integ
sign there remains another, peaked, term~e.g., see Refs. 10
and 11!. We also note that here we have assumed, for s
plicity, that D(r ,t) anda(r ,t) are scalar quantities, althoug
in an anisotropic turbulent medium they are pseudotensor
the third and second ranks, respectively~see Ref. 3!. If we
© 1999 American Institute of Physics
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neglectDm in Eq. ~1!, the equation has an exact solution
Lagrangian variables. The derivation of Eq.~2! from this
solution is especially simple,12,13but it uses only the smooth
ness of the average magnetic field^B&. Exact formal expres-
sions for the coefficientsD(r ,t) anda(r ,t) in terms of the
field u(r ,t) of Eulerian velocities or the fieldv(r ,t) of La-
grangian velocities can be found in Refs. 10–13. Using th
expressions and specifying the statistical properties of
ensemble of initial velocities, we can~at least in principle!
fully describe the evolution of the average magnetic field
a turbulent medium by solving Eq.~2! and the Navier-Stokes
equation. Lately there has been an increasing number o
tempts of computer simulations of the evolution of the ma
netic field based directly on Eq.~1! and Navier-Stokes equa
tions. However, in studying the influence of helici
fluctuations on the large-scalea effect we will find it conve-
nient to begin with the diffusion equation~2!.

The large-scale averaging procedure

If ^¯& in ~2! is assumed to be the average over fai
small-scale turbulent motions, the coefficientsD(r ,t) and
a(r ,t) are still random functions with respect to large-sc
averaging. We will denote the procedure of large-scale a
aging by double angle brackets,^^¯&&. Using this notation,
we can write the following relationships:

D~r ,t !5D01D8~r ,t !,

^^D~r ,t !&&[D0 , ^^D8~r ,t !&&[0, ~3!

a~r ,t !5a01a8~r ,t !,

^^a~r ,t !&&[a0 , ^^a8~r ,t !&&[0.

Here and below we assume that the large-scale average
ues D0 and a0 are constants. Note that the procedures
small- and large-scale averaging have long been used in
tistical physics~see, e.g., Ref. 14!.

Substituting~3! in ~2!, we obtain the master stochast
equation

S ]

]t
2~Dm1D0!¹2D ^B&2a0 curl̂ B&2curl@U^B&#

5curla8~r ,t !^B&2curlD8~r ,t !curl̂ B&. ~4!

The right-hand side of Eq.~4! is a stochastic function o
coordinatesr and timet. We note once more that the sma
scale average field̂B& is stochastic with respect to large
scale averaging.

Equation~4! can be written in brief symbolic form:

L̂ i j
(0)~r ,t !^Bj~r ,t !&5L̂ i j ~r ,t !^Bj~r ,t !&, ~5!

where the nonstochastic operatorL̂ (0) and the stochastic op
eratorL̂ represent the left- and right-hand sides of Eq.~4!.

The first to examine this equation for the case ofU50,
D850, and a050 and an infinite isotropic medium wer
Kraichnan13 and Moffatt.3 Performing in~4! the procedure of
large-scale averaging in the quasilinear approximation, t
again arrived at equation~2! for ^^B(r ,t)&& in the diffusion
approximation, which, however, contained the renormaliz
turbulent diffusion coefficientDm1D01D. They found that
e
e

at-
-

r-

al-
f
ta-

y

d

the termD is negative, i.e., the helicity fluctuations~more
precisely, the fluctuations of the coefficienta, which are pro-
portional to helicity! reduce the diffusion of the magneti
field.

Vishniac and Brandenburg15 used Eq.~4! for computer
simulation of the evolution of the average magnetic field
an accretion disk. They also examined the case where t
is a chaotic distribution of the helicity fluctuationsa8 with a
zero averagea050 in the disk. It was found~numerically!
that this gives rise to a large-scale distribution of the m
netic field, i.e.,a8-fluctuations act as ana effect.

Sokolov16 found that the presence of helicity fluctuation
does indeed cause amplification of the large-scale magn
field even at zero average helicity. He assumed that there
two averaging ensembles, over the turbulence velocityu(r ,t)
proper and over the helicity distribution ensemble,h(1,2)
[^u(1)–curlu(2)&. Physically it is difficult to imagine that
these two ensembles can exist separately, since knowing
velocity field u(r ,t) obviously means that we know the he
licity correlator h(1,2)[^u(1)–curlu(2)& and generally all
the correlators. Hence the idea of two averaging ensem
can actually be realized by the use of two averaging pro
dures, a fairly small-scale and a large-scale one.

The authors of all the cited papers did not do large-sc
averaging of Eq.~4! in general form. In this paper we wil
derive the general formulas for the renormalized coefficie
of turbulent diffusion and thea effect, the phenomena
caused by helicity correlations in the turbulent medium. U
ing a medium with differential rotation as an example, w
will show both quantitatively and qualitatively the reason f
the emergence of a large-scalea effect. We will use the
general theory discussed in Refs. 10 and 11, where the
cedure of averaging over the ensemble of realizations
fluctuating quantities is carried out by using the stocha
Green’s tensorGi j (r ,t;r 8,t8), deriving a renormalized equa
tion for this tensor, and obtaining an hierarchy of nonline
equations for the average tensor^Gi j (r ,t;r 8,t8)&. The aver-
aging procedure proper is described in Refs. 10 and 11
general form for an equation of the form~5!, which can be
applied to our initial stochastic equation~4!.

The helicity of a turbulent medium, h(1,2)
[^u(1)–curlu(2)&, is described by a two-point velocity cor
relator ~here and below we use the convenient notat
f (rn ,tn)[ f (n), drn dtn[dn, dr 8 dt8[d2, R5r2r 8, t5t
2t8, etc.!. This means that helicity fluctuations are describ
by velocity correlators of the fourth and higher orders.
direct study of the dynamics of correlations whose orders
so high is extremely difficult. Note that in the classical wo
of Kazantsev17 and in a number of later treatments~see Refs.
18 and 19!, the dynamics of magnetic-field fluctuations w
studied for turbulence without helicity, which requires on
knowing the second-order velocity correlators^ui(1)uj (2)&.
The advantage of all these treatments is that their auth
begin directly from the master induction equation~1! and do
not resort to the procedure of the second, large-scale, a
aging. The procedure of double averaging used in the pre
paper makes it possible to study the effect of helicity flu
tuations~as fluctuations of thea effect! in a fairly simple
manner. At present such an approach is probably the o
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one that can be used to study helicity fluctuations.
For practical applications of the theory we will now d

velop it is important to understand that the helicity fluctu
tion correlator is a fundamental quantity having the sa
status for turbulence as the ordinary two-point velocity c
relator ^ui(1)uj (2)&. More than that, for a given correlato
^ui(1)uj (2)& the helicity fluctuation correlator for non
Gaussian ensembles may be arbitrary~at least in principle!.
Usually the correlator̂ ui(1)uj (2)& is found from experi-
ments or observations or is simply specified in a plaus
form for numerical calculations. This is even more true
relation to the helicity fluctuation correlator, which is e
tremely sensitive to the specific form of the ensemble
initial velocities, the boundary conditions, and the acti
forces.

Note that for all practical purposes the second aver
can be realized either by averaging over large volumes o
averaging over long time intervals.

2. GENERAL FORMULAS FOR THE KINETIC COEFFICIENTS

The general theory, presented in Refs. 10 and 11, ma
it possible to obtain from~4! a formally exact integro-
differential equation for the large-scale averaged magn
field ^^B&&. Using the symbolic form of Eq.~4! @see Eq.~5!#,
for the case of a Gaussian ensemble we obtain

L̂ i j
(0)~1!^^Bj~1!&&5 irreducible part of

3E d2 ^^L̂ in~1!Gnm~1;2!L̂m j~2!&&

3^^Bj~2!&&. ~6!

If we again use the fact that the field^^B&& is smooth, this
equation in the diffusion approximation becomes

S ]

]t
2~Dm1D0!¹2D ^^B&&2a0 curl̂ ^B&&

2curl@U^^B&&#5curlE, ~7!

Ei5a i j ~r ,t !^^Bj~r ,t !&&1Di jk~r ,t !¹k^^Bj~r ,t !&&. ~8!

The left-hand side of Eq.~7! coincides with the left-hand
side of Eq.~4!. Equations~7! and ~8! are the equations of a
turbulent magnetic dynamo in the diffusion approximatio
The pseudotensorsa i j (r ,t) andDi jk(r ,t) are generalizations
of the pseudoscalar coefficienta and the turbulent diffusion
coefficientD and describe the effect of the helicity fluctu
tions a8(r ,t) and the fluctuations of the turbulent diffusio
coefficient,D8(r ,t), on the evolution of the average ma
netic field ^^B&&. Their exact expressions are given by t
formulas

a i j ~1!5 irreducible part of

3E dr 8E
0

t

dt8 @ejnm^^a8~r ,t !Gin~r ,t;r 8,t8!

3¹m8 a8~r 8,t8!&&2eitsern j^^D8~r ,t !¹ tGsr

3~r ,t;r 8,t8!¹n8a8~r 8,t8!&&#. ~9!
-
e
-

e

f

e
y

es

ic

.

Here ei jk is the unit antisymmetric pseudotensor (exyz5
2eyxz, etc.!, Gi j (1;2) is thestochastic Green’s tensor of th
initial equation ~4!, i.e., the solution of this equation with
source Si j 5d i j d(r2r 8)d(t2t8). Here Gi j

(0)(1;2) denotes
the Green’s tensor of Eq.~4! without the right-hand side
This tensor is nonstochastic. Taking the irreducible parts
the expressions means that we must drop the reducible p
of the form

E d2 ^^Fis~1!&&Gsn
(0)~1;2!^^Knm~2!&&. ~10!

The formula forDi jk(r ,t) is more cumbersome than for
mula ~9!, and we will use the convenient notation mention
earlier:

Di jk~1!52 irreducible part of

3E d2 @ejrn^^a8~1!Gir ~1;2!

3~¹n
(2)a8~2!Rk!&&

1^^a8~1!Gik~1;2!¹ j
(2)D8~2!&&

2^^a8~1!Gi j ~1;2!¹k
(2)D8~2!&&

2eitsejrn^^D8~1!~¹ t
(1)Gsr~1;2!!

3~¹n
(2)a8~2!Rk!&&2eits^^D8~1!¹ t

(1)

3Gsk~1;2!¹ j
(2)D8~2!&&1eits^^D8~1!¹ t

(1)

3Gs j~1;2!¹k
(2)D8~2!&&#. ~11!

The functionD8(r ,t) is even in the helicityh and the
function a8(r ,t) is odd. This means that the correlat
^^D8(1)a8(2)&& is zero if the average helicitya0 vanishes.
All the formulas become much simpler for this case. Sin
according to Ref. 20 the turbulent diffusion coefficient
almost independent of helicity for a degree of helic
a<0.5, the contribution of the cross terms of the for
^^D8(1)a8(2)&& is probably small even fora0Þ0. Even at
100% helicity the decrease in the diffusion coefficient is
significant, about 30%. Hence below we will ignore the cro
terms.

There are several ways of obtaining an approximat
series for the stochastic Green’s tensorGi j (1;2) ~see Refs.
10 and 11!. Inserting this a series into~9! and ~11! yields
approximation series for the kinetic coefficientsa i j (r ,t) and
Di jk(r ,t), respectively.

For the case of the stochastic equation~1! with
Dm˜0, plugging the iterations of the ordinary integral equ
tion for Gi j (1;2) into the formulas forD0 anda0 leads to a
series in powers of the parameterj05u0t0 /R0 , which
makes it possible to calculateD0 anda0 only whenj0!1.
This result is understandable since the expansion is in p
ers of the Green’s function

Gm~R,t!5
1

~4pDmt!3/2
expH 2

R2

4Dmt J ,

which describes molecular diffusion rather than convect
transport by turbulent movements. To obtainD0 and a0 in
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this case we are forced~see Refs. 10 and 11! to use a renor-
malized equation forGi j (1;2), with the average Green’
function ^Gi j (1;2)&, for which there is a hierarchy of non
linear equations, used for the absolute term. The ten
^Gi j (1;2)& directly describes the convective nature of t
transport of the impurity field, and iterations in powers
^Gi j (1;2)& lead to an asymptotically convergent series
D0 and a0 at all values ofj0 . A fairly good result is
achieved if instead ofGi j (1;2) weplug in the average tenso
^Gi j (1;2)& satisfying the first equation in the hierarch
~what is known as the Direct Interaction Approximation,
DIA, equation!.

The stochastic equation~4! used in the present pape
differs from Eq.~1! in that its left-hand side describes turb
lent transport of the magnetic field~to be sure, in the rough
diffusion, approximation! by the coefficientsD0 and a0 .
This suggests that we can do without complicated itera
techniques in relation to the renormalized equation
Gi j (1;2) and thesolution of the nonlinear equation fo
^Gi j (1;2)&. In this case the iterations of the ordinary integ
equation forGi j (1;2),

Gi j ~1;2!5Gi j
(0)~1;2!

1E d3 Gin
(0)~1;3!L̂nm~3!Gm j~3;2!, ~12!

will probably make it possible to obtain fairly accurate va
ues ofa i j (r ,t) andDi jk(r ,t).

For an example that supports these expectations we
the simple problem of funding the fieldB(r ,t) in an infinite
medium that is at rest as a whole and where a helicity fl
tuation is of the forma(r ,t)5a0 exp$2r2/r0

2%exp$2t/t0% for
t.0. The initial fieldB0 is assumed uniform. Solving Eq.~4!
with the absolute term

Gi j
(0)~1;2!5

d i j

~4pD0t!3/2expH 2
R2

4D0tJ
and the use of the first iteration of Eq.~12!, we arrive at the
expressions

B̃(0)~p,t !5a0V0i ~p3B0!

3E
0

t

dt a~ t2t!expF2
p2

p0
2 ~11D0p0

2t!G ,
B̃i

(1)5~d i j p
22pipj !B0 j

a0
2V0

2p0
3

8pAp

3E
0

t

dt E
0

t2t

dt8
a~ t2t!a~ t2t2t8!

~21D0p0
2t8!5/2

3expF2
p2

p0
2 S D0p0

2t1
11D0p0

2t8

21D0p0
2t8

D G , ~13!

where we have introduced the notationV05pAp r 0
3, p0

52/r 0 , and a(t)5exp$2t/t0%; B̃(0)(p,t) and B(1)(p,t) are
the Fourier transforms in the variabler of the fieldsB(0)(r ,t)
andB(1)(r ,t), respectively. Using these expressions, we w
or

f
r

n
r

l

ke

-

l

find the total energies of the magnetic fields,A(0)(t) and
A(1)(t), generated by thea effect in the entire space in th
time t0 of action of a helicity fluctuation~it should be re-
called that in the final analysis, ast˜`, turbulent diffusion
will destroy these fields!. We will examine the limits of
small, g5D0p0

2t0!1, and large,D0p0
2t0@1, turbulent dif-

fusion. We have

A(0)~t0!'
B0

2

8p
V0

a0
2V0p0

5t0
2

72pA2p
,

A(1)~t0!'A(0)~t0!
5a0

2V0
2p0

8t0
2

64372p3&
~14!

for g!1 and

A(0)~t0!'
B0

2

8p
V0

a0
2V0p0

54pA2p D0
2

,

A(1)~t0!'A(0)~t0!
a0

2V0
2p0

4

648381p3D0
2 ~15!

for g@1. Let us estimate the ratiosA(1)/A(0) for the model
of a helicity fluctuation in the form of a separate turbule
region where there are rotational movements of one type
helicity, right-handed or left-handed. Such a model is pro
ably the limit of a helical pattern. According to Ref. 20, th
following estimates hold:D0'u0

2t0/3 and a0'u0j0/3 for
j0!1, and D0'u0 /p0 and a0'u0 for j0@1. The case
g!1 corresponds toj0

2!1, while the caseg@1 occurs
whenj0@1. As a result we obtain

A(1)

A(0) Ug!1'
j0

4

45
!1,

A(1)

A(0) U
g@1

'0.002, ~16!

i.e., the series of iterations inGi j
(0) converges well.

We will now do all calculations in the zeroth approx
mation, where the exact expression forGi j (1;2) is replaced
by Gi j

(0)(1;2). In this approximation, the formulas contain n
reducible terms, and so the phrase ‘‘irreducible part of’’ c
be discarded.

To make our reasoning more graphic, we write the e
plicit expression for the components of the tensora i j (r ,t):
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a i j ~1!5E d2 S Gxy
(0)Tz2Gxz

(0)Ty Gxz
(0)Tx2Gxx

(0)Tz Gxx
(0)Ty2Gxy

(0)Tx

Gyy
(0)Tz2Gyz

(0)Ty Gyz
(0)Tx2Gyx

(0)Tz Gyx
(0)Ty2Gyy

(0)Tx

Gzy
(0)Tz2Gzz

(0)Ty Gzz
(0)Tx2Gzx

(0)Tz Gzx
(0)Ty2Gzy

(0)Tx

D . ~17!
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Here, for brevity, we have used the notationTi

5^^a8(1)¹ i
(2)a8(2)&&, and i , j˜x,y,z.

To simplify matters, in applications one commonly us
the average value of the diagonal elements of the ten
a i j (r ,t), which has the meaning of the amplification coef
cient of the magnetic field:

a~r ,t !5
1

3
a i i ~r ,t !5einmE d2 Gin

(0)~1;2!

3^^a8~1!¹m
(2)a8~2!&&. ~18!

We see that when there is amplification of the field, t
Green’s tensor must have an antisymmetric part. Simila
the quantityD5(1/6)ei jkDi jk has the meaning of the ave
age diffusion coefficient. It should be recalled that the to
coefficients of diffusion and thea effect areDm1D01D
anda01a, respectively.

If the correlations of the helicity fluctuations are sho
lived, ^^a8(r ,t)a8(r 8,t8)&&}d(t2t8), then, allowing for the
property Gnm(r ,t;r 8,t)5dnmd(r2r 8), we find that a i j

52ei jk¹k^^a82(r ,t)&& anda[0, i.e., there is no field am
plification. This is in full agreement with the conclusio
drawn by Sokolov16 that it is imperative to study the effect o
helicity fluctuations, assuming that the time these fluct
tions remain correlated is finite.

The isotropic turbulence case

Below we will write the expressions fora andD in the
frequently used model of an isotropic turbulent medium w
helicity. In this case

Gi j
(0)~R,t!5H~t!@d i j g0~R,t!1ei jk¹kg1~R,t!#, ~19!

where R5r2r 8, t5t2t8, H(t)51 for t.0, and H(t)
50 for t,0. The Fourier transforms of the functionsg0 and
g1 have the following form:

g̃0~p,t![E dR g0~R,t!exp~2 ip–r !

5cosh~a0pt!exp~2D0p2t!, ~20!

g̃1~p,t!52
1

p
sinh~a0pt!exp~2D0p2t!.

In the absence of helicity,a050 andg150. At this point it
is convenient to introduce the fluctuation spectra

^^a8~r ,t !a8~r ,t1t!&&[E
0

`

dp Ea~p,t!, ~21!

^^a82~r ,t !&&[a1
2 ,

^^D8~r ,t !D8~r ,t1t!&&[E
0

`

dp ED~p,t!,
s
or

e
,

l

-

^^D82~r ,t !&&[D1
2 .

In this notation, the formulas fora andD for the case of an
isotropic turbulent medium assume the form

a52
2

3 E0

`

dp E
0

t

dt p2Ea~p,t!g̃1~p,t!, ~22!

D52
1

3 E0

`

dp E
0

t

dt F2p2ED~p,t!g̃0~p,t!

1Ea~p,t!g̃0~p,t!1pEa~p,t!
]

]p
g̃0~p,t!G . ~23!

Formula~22! shows that helicity fluctuations in an isotrop
medium results in amplification of the already existinga
effect. To estimate the contribution we takeEa(p,t)5a1

2

3d(p2pa)exp(2t/ta):

a5
2

3
a0

a1
2pa

2ta
2

~D0pa
2ta11!22a0

2pa
2ta

2 . ~24!

The conditions for the diffusion approximation require th
the denominator in~24! be positive, i.e., the sign ofa must
coincide with the sign of the coefficienta0 .

As for the additional contribution of~23! to the turbulent
diffusion coefficient, we see that the on the whole the flu
tuationsD8(r ,t) ~the first term! anda8(r ,t) ~the second and
third terms! provide a negative contribution, i.e., reduce t
initial coefficient Dm1D0 . The fact that the fluctuations
D8(r ,t) reduce the diffusion coefficient becomes und
standable if one recalls that in finding the mean free path
a particle with two scattering mechanisms one should t
the sum of the reciprocals: 1/l mean51/l 111/l 2 . Actually, the
turbulent diffusion coefficient is proportional to a certa
mixing length l . Hence for an ensemble of two process
with D5D01DD and D5D02DD the mean value is
Dmean5D0@12(DD/D0)2#,D0 . Note that Moffatt,3 when
considering the effect ofa8(r ,t) on turbulent diffusion, ob-
tained only the second term in~23!. This is the result of
using a less accurate method in studying the problem. A
ally the new term in~23!, the third term, provides a positiv
contribution, whose value may reach two-thirds of the s
ond, negative, term.

Thus, in a uniform and isotropic turbulent medium, h
licity fluctuations only enhance the already existinga effect.
The situation is different in nonuniform and anisotropic tu
bulent media. In such media, helicity fluctuations may ca
large-scale amplification of the magnetic field even at z
average helicity. This becomes especially evident if we t
to media with differential rotation.
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3. THE a EFFECT IN A NONUNIFORMLY ROTATING
MEDIUM

The most important examples of such media are the c
vective shell of the sun and the motion of magma inside
Earth. The accretion disks around stars and interstellar
also participate in differential rotation.

3.1. Integral equation for the Green’s tensor

It is convenient to write the equation for the Green
tensorGi j

(0)(r ,t;r 8,t8) satisfying Eq.~4! without the stochas-
tic terms on the right-hand side in the form of an integ
equation. For the case considered,a050 and U(r ,t)
5v(r,z)(ezr )[ewrv(r,z), this equation in a cylindrica
system of coordinates (a,b5r,w,z) has the form

Gab
(0)~1;2!5gab

(0)~122!

2E d3 v~3!gag
(0)~123!

]

]w3
Ggb

(0)~3;2!

1E d3 r3gaw
(0)~123!@~¹r

(3)v~3!!Grb
(0)~3;2!

1~¹z
(3)v~3!!Gzb

(0)~3;2!#, ~25!

wherer is the distance from the observation pointr (r,w,z)
to the rotation axisz, the indexg runs through all values~r,
w, andz!, and the other indices are fixed. The Green’s ten
gab

(0)(R,t) is the ordinary diffusion Green’s functiongi j (1
22)5d i j g0(R,t) ( i , j 5x,y,z) written in a cylindrical sys-
tem of coordinates, with

g0~R,t!5
1

~4pD0t!3/2expH 2
R2

4D0t J . ~26!

It should be recalled that the transition from Cartes
coordinates to cylindrical is done by using a unitary mat
Ubk(w) according to the following relationships:

Ab5Ubk~w!Ak ,

Gab~1;2!5Ua i~w1!Gi j ~1;2!Ũ j b~w2!, ~27!

agb~r ,t !5Ug i~w!a i j ~r ,t !Ũ j b~w!.

The tilde indicates the transpose of a matrix:Ũ j b5Ub j , and
summation is implied over repeated indices. The compon
of the matrixUa i(w) are

Ubk~w!5S r
w
z
D S cosw sinw 0

2sinw cosw 0

0 0 1
D . ~28!

According to ~27!, the Green’s tensor has the formgab
(0)(1

22)5Uab(w12w2)g0(R,t). One can easily verify that the
tensorGi j

(0)(r ,t;r 8,t8) depends on the difference of azimuth
angles,c[w12w2 .

3.2. Green’s tensor for axisymmetric problems

When Eq.~4! is used to find the magnetic field, it i
often assumed that the distribution of field sources or
initial field is axisymmetric. In this case it is enough to kno
n-
e
as

l

r

n

ts

e

the Green’s tensor integrated with respect to the differenc
the azimuthal angles,c[w12w2 . We will denote this ten-
sor by^Gab

(0)&[^Gab
(0)(r1 ,z1 ;r2 ,z2 ;t)&. Integrating Eq.~25!

with respect to the anglec, we arrive at exact expressions fo
the componentŝGab

(0)&:

^Grr
(0)&5^Gww

(0)&[G'5E
0

2p

dc cosc g0~R,t!,

^Gzz
(0)&[Gi5E

0

2p

dc g0~R,t!,

^Gwr
(0)&[Gwr5E

2`

`

dz3E
0

`

dr3 r3
2

3E
0

t

dt8 G'~r1 ,z1 ;r3 ,z3 ;t2t8!

3~¹r3
v~r3 ,z3!!G'~r3 ,z3 ;r2 ,z2 ;t8!,

~29!

^Gwz
(0)&[Gwz5E

2`

`

dz3E
0

`

dr3 r3
2

3E
0

t

dt8 G'~r1 ,z1 ;r3 ,z3!t2t8)

3~¹z3
v~r3 ,z3!!Gi~r3 ,z3 ;r2 ,z2 ;t8!.

The other componentŝGab
(0)& are equal to zero. Note that i

calculatingG' and Gi , integrals with respect toc lead to
Bessel functions of imaginary argument, i.e., these com
nents are of an explicit analytic form.

When there is axial symmetry, the scalar fluctuation c
relatorA(1;2)[^^a8(1)a8(2)&&, obviously, also undergoe
no changes under rotations of the system of points 1 and
a whole, i.e., it can be written in the formA(1;2)
5A(z1 ,z2 ,r1 ,ur'

(1)2r'
(2)u,t), where the vectorr'(r,w) de-

termines the point of a point in thexy plane. The Green’s
tensor^Gab

(0)& integrated with respect to the differencec of
azimuthal angles is the part ofGab

(0) that is independent ofc.
What is the contribution of this part to the tensoragb? If we
transform^Gab

(0)& into ^Gi j
(0)& by ~27! and then calculate firs

the tensora i j (1) @see~17!# and thenagb(1), weobtain

arr~r ,t !5arz~r ,t !5azr~r ,t !5azz~r !50, ~30!

arw~r,z,t !52awr~r,z,t !52E dr 8E
0

t

dt

3cosc G'~z2z8,r,r8;t!

3¹z8A~z,z8,r,ur'2r'8 u,t!,

awz~r,z,t !52E dr 8E
0

t

dt G'~z2z8,r,r8;t!

3¹rA~z,z8,r,ur'2r'8 u,t!,
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azw~r,z,t !5E dr 8E
0

t

dt Gi~z2z8,r,r8;t!@cosc ¹r8A

1sinc ¹w8A#,

aww~r,z,t !5E dr 8E
0

t

dt

3$2cosc Gwr~z,r;z8,r8;t!¹z8A

1cosc Gwz~z,r;z8,r8;t!¹r8A

1sinc Gwz~z,r;z8,r8;t!¹w8A%.

For brevity, in the last two formulas we have omitted t
arguments ofA(z,z8,r,ur'2r'8 u,t).

Clearly, when the helicity fluctuation distribution is un
form along the rotation axis (A(z,z8,r,ur'2r'8 u,t)5A(uz
2z8u,r,ur'2r'8 u,t)), the componentsarw5awr vanish be-
cause they are odd inz2z8. In the absence of differentia
rotation in thez-coordinate (v(r,z)5v(r)), the component
Gwz is zero andGwr depends onuz2z8u, which means that
when the distribution of the fluctuations is uniform, the pri
cipal componentaww , which determines the amplification o
the magnetic field, is zero.

Thus, for ana effect to exist (awwÞ0) to exist, there
must be a dependence of the angular velocityv on the coor-
dinatez or a nonuniform distribution of helicity fluctuation
along this coordinate or the two factors must act simu
neously. Here thea effect is highly anisotropic—only the
azimuthal component of the magnetic field induces an
muthal current, which results in amplification of the poloid
component of the average field.

3.3. Qualitative explanation of the a effect

Let us qualitatively examine the generation of the e
Ew parallel to the average field̂̂ Bw&&. We will begin with
the contribution of the first term inaww in ~30!. Suppose that
the initial uniform magnetic field is directed parallel to th
azimuthal basis vectorew(1) at the observation point 1~see
Fig. 1!. At points 28 and 29, which are located at equa
distances for thexy plane, this field induces the emfE(28)
5a8(28)B0ew(1) andE(29)5a8(29)B0ew(1). Thecurrents
generated by these emf’s induce at point 2 in thexy plane
two magnetic fields,B8 andB9, which are perpendicular to
the initial field but point in opposite directions. The net fie
B(2)5B81B9 is directed along the rotation axis at an ang
c5w12w2 to the radial basis vectorer(2), i.e., Br(2)
52cosw uB81B9u. Due to radial differential rotation~v de-
pends onr!, this radial component transforms, with a pro
ability }Gwr(1;2), into the azimuthal component at point
and generates the azimuthal emf Ew}
2cosc Gwr(1;2)a8(1)¹z8a8(2)B0ew(1) at this point. The size
of the circles in Fig. 1 corresponds to the relative values
the functiona8(r ,t). This picture shows again that for th
part of theaww effect to exist the distribution of fluctuation
must vary along thez-coordinate or the componentGwr of
the Green’s tensor must be nonuniform.

In examining the contributions of the second and th
terms it is convenient to place the observation point 1 on
-

i-
l

f

f

e

x axis, i.e.,w50. Then the sum of these terms can be re
resented asGw(1;2)¹x8A. As in the case with the first term
~Fig. 1!, we select the points 28 and 29 at equal distances
from the circler5r1 ~see Fig. 2!. The average magneti
field B0ew(1) in this case is parallel to the axis. The emf
E(28) andE(29) induced by thea8(r ,t) field are also par-
allel to they axis. The electric currents generated by the
emf’s induce at the point 2 a finite magnetic fieldB(2) di-
rected along thez axis. Due to differential rotation~v de-
pends on z!, this field acquires, with a probability
}Gwz(1;2), an azimuthal component at the observatio
point 1, where it generates an emfEw}Gwz(1;2)¹x8A. For
simplicity, in Fig. 2 we depicted the contribution from poin
28 and 29 in the xy plane, but the same is true for othe
planes parallel to thexy plane.

3.4. An approximate expression for the Green’s tensor in
the general case

The left-hand side of Eq.~4! ~at a050! describes the
evolution of the average magnetic field due to diffusi
(Dm1D0Þ0) and due to transport of ‘‘frozen-in’’ field lines
by regular motion. In our integral equation~25! the diffusion
process is described by the tensorgab

(0)(1;2)5Uab(w1

2w2)g0(R,t), which corresponds to diffusive transport o
the field lines in an isotropic medium, i.e., the initial dire
tion of these lines is conserved. It is for this reason thatgab

(0)

contains finite termsgrw
(0)5sin(w12w2) g052gwr

(0) , according
to which, say, the fieldBr , which was initially radial, ac-
quires aw-component as a result of diffusive transport
another point, and vice versa. Substitution ofgi j

(0)(R,t)
5d i j g0(R,t) corresponding togab

(0) into ~17! leads to a
purely antisymmetric tensora i j , i.e., thea effect proper~the
emf is directed parallel to the average magnetic field! does
appear here. Differential rotation withv5v(r) directly cre-
ates~due to the frozen-in field lines! an azimuthal componen

FIG. 1. The mechanism for the occurrence of a transversea effect ~the
aww-component! due to the nonuniform distribution of helicity fluctuation
along the rotation axisz and the differential rotation in the perpendicula
plane withv5v(r).
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FIG. 2. The mechanism for the occurrence of a transversa
effect~theaw-component! due to the nonuniform distribution
of helicity fluctuations perpendicular to the rotation axisz
and the longitudinal differential rotation withv5v(z).
on
-

hi
is
,

he

he

t

th

h
s

en
r
rm
w

th

at
d
s

tic
th

ty

f t

for
ti-

r

’s
i-

e

field from the radial component and yields an additional c
tribution to theGwr

(0)-component of the Green’s tensor. How
ever, we have seen that diffusion partially transforms t
azimuthal component into the radial component, giving r
to an additional contribution toGrr

(0) . The inverse sequence
first diffusion and then differential rotation withv5v(r),
gives an additional contribution toGrw

(0) . When v5v(r)
holds, thez-component of the field cannot transform into t
radial or azimuthal component, so that in this caseGwz

(0)

5Grz
(0)50. In the general case of rotation withv5v(r,z),

neither diffusion nor differential rotation can transform t
horizontal~in the rotation plane! component of the field into
the vertical component. HenceGzw

(0)5Gzr
(0)50 always holds.

Differential rotation with v5v(z) generates from the
z-component the azimuthal component (Gwz

(0)Þ0), which
through diffusion creates the radial component, leading
Grz

(0)Þ0.
All these qualitative conclusions are corroborated by

master integral equation~25!.
In the axisymmetric case, the second term on the rig

hand side of Eq.~25! contributed nothing, which enabled u
to find an exact analytic expression for the average Gre
function ^Gab

(0)&. According to ~10!, to calculate the tenso
a i j (r ,t) we must know the Green’s tensor in general fo
and not only its axisymmetric part. For this general case
express the Green’s tensorGab

(0)(1;2) in theform of a sum of
the absolute term of Eq.~25!, gab

(0)(122), and the first itera-
tion of the equation. The structure of this expression is of
most general form, i.e., only the componentsGzw

(0)5Gzr
(0) are

equal to zero. This expression is probably quite accur
since it allows for the first orders of the diffusion an
differential-rotation processes, while higher-order proces
provide small contributions~this follows from general physi-
cal considerations!. It should alsobe recalled that in magne
dynamo theory the system of coordinates rotates toge
with the medium with a constant angular velocityv0 , so that
v(r,z) stands for the remaining part of the angular veloci
which often ~say, for the sun! is much smaller thanv0 .
Usually the gradients of the angular velocity,¹rv and¹zv,
are also smooth functions on the characteristic scales o
-

s
e

o

e

t-

’s

e

e

e,

es
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,

he

problem. All this suggests that the proposed expression
Gab

(0)(1;2) can beused in practical calculations and es
mates. Thus, plugginggab

(0)(122) into the integral terms of
Eq. ~18!, we arrive at the following expression fo
Gab

(0)(1;2):

Gab~1;2!5Uab~c!g0~122!2
]

]c
@Uab~c! f #1S r

w
z
D

3S a sinc2c cosc c sinc2b cosc h sinc2g cosc

a cosc1c sinc c cosc1b sinc h cosc1g sinc

0 0 0
D .

~31!

