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The effect of multiple scattering on the decay of high-energy particles has been studied. The self-
consistent method for the calculation of decay rates of particles undergoing multiple elastic
collisions in an equilibrium medium has been developed. Influence of multiple scattering on the
decay rate of a neutral pion in a hadron gas has been studied.999 American Institute

of Physics[S1063-776(99)00107-9

1. INTRODUCTION whereX "is the retarded self-energy in the formalism of the

The study of nuclear matter generated in the collisions 0#<eldyih %raphlc technique, x=(t,r) is the 4-coordinate,
andp=(p~,p) is the 4-momentum.

ultrarelativistic heavy ions makes it necessary to determine

the effect of scattering medium on the decay of high—energ)éjecay in the matter, one should sum and averag&TEqver

; 1-7 : _
particles - Thg photons and_vanous leptotaich as elec the initial and final states of particles and then average it over
trons and neutringsproduced in such matter carry informa- L )

.the observation times:

tion about the state of the studied medium. One of the main
channels in which such particles are generated is the decay in 2 T 3
I'= +;Im dt | d°r
0

In order to calculate the observed widthof the particle

nuclear matter.

The influence of the mediurzﬁ%n Hua particle decay width
has been investigated extensively.™~In those studies the _
polarization effects in QCB®’#and QED were examineti! XTr{Z"(x,p)G *(x,p)}} ' @
In investigating decays in a dense nuclear matter, however, ) ) )
one should take into account the polarization effects men¥here G™"(x,p) is the Green's function of the decaying
tioned above and the multiple scattering of particles in thgParticle in the Keldysh graphic technlqb%th.e plus and mi-
matter. If the temperaturEof the medium is sufficiently low NUS Signs refer to the Bose and Fermi statistics, respectively,
so that polarization effects can be ignored, and if the fluctua@nd the normalization volumeg=1. _
tions of particle energy due to multiple scattering are on the ~ SUPPOse that the effect of the particle scattering on the
order of T, then the influence of the medium on the decaydecay vertex is weak, and the interaction among decay prod-

rate is largely determined by multiple collisions of a decay-UCtS in the final state is negligibfé Then the retarded self-

d*p
(2m)*

ing particle. energy is identical to the self-energy corresponding to the
In this paper we report the results of an experimentaParticle decay in vacuum:
study of the decay of elastically multiply scattered particles (SreyeB=32B(p), 3)

in an equilibrium medium. The decay rate for such particles

has been calculated. If the decaying particle is ultrarelativiswherea and 8 are spin variables.

tic, multiple scattering leads to the strong broadening of its ~BY substituting the latter expression into E@) and
state under certain conditions. On the basis of the develope¢ing the equatidri** relating the Green’s function
method for the calculation of decay rates for particles in thé>  (x,p) to the distribution functiom(t,r,p) of particles
media, the decay of neutral pion in an equilibrium hadronin the equilibrium medium, we obtain for the width of the
gas has been studied. It turned out that under certain condilecaying particle on the mass surface

tions multiple scattering results in the considerable increase i 43
of the decay rate in the channet8—2vy and 7°— ye'e™. = —Im[ J dtJ ?pTr[E\‘fac(p)Qag]
T 0
2. DECAY RATE OF A PARTICLE IN A SCATTERING d3r
MEDIUM f sntr.p . 4
(2m)

Consider a particle of mag4 with spins that undergoes were @, 5 is the polarization density operator of the decay-

multiple elastic pair collisions in an equilibrium medium. In . i 0 7 . .
the quasi-classical approximation, when the particle Wavel-ng particle, p"=E= yp"+M" is the particle energy, and

length is much smaller than its free path, the wigt(ix. p) of n(t,r,p) is the distribution function of particles that satisfies

: = the Boltzmann kinetic equatiofi:®
the particle state is givéfhby the standard formula Note that the expression in the brackets in B4).is a

y(x,p)=—2 Im{="(x,p)}, (1)  scalar; therefore, it depends only on the masses of the decay-
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ing particles and decay products. Moreover, the termwhere(s?) is the average of the energy transferred per unit
Tr[E\i'fc(p)Qaﬁ] is proportional to the width of the decaying time. In deriving the latter equation, we have taken into ac-
particle in vacuum. These circumstances allow us to rewriteount the fact that the scattering cross section is the even

Eq. (4) in the form function of the transferred energy. The paramdiet) is
. MT o frdt fx g FE.D) o determined by the equation
B T 0 0 p-ap E ) 3 Emax dO’(E,;E,pl) 2
(e)= | d°p,dQ, " Vfe{p)E’"
wherel 5. and the functiorf(E,t) are given by the formu- 0 dE"dQ,
las (10
1 This parameter is the function of the instantaneous par-
Lyadp)= M'm{Tr{23ac( P)Cugsl), (6) ticle energy. Nonetheless, since the medium is in thermody-

namic equilibrium and since only elastic collisions occur, the
3 particle energy is constant, on the average, and it is affected
d°r . : : X .
F(E,t):f dQ, f_gn(t’r'p)_ (7) by fluctuations whose amplitude is the function of time.
(27) Therefore, let us assume in our approximation () is a
function of time, but not of the particle energy. Solving Eq.

Thus, the calculation of the width of decaying particle (9) with the initial condition

undergoing multiple elastic collisions in an equilibrium scat-
tering medium reduces to the parameer' averaging over F(E;t=0)=fo(E)n(E-M), (11)
certain distribution which has to be calculated. Note that

(E~Y=M"1in the case of decay of nonrelativistic particles, we obtain
and the effect of scattering on decays of such particles is 7(E—M) %
negligible. F(E;t)= - > f dE’

Suppose that the relaxation time in the mediup, VA [odt'(e5)(t") M
<min{7,I' "%} is much smalleé? than both the observation E_E"2
time 7 and reciprocal decay width ~*. Then we describe < | exd — (E-E")
the states of the decaying particle in the medium in terms of b o
the static approximatiot;'in which the medium return to 4f0dt (e9(t)
its initial state almost immediately after each individual col-
lision. Since the particle distribution function is included in (E+E’'—2M)?
the formula for the decay width in the integral with respect to texg —————| L fo(E), (12
coordinates and momenta of the particle, we obtain the fol- 4f dt’(e2)(t")

0

lowing expression for the functioR(E;t) after integrating
the Boltzmann equation over the solid angle in the directiorwherefo(E) is the distribution function which determines

of p and over: the state of the decaying particle at the initial moment, and
JF(E:)  [E+Ema »(E) is the unit step functiof®
o =f dE’f d3p; Substituting the calculated functidf(E;t) in Eqg. (5),
E~Emax we obtain the following expressions for the decay Natén
do(E—E":E:py) the scattering medium:
Xf o dE'dQ, Vied Py . dt = p%dp
, W=l“r=Ml“\,acf0 t o E(p)
X{F(E";H)~F(ED)}, ®) \/4wf 4t (e7)(t")
wheredo(E—E’;E,p,) is the cross section of an individual 0
pair scattering event in the mediurhy(p,) is the equilib- . (E—E')?
rium distribution function of particles in the mediutB,,,y is Xf dE’ | exp —
the maximal energy transferred in an individual collision be- M 4ftdt’<82>(t’)
tween two particles in the mattel, andE; are energies of 0
the colliding particles,v = s(s—4M?)/2EE,, p=(E,p),
p1=(Ey,pp), p'=(E",p'), ands=(p+py)°. (E+E’—2M)° ,
In the case where the matter is in thermodynamic equi- TeXp - fo(E"). (13
librium and all collisions between particles are elastic, the 4f dt’'(e2)(t")
energy|E—E’| imparted by a particle in one individual col- 0
lision is smaller than the medium temperatdteExpanding Note that in the case of small occupation numbers the
the scattering integral on the right side of E8).in the small  density of particle states in an equilibrium medium has a
parametetE—E'|/E<1, we then obtain fairly sharp peak at energids~T, whereT is the tempera-
] P ture of the medium. Therefore the width of the peak in the
JF(ED) —(&2) g F(E't), (9) integrand in Eq(12) is determined by the relation between

ot JE? the particle energy fluctuation due to multiple scattering,
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t M 2<82>1/2T3/2 T2
dt’(e2)(t"), -

Jo (D) Wao_2y 7Tl/z-l—rﬂfo—’” 3T (e2)
and the temperatur€ of the medium. If the energy fluctua- (e2)7| (=
tions are such that X | ex f dx
T2 \(82>T/T
t
dt’(e)(t")>T, Jr D7
fo XeXF(—XZ)—T'f‘ <T> ) (19
the multiple scattering is strong and leads to a considerable

broadening of the particle state in the medium, whereas in

the opposite limiting case, dw 4e?

WZ —46(M2—M|2)3(M|2+2m2)
dt'(e2)(t")<T,
fo (9 X (ME—4m?®)Y2W o, , (16)

the effect of the scattering medium is negligible.

Further, let us discuss the application of this method tovhereT is the temperature of the medium, ands the ob-
the calculations of decay rates of specific particles in scatte/servation time. In deriving Eq¢15) and (16) we assumed
ing media. that the initial state of the decaying pion is described by
Boltzmann'’s distribution functioriy(E) with temperature,
and the pions are ultrarelativistic.

Let us analyze the resulting expression for the pion de-
cay rate in the medium in the main channel—2y (the
decay channetr®—e*e™ y is analyzed similarly.

3. DECAY OF A NEUTRAL PION IN AN EQUILIBRIUM
SCATTERING MEDIUM

M ()7
Wﬂ.O_,z,y: ﬁrﬂ.o_,z,y 1+ 2T2 +0

Consider the effect of elastic multiple scattering on de-  If the fluctuations of particle energy due to multiple scat-
librium pion gas. Investigation of such decays, which areV(e“)7/T<1. Integrating for small values of the lower inte-
among sources of thermal gamma rays and lepton pairs, ag&ation limit in Eq.(15), we obtain
of interest for studies of nuclear media generated in colli-
2 3/2

tic temperatures of equilibrium pion gases are [0Ww<(200 {e%)7 )]
MeV) (Refs. 17 and 20in comparison with the excitation T2
energies of both quark~«T.=250 MeV) and hadron de- 17
on the decay vertex and polarization effects can be ignoredt follows from Eq.(17) that multiple scattering of particles

The calculation of widths of decays®—2y and 7®  in the medium leads to insignificant increase of the decay
—e’e y in the approximation of partially conserved axial rate in comparison with the situation of thd— 2y decay in

cays of neutral pionsg®—2y and7°—e*e” y, in an equi- tering are smaller than the temperature of the medium, then
sions of high-energy heavy ioRs’?°Since the characteris-

grees of freedom~ m,=770 MeV), the effect of scattering

current! gives

dlyee 47

= M2=M?)3(M{+2m?)
dm, 37T|\/||4|\/|6( DM

X(ME=4m») YT o,

I 0_,,=8 €V,

whereM and m are the pion and electron masses, respec-
tively; M, =|p, +p_| is the invariant mass of a lepton pair.
In the case where the pion gas temperaite200 MeV

vacuum.

In the opposite limit case of relatively large fluctuations
(W(e?)7/T=1), we derive the following expression from
Eq. (15):

W M7 2\/<8?>T+O T
m0—2y= 771/2_'_ 7052y 3T \/W’

(18)

The latter equation indicates that the large fluctuations of

(Refs. 2, 17, and 20we treat the particles of the medium as energy lead to the strong increase of the decay (atethe
ultrarelativistic. Then the energy transferred in one collisionfactor \/<82)7'/T>1) due to multiple elastic scattering of

is smaller than the gas temperatuig;,,~ T(M/T)?><T, and
the scattering cross sectiahr [see Eq.(10)] is the slow
functior??® of the energy of colliding pions, sée(t)) is

approximately constant.

pions in the matter.

In a more realistic situation where the pion gas tempera-
ture T=130-140 MeV, the decay rate should be calculated
numerically using Eqg13) and(14). The estimation ofs?)

Substituting the decay widths in vacuum given by Eq.as the product of the frequency of pion collisibh®and the
(14) in the equation for the particle decay rate in the scattermaximum energy transferred in one collision between par-
ing medium and performing all necessary integrations, weicles gives({e?)=const=1.1x10"*4 GeV?/Fm. Performing

obtain

integration in Eqs(13) and(14), we obtain
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1.25, ifT=140 MeV; comparison_ be_tween_ qalculatior_ls of the yield of (_alectron—
W(a) e . positron pairs in collisions of high-energy heavy ions and
m= 1.23, ffT 135 MeV; (190 experimental data indicates that the agreement between these
1.21, ifT=130MeV, results is satisfactory.

| wish to thank D. N. Voskresenskii for the discussions.
whereW(«=0) is the decay rate in vacuum.
In conclusion, let us discuss the agreement between th . .
idths of | pi in th 9 . di | *e’E-maH: koshelkn@gpd.mephi.msk.su

widths of neutral pion state_s In the scattering me lum calCusrpg application limits of the model under discussion is determined by a
lated above and the experimental data on collision of heavyspecific situation in which a decay takes place. In particular, when the
ions S—Au and Pb—Au at energies of 200 GeV/nuclédm. neutral pion decays in an equilibrium hadron ¢see below, this approxi-
These data can be Compared by estimating the relative yielc{nation applies when the medium temperature is lower than the tempera-

. . - . _ture of the phase transition between the hadron gas and quark—gluon
of electron—positron pairs of+ s[nall energlef, yvhose Main pjasmaT,=250 MeV.
sources are the reactiond—e'e vandp—e’e vy.Note  2The validity of this inequality depends on the dynamics of the nuclear
that in the real situation the characteristic temperafuef medium generated in collisions of high-energy heavy ions, which expands
the hadron medium is within 150 MeV, and themeson isentropically® being in a quasi-equilibrium state.
mass is 547 MeV; therefore, the broadening of its state due———
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The dynamic Jahn—Teller effect is studied for a charged fullerene molegyiith allowance

for spin-orbit coupling. The system of self-consistent equations describing the interaction

of an electron and the molecular vibrations in the event of spin-orbit splitting of the electronic
level is solved analytically. A novel type of nonlinear vibrations occurring in such a

system is described. It is shown that with spin-orbit coupling taken into account, the static Jahn-
Teller configurations in the & molecule are unstable even in the limit of strong electron-

vibronic coupling and that the symmetry of the atomic configuration of the unperturged C
molecule is restored under time averaging. 1899 American Institute of Physics.
[S1063-776(19901607-9

1. INTRODUCTION spectrd* and in the data on electron spin resonatfcgsu-
ally, to adjust the ground-state energy, the energy of the

One of the problems of the physics of fullerenes, whosezero-point vibrations is added. For instance, in Refs. 11-13
symmetry belongs to that of the highest-symmetry pointthe calculations were begun by determining the positions of
group I, is the understanding of the nature of the Jahn-the minima in the potential well obtained in the strong cou-
Teller effect in the various excited states of thg @olecule.  pling limit. The dynamical problem is solved with allowance
The vibrational properties of fullerenes have been extenfor electron tunneling in the configuration space between the
sively studied in experiments®in view of their importance wells through the potential barriers surrounding these
for optical applications. In particular, the behavior of the minima. It is difficult to solve this problem systematically,
high-frequency modé\ is an indication of an excess num- since the effective potential itself is determined by the elec-
ber of electrons in the molecule, while titg; modes can tron wave function. Electron correlation effects have also
shift, broaden, or disappear entirely. The high symmetry obeen consideretf. Ihm'® and Auerbactet al!” studied the
the Gy molecule is the reason for the degeneracy of thedynamic Jahn—Teller effect in charged fullerenes in terms of
states of the electron subsystem and the vibrational sulihe Berry phase with allowance for pseudorotations. Pseu-
system of the molecule. An “excess” electron ipg®ccu-  dorotations arise as a result of rapid movements of deformed
pies the first excited state with the symmetnytgfand “dis-  regions on the molecule surface, and the motion of indi-
tributes” itself over the molecule surface. It is assumed thawidual atoms is limited by the proximity to their symmetric
the electron-vibronic coupling substantially changes such g@ositions in the neutral g molecule.
state of the g, molecule. The interaction of an electron oc- The present paper proposes a novel semiclassical variant
cupying the lowest unoccupied threefold degenerate molecsf the theory of the dynamic Jahn—Teller effect. We will
lar orbitalt;, and the fivefold degenerate vibrational modesexamine the complete dynamic lifting of the degeneracy of
Hg gives rise to polaronlike states and to Jahn-Teller distorthe static Jahn—Teller levels due to spin-orbit coupling. Such
tions of the moleculé!~13 Here the configurations of the coupling generates self-consistent vibrations of the mol-
molecules with minimum energy form multiplets. Thus, the ecules that mix the electronic states with spin flip. In a sim-
symmetry of the ground state lowers, but the degeneracy ddlified model of the G, molecule that allows for one vibra-
the electronic levels is not lifted completely, and the electrortional multipletH, interacting with the electron in state,
subsystem of the fg molecule remains very sensitive to per- and for spin-orbit coupling, we will derive the exact solu-
turbations. Typical calculations done in the Born-—tions of a nonlinear system of dynamical equations that de-
Oppenheimer approximation allow obtaining the effectivescribe the temporal evolution of the ground state without
potential energy as a function of the static configuration ofresorting to perturbation-theory techniques. We will show
the ions!* In this case the zero-point vibration energy mustthat the static ground state is unstable against spin-orbit per-
be much lower than the energy of the Jahn—Teller splittingurbations even in the strong coupling limit. We will also
of an electronic level. It is assumed that in the opposite casénd an expression for the renormalization of the intramo-
we have the dynamic Jahn—Teller effect. lecular phonon frequency and its nonlinear splitting.

Experimental studies suggest that for an isolateg C
molecule the Jahn—Teller effect is dynarfi®1°A possible ~ 2- MODEL
consequence of dynamic symmetry breaking is the mul- The model allows for the interaction af-electrons with
tiphonon structure of the lines observed in Raman and IR/ibrations of the G, molecule, since all other electronic lev-
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els are locatedon the energy scaleat distances that are wherer, is the radius of the carbon atom. The quantum
much larger than the energies of thi, modes and their numbersl ands are fixed, and in averaging i8) we must
perturbation can be ignored. As in Ref. 17, we will considerallow for the fact that, in contrast & the projections of are
a one-electron state related to a single vibrational nmdge not equally probable, since the probabiljty,|? of the pro-
of frequencyw,, and instead of the symmetry group of the jection m occurring is time-dependent. The projections of
frustrum of an icosahedron we will assume that the symmej=1|+S are not equiprobable either:
try is spherical. Thertlg andHg can tz)e described by the
spherical function$Y 1, }i— _; and{Yom}r- —», respectively. NN i Rt

The main goal of this work is to provide a semiclassical 4% % JA+1)B; by - ©
description of the dynamic instability of the ground state of _ o _ SN
the G, molecule, the instability being caused by electron-Whereb; , is the probability amplitude of the vectgr=|
vibronic and spin-orbit coupling. We will study the redistri- +$ having the valug and the projectiom. Then, allowing
bution of charge over the molecule surface, electron spin flipfor the quantum mechanical rule of vector summation in
and vibrational motion of the molecule with the passage of€rms of Clebsch—Gordan coefficients m;s,M|j,n), we

time. The Lagrangiah of such a process has the form obtain
L=L+ Lo+ Lot eyt Lso 1 1 -
ph™ Lel™ Lelel-vib™ Ls—o @) bj n= z cr{l,m;s,M|j,n). (10
Here V2s+1 j=—(s+I)),M,m
i P Substituting(10) in (9) yields
e|:?J' (w*__ l// )dQ—f lﬂ* E0¢dQ, (2)
at at 2 1 L .
(=5e77 2 I(i+Dency(nllms,M)
MJ &77 1_77]* dQ KJ *dQ S j,n,m,m’
b= | G T 4T ) mdd ® X (jnllmis M), (11
mm’'=—1,...,0,...), j=[s—I|,...l,...s+I,
Lel—vibz)\f s (p+ ") pdQ, (4)

MM'=-s,...,0,...5, M=n+m, M'=n+m’.
where u is the effective massx is the rigidity, [¢* 4dQ i )
—1, dQ=sinddédé, and 6 and ¢ are the angles of the With allowance for(9)—(11), the expressiof8) for =1 and

spherical system of coordinates. Under the condition s=1/2 becomes
1 V2
2 Cn(Het (=1, 5) LS_0=A7CO(C1+ c_,)+c.c. (12
=1

As shown below, thés-l) coupling is the cause of the per-
turbations that result in the dynamic splitting of the static
Jahn-Teller level with the lowest energy.
1 We will assume that the vibrational fielgl of the G,
Y= k21 C(t)Y1k(6,9). (6) molecule is time-dependent and can be described by classical
means:

the representation of the wave functignof the electronic
level t;, with an energyE, has the form

Group-theoretical analysis shows that the eight modes 2
Hg and the two modesa!\_g of the fu_llerene molecule can 7= > pH)Yo(6,0), (13
interact with an electron in a state with the symmetry,Qf k=-2
Here we will consider one such modH,, with the fre-

uenc 9’ wherep,(t) is the amplitude of thé&th spherical harmonic.
g y If the amplitude of the atomic vibrations is much smaller that
wo= Kl 1. (7)  theinteratomic distances at equilibrium positions, the classi-

cal description of a vibronic mode is meaningful. In other
The rotation of the molecules as a whole is ignored. Thevords, we will assume that we are dealing with strong
electron-vibronic interactionL¢_yj, in (4) is local and electron-phonon coupling and perturbation-theory techniques
rotation-invariant:? with \ the constant of this interaction. In do not work.
(1), Ls_ois the spin-orbit coupling energy. To within an un-  Substituting(5), (6), and(13) in (1)—(4), we find that
important constant,

. ih < dc dck !
Le=A(l-S). (8) Le|=§m:21 (C:qd_{n_cmd_tm) —Eom;l CmCr »
For a spherical molecule of radil, we have® (14

ze\?r, mée ) 2 dp, dppy 2 .
A*(%) Ry A2 Lon=3 2, dt at 2, PP 139
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2 1 1
Lel_pi=A 2 ; H:E piCmCh F(k,m,n)+c.c.,
(16)
21,1

where the{F(k,m,n)} ==, ;. _; are defined in terms
of Clebsch—Gordan coefficients:

F(k,m,n)= 3—1,;1 \/%(1,m;1, n|2, k)(1,0;1,02,0).

3. BASIC EQUATIONS AND THE SOLUTION

Substituting(12) and (14)—(16) in (1) and introducing
the dimensionless parameters
3

~ A\ 5xh 1 - 5
AN=—, a=|— , B=—=A\a",
7 2N%u 5
\/57ng,8
== (17)

we arrive at a set of Lagrange equatibhfor the system
under consideration:

d2V_2 2 3~ _

dTZ = _QOV_2+ EC_]_C]_ y
d2V_1 2 =
a2 —Qgv_.+ 2(c_1c0 —CoC1),
d?vq P S S
a2 Qgvot CoCo ~ 5C-1C217 5C1Cy |, (18
dZVl e e
a2 _ngl_ 7(0’1100_(36c C1),
d2V2 3
a2 — Qv+ > cr Ty,
de_; 1 3_ V3 _ ~
| dr = Ec_:LVO_ EC]_V_z_ 7COV_1_ACO,
. dC, V3 - ~ L
" ar 7(C—1V1+ C1v_1)—Covo—A(T;+T_4), (19
ode; 1. 3_ V3 _ ~
g7 = 2 CVot \5C-1Va= 5 Covi— ATy,

1

2 (DTN =1, (20

where
IE T

Tn=CmEXp—— P Ey=aEy,
~ V2 a Pk t

= W’ Vk—E, T—E. (21)

Here and in what follows we do not write the complex-

conjugate equations. The nonlinear system of dynamic equdor aa* =
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tions (18)—(20) has one exact solution, whose properties are
discussed below. We seek this solution in the form

3~ ~% ‘/§~ ~k = =%
V_2=0 507101, V71:97(Cflco_cocl),

1 1
vO=g(EoﬁZ§ §~Cfl~t1_ §~Cl~’1‘), (22
V3 e 3
Vlz_gj(c—lco_co C1), V2=0 ¢t Ty
Substituting(22) in (19) yields
i d’é_l 3 ~ =% 1 * A=
—1 dT :Zg ZE_]_ C1C1+6 —Cq _ACO,
. d¢, 3 S S 5 B
g7 =29 —2€,C_1Cq +Co| Co o+§ —A(C_1+7Cy),
(23
dg, 3 1 ~
_'E:Zg 28| T T+ < 6 1cO —AC,.

The values of the electron-phonon coupling constgrih
(22) and (23) are determined below.

One of the exact solutions of the nonlinear system of
equations(20) and (23) for finding T.,(7) has the form of
harmonic oscillations with frequencies

3 ~
wl:Tg \ll_a*a, w2’3=(uliﬁA,

wherea is an arbitrary constant such thata<1. At the
same time, the probability amplitudég,(7) are found to be
coupled by the condition

(29)

(25

Under this condition, the system of equati@@8) reduces to

a linear one and the solution has the form of harmonic oscil-
lations. However, the amplitudes of these oscillations depend
on the frequencyw and the superposition principle does not
apply. Moreover, such electronic self-oscillating states may
be coupled self-consistently to atomic density oscillations
only if the resulting solution, according {@2), satisfies the
system of equationgl8), which is possible if

T5—28_ T =aexp2ig7}.

1
(2w;)?— Q3+ 520' i=1,2,3. (26)

We will limit ourselves to two important cases (84):
aa*=0 andaa* =1. In the absence of spin-orbit coupling
(A=0) the first case corresponds to the upper level in the
Jahn—Teller static configuration of thenolecule. When
aa* =1 holds we are dealing with the lowest stationary level
(on the energy scaleln both cases, spin-orbit coupling pro-
duces self-consistent electronic transitions and vibration of
the atoms in the molecule with frequenci@s and (), in
dimensionless variables:

aA
91:7, 92:201. (27)
1 we have
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_ exp{igr}(exp{iﬂlr} exp —iQq7} ) Eyp——
C1= + +1 ],
V6 V2 V2 E,
explig 7}

To= G (exp(iQqr}—exp{—iQq7}),

:exp[igr}(exp[iﬂlr}+exp[—inr}_i)_ 51%

T
N V2 Va

Rev.; and Imv., oscillate with the frequency2,; and
Rev.,, Imv.q, and Rey, oscillate with the frequency@; .
These two frequencies appear simultaneously, and the tinfeso molecule, which arises because of the static Jahn—Teller
average of the vibrational fieltl3), 7, vanishes and hence effect. These two steady states are unstable with respect to
the initial symmetry of the undeformed molecules will be SPin-orbit coupling. If the degeneracy of the initial st&fgis
restoredion the average Similar solutions were obtained for threefold, the degeneracies of the levelsandE, are two-
the caseaa* =0. fold and threefold, respectively. As a result of spin-orbit cou-
The strong coupling limit requires thay/Q,>1 and Pling, the degeneracy of the upper Jahn—Teller lefigl, is
9/Q, > 1. From(27) it follows that these two conditions are liftéd in the static limit, too; the lower levek, splits only
met if either Qo<1 and Q;,<1 or Qu~Q,,. The case dynamically (according to the Kramers theorg¢mThe
Q=0 ,is highly improbable and we will ignore it. A sys- hatched section in Fig. 1 corresponds to the electronic states
tem with Q< Q; , undergoes a radical transformation andthat result from time-dependent “mixing" of levels and spin
will also be ignored, since the spin-orbit coupling constant isflip- The electronic states vary with time with probability
small andA/f wy~Q 4 »/Qy<1. amplitudescq(t), c_4(t), andcy(t) within a certain energy
Mathematically, the system of nonlinear equati¢hs) interval. The length of this interval is determined by the spin-
and (20) has a bifurcation solution. Under any infinitely Orbit coupling constariisee Eq(8)]. As shown in Sec. 4, the
weak perturbatiorA the system becomes unstable and self-electronic transitions are accompanied by self-consistent
oscillations set in. The mechanism of excitation of such osStable vibrations of the charge distributed over the molecule
cillations is soft, so that we can say that dynamically thesurface and of the atoms in the molecule and by electron spin
system is stable. The phase space of the solutions of tHéP. Similar vibrations arise a result of transitions between
system contains at least two stable limit cycles and two unthe split states of the levé,. The vibrations are nonlinear
stable bifurcation point& One of these points fixes the but harmonic. o
steady state with the lowest energy for the deformeg C The time average of these vibrationsis zero and hence

molecule. Under a spin-orbit perturbation of the system thighe time average of the symmetry of the atomic configuration
state becomes unstable. of the molecule turns out to be the same as for a undeformed

molecule, while the symmetry of the electronic states is com-
pletely broken.
This treatment is valid if quantum vibrations can be ig-
4. DISCUSSION nored. For this to be true, the zero-point vibration energy
ust be much lower than the static Jahn—Teller splitting of a
6re1vel. It is also assumed that static splitting is larger than

FIG. 1. Dynamic splitting of levels of the Jahn—Teller systegy.C

This paper studies the electron-vibronic states of

charged @G, molecules with allowance for spin-orbit cou- . litt . th ibrational mod
pling. It is assumed that a real configuration of atoms can pdynamic splitting, since the new vibrational modes, are

described by a continuous distribution of the atomic density}?la_ss'calI by assumption. The amphtude_:s of the V|bra_1t|ons are
over the spherical surface of the molecule. The spherica“m'ted dl_Je to the smaliness of the spin-orbit cogplmg con-
functions{Y,}1__, are used to represent the wave function SNt This means that _the electron-phonon couplmg constant
of the threefold degenerate electronic statecoupled to the IS Iarge .and' the condmonz for the Born—Oppenheimer ap-
atomic vibrations of the fivefold degenerate lev¢). The proximation is met §~1/05>1).
functions{Y,}2_ _, characterize the corresponding vibronic
mode. The electron-phonon coupling is introduced in the or®- CONCLUSION
dinary way**®In addition to electron-phonon coupling, the  we have proposed a variant of the semiclassical treat-
dynamic “mixing” of electronic states due to spin flip for ment of the Jahn-Teller effect for the;@molecule that fa-
difference projectionsn of the electron orbital angular mo- cilitates an understanding of the nature of some excited elec-
mentuml is also accounted for. tronic states in fullerenes. There are still many difficulties in
The solution(27) obtained in Sec. 3 and the important directly verifying this effect by experiments. The method
results are depicted in Figure 1, which shows the transitiomeveloped in the present paper was used to derive expres-
from the electronic state¢;, (Eo) of the undeformed g  sions for the Jahn—Teller splitting of intramolecular phonon
molecule to the dynamic Jahn—Teller stétee hatched sec- frequencies ofHy and to explain one of the multiphoton
tion); E; and E, are the split electron energy levels of the singularities in the Raman and IR spectra of fullerene com-
atomic configurations of reduced symmetry of the deformegounds. The consequences of the Jahn-Teller effect also



JETP 89 (1), July 1999 A. A. Remova 111

manifest themselves in the data on electron spin resorfdnce* E-mail: lina@casper.che.nsk.su
In particular, the modéd, may disappear completely, and
instead two modes with lower frequencies that differ by a_____
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orbit coupling, so that they must be accompanied by fairly , -
slow electron spin flips. The vibrations occur near the posi- Eéfsh,"ﬁ,;yﬁ'fﬁeya;g’s'ilgigggr.]d’ G Dresselhaus, and . S. bresse
tions of equilibrium of the undeformed molecule, while the 53. Kim and W.-P. Su, Phys. Rev. B, 8832(1994.
static Jahn—Teller configuration of atoms ig,@ unstable K. Prassides, C. Christides, M. J. Rosseinskyal, Europhys. Lett19,
even in the Born—Oppenheimer approximation. More thamszg\’,\(/;ggzj M. Hodden, A. M. Rao, and P. C. Eklund, Phys. Re60B
that, the ground state of an isolategy@nolecule is time- 1731994, o T ' '
dependent. The Jahn—Teller effect may become static in théo. Gunnarsson, H. Handschuh, P. S. Bechthold, B. Kessler, G. Gantefo
crystalline structure of fullerites or fulleridéd.In these and W. Eberhardt, Phys. Rev. LeTd, 1875(1995.

e : .
cases the degeneracy of the Jahn—Teller ground state is |IﬂQ§£' \'?V‘é?zl'ﬁ dangK'\E’;r:j(:r?fghisAgéfr;méflﬁfgg;%(199])'

completely by the crystalline field. _ _ V. P. Antropov, O. Gunnarsson, and A. I. Liechtenstein, Phys. Rei8,B

Thus, the ground state of an isolated electron-vibronic 7651(1993.

. . . . . 12 TR

system of the G, molecule with spin-orbit coupling is rep- 13M-LODB”e”v ngé- RAng; ‘?53 ?3175(1'39@-53 5096(1998
. . . L. pbunn an . A. bates, yS. REV.0Z, .
resgnt_ed by ?Iosed CyCIeS in the phase Space, Whl(?h ensure, . B. Bersuker,The Jahn-Teller effect and Vibronic Interactions in Mod-
periodic motion near unstable steady-state solutions. Theerm chemistry Plenum Press, New Yorkl 984).
originating nonlinear vibrations are accompanied by energy®w. z. Wang, C. L. Wang, A. R. Bishop, L. Yu, and Z. B. Su, Phys. Rev.
transfer from the electron subsystem to the vibrational sub;,B 51 10209(1995.

‘ hen th i d  freed ited J. Ihm, Phys. Rev. B9, 10726(1994).
system when . € Spin degrees of freedom are e)_(CI ed. 17A. Auerbach, N. Manini, and E. Tosatti, Phys. Rev48 12998(1994).

In conclusion we note that allowance for rotations of the8_. p. Landau and E. M. LifshitzQuantum Mechanics: Non-relativistic
molecule as a whole leads to similar effects. Here the Coringheory 3rd ed., Pergamon Press, Oxfa®77, Chap. XIIl.
olis splitting of levels acts as spin-orbit coupling. Most re- Sxf%réﬁfgfg %”hiE-IM- LifshitzMechanics 3rd ed., Pergamon Press,
sults are valid in the latter case, too; they can be of use By . Arnol'd, Additional Chapters on the Theory of Ordinary Differential

experimental studies of the Jahn—Teller effect for a freely Equationdin Russiad, Nauka, Moscow1978, Chap. VI[English transl.:
rotating G, molecule. Geometrical Methods in the Theory of Ordinary Differential Equatjons
Springer, Berlin(1983].

The work was supported by a grant from the SuperconflA- A. Remova, V. P. Shpakov, U-Hyon Paek, and V. R. Belosludov, Phys.
ductivity Council of the Russian Academy of Sciences K¢ E52 13715(1995.
(Project 9610Y. Translated by Eugene Yankovsky



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 89, NUMBER 1 JULY 1999
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We analyze the influence of fluctuations of the nonsecular part of the spin Hamiltonian on the
decay of ordinary and multiguantum signals of the two-pulse spin echo in a quadrupole

spin system with an inhomogeneously broadened spectral line. Expressions are obtained for the
rate of decay of an echo in the case of selective excitation of a signal from quadrupole

nuclei with arbitrary spin. These expressions are then used to analyze the experimentally observed
ordinary and multiquantum echo signals from quadrupole nuclei with Ispi®/2 (>Cr,

83Cu, and®Cu) in ferromagnetic chromium chalcogenide spinels. 1899 American Institute of
Physics[S1063-776019902107-1

1. INTRODUCTION was analyzed in Refs. 6 and 7. However, detailed studies of
the relaxation properties of the multiquantum echo signals
Nuclear magnetic resonan¢iMR) is a method of in-  were not performed.
vestigating magnetically ordered materials that allows one to At present, the theory of magnetic relaxation for spin
obtain information on a microscopic level about the staticsystems with inhomogeneous broadening of the spectral line
and dynamic properties of both the crystalline lattice and thgs well developed for the case where quadrupole interactions
electron spin systerh” The main capabilities of NMR in  are absent®1In this case, the relaxation interactions can
magnetically ordered materials are well knoWhThey are _be represented as interactions of the resonant spins with an
based on the fact that the main interaction probed by NMR igffective magnetic field which is a stochastic function of

the interaction of the nuclear magnetic moments with thime The interaction of the nuclear spin system with a fluc-

local hyperfine magnetic fields created by the nonzero eleGy 4ting magnetic field is treated as a perturbation of the main
tronic magnetization. An important feature of NMR in mag- jyieraction, which is an interaction with a static magnetic
netically ordered materials is a natural inhomogeneous, q

broadening of the spectral line. In Spin systems W_'th an - pelative to the static field, the nuclear magnetization and
homogeneously broadened spectral line, when using two e

o . fluctuating magnetic field can be separated into longitu-
more exciting pulses, one observes echo signals, whose focri'inal and transverse components. The random process, as a
mation is described by the Hahn mechanisin the simplest : !

case of two pulses separated by a time intervahe echo rule, is characterized by two parameters: the correlation time
signal is forrr?ed at theptime=27-y(the timet is measured ' and the amplitude of the fluctuations Rapid fluctuations
from the time of onset of the first exciting pujse (o7 '>1) of the longitudinal component of the effective

Nuclei with spinl >1/2 can take part in electric quadru- magnetic field are the reason for the exponential decay of the

pole interactions. As a rule, in magnetically ordered materi{ransverse component of the magnetization. The decay rate is

als quadrupole interactions are weaker than the magnetic irpharacterized by the transverse relaxation time Rapid
teractions and lead to quadrupole splitting of the nMRfluctuations of the transverse component of the effective
spectra. In addition, quadrupole interactions can lead to thE'@gnetic field lead to an exponential recovery of the longi-

appearance of multiquantum echo signals, whose formatiof'dinal component of the magnetization with characteristic
time differs fromt=2r (Refs. 3-7. time T4, the longitudinal relaxation time. In addition, the

Multiquantum echo signals were first observed in non-tfransverse fluctuations lead to decay of the transverse com-
magnetic compoundsMultiquantum echo signals were later Ponent of the magnetization. In the case where all the relax-
detected in ferromagnets’ It has been shown, in particular, ation processes are due exclusively to the transverse fluctua-
that the quadrupole satellites are suppressed in NMR spectH@ns, the relationl,= 2T, is satisfied.
recorded with the help of multiquantum echo sigrfdiswas In the case of magnetic relaxation in a quadrupole spin
also noted that increasing the time interval between the ex§ystem in the presence of fluctuating magnetic fields it is
citing pulses leads to a more rapid decay of the multiquannecessary to take into account fluctuations of the electric
tum echo in comparison with the ordinary echotat2r  quadrupole interactions. The main interaction is represented
(Ref. 4. The decay of the additional echo signals from theas a sum of the interaction of the nuclear spins with the static
guadrupole nuclei, formed at times between the excitingnagnetic field and the secular part of the static electric quad-
pulses comparable with the inverse width of the spectral linefupole interactions. The relaxation interactions are the inter-

1063-7761/99/89(1)/7/$15.00 112 © 1999 American Institute of Physics
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actions of the nuclear spins with the fluctuating magnetic and  For the transverse magnetization of one spin ensemble

electric fields. with the same law of variatiokl(t), i.e., with one realiza-
Relative to the main interaction, the relaxation Hamil-tion of the random process, the mean value of the transverse

tonian can be separated into a secular and a nonsecular partagnetization is calculated with the help of the density ma-

The influence of the secular fluctuations on the decay of thérix operator

two-pulse echo signals from the quadrupole nuclei was theo-

retically investigated in Ref. 11 in the spectral diffusion ML ())=Tr{pW! ) =anexdit(En1—Em]

model. The theoretical results of Ref. 11 were successfully *

applied in Ref. 12 to analyze the experimentally observed X(m|p*(t)|m+1). (6)

decay of two-pulse echo signals froftCr (quadrupolg nu- Here m is the magnetic quantum numbdie.. 1,|m)

clei in the_ fer.romagnet Cd@Sel:Ag.. =m|m)); E,,=(m|Hy|m) are the eigenvalues of the unper-
Our aim in the present paper is to analyze the effect OEurbed HamiltonianHy: =il +1)—m(m=1), ie
0 m— - , Le.,

fluctuations of the nonsecular part of the spin Hamiltonian Oqtlm)zaglmily In order to find the response of the en-

the decay of a two-pulse echo in an inhomogeneously broaq: . o
. . ire spin system, it is necessary to average expres@pn
ened quadrupolar spin system. The theoretical results ob- . R
. L - . over the ensemble of ensembiles, i.e., over all realizations of
tained in this study are utilized to analyze the experimentally,
. ) . the random process. We denote such an average by a bar
observed decay of ordinary and multiguantum echo signals

. . . above the expression.
from copper and chromium nuclei in ferromagnetic chro- . o
. : . In the calculation of the transverse magnetization we
mium chalcogenide spinels.

need to calculate expressions of the typ&p* (t)|m’) us-
ing the explicit form ofp* (t) from Eq. (5). We assume that
the random quantities in the relaxation Hamilton{@nfluc-

2. THEORY tuate independently of one another:
We write the Hamiltonian of the main interactigin 0, g#f,
unitsA=1) as tHf_(t")=g_(t")f,.(t")= (7)
g+ (tHf_(t")=g-( +( Ki(T), g=f.
, 1(+1)

Ho=—wql T wq| | , (1) Here byg.(t) and f.(t) we meanw-(t) and V. (t) or

_ _ o W_ (t). The correlation functioi¢(T), as usual, depends on

where wo= B, 7y is the gyromagnetic ratid is the mag-  T=|t"—t’| for any choice oft’ and falls off rapidly with

netic induction,wq is the magnitude of the quadrupole split- growth of T.

ting of the NMR spectrum, antis the particle spin. Calculation of —(m|p* (O[m’) using the “quantum-
We represent the Hamiltonian describing the fluctuation§yechanical” expansion of unity 2=|m)(m| and the ex-

of the nonsecular part of the magnetic and electric interacpncit form of the relaxation Hamiltoniari2) gives rise to

tions as factors of the form
Hi()=— o ()] _—w (D)l +V, ()1 _1,+1,1 )

t b
VO w2, dabed= [T et (EaEy)

2) —it'(E,—Eg)]dt'dt". ®)

The coefficientsy . (t) describe the fluctuations of the trans-
verse component of the local magnetic field at the nucleuslransforming from the variablg’ to the variableT and ex-
andV. (t) andW. (t) are the fluctuations of the nonsecular tending the limits of integration oveF to the range from
part of the quadrupole interaction. —o to +o, we obtain

Treating the Hamiltoniatd ;(t) as a perturbation of the t
main HamiltonianH,, we calculate the response pulses with _ * ; _
the help of the density matrix operatoft) in the interaction Ji(a.b.c.d)= fo fmef(T)eXF[IT(Ea Eo)]

T3

representation: . ,
Xexfdit'(E;—Ep,—E.+Eq)]dTdt'. (9)
p* (t)=exp(iHot)p(t)exp(—iHt), 3)
. ] ) If E,—Ep—E.+E4#0, thenJ; is an oscillating function of
H1 (1) =expliH o) Hy () exp(—iH,t). 4 timet. The appearance in the expression fomp* (t)|m’)

Assuming that,(t) varies in time much faster thast (1),  Of oscillating terms is equivalent to the appearance of an
at early times we obtafn additional shift of the resonance frequency that results from

taking into account the relaxation contribution of the non-
secular terms of the spin Hamiltonian in the Redfield théory.
In our analysis of the decay of the echo signal we disregard
the oscillating terms. In addition, we will assume the mean

(Y s o
_ *(0YH* (t")TH* (t/)1dt’ dt". 5 values of all oscillating quantities to be zero.
fo fo (L™ (OHT(t)HL (tY)] ® Fora=c andb=d from Eq. (9) we obtain

t
p*<t>=p*<0>+ijo[p*(om*{(t’)]dt'
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Ji(a,b,a,b) the exponent in expressiqid) to zero defines the time of
J@ab)=——— formation of the echo signal in an inhomogeneously broad-
ened spin system:
— ” I — E.—E.»
f_wa(T)eme(Ea Ep)1dT. (10) o=k E Em 14
Em+1—Em
The quantityJs(a,b) has the meaning of a spectral density Here the timet, is measured from termination of the second
of the random process at the frequengy,=E,—E,. exciting pulse.