Here we have introduced the notation

f ~1;2!5E d3 v~3!g0~123!g0~322!,

a~1;2!5E d3 r3~¹rv~3!!cos2 c8 g0~123!g0~322!,

b~1;2!5E d3 r3~¹rv~3!!sin2 c8 g0~123!g0~322!,

c~1;2!5E d3 r3~¹rv~3!!sinc8 cosc8 g0~123!g0~3

22!,

g~1;2!5E d3 r3~¹zv~3!!sinc8 g0~123!g0~322!,

h~1;2!5E d3 r3~¹zv~3!!cosc8 g0~123!g0~322!, ~32!

c5w12w2 , and c85w32w2 . Interestingly, integrating
~31! with respect toc leads to the axisymmetric Green
tensor~29!, i.e., this approximation incorporates the prev
ous, axisymmetric, approximation.

Using ~31!, we can easily write the components of th
tensorabg(r ,t) explicitly. Here we will limit ourselves to
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the most important, diagonal, components. For convenie
we first write the general formulas for these components

arr~r ,t !5E d2 $2sinc Grr
(0)~1;2!¹z

(2)A~1;2!

1cosc Grw
(0)~1;2!¹z

(2)A~1;2!1@sinc ¹r
(2)

3A~1;2!2cosc ¹w
(2)A~1;2!#Grz

(0)~1;2!%,

~33!

aww~r ,t !5E d2 $2cosc Gwr
(0)~1;2!¹z

(2)A~1;2!

2sinc Gww
(0)~1;2!¹z

(2)A~1;2!

1@cosc ¹r
(2)A~1;2!

1sinc ¹w
(2)A~1;2!#Gwz

(0)~1;2!%, ~34!

azz~r ,t !5E d2 @Gzr
(0)~1;2!¹w

(2)A~1;2!

2Gzw
(0)~1;2!¹r

(2)A~1;2!#. ~35!

First we see thatazz(r ,t)[0, since in a medium with differ-
ential rotation withv5v(r,z) the componentsGzw

(0)5Gzr
(0)

are equal to zero. We also note that the difference from
corresponding formula in the case of using the axisymme
Green’s tensor@formula ~29!# is very large. Therearr(r ,t)
50, since^Grw

(0)&5^Grz
(0)&50, and the first term in~33! con-

tributed nothing because it is odd inc.
Inserting the components of the tensor~31! into ~33! and

~34! yields

arr~r,z,t !5E d2 $2 f ¹z
(2)A~1;2!2~a sin2 c

1b cos2 c!¹z
(2)A~1;2!

1h sinc @sinc ¹r
(2)A~1;2!

2cosc ¹w
(2)A~1;2!#%, ~36!

aww~r,z,t !5E d2 $2 f ¹z
(2)A~1;2!2~a cos2 c

1b sin2 c!¹z
(2)A~1;2!

1h cosc @cosc ¹r
(2)A~1;2!

1sinc ¹w
(2)A~1;2!#%, ~37!

We see that the componentsarr and aww are of the same
order. This means that in calculating the kinetic coefficie
abg(r ,t) we must use the Green’s tensor in general for
The part of this tensor that is averaged over the azimu
angle strongly distorts the structure ofabg(r ,t), although the
order ofaww remains unchanged. In a medium with rotatio
all the componentsabg(r ,t)[abg(r,z,t) are independent o
the azimuthal angle, which is the consequence of the fact
the fluctuation correlator is uniform in the angles:A(1;2)
5^^a8(1)a8(2)&&5A(z1 ,z2 ,r1 ,r2 ,w12w2 ,t).

A qualitative explanation of the emergence of thea ef-
fect due to helicity fluctuations~see Figs. 1 and 2! given
ce

e
ic

s
.
al

,

at

above is fully applicable in relation to the second and th
terms in ~36! and ~37!. Attention should be focused on th
first terms in these formulas, which appear because of
term with the derivative with respect to the azimuthal an
in the master integral equation~25!. We will begin this ex-
planation from fundamental considerations.

The exact solution of Eq.~25! in the absence of differ-
ential rotation, i.e., in the case of uniform rotation with
constant angular velocityv0 , has the following form:5

Gab
(0)~1;2!5Uab~c2v0t!g0~ uz2z8u, r21r82

22rr8 cos~c2v0t!, t!. ~38!

The physical meaning of this solution is very simple: it d
scribes the ratio of frozen-in magnetic field and, simul
neously, the thermal diffusion of this field in accordan
with the varying distance from the moving point 2 to th
fixed observation point 1. Susbstituting this solution in~33!
and ~34! yields

arr5aww52E d2 sin~v0t! ¹z
(2)A~1;2!g0 . ~39!

This formula describes the occurrence of thea effect due to
the rotation of the induced magnetic field. Indeed, let
average field̂ ^B&&5const be directed along they axis ~see
Fig. 3!. In accordance with the values of the functio
a8(r ,t), the emf’s generated at points 28 and 29 areE(28)
5a8(28)^^B&& and E(29)5a8(29)^^B&&. The electric cur-
rents corresponding to these emf’s induce at point 2 the
sulting fieldB81B9 directed parallel to thex axis. Due to its
frozen-in nature, the field rotates about the rotation axis,
that a componentBi5sin(v0t) uB81B9u parallel to the aver-
age field^^B&& but pointing in the opposite direction appea
at the observation point 1. This is the component that gen
ates an emf at point 1 in the same direction, i.e., ana effect
is present. However, when only uniform rotation is cons
ered noa effect appears, since we implicitly assumed th
the average field̂^B&& is fixed in relation to the fixed obser
vation point 1. Actually^^B&& also rotates and no relativ
rotation through the anglev0t occurs. This becomes espe
cially clear if we examine the problem in a rotating system
coordinates, wherev050.

In the presence of differential rotation we have alrea
excluded the constant component of the angular velocity
going over to a rotating system of coordinates. With suc
system of coordinates we can assume that the average fie
fixed in relation to the point of observation and that t
mechanism depicted in Fig. 3 does indeed work. The fu
tion f (1;2) corresponds to the solution~38! if we assume
that locally the angular velocityv(r,z) is constant and,
more than that,v(r,z)t is much smaller than unity~i.e.,
f˜vtg0). Substituting the functionf (1;2) for sin(v0t) g0

'v0tg0 we obtain the first terms in~36! and~37!. Thus, the
term with f (1;2) describes thea effect caused by local ro
tations of the frozen-in induced magnetic fields.

Sometimes in magnetic dynamo problems the aver
valuea'(r ,t)[(arr1aww)/2. Formulas~36! and~37! yield
for this quantity a relatively simple expression:
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FIG. 3. The mechanism for the occurrence of a transversea effect
due to the nonuniform distribution of helicity fluctuations along th
z axis and the rotation of the induced magnetic field.
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a'~r,z,t !52E
2`

`

dz8E
0

`

dr8 r8E
0

2p

dc F S f ~1;2!

1
a~1;2!1b~1;2!

2 D¹z8A~1;2!

2
h~1;2!

2
¹r8A~1;2!G . ~40!

All the formulas obtained in this paper suggest that a n
uniform distribution of helicity fluctuations causes a larg
scalea effect. As for the longitudinal~along the rotation
axis! a effect, the general formula~35! requires that finite
componentsGzw

(0) and Gzr
(0) are needed for such an effect

exist. The idea that the field lines are frozen-in implies t
such an effect is possible if in addition to rotation there
types of motion that eject matter out of the plane of rotati
Primarily this is convective movements of matter accom
nied by expansion of the volume occupied by gas.

4. ESTIMATES OF THE a EFFECT AND DISCUSSION

In view of the complexity of the above formulas, es
mates of thea effects made by these formulas are qualitat
rather than quantitative. First we take the quantitiesv(r,z)
[v and the gradients¹rv and ¹zv outside the integra
sign, assuming them to be fairly smooth function
This yields f (1;2)'vtg0(122), a(1;2)'b(1;2)
'(¹rv)tg0(122)l diff(t), and h(1;2)'(¹zv)tg0(1
22)l diff(t), where l diff

2 (t)'6D0t determines the diffusion
distance in timet. As noted earlier, the coefficientsarr and
aww are of the same order, with the result that our estima
refer to the average value of these quantities,a' . Using the
foregoing estimates of the functionsf , a, b, andh and Eq.
~40!, we arrive at the final estimate:
-
-

t
e
.
-

.

s

a''v
ta

2a1
2

Lz
1

ta
2a1

2

Lr
~¹rv!l diff~ta!

1
ta

2a1
2

Lz
~¹zv!l diff~ta!. ~41!

Herea1
2'^^a82(r ,t)&& is the level of fluctuations,ta is the

lifetime of helicity correlations, andLr andLz are the char-
acteristic lengths of nonuniformity of the fluctuation distr
bution, which are relatively small, since the nonuniformity
the fluctuations probably manifests itself most strongly n
the boundaries of the region~for the sun, say, this is the
upper and lower edge of the convective zone!.

If we assume that each turbulent vortex transfers, in
process of scale fractionation, its angular moment to sma
vortices, then to make estimates we can assume thaa1

2

'u0
2 ~which is usually done in estimates!, whereu0

2 is the
characteristic velocity of turbulent movements. What is i
portant is that helicity fluctuations are inherent in any turb
lence and are in no way related to Coriolis forces. As
known, Coriolis forces imply, when there is convection a
differential rotation, the existence of an average helicitya0 ,
which we set to zero in our discussion in ‘‘pure form’’ of th
novel mechanism for amplification of the average magne
field by helicity fluctuations. These independent coefficie
are relatively weak and can be added, with the quadr
effects being ignored. We also note thatu0

2 can strongly de-
pend on the magnetic field. We must take the turbulent
locities and the distribution of the helicity fluctuations at t
values that they had when formed by all the factors:
temperature, pressure, magnetic field, boundary conditi
etc. The characteristic lifetime of a fluctuation correlation
probably longer than the lifetimet0 of a turbulent vortex,
and so for estimates we assume thatta>t0 . The turbulent
diffusion coefficient is usually estimated atD0'u0R0 ,
whereR0 is the characteristic size of a turbulent vortex~the
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mixing length!. Plugging all these quantities into~41!, we
arrive at a detailed estimate:

a'>j0
2~vR0!

R0

Lz
1j0

5/2~R0
2¹rv!

R0

Lr
1j0

5/2~R0
2¹zv!

R0

Lz
,

~42!
wherej05u0t0 /R0 is a dimensionless parameter charact
izing turbulence~the Strouhal number!. It is usually assumed
thatj0.1. This parameter can be also be written as the r
of the vortex lifetime to the time of one rotation,j0

5t0 /t0 , wheret05R0 /u0 . If the vortex has time to make
many rotations, thenj0@1.

In estimating thea effect caused by the Coriolis force
is usually assumed thata0'R0v ~see, e.g., Ref. 21!. The
estimate~42! shows that the coefficienta' , which reflects
the nonuniformity in the distribution of the helicity fluctua
tions, may become equal toa0 or even larger thana0 . True,
in contrast to the mechanism of Coriolis forces, this no
mechanism may be important only near the boundaries of
region considered, where the distribution of fluctuations v
ies most.

In all the cases considered in this paper~see Figs. 1–3!
we have seen that for an emf to be generated parallel to
average magnetic field there must be not only a nonunifo
distribution of the helicity fluctuations but also a rotation
the magnetic field induced by the currents, i.e., differen
rotation of the plasma is required. Generally speaking, as
general formula~18! implies, for thea effect to manifest
itself there must be one vector, the gradient of the correla
of the helicity fluctuations, and one pseudoscalar,Gi

5ei jkGjk
(0) . The pseudovector is not necessarily the angu

velocity v. In problems with complicated geometry, th
quantity G may be related, say, to reflection asymmetry
the volume considered. Note that in experiments of Shte
bek et al.7 the liquid-sodium conductors were reflectio
symmetric.

5. CONCLUSION

Here are the main conclusions that can be drawn fr
the results of this investigation. The method of large-sc
averaging of the equation of diffusion of a magnetic fie
was used to develop the novel effect first detected
Vishniac and Brandenburg15 and Sokolov,16 the large-scale
amplification of the magnetic field by turbulent helicity flu
tuations. It was found that for turbulence with a zero avera
helicity the necessary condition for such an effect is the p
ence of a nonuniform distribution of helicity fluctuations
the conducting turbulent medium. For isotropic, unifor
-
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and reflection-asymmetric turbulence, helicity fluctuatio
only amplify an already existinga effect. In a medium with
differential rotation, a nonuniform distribution of the turbu
lent helicity fluctuations produces large-scale amplificat
of the average magnetic field even at zero average helic
For this case thea effect is highly anisotropic: the averag
emf not directed parallel to the longitudinal compone
~along the rotation axis! of the magnetic field, i.e.,azz[a i

50. All transverse components of the tensora i j (r ,t) are of
the same order and can become equal to the coefficienta0

caused by Coriolis forces. It is also shown that the fluct
tions of the diffusion coefficient and helicity reduce the in
tial turbulent diffusion coefficient.
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20N. A. Silant’ev, Zh. Éksp. Teor. Fiz.112, 1312 ~1997! @JETP 85, 712

~1997!#.
21N. O. Weiss, inLectures on Solar and Planetary Dynamo, M. R. E.

Proctor and A. D. Gilbert~Eds.!, Cambridge Univ. Press, Cambridg
~1994!.

Translated by Eugene Yankovsky



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 89, NUMBER 1 JULY 1999
The quantum poisson–Lie T-duality and mirror symmetry
S. E. Parkhomenko* )

Landau Institute for Theoretical Physics, 142432 Chernogolovka, Moscow Region, Russia
~Submitted 17 December 1998!
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Poisson–LieT-duality in quantumN52 superconformal Wess–Zumino–Novikov–Witten
models is considered. The Poisson–LieT-duality transformation rules of the super-Kac–Moody
algebra currents are found from the conjecture that, as in the classical case, the quantum
Poisson–LieT-duality transformation is given by an automorphism which interchanges the
isotropic subalgebras of the underlying Manin triple in one of the chirality sectors of
the model. It is shown that quantum Poisson–LieT-duality acts on theN52 super-Virasoro
algebra generators of the quantum models as a mirror symmetry acts: in one of the chirality sectors
it is a trivial transformation while in another chirality sector it changes the sign of theU(1)
current and interchanges the spin-3/2 currents. A generalization of Poisson–LieT-duality for the
quantum Kazama–Suzuki models is proposed. It is shown that quantum Poisson–LieT-
duality acts in these models as a mirror symmetry also. ©1999 American Institute of Physics.
@S1063-7761~99!00207-3#
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1. INTRODUCTION

Target-space~T! dualities in superstring theory relat
backgrounds with different geometries and are symmetrie
the underlying conformal field theory.1,2

The mirror symmetry3 discovered in superstring theor
is a special type ofT-duality. At the level of conformal field
theory it can be formulated as an isomorphism between
theories, amounting to a change of sign of theU(1) genera-
tor and an interchange of the spin-3/2 generators of the
moving ~or rightmoving! N52 superconformal algebra.

Mirror symmetry has mostly been studied in the cont
of Calabi–Yau superstring compactification. Importa
progress has been achieved in this direction in the last
years, based on the ideas of toric geometry.4 In particular, in
Ref. 5 toric geometry mirror pair construction was propos
Though it seems quite certain that pairs of Calabi–Yau ma
folds constructed by these methods are mirror, one need
show that the proposed pairs correspond to isomorphic c
formal field theories, to prove that they are indeed mirr
Progress in this direction was made in Ref. 6, but a comp
arguments has yet to be carried out. In fact, the only rig
ously established example of mirror symmetry, the Green
Plesser construction,7 is based on the tensor products of t
N52 minimal models.8 For a review of mirror symmetry
and toric geometry methods in Calabi–Yau superstring co
pactifications see the lectures of Greene.9

Recently, Strominger, Yau, Zaslow10 related mirror sym-
metry in superstring theory to the quantum AbelianT-duality
in fibers of toricaly fibrated Calabi–Yau manifolds.

The Poisson–Lie~PL! T-duality, recently discovered by
Klimcik and Severa in their excellent work,11 is a generali-
zation of Abelian and non-AbelianT-dualities.12–14This gen-
eralized duality is associated with two groups forming
Drinfeld double,15 and the duality transformation exchang
their roles. Many aspects of these ideas have been devel
51063-7761/99/89(1)/8/$15.00
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in Refs. 16–26. In particular, in Ref. 26 it was shown that
T-duality in the classicalN52 superconformal WZNW
~SWZNW! and Kazama–Suzuki models is a mirror dualit
It is reasonable to expect that PLT-duality in the quantum
versions of these models will be a mirror duality also. Mor
over, it is tempting to conjecture that PLT-duality is an
adequate geometric structure underlying mirror symmetry
superstring theory. Motivated by this we propose a quant
tion of PL T-duality transformations in theN52 SWZNW
and Kazama–Suzuki models.

Quantum equivalence among PLT-duality related
s-models was studied perturbatively in Ref. 27 and Ref.
and it was shown that PL dualizability is compatible wi
renormalization at 1 loop. In particular it was shown in R
22 that 1-loop beta functions for the coupling and the para
eters in the two simplest examples of PLT-duality related
models are equivalent. This allows us to suggest that t
equivalence extends beyond the classical level with app
priate quantum modification of PLT-duality transformations
rules.

In the present note the PLT-duality transformation rules
of the fields in quantumN52 SWZNW models will be
found starting from the conjecture that as in the class
case, quantumN52 SWZNW models are PL self-dual an
the PLT-duality transformation is given by an automorphis
of the super-Kac–Moody algebra in the rightmoving sect
Then we obtain PLT-duality transformation rules using th
Knizhnik–Zamolodchikov equation, Ward identities and
quantum version of the classical formula which relates
generators of rightmoving super-Kac–Moody algebra to
PL T-duality transformed. We show that the generators
the N52 super-Virasoro algebras transform under
T-duality like a mirror duality: theU(1) current changes
sign and the spin-3/2 currents permute. Thus, the results
in agreement with the conjecture proposed in Ref. 28 t
mirror symmetry can be related to a gauge symmetry~auto-
© 1999 American Institute of Physics
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6 JETP 89 (1), July 1999 S. E. Parkhomenko
morphism! of the self-dual points of the moduli space of th
N52 superconformal field theories~SCFTs! ~for the N50
version of this conjecture see Ref. 29!. Then we consider
quantum PLT-duality in the Kazama–Suzuki models an
propose a natural generalization of the quantum PLT-duality
transformation. We show that as in the SWZNW mod
quantum PLT-duality in the Kazama–Suzuki models is
mirror duality also.

The structure of the paper is as follows: In Sec. 2
briefly review PLT-duality in the classicalN52 SWZNW
model following.26 In Sec. 3 we describe Manin triple con
struction of the quantumN52 SWZNW models on the com
pact groups and obtain the PLT-duality transformation rules
of the quantum fields. We show that PLT-duality transfor-
mation is given by an automorphism of the underlying M
nin triple which permutes isotropic subalgebras of the trip
Then we obtain transformation rules of the rightmovingN
52 super-Virasoro algebra generators. In Sec. 4 we pre
the Manin triple construction of the Kazama–Suzuki mode
We show that they can be described as~Manin triple!/
~Manin subtriple!-cosets. We define quantum PLT-duality
transformation in the Kazama–Suzuki models as the su
of the transformations of the numerator triple which sta
lizes the denominator subtriple. Then we easily find trans
mation rules of the rightmovingN52 super-Virasoro alge
bra generators of the coset. At the end of the section
T-duality in theN52 minimal models considered briefly a
an example.

2. POISSON–LIE T-DUALITY AND MIRROR SYMMETRY IN
THE CLASSICAL N52 SUPERCONFORMAL WZNW
MODELS

In this section we briefly review PLT-duality in the
classicalN52 SWZNW models, following.25,26

We parameterize the super world-sheet by introduc
the light cone coordinatesz6 and Grassman coordinatesQ6

~we use theN51 superfield formalism!. The generators o
the supersymmetry and covariant derivatives satisfying
standard relations are given by

Q75
]

]Q6
1 iQ6]7 , D75

]

]Q6
2 iQ6]7 . ~1!

The superfield of theN52 SWZNW model

G5g1 iQ2c11 iQ1c21 iQ2Q1F ~2!

takes values in a compact Lie groupG so that its Lie algebra
g is endowed with an ad-invariant nondegenerate inner p
uct ^,&. The action of the model is given by

SSWZ5E d2xd2Q~^G21D1G,G21D2G&!2E d2xd2Qdt

3 K G21
]G

]t
,$G21D2G,G21D1G%L ~3!

and possesses manifestN51 superconformal and supe
Kac–Moody symmetries:30
s

e

-
.

nt
.

et
-
r-

L

g

e

d-

da1
G~z1 ,x2 ,Q1 ,Q2!

5a1~z2 ,Q1!G~z1 ,z2 ,Q1 ,Q2!,

da2
G~z1 ,z2 ,Q1 ,Q2! ~4!

52G~z1 ,z2 ,Q1 ,Q2!a2~z1 ,Q2!,

G21de1
G5~G21e1~z2!Q1G!,

~5!
de2

GG215e2~z1!Q2GG21,

wherea6 areg-valued superfields.
An additional ingredient demanded by theN52 super-

conformal symmetry is a complex structureJ on the finite-
dimensional Lie algebra of the model which is ske
symmetric with respect to the inner product^,&.31–33That is,
we should demand that the following equations be satis
on g:

J2521, ^Jx,y&1^x,Jy&50,

@Jx,Jy#2J@Jx,y#2J@x,Jy#5@x,y# ~6!

for any elementsx, y in g. It is clear that the correspondin
Lie group is a complex manifold with left~or right! invariant
complex structure. In the following we shall denote the re
Lie group and the real Lie algebra with the complex struct
satisfying~6! by the pairs (G,J) and (g,J) respectively.

The complex structureJ on the Lie algebra defines th
second supersymmetry transformation31

~G21dh1
G!a5h1~z2!~Jl !b

a~G21D1G!b,

~7!
~dh2

GG21!a5h2~z1!~Jr !b
a~D2GG21!b.

whereJl ,Jr are the left invariant and right invariant comple
structures onG which correspond to the complex structureJ.

The notion of Manin triple is closely related to a com
plex structure on a Lie algebra. By definition,15 a Manin
triple (g,g1 ,g2) consists of a Lie algebrag with nondegen-
erate invariant inner product^,& and isotropic Lie subalge
brasg6 such that the vector spaceg5g1 % g2 .

With each pair (g,J) one can associate the complex M
nin triple (gC,g1 ,g2), wheregC is the complexification ofg
andg6 are6 i eigenspaces ofJ. Moreover, it can be proved
that there exists a one-to-one correspondence betwe
complex Manin triple endowed with an anti-linear involutio
which conjugates isotropic subalgebrast: g6˜g7 and a
real Lie algebra endowed with an ad-invariant nondegene
inner product^,& and complex structureJ which is skew-
symmetric with respect tô,&.32 The conjugation can be use
to extract a real form from a complex Manin triple.

Now we have to consider some geometric properties
theN52 SWZNW models closely related to the existence
complex structures on the groups. We shall follow Ref. 2

Let us fix some compact Lie group with the left invaria
complex structure (G,J) and consider its Lie algebra with
the complex structure (g,J). The complexificationgC of g
has the Manin triple structure (gC,g1 ,g2). The Lie group
version of this triple is the double Lie grou
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(GC,G1 ,G2),34–36 where the exponential subgroupsG6

correspond to the Lie algebrasg6 . The real Lie groupG is
extracted from its complexification with the help of conjug
tion t ~it will be assumed in the following thatt is the her-
mitian conjugation!

G5$gPGCut~g!5g21%. ~8!

Each elementgPGC from the vicinityG1 of the unit element
from GC admits two decompositions:

g5g1g2
215g̃2g̃1

21. ~9!

Taking into account~8! and~9! we conclude that the elemen
g(gPG1) belongs toG if

t~g6!5g̃7
21. ~10!

These equations mean that we can parameterize the elem
of

C1[G1ùG ~11!

by the elements of the complex groupG1 ~or G2!, i.e., we
can introduce complex coordinates~they are just matrix ele-
ments ofg1 ~or g2!! in the startC1 .

To generate~9! and ~10! one has to consider the setW
~which we shall assume in the following to be discrete a
finite! of classesG1\GC/G2 and choose a representativew
for each class@w#PW. It gives us the stratification ofGC.35

GC5ø uwuPW
G1wG25ø uwuPW

Gw . ~12!

There is a second stratification:

GC5ø uwuPW
G2wG15ø uwuPW

Gw. ~13!

We shall assume, in the following, that the representativew
have been chosen to be unitary:

t~w!5w21. ~14!

It allows us to generalize~9! as follows:

g5wg1g2
215wg̃2g̃1

21, ~15!

where

g1PG1
w , g̃2PG2

w ~16!

and

G1
w 5G1ùw21G1w, G2

w 5G2ùw21G2w. ~17!

In order for the elementg to belong to the real groupG
the elementsg6 ,g̃6 from ~15! must satisfy~10!. Thus, the
formulas~10! and ~15! define the mapping

fw
1 :G1

w
˜Cw[GwùG. ~18!

In a similar way one can define the mapping

fw
2 :G2

w
˜Cw[GwùG. ~19!

In Refs. 25 and 26 the following statements we
proved.

1! The mappings~18! are holomorphic and define th
natural~holomorphic! action of the complex groupG1 on G;
the setW parameterizes theG1-orbits Cw .
nts

d

2! The (G,J)-SWZNW model admits PL symmetry,11,37

with respect toG1 action so that we may associate with ea
external surfaceG1(z1 ,z2 ,Q1 ,Q2),G1 , of the model a
mapping ~‘‘Noether charge’’! V2(z1 ,z2 ,Q1 ,Q2) from
the super world-sheet into the groupG2 . The pair
@G1(z1 ,z2 ,Q1 ,Q2), V2(z1 ,z2 ,Q1 ,Q2)# can be lifted
into the the doubleGC:

F~z1 ,z2 ,Q1 ,Q2!5G1~z1 ,z2 ,Q1 ,Q2!

3V2~z1 ,z2 ,Q1 ,Q2!. ~20!

Moreover, the surface~20! can be rewritten in the form

F~z6 ,Q6!5G~z6 ,Q6!H2
21~z1 ,Q2!. ~21!

HereG(z6 ,Q6),G is a solution of theG-SWZNW model
and the superfieldH2 is given by the solution of the equa
tion

H2
21D1H252~ I 1!2, ~22!

where (I 1)2 is g2-projection of the conservation curren
I 15G21D1G of the model.

3! With the appropriate modifications the above sta
ments are true also for the mappings~19! andG2 action on
G. Thus, one can represent the surface~20! in the ‘‘dual’’
parameterization11

F~z6 ,Q6!5Ğ~z6 ,Q6!H1
21~z1 ,Q2!, ~23!

where Ğ(z6 ,Q6) is the dual solution of theG-SWZNW
model and the superfieldH1 is given by the similar equation

H1
21D1H152~ Ĭ 1!1, ~24!

where (Ĭ 1)1 is theg1-projection of the dual conserved cu
rent Ĭ 1[Ğ21D1Ğ.

4! Under PLT-duality

t:G~z6 ,Q6!˜Ğ~z6 ,Q6!5G~z6 ,Q6!H~z1 ,Q2!, ~25!

where

H[H2
21H1 , ~26!

the conserved rightmoving currentI 1 transforms as

t:~ I 1!2
˜~ Ĭ 1!1, ~ I 1!1

˜~ Ĭ 1!2, ~27!

while the conserved leftmoving currentI 2[D2GG21 trans-
forms identically:

t:~ I 2!6
˜~ I 2!6. ~28!

Moreover, the classical rightmovingN52 super-Virasoro al-
gebra maps under PLT-duality as follows:26

t:S6
˜S̆7, T6 i ]K˜T̆7 i ]K̆, ~29!

where S6 are the spin-3/2 currents,T is the stress-energy
tensor, andK is the U(1) current, while the leftmoving
N52 super-Virasoro algebra maps identically. Thus,
T-duality in the classicalN52 SWZNW models is a mirror
duality.
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3. POISSON–LIE T-DUALITY AND MIRROR SYMMETRY IN
THE QUANTUM N52 SUPERCONFORMAL WZNW
MODELS

We start with the Manin triple construction of th
N52 Virasoro algebra generators of the quantum SWZN
model on the group (G,J).32,33,38

Let us specify an orthonormal basis

$Ea,Ea ,a51,...,d% ~30!

in the Manin triple (gC,g1 ,g2), so that$Ea% is a basis in
g1 , and $Ea% is a basis ing2 . The commutation relations
and Jacoby identity in this basis take the form

@Ea,Eb#5 f c
abEc,

@Ea ,Eb#5 f ab
c Ec , ~31!

@Ea,Eb#5 f bc
a Ec2 f b

acEc ,

f d
abf e

dc1 f d
bcf e

da1 f d
caf e

db50,

f ab
d f dc

e 1 f bc
d f da

e 1 f ca
d f db

e 50, ~32!

f mc
a f d

bm2 f md
a f c

bm2 f mc
b f d

am1 f md
b f c

am5 f cd
m f m

ab .

Let us introduce the matrices

Ba
b5 f cf a

cd1 f cf ca
b , Aa

b5 f ac
d f d

bc . ~33!

Let j a(z), j a(z) be the generators of the affine Kac–Moo
algebraĝC, corresponding to the fixed basis$Ea,Ea%, so that
the currentsj a generate the subalgebraĝ1 and the currents
j a generate the subalgebraĝ2 ~we shall omit in the following
the super-world-sheet indices6, keeping in mind that we are
in the rightmoving sector!. The singular operator product ex
pansions~OPEs! between these currents are the following

j a~z! j b~w!52~z2w!22
1

2
k~Ea,Eb!

1~z2w!21f c
abj c~w!1reg,

j a~z! j b~w!52~z2w!22
1

2
k~Ea ,Eb!

1~z2w!21f ab
c j c~w!1reg, ~34!

j a~z! j b~w!52~z2w!22
1

2
~qdb

a1k~Ea,Eb!!

1~z2w!21~ f bc
a j c2 f b

acj c!~w!1reg,

wherek(x,y) denotes the Killing form for the vectorsx, y of
gC. Let ca(z), ca(z) be free fermion currents which hav
the following singular OPEs:

ca~z!cb~w!52~z2w!21db
a1reg. ~35!

Then theN52 Virasoro superalgebra currents and the c
tral charge are given by31–33,38

S15
2

Aq
S caj a1

1

2
f ab

c :cacbcc : D ,
-

S25
2

Aq
S caj a1

1

2
f c

ab :cacbcc: D , ~36!

K5S 2Ba
b

q
2da

bD :cacb :2
2

q
~ f cj c2 f cj c!,

T52
1

q
:~ j aj a1 j aj a!:2

1

2
:~]caca2ca]ca!:,

c53S d2
2Aa

a

q D . ~37!

The set of currents~36! can be combined into the supe
fields

G65
1

&
S11Q S T7

1

2
]K D , ~38!

so that the energy-momentum super-tensor is given by
sum

G5
1

2
~G11G2!52

1

q
:^DI ,I &:1

2

3q2 :^I ,:$I ,I %:&:. ~39!

Here I denotes Lie algebra valued super-Kac–Moody c
rents of the affine superalgebraĝ:

I[I aEa1I aEa,

I a52Aq

2
ca1QS j a1S 1

2
f bc

a :cbcc:1 f c
ab :cbcc: D D ,

~40!

I a52Aq

2
ca1QS j a1S 1

2
f a

bc :cbcc :1 f ab
c :cbcc : D D .

We now propose a quantum version of the PLT-duality
transformation. Perhaps the most comprehensive way to
PL T-duality transformation rules for the quantum fields
the model is to quantize canonically the Sfetsos canon
transformations for PLT-duality relateds-models21 and then
define and solve the quantum version of the equations~22!,
~24!, and ~26!. Though developing this approach for theN
52 superconformal field theory is an important problem a
worth solving, it is beyond our reach at the present mome

Instead we determine the quantum counterpart of
mapping~25! as an automorphism of the operator algebra
the quantum fields, defined by right multiplication by th
rightmoving matrix-valued functionH(Z), which implies
that N52 SWZNW model is PL self-dual. We propose
very simple way to find the matrix elements ofH using
super-Kac–Moody Ward identities and the Knizhnik
Zamolodchikov equation.

In theN51 superfield formalism an arbitrary conform
superfield is defined by the following OPEs.39

I a~Z1!FL~Z2!5Z12
21/2EaFL~Z2!1reg,

~41!
I a~Z1!FL~Z2!5Z12

21/2EaFL~Z2!1reg.

HereEa, Ea denote the generators of thegC in the represen-
tation with the highest weightL,
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G~Z1!FL~Z2!5Z12
23/2DFL~Z2!1Z12

21 1

2
DFL~Z2!

1Z12
21/2]FL~Z2!1reg, ~42!

where the conformal dimensionD is given by

D5CL /q, CL[2~EaEa1EaEa!. ~43!

and we have used the standard notations for even and
world-sheet super-intervals between a pair of pointsZi

5(zi ,Q i), i 51,2:

Z12[z12z22Q1Q2 , Q125Z12
1/2[Q12Q2 , ~44!

so that

Z12
n11/25Z12

n Q12, nPZ. ~45!

We postulate the quantum version of the formula~25!:

t:FL~Z!˜F̆L~Z!5FL~Z!H~Z!, ~46!

which is the quantum counterpart of~25! ~here and in what
follows the leftmoving coordinate dependence of the fie
will be omitted for simplicity!. It follows from the Sugawara
formula ~39! and the OPEs~41! and~42! that the conformal
superfield FL(Z) of the model satisfies the Knizhnik
Zamolodchikov equation39

q

2
DFL~Z!1:FLI :~Z!50, ~47!

which is a quantization of the classical relationI 5G21

DG. In view of ~46!: the dual fieldF̆L satisfies the similar
equation

q

2
DF̆L~Z!52:F̆L Ĭ :~Z!

52:F̆LH21IH :~Z!1
q

2
F̆LH21DH~Z!. ~48!

Let us go back for a moment to the classical case
consider Eqs.~22!, ~24!, and~26!. Using them we can write

H21DH52~ Ĭ 12H21I 2H !. ~49!

As its quantum version we propose

q

2
F̆LH21DH~Z!522:F̆L~ Ĭ 12H21I 2H !:~Z!. ~50!

The substitution~50! converts~48! into

:F̆L~ Ĭ 22 Ĭ 1!:~Z!5:F̆L~H21~ I 12I 2!H !:~Z!. ~51!

Using the left-invariant complex structureJ on the groupG
one can rewrite it in the form

:F̆L~JEnd~H !JĬ !:~Z!5:F̆LI :~Z!, ~52!

where we have introduced the notation End(H)x5HxH21,
xPgC and we imply that End(H) belongs to the group o
super-Kac–Moody algebra automorphisms. The equa
~52! means that End(H) interchanges the isotropic subalg
bras of the Manin triple because it anticommutes with
complex structureJ.
dd

s

d

n

e

By virtue of ~52! Eq. ~48! takes the form

q

2
F̆LH21DH~Z!5:F̆L~~End~H21!JEnd~H !J21! Ĭ !:~Z!.

~53!