Omitting cumbersome intermediate manipulations, we  The relaxation contribution of the nonsecular fluctua-
present the final result for the mean value of the matrix eletions is described by the last two factors in expresgis).
ment of the density matrix operator Since the expression for the transverse magnetization is

—_— based on expressiofb), which is valid for smallt and 7,

* N\ — _ ’ * ’
(mlp* (H)|m")=[1—S(mm")t)(ml|p* (0)|m"), (1) expression(13) can be considered as the series expansion of

where some relaxation function inand 7 to linear terms. However,
the specific form of the relaxation function cannot be rigor-
S(mm")=aam, 1 Jo(M+1M) +ar_and, ously derived directly from expressiofi3). On the other
T hand, in the Redfield theoRyconstructed on the basis of the
X(M=1m)+ay ap ,,d,(m,m'+1) same assumptions as the calculations given above, differen-

tial equations of motion of the magnetization vector are ob-

+ - ' r
oy g Oy Jo (M7, M7= 1) tained in the form of the Bloch equations. It is known that

+amamq[2m(m+1)+(m+1)2 these equations describe the exponential decay of an echo
signal. On the basis of what has been said above, we assume
+m?]dy(m+1,m)+ e ap[2m(m—1) that the last two factors in expressi¢iB) are expansions of

the exponentials to linear terms. Thus, dropping the averag-

—1)2 2 _
+(m=1)7+m]Jy(m=1,m) ing notation, we obtain for the amplitude of the echo signal

+ a;,a;,H[Zm’(m’ +1)+(m'+1)2 formgd at the tima = (k+ _1)7 (the timet is measured from
the time of onset of the first pulse
’ ’ ’ + - ’ ’
+m'#3y(m’,m’' + 1) + e, g, [2m'(m (k+1)r
—1)+(m’—1)2+m’2]JV(m’,m’—1) M+(T)=M+(0)8X[{— T, ) (15

tatal o, dw(m+2,m) whereT, is the transverse relaxa_ltion time dL_Je to fluctuations
. . of the nonsecular part of the spin Hamiltonian
+an_10m_20nan_1dw(m—2,m)

1
-1_ ’ "
—I—a;,a;,ﬂa;ﬂﬂa;,ﬂ.lw(m’,m+2) T2 —k+1[kS(m,m+1)+S(m M. (16)
+ “;'71“;' aan,  dy(m’,m =2). In the derivation of expressiaii5) we took into account that

for an echo signal formed at the tinte- (k+ 1) the total
12 relaxation time is equal to the sum of the time interval

We are interested in the response of the spin system to Retween pulses and the time interkai between the second

two-pulse input. For the transverse component of the magPUISe and the echo signal.
netization at the time after termination of the second excit-

ing pulse, we obtain
3. DISCUSSION OF THEORETICAL RESULTS

TV + ’ D+ — | Al
(M4 (1)) = amn(m[Rz |m"){m"[R; p(O)Ry [m") Expressiong16) and (12) allow us to obtain the relax-

X(m"|R, [m+ 1)exgit(Ems1— Em) ation time for an arbitrary echo signal in a system with arbi-

. trary spin. In this casd;(m,m’)=J;(m’,m) for anyf, as
Fi7(Eqy—Ep)][1—=S(m,m+1)t] follows from symmetry of the correlation function relative to
X[1—S(m’,m")7]. (13) time inversionT.

First let us consider the well-known case of decay of an

Here the operator®" describe the evolution of the spin echo signal in a spin system witk= 1/2. In this case a single

system acted on by thigh exciting pulse (=1,2), 7is the  echo signal is formed at the time=27 for m=—-1/2,

time interval between exciting pulses(0) is the density M’ =1/2, andm”"=—1/2. Using(12) and(16), we obtain

matrix at the time of onset of the first exciting puls&(0) B 1 1

xl,]. T21=2Jw(§,—§), (17
Apart from the last two factors, expressi@B) is iden-

tical to the Solomon formufsfor the two-pulse response of a in good agreement with the well-known result for the trans-

quadrupole spin system without fluctuating fields. It isverse relaxation time due to fluctuations of the transverse

knowr?~® that the condition of equality of the argument of component of the local magnetic fi€ld.
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TABLE I. Transverse relaxation rate for quadrupolar nuclei with dpi8/2.

Transverse relaxation raf, *

Secular contribution

Echo signal Nonsecular contribution Gaussian process Lorentzian process
2 2
e s W32 T3 +240(37) | TR | Tat g
m,,fi z +120w(3,—3) +123w(7.~ 2)
=2
(LF quadrupole satellite
Echo %’ . 4‘]1.:)(%!7 %)*6%}(* %,%) aflrc1)+4créTCQ ggtog
m=—-35 m=-3, 1 3 3 1
o % 2 +243y(- 3, - ) +123w(2.~2)
=72

1_3
(HF quadrupole satellije +123w(3.-3)

2
Echo 2r 8J,(3,-2)+31,(~ 3~ 3)+33,(33 767en 7o
1 3 31
+123y(—32,-2)+123(2.2

, 1

m=-3 m'=3,

m’=— 2 1 1_3
+123w(3 —2) +123w(3,—2)

(central transition

Nl=

2 3
Echod 63,(3~ D +33u(~ 2.~ D +33,(3.3 80aTen 270
m=—3 m=3, 1.3 1
o 3 2 +120y(-3,-3) T120y(3,3)
-2

3 _ 1 1_3
(central transition +120(2,-3)+120w(3.~2)

However, of greatest interest for us is the case of a quadime, there is no contribution from the fluctuations of the
rupole nucleus with spith=23/2 since most of the available secular part of the quadrupole Hamiltonian at the frequency
experimental results on observation of multiquantum echmf the central transitiof
signals were obtained for just such nuclei. In the calculation  On the basis of the data in Table | it is possible to intro-
of the transverse relaxation time we will consider echo sig-duce a parametdR, equal to the ratio of the transverse re-
nals formed at the time=2r at the frequency of the central laxation rate for the 4echo to the relaxation rate of the 2
transition and at the frequencies of the quadrupole satellitegcho at the frequency of the central transition
We also take into account the multiquantum echo formed at
the frequency of the central transition at the time4r R=T,Y(47)/T,*(27). (18
(Refs. 4 and b

Table | gives the magnetic quantum numbers correfor fast Gauss—Markov and fast Lorentz—Markov processes
sponding to each of the echo signals, and expressions for tie# spectral diffusion the paramet&takes the valueR=3
transverse relaxation time obtained using expressi@@s andR=1.5, respectively. In the case where the decay of the
and(16). In addition, Table | gives expressions for the trans-echo signals is caused exclusively by fluctuations of the non-
verse relaxation rate due to fluctuations of the secular part afecular part of the quadrupole Hamiltonian, we hRwel. If
the spin Hamiltonian. These latter expressions are based dhe dominant contribution tﬁz‘l is governed by the spectral
results of Ref. 10 in the limiting cases of fast Gauss—Markowlensity of the fluctuations of the transverse component of the
and fast Lorentz—Markov processes of spectral diffusionlocal magnetic field at the frequency of the central transition
Here we used the following notationt, and r.q for the (*1/2—F1/2), thenR=0.75. In general, for nonsecular
amplitude of the fluctuations and the correlation time for thefluctuations 0.75R=<1. Thus, the dimensionless parameter
longitudinal component of the local magnetic fietey, and R can be used as a criterion to determine the type of relax-
7o for the amplitude of the fluctuations and the correlationation process.
time of the secular part of the Hamiltonian of the quadrupole  Also note that to analyze the relaxation contribution due
interactions. The restriction to fast processes is dictated byo fluctuations of the nonsecular part of the spin Hamil-
the fact that only in the limiting case7.q>1 or UQTC’Ql tonian, it has been traditional to use a correlation function of
>1 will an increase in the time interval between the excitingthe form
pulsesr lead to exponential decay of the ectid). For both
relations between the correlation time and the amplitude of  K(T)=o?exp( —|T|/7¢s), (19
the fluctuations the decay of the echo is nonexponential.

It follows from the results presented in Table | that thewhere the subscripht as before, can take one of three pos-
fluctuations of the nonsecular part of the spin Hamiltoniansible valuesw, V, andW, o is the amplitude of the fluctua-
contribute to the decay of the signals of the nuclear spin echtions, andr.; is the correlation time of théth term of the
not only at the frequencies of the quadrupole satellites, butlamiltonian(2). Substituting expressiofi9) in Eq. (10), we
also at the frequency of the central transition. At the samebtain
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2 TABLE Il. Transverse relaxation rate in CuGgSh) 955, -
Je(mm’)= 271 Ter (20
L) =5 2 -1 sl
W Tgf Nucleus T,", us
: : . Ech Ech
where the frequencyomuy =|Em—En| (in units A=1) is cho 2r cho 4
determined by the energy levels of the unperturbed Hamil®*cu (1.72¢0.07)x 102 (3.57x0.35)x 1072
tonian (1). %5Cu (1.74-0.07)x 1073 (3.60£0.35)x 103

4. NMR OF ®3Cu AND %5Cu IN CuCr,S, : Sb NUCLEI

To investigate the echo sianals from copoer nuclei in thed preference to any of the random processes considered here;
9 9 PP %owever, it allows us unambiguously to reject the Lorentz—

ferromagnet copper sulfochromite, we used a pulsed InCOhev\'/Iarkov process of spectral diffusion. To interpret the experi-

eCrl]JtCrNIZéRl;) :ge;:;ﬁn]gtse;i_:\/\ﬁ K?ﬁe:hm;naek?segiygp:gmemental results, we assume that the decay rate of the echo
1.98270.0224 P signals T, %) has both a secularTgg) and a nonsecular

stant external magnetic field. a I o ; .
It is known3 tr?at in undoped CuGE, the spectral lines (T,H) contribution, and that this is valid for the ordinary and
4 éor the multiquantum echo:

having their maximum amplitude near the frequencies 100.
and 107.9 MHz correspond to resonances of the copper iso- T2‘1(27)=T2_51(27)+T2_n1(27), (21
topes®Cu and®Cu. In NMR spectra recorded on ther 2 . . .
echo signal in CuGresShy oS, we detected two spectral T2 (A7) =Tog (47)+ Ton (47). (22)

lines corresponding to the two copper isotopes. However, thghus, we obtain the following relation between the nonsecu-

positions of the spectral maximum in the doped compoundar and secular contributions to the decay of theegho:
are shifted toward lower frequencies by 0.3#3D05 MHz,
Ton(27) _ Re— Ry,

which is due to a weakening of the exchange interactions _

brought about by the introduction of Sb ions. Tos(27)  Rs—Re’
Along with the ordinary two-pulse echo signal formed at,,yere R, and R, are the values of the paramefrfor the

the timet=2r, we detected an additional echo signal in thegecyjar and nonsecular fluctuations, &ds the experimen-

doped compound &t=47. The maximum amplitude of the 51y observed value of the paramefr Assuming that the

4r echo signal is observed at frequencies corresponding Qacylar contribution is due to the Gauss—Markov process,

the maximum amplitude of .theTZecho. Bpth copper iso-  gng substituting  numerical  values, we obtain

topes are quadrupole nuclei, and the spin of each of them (o.y/T, (27)~1. This result implies that the contribu-

I =3/2. For such nuclei the echo signal formed at the tim&;gng tg the decay rate of the two-pulse echo due to fluctua-

t=47 can be considered as a multiquantum echo. The €Xjons of the secular and nonsecular parts of the spin Hamil-
perimentally observed peculiarities of formation of an addi-ionian are comparable in magnitude.

tional echo signal at#indicates that the given echo signal is
indeed a multiquantum signal.

The formation of multiguantum echo signals is possible
in the case where the magnitude of the quadrupole splitting  Abelyashewet al? reported the results of an experimen-
of the NMR splitting is nonzero. Ferromagnetic copper sul-tal study of the decay of therzcho signal fron?>Cr nuclei
fochromite has a spinel structure in which the copper iondn the ferromagnet GghgsAgdg 01:Cr.Se, at T=4.2 K. A the-
occupy tetrahedral sites. The local symmetry of these sites isretical analysis was carried out within the framework of the
cubic, and the gradient of the electric field for such sites intheory of spectral diffusion based on results of Ref. 11. In
an ideal lattice should be equal to zero. The experimentallyparticular, it was shown in Ref. 12 that the Gauss—Markov
observed lowering of the local symmetry of the tetrahedraprocess of spectral diffusion allows one to explain the ex-
sites is apparently due to the influence of the Sb impurity angberimentally observed dependence of the transverse relax-
other defects of the crystalline lattice. ation time on the frequency. The solid curtein Fig. 1

Forgoing a detailed analysis of the NMR spectra of therepresents the calculated dependence obtained in Ref. 12 by
copper nuclei, let us consider the relaxational properties ofitting the experimental data.
ordinary and multiguantum echo signals. To investigate pro- In the present paper we investigate the decay of a mul-
cesses of nuclear magnetic relaxation, we measured the déguantum 4 echo from®3Cr nuclei in the same sample that
pendence of the amplitude of the echo signal on the timevas used in Ref. 12. We have established experimentally that
interval between the exciting pulses Exponential decay at T=4.2K the decay of a multiguantumr4cho is expo-
was observed for all the investigated echo signals. The decayential and that the relaxation time takes different values at
rate T, ! was determined by fitting the experimentally ob- different points of the spectrum. The values of transverse
served dependences of the amplitudes of the echo signals oelaxation time obtained by fitting the experimentally ob-
the time interval using expressiqi5). Values osz_1 ob-  served dependences with expresgib) are plotted in Fig. 1
tained for the frequencies of the spectral maxima of the 2 by open and filled circles versus the frequefy.
echo are given in Table II. As follows from the data plotted in Fig. 1, the frequency

The value of the paramet&=2.08+0.32, obtained on dependence of the relaxation tiriig for the 4r echo differs
the basis of the data in Table Il, does not allow us to assigfrom the dependence for the-cho. To interpret the experi-

(23

5. NMR OF 53Cr IN CdCr,S, : Ag
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7. us tonian due to orientational inhomogeneity of the electronic
magnetization vector provide a good description of the fre-
quency dependence of the relaxation time.
According to the data in Table | and expressi@f), the
contribution of the terms of Hamiltoniai2) with coefficients
w- and V. is proportional to the spectral density of the
random process at the frequencieg and wy*+ 2w, While
the contribution of the term with coefficien¥%/.. is deter-
- ; mined by the spectral density of the random process at the
230 435 44.0 445 frequency 2o+ wy). Clearly, a situation is realized in
v, mHz CdCrSe;:Ag, where the dominant contribution to decay of
FIG. 1. Frequency dependence of the transverse relaxation tinféCof the multhuantum echo signals is determined by the SpECt_ral
nuclei in Cghosfdo 016Cr,Se, at T=4.2 K: open and filled circles — experi-  density of the random process at the resonance frequencies.
mental points for the #echo; curved and1’ — Gauss—Markov process of The decay of the echo signals formed at the titme
spectral diffusion(1 — theoretical dependence for the &ho from Ref. 2, =2+ is determined by the Gauss—Markov process of spectral
1" — theoretically expected value for the 4cho; 2 — nonsecular contri- — yiq sion, which is reflected by the solid curdsn Fig. 1. It
bution to decay of the Aecho(experimental points fitted by the theoretical ! .
dependencé24). follows from the data of Table | that the transverse relaxation
time for the multiquantum A echo in this case should be
three times as small. The theoretically expected valué,of
for the 4r echo in the case of the Gauss—Markov process is
r_nentally observed frequency dependence of the relaxatiopyfiected by the dotted curvE in Fig. 1. As follows from
time T, measured for the Aecho, we assume that the decay the data plotted in Fig. 1, the Gauss—Markov process is re-
of this signal is due to fluctuations of the nonsecular part Otsponsible for the decay of therdecho only in the high-
the spin I—!amiltonia”- _ frequency region of the spectrufthe open circles in Fig.)1
Cadmium selenochromite has the structure of a normal 1 interpret the above results, we assume that there are
spinel, in which the chromium ions occupy octahedral sitesy types ofS°Cr nuclei in CdCsSe,:Ag. The main contri-
The local symmetry of these sites is trigonal, and the resopytion to the magnetic relaxation of nuclei of the first type is
nance frequency depends on the anglethe angle between que to fluctuations of the secular part of the spin Hamil-
the electron magnetization vector and the crystallographigonian. From these nuclei is observed the etho, whose
direction(111). The NMR signal at different frequencies is properties are discussed in Ref. 12. The multiquantum 4
created by nuclei of ions with different values @f echo from nuclei of the first type is observed experimentally
The coefficients entermg into the H.amlltonlaz).also only in the high-frequency regiofthe open circles in Fig.)1
depend on the anglé, specifically,w..>sin2, V.=sin20,  The apsence of an echo in the low-frequency region is due to
andW..«csir’g (Ref. 1. Following Ref. 12, we assume that the |ow intensity of the signal, and in the intermediate-
the source of the fluctuations is orientational inhomogeneit)frequency region it is attributable to the inordinately short
of the electronic magnetization vector. Thus, the amplitudgg|axation time(the dotted curvel’ in Fig. 1).
of the fluctuations is determined by the derivative of the Magnetic relaxation of3Cr nuclei of the second type is
corresponding coefficient of the angle o~[df/36], where  qye (o fluctuations of the nonsecular part of the spin Hamil-
f takes the values), V, and W. Keeping the terms in the tonjan. The signal from these nuclei is observed as a multi-
Hamiltonian (2) with o arl1d V., from expressionsl6),  guantum 4 echo in the intermediate-frequency region. The
(12), and(20) we obtainT, *«cos26. The solid curve2 in  apsence of a signal in the high-frequency region is due to the
Fig. 1 was obtained using the dependence inordinately short relaxation timéhe solid curve2 in Fig.
Tgl(0)=A+B cog 26. (24 1). The absence of a s.igna! in the Iow-frequ_ency _region is
due to the short relaxation time and the low intensity of the
The coefficientsA and B were chosen so as to achieve signal. In our discussion of the theoretical results we noted
the best fit of the calculated dependeri2éd) to the experi- that in the case where the decay of the echo is due to non-
mentally observed frequency dependenceTgffor the 4r  secular fluctuations, the relaxation time for theezho is the
echo. The coefficienA in expressior(24) takes into account same or somewhat smaller than the relaxation time for the 4
the isotropic contribution to the decay of the echo signal. Thexcho. It follows from a comparison of the solid curveand
relation between the angttand the resonance frequengis 2 in Fig. 1 that the 2 echo from the second type of nuclei is
given by the relation not observed experimentally because of the small value of
_ Tz.
v=vo+va(3cos 6-1) (25) A possible reason for the appearance of two types of
where vy=44.07+0.03 MHz, and v,=—0.55+0.02MHz nuclei may be the following. Doping with silver leads to the
(Ref. 12. The fitted dependences in Fig. 1 correspond toappearance of Gf ions as a result of valence compensation.
A~6.76x10 3 us t andB~23.26x10 3 us 1. These ions are not localized, but migrate in some vicinity of
As follows from the data plotted in Fig. 1, in the larger the impurity ion Ag". For the low concentrations of the sil-
part of the frequency spectrufthe filled circles in Fig. 1 ~ ver impurity considered by us the regions of migration of the
the fluctuations of the nonsecular part of the spin Hamil-Cr** ions which belong to various impurity centers do not
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overlap each othetFig. 2. Type-l °3Cr nuclei belong to We wish to thank T. G. Aminov, E. V. Bushev, and G. G.
Cr** ions which are located outside the regions of migrationShabunin for providing samples of chromium chalcogenide
of the C#* ions. Type-II°3Cr nuclei belong to G ions  spinels. This work was carried out with the partial support of
which are located in the regions of migration of the*Cr ISSEP(Grant No. APU072083

ions. Division of the nuclei into two types according to the

results of our study of magnetic relaxation in impurity mag-,;

nets is similar to the division made in Ref. 14. E-mail: roton@ccssu.crimea.ua
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The wave function of an electron in a symmetric double quantum well placed in a strong time-
periodic electric field is found, expressions for quasienergy functions are derived, and the
dependence of the dipole moment on the average electric field is analyzed for the case where the
average field remains constant. In the case of slow monotonic variation of the “constant”
component of the electric field, the Sctioger equation is solved by the WKB method. It is found

that the dependence of the dipole moment on the average field is of a clearly nonlinear almost-
periodic nature and that in the event of adiabatic monotonic variation of the average

field there is a periodic relocation of the electron density from well to well with a small frequency
proportional to the rate of variation of the average field. 1@99 American Institute of
Physics[S1063-776099)01507-3

1. INTRODUCTION presence of a constant external field, and in Ref. 8 it was
shown that the constant component has a stabilizing effect on
Studies of the electron dynamics in quantum wells actithe existence of states in the region of one well. On the
vated by variable external fields are of undisputable interesivhole, however, an analysis of the dependence of the above
from the standpoint of exposing the potential of moderneffects on the external constant field has yet to be done. The
nanostructures and electron devices based on such structurpsesent paper is probably the first attempt of such an analy-
The methods developed in such studies make it possible tsis.
directly control the wave function of electrons in quantum
wells by varying the parameters of a classical external elec-
tromagnetic field. In this paper we will examine the effects
of electron polarization in a symmetric double quantum well
placed in a strong time-periodic external field with a finite We will examine the electron dynamics in the symmetric
average value. structure of two quantum wells separated by an impenetrable
Earlier, in relation to heterostructures, the concept of aarrier in the presence of a strong time-periodic electric field
double quantum well was used to investigate the phenom¥ directed along the axis of the structure. We will assume
enon of dynamic localization of the electron wave functionthat below the top of the barrier there are only two energy
in one well initiated by a sinusoidal external fiéfd, while  levels of the unperturbed systefy ;= = A A/2 (the zero of
in Refs. 5—7 the dipole moment of the system was calculatednergy is chosen exactly midway between the leyeldth
and the possibility of emission of low-frequency dipole ra-the “distance”# A determined by the tunnel integral through
diation by such a structure was investigated. In Ref. 8 it washe separating barrigithe integral is exponentially small
found that dynamic localization and the related emission ofVe will define the symmetric and antisymmetric wave func-
low-frequency dipole radiation are possible in any periodictions yg 1(£) corresponding to these energies so i) is
field (not necessarily sinusoidalprovided that the field is always positive andgy1(x) is positive only ifx>0.
strong enough. The oscillations of the electron wave packet Since the distance from the lower energy levels to the
and the electromagnetic radiation generated by these oscillaext levelE, is much larger than the energy splittifid, we
tions were observed in experimeftd? Finally, in Refs. 1  will use the two-level approximation throughout the paper,
and 12 the dependence of the electron distribution in thessuming, naturally, that the external field is unable to mix
wells on the way in which the external periodic field is the high-lying levels with the lower levels. Thus, we must
switched on was studied. impose the restrictioh A<Vy,<E,, whereVg=e#Xg, is
In the above papers the attention was focused on estalthe matrix element of the perturbation in the dipole approxi-
lishing the conditions imposed on the amplitude and fredmation, andxg; is the coordinate’s matrix element. The
guency of the external field needed for “locking” the wave above inequalities concretize the idea of a strong field: the
packet in one well, or the regime of low-frequency electro-field must be so strong that the matrix element of the pertur-
magnetic radiation generation. At the same time, it is stillbation is much larger than the distance between the levels,
unclear how a constant voltage applied to the structure afiA.
fects the quantum dynamics of a system driven by high-  Finally, we will require that the frequency of the ex-
power laser light. Gorbatsevicletall and Dakhnovskii ternal field be much smaller thdf, /4. This will enable us
et al® studied the dynamics of the well populations in theto exclude resonant transitions to higher levels.

2. EQUATIONS OF EVOLUTION OF THE SYSTEM

1063-7761/99/89(1)/10/$15.00 119 © 1999 American Institute of Physics
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Since we are using the two-level approximation, it _ R

would seem natural to look for the wave function of a par- - —eXFJl ZIJ S(T)dT] 2

ticle in the form of an expansion in the basis consisting of

the two stationary states of the unperturbed system. It i$ince€(7) is a periodic function, we can expand the expo-

clear, however, that this is unlikely to be the most convenienfientials in(2) in a Fourier series:

expansion in the presence of a strong variable field. Since

below we are interested in the spatial charge distribution, a exp{zif s(T)dT] =exp[2i J qu-} 2 i
more appropriate basis is n=-e

Xexpliy,exg —inQ 7},
o0 xa(x) o0+ xa(x) Piynjexp —indir)
L(X)_T’ R(X)_T’ where Q=27/T, and u, and ¢, are the coefficient and
phase of the Fourier expansion, which are related by the

where the function®’| z(x) are completely localized in the formula
left and the right well, respectively, in accordance with the 1 (T
definition of the stationary-state functions ;(X). s expli )= ?f drexp{i nQT+2f E(T)dr)].

We can now write the wave function of the system as a 0

linear superposition of the orthonormal vectdfs z(x) with  The explicit expressions for the Fourier coefficieptswere

coefficients that are time-dependent and have yet to be debtained in Ref. 8 by the method of stationary phase. Here

termined: we will not discuss all the calculations done in Ref. 8—we
will only mention the main results.

‘I’(X,T)=CL(T)9XDI’iJ s(r)df]\IfL(x)JrCR(r) In accordance with the_ir definition, the_ coefficienty
depend only on the amplitude of the variable part of the
perturbation(we denote it byey) and are independent af

><exp{ —i f S(T)dT] rR(X)

(1)  When the amplitude:, is large, which is the case in our
problem, theu,, always decrease with increasiag either as
Here we have introduced the dimensionless time variabl@ power function(ase “* or &4 ) or exponentially. In both
r=At, while (7) is the ratio of the perturbation matrix cases the Fourier coefficients, turn out to be small, and
element to the transition enerdyA and is a periodic func- this fact substantially simplifies the solution of the problem.
tion with a dimensionless pericil=27A/w. We immedi- Representing the exponentials in E(®. by Fourier se-
ately note that () consists of two parts: the constant pat ries, we obtain on the right-hand sides of these equations a
which is the value ot (7) averaged over the period, and the Set of terms with phases of the forg,+ [(2e —nQ)dr.
variable parfs(7), whose average is zero. For convenienceObviously, when the differences2-n() is of order(}, all
the exponential phase factors in the expansion coefficient iRarmonics in Egs(2) are rapidly oscillating functions, and
(1) are written explicitly. their average effect on the system is essentially nil. But if at
Although ¥ (x) and W(x) are not eigenfunctions of n=1 the dlfference|28 nQ| is much smaller tha), the
the operator of a physical quantity, we can attach a definitéth term acquires a “slow” phase and the effect of thik
physical meaning to the coefficien8_g(7) (more pre- harmonic may be resonafgee, e.g., Ref. 14., p. 180The
cisely, to the squares of their absolute vajudswe define  case of resonant excitation of a two-level system is the most

the probability of finding the electron in the left or right well interesting one, and we will discuss it later in this paper.
as the integral The condition for resonance,

2e=1Q, (3

has a clear physical meaning. The constant component of the

perturbation moves the energy levels of stationary states

we can easily show that, to within terms whose magnitude igpart by a distance of approximatelye,2 provided that

determined by the overlap integrdl’, (x) P r(x)dx, the 2e>1. Hence to couple these levels in a resonant manner the

probability W, g(7) coincides with the square of theabsolute system needs exactly the same energy as one pHoton

values ofC|_g(7). The value of the overlap integral is given several photonsof the external field has. Thigh harmonic

by the dn‘ference(o(x) Xl(X) which, as shown in Ref. 13, of the Fourier expansion is in full agreement with this re-

is small in the parametei(A/E,)*?, and according yo the quirement, and it is this harmonic that couples these two

initial assumptions this ratio is the smallest parameter in théevels.

problem. In our future calculations we will ignore quantities Note, however, that we are speaking of tkie harmonic

of this order. of the exponential exp{2(7)d7) rather than theth har-
Plugging(1) into the Schrdinger equation yields a pair monic of the perturbation. When the amplitude of the func-

of equations describing the evolution of the coefficientstion E(7) is a quantity of order the distance Between the

0(=)
WL(R):f dx¥(x,7)|?,
—(0)

CLr(7): levels or is even greater than this distance, the contribution to
the resonant transition is provided not only by one-photon
dCL _ processes with the frequent§ but also by various multi-
———ex —=2i | e(ndry, . L . . .
photon processes with a finite difference in the energies of
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the emitted and absorbed photons equal@ Thus, the It is easy to verify that the error of the two-resonance
Fourier coefficienju, appears to be the amplitude of all these approximation is of the same order of smallness as the error
resonant processes. In the case of small perturbatigris  of the ordinary resonance approximation. As in the one-
can easily be verified directly that the coefficient de-  resonance approximation, in derivirid) from (2) we dis-
scribes a one-photon process involving tlle harmonic of carded the nonresonant harmonics with small Fourier coeffi-
the perturbation. cients,u,<1, and this formally determines the order of the

Obvious, the system of equatiorf®) can easily be error.
solved when the average value of the perturbation is close to Note that in a certain sense allowing for thlet(1)st
a resonant value and the conditi(@) is met either exactly or harmonic near théth resonancéor for thelth harmonic near
at least approximately, i.e|]2e —1Q|<Q. In this case we the (+1)st resonanogds superfluous, since these harmonics
need only keep the “slow” resonant term on the right-handare nonresonant and can be discarded, as well as the other
sides of Eqs(2) (thelth harmonic of the Fourier serigghe  nonresonant harmonics. The only reason for keeping these
term that makes the main contribution to the evolution of theharmonics in Eqs(4) is to obtain equations that describe the
expansion coefficient€ (7). dynamics of the system in the entire interval between the

Obviously, knowing the expansion coefficier@g r(7) neighboring resonances. The fact that these harmonics be-
and hence the wave function only in the vicinity of the ~ come nonresonant in turn guarantees that in our calculations
resonance is not enough to be able to analyze their depethere will be no significant buildup of error and that the error
dence ore over the entire range of variation of the constantwill become no larger than the Fourier coefficiepts.
component of the perturbation. Such analysis requires know-
ing the laws that govern the transition from one resonance to
another through the nonresonant region, and this knowled
cannot be supplied by the one-resonance approximati
alone.

Of course, one could solve the systé®) near thelth We begin by solving Eq94) under the assumption that
and (+1)st resonances and in the nonresonant region. Buhe average value of the perturbation remains unchanged and
then the problem arises of combining all these expressionsence the system Hamiltonian is strictly periodic in time
into one expression that would be valid over the entire rangevith a period equal to that of the external fidle= 27/ It
under investigation, which probably is impossible from theis well knowrt® that in this case it is convenient to use the
mathematical viewpoint. formalism of quasienergies and quasienergy functions with

For this reason we will develop an entirely new methodthe property U, (x,7+T)=U (X, 7)exp{—ivT}, where v,
of solution, which will be called the two-resonance approxi-which is defined to within the frequend of the external
mation. The approach is based on the idea of keeping twfield, is called the quasienergy. The quasienergy functions
neighboring harmonics i) rather than one harmonic, with corresponding to different quasienergies form an orthonor-
frequencies that are closest to the frequency of the transitiomal basis, and the particle wave function can be expanded in
between the energy levels. For instance,l@i<2e=<(l  this basis. Since in a two-level system the number of
+1)Q, we must keep thith and ( +1)st harmonics. Equa- quasienergies is equal to twave will denote them by..),

9 QUASIENERGY FORMALISM IN THE TWO-RESONANCE
ORPPROXIMATION

tions (2) then become the basis of the quasienergy functions is also two-
dc c dimensional. As a result we arrive at an expansion

L dG R . . _

s mexp[—nm—l (28—|Q)df] W(x,7)=A, U, (x,7)+A_U_(X,7), (5

whereA.. are the expansion coefficients.
+,u,+1exp{ —i i f (28__(|+1)Q)d7'}). Since the wave functionV(x,7) and the quasienergy
functionsU . (x,7) are assumed normalized, the squares of
the absolute values of the expansion coefficiehts must
i exp[ P +i (2?—IQ)dT] sum to unity. Moreover, the coefficients in the expansion in
the basis of the quasienergy functions are
time-independent in contrast to the expansion in any other
.4 base functions as, say, (). In accordance with the ordinary
rules of quantum mechanics, we can attach a definite physi-
Clearly, the solution of this systettif it can be obtaine  cal meaning to the squares of the absolute values of the co-
will have all the necessary properties. At values efdose  efficientsA. : they define the probability of finding the sys-
to 1Q) this solution coincides with that obtained in the one-tem in a given quasienergy state with the corresponding
resonance approximation discussed earlier. At valueseof 2 quasienergy.
close to (+1)() the solution coincides with that obtained in We will now consider to the problem of calculating the
the one-resonance approximation, but near thel()st reso- quasienergy functions and the quasienergies. The quasien-
nance. It is also clear that a more general solution of thigrgy functionU (x,7) must be a Bloch-type solution of the
form vyields universal quasienergy functions of the systenSchralinger equation. In accordance with these requirements
over the entire region separating the resonances and a comnd with allowance for the structure of the expansgibnwe
plete picture of the dependence of the quasienergies.on seek the coefficient€_g(7) in the form

. dCg CL

d 2

+,u|+1exp[i¢/1|+l+if (28__“ +1)Q)d7’]
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5 v
CL(T)Zf(T)eX[)[—i(V+—)T], 0.4r
2 +
0.2r
_ o
Cr(n)=g(m)exp —i =57 (6) o+
_ - . -0.2}
where §=2¢—1Q). For the sake of definiteness we will as- -
sume that the orddr of the resonance is even. In this case 0.4}
the functionsf(7) and g(7) (which have yet to be found - : 5

must (according to the Floquet theorgrbe periodic with a

period equal to that of the external field, and can be ex- FIG. 1. Dependence of quasienergies on the average field within the first
panded in Fourier series: Brillouin zone for the states +” and “ —" at w«,/Q2=0.05 andu,,1/Q
=0.1.

f(n= 2 f.expg{—inQrl,

- + |5|<Q,
: 2
g(n= 2 gnexp~inQr}. ==\ 0o GO - O
. ( . ) M|+1, |6—-0Q|<Q

Substitutingf (7) andg(r) into (4), we arrive at an infinite-
dimensional system of algebraic equations for finding therpe complete pattern of the dependence of the quasienergies

Fourier coefficientsd, andg,: v, on Ze1Q corresponding to the general expressiBhis
) depicted in Fig. 1.
ot §+nQ o i exp{—iyn} We see that the quasienergy branches are closest at the
2 n 2 n Ith resonancécondition(3)] and are farthest within the first

oxpl — i Brillouin zone at values ok corresponding to the next (
n Miv1 X =i} ~0, +1)st resonance. However, such “repulsion” of quasien-

> On+1= or e . . .
gy levels within one zone automatically results in their

“attraction” to the quasienergy levels belonging to the
) i explig} neighboring zones, which are obtained by translation of the

(”_ §+nQ 9nt 2 fn first Brillouin zone up or down the quasienergy axis Qy

) Obviously, the minimum distance between the quasienergy

N M1 explidy g} =0 7) branches is achieved at points of resonance and is equal to

2 - . OF (iy1-

Note that the fragment of the.vs.Ze dependence de-
Generally speaking, solving the system of equatighs picted in Fig. 1 can easily be continued outside the interval

is extremely difficult, since many harmonics contribute to theof values ofe for which the calculations were carried out,
functionsf(7) andg(7). But if we require that the param- since the dependence is almost-periodic invaith a period
etersu; and w4, be small, which is the case in a strong equal to Z). For instance, to continue the function (2¢)
variable field, the sequences of thgandg, decrease rap- to the second half of the “period,” into the region (
idly with respect to one of the coefficients, which is the _1)(<2e<10, it is enough to replacg, ., by u,_; and
largest, both in the direction of increasing numberand in  5py — 5in (8). After this we can extend the entire “period”
the direction of decreasing numbens Here keeping only  optained in this way to any interval on the 2xis.

one expansion coefficiertat most twg and discarding all Small deviations from periodic behavior will be ob-
the others turns out to be sufficient. served in a small neighborhood of the resonance poiats 2

By solving the system of equatior¥) (see the Appen- —nq, where the quasienergy branches are closest to each
dix) we find two quasienergy values. == v belonging to  other or to the zone boundaries. In these neighborhoods the
the first Brillouin zone, where dependence is determined primarily by the coefficiemts

and, since generally thg, are different, there can be no
82— 8% (Q—6)2+ (26— Q) (uP(6— Q)+ u?, 1) strict periodicity.
2(26-Q) ' Now we will derive the expressions for the quasienergy
(8  functionsU_(x.7). For this we must first determine the co-
efficientsfy, f_41, g9, andg, from the system of equations
One can easily establish that feij<Q and|s—Q|<Q the  (Al) and the normalization condition, which we can write as
quasienergie$8) become the ordinary quasienergies of the|fo|?+|f_;|2+|go|2+]|g:|2=1. With allowance for the
one-resonance approximatigthe analog of the Rabi fre- smallness of the coefficienty; and f_; for the branches
guency: “+"and “ —", respectively, we havdat v, =v)

=
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M|2 M|2+1 -1z external field. Here in one “half-period” the dipole moment
gl=[1+ 752 " Bt 5-207 =G, is directed along the constant field and in the other it opposes
the field, in both cases reaching maximum values. Thus, in
(O o expl—idn} one “half-period” these appears an antipolarization ef_fect
0o - 2v+s develops due to the additional action of the strong variable
_ field on the electron.
(gt exp{—iy+1} (10 Let us discuss thBvs.Z dependence in detail by using
-1 2v+6—2Q the quasienergy functiond?2). To this end we follow the

behavior of the degree of localization of one quasienergy

ered here, the coefficiet, always plays an important role: function, e'gH’U+(Xf’f.T).’ ats a f(;mc'uon 0(;8_ Ne_ar I;Ihelth
it is close to unity almost everywhere in the interval and Onlyresonance the coetiicient andgo provide a sizable con-

at the interval endpoints rapidly decreases to almost zer&f'buno_n to Uh+(x’7?' Hefre, as”we mlove g\'g from ]'the reso-
The coefficientf, is important only near théth resonance nance into the region of smaller values af,zhe coefficient

and the coefficienf _ , near the (+ 1)st resonance. go very rapidly decreases to zero on a sadiey, . while the

Reasoning in a similar manner, we arrive at the follow-coefficientfy almost equally rapidly becomes almost equal
ing expressions in whiclh = — v: to unity. Thus, for negative values @f such that|8|> u,,

- - . - . the functionU (x,7) is almost completely localized in the
f§7=6, of)=—f"*, oV=—tE* 1D left well.

Here the asterisk indicates a complex-conjugate quantity. AS W€ approach the exact equalify=0, the degree of
Now the coefficientf, is important in the interval of values localization of the quasienergy function in the left well de-
of &, while the coefficientsy, andg, are important only at Creases and a fraction of the wave function goes over to the

the endpoints of the interval. right well. When the condition for resonance is met exactly,

We substitute the expressiof&0) and (11) for the co-  the quasienergy functiot . (x,7) fills both wells to the
efficient into(6) and the result if1). The quasienergy wave S&mMe extent. A further increase is 2auses a further filling

According to(10), in the interval of values of consid-

functionsU_ (x, 7) are specified as follows: of the right well and depletion of the left well. In the limit
- _ “ 6> u,, the entire wave function is almost completely local-
U, (x,7)=exp{—ivr}[(f ized in the right well.

In the entire range of values okZbetween neighboring

(+) i i
1Y exgliQrhexli ()} L(x) resonances the functiod , (x,7) undergoes no substantial

+gg+> exp{—i g (1)} ¥R(X)]. change as long as?_Zis_ not too close to the next resonance
_ e () _ value (+1)Q. But if it is close to the resonance valuke (
U_(x,7)=explivti[(gy '+0i 'exp{—iQ7}) +1)Q, the coefficientsy, andf _; become important, with

. the first decreasing and the second increasing as we move
X — . i
xR~ T (D} WR(x) closer to resonance. Thus, the weight of the functi®éx)
+ 157 expli by (D}WL(X)]. (12) andW¥ (x) in the expression fol . (x,7) decreases and in-
- creases, respectively. At resonance the two wells are filled
where ¢ (7)=[(E(7) +1Q/2)d7. v whil . th ) funci .
Knowing the quasienergy functiorid2) will enable us equally, while as 2 increases, the quasienergy function be

: . . comes completely localized in the left well.
to determine the dipole moment of an electron in the If we use(12) and(11), we can easily see that the func-
guasienergy states and follow the dependence of the degrttaI n '

f polarizati f th ; th tude of th U_(x,7) behaves in a manner opposite to that of
of polarization ot the system on the magnitude ot the Con'UJr(x,T): when one is localized in the left well, the other is
stant external field.

localized in the right well, and vice versa. For this reason the

dipole moments of the states+* and “ —" differ only in
4. ELECTRON POLARIZATION IN QUASIENERGY STATES sign.
We will now calculate the dipole moment in quasienergy ~ Obviously, each time a resonance is passed, the func-
states. Using the definition of the dipole moment, tions U.(x,7) change their localization and completely

)= —e(U. (x,7)|X|U~(x,7) change the polarization of the given guasienergy state.

S =V Thus, we draw the conclusion that for almost all values
the above expressions for the quasienergy functions, and tied & the quasienergy functions coincide, to within unimpor-
normalization condition, we arrive at expressions for the di-tant phase factors, with the functiofs_r(x) localized in
pole moment in the states+” and “ —,” respectively: the left and right wells, respectively. The exceptions are nar-

N row resonant regionf2e —nQ |~ u,<Q where this asser-

d®)==D==exy(1-2G?). (13 tion is violated and tf\ze quasi|energy functions become delo-
According to(13), the dependence of the dipole momént calized.
on the double value of the constant component of the exter- On the other hand, as mentioned earlier, the coefficients
nal field, Z, is nonmonotonic and, more than that, almost-in the expansion of the wave function in the basis of the
periodic (as noted earlier, strict periodicity occurs only if all quasienergy function§Eqg. (5)] always remain constant.
the coefficientsu, are the same with the “period” deter-  Thus, if initially we prepare a wave function coinciding with
mined by the frequency) of the variable component of the one of the quasienergy functiofisy setting one of the coef-
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ficients in(5) equal to zero and the other equal to upitye  G?u,/(2v+ 6), which determines the amplitude of the first
find that such an expansion is retained at all subsequent méxarmonic in(14), is of order unity, while the amplitude of
ments in time and the wave function of the system alwayghe other harmonic with the frequenfy—2v is insignificant
corresponds to the chosen quasienergy state. If, in additionlue to the smallness of the rati®?u,,,/(2v+ 6—Q)
the value of the external field is such that the system is far-u,/Q<1.
from a resonance, the particle wave function becomes local- Similarly, near the [(+ 1) st resonance the first harmonic,
ized in one well and remains there for an infinitely long time.which becomes a rapidly oscillating function21). has a

But if the value of Z lands in a narrow resonant region small amplitude of orde,/Q)<1, while the second har-
near an arbitraryth resonance, the spatial distribution of the monic becomes a slowly oscillating function with a fre-
charge in pure quasienergy states changes significantly. Aguency \/M,2+1+(5—Q)2<Q and an amplitude of order
noted earlier, a characteristic feature of the resonant valuamity.
of 2¢ is that at these points the two quasienergy branches are In the nonresonant region both harmonics are small and
as close as possible, as shown in Fig. 1. In the zeroth aphe dipole moment is determined entirely by its average
proximation, if we set the coefficient, in the vicinity of the  value. Here the double quantum is always found to be polar-
nth resonance to zero, the quasienergy branches cross iaed if the energy levels are not equally populated, and maxi-
points Z=n{), which corresponds to degeneracy of themum polarization is achieved when only one level is popu-
quasienergies; in this case we speak of a quasienergy reslated. But if the quasienergy levels are equally populated, the
nance. If the finiteness of the, is taken into account, the dipole moment vanishes.
degeneracy is lifted: the quasienergy levels split, so to speak,
which is directly seen from(12), e.g., in the case where 5. ADIABATIC VARIATION OF THE AVERAGE FIELD

6=0. Obviously, the dipole moment of the system at points In Secs. 3 and 4 it was assumed that the average value of

of resonance vanishes, a fact. the}t also follows f(da). the external field is constant and hence the external field is
Speaking of the antipolarization effect, when the struc-_, : o . .
; . . S ; trictly periodic. This enabled us to develop a quasienergy
ture is polarized in the direction opposite to the externa . " : .
oo : formalism for describing the time evolution of the wave
electric field, we note the analogy between this phenomeno . .
and the effect predicted theoretically by Dakhnovskii and unction and to analyze the dependence of the dipole mo-
. 16 P y by . ment of the system on the constant component of the exter-
Metiu'® and Aguado and Platetband detected experimen- nal field
tally by Aguado and Platetéand Keayet al.,'® who called '

. . : ] : In particular, we found that there can be a state with a
it absolute negative resistance: a current flowing through & aximum static dipole moment corresponding to the local-
double-well(three-barrier®’ or multiwell*® heterostructure P P 9

. . .. ization of the electron wave function in one well. One must
was found to be negative when the structure was |rrad|ateé

. . . . ear in mind, however, that such a state can form not only
by variable laser light, while the constant voltage applied to . . .
due to an external field of a certain type acting on the system

the sFrupture was kept positive. Obwougly, the two effeCtsout also due to a specific choice of the initial condition. By
are similar and are of purely quantum origin, related to elec-

tron dynamics in potential wells placed in periodic fields specifying the wave function at the initial moment as one of
Y Pote . P P " the quasienergy functions we can “lock” the electron in one
Finally, we will briefly discuss the case where all expan-

sion coefficients in5) are finite and the wave function of the well by a strong variable field. Any deviations from the

. " . iven initial condition cause breakdown of the localization
system is a superposition of two quasienergy states. Here the . .
. ) . . : régime and to a flow of charge from one well to the other in
dipole moment is a function of time and can be written

accordance witl§14).

_ m _ But can we control the localization of the wave function
d=d-4exya,a_G? 5,1 5C0% ¥+ 2vT) by changing the well populations to the opposite values
solely by adjusting the parameters of the external field? For
an example we will take the regime of slow monotonic varia-
tion of the average field and follow the time evolution of the
. electron density in the wells and the dipole moment of the
where ¢,= ¢,— «, the parametera,, a_, and« are, re- system.
spectively, the absolute values and phase difference of the To be definite, we will assume that the average value of

coefficientsA, andA_, andd is the time average of the the perturbation increases adiabatically and select the origin

Mi+1

mcos{%uﬂb—ﬂ)r) . (14)

dipole moment, in time when the value of 2 is [€). Making the coefficient
o w0 small thats is much larger thanu, but still is small
d=(ai—a’i)D, (15 compared td), we obtain a solution of Eq$2) in the reso-

' ) ) ) nance approximation near théh resonancgsee condition
defined by the population difference of the quasienergy Iev(3)]_ Discarding in Eqs(4) all terms corresponding to the

els. . , (I+1)st resonance and expanding the slowly varying func-
An analysis 0f(14) shows that the time dependence of ;| 2(7) up to terms linear inr, we arrive at a system of
the dipole moment does not always manifest itself, doing S%quations for the coefficien, p(7):

only near resonance. For instance, near theesonance the
dipole moment is a slowly oscillation function of time with a i dC. B % expl—i(ih— y2)}
small frequency 2=+/6°+uf, since the coefficient dr 2 M mYTn
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. dCg

Id7'

C, ) )
=T oM exgi (¢ +ym)}, (16)
where by y we have denoted the derivative ef7) with
respect to timer.

We assume thay is the small parameter of the problem.

In particular, it must be much smaller that the characteristic

frequency scale ojx;, which is equal to the smallest dis-
tance between the quasienergy brancheseat ).

Since now the Hamiltonian operator is not a strictly pe-

riodic function of time, it is impossible to introduce the con-

cepts of quasienergy and quasienergy wave function, and so
other methods and tools should be used to solve the system

of equations(16). We reduce the systeifl6) of two first-
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CL(7)=(Cyp) exp{—i}+Cop™ explio})
2
xexp{ —i %er%)]
Cr(7)=(Cp ) expli o} —Cyp*)
2
xexp{—i¢})exp{i(%+ %H (21

whereC, andC, are arbitrary constants determined by ini-
tial conditions, and the phaseis a function of time:

- [ iR 2y
(p(T):E Y + T_l— 8—’y|n .

M

order differential equations to a single second-order equatiog,o expression@1) for the coefficients, g(r) fully define

for, say, the coefficienC, :

2
Lad

CL+2| ’)’TCL+ 4

C_=0. (17)

where a dot stands for a time derivative. Allowing for the

fact that the coefficient of the first-order derivative is a

slowly varying function of time, we use the WKB method to
solve this equation.
We represenC, (7) in the form

CL(m)=p( T)eXp[ i f O'(T)dTJ

and arrive at a system of equations foand o
20p+po+2yrp=0,

2

p—po?+ il (18)

2 p—2yTpo=0.

In the limit y=0, the solution of these equations are con-

stantsp(7) and o(7)=const. Allowing for the smallness of
v, we will assume that the functiong(7) and o(7) are
slowly varying functions, their first derivatives are first-order
guantities, and the second derivatigeis a second-order
guantity.

Ignoring p in the second equation if18), we find two
solutions:

2
4 Mo
0'(*)(7)= —y7tE=\/ y2r2+ TI

Substituting these solutions in the first equatiofli8) yields

o)1)= \/w?+4yzfzi2w

2\ui+4y*r

(19

(20

the wave functiorn(1) of the system and make it possible to
study the dependence of well populations on time for arbi-
trary initial conditions. For the “initial”time it is natural to
select the timer— —o, where the functiong(*)(7) attain
their stationary values.

Strictly speaking, we must take such valuesO at
which |7| is large compared te,/2y but at the same time
the system is far from thel{ 1)st resonance, i.e.y,
<2v|7<Q. Similarly, by infinitely large positive values of
7we mean such values at which the system has leftitihe
resonance but is still far for the 1) st resonance, which is
ensured by the same inequality. To simplify notation, we will
write 7— *oo, having in mind the large positive and nega-
tive valuesr in the above sense.

Suppose that at— — one well, say the left, is com-
pletely populated, i.e.|C (—«)|=1, which means that
Cr(—»)=0. Then we hav&€,=0 and the coefficient; is
equal to unity(to within an insignificant phase facforAs
noted earlier, the probability of the left or right well being
filled is simply the square of the absolute value of the coef-
ficient C (1) or Cgr(7). Hence in this case fow, (7) we
have

\/,u,zI +4y*r*—2y7

W (7)=
(7) 2\/,u,|2+4y27'2

L (22

We see that as we move toward the conditi@h for
resonance, at whick=0, holds, the probability of the left
well being populated monotonically decreases, remaining al-
ways larger than the probability of population of the other
well. At 7=0 both wells are equally populated, and as
increases further the occupation of the right well exceeds that
of the left and finally amounts to 100%. As— +«, the
probability W, vanishes, and this stable distribution of elec-
tron density continues indefinitelgin real conditions it is
retained as long ass2does not approach the next resonant
value ( + 1), after which the entire charge gradually flows

Estimates show that it is unnecessary to refine the solutionsto the left wel).

of Egs. (18) any further, since the corrections obtained in

Such behavior of the electron density can be understood

such a process are determined by integral positive powers a@f we use(21) and(1) to set up the wave functioW (x, 7)

the parametety and hence can be discarded.

The general solution of Eq17) and hence the initial
system(16), which is a linear combination of the particular
solutions(19) and (20), is

for this case. Here it occurs that there is no need to write the
expression for the wave function explicitly, since the expres-
sion coincides with earlier obtained formula fdr, (x,7) in
(12) if we replace the constant paramet&with the time-



126 JETP 89 (1), July 1999 V. A. Burdov

dependent functio®(7) =2yr, the productvr with ¢(7), to the strong periodic field, there are no stationary states in
and drop the coefficierft ), which is negligible near theh  the system. Here the quantum states are quasienergy states,

resonance. and the quantum number characterizing the given state is the
Similarly, when the wave packet is entirely in the right quasienergy.
well (7— —x), the wave functionW,(x,7) coincides, to The expressions for the wave functions derived in this

within notation, with the quasienergy functidh_(x,7). The  paper, which are almost the same as the expressions for the
time dependence of the wave functithy(x,7) qualitatively — quasienergy functions, indicate that the fact that an adiabatic
follows the dependence &f _(x,7) on the average value of perturbation does not change the quantum state of a system
the external field and hence the shift of the point of reso-s true not only for stationary states but can also be general-
nance where varies slowly results in the flow of charge ized to quasienergy states, which effectively replace the
from the right well to the left. states with a definite energy in the presence of a periodic
A further increase ire may bring the system into the external field.
region of the (+1)st resonance, where the dynamics of the ~ Obviously, the dipole moment of the system is also de-
two-level system is also described by equations of the fornscribed by the expressiond3)—(15), wheree should be
(16) but with a different value ofy calculated at the time replaced by a slowly varying function of time. Correspond-
when Z= (I+1)Q. Obviously, the solution of these equa- ingly, in view of the assumed monotonic dependence oh
tions is exactly the same as in the vicinity of thé reso- 7 (for the sake of simplicity and definiteness, we assume that
nance, and the passage of the point of theX)st resonance this dependence is strictly lingathe time dependence of the
also gives relocates the wave packet from one well to thelipole moment in a given adiabatic quasienergy state will
other. Hence, if for 2<1Q) the wave packet was in the left follow the dependence on the value of the average field;
well, an increase i first shifts it to the right wel(after 22~ however, with allowance for the small proportionality coef-
becomes greater thaf)) and then back to the left well, after ficient v, this dependence will be strongly “elongated”
the system passes the nekt-(1)st resonance. along the time axis.
Generally speaking, to be sure that the above statement As noted earlier, the functioB (2¢) is almost periodic.
is true we should see whether the wave packet remains in thctually, the aperiodicity of this function manifests itself
right well all the time that the value of belongs to the only near the resonant values®fnd is revealed by the fact
nonresonant region. For this we must solve the equations dhat the functionD(2¢) in the vicinity of each point 2
the two-resonance approximatidigs. (4)] with a time-  =n{) has a its own characteristic step wigth . All the
dependenk, which has not been done due to the complexityare small quantities, with the result that all steps in the
of such calculations. It is clear, however, that in the nonresoD(2¢) dependence are very steep. For this reason we can
nant region all the harmonics i{2), including those left in assume that deviations from periodicity also occur within
(4), are found to be “rapid” for slow variations 6, and  narrow intervals on the 2 axis near resonance.
their averaged effect is essentially nil. This means that the Let us write the functiorD(2¢) as a sum of two terms,
coefficientsC,_ g(7) and hence the probabilitié¥, z(7) will  Dvs.Ze=Dg(2¢)+ D(2z). One of the termsDy(2z), is a
actually retain their values over the entire range of variatiorstrictly periodic function with the period(2. It can be de-
of & between two neighboring resonances. fined by the standard expression for the dipole monmEqt
Thus, a slow variation of the average field in addition to(13)], replacing the different coefficientg, in this expres-
a periodic field of a large amplitude lead to relocation of thesion by an average valyg the same for all resonances. The

electron wave packet from one well to the other as a result ofecond termD (2%), represents the deviation Bf(2z) from
passage of a point of resonance, just as in weak fields there #sstrictly periodic function, and since this deviation is impor-
a transition from one energy level to another under a slowant only in a near region near a point of resonance, the

variation of the frequency of the external fieft function D(2%) has the shape of a sequence of equidistant

_ Finally, if the initial state corresponds to an arbitrary s each of which has its own amplitude and characteris-
distribution of the electron density in the wells, the wave. \idth defined by the small Fourier coefficient, .

function is a linear combination of the functioni,(x, ) If we now allow for the time dependence of the average

and \I'ZEX’T) with the coefficientsC, and C, in (21} fi4. the dipole moment becomes a function of time. Here,
‘P(X'T)__ C_ltpl(X’T)_”_LCZ‘PZ(X’T)' In accordance with the i, ey of the linear dependence @f on 7, the function
normalization condition, the sum of the squares of the absoDO(T) is still periodic, but its period is much large than

lute values of the coefficient§; andC, is always equal to before, 2/ y> 1, which corresponds to a frequency
unity. The functionsW¥, (x,7) can be called adiabatic

quasienergy  functions and the quantity»(7) 2Ty
=y’ + ,u|2/4, the adiabatic quasienergy near thereso- A= QO (23
nance.

It is well known that an adiabatic perturbation does notln view of its irregularity, the aperiodic part of the dipole
cause transitions between stationary states of a quantum sygoment yields a continuous spectrum, which contains all
tem. L. D. Landausee Ref. 14, p. 237btained an estimate possible frequencies. The bursts of the functd(r) will
for the probability of a transition from one stationary state tonow have a characteristic width along the time axis equal to
another initiated by a slowly varying perturbation, and theu,/vy and hence will be smootfrecall thaty is the smallest
probability proved to be exponentially small. In our case, dugparameter in the problembut their width is still much
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smaller than the distand@/2y between the bursts. For this double-well structure may oppose the external field, and we

reason the amplitudes of the harmonics belonging to the corirave the antipolarization effect.

tinuous spectrum can be assumed negligible compared to the When the average field varies adiabatically, we used the

harmonics of the periodic component. WKB method of obtain an expression for the electron wave
Thus, the slow linear buildup of the average value of thefunction and found that the problem of the excitation of a

external field and the permanent periodic field results in aystem that is in a certain quasienergy state coincides with

smooth and almost-periodic flow of the electron density fromthe problem of the excitation of a system that is in state with

one well to the other. Obviously, such a double-well struc-a definite energy? In particular, it was found that an adia-

ture with a periodic flow of charge is a classical dipole ca-batic increase of the average field does not make the system

pable of emitting electromagnetic energy at its natural fredeave the quasienergy state in which it was initially; it only

guency. In our case emission of radiation is possible agradually changes the structure of the wave function of the

frequencies that are integral multiples of the freque(&3) given state. It was also found that an increase ithat ini-

of charge oscillations in the wells, since the law of variationtiates the passage of a point of resonance “shifts” the region

of the dipole momenb,(7) as a function of time is periodic of localization of the quasienergy wave function from the left

but not harmonic. well to the right, or vice versa, in view of which the electron
Two remarks are in order. First, E@®3) implies that the  density can be made to periodically flow from well to well,

fundamental frequenck is much smaller than the external- provided that the particle wave function is chosenrat

field frequency or the transition frequency between the levels-o0 in the form of one of the quasienergy functions.

of the unperturbed system, which in our notation is equal to

unity. As shown in Sec. fformula(14)], small oscillations

of the dipole can be generated even for a permanent average o\ -«

value of the external field, but the lowest possible frequency

is un. In our case, however, when the average value of the et us find the expression for the quasienergy in the
perturbation is a linear of time, the frequency is determinednterval IQ<2e=<(1+1)Q. We will assume thats<Q,
by the ratey of variation of the average field, which by which corresponds to thih resonance. Using7), we can
assumption is much smaller thar, . easily see that the coefficienfs and g, provide the main
Second, what is important is that the value of the fre-contribution in this range: their values are of order unity. The
quency of the emitted radiation can easily be controlled, i.e.Coefﬁcientsf71 and g, are proportiona| tan, 4 (quantities
can be varied, if necessary, within broad limits by changingof first order of smallnegsthe coefficients; andg_, are
the ratey of increase of the average value of the externaldetermined by the produgt, ., (second order of small-
field. ness$, etc. Near thel(+ 1)st resonance the principal coeffi-
Hence the action on the system of a variable field Ofcients are eithefo and g1 Or gg andf_l (depending on the
frequency() accompanied by a slow variation of the averagequasienergy branghwhile the other coefficients are at the
field may lead to low-frequency generation of electromag-most first-order quantities. In the intermediate region be-
netic dipole radiation, one of the main parameters of whichtween the resonances the main coefficierftyi®r gg.
the frequency, can be controlled by the external field itself. Hence in the interval of variation &f of interest to us
between thdth and ( +1)st resonances and near the reso-
nances proper, all coefficients except the four coefficients
fo, f_1, 9o, andg, always turn out to be small and can be
Let us summarize the main results of our investigation.ignored. For this reason, if in Eq$7) we discard all the
In calculating the quasienergies and quasienergy funceoefficients except the above four, we arrive at a closed sys-
tions for a particle in a strong periodic external field with atem of equations:
finite average value, we used the novel method of the two-
resonance approximation. The method is based on allowin 6
for the effect of two neighboring resonandeather than one E’”L §_Q
resonanceon the quantum dynamics of a system. The two-

6. CONCLUSION

My €XP i1}

foq+ 2 Jo

=0,

resonance approximation made it possiple to obtain and ana- wiexpl—ign} i eXpl =it}
lyze the dependence of the electron dipole moment on thev+ 5 fot > Jot+ > 9:=0,
size of the average value of the external field in almost the
entire range of average values, in contrast to the ordinary . .
resonance approximation valid only near a resonance. M Mfo+ ( v— é)gozo
In pure quasienergy states the dipole moment of the sys- 2 o 2 2 ’
tem is an almost-periodic function of the constant voltage
applied to the system. At all points of resonance=h(),  &i+1€Xi 1} 6 B
the dipole moment is found to be zero, while in the nonreso- 2 fot|v= §+Q 9:=0. (AL)

nant regions it reaches its maximum possible positive and

negative values due to the complete localization of the elecH we nullify the determinant of the systefi\1) we obtain
tron wave function in one well. When the constant externaktwo quasienergy values that differ only in sign, with each
field applied to the system is positive, the polarization of thecorresponding to its own quasienergy state:
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1 8\2 pfy wi+d 8\2 wi+?
vo=+—\/| Q-2 + 2 A|le-2] - +022, | (A2)
v 2] T2 4 2 4

Plugging (A2) in Eq. (A1), we find that for the state +”
the coefficientg, is small in the entire intervdl() <2 =<(l
+1)Q, while for the state “~” the coefficientf_; is al-
ways small. We will use this fact to simpliffA2), since it is
rather cumbersome in the present form.

Let us consider the state+.” If we ignore g, and drop
the last equation iiAl), we arrive at the equation

) v
3402 5—9)—Z<5z+uf+uf+1)
) 52+M|2_:U~|2+15_

0.

- ( 5 (A3)

2

4 8

A simple analysis of(A2) shows that the deviations(5)
from the linear dependence, = /2 are always small and
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The energy level shifts of one-electron atomic particles H; Hei* *, etc. which interact with a
metal surface have been investigated. In the approximation of image charges, an operator
describing perturbations of atomic levels has been obtained. By numerically solving the
Schralinger equation, we have calculated energy levels ofsf(H* (n=2), and C*(n)

as functions of the distance between an atom and surface. Asymptotic behavior of atomic levels
at large distances from the surface has been studied. The linear Stark effect for excited

states, which was earlier mentioned by A. V. Chaplik, has been found and investigated in detail.
© 1999 American Institute of Physids$1063-776199)01707-3

1. INTRODUCTION pretation of this effect requires a perturbation operator writ-
ten in a correct form.

Thermonuclear research has stimulated an interest in
§tudie§ of collisions of slowy(< 1% cm/g), mqltiply charged 5 opERATOR OF ATOMIC LEVEL PERTURBATION
ions with metal surfaces. Numerous investigatiofiShave
revealed that there is a strong probability that slow, multiply ~ Shifts of atomic levels are determined by a perturbation
charged ions can be neutralized before colliding with a surgenerated by a metal and acting only on the electron if iso-
face (above the surfageand that this neutralization gener- topic effects, which are proportional t/M <1, wherem
ates “hollow atoms” with vacant internal shells and occu- @ahdM are the electron and nucleus masses, respectively, can
pied outer shells. An inverse process, namely, destruction die ignored. Therefore, potentials of interactions between the
highly excited Rydberg atoms near a metal surface, wag'etal, on the one hand, and the electron and nucleus, on the
studied in experiments; ?*where Rydberg states were gen- other, should be calculated separately. The total energy of
erated by laser radiation. The theoretical description of sucH€ atom in this case is the sum of the energies of the elec-
effects requires shifts of atomic energy levels due to the pregfon and nucleus. The potential energy of a classical point-
ence of metal because the rates of electron exchange betwelt particle is the work done in the process of its movement
atoms and metal surfaces essentially depend on thed@ vacuum from infinity to a certain point near the metal

shifts1? surface. The potential energy of one isolated partielec-
: ; —28
This paper reports on calculations of energy level shiftd"on or nucleusnear a metal surface is well _knov%. The
in one-electron(hydrogen-liké ions H, He', Li**, ... problem is in finding the electron’s potential energy in the

AZ=D* in the approximation of image charge. The objec-Presence of the nucleus, as well as the potential energy of the
tive is to determine the perturbation operator responsible fofUcleus in the presence of an electron. Obviously, the poten-
these shifts. Earliél“~1 the problem of hydrogen levels tial energy of each particle is notably affected by the pres-

near a metal surface was investigated, but the problem of &C€ of another particle owing to the infinite polarizability of

correct form of the perturbation operator has not beeri’® metal. _ _
solved. In order to determine this operator, we will analyze ~ 1he potential energy of a system of charged particles

in the next section the image charge approach in the COnte)r(.{epends on relative coordinates of particles and their posi-

of calculation of atomic energy levels. This analysis is indis-liONS With respect to the metal surface, and is independent of
pensable because one can hardly find in the classical electri€ trajectories along which they move to the metal. The
static problem®-28 a system similar to an atom, when the method of calculating the potential energy which is the most

mass of one particléelectron is smaller than that of another ©OPVious is considering the motion of an atom as a whole to
particle (nucleus by a factor of almost 2000. the metal surface with a constant relative radius-vector that

Asymptotic shifts of atomic levels in the limit of large connects the nucleus and electron, so that both the electron

separations between atoms and metal surfaces has been stfld nucleus move in the direction perpendicular to the sur-
ied. In the case of a hydrogen-like ion with a nonvanishingf@ce: _

dipole moment, we have found a linear Stark effguevi- For a system of two real particles, an electrerand
ously mentioned by Chapftk), which is similar to the effect nucleusZ, their imagese and Z are introduced in the ap-
of a uniform electric field or the interaction with an ion. The Proximation of image chargés;*®*and we have a system of
magnitude of this effect is also finite when a neutral hydro-four particlese, e, Z, andZ instead of the atom+ metal
gen atom interacts with a metal surface, even though theystem. The potential enerd¥.> of interaction between the
atom is acted upon by its neutral image. The correct interreal electron and the nucleus image is equal to the work:

1063-7761/99/89(1)/11/$15.00 129 © 1999 American Institute of Physics
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FIG. 1. Coordinates of an electra nucleusZ, and their images for a
hydrogen-like ion near a metal surface.
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Each term in Eqs(4) and (5) is half of the similar term for
interaction between two real particles, because in calculating
the work needed to drive a particle one should perform inte-
gration over the distance through which it has been driven to
the surface, but not over the distance between the particle
and its image. If an atom is driven to a surface, its image also
moves from the metal depth to its surface. When the distance
between an atom and surface changesAl®; the distance
between the atom and its image varies hyR2

The full energy of interaction between the atom and
metal surface should be written in the form

where S, is the distance between the electron and surface

(here the vecto§, is turned perpendicular to the surface and Vior=

is directed towards the electrpii .3 is the magnitude of the

repulsive force between the electron and the image of the =—
nucleus,d is the angle between the force and electron dis-
placementdS, along vectorS,, i.e., the angle between the

vectors R+r andS,; andzis the component of the vector

Vet Viue

Zzez_ e? . Zé . Ze?

4R 2|2R+r—r’'| 2[2R+r|  2[2R-r|
(6)

r perpendicular to the surface, which defines the direction oWiNg t0 the symmetry between an object and its mirror

the zaxis (Fig. 1). In the approximation of image
charges>~?%the forceF .3 is identical to the Coulomb repul-

sive force between two chargesandZ.
The integral in Eq(1) can be transformed to

e’Z (= d[(28,-2)"]
4 Js. [(2S)—2)*+n?]¥?

Vez=

after which it can be calculated analytically. Herds the
component of vector perpendicular to vectdR. Bothh and
z are independent of the integration varialgle. Note that
this transformation does not apply if vectors not constant

image, the following equality applie$2R+r|=|2R—r'|;
therefore, interaction energiés,z and V ; have identical
magnitudes and sign¥.>=Vz, but these are interactions
between the metal and different particles, namely, the elec-
tron and nucleus, respectively. An important point is that
these cross terms describe interactions of the electron and
nucleus with the metal, namely, with electrons and ions of
the metal. The atomic electron generates on the metal surface
a positive charge composed of particles inherent to the metal.
The nucleus interacts with this charge, and the téfgm
describes this interaction. Using the symmetry between the
particles and their mirror images, one can formally express

when the atom is driven towards the surface. The interactiothe functionVzz(R,r’) in terms of the electron coordinates,

energy between the real nucleus and electron imdggcan

but this expression would not mean that it is the energy of

be written in a similar form, and after elementary integrationthe atomic electron. The teri; is calculated by integrating

we have both these energies:

) Z¢€?
€27 2|2R+r|’

Z€

Vv -—
2|2R—r’|

Vze )
In general, integration in Eq.l) should be performed
separately for specific values of vector Since the calcula-
tion scheme under discussion is applicable for arbitmary
values, Eq(2) and subsequent formul&3)—(6) are valid for

arbitraryr.

the force acting between the metal and atomic nucleus. In the
same way, the terid sz is calculated by integrating the force
acting between the metal and atomic electron; therefore, it is
a part of the electron potential energy, although it is a func-
tion of the nuclear coordinates.

Let us discuss an alternative way of the motion of an
atom from infinity to the surface and demonstrate that the
potential energies of the electron and nucleus, given by Egs.
(4) and(5), are the same. First, let the nucleus move towards
the surface and be fixed at finite distarRé&om the surface

Adding to Eq.(2) the energies of interaction bgt\(veen the(Fig. 1). Then we have only the interaction between the
electron and nucleus, on the one hand, and their images, Micleus and its imag&/,3, given by the second part of Eq.

the other,

Vo= ¢ V7= e 3
¢ 22R+r—r'| % 4R’

(3), and the electric field outside the metal is that generated
by the dipole{Z,Z}. If the electron is moved to the surface at
a very high velocityy> 10° cm/s, there is not enough time
to generate the electron image charge on the metal surface.

which are calculated similarly, we obtain the total energiedn this casgand only in this casethe electron interacts with
of interaction between the metal, on the one hand, and theéhe dipole field{Z, Z} and its interaction with the metal is

electron,V¢(r, R), and nucleusY,,{r, R), on the other:

determined by the interaction with the nucleus at rest. This
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interaction ise?Z/|2R+r|, i.e., it coincides with the last M/M~5.45<10"*, one can ignore the forces acting on the

term in Eq.(6). By analogy with the physics of atomic col- nucleus, whereas all forces should be taken into account in

lisions, this approximation for interaction between an elec-calculating the total energy of the atom.

tron and metal can be called static potential approximation.  In earlier work§'~*the nucleus potential energy was

In the case of adiabatically slow motion of the electron to theequated to the energy of its attraction to its image,

metal surface, this approximation is very rough because the Z°€°/4R, both in the presence and in the absence of an

metal polarizability is infinite. electron, whereas the electron energy consisted of three
If the electron approaches the metal fixed nucleus terms: Vg, Vez, and Vz. In other words, the

system adiabatically slowly, there is enough time to generatéteractio?***" between the nucleus and electron image,

on the metal surface the charge due to the electron image. Mz«(r', R), was attributed to the electronic component. It

this case, two charges simultaneously approach the surfac®llows from the analysis given above that this incorrect in-

instead of one. Concurrently with the real electron, its imagderpretation can be attributed to the highly nontrivial subtlety

moves to the surface from the metal bulk. Then the workof the issue under discussion: owing to the infinite metal

done to drive the electron to the surface not only changes itgolarizability, the interaction of any charged particle with the

potential energy, but also changes the potential energy of thaetal surface is essentially modified by the presence of other

nucleus due to the interaction between the nucleus and eleparticles near the surface.

tron image. The total work i8°Z/|2R+r|, as in the case of

fast electron motion, but it should be divided between two

components, the electronic and nuclear ones. Owing to thé WAVE EQUATION FOR A HYDROGEN-LIKE ION

symmetry of the mirror image discussed above, these wHERTURBED BY A METAL SURFACE

components are equal; i.e., the electronic and nuclear poten- |n accordance with Eq(4), the wave equation for deter-

tial energies each equal half the total work. This means thaghination of electron levels in the adiabatic approximation,
Egs.(4) and(5) are also valid, as was expected, in the case of e, at low atom velocities, is
sequential approach of the nucleus and then the electronto = _
the surface. [Hart Vedr,R) +Vex(r,R) —E(R) J/(R,r) =0, (7)

Equations(4) and (5) describe the potential energies of
two parts of one system, namely, the electron and nucleus
one atom that interacts with the metal surface. They can be . vz z
easily generalized to the case of a larger number of particles. Ha=— 2 ®
Consider one simple case of such a generalization. Imagine a . : :
nucleus with an atomic numb@ as a system oF protons Below we will use th2e system of atomic units, unless stated
concentrated at one poifthe presence of neutrons does not °Nerwise, such that"=# =m=1. . .
affect its interaction with the metalAccording to Eqs(3), . we t_reat the heavy atomic r,1ucleus as a classical point-
(4), and(5), the energies of attraction between each protoAIke part|cle_, whereas the atom’s electron has_ an extended
and its image, and with images of other protons, are equal ti/ave functhn, anq hencg an exten-ded d|§tr|but|0n of |t§
—1/4R. Thus, the energy of attraction of one proton tozll charge density, while the image of th.'s d_ensny generated in
proton images is- Ze/4R, and the total energy of attraction the metal also has an extended distribution:
betyveen the nucleug and metal is the sum of all proton en-  5-(r')=imagd p.(r)}, oo(r)=|w(1r)|2. )
ergies. The summation reduces to multiplication of one pro- o -
ton energy by the total number of protons, i.e., the totafieré we have normalization conditions
energy is—Z2%e?/4R, as was expected. This calculation jus- ~
tifies Egs.(4) and (5). f Qe(r)d3r=J loa(r)|d® ' =1.

Classical equations describing the motion of the atom’s ] . ) ) .
center of mass and interatomic motion can be written in the "€ simple functional relatiot9) uniquely determines the

(\Jq/hereﬂat is the Hamiltonian of the isolated atom:

general form image charge distribution inside the metal, given the real
) charge distribution outside the metal volume. The total elec-
(M+m)Rey=Fret+Fr+Fort+ Feg, tric field component parallel to the metal surface equals zero

M m if each element of the real chargig(r) = p.(r)d%r, at point
ur=For+ m(F‘;ﬁ Feo) — m(|:2~2+ Fr2), r has its counterpart of the equal magnitude but opposite

sign,dq(r’)=p%(r’)d%’, at pointr’, which is a mirror re-
whereF; is the force due to théth interaction introduced flection of pointr.2>=28 Calculation of the interaction energy
previously, andu=mM/(M+m). Ignoring the small terms between real and image charges, however, requires a more
of the order ofm/M <1, we obtain the equation for the in- complicated mathematical procedure. The interaction be-
teratomic motion: tween the nucleus and its image in the metal was calculated
. in the previous section as a sum of interactions between all
mr=—Fez—Fezt Feet O(M/M), protons and all their images. In the case of an extended
the right-hand side of which is the sum of forces acting onlycharge distribution, summation is replaced with integration.
on the electron. These classical equations clearly indicat&he potentialV (R, r) in Eq. (7) generated at point out-
that, in calculating interatomic energies to within the ratioside the metal by the entire charge of the electron image is
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VaRr)= o(r)d3’ w0 —1lsy=<1, Os¢=2m7, (16)
e 2|2R+r—r'|’ where ¢ is the angle of rotation around théZ axis, the

variables can be separated in Ef3), and we have the sys-

It thus follows that Eq(7) is, in general, a nonlinear integral- tem of two ordinary differential equatiofis

differential equation. The image charge density in E@$.

and (10) is uniquely related to the real charge dengig. NU(EV(y) eme
(9)], and the latter equals the absolute value of the wave&o(§,7,¢)= D=7 fon’ (17)
function squared. The total energy of interaction between the (& )(1=77) N2m
electron and its image is d2u N ORPE &2+ 2(Z—Ze)REFA  m2—1 Uo
. 2 2_ 2_ a2
W R)= f VR o) dr d¢ &1 (&1
(18)
B f oo o(r)d3r d3r @1 d2V+ —2R%Eg7?*+2(Z+Ze)Rn—A  m>-1 |
2[2R+r—r'| dz? 1- 77 (1- 7?2 ’

so that each charge elemeai(r) of the real electron in- (19
teracts with the full charge of the electron ima@s should ~WhereA is the separation constant, ahdis the normaliza-

be in accordance with the electrostatic 18w, but not ~ ton constant. _ _

only with its own imagedqz(r’). The vectors andr’ in Eq. | In order to obtain awave functiofi, that wo_uld behave
(11) should be treated as independent variables unrelated B&a regula_r manner at infinity and_ ?t the atomic nucleus, we
the laws of mirror reflection. The approximation based on ould satisfy the boundary conditidts

the wave equatiort7) and Eq.(10) is a usual Hartree ap- U(é=1)=0, U(é==x)=0, V(np=1)=0. (20
proximation, which is commonly used in calculations of pa-
rameters of atomic and molecular systéthin our specific

case, this approximation is applied to the system of an atorm... N .
T its image with the reflection conditior(s). n‘jmon V(7=—1)=0 should also be satisfiéd.In the case

The interaction between the atomic nucleus and metal i%)f interaction with a metal surface, the second Coulomb cen-

determined by Eq(5) integrated over the charge density dis- er V\."th chargeZey is fictitious, Thelzrseal screening charge is
S o~ distributed over the metal surfaé&.2® On the metal surface
tribution inside the metal due to the electron imagg(r’):

at »=0 and inside the metah <0, we set the wave function
V C(R):_ Z_2+ E 'é,é(r/)dr/ (12) to zero:
n 2) |2R-1"] V(7=<0)=0. (21)

4R
The integral-differential equatiofi7) is unlikely to be This condition forbids the atom’s electron to penetrate inside

solved analytically. In the case of multiply charged ions,the metal. If the electron energy is in a band gap of the metal,
7>1, discussed in this paper, the total interaction energyondition(21) holds. But if E(R) coincides with a band of
between the electron and its imad¥,, is a small param- electron states in the metal, and this energy is below the
eter since it is independent & Then we can use in the Fermi levelin the metalE(R)<eg, then the atom’s elec-

zeroth-order approximation, instead of Ed), the equation trons cannot move inside the metal in accordance with the
Pauli principle because all the states below the Fermi energy
A

A E+ @—E R —0 (13) are occupied by metal’'s electrons. Suppose that the metal
2 r 1, o(R) | #0=0, temperature is zero or, at least, much smaller than the Fermi
energy. Formally, one should substitute in Ef). the metal
potential for the electron image potential, then the solution of
this equation should be nonvanishing but equal to the wave
Z=ZI2. (14)  function of a metal electron of the same energy. Since these

The f . dE-(R h-ord . two functions are identical, we determine the full wave func-
e functionsy, andEq(R) are zeroth-order parameters in tion symmetrized with respect to exchanges between the

t_he perturbation theory applied to this specific case. In t.h%lectrons of the atom and metal in the form of the Slater
first order of the perturbation theory, the electron energy IS determinant, which is zero because two columns of this de-
E(R)= EO(R)JFWSE( R)+---. (15)  terminant are i'd.entical. Hence foIIows' gonditi@il) for this
case. The validity of boundary conditiai21) will be dis-
Here W2~e(R) is given by Eq.(11), where charge densities cussed in detail in Sec. 6.

In the case of two real Coulomb centers, the wave function
hould also tend to zero near the second center, so the con-

wherer,=|2R+r| is the distance between the real electron
and the image of the nucleus, aAg; is defined as

due to the real electro@?, and its imageg?, calculated in We have solved the system of equati¢h3)—(19) with
the zeroth-order approximation should be substituted. boundary conditions(20) and (21) using the predictor-
In the elliptic coordinateg, », and: corrector numerical technigtfefor a hydrogen atom in the
ground state, H(4), and in the lowest excited state, t(

It I 1<g=o =2), and also for a carbon ion with charge five3*Cn
T2R TR TS =9), with one electron excited to level=9. The electron
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FIG. 2. Energy of the hydrogen ground state B ks a function of the  FIG. 4. EnergiesE(R) of the excitedn=2 states of the hydrogen atom in
distance to the surface. The results of the zeroth-order approximationthe first-order approximatiorE(R)=E(R)+Wg(R), as functions of the
Eo(R) [without interaction between the electron and its imalygy(R)]: (1) distance to the surface. Temy=1, n,=0: (1) our numerical calculations;
our numerical calculations(2) asymptotic expressior(34) for Z=1: (2) asymptotic expression(41b): E(R)= —0.125+3/8R?—3/2R3+ - - -
Eo(R)=—0.5+ 1/4R. The results of the first-order approximatio&(R) Termn,;=0, n,=1: (3) our numerical calculationgs) asymptotic expres-
=Eo(R)+Wge(R): (3) our numerical calculations{4) asymptotic value  sjon (41b): E(R)=—0.125-3/8R?>—3/2R%+ - - - The orbit size in the low-
from Eq. (41): E(R)=—0.5. The results reported by other authors: crossesest excited terrm=2 in the unperturbed atom is about 8 a.u.Rs =, the
from Ref. 8, rhombi from Ref. 16, and squares from Ref. 14. energy of then=2 terms tends te-0.125 a.u.

binding energy of this levelthe ionization potentia) which ) o )
equals 6.047 eV, is very close to the work function for mostcoordinates §, — 7, ¢) inside _thezrpetal. In accordance with
metals, so a & (n=9) ion can be formed with a high prob- the image charge approximatiém,?®the densities of the real

ability as a result of a collision of a baréCnucleus with a  electron charge and of its image at these two points should
metal surface through capture of a band electron in the meta€ equal:

The probability of this process essentially depends on the ~

IocatiF())n ofE(ny) levels (vF\)/hich is the reasoz forpcalculating 0u&, = mP)=0e(&m h)
these levels The energy eigenvalugEy(R) and separation This condition unambiguously determines the electron image
constantA were derived from the condition of compatibility charge density; therefore, we can write

between Eqs(18) and (19), i.e., by finding the values of

(0<7p=<1). (22)

2 2 2
Eo(R) andA at which both the solution of Eq18) and that 0u(ém)= Ni U (V) (0=p=<1) 23)
of Eq. (19) satisfy boundary condition€0) and (21) (Ref. e 27 (£2-1)(1- 5P ’
29). The calculations are plotted in Figs. 2—6 and will be
discussed in the following sections. ~ N2 UXEWVA—7) 1<p'<0
In order to calculate the electron energy in the first order ee(&m')= 2 2_1)(1—n'2 (=1<7%'<0).
. ; . . (& )(1=7"%)
of the perturbation theory using E@L5), which takes into (24)

account the interaction between the electron and its image, . . _
one should determine the image charge density as a functidh ccordance with the boundary conditiet), the function
of coordinates. The reflection of each point outside the metaY (77) IS nonzero only at the positive values of its argument.

with elliptic coordinates §, 7, ¢) is a point with elliptic

E, a.u.
-0.18

—0.195

-0.20F3
-021F
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. N 60
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130 =
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FIG. 5. EnergiesEy(R) of the extreme components of the excitee9
state of carbon ion T (Z=6) in the zeroth-order approximatigwithout
W¢(R)] as functions of the distancR to the surface. Terrm;=38, n,
=0: (1) our numerical calculations{2) asymptotic expressior(34):
Eo(R)=—0.22(2)+1.5R—13.5R?+128.25R*+ ... Term n,;=0, n,
=8: (3) our numerical calculations{4) asymptotic expressior(34):

FIG. 3. Energie€y(R) of the excited state=2 of the hydrogen atom in
the zeroth-order approximatidnvithout Wgi(R)] as functions of the dis-
tance to the surface. Term =1, n,=0: (1) our numerical calculationg?)
asymptotic expression from Eq(34): E3YR)=—0.125+ 1/4R—3/8R?
+3/8R%+ ... Term n;=0, n,=1: (3) our numerical calculations{4)

asymptotic expressioli34): Eq(R)=—0.125+ 1/4R+ 3/8R?+ 3/8R%+ - - -
The size of the lowest excited orlyit=2 in the unperturbed hydrogen atom
is about 8 a.u. AR—x, the energies oh=2 terms tend to-0.125 a.u.

Eo(R)=—0.22(2)+ 1.5R—13.5R?+128.25R*+ - - - The orbit size in the
n=9 term of the carbon ion is-27 a.u. AsSR—<=, the energies of these
terms tend to—2/9=—0.22(2) a.u.
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The real electron charge densiy in this case is nonzero interaction between the atom and metal surface is weak at

only outside the metal, and the charge density of its imagesuch distances and can be treated by the perturbation theory.