Using super-Kac–Moody Ward identities39 it is easy to see
that ~53! decays into the system of equations

H21DH50,
~54!

End~H21!JEnd~H !J2150.

Its solution is given by the constant matrix anticommuti
with J:

DH50, JEnd~H !1End~H !J50. ~55!

In the orthonormal basis we have chosen, any matrix wh
anti-commutes withJ should have the form

S 0 1

1 0D S h 0

0 h̄
D , ~56!

whereh is an arbitrary complex matrix~the bar denotes com
plex conjugation!. Let us denote by Aut(g,J) the group of
automorphisms ofg which commute withJ. It is clear that

End~H !5S 0 1

1 0D . ~57!

is a solution of~55!. Hence each solution of~55! should have
the form:

End~H !5S 0 1

1 0D S m 0

0 m̄
D , S m 0

0 m̄
D PAut~g,J!. ~58!

In view of ~52! End(H) should be also an automorphism
the algebraĝ. It imposes on the matrixm the relation

mcbm̄ab5da
c . ~59!

The next condition we should demand ist251 ~that is, PL
T-duality is an involution!. It gives the second relation form:

mcbm̄ba5da
c . ~60!

Therefore the set of PLT-duality transformations in theN
52 superconformal WZNW model on the group manifoldG
is given by the set of matrices~58! satisfying~59! and ~60!.
Hence, under the quantum PLT-duality the currents~40!
transform as

t:I a
˜mabI b , I a˜m̄abI

b, ~61!

or in components,

t:ca
˜mabcb , j a

˜mabj b , ca˜m̄abc
b, j a˜m̄abj b.

~62!

Taking into account~36!, ~59!, and ~62! we find the PL
T-duality transformation of theN52 Virasoro superalgebra
currents:

t:(
6

˜(
7

, t:K˜2K, T˜T. ~63!
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Notice that, as in the classical case, PLT-duality acts in
the leftmoving sector as an identity transformation. The
fore we may conclude that quantum PLT-duality in the
N52 superconformal WZNW models is a mirror duality an
has a geometric realization which is given by P
G6-holomorphic action on the target space of the model

Here a remark is in order. In many examples of t
N52 SWZNW models on the compact group
(SU(3),SU(2)3U(1),...) the transformations~61! coin-
cide with Weyl reflections. In these cases mirror symme
was interpreted by the authors of Ref. 28 as a gauge sym
try. They presented also a contradictory example,SU(2)
3SU(2) SWZNW model, where the Weyl reflections faile
to give mirror symmetry. It follows from our formula~61!
that in this example mirror symmetry is given by an exter
automorphism of the Lie algebrasu(2)3su(2). This ex-
ample illustrates the general picture: PLT-duality is given by
an automorphism~internal or external! which interchanges
the isotropic subalgebras of the underlying Manin triple.

4. POISSON–LIE T-DUALITY AND MIRROR SYMMETRY IN
QUANTUM KAZAMA—SUZUKI MODELS

In this section we consider PLT-duality in Kazama–
Suzuki models. Kazama and Suzuki have studied40 the con-
ditions under which anN51 superconformal coset mode
can have an extra supersymmetry, giving rise to anN52
superconformal model. Then theN52 superconformal cose
theories were classified more accurately in Ref. 41. Th
conclusion can be reformulated as follows. Suppose the
nin triple (gC,g1 ,g2) associated with the pair (g,J) has a
Manin subtriple (h,h1 ,h2), that is,h1,g6 are subalgebras
of g6 such thath[h1 % h2 is a subalgebra ofgC andt:h1

˜h2 . Notice that the Manin subtriple specified above d
fines~with the help of the involutiont! a pair (k,J) such that
kC5h andk,g.

Assume that the basis~30! is chosen so that the subbas

$Ei ,i 51,...,dh%, $Ei ,i 51,...,dh% ~64!

are bases in the subalgebrash1 andh2 , respectively. Let us
consider a vector subspace

a5gC/h ~65!

generated~over C! by the vectors

$Ea,a5dh11,...,d%, $Ea ,a5dh11,...,d%. ~66!

The Manin triple construction of the Kazama–Suzuki mod
is given by the following.

Proposition

Suppose the isotropic subspaces

a6[aùg6 ~67!

are Lie subalgebras. Then the currents

(
cs

1

5
2

Aq
S ca j a1

1

2
f ab

g :cacbcg : D ,
-

y
e-

l

ir
a-

-

s

(
cs

2

5
2

Aq
S ca j a1

1

2
f g

ab :cacbcg: D ,

~68!

Kcs5S 2Ca
b

q
2da

bD :cacb :2
2

q
~ f̂ c j c2 f̂ c j c!,

Tcs52
1

q
:~ j aj a1 j aj a!:2

1

2
:~]caca2ca]ca!:

1
1

q
:~ukuk1uku

k!:,

where

f̂ a5 f g
ag , f̂ a5 f ag

g , Cb
a5 f̂ af ab

a 1 f̂ af b
aa , ~69!

uk5 j k2 f b
ka :cbca :, uk5 j k1 f ka

b :cacb :, ~70!

satisfy the OPEs of theN52 super-Virasoro algebra with th
central charge

ccs5cg2ch . ~71!

This is just theN52 extension42 of the Goggard–Kern–
Olive construction formulated in terms of Manin triples an
can be checked by direct calculations.

The Kazama–Suzuki model based on the cosetG/K can
be obtained from the SWZNW model on the groupG by
gauging an anomaly-free subgroupK .43 In view of the Ma-
nin triple construction~68! and ~71! this implies classically
that the currents corresponding to the Manin subtri
(h,h1 ,h2) should vanish:

I i~Z!5I i~Z!50. ~72!

In quantizing the theory canonically one should impose
some way such constraints on physical states. We impo

I i~Z1!F~Z2!5reg, I i~Z1!F~Z2!5reg, ~73!

that is, the physical states of the coset are the highest vec
of the trivial ĥ-representation.

Under PLT-duality ~61! the set of constraints~73! will
transform, in general, into another set of constraints giv
another coset model. Therefore we should define
T-duality transformations in the Kazama–Suzuki model
the subset of~58!–~60! which stabilizes the set~73!, or
equivalently, as the subset which stabilizes the Manin s
triple (h,h1 ,h2). Taking into account this condition an
using ~61! we obtain PLT-duality transformation rules for
the currents~68! of the N52 super-Virasoro algebra,

t:(
cs

6

˜(
cs

7

, t:Kcs˜2Kcs , Tcs˜Tcs , ~74!

which are similar to~63!. It is clear that PLT-duality in the
leftmoving sector is given by the identity transformation.

Let us consider an example of the Kazama–Suz
model based on the cosetU(2)/(U(1)3U(1)) ~the N52
minimal model!. The complexification ofu(2) is the Lie
algebragl(2,C). In this case the commutation relations~31!
in the orthonormal basis~30! are given by
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@E0,E1#5E1, @E0 ,E1#5E1 , @E1,E1#52E01E0 .
~75!

The isotropic subalgebrasg1 andg2 of the complex Manin
triple are generated by the vectorsE0, E1 andE0 , E1 respec-
tively. The currents of the super-Kac–Moody algeb
ĝl (2,C) are characterized by the following OPEs

I a~Z1!I b~Z2!5Z12
21/2f c

abI c~Z!1reg,

I a~Z1!I b~Z2!5Z12
21/2f ab

c I c~Z!1reg, ~76!

I a~Z1!I b~Z2!52Z12
21 q

2
db

a1Z12
21/2~ f bc

a I c2 f b
acI c!1reg,

wherea, b, c50, 1 and the structure constants are given
~75!. The Manin subtriple defining our coset model is giv
by

h5h1 % h2 , h15CE0, h25CE0 . ~77!

Thus, the Manin subtriple corresponds to t
N52U(1)2-SWZNW model which is described by the pa
of scalar complex free superfieldsX0(Z), X0(Z) with obvi-
ous OPEs

X0~Z1!X0~Z2!522 logZ12. ~78!

The currents of the super-Kac–Moody algebraĝl (2,C) can
be realized in terms of the fieldsX0(Z), X0(Z) and super-
parafermionsS1(Z), S1(Z):44

I 05
Aq

2
DX0, I 05

Aq

2
DX0 ,

I 15 iS1 expS 2
1

Aq
~X02X0!D , ~79!

I 15 iS1 expS 1

Aq
~X02X0!D .

The super-parafermion OPEs are deduced from the O
~76! and ~78! and the null-vector relation in the trivia
sû(2)-representation.

The most general PLT-duality transformation in
U(2)-SWZNW model is given by

I 0
˜I 0 , I 0˜I 0,

~80!
I 1
˜exp~ if!I 1 , I 1˜exp~2 if!I 1,

wheref is an arbitrary real number. We see that the co
straints transform into itself. From these formulas we ea
find the PLT-duality transformations of the parafermions
the coset

S1
˜exp~ if!S1 , S1˜exp~2 if!S1. ~81!

Thus, the PL T-duality transformation acts in th
U(1)2-subspace of theU(2)-SWZNW model as the usua
R˜1/R T-duality ~at the self-dual point!, while the PL
T-duality transformation~81! corresponds to the axial-vecto
duality of the cosetSU(2)/U(1)29 ~to see this is enough to
recover the leftmoving constraints!.
y

Es

-
y

It is clear that there is a direct generalization of th
example to the coset modelsG/U(I ) r , wherer is the dimen-
sion of the maximal torus of the groupG. the PLT-duality
transformation will act on the maximal torus as an Abeli
R˜1/R T-duality ~at the self-dual point!, while in the
N52 Kazama–Suzuki model it will act as an axial-vect
duality.45 In the non-Abelian coset models the PLT-duality
transformation rules of the fields are given by the no
Abelian generalization of the axial-vector duality via Re
46. In principle they can be found using the non-Abeli
generalization of the super-parafermions~79!. Some aspects
of this construction in the non supersymmetric case can
found in Ref. 47.

Thus, in summary, we conclude that quantum
T-duality in the Kazama—Suzuki models is a mirror dual
also.

5. CONCLUSION

In this work we have considered the PLT-duality trans-
formation in quantumN52 superconformal WZNW and
Kazama–Suzuki models. The PLT-duality transformation
rules in the quantumN52 SWZNW are found using the
Manin triple construction of theN52 SWZNW models, the
Knizhnik–Zamolodchikov equation. Ward identities, and t
conjecture that, as in the classical case, PLT-duality is given
by constant automorphisms of the rightmoving super-Ka
Moody algebras of the models which interchange the iso
pic subalgebras of the underlying Manin triples. We ha
shown that in these models PLT-duality is a mirror duality.
We have thus given a geometric realization of the mir
symmetry in these models. Notice also that our results ar
agreement with the conjecture proposed in28 that mirror sym-
metry can be considered as a gauge symmetry~which is ex-
tended in some cases by the external automorphisms! of the
self-dual points of the moduli space of theN52 supercon-
formal field theories.

We have given Manin triple construction of th
Kazama–Suzuki models, representing them as(Manin
triple)/(Manin subtriple)-cosets. By means of this represe
tation we defined PLT-duality transformations in the
Kazama–Suzuki models as the subset of PLT-duality trans-
formations of the numerator triple which stabilize the d
nominator triple. It was shown that, thus defined, P
T-duality is a mirror duality also. An interesting open pro
lem is to find the corresponding geometric picture of P
T-duality and mirror symmetry in the classical Kazama
Suzuki models.

Our results are useful in discussing Calabi–Yau sup
string compactifications and allow us to conjecture that
T-duality is an adequate geometric structure underlying m
ror symmetry. The extension of our results to the Gep
construction of superstring vacua48 ~see also, Ref. 49! would
be a test of the conjecture.

Another interesting problem is to quantize the equatio
~22! and~24! and determine the quantum version of~21! and
~23!. Moreover, their solution is important in the context
quantum PLT-duality and mirror symmetry; it may be usefu
also in discussingT-duality for open strings andD-branes on



f

5-

6

s,

40

.

es
42
rin
in

es

es

-

ves

rint

3,

. B

.

with

12 JETP 89 (1), July 1999 S. E. Parkhomenko
curved backgrounds and will be helpful in ‘‘quantization’’ o
the existing treatments.17,18
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Strong thermal self-action of a laser beam in gases and liquids
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Solutions which approximately describe the effect of strong thermal self-action of a laser beam
in weakly absorbing media~gases and liquids! have been obtained. This paper considers
the regimes of thermal conductivity, transverse flows of gases at subsonic and supersonic
velocities, transonic nonlinear regime, and gravitational convection in a horizontal beam.
Assuming that the shape of transverse intensity distribution is constant, and that the wave front
can be approximated by a second-power polynomial, ordinary differential equations and
their solutions for average transverse dimensions of beams have been obtained. These approximate
solutions are in satisfactory agreement with exact solutions. ©1999 American Institute of
Physics.@S1063-7761~99!01007-0#
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1. INTRODUCTION

Propagation of an intense laser beam through nonlin
absorbing media~liquids and gases! is described by a system
of equations that includes the Navier–Stokes aerohydro
namic equations and the wave-optic equation in the parab
approximation,1,2 which is the nonlinear Fresnel or Schr¨-
dinger equation. The related aero-optic effects occur on
tical paths in the laboratory, in the atmosphere, and in te
nological laser facilities. The optical configurations involv
can vary: horizontal, vertical, focused, parallel, and diverg
beams; optical configurations defined by mirrors, lens
telescopes and other devices. In the hydrodynamic aspe
the problem, the following situations and effects are of gr
interest: a uniform air flow which is either longitudinal o
transverse with respect to the laser beam; effect of ther
conductivity, viscosity, acoustic perturbations~pressure
variations!; subsonic, transonic, supersonic, and hyperso
regimes; gravitational convection. Theoretical and exp
mental investigations of the entire variety of different r
gimes is labor-consuming. In the case of a strong ther
self-action, a numerical solution in the limit of geometric
optics is impossible because of large local gradients.

In the case of small perturbations of the beam due
heating and changes in the refraction index of the medium
linearized Gebhardt–Smith solution of optical equatio3

~see also Refs. 4 and 5!, obtained for a transverse air flowin
through a parallel laser beam in the approximation of g
metrical optics without allowance for the viscosity, therm
conductivity, and acoustic perturbations in the medium,
played an important role. This solution was used in desc
ing gas-dynamic regimes of thermal self-refraction in a u
form transverse air flow.6 Generalization of the Talano
transformation7 of transverse coordinates of focused bea
to the case of a variable beam radius defined in vacuum
utilization of similarity transformations in hydrodynam
equations allowed us to derive linearized solutions of ae
optic equations for complex optical configurations in vario
gas-dynamic conditions.8
561063-7761/99/89(1)/14/$15.00
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Under conditions of strong thermal self-action, qua
stabilization ~or saturation! of perturbation parameter
~namely, the peak intensity, its shift, and transverse inten
distribution! was detected in experiments9–11 and numerical
calculations.12–15 With the help of averaged characteristi
~transverse dimensions and deviation angles associated
a smoothed wave front! and dimensionality considerations
approximate solutions have been obtained in the case
purely convective air flow and in the case of gravitation
convection in a horizontal beam.16 A polynomial approxima-
tion of the wave front phase at large Fresnel numbers
lowed us to relate the average characteristics to the co
cients of this polynomial and derive ordinary differenti
equations for average radii and shifts in the simple, pur
convective regime of transverse air flow.17

In this paper we present the derivation of equations a
solutions for average radii and shifts in the case of a tra
verse air flowing through a laser beam with velocities ran
ing between zero and hypersonic values, including the tr
sonic regime, for the case of gravitational convection in
horizontal beam, and also for a stagnant, thermally cond
tive medium. The assumptions and conditions used in de
ing these equations are formulated and generalized.

2. STATEMENT OF THE AERO-OPTIC PROBLEM

Propagation of an intense laser beam in a nonlinear
dium is described by a parabolized wave equation of
paraxial ~small-angle! optics2 for the transverse componen
of a slowly varying electric field amplitudeE. In the physical
variables ‘‘radiation intensityI 5E* E — deviation angleq
5¹'F,’’ where F is the wave front phase of the beam
¹'5ex]/]x1ey]/]y, we obtain a system of equations fo
the eikonal and energy conservation

S ]

]z
1q“'Dq5N“'r11

1

2F2
“'H 1

AI
“'

2 AI J , ~1!
© 1999 American Institute of Physics
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S ]

]z
1q“'D ln I 1“'q52Na . ~2!

The coordinatez is measured in units of the optical pa
lengthL, the transverse coordinatesx andy are measured in
units of the characteristic~initial! beam radiusr 0, the angle
q is measured in units ofr 0 /L, and the radiation intensityI
is measured in units ofI 05P0 /pr 0

2, whereP0 is the total
initial power of the beam. The parameters of optical simil
ity are the following: the Fresnel numberF52pr 0

2/lL,
wherel is the radiation wavelength; the radiation attenu
tion ~absorption! numberNa5aL, wherea is the absorption
coefficient of the medium; the self-action numberN
5(L/zT)2, wherezT5r 0 /AQ(T0 /n0)(]n/]T) is the length
of thermal self-action,Q5aP0t/(pr 0

2r0CpT0) is the pa-
rameter of temperature and density perturbation,r0 , T0 ,
Cp , and n0 are the density, temperature, specific heat a
constant pressure, and the refraction index in the unpertu
medium, andt is the heating time constant. Here we assu
a linear relation between the refraction index and change
the density and temperature of the medium:

Dn5
]n

]T
DT,

DT

T0
5QT1 ~3a!

in the case of liquid and

Dn5
]n

]r
Dr,

Dr

r0
5Qr1 ,

n511g
r

rs
5n01~n021!

Dr

r0
~3b!

in the case of gas, whereg is the Gladstone–Dayle constan
and rs is the density under standard conditions. For air,
particular,rs51.225 kg/m3, and for the visible and infrared
optical ranges we haveg52.931024. The perturbations of
density,r1, and temperature,T1, are derived from the con
ditions of mass, momentum, and energy conservation,
from the medium equation of state:

dr

dt
1r div V50, ~4!

r
]V

dt
1Eu“p52

ey

Fr
~11Qr1!1

1

Re
D8V1•••, ~5!

dT1

dt
1

k

~k21!Q

dp

dt
5I ~x,y,z,t !1

1

Pe
D8T11•••, ~6!

p5rT, ~7!

where

d

dt
5

]

]t
1V,“, D85

]2

]x2
1

]2

]y2
1S r 0

L D 2 ]2

]z2
,

Re5
r 0

2

nt
, Pe5

r 0
2

xt
, Pr5

n

x
,

Fr5
VL

2

LgbT0
, Eu5

p0

r0VL
2

,

-

-

a
ed
e
in

nd

V is the medium velocity,n, x, b, andk are the coefficients
of the kinematic viscosity, thermal diffusivity, thermal ex
pansion @for gasesbT052(T0 /r0)(]r/]T)[1#, and the
adiabatic constant; andg is gravitational acceleration. Th
densityr, temperatureT, and pressurep are divided by their
initial valuesr0 , T0, andp0. Let us consider the following
situations: in a stagnant medium the heat flow is due to
quasi-stationary thermal conductivity; under a transverse
flow along thex-axis at a constant velocityu0 , t5r 0 /u0; in
the case of steady gravitational convection along they-axis
in a horizontal beam with a characteristic velocityVL5vg

5(aP0g/pr0CpT0)1/3, t5r 0 /vg . In the case of gravita-
tional convection, by equatingQ to the Froude number Fr we
obtain the scales of velocityvg and density~temperature!
perturbations:

Qg5S aP0

pr 0
2r0CpT0

D 2/3S r 0

g D 1/3

.

The scales of gas-dynamic similarity parameters~whether
they are smaller or larger than, or of order of unity! are the
Euler number Eu (Eu51/kM2 in gases, whereM5u0 /c is
the Mach number,c5Akp0 /r0 is the speed of sound in th
gas!, the Reynolds number Re, and the Pe´clet number Pe
depend on the specific situation and determine the g
dynamic regime of self-action. The Prandtl number is
5Pe/Re.

3. BASIC IDEAS OF THE APPROXIMATE METHOD

We have a weak self-action atN!1 in almost parallel
and divergent beams. Strong self-action takes place aN
>1 and also in tightly focused beams under conditions o
weak or notable nonlinearity of the medium. The appro
mate description of the weak self-action is based on the
lowing underlying ideas.

1. Let us introduce average transverse dimensions~radii!
ax and ay , and displacementsxc and yc of the center of
gravity of the intensity distribution, which are functions o
the longitudinal coordinatez alone:

ax~z!5AE E
2`

`

~x2xc!
2qdx dy,

xc~z!5E E
2`

`

xqdx dy, ~8!

ay~z!5AE E
2`

`

~y2yc!
2qdx dy,

yc~z!5E E
2`

`

yqdx dy, ~9!

where
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q~x,y,z!5I ~x,y,z!/W, W~z!5E E
2`

`

Idx dy.

For simplicity the powerW is assumed to be constant alon
the optical path:Na!1. We consider two-dimensiona
~plane! and three-dimensional beams, in particular, an axia
symmetrical one, where the displacement is zero. The a
age radius of the axially symmetrical beam is given by
formula

a~z!52pAE
0

`

r 2q~r ,z!r dr , W~z!52pE
0

`

Irdr .

~10!

2. It is convenient to use displaced and compressed~ex-
tended! transverse coordinates:

j5
x2xc~z!

ax~z!
, h5

y2yc~z!

ay~z!
. ~11!

3. In the experiments3,9–11and numerical calculations fo
the convective,3 supersonic,12 and other gas-dynami
regimes13–15 perturbations saturate with increasingN andz:
the deviation from the initial direction stabilizes, the pe
amplitude and form of the transverse intensity distribut
f (j,h) tend to constant characteristics. An increase in
thermal self-action parameterN is equivalent to an increas
in the coordinatez. In a uniform gas flow, these characteri
tics can be maintained approximately constant within cer
intervals over long sections of the optical path comparabl
its total lengthL and the thermal self-action lengthzT ~Ref.
12!. A similar quasi-stabilization of perturbations also tak
place in the case of gravitational convection due to hea
of the medium in a vertical10,14,15 or horizontal11,13 laser
beam. We assume that the shape of the transverse inte
distribution f (j,h) is constant along the optical path, and t
power density varies due to changes in the mean radii:

I ~x,y,z!5
f ~j,h!

ax~z!ay~z!
or I ~r ,z!5

f ~j!

a11k~z!
,

j5
r 2xc

12k~z!

a~z!
, ~12!

wherek50 or k51 in a plane or axially symmetrical beam
respectively.

4. Under the conditions of saturation of the thermal se
action effect we approximate in the general case the w
front phaseF by a second-power polynomial17

F~x,y,z!5c01@x2xc~z!#c1x1@y2yc~z!#c1y

1~x2xc!
2

c2x

2
1~y2yc!

2
c2y

2

1~x2xc!~y2yc!cxy1•••, ~13!

where

c1x~z!5
dxc

dz
, c1y~z!5

dyc

dz
, c2x~z!5

1

ax~z!

dax

dz
,

y
r-

e

e

in
to

s
g

sity

-
e

c2y~z!5
1

ay~z!

day

dz
, cxy50.

For the case of an axially symmetrical beam, we have

F~r ,z!5c01r 2
c2

2
1 . . . , c150,

and for a plane beam

F~x,z!5c01@x2xc~z!#c11~x2xc!
2

c2

2
1 . . .

We assume that in the three-dimensional configuration th
is a symmetry with respect to one coordinate,x or y; in this
case the off-diagonal coefficient is zero,cxy50.

5. Applying coordinate transformation~11! to the equa-
tions for the medium~4!–~7! and the similarity transforma
tion to the main perturbations of the gas-dynamic parame
like

r1~x,y,z!5R~j,h!A~z!, T15T~j,h!B~z!,

p15P~j,h!C~z!, u1~x,y,z!5U~j,h!D~z!, ~14!

v15V~j,h!E~z!, w15W~j,h!F~z!,

we obtain the relations between functionsA, B, C, D, E, and
F, on the one hand, and average radii, on the other.
functionsR, P, T, U, V, andW we formulate an autonomou
problem, which does not includez if equations are written
for coordinatesj andh. For example, for the functionr1 we
obtain formulas like

r1~x,y,z!5
R~j,h!

ax
may

n~z!
. ~15!

6. Let us substitute the approximation of the angleq in
the form of polynomial~13! on the left of the eikonal equa
tion ~1! and the functionr1 in the form given by Eq.~14! or
~15! on the right. Let us integrate Eq.~1! with the weight
function q(x,y,z)5I /W across the beam. Taking into ac
count the condition of energy conservation~2! with the in-
tensity given by Eq.~12!, we obtain an equation for displace
mentsxc andyc . Calculating the divergence of each term
Eq. ~1! and repeating the integration with the weight functi
q, we obtain ordinary differential or integral-differentia
equations for mean radiiax anday @and, in general, for the
function A(z)#. In the first stage, we omit the correction fo
diffraction effects, which is of the order of the invers
Fresnel number squared, to avoid complications. Near
focal point, the diffraction term makes the main contributi
and should be taken into account.

Below the approximate method for investigating a las
beam self-action will be tested taking as examples vari
aero-optical problems.

4. QUASI-STEADY THERMAL CONDUCTIVITY

In a stagnant medium where thermal conductivity is t
dominant mechanism transmitting perturbations and Pe!1
~and also in the case of a transverse air flow with a sm
velocity, VL,x/r 0), we can set to zero the left-hand side
Eq. ~6! in the quasi-steady limit,t@r 0

2/x. Over the charac-
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FIG. 1. Normalized universal solution, average rad
Y, and expansion anglesw5const•dY/dX as func-
tions of the normalized coordinateX measured along
the laser beam in the case of~a! defocusing and~b!
self-focusing. The exponent in Eq.~26! is ~curves1!
m51; ~2! 5/3; ~3! 2; ~4! 3; ~5! 15.
ty
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teristic time scalet5r 0
2/x the Péclet number Pe51. Since

pressure fluctuations are smaller thanQ, acoustic perturba-
tions can be ignored,p'const. Perturbations of the densi
and temperature are of the order ofQ and, as follows from
Eq. ~7!, have opposite signs:r152T1. The equation~6! of
thermal conductivity takes the form

1

a2~z!jk

]

]j
jk

]r1

]j
5

f ~j!

a11k~z!
, r15a12k~z!R~j!,

~16!

wherek50 and 1 for the plane and axially symmetrical co
figurations, respectively. The procedure described in Sec
yields

d2xc

dz2
5

bc

ak
, xc~0!5xc1 ,

dxc~0!

dz
5uc1 ,

~17!

d2a

dz2
5

b

ak~z!
, a~0!5a1 ,

da~0!

dz
5u1 ,

where

bc5H NFdR~1`!

dj
2

W

2 G , k50,

0, k51,

b5
N

W E
j0

`

f 2~j!~pj!kdj.0,

a1 , xc1 , u1, anduc1 are the initial values~at z5z050) of
the average radius, displacement of the center of gravit
the intensity distribution, beam expansion angle, and the
of the center-of-gravity deviation from the axis, respective
j052`, 0 for k50, 1.

In the case of a plane beam (k50) the solution is trivial:

a~z!5a11zu11
z2

2
b, xc5xc11zuc11

z2

2
bc . ~18!

For an axially symmetrical beam (k51), a universal so-
lution of a more general equation
.6

of
te
,

d2a

dz2
56

b

a~z!

in new independent variablesw, Y, andX,

w5
u

A2b
, Y5

a

a1
exp~6w1

2!,

X5
2

Ap
Fz exp~6w1

2!

a1
Ab

2
6E

0

w1
exp~6t2!dtG ,

can be written in the form

Y5exp~6w2!, X56
2

Ap
E

0

w

exp~6t2!dt. ~19!

The normalization conditions for the radiusY and anglew
are selected in such a way that the solution should not
clude the constantsa1 , u1, andb, and the focal point be se
at X561. The solution determined by Eq.~19! is shown in
Fig. 1 ~curves1!. Note that an absolutely steady regime
thermal conductivity is impossible in both plane and axia
symmetrical configurations.

5. AIR FLOW CROSSING A HORIZONTAL LASER BEAM

Let us consider a uniform air flow with a constant velo
ity VL5u0@x/r 0 , n/r 0 aligned with thex-axis. The viscos-
ity and thermal conductivity can be ignored because
Pe@1. The characteristic time ist5r 0 /u0. Linearization of
medium equations~4!–~7! yields the following equation for
the principal term in the density perturbationr1:

FM2S ]

]t
1

]

]xD 2

2“'
2 G S ]

]t
1

]

]xD r15“'
2 I . ~20!

In the steady-state limitt@t and for a plane beam, this equa
tion and its solution take the form

]r1

]j
5

f ~j!

M221
, r15

1

M221
E

2`

j

f ~j1!dj1[R~j!.

~21!
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For displacementxc and average radiusa(z), we derive the
following expressions from the eikonal equation~1!:

d2xc

dz2
5

bc

a~z!
, bc5

N

W~M221!
E

2`

`

f 2~j!dj,

xc~0!5xc1 ,
dxc~0!

dz
5uc1 ,

d2a

dz2
5

b

a~z!
, b50, a~z!5a11zu1 , ~22!

xc~z!5xc11zuc11
bca1

u1
2 H S 11

u1z

a1
D

3F lnS 11
u1z

a1
D21G11J .

With the initial conditionsxc150 anduc150 in a subsonic
flow, the beam shifts downstream with respect to the fl
(bc,0), and in a supersonic flow it shifts upstream (bc

.0). The heated gas acts as an optical wedge or prism, f
shifts the beam without broadening if it is initially plane
parallel (u150).

In the case of a three-dimensional beam in the stea
state convection regime, which is realized at the small M
numbers,M2!1, we have the following solutions for th
density perturbation:

r15
R~j,h!

ay~z!
, R~j,h!52E

2`

j

f ~j1 ,h!dj1 ,

and the corresponding equations forxc , ax , and ay ~the
variableyc50):

d2xc

dz2
5

bc

axay~z!
,

d2ax

dz2
5

bx

axay~z!
, ax~z!5ax11zux1 , ~23!

d2ay

dz2
5

by

ay
2~z!

, ay~0!5ay1 ,
day~0!

dz
5uy1 , ~24!

where

bc52
N

W E E
2`

`

f 2~j,h!dj dh, bx50,

by52
N

W E E
2`

`

f ~j,h!E
2`

j ]2f

]h2
dj1dj dh.0.

Equation~24! is the free-fall equation~Ref. 18, Sec. 6.188!.
In the case of zero initial conditions (xc50, uc50, ux150,
anduy150), the beam deviates upstream with respect to
aerodynamic flow and is extended in the transverse direct
A universal solution of Eq.~24! for the average beam thick
nessay in the direction transverse to the flow and for ang
it

y-
h

e
n.

uy ~the case of self-focusing corresponds to the minus s
by˜6ubyu[6b) is expressed in the new variablesw(X)
andY(X):

w5
uy

AC1

, C15Uuy1
2 6

2b

ay1
U, Y5ay

C1

2b
,

X5
2

p F zC1
3/2

2b
6

w1

17w1
2

1H tanh21w1

2tan21w1
G , w15

uy1

AC1

in the form16

Y5
1

17w2
, X5

2

p F6
w

17w2
1H tanh21w

2tan21wG . ~25!

In a flow moving with a velocity comparable to the soun
velocity,M.1 or M,1 ~the case of a transonic flow will be
considered separately!, acoustic perturbations of the pressu
are essential. A transform like that described by Eq.~14! is
possible only under an additional conditionay5const•ax ,
which does not hold, in general, because it is violated
M2

˜0 @see Eqs.~23! and~24!#. In specific cases where thi
condition holds, the solution forax(z) is similar to Eq.~25!.

6. GENERAL FORM OF THE BASIC EQUATION FOR
AVERAGE RADII

The examples discussed above indicate that the ave
radii ~or the maximum one, which is transverse with resp
to the flow! are determined by equations like

d2a

dz2
56

b

am~z!
, b.0, m.0,

~26!

a~0!5a1 , u~0!5
da

dz
5u1 .

The exponentm and the form of the similarity transformatio
of the sought-for functions and independent coordinate m
sured along the beam that would exclude from the unive
solution similarity parametersa1 , u1, andb @Eqs. ~19! and
~25!# depend on the specific gas-dynamic regime. The p
sign corresponds to a defocusing medium (du/dz.0, the
expansion angle increases!, the minus sign corresponds to
focusing medium (du/dz,0, the expansion angle de
creases!. Recall that the initial parameters, namely, the me
radiusa1 and angleu1, are divided by the characteristic pa
rametersr 0 andr 0 /L. Let m.1 ~the variants withm50 and
1 were considered in the previous sections!. Multiplying Eq.
~26! by 2da/dz, we obtain the first integral

u2[S da

dzD
2

5
62b

~2m11!am21
1C1 ,

C15u1
27

2b

~2m11!a1
m21

. ~27!

From Eqs.~26! and ~27! we derive

a~z!5F 62b

~m21!~C12u2!
G 1/~m21!

,
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a~z!5S 6b

du/dzD
1/m

. ~28!

Solutions can be obtained in an explicit form, as will
shown below, only in the specific case ofm53 and in the
case of largem, m@1. Implicit relations can be obtained i
the formz(a), u(a), but the formz(u), a(u) is more con-
venient, in particular, because the sign of derivativedu/dz in
the first-order equation is unchanged over the entire sp
2`,z,` in both focusing and defocusing cases. Usi
Eq. ~28!, we derive from Eq.~27! the expression

F 62b

~m21!~C12u2!
Gm/(m21)

du56bdz. ~29!

In Secs. 4 and 5 we gave solutions of Eq.~26! for m50, 1,
and 2@see Eqs.~18!, ~19!, and~25!#. In the nonlinear optics
the nonlinearity of the third order in the fieldE ~i.e., E3) is
often considered, when the nonlinear correction to the die
tric function of the medium@the functionr1 in Eq. ~1!# is
proportional to the light intensityI ~Ref. 19, p. 280!. We
assume a quasi-steady shape of the transverse intensity
tribution and apply the procedure discussed in Sec. 3.6 to
eikonal equation, where we set

r15const•I ~r ,z!5
f ~j!

a11k~z!
, j5

r 2xc
12k~z!

a~z!
. ~30!

For a plane beam (k50) the constantbc50 and the dis-
placement is absent at zero initial conditions (xc150, uc1

50). The average radius is determined by Eq.~26! with the
exponentm52, and its solution is given by Eq.~25!.

In an axially symmetrical beam (k51) the average ra
dius a(z) and angleu(z) are described by Eq.~26! at m
53. A universal solution in terms of variablesw, Y, andX,

w5
u

AC1

, C15Uu1
26

b

a1
2U ,

Y5aAC1

b
X5

C1

Ab
Fz6

a1u1

C1
G ,

b52const•
pN

W E
0

`

j@ f 8~j!#2dj,

is derived from Eq.~29! in an explicit form:

Y5
1

A17w2
5A16X2, w5

6X

A16X2
. ~31!