0%, is nonzero only inside the metal. At large R the elliptic coordinates near the atom can be
The volume element expressed in the elliptic coordinate@pproximated by parabolic coordinatés, v, and¢:

defined by Eq.(16) is dr=R3(£?— %)dédnde, and the

=r(1+co9), =r(1-co9), 2
interaction between the electron and its image is described p=r(l+cos), v=r(1-cos) @7
by the formula where 6 is the angle between the vectarandR (the azi-
Wo muthal anglep is the same for both coordinate systenasd
R the atom is described in terms of the zero-order wave func-
N4RE (1 1 - " o tions i in the parabolic coordinatds
=— d f d ’f d f d ’f d .
4 Jo 7)o" )L ¢ 1 ¢ 0 ¢ _\EZWf Zu . Zv\ em? -
Yoo= n2 ngm ? n,m ? \/E, ( )
! ! ! ! h
U2(OUPENVA V(' ) (&= 7A)(E2= ') where
2 1) (1- ) (E2- 11— ') &€ ) 1 [(p+|m))! _
(f )( 7 )(g )( Y ) 12(5 g m7m ¢) fpm(p): |m|' pl F(—p,|m|+1,p)e plzp‘m‘/Z,
(25 (29
where . . .
whereF is the degenerate hypergeometric functioAn im-
ro=RE+E2+ 9"+ n'2=2(1—-éné' ') portant point for further analysis is that the electron in these

; ; states has constant dipol, and quadrupoleQ, momentd
+2008 PN@- DA PUET- DA 7 12 e b oooant dipothand quacrupole

(20 3n(n;—ny)
is the distance between two arbitrary points ¢, ¢) and E—J | hoo(1)|%r cosd®r = — — (30)
(&', n', ¢') located inside and outside the metal, respec-
tively, and these points are not related by the rules of mirror n
reflection in the metal surfacet=¢— ¢’, and the variable = —J [ hoo(1)|?r?(3cog6—1)d%r = — —{(m+2)
substitution’— — %’ has been performed in the integrand 2Z
in Eq.(25). The functlonW2~e(R) was calculated by formula X (m+3)[n+5(ny+ny)]+15m+3)(nf—n,
(25 with functionsU andV found by solving numerically
the system of equatiord8) and(19). +Nn5—n,)+10(n3 —3ni+2n; +n3—3n3+2n,)
=3n[6nn,+(m+1)(3n—2m-1)]}. (31

4. ASYMPTOTIC EXPANSION In Eq. (31) mis the absolute value of the magnetic quantum

At large distance® between the atom and metal surface,number, i.e.|m|.
the energyE(R) of the atom’s electron can be expanded in In the first order of the perturbation theory, we have
inverse powers oR. The distanceR should be much larger N - .
than the average size of the electron orbit in question. The E(R)=Eoot (Ve)oo=Eoot (#5o(1)|Veet Vel thoo1)),

(32)
where the energy of the unperturbed at@gy=—Z2/2n.
E au The interaction between the atom and metal, i.e., the inter-
-0.18 . g
action between the atom and its image on the metal surface,
-0.19f 3 has features that distinguish it from the interaction between
020 s < 4 an atom and a real particle, i.e., another atom or a molecule.
For this reason, a detailed analysis of the resulting
0213 asymptotic expansion is given below.
ol Thei interaction between the real electron and the nucleus
) image,V.7, does not explicitly depend on the electron image
023 60 80 100 120 140 = coordinates. At largd this interaction can be expanded as
R, a.u. follows:
FIG. 6. Energie€(R) of the extreme components of the excited 9 state ~ Z 1
of carbon ion €*(Z=6) in the first-order approximatiof(R)=E(R) Ve~Z:§ W

+Wg(R). Term n;=8, n,=0: (1) our numerical calculationsy2)

asymptotic expressiotd1): E(R)=—0.22(2}+ 1.25R— 9/R?+ 45/R%+ - - - 2 B
Termn;=0, n,=8: (3) our numerical calculationg#) asymptotic expres- _ E i _ reosy + r 3cogy—1
sion (41): E(R)=—0.22(2)+ 1.25R+9/R?+45R*+--- The orbit size in 2\2R (2R)?2 (2R)® 2

then=9 term of the carbon ion is-27 a.u. AsR—x, the energies of these

terms tend to-2/9=—0.22(2) a.u. (33
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Multiplication of Eq. (33) by the probability density(r) - - , .

for the real electron and integration yield an expansion of QEJ 0(r')r'*(3codd’ —1)d*'=-Q, (39
energyEq(R) in the zeroth-order approximatigwithout the o _ _ o
interaction between the electron and its image, see the prdthereas the sign in front of the integrals in definitions for the

vious sectiojt real electron is minugsee Eqs(30) and(31)].
Since the integral in Eq(38) is antisymmetrical with
Eo(R)=Eoo+ (1) |Vez thoo(1)) respect to the permutation < n, [see Eq(30)], we can see
5 thatd=d, i.e., the dipole moment of the electron whose state
= Z_ i Z_d_ 2Q +oen (34) is determined by the parabolic wave functig@28) does not

change after its mirror reflection from the metal surfate.
The ipteraction petween the electron and its image has thggs_ ég?}ggntgﬁtztﬁﬁes gﬁife”l;fgmbgnf g)oigggz)o?gm
following expansion: dy=dy,=0. In general, the parallel components of the dipole
1 1 rcosd r2(3cofo—1) moment, if they do not equ~al zero, cDange their signs as a
- result of the mirror reflectiond,= —d,, d,= —d, (Ref. 25.
The quadrupole moment changes its sign after reflection:
r'cos®’ r'2(3co6’ —1) Q=—Q, since the integral in Eq39) is symmetrical with
T T TeRe 3 respect to the permutatiam < n, [Eqg. (31)].
By substituting expansiori35) in the integral in Eq.
' —3rr’ cosd cosy)’ (11), we obtain an egpansion of the full interaction between
- +... the electron and its image

+-=+ :
2n? 4R gr? 32RS

2|2R+r—r'| 4R 8R2 32R3

16R® ’
- W(R 1 2d 2Q-4d? R
(35 edR=— p-gret —ars T (R—x).
whered and ' are the polar angles of the vectarandr’. (40

Expansion(35) is a function of the coordinates of the real Adding Egs.(34) and (40), we obtain an expansion for the

electron and its image. In order to calculate the matrix eleélectron energy

ment of this operator, one should determine the electron im-

age charge distributiopz(r’), given the charge distribution Z2 Z-1 3n(n;—ny)(Z-2
of the real electron in the parabolic coordinate system. Ac- E(R)=~ R“L 4R gR? ( 2Z )
cordingly, we consider a second parabolic coordinate system
with the origin at the nucleus image: (Z—2)Q+4d?
——— X+ .- (R—>w). (41
w' =r'(1+cosd’), v'=r'(1—cosd’), (36) 32R3

such that the anglé’ is measured with respect to the vector Let us discuss the results. Recall that in the expansion of
R, as in the case of the first parabolic coordinate systenthe interaction between the two charge distributions the main
introduced for the real electron, and the azimuthal aggle  term of the Coulomb interaction is due to the direct inter-
the same for both coordinate systems. The mirror reflectiomharge interactionsR~1); then follow the terms describing
transforms lines w=consf and wv=consy} to lines the interactions between the real charge and image dipole,
v’ =cons{ and u’ =consk. This means that the point with and the image charge and real dipoteR™?), etc. First, let
coordinates &, v, ¢) in the first coordinate system is re- us consider the interaction between the electron and its im-
flected into the point with coordinates,(u, ¢) in the sec- age[Eg. (40)]. Only this interaction depends on the charge
ond coordinate system. For the wave functi¢28 and(29) distributions due to the electron and its image.

in the parabolic coordinates, the permutatign—v is The first term on the right-hand side of E@40),
equivalent to the exchange of indiceg«—n,. This means —1/4R, is due to the Coulomb attraction between the total
that the charge distribution in the electron image is detereharges of the electron and its image. The second term in Eq.
mined by the same function as that of the real electron, buf40) is due to two interactions: between the real charge and
with the interchanged parabolic quantum numbers: image dipole, and between the image charge and real dipole.
- It is clear that since both the magnitudes and signs of these
0% (nnin2im) (1" V" @)= Ceynnzntmh (1", v" "), (B7)  terms are equal, they are added, but are not canceled out. The
image charge has the sign opposite to that of the real charge;
squared. therefore, the electric fields generated by these charges have

Since the charges of the electron and nucleus chang%‘e same direction on the connecting line. For a negative

their signs as a result of the mirror reflection, there is the plu§harge, both these fields are directed from the metal to the
sign in front of the integrals in definitions of the image di- charge, and for a positive charge both fields are directed
pole and quadrupole moments: towards the metal surface. In both cases, these field really

exist only in the space outside the metal. In the electric field
F, the dipole energy is- dF; therefore, both terms due to the
charge-dipole interaction are identical: their magnitudes and

where ¢, is the absolute value of the wave functi¢dl)

azfég(r’)r’cosﬁ’d3r’:d, (39
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signs are equal. The same result can be obtained for the twaters of the hydrogen atom; therefore, the states of the latter
interactions between the charge and the quadrupole, whicire not mixed up. On the other hand, the image dipole gen-
also are addedl. erated by interaction with metal is fully determined by the

The first term in the expansion of the total electron en-real dipole. Any change in the real dipole also changes the
ergy (41) is the electronic energy of the unperturbed atom.mage dipole. Because of this strong correlation between the
The second term in E(q41) i~S due to the interaction between real and image dipo|esy the asymptotic expansion of the en-
the real electron and imagg of the total charge of the ion, ergy of an atom interacting with a metal surfdég. (41)]
gq=Z-1. Sinceq=—q and q>0, this interaction is repul- has a character radically different from that of two interact-
sive and drives the electron level in the ion towards the coning real particles, namely, all coefficients in expansid)

tinuum states. depend only on quantum parameters of the real atom since it
Of the greatest interest is the third term in E4l), s acted upon by its own image generated on the metal sur-
which is due to the sum of the charge—dipole interaction. lface. As a result, the interaction between the zeroth-order
can be expressed as a sum of two terms: moment or the total charge of the real electfaich is the
same for all real statds,n,,n,,m), i.e., independent of the
(z-2)d qd d B . .
———=———— (q=Z-1), (413  quantum numbers, n;, n,, andm) and the image dipole
8R 8R 8R moment depends on the quantum numbens,, n,, andm

where the first term is due to the interaction between the redlecause the parameters of the image dipole depend on these
dipole and the full ion charge image, and the second is due tgumbers. This interaction brings about transitions between
the interaction between the real electron and image dipo|é1_ifferent hydrogen states. Thus, the correlation between the
The third term in Eq(41) can be interpreted as a linear Stark real and image moments is the cause of the linear Stark ef-
effect of a hydrogen-like ion in an electric field generated byfect in a neutral hydrogen atom near a metal surface.

the ion image. An interesting point, however, is that this  Equation(41) clearly shows that the level splitting due
effect does not vanish in the case of the neutral hydrogeto the Stark effect has a nontrivial dependence on the atomic
atom,Z=1. It follows from Eq.(41a that atZ=1 only the  numberZ. In the helium ion H&(n) (Z=2) there is no such
first term turns to zero, whereas the second term does neafffect since the factor in front of the third term on the right-
vanish and, moreover, is independentZofFor the neutral hand side of Eq(41) vanishes. For the neutral hydrogen
hydrogen atomZ=1, Eq. (41) takes the form atom Z=1) and hydrogen-like ions &f, Be*, ... (Z

=3, 4, ...) thefactor in front of the third term in Eq41)
1 N 3n(n;—n,)

E(R)=— — is nonzero, so the effect should take place. Note that in the
2n? 16R? neutral hydrogen atom Stark components with>n, have
higher energies than components with<n,, whereas in
9n?(n;—n,)?—Q(n,ny,ny,) . , 2
_ 1 2 L (R ) ions with Z>2 the arrangement of levels is different: com-
32R3 ponents withn,>n, are lower than those with;<n,.
(41b) The existence of the Stark effect in hydrogen-like ions

o placed close to metal surfaces is important for applications.
whereQ(n,ny,n,) is given by Eq(31). The second term on | many experiments, beams of atoms in Rydberg states
the right-hand side of Eq41b) is the same as for a hydrogen ,ying near metal surfaces are used. Interaction with metal

atom_i2n a uniform electric field with the strength proportional o 5 4g 16 transitions between Rydberg sublevels. The charge—
to R or for interaction with a positively charged ion at dipole interaction responsible for these transitifite third

distanceR. tTre pf053|b|l|ty Off ”t“S szectt ;OLa gﬁu]:}rﬁlﬁtom term in Eq.(41)] decreases with the distance to the surface
near a metal surface was first indicated by Lhapliaino fairly slowly, *R~2, and can lead to a notable mixing be-

studied tunneling of an electron from a highly excited atom .
into a metal. The numerical factor in the second term on théween Rydberg statesee the next section
) The fourth term on the right-hand side of E¢1) is for

right of Eq.(41b) is a factor of 2 smaller than the respective th lation bet land | dipol
factor in Chaplik’s formuld since the perturbation operator 1€ same reaso(rttc_)rr(_e ation between real and image dipgles
different from a similar term for the case of interaction be-

[Eq. (3) in Ref. 17] is twice as large as that in our equations. i X
An interesting question is why the linear Stark effectt\’_\’een t,WO rea!(therefc?re |.ndepende')mtoms. The dipole—
takes place when a neutral atom interacts with its own neydiPOle interaction, which is proportional to the product of
tral image, similarly to the case of an atom in a homoge WO dipole momentsd,d;—3(nd,)(ndy), is proportional in
neous electric field or when it interacts with a charged parEd: (41) to the atom’s dipole moment squaretf, The total
ticle such as an ion. When an excited hydrogen atonfharge—quadrupole interactionZ2)Q/32R%, is also a
interacts with a real particle equipped with a constant dipoldunction of only one quadrupole momeQt This interaction
moment, the second term on the right of E4Lb) also takes is zero for HE' (Z=2) and nonvanishing for the neutral
place, but it is a function of the dipole moment of the seconchydrogen atom and i, Be**, ... ions, just as in the case
particle, which is independent of the hydrogen dipole mo-of the dipole—charge interaction.
ment. In this case, the interaction between the full charge of The asymptotic expansion of the energy of interaction
the hydrogen electron and the dipgéand the other moments between the nucleus and the metal surface averaged over the
of the second particjas independent of all quantum param- spatial charge distribution in the electron image is
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Z? ‘e whereE;, and Ey, are the energies of statés,=1,n,=0)
EndR)=— ﬁ+<¢oo|vzé| Yoo and |n,;=0,n,=1), respectively[see Eq.(41)]. The prob-
abilities of detecting the atom in states @nd 2o att=0 are
Z2(z-1) zd ZQ A(D)
TR Ter ame 42 Pap(1)=|{trzp W (1) 2=sirP——, (46)
The first term on the right describes the Coulomb interaction A(t)
between the nuclear chargeand that of the ion image PZS(t)=|<¢23|\If(r,t)>|2=c0527, (47

—(Z—1). The two following terms are due to the interaction
of the nucleus with image dipole and quadrupole momentswhere
The expansion of the energy of interaction between the

entire atom, which consists of the electron and the nucleus, A(t)= ft(Elo— Eop)dt’. (48)
and the metal is 0

Ei(R)=E(R)+EdR) Probabilities(46) and (47) vary with time as a result of in-
terference between stat¢,0,0) and |0,1,0), which have

Z?2 (Z2-1)? (z-1)d different energies. According to E¢41), for n=2 the dif-

- ﬁ_ 4R + AR2 ference between energies of Stark componentis-Eq;

=3/4R?. If the atom travels along the surfad@s= const()
(Z—1)Q+2d? and A(t)=3t/4R?=3L/4R?v, where L is the distance

- TJF e (43)  through which the atom has moved along the surfacevand

is its velocity. For the completes2»2p transition we need

It is clear that for the neutral atonZE 1) the second and A=, and the distance through which the atom should
third terms on the right of Eq43) turn to zero. The only travel in order to complete its transition s, = (47/3)vVR?
nonzero term in Eq(43) in this case is that due to the (in atomic unitg. Equation(41) yields correct parameters of
dipole—dipole interaction—d?/8R?® if the dipole moment the Stark splitting as long as it is larger than the fine structure
d+0. splitting. Forn=2 the splittingAE, between levels @/,
and 2, in an unperturbed hydrogen atom RAE,
=0.365cm 1=4.53x 10 °eV=1.66x10 ®a.u. (Ref. 32.

5. MIXING OF HYDROGEN-LIKE RYDBERG STATES NEAR The distance at which the Stark splitting is equalAg, is
A METAL SURFACE

3

Many experiments deal with beams of metastable hydro-  Ro= \/ 7737~ =3.5% 10" ®cm=670a.u.
gen atoms H(8). Near a metal surface, the hydrogen atom 0
can transfer from statesto state 2, which rapidly relaxes At R>R, the Stark effect becomes quadrati€;o—Eo;
to the ground state sLwith emission of a photon. Let us *R™*. If the atom velocity isv=10° cm/s and the distance
investigate in detail the rate ofs2-2p transitions in the to the surface iR=Ry, then the required travel distance is
hydrogen atom near the metal surface. LT,:SX 10_Scm. The time of this travel iS‘,T:LqT/V=5

Let a metastab'e hydrogen atom HQZStart |tS motion X 10_113, Wh|Ch iS mUCh Shorter than the radiation ||fet|me
along the metal surface at large distaftat the timet=0,  of the 2p-state:r,, ;,=1.6X10 °s. We can conclude that
so that we could use the asymptotic expressions for the erf@n atom in the &-state moving a distance of 6008, from
ergies of atomic levels given in the previous section. Thehe surface should travel through half a micrometer (5
wave functions of atomic steady states near the metal surfacé10™>cm) to complete its transition to thep2state. If an
are described by the functions in the parabolic coordinategtom travels along the surface through a distance much
Y, n, m(1,v,¢). The coordinate wave functions in spheri- larger than half a micrometer, thésjt(L)]> and the atom
cal coordinates,s(r) and ¢,,(r), for the states with the undergoes multiple £-2p—2s transitions.
principal quantum numbar=2 are expressed as linear com-
binations of the coordinate functions in the parabolic coordi-6. DISCUSSION
nates:

The boundary conditio21) used in our calculations is
1 1 approximate. Calculations based on this condition can be ac-
l/fzszﬁ(llfom ¥100, l/’Zp:E(‘//OlO_ Y100- (44 curate if the surface region makes a small contribution to the
energies of levels under discussion. This condition is valid
If the atom is in the stateatt=0, then at the timé=0 its  a fortiori if the electron orbit size is much larger than the

state is described by the function surface region thickness, which is usually within two to three
Bohr radii in different metals. Such is the situation, for ex-

W(r )= i iﬂlooexp( —i ftElodt') ample, in case of collisions between excited atomic particles

’ V2 0 and a metal surface. For example, the sizes of electron orbits

of C®*(n=9) andH(n=2) are~27a, and ~8a,, respec-
+ goroexd —i ftEmdt’ ’ (45) tively.. Npte that in t.his case conditid21) leads to a correcF .
0 description of atomic levels even though the electron orbit is
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strongly deformed by the interaction with metal. If the orbit energy. In the earlier calculatiofi$?~%a fraction of the po-
size is of order of the surface layer thickness, which is thdential energy of the nucleus due to its interaction with the
case in the hydrogen ground state, K),1the distance be- electron imageV,z, was attributed to the electron energy.
tween the atom and surface should be larger than the orbit larger distances, this interaction has an asymptotic behav-
size. In this case, the electron wave function is exponentiallyor 1/4R, and it is precisely this term that causes the
small near the surface because of the large barrier that sep@eulomb rise of the hydrogen ground level proportional to
rates the atom and metal, and the surface layer has littl&/4R found in Refs. 8 and 14-16 fat=1.
effect on the energy of the atomic electron. If the electron  Figure 2 also shows the results of our calculations of the
energy is higher than the Fermi level, conditi@1) is also  energyE,(R) for the hydrogen ground states in the zeroth-
satisfied at large distances between the atom and metal forder approximation. This energy does not include interac-
the same reason. tion between the electron and its image and was calculated

The approximation of image charge applies to the cas®y numerically solving the system of equatiofi8) and
of large distances between the atom and metal. Usually thel9). The asymptotic expansion of ener(84) atZ=1 con-
conditionR>Rp, is discussed; herBp, is the Debye radius, tains the Coulomb term 1R due to the repulsion between
which equals the Bohr radiug, times a factor of 1 or 2. A the electron and proton image. FRF-4a,, our calculations
more restrictive condition, however, is the smallness of thesf E,(R) are in good agreement with calculatin$ 6 for
perturbation of the metal conduction electrons, namely, théhe total s level. Previousl§ the energy of the 4 level was
additional density of the image charge on the surface shoulgalculated using the electric potential on the metal surface,
be much smaller than the charge density in the unperturbe@hereas our calculations are based on condit@b). The
metal. The density of degenerate conduction electrons can kgyreement between these calculations indicates that the sur-
estimated using the formdf®* no(er) =212 24372 For  face layer contributes little to the electron energy of the hy-
an isolated chargeZ the image charge density on the drogen atom in the 4 state at distances from the surface
surfacé®>?® is  An(e,R)=—(ZR27Rp)/(e?+R)*2 Jarger than 4.
wherep is the distance measured along the surface from the  Figures 3 and 4 show energies of excited states of the
perpendicular line drawn through the charge. Using thenydrogen atomif=2). One can see that the calculations in
maximum value of this density @=0, we obtain the con- the zeroth order and first order of the perturbation theory
dition (shown in Figs. 3 and 4, respectivglgiffer considerably.

s _ —5/8 The energies of the electron interaction with its image and

ReRoVZ,  Ro=150¢". 49 with the nucleus image are values of the same order for both
For most metalsRR, is within =(4—10)a,. For cesium(or  the ground state 4 and the excited states with=2 of the
any metal whose surface more than 60% is coated with ceqydrogen atom.
sium) the Fermi energyr=1.5eV=0.055a.u., so we have Figures 4—6 show the results of our calculations for the
Ro=9.2a,. This value is six times the Debye radius for me- excited state of the T (n=9) ion. Figure 5 shows elec-
tallic cesiumR5*=1.54a,. For the carbon ion wit@=6 the  tronic energies calculated in the zeroth-order approximation,
distance from the cesium surface should be larger thaand Fig. 6 shows these energies calculated in the first order
22.5,, which is a factor of 14.6 larger thaRS®. of the perturbation theory. The differences between the en-

If R~Rg\/Z, the perturbation in the electron density in ergies plotted in these graphs are small because the energy of
the metal cannot be ignored. The potential barrier betweeslectron interaction with its image is small in comparison
the atom and surface is lowered, and electrons from thevith its interaction with the nucleus image. The numerical
metal can transfer to the atomic ion more easily. This effectalculations are compared in these graphs with asymptotic
was previously studied in detdiland it turned out that, ow- expansions in the limit of large distances from the surface. It
ing to this neutralization effect, the acceleration of theis clear that the asymptotic expressions are close to numeri-
atomic ion near the surface caused by its attraction to theal calculations at distances down to the orbit size; hence
image charge is terminated at distances much larger than tlesymptotic formulas can be used in calculating energies of
Debye radius and equal to approximateR,2/Z. other C7 levels, as well as levels of other?A ions. The

The result of our calculations are plotted in Figs. 2—6.levels in Figs. 4—6 are driven upwards, and this tendency is
Figure 2 shows the ground-state leved of hydrogen in  due to the repulsion between the electron and nucleus image,
comparison with calculations by other authors. Our calculawhose energy at large distances4s{(1)/4R. Since the sec-
tions for the k level are close to the unperturbed valueond Coulomb center, which is the nucleus image, has an
Ego=13.6 eV at distanceR=4a,. On the other hand, thesl  effective charge&.4=2/2 in Eq.(13), in the limit R—0 the
energy level calculated by other autHots26 follows the  total charge of two centers is equal+dZ/2 and all states are
function E14(R) =Ey(>°) + 1/4R at large distances and rises bound. From the levels that are above the Fermi energy, an
to 1.90 eV abovéEy, at R=4a,. It follows from our calcu-  electron can tunnel into the metd*® At the same time, an
lations [Eq. (41)] that deviation of the leveE(R)—Eq,, atomic ion approaching the metal surface cannot capture a
=1/4R is possible for an atomic ion with unit charge, for resonant electron to these levels. This capture of an electron
example, H&. But for a neutral atomZ=1, the Coulomb from the conduction band requires that additional energy be
term (Z—1)/4R is zero. The image of a neutral particle in a imparted to the electrof?.
metal is a neutral particle, and interaction between two neu- We have calculated the energies of th&*Con for
tral particles cannot contribute a Coulomb term to the leveR=50a, (Figs. 4—6. According to the conditior{52) and
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The axion vertexayyvy, the probability of three-photon axion decay in an external magnetic
field, and the cross section of the crossing procesgs-2vy, which CP invariance forbids in
vacuum, are calculated for the first time. It is shown that in superstrong magnetic fields
B>F,=m?/|e|=4.41 10" G the probability of three-photon decay is greater than the probability
of two-photon decay. The astrophysical aspects of the questions examined are discussed.
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1. INTRODUCTION physical situationgthe Big Bang, neutron stgrswhere the
. ) . axion component of the invisible mass was mainly formed.
The necessity of the existence of an axion as a pseudas ¢ fields can fundamentally change the characteristics of
scalar goldstone boson, explaining t@# invariance of  yecays by influencing the propagator factors of the electron
strong interaction$,is now generally accepted. To give the loop, which makes the main contribution to the amplitude

axion real standing laboratory experiments are now being..ause of the very small mass of the charged fermion. Spe-
conducted or planned while previously the axion param- cifically, three-photon decag— 37 (see Fig. 1 which CP

eters were estimated only on the basis of astrophysical angd, arjance forbids in vacuum, becomes possible. The struc-
cosmological considerations. Thus, the first laboratory estif, e of the axion vertex in the diagrams is determined by the

mate pf the upper limit of the axion—phqton coupling CON-adopted form of the axion—electron interaction Lagrangian
stant in an experiment based on the Primakov effect with

conversion of solar axions into photons in a coherent inter-
action with a crystal lattice was given in Ref. 2 gg,,
<2.7-10 °GeV ' The limit on g,,, was obtained irre-

spectively of the axion massi, right up to the upper limit In the present paper the amplitude and probability of

~1 keV. An experiment on the conversion of solar axions : . o
. . . . three-photon axion decay in a magnetic field and the cross
into x-ray photons in a system of strong magnetic fields

. . tion of the crossing proceay— 2y are calculated for

could be realized in the very near futute. section of the crossing proceay—2y are calculated fo
The most reliable data on the values of the axion aramEhe first time, and it is shown that in fields with induction
P B>F, the probability of three-photon decay of relativistic

gltﬁtrss Ie;roer thll; rtr)1 als:dthoen %Osssrir;)?éogﬁgln ar:glszs:;piyiséca:erjéxions is greater than the probability of two-photon decay.
' p'e, P 9 P The exposition is organized as follows. The form of the

cated on existing ideas about the rate at which stars Ios& , . . S g
. . reen’s function for the Dirac equation in a magnetic field,
energy(upper mass limjtremaining unchanged and on the .

. A : ._including the asymptotic limit of superstrong fields, is pre-
axion contribution to the nonbaryonic component of the in- ) i : ~ :
visible mass of the universgower limit):* sented together with a discussion of the algebra ofatrices

in two-dimensional space, in Sec. 2. The form of the{vy)
10 °eV=m,=102eV. (1)  vertex in a magnetic field is obtained in Sec. 3, and the

The main axion production channel in the interior regions ofProPability of the decay—3y and the cross section of the
stars and collapsed objects could be the Primakov &féet |nela_st|c procesay—yy are obta|_ned in Sec. 4. The results .
possibly a synchrotron mechanism due to the presence &btamed, |nqlud|ng the astrophysical aspects, are analyzed in
strong magnetic fields. However, the only decay channel i{1€ 1ast section.

considered to be the two-phonon chaneeb2y with the

decay probability per unit tinfe

o Co — s Jda
;/fae=ﬁ(‘l"y#’y \I’)W, )
"

wherec,~1 is a constant.

2. GREEN’S FUNCTION FOR THE DIRAC EQUATION IN AN

92,,ms e’c, EXTERNAL MAGNETIC FIELD AND THE ALGEBRA OF
Woy=Gang,” 92" 2mt (2 2x2 5 MATRICES
wheree?= a=1/137,q, is the axion energyc,, is a constant The solution of the singular Dirac equation

depending on the model and is of the order of 1, arwdthe A A
energy scale for breaking of the Peccei—Quinn symnietry. (i0—eA=m)G(x.y) = (x=y) )
However, strong magnetic fields of the order of and greatein an external constant and uniform magnetic field with in-
than the characteristic Schwinger fielo=m?/|e|=4.41  duction B in the special gauge of tha potential can be
X 10" G (m — electron masscan exist in extreme astro- written as

1063-7761/99/89(1)/5/$15.00 13 © 1999 American Institute of Physics
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k k'
—————— k' - ——— k - -
q q q
k" k"
i
G(X.y)=exr{—%(Xﬁyl)(Xz—yz) G(x—y), 5)

wherey=|eB| and the 3 axis is oriented along the vedBor

It is convenient to use for the Fourier transfo@fp) of the
function G(x—y), which depends only on the coordinate
difference, the representation

G(p) 1Jldt(1+t ! S8t (py+m)
=— — exp(— m
(p pong BCL e o4 P
XIM-(1=-8)— 777 _an] (6)
obtained in Ref. 10. Here
n=(p7—m/2y, pj=pi—p3.
s=pily, pi=pitp:. P =7"Pot¥ps, (7

P =7'P1t ¥?P2,
andIl_=(1—ivy,vy,)/2 is the operator projecting spin on a

V. V. Skobelev
k
k" FIG. 1
p
Gy(p)= E;mz, P=7"Po+ ¥*ps. (10
Pj—m

plays the role of the Green’'s function in two-dimensional
space. It enters in the matrix elements of the corresponding
diagrams(see Sec. 3

It can be showh that an expanded variant of Furry’s
theorem holds in two-dimensional space — the matrix ele-
ments of loop diagrams with an odd number of vertices van-
ish irrespective of theiP classification(vector of pseudovec-
tor). As a result, diagrams with an even number of vertices
are linear functions of the fieftf, whereas diagrams with odd
number of verticedeven beyond the two-dimensional ap-
proximation approach a constant, indicating that the former
predominate in fieldB8>F,,.

We note also that the maximum divergence in two-
dimensional expressions of the vacuum diagrams is logarith-
mic, and in all cases which we have considered previously it
cancels in accordance with the condition for applicability of
the expansiorf9) (the only exception arises in the calculation

direction opposite to the field. The expansion of the functionof the electron mass operatGrwhere the method works to

(6) in the field in an invariant form in terms of the field
tensorF has the form

+ ...
ap Go ’

ie
G(p>=Go—§Go( ¥F

p+m
GOZ p

e ®
In the strong-field limitB>F, the integrand in the ex-

pression(6) must be formally expanded into powers »fin

the inverse fieldd This expansion is valid if the integrals over

the two-dimensional momentum in the subsp@xed) on the

electron massn converges. The leading term, employed be-

low, of the expansion is

P

pi—m

+m

G(p)=2e °II_ 5

9

As noted in Ref. 11, this procedure actually “two-

dimensionalizes” the mathematical apparatus of the theory.
Specifically, for loop diagrams, the expression remaining af-

ter Gaussian-type integrals over are performed reduces to
a two-dimensional expression in the subspéed), since
vertex factors of the forrfl_vy, I1_ andIl_vy,y°Il_ are
different from zero only fora=0 and 3,7°y® playing the
role of the matrixy® sincell _ y°I1_=1I_v°»2. Finally, the
presence of the operatbf_ decreases the dimension of the
v matrices to X2, after whichll_ can be dropped, denoting

the 2x2 matrices by the symbol, (a=0,3), while 3°
=%y3. The function

logarithmic accuracy in the field

The two-dimensionalization of the mathematical appara-
tus can be explained physically by the suppression of the
transverse excitations of virtual electrons in fiel@dsF
with the Landau ground state making the dominant contribu-
tion.

The algebraic relations used below for thematrices
follow from their basic reduction property:

(¥ =1,

whereg®?=(1,—1) is the metric tensor in the subspa€e
3), ande*? is the absolutely antisymmetric tensor (@, 3)
with the valuess%= — £3 =1 ande®=¢33=0. The identi-
ties

Y=g+ e, (1)

saﬁspo:adUaﬁp_EQEBU’ (12@
aa58p0+8aﬁépﬂzaﬁpsa‘7+ Spﬁéaﬂf’ (12b)
Val Ve, - - .’;/aznﬂ)’;/“: 0 (120

greatly simplifies the procedure for calculating the traces:

e R L L A R
STV =G et oG, 120

and so on.
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3. THE ayyy VERTEX IN A CONSTANT AND UNIFORM (K'E) n(K'F)...(KF)
MAGNETIC FIELD « @ @’

The ayyy vertex corresponds to the three diagrams in
Fig. 1, and the complete interaction Lagrangian is a sum of (k”IEFZ)a//[ka/k;—gw/(kk’)],
the expressio3) and the electrodynamic pa{V v*V)A,
with the operators represented in the Furry picture and the
electron loop making the dominant contribution. Noting that
the phase factor in Eq5) in a loop with an even number of
vertices cancels, we shall determine the matrix element of
the procesa— 3+ in terms of theS-matrix element as

in the second term, and so of (— dual tensor. In this

(2m)48(q—k—k' —K") approximation there is no need to calculate the tensor
UEDS - M, (13 M ,a'o» €Xactly, since the corresponding decay probability
2q02ko2ko2kg W3, in any case is small compared with the probabiiity,,
(see Sec. ¥
M=M,, e agka'gra’ (133 The situation is completely different in the strong-field

limit B>F,. Here detailed calculations are required. Substi-

whereq is the momentum of the axiolk, k', k" ande, e/,  tuting into Eq.(14) the expression

e” are the momenta and polarization vectors of the photons,
and the pseudotenstt ,,+,» has the form

3/2
M, 0= _'eCe(47T) jd“ fd“ fd“ '

Xexgi(kx+k'x"—qy)]Tr[ v,G(x

G(z)=

. B
(277)4jd PG(p) exp[ —i(p2)]

with G(p) from Eg. (9) and integrating the loop over all

—X") Y, G(X" ) YarG(—Y)qY*G(y—X)] variables except for the two—dimensional momentum us!ng

_ the two-dimensional representation of the Green'’s function

+ two photon permutations. (14)  (10) in accordance with the method described in Sec. 2, we
obtain

For fieldsB<F, in the low-energy approximation with
respect to the momenta of the external lifas compared

with the electron masm), the nonzero contribution accord- 2e3cey
ing to the “standard” Furry theorem corresponds to an odd M, Joarans (16)
number of interactions with the field in the loop. From gauge \/_f
and Lorentz invariance considerations the pseudotensor
M ..’ 1S, to within numerical factors, in first orders in the
field Joa' o= war ar (KK K+ 1 4 gar (K K K”)
4
etc. 3 L aarar (KK K", (16a
Maa’a”:_4 {F®e®k }aa’a”+ E
0

o i 2 1 54 >
laarar (K" K") = — [ d%p- S TI{¥°qGy(p) 7,Gs

x{F30e®k%} yurart - - |, (15)

X (Pp+K) v, Ge(p+k+k')y,nGs

Wher_e in the brackete= uvap is the absolutel;_/ antisym- X(p+a)];
metric tensor, and the direct-product symbols in the braces
denote gauge-invariant combinations of the form

g=k+k'+k"; a,a’',a"=0,3. (16b)
(K"F) K, K= Qo (KK,

(K"F) //eﬂmwk“k,'f The symmetri;ed express_idr;a,a,, vanishes to first or-
der of the expansion df,,/,» in terms of the momenta, as
should happen because of gauge invariance.

The exact result for the two-dimensional rank-2 pseudot-
ensorl ,,,» in the form of a triple integral over the Feyn-
in the first term and man parameters is
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I e (K K" K™ We note thatl,,,,» is proportional to the fifth power of
the momenta, though in principle the conditi¢iBg does
not rule out a cubic combination, which, however, vanishes
_Zf dxlf dx2f dx3[ 2)3[%’3 alal identically in a specific calculation.
If the state of linear polarization of a photon is charac-
m2 m?2 terized by the vector
+(q8)aga’a”]+ (mz_rnz)z(qs)a’gaa” (mz_th)3 ea:(ks)al\/P (19)
X[ = & gt KB ) = G (£ Pe) o 3)q) and the orthogonal vector, then the latter does not contribute
¢ at all because of the two-dimensionality of the contractions.
—aaa'K n(K(S)SQ)—Saa (@) ,,(K<3)gq) Thus for “nonsterile” polarization states the matrix element

is
+(08) ok DB+ 9o (ke ) o €+ q kB (K@)
~ (ke)® (k'e)® (K"g)®"
+(ge) o( kM) o (K De) o= P (kMe) (G o Maqrar \/— \/7 \/7

+0°k!] (g rau+2(q€K)KS)~ rar—2(0e k)

X(K(l)s)asa’a"+(qSK)aaa’(K(2)+ K(S))a” = 86 Ce(B/F ) Zkikikz ' (20)
45 am®t
Here the relation(12a3 was used and the fact thatk?
+(Qe k)€ 4or(K'e) 4] =k, , wherek, is the component of the photon momentum
transverse to the field, is taken into account. As indicated in
1), (2) (3) Sec. 2,M increases linearly with the field.

+(qK) € gor (KP4 k) 4t (qK) Gt (K'€) o

1
- (—2)3[(QSK)(K

4. THREE-PHOTON AXION DECAY AND THE INELASTIC
+ k(@) g i (kK®g) i+ (K(l)s)ak(z,)(K(s)s)a”

PROCESS ya—yy IN A MAGNETIC FIELD

+(kMe) o(KPe) (k) = (qu) (kK We) (kP D) In the regionF <F, (F — field amplitude it is easy to
obtain, using the expressiofik3) and(15), to within numeri-
cal factors and taking account of the significant powers of
the small parameters the probability of three-photon axion

+kB(Pg) KS,)—F K&l)KEYZ,)(K@)s)a”

+(kWe) (kPsg) . (k®e) )]t (17)  decay summed over the polarization states of the photons
a’cimim F\2/m,\® ma
In Eq. (17) and below in this section all contractions and WBy:fZ— a F_o m azx?
scalar products are two-dimensional in the spdxe3). For 9o
brevity, the following notation has been introduced: 2
~ +agx| —| +anx® (21
M?=k?(1—Xp+X3) (X2—X3) +(q+K")2(1=X; +X,)
wherea; are numerical coefficients and
X (X1 = Xp) +0%%1(1=X1) = 2k(q—K") (X2~ X3) I\/ﬁ
" e“(qF-q)
X(Xg=X%2) = 2(kq) (X2~ X3)(1—X1) —2q(q—K") X= T<l- (22)
X(X1—X2)(1—=Xy), 17 _ .
(=) v (73 Comparing the expressioigl) and(2) shows that only
k=K(Xo—X3)+ (g—K")(Xy—X2) +q(1—X;), the contribution of the last term in E(R1) can compete with
L ) . the probability of two-photon decay, but it is less than the
kW=k—k, «P=k—q+k’, xP=k-q. corresponding field corrections W,.,.

If the tensor(15), just as in the two-dimensional variant
(18), is proportional to the fifth power of the momenta, then
ﬁhls result only becomes stronger, since additional small fac-
tors will appear in the expressidgl).

We now consider the case of superstrong fields, where

42 the matrix element is determined by the expres$&i. The
Jaarar=7——5(Ke) o(K'€) 41 (K"&) o (18)  integral overk” removes thes function, and to integrate over
15m k' it is convenient to orient the axis of the spherical coordi-

is obtained from Eqs(17) and (163 after complicated cal- hate system along the vector q—k. The calculations yield

culations. This expression is explicitly gauge-invariant the following expression for the probability of three-photon
axion decay per unit time as a distribution over the momen-

Joa K= gk “=J g1 K ¥=0. (189  tum of a single photon:

In principle the expressiond6) and(17) hold in the entire

regiony>q3, m?, but in practice it is possible only to study
the low-energy approximation, where all momenta are muc
less than the electron mass. In this case the simple result
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4a3c§(q2)2 B\2 r d3 W3, /W,,~10 forqg, =0.1m, m,=10"3 eV, andB=10F,
W =————| — —K? not to mention smaller values af, from the “window” (1)
3y 3 5628 [= 2ky - . .
45°(2m)°>f"m°qo \ Fo 0 or large values of the magnetic induction.

X[(p2)2+p2pf+pf]. (23) _ Of course, here there is no f:ontrad|ct|on with perturba-

_ _ tion theory, since the probabilitie®/,, 1), and W5, of
Here the index. once again de_”0t295 the ;/ector componentgjecay into odd and even numbers of photons, respectively,
that are perpendicular to the field; and p” are squares in - decrease with increasing but because of the specific nature
the subspaceD, 3), and the expression falVs, is addition-  of the decays in superstrong fieMéz; ; 1),>W,,,, can hold
ally divided by 3! because the photons are indistinguishableggr a1 n for the indicated values of the parameters.
tem along the vecton, the limits of integration over the two-photon decay is greater than the age of the Universe, and

photon energy are determined by the relation this also holds in superstrong magnetic fielti§or this rea-
mg son, the procesa—2+y plays no role on the astrophysical
0=<ky< (24)  level. Using Eq{(25b), we represent the lifetime with respect

2(go—|q| cos6)’
and the final result is

to three-photon decay as

a’c2mZ(g% + m?)2 ( B)Z
W, = —| (49®+60*m? 2/ 003 g 2 9 2
*7" 84.903 2m)*f2meq, | Fo ared.m T3y~ flee (10 eV) (E) (5) -3-10%s.
) s . 10°GeV my q./ \B
+8g°m3+3m3). (29 (28

In the limiting cases of an axion at regf,(=0) and an
ultrarelativistic axion ¢, >m,) the corresponding probabili-

ties are If 73, is to be comparable to the time of existence of
#32m(BIF )2 superstrong magnetic fields during the epoch of the Big

L= e o (259  Bang, thenB=10"F, for hard axionsq,~m, which is

7 28-90%27)*f2meqq hardly possible. Therefore the astrophysical aspects of the
three-photon axion decay process are quite problematic.
Careful estimates show that this is also true for the other
channel, whose cross section is given by &), for “van-
ishing” of an axion.

| thank Yu. O. Yakovlev for technical assistance.

a’cgmiai’(B/Fo)?
37 21.903(2)*F2méq,

The cross section of the inelastic process— yy can
be easily found using the expressiq@$) and(23) and is

(25b)

a®cZk (M +q?)%(B/F)?
o=
9.15%(27)%12m8(qoko—q-k)

[(p?)?+p?p? +pt],

(26) !R. D. Peccei and H. R. Quinn, Phys. Rev. L&8, 1440(1977. R. D.
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. of Chicago Press, Chicago, 1996
It was shown in Ref. 14 that fd8>F, the two-photon sk van Bibber, P. N. McIntyre, D. E. Morris, and G. G. Raffelt, Phys. Rev.

decay probability/,,, no longer depends on the field, differ- D 39, 2089(1989. N ) _
ing from the probability(2) in the absence of a field by the °A.V.Borisovand V. Yu. G”Sh'fll(a,bZT-Vf'Sp-hT?g- Fiz106, 1553(1994
formal substitutionc,—Ce. In other words, a superstrong Eig;’; E?E?S;élfg?l]égf)]v' Skobelev, zh. ksp. Teor. Fiz112 25
field restores the isotropy of the space with respect to the'g . Raffelt, Phys. Rev. B33, 897 (1986.
decaya— 21y, as a result of which the relativistic factqf is 8C. Thompson and R. C. Duncan, Astrophys408 194 (1993; M. Boc-
absent in the expression fov,,, in contrast to Eq(25h). quetet al, Astron. Astrophys. J301, 757 (1995.
This and the proportionality diVs., to the square of the field 5,0 & Raffelt, Phys. Replog 1 (1990.

proportionaiity OlVs, q _ 10yy, M. Loskutov and V. V. Skobelev, Yad. Fi31, 1279(1980 [Sov. J.
together make it possible for the three-photon axion decay nucl. Phys.31, 661 (1980].
channel to predominate over the two-photon channel. On th&V. V. Skobelev, zh. Eksp. Teor. Fiz.71, 1263(1976 [Sov. Phys. JETP

5. DISCUSSION

basis of these remarks and E¢®). and (25b) we obtain ;34 660(1976].
Yu. M. Loskutov and V. V. Skobelev, Phys. Lett. @2, 53 (1977).
W, q, )\ m\?/ B\? 13yu. M. Loskutov and V. V. Skobelev, Vestn. MGU, Ser. Fiz., Astr., No.
—2=2510°%—=| |—| |[=— (27 6, 111(1977.
Ws,, m/ \my/ \Fo 4y, V. Skobelev, Yad. Fiz61, 2236 (1998 [Phys. At. Nucl.61, 2123
(1998].

As one can seeWs,/W,,=1 for hard axions ¢,
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Approximating the shape of the magneto-thermoelectric pdivEP) AS(T,H) measured in
Bi,Sr,CaCyO, by an asymmetric linear triangle of the for&S(T,H)=S,(H) = BX(H)(T.—T)

with positive B~ (H) andB™(H) defined below and abovE,, we observe thaB ™ (H)

=2B~(H). To account for this asymmetry, we explicitly introduce the field-dependent chemical
potentialu(H) of holes into the Ginzburg—Landau theory and calculate both an average
AS,(T,H) and fluctuation contributiol S;(T,H) to the total magneto-TERS(T,H). As a

result, we find a rather simple relationship between the field-induced variation of the

chemical potential in this material and the above-mentioned magneto-TEP data argquvid.
Au(H)*S,(H). © 1999 American Institute of Physids$1063-776(99)01807-7

As is well-known*? the variation of the chemical poten- with positive slopeB~(H) andB*(H) defined forT<T,
tial u of free carriers in an applied magnetic fi¢hdprovides andT>T,, respectively, one findésee Fig. 1 thatB™(H)
direct information about the magnetization structure inside a=2B"~(H) in the vicinity of T.
superconducting sample. Namely, the field-induced change In the present paper, using the Ginzburg—Landau theory
of the chemical potential in superconducting state réadsand utilizing some typical magneto-TEP daf@n textured
Au(H)=pu(H)—u(0)=—M(H)H/n, whereM(H) is the  Bi,Sr,CaCyO,, we discuss the mixed-state behavior of the
field-induced magnetization amdis the carrier number den- magneto-TERand in particular the origin of the asymmetry
sity. At the same time, due to the existence of the so-callegiven by Eq.(1)] in terms of the corresponding behavior of
compensation effeétit is rather difficult to observe field- the chemical potential in applied magnetic field.
induced modulations of. in bulk samples, since in equilib- It is well-known'=® that for external fieldH such that
rium any field-induced variations of will be completely H ;<H<H., and for the Ginzburg—Landau parameter
canceled by similar variations caused by the magnetostrictive >1, the magneto-TERAS(T,H) is proportional to the
changes of the volume. However, this compensation does natrength of the external field. To describe the observed be-
occur in thin fimg? and oriented powdersThus we can havior of the magneto-TEP both below and abdye we
expect to see significant changesudfH) in layered(aniso-  can roughly present it in a two-term contribution fdrm
tropic) structures as well. On the other hand, in view of their _
carrier-sensitive nature, thermopow@EP) measurements AS(T,H)=AS,(T,H) +AS(T,H), 2
seem to be the most adequate tool for probing the fieldwhere the average terfnS,(T,H) is assumed to be nonzero
induced changes of the chemical potentials. Indeed, TEP renly belowT, (since in the normal state the TEP of high-
sults have already proved to be useful for providing reasonsuperconductoréHTSCS is found to be very sméif) while
able estimates for such important physical parameters as tlige fluctuation termA S4(T,H) should contribute to the ob-
Fermi energy, Debye temperature, interlayer spacing'etc. servableAS(T,H) for T=T,. In what follows, we shall dis-
Studying the observable magneto-TRRS(T,H)=S(T,H) cuss these two contributions separately within the mean-field
—S(T,0) also provides important insights into different as-theory approximation.
pects of the material in the mixed st&t® (whenH.;<H
<H,,). When experimental results are presented in the form
of AS(T,H) one observes that its temperature dependenc¥EAN VALUE OF THE MAGNETO-TEP: A S,,(T,H)
has a\-like shape asymmetric aroufid where it reaches its Assuming that the net result of the magnetic field is to
magnetic field-dependent peak val@(H)=AS(T:,H).  modify the chemical potenti@Fermi energy u of quasipar-
Then for small fields, approximating the shapeAd®(T,H) tjcles, we can write the generalized GL free energy func-
by the asymmetric linear triangle of the fdtm tional < of a superconducting sample in the mixed state as

C —_— B _
AS(T,H)=S,(H) =B*(H)(T,~T), B Lyl=a(m|p?+ S vl ulyl? &)

1063-7761/99/89(1)/4/$15.00 140 © 1999 American Institute of Physics
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FIG. 1. A typical pattern of the obser/ednagneto-TEPAS(T,H) of
Bi,Sr,CaCyO, at H=0.12T. The best fit to the data points according to
Eq. (1) yields S,(H)=0.16+0.01xV/K for the peak, and3™ (H)=0.012
+0.001.V/K? andB* (H)=0.027+0.003.V/K? for the slopes.

Here y=|y|e'® is the superconducting order parameter,
um(H) stands for the field-dependent in-plane chemical po
tential of the quasiparticles(T,H)=a(H)(T—T,) and the
GL parametersae(H) and B(H) are related to the critical
temperature T., the zero-temperature BCS gap,
=1.7&gT., the out-of-plane chemical potentidfermi en-
ergy is u.(H), and the total particle number densityas
a(H)=B(H)n/T,;=2Akg/u:(H). In fact, in layered su-
perconductorsu = u./ y*=mZ,(J.d/24)?, whered and J,

are the interlayer distance and coupling energy within the

Lawrence—Doniach model, ang=mg/m}, is the mass an-
isotropy ratio. The magnetic field is applied normally to the
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and
®

BadH)= o1 32,70) -

Before we proceed to compare the above theoretical findings
with the available experimental data, we first have to esti-
mate the corresponding fluctuation contributions to the ob-
servable magneto-TEP, both above and belqw

MEAN-FIELD GAUSSIAN FLUCTUATIONS OF THE
MAGNETO-TEP: ASy(T,H)

The influence of superconducting fluctuations on the
transport properties of HTSG@cluding TEP and electrical
conductivity has been extensively studied for the past few
years(see, e.g., Refs. 10—14 and further references therein
In particular, it was found that the fluctuation-induced behav-
ior may extend to temperatures more than 10 K higher than
the corresponding .. Let us consider now the region near
T. and discuss the Gaussian fluctuations of the mixed-state
magneto-TERAS;(T,H). Recall that according to the theory
of Gaussian fluctuations, the fluctuations of any observ-
able, which is conjugate to the order paramefefsuch as
heat capacity, susceptibility, etcan be presented in terms
of the statistical average of the square of the fluctuation am-
plitude ((84)?) with 8= y— sy. Then the TEP abovet)
and below(—) T, have the form

A
Sﬁ(T,H)=A<<6¢)Z>i=ZJ dlyl(ap)?e 1, (9)

whereZ= [d|y4|e *[¥] is the partition function withS[ /]

ab-plane where the strongest magneto-TEP effects ares (4] ¢]1— <[ ¢0])/ksT, andA is a coefficient to be defined

expected. In what follows, we ignore the field dependence

of the critical temperature since for all fields under discus-

sionT¢(H)=Tc(0)(1-H/H)=T(0)=T,.

As usual, the equilibrium state of such a system is deter-

mined from the minimum-energy conditions/d|¢|=0
which yields forT<T,

a(H)(Te—T)+pu(H)
B(H)

Substituting| ¢|? into Eq.(3) we obtain for the average free
energy density

| ol ?= (4)

[a(H)(Tc—T)+u(H)]?
2B(H)

In turn, the magneto-TERAS(T,H) can be related to the

corresponding difference of the transport entropies) o

=JAQ/JT, as AS(T,H)=Ao(T,H)/en, wheree is the

charge of the quasiparticles. Finally the mean value of th

mixed-state magneto-TEP read®low T)

QT H)= 7 o] = -

©)

Asa\KTvH):Sp,a\XH)_Bav(H)(Tc_T)r (6)
with
Au(H
Sy alH) = Z(T !, (@)

below. Expanding the free energy density functioffdly]|

PG

Fa

(69)2, (10

1
A1~ ol + 5
[l =1l

around the mean value of the order parameigr which is
defined as a stable solution of equatioti/d| | =0, we can
explicitly calculate the Gaussian integrals. Becaugg? is

given by Eg. (4 below T, and vanishes at
T=T,., we obtain finally

(T H AleTe T<T 11

= <

S e T aur e WY

and
AkgT
SHT.H)= SR T=T.. (12

 2a(H)(T=Te)—2u(H)’

%As we shall see below, for the experimental range of param-

eters under discussiop(H)/a(H)>|T.—T|. Hence, with a
good accuracy we can linearize E¢El) and(12) and obtain

for the fluctuation contribution to the magneto-TEP
AS; (T,H)=S;4(H) =B (H)(Tc—T), (13

where
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_ AKgTAu(H) N B Ay, meV
SnH)=——Z200)+ Sea(H)==28,4(H), (14) 0.4
and

3AK3T AgA u(H) B
By (H)=— Byzﬂfz();L ., Bi(H)=—2B; (H). 03f
(19

Furthermore, it is quite reasonable to assugpe= S;ESp,
whereS, =S, ,+ S,y andS,; =S, . Then the above equa-

tions yield an explicit expression for the constant parameter 02y
A namerA=4;L2(O)/3ekBT§. This in turn leads to the
following expressions for the fluctuation contribution
to peaks and slopes through their average counterparts
[see Eqgs.(7) and (8)]: Sy.1(H)=(2/3)S; adH), SEf(H) 0.1-
=—(13)SpadH), By (H)=—(1/2)Ba(H), and By (H)
=B,(H). Finally, the total contribution to the observable
magneto-TEP readsf. Eq. (1)]
AS(TH)=S,(H)+B*(H)(Te=T), (16 T 0z o3 _os
HT
where
FIG. 2. The change of the chemical potentigk(H) in applied magnetic
2Au(H) o _ field calculated according to E¢L9). The experimental points are deduced
SD(H): TTC’ B"(H)=Bq (H)=2B"(H), (17 from the magneto-TEP ddtan Bi,Sr,CaCyO, and related ta\ u(H) via
Eq. (17).
and
B (H)=B,(H)+ B (H)= 4AokgA u(H) (19 mates of this parametéf Figure 2 shows\ u(H) calculated
a f eT,y’u?(0) - according to Eq(19) with the experimental data points de-

Let us compare now these theoretical expressions with typi(—juced[\”"’1 Eq. (17)] from the magneto-TEP measurements

cal experimental dafaon textured BiSr,CaCyO, for the on the same sampleAs is seen, the data are in a good

slopesB*(H) and the peals,(H) values forH=0.12T (see agreement with the model predictions. Finally, using the
. - i above parameter@long with the critical temperaturewe
Fig. 1): §,=0.16+0.01uV/K, B~ =0.012+ 0.001uV/K?

andB*=0.027+0.003uV/K?2. First we notice that the cal- f_|nd that,u(H)/a(H)_leOK .Wh'Ch Jqsuf'?s the use of the
4 . . linearized Eq.(13) since, as is seen in Fig. 1, the observed

culated slope8™(H) aboveT, are twice their counterparts magneto-TEP practically vanishes fdr,— T|=15 K

belowT., i.e.,B*(H)=2B"(H) in a good agreement with 9 P y ° - X

the observations. Using=55 andd= 1.2 nm for the anisot- To. summarize, to probg the.varie.ltion OT the chgmic_:al
ropy ratio and interlayer distance in this matePi:16 we potentialA w(H) of quasiparticles in anisotropic materials in

. . A an applied magnetic field, we calculated the mixed-state
obtain reasonable estimates of the field-induced changes @ . .
) i . . magneto-thermopoweA S(T,H) in the presence of field-
the in-plane chemical potentialFermi energy Au(H) . .
o . . modulated charge effects nedr,. Using the available
[along with its zero-field valug(0)] and the interlayer cou-

pling energy J namely, (0)=1.6meV, Au(H) m_agneto-TEP experimental data_ on _textured
~0.02meV anci](:c,z4 mev. Iéurthermore relating the field- Bi,Sr,CaCyO,, the field-induced behavior of the in-plane

induced variation of the in-plane chemical potential to theA'U'(H) was obtained along with reasonable estimates for its

. . : zero-field value(Fermi energy w(0), interlayer coupling
change of the corresponding magnetizatiéH), viz., energyJ., and the hole number density, in this material.
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We study the resonance structure of the conductémaasmissivity of a quasi-one-dimensional
channel that contains an attractive impurity of finite dimensions and derive an exact

expression for the scattering matrix. We show that an impurity of finite dimensions may cause a
set of Fano resonances to appear in the transmissivity. We also find that due to the coherent
interaction the Fano resonances can collapse and discrete levels may appear in the continuum.
Finally, we establish the wave function of the discrete levels and study the channel

transmissivity in the critical regime. €999 American Institute of Physics.

[S1063-776(19901907-1

1. INTRODUCTION 2. MODEL OF IMPURITY AND THE SCATTERING MATRIX

Lately nanotechnology methods have been used to pro- We examine the scattering of electron waves in a quan-
duce quasi-one-dimensional channels, or electrofum waveguide of widthW aligned with thex axis. Suppose
waveguide<. A remarkable property of such channels is thethat the confinement potential acting in the transvetae
quantization of conductan@é. This means, for instance, that €ra) direction is described by a functiov(y) and the im-
the dependence of conductivity on the electron Fermi energUrity potential by a functioV(x,y). The electron wave
acquires steps. In such channels artificial scatterers or impdunction is found by solving the Schimger equation
rities can be created, which makes it possible to control the K2 92 2
transmissivity of the waveguideThe effect of short-range “oml et &—)/Z)T(x,y)wLVC(y)\P(x,y)
impurities on the transmissivity was studied earlier and it
was found that such impurities lead to quantum erosion of +V(X,y)¥(x,y)=EV¥(X,y), D
transmissivity. Chu and SorbelfoBagwell® and Tekman : .

wherem is the effective electron mass.

and Ciracf found that short-range impurities generate dips in Let us derive the exact expression for the scattering ma-

the transmissivity, while impurities of finite dimensions in _ . . . - ) :
I trix of an electron in a waveguide containing an impurity of
the transverse direction may lead to the appearance of asym-., = . . :
Inite size. Here we use the model of a two-dimensional well,

metric resonances. . examined earlier in Refs. 10 and 1Hig. 1). The impurity
In the present paper we study the scattering of electron . .
: ) . . . . - potential can be written
waves in a quasi-one-dimensional waveguide by an impurity
of finite dimensions. We derive an exact expression for the
scattering matrix. If the impurity is short-range in the longi-
tudinal direction, it gives rise to an asymmetric resonance
(Fano resonangeelated to the existence of a virtual level in Where 6(x)=0 for x<0 and #(x)=1 for x>1, X;=0 and
the low-lying bands continuufhFor the first time we study a  Ys &re the coordinates of the center of the well, &fyglis its
situation where the impurity generates a large number oflepth. ) ) S )
levels. New coherent effects may arise in the process: the [N calculating the scattering matrix it is convenient to
interaction of levels immersed in the continuum, and col-Use two different bases: the wave functiapgy) of a per-
lapse of resonances. The physics of Fano resonances diffd@ct waveguide Y(x,y)=0), which can be found by solving

substantially from that of ordinary Breit—Wigner resonances!he equation

a

L W,
V(Xry_Ys):_Vatt‘9 ?_|X| 0 7_|y_Ys| ) (2)

We show that Fano resonance may disappear at céctdiin K2 o2
cal) parameters of the system. Here the collapse of reso- —ﬁWzﬂLVc(Y) @n(Y)=Enen(y) 3

nances is accompanied by the appearance of discrete levels
in the continuum, for which levels we find the wave function (E,, is the energy of traverse motigrand the wave function
and show that it is normalizable. in the potentialV,(y) = —V.:9(y) +V.(y); we denote the

1063-7761/99/89(1)/7/$15.00 144 © 1999 American Institute of Physics
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Y (k)n,n’:knénn’ ) (Q)n,n’:qngnn’ )
L2 L2 () e = EXBi O} S » 9
A w2
[Yc and 6,=q,L,/2 are the phases of the waves; the wave am-
w 0 Y plitudesa, b, A, B, andC are considered infinite vectors.
After excluding the intermediate amplitudeandb from
(8), we can find the elements of the scattering matrix. We

introduce the amplitude transmission matrix®ytA. Then
FIG. 1. Schematic of a quantum waveguide containing an attractive impuEQs. (8 yield

rity.
MC=A. (10)
The matrixM has the form

wave functions and energy levels of an electron in the po- =1y~ (1+k 1q)D (1+q k)+(1—k 1q)
tential V(y) by x;(y) and E}r, respectively. The base func- A
tions ¢,(y) and x;(y) are related by a matri¥) defined as XD(1—q *k)]U, 11

foll : A
ofows wherek=UKkU %, andD=d?. The way in which matrixv

is written clearly shows thatl is similar to the correspond-
Unj:j en(Y)x;(y)dy. (4)  ing amplitude in the one-dimensional ca$ét is convenient
to write the transmission matrix as

The solution of Eq(1) can be written (M-1o M 12
0 de(M)’
¢(x,y):2 A, exp[ ikn| x+ E whereM¢ is the cofactoradjoint of M.
2 It is well known that the poles of the scattering matrix
L, tn.n(E), obtained as a result of analytic continuation in the
+ B, exp{ —iky| x+ > }%(Y) energyE, determine the bound states or resonances in the
system. The total conductan& of the electron waveguide
for x<—1L,/2, (5) is expressed in terms of the channel transmissivVityy the
Buttiker—Landauer formufg*
: . 2¢? K
dxy) =2 [ explia;x}+bj exp{ —ig;x}]x;(y) =271, 1= O, | (19
h kM
for — L, /2<x<L,/2, (6)

where the sum is over all open channels. Equatidh sug-

gests that the analytic properties of the transmission ampli-
_ . _ tude as a function of energy are fully determingad the

W(xy) =2 Coexplikn(x—Lal2)en(y)} for x>La/2, given problem by the structure of the matrix. Here the

(7)  poles oft can be found from

where the quantities k,=2m(E—E,)/%#%> and o de(M)=0, (14)
=y2m(E- E}’)/ﬁ2 act as the wave vectors of the particle and the zeros follow from the equations
out5|d_e and inside the region occupied by the impurity, re- (Mcl, =0, nm=12,..., (15
spectively. '

Note that solutions with reak, and g; correspond to The inversion symmetry of the adopted impurity potential
propagating waves, while solutions with imaginaky, makes it possible to factorizd :
=ilk,| and g _='||qj| represent nonuruform waves. The M=U"1M MU, (16)
boundary conditions give rise to equations for the wave am-
plitudes, which can be conveniently written in matrix form: where we have introduced the matrices

d~la+db=U(A+B), Ms=3{—(d—d™H+(d+d g *K], (17)
Ma=3[—(d—d H)+k *q(d+d™)]. (18)
™ a~db)=Uk(A~B), Hence we can write Eq14) as two equations:
da+d *b=UC, de(M,)=0 (19
for poles in the case of symmetric states, and
q(da—d~tb)=UKC, (8) detM ) =0 20

where we used matrices with elements for poles in the case of antisymmetric states.
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3. BREIT-WIGNER AND FANO RESONANCES IN A K, K,
QUANTUM CHANNEL tanf,=—i -, cotfr=ic". (28)
n n
We begin with the limit wheréV,=W. From(4) it fol- o _
lows thatU=1, wherel is the identity matrix. This means Thus, as Eq(28) implies, we can find two types of pole. For
that in this limit the problem becomes one-dimensional E<En the amplitudet,(E) has poles at real energies. When

sinceM is diagonal. Equationil1) can be written the energy is below the subband witk=1, these poles land
. ‘ in the continuum of the lowest subbands. Below we will see
On n , an that in the quasi-one-dimensional regime, whéh<W
M == 1+ —|| 1+ —]exp{—2i6,}+|1— — . . . !
(M)nn 4 K, dn o f kn) holds, the interaction between the discrete levels and the

continuum is the reason for the formation for Fano reso-
St » (21) nances. At the same time, due to the interaction with the
states of the continuum, the Breit—Wigner resonances shift in

where 6,=q,L./2. This equation can easily be used to find the complex plane.

X

Kn :
1-—|expf2i6,}
Un

the transmission matrix,, ./ (E)=t,(E) S,y . It is conve- Now we _examine the situation where the size of the
nient to write the amplitudé,(E) as impurity, L,, is smaller than the electron wavelength along
the channell,<q,*. Expanding Eq(11) in the parameter
th(E) L.g, ', we easily find that
ikn/
n/Gn M = (ik) ik +v], 29

- (sin@,+i(k,/q,)cosb,)(—cosb,+i(k,/q,)sSiné,) .

(220 wherev=(L,/2)U"1g?U. This case can be analyzed both by
For E>E,, the wave vectork, andq, are real. Suppose perturbation techniques and by numerical meth@ts de-
that the well is deepV > E, andk,/q,<1. In this case the tails of calculations can be found in Ref). 8Here are the
zeros of the denominator are approximately determined by conclusions important for our analysis below. If we allow

. _ e only for the diagonal elements of, we arrive at a set of
SiN6n =0, Onj=ml, j=1.2,.., @3 poles that split off each subband of size quantization. Allow-
or by ance for off-diagonal elements leads to the interaction of the
levels that have split off the subbands with>1 with the
oS0, ;=0, O :g(zj +1), j=01,.... (24)  continuum of the low-lying bands and to a shift of the levels
in the complex plane. However, in contrast to the one-
The first equation has the solution dimensional case, the scattering amplitude has z@noad-
b2 dition to poleg, and in the weak coupling regime a zero and
E —E V.4 2_77) ﬁ_J (25) a pole lie close to each other in the complex plane. In par-
npeEn o tatt ) 2m ticular, for E;<E<E,, near a zero and pole the amplitude

. . can be represented as
NearE, ; we expand the denominator gf ., approximately P

(for symmetric statgs assuming thaE=E,, j+ & in (22):

— EO
SiN B+ (Ko/Clp) COSOy~ O (e +iT)COSBy,  (26) S =y S (30)
where
where E,, Eg, and I' are the parameters of a Fano
_ Kka(Enj) , _96n(E) c0sh 1 resonancé.According to Nakel and Stoné? for a system
O (EnOp M GE | = with inversion symmetry, the transmissivity;, = |t;4]? can
m be written
An expansion near the second solution of E2)) yields a
similar expression for the denominator of the amplitude. 1 (e+0q)?
Hence forE>E,, the poles of the scattering amplitude lie in ~ T1(E)= v o241 (32)
the complex plane, and near the poles the amplitude has the
structure of a Breit—Wigner resonance: wheree=(E—Eg)/T, andq=(Eg—Ey)/I". Depending on
iTy the parameters of the system, the dimensionless asymmetry
thn(E)= ECE 4T (27)  parameterg, which is the ratio of the distanckE,— Eg|
nj nj

between zero and pole to the resonance widtan be much
We now continue the amplitude into the complex energylarger or much smaller than unity. In the lingt<1 formula
plane. If the energy is in the intervel,— V <E<E, (for (31 yields a dip, while in the opposite cage>1 it yields a
the sake of definiteness we assume tgi<E,—E,_,), peak in the transmissivity, with the transmissivity probability
k,=i|ky| is imaginary andy, is real. In this case the ampli- at the peak being exactly unity.
tude has poles on the real energy axis, and their positions are Thus, when the electron is scattered by a short-range
determined by(19) and(20) for symmetric and antisymmet- attractive impurity, the scattering amplitude near virtual lev-
ric states, respectively: els has the structure of a Fano resonance.
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4. COLLAPSE OF FANO RESONANCES lT0
It is well known that the interaction of discrete levels
with the continuum in multichannel atomic systems gives 0.81 m
rise to a universal resonance curve for the lifetime of quasi-
bound states and excitation$n Ref. 8 we showed that this 0.6H
happens in the case of the transmission amplitude in a quan- L —764 W
tum channel with a short-range impurity. An impurity of 0.41 a
finite dimensions generates a large number of levels in the
continuum. One should expect nontrivial interactions be- 0.2
tween levels and nontrivial behavior of asymmetric reso- )
nances. In atomic systems the interaction between levels re- 0 . L L]

sults in an overlap of resonances. Earlier Miediscussed 10 15 20 25 30 35 40

such effects by using a phenomenological approach. Our E

goal is to study the effect of the interaction of resonances ORIG. 2. Transmissivity of a channel with a finite impurithe impurity
the tunneling of electrons though multilevel configurations.parameters ar&/=6.37; and W,=0.1W). The Fano resonances are
We limit ourselves to the energy intenvil <E<E,, since clearly visible for 3.1%,<E<4.0E, and the Breit—Wigner resonances, for

. R i 1.0E,<E<3.1%,.
earlier we founf that it is in this energy interval that total
reflection of electrons is possible when the particle energy
coincides with the energy of the zero of a Fano resonance.

Quialitative reasoning suggests that a deep impurity cawhere x=\2mE/%2. From (34) it follows that when the
yield dramatically new effects. Clearly, a two-dimensionalcoupling parameteu is zero, we have the solutioE}r
well generates a set of levels in the interEax E<E,, and  =E;, with E;= m?121(2mWP), but whenu is finite, we have
in the case of a well of finite depth these levels lie in thea set of levels with energieE}’< E;. Below we list the re-
interval (E;—Va,E). If we ignore the interaction between sults of numerical calculations for which the the impurity
the electronic states belonging to different channels(E8).  parameters were taken to Mé&,=0.1W andV,=6.37E;.
implies that the levels corresponding to symmetric and antifor the sake of orientation we give only the first three levels
symmetric states are determined, respectively, by the equaf transverse motion determined by the numerical solution of

tions Eq. (34): Ef=-0.6(E,, E5=3.1%,, and E5=8.9%,.
Ik,| Ik,| Hence, we should expect Fano resonances in the energy in-
tang,=—-, cotf,=— —. (32) terval 3.1, <E<4.0E; and Breit—Wigner resonances, in
Gn Gn the interval 1.&,<E<3.1%,. Figure 2 depicts the trans-

Since in this case we havey<E,, the levels lie in the missivity of a channel with an attractive impurity. The Fano-
interval (EY,E,) and their interaction with the continuum resonance structure in the transmissivity is clearly visible in
gives rise to a set of Fano resonances. Obviously, these res§i€ intervalE;<E<E;, while the Breit-Wigner resonances
nances can interact with each other. Such interaction is als@fe clearly visible in the intervet, <E<Ej;.

present for Breit-Wigner resonances, with the resonances_ Now we study the transmissivity analytically, and for
repelling each other. What makes the case of Fano resd2<E<E; we keep to resonantly interacting channels. In
nances so different is that the zeros, while moving in thethe region|x|<L./2 we leave two propagating modes with
complex plane, may collide with poles. Below we will seewave  vectors  q;=2m(E—Ej)/A* and 0,
that this leads to two interesting consequences. First, the v2m(E—E3)/A2. In the regionx|>L /2 (outside the im-
resonances narrow, which means that the regixel in  purity) we leave a propagating solution withk;
(31) may be replaced by 1. This is accompanied by the =\2m(E—E;)/4% and a nonuniform solution withk
appearance of a peak in transmissivity, with the transmissiv=i k|, |k,|=v2m(E,— E)/A2.

ity probability at the peak being exactly unity. Second, there ~ An approximate expression for the scattering matrix can
are critical values of the parameters of the system at whicle obtained from12). The transmission amplitudig; be-
the resonances disappear entirely, accompanied by the apveen the open channels can be written

pearance of discrete levels in the continuum.

To illustrate the predicted effect, we analyze the simplest too= [Mclu (35)
situation where the well size in the transverse directitg, 1 de(Mg)de(M,)
is much smaller thah ,: ,

The poles of symmetric states can be found from
#2u

Vil(y) == 8y =Yg+ Vely), (33 de(My)
with u=mV,W,/%2. For such a model the energy of trans- - i( —ising,+ ﬁcosgl) ( —sinf,+ Mcosgz)
verse motion can be found by solving the equation

k
u N 1
sinkW=2—sinkYssink(W=Yy), (39 ><U11U22—I( —ising,+ q—zcosﬁz)
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FIG. 3. Energy dependence of the cofactor for the characteristic impurity L . . )
sizes:L=1.27W (dotted curve, L=7.64W (solid curve, and L= 11.46N FIG. 4. The characteristic fur_]ct_lon. Th_e critical parameters are determined
(dashed curve The zeros of the cofactor determine the zeros of the trans—by the zeros of the characteristic function.

mission amplitude. The other parameters of the impurity are the same as in

Fig. 2.
An important observation is that E¢36) [or (37)] can
have a solution for a real energy simultaneously W&8). In
Ik,| the symmetric case this occurs when
X| —sinf;+ —Zcosel)ufzzo, (36 Ky
1 tan szq—, (39)
2
and those of antisymmetric states, from o
2
de(M,) tan ﬁlza. (40)
o d; ) d; Thus, Egs(39) and(40) should have a simultaneous solution
=1 —1sinfy+ k—lcosel sin g+ @COS&Z in the energy intervaEY<E<E,. Here we have a two-

parameter spectral problem. For the spectral parameters it is
. . Y 92 convenient to take the ener@yand the impurity sizé ., or
XU b ut —|(—|sm9 +—cos¢9) i . a
(U )1(U )2 27 Ky 2 the spectral pair,L,). Note that for an arbitrary value of
the parametet ,, Eq. (39) determines the levels in a one-
L 2.
(37)  dimensional welf? but these levels lie belo,. Hence the
levels acquire a finite width, since they interact with the con-
. . tinuous spectrum of the states of the subbardL. The level
An analysis of the equations for the poles shows that gener- . :
ally these equations have two sets of complex-valued squV—\”dth may vanish when Eq¢39) and (40) have a common
tio)r:s whichqis similar to the one-dimensiopnal case HOW_solution. Thus, when the system parameters coincide with
ever1in the quasi-one-dimensional case the am Iitudes hathe values of the spectral paramele(;),La(j)], discrete
’ € q . P Y&vels appear in the continuum of states of the quantum
zeros, which can be found by solving the equatidm:]q4 channel

X | sinf,+ &00801)(U1)12(U1)21= 0.

kel

=0 or, in greater detall Using Egs.(39) and (40), we can easily show that the
|k, Ik, spectral parameters are given by the expressions
sin 26, —tanf,+ —=|| cotf+ —— U (U1 : .
G2 5in 20| ~tandy g || et g, | VadY Dz E())=ES+ (B~ EY)cog a()), (41)
—(Q, sin26,| —tané +M)<cot0 +M> L (j)=3W o) [ B ™ j=1,2 (42
1 1 1 ql 1 ql a T COSa(J) »Ez_Etzr H 1y
XU (U™ 1),,=0. (380  where the parameters(j) are the solutions of
Since the coeffic_ients of these equations are reaEfpr E f(a)= o+ cod atan @ 5+ co2 a} —sina=0,
<E,, the equations have real-valued solutions. Here the | COSa 43
43

transmission amplitude vanishes. Figure 3 depicts the energy
dependence of the cofactor for three characteristic impurityvith §=(E,— E,)/(E,—E5). Figure 4 depicts the character-
sizes:L=1.27W, 7.64V, and 11.48V. Hence Eqs(36) and  istic function f(a). We see that Eqs(39) and (40) have
(37) determine the poles and the solutions of B3f) deter-  (simultaneouslyan infinite set of solutions. In the same way,
mine the zerogor dips in the transmission. For the energy antisymmetric solutions are possible if
interval E; <E<E} we must rewrite38), assuming that),
=i|q,|. Clearly, in this case the zeros are shifted into the coth,=— M (44)

q

complex plane. 2
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FIG. 5. Energy dependence of the transmissivity for the critical value
=1 ,(3)=3.190W of the impurity size(the other parameters of the impu-
rity are the same as in Fig.).2The resonance disappears Bt E(3)
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=3.25%,, but the transmissivity remains finite.
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kel
Cot61= - qi (45)
1

From unitarity it follows that the zeroE;<E<E, of the
cofactor must coincide with the poles. Equati@®) shows
that it is valid when Eqgs(39) and (40) [or Egs.(44) and
(45)] are valid. This implies that the Fano resonance disap-
pear at certairfcritical) values of the parametets,(j), val-

ues at whichl’=0 andE,=E_ hold for the parameters of a
resonance in Eq.30).

To illustrate the effect of disappearance of resonances,
or collapse of resonances, we turn to Fig. 5, which depicts
the energy dependence of the transmissivity for one of the
critical impurity sizes [,=L,(3)=3.190MW). The critical
valuel . was calculated by Eq$39) and(40) with the depth
of the well fixed,V+=6.37E,. Figure 6 depicts the energy
dependence of the transmissivity near the critical energy for
several values of the impurity size: L,
=3.06W, 3.1V, 3.190W, and 3.25V. The results show

T T
o ———= 1.0
a b b
0.8} 08
0.6 0.6
La= 3.06 W La= N w
041 0471
021 021
N A 0

FIG. 6. Energy dependence of the transmissivity

for several values of the impurity sizélL,

Ol o1t v b
320 322 324

PR S BRPR
328 330

- =3.00/,3.12V/,3.190W, and 3.2%V) near the
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that whenL, reaches the critical valuk., the Fano reso- finding the exact solution for the scattering matrix we have
nance disappears but the transmissivity remains finite at thehown that the impurity generates a set of quasibound states,
critical energy valuee(3)=3.255, . Figure 6d shows that which manifest themselves as resonance—antiresonance pairs
resonances appear again when the impurity size passes timethe transmissivity. When the impurity is short-range, a
critical value. Clearly, the resonance collapses because of theingle Fano resonance can be observed in the transmissivity.
coherent interaction of counterpropagating waves inside thEor an impurity of finite dimensions a new coherent effect
region occupied by the impurity. occurs, where at certaifritical) values of the parameters of
For orientation we point out that if a two-dimensional the system the resonances collapse. As a result, for the criti-

channel of widthW contains an impurity, for the impurity cal parameters of the system the continuum acquires discrete

parameters used above the critical sizeLj§0)=1.10W,
and the minimum critical energy i€.=E(0)=3.4&,,
whereE; = m?#2/2mW~.

levels. The transmissivity changes dramatically in the pro-
cess, which can be verified in experiments involving low-
dimensional channels with impurities. By way of an ex-

To make the picture clearer we write the wave functionample, we point to an interesting paper by Yamada and
of the discrete levels explicitly and show that the functionYamamotc® who proposed a method for producing artificial
can be normalized. The symmetric solution of Ef).can be  impurities in a quantum channel.
written as

e(X,y)=a1 cos(q1X) x1(Y) +a, cos(qzX) x2(Y)

The present work was supported by the Ministry of Edu-
cation of Korea(Grants Nos. BSRI-96-2431 and BSRI-97-
2431) and the International Center for Advanced Studies in

L
for |x|<—a, (46) Nizhnii Novgorod, Russia. One of the authgs.M.S.) is
grateful to KOSEF and the Russian Fund for Fundamental
L, L, Researci{Grant No. 97-02-16923dor support.
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(47

The boundary conditions imply that the solution determined*) _ _
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Pe(X,y) =Dy sin(q;x) x1(y) + b2 sin(g2x) x2(y)

La

for |x|< 5
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(Eds), Academic Press, Bostqi989.

2B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L.

La La
X,y)=D7exp |k|| x— — for x>—, P. Kouwenhoven, D. van der Marel, C. T. Foxon, Phys. Rev. 66;t848
Pe(X,y)=D, p{l 2|( 2)}@2()’) > (1088,
(49 3D. A. Wharam, T. J. Thorton, R. Newburgt al, J. Phys.21, L209
_ o ) ) (1988.
which are valid if (44) and (45 are valid. There exists a 4syoji Yamada and Masafumi Yamamoto, Appl. Phys. L&®, 8391
simple physical interpretation of the localized solution—it is _(1996.

: : ; 5C. S. Chu and R. S. Sorbello, Phys. Rev4® 5941(1989.
a standing wave with an amplitude, between two Fano 5p. F. Bagwell, Phys. Rev. B, 10354(1990.

“mirrors” an_d a n_onunn‘orm mode in channel=2. Since  7E Tekman and S. Ciraci, Phys. Rev.42, 9098 (1990.
outside the impurity the wave function decreases exponensc. s. Kim and A. M. Satanin, Zh.l&p. Teor. Fiz115 211(1999 [JETP

tially, it can be normalized. On the other hand, for the same988, 118(1939]- (1961
i ; : U. Fano, Phys. Revl24, 1866(1961).
critical parameter the channel may contain a propagating SQ0yong S. Joe and R. M. Cosby, Appl. Phys. L@, 6217(1997.

lution of the form (5)—(7). Thus, we have found that two 11yong S. Joe and R. M. Cosby, Solid State Commi0t, 731 (1997).
types of state may coexist at the same energy: one localizéél. D. Landau and E. M. LifshitzQuantum Mechanics: Non-relativistic
state and one propagating state. lgTheory 3rd ed., Fergamon Press, Oxfqd®77).

R. Landauer, Philos. Ma@1, 863(1970.
M. Blttiker, Phys. Rev. B35, 4123(1987.
153, U. Nackel and A. D. Stone, Phys. Rev. ®), 17415(1994).

16 H
We have analyzed the passage of a particle through a' M- Mies, Phys. Revl75 164(1968.

guantum waveguide containing an attractive impurity. ByTranslated by Eugene Yankovsky

5. CONCLUSION



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 89, NUMBER 1 JULY 1999
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The effect of electric fields on the electrical conductivity of PbTe films with block sizes smaller
than the Debye screening length is studied. As the temperature is varied, a readjustment of
the potential well is observed due to thermal spread of barriers with heigtk T and the
expansion of higher barriers. Spatial ensembles, which consist of several blocks that

increase rapidly with temperature, are established for @adinis process leads to an increase in
the height of the potential barriers as the linear size of these ensembles increases. This
determines the potential well in these films and their nonlinear properties, which originate in the
nonlinear percolation conductivity of a microscopic crystalline system with intergranular
barriers. A comparison with the experimental data of Shklavskows that the scale length of

the spatial inhomogeneitg=3.7x10"° cm atT=4.2 K corresponds to the average

block size. The value o increases with temperature, reaching 504 cm atT=240 K. This
mechanism for electrical conductivity is compared with the hopping conductivity with a
variable hopping length. The negative differential resistance in the structures examined here is
found to be electrothermal in nature. €999 American Institute of Physics.
[S1063-776(19902007-1

1. INTRODUCTION the objects under study with microcrystalline samples which
have rather large grains whose size greatly exceeds the De-

The basic reasons for the essentially continuous rise iBye screening length. At the same time, the most important
the interest of researchers in systems with disordered strugeneralizations often have to be carried out for much smaller
tures in recent decades are well known. On one hand, rgyain sizes and, therefore, much smaller inhomogeneity scale
search on microcrystalline, nanocrystalline, granulatediengths, where such comparisons are not adequately justified.
amorphous, glassy, and other similar materials is stimulategts refers directly, for example, to amorphous and glassy
by the possibilities which been discovered in the course Ofnaterials, whose structure and properties have long been

studying the effect of inhomogeneities and, as a rule, of the, o yejled using microcrystalline systems. The popularity of

ical " f th tehiE Studi ¢ diff ‘ "fhe various microcrystalline or cluster models changes with
optical properties of these Systems. Studies of diferent .0 1t the need for them has remained fairly stable.

aspects of the influence of the structural features of disor- The experience gained by studying the effects observed

dered systems on the localization of electronic states play an . S : .
. . ; in microcrystalline films and in bulk samples is useful, both
important role in the development of the physics of the Con_for creating new models, and for choosing analogs for other
densed state. On the other hand, interest in disordered sys- 9 ' 9 9

tems is stimulated by advances in practical application o orms of materials with disordered structures. It can also be

related materials. Experience shows that extending the spe8I interest for studying structures with extremely small sized

trum of the structural states of matter can yield qualitativelyaCtIVe elements and a high packing density in crystals with
perfect long-range order.

new results, even when working with traditional materials. ) )
Finally, this area has recently been rather strongly, although ~©Of the published data on the structure and properties of
indirectly, influenced by research on quantum-well effects ins€miconductors with microcrystalline structure, the most

media with correlated siting of clusters with ordered complete information is on polycrystalline silicon. Progress
structure®=? in research on other materials, including narrow-gap materi-

Materials with a microcrystalline structure are of inde- als, has been more modest. Published reports of research on
pendent scientific interest with stable domains of applicationpolycrystalline semiconductors of the IV-VI group mostly
and they have been well studied. Since the theoretical modsoncem special cas€s® and usually do not deal with the
els for their behavior are regarded as well developed, thesgeneral problems typical of microcrystalline systems. As a
objects are often used as models for studying various pheule, they contain little data demonstrating a relationship be-
nomena in other types of disordered systéifs1°This may tween the electrical parameters of films and their structure,
apply to models of structure and to mechanisms for electricaiind do not take full account of the influence of the potential
conductivity or optical absorption. well peculiar to microcrystalline systems on charge carrier

Many of the standard models are obtained by comparingransport. The reasons for this are quite understandable. The

1063-7761/99/89(1)/12/$15.00 151 © 1999 American Institute of Physics
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IV=VI semiconductors are a very interesting group ofserved effects, which are caused primarily by the possible
material$®~?8and have been a source of enthusiasm for sewariation in the average grain size over 4-5 orders of
eral generations of researchers. At the same time, becausemagnitude’®33” The electronic properties of the samples
the small band gap of the major representatives of these mare then related directly to the structure of the films. The
terials and their high concentration of intrinsic chargeclassical and quantum-well effects observed during studies
carriers2®?’ they are considered to be of little interest in of the electrical conductivity of these structures are of inter-
studies of the phenomena observed in microcrystalline sysest for the physics of microcrystalline systems, as well as for
tems. When films of the narrow-band IV—VI semiconductorsspecific practical developments. As for the technology, it is
are mentioned, their advantages are customarily taken to imot difficult to reproduce these results: it is sufficient to en-
clude the closeness of the actual parameters to those of there the specified temperature and growth rate. Recall, also,
corresponding single crystals, while the specific problemshe importance of the film thickness, since the structure of
intrinsic to microcrystalline systems are usually ignored. Inmicrocrystalline PbTe films and, therefore, the sample prop-
addition, even for films with grain size8~10° cm, the erties are determined, to a substantial extent, by the elastic
small barrier heights in PbTe and other materials make istresses at the interface boundary, which, in turn, are related
possible to ignore the features of microcrystalline systemgo the degree of mismatch between the lattice parameters of
resulting from the presence of regions of surface spacenaterials which come into contact and by the thickness of
charge near the grain boundaries. In particular, this applies tthe films.
determining the main parameters of films using Hall coeffi-  The polycrystalline PbTe films studied here were grown
cient measurements, at and below room temperature. For ey dc cathode sputtering of a stoichiometric target in an ar-
ample, in the literature there are reports that the mobility ofgjon atmosphere with deposition of the sputtered material
charge carriers in microcrystalline PbTe films with grainonto substrates of cover glass with a thickness of approxi-
sizesD=250 A atT=77 K is close to the carrier mobility in mately 100um. The rate of film growth was held constant at
the best single crystal speciméiisalthough it is clearly about 4 A/s. The target material was a cylinder of height 0.2
known that charge carrier mean free path in them greatlym and diameter 2 cm, cut from an ingot of single crystal
exceeds the average grain size. When there is an exp”CiH.type PbTe with a resistivity of about 0@ -cm at room
dependence of the electronic properties of a film on the graifemperature. The current density at the target waslg *
size?**! data of this kind should be interpreted more care-a/cm? and the power dissipated by the target was 6 W. The
fully. target was cooled by liquid nitrogen; the growubstratg
As for their nonlinear conductivity, despite the pOSSib'etemperature was held near room temperature, at-29K.
observation of negative differential resistivity, this group of Sputtered film electrodes of Moy, alloy, obtained by
materials has been of almost no interest to researchers andsguttering of platinum and molybdenum together, were used
very limited number of papets**are devoted to this topic. as ohmic contacts and ensured linear current-voltage charac-
At the same time, it is evident that narrow-band semiconducteristics of films with small grains@<10"* cm). All the
tors may turn out to be useful in measurements at low temelectrical measurements were made for direct current; the
peratures, where it is difficult to work with wide-gap mate- conductivity type of the films was determined by the thermal
rials and there are strict limits on the parameters and methodsmf method. The structural state of the samples was moni-
that can be used for these materials. tored by x-ray techniques: the diffraction pattern obtained in
As a rule, the theoretical models apply to microcrystal-a Debye chamber was analyzed.
line samples whose grain size substantially exceeds the De- Ppolycrystalline PbTe films grown on glass substrates
bye screening lengtf?. Within the volume of these grains, turn out to have a structural disequilibrici®! and their
the internal electric field strength is zero, and the free carrieparameters can vary substantially during storage under ordi-
concentration is the same as the carrier concentration in gary conditionsannealing at room temperatiird he struc-
single crystal with a similar impurity concentration. At the tyral transformations observed during aging are caused by
same time, as noted above, it is often necessary to deal wityo main factors: the tendency of a polycrystalline system to
polycrystalline samples with much smaller grain sizes, wherghange its surface energshis can be achieved by an in-
the results obtained for large grains may not seem adequategfease in the grain siz@nd the competing process associ-
justified and, in principle, incorrect. ated with the existence of elastic stresses owing to the pres-
In this paper we present some data on the low-ence of the film-substrate interface. The direction of the
temperature nonlinear conductivity of microcrystalline PbTestructural changes depends on the average grairDsizehe
films on glass substrates with inhomogeneities smaller thagriginal films, which, in turn, is determined by the growth
the Debye screening length. Possible mechanisms for th@mperature and thickness of the grown layérdf D
nonlinear properties and negative differential resistivity of<1076 c¢m, then the grains become larger. WHap-10"°
these samples are discussed. cm, fragmentation involving the breakup of large crystallites
into blocks is observed. As a result, regardless of the film
thickness and the average initial value @f the grain size
approache®* =10"% cm in the course of aging. It turns out
that the unit cell parameter in layers with=10"° cm cor-
Polycrystalline PbTe layers on glass substrates are disesponds to the lattice parameter of single crystal FfiTe.
tinguished by the large variety of their properties and ob- In films with grain sizesD>10 ¢ cm, the electrical

2. SUMMARY OF THE CHARACTERISTICS OF THE
SAMPLES AND EXPERIMENTAL PROCEDURE
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properties of the samples are caused mainly by scattering a@ff large grains into smaller ones. This fragmentation, which
charge carriers at the grain boundaries. Some specific mechig- mostly stimulated by stresses at the film-substrate inter-
nisms for scattering at the surface of a crystal have beeface, ultimately leads to a division of each of the original
examined elsewher®. For D<10 6 cm, the total surface grains into 16— 10 blocks with sizes on the order of 18
area of the grains contained in unit volumeSis1/D; there- cm and fairly perfect interface boundaries. Because of the
fore, the density of localized states at their boundanis, change in the film properties during aging and the impossi-
=v/D, is fairly high (Ns=8x10? for D=1x10"° and bility of making a correct measurement of the characteristics
Ne=4x10?* cm 2 . eV ! for D=2%x10"7 cm)* and of freshly prepared samples, we were forced to delay a study
jump conductivity is observed in samples of this type at lowof their behavior in strong electric fields until no further ir-
temperatures with the participation of these states, which careversible changes in their parameters could be observed for
be interpreted as conduction along the grain boundariesneasurements at moderate currents.

Within the interval 4.2 KKT<50 K, hopping conductivity The measurements were made on polycrystalline films
with a variable hopping length is observed and in the rangevith p-type conductivity(the equilibrium hole concentration
50 K<T<200 K, hopping conductivity between nearestin the bulk of the large grains was,=5x 10 cm™3) (Ref.
neighbors with a constant activation energy is obseffed. 30) and a thickness of 7—1@m, grown on glass substrates
For D~10"7 cm, the lattice parameter and band gap areat room temperature. The average grain size in as-grown
found to depend on the average grain SfZ&. samples was (25)x 10 3 cm (Ref 31). The deviations of

During the electrical conductivity measurements, mostthe current-voltage characteristics of diodes fabricated from
of the films of micron and submicron thickness<(5 um) these films from Ohm's law showed up most distinctly.
obeyed Ohm’s law or the deviations from linearity in the Samples with the following geometry were used: their length
current-voltage characteristics were small. The currentwas 0.07 cm, their cross-sectional area was (425)
voltage characteristics of the finely crystalline films were lin- X 10”4 cn? with contacts, as in Refs. 30 and 31, in the form
ear over wide ranges of variation in the temperature anaf film electrodes made by sputtering g BMo, , alloy.
electric field strengths. A significant nonlinearity in the con- The figures shown here apply to samples obtained from
ductivity was observed only in large crystalline samples witha 9-um-thick film. The average grain size in a freshly pre-
grain sizedD>10"* cm and at temperatures below 300 K. A pared film wasD=5x10"2 cm, which is 5.5 times the
similar structure and the corresponding properties could béhickness of the polycrystalline layer in Ref. 31. X-ray struc-
reproduced only in rather thickd&E7—10 um) films. Be-  tural analysis showed that the average block §Zein the
cause of the significant anisotropy in their growth, the aversamples was about>210 ® cm after aging for three years
age grain size for these samples was always at least a fef@nnealing at room temperature under natural conditions,
times greater than the thickness of layers with a polycrystalwhich causes the reduction in grain 9iz€he sample geom-
line structure® etry and measurement technique are illustrated in Fig. 1.