A similar solution was given in Ref. 19, p. 286 only in th
beam-axis vicinity and in the case of an approximate desc
tion of beams whose wave fronts remained spherical or
lindrical in media with cubic nonlinearity.

In a medium with a fifth-order nonlinearity, we have

r15const•I 2~r ,z!5
f 2~j!

a2(11k)~z!
. ~32!

In the case of a plane beam (k50), we havebc50. There is
no displacement at zero initial conditions (xc150, uc150).
e

c-

is-
he

p-
y-

For the average radius in Eq.~1!, we obtain, following the
procedure described in Sec. 3.6, Eq.~26! with the exponent
m53, and its solution is given by Eq.~31!.

In the case of an axially symmetrical beam (k51), we
derive the following expressions from the eikonal equat
~1! for the functiona(z):

d2a

dz2
5

b

a5~z!
, b5const•

pN

W E
0

`

f
d

dj S j
d

dj
f 2Ddj.

~33!

In the case of a focusing medium (b,0) the universal
solution in variablesw, Y, andX,

w5
u

AC1

, C15Uu1
22

b

2a1
4U , Y5aS 2C1

b D 1/4

,

X5
A2

b F S 23C1
3

b D 1/4

z1FS a1 ,
1

A2
D 22ES a1 ,

1

A2
D G ,

has the form~we assumeb5ubu)

Y5
1

~11w2!1/4
, X5

A2

b FFS a,
1

A2
D 22ES a,

1

A2
D G ,

~34!

where

a5cos21
1

~11w2!1/4
, a15cos21

1

~11w1
2!1/4

,

b5A2F2ES p

2
,

1

A2
D 2FS p

2
,

1

A2
D G.1.198,

F(a,k) andE(a,k) are the elliptic integrals of the first an
second kind~Ref. 20, Sec. 1.2.79!.

7. TRANSONIC STEADY-STATE REGIME

Fundamental differences between the regime, which
nonlinear from the viewpoint of gas dynamics, and t
neighboring subsonic and supersonic regimes21 appear at
small values of the transonic similarity parameterK5(1
2M2)/Q2/3 such thatuKu!0.29, as follows from an exac
numerical solution.22 This fact is indirectly confirmed by
experiments23 conducted in a transonic wind tunnel fille
with a mixture of air and hexafluoric sulphur SF6 with an
absorption coefficienta520 m21. The beam generated by
CO2 laser (l510.6 mm! had a powerP05500 W and a
diameter 2r 051.5 mm. The parameteruKu.2. No shock
waves were detected.

The proposed method of average radii allows us to
tain a universal solution in the case ofuKu!1. Let us con-
sider a three-dimensional beam symmetrical in the coo
nate y. In a transonic flow, acoustic perturbation
propagating upstream in the flow are driven by the flow a
velocity close to that of sound. Thus perturbations are ac
mulated in the region of radiation, the region occupied by
perturbations expands in the transverse direction by a fa
Q21/3, and the characteristics of perturbations in ga
dynamic parameters, in particular, the density, increase
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Q2/3 ~Ref. 22!. The problem is separated into the intern
problem in the region with dimensionsx, y;r 0 and the ex-
ternal one in a wider regionx;r 0 , ỹ;yQ1/3;1. Then their
solution are matched. Within the radiusr 0 the density per-
turbations are independent of the transverse coordinaty.
The beam is extended and displaced owing to the ther
self-action only along thex-axis directed along the flow. Th
radiation intensity in the regime of a quasi-steady distrib
tion is described by the equation

I ~x,y,z!5
f ~j,y!

a~z!
, j5

x2xc~z!

a~z!
.

Let us determine the function which describes the m
component of the density perturbationr15R(j)/ai(z), i
5const. For the internal problem, we have the followi
expansions for calculated parameters:

r

r0
511Q2/3r11Qr21•••,

p

p0
511Q2/3p11Qp21•••,

u

u0
511Q2/3u11Qu21•••,

v
u0

5Qv11Q4/3v21•••.

From Eqs.~4!–~7! we derive in the first-order approximatio
of the perturbation theory

]

]j
~r11u1!50,

]

]j
~ku11p1!50,

]

]j
~p12kr1!50,

]p1

]y
50,

~35!

r152u15p1~j,z!/k.

In the second-order approximation the equations have
form

]

]j
~r21u2!52a~z!

]v1

]y
,

]

]j S u21
p2

k D50,

k

a~z!

]v1

]j
1

]p2

]y
50,

]

]j S p2

k
2r2D5 f ~j,y!,

and their solutions are

v1~x,y,z!5
1

a~z!
E

0

y

f ~j,y8!dy8,

~36!

p252ku252
k

a~z!
E

0

y ]v1~j,y8!

]j
dy8,

r25
p2

k
2E

2`

j

f ~j8,y!dj8.

The functionp1 is independent ofy and determined by the
solution of the external problem, like the functionsr1 andu1

related to the former by Eq.~35!. The second-order approx
mation is needed to close the problem in the first-order
proximation.

Let us introduce for the external problem a compres
coordinateỹ5yQ1/3aj (z) such thatỹ;1 for y@1, wherej is
l

al

-

n

e

-

d

a certain number. The expansions of the sought-for functi
in powers of the small parameter up to the third order ha
the form

r

r0
511Q2/3r11Qr21Q4/3r3 . . . ,

p

p0
511Q2/3p11Qp21Q4/3p3 . . . ,

~37!

u

u0
511Q2/3u11Qu21Q4/3u3 . . . ,

v
u0

5Q
V1~j,ỹ!

a~z!
1Q4/3v21Q5/3v3 . . .

We have taken into account that the functionV1 for ỹ˜0
should match the solutionv1 of the internal problem asy
˜`. Substitution of expansions~37! in the initial gas-
dynamic equations~4!–~7! leads to the following system o
equations~up to the third order!, which are necessary fo
closing the problem in the lowest-order approximation:
the first-order approximation

r152u15
p1~j,ỹ,z!

k
,

]V1

]j
1aj 12~z!

]r1

] ỹ
50, ~38!

in the second-order approximation

r252u25
p2~j,ỹ,z!

k
,

]v2

]j
1aj 12~z!

]r2

] ỹ
50 ~39!

in the third-order approximation

]

]j
~r31u3!52r1

]r1

]j
2aj~z!

]V1

] ỹ
,

]

]j
~ku31p3!50,

]

]j S p3

k
2r3D5~k21!r1

]r1

]j
,

k
]v3

]j
1aj 11~z!

]p3

] ỹ
50.

Here we have taken into account that the transonic simila
parameterK is zero. From the first three equation we deri

~k11!r1

]r1

]j
2aj~z!

]V1

] ỹ
50. ~40!

Equations~40! and ~38! close the problem for the function
r1 andV1 in the lowest-order approximation. The similarit
transformation

r1~x,y,z!5
R1~j,h!

~k11!1/3a2/3
,

h5~k11!1/3ỹ[@~k11!Q#1/3
y

a4/3
, j 52

4

3
~41!

reduces the problem in the first-order approximation to
universal form which is independent of the similarity num
bers and coordinatez along the beam axis:
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R1

]R1

]j
2

]V1

]h
50, R1 ,V1uj˜2`;h˜1`˜0,

]R1

]h
1

]V1

]j
50, V1~j,0!5E

0

`

f ~j,y!dy. ~42!

The gas-dynamic problem is reduced to a nonlinear seco
order equation like the Tricomi equation.24 There are nu-
merical methods for solving this problem.22

Thus, we have obtained a result which is important
the optical part of the problem of the laser beam self-acti
the density perturbation function within the transverse
mensionr 0, according to Eq.~41!, has the form

r1~x,z!5
R~j!

a2/3~z!
, R~j!5

R1~j,h50!

~k11!1/3
. ~43!

An initially collimated beam suffers neither displacement n
expansion in the direction perpendicular to the gas flo
From the eikonal equation~1! we derive the following equa
tions for the displacementxc(z) and average radiusa(z) in
the direction along the gas flow:

d2xc

dz2
5

bc

a5/3~z!
, xc~0!5xc1 ,

dxc~0!

dz
5uc1 ,

~44!
d2a

dz2
5

b

a5/3~z!
, a~0!5a1 ,

da~0!

dz
5u1 ,

where

bc5
N

W E E
2`

`

f ~j,y!
dR~j!

dj
dj dy,

b5
N

W E E
2`

`

f ~j,y!
d2R~j!

dj2
dj dy.

The similarity transformation and integration of Eq.~29! at
m55/3 in variablesw, Y, X andb˜6ubu˜6b,

w5
u

AC1

, C15Uu1
26

3b

a1
2/3U , Y5aS C1

3bD 3/2

,

X5
zC1

2

2~3b!3/2
6

w1~372w1
2!

2~17w1
2!3/2

, w15
u1

AC1

,

yield the following universal solution:

Y5
1

~17w2!3/2
, X56

w~372w2!

2~17w2!3/2
. ~45!

The displacementxc can be easily calculated by substitutin
on the right-hand side of Eq.~44! the expression
(bc /b)d2a/dz2 and integrating this equation twice with th
initial conditions:

xc~z!5
bc

b
@a~z!2a12u1z#1xc11uc1z. ~46!
d-

r
:

-

r
.

The differences between the displacement and increase in
average radius are the linear function and the constant fa
bc /b. This result also applies to other regimes withbcÞ0
andbÞ0.

In the region around the speed of sound, where the M
number satisfies the conditionQ2/3!uM221u!1, the den-
sity perturbation is described by the linearized equation~20!,
where the gradients in the direction perpendicular to the fl
can be ignored, i.e., Eq.~21! and its solution are valid. The
constantsbx5by50. The average radii follow linear func
tions:

ax~z!5ax11zux1 , ay~z!5ay11zuy1 .

The displacementxc @recall thatyc50 by virtue of the sym-
metry relationI (x,y,z)5I (x,2y,z)# is determined, in gen-
eral, by the equation

d2xc

dz2
5

bc

~ax11zux1!~ay11zuy1!
,

bc52
N

~M221!W
E E

2`

`

f 2~j,h!dj dh,

whose solution can be easily obtained in the explicit form.
the specific case ofuy150, the displacementxc is described
by the corresponding formula in Eq.~22!. In practice,bx

Þ0, since the assumption that the form of the intensity d
tribution is constant is not absolutely accurate. The para
eterax in this case is given by Eq.~25!.

8. DEVELOPED STEADY-STATE GRAVITATIONAL
CONVECTION IN A HORIZONTAL LASER BEAM

The characteristic velocityVL in this case is that of
gravitational convection:13,25,26 VL5vg5(aP0g/
pr0CpT0)1/3, and the characteristic transient time ist
5r 0 /vg . The viscosity and thermal conductivity are neg
gible, Pe, Re@1. We assume that the beam is symmetri
relative to the verticaly-axis: I (x,y,z)5I (2x,y,z). The lin-
earized medium equations~4!–~7! have the form

]u

]x
1

]v
]y

50, u,vux˜6`˜0, vuy˜2`˜0,

u
]v
]x

1v
]v
]y

1
]p1

]y
52r1 , p1 ,r1ux˜6`˜0, ~47!

u
]r1

]x
1v

]r1

]y
52

f ~j,h!

ax~z!ay~z!
.

The similarity transformation

u5S ax

ay
D 2/3

U~j,h!, v5S ay

ax
D 1/3

V~j,h!,

r15
R~j,h!

ax
2/3ay

1/3
, p15S ay

ax
D 2/3

P~j,h!

reduces the system of equations to a form which does
include the coordinatez:
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]U

]j
1

]V

]h
50, U

]V

]j
1V

]V

]h
1

]P

]h
52R,

U
]R

]j
1V

]R

]h
52 f ~j,h!.

From the optical equations we derive the following system
equations for the average radii and displacementsyc(z):

d2ax

dz2
5

bx

ax
5/3ay

1/3~z!
, ax~0!5ax1 ,

dax~0!

dz
5ux1 ,

d2ay

dz2
5

by

ax
2/3ay

4/3~z!
, ay~0!5ay1 ,

day~0!

dz
5uy1 ,

~48!

d2yc

dz2
5

bcy

ax
2/3ay

4/3~z!
, yc~0!5yc1 ,

dyc~0!

dz
5uyc1 ,

where

bx5
N

W E E
2`

`

f ~j,h!
]2R

]j2
dj dh,

by5
N

W E E
2`

`

f ~j,h!
]2R

]h2
dj dh,

bcy5
N

W E E
2`

`

f ~j,h!
]R

]h
dj dh.

For an estimate, it is usually sufficient to calculate t
larger transverse beam radiusa5ax . Let us assume thatay

5const•ax . Then the first line in Eq.~48! reduces to an
equation like~29! with the exponentm52. The solution for
the average radius is given by Eq.~25!, the displacemen
yc(z) is determined by Eq.~46! with a5ax and an unknown
numerical factor:

yc~z!5const•
bcy

by
@ax~z!2ax12ux1z#1yc11uyc1z.

~49!

Thus, our technique allows us to estimate perturbations
laser beam without solving hydrodynamic equations. T
constantsbx , by , bcx , bcy , etc. proportional to the self
action parameterN can be determined by comparing a
proximate solutions to experimental data or more accu
numerical calculations obtained previously for typical situ
tions, as was done, following a known algorithm,13 for model
optical configurations in the regime of purely convecti
transverse gas flow17 and for the regime of gravitational con
vection in a horizontal beam.16 For an annular beam with a
outside diameter a factor of 2.86 larger than the inside dia
eter, the calculations yieldby50.540N, bcx520.470N in
the case of a flow along thex-axis; bx50.354N, by

50.159N, and bcy520.195N in the case of gravitationa
convection along the verticaly-axis. For a Gaussian focuse
f

a
e

te
-

-

beam in conditions of convective gas flow we haveby

50.354N andbcy520.289N. In other examples with more
complicated optical configurations, the numerical factor
lating the similarity parametersbx , by , andbcy of the ap-
proximate method to the self-action similarity numberN was
in accurate solutions no greater than unity for the larger
erage radius and twice as small for the displacement.
system of ordinary differential equations can be easily sol
for arbitrary exponents in power functions of average ra
ax and ay . If there is a universal analytical solution, th
estimate of perturbations is, naturally, simpler. A comp
cated optical configuration can be divided into sections, a
perturbations imposed on different analytical solutions c
be estimated in each section for different heat-trans
mechanisms.

9. LIMITING CASE OF LARGE m

Equations~28! and ~29! in variablesw, Y, andX,

w5
u

AC1

, C15Uu1
27

2b

~2m11!a1
m21U ,

Y5aS m21

2b
C1D 1/(m21)

,

X5
p

2 FzS m21

2 D m/(m21)S C1

b D 1/(m21)

AC1

1H tanh21w1

2tan21w1
G ,

have an obvious asymptotic analytical solution form@1:

Y5
1

~17w2!1/(m21)
'12

1

m
ln~17w2!1OS 1

m2D ,

~50!

w5H tanh~pX/2!

tan~2pX/2!
1OS 1

mD ,

X5
2

p H tanh21w

2tan21w
1OS 1

mD .

Compare solutions~19!, ~45!, ~25!, ~31!, ~34!, and ~50! ob-
tained atm51, 5/3, 2, 3, 5, andm@1, respectively. Table I
lists similarity transformations, equations, and their solutio
for all cases discussed above. Figure 1 shows curves fom
51, 5/3, 2, 3, and 15 in defocusing and focusing media. T
rate of the average radius in defocusing media and over
larger sections of optical paths in focusing media, exc
sections near the focal points, increases with decreasing
ponentm in the second-order equation~26! for the average
radius starting withm51. The universal solutions obtaine
for all m cover the whole range of various situations in t
initial statement of the problem: 0<b,`, 2`,u1,`, 0
,a1,`. Setting z50 ~and w1) and then calculatingw2

5w(z51), we find appropriate sections of universal curv
which describe the beam perturbations plotted in phys
variables. This section can contain no waists of the beam
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TABLE I. Universal solutions of Eq.~26! describing focusing and defocusing of a laser beam in a nonlinear medium in the aberration-free approxima
geometrical optics: average transverse dimension~radius! a5aphys/r 0 and corresponding expansion angleu5uphys/u0[da/dz versus the coordinate mea
sured along the beam axis,z5zphys/L.

Heat transfer
mechansims;

m Transformations Equations Solutions plane beam
D52;

three-dimensional beam
D53

thermal conductivity
D53

w5
u

A2b

VL,x/r 0 ,

Y5
a

a1
exp(6w1

2) dY

dX
5Apw

Y5exp(6w2) t@r 0
2/x;

1
X5

2

Ap
Fz exp~6w1

2!

a1

3Ab

2
6E

0

w1

exp~6t2!dtG
dw

dX
56

Ap

2
exp~7w2!

X56
2

Ap
E

0

w

exp~6t2!dt
transverse flow,

D52
convectionM 2!1;

subsonicM,1;
supersonicM.1

w5
u

AC1

C15Uu1
26

3b

a1
2/3U transverse

5/3 Y5a@C1/3b#3/2 dY

dX
52w Y5

1
(17w2)3/2

transonic

X5
zC1

2

2~3b!3/2 6
w1~372w1

2!

2~17w1
2!3/2

dw

dX
56

2

3
~17w2!5/2 X56

w~372w2!

2~17w2!3/2

flow; D53;

u12M 2u!Q2/3

transverse convetion

w
u

AC1

flow, D53

C15Uu1
26

2b

a1
U Y5

1
17w2

M2!1,

subsonic
2

Y5
aC1

2b

dY

dX
5

p

2
w X5

2

p F 6w

17w2 1Htanh21w
2tan21wG supersonic

X5
2

p FzC1
3/2

2b
6

w1

17w1
2

1 H tanh21w1

2tan21w1
G

dw

dX
56

p

4
(17w2)2

Q2/3!u12M 2u!1;

gravitational
convection

in horizontal beam,
D53

w5
u

AC1

Y5
1

A17w2
[A16X2

cubic

C15Uu1
26

b

a1
2U dY

dX
5w

nonlinearity

3
Y5aAC1

b

dw

dX
56(17w2)3/2

X5
6w

A17w2

D53;

nonlinearity

X5z
C1

Ab
6

a1u1

Ab w5
6X

A16X2

of fifth power,

D52
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Continuation of Table I.

m Transformations Equations Solutions

focusing medium~minus sign!
w5u/AC1

C15b/2a1
42u1

2 Y5(11w2)21/4

Y5a(2C1/b)1/4

5
X5

A2

b F S 23C1
3

b D 1/4

z1FS a1

1

A2
D dY

dX
5

b

2
w X5

A2

b FFS a,
1

A2D
22ESa1,

1

A2
D G dw

dX
52b~11w2!5/4

22ES a,
1

A2
D G

b51.198 a5cos21(15w2)21/4

Y5(17w2)21/(m21)

w5
u

AC1

dY

dX
5

p

m21
w .12

ln~17w2!

m
1OS 1

m2D
m@1

Y5aSm21

2b
C1D1/~m21! dw

dX
56

p

2
~17w2!m/~m21! w5 H tanh~pX/2!

tan~2pX/2!
1OS 1

mD
C15Uu1

27
2b

~m21!a1
m21U X5

2

p H tanh21w
2tan21w1OS 1

mD
X5

t

2FzS m21

1 D m/~m21!S C1

b D 1/~m21!

AC11 H tanh21 w1

tan21 w1
G

m

te
f

or

n

f a
tion
of
the

m
is

in-
stant
focal points~in situations with defocusing!. A beam can be
compressed or extended in both defocusing and focusing
dia, depending on the initial conditions.

10. COMPARISON BETWEEN APPROXIMATE AND EXACT
SOLUTIONS

1. In order to illustrate the performance of the sugges
technique, we have obtained an exact numerical solution
the case of a plane collimated Gaussian beam in unif
transverse subsonic and supersonic flows (m51; D52)
with the initial conditions

I ~z50,x!5exp~2x2!, F~z50!5const, q~z50!50.

The similarity numbers were selected as follows: the Fres
numberF@1, absorption numberNa50, self-action number
e-

d
or
m

el

N51; Mach numberM50285; 1.122.0. The numbers of
meshpoints areNx5256, 512, and 1024,Nz52002800, the
step widthsDx50.0120.05 andDz50.002520.01; the di-
mensions of the studied region arexphys5(10220)r 0 , zphys

52zT . The results are shown in Figs. 2–4. The profile o
perturbed beam is approximately constant over the sec
z/L51.522. Further calculations are difficult because
large local gradients around the intensity peak. In Fig. 2a
average transverse beam dimensiona calculated using the
approximate method@see solution~22!# is compared to the
exact numerical solution. The error is within 7%. The bea
displacementxc calculated by the approximate method
very close to the exact calculation~Fig. 2b!. The intensity
profile shape is approximately constant only around the
tensity peak, as one can see in Fig. 3. Therefore, the con
ow:
FIG. 2. Comparison between approximate calculations of~a! av-
erage beam dimensionsa/r 0 and ~b! center-of-gravity shifts
xc /r 0 of the intensity distribution~dashed lines! and exact values
~solid lines! for the Gaussian beam under a transverse gas fl
~1! M50.01; ~2! 0.5; ~3! 1.5. The similarity numbersF@1, Na

50, N51.
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FIG. 3. Profiles of exact numerical solutions for the Gauss
beam propagation under a transverse gas flow:~a! M50.1; ~1!
z/L51.5; ~2! 1.7; ~3! 1.9; ~b! M51.5; ~1! z/L51/6; ~2! 1.8; ~3!
2.0.
n
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b in solution~22! is in fact nonzero, and in the exact solutio
the average transverse dimensiona(z) approximately fol-
lows a linear function. Figure 4a shows the constantbc ver-
sus the Mach number. In the vicinity of the pointM51
neither the exact nor approximate solution applies. Figure
shows the initial valuesa1(z0 /L51.5), xc1(z0 /L51.5) as
functions of M. The initial slopes of the curvesa(z) and
xc(z) are u1 /(r 0 /L)50.337, 0.344, 0.405, 0.572, 0.95
1.735, 2.162, 1.123, 0.2175, and 0.0465;uc1 /(r 0 /L)
521.135, 21.149, 21.280, 21.593, 22.370, 23.957,
4.854, 2.711, 0.8813, and 0.3544 atM50.01, 0.1, 0.3, 0.5,
0.7, 0.85, 1.1, 1.2, 1.5, and 2.0, respectively.

2. As a second example, we have calculated an ex
numerical solution for an axially symmetrical beam in
quasi-steady-state heat-conducting regime (m51; D53)
and compared it with the approximate solution~19!.

Figure 5a shows intensity profilesI (r )/I 0 at the moment
t57t in different cross sections. The intensity profiles a
similar. The relative change in the average radiusa(z) over
the time intervalt is 2.47, 1.42, 0.90, 0.63, and 0.47%
momentst53t, 4t, 5t, 6t, and 7t, respectively. This in-
dicates the existence of a quasi-steady state.

Figure 5b shows the mean radiusa(z)/r 0, deviation
angleu/(r 0 /L), and ‘‘constant’’b as functions ofz along the
optical path. Note a slight change inb ~as was expected, o
the basis of our assumption! and excellent agreement be
tween approximate calculations of the average radius
deviation angle, on the one hand, and accurate calculation
the sectionz/L51.523.0, on the other.
b

ct

d
in

11. SOLUTIONS WITH FOCAL POINTS

In a focusing medium, transverse dimensions of a be
can be reduced by an order of magnitude~Fig. 1b!. The
minimal dimension at a focal point,af , is limited by a dif-
fraction and is of the order of the inverse Fresnel numb
af /r 0;F2n, as follows from the eikonal equation~1!. In the
previous sections, we have disregarded the wave effects,
admitting an error of the order ofF22. In most aero-optical
problems, the equation for the average transverse beam
mensions, which takes into account the diffraction, can
reduced to a general ordinary differential equation

d2a

dz2
5

1

a~z! F 6b

am21~z!
1

c

F2a2~z!
G , b,c.0, m.0,

~51!
a~0!5a1 , u~0!5u1 .

This equation is valid at all the Fresnel numbersF, just as the
initial equation~1!. The first integral of Eq.~51! for m.1 is

u2[S da

dzD
2

5
62b

~2m11!am21
2

c

F2a2
1C1 ,

C15u1
27

2b

~2m11!a1
m21

1
c

F2a1
2

. ~52!

It is obvious that atm>3 diffraction cannot compensate fo
self-focusing since the second term on the right side can
grow faster than the first asa˜0.
FIG. 4. ~a! Parameterbc and ~b, curve1! initial average dimen-
sions a1 /r 0 and ~b, curve 2! displacementsxc1 /r 0 in the cross
section atz0 /L51.5 versus the Mach numberM.
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FIG. 5. ~a! Transverse distributions in the initially Gauss
ian beam in the heat-conducting regime of self-action
cross sections~1! z/L50; ~2! 1.0; ~3! 1.5; ~4! 2.0; ~5! 2.5;
~6! 3.0. ~b! Average radiusa/r 0 @curves1, the exact solu-
tion is shown by the solid line, the approximate solutio
~19! by the dashed line#, ~2! ‘‘constant’’ b, and~3! angle of
expansionu/(r 0 /L) with respect to initial axis as functions
of the optical path lengthz. The time moment for all curves
is t57t; similarity numbersN51, F@1, Na50.
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1. Let us analyze the solution on an optical path inclu
ing a focal point, taking as a example an axially symmetri
beam that propagates through a focusing medium in the h
conducting regime (m51, the sign in front ofb in Eq. ~51! is
minus, andD53). The first integral of Eq.~51! is

u[
da

dz
56A22b ln a2

c

F2a2
1C1. ~53!

Here the plus sign corresponds to the section in front of
focal point, whereu50, and the minus sign corresponds
the section behind the focal point. In the case of the Gaus
initial intensity distribution and a plane initial wave fron
exact numerical calculations performed atN522 and F
53 demonstrated that relative changes in the average ra
are within 0.46% at the momentst.4t, the focal distance is
zf'2.20L at t54t, the minimal radius isa(zf52.2)/r 0

50.4969, and the constants areb50.5307, c52.190, and
C15c/F2. The intensity profiles are shown in Fig. 6a. B
hind the focus, the bell-shaped intensity distribution pers
at least on the path section extending to the pointz53L. At
the focal point, the peak intensity is almost seven tim
higher, in accordance with the approximate formulaI /I 0

;(af /r 0)22;F2.
Figure 6b illustrates the dynamics of formation of a f

cusing lens. At the moment the quasi-steady state setst
54t, and the solution of the approximate equation~53!
~dashed line! is close to the exact solution~solid curve5!.
-
l

at-

e

an
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ts

s

,

There is a satisfactory agreement between these two s
tions in front of the focal point, at the focus, and behind t
focal point toz53L.

2. A second example of an optical path with a focal po
is a focused plane beam (u1,0) under transverse subson
and supersonic gas flows (m51; D52) in the limit of geo-
metrical optics atF@1. In this case the constantb50 @Eq.
~22!#. The transverse beam dimension decreases followin
linear functiona(z)5a12zuu1u. Within the distancez2zf

;F21 from the focus atzf'a1 /uu1u, we have to take dif-
fraction into account, i.e., obtain a solution in the neighb
hood of the focal point in extended coordinatesZ5(z
2zf)F and match it to the external solution atZ˜6` on
the scalez;1 ~Ref. 27!. In this specific case, the gener
solution of Eq.~51!, which satisfies the conditions of bot
the external and internal problems, is the upper branch
solution ~31!, whereb must be replaced byc/F2. The mini-
mal beam dimension is diffraction limited; it isaf

5Ac/(Fuu1u).
Using the basic equation~51! at bÞ0 and equating ap-

proximately the second term on the right side to the fi
term, we can estimate the beam compression at the f
point: af;1/Fa, wherea52/3, 1, 3/2, and 2 atm50, 1, 5/3,
and 2, respectively. By equating the left-hand and right-ha
sides, we estimate the longitudinal dimension of the fo
region:z2zf;1/Fb, whereb51/3, 1, 2, and 3 atm50, 1,
5/3, and 2, respectively.
ng
e-

cal

ine.
FIG. 6. ~a! Intensity profiles for a Gaussian beam in a focusi
medium (N522, F53) in a quasi-steady heat-conducting r
gime in the following cross sections:~1! z/L50; ~2! 1.0; ~3!
1.5; ~4! 2.0; ~5! 3.0; the timet54t. ~b! Average radiusa/r 0

versus the optical path length on a section including the fo
point: the solid curves show exact solutions at moments~1! t
50; ~2! 0.0255t; ~3! 0.0631t; ~4! 1.303t; ~5! 4.00t; the ap-
proximate quasi-steady solution is shown by the dashed l
The constantsb520.5307, c52.190, the Fresnel numberF
53. The initial radiusa(z50)/r 051, the expansion angle
u(z50)/(r 0 /L)50.
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12. CONCLUSIONS

1. The proposed procedure of approximate description
the laser beam self-action allows us, without solving a co
plicated system of equations, to draw the following conc
sions concerning the self-action effects.

Under a steady-state gas flow, the expansion of a p
collimated beam is negligible~or small!, the beam shifts in
the downstream direction in a subsonic flow and in the
stream direction in a supersonic flow.

In the convective steady-state regime atM!1 of a trans-
verse gas flow, a three-dimensional collimated beam is
tended mostly in the direction transverse with respect to
gas flow.

In a transonic gas flow, the predominant effect is exp
sion ~convergence! of the beam in the direction aligned wit
the gas flow.

2. Universal solutions for all situations under discussi
do not contain similarity parameters. In different physic
situations, whose only common parameter is the exponem
in Eq. ~26!, one can use a solution given in Table I.

3. At the focal point, the minimal beam dimension
diffraction-limited in situations when the exponentm,3. It
seems that form>3 the main assumption of the unchang
shape of intensity distribution fails near the focal point.

4. Comparison with the exact solution atm51 in the
case of transverse flow of a gas with zero viscosity and z
thermal conductivity~a plane laser beam! has demonstrated
difference of several percent. Good agreement between
exact and approximate solutions also takes place in
quasi-steady regime with a finite thermal conductivity atm
51 ~axially symmetrical beam! in both focusing and defo
cusing media.

5. The described procedure can be generalized to
case ofNa;1 and is applicable for the laser beam se
action in a longitudinal gas flow, in a vertical laser beam~in
the presence of gravitational convection!, and in the cases o
other mechanisms of optical nonlinearity~Kerr effect, elec-
trostriction, etc.!.

The work was financially supported by the Russian Fu
for Fundamental Research~Grant No. 99-01-00446! and
T&AGI ~Central Aerohydrodynamic Institute!.
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Thermal destruction of antiferromagnetic Fe–Fe exchange bonds and mechanism of the
transition to the spin-glass state in „Fe0.65Ni0.35…12xMnx systems with antiferromagnetic
competing exchange interactions
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The thermal evolution of the competition between the ferro- and antiferromagnetic exchange
interactions in (Fe0.65Ni0.35)12xMnx alloys, which display different magnetic properties, depending
on composition and temperature, is investigated. The distribution functions of the magnetic
hyperfine fieldsP(Bhf) for 57Fe are determined by Mo¨ssbauer spectroscopy in the temperature
range 5–300 K for the alloys withx50, 0.024, 0.082, 0.136, 0.195, and 0.252. The
temperature dependence of the integrated intensityI s(T) is analyzed for the low- and high-field
portions ofP(Bhf). The features found in the behavior ofI s(T) are interpreted as results
of variation of the ratio between the competing exchange interactions of different signs as a result
of the thermal destruction of antiferromagnetic Fe–Fe exchange bonds. It is shown that the
changes in the spin structure in the low-temperature range are due to the thermal destruction of
Fe–Fe exchange bonds. One of the consequences of this destruction is ‘‘reentrance’’~an
increase in the hyperfine field with increasing temperature for some of the Fe atoms!. The
relationship between the thermal destruction of Fe–Fe exchange bonds and the magnetic
transitions of the Fe–Ni–Mn system to the spin-glass state is considered. ©1999 American
Institute of Physics.@S1063-7761~99!01107-5#
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1. INTRODUCTION

Magnetic systems with competing exchange interacti
of different sign display a large variety of types of magne
ordering~ferromagnetism, antiferromagnetism, spin-glass
dering, and reentrant spin-glass ordering!. Concentrated
magnetic systems, in which all~or most! of the atoms have a
nonzero magnetic moment are most characteristic in this
spect. The theoretical analysis of the magnetic behavio
such magnets is very complicated. It is difficult to apply t
results of calculations performed for simple model syste
to real magnets containing magnetic atoms of different typ
Experimental investigations of the relationship between
behavior of competing exchange interactions and the m
netic structure on the microscopic level would be of gr
interest.

A characteristic example of systems with competing
change interactions and strong spatial inhomogeneity in
distribution of the exchange fields is provided by disorde
Fe–Ni–Mn alloys with an fcc structure. In the ferromagne
alloy Fe0.65Ni0.35 the ferromagnetic~FM! exchange coupling
constantsJFeNi andJNiNi ~which are equal to 450 and 600 K
respectively! are several times greater than the antiferrom
netic ~AFM! coupling constantJFeFe ~Ref. 1!. Nevertheless,
701063-7761/99/89(1)/7/$15.00
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in regions with a high local concentration of iron th
ferromagnetic spin structure becomes unstable and co
tions conducive to the formation of frustrated stat
and states with antiferromagnetic spin orientations
created~see Refs. 2 and 3 and the references cited the!.
The Mn–Fe exchange interaction in an fcc lattice
antiferromagnetic and strong~compared with the Fe–Fe
exchange interaction!; therefore, even a small admixtur
of Mn increases the competition between the excha
interactions of different sign and causes local disturban
of the ferromagnetic structure of the alloys. The ma
netic properties of Fe–Ni–Mn alloys depend strong
on composition and temperature. Investigations of
magnetic phase diagrams of Fe0.65(Ni12xMnx)0.35

~Ref. 3!, ~Fe0.65Ni0.35)12x(Fe0.84Mn0.16)x ~Ref. 4!, and
~Fe0.65Ni0.35)12xMnx ~Ref. 5! systems have shown that
transition to the spin-glass~SG! state is characteristic o
these alloys. Two magnetic transitions~the appearance of a
reentrant spin glass!, as well as the formation of a mixe
(FM1SG) phase, were observed over a broad range of c
centrations. Considerable spin polarization was observed
the SG phase of~Fe0.65Ni0.35)12xMnx alloys even in very
weak magnetic fields~10–60 mT!; and significant shifts of
© 1999 American Institute of Physics
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the characteristic temperatures were observed in stro
fields.5,6

The unusual behavior of the SG phase in an exte
magnetic field has been explained within the phenome
logical cluster model of Shigaet al.,3 but the question of the
mechanism of the formation of the SG phase in
Fe–Ni–Mn system remains open. One necessary cond
for the formation of an SG phase is the presence of a s
changing exchange interaction between the magnetic ce
~atoms or magnetic clusters!. For ‘‘classical’’ ~magnetically
dilute! spin glasses, the indirect long-range exchange in
action via conduction electrons has been regarded tradit
ally as such an interaction. In the case of concentrated
glasses~which include the SG phase of the Fe–Ni–Mn sy
tem! this interaction cannot play a decisive role, and t
formation of the SG phase should be regarded as a co
quence of the competition among the exchange interact
between atoms of different types over short distances. El
dation of the concrete mechanisms for the formation a
decomposition of the SG phase in the Fe–Ni–Mn system
of fundamental importance for developing a theory of co
centrated spin glasses.