In accordance with an analysis of the first data on the =~ We have shown previously that the electrical properties
nonlinear conductivity of microcrystalline PbTe layers, it of polycrystalline PbTe layers in weak electric fields are
was already clear, in general outline, that the nonlinear propelosely related to their potential well and that the latter is, in
erties of coarse crystalline films are related to the existencturn, related to the structure, primarily, the average grain
of potential barriers at the grain boundaries, but the specifisize®® Perhaps, this applies to an even greater degree to the
mechanism for this phenomenon was not understood for aonlinear conductivity. It would be impossible to overlook
long time. This situation was cleared up only after detailedthat the current-voltage characteristics of diodes fabricated
studies of the electrical properties of samples at low tempergrom coarse crystalline films for studying their behavior in
tures, which involved different structural states of microcrys-strong electric fields are related in a most direct fashion to
talline PbTe films, were carried out regularly over a period ofchanges in the film structures as they age. Fragmentation
five years. (note again that here we mean the breakup of large crystal-

These measurements always indicated that, as the terfites into fine blocky accompanied by the appearance of
perature was lowered, the current-voltage characteristics afew boundaries and an increase in the number of potential
samples withD=(2—5)x 10 3 cm became nonlinear. The barriers in the way of the charge carriers, causes a substantial
critical electric field, at which a nonlinear dependence of theise in the threshold voltagd, (U, is defined at the cutoff
current on the voltage began to be observed, fell as the tenpoint, where the differential resistanedJ/dI=0.) and a
perature was reduced and turned out to be very low. Fodrop in the threshold current. The threshold poweW,
example, in freshly prepared films @a&=80 K, a nonlinear =U,l, decreases. For some of the sampWswas found to
conductivity was observed in fields above 50 V/cm. Furtherdecrease by several factors. This is quite clear from the data
increases in the electric field led to the appearance of seghown in Fig. 2.
ments with a stable S-type negative differential resistivity in  In principle, control measurements taken during the ag-
the current-voltage characteristic, but this, unfortunately, wagng of the films showed that the relationship between the
accompanied by substantial, irreversible hysteresis in theurrent-voltage characteristics of the samples and the poten-
current as a function of voltage. X-ray structural analysistial well, which is determined by the film structure and
showed that the hysteresis in the current-voltage characterishanges as they age, is rather obvious. Within 6—8 months
tics is caused by irreversible changes in the structure of thefter fabrication of the films, it was possible to obtain
films associated with their fragmentatidhi.e., the breakup current-voltage characteristics with segments of stable nega-
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FIG. 3. Current-voltage characteristi€ € 25 K) before(curvesl) and after
(curves?) several measurement cycles at high currents.

FIG. 1. Geometry of the microcrystalline PbTe samples withSahaped

current-voltage characteristic and the measurement setup. i.e., close to a current source regime, then the hysteresis phe-

nomena observed between forward and reverse currents are

tive resistance without any special problems. With time, assmall (curvesl and 2 in Fig. 2) or are essentially not ob-
the average block size decreased and the number of blocR§rved at all. There were also no signs of the formation of
increased, a continuous rise in the resistance of the sample@!rrent filaments.

which is accompanied by a drop in the threshold current and At high currents, a segment with a negative differential

a rise in the threshold voltage, is observed. The thresholdesistance is followed by another segment with a positive
power (for fixed temperaturedecreased. Two such states aredifferential resistance. The appearance of this segment
shown in Fig. 2. If the current-voltage characteristics of theshould not be regarded as something unusual, since its pres-
samples were taken with sufficiently high load resistancesgnce is even predicted by a purely thermal breakdown
theory®® However, high currents, which facilitate further
fragmentation, produced irreversible changes in the current-

11'0_12_ voltage characteristic, and led to a riseldpand a drop irl; .
Figure 3(curve2) shows a current-voltage characteristic (
\ =25 K) for the same sample as in Fig. 2, but after several
1073+ f> ) high-current measurement cycles. The initial state before the
/ > > high-current measurements, which corresponds to the
oL / current-voltage characteristic of curéein Fig. 2, was ob-
: P tained atT=77 K and is shown as curvk It can be seen
that the changes in the parameters of the current-voltage
e characteristic are substantial. Thus, during measurements at

currents beyond the threshold, we usually restricted the
analysis to relatively low currents through the sample, with-

i out reaching the segment with a positive differential resis-
tance.

167 . . . A With decreasing resistance of the load in series with the

0 20 40 60 vV 80 power supply and sample, a switching effect is observed

(from a high resistance to a low resistance state and back
FIG. 2. Current-voltage characteristicE< 77 K) of a PbTe film sample 11 again when the current through the sample is being lowered

months (curves 1) and 33 monthgcurves2) after fabrication. The film .
thickness is X 10~ cm, the distance between electrodes 10 2 cm, anng the load curve. The hyStereS'S phenomena become

and the cross-sectional area ix 50~ cn?. much more substantial in this ca@eg. 3, curve2).
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I, A According to the effective medium theory, for weak and
107 strong electric fields, the electrical conductivity of a poly-

crystalline film is determined by the sum of two terms:
10 o=0yt oG, @
=30
10 where oy is the electrical conductivity across the grain
9 boundaries, andr¢ is that for the barrier transport mecha-
8 nism. In generalgy can also be the sum of two terms, the
L7 hopping term and the band term, when low-resistance layers
exist at the grain boundarié®.We shall not consider the
latter mechanism here, since it is not observed in the films
5 _ we have studied.
r 4

Since potential barriers for electrons or holes develop as
a result of the localization of the latter at the grain bound-

32 aries, there are no free carriers at the boundaries and, in this
case,oy is obviously caused by hopping conductivity in-
wosp I volving the localized states. The average hopping length for
0 40 80 120 160 hopping conductivity with a variable hopping length is a
u.v function of temperaturé>
FIG. 4. Current-voltage characteristics of a PbTe sample after aging for 33 I(T)= a—lg(-l-) _ a_l(TO /T)1/4, 2

months at room temperature for different measurement tempergirg4)
8, (2) 20, (3) 30, (4) 40, (5) 77,(6) 100, (7) 140,(8) 170,(9) 200, and(10)

0 whereT, is a well-known parameter in Mott’s law, and *

is the length of the localized states. Given the possible values
of a~ and T, (Ref. 30, we find that the average jump
length in the films studied here is, at most, 80 A. Therefore,
according the data of Ref. 30, we can ignore hopping con-
ductivity in films with grain sizes greater than 10cm and
the mechanism for the nonlinearity for the current-voltage
characteristics must be found in the intercrystallite potential
The state corresponding to curein Fig. 2 is already barriers at the graiblock) boundaries.
quite stable and a complete cycle of studies of the effect of Theoretical discussions of phenomena at interfaces usu-
electric fields on the electrical conductivity of the film can beally consider the contact of a semiconductor with a
conducted using it. Figure 4 shows a series of static currensemiconductof?~*4which actually consists of two Schottky
voltage characteristics of the sample which were measured agrriers connected in oppositi6h?® In a theory that pro-
different temperatures and which correspond to this strucvides a satisfactory description of the electrical conductivity
tural state, in which the film parameters are essentially conef polycrystalline semiconductors with grain sizes greatly
stant in time for ordinary storage conditions. Segments wittexceeding the Debye screening lengthy=(kTyxxo/
a stable negative differential resistance show up at temperafp,)*%, wherey is the dielectric constany is the permi-
tures below 250 K. In the entire range of temperatures studtvity of free space, andj is the electronic charge, they are
ied, down toT=4.2 K, no signs of current filament forma- treated as a set of intercrystalline barriébécrystalg with
tion were observed. For operation at moderate currents, theidentical properties. It should be noted that the transition
are hardly any hysteresis effects. At-77 K, a sharp in- from a bicrystalline to a polycrystalline material does not
crease in the threshold current is observed, and the segmemisange the results essentially in this case. Many years of
with a negative differential resistance become ever less corexperimental studies have shown that this is entirely accept-
spicuous as the temperature is raised. The absolute magmible when working with weak electric fields. Here an aver-
tude of the derivativelU/d| decreases rapidly with increas- age barrier heigh appears in the calculations.
ing T, and forT>250 K formation of a negative differential The situation changes fundamentally for microcrystal-
resistance is suppressed altogether. line samples in strong electric fields. Here, also, the already
The subthreshold current-voltage characteristics at teminhomogeneous character of the polycrystalline system
peratures below 250 K are highly nonlinear. The availablecaused primarily by the spread in the height of the barriers at
data on polycrystalline semiconductors indicates that théhe grain boundaries can greatly change the resulting equa-
most probable mechanisms for the nonlinearity are related tdons. The scatter in the barrier heights is related to a change
the presence of potential barriers at gréitock) boundaries. in the form and size of the microcrystallites, their mutual
In contrast with the wide-gap semiconductors with microc-orientation, and the degree to which the localized states are
rystalline structures, for narrow-gap materials that also havélled at the grain boundaries. As a number of theoretical and
small-sized blocks the direct relationship between electricaéxperimental studié8>'have shown, the randomness of the
conductivity and the presence of potential barriers at thepotential well of inhomogeneous semiconductors can lead to
boundaries of the inhomogeneities is not too obvious ané fundamentally new effect — nonlinear percolation conduc-
must be clarified. tivity in strong electric fields. Nonlinear percolation conduc-

3. CURRENT-VOLTAGE CHARACTERISTICS OF SAMPLES
AT DIFFERENT TEMPERATURES AND THEIR

NONLINEAR CONDUCTIVITY IN THE SUBTHRESHOLD
REGION
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tivity has been observed experimentatiyjn photosensitive I A
layers of PbS, an IV-VI material with properties close to
those of PbTe. However, in contrast with the results dis-
cussed here, the data presented in Ref. 51 apply to ordinary

polycrystalline samples with micron-sized grains. 10 %
This effect involves the onset of deviations from Ohm’s 4
law much sooner in randomly inhomogeneous systems than 107

in systems with more or less periodic variations in the po- ozo

tential of equal amplitude. In addition, while there is an ex- 1076k I

ternal similarity in the functional dependence of the current . ‘ .

on the voltage for the Schottky effect and for nonlinear per- 0 10 20 30 40 30
colation conductivity, the nonlinearity of the current-voltage Fo v Zem™

characteristic in the latter case is very much greater than fcV—EIG. 5. Subthreshold portions of the current-voltage characteristics of a
a homogeneous sample with a Schottky barrier, since thgiode at different temperaturék): (1) 8, (2) 20, (3) 40, (4) 77, (5) 90, (6)
local electric field strength in inhomogeneous samples can b0, (7) 150, (8) 200, and(9) 240.
considerably higher than the measured average.

The behavior of a single barrier in a strong electric field

is, to a great extent, determined by the Schottky effect. Ach|ock size. Shklovskis theory'” does not contain such strict
cording to the theory of the Schottky effect caused by low-requirements for the potential well and is, we believe, more
ering a potential barrier in an electric fieltithe current ynjversal. In accordance with Ref. 49, the theory and experi-
through the sample is ment were compared at rather high electric fields.

| = AT2exp( — o/KT)exd (q%/4mx xo) VEY2KT],  (3) As the theory predicts, the current-voltage characteristics

of these samples deviate anomalously early from Ohm’s law.

whereA is the Richardson constang, is the barrier height, The critical value of is 0.3 V/cm atT=4.2 K, 0.7 V/cm at
and F is the electric field strength. However, experimentsT=15 K. and about 5 V/cm af=77 K. It should be recalled
indicate that the nonlinearity coefficient for an inhomoge-that in as-grown samples, these values were one or two or-
neous polycrystalline system can be an order of magnitudgers of magnitude higher because of the enhanced inhomo-
higher than 8= (q*/4mxxo)"? in Eq. (3) or the Poole- geneity of the microcrystalline films as they fragment due to

Frenkel cogfficien18=(q3/wx)(0)1’2 (Ref. 50. the breakup of coarse grains into finer blocks.

According to the landmark paper of Shk'QVBﬁ the In the region where their conductivity depends on the
current in a randomly inhomogeneous system is electric field strength, the current-voltage characteristics of

I =1 exd (CqFaVe) ¥ /KT, (4) these samples actually correspond to a dependence of the

form Inl«<FY2 over a wide temperature ranggig. 5. As
whereV, is the amplitude of the fluctuations in the potential Fig. 5 shows, the segments of the current-voltage character-
well, »=~0.9, andC=0.25; ais the scale length of the spatial istic which are consistent with the nonlinear percolation con-

inhomoge_neity. _ _ o ductivity theory shift toward higher electric fields as the tem-
Equation(4) is valid for the range of electric fields de- perature is lowered. The deviation of the experimental
termined by the inequalitVo>qFa>kT(kT/V,)". The =|(FY?) curves from the theoretical dependent® is

conditionVy>kT must also be satisfied. If the critical index caused by ohmic segments in low fields and the development
v is replaced by unity, then E¢4) can be rewritten in the of a negative differential resistance in high fields. The ex-
form perimental values of3, consistent with the theory for low

_ 1/2 temperatures, are 5-7 times the values calculated for the

| =loexp(BFKT), © Poole-Frenkel effecf(1.0-1.9)x10°° eV¥2.cm'? in the
where 8= (CqaV,) 2 Later this theory was developed di- temperature interval 4.2—300 JKAs the temperature is
rectly for microcrystalline systems with intergranular raised, because of the rapid risegnwith temperature, this
barriers!®*® The authors of Refs. 46 and 48, while confirm- difference increases by more than two orders of magnitude
ing the validity of Shklovskis basic assumptions and con- (Fig. 6, curve2).
clusions, nevertheless find that these relations provide a bet- The average barrier height, which determines the con-
ter description of the behavior of polycrystalline ductivity of a microcrystalline medium at a given tempera-
semiconductors in strong electric fields. However, despiteure and, thereforey, in Eq. (5) which corresponds roughly
this critiqué®“® of Shklovski’s results, as regards their ap- to ¢, can be determined from the temperature variation in the
plication to inhomogeneous polycrystalline systems in highelectrical conductivityo in low electric fields shown in Fig.
fields, on comparing the theory and experiment we wereg7, assuming that
compelled to restrict the analysis to Shklow&kiwork, not
solely because of its clarity and evident advantages for ana- oo exp( = ¢/KT). ©)
lyzing experimental data. In the calculations in Refs. 46 andrhe electrical conductivity of highly inhomogeneous media
48 it was assumed thaty<a. For our samples, this condi- has been examined in Ref. 5. In terms of the basic concepts
tion is clearly not satisfied: even dt=4.2 K, the Debye of the percolation theoryy characterizes the average height
screening length is X 10" ¢ cm, or three times the average of the barriers, which form a critical sublattice in the ran-
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IG. 8. Average height of the intercrystallite barriegs,(1), kT (2), and

F
FIG. 6. Temperature variations in the spatial inhomogeneity scale Iengtlt /2 (3) as functions of temperature
g .

a (1) and nonlinearity coefficien8 (2).

domly inhomogeneous medium under consideration. The eftures. The properties of contacts between single crystal
fect of the intrinsic conductivity at low temperatures can beand p-type PbTe and various metals, Cu, Ag, Al have
ignored®**! This is also quite clear from the data shown in been studied in detai? It was showf? that the height of the
Fig. 8, on comparing the behavior of= ¢(T) with the tem-  Schottky barrier is independent of the work function of the
perature dependence of the optical band gap. The hoppingetal and varies in the range 0.175-0.200 eV, or 0.5-0.6
conductivity is not observed in these samples. This last feaimes Eq for PbTe at room temperature. As the temperature
ture is well illustrated by the curves shown in Fig. 7: theis lowered, the barrier height decreases in accordance with
conductivity of these samples decreases with aging over thge reduction in the band gap.
entire temperature range, while hopping conductivity should
increase as= exp(—D*®) when the average block siz¥*
is reduced® 4. MECHANISM FOR READJUSTMENT OF THE POTENTIAL

The dependence @f onT in Fig. 8 (curvel) shows that WELL AS THE SAMPLE TEMPERATURE IS VARIED
the barrier height increases almost linearly withat low

temperatures, i.e., . AssumingVy= ¢ and knowingﬁ, one can use E_oi5) to
. find the scale lengtta of the spatial inhomogeneity. At
pxT, (7) =42 K, ais 3.7<10°® cm, which is still substantially

wheret=0.96—0.97, while at higher temperaturé&=240  greater than the possible tunnelling length for charge carriers
K) ¢=¢(T) has a saturation dependence. At 240 K, the in PbTe. The quantita=3.7x10"° cm is already close to
temperature dependence of the conductivity is obviousljhe average block siz®* =2x10"° cm found by x-ray
caused by the temperature dependence of the intrinsic costructural analysi$ and indicates that Shklovsls theory’
ductivity. applies to our results. The inequalityy>qFa>kT(kT/

The Schottky barriers formed when metals are in contacYo)” holds solidly in the entire range of temperatures studied
with single crystal PbTe have an effect on the electrical conhere.

ductivity of the samples up to somewhat higher tempera- However, because increases With temperature, an ini-
tially quite unexpected situation arises. Thus, for example, at

8 K the value ofa increases to 6410 % cm and reaches
5x10"* at 240 K. The dependence afon T is plotted in
Fig. 6 (curvel). This behavior of the system originates in the
relationship between the potentialand the scale length of
the inhomogeneity. The relationship between the potential
and the inhomogeneity scale length is apparently typical of
any system on a mesoscopic scale, where the scale length
varies from a few nanometers to several tens of nanometers.
This situation is fundamentally independent of the particular
type of structure, whether we are speaking of nanocrystals or
) ) ) . . . systems of quantum dofts.

0 40 80 120 160 200 240 It should be noted that the results presented here can be

1077, K™ used for films with arbitrary graifblock) size or inhomoge-

FIG. 7. Temperature variations in the electrical conductivity of a microc- neity scale length to determine the temperature above which

rystalline PbTe film in a weak electric field 8 monthsurve 1) and 33 the anqUCtiVity of the samples no longer depends on the
months(curve2) after fabrication. electric field strength.
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~ Pop- (12

We obtain an expression for the height of the potential bar-
rier which differs from Eq.(11):

If the grain size is sufficiently large and>L, then a a\l qN, a?
the solution of the Poisson equation for the one-dimensional  #(0)=¢(a)=V(0)—V > =V(a)-V 2] Yxo 4°
case, 1
92V q An analogous result was obtained in Ref. 41, where the ker-
——="7Na 8 nel was approximated by a sphere of radigys The space
X XXo charge is concentrated in a layer fram<rgy to ry; i.e., rq
is36 —r, has the significance of a screening length. The height of
the potential barrier is given by
V(X)= AN Wx 1x2) ® (9) 2mgN 2r3
- 5 — Pbp>s T
XXo 2 P o(rg) = A I (14)
3XxXo lo

where V(x) is the potential,¢,, is the potential barrier
height, W is the width of the space charge lay&l, is the
acceptor concentration, amds the coordinate. This situation
is illgstrated in_Fig. 9a. Ap-type semiconductor is being _ 27qNa

considered, as in our particular case. On the thermodynamic ®(I'o) = 3xro O (19
equilibrium band energy diagram shown in Fig. Ba,is the 0

Fermi energyEC is the energy Corresponding to the bottom As the data of Flg 10 ShOW, hOWGVEr, in the entire range of
of the conduction band, arﬁv is the energy Corresponding variation ofa the relation between the helght of the pOtential
to the ceiling of the valence band. If the scale lergtsf the ~ barrier and the scale length of the spatial inhomogeneity is
spatial inhomogeneity is small and the second boundary &tlose to a linear dependence, which can be approximated by
x=a does not affect the potential distribution, then for & power law of the form

Forr,=0 we have, as in Eq13), a quadratic dependence of
the potential barrier height on the grain size,

<W Egq. (9) yields pxal, (16)
_ qNa where n=0.94. The height of the barrier is determined by
V(a)=- XXOWa— Pop- 10 the inhomogeneity scale length=a(T) and, as the data of

Fig. 8 imply, is a function of temperature. Clearly, the tem-
perature dependence of the band ggrannot be the reason

aN, for the dependencgl6) with »=1. On the other hand, since
¢(0)=—@pp—V(a)=——Wa, (1))  E4in PbTe increases as the temperature rié8one should

0 rather expect Eq(16) with »>2. The reason for this as-

is proportional toa in this case. If we assume the existencesumption can be understood if we note that all the measure-
of a symmetric barrier at=a (Fig. 9b), then the solution of ments of the sample parameters were made in strong electric
the Poisson equatiof8) must be taken in the form fields. This is clearly evident for the one-dimensional case

The height of the potential barrier,
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in good agreement with the valag#2=2.1x10 * cm found
a by analyzing the electrical measurement data in accordance
with the Shklovski theory. We regard this fact as one of the
most weighty arguments in favor of using the Shklovski
T, theory for analyzing our experimental data. The dependence
of x on T was taken into account when calculatiig>

¢ Since the band gal, in PbTe increases considerably more
kT slowly thankT [from 0.19 eV afT=4.2 K to 0.32 eV afl
b =300 K (Refs.27 and 53, the increase ifty with tempera-
ture only facilitates the growth of “high” barriers. As a re-
T, sult, the change in the height distribution function of the

barriers changes the paths of the current flow in the system in
M ,—\ ¢ N / \ such a way that the nonlinear conductivity includes tempo-
T, el rary configurational ensembles which determine the spatial
inhomogeneity scale length and within which the number of
blocks increases constantly with temperature. This process is
FIG. 11. Scheme for readjustment of the potential well as the temperaturg| strated schematically in Fig. 11. The height of the barriers

changesTs>To>T;. increases in this case much more rapidly than the increase in
Ey with T, while the reduction in their number leads to a

(Fig. 99. In an electric field the potential distribution is continuous rise in the nonlinearity coefficiefitwith T.

highly distorted toward one of the barriers compared to the

equilibrium case. If, for example, we consider an inhomoge-

neity of sizea=a,, then it is evident from Fig. 9c that the 5 £ EcTRICAL CONDUCTIVITY IN STRUCTURES WITH

barrier atx=0 makes the main contribution and then, as EQ-AN ADJUSTABLE POTENTIAL WELL AND HOPPING

(11) implies, ¢>a. In addition, since the measurements arecoNDUCTIVITY WITH A VARIABLE HOPPING LENGTH

made in strong electric fields, there is an inevitable reduction

in the barrier height in the electric field for each individual ~ Given the rise in the activation energy for electrical con-

barrier due to the Schottky effect. This is qualitatively un-ductivity in our film samples with increasing temperature, it

derstandable from the change in the potential distribution i meaningful to compare the observed mechanism for elec-

Fig. 9c, while the quantitative changes should obey @y.  trical conductivity in microcrystalline systems that have an
As for the mechanism for the rapid increase in the spatiafdjustable potential well with hopping conductivity when the

inhomogeneity scale length as the temperature rises, here hopping length is variable. This is especially appropriate,

the main contribution is from the “vanishing” or, more pre- since the theory of hopping conductivity based on percola-

cisely, the thermal smearing out of small barriers withtion theory also deals with a critical sublattice that changes

heights ¢,i,<kT. Judging from the relationship betwegn With temperature and plays a key role in deriving the basic

andkT, i.e., given thaip=4kT, we may conclude that dur- €equations.

ing current flow, not only the barriers with heightsy, If, in accordance with the known activation dependence

<KT, but also the barriers whose average height4kT, do  for the specific resistivity of a semiconductor of the fopm

not participate. The same applies to barriers of height =poeXpAE/KT), whereAE=4In p/d(kT)~*, we define a lo-

>4KkT. The primary contribution is from barriers of height cal activation energy for hopping conductivity with a vari-

@~4KT, which form a critical sublattice and determine the able hopping length of the fornde=4dIn p/o(kT)™* (Ref.

electrical conductivity of this randomly inhomogeneous me-54), then for the temperature dependence of the local activa-

dium with an adjustable potential well. In the caserW,  tion energyde we obtain

space charge layers of the barriers whose height>KT 1 1

propagate to regions with vanishing barriers. It is not by 682ZkTé"’Tg’/“:Z(TO/T)l""kT. (17

chance that the relationship betweenand T in Fig. 8 is

extremely close to linear, especially at low temperatures. Thélowever, despite an outward similarity in the temperature

total surface area of the blocks united in these unique envariations of the local activation energiés = 5¢(T) and

sembleqor clusters decreases with temperature and, as freep= ¢(T), it is obvious that there is, in fact, no analogy here

charge carriers are trapped by surface states, the specifit all and we are dealing with completely different conduc-

charge per unit surface area increases. tivity mechanisms. The mechanism under consideration here,
As they propagate in the space which previously be-as for the overwhelming majority of other microcrystalline

longed to lower barriers, the barriers at the boundaries of theystems with semiconductor conductivity, is caused by su-

large blocks simultaneously increase in amplitude. This properbarrier transport of charge carriers, and, in our case, the

cess continues untilV exceedsa/2. When the conditioWW  existence of a temperature dependence for the local activa-

<al2 is satisfied, the dependencegbn T should saturate, tion energy(according to Eq(7), ¢=T%%) is the result of a

subsequently following the dependencesgfon T, which in  potential well that adjusts itself with temperature and the

our case occurs dt>230 K (Fig. 8, curvel). The calculated dependence of the barrier height on the linear sizé the

value of W= (2xxoe/qpo)¥?=1.7<10 % cm forT=230 K,  resulting ensemblegclusters. The hopping mechanism is

X
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based on tunnelling of carriers between two localized stategheree, AEY, andAE', in turn, depend on the temperature
which differ in energy by the energy of a phonon. and, therefore, on local activation energies with the corre-
The difference between these mechanisms becomes esponding temperature dependences. The temperature depen-
pecially evident when the behavior of the inhomogeneitydences ofp, AEY, andAE' are shown in the inset in Fig. 12
scale lengtha is compared with that of the characteristic size for comparison.
of the critical sublattice in the theory of hopping The similarity in the functionsAEY=AEY(T) and ¢
conductivity>® = ¢(T) indicates an explicit relationship between the mecha-
Lo=I(T)él=a" el (18) nisms for t_he negative differential_ re_sistance and thermal
processes in our samples. The activation enexgy, how-
wherel(T)=a *¢(T)=a }(To/T)*is the average jump ever, varies in the rang®.12—0.20 in the entire tempera-
length,a~* is the radius of the localized state, anet0.9is  ture interval. At the same time, for a purely thermal mecha-
the exponent on the correlation length. This length)(  nism for the negative differential resistance, it should be
plays an important role in the theory of all effects associate@qual to 0.% (Ref. 39. Similarly, instead of equalling 0
with hopping conductivity, including in the behavior of hop- AE' for the thermal mechanism varies in the ran@e1—
ping conductivity in strong electric field§:>" This shows 0.31)p. Given the above arguments, it must be assumed that
that, in contrast with the inhomogeneity scale length in this case the mechanism for the negative differential resis-
which increases linearly or superlinearly with temperature inance is electrothermal, with a field component determined
the microcrystalline system under consideratibg,has an  py the nonlinear percolation conductivity of the microcrys-
reciprocal temperature dependence and decreases with risifglline samples. It is obvious from the smallness\&" that
temperature according to the power law electron processes make a large contribution. It is greatest in
Loor £+ o 7047 (199  the temperature range 20-30 K, whayEY andAE! form a
minimal fraction ofe. At lower temperatures, the resistances
of the barriers are low and at high temperatures, the thresh-
old currents are too high. Given that the activation energies
An idea of the mechanism for the negative differential AEY for U, as a function ofT vary little over the entire
resistance can be obtained from the well-tested procedure ¢émperature range studied hefthey vary in the range
comparing the dependences of the threshold voltagand  (0.12-0.20y], the contribution of thermal processes to the
currentl, on T with the temperature dependence of the elec-development of a negative differential resistance in this tem-
trical conductivity o in a weak electric fieldsee Fig. 12 perature range is essentially constant. The data of Fig. 8
The changes in the threshold parametérsandl, are small  show that a negative differential resistance can be observed
in the interval 8—40 K. Raising the temperature above 40 Kin these films at temperatures up to 240-250 K, beyond
substantially increases the rate at whidh and |, change which thermal generation of charge carriers of both signs and
with temperature. This pertains largely to the temperatura transition to intrinsic conductivity will destroy the state
dependence of the threshold currentFigure 12 shows that with a negative differential resistivity and liquidate the non-
the threshold voltag®); and threshold currerit vary much  linear conductivity in these samples.

6. NEGATIVE DIFFERENTIAL RESISTANCE

more slowly withT than doess=o(T). A quantitative cri- The data of Fig. 3 can serve as important evidence of an
terion can be found if we write the temperature dependenceslectrothermal mechanism for the negative differential resis-
of o, Uy, andl, in the conventional forms tance. The curves in that figure refer to entirely different

structural states, and their resistances measured at 25 K and
in weak electric fields, differ by four orders of magnitude. At
l,cexp(—AE'/KT), the same time, the curves essentially merge in the segment

oxexp(—@/kT), UxexpAEY/KT),
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with a negative differential resistance at currentd0 * A; This is indicated by a quantitative analysis of the temperature
i.e., the resistance of this sample is the same in both struasariations inU; andl, in Fig. 12. A further weighty proof of
tural states. This means that for the same scattered powdre importance of thermal processes in the development of
(which is large in this segment, according to the data showithe negative differential resistance is the closeness of the two
herg, which produces high enough temperatures in the aceurrent-voltage characteristics for different structural states
tive region, the scale length of the spatial inhomogeneity thadf the same sample shown in Fig. 3 for high 104 A)
determines the magnitude of the resistance and therefore tlrrents. We believe that these current-voltage characteris-
resistance of the sample, is the same regardless of the situiges are a good illustration of the feasibility of the mechanism
tion at low temperatures. Here it is also important that all theproposed here for the readjustment of the potential well.
remaining parameters, and primarily those related to the

. We thank Z. A. Samitenko for the x-ray structural
sample geometry, remain constant.

analyses of the samples.

7. CONCLUSIONS
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The problem of the stability of one-dimensional solitons in the hard regime of soliton excitation,
where the matrix element of the four-wave interaction has an additional smallness, is

studied. It is that shown for optical solitons striction can weaken the Kerr nonlinearity. It is
shown that solitons with a finite amplitude discontinuity at the critical soliton velocity, equal to the
minimum phase velocity of linear waves, are unstable while solitons with a soft transition

remain stable with respect to one-dimensional perurbations. Two- and three-dimensional solitons
near threshold are unstable with respect to modulation perturbation4.99® American

Institute of Physicg.S1063-776199)02207-9

1. INTRODUCTION the soliton shape acquires the form of an envelope soliton for
the nonlinear Schiinger equatiofNLSE). This behavior
beeurs for any spatial dimension.

This isue was first considered for gravity-capillary sur-
e waves on deep water. One-dimensional soliton solutions
were first found numerically in Ref. 1. Later, a bifurcation —
a transition from periodic solutions to a soliton solution —
was studied in Refs. 2 and 3 using normal forms. The sta-
tionary NLSE for gravity-capillary wave solitons was de-
rived in Ref. 4. In Ref. 5 it was shown that this mechanism
wherew = wy is the dispersion law for linear waves akds  can be extended to optical solitons. It followed from this
the wave vector, then such an object will lose energy visyork, essentially, that this mechanism occurs for waves of
Cherenkov radiation. This also applies fully to solitons asgrpitrary nature.

localized stationary formations. They cannot exist if the reso-  The question of whether the bifurcation is super- or sub-
nance conditiorf1.1) is satisfied. Hence follows the first, and cyitical depends on the character of the nonlinear interaction.

simplest, selection rule for solitons: The soliton velocity The soft transition regime occurs with focusing nonlinearity
must be either less than the minimum phase velocity of liny,nen the produck” T< 0, whereo” = 52w/ 9k? is the second

ear waves or greater than the maximum phase velocity. Thgerjyative of the frequency with respect to the wave vector,
boundary separating the region of existence of solitons fro”évaluated at the point of tangenky:k,, andT is the value
the resonance regiail.1) determines the critical soliton ve- of the matrix elemenT, | ... of the four-wave interaction
locity v,. As is easy to see, this velocity is the same as th of K=ke. If &"T>0 \jvﬁlér‘]‘ corresponds to a defocusin
group velocity of linear waves at the point where the straigh nonlilnea?i.ty tr(;)ere aré no solitons —p localized solutions g_

line w=Xkv is tangent to the dispersion curie= w, (in the ith litud ishi hi he th
multidimensional case — the point of tangency of the plané"”t amplitude vanishing smoothly 85—V Iq the theory
of phase transitions this corresponds to a first-order phase

w=k-v to the dispersion surfagelf the tangency occurs . . X .
from below, then the critical velocity determines the maxi- ransition, and in the theory of turbulence, using Landau’s

mum soliton velocity for this parameter range and, con{erminology? it corresponds to a hard regime of excitation.
versely, for tangency from abowe, is the same as the mini- [N the present case the transition through the critical velocity
mum phase velocity. Two regimes are possible in crossing® @ccompanied by a discontinuity in the soliton amplitude.
this boundary: soft or hard excitation, in other words, super-lhe magnitude of the jump is determined by the next higher-
or subcritical bifurcation. order terms in the expansion of the Hamiltonian. Just as for
It has been determined previously that near the criti- ~ first-order phase transitions, in the situation of the general
cal velocity solitons in the soft excitation regime behave in aPosition universality of soliton behavior is no longer assured.
universal manner. This universality is manifested, in the firstHowever, when the hardness of this transition is small, at-
place, as a square-root velocity dependence of the solitoigntion can be confined to the next approximation in the
amplitude, as is typical for second-order phase transitionsgxpansion of the Hamiltonian and all other terms can be
making this phenomenon similar to second-order phase trameglected. In phase transitions this corresponds to a first-
sitions. However, an important distinction from phase tran-order phase transition close to a second-order transition,
sitions is manifested in the shape of a soliton. The shape ighich occurs, for example, near a tricritical point. As shown
also universal: As the velocity approaches the critical valuein Ref. 7, this situation arises for one-dimensional internal-

This paper is devoted to a study of hard and soft solito
excitation regimegin other words — sub- and supercritical
bifurcations accompanying a change in the soliton veIocityfac
v — one of the main characteristics of a soliton. It is well
known that if the velocity of a moving object is such that

(l)k:k'V, (11)

1063-7761/99/89(1)/10/$15.00 163 © 1999 American Institute of Physics
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wave solitons propagating along a density jump in liquids.solitons with weak repulsion is only a necessary criterion.
According to Ref. 7 the matrix elemeiitin this case van- However, solutions of this type are unstable with respect to
ishes for density ratiop;/p,=(21—8+5)/11. Near this finite perturbations.

point the authors of Ref. 7 were able to perform a complete  The criterion(1.2) makes solitons with weak attraction
bifurcation analysis for solitons using the method of normalstable in the entire range of2. This is in complete agree-
forms. ment with the Lyapunov stability analysis.

In the present paper, the Hamiltonian descriptioan- This paper is organized as follows. The nonstationary
cerning this subject, see the recent review in Ref. 8, as weljeneralized nonlinear Schrodinger equation is derived in
as Ref. § is used to obtain a closed description of solitonsSec. 2. Here the effect of the spatial dimension on soliton
near the critical velocity, and the stability of solitons with stability in the soft excitation regime is discussed. Specifi-
respect to modulation disturbances is studied on the basis @hlly, it is shown that stable solitons can exist only in the
a nonstationary generalized nonlinear Sclimger equation. one-dimensional case. For this reason, in what follows we
It should be noted that in contrast to the method of normakhall focus on only one-dimensional solitons. In Sec. 3 the
forms, which is extensively used in Refs. 2, 3, 7, and 9 toexact analytic expressions for a one-dimensional soliton so-
study bifurcations of solitons, the Hamiltonian approach islution with an amplitude jump at the transition point are
fundamental for investigating soliton stability. In the methodfound. The next section is devoted to the Lyapunov stability
of normal forms, the introduction of envelopes is not uniqueof solitons. Using exact integral estimates, it is established
as a result of which, after averaging, the Hamiltonian equathat the Hamiltonian has a lower limit only for solitons with
tions of motion lose their original Hamiltonian structure.  weak attraction Tw”<0). A soliton realizes the minimum

As will be shown below, the expansion of the Hamil- of H and is Lyapunov-stable, i.e., not only with respect to
tonian for solitons with hard bifurcation near threshold dif- small disturbances but also with respect to finite distur-
fers substantially from the expansion for the soft regimebances. In this case this criterion can, and must, be viewed as
Terms containing the so-called Lifshits invarightvhich ~ an energy principle. Specifically, hence it is easy to see that
plays an important role for first-order phase transitions, arenerging of solitons is energetically favorableote that
present in this expansion. In the context of solitons, the Lif-merging is impossible for the integrable NLSRs a rule,
shits invariant gives rise to a nonlinear coordinate depenthis process will be accompanied by radiatisee Ref. 1}
dence of the soliton phage optics it is called a chirp since all the conservation laws can be satisfied only for very

It is shown below that only one-dimensional solitons areexceptional dispersion dependences of the energy of the soli-
stable in the soft transition regime. Two- and three-tons on the momentum and number of particles.
dimensional solitons are subject to modulation instability. ~ The question of linear stability is investigated in Sec. 5.
For hard transitions this same instability also occurs for two-The Hamiltonian approach is also very helpful here — it

and three-dimensional solitons. greatly simplifies the entire derivation of the analog of the
Using integral estimates of the Sobolev type in theirVakhitov—Kolokolov criterion.
multiplicative variant(Galiardo—Neirenberg inequalities The final section is devoted to an application to optical

is shown that only one-dimensional solitons with weak at-solitons in optical fibers. Specifically, it is shown that the
traction are stable in the Lyapunov sense. For these solitonstriction mechanism can decrease the four-wave matrix ele-
for a fixed number of particle@ntensity), the Hamiltonian is  ment, due to the Kerr effect, and in principle can change its
bounded from below and, correspondingly, the solitonssign.
themselves realize its minimum, which by virtue of
Lyapunov’s theorem implies their stability. It should be
noted that the existence of stable localized structures — sol2. BASIC EQUATIONS
tons — due to a relatively weak four-wave interaction
against the background of strong attraction| ¢|®), which
leads to collapsésee, for example, Ref. Llis related to the
phenomenon of weak localizatidf.

Solitons with a finite discontinuity in amplitude at the
transition point are strictly unstable with respect to small )
perturbation, where there is no contribution from the Lifshits H= | oday®dk+Hiy, 2.7

invariant. The stability criterion for these solutions has the

form of the Vakhitov—Kolokolov criteriotf for the NLSE: where wy is the dispersion law of low-amplitude waves,
are the amplitudes of the waves, and the Hamiltorigp

INg/IN?>0, (1.2 describes the nonlinear interaction of the waves.
The equations of motion of the medium can be written in
terms of the amplitudes, in the standard manner

Let us consider a nonlinear medium where waves can
propagate. We shall assume that the medium is purely con-
servative, and its nonlinear oscillations can be described by
the Hamiltonian

where Ny is the number of particles in the soliton solution
ande = —\?<0 is the energy of the bound stat— a soliton.

For a positive derivative, i.e., when the addition of a single  ga, COHiy
particle decreases the energy the soliton is stable. In the 7+'wkak: —I sar
opposite case, where level expulsion occurdNascreases, K
the soliton is unstable. When the contribution from the Lif- so that in the absence of an interaction the system consists of

shits invariant is nonzero, the instability criterigh.2) for a set of noninteracting oscillatofe/aves:

(2.2
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a(t)=a,(0)e 'K,

The equation(2.2) describes dynamics in tHerepresen-
tation. The inverse Fourier transform

L ik-r
P(xt)= mf a,(t)e™™"dk (2.3

must be performed to return to tlxerepresentation.
Ordinarily, the functiong(x,t) is related with the char-

acteristics of the mediuntfluctuations of the density and
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This equation, in contrast to E(R.4), contains a free param-
eter — the complex amplitud@. It can be solved, for ex-
ample, by iterations, takingd(k—Kkg) as the zeroth term. It

is important that as a result of iteration harmonics which are
multiples ofk =Kk will appear in the solution because of the
nonlinearity. The solution so obtained will consist of a col-
lection of § functions. Correspondingly, in therepresenta-
tion the solution will be a periodic function of the coordi-
nates, i.e., it will be nonlocalized. Hence follows the first
selection rule for solitons: The differeneg,—k-v must be

velocity of the medium, electric and magnetic fields, and sasign-definite, which is equivalent to the requireme@$) or

on) by linear transformatiorisee, for example, Ref.)8It is
important that ifys(x,t) is a periodic function of the coordi-
nates, then its spectruay(t) consists of a set of functions.
For localized distributiong/(x,t) —0 as|x|—«, the Fou-
rier amplitudeay(t), being a localized function ok, does
not contains-function singularities.

Let us now consider the solution of E@.2) in the form
of a soliton propagating with constant velocity

P(X, 1) = ¢p(Xx—Vvt).

In this case the entire dependenceagfon the timet is
contained in the oscillating exponent:

a(t)=ce kv,

where by virtue of Eq(2.2) the amplituden, will satisfy the
equation

oH
(w—k-V)g=——=f.
k

(2.9

The differencew,—k-v appearing in this equation will be
positive for allk if the soliton velocity is less than the mini-

mum phase velocity
[V| <min(wy/K).

(2.9

Conversely, the difference will be negative for &llif the

(2.6) of the absence of Cherenkov radiation.

In this entire scheme, however, there is an important
exception. Having represented Ef.4) in the form(2.8), we
have actually assumed that the singularity in the expression

fi
=KV (2.9
is nonremovable. This may not be the case — the singularity
in the denominator in Eq(2.9) could cancel with the nu-
merator, i.e., it could be removabldzor example, this hap-
pens for the classic soliton of the KdV equation, for equa-
tions which are generalizations of the KdV equatiéfior a
combination of the one-dimensional NLSE and the MKdV
equation3'® generated by the same Zakharov—Shabat
operatort’ and so on. In all of these cases cancellation oc-
curs as a result of thie dependence of the matrix elements.
However, even in this case, after the resonafX®) is re-
moved, the selection rule for solitons remains the same —
the part remaining in the denominator must be sign-definite.

In what follows the singularities in Eq.2.9) will be
assumed nonremovable in the forbidden region, and the be-
havior of the soliton solution as the soliton velocity ap-
proaches the critical value will be studied. For definiteness, it
will be assumed that the plare=k-v is tangent to the dis-
persion surfaces= w, from below, i.e., the criterior{2.5)

soliton velocity is greater than the maximum phase velocityho|ds. Let tangency occur at the pokek,. Then, instead

[v|>max w,/k). (2.6

of Eq. (2.8), in the allowed region

We shall show that a soliton solution is possible if the con- fi

dition (2.5) [or (2.6)] is satisfied. Let us assume the opposite

to be true — let the conditiori2.5 be satisfied, i.e., the
equation

WK= K-v

(2.7

k= wWg— kv’

As the velocityv approaches the critical value,, the
denominator in this expression becomes small near the point
of tangency, so that, possesses a sharp peak at this point

possesses a solution. For simplicity, we shall assume that it

is unique:k=Kkg. Then, sincexd(x) =0, the homogeneous

linear equation
(w—k-v)C,=0

1 -1
Ck: _waBKaKﬁ+kO(Vcr_V) fk'

5 (2.10

Here waﬁ:azw/akaakﬁ is a symmetric, positive-definite,

possesses a nontrivial solution in the form of a monochrotensor of the second derivatives, evaluatettak,, and «

matic wave
Cy=Ad(k—ko).