Mössbauer spectroscopy offers a possibility to obse
spin configurations of different types and to classify the
states according to the amplitude of the magnetic hyper
field Bhf . The possibility of performing measurements ove
broad temperature range permits, in particular, obtaining d
on the effective exchange fields and the thermal stability
perturbed spin configurations. The use of this method
study disordered Fe–Ni–Mn alloys is based on an anal
of the hyperfine-field distribution functionsP(Bhf). The
present work included Mo¨ssbauer investigations ofP(Bhf)
for 57Fe in ~Fe0.65Ni0.35)12xMnx alloys in the concentration
range 0<x<0.252. Attention was focused for the most pa
on studying the temperature dependence ofP(Bhf) for dif-
ferent ranges of values ofBhf . The features of this depen
dence are interpreted as results of the influence of the t
perature on the competition between the excha
interactions of different sign. An earlier Mo¨ssbauer study o
~Fe0.65Ni0.35)12xMnx alloys was described in Ref. 7. The d
pendences of the mean hyperfine field^Bhf& on composition
and temperature were obtained in that work. The tempera
dependence of the structure ofP(Bhf) was not examined in
Ref. 7.

2. EXPERIMENTAL METHOD

The test samples of~Fe0.65Ni0.35)12xMnx were prepared
by fusing the metals with a purity no poorer than 99.9%;
ingots were rolled into foils having a thickness of'10 mm
and rapidly cooled. The composition and homogeneity of
alloys were monitored by x-ray fluorescence microanaly
the deviations of the concentrations of the components f
the nominal composition did not exceed 0.1 at.%. The m
ganese concentration range chosen (0<x<0.252) covers the
entire sequence of magnetic phases of this system~FM,
FM1SG, SG, and AFM!.5 The Mössbauer absorption spe
tra were measured in the temperature range 5–300 K. R
nance detectors were employed to increase the magnitud
er
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the resonant absorption effect and the resolving power
detecting Mo¨ssbauer radiation with an energy of 14.4 keV

The distribution functions of the magnetic hyperfin
fields P(Bhf) were calculated using histograms.8 The result-
ant Mössbauer spectrum was represented by the convolu
of the distribution functionP(Bhf) and an elementary mag
netic sextet. The widths of the histogram intervals were c
sen so that they would slightly exceed the instrumental wi
of the components of the magnetic sextets. This allowed
to use the direct method for minimizing thex2 functional
~using the FUMILI minimization program! and to eliminate
the need to employ a smoothing procedure. The variable
rameters for minimizing thex2 functional were the compo
nents of theP(Bhf) histogram, the relative intensities of th
second and fifth components of the magnetic sextetsa, the
linewidths, the isomer shift, and the correlation coefficie
between the hyperfine field and the quadrupole splitti
~This correlation was introduced to take into account
weak asymmetry of the absorption spectra.! For spectra with
a resolved hyperfine structure the variable parametera dif-
fered from 2.0 by no more than 10%~which corresponds to
random orientations of the spins in the sample!. The spectra
with a poorly resolved structure were treated with the fix
valuea52.0. Some other features of the method for treat
the spectra were described in Ref. 8.

In most cases~the alloys with a high manganese conce
tration and all the alloys at high temperatures! the satellite
structure ofP(Bhf) is complicated and poorly resolved. Fo
this reason, a method based on consideration of the t
~integrated! intensitiesI s in selected ranges of variation o
Bhf was employed in analyzing the temperature depende
of the components of the distribution functions. Such a d
analysis method enabled us to eliminate the possible erro
the determination of the intensities of the individual comp
nents ofP(Bhf) and to represent the temperature depende
of the low- and high-field intensitiesI s(T) in a simple and
graphic form.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 1 shows the Mo¨ssbauer absorption spectra me
sured at 5 K and the corresponding hyperfine-field distrib
tion functionsP(Bhf) for the alloys withx50, 0.024, 0.082,
0.136, 0.195, and 0.252. The hyperfine-field distributio
P(Bhf) for the same alloys at various temperatures are sho
in Figs. 2 and 3.

3.1. Hyperfine-field distributions P„B hf… at 5 K

Let us briefly consider some features of the structure
P(Bhf) at 5 K. For Fe0.65Ni0.35 more than 90% of the inten
sity is concentrated in the principal maximum, which is ce
tered atBhf534.5 T. The profile of the principal maximum
of P(Bhf) can be easily interpreted on the assumption o
statistical distribution of Fe and Ni atoms at the lattice poi
if the magnitude of the magnetic hyperfine field acting on
nucleus of an Fe atom in a given atomic configuration
described by the following familiar formula:

Bhf5amFe1b@nFemFe1~122nFe!mNi#, ~1!
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FIG. 1. Mössbauer spectra measured at 5 K~on the left!
and corresponding hyperfine-field distribution functionsP
~on the right! for ~Fe0.65Ni0.35)12xMnx alloys. The solid
lines in the left-hand part were calculated using the meth
described in the text.
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wheremFe andmNi are the magnetic moments of the Fe a
Ni atoms, andnFe is the number of nearest-neighbor Fe
oms in the particular configuration. The first term in th
formula is the contribution of the intrinsic magnetic mome
of the specific atom toBhf , and the second term is the tot
contribution of the atoms in the local environment toBhf . If
mFe52.5 mB and mNi50.6 mB , a comparison of the ob
served profile of the principal maximum with a calculatio
based on formula~1! ~with consideration of the binomia
distribution of the atoms of different types in the first coo
dination sphere! yields the following values for the coeffi
cients:

a59.4 T/mB , b50.5 T/mB

~a doubled number of histogram intervals in comparison
Fig. 1 was used to analyze the profile of the principal ma
mum.! The values ofa andb which we found are typical of
ferromagnetic iron alloys. The presence of weak sate
lines ~with a total intensity of 6–8%! can be attributed to the
formation of perturbed spin configurations in regions with
high local concentration of iron.2,7

The replacement of Fe and Ni atoms by Mn ato
quickly destroys the ferromagnetic spin structure of the
loy. The alloy withx50.024 exhibits intense satellites wit
Bhf'22 T andBhf'28 T to the left of the principal maxi-
mum, which can easily be attributed within formula~1! to
-

t

o
i-

e

s
l-

spin reorientation in some Fe atoms under the influence
the antiferromagnetic Mn–Fe interaction. Raising the co
centration of Mn to 8.2% leads to destruction of the princip
maximum and the formation of a broad hyperfine-field d
tribution in the range 9–36 T. When the Mn concentration
increased further, a rapid increase in the intensity of the lo
field components and a general shift of the hyperfine-fi
distribution toward lower values ofBhf are observed. The
integrated intensity in the rangeBhf,4 T for the alloys with
x50.082, 0.136, 0.195, and 0.252 is equal, respectively
8, 13, 16, and 33%. Raising the manganese concentra
leads to a rapid decrease in the mean value of the hype
field ^Bhf&, which is equal to 32.6, 28.9, 21.9, 16.1, 14.5, a
11.9 T for the alloys withx50, 0.024, 0.082, 0.136, 0.195
and 0.252, respectively.

The values ofBhf exceeding 8–10 T can be explained o
the basis of the approximation of Eq.~1! in terms of the spin
flip occurring as a result of the influence of antiferromagne
Fe–Fe and Mn–Fe exchange interactions. The states
Bhf,8 T cannot be attributed solely to the spin flip. The
atoms in such states must have a temperature-depen
mean value of the magnetic moment^m&T less than the
nominal value ofmFe. The decrease in̂m&T means that the
exchange fields for some Fe sites are very small and the l
magnetization is not in a state of saturation even



s

73JETP 89 (1), July 1999 Delyagin et al.
FIG. 2. Hyperfine-field distributionsP(Bhf) for
the alloys withx50, 0.024, and 0.082 at variou
temperatures.
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T55 K. The possibility for the formation of such states fo
lows from a theoretical analysis of systems with compet
exchange interactions.9

3.2. Influence of the thermal destruction of Fe–Fe exchange
bonds on the competition between exchange
interactions

As can be seen from Figs. 1 and 2, for the alloys w
low manganese concentrations the structure ofP(Bhf) is
relatively stable over a broad range of temperatures. In
ticular, a rise in temperature to;200 K is not accompanied
by a significant increase in intensity in the low-field regio
This means that at low manganese concentrations most o
perturbed spin configurations are characterized by high t
mal stability. It can be concluded that~in agreement with the
data in Ref. 10! the exchange coupling constantJMnFe is very
large and is probably close to 200 K. For the alloys w
x>0.136 ~Figs. 1 and 3! a rise in temperature is accomp
nied by rapid displacement of the distributionsP(Bhf) to-
ward weaker hyperfine fields and an increase in inten
nearBhf'0. The increase in intensity near zero values ofBhf

clearly indicates occurrence of the ‘‘fusing’’ of frustrate
spins considered in the theory of systems with compe
exchange interactions.9
g
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.
he
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A further analysis of the behavior ofP(Bhf) for alloys of
various composition was performed using integrated inte
ties ~see Sec. 2!. For the alloys withx>0.082 the tempera-
ture dependences of the integrated intensitiesI s(T) for the
low-field (Bhf,5 T) and high-field (Bhf .17 T! ranges, in
which the behavioral features ofI s(T) are most clearly dis-
played, were compared. The low-field range includes o
states of Fe atoms for which~as was pointed out above! the
exchange fields are known to be small~i.e., frustrated or
nearly frustrated states! at 5 K. Conversely, the states of th
high-field range with large values ofBhf at 5 K are charac-
terized by values of the temperature-dependent mean m
netic moment̂ m&T equal~or close! to the nominal value of
mFe. For the alloys withx50 and 0.024 the intensity of the
low-field satellites is very small; therefore, in these cas
only the temperature dependence ofI s(T) for the region of
the principal maximum (Bhf530238 T) was considered
The results are shown in Figs. 4 and 5. As is seen from F
4, for alloys with high manganese concentrations the te
perature dependences of the high- and low-field integra
intensities have characteristic features, which are m
clearly displayed for the alloys withx50.136 and
x50.195. A rapid rise in the integrated intensity in the low
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FIG. 3. Hyperfine-field distributionsP(Bhf) for
the alloys with x50.136, 0.195, and 0.252 a
various temperatures.
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field region and a synchronous decrease in the high-fi
region are observed in the temperature range 40–70
When the temperature is raised further, both the increas
intensity at weak fields and the decrease at strong fi
cease. In the case of the alloy withx50.136 these intensitie
remain constant in a broad temperature range. The alloy
x50.195 clearly displays an anomalous increase in the i
ld
K.
in
s

th
e-

grated intensity at strong fields, i.e., a return of some of
Fe atoms to states with large values ofBhf ~‘‘reentrance’’!
when the temperature is raised in the rangeT5110
2130 K. For the alloys withx50 and 0.024 the intensity o
the principal maximum decreases rapidly~almost abruptly
for the alloy withx50) when the temperature is raised in th
range 50–70 K~Fig. 5!. In the range 110–130 K the inten
ted

x-
FIG. 4. Temperature dependence of the integra
intensity I s ~T! at strong (Bhf.17 T) ~a! and
weak (Bhf,5 T) ~b! fields for the alloys withx
50.082 (d), x50.136 (s), x50.195 (m), and
x50.252 (¹). The measurement errors do not e
ceed the size of the symbols.
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sity remains constant for the alloy withx50, while an in-
crease in the integrated intensity, which corresponds to
‘‘reentrance’’ just described, is clearly seen for the alloy w
x50.024.

It is significant that these features of the behavior
I s(T) are observed in the same temperature ranges for a
with different manganese concentrations. Clearly, signific
reorganization of the spin structure of the alloys takes pl
at these temperatures due to variation of the ratio betw
the contributions to the exchange interaction. It is natura
theorize that such variation of the ratio between the excha
interactions of different sign is associated with the antifer
magnetic Fe–Fe exchange interaction, which has a very
characteristic temperatureQ. A rise in temperature should
cause the thermal destruction of Fe–Fe exchange bonds
consequently, a change in the balance between the com
ing interactions~which is especially significant in region
with a high local concentration of iron!. One obvious conse
quence of the thermal destruction of Fe–Fe exchange bo
is a decrease in the antiferromagnetic contribution to the
change interaction at temperatures close toQ. The corre-
sponding change in the balance between the contribution
the exchange field should be manifested in the behavio
the local magnetization andBhf , primarily for the Fe sites a
which the energy of exchange interaction is comparable
kQ. At such sitesBhf decreases rapidly with increasing tem
perature, but at temperatures above'50 K the thermal de-
struction of Fe–Fe bonds causes an increase in the resu
exchange field and a corresponding rise inBhf . The increase
in Bhf with increasing temperature accounts for ‘‘ree
trance,’’ which is manifested experimentally as a plateau
the plots of the integrated intensity versus temperature
strong fields~or even as a rise in this intensity for the allo
with x50.024 andx50.195). The temperature range
which ‘‘reentrance’’ is observed agrees well with the es
mate of the exchange coupling constantJFeFefound by low-
angle neutron scattering.1

The phenomena just described should take place to s

FIG. 5. Temperature dependence of the integrated intensityI s(T) in the
region of the principal maximum (Bhf530238 T) for the alloys with
x50 (j) and x50.024 (L). The measurement errors do not exceed
size of the symbols.
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extent in all the alloys investigated; however, it is difficult
observe the melting of spins and ‘‘reentrance’’ in the all
with x50.082 because of the low concentration of sta
with weak exchange fields and the complicated sate
structure of the hyperfine-field distribution. In the alloy wi
x50.252 ‘‘reentrance’’ is not observed because of the l
temperature for the transition of this alloy to the parama
netic state.

The thermal destruction of Fe–Fe exchange bonds
counts for the features of the magnetic phase diagram of
~Fe0.65Ni0.35)12xMnx system and the mechanism for form
tion of the SG phase in these alloys. Let us focus our att
tion on the fact that the temperature range in which
anomalies ofI s(T) considered above are observed coincid
with the temperature range of the transitions to the SG ph
~or a mixed FM1SG phase!. We also note that the tempera
tures of these transitions depend weakly on the manga
concentration.5 This suggests the existence of a direct re
tionship between the transition to the SG phase and the t
mal evolution of the Fe–Fe exchange bonds. The clu
model of the SG phase of the Fe–Ni–Mn system propo
by Shigaet al.3 accounts for the behavior of this phase
external magnetic fields, but does not specify the nature
the sign-changing exchange interaction between the clus
Iron is the dominant component in the alloys under cons
eration; therefore, even in the alloys with a considera
manganese concentration the antiferromagnetic Fe–Fe
change bonds should play a decisive role in the formation
sites with weak sign-changing exchange fields. Magne
clusters form in regions with large contributions from ferr
magnetic Ni–Ni, Ni–Fe, and Ni–Mn exchange bonds, wh
a relatively weak sign-changing interaction appears in
gions with a high local concentration of iron. The tempe
ture range for stability of the SG phase should coincide w
the range for stability of the Fe–Fe exchange bonds, a
observed in the alloys considered. The relative compositio
independence of the critical temperature for decomposi
of the SG phase is a natural consequence of such a me
nism for the formation and decomposition of the sig
changing exchange interaction. The existence of a reg
with a mixed (FM1SG) phase is attributed to spatial flu
tuations of the local concentration of iron and the grad
course of the destruction of the sign-changing exchange
teraction as the temperature is raised. The SG phase doe
form in the alloys withx<0.04 because of the low concen
tration of Fe sites with weak exchange fields.

It is noteworthy that, according to the results of our me
surements, in the alloys withx50.136 and 0.195 some of th
Fe atoms remain in the magnetically ordered state at t
peratures above 50–70 K~i.e., above the nominal tempera
tures for decomposition of the SG phase found from
analysis of the magnetization curves5!. The rapid increase in
the integrated intensity at weak fields in the range 50–70
corresponds to decomposition of the SG phase, but comp
passage of the system into the paramagnetic state doe
occur. As follows from the form of the magnetic pha
diagram,5 this deviation from the data in Ref. 5 cannot b
attributed to special features of the sample-preparation
cess or small variations in the composition of the alloys
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can be theorized that in the concentration rangex>0.14
there is a mixed-phase region at temperatures above the
mal temperature of the transition to the SG phase, whic
not manifested in the magnetic measurements because o
small contribution of the magnetic transition to the magne
zation and its highly diffuse nature. Our measurements
not permit identification of the type of magnetic orderin
but the existence of a magnetically ordered phase
T.70 K follows unequivocally from the data presented
Figs. 3 and 4. The temperature of the magnetic transitio
the alloy withx50.252 was found to be equal to;90 K, in
agreement with the data presented in the magnetic p
diagram.5 In the control measurements of the Mo¨ssbauer
spectra which we performed for the alloy withx50.082 in
weak magnetic fields, the temperature of the reentrant t
sition to the SG phase was found to be;40 K, which is also
consistent with the results in Ref. 5.

This work was carried out with financial support fro
the Russian Fund for Fundamental Research~Project 97-02-
16479!.
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The polarization state of a second-harmonic wave after reflection from a semi-infinite, optically
isotropic magnetic medium is considered for the three characteristic uniform-
magnetization directions corresponding to the linear magneto-optical Kerr effects. Expressions
for the complex amplitudes of the wave field which specify the nonlinear Kerr effects,
viz., the polar, meridional, and equatorial effects, are obtained in a first approximation with
respect to the magnetization. The dependences of these effects on the angle of incidence of the
inducing wave obtained as a result of a numerical experiment are presented. Analytical
formulas are found for them at small angles of incidence. A comparative analysis of the linear
and nonlinear Kerr effects is made. ©1999 American Institute of Physics.
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1. INTRODUCTION

Low-dimensional magnetic systems~surfaces, thin films,
multilayer structures, quantum dots, and quantum wires! are
attracting a great deal of attention. Many unexpected
nontrivial effects associated with the properties of magn
surfaces and interfaces have been discovered in recent y
These include giant magnetoresistance, significant sur
anisotropy, deviations of the magnetic moments on a sur
from their bulk values, oscillating exchange interactions
tween neighboring magnetic layers, and strong biquadr
exchange in multilayer structures. Apart from their unqu
tionable fundamental significance, these systems are of g
practical interest for magnetic memory, sensors, etc.

Some new magneto-optical effects associated with
surfaces of magnetic media, viz., the nonlinear seco
harmonic Kerr effects, were recently predicted and detec
soon thereafter.1–6 Although second-harmonic generation
forbidden in materials with an inversion center, and m
widely encountered materials~Fe, Co, Ni, FeNi, etc.! are
such, space-inversion symmetry is broken at a surface o
interface. Time-reversal symmetry is also broken in magn
The breaking of these symmetries leads to the appearan
second-harmonic magneto-optical phenomena, which h
been found to significantly surpass the corresponding lin
effects in magnitude.4,6 The large value of the polarizatio
plane rotation angle of a second-harmonic wave~relative to
the polarization of the inducing wave! ensures high contras
between regions with oppositely directed magnetization.
example, it can exceed 50% in a Co/Cu~100! multilayer
structure.5 In an Fe/Cr multilayer structure and in singl
crystal iron whiskers the ratio between the nonlinear a
linear Kerr rotation is of the order of 103 ~Ref. 6!. A com-
parison of the linear and nonlinear equatorial Kerr effe
was made in Ref. 7. Nonlinear Kerr effects have been s
cessfully employed for probing buried interfaces
multilayer films5,8–11 and spin-polarization quantum
wells.12–14 They are also interesting for studying the sp
771063-7761/99/89(1)/9/$15.00
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dynamics on magnetic surfaces and in ultrathin layers on
real time scale~in the femtosecond range!.1!

Thus, nonlinear magneto-optical effects offer a ne
promising tool for investigating magnetic surfaces and int
faces in magnetic films and multilayer structures with hi
spatial and temporal resolution, especially surface magn
anisotropy and interlayer exchange, magnetic doma
quantum wells, noncollinear~canted! surface and interlaye
structures, and the relationship between the geometric rou
ness and the magnetic, tunneling, and transport propertie
nanostructures.

However, in order to reliably compare nonlinear and li
ear magneto-optical effects and to use them to investig
magnetic surfaces and other low-dimensional magn
structures, tools must be developed to describe nonlin
magneto-optical effects within the familiar approach that
widely used in linear magneto-optics. Within this approa
the magneto-optical properties of a material are described
two complex parameters: the refractive indexn and the
magneto-optical parameterQ5«12/n2, where«12 is an off-
diagonal element of the dielectric tensor of the medium~see,
for example, Ref. 24!.

This paper describes a calculation of the complex am
tude of the second harmonic of a wave reflected from a se
infinite space filled with a ferromagnetic material for arb
trary angles of incidence of the inducing wave in the thr
geometric configurations which are usually set up
magneto-optical experiments, viz., in the configurations
the polar, meridional, and equatorial Kerr effects. The pol
ization states of a reflected second-harmonic wave are ca
lated. Analytical formulas for the nonlinear magneto-optic
Kerr effects at small angles of incidence of the induci
wave2! and the results of numerical experiments~at arbitrary
angles!, which characterize these effects as well as the ra
between them and the corresponding linear effects, are
sented.

We note that nonlinear magneto-optical effects are
scribed by aT-odd axial fourth-order tensor. On the on
© 1999 American Institute of Physics
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hand, such a tensor corresponds to the great diversit
these effects, and, on the other hand, the large numbe
components in it creates certain difficulties and uncertain
in the analysis of an experiment. In the present work
utilize a theory of magnetic symmetry and an adequate h
archy of small parameters, which permit considerable red
tion of the number of parameters needed to completely
scribe nonlinear magneto-optical effects.

2. NONLINEAR POLARIZATION AND MAGNETIZATION OF A
MEDIUM

Some theoretical aspects associated with the second
monic in magnetic media were considered in Refs. 15
26–29. According to Refs. 15 and 26–29, nonline
magneto-optical effects can be described in terms of elec
dynamics using the nonlinear electric polarization vectorP,
which includes components that are proportional to the lo
magnetization vector~or other basis vectors in the case
more complicated magnetic structures!. If the polarizationP
is localized on the surface of the medium, the nonlin
magneto-optical effects are caused exclusively by the p
ence of these surfaces and are determined by the distribu
of the magnetization on these surfaces.

The second-order nonlinear surface optical polarizat
can be written in the form1,30

Pi5x i jk
(2)~M !EjEk , ~2.1!

where the nonlinear surface susceptibilityx (2) depends on
the magnetizationM , andEj is a component of the electri
field of the light wave. The properties of the third-rank po
tensorx (2) and its dependence on magnetization are de
mined by the time-reversal symmetry and the symmetry
the surface. The time-reversal property~without allowance
for dissipation! requires that Rex (2) be an even function o
M and that Imx (2) be an odd function. It follows from sym
metry arguments that the polarizationP can be represented i
the form

P5P01Pm , ~2.2!

where the magnetization-independent contribution is

P05x1E~E•H!1x2E2N, ~2.2a!

and the contribution which is linearly dependent onM is

Pm5x3E~E~m•N!!1x4E2~m•N!

1x5~E•m!~E•N!1x6~E•N!~E•m!. ~2.2b!

Here x1 and x2 are the nonlinear optical parameter
x3 , . . . ,x6 are the nonlinear magneto-optical paramete
m5M /M is a vector which characterizes the magnetizat
direction, andN is a normal to the surface. SinceP is a polar
vector, only two independent combinations of the polar v
tors N and E, which are second order inE, form the polar
vector P0 and only four independent combinations form
from E andN and the axial vectorm give Pm .

The relation~2.2! should be regarded as an expansion
P(E,N,M ) in E, N, andM . We restrict the analysis to th
terms which are quadratic inE and linear inN andM . The
ratio of the light-wave fieldE to the magnitude of the intra
of
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atomic fieldE* , the ratioz5Esurf/E* of the surface electric
field Esurf ~which breaks the even symmetry at the surface! to
E* ~for N!, and the magnitude of the magneto-optical gyr
ropy ~for M !, which is determined by the magneto-optic
parameterQ and usually satisfies the conditionQ!1, are
small parameters.

Here expansion inN actually means expansion i
NEsurf, as can be shown in the following manner. Let
assume that there is a surface layer, in which the prope
of the medium vary in such a manner that their variation c
be described using the polar vectorA, which is parallel toN.
The influence ofA on the optical properties of the medium
will be characterized byEsurf, although these quantities, i
general, should not be considered identical. The nonlin
optical properties can then be described using the nonlin
susceptibilityx (3), so thatP5x (3)EsurfEE or P5x̃ (3)AE. In
general, the properties of the tensorsx (3) andx̃ (3) can differ
somewhat, but this difference does not influence the ensu
arguments. Assuming that the thickness of the surface la
can be less than the wavelength of the light, we can used
function to go over to a local description of the surface p
larization. The averaged productx (3)Esurf reliably reflects the
nonlinear surface susceptibilityx (2). Consideration of terms
of higher order inN implies allowance for contributions of a
polarization vector of the typeP55x (5)EsurfEsurfEsurfEE,
which are clearly at leastz2 times smaller than the term
taken into account above. The latter follows from the kno
relation Pn11/Pn;1/E* ~Ref. 30!. There may be cases i
which Esurf;E* ; expansion inNEsurf is then inapplicable,
and the theory under consideration is not completely gene

The use of the expansions~2.2a! and ~2.2b! reduces the
number of parameters needed to describe nonlinear magn
optical phenomena@in comparison to the general formul
~2.1!#. We can show this by comparing~2.1! with ~2.2! and
~2.2a!. Formula~2.2a! can naturally be represented in a m
trix form, just as~2.1!, where the third-rank tensor has th
following form in Voight’s notation:

F 0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0
G . ~2.3!

We recall that it is symmetric relative to interchange of t
indicesj andk. Such a form for the tensorx i jk

(2) corresponds
to the limiting `m symmetry group~the Curie group!. A
uniform electric field, for example, has this symmetry.
follows from ~2.2a! that e335e3112e15, i.e., the tensorx i jk

(2)

(M50) is specified in our case by two independent para
eters, rather than three, as required by`m symmetry. How-
ever, there is no contradiction between formulas~2.2a! and
~2.3!, since ~2.2a! corresponds to the linear approximatio
with respect toz. Taking into account the next term wit
respect toz in the expansion in~2.2a! in, for example, the
form N(N•E)2, we obtaine335e3112e151O(z2).

After reflection from a medium with an inversion cente
a second-harmonic wave, in general, includes the influe
of not only the surface components, but also the bulk co
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ponents of the polarizationP. However, the latter are man
fested to a considerably weaker extent, especially in the c
of metals.31

3. POLARIZATION STATE OF REFLECTED WAVES

In order to investigate nonlinear magneto-optical K
effects and compare them to the corresponding linear effe
we must determine the polarization state and the intensit
the reflected waves at the frequenciesv and 2v. This can be
done most simply in the case where reflection occurs fro
semi-infinite, optically isotropic magnetic medium, in whic
the uniform-magnetization direction is characterized by
vector m ~Fig. 1!. The crux of the problem is to find th
componentsEs

(r ) andEp
(r ) of the electric field of the wave a

v and the componentsẼs
(r ) andẼp

(r ) at 2v. The polarization
factor can be introduced asx52Ep

(r )/Es
(r ) or x5Es

(r )/Ep
(r ) ,

depending on which of the two directions, viz., the directi
of s or p polarization, respectively, is chosen for measur
the polarization plane rotation angle. The polarization fac
x̃ for the second harmonic~a tilde is used to denote quant
ties related to the second harmonic! should be introduced by
analogy with the one from the definitions ofx. The Kerr
rotation~the rotation angle of the major axis of the polariz
tion ellipse! is found from the relation32

tan 2u5
2 Rex

12uxu2
. ~3.1!

The ellipticity is defined in the following manner:

h5
1

2
arcsin

2 Imx

11uxu2
. ~3.2!

The signs ofu and h correspond to the direction of obse
vation of the wave vectork(r ). If 0,h,p/4, the wave has
left-elliptic polarization, and if2p/4,h,0, it has right-
elliptic polarization. In the case of linear polarization (h
50), the condition Imx50 should hold. Circular polariza
tion corresponds toh5p/4 ~left! and h52p/4 ~right!.
These definitions clearly also apply to the nonlinear po
and meridional Kerr effects if the quantities appearing
~3.1! and ~3.2! are construed as those pertaining to the s
ond harmonic. We note that the signs ofu andh also depend
on the representation of the plane wave.

The definition of the equatorial Kerr effect as the relati
changed5(I 2I 0)/I 0 in the intensity of a reflected wave i

FIG. 1. Determination of the normal modes with a frequencyv for a semi-
infinite magnetic medium.
se

r
ts,
of

a

e

r

r

-

response to passage of the medium from a state with unif
magnetization~I! to a state without magnetization (I 0) is
convenient only for a wave with the frequencyv. The analo-
gous definition for the nonlinear case, which was used
Ref. 24, gives an unbounded increase ind̃ as the angle of
incidence decreases. It is therefore more convenient to
the definition

d̃5~ I 2I 0!/~ I 1I 0!. ~3.3!

We shall also define the linear equatorial effect by analo
with ~3.3!.

To examine the nonlinear magneto-optical Kerr effe
we must use the results of the solution of the linear proble
the reflection matrix and the representations of the nor
modes in a magnetic medium for the orientations ofm which
appear in the definitions of the linear Kerr effects. In th
case the dielectric tensor of the magnetic medium is25

«̂~v!5n2F 1 2 im3Q im2Q

im3Q 1 2 im1Q

2 im2Q im1Q 1
G , ~3.4!

wheren is the complex refractive index (Imn.0), andQ is
the magneto-optical parameter, which depends linearly
magnetization. The magnetic permeability is assumed to
equal to unity.

An incident waveE( i )5E0
( i )exp@i(k( i )x2vt)# and a re-

flected waveE(r )5E0
(r )3exp@i(k(r )x2vt)#, which propa-

gates in a transparent medium (x3,0) with the refractive
indexn0(v), can be represented in the form of waves withs
andp polarization, which are related to one another throu
the reflection matrix

FEs
(r )

Ep
(r )G5F r ss r sp

r ps r pp
GFEs

( i )

Ep
( i )G , ~3.5!

whose elements depend on the optical parameters of the
media. In the semi-infinite region of the magnetic mediu
the two solutions of Fresnel’s equation correspond to t
normal modes. Knowledge of all three components of
electric field is needed for each of them.

4. REFLECTION MATRIX AND COMPLEX FIELD
AMPLITUDES OF A WAVE AT THE FREQUENCY v

We next present the elements of the reflection ma
and the formulas for the complex field amplitudes appear
in the definition~2.2! of the nonlinear surface polarization25

for the three directions ofm ~Fig. 1!.

4.1. Polar geometry, m 5„0,0,1…

The magnetization is orthogonal to the surface of
medium and lies in the plane of incidence. The elements
the reflection matrix are

r ss5
X2

X1
, r pp5

Y2

Y1
, ~4.1!

r sp52r ps5
in0n2Q

X1Y1
cosw, ~4.2!
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where X65n0cosw6An22a2, Y65n0An22a26n2cosw,
anda5n0sinw.

The components of the electric field in the magnetic m
dium are

E15
2n0 cosw

X1 FEs
( i )1

in2Q

2Y1
Ep

( i )G ,

E25
2n0 cosw

Y1 FAn22a2Ep
( i )2

in2Q cosw

2X1
Es

( i )G , ~4.3!

E352
2n0a cosw

Y1 FEp
( i )1

in0Q

2X1
Es

( i )G .

If the incident wave has linear polarization, the reflect
wave will have elliptic polarization with the major axis o
the polarization ellipse turned through a certain angle, wh
is determined from~3.1!.

4.2. Meridional geometry, m 5„0,1,0…

The magnetization is parallel to the surface of the m
dium and lies in the plane of incidence. This effect, like t
polar effect, consists of the appearance of ellipticity and
tation of the polarization plane of the reflected wave if t
incident wave is linearly polarized. The elementsr ss andr pp

are determined from~4.1!, and

r sp5r ps5
ian0n2Q cosw

X1Y1An22a2
. ~4.4!

The components of the electric field in the magnetic medi
are

E15
2n0 cosw

X1 FEs
( i )1

ian2Q

2Y1An22a2
Ep

( i )G ,

E25
2n0 cosw

Y1 FAn22a2Ep
( i )1

ian2Q cosw

2X1An22a2
Es

( i )G ,

~4.5!

E352
2n0 cosw

Y1 FaEp
( i )2

iQ

X1 S Y11
a2n0

2An22a2D Es
( i )G .

4.3. Equatorial geometry, m 5„1,0,0…

The magnetization is parallel to the surface of the m
dium and orthogonal to the plane of incidence. The equa
r sp5r ps50 signifies that the reflected wave has the sa
polarization as the incident wave. The elementr ss is deter-
mined from~4.1!, and the other diagonal element is

r pp5
Y2

Y1 F12
in0

2n2Q

Y2Y1
sin 2wG . ~4.6!
-

d

h

-

-

-
y
e

The complex amplitudes of the field in the magnetic medi
are

E15
2n0 cosw

X1
Es

( i ) ,

E25
2n0 cosw

Y1 FAn22a22
ian2Q

Y1
coswGEp

( i ) , ~4.7!

E352
2n0 cosw

Y1 Fa1
in2Q

Y1
~n01An22a2 cosw!GEp

( i ) .

The equatorial effect clearly takes place only for obliq
incidence.

5. NORMAL MODES WITH A FREQUENCY OF 2 v

The surface polarization P5(P01Pm)exp@i(k0sax2

2vst)#, wherevs52v and the wave numberk0s5vs /c, is a
source of plane waves with a frequencyvs , which are
damped in the semi-infinite magnetic medium~Fig. 2!. To
find the polarization state of these waves, Maxwell’s eq
tion must be solved in the two regions.

In the region of the magnetic medium (x3.0)

curl H̃52 ivs«0«̂~vs!Ẽ, curlẼ5 ivsm0H̃. ~5.1!

Here the dielectric tensor

«̂~vs!5ñ2F 1 2 im3Q̃ im2Q̃

2 im3Q̃ 1 2 im1Q̃

2 im2Q̃ im1Q̃ 1
G

contains the refractive indexñ5n(vs) and the magneto-
optical parameterQ̃5Q(vs).

In the region of the transparent medium (x3,0) with the
refractive indexñ05n0(vs)

curl H̃52 ivs«0ñ0
2Ẽ, curlẼ5 ivsm0H̃. ~5.2!