In this case Eq(2.4) admits(in accordance with the Fred-

holm alternative the representation

fe—fig

ck=Ad(k—ko) + —

Pt 2.8

:k—ko

It is evident from Eq.(2.10 that asv approaches the
critical velocity the width of the peak narrows as/v—v,
and the distribution corresponding to the main péakk
approaches a monochromatic wave. On account of the non-
linearity the spectrum contains harmonics which are mul-
tiples of k=kg,. If it is assumed that the amplitude of the
soliton vanishes smoothly as—v, (which would corre-
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spond to a second-order phase transjtidinen the solution ) g 5
#(x) (or, equivalentlyc,) can be sought as an expansion in N:f || dx=\ J lg(&)]%d¢, (217

terms of harmonics: ] ) ) o
whered is the dimension of the space ag() satisfies the

- , ' equation
P(X)= D Pa(X)eMkoX’ x'=x—vt. (2.11 q
o —g+Ag+|gl?g=0.
Here the small parameter In the one-dimensional cage= /2 sech¢ and, correspond-
A= m (2.12 ingly, N=4\. In the two-dimensional cade is independent

. _ of N on the entire family of solitons, while in the three-
and the “slow” coordinateX=\x" are formally introduced,  dimensional cas#l decreases with increasing The depen-
so thaty,(X) is the amplitude of the envelope ath har-  dence ofN on A2 is determining from the standpoint of soli-
monic. The assumption that the soliton amplitude vanishegon stability. It is obvious that the most dangerous
continuously atv=v¢ means that the leading term of the disturbances will be those having wave numbers close to
series in Eq(2.11) corresponds to the first harmonic, and all k=k, moving together with the soliton, i.e., modulation-type
other harmonics are small in the parameterThis is the  disturbances. To include the time dependence in the aver-
condition under which the nonlinear Schiioger equation is aged equations the amplitudes, in the expansion(2.11)
derived(see, for example, Refs. 5, 18, and. 1@ the case at must be assumed to depend not only on the “slow” coordi-
hand, in leading order in we arrive at the stationary NLSE nateX but also on the slow tim&=\2t. Then a multiscale
(compare with Ref. b expansion gives the nonstationary analog of the NLSE

VNt S0 e +BlUfi=0, @13 TNYTAYTsliY=O @18
a®B instead of the stationary NLSE.16). The soliton stability
whereB is related with the matrix e|emeﬁ1k0klk2k3 of the problem for this equation has been well studisge, for
four-wave interaction as example, Refs. 5 and 20We shall recall the basic assump-
tions.
B=-— (277)d'~rk0k0k0k0_ (2.14 The equatior{2.18) as an equation for envelopes inherits

the canonical Hamiltonian forr2.2)
In this approximation the leading term in the interaction

iltoni oy oH
Hamiltonian has the form i_l//: , 2.19
- ot Syt
Tkokokoko * % . .
Hint=""5""] Ck Cic,Ck,Chy Ok +k;—k,—kdKdk1dkadks  where the Hamiltonian
:_gf |y 40, (2.15 HZ)\ZI\H‘f (Vyl>=lglHdr  (u=-1) (2.20

. N - arises as a result of averaging the initial Hamiltonian. The
and the overtilda signifies that renormalization of the vertex . .

: o ; . equation(2.18 preserves, besiddd, the total numbeN of
by the three-wave interaction is taken into account in the

matrix element — in the case at hand the interaction with thé)artlcles(amabatlc invariant so that solitons are stationary

- . _ _ 2 . _
zeroth and second harmonics. As we have already notegomts of the energy function&l=H —A"N for a fixed num

w,p N EQ.(2.13 is a symmetric positive-definite tensor. For er of particles:
this reason, performing a rotation to its principal axes and  §(E+\?N)=0.
carrying out the corresponding extensions along each axis,

Eq. (2.15 can be put into the standard form Hence it can be shown following Ref. 20 that a soliton

realizes the minimum energy only in the one-dimensional
— N2+ A= | y]?=0, (2.16  case, while ford=2 solitons are a hyperbolic point. This
means that solitons are stable only in the one-dimensional
case, while in the two-dimensiondkritical) and three-

. Hence it follows, in the first place, that solito®cus-  giensional cases solitons are unstable and can be consid-
ing nonlinearity are possible only il is negative(the prod-  g1o4 a5 separatrix solutions separating collapsing solutions

uct Tw,, is negative and, in the second place, that the am-from diffracting solution$*

wherep=sign(Tw,,).

plitude of the solitons is proportional to This is probably the simplest method for explaining the
A=\1—vivg well-known empirical fact that solitons, as a rule, exist only
- cn

in one-dimensional systems. For multidimensional systems
i.e., the amplitude vanishes according to a square-root lawstable solitons are rare and can appear as a result of only
the size of the soliton increasing as the velocity approache®pological constraints or a mechanism that removes Cher-
the critical value inversely as this factor. enkov singularitiegwhich is discussed in the present paper
The number of particleor intensity in a soliton solu-  The latter, as is easy to understood, is due to the existence of
tion as a function oh has the form a certain class of symmetry.
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In the present work we shall focus our attention mainly
on solitons arising in the hard excitation regime, which is
observed when the coefficiept in Eq. (2.16) is positive. In
this case Eq(2.16) no longer possesses stationary localized
(vanishing at infinity solutions. In order for them to exist it

is necessary to take account of the next higher-order terms inh _ dto b I and th
the expansion of the Hamiltonian relative to the parametep— e constanj. Is assumed to be small, and the constgts

H=A2N+f

7
A=

+i B — b )| ]~ C| 9| ® | dx. (2.23

Ak/ky, whereAk is the width of the main peak. If the jump
in the soliton amplitude at=v, is large(of the order of 1,
then the entire series must used and it is no longer possible

and C do not contain any additional smallness.
The equations of motion foy that correspond to this
Bamiltonian can be written according to EQ.19 as

count on a systematic theory based on an expansion of they,— N2+ i, — | |2+ 3C| |+ 4i B |2, = 0.

Hamiltonian. Only if the matrix elemenTy i\ «,=To iS

(2.29

small, i.e., there is an additional smallness compared with thBesides the energg=H — 2N and the number of particles,

supercriticality(and as a result the jump is also small is

this equation also conserves the total momentum

sufficient in this case to retain several of the next terms in the
expansion. We shall study only one-dimensional solitons,
since, as we have seen above, multidimensional solitons are
unstable for a soft transition. This same tendency also re-
mains in hard regimes. It is easy to see that in this situatio. SOLITON SOLUTIONS
two terms make the main contribution to the interaction
Hamiltonian. The first term is a correction to the local four-
wave Hamiltonian—B/2[|4|*dx. It arises because a term
linear in k;=k; — kg is retained in the expansion of the matrix

elementTy .k,

_I * *
P—zf (W5 = .

The stationaryindependent of) soliton solutions of Eq.
(2.24) will be determined from the following ordinary differ-
ential equatiort!

— N2yt = w29+ 3CLy| oyt 4i Bl | 24, = 0. 5

T *

B i . . . o ,
T =Tot okt k) + (ke Ka) This equation can be integrated easily, if the amplitude
172354 Ky kK,

r=[y| and phasep=argy are introduced instead of:
y=re'?. Next, substitutingy in Eq.(3.1) and separating real

— T+ R o | (k1 + Kot Kt k). and imaginary parts we obtain for the imaginary part the
Ky equation
Here ‘Px:_ﬁrz- (3.2

After eliminating the phase, the equation foreduces to
Newton’s equation

2ry=—dUlar

T ITkkokak,
ok, kg

k-:ko. (3.3

As a result, the Hamiltonian of the four-wave interaction With the potential
in the envelope approximation can be written in #hepre- w
sentation as UI—)\ZVZ—EF“FCH‘S,
where the interaction consta@tis renormalized a£,=C
+ B2. Then Egs(3.2) and (3.3 can be integrated using the
energy integral:

- at
H® = wf [TO|¢//|4+2i Re(&—kl) (b= dfxt/f*)lwlz] dx.
(2.20)

The expression (¢} ¢— i,p*) in this integral is well 4\?

2_
known in the theory of phase transitio(see Ref. 1p— it is B [1672C, + 2 cosh2ax) — 34
the so-called Lifshits invariant.
The second term — local iy — is a six-wave interac- B? - VIBNC + p2 e — 4 35
. (,D: - . .
tor I MG,

This soliton-type solution exists only (1‘:1>0.2) It is inter-
esting to note that the renormalization of the interaction con-
stantC is due to the8 term in the Hamiltonian. This can be
seen directly from Eq(2.23), rewriting H in terms of the
amplitude and phase as

H(6)=—Cf |]8dx. (2.22

As will be evident from what follows, the interaction
constantC can be both negative and positive — the combi-
nation of both contribution§2.21) and(2.22 will be impor-
tant.

The total Hamiltonian in dimensionless variables will
depend on three constanis 8, andC

H=)\2N+f

r2+r2( oyt Br)’+ %r4—(c+,82)r6}dx.
(3.6)
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N 4> 0 important that the derivative@N/J\ has different signs: For
' solitons with a jump this derivative is negative, while for
solitons withu <0 it is positive.
N
2
#<0 4. LYAPUNOV STABILITY OF SOLITONS

A As noted above, both types of solitofsith «>0 and
FIG. 1. N versus\ for soliton solutions: The top curve corresponds to weak 4 <<0) are stationary points of ener@ywith a fixed number
repulsion and the bottom curve corresponds to weak attraction. of particles,
S(E+N\°N)=6H=0, (4.1

It is also easy to see that the soliton soluti@¥) is a sta- Where the energy in accordance with E8,6) is given by the

tionary point ofH. Indeed, the variation dfl with respectto ~ expression

¢ leads to Eq(3.2), and Newton’s equatiofB.3) arises as a

result of varyingH with respect tar. E= j
The solutions(3.4) and (3.5 with A\=0 and x>0 de-

generate into a soliton with power-law delay

ri+ gr4—(C+B2)r6+r2(<px+ Brz)z}dx.
4.2

As is well known(see, for example, Ref. 20n the case

rﬁm:%1 of Hamiltonian systems a stationary point will be Lyapunov-

MXE+A4C, stable if it yields a minimum or maximum of any integral of
motion, for example, the energy.

Pl = — B tan ! MX . (3.7) In the case at hand, if we find conditions for which the

Jc, 2\Jp*+C energy will have a lower limit with a fixed number of par-

. . ticles (it is obvious thatE unbounded from abovethe sta-
Thus, as the velocity passes through, the soliton un- tionary point corresponding to the minimum &f will be

dergoes a jump. The amplitude of the soliton has its maX"stable. Since the solution of the variational problétr) is
mum value at the jump

unique(up to a constant phase factdor fixed A2, which is
A%=u/2C,. equivalent to fixingN, the soliton solution(3.4) will by
Lyapunov-stable in this case.

We shall now consider scale transformations of the soli-
gn solution

This value of the jump is easily found from E.6).

As \ increases, the amplitude of the soliton grows ac-
cording to a square-root law, and the soliton size decreasé
as\ L. 1 Ix

An important feature of the solutiof8.4) is the exis- %(X)—>—¢s< )
tence of a nonlinear coordinate dependefoadied a chirp in g
opticy of the phaser. The maximum change in phadeom
— to +0 in x)

that preserve the number of particles. Under such a transfor-
mation the energ¥ will be a function of the scaling param-
B eterl:

JF+C

is reached at the jump far=v,,. It can be both greater and
less than, depending on the sign of the const&ht
The solution(3.4) can also be used for negative but Where
small values ofu. In this case, as should be, the soliton
solution softly splits off zero at the poimt=v,,. Its ampli- I1=f r2dx, I2=f rédx, I3—J rédx.
tude then grows for large exactly in the same manner as
for u>0. (We note that the last integral in the expression for the en-
The integral characteristics of both solutiotwith  ergy (4.2) is identically zero at the soliton solutigrBy vir-
©n>0 and u<0) are different. Thus, the total number of tue of Eq.(4.1)
particles in the soliton solution fqe>0,

T _1| 16)\2C1+,u,2—,u,]
— |- —tan

2
\/C_l 4)\\/(:—1 Hence it follows, in the first place, that the soliton energy
reaches its maximum valull,=7//C; at A\=0 and de- |ikewise depends strongly on the constant
creases smoothly td.,/2 as\ — (see Fig. 1 For negative
u the number of particledl for small \ increases a& and E— EI
then asymptotically approachés=N./2 from below. It is 43

Ap=—

1 /.ng
E:(|1_C1|2)|—2+7,

JE

=0 o h—Cilp=—%

..
I=1 4

2

(15>0).



JETP 89 (1), July 1999 E. A. Kuznetsov 169

This quantity is positive for solitons with weak repulsion ever, for soliton solutions withu<<0 the inequality(4.6)
(v>0) and negative for solitons with weak attraction holds and, as will be seen from the estimates made below, it
(u<0). In the second place, fqe>0 the energyE as a s sufficient to prove that such solutions are stable.

function of the scaling parametér Thus, letu<0 in Eqg. (4.5. According to Ref. 5, we
have [r4dx
E 'ul ! 2)
=——l3l =———], 1 1/2
4702 f rédx< E(J’ r2dx| N°2
is unbounded ab—0, and for weak attraction it possesses a
minimum corresponding to the soliton solution. Next, substituting this estimate into E@..5 we obtain
We shall now show that the enerdy/for <0 has a N\ 2 M
lower limit for all deformations tehat leavid unchanged. E%l—cl(N—) l,— ML IINET) i/2+f r2(@+ Br2)2dx
Let us consider the integr@k °dx=1,. This integral can 23
be estimated using the Sobolev—Galiardo—Nierenberg in- i3 5
equality in terms of the integrdh= [rfdx and the number ~ _ _ |wl°N [ 3 E)
of the particlesN: 83 N T
The latter inequality holds only if the criteriof#.6) is
6 2| .2
f rrdx<MN J rxdx. (4.3 satisfied. This means that the enefgyas a lower limit if

This inequality can be improved by seeking the smallest N<N./2,
value of the constartl. For this, following Ref. 5, we con-

. . which is compatible with the entire region of existence of
sider the functional

solitons with w<<0. It should be noted that fon=0 the
I, NLSE (2.23 is, as is said, a critical equation. For this non-
M[y]=—. linearity (~||® in H) collapse is possible if the energyis
11N negative. IfN<N./2, dispersion completely smears out the
Its minimum value determines the best constant. To find it alpolution. However, a small negative correction to the Hamil-
stationary points need to be considered and the point givingPhian fundamentally changes the situation. A relatively
a minimum value of the functionai[ /] should be found. It ~Wweak four-wave interaction against the background of strong
is easy to see that this variational proble@y =0, is attraction ¢|¢|°), leading to collapsesee, for example,

equivalent to finding the soliton solutions for tgd model: ~ Ref. 11, is responsible for the existence of stable coupled
5 stationary states — solitons. Weak localization app&ars.
— i+ P+ 3¢°=0.

This equation has a unique solutign=1/\/cosh X, whence 5. LINEAR STABILITY OF SOLITONS

the best constant is simply found as The preceding analysis has answered the question of sta-

M pes= (2/77)2. bility only for solitons with weak attraction. From this an-
swer it is impossible to draw any conclusion about the sta-
bility of solitons with weak repulsiong>0). In this section
we shall consider this question, investigating the linear prob-

N 2
2
f r6de(N—l) f redx, (44 lem of stability.
We shall seek a solution of ER.23 in the form

As a result, the inequality4.3) can be rewritten as

whereN,= /2.

Next, substituting this inequality into E¢4.2) we obtain y=(r+a)e* I~(r+a+irae'’, 5.1
for the energyE the estimate wherer and ¢ are the soliton solutio3.4) and(3.5), anda
N\ 2 and«a are small deviations of the amplitude and phase of the
E= 1_Cl(N_ f rﬁdx soliton, respectively.
1 Linearizing Eq.(2.3) it is easily found that the dynamics
w of the perturbations and « is determined by the Hamil-
+j r2(@y+ Bré)2dx+ Ef rdx. (4.5  tonian equations
Hence foru >0 follows that the energf is bounded by zero [ga_oH - da  oH 5.2
if the coefficient in front of the integrdl; is positive. This gt Sa’ at da’ '

ives an upper bound on the number of particles ~ . _ o
g PP P Here H= 6°H is the second variation of the Hamiltonian

Ne N ag 7
2 2 '
2G5 A=alLlay+ [ r2(a+26r2)%0x, 53

We recall thatN.,/2 is the lower bound for the soliton
family (3.4) with «>0. Therefore for such solitons it is im- where the(Schralinge operatorL is given by the expres-
possible to draw any conclusion about their stability. How-sion
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P tion, and as a result they are stable. This conclusion is in
L=——+ N2+ 2ur?—15C,r4. (5.9 complete agreement with the results of the preceding section.
X For solitons with weak repulsionu(>0) the criterion

If the quadratic form&°H is sign-definite, then the soliton (5.8) gives a sign-indefiniteness of the quadratic fokn

solution will be stable. We note that the second terni:”n This is a necessary condition for |nStab|l|ty This criterion is
(5.3 is positive. Then the positiveness of the entire quadrati@lso sufficiently only in the cas@=0, where the average

form is determined by the average value of the operator ~ Value ofL in Eq. (5.3) can be interpreted as a potential en-
ergy, and the integraJr?a2dx can be interpreted as the

(alL|a). kinetic energy.
In this expression the average is taken not with respect to ~Certain arguments can be given in support of the fact

arbitrary state$a) but only with respect to those states that that a soliton with weak repulsion is nonetheless unstable for
are orthogonal tor): B+#0 also. The average value bfcan be made negative by

taking fora the eigenfunctiorg with E<0. For a given value
(rlay=o0. (59  of ¢ it is always possible to find a phase such that the

This orthogonality condition is a consequence of the conserintegral

vation of the number of particles and is one of the solvability

conditions for the linear systef®.2). In this case, finding the f r2(a,+2pra)2dx
stability criterion for solitons(2.23 is identical to the

Vakhitov—Kolokolov derivatiof® (see also Ref. 20for the
NLSE without theB term. To determine the sign it is neces-
sary to find the spectrum of the operator

vanishes. Thus the Hamiltonidd can be made negative,
which can be regarded physically as sufficient for instability.
However, strictly speaking, this still requires a definite proof
LE=EE+Cr. (5.6 which the present author still cannot provide. An example
that refutes this argument is well known. The Hamiltonian
H=—p?/2—q?/2 gives the equation of motion for the usual
stable oscillator even thoudt is negative. However, it can
be asserted absolutely that instability will remain for small
values of 8. Whether or not a threshold with respect go
| | exists is still unknown, but it is likely. To shed light on this
o ) (Wl r) guestion we turn to the linear equatio(®s2), rewriting them
f(E)=§n: En—_EZO' (57 in the new variables

Here C is an indefinite Lagrangian multiplier, which is de-
termined from the solvability conditio(b.5).

Next, expandingt in terms of the eigenfunctions of the
operatorL (L#,=E#,) and using the solvability condition
(5.5, it is easy to obtain the dispersion relation

Here the prime on the sum means that the term &itkr O p=ra and 0,=a,t2pra.

is omitted from the sum because tligsheay eigenmode ) ) )
Y,=r, (Lr,=0) is orthogonal tor. The functionr, pos- In these variables the equations of motion have the form

sesses a single zero, so that beleyw =0 the operatoiL

possesses only one level corresponding to the ground state. a_g+4[3r2‘9_9 =_ ELEp (5.9
Let us now consider the functiofi(E) between the d X rr’’

ground levelEy<0 and the first positive leveE,. In the

entire range this function grows monotonically froar at a_p: _ irzig (5.10

E, to + at E,. Therefore iff(0)>0, the spectrum of the at X Ix=’ '

operatorL has a negative eigenvalue and therefore the aver- B ) . ,
age value of the operattrcan be negative. Fd(0)<0 the For =0 this reduces to an equation for the perturbation

average oL is always positive. amplitudea
To find the sign off (0), it is easy to see that 2
J
,(r r —a= _LoLa (511)
f(0)=> ME(ML‘W}. a2
n E,
. L . 2 . with
Next, differentiating Eq(3.3) with respect ton“ we obtain
19 01
ar ar - _ 2=
-r or —L . Lo=— 15" ax(r)’

IN? %
whence the criterior{5.8) was first derived.compare with
Refs. 13 and 20 It is important that the operatdr, in Eq.
1 9N (5.1)) is nonnegativedsinceL ,r =0 and the functiom itself
[ e (5.8 has no zeros Therefore since the operatbrhas a negative
eigenvalue, the right-hand side of E§.11) gives for a soli-
Therefore ifgN/9\?>0, the quadratic form will be positive- ton with weak repulsion on the whole a negative “eigenval-

definite. This situation occurs for solitons with weak attrac-ue,” making the soliton absolutely unstable.

Substituting this relation givés$
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For 8+ 0 an additional convective-type term appeared inand vy is the interaction constant of HF and LF waves and is

Eqg. (5.9. This term can change the character of the instabilproportional to the density derivativiz/dn, of the permit-

ity itself. Whether or not convection can stabilize the insta-tivity. The Kerr constant is normalized to 1.

bility is still unclear. The equations of motion, following from this Hamil-
But despite the uncertainty with the linear stability, it tonian, for the HF and LF waves are

should be noted that a soliton with weak repulsion is always 1

unstable with respect to finite disturbances. This follows, . N 2

specifically, from the fact that under scaling transformations (Pt vath) + 5 0 ot [W1*y=yni,

Ny — anxx: 7| ‘p|>2<x

1 X
Ys— T,zws(z )
¢ In this system the difference between the group velocity of
leaving the number of particlesl unchanged the energy an electromagnetic wave, which is of the order of the veloc-
E=H-—\?N as a function of the scaling parametemwith ity of light, and the sound velocitycs is important:
N>N,/2 has no lower bound as—0. The latter, as is well vg>Cs. The latter means that an electromagnetic pulse and
known (see, for example, the reviews Refs. 18 ang, 22a  the density fluctuations induced by it will move mainly with
criterion for wave collapse. the group velocity. For this reason, we have ifothe local
intensity dependence

2
6. CONCLUDING REMARKS n= 7—2| &

. . . . ar
In conclusion, we would like to discuss the possibility of

the occurrence of the hard regime of soliton excitation inlt is important to underscore that the ponderomotive force
optics. Since in three- and two-dimensional media solitondeads not to the formation of a dip in the density but rather to
are unstable near the threshold for modulation instability, th@n increase in density. As a result, the four-wave matrix el-
only possibility of realizing this regime is an optical fiber. ement is renormalized as

As is well known (see, for example, Refs. 23 and)24 5
the Kerr constant is positive for most media, including glass. T(=—1)>—1+ r
For this reason, there are two possibilities for changing the Sr'
character of the interactioffrom attraction to repulsion

The first possibility is due to a decrease in the matrixdecreasing in value.
element itself as a result of the three-wave interaction. In  Therefore the striction mechanism can weaken the four-
glasses, the symmetry precludes an intrinsic quadratic norwave matrix element, due to the Kerr effect, and in principle
linearity and the corresponding nonlinear susceptibility tenchange its sign.
sor XijkEO-zs Therefore striction — the interaction of light The second possibility is a transition from the region of
with sound — remains the only process. The equations firssnomalous dispersion into the region of normal dispersion,
obtained in Ref. 26 can be used to assess the role of thgp that the sign of the dispersian’ changes. The second

mechanism: variant is most easily implemented experimentally, but the
four-wave matrix element, as a rule, does not change sign,
oH oH oH and it does not have a small constantFor this reason, both

(6.2

llﬂt=5¢* s " YT E variants require glasses doped with definite additives that

] . . increase the striction constamt The glasses chosen must
wherey is the (dimensionlessenvelope of the electromag- haye maximum gains for Mandel’shtam—Brillouin scatter-

netic field,n are low-frequency density fluctuations, ads  jng. such optical fibers would be interesting not only from
the hydrodynamic potential. Here the Hamiltonldrconsists  the standpoint of observing the solitons investigated in the

of the Hamiltonian of electromagnetic waves present paper, but also for studying one-dimensional wave
o collapse.
H=f —iVg* iyt 7|¢x|2—|¢|4 dx, (6.2 | thank V. E. Zakharov and F. Dias for helpful discus-
sions and E. I. Kats for a number of valuable remarks. This
the Hamiltonian of acoustic oscillations work was supported by the INTAS prografGrant 96-
0413, the Russian Fund for Fundamental Resedfshant
H= %f (c2n?+d2)dx (6.3  97-01-00098 and NATO Grant OUTR.LG 970583.

and the sound-light interaction Hamiltonian

*)E-mail: kuznetso@itp.ac.ru
H= f yn| {/,|2d X. (6.9 DWe recall that by construction these solitons move with a constant veloc-
ity. The equation(2.24) itself, however, contains a larger class of localized
. . . . solutions. However, these solutions are all nonstationary — their phase and
In these expressionsg, is the group velocity of high-  goup velocities are different.

frequency electromagnetic waves,is the velocity of sound, ?Here we do not analyze solutions wi@y <0 andu<O0.
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The interaction and generation of solitons in nonlinear integrable systems which allow the
existence of a soliton of limiting amplitude are considered. The integrable system considered is
the Gardner equation, which includes the Korteweg—de Vries equdtioiquadratic

nonlinearity and the modified Korteweg—de Vries equatidor cubic nonlinearity as special

cases. A two-soliton solution of the Gardner equation is derived, and a criterion, which
distinguishes between different scenarios for the interaction of two solitons, is determined. The
evolution of an initial pulsed disturbance is considered. It is shown, in particular, that

solitons of opposite polarity appear during such evolution on the crest of a limiting soliton.

© 1999 American Institute of PhysidsS1063-776099)02307-(

1. INTRODUCTION (shock-like dropsalso determine the asymptotic representa-
, . , , tion of the wave field here. If the quadratic nonlinearity is
__The Korteweg—de Vries equation, which was discovereq,,n;ero. cubic nonlinearity is obtained in the next order of
in 1895 for waves in water, is the most popular model forpe vrhation theory and can be retained in the equation along
describing nonlinear waves in a weakly dispersive mediumy i, the ensuing corrections for dispersion, including nonlin-
It essentially served as the first testing grounds for proving, . dispersior(see, for example, Ref.)5Equations of this
the particle-like properties of a nonlinear wave field in thetype have essentially only now begun to be studiééiow-
form of staple solitons and the integrabili'gy of the evolution ever, it is clear from general arguments that within perturba-
problem using a method based on the inverse problem gf,, theory the effects associated with small higher-order
scattering theory, which provided proof of the exclusive role ., ractions should be small and should not lead to funda-
of solitons in the asymptotic representation of a wave field af,onial changes in the form, for example, of solitdas
large times. The Korteweg—de Vries equation is obtained i o ,gh it is also understood that new features, for example,

first-order perturbation theory for a small wave amplitudejng|asticity of the interaction of solitons and their slow de-

and weak high-frequency dispersion; therefore, it is appligirction as a result of radiation effects, can also appear

cable to the description of diverse wave motions in the oceaReyertheless, there are situations where the coefficient for
and the atmosphere, in plasmas and astrophysics, and in N quadratic nonlinearity can be so small that the quadratic
linear communication lines. It can be represented in the mosi,q cypic nonlinearities are of the same order of magnitude,

general form as and, at the same time, there is no need to take into account
au au 23U the next orders with respect to dispersion. The expanded
= +(c+au) x + 'BF =0, (1) Korteweg—de Vries equation derived here

wherec, «, andg are constants, which are determined by the  u ,.0u Ju

specific details of the physical problem. In some cases there ; T(C+au+a;u )5#3%:0 ()

iS no quadratic nonlinearity, and then the modified

Korteweg—de Vries equation is obtained in first-order pertur- ) ) .
bation theory: is called the Gardner equation, and in cases where either of

the nonlinear coefficients is equal to zero, it gives Hds.
u and(2), respectively.
ﬁzo- 2) The purpose of this paper is to demonstrate some new
physical effects associated with the generation and interac-
In particular, such an equation is obtained for electro-tion of large-amplitude solitons, where the quadratic and cu-
magnetic surface waves in an electric fiéléhr waves in  bic nonlinearities are of the same order of magnitude.
quantum-well films? and for internal waves in an ocean with Apparently, the Gardner equatigB) was first derived
definite stratificatiorf. The modified Korteweg—de Vries rigorously within the asymptotic theory for long internal
equation can also be solved exactly by a method based on theaves in a two-layer fluid with a density jump at the
inverse problem of scattering thedhand solitons and kinks interface®® The corresponding expressions for the coeffi-

Jau

+(c+ 23u+
ot (c alu)(?x B

1063-7761/99/89(1)/9/$15.00 173 © 1999 American Institute of Physics
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cients in this equation have the forin the approximation of WA,
a small density jump 1.0
_ Ap hlh2 _ Chlhz _ 3c hl_hZ 081
N9 hah, P60 T2 hp, 06
(4)

0.4}
5 (hi+h3+6h;h,) 0.2
a1= = oMy 1n2), “r
8h3h3 0

whereu is the vertical displacement of the interfatg, and -0 -20 -0 0 10 20 30

h, are the thicknesses of the upper and lower layers, respec-
tively, Ap/p is the relative height of the density jump, agd FIG. 1. Forms of solitons with various amplitudes.
is the acceleration of gravity. As can be seen fr@h) the
coefficient of the qqadratm nonlmegnty can change S9%hen the Gardner equation can be rewritten in the dimen-
when h;~h, (and this leads to the interesting features of _.

. o . sionless form
soliton transformation in the case of a tilted boundary; see
Refs. 10—12 while the coefficient of the cubic nonlinearity v N Py
is negative. The formulas for the coefficients in E8). were o tev(l-v) e + on, 8
recently generalized to arbitrary density stratification of the y
fluid,*® and it was shown that the coefficient of the cubic and the soliton will have positive polarity with an amplitude
nonlinearity can be of either sighlf it is assumed that the from zero to unity.
depths of the layers are roughly equal to one another and It should first be noted that the generalized Miura
much smaller than the wavelength, and that the wave amplt{ansformatioﬂ
tude is small compared with the depth, the quadratic and _ 2

. ) . . Q=—-v+vitv, 9
cubic nonlinearities can be considered small and comparable _ _
to one anotherdu/c~a;u?/c<1), as well as to the disper- reduces Eq(8) to the “classical” Korteweg—de Vries equa-
sion. Since both nonlinearities are then of the same dider tion
traditional disturbance schemes_ the cubic nonlinearity is al- Q,—6QQ,+Qyy,=0 (10)
ways smaller than the quadratic angloge can refer to _ N .
large-amplitude waves in this senee note that in the “ev- and thereby proves the integrability of the Gardner equation
eryday” sense such ocean waves can have large amplitud® @ method based on the inverse problem of scattering
amounting to tens of metarsin this paper we examine the theory'* and, therefore, the elastic character of soliton col-
case in which the coefficient of the cubic nonlinearity islisions. Nevertheless, *“reconstruction” of the function

negative, as in a two-layer fluidx(<0). y(y,a-) in terms ofQ(y, 7) requires splving.the Riccati equa-
As we know, the single-soliton solution of the Gardnertion (9) and cannot be expressed in a simple form. On the
equation can easily be found in an explicit form: other hand, the simple replacement of variables
642 1 v=1/2+w (11
u(x,t)= reduces the Gardner equatiof8) to the modified

a 1+\1+ 2/ a? -V’
1+ 1+ (62 BT a*)coST (x—VD)] Korteweg—de Vries equation relativeudy, 7) and also per-

V=c+pI'? (5)  mits the use of the known exact solutions of this equation.
1. ) ) , . Here we examine the interaction of solitons and their

whereI'~ is the effective soliton width. Whefi is small,  5ppearance from an initial pulsed disturbance. Soliton inter-

the solution(5) describes a Korteweg—de Vries soliton with a¢tions and the evolution of the initial perturbation are illus-

an amplitudeA=38I"'%/« (its polarity is specified by the trated by numerical simulation results.
sign of the coefficient of the quadratic nonlineayjtgnd as

112 ; ;
I'—al(6|ay|B)Y% the soliton acquires a rectangular shape, SOLITON INTERACTIONS

(Fig. 1) with the limiting amplitude
2.1. Obtaining multisoliton solutions using Darboux

Aim=—alay. (6)  transformations

It is convenient to normalize the wave field to the limit- Since the Garner equation can be reduced to the modi-
ing amplitude, as well as to vary the distance and timefied Korteweg—de Vries equation using the replaceni&hy
scales: its N-soliton solution can be sought as the solution of the

5 modified Korteweg—de Vries equation on a pedestal, as was
__ %" _/_ - one in Ref. within a method based on the inverse prob-
v(y,m) = au(xt) y= a (x—ct) d in Ref. 15 withi hod based he i b
' a 7 6Ba; ' lem of scattering theory. We use a different method, which is
based on Miura and Darboux transformatitSrend which is
(7) described in Ref. 17, to obtain a two-soliton solution. The
method can be described as follows.

0[2 )3/2

T:'B(  6Bay
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As we know, the Korteweg—de Vries equation is the w,— 6(>\+W2)Wy+wyyy= 0. (18
consistency condition for the system of equatidtie so-

calledL — A Lax paif) This is not difficult to prove. Thus, applying the Darboux

transformations, we find new solutions of the modified

Lw=\W, Korteweg—de Vries equatidmand the Gardner equation after
. (12)  the replacemenfll)], i.e., the functionsv(y, 7), along with
AV=v_, new solutions of the ordinary equation.

Where The generalized formulas derived by Crdfwyhich per-

mit elimination of the intermediate mathematical operations,

~ 9? are valid for multiple application of a Darboux scheme. For
L=- 5_y2 +Q(y,7), 13 wofold application they have the form
3 d dQ e 7
A2 2 yaf~ Q=Q—2—InW,(V¥,,¥5),
A 4ﬁy3 +6Q 2y +3 ay (14 ay?
The first equation in the syste(2) is the stationary Schro T = Ws(Vy, W, W)
dinger equation with the time appearing as a parameter. Wy(Wy,¥5)

The second equation describes the time dependence of th@ o e
solution. The consistency condition for the systéf®),

which is obtained by eliminating? and which transforms - v, v, W
the system(12) into the Korteweg—de Vries equatida0), W2:’ rore Wo=|W, W, W (19
has the form VoW )

vy vy v
and the derivative of the functions is taken with respect to
where[A,L]=AL - LA is an operator commutator. It is also the variablesy.

known that thel. — A pair is covariant with respect to Dar- 5 5 Tyo-soliton solution of the Gardner equation
boux transformations:

L.=[AL], (15)

In order to obtain the single-soliton solution of the Gard-

Q=Q-2¢ = _quy(y')‘l) ner equation on the basis of Darboux transformations, we
y Wi(y,\p) ' must select the potential
(16 Q=1/4, (20)

~ Jd

Flyn= (5_ U)lp(y’)\)' the “seed” function

whereW(y,\) and \Tf(y,)x) are general solutions of the sta- W, =cosh(I'1/2)(y— 51—1“§r)], (21
tionary Schrdinger equation with the potential®(y) and
Q(y), respectively, andF';(y,\,) is the particular solution
with the potentiaQ(y) and the eigenvalue=\ ;. The trans- 81=(1ltanh Ty, (22)
formed potential€(y, r) are new nontrivial solutions of Eq. and the general solution

(10). This known procedure makes it possible to obtain mul-

where

_ _ 172
tisoliton solutions of the Korteweg—de Vries equation. Y=exg —(y-117)/2] (23
It was noted in Ref. 17 that if the function [we selectech =0, eliminating the superfluous term in Eq.
18)].
vy, ( .
w(y, )= Y. 7) (17 Then, following formulag16), we have
W(y,7) . r
is included in the treatment and if expressions@andQ, o= %tanr{?l(y— 51—1“%7) ,
are found from the first equation in the systéh?) and sub-
stituted into the second equation of the system, the modified 1 2
Korteweg—de Vries equation relative w(y,r) must hold Q0=-— ! > (29
for consistency of th& — A pair: 4 2cosf[(I'1/2)(y—8,-T37)]
(y,7) . L (25)
w ,T)=— ==+ .
1y 2 1+4cosily(y—6,-T27) ]+ sinHT(y—6,—T27)]
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Next, substituting25) into (11) and using(22), we ob-  mations(11) and (28) propagates. If we use a Miura trans-
tain the single-soliton expression for the dimensionless Gardormation in the form(9), we should choos&€=0 and

ner equation(8): A= —1/4 in the stationary Schdinger equation. This gives
r2 the same result, but is more convenient for finding the tem-
vy(y,7)= 1 . (26) poral behavior of the solutions froifi4).
' 1+\1-T3coshily(y—I'?37)] To obtain the two-soliton solution of the Gardner equa-
. T . tion, we must select a second “seed” solution:

The soliton (26) attains its limiting amplitude ad’;
—1. In this case it is convenient to represent the soliton ~ W,=sini{(I',/2)(y—8,—T37)], (29
expression in the form of a combination of a kink and an,here
antikink:

1 52:(1/1—‘2)tanh— 1F2. (30)
vl(y,r)=E[tanhZJr—tanhZ_], The two-soliton solution thus obtained from formulas
(19 and(17) (see Appendix Acan be written as
! 2 1 1
Z.=—(y—-T'57x6,), 2 _ 2 2
R 20 VZ(y’T)_§(1ﬂ2_1ﬂ1)<l“zcochH—l“ltanthJr

where §; corresponds to the half-width of the limiting soli-
ton. _ 1 ) (31)

It is convenient to illustrate the appearance of the poten- I';cothZ, —I'ytanhZ, )
tial (20) in our case using a transformation in the Miura form Tr.

2 Zj.=> (y-Tir=s),
Q=w"+w,, (28 ] 2 ] !

which transforms the solutions of E¢L8) into solutions of whereI',>I";>0 are arbitrary parameters, which specify
the Korteweg—de Vries equation. Substitutidg) into (28),  the widths of the individual solitons at infinite separation
we obtain the first equation of the systdd®) with A\=0,  from one another, and; are defined in22) and(30). The

i.e., the consistency condition for tHe—A pair in which  two-soliton expression31) was obtained using Hirota’'s
w(V) and Q are related by(28) is Eq. (18) without the  method in Ref. 19 and is presented to describe the interaction
“velocity” term. As can easily be seen, the potentidD) is  of a soliton with a kink introduced in Ref. 1. As in the case
the level at which the Korteweg—de Vries soliton obtainedof a single soliton, the expressidB1) can be rewritten in
from the solution of the Gardner equation after the transforanother form, which “decouples” the solitons:

r;-r3
V2l 7= (T, cothZ,, — Ty tanhzy , ) (T, cothZ, —T'; tanhz,_)

I - I3
1+\1-TicoshTy(y-Tin] 1-1-TscoshiT,(y—-T37)]/)

(32

Thus, a two-soliton solution has been found analytically.soliton (the one which is out in fromthas a “normal” am-
The interaction of two solitons is investigated in the nextplitude is most interesting. Even if the leading soliton is

section. small, the amplitude of the “combined” wave formed during
the interaction does not exceed the limiting value and a dip
2.3. Interaction of two solitons characteristic of an exchange interaction appears Shrite

As expected, the interaction of two solitons with ampli- interaction process for fairly close amplitude values is shown
tudes smaller than the limiting value follows the familiar in Fig. 2 (the amplitude ratio is 0)7 the smaller soliton
scenario in the Korteweg_de Vries equat[within (31)] if interacts with the Ieading edge of the IImItlng SOlltmhICh
the difference in amplitudes is large, the larger soliton, whichmoves fasterand flips over on its apex, moves freely along
has a higher velocity, simply overtakes the smaller solitonit, and then “slides” down the trailing edge of the limiting
forming a single-humped figure at the maximum moment ofsoliton, recovering its original polarity.
interaction; if the difference in velocities is small, the trailing The existence of a soliton of negative polarity on the
(largep soliton imparts energy to the leadirigmalle) soli-  crest of a limiting soliton can be understood already from the
ton and is slowed, while the leading soliton is acceleratedsardner equatiori3): its solution on the pedestai= A,
(amplitude exchange takes place between the sojitdite  satisfies the same E(B), but with the opposite sign for the
case in which one of the solitorithe one which is behind quadratic nonlinearity, which leads to the appearance of a
has an amplitude close to the limiting value and the othesoliton of negative polarity. At the same time, as can be seen
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FIG. 2. Interaction of a limiting soliton with a large-amplitude solitoime amplitude ratio is 0)7a — dynamics with time; b — at various moments in time.

from Fig. 2b, the small soliton interacts successively withratio is r=1/3, as in the case of the interaction of “qua-

each edge of the limiting soliton, each of which can be in-dratic” solitons?! as the amplitude of the larger soliton in-

terpreted as a kink and an antikink. The interaction of acreases, the critical ratio decreases, and the limiting soliton

soliton with a kink(antikink) in its “pure form” accompa- always interacts with another soliton according to an ex-

nied by change in polarity has already been analyzedhange scenarigFig. 3). Thus, the exchange interaction

numerically for the modified Korteweg—de Vries equation, dominates for solitons with larger amplitudes.

to which the Gardner equation can be reduced rigorously by  As in the case of Korteweg—de Vries solitons, the height

the replacementll). Successive collisions, first with a kink of the central point of the two-soliton solution at the

and then with an antikink, should lead to restoration of the“saddle” point of the interactiorv, (y=0, 7=0), at which

original polarity of the soliton, as follows frorf81). Thus, a symmetric figure forms, is equal to the difference between

the dip on diagrams of interacting solitons can be interpretethe soliton amplitudes\,—A; (see Appendix B, Sec. B.2

as a soliton of negative polarity. In the case where one of the solitons tends to the limiting
The exact two-soliton solutio(81) permits finding a cri-  soliton (I',—1), the expressiofB1) reduces to the first soli-

terion which determines the type of interaction realized. Durton of opposite polarity moving at the level of the limiting

ing an interaction between solitons there is a moment when

the two-soliton solution becomes symmetric with respect to

the coordinate. As follows from the expressi@i), this mo- A,

ment corresponds to the time=0. In order to determine the !

type of soliton interaction, i.e., overtaking or exchange, we

must calculate the second derivative of this interaction at the

central point y=0). A positive value of the derivative cor-

responds to an exchange interactigine presence of a de-

pression, and a negative value corresponds to overtaking.

Performing the calculations, we can s@ee Appendix B, ol 2

Sec. B.) that the following condition must be satisfied for

an overtaking interaction:

3r-1 . " . .
<—: (33 0 173 1
3r—1-r2 r=A4/A,

Wh?re r=~A; _/Az (0<A1<A,<1), a.nd A1 an_d A, are th.e. FIG. 3. Overtaking(region 1) and exchangéregion 2) interaction of two
soliton amplitudes. For small-amplitude solitons the criticalsolitons on the parameter plane.

2
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FIG. 4. Destruction of smootta) and abruptb)

_0_10; negative pulsed disturbances.