The boundary conditions at the surface (x350) can be ob-
tained as was done in Ref. 33. The following relations
obtained as a result:

FIG. 2. Waves with the frequencyvs governed by the nonlinear surfac
polarizationP.



a

n

ou
s
ic

a

to

s

he

m
e
orm

he
r-

81JETP 89 (1), July 1999 A. K. Zvezdin and N. F. Kubrakov
Ẽ1
12Ẽ1

250, Ẽ2
12Ẽ2

252 iañ22k0s«0
21P3 ,

H̃1
12H̃1

25vs~m1Q̃P32 iP2!,

H̃2
12H̃2

25vs~m2Q̃P31 iP1!. ~5.3!

Equations ~5.1!, whose solution has the form of
plane wave Ẽ5Ẽ0 exp@i(kx2vst)# with a wave vector
k̃5k0s(0,a,g), reduce to the following wave equation i
matrix form:

F a21g22ñ2 i ñ2m3Q̃ 2 i ñ2m2Q̃

2 i ñ2m3Q̃ g22ñ2 2ag1 i ñ2m1Q̃

iñ2m2Q̃ 2ag2 i ñ2m1Q̃ a22ñ2
GF Ẽ1

Ẽ2

Ẽ3

G50. ~5.4!

This equation can be solved only for values ofg which are
solutions of Fresnel’s equation

g42@2~ ñ22a2!2ñ2Q̃2~12m3
2!#g222ñ2Q̃2m2m3ag

1~ ñ22a2!22ñ2Q̃2@ ñ22~12m2
2!a2#50. ~5.5!

Since the medium is assumed to be semi-infinite, of the f
roots of Eq.~5.5! only those which correspond to two wave
departing from the surface, i.e., normal modes, have phys
meaning. Their form depends on the direction ofm. We next
present representations of the normal modes in the first
proximation with respect toQ̃ for the orientations ofm
which correspond to the definitions of the three magne
optical Kerr effects.

agraph *Polar effect,m5(0,0,1). It follows from~5.5!
that

g1,25Añ22a27
1

2
ñQ̃,

and Eq.~5.4! gives two modes

Ẽ(1,2)5Ẽ02
(1,2)exp~ i k̃(1,2)x!~6j,1,2a~ ñ22a2!21g1,2!,

~5.6!

H̃(1,2)5
jk0sẼ02

(1,2)

vsm0
exp~ i k̃(1,2)x!~jg1,2,6g1,2,7a!,

wherej5 i ñAñ22a2, k̃( j )5k0s(0,a,g j ), the upper sign cor-
responds to the first mode, and the lower sign correspond
the second mode.

agraph *Meridional effect,m5(0,1,0). To find the nor-
mal modes from~5.4! we need the exact values of

g1,25Añ22a22
1

2
ñ2Q̃27ñQ̃Aa21

1

4
ñ2Q̃2.

Then

Ẽ(1,2)5Ẽ02
(1,2)exp~ i k̃(1,2)x!

3S i ñ2Q̃~ ñ22g1,2
2 !

ag1,2~ ñ22a22g1,2
2 !

,1,
ñ22g1,2

2

ag1,2
D ,

~5.7!
r

al

p-

-

to

H̃(1,2)5
k0sẼ02

(1,2)

vsm0

3exp~ i k̃(1,2)x!S 2
ñ2

g1,2
,

i ñ2Q̃~ ñ22g1,2
2 !

a~ ñ22a22g1,2
2 !

,

2
i ñ2Q̃~ ñ22g1,2

2 !

g1,2~ ñ22a22g1,2
2 !

D .

Equatorial effect, m5(1,0,0). It follows from~5.5! that

g1,2'g5Añ22a2

and the normal modes are

Ẽ(1)5Ẽ01
(1)exp~ i k̃x!~1,0,0!,

H̃(1)5
k0sẼ01

(1)

vsm0
exp~ i k̃x!~0,g,2a!,

~5.8!

Ẽ(2)5Ẽ02
(2)exp~ i k̃x!S 0,1,2

ag1 i ñ2Q̃

ñ22a2 D ,

H̃(2)5
k0sẼ02

(2)

vsm0
exp~ i k̃x!S ñ2~g1 iaQ̃!

ñ22a2
,0,0D .

Here the first mode hass polarization, and the vectorẼ(2)

lies in the plane of incidence, but is not orthogonal to t
wave vector.

It follows from ~5.2! that only one plane wave
Ẽ(r )5Ẽ0

(r )exp@i(k̃x2vst)# with the wave vector k̃(r )

5k0sñ0(0, sinc, cosc) propagates in the transparent mediu
(x3,0) ~Fig. 2!. In contrast with the normal modes in th
magnetic medium, this wave can be represented in the f
of a superposition of waves withs and p polarization. In
particular, at the surface

Ẽ(r )5~Ẽs
(r ) ,Ẽp

(r )cosc,Ẽp
(r ) sinc!,

~5.9!

H̃(r )5
k0sñ0

vsm0
~Ẽp

(r ) ,2Ẽs
(r ) cosc,2Ẽs

(r ) sinc!.

The boundary conditions~5.3! are satisfied if the relation

sinc5
n0

ñ0

sinw, ~5.10!

which can be called the reflection law for a wave with t
frequencyvs , holds. If the refractive index of the transpa
ent medium does not depend on frequency, we havec5w.

6. NONLINEAR POLAR KERR EFFECT

In the casem5(0,0,1) the expressions~5.6! for the nor-
mal modes and the boundary conditions~5.3! give the fol-
lowing representations of thes and p components of the
reflected wave with the frequencyvs in terms of the compo-
nents of the nonlinear surface polarization:
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FIG. 3. Polarization plane rotation
angle and ellipticity for the nonlinear
~solid lines! and linear~dashed lines,
to which the right-hand scale refers!
polar ~a! and meridional~b! Kerr ef-
fects for s and p polarization of the
incident wave.
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Ẽs
(r )5

ik0s

«0X̃1 F P11
iQ̃

2Ỹ1
~P2ñ2cosc2añ0P3!G ,

~6.1!

Ẽp
(r )5

ik0s

«0Ỹ1 FAñ22a2P21aP32
i ñ2Q̃

2X̃1
P1G ,

where X̃15ñ0cosc1Añ22a2, Ỹ15ñ0Añ22a21ñ2cosc,
and a5n0sinw. According to~2.2!, in the configuration of
the polar Kerr effect the components ofP are

P15x1E1E31~x51x6!E2E3 ,

P25x1E2E32~x51x6!E1E3 ,

P35x2~E1
21E2

2!1~x11x2!E3
2 ,

where the complex amplitudesE1 , E2, and E3 are known
from ~4.3!. Thus, thes and p components of the reflecte
wave with the frequencyvs are now defined in terms of th
s andp components of the incident waveE( i ) and the optical
parameters of the medium. In particular, if the incident wa
hass polarization~Fig. 1!, then

Ẽs
(r )5

ak0s

2«0X̃1 S 2n0 cosw

X1
Es

( i )D 2Fx1

n0Q

Y1
1x2

ñ0Q̃

Ỹ1 G ,

~6.2!

Ẽp
(r )5

iak0s

«0Ỹ1 S 2n0 cosw

X1
Es

( i )D 2

x2 ,

and if it hasp polarization, then

Ẽs
(r )5

ak0s

«0X̃1 S 2n0 cosw

Y1
Ep

( i )D 2

3H 1

2
x1Fn2Q

X1
1

Q̃

Ỹ1
~An22a2ñ2 cosc1a2ñ0!G

1x2

ñ0n2Q̃

2Ỹ1
2 i ~x51x6!An22a2J ,

~6.3!

Ẽp
(r )52

iak0s

«0Ỹ1 S 2n0 cosw

Y1
Ep

( i )D 2

3@x1~A~ ñ22a2!~n22a2!2a2!2x2n2#.
e

In each case the reflected wave with the frequencyvs is
elliptically polarized. Substitution of the parameterx̃ found
from ~6.2! or ~6.3! into ~3.1! and ~3.2! gives the results
needed: the polarization plane rotation angle and the ellip
ity for the second harmonic. In a first approximation wi
respect to the angle of incidencew the corresponding formu
las for the complex angleũ1 i h̃ are fairly compact. In fact,
if the incident wave hass polarization ~Fig. 2! and ũs is
measured from the direction forp polarization (x̃
5Ẽs

(r )/Ẽp
(r )), then

ũs1 i h̃s5
1

2i F n0ñQ

n~n01n!

x1

x2
1

ñ0Q̃

ñ01ñ
G . ~6.4!

The Kerr angleũp1 i h̃p (p polarization of the incident wave
and x̃5Ẽs

(r )/Ẽp
(r )) in this approximation likewise does no

depend onw:

ũp1 i h̃p5 i ñH F1

2 S nQ

n01n
1Q̃D2 i

x51x6

x1
G

3S ñ2n
x2

x1
D 21

2
ñ0Q̃

2ñ~ ñ01ñ!
J . ~6.5!

As an example we present some characteristic plots
the polarization plane rotation angle and the ellipticity vers
the angle of incidencew ~Fig. 3a! for the linear (u,h) and
nonlinear (ũ,h̃) Kerr effects whenñ05n051, ñ5n52.36
63.48i , Q̃5Q520.03410.003i (n and Q correspond to
iron!, x2 /x150.1, x j /x150.01i , Imx150, and j
53, . . . ,6~the values of these ratios are close to the val
given in Refs. 34 and 35!. For s polarization of the incident
wave, the direction forp polarization was chosen as the d
rection for measuring the angleũs . As can be seen from the
curves, the polarizations of the reflected waves with the
quenciesv and vs are nearly orthogonal in this case.
should be noted that in the case of normal incidence
nonlinear polarizationP has only one nonzero compone
P3, and, as follows from~6.1!, ~6.2!, and~6.3!, the reflected
wave is totally absent sincea50. However, the polarization
factor x̃ is nonzero because of the linear dependence of
field components ona. This means that asw˜0, the polar-
ization plane rotation angle and the ellipticity can have fai
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large values~as can be seen from Fig. 3!, while the intensity
of the reflected wave becomes infinitesimally small.

7. NONLINEAR MERIDIONAL KERR EFFECT

If the incident wave is linearly polarized andm
5(0,1,0), the reflected waves with frequencies equal tov
and vs will be elliptically polarized with the major axes o
the polarization ellipsoids turned through certain ang
~Kerr rotation! relative to thes polarization of these waves
In order to find the Kerr angle and the ellipticity for th
second harmonic, we must substitute the expressions~5.7!
for normal modes into the boundary conditions~5.3! and use
~5.9!. As a result, thes and p components of the reflecte
wave with the frequencyvs will be as follows:

Ẽs
(r )5

ik0s

«0X̃1 F P11
iañ2Q̃ cosc

2Ỹ1Añ22a2
P2

2 iQS 11
a2ñ0

2Ỹ1Añ22a2
D P3G ,

~7.1!

Ẽp
(r )5

ik0s

«0Ỹ1 FaP31Añ22a2P21
iañ2Q̃

2X̃1Añ22a2
P1G ,

where, according to~2.2!, the components of the nonlinea
surface polarization are

P15x1E1E31~x31x4!E1
21~x41x6!E2

2

1~x42x5!E3
2 ,

P25x1E2E31~x32x6!E1E2 ,

P35x2~E1
21E2

2!1~x11x2!E3
21~x31x5!E1E3 ,

and the complex amplitudesE1 , E2, and E3 can be found
from ~4.5!.

If the incident wave hass polarization, then

Ẽs
(r )52

k0s

«0X̃1
S 2n0 cosw

X1
Es

( i )D 2

3F x1QS 11
a2n0

2Y1An22a2D
2x2Q̃S 11

a2ñ0

2Ỹ1Añ22a2
D 2 i ~x31x4!G , ~7.2!

Ẽp
(r )5

iak0s

«0Ỹ1 S 2n0 cosw

X1
Es

( i )D 2

x2 ,

and if it hasp polarization, then
s

Ẽs
(r )5

k0s

«0X̃1
S 2n0 cosw

Y1
Ep

( i )D 2

3H x1Fa2Q̃S 11
a2ñ01ñ2An22a2cosc

2Ỹ1Añ22a2
D

1
a2n2Q

2X1An22a2G1x2n2Q̃S 11
a2ñ0

2Ỹ1Añ22a2
D

1 ix4n22 ix5a21 ix6~n22a2!J ,

~7.3!

Ẽp
(r )5

iak0s

«0Ỹ1 S 2n0 cosw

Y1
Ep

( i )D 2

3@x1~a22A~ ñ22a2!~n22a2!!1x2n2#.

Determining the polarization factorx̃ from ~7.1! or ~7.2!
and ~7.3! and substituting it into~3.1! and ~3.2!, we can
easily obtain the polarization plane rotation angleũ and the
ellipticity h̃ of the reflected wave. For small values ofw and
s polarization of the incident wave we have

x̃52
Ẽp

(r )

Ẽs
(r )

5
in0w

ñ

x2

x1Q2x2Q̃2 i ~x31x4!
, ~7.4!

and forp polarization we have

x̃5
Ẽs

(r )

Ẽp
(r )

5
nñ

iñ0w

x2Q̃1 i ~x41x6!

x2n2x1ñ
. ~7.5!

In Fig. 3b bothũ and h̃ depend on the polarization of th
incident wave and the angle of incidence in the case of
linear and nonlinear meridional Kerr effects. We used
same values of the required parameters as those used to
struct the plots in Fig. 3a.

8. NONLINEAR EQUATORIAL KERR EFFECT

To calculate the intensities appearing in the definiti
~3.3! of this effect we need the complex amplitudesẼs

(r ) and
Ẽp

(r ) , which are found after plugging the normal modes~5.8!
into the boundary conditions~5.3! for m5(1,0,0):

Ẽp
(r )5

ik0s

«0Ỹ1 HAñ22a2P21aP32
i ñ2Q̃

Ỹ1

3@a coscP22~ ñ01Añ22a2 cosc!P3#J ,

~8.1!

Ẽs
(r )5

ik0s

«0X̃1
P1 ,

where, as follows from~2.2!, the components of the nonlin
ear polarization
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P15x1E1E32~x32x6!E1E2 ,

P25x1E2E32~x41x6!E1
22~x31x4!E2

2

2~x42x5!E3
2 ,

P35x2~E1
21E2

2!1~x11x2!E3
22~x31x5!E2E3

are specified in terms of the complex amplitudesE1 , E2, and
E3, in accordance with~4.7!. Regardless of whether the in
cident wave hass or p polarization, the relationẼs

(r )50
holds; i.e., the reflected wave with the frequencyvs will
have only ap component~see Fig. 2!. This property is also
observed in the case of films, as has been confirm
experimentally.7 If the incident wave hass polarization, then

Ẽp
(r )5

ik0s

«0Ỹ1 S 2n0 cosw

X1
Es

( i )D 2H x2Fa1
i ñ2Q̃

Ỹ1

3~ ñ1Añ22a2 cosc!G2~x41x6!Añ22a2J , ~8.2!

and forp polarization we have

Ẽp
(r )5

ik0s

«0Ỹ1 S 2n0 cosw

Y1
Ep

( i )D 2

3H x1F2 in2QSAñ22a2S 12
2a2 cosw

Y1 D
2

2a2

Y1
~n01An22a2 cosw!D G

1a@a22A~ ñ22a2!~n22a2!#

1
ia2ñ2Q̃

Ỹ1
@ ñ01~Añ22a21An22a2!cosc#

1x2n2Fa1
2ia2n0Q

Y1
1

i ñ2Q̃

Ỹ1

3~ ñ01Añ22a2 cosc!G1x3Añ22a2@a2

2A~ ñ22a2!~n22a2!#2x4n2Añ22a2

1x5a2~Añ22a21An22a2!J . ~8.3!

In order to determine the intensity of the reflected waveI 0,
all the magnetization-dependent paramet
(Q,Q̃,x3 , . . . ,x6) must be set equal to zero.

After calculating the intensity from~8.1! or ~8.2! and
~8.3! and substituting it into~3.3!, we obtain the characteris
tic d̃ of the nonlinear equatorial Kerr effect. We note that t
asymptotic expansiond̃511O(w2) holds asw˜0, while
the relative change in intensity (I 2I 0)/I 0}w22.

Figure 4 shows plots ofd̃ versusw for s andp polariza-
tions of the incident wave. The characteristicd of the linear
d

s

equatorial effect was determined in a similar manner
comparison. All the parameters correspond to those
which the plots in Fig. 3 were constructed.

9. CONCLUSIONS

The principal results of this work include the analytic
expressions found for a semi-infinite magnetic mediu
which characterize thes and p components of the reflecte
second-harmonic wave in terms of optical and magne
optical parameters of the media provided the unifor
magnetization directions correspond to the three directi
which were adopted in the classification of the line
magneto-optical Kerr effects. All the results are given in t
linear approximation with respect to the magnetizatio
dependent parameters. Equations which relate thes and p
components of the reflected second-harmonic wave to
nonlinear surface electric polarization have been obtain
This made it possible to determine the polarization pla
rotation angle~the Kerr rotation! and ellipticity of that wave
for arbitrary polarization of the incident wave.

Expressions which characterize the nonlinear magn
optical Kerr effects, viz., the polar, meridional, and equa
rial effects, have been found. Plots of these effects as fu
tions of the angle of incidence for incident waves withs or p
polarization have been presented for known values of
parameters. It has been shown that they significantly surp
the corresponding linear magneto-optical Kerr effects.
though application of the method described here to laye
media would be of greater interest, the results which
obtained can be useful for illustrating the features of
nonlinear magneto-optical Kerr effects.

* !E-mail: zvezdin@magnof.phys.msu.su
1!A great deal of attention has also been attracted by bulk nonlin

magneto-optical effects, especially in so-called magnetoelectric mater
in which the second harmonic appears because of the odd symmetry o
magnetic structure with respect to space inversion.15,16 Sharp intensifica-
tion of second-harmonic generation due to the appearance of mag
order has been observed in BiFeO3 below the transition point to the anti
ferromagnetic state.17 The nonlinear magneto-optical effects in the magn
toelectric material Cr2O3 were thoroughly studied in Ref. 18. They are als
clearly expressed in films of magnetic garnets19–22 and in the Heussler
alloy.23

FIG. 4. Dependence of the nonlinear~solid lines! and linear~dashed line,
right-hand scale! equatorial Kerr effects on the angle of incidence and p
larization of the incident wave.
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2!The nonlinear equatorial Kerr effect was also considered for small an
of incidence in Refs. 24 and 25.
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33B. Jérôme and Y. R. Shen, Phys. Rev. E48, 4556~1993!.
34U. Pustogowa, W. Hu¨bner, and K. H. Bennemann, Phys. Rev. B48, 8607

~1993!.
35U. Pustogowa, W. Hu¨bner, and K. H. Bennemann, Surf. Sci.307–309,

1129 ~1994!.

Translated by P. Shelnitz



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 89, NUMBER 1 JULY 1999
Flattening of vacancy force fields on a kinematic interface between solids
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Zh. Éksp. Teor. Fiz.116, 157–167~July 1999!

It is shown that the diffusive formation of the boundary of a crystal moving uniformly over the
surface of another crystal should be accompanied by flattening of the displacement fields
of the crystal lattice in the vicinity of vacancies. As the relative velocity of the crystals rises, the
flattening of vacancies leads to lowering of their dipole moments and an increase in the
number of contact atoms on the interface between the crystals. This phenomenon should be
manifested most strongly for high rates of relative motion of the bodies and for small contact areas
in the nanoscopic range. It is noted that the decrease in the dipole moment of a vacancy
into which a contact atom diffuses can be the reason for the passage of the kinematic interface
between the contacting crystals into a quasimolten state. It is concluded that friction in a
polyatomic contact should differ qualitatively from friction in the monatomic contacts created in
atomic-force microscopy. ©1999 American Institute of Physics.@S1063-7761~99!01307-4#
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1. INTRODUCTION

The reviews of experimental and theoretical studies
the features of the friction between solid materials in Refs
and 2 show that the question of the mechanism of friction
still of great interest. A large portion of these studies focus
on the properties of the monatomic contacts used in atom
force microscopy.3–7 One of their features is generalizatio
of the results of experiments with monatomic contacts to
case of polyatomic contacts, which is based on an imp
assumption that the mechanisms of friction are identica
both systems. Nevertheless, there has been no experim
verification or even theoretical substantiation of this assum
tion.

Another portion of these studies focused directly
polyatomic contacts. Special mention should be made her
Refs. 8–10, in which the concept of ‘‘stick-slip’’ motion wa
adopted as a basis for developing models of the mechan
of kinematic friction in ‘‘solid-on-solid’’ systems. The es
sence of this mechanism is that one crystal moving over
surface of another crystal, which should be considered r
and fixed, experiences periodic locking, which is overco
with resultant passage of the original crystal into a slid
state. In this case some physical characteristics, being a
ages over a lattice period, turn out to differ in absolute va
from the characteristics associated with crystals in a st
state. These ideas underlie the work in Refs. 8 and 9, wh
have a theoretical character and in which the microsco
side of the problem of kinematic friction was considered.
periodic lattice potential was proposed as the factor prov
ing for the locked state, and the frictional force was propo
as the quantity which is averaged over the sliding states.
same ideas underlie the experimental study in Ref. 10
which the macroscopic side of the problem was conside
However, microscopic surface irregularities were propo
as the factor providing for the locked state, and the resista
861063-7761/99/89(1)/6/$15.00
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of the contact to an electron current was proposed as
quantity averaged over the sliding states.

Disregarding the question of the structural level at wh
slip occurs, we can see something in common in these s
ies: the original models were constructed on the basis o
interface with a static potential well. It is difficult to imagin
how stick-slip motion can be realized without the generat
of vacancies by the crystal boundaries~see, for example, Ref
11! or, in other words, without the diffusion of atoms amon
vacant lattice sites under the action of external stresses
fact, if the characteristic value of the force sufficient for d
taching one atom from the surface of a crystal is assume
be of the order of 1024 dyne,12 then under loads of the orde
of, for example, 105 dyne, the number of contact atoms di
fusing into vacancies at a given moment during stick-s
motion is of the order of 109. The role of these 109 atoms in
shaping the frictional forces or electrical conductance of c
tacts can be taken into account phenomenologically, bu
more detailed approach based on evaluation of the varia
of the number of diffusing atoms as a function of the exter
conditions for carrying the experiment is also possible.

In this paper we shall describe the dynamics of the f
mation of a moving force contact and give an estimate of
variation of the number of contact atoms as a function of
relative velocity of the bodies in the contact under the act
of an external force. The development of Tomlinson’s o
conception13 of a relationship between the number of conta
atoms on an interface with an external load, which w
adopted in Ref. 14, is based on a solution of the problem
the motion of a point force dipole in a crystal. A movin
dipole simulates an elementary act of diffusion of an at
from a lattice point into a vacancy. As a whole, diffusio
should govern two processes. At first a static equilibrium
established on the interface between the deformable cry
and the absolutely rigid substrate in the absence of rela
motion between them along the contacting surfaces. Thi
followed by the establishment of a dynamic equilibrium, u
© 1999 American Institute of Physics
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der which the deformable crystal moves over the surface
the rigid substrate, causing the dynamic transport of ato
and vacancies, while maintaining a static equilibrium in t
direction perpendicular to the interface. In this case the
fusive motion of an atom can be regarded as an elemen
act of passage of the moving crystal from a locked state
sliding state, and the motion formed as result of many dif
sive acts of the interface can be regarded as an instantan
picture of stick-slip motion.

A description of such a detailed mechanism of fricti
using the ordinary electron-phonon model of crystals wo
hardly be possible at present. In this paper we therefore
strict the discussion to the model of a crystal in the form
an infinite continuous medium containing moving point for
sources. Nevertheless, just such an approach allows us t
in the stage of formulating the problem that the force fie
of moving atoms and vacancies, which account for the re
tive motion of the crystals, must be flattened. The ensu
analysis shows that a consequence of the flattening of
dipole force fields should be an increase in the numbe
contact atoms in the interacting crystals. This result lead
conclusions which can find application in the analysis
grain-boundary slip in polycrystals and the relative motion
nanocrystals in nanocrystalline materials.

2. FORMATION OF A KINEMATIC INTERFACE

We assume that an interface between crystals or i
vidual crystallites in polycrystals is formed only by the d
fusive motion of atoms among vacant sites in the crys
lattice. In this case the movement of atoms into vacanc
whose initial velocities are equal to zero, specifies a st
interface. A moving, or kinematic, interface formed by t
uniform motion of one crystal relative to the surface of t
other is specified by the movement of atoms into vacan
moving with an initial velocityv0.

The numbern of contact atoms at a static interface
determined by the external load and the parameters of
interactions between atoms.13,14 At a kinematic interface the
value ofn should also depend on the velocityv0. The basis
for this can be as follows.

The movement of atoms into vacancies should be
companied by considerable dynamic lattice strains, wh
can be described using point force dipoles.14,15 Assuming
that a vacancy moving in the direction of an atom fixed by
interatomic bond creates a volumetric strain in the crys
we consider the equation

Dik~r ,t !sk~r ,t !5Fi~r ,t ! ~1!

for the dynamic displacements of lattice atoms from th
equilibrium positions sk(r ,t). The differential operator
Dik(r ,t) is defined in the form of a matrix:

Dik~r ,t !5r0d ik

]2

]t2
2Hik,mn

]2

]xm]xn
,

where r0 is the density of the medium, andHik,mn is the
Huang tensor,15 which describes the elastic and crystall
of
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graphic properties of the crystal. The uniformly moving d
pole characterizing the force field of a moving vacancy c
be represented by the force density

Fi~r ,t !52Pin
(0) ]

]xn
d~r2v0t !, ~2!

wherePin
(0) is the static force-dipole tensor.15

The solution of Eq.~1! with an inhomogeneity of the
type ~2! is known from problems concerning moving ele
trodynamic multipoles.16 The principal result for a multipole
moving with a velocity not exceeding the rate of propagat
of electromagnetic waves in the medium is flattening of
level lines of its force field. The degree of flattening depen
on the velocity of the multipole.

The analogous effect in a deformation problem sho
be expressed in the form of the flattening of the displacem
field sk(r ,t) in the vicinity of a vacancy and, therefore, in th
form of the change in its force state, which can be descri
by a force-dipole tensor. The change in the dipole tensor
vacancy, in turn, should lead to a change in the force stat
the fixed atom which diffuses into that vacancy. Under t
conditions of constancy of the external load and static eq
librium of the contact pair~in the direction perpendicular to
the interface! a change in the force state of a contact ato
should lead to a change in the total numbern of contact
atoms on the interface between the crystals. Finally, since
degree of flattening of a vacancy should be determined
the dipole velocityv0, we conclude that a functionn(v0)
exists.

3. FLATTENING OF THE ELASTIC FIELD OF A VACANCY

We restrict the analysis to the solution of Eq.~1! for the
case of an infinite crystal, which implies disregard of t
possible differences in the bulk structure of the strain fie
of vacancies located on the surface of the crystal and in
bulk. The tools of elasticity theory together with the conce
tion of a point force dipole give satisfactory results for
discrete medium,15 but the problems which can be solve
within such an approach have been formulated mainly for
infinite crystal. This is due not only to the technical difficu
ties in taking into account nontrivial boundary condition
but also to the futility of quantitatively refining the solution
which, at best, should have a qualitative character. We s
therefore restrict the discussion below to qualitative res
and quantitative estimates with no more than order-
magnitude accuracy and we shall disregard the known
ferences in the forces of interatomic bonds and, therefore,
dipole moments of vacancies that move along the surfac
a crystal and in its bulk.

We seek the solution of Eq.~1! for one component of the
displacements of a point in a continuous isotropic medi
described by two elastic constants. Setting

Hik,mn5c44d ikdmn1~c112c44!d ikmn ,

wherec11 andc44 are the longitudinal and transverse elas
constants, we obtain the equation
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r0

]2sx~r ,t !

]t2
2Fc11

]2

]x2
1c44S ]2

]y2
1

]2

]z2D Gsx~r ,t !

52FPxx
(0) ]

]x
1Pxy

(0) ]

]y
1Pxz

(0) ]

]zGd~r2v0t !.

After we go over to the new variablesx̃5jx, ỹ5y, and z̃
5z, wherej5Ac44/c11, it takes the following form:

F¹ r̃
2
2

1

ct
2

]2

]t2Gsx~ r̃ ,t !

5
1

Ac11/c44
F jPxx

(0) ]

] x̃
1Pxy

(0) ]

] ỹ
1Pxz

(0) ]

] z̃
G

3d~ x̃2jv0xt !d~ ỹ2v0yt !d~ z̃2v0zt !, ~3!

wherect5Ac44/r0 is the velocity of transverse strains of th
medium.

The solution of Eq.~3! can be found using an expansio
of the displacements in monochromatic plane waves. Us
standard transformations, we obtain the Fourier compon
of the displacement field

sx~k,v!

5
i @jPxx

(0)kx1Pxy
(0)ky1Pxz

(0)kz#d~jkxv0x1kyv0y1kzv0z2v!

~2p!3Ac11c44~k22v2/ct
2!

.

Inverse Fourier transformation of the functionsk(r ,t) gives
the strain field of the medium in the vicinity of a uniforml
moving vacancy:

sx~r ,t !5
gxlgytgzt~p* –r* !

4pr * 3Ac11c44

. ~4!

Here the coefficientsgak51/A12v0a
2 /ck

2, wherea5x,y,z
correspond to strains propagating either with the longitud
velocity cl5Ac11/r0 when k5 l or with the transverse ve
locity ct whenk5t. The vectorsp* andr* have the follow-
ing components:

p* 5~gxljPxx
(0) ,gytPxy

(0) ,gztPxz
(0)!,

r* 5@gxlj~x2v0xt !,gyt~y2v0yt !,gzt~z2v0zt !#.

At t50 the displacements of a vacancy moving along thz
axis with the velocityv05(0,0,v0z)

sx~r ,v0z!

5

j2Pxx
(0)x1Pxy

(0)y1
Pxz

(0)z

12v0z
2 /ct

2

4pAc11c44S 12
v0z

2

ct
2 D S j2x21y21

z2

12v0z
2 /ct

2D 3

~5!

have oblate level lines along the direction of motion of t
vacancy.
g
nt

l

Let us test the validity of formula~5! for the limiting
value of the velocityv0z50 corresponding to the case of a
interface between crystals. If we assume that the static dip
tensor is formed by a vector dyad, i.e.,

P(0)5U f 0xx0 f 0xy0 f 0xz0

f 0yx0 f 0yy0 f 0yz0

f 0zx0 f 0zy0 f 0zz0

U ,

where f0( f 0x , f 0y , f 0z) and r0(x0 ,y0 ,z0) are, respectively,
the vectors of the dipole force and its moment arm, for
simplest case of an isotropic medium with one elastic c
stant k5c115c44 and for a velocityv0z50 formula ~5!
yields a relation which describes the displacement field of
elastic medium in the vicinity of a static vacancy,

s~r !5
1

4pkr 3
f0~r0•r !,

which obeys the familiarr 22 decay law.17

The estimates ofs for typical values of the elastic con
stants show that the displacements~5! amount to 1022

21021 of the interatomic distance in a region with a cha
acteristic length measured in nanometers. Therefore, the
tening of the displacement fields on a kinematic interface
alter the distance between the moving bodies and mak
contribution to the variation of the parameters of the int
atomic interactions. This contribution will clearly be com
petitive toward the change in the forces of the interatom
bonds when a vacancy passes from the bulk to the surf
Nevertheless, we also disregard this contribution.

The static displacementss(r ) are not needed below. W
shall also ignore the estimates of the dynamic displacem
s(r ,v0z) and the differences between the latter and the st
displacements, since, as will be seen from the following,
decisive physical characteristic of a point force dipole mo
ing in a crystal is its dipole moment, rather than the struct
of the force field, which is specified by assigning of th
dipole tensor. Such an approach is consistent with the g
erally accepted opinion regarding the role of the dipole t
sor in describing the properties of point defects.15

4. DIPOLE MOMENT OF A UNIFORMLY MOVING VACANCY

The components of the dipole tensorP(0) are not inde-
pendent parameters of the model. Since the medium is
signed by the elastic constants and the atomic volume,
displacement of an atomic volume to infinity or the form
tion of a vacancy, which amounts to the same thing, lead
the appearance of an extended force field with the parame
f0 and r0, which should be functions of the model param
eters. For the model of a medium with a moving source,
independent parameters are supplemented by the sourc
locity v0. Thus, on the basis of the deduction of flattening
the force field of a moving source, we can pose the ques
of finding the dependence off0 and r0 or a combination
thereof onv0.

We utilize the fact that the displacement function~5!,
which is applied to the description of displacements of poi
in an atomic lattice, should be normalized to the dipole f
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mation volumeV. Since a dipole describes the force field
a vacancy in the problem under consideration, we seV
equal to the atomic volume. ThenV5m/r0, wherem is the
atomic mass. In the absence of experimental data on
numbern of contact atoms, it is reasonable to make estima
with no more than order-of-magnitude accuracy. Therefo
the known possible deviations of the vacancy formation v
ume fromV can be ignored.

We assume that the original force field in the vicinity
a vacancy is spherically symmetric. In this case the com
nents of the dipole forcef 0x5 f 0y5 f 0z , the components o
the moment arm of the dipole forcex05y05z0, and the
components of the force-dipole tensorPik

(0)5 f 0zz0. We cal-
culate the normalization integral

E s~r ,v0z! dS5V ~6!

in the approximationj51, for which the displacement com
ponent is

sa5
g f 0zz0~x1y1g2z!

4pkA~x21y21g2z2!3
,

where g51/A12b2, b5v0z /ck , and ck5Ak/r0. In this
case the integral~6! takes the form

AE @2xy1~g211!~x1y!z# dS

rA~x21y21g2z2!3

1AE dS

rAx21y21g2z2
, ~7!

where we have introduced the notationA5g f 0zz0/4pk. The
transition to spherical coordinates reveals that the first in
gral in ~7! is equal to zero, and the second integral takes
form

AE sinu du

Asin2u1g2cos2u
. ~8!

A calculation of the integral~8!,

2pA

Ag221
E

21

1 du

Au211/~g221!

5
2pA

Ag221
lnUA111/~g221!11

A111/~g221!21
U ,

and conversion to the parameterb give the value of the
integral

E s~r ,v0z! dS5
f 0zz0

2kb
lnU11b

12bU5 f 0zz0tanh21b

kb
. ~9!

Substituting~9! into the original normalization integral~6!
and returning to the vector notation, we obtain the sca
product

f0•r05
3b

tanh21b
kV, ~10!
he
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which characterizes the variation of the components of
dipole tensor of a uniformly moving force dipole as a fun
tion of its velocity.

Figure 1 presents an illustration of formula~10!. It fol-
lows from the plot ofb/tanh21b that an increase in the ve
locity of a dipole moving in an elastic medium is accomp
nied by a decrease in its dipole moment. The physical b
of the decrease in the dipole moment is the condition
conservation of the formation volume of the dipole as
force field is flattened. This condition requires compensat
for the increase in the magnitude of the displacements of
deformable medium with increasing velocity of the dipo
due to the decrease in the dipole force and its moment a
In other words, if the formation volume remains constant,
vacancy becomes less rigid as its velocity increases. W
b51, i.e., when the dipole moves with the velocity of soun
the force-dipole moment vanishes. It can be stated tha
linear continuous medium ‘‘does not see’’ its own dipo
force source, which moves with the strain propagation vel
ity in the medium. Whenb50, formula ~10! leads to the
familiar relation f0•r053kV ~Ref. 14!, which specifies the
components of the dipole tensor of a static force dipole.

The decrease in the dipole moment of a vacancy i
which an atom located on the interface between the me
diffuses leads to a decrease in the energy of formationE of
the vacancy, sinceE}P(0)(b), and to a decrease in the sel
diffusion energy. This can correspond to passage of the
terface into a quasimolten state similar to the one observe
particles of small dimensions.18 The quasimelting of the in-
terface can, in turn, be the cause of both the decrease in
kinematic frictional force in comparison to the static fri
tional force and the increase in the electrical resistance
moving contact in comparison to a stationary contact. A
tailed analysis of these factors requires the use of a m
complicated interaction Hamiltonian than the one whi
leads to Eq.~1!. This applies, in particular, to the problem o
the electrical conductance of a kinematic contact, whose
lution is associated with the need to ascertain the partic
features of the percolation of electrons through an interf
in a system of ions having translational degrees of freed

The relation~10! also allows us to state that the decrea
in the dipole moment of a vacancy into which a contact at
diffuses should alter the number of atom-vacancy pairs p

FIG. 1. Variation of the relative dipole moment of a uniformly movin
vacancy.
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viding for the kinematic contact between the solids.

5. NUMBER OF CONTACT ATOMS ON A KINEMATIC
INTERFACE

The number of contact atoms can be found by utilizi
the condition of static equilibrium between the crystals alo
the x axis, which is perpendicular to the direction of the
relative motion. For an external forceF0 perpendicular to the
interface between the crystals, the number of contact at
should be

n~b!5
F0

f 0x~b!
. ~11!

If f 0x,F0 /n, the external force per interfacial atom excee
the force of an interatomic bond~without allowance for the
n

ult

an
i

p

r

ta

t
ly
g

s

s

difference between surface and bulk bonds!, which leads to
diffusive redistribution of the atoms at the interface betwe
the crystals under the action of the forceF0 and to an in-
crease in the number of atomsn.

The value off 0x is unknown, but it appears in the scal
product~10!. Additional relations which permit the determ
nation of f 0x can be established from the solution of th
dynamic problem of a moving atom in a crystal. This pro
lem is based on Eq.~1!, in which the force nonuniformity,

Fi~r ,t !5 f i~ t !d~r !2Pin~ t !
]

]xn
d~r !, ~12!

is specified by the dynamic dipole tensor
P~ t !5U f 0xx0 f 0xy0 f 0x@z01z~ t !#

f 0yx0 f 0yy0 f 0y@z01z~ t !#

@ f 0z1 f z~ t !#x0 @ f 0z1 f z~ t !#y0 @ f 0z1 f z~ t !#@z01z~ t !#
U ,
at
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wheref( f x(t), f y(t), f z(t)) is the vector of the force acting o
an atom with a massm, andr (x(t),y(t),z(t)) is the displace-
ment vector of the atom.

The solution of Eq.~1! with the force density~11! was
given in Ref. 14 in the wave-band approximation. The res
include the frequency of the field of limiting strains,

v5~16kck /m!1/3, ~13!

at which the absorption of energy occurs in the system,
the relation between the vectors of the dipole force and
moment arm,

f052mv2r0 , ~14!

which ensures that the moments of the forces appearing u
deformation of the crystal are equal to zero.

A combined solution of Eqs.~10!, ~13!, and ~14! gives
the component of the dipole force vector

f 0x~b!5 f 0x~0!A b

tanh21b
, ~15!

where f 0x(0)5161/3kV2/3, and the component of the vecto
of the moment arm of the dipole force

x0~b!5~V/16!1/3Ab/tanh21b,

which depend on the rate of uniform motion of the crys
relative to the rigid substrate.

Assuming that the magnitude of the forceF0 is assigned,
from Eqs.~11! and ~15! we find that the number of contac
atoms on the kinematic interface in a crystal/absolute
rigid-substrate system is

n~b!5n~0!Atanh21b

b
, ~16!
s

d
ts

on

l

-

wheren(0)5F0 / f 0x(0) is the number of contact atoms
the stationary boundary.

An analysis of Eqs.~10! and ~16! shows that the de-
crease in the vacancy dipole moment caused by the flatte
of its force field should lead to an increase in the number
contact atoms with increasing velocity of the crystal th
moves relative to the substrate. Since the number of con
atoms at the stationary interface varies in the range from
value n(0)51, which is realized in atomic-force micro
scope, to the highest theoretically possible value, which
restricted by the number of atoms on the surface of the c
tal n(0)'N2/3, whereN is the total number of atoms in th
sample, the intermediate and most typical valuen(0)'109,
which corresponds to a loadF05105 dyne, can be used fo
estimates.

For example, assuming thatck;105 cm/s within an or-
der of magnitude, for a crystal or a grain boundary in
polycrystal moving with a velocityv05102 cm/s we obtain
an increment of the number of contact atoms

Dn5n~b!2n~0!,

equal toDn(1023)'102. Another pair of estimates for othe
values of b gives Dn(1022)'104 and Dn(1021)'106.
These results are illustrated in Fig. 2. The functionDn(b)
has a logarithmic character because the vacancy dipole
ment vanishes asb˜1. At fairly high rates of relative mo-
tion of the crystals the change in the number of contact
oms can be very significant. It thus follows that the flatteni
of the vacancy force field, which can be ignored in the ca
of a single diffusion event on a fairly extensive bounda
can make an appreciable contribution to the changes in p
erties which depend on the number of contact atoms o
kinematic interface. Thus, the phenomenon of the flatten
of vacancies and alteration of the number of contact ato
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can be especially significant in two extreme cases: the c
of high rates of motion of the bodies, which is realized,
example, during relative motions of grain boundaries,19 and
the case of small dimensions of the contact areas in the n
scopic range, which is realized in nanocrystalline materi
In the latter case the approach of the number of contac
omsn(b)'N2/3 to the number of atoms on the surface o
moving nanocrystal or an individual crystallite of the nan
crystalline material causes sharp enhancement of the in
ence of the individual strain fields on the properties not o
of the interfaces, but also on their bulk properties.20 Thus,
the softening of the phonon spectrum in the region of
long-wavelength boundary can lead to the appearance of
tures in the flow of current through a contact pair.

6. CONCLUSIONS

The solution of the problem of the dipole moment of
force source moving uniformly in a crystal relative to a sta
boundary shows that the changes in the properties of a k
matic interface between crystals in comparison to a st
boundary is associated with a need to take into account
strain fields of the crystal created by the dynamics of
atom-vacancy pair. The displacement of atoms in the cry
from static equilibrium positions into moving positions lea
to flattening of the vacancy force fields and a change in
number of contact atoms. Hence it follows that friction in
polyatomic contact should differ qualitatively from frictio
in a monatomic contact. This conclusion imposes a rest
tion on the possible generalization of the results of exp
ments with a monatomic atomic-force microscope tip to
case of systems with polyatomic contacts.

The qualitative solution of the problem of the flattenin
of the vacancy force field does not require knowledge of
features of the interatomic interactions~which is associated
with allowance for the character of the conductivity of t
materials! or consideration of the difference between t
character of the bulk diffusion and that of the surface dif
sion. At the same time, the inclusion of these factors wo
make it possible to give more exact quantitative estima
and, therefore, to examine a concrete experimental situa
On the other hand, at present there is no possibility for
serving the dynamics of the formation of a force contactin

FIG. 2. Dependence of the increment of the number of contact atoms o
relative velocity of crystals having a number of contact atomsn(0)'109 in
the static state.
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situ, although the alternative of measuring the number
contact atoms as a function of the relative velocity of t
bodies has not been ruled out. Such an experiment ca
based on measurements of the current flowing through a
tact pair. In this case, however, the approach describe
this paper will not be adequate for explaining the variation
the current. The increase in the number of contact atom
the crystal moves should increase the electrical conducta
of the entire contact, which is a parallel group of point co
tacts, but the decrease in the vacancy dipole moment
diminish the conductance of an individual point contact to
considerable extent. Allowance for the latter calls for sign
cant complication of the formulation of the problem of kin
matic friction.

We wish to thank A. G. Lyapin and O. A. Kazakov for
discussion of the results of this study and for offering so
critical remarks.
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Strongly correlated bistable sublattice and temperature hysteresis of elastic and
thermal crystal properties

A. P. Sa ko* ) and V. E. Gusakov
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It is shown that in crystal lattices with a basis the cooperative behavior of a certain type of
atoms performing optical long-wavelength vibrations in a double-well potential of the field of the
matrix lattice may lead to the formation of a bistable sublattice. As a result of the interaction
of the metastable states of such a sublattice with the vibrational states of the matrix lattice, the
elastic and thermal properties of the crystal acquire anomalous, hysteresis-like, temperature
curves. The concepts developed in the paper make it possible to obtain a qualitative interpretation,
which agrees with the experimental data, of the hysteresis-like temperature dependence of
the speed and absorption of ultrasonic waves, the specific heat, and the thermal conductivity in
superconducting yttrium and bismuth cuprates. ©1999 American Institute of Physics.
@S1063-7761~99!01407-9#
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1. INTRODUCTION

Precision experiments in which the propagation of ult
sound in high-Tc superconductors1–15 and ferroelectric con-
ductors ~see, e.g., Refs. 16 and 17! was studied detecte
temperature hysteresis of the speed of ultrasound~and Pal’-
Val’ et al.,4 Kim et al.,8 and Borisovet al.17 detected tem-
perature hysteresis of the absorption coefficient of ul
sound! that was found to encompass a temperature ra
from ten to hundred kelvins. More than that, in the sa
temperature range superconductors revealed hysteresi
havior of specific heat18–20 and thermal conductivity.21–25

What is remarkable is the large interval of temperature h
teresis and at the same time the absence of relaxation in
measured parameters in the hysteresis region~some samples
were kept at a fixed temperature for several hours!. Although
there is still no universal opinion concerning the nature
the observed anomalies, it is obvious that they are relate
one way or another to the metastable states of the cry
lattice. The absence of relaxation processes may indicate
instance, that the metastable states form in conditions
strong correlation of the lattice degrees of freedom, si
otherwise local energy fluctuation would rapidly destroy t
metastable states.

Below we show that this anomalous, hysteresis, beha
of the elastic and thermal characteristics of such compou
may be due to the presence in them of an anharmonic
unstable, strongly correlated sublattice that executes op
long-wavelength vibrations in the field of the matrix lattic

2. A MODEL OF A STRONGLY CORRELATED BISTABLE
SUBLATTICE

2.1. Independent and strongly correlated particles in a
double-well crystal potential; a bistable sublattice

In a crystal lattice with a multiatomic basis we exami
a sublattice formed by ions of a single species. Suppose
921063-7761/99/89(1)/15/$15.00
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each ion vibrates in a double-well asymmetric potential~Fig.
1! oriented, say, along one of the crystallographic axes
the absence of ordering long-range forces the ions may
thought of as being almost entirely independent of one
other. In this case, in addition to the intrawell vibrations
the limit Q!U ~whereQ5kBT is the temperature expresse
in energy units andU is the height of the potential barrier!,
the ions are capable, due to thermal fluctuations, of perfo
ing slower movements, say, hop across the potential ba
from one stable position to another with a probabil
}exp$2U/Q%. At high temperatures (Q>U/2) the ions are
passing, i.e., they oscillate above the barrier.26,27

Under realistic conditions there are always correlatio
between the displacements of the ions in a crystal. The
relation between the relative displacement of the ions in
sublattice may be so strong that a cooperative effect co
arise in which the displacement of one atom would gene
similar displacements of the neighboring ions, i.e., a coh
ent ensemble acting as an integral whole is formed. Suc
situation has a large probability of occurring in highly pola
ized systems. In this case a change in an external param
e.g., the temperature, gives rise to a coordinated shift of
atoms of the sublattice considered. The cooperative beha
of the ions of the correlated sublattice makes the sublat
unresponsive to fluctuations since, being ‘‘bombarded’’
the quanta of the reservoir~e.g., by the phonon of the matri
lattice!, the sublattice perceives a perturbation as an inte
whole. Such unresponsiveness, or rigidity, of the sublatt
which prevents the separate ions from behaving indep
dently, extends over distances of order the coherence le
and means that the transition of a separate ion from intraw
dynamics to above-barrier dynamics can occur only wh
the entire coherent volume undergoes such a transition, s
the probability of the entire correlated ensemble consist
of n particles surmounting the barrier simultaneously is p
portional to exp$2nU/Q% ~here U has the meaning of the
© 1999 American Institute of Physics
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potential of the entire sublattice per particle!; for this reason,
even atn;10 the activation transitions of the correlated e
semble~and hence of each particle comprising the ensem!
across the barrier are unlikely to occur, even at temperat
Q;U/2.

Thus, when being heated, a strongly correlated subla
will evolve from vibrations in the global minimum to above
barrier vibrations, with the slower component of motio
hops from the global minimum to the local and back, be
almost entirely excluded. Of course, due to renormalizati
in a strongly correlated sublattice the double-well ion pot
tial differs from the ‘‘bare’’ potential inherent in independe
particles, so that it would be more natural to speak o
double-well potential for the entire coherent sublattice
particle, and all fluctuation transitions across the barrier
such a sublattice can be ignored, as we have just seen.

2.2. Model Hamiltonian and the derivation of the main
relationships

To thoroughly study the dynamics of such a sublatt
consisting ofN particles we need to write down the subla
tice HamiltonianHl . Disregarding insignificant details, w
may assume that the coherence length extends over the e
sublattice, i.e., the lattice is a single coherent ensemble. T

Hl5NHanh, ~1!

whereHanh is the reduced~to a single ion! Hamiltonian of
the strongly correlated lattice. We write the latter Ham
tonian in the form of an anharmonic oscillator in a doub
well potential with asymmetric wells formed by the field
the matrix lattice:

Hanh5
p2

2m
1

a

2
q22

b

3
q31

g

4
q4, ~2!

wherem is the ion mass andq andp are the coordinate an
canonically conjugate momentum of the ion along a spe
fied direction fixed, say, by one of the crystallographic ax

We examine the thermal behavior of the sublattice in
approximation of self-consistent phonons.28 To this end we

FIG. 1. The schematic of the potential and the dynamics of transitions f
strongly correlated bistable sublattice.
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introduce the statistical-mean displacement^q&, the dynamic
displacementdq(t)5q(t)2^q&, and the variances[^(q
2^q&)2&. Then, using the relationships^(dq)2n&5(2n21)
3...33sn and^(dq)2n11&50 ~n is an integer!, valid in the
adopted approximation, we find that

^Hanh&5
a

2
^q&22

b

3
^q&31

g

4
^q&41mV2s2

3

4
gs2,

~3!

where

V2[
@a22b^q&13g~s1^q&2!#

m
~4!

is the effective frequency characterizing the sublattice. T
variances can be found by the fluctuation-dissipation the
rem:

s5
1

2mV
coth

V

2Q
~5!

~we set\51 throughout the paper!, the relation betweens
and^q& can be established from the condition for stability
the sublattice,̂ ]Hanh/](dq)&50:

~b23g^q&!s5a^q&2b^q&21g^q&3. ~6!

The free energyF, which we must know in order to give a
complete statistical-thermodynamic description of the s
tem, is established by the Bogolyubov variational princip

F<F02^Hanh2H0&05
a

2
^q&22

b

3
^q&31

g

4
^q&4

1Q lnS 2 sinh
V

2Q D2
3

4
gs2, ~7!

where F0 is the free energy corresponding to the Ham
tonian of the pseudoharmonic approximation,

H05
a

2
^q&22

b

3
^q&31

g

4
^q&41

p2

2m
1

m

2
V2~dq!2. ~8!

The closed system of equations~3!–~8! makes it possible, a
least qualitatively, to describe the thermal behavior of
bistable sublattice model considered here.

2.3. Temperature dependence of the dynamic and statistical
characteristics of a bistable sublattice

The results of numerical calculations by formulas~4!–
~7! are illustrated by Figs. 2 and 3.

Figure 2~a! depicts the temperature dependence of
mean displacement^q& of the sublattice. The solution repre
sented by curve1, which lies below the asymptote~the
dashed line! and has the shape of a hysteresis curve,
scribes the transition of the sublattice from the global mi
mum ~see Fig. 1! to passing trajectories~above-barrier oscil-
lations! when the system temperature is raised from abso
zero; in the high-temperature limit,̂q& approaches its
asymptotic valuêq&as5b/3g. Above the asymptote there i
the solution represented by curve2, which is related to the
possibility of the sublattice being in the second, local, mi
mum at low temperatures. However, the probability that

a



e

s

e
y

-
e-

94 JETP 89 (1), July 1999 A. P. Sa ko and V. E. Gusakov
FIG. 2. Temperature dependence of th
statistical-mean displacement̂q& ~a!, the
variances ~b!, and the effective frequencyV
~c! of a bistable sublattice.~d! The statistical-
mean displacement^q& for an anharmonic os-
cillator calculated by the molecular-dynamic
method with allowance for kinetic-energy
fluctuations;~e! the same for the case wher
the kinetic-energy fluctuations are weaker b
a factor of 100;q05^q&as, s05s(q0), and
V05V(q0 ,s0). The parameters of the
bistable potential are u150.03 eV, q1

50.073 Å, q250.14 Å, andT05173 K. The
curves1 and2 describe the motion of the lat-
tice in the global and local minima of the po
tential, respectively. The dotted curves repr
sent unstable solutions.
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local minimum will be occupied is extremely low, since th
thermal fluctuations that would take the system from the g
bal minimum to the local one are suppressed by the stron
correlated movements of the atoms in the sublattice~see Sec.
2.1!. Hence the contribution of this solution@see also Figs.
2~b! and 2~c!#, which would be effective for the case o

FIG. 3. Temperature dependence of the free energy of a bistable subla
curves1 and4 correspond to states in the global and local minima, curv2
corresponds to above-barrier states, and curve3 corresponds to an unstabl
solution;u150.03 eV,q150.073 Å, q250.14 Å, andT05173 K.
-
ly

independent particles, will be ignored throughout the pa
~nor will it be depicted in the figures, with the exception
Figs. 3 and 5!.

The hysteresis behavior of the statistical-mean displa
ment ^q&, the displacement variances, and the effective
frequencyV of the sublattice~Fig. 2! is explained by the
nature of the temperature dependence of the free energF
per particle~Fig. 3!. The ‘‘low-temperature’’ branches of the
hysteresis curves in Fig. 2 correspond to the free energ
the sublattice in the left, global, minimum~curve1 in Fig. 3!,
while the ‘‘high-temperature’’ branches correspond to t
free energy of above-barrier vibrations~curve 2 in Fig. 2!;
curve3 in Fig. 3 describes unstable states; and curve4 cor-
responds to solutions that refer to the positions of the sub
tice in the right, local, minimum.

At the pointT0 the free energies become equal, and u
der the condition of total equilibrium at this point the
would have been a transition of the sublattice from intraw
vibrations to above-barrier vibrations or back, depending
whether the system is heated or cooled. However, Fig
shows~and so does Fig. 2! that ‘‘overheated’’@in the interval
(T0 ,T2)# or ‘‘supercooled’’ @in the interval (T0 ,T1)# meta-
stable states may set in~see the discussion below!. When
heated, the sublattice, reaching the boundary of the m
stable region at pointT2 , suddenly changes its dynamics:
undergoes a first-order transition from intrawell vibrations
above-barrier vibrations, with the frequency decreasing
proximately twofold~see Figs. 2 and 3!; when cooled, the
sublattice, entering the region of metastable states and
proaching the region boundary at pointT1 , discontinues its
above-barrier motion and ‘‘falls’’ into the deeper potenti

ce:
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well, retaining its previous frequency of vibrations in th
process. The hysteresis regionDT5T22T1 depends prima-
rily on the depth of the local minimum: as the depth d
creases,DT becomes smaller, and at the transition pointTc

vanishes completely; at this point the first and second t
perature derivatives of̂q&, s, andV become infinite, which
corresponds to a second-order transition.

Thus, at the pointsT1 andT2 , where the boundaries o
the metastable regions are crossed, at the pointT0 where the
free energies are equal, and at the transition pointTc the
states of the correlated, ordered, sublattice change,
order-order transitions of the first- or second orders occu

What is interesting is that the results of molecula
dynamics modeling agree completely with our results
tained by the self-consistent phonon approximati
Molecular-dynamics calculations~Fig. 2! show that when the
fluctuation hops across the barrier are effective~the case of
independent particles!, even at fairly moderate temperatur
the second, local, minimum may become occupied~in accor-
dance with the Boltzmann factor exp$2U/Q%), and we will
have a monotonic temperature dependence@Fig. 2~d!# of the
displacement and hence of the other parameters, the
placement variance and the effective frequency of the s
tem’s vibrations. As the probability of fluctuation transition
drops, due to the realization of a correlated state in the s
lattice, the temperature dependence of the displacement
the other parameters acquires the shape of a hysteresis c

2.4. Qualitative interpretation of the hysteresis behavior of
a bistable lattice with strongly correlated particles

The hysteresis behavior of a strongly correlated sub
tice in an asymmetric double-well potential can easily
understood from qualitative physical considerations based
classical statistical physics.

In view of the broken symmetry, at low temperatures t
sublattice is in the left, global, minimum. As a result of he
ing, the oscillation trajectories~the behavior of the system i
examined using the tools of classical statistical physics! of
the ions of the correlated sublattice gradually rise to the v
tex O ~Fig. 1! of the potential barrier, because the fluctu
tions in a coherent ensemble are suppressed~this aspect was
discussed earlier!. At first glance, when on pathb, the sub-
lattice ~and hence each ion! could, as its temperature grow
either go over to the closest passing orbitc by reducing its
velocity ~since the distance between the stopping points
creases! or find itself in the right well. However, both case
are impossible. Finding itself, for instance, on the pathc,
which is directly above the barrier, and hence reducing
kinetic energy, the sublattice would be at a lower tempe
ture ~since in the classical limit the temperature is simply t
average kinetic energy!, and this would violate the isother
mal condition~the sublattice is in contact with the therm
stat!. Hence eventually the sublattice will find itself on
higher path, sayc8, starting from which it will rise higher
and higher as the temperature increases. Neither can the
lattice go from pathb in the left well to pathd in the right,
since it would have to lower its average kinetic energy, i
its temperature. We now consider the reverse course tha
-
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system takes when the temperature is lowered. As the t
perature of the thermostat decreases, the sublattice grad
goes over to lower paths down to pathc on which the sub-
lattice average kinetic energyKc , i.e., the temperatureTc , is
much lower than the one~Kc8 or Tc8! that the sublattice had
when it emerged from the left well and went over to pass
trajectories. A further decrease in temperature will force
sublattice to ‘‘fall’’ onto one of the low-lying paths in the
left well ~due to the broken symmetry!, say onto patha,
without changing its average kinetic energy, i.e.,Ka will be
equal to Kc , or Ta5Tc . Thus, the size of the hysteres
region isKc82Kc5Kb2Ka or, what is the same thing,Tc8
2Tc5Tb2Ta .

3. INTERACTION BETWEEN THE BISTABLE SUBLATTICE
AND THE MATRIX LATTICE

3.1. The total lattice Hamiltonian

The interaction of the anharmonic vibrations of
bistable lattice and the phonon excitations of the matrix
tice may lead to experimentally observable effects. For
stance, the scattering of a traveling acoustic mode of
matrix lattice by perturbations caused by the vibrational m
tion of the bistable lattice in a double-well potential giv
rise to singularities in the real and imaginary parts of the
modes, which must be observable in experiments, in part
lar, in the anomalous behavior of the elastic and therm
characteristics of the crystal, such as the speed~the elastic
modulus! and decay of ultrasound and the thermal cond
tivity. Thus, to study these questions we must focus on
interaction between the vibrational degrees of freedom of
matrix and the bistable sublattice.

We write the total lattice HamiltonianH normalized to
the number of atoms in the bistable sublattice as

H5Hh1Hanh1H int . ~9!

The first term on the right-hand side of Eq.~9!, Hh , models
the phonon Hamiltonian of the lattice and is taken in t
form of the Hamiltonian of a set of harmonic oscillato
whose parameters are normalized to the empirical value
the lattice constants of the crystal:

Hh5(
k

S pk
2

2mk
1

mkvk
2

2
xk

2D , ~10!

wherexk , pk , mk , andvk are the displacement, momentum
mass, and frequency of thekth oscillator~mode!. The term
Hanh is the Hamiltonian describing the bistable sublattice
is defined in~2!. The last term in~9!, H int , allows for the
coupling of the lattice oscillators and the bistable sublatti
it is chosen in the form of a sum of the cubic and quar
interaction terms:

H int5H int
(3)1H int

(4) , ~11!

H int
(3)5q2(

k
lkxk , H int

(4)5q2(
k,k8

lkk8xkxk8 , ~12!

wherelk andlkk8 are the coupling coefficients.
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3.2. Deriving the Dyson equation for the phonon Green’s
function

To find the renormalized frequencies of the matrix latt
and the corresponding decay coefficients, we use the me
of equations of motion for two-time retarded Green
functions:29

^^xk~ t !;xk8~ t8!&&52 iu~ t2t8!^@xk~ t !,xk8~ t8!#&

5
1

2p E
2`

`

dv exp$2 iv~ t2t8!%

3^^xkuxk8&&v , ~13!

where^¯& denotes the operation of quantum-statistical
eraging,@¯ , ¯# stands for a commutator, andu(t) is the
Heaviside step function. Differentiating the Green’s functi
~13! first with respect tot and then with respect tot8 as
described in Ref. 28, we arrive at three coupled equations
the Fourier transforms of the Green’s functions:

(
k9

@mk~v22vk
2!dkk922~s1^q&2!lkk9#^^xk9uxk8&&v

5dkk81(
k9

2lkk9•
ir^^Qxk9uxk8&&v1lk^^Quxk8&&v , ~14!

(
k1

@mk8~v22vk8
2

!dk8k1
22~s1^q&2!lk8k1

#^^Quxk1
&&v

5(
k1

2lk8k1
^^QuQxk1

&&v
ir 1lk8^^QuQ&&v , ~15!

(
k1

@mk8~v22vk8
2

!dk8k1
22~s1^q&2!lk8k1

#• ir^^Qxk9uxk1
&&v

5(
k1

2lk8k1
•

ir^^Qxk9uQxk1
&&v

ir 1lk8•
ir^^Qxk9uQ&&v , ~16!

where

Q[2^q&dq1~dq!2. ~17!

The superscript ‘‘ir’’ indicates that the correspondin
Green’s function is irreducible, i.e., it cannot be reduced
lower-order functions by decoupling the product of sing
time operators.28

We define the Green’s function in the lowest-order a
proximation as

(
k9

@mk8~v22vk
2!dkk922lkk9

3~s1^q&2!#^^xk9uxk8&&v
(0)5dkk8 . ~18!

Then Eqs.~14!–~16! become

^^xkuxk8&&v5^^xkuxk8&&v
(0)1 (

k9,k1

2lk9k1
^^xkuxk9&&v

(0)

3 ir^^Qxk1
uxk8&&v1(

k9
lk9^^xkuxk9&&v

(0)

3^^Quxk8&&v , ~19!
od

-

or

o
-

-

^^Quxk8&&5(
k9

lk9^^QuQ&&v•^^xk9uxk8&&v
(0)

1 (
k9,k1

2lk1k9^^QuQxk1
&&v

ir
•^^xk9uxk8&&v

(0) ,

~20!

ir^^Qxk1
uxk8&&v5(

k9
lk9•

ir^^Qxk1
uQ&&v•^^xk9uxk8&&v

(0)

1 (
k9,k0

2lk0k9•
ir^^Qxk1

uQxk0
&&v

ir

3^^xk9uxk8&&v
(0) , ~21!

thus yielding

^^xkuxk&&v5^^xkuxk&&v
(0)1 (

k8,k9
lk8k9^^xkuxk8&&v

(0)

3^^QuQ&&v•^^xk9uxk&&v
(0)

1 (
k8,k9,k0 ,k1

4lk8,k9lk0 ,k1
^^xkuxk8&&v

(0)

3 ir^^Qxk9uQxk0
&&v

ir
•^^xk1

uxk&&v
(0)

1 (
k8,k9,k1

2lk8k9lk1
^^xkuxk8&&v

(0)

3 ir^^Qxk9uQ&&v•^^xk1
uxk&&v

(0)

1 (
k8,k9,k1

2lk1k9lk8^^xkuxk8&&v
(0)

3^^QuQxk1
&&v

ir
•^^xk9uxk&&v

(0) . ~22!

The two last ‘‘interference’’ terms in~22!, containing the
Green’s functionsir^^QxkuQ&& and^^QuQxk&&

ir, have an or-
der of smallness in the interactionH int higher than the second
and can be discarded. We also ignore the contribution
off-diagonal components of the Green’s functions in t
lowest-order approximation, assuming that^^xkuxk8&&v

(0)

5dkk8^^xkuxk&&v
(0) , and write Eq.~22! in the form of the

Dyson equation:

^^xkuxk&&v
215~^^xkuxk&&v

(0)!212Mk~v!, ~23!

where the self-energy part has the form

Mk~v!5lk
2^^QuQ&&v1 (

k8,k9
4lkk8lk9k

3 ir^^Qxk8uQxk9&&v
ir , ~24!

with

^^QuQ&&v54^q&2^^dqudq&&v1^^~dq!2u~dq!2&&v

12^q&~^^dqu~dq!2&&v1^^~dq!2udq&&v!,

~25!
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ir^^QxkuQxk8&&v
ir 54^q&2^^dqxkudqxk8&&v

1 ir^^~dq!2xku~dq!2xk8&&v
ir 12^q&

3~^^dqxku~dq!2xk8&&v
ir

1 ir^^~dq!2xkudqxk8&&v!. ~26!

@it should be recalled that the operatorQ is defined in Eq.
~17!#.

3.3. An approximate calculation of the self-energy part

It is convenient to express the higher-order Gree
functions that enter intoMk(v) @see Eqs.~25! and ~26!# in
terms of correlation functions via the spectral theorem.29 For
instance, for one of these Green’s functions we have

ir^^~dq!2xku~dq!2xk8&&v
ir

5
1

2p E
2`

` dv8

v2v8 S exp
v8

Q
11D E

2`

`

dt

3exp$2 iv8t%^ ir @~dq~ t !!2xk~ t !#@~dq~ t8!!2xk8~ t8!# ir&.

~27!

The correlation function in~27! can be decoupled by formin
pairwise two-time averages~single-time averages, accordin
to the definition of the ‘‘ir’’ operation, are equal to zero!:

^ ir @~dq~ t !!2xk~ t !#@~dq~ t8!!2xk8~ t8!# ir&

'2dkk8^dq~ t !dq~ t8!&2
•^xk~ t !xk~ t8!&, ~28!

where the factor 2 reflects the two possible ways of pair
the operatorsdq taken at timest andt8. By analogy with the
diagrammatic technique, we can assume that adopting
approximation~28! is equivalent to ignoring the vertex co
rections in the processes of interaction between phonons
the vibrations of the bistable sublattice. The spectral theo
can be used to express the one-particle correlators in~28! in
terms of the corresponding Green’s functions:

ir^^~dq!2xku~dq!2xk8&&v
ir

'2dkk8 E E E
2`

`
dv1dv2dv3

v2~v11v21v3!

3
exp$~v11v21v3!/Q%21

@exp$v1 /Q%21#@exp$v2 /Q%21#@exp$v3 /Q%21#

3F2
1

p
Im^^dqudq&&v11 i«GF2

1

p
Im^^dqudq&&v21 i«G

3F2
1

p
Im^^xkuxk&&v31 i«G . ~29!

In the same way one should deal with the remaining Gree
functions in the expression forMk(v); some of these,
namely those in the parentheses in Eqs.~25! and~26!, vanish
in view of approximations of the form~28!. Next, in calcu-
lating ~29! we can ignore the self-energy parts of the on
particle Green’s functions by writing them in the lowes
order approximation:
s

g

he

nd
m

’s

-

^^dqudq&&v˜^^dqudq&&v
(0)5@m~v22V2!#21, ~30!

with ^^dqudq&&v
(0) the Green’s function corresponding to th

HamiltonianH0 @Eq. ~8!#, and

^^xkuxk&&v˜^^xkuxk&&v
(0)

5@mk~v22vk
2!22lkk~s1^q&2!#21. ~31!

This enables us to explicitly calculate the exact Gree
function ^^xkuxk&&v on the basis of~23!.

3.4. Determining the shift and decay of the lattice mode
frequencies

The renormalized frequencies of the lattice modes,«k ,
and the decay coefficientsGk can be found by solving the
equation

~^^xkuxk&&v
(0)!212ReMk~ṽk1 i«!1 i Im Mk~ṽk1 i«!50,

~32!

where

ṽk'vk1
lkk

mkvk
~s1^q&2! ~33!

is the pole of the Green’s function̂̂xkuxk&&v
(0) . From~32! it

follows that

«k'ṽk1
1

2mkṽk
ReMk~ṽk1 i«!, ~34!

Gk'2
1

2mkṽk
Im Mk~ṽk1 i«!. ~35!

For our further investigations it is enough to determi
the contributions to the renormalized frequencies«k and de-
cay coefficientsGk of the cubic,H int

(3) , and quartet,H int
(4) ,

interactions in the first nonvanishing orders: the first inH int
(4)

and the second inH int
(3) for «k and the second inH int

(4) for Gk .
Dealing with the first term in the expression~24! for the

self-energy part in the same way as we did in~29!, where the
exact one-particle Green’s functions are replaced by th
lowest-order approximations~30! and ~31!, we arrive at an
expression for the contribution toMk(v) of the cubic inter-
action in second order:

Mk
(3)~ṽk!54lk

2F ^q&2

m~ṽk
22V2!

1
s

m~ṽk
224V2!G , ~36!

«k[vk1Dk5ṽk1
1

2mkṽk
Mk

(3)~ṽk!. ~37!

Reasoning in a similar manner, we find an expression for
second term in~24! resulting from the quartet interaction:
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Mk
(4)~ṽk!

5
2

mVmkvkṽk
(
k8

lkk8
2 vk8

3H 4^q&2F ~V2ṽk8!@n~ṽk8!2n~V!#

ṽk
22~V2ṽk8!

2

1
~V1ṽk8!@11n~ṽk8!1n~V!#

ṽk
22~V1ṽk8!

2 G
1

2V2ṽk8
mV

@n~V!11#2n~ṽk8!2n2~V!@n~ṽk8!11#

ṽk
22~2V2ṽk8!

2

1
2V1ṽk8

mV

@n~V!11#2@n~ṽk8!11#2n2~V!n~ṽk8!

ṽk
22~2V1ṽk8!

2

1
2ṽk8
mV

n~V!@n~V!11#

ṽ22ṽk8
2 J , ~38!

wheren(x)5@exp$x/Q%21#21.
The decay coefficientsGk , which can be expressed i

terms of ImMk
(4)(ṽk1i«), are due to processes of creatio

~annihilation! of one or two vibrational quanta of the bistab
sublattice accompanied by processes of absorption~emis-
sion! of two quanta of the matrix lattice, and also to pr
cesses of elastic scattering of the quanta of the matrix la
that do not change the vibrational state of the bistable s
lattice. On the basis of~35! and ~38! we can write

Gk5
p

2mkṽkmV (
k8

lkk8
2

mk8ṽk8
H 4^q&2~@n~ṽk8!2n~V!#

3@d~ṽk81ṽk2V!2d~ṽk82ṽk2V!#1@1

1n~ṽk8!1n~V!#@d~ṽk82ṽk1V!2d~ṽk81ṽk

1V!#!1
1

mV
@~n~V!11!2n~ṽk8!2n2~V!

3~n~ṽk8!11!#@d~ṽk81ṽk22V!2d~ṽk82ṽk

22V!#1
2

mV
n~V!~n~V!11!@d~ṽk82ṽk!

2d~ṽk81ṽk!#J . ~39!

To do some estimates, it is enough to examine the o
dimensional model of a lattice in the Debye approximatio
Plugging the expression for the coupling coefficient in t
form

lkk85
l

M (
j 51

M

exp$ i ~k81k!r j%Amkmk8vkvk8 ~40!

~r j is the radius vector of thej th atom in the matrix lattice,
and l is a constant whose dimensions are cm22! into ~39!,
we find that fork,kD/2 and vD'V ~kD and vD are the
Debye wave vector and frequency! only elastic processe
provide nonvanishing contributions to decay:
e
b-

e-
.

Gk'4pl2S \

2mV D 2

n~V!@n~V11!#vk

k

kD

1

d3 , ~41!

whered5ṽk /vk . The above equation shows that the quar
interactionH int

(4) has almost no damping effect on vibration
in the ultrasonic frequency range. Indeed, for reasonable
ues of the parameters~l58 Å22, V51013s21, T5273 K,
andd51! we have the estimate

Gk

vk
;1022

k

kD
, ~42!

i.e., the decay of acoustic vibrations becomes significant o
at maximum frequencies (k;kD).

3.5. Temperature hysteresis of the shift and decay of the
lattice mode frequencies as a result of interaction
with the bistable lattice

The temperature dependence of the frequency s
Dk(T) is determined by the dependence of this shift on
characteristicŝq&, s, andV, which experience temperatur
hysteresis, and by the competition between negative~for V
.ṽk! cubic and positive~for lkk.0! quartet contributions.
Indeed, for instance, when the sample is cooled, the st
states of the correlated sublattice become metastable, a
the temperatureT1 the sublattice suddenly goes over to a
other stable branch~see Figs. 2 and 3!, as a result of which
related abrupt changes are experienced by the freque
shifts Dk of the acoustic modes of the matrix@see Eqs.~33!,
~36!, and~37!# interacting with the sublattice~Fig. 4!. Now,
when heated, the sublattice is on this new branch up t
temperatureT2 , after which it again suddenly returns to i
old, high-temperature, stable branch, thus bringing abou
sudden~discontinuous! change inDk ~Fig. 4!. Figure 4 de-
picts theDk vs. T curves calculated by formulas~33!, ~36!
and~37! for different ratios of the competing interactions
the third (lk) and fourth (lkk) orders.

The temperature dependence of the decay of an aco
mode (Gk) for k;kD is depicted in Fig. 5~note that here we
allow for neither the nonlinearity of the matrix lattice prope
a nonlinearity that provides a nonhysteresis contribution
decay, nor for other decay mechanisms!. The decay that is
the largest~the high-temperature branch of curve 1! for the
scattering of lattice modes by perturbations caused by ab
barrier vibrations of the bistable sublattice suddenly becom
smaller~the low-temperature branch of the curve 1! when the
sublattice abruptly reduces the amplitude of its vibratio
after it has been ‘‘captured’’ by the global minimum as
result of cooling, The stable branch of curve2 represents the
contribution to scattering of the local minimum of th
bistable potential. Actually this contribution will be smalle
since it must be multiplied by a quantity proportional
exp$2DF/kBT%, whereDF is the difference of free energie
of the sublattice in the local and global minima; hence,
system is heated from absolute zero, the increase in de
follows almost exactly the low-temperature branch of cur
1, and then the decay suddenly increases, going over to
high-temperature branch and thus completing the hyster
cycle.
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4. EXPERIMENTAL PREREQUISITES FOR THE EXISTENCE
OF A BISTABLE SUBLATTICE IN SUPERCONDUCTING
OXIDE CUPRATES

At present there are many papers that point to the imp
tant role that the apical oxygen atom plays in the format
of the superconducting properties of YBa2Cu3O72d or com-
pounds with a structure containing apical atoms. In

FIG. 4. Temperature dependence of the relative shift of the acoustic m
of the matrix with allowance for cubic interaction~a!, quartet interaction~b!,
and competition of quartet and cubic interactions~c!; u150.03 eV, q1

50.073 Å, q250.14 Å, T05173 K, lkk /mkvk
258.3 Å22, and lk53.74

310221 eV•Å 23.

FIG. 5. Temperature dependence of the decay of the acoustic modes
matrix in a crystal with a bistable sublattice;u150.03 eV, q150.073 Å,
q250.14 Å, andT05173 K.
r-
n

e

YBa2Cu3O72d compound, each apical atom O~4! interacts
along the crystallographic axisc with the two nearest neigh
bors, the atoms Cu~1! and Cu~2! ~l Cu(1)51.80– 1.86 Å and
l Cu(2)52.30– 2.45 Å; see Refs. 30 and 31!, whose coordina-
tion in oxygen is not the same. The nature of the bond of
apical atom varies substantially: from covalent for the sup
conducting compound YBa2Cu3O72d to ionic for a nonsu-
perconducting compound.32 Participating in the transfer o
holes from the basal planes to the CuO2 planes, an apica
atom manifests a number of features in the temperature
pendence of the vibrational states. For instance,x-ray
studies,33–35 ion-channeling experiments,36,37 Raman
spectroscopy,38–40 and neutron scattering measurement41

have revealed that the total energy of an apical O~4! atom, as
a function of the position along the crystallographic axisc
has two minima. Note that pyro- and piezoelectricity ha
been detected in single crystals of YBa2Cu3O72d , which
suggests that there is macroscopic polarization along thc
axis ~see, e.g., Ref. 42!. The occurrence of macroscopic po
larization is usually attributed to the anharmonic motion
O~4! ions.42,43

The nontrivial dynamics of the strongly correlated apic
O~4! atoms in a double-well potential must also direc
manifest itself in the nature of the interaction between
vibrational states of the atoms and the electron subsystem
the crystal, which in addition to the participation of apic
atoms in charge transfer from the basal plane to the C2
plane may be one of the reasons for the formation of highTc

superconductivity.44–46 More than that, as we will show
shortly, by allowing for the interaction between the bistab
oxygen sublattice and the vibrational states of the ma
lattice we can explain a number of experimentally est
lished phenomena: the temperature hysteresis of the spe
heat and thermal conductivity and of the speed and abs
tion of ultrasound in yttrium and bismuth cuprates.

5. TEMPERATURE HYSTERESIS OF THE SPEED AND
DECAY COEFFICIENT OF ULTRASOUND IN HIGH- Tc OXIDE
CUPRATES. COMPARISON OF THEORY AND
EXPERIMENT

The temperature hysteresis of the speed of ultraso
was observed by the methods of ultrasound spectroscopy1–14

~see also the review by Lubenetset al.15! soon after the dis-
covery of high-Tc superconductivity in a number of oxid
cuprates, including the compounds YBa2Cu3O72d and
Bi2Sr2Ca1Cu2O8. This phenomenon can be observed n
only polycrystals but also in single crystals, not only sup
conducting but also in nonsuperconducting high-Tc com-
pounds. The temperature interval of the hysteresis chan
from sample to sample and depends on the oxygen non
ichiometry and the way in which the sample is prepared. T
values 55 and 215 K were fixed as the most reliable limits
hysteresis at the lower and higher ends of the tempera
interval, although the upper limit was found to often mo
up to 270 K. Interestingly, Kimet al.8 ~see also Ref. 4! also
observed distinct temperature hysteresis of the absorptio

es

the
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FIG. 6. Temperature dependence of the relati
variation of the speed of an ultrasonic wave:~a!
and~d! represent the results of calculations for
crystal with a bistable sublattice~the dotted
curves represent an unstable solution!, with ~a!
u150.03 eV, q150.073 Å, q250.14 Å, and
lkk/mkvk

258.3 Å22, and ~d! u150.04 eV, q1

50.073 Å, q250.14 Å, and lk53.74
310221 eV•Å 23; Dv/v05«k(T)/«k(300 K)
211(A2BT), with A50.19 and B57.05
31024 the constants ~determined from
experiments6! of the linear dependence approx
mating the contribution of the main lattice. Th
experimental data for YBa2Cu3O7 in the direc-
tion of the crystallographic axisc at 12 MHz
~Ref. 2! are depicted in Fig. 6~b!, and those at
the frequency 1.253105 s21 in Fig. 6~c!. Fi-
nally, the experimental data for Bi2Sr2Ca1Cu2O8

~see Ref. 6! are depicted in Fig. 6~e!.
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ultrasound in a single-crystal YBa2Cu3O72d sample, and the
regions of hysteresis of the speed and the absorption o
trasound were found to coincide.

Various mechanisms for explaining these phenom
have been proposed. Among these are the redistributio
oxygen,11,13 the motion of twinning boundaries,47 and the
presence of a ferroelectric10 or martensitic9 phase transition.
However, no satisfactory and consistent interpretation of
temperature hysteresis of the speed and absorption of u
sound was proposed in these papers.

We believe that a qualitative explanation of these p
nomena can be found if we assume that yttrium and bism
cuprates have a bistable oxygen sublattice that modulate
phonon spectrum of the matrix lattice. Indeed, as we sho
within the scope of the general theory in Sec. 3, in this c
the renormalized frequencies of the matrix and their ima
nary parts acquire a hysteresis temperature dependenc
that the elastic constants of the crystal will vary in the sa
manner. To compare the theoretical curves with the exp
mental data we only need to know the empirical values of
parameters of the matrix and the sublattice and the natur
the interaction between the two.

5.1. Hysteresis of the speed of ultrasound in YBa 2Cu3O72d

The temperature-dependent renormalized frequency
the long-wavelength phonons,«k , directly determines the
speedv(T) of an ultrasonic wave:

v~T!5const•«k~T!, ~43!
l-

a
of

e
ra-

-
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d
e
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e
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of

wherek is the wave vector of the mode at whose frequen
the ultrasonic measurements are carried out. As shown
further investigations, for an yttrium cuprate the quartet
teractionH int

(4) in the HamiltonianH int @see Eq.~11!# is the
most probable one. Here, in the first-order perturbation
H int

(4) we have@see Eqs.~33! and ~34!#

«k~T!'vk@11l~s1^q&2!#, ~44!

where s and ^q&2 are calculated self-consistently by Eq
~4!–~6! and we have allowed for the fact@see Eq.~40!# that
lkk5lmkvk

2 . Figure 6~a! depicts the temperature depe
dence of the speed of ultrasound,v(T), at the frequency
1.253105 s21 calculated theoretically from the formula
~43!, ~44!, and~40! with allowance for~4!–~6!. As applied to
YBa2Cu3O72d , the model parameters were specified in t
following way: the ‘‘bare’’ frequency of an O~4! ion in the
global minimum, (a/m)1/2'600 cm21, was determined from
the spectra of Raman scattering of light;38 the position of the
second, local, minimum,q2'0.14 Å, was found from the
measured radial distribution function;48 q1'q2/2; the height
of the potential barrier,u1'0.03 eV, was chosen such th
the hysteresis would land into the 100–200 K temperat
range; and the coupling constantl'8.3 Å22 was chosen
such that the theoretical values of the maximum difference
the speeds of ultrasound on the bistable branches of the
teresis curve would agree with the experimental data.
Figs. 6~b! and 6~c! we depict, for the sake of compariso
with the calculated curves, the experimental data2,3 on the
temperature dependence of the speed of longitudinal u
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sound propagating in the ceramic and single-crystal sam
of YBa2Cu3O72d . The theoretical curves reflect fairly we
the experimentally observed behavior of the speed of ul
sound: in the hysteresis region, high speeds are realize
the cooling mode and low speeds in the heating~‘‘thawing’’ !
mode. Thus, at reasonable values of the model parame
not only do the size and temperature interval of the hys
esis loop agree with the experimental data but so does
sense of tracing of the hysteresis loop in the cooling-hea
cycle.

5.2. Hysteresis of the speed of ultrasound in Bi 2Sr2Ca1Cu2O8

The experimentally observed pattern of the tempera
hysteresis of the speed of ultrasound in bismuth cuprate
particular, in Bi2Sr2Ca1Cu2O8 differs from that for
YBa2Cu3O72d : the higher values of the speed of ultrasou
in the hysteresis region are realized in heating, while
lower values are realized in cooling.6,7 Such behavior of the
elastic properties in bismuth cuprates can be explained if
assume that third-order anharmonicity dominates in the
teraction between the matrix lattice and the bistable oxy
sublattice, so that we can assume thatlkk50. In this case,
according to~34! and ~36!, the renormalized frequency i
given by the formula

«k~T!'vk2
lk

2

2mV2mkvk
~s14^q&2!, ~45!

where we have allowed for the fact thatV@vk holds in the
experiment and that we haveṽk5vk at lkk'0.

Figure 6~d! depicts the temperature dependence of
speed of ultrasound at 7.5 MHz calculated by~43! and ~45!
with allowance for the self-consistent equations~4!–~6! for
both heating and cooling. When making numerical estima
we assumed the parameters of the bistable potential to b
same as those for yttrium compounds. We did, however,
just the height of the potential barrier, which, like the cub
coupling constantlk , was chosen so that the calculated v
ues of the temperature integral and size of hysteresis w
agree best with the experimentally observed values. For
sake of comparison, in Fig. 6~e! we depict the correspondin
experimental dependence6 for ultrasonic longitudinal waves
propagating in a Bi2Sr2Ca1Cu2O8 single crystal. The theoret
ical curve represents fairly well the features of this dep
dence: the cooling curve lies below the heating curve, wh
the coincidences of the size and interval of the hysteresi
which the hysteresis loop is observed are realized at rea
able values of the parameters of the bistable and matrix
tices.

Thus, we conclude that the interaction between the m
stable states of the strongly correlated oxygen sublattice~the
apical O~4! atoms! and the matrix lattice in the high-Tc com-
pounds YBa2Cu3O72d and Bi2Sr2Ca1Cu2O8 results in renor-
malization of the elastic constants of the matrix lattice a
in the final analysis, an experimentally observable tempe
ture hysteresis of the speed of ultrasound in the 60–27
temperature range. The inversion of the hysteresis bran
when yttrium cuprates are replaced by bismuth cuprates
es

-
in

rs,
r-
he
g

re
in

e

e
-
n

e

s,
the
d-

-
ld

he

-
e
in
n-
t-

a-

,
a-
K
es
a

consequence of the change in the interaction between
bistable sublattice of O~4! atoms and the matrix.

5.3. Hysteresis of the absorption coefficient of ultrasound
in YBa 2Cu3O72d

As noted earlier, Kimet al.8 clearly detected a tempera
ture hysteresis in the absorption of a longitudinal ultrasou
wave with a frequency of 5 MHz propagating in a singl
crystal sample of YBa2Cu3O72d . A small hysteresis of the
damping constant was also observed by Pal’-Val’et al.4 in a
ceramic YBa2Cu3O72d at 1.253105 s21. The absorption of
ultrasound was greater when the sample was heated
when the sample was cooled. The hysteresis regions for
sorption and for the speed of the wave were found to co
cide, but the hysteresis loops were traced in opposite di
tions. The explanation of these facts follows directly fro
our previous discussion. Indeed, the absorption coeffic
ak of an ultrasound wave with a wave vectork is given by
the formula

ak5
gk

v~T!
, ~46!

wheregk is the attenuation of the wave, which includes a
component the decay coefficient of the hysteresis type,Gk ,
reflecting the presence of the quartet interactionH int

(4) ~see
Eqs. ~39!, ~41!, and ~42! and Fig. 5! and the contributions
from other scattering mechanisms: due to the nonlinearity
the matrix lattice proper, the effect of defects, the bounda
of the sample, etc.;v(T) is the speed of ultrasound given b
formulas~43! and~44!. But, as noted earlier, the decay co
stantGk in the ultrasonic frequency range is extremely sma
i.e., other scattering mechanisms are effective. Hence
anomalous temperature behavior of the absorption co
cient can be related only to the hysteresis dependence o
speedv(T) of ultrasound. Figure 7~a! shows the results of a
theoretical calculation of the absorption coefficientak by
Eqs. ~46!, ~43!, and ~44! ~the attenuationgk is assumed
temperature-independent!, and Fig. 7~c! depicts the experi-
mental data. We see that there is not only qualitative ag
ment between the experimental data and the theoretical
mates~the extent and the sense of tracing of the hystere
loop! but also a correspondence in the relative discrepa
between the absorption on the heating and cooling curve

Note that temperature hysteresis of the speed and
sorption of ultrasound of a similar type was observed
Borisov et al.17 in LiKSO4 crystals.

6. HYSTERESIS BEHAVIOR OF THE THERMAL PROPERTIES
OF HIGH-Tc OXIDE CUPRATES IN THE NORMAL STATE

6.1. Hysteresis behavior of specific heats

In the process of doing precision measurements, Var
et al.18,19 detected a temperature hysteresis of the spec
heat at constant pressure,CP(T), for the high-Tc cuprates
YBa2Cu3O72d (s5021) in the 190–230 K temperatur
range. The heating curve was found to have a sharp pea
220 K, while the cooling curve was found to have a fair
broad (;10 K) maximum at 205 K@see Fig. 8~b!#. Kumar
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FIG. 7. Temperature dependence of ultrasou
absorption:~a!, the results of calculations ofa
}1/v for a crystal with a bistable sublattice with
u150.03 eV, q150.073 Å, and q250.14 Å;
~b!, the experimentally measured absorption c
efficient for the longitudinalC33 mode at 5 MHz
in the YBa2Cu3O7 crystal.8
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et al.20 obtained similar results. Vargaset al.18,19 and Kumar
et al.20 suggest that such anomalies are due to the lat
instability; in particular, they relate the narrow peak in t
heating curve to the disordering of oxygen atoms in
Cu~1!-O~1!chains, assuming that the interaction of these
grees of freedom and the lattice modes leads to a struc
phase transition. We believe that these experimental f
can be explained within the scope of the idea that co
pounds of the form Y–Ba–Cu–O contain a strongly cor
lated bistable oxygen sublattice. Experiments have sho
that the hysteresis interval may change by several ten
kelvins depending on oxygen content~i.e., on the way in
which the sample, chiefly ceramic, is prepared!. Later we
will return to the problem of finding the hysteresis interv
for the specific heatCp measured in the experiments.18,19

Here we determine the contributions introduced by
bistable sublattice to the general value of the lattice spec
heats at constant pressure,Cp

an, and at constant volume~con-
stant mean displacement^q&), C^q&

an . Using formulas~3! and
e

e
-

ral
ts
-
-
n
of

l

e
c

~7!, we can find the expressions for the specific heats
constant displacement and at constant pressure:

C^q&
an 5kBS ]^Hanh&

]Q D
^q&

5kBS mV21
3

2
gs D S ]s

]Q D
^q&

,

~47!

p52S ]F

]^q& D
Q

52a^q&1b^q&2

2g^q&31s~b23g^q&!. ~48!

These expressions make it possible to calculate the spe
heat at constant pressure:
ific

d

r

FIG. 8. Temperature dependence of the spec
heat at constant pressure@~a! and ~b!# and con-
stant volume~c! for a crystal with a bistable
sublattice: for a harmonic crystal~curve1!, and
for a crystal with a bistable lattice~curves2 and
3!. Curves2 and3 were calculated for different
values of the bistable potential. The dotte
curves represent unstable solutions;u1

50.03 eV, q150.073 Å, andq250.14 Å. Fig-
ure 8~b! depicts the experimental results fo
YBa2Cu3O7 ~see Ref. 19!.
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Cp
an5C^q&

an 2kB

Q~]p/]Q!^q&
2

~]p/]^q&!Q
5kBS mV21

3

2
gs D

3S ]s

]Q D
^q&

2kB

Q@~b23g^q&!~]s/]Q!^q&#
2

~b23g^q&!~]s/]^q&!Q2mV2 ,

~49!

S ]s

]Q D
^q&

5
2mV2

Q
w~V,s,Q!,

S ]s

]^q& D
Q

52~b23g^q&!w~V,s,Q!. ~50!

w~V,s,Q!5
4m2V2s214Qms2\2

8Q2m2V213g~4m2V2s214Qms2\2!
.

The temperature dependence of the specific heat at
stant volume~at constant mean displacement! C^q&

an , con-
structed from~47! with allowance for~50!, exhibits tempera-
ture hysteresis @Fig. 8~c!#. The hysteresis curve i
transformed according to the shape of the anharmonic po
tial U in which the atoms O~4! move: it consists of one loop
if the metastable minimum lies fairly high above the glob
minimum and of two loops if the metastable minimu
moves downward so that the potential becomes more s
metric @see the part of the caption referring to Fig. 8~c!#.

Figure 8~a! depicts the temperature dependence of
specific heat at constant pressure,Cp

an, constructed from the
above formulas. When the sample is cooled and the poinT1

is reached from the right,Cp
an becomes infinite and then sud

denly drops to the finite valueA; when the sample is heate
and the pointT2 is reached from the left,Cp

an again becomes
infinite and then suddenly drops to the valueB. The size of
the hysteresis interval (T1 ,T2) depends on the values an
ratios of the parametersa, b, andg of the oxygen sublattice
~in this specific case they were selected equal to the value
Sec. 5!. In the state of thermodynamic equilibrium the sy
tem has no memory and the hysteresis disappears, i.e.
function Cp

an(T) becomes single-valued; it has, however
singular point at the temperatureT0 at which the values of
the free energies for the cooling and heating curves coinc
The interval (T0 ,T1) in heating and the interval (T0 ,T2) in
cooling determine the temperature range in which the sys
~sublattice! passes through a sequence of alternating unst
~metastable! states.

In real compounds to which our model can be applied
is impossible to reach the theoretical boundary points of ‘‘
percooling’’ (T1) and ‘‘overheating’’ (T2). The longer the
system is left to itself in the region of metastable states,
higher the probability that, thanks to fluctuation processe
will go over to the other, stable, branch of the hystere
curve before it reaches the boundary pointT1 or T2 and
hence the narrower the hysteresis region:T1˜T18.T1 and
T2˜T28,T2 . If the lifetime of a given metastable state
the oxygen sublattice at a certain temperatureT19 ~the cooling
curve! or T29 ~the heating curve! exceeds the time the syste
is kept in the given state, i.e., the rate of scanning of
temperature in the experiment is such that fluctuation p
cesses are unable to initiate the transition of the subla
n-
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from the metastable state to a stable state, the inte
(T19 ,T29) exactly determines the real interval of hystere
behavior of the specific heat and other properties of highTc

compounds with a bistable sublattice in conditions of t
given experiment. This is the reason why in their expe
ments Vargaset al.18,19observed a hysteresis interval for th
function Cp

an(T) that was narrower@Fig. 8~b!# than the theo-
retical interval @Fig. 8~a!#. Unfortunately, we know of no
experimental data on theC vs. T curves for temperature
scanning rates so different that the ‘‘shrinking’’ of the hy
teresis loop can be followed as the temperature scan
rates change from high to low, i.e., as the thermodyna
parameters become more quasistatic.

6.2. Temperature hysteresis of the thermal conductivity in
high- Tc cuprates

In the process of doing precision measurements,
zowski et al.,21–23 Terzijska,24 and Cohn25 found a tempera-
ture hysteresis of the thermal conductivity of the high-Tc

compounds YBa2Cu3O72d ~1:2:3! and RBa2Cu4O8 ~1:2:4;
R5Dy, Gd, and Eu! in the 70–230 K temperature rang
The maximum relative discrepancy between the values of
thermal conductivity on the upper and lower branches of
hysteresis curve amounts to more than 5%. What is rem
able is that the shape of the hysteresis curve, which is sin
loop for all 1:2:4 superconductors, for 1:2:3 compounds
pends on the index of oxygen nonstoichiometry. Atd50 a
single loop is observed in experiments, while for oxyge
depleted (d51), nonconducting, compounds the hystere
curve consists of two loops with a definite sense of tracing
the contour when the sample is first cooled and then hea
The effect of the hysteresis behavior of the thermal cond
tivity is unusual and interesting not only in itself but als
because the reason why it appears is related to the me
nism of high-Tc superconductivity.

In the high-Tc compounds 1:2:3 and 1:2:4 studied in th
above experiments, heat is transferred primarily by lon
wavelength acoustic phonons49 ~see also our attempt in Re
50 to relate the anomalies in the thermal conductivity of
1:2:3 compound to optical excitations of the sublattice
apical oxygen atoms O~4!!. Below we will show that the
hysteresis of the thermal conductivity can be directly rela
to the scattering of these acoustic modes by vibrational
citations of the bistable oxygen sublattice of the O~4! ions.

6.2.1. Remarks about the formula for thermal conductivity

The Kubo formula for the kinetic thermal conductivityK
can be approximately expressed in terms of the square o
one-particle Green’s functionGk for acoustic phonons trans
ferring heat:

K5
kB

3pVQ (
k

vk
2vk

2

3E
2`

`

dv
exp$v/Q%

~exp$v/Q%21!2 @ Im Gk~v1 i«!#2, ~51!

wherevk5¹kvk is the phonon group velocity, andV is the
volume occupied by the system. We write the Green’s fu
tion as Gk(v)5@v2vk2Dk(v)1 igk(v)#21. The fre-
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FIG. 9. Theoretical curves representing the tem
perature dependence of specific heat in cryst
with a bistable sublattice:~a!, cubic interaction
between the bistable sublattice and the matrix
dominant; ~b!, competition between cubic and
quartet interactions;u150.03 eV, q150.073 Å,
q250.14 Å, T05173 K, lkk /mkvk

258.3 Å22,
and lk53.74310221 eV•Å 23. The insets sche-
matically depict the experimental results21–23 for
RBa2Cu4O8 and YBa2Cu3O7 ~a! and RBa2Cu3O6

~b!.
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quency shiftDk(v) of the kth acoustic mode is due to th
interaction between this mode and the other modes of
matrix, defects, electrons, etc., and the bistable sublat
The same can be said of the rate of scattering of an aco
phonon,gk , related to the lifetime of this phonon by th
formulatk(v)5@2gk(v)#21. We write the Green’s function
approximately asGk(v1 i«)'(v2vk2Dk1 igk)

21, re-
placingv in the expressions for the frequency shift and d
cay byvk : Dk5Dk(vk) andgk5gk(vk).

Then forgk /vk!1 we can write the expression~51! in
the form51

K5
kB

3Q2V (
k

vk
2vk

2 exp$«k /Q%

~exp$«k /Q%21!2

1

2gk
, ~52!

where«k5vk1Dk . This formula differs from the standar
expression52 in explicitly allowing for the effect of the fre-
quency shiftDk . Below we assume that the frequency sh
Dk5Dk(T) is caused solely by the interaction between
acoustic phonons and the vibrations of the bistable oxy
sublattice, with the frequency renormalization due to
nonlinearity of the matrix lattice proper, the interaction wi
defects and charge carriers, etc., included in the definitio
vk . Such separation of contributions is natural since th
differ qualitatively: as established earlier, the contribution
the bistable sublattice to the renormalization of the frequ
cies of the matrix lattice is of a hysteresis nature, i.e.,
temperature behavior when the sample is cooled differs f
its behavior when the sample undergoes heating~‘‘thaw-
ing’’ !.

The formula that is commonly used53 to calculate the
thermal conductivity of the high-Tc 1:2:3 and 1:2:4 com-
pounds must be modified; into the exponents we must in
duce the frequency shiftDk(T) caused by the heat
transferring phonons scattered by the bistable oxy
sublattice, which means that in the reciprocal phonon l
time, tk

21 , we must separate this additional relaxation ch
nel, which leads to decay, earlier denoted byGk . As a result
we have a formula for numerical calculations:

K5const•T3E
0

vmax/kBT

dx x4 expH x1
D~x,T!

kBT J
3S expH x1

D~x,T!

kBT J 21D 22

t~x,T!, ~53!

where
e
e.
tic
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-

t215tb
211td

211te
211tmp

211tbs
215A1BT4x4

1CTxg~x,T/Tc!1Ex2T31DG~x,T!. ~54!

The terms in the expression for the relaxation time desc
the scattering by the boundaries, point defects, electrons,
trix phonons, and the bistable sublattice, andg(x,T/Tc) is
the ratio of the relaxation times in the normal and superc
ducting states;53 the functionsD(x,T) andG(x,t) are speci-
fied by Eqs. ~37!, ~33!, ~36!, ~39!, and ~41!, with x
[vk /kBT. When necessary, we can allow for the contrib
tion to second order inH int

(4) in the frequency shift by using
Eqs. ~34! and ~38!. The effect ofG(x,t) is not appreciable
against the background of other mechanisms, but it is ob
ous that it is the frequency shiftD(x,t) of the acoustic
modes, which enters into the exponential factors in~53!, that
basically determines the temperature dependence ofK(T).

6.2.2. Numerical estimates of the thermal conductivity

Numerical calculations ofK(T) by formula ~53! with
allowance for the expressions~37!, ~33!, ~36!, ~39!, ~41!, and
~54! and for the self-consistent equations~4!–~6! show that
when the cubic interaction between the matrix and
bistable sublattice dominates, the hysteresis curve for
thermal conductivity in the 70–230 K temperature ran
consists of a single loop@Fig. 9~a!#. It is this hysteresis loop
that is observed in experiments involving stoichiometricd
50) samples of 1:2:3 and 1:2:4 compounds@see the inset in
Fig. 9~a!#. What is interesting is that when the quartet inte
action dominates (lkk.0), the temperature dependence
K(T) basically retains its shape, although the hystere
cycle is traced in the opposite direction, with the sense
tracing of the cycle agreeing with the one observed in
periments iflkk,0. As a result of the competition of com
parable contributions of the cubic and quartet interactio
which probably occurs for nonconducting (72d56)
samples of 1:2:3 compounds, the hysteresis part of theK vs.
T curves becomes two-loop@Fig. 9~b!# and the temperature
regions of the two-loop and the one-loop hysteresis coinc
as they do in experiments.

Thus, the interaction between the metastable states o
sublattice of apical O~4! atoms and the matrix gives rise to
temperature hysteresis of the renormalized frequencies o
heat-transferring acoustic modes, which in the final analy
is the reason for the hysteresis behavior of the thermal c
ductivity in the high-Tc 1:2:3 and 1:2:4 compounds; here th
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region of bistable thermal conductivity coincides with t
region of bistability of the oxygen sublattice. The form of th
hysteresis curve, one-loop or two-loop, and the sense of t
ing of the hysteresis loops forK(T) depend on the ratio o
the contributions, to the renormalization, of the cubic a
quartet terms in the interaction between the matrix and
bistable sublattice.

7. CONCLUSION

We have examined the situation in which in a crys
lattice with a multiatomic basis the atoms of a certain spec
perform optical vibrations in an asymmetric double-well p
tential generated by the field of the matrix lattice. If th
motion of such atoms is strongly correlated, i.e., is of a
operative nature, this suppresses fluctuation above-ba
transitions of separate atoms from one energy minimum
other, in view of which~and because of broken symmetry
the potential! metastable states may become realizable
the ensemble of atoms considered, thus producing a bist
sublattice. The critical temperature of the transition of suc
sublattice from vibrations inside the global minimum
above-barrier vibrations under heating does not coinc
with the temperature of the inverse transition from abo
barrier vibrations to intrawell vibrations in the inverse pr
cess of cooling. Here the temperature hysteresis is chara
istic both for the dynamic parameters of the sublattice a
for the statistical-thermodynamic parameters of the sub
tice, and the size of the hysteresis interval and its position
the temperature axis are determined primarily by the ene
difference of the global and local minima and the height
the potential barrier. Due to the nonlinear interaction b
tween the metastable states of the sublattice and the v
tional states of the matrix lattice, a hysteresis tempera
dependence becomes a characteristic feature of the reno
ized frequencies of the lattice modes and the decay co
cients for these modes, which in the final analysis gives
to hysteresis in the elastic and thermal properties of crys
The ideas developed in this paper result in an interpreta
~which agrees fairly well with the experimental data! of the
hysteresis temperature behavior of the speed and absor
of ultrasound and of the specific heat and thermal conduc
ity in superconducting yttrium and bismuth cuprates.

The analysis has shown that in bismuth cuprates the
bic interaction between the degrees of freedom of
bistable sublattice and the matrix lattice is realized, while
yttrium cuprates the interaction is of the quartet type. In
cordance with this it occurs that the higher values of
speed of ultrasound are observed in bismuth cuprates u
heating, while the lower values are observed under cool
the situation is the opposite in yttrium cuprates.

Our estimates made it possible to establish that the h
teresis of the absorption of ultrasound is due entirely to
hysteresis dependence of the speed of ultrasound. He
knowing the nature of the behavior of the latter, we c
predict when the absorption is higher: under heating or un
cooling.

While the bistability of the specific heat of the crystal
related to the anharmonic contribution of the bistable sub
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tice to the total specific heat and the shape of the hystere
one-loop or two-loop, depends on the relative positions
the global and local minima of the potential, the reason
the hysteresis of the thermal conductivity is the hystere
temperature renormalization of the heat-transferring acou
modes and the shape of the bistable thermal-conducti
curve ~one-loop or two-loop!, and the sense in which th
loops are traced depends on the ratio of the contributions
the renormalization, of the cubic and quartet terms in
interaction between the matrix and the bistable sublattice

In all the effects examined in this paper, the region
temperature hysteresis coincides with that of the hysteres
the bistable sublattice, since the elastic and thermal pro
ties of the crystal depend on the main parameters of
sublattice: its statistical-mean displacement, the displa
ment variance, and the effective vibration frequency.
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