-0.151
-0.20

amplitude(Appendix B, Sec. B4 It follows from an analy- 3. DECAY OF THE INITIAL DISTURBANCE
sis of the depenc_ien_ces_ of the values of_the highest point of ; Hociruction of a negative pulse
the symmetric distribution on the amplitude of the larger

soliton for various values of that the solution does not  As we know, the Korteweg—de Vries equatith) and
exceed the limiting amplitude and thet 1/3 must be cho- the modified Korteweg—de Vries equati@ with negative
sen to minimize the symmetric wave field. nonlinearity have self-similar solutions, and the structure of

Solitons acquire a phase shift during an interaction. Infach solution has the form of a certain function which de-
the case where one of the solitons is close to the limitindorms with time according to a definite law. For example,
soliton, the appearance of a phase shift clearly follows fronffter the replacement
the conservation of mass in the Gardner equation: when the _ ~13 _ —1
smaller soliton reaches the peak of the limiting soliton and Wy D=3n"Fe(@), z=@n"%Y 39
its polarity reverses, the deficiency appearing in the masks made in the modified Korteweg—de Vries equatia8)
integral is compensated by a forward shift of the interactingwe setA =0 in it), the functionw(z) satisfies the equation
edge of the limiting soliton. As the smaller soliton descends,
the mass excess is offset by forward shift of the trailing edge
of the limiting soliton. To find its magnitude we must exam- where « is an arbitrary constant Equation(36) is called
ine the soliton first before the interaction and then after thePainlevés second equatiotP,), and its solutions are special
interaction. The phase shift appearing during a soliton interfunctions, i.e., Painleveanscendental functions.

w,, =20+ z0+ a, (36)

action can be found from E¢31) (as is seen in Fig. 2a The Korteweg—de Vries equatiofl0) also has such a
self-similar solutiorf? After the replacement
2 T+, Qly,n=-(37"%(2), z=371)"", (37)
Ayl,2: e In (34)
Pip =1y the functionq(z) satisfies the equation
d,.7+69d,—(29+2q,) =0, (39

(see Appendix B, Sec. B\.3In Ref. 15 the phase shifB84) . . )
was found from the asymptotic solution, and in Ref. 1 thewhose solutions are uniquely related to the solutions of the
; ' Painlevés second equatiof?

phase shift for the interaction of the small soliton with a
shock wave was found from the integrals of the equation. 0, + a
Thus, the criterion which distinguishes between the Qg=—w,— w?, =
types of interaction is the critical ratio between the soliton
amplitudes, which is a function of the amplitude of the largerin the case ofx=0 (wherew—0 asz— * =) the transcen-
soliton. If this parameter does not exceed the critical véue dental functionw(z) acts as an Airy functio”?
large difference between the amplitufiehe interaction be- A pulsed disturbance of the modified Korteweg—de
tween the solitons occurs without the formation of a dip, i.e.,Vries equation and a pulse in the Korteweg—de Vries equa-
overtaking occurs. If, conversely, the parameter is greatetion with polarity opposite to the sign of the nonlinearity
than the critical valugsimilar amplitudey a dip appears (i.e., in the case where the appearance of a soliton is impos-
against the background of a large wave at the moment dfible) evolve, transforming into the self-similar solutions
collision, i.e., only an exchange interaction occurs. Exchangé37) and (35), respectively.
between a small soliton and a large soliton can be interpreted In the case of the Gardner equation, when kttle qua-
as successive interactions of the small soliton with each edgdratic and the cubjcnonlinearities are present, a negative
of the limiting soliton(a kink and an antikinkwith a change pulse(a hyperbolic secant was used in the numerical calcu-
in its polarity in the intermediate stage. The amplitude of thelationsg will also evolve like the self-similar solutions pre-
wave at any moment in time does not exceed the limitingsentedFig. 4), although the solution of the Gardner equation
value. cannot be written in a form such &35) or (37).

w= 2q-2 (39
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group of small-scale waves form on the asymptote. This pro-
cess was briefly described in our previous pafeExpan-
sion of an initial disturbance with a “superlimiting” ampli-
tude leads to the formation of a broader limiting soliton.
0: ' The formation of a limiting soliton was predicted already
S 50 T 5 00 by the inverse problem of scattering theory in Ref. 24, but
¥ the intermediate stage with the formation of solitons of dif-
ferent polarity was not considered.
Thus, the existence of a limiting amplitude for the soli-
| ton solution in integrable nonlinear systems leads to new
o4t r= 248 ] | effects in the interaction of solitons and their generation from
' er MMUDU .‘ initial disturbances. The case of the appearance of a limiting
) ) ] soliton associated with the formation and propagation of
-100 0 100 200 300 solitons of opposite polarity on its crest, as well as the case
of the interaction of a limiting soliton with another one, are
] = extrem_ely interesting. _ _ _
=0 === ;mﬁl'ﬁ This work was carried out with partial support of the
_ =\ INTAS (Grant 95-969, the Russian Fund for Fundamental
s == . Research (Grants 96-05-641008, 96-05-64111, 96-15-
== _ 96592, and the “Nonlinear Dynamics” Program of the
: = Ministry of Science and Technology. We thank T. G. Tali-
S pova, who took part in writing the numerical program for
34 solving the Gardner equation and in the discussion of the
results obtained.
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LI r " i APPENDIX A: DERIVATION OF THE TWO-SOLITON
¥ SOLUTION USING DARBOUX TRANSFORMATIONS

FIG. 5. Evolution of an initial disturbance with an amplitude exceeding the To obtain the expression far,(y,7) which we are seek-

limiting value: a — initial disturbanceéthick line) and formation of a group ing, we must plug the function&9) into the expressions
of solitons on the crest of a limiting soliton; b — formation of a limiting !

soliton and a group of solitons behind it; ¢ — dynamics of the solution with (19) and use the definition&2) and (30) for 51,2:
time.

1
szz(l“z\[flllfé—l’l\lfi\lfz)

3.2. Evolution of a positive pulse

The decay of a positive initial disturbance with an am- = 7¢00kT 5 cosT 1 o,) [siNA(I'26,+1"161)
plitude smaller than the limiting value follows the scenario
of the Korteweg—de Vries equation: the initial disturbance XcosiZ,_—Z,_)+sinh(I',6,

breaks down into a group of solitofer a single solitopand

an oscillating tail. Interesting features appear as an initial
disturbance with an amplitude exceeding the limiting value v, 5
decays(Fig. 5). In this case two steep drops appear in theWs=g [(I2= )W ¥+ 1(I'2—1)
first stage and are associated with the cubic nonlinegnts

—T'161)cosiZ, +Z;)], (A1)

pure form relative to the 1/2 level: the solution of the Gard- XW W+ Ty(1-TH W V)]

ner equation(8) on this pedestal satisfies the modified

Korteweg—de Vries equation, for which solutions in the form  _ v

of drops, i.e., quasishock waves, are vhlithen the genera- 16 cosR(T",8,)cost(I", 8;)

tion of small-scale waves begins on each drop, some of them )

transform into solitons, and their polarity can be different, X[sini(T'26,+ 1", 6;)coslZy, —Z44)

depending on the pedestal on which they are gene(&igd +SiNNT »8,—T'18,)cosHZy., +Z44)]. (A2)

5a) (the polarity of a soliton in the Gardner equation depends

on the pedestal on which it forms: positive solitons form at ~ From formulas(11) and(17) we have
0<v.,<1/2, and negative solitons form at ¥, <1). The 1% (y.7)

negative solitons subsequently interact on the wave crest Vz(y,T):_jLL
with an antikink and descend from the limiting soliton, \Tf(y,r)
changing their polarity and superimposing themselves on the _

group of solitons formed by generation of the antikiffigs. ~ where the function? (y, 7) is defined in(19). From (A3) we
5b and 5¢. One limiting soliton, several small solitons, and a obtain

: (A3)
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Wi W, W, PO 26, 16| ] 7% 0
V2:\7V_3_Wz’ W?’:V’ (A4) f (0)—2 I',cot 5 I';tan 5 w2+w3 ,
(B5)
W’ :SIHI’(F252+ Flﬁl)sinf(rzéz—rlﬁl) Where
8cosk(I',8,)cosH(I'16;)
— r2cotr?| 22%2| _rzanit| 122 r2_r2
X[sinNZ,_—Z;_)+sinh(Z,_+Z;.)], (A5) w1 =12C0 > itanit| — 112,
~ ,:Sinr’(rzfsz"‘F151)Sinr’(rz52_rl51) " Cot'_<F262)_F tanl‘(rlgl) (86)
3 32 cosH(T ,6,)cosi (T, 8,) 2712 2 1 2 |
X[sinN(Zy —Zy 1) +sinN(Z,, +2Z;4)]. (AB) 3 6, I',6,
. _ ws=T"3cot 1—cott?
Substituting(A1), (A2), (A5), and (A6) into (A4), we 2 2
have
r,é r,é
3 101 191
1 cosH(I",8,) — cosH(I"18;) +F1tanl‘( 2 [tank?( 2 ) 1
va(y, 1) =5 2 2
cosH(I';6,)cost(I'161) Thus, we find that at the moment of closest approach of
1 the solitons(the time 7=0) at the center of the two-soliton
X equation y=0
tani(I",65)cothZ,, —tanhT";8;)tanhZ .. g (=0)
2
wilwy+ w3
1 v3(0,0= : (B7)
_ 2(Y, — :
tanKT',8,)cothZ,_ —tanhT',8;)tanhZ,_ | 2[Tycoth T 38,/2) — T ytanh(T'15:/2)]
(A7) Going over to the soliton amplitudes
Using (22) and (30) again, we obtain the two-soliton sz _
solution (31); another form of the solutio32) is obtained AFW, j=12, 0O=sA=1 (B8)
by converting the terms itA7) to forms with a common i
denominator. and using(22) and(30), we have
Uiop A
tanh—=—, |[=1,2. (B9)
APPENDIX B: FEATURES OF THE TWO-SOLITON 2 I
SOLUTION _ . .
_ Substituting(B8) and (B9) into (B6), we can rewrite
B.1. “Exchange—overtaking” boundary (B7) as

In order to determine a criterion which distinguishes be-

o : ) —2A,[A3(r3—2r2—2r+1
tween the exchange and overtaking interactions, we must v2(0,0 2L A2l )

calculate the second derivative of the two-soliton solution +A,(r?+8r—3)—6r+2], (B10)
with respect to the coordinate at the poigtH0, 7=0). It is
convenient to rewrit¢31) in the form wherer=A; /A,. . _
. Thus, in order to determine the sign of the second de-
I';—T rivative, we must solve a quadratic equation. The condition
va(y,0)= 2 [Fy)+T(=y)], (B1) for a “single-humped” symmetric distribution v(;(0,0)
>0) is
where
r, I, -1 3r=1
- _< - = Ap<l————. B11
f(y) cmotl-< 5> (821) Fltanl‘( 5> (814) 23 1,2 (B11)
(B2)
By virtue of (B1) B.2. Height of the central point of the symmetric distribution
Vi(y,00=(T5-T3)f"(y), (B3) The height of the central point is determined from the
L r expressiorn(31) with the coordinatey=0 andr=0:
, 2
f (y)=§ cmotl-<7(52+y)) r2—r?
v,(0,0= . (B12)
. 72 . 2 ' ,coth(T',8,/2) — T ;tanh(T 1 5,/2)
1 2 2
—Flta“*(j( 51+Y)” [Fz COthz(f(‘SZJFY) Using (22), (30), (B8), and(B9), from (B12) we obtain
r, AA2=Ay)—A(2-Ay)
—1|+T% 1-tank? - (81+y) ] (B4) v,(0,0) = 2= A=A, =A—A;.  (B1Y
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B.3. Phase shift

Let us consider the soliton with the index(the one
which overtakes the smaller solitorits form asT— —« is
found from (31):

1

Va(y,7)~ %(Fg_ri)(m
1
" Toeothz, +T5)° (B14)
Utilizing the identity
I,z VI2=T2cost(T 2+ A)/2]
FZCO“(T = Sinh(T,2/2) :
(B15)
where
A Ty
Eztanh 1F—2, (B16)
from (B14) we obtain
r, A A
Vo(y, 1)~ > tan)‘( Zy, + > —tan)‘( Z,_ + E) }
(B17)
Long after the interaction7{— =)
1 ., 1
valy, 1)~ 5 (I'=T'7) T,cothZ,, - T,
1
- T T (519
and with allowance fofB15) and(B16)
r, A A
Vo (Y, 1)~ > tanl‘( Zy, — 5 —tanl‘( Zy, — E) }
(B19)
Thus, the total phase shift is
1
A=2tanh 1. (B20)
I'p

During the interaction the larger, overtaking, soliton

traverses the interaction region, having a velocity greatel’
12

than its normal velocitysee Fig. 2 After treating the other
soliton in a similar manner, we can easily see that it, con

A. V. Slyunyaev and E. N. Pelinovski 181

B.4. Soliton at the base of a limiting wave

As the second soliton approaches the limiting soliton,
I',— 1 and the two-soliton expressi®81) can be written as

1-T? 1 1
VoY, )~ | T T anhz,,  —1-Ttanhz,. )’
(B23)
I'y
Zy.=5 (y=Tir*ay).
Using (B21) and (B22), we rewrite(B23):
1 coshz,, coshz,_
va(y, 1= 5V1-T1 coshz,_  coshZ,. | (B24)

Using (22) again, we obtain a soliton on a pedestal:

r
VoY, 7)~1— 71(tanh21+—tanhzl_). (B25)

*)E-mail: avs@appl.sci-nnov.ru
DE-mail: enpeli@appl.sci-nnov.ru
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An analytical study is made of the evolution of spatially bounded pulses whose length amounts
to several periods of the field oscillations. An equation is analyzed that describes
unidirectional(reflectionless propagation of light pulses in vacuum. The method of moments is
used to find the variations in length, effective width of the wave field, and other

characteristic averaged parameters of a pulse along its propagation path. A broad class of self-
similar solutions describing the focusing of the light pulses is found. Finally, by direct

integration of the starting equation it is shown that a horseshoe-shaped precursor forms near the
leading edge of the pulse. @999 American Institute of Physid$§1063-776(199)00407-2

1. INTRODUCTION (;Zw 1 ﬂzlﬂ 92 92

Studies of propagation of electromagnetic radiation with 972 ALY c? gt? =0, where A, v ay?’ @
a spectral width of order the carrier frequency have stimu-
lated interest in the prospects for using such pulses. The We seek the solution of this equation in the forn
advantages of broadband signals are well-known from rada« y(z,7=ct—z,r;). Assuming that the shape of the pulse
and radio communications.Probing objects with light sig- changes little along the path of pulse propagation, we arrive
nals produces much more information than in the case ot the equation
radio-frequency pulse€s3 In contrast to quasimonochro-
matic radiation, the use of pulses whose length amounts to 52y 1
only a few oscillation periods of the field makes it possible to ~ Z—--= 54,4 2
form wave structures for which the effects of diffraction
smearing are weakened substanti&ly. Such structures
have become known as electromagnetic projectileise ad-
vances of optoelectronics in generating microwave radiation Py Py
with a spectral width of order of several terahertz have found
applications in tomography.Possibilities are discussed of
::rrt]i%lessgch electromagnetic pulses to accelerate charg%\%ich i_s a common way of simplifyi_ng Eq(1). Using this |
The goal of the present work is a further study of the@PProximation is equivalent to allowing for the Fresnel dif-

features of the space-time evolution of light pulses in{ractlon of a pag_kett oflf_lectr(zmalgr:ﬁtlc ][ad|a;|r(])nt a l?ﬂg the
vacuum, for which the common approximation of slowly ransverse coorainate. 1t 1S natural, therefore, that in the case

varying amplitudes proves inapplicable. In contrast to Refs.o.]c a quasimonochromatic pu"?’%: Y gxp{ikf}, Eq. (2
ields the well-known parabolic equation for the slowly

5-8, we will use an approximation corresponding to Fresne!'€'? ; .
diffraction of the wave field, which makes it possible to de-Vanying complex-valued amplitude of the wave field,
scribe the evolution of the field in detail. In Sec. 2 we for- ¥k T’Z’ri).' . :

mulate the equations and derive some integral relationships Eq“?“?”(z) resembles an_equatlon obtained as a result
needed in the future investigation. Section 3 is devoted to th@' (e Brittingham transformatio(r=ct—z, »=ct+z, and
method of moments used in analyzing the effective pulsél:rl; see Refs. 7 and }1The difference is that Ed2) is

parameters. In Secs. 4 and 5 we discuss the exact solutions it app_roxmgte equation. What makes EZ) preferable 'S
the starting equation. First we will give solutions in self- that it is a first-order evolutionary equation and the field

similar form that describe the transverse focusing of th&lynamics is determined by the initial distribution along the

pulses. Then we will analyze an equation obtained by di_characteristic linez=0. This equation.can_be gent.-:‘ralize.d
rectly integrating the starting equation for the case of arfairly easily to the case where the nonlinearity and dispersion
. P : f the medium is taken into account. For example
axisymmetric distribution of the wave field. 0 ) '
4 the linear part of the Khokhlov—Zabolots and

In deriving this equation we used the approximation

>

dzat~ 9z%"

2. STATEMENT OF THE PROBLEM AND GENERAL Kadomtsev—Petviashvifi equations has the form of E€Q).
RELATIONSHIPS Using the Lagrangian of Ed2) with the density

Let us examine the propagation of an electromagnetic
field in vacuum along the axis. The wave equation describ- _ 1oy oy E(V )2 3)
ing this process is 2979z 4 7

1063-7761/99/89(1)/6/$15.00 18 © 1999 American Institute of Physics
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and the usual variational proceddfewe arrive at the fol- 3. AVERAGED DESCRIPTION OF THE WAVE FIELD
lowing constants of motion conserved in the evolution of the

system: As in the case of the parabolic equatiGrthe use of the

method of moments makes it possible to derive a number of
B a2 relationships that describe the dynamics of the wave field.
I= drdr, 4) The starting point is the equation of continuity,

aT
2
P=f§—fvlz,bd7dri, (5 % i—lf) =divL(Z—wa —;%(sz. 11
This equation can be derived by multiplying E®) by
H:f (Voy)?drdr, . (6) dyldT and transforming the right-hand side of the result as
'I_'he fact that such relationships exist is due tq the translaf—ono;l\l;: - 5
iAo S A LA LR L)

the parabolic equatigrintegral relationshipsfor the energy,

momentum, and Hamiltonianntegrated with respect ta Integrating Eq.(11) with respect tod7 anddr, we readily

i i i _obtain(4).
ticmlnt«a\gratmg(S) with respect tor, we arrive at the equa We begin with the first moments,
ay\? a2
g 1 T oy _ Iy _
EZEALQ’ q:jﬁ Y(t',r, ,z)dt’, 7 f T( (97') drdr <7'>, fr(&T) drdr (r),

. . . . . which describe the motion of the center of mass of the wave
Wh'Ch yields a numbe_r of relatlc_mshlps that will prove u_s‘erIfieId dyldr. Combining Eq(11) and the expression(s) and
in our further dlscusglons. Multiplying7) by 24, we obtain (6) for constants of motion, we easily arrive at the following
one more conservation law, relationships for these moments:

J _ d (V.q)?
57 W =dvyv g- o ——. ® A0 B const, (12
Jz 2
This implies that the quantiy a(r)
=7 P=const. (13
f p2dr, dr=1, (9)

Clearly, the center of mass moves along a straight line
is conserved in the case of a localized distribution of thedetermined by the initial conditiong.g., atz=0). For an
wave field only if axisymmetric wave field®#=0), the center of mass moves

along thez axis at less than the speed of light. Thus, the
fm W(z,r, ,7)dr=0. (10) diffraction of the wave field Y, ##0) effectively reduces
—o the velocity of propagation of the packet of electromagnetic
radiation.

Thus, the area under the curve for the pulse field, Eq.
(10), is zero at each point in space. In other words, for all
andz the temporal spectrum of the pulse contains no zeroth L[ Y 2 5 (Y 2 )
harmonic. Indeed, the velocity of propagation of a static field f T (E) drdr=(7), f M(E) drdr=(ri)
is zero, with the result that the field remains near the source
of radiation. give the effectivelongitudinal and transvergédimensions of

When the |eading edge of the pu|se is Stée@_, atr the wave field. Their evolution is described by a second-
=0), Eq.(7) and condition(10) show that the field distribu- order equation. To find this equation we must know not only

The second moments

tion at the leading edge, the integral relationship&) and(5) but also the dependence
of the rate of variation of the corresponding integral expres-
P(z,r ,7=0)=tho(r.), sions on @yl ar)V, ¢ and (V, ).

First we consider the equation for the pulse length.
Multiplying Eq. (11) by 72 and integrating with respect tbr
anddr, we arrive at the equation

does not change along the path of pulse propagétion.
Note that our investigation has yielded two integral re-

lationships expressing conservation laws, Egs.and (9),

which in the case of a quasimonochromatic pulse reducetoa

single constant of motion corresponding to the conservation (9—7_< ) =j m(Yi+yl)drdr, . (14)

of the number of photons in the parabolic equation. Such

degeneracy occurs because in the approximation of slowlfhe equation for the rate of variation alf+ zpf, can easily

varying amplitudes there are no precursors. The presence bt derived from(7). Multiplying the latter byz, integrating,

two constants of motion reflects a more realistic situation. and performing ordinary transformations, we find that
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J . 1 ) of the characteristic parametgimoment$ of a spatially lo-
o7 | Tt lﬁy)deUZEJ (A q)“drdr, (15  calized distribution of the wave field. Let us examine the

. _ . . wave structures of self-similar form,
whereq is defined in(7). Thus, the pulse length increases

according to the law = @(z,p=r?-2z7). (23

d?((r—(7)?) 1 5 , Inserting(23) in the starting equatiof®), we can easily find

—aZ EJ (A, q)*drdr, >0. (14 an equation for the self-similar function:

More information can be extracted by studying the varia- P _ (92_90 N ¢ (24
tion of the transverse dimensions of the wave field. For ex- > an 77(9772 an’
ample, Eq.(11) yields _ _ . .

This equation has a particular solution
[ 5. Ay Y
a X lﬂxderL:—Z X E& deI’l. (16) @Bzzﬁ/ﬂﬁ+l_ (25)

An equation for the variation of a component of the momen-We will use the following fact to find the admissible values
tum density, @/J7)V i, can easily be found frore) and of B. The starting equation is translationally symmetriczin
(7). Multiplying the derived equation by and performing and 7. The complex generalization @R5), i.e., z—z+izg
the necessary transformations, we arrive at the simple equénd 7— 7+i7o, has the form

tion (z+izg)P

PBT 2 2(zrizo)(r i) P Y

9 H (26)
o | X¢hdrdr === 17
z In contrast to(25), this expression has no singularity ret

Similar transformations can be done for the rate of varia-=27z and describes a bounded distribution of the wave field

tion of (y?). The result is if 792o>0. The condition(10), which states that the spec-
P trum of the localized solutiori26) contains no zeroth har-
ﬁf r2ydrdr, =2H. (18  monic, holds if

. . ; >0.
Thus, as in the case of the parabolic equatioltthe effec- p=0 @7
tive transverse size of an axisymmetric wave field increaseslere the complex-valued wave fiel@6) describes the fo-

as follows: cusing of a spatially localized pulse nes=0. The param-
2\_ /.2 2 eterz, determines the characteristic size of the focal region,
=(r3)+H 1

(ri)=(ro)+Hz", (19 and 7y is the length of the incident pulse¥$zy). For in-
where(r3) is the characteristic size at=0. stance, ajg=1 the distribution of the field is

Comparing(12) and(19), we find that )

i r<z

(r})—22(m)=(rd), (20 P1= | Az T o
which is a formula that links the effective scalés ) and 2 2y —1
(7). Equation(20) can be interpreted in the following man- +i| 7o+ % ] ) (28)
ner. The wavefront of the starting equati@t) is spherical: 2(z°+z5)

r2+z?—c?t?=const. (21 We see that the wave field is at its maximum 7t

~r2z/2(z°+25). The pulse lengttithe characteristic longi-
tudinal size of the field Tp%7'0+r220/2(22+25) increases
with the distance from the axis of the system. The field dis-
r?—2rz+r?=const. (22)  tribution along the axisr(=0) is described by the relation-
ships

In terms of the variables used belaw, z, and r=ct—2z),
Eqg. (21) can be written as

In the approximation described by E@) we can ignore the
term 72 in (22). The wavefront becomes parabolic. Averag- 277 27
ing (22) under these conditions, we arrive at the same exRep;=— —————, Im¢;=— ————> at z=0,

2 20 2 2
pression20), which was derived by the method of moments. Zo(7°+ 79) zo(7°+ 70) 29
We see that the variable=r?—27z becomes a self-similar
variable of Eq.(2). Similar relationships can be derived for 272 2707
the moments of the functiof®. These, however, prove to be Reg;=————>—, Ime;=— ———>> as z—*w.
less informative, since their variations are not related to the (30)

integral expressiongl)—(6).
Equation (30) shows that when the pulse passes the focal
plane, the amplitude distribution of the field is restored and
the phase changes by Here the change in the sign of the

The above relationships were derived without knowingsolution agrees with the invariance of the starting equation
the exact solution of the equation and describe the behaviamder the transformations— —z and 7— — 7. In the focal

4. SELF-SIMILAR STRUCTURES
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plane (z=0 and x<z,), the real part of the solutiof29)  wherelL,, is a Laguerre polynomial defined on the interval
acquires the structure of the imaginary parzas> and the 0<7<w. For n=1 this shape meets conditidi0). Note
imaginary part, the structure of the real part. This processhat the spectral component of the field at the frequemacy
corresponds to phase changemi®. =0 is zero[see Eq(35)] for all z# 0. Hence even for pulses
By using superposition we can substantially increase thavith ¢(w=0)#0 the area under the curvg(r=0,z
number of self-similar solutions. In particular, for integral = +0,7) proves to be zero. For example for a pulse whose
values of 3, we can use an expansion in a Taylbeuren}  shape is given by36) atn=0 we have
series inz/ » and easily obtain an expression for the solution

i in- 0 —o0<7<0
of the starting equation: P o ' '

) , #(r=02=0,7)=thg exg—1), 0%r<o. (37)

— r - _.
- z+izof 20z+izg) | 'To) (31) Integration of(37) gives
This can be verified by simply pluggin@l) into Eq. (2). exp(— ) — (z/a?)exp( — z7/a?)
Y(r=0z7)= 1222 . (39

5. SPACE-TIME EVOLUTION OF THE WAVE FIELD Thus, as a pulse propagates in the system, its shape ac-

Jluires two scales. The amplitude of the part of the field with
Gaussian wave beams in quasioptisee, e.g., Ref. 12 the shazpe_lof the incident pgl;e vgries according to the law
These structures are “single-scale” and do not reflect thd1—Z/@%) =. The characteristic time scale of the second
specific features of the problem related to the presence df™™M (exg—zrfa®}) is determined b32’ the transverse size of
two conserved quantitie¢4) and(9). To illustrate these fea- the field aiz=0 and falls off asr,~a“/z as the pulse propa-
tures we will examine the evolution of a pulse with a steepdtes in the system. At a distance

leading edge. In the case of an axisymmetric wave field, the ze=a? (39)
solution of Eq.(2) can be written

The self-similar structures treated here are similar t

" e equal to the Fresnel lengthrfa a field with a frequency
"//:f f o(w)R(x) determined by the duration of the incident radiation (
0 J—e =1), 7, becomes equal to the characteristic time scale of the

A2 initial distribution. As a result the shape of the pulse be-
xexp[izzﬂwr Jo(xr) dy dw, (32 comes
Where (ﬂ(r:O,Z:aZ,T?O):Ll eXK_T), (40)

1 wherelL ;=1— 7 is the first Laguerre polynomial. Note that a
(p(w)=EJ Y(r=0z=0,7)exp —iwr}dr pulse initially (z=0) shaped a$40) is transformed in the
process of propagation intg(z=a?) =L, exp{—7}, where
is the spectrum of the pulse along the axis of the system (L,=1—27+ 7%/2 is the second Laguerre polynomial. This
=0) atz=0, andR(y) is the spectrum of the transverse follows from the fact that for initial distributions of the form
distribution of the field az=0. For a pulse that is Gaussian (36) the order of the pole i35) at z=a? increases by unity,
along the transverse coordinate, £xp*/2a®}, we have with the result that the shape of the pulse is determined by
y2a? the polynomialL,. ;. Since the functiong36) are not or-
R(x)=a? exp{ - ] (33)  thogonal, it is impossible to draw a more general conclusion.
2 In the limit z>zr=a? the amplitude of a field whose
Integrating (32) with respect toy, we find that in this shape is that of the incident pulgthe first term in(38)]

case decreases as !, just as it does in the case of a quasimono-
. 22 ;2 chromatic pulse. The characteristic time scale of the second
,/,:f (p(w)z—.exp[ - tiwr|do. term becomes smaller than the length of the initial pulse,
— a‘—izlw a’—izlw whose amplitude is independentofThis part of the field is
(34) sometimes called the diffraction precurédformula(38) de-
5.1. Evolution of the pulse on the axis of the system (r=0) scribes the formation of such a precursor.

_ Let us examine the energy characteristic of the field on
At r=0 Eq. (34) shows that as the pulse propagates inhe axis of the system,

the system £+ 0), the spectrum of the field acquires a pole
at w=iz/a?. The pulse structure is described by the integral

o(w)explioT} (35
w—iz/a® ' If we usey in the form(38) and integrate, we arrive at the

W= f_w JA(r=0z,7)dr.
1,b(r=O,Z,7')=fjc

To take an example, let us study pulses whose initiaf*Pr¢3310n
shape is

W(r=02=0,7)= =L, exp — 7, (36) W(z)=

2(1+z/a®)" (42)
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Thus, in the limitz>a? the energy of the pulse on the axis The fairly rapid convergence of the coefficiefds) makes it
[Eq. (41)] decreases in inverse proportion 2o Obviously, possible to drop all but a few terms in the serid6) when
such a gradual decrease is due to the presence of a precursithie problem is analyzed qualitatively.

The structure of this precursor is determined by the pole at At the leading edge#~0) the serieg42) in powers of
w=iz/a? in the integrand of35). Clearly, the precursors are r?/2 is alternating and describes the field distribution
the same for all initial distributions of the forf86), with the  exp{—r%2a?}. The roots of the Laguerre polynomials,,
result that the energy of the field on the axis=(0) of such  which determine the behavior of the coefficients in the series
formations decreases according to the' law. This slow  (42), are given by the well-knowfi expression

decrease of the pulse energy along the path of pulse propa- 2
gation (slower than z"?) has become known as the o= Jm
electromagnetic-projectile effécand is due to the presence M 2(2n+1)

of higher harmonics in the pulsase), for which the —\;harem is the order of the root, anjy, is the root of the

geometrlcal—optlcs gppro>$|mat|.on. is valid. _The length of thezeroth-order Bessel functiodo(j). On the system axisr(

path along vyh|ch this law is valid is determined by the Iengthzo) the field vanishes and changes sigrratl. The study

of tzhe leading edge of the pU|Se'p(TP<1)’_§nd forz  of the roots(47) shows that there are ranges ofn which

>a’lry the decrease becomes more rapid{(z ). two successive expansion coefficients have the same sign.
For example, for 7>0.7, the coefficientgy, and ¢, are
positive, and allowance for higher-order termsrmfacili-

5.2. Dynamics of the spatial distribution tates localization of the field distribution in the transverse

To study the spatial structure we need to known the indirection. This means that fairly strong inhomogeneities of

tegral(34), which cannot be evaluated in closed form. How- the wave field are concentrated near the trailing edge of the

ever, we can get an idea of the dynamics of the spatial digdulse =1).

tribution by analyzing the coefficients of the Taylor At distancesz much larger than the Fresnel length (

-2
-2
1+ Im
242n+1)

: (47)

expansion of the wave field in powers i >a? andb>1), Eq.(44) yields
- p2\n L,(z7/a?) z7
=2, n(2,7) ?) - (42) h~— gz e~ 2/ (48)
n=0

The simplest way to find the functions, is to use Eq. 1N dzep_endgrjce o, on the self-similar variabley
(2) directly. Substituting42) in (2) and equating the coeffi- =z7/a“ simplifies the recurrence relatiqd3) substantially.

cients ofr2". we obtain the recurrence relation M(_)re than that, using the WeII_-known functio_nal relation-
) ships for the Laguerre polynomialéwe can derive expres-
Uo1— 1 Iy 43) sions similar to Eq945) for the coefficientsy,, of the Taylor
1T (n+1)2 gzar series(42):
Thus, all the expansion coefficients are found by directly . L,(z7/a?) 7
differentiating the wave field on the axis of the systffuj. o= (=)' gz eXn ~ 2/ (49)

(35], Yo=u(r=0,z17). Note that these coefficients meet

condition (10): the area under the curve,,, is zero Note that the coefficienty, which describes the behavior of

(fojocllln+1 dr= O) on the path of pu|se propagation a|0ng the field on the system axi$(=0), is not self-similar. In the
For a pulse of initial shapé37), we substitute(38) in  limit z>a?,

(43) and find the expression for the coefficientrdf a2 77
bl (b—2)+b(1—b)7]exp(—b7)+exp — 1) ‘ﬁoz‘?exq‘f)*ex"(‘;)- (50
1= a2(1— b)2 ) . .
(44) Now let us examine the spatial structure of the part of

the field that refers to the diffraction precursor. If(B0) we
whereb=2/a?. The coefficientd43) can be calculated in a ignore the first term, we get
similar manner.

In the two most interesting casas=1 andb>1, the 3 i (=D "Ly z7[ r? nex ozr 5
expressions for the coefficiengs, simplify substantially. For %'_n:o n! a?\| 2a? a?)’

instance, at a distance=a? corresponding to the Fresnel ] )
length b=1), we have If we now use the formula for the generating function of the

Laguerre polynomial! we arrive at the expression

L T
'pn:(_l)n%gn)exq_ﬂ- (45 [z7 r? r2  zr
' wprZIO(Z gzgz ex —gz—gz, (52)
As a result we find that the space-time structure is described
by the expression wherel is the modified Bessel function.
w0 2L () In view of Fhe Iinear_ity of the starting equation, we con-
= 2 (—1)" 522 n+1| exp(— 7). (46) cludeT that(52) is a solution of Eq(2). The strgcture of th|s
n=0 a n' solution reflects the symmetry of the equation under inter-
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This report is a continuation of an analysis, initiated elsewkérg. Vecheslavov and B. V.
Chirikov, Zh. Eksp. Teor. Fiz114, 1516(1998 [JETP86, 823 (19981}, of the effect

of splitting of the separatrix of a nonlinear resonance for the model of standard mapping, based
on results of direct measurements of the splitting argi€), whereK is the system

parameter. Measurements were made in the previously used wide rapge=910 2% (1=K
=0.0004), but with significantly higher relativdetter than 10°% and average

(~10 > accuracy. This procedure made it possible to substantially refine the effects observed
in Ref. 1 and construct qualitatively new empirical dependences providing reliable
extrapolation of the data obtained for the angle and the invariant in the intermediate asymptotic
limit K=<10 2 beyond the limits of the investigated region. The results obtained by us

can be useful for further development of the theory of separatrix splitting and formation of the
stochastic layer of a nonlinear resonance. 1899 American Institute of Physics.
[S1063-776(99)02407-5

1. STATE OF THE PROBLEM Recall that in the case of strong nonlinearity such a simple
form of the resonance Hamiltonian turns out to be univetsal.

The interaction of nonlinear resonances and the chaotle;-he most important characteristic of a pendul(n®) for the
regimes of dynamical Hamiltonian systems arising as a res“Broblem under discussion is the separatrix

are among the most important and complicated problems of
the contemporary theory of nonlinear oscillatiéng.Usu-
ally, the initial states of the system are chosen near one of the _ X s 2
regonances, which is assum)tlad to be the main or leading reso- s~ +2wo Sin7, HPY = wg=K 1.3
nance, and the others are treated as perturbations. In many
cases the problem reduces to an examination of a dynamic
model which can be interpreted as a pendul@he main
regonanc}asubjecteq .to' the action of peT'Od'C or quasiperi- fact, Egs.(1.3) describe two spatially coincident branches in
odic forces. I'n the vicinity of t.he separatrix of the main '€SO0-the time limits t—+o and t——o, respectively. Each
nance chaotic nonlinear OSC'”_at'O”S arse as a resu_lt of thSranch is an asymptotic trajectory with infinite period of mo-
action Of. aImOSt any perturbation, no matter hoyv weak. _,_tion, which departs from the position of unstable equilibrium
Studies n this f|elq are ge_nerall_y a(_:compamed_ by W'd_e'(a saddle pointand returns to it. Almost any perturbation, no
scale .numgrlcal gxperlmgnts,. N which instead of d.'fferem'almatter how weak, splits the separatrix into two intersecting
quaﬂqns In continuous time it is much_ rrlore effectwe to usetrajectories, which, as before, depart from the saddle point in
their d|s_cret§ gnalogs,_ namely, mappingsA simple but ._opposite directions, but never return to(this effect was
extrap fd'”‘.”‘f"y |,nterest|ng and very popLJ.Iar model of thIS‘described qualitatively by Poincaime the last century® The
kind is Chirikov's so-called standard map: two branches of the split separatrix intersect, in particular, at
the anglea at x== (the central intersectignand some
ps(7)~po=2wq [see Eqgs(1.3)]. The free ends of the split
Here p and x are the action—angle variables, aKdis the  separatrix form an infinite number of loops of unboundedly
only parameter of the model which characterizes the effect ogrowing length}” which, however, fill up a bounded and
the perturbation in the period of the mappifigc2#/Q=1.  narrow region along the unperturbed separatrix, thereby
Many papers, including ours, focused on the study of thdorming the so-called stochastic layer—a nucleus and source
chaotic dynamics of the standard mapping. Before discussingf the chaos of nonlinear oscillatiofs>®°The most impor-
the new results obtained by us it would be fitting to briefly tant characteristic of this layer from the viewpoint of appli-
review the main definitions and the state of the problem. cations is the energy half-widtws=H/K—1, which, how-
The leading resonance of systéi1) can be described ever, can be found only approximatélyn this regard, it is
by the Hamiltonian of a “pendulum” important to mention that for the standard mélpl) the
angle « of the central intersection of the branches of the
separatrix turns out to be the only exact parameter of chaos
that can be calculated with arbitrary accuracy.

ﬂ"e singular trajectory, which separates oscillations of the
phase(in resonancefrom its rotations(out of resonangeIn

p=p+K-sinx, x=x+p. (1.

2
Hl(p,x)=p7+K COSX. (1.2

1063-7761/99/89(1)/6/$15.00 182 © 1999 American Institute of Physics
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Significant progress in the study of the splitting of theis the simplectic invariant, ang(h) is a norm of the tangent
separatrix of the standard map was achieved relatively revectors.
cently (1984. It was connected with the appearance of a  An approximate solution of the problem was found in
series of mathematical papéfs?in which the anglexwas  Ref. 11. This solution can be written as a correction to the
determined quite accurately by numerical solution of an auxinvariant[by analogy with the correctiofl.6) to the anglé:
iliary equation from which an exponential factor was elimi-
nated. Note that the work of physicists of this period and of ~ Co(M=0o(M/o-—1, (1.9
earlier period$™>%°has been mainly oriented toward study- whereo., = 4a., [see Eq(1.4)].

ing the effect of violation of adiabaticity and finding approxi- It is important to emphasize that these “corrections”
mate estimates of the dimensions of the chaotic layer. give the most complete description of the intermediate

For the asymptoticX = 27/ K —) value of the split-  asymptotic behavior and their study enables one to elucidate
ting anglea..= a(=) Lazutkin et al!® obtained the expres- the “fine structure” of splitting of the separatrix and forma-
sion tion of the stochastic layer.

Just recently, a fundamentally different approach to the

’ (1.4) problem, based on the results of direct measurements of the
K separatrix-splitting angle of the standard m@pl) over a
very wide range of variation of the parametdr 1=K
"=0.0004 (=h=0.02): 0.=2a=10 2 with guaranteed
relative accuracy better than 1% and average accuracy
~10 *was realized in Ref. 1. Accordingly, we ngeloped a
. . o special technique implementing a software packagehich
in the theory of the chaotic layer developed by Chirfkov realized the full potential of the standard computer language

o7, T pnyics, mesring of i acor =16 ot 1 FORTRAN with ariery numerialsccradshe mber
. ) . . . ) of significant digits of the mantissa in the decimal represen-
dard mapping. He also obtained a first estinfate 2.15 nu- 9 9 P

merically. The Lazutkin constant encountered later turne@?ﬁon of a real number in Ref. 1 reached $00o compare it
' ) ) ith the theory developed in Ref. 11, we also calculated the
out to be related to this factor by the formulda= 167" f v P

X .. Invarianto (1.8); here the functiorw(h) (an analytical ex-
[see formula(1.16).|n Ref. 1 and the Com,m?‘”‘afy onl;it pression for it is not knownwas determined numerically
therefore, any refinement of the constast is simulta- using a special computer prografn
neously a refinement of the factbin the theory of the sto- In line with the theory developed in Ref. 11, the correc-
chastic layer. The most accurate of the values of this constal%n :

! ) s (1.6 for the angle and1.9) for the invariant were
EJ:?AI,)STr?dR(taC; dlaate, to the best of our knowledgef@smula sought in the form of a finite series in even powersof

in which an important numerical characteristic of the stan
dard mapping,”, is usediin Ref. 1 it was proposed to call it
the Lazutkin constaint

It should be noted that a correction factbr 1 is used

M
#=1118.82770594090077841514639323565x 10 %'. c(hy=a(0)+ >, a(m)h?™. (1.10
(1_5) m=1
Lazutkin et al° have also estimated the correction to In order to facilitate direct comparison of the experimental
a., in the intermediate asymptotic region< <1: data with the results of Ref. 11 for the invariant, in addition
to the finite serie$1.10, we also used a representation in the
a(\N) form of a Taylor series
Ca(N)=——~1, (1.6) )

g
o 7)' 2m — 1 ),»
which was later studied in detail in Ref. 1 and will be con- O 7 ‘:y+m221 b(Mh™,  b(m) = a(mm! 2.
sidered in this papeisee Secs. 2 and.3 (1.11
The next big step in the study of this problem was made

; 11 _
by Gelfreich et al.;’, where the dependenct.6) was repre search for the coefficients of seri€k 10 and the construc-

sented in the form of an asymptotic series in appropriate. - .
powers of a small parameter. The values of the first fouert‘Ion of empirical dependencésee, e.g., Ref. 15a special

i . X . . importance was attributed to monitoring the accuracy of the
coefficients of this series were determined by numerical so- . . : .
) - . calculations and to obtaining a reliable estimate of the errors
lution of auxiliary equations.
This theory introduced the important change of variablesOf the results. . ) .
The theory developed in Ref. 11 was confirmed in Ref.

(K, @)=(h, o), where 1, both qualitatively{series of the forn{1.10] and quantita-

K K2 tively (see Table Il in Ref. L The construction of simple
1+ §+ \/ K+ il JK (1.7 empirical dependencdd.?) of the expansion coefficients of
series(1.10 on the indexm can be assumed to be one of the
is a positive characteristic index of the tangéimearizeg ~ More important results of this study. With them is connected
map (1.1 at the unstable fixed point=p=0, the possibility of extrapolating these series beyond the limits
of the region of direct measurements. The unreliability of
o(h)=wv(h)sina (1.8 such an extrapolation, however, was also noted in Ref. 1,

The least-squares method has been widely used in the

h(K)=In
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log (16ct)
10

FIG. 1. Results of an interpolation of empirical data on the sepa-
ratrix splitting angle(triangles and the invariantcircles: sc(h)

is the deviation of the correction from the intermediate
asymptotic limit(1.10, common logarithm. The downward slop-
ing lines are the first term of the residual te(&5); curvesl, 2,
and 3 plot the exponential deviationsee Sec. 3 The upper
dashed lines show the total correctiar($) for the angle(1.6)

and the invarian{1.9), respectively.

since the higher coefficients witm=238,9,10, both for the it possible to fit the branches by second- and fourth-degree
angle and for the invariant, clearly deviate from the assumegolynomials and calculate two values of their angle of inter-
dependencessee Fig. 3 in Ref. 1 and the commentary section: @, and a,. In general, some numbeY, of first
These deviations were called “anomalies, whose nature resignificant digits(with allowance for the roundoffin the
mains an open question and requires further study.” Jumpingalues ofa, and«a, coincide. We were able to reach values
ahead, let us clarify the reason for the appearance of thesd# A/,=50, which gave a relative accuracy of the angle no
“anomalies,” which was clarified later. The relative accu- worse than 10°C. Actually, the relative accuracy in the in-
racy of measurements of the angle #dused in Ref. 1 turns  termediate asymptotic region proved to be somewhat higher
out (as paradoxical as it may segio be insufficient to cal- and stood on average at10 °° (see Fig. 1
culate the necessary number of coefficients for reliable ex-  Following this scheme, we found the dependen¢i)
trapolation(see Sec. R for 104 values of the perturbation parameter in the interval
Any extrapolation, even an pproximate one, facilitates1=K=0.0004, which provided the initial empirical material
not only identification but also interpretation of the charac-for all subsequent analysis. The value of the angle was re-
teristic properties of the intermediate asymptotic behaviorcorded to 100 significant digits, which ensured an accuracy
which can be of substantial assistance in advancing thef processing of the results much higher than the accuracy of
theory of separatrix splitting and formation of the stochasticthe experimental datésee below.
layer of a nonlinear resonance. For this reason, it was |t was noted in Ref. 1 that the main difficulty of inter-
deemed necessary to extend the analysis of the model of thglating using a series of the forf1.10 is that different
standard map based on direct measurements of the splittingrms of this series differ by many orders of magnitude and
angle initiated in Ref. 1. the matrix of the normal system of equations of the least-
In this paper we investigate the problem of separatrixsquares method for searching for the coefficieats) in
splitting for the standard mapping within the previous wide(1.10), as a rule, turns out to be degenerate in its computer
range of variation of the splitting angle G=10"?* (1 representation. It became necessary not only to subject the
= K?OOOO‘]-), but with significantly hlgher relative accuracy gata to a final processing with accuraeyl0™ 100, but also to
(better than 10°) and average accuracy~(L0 ). This  introduce a change of scale of the variables of the problem:
factor, together with the extremely accurate value of the La(h,E)—>(H =Sh, C=50), where the scale fact®>1 had
zutkin constant1.5), has made it possible not only to refine to be suitably chosen. However, in Ref. 1 we had to deal

the effects observed earlier in Ref.($ec. 2, but also to with ten coefficient$1.10, whereas in the present work this

qbtam qual|tat|ve_ly new emp|r|cal dependences ensuring re umber grew to seventeefsee Tables | and Jland the
liable extrapolation of serie€1.10 for the angle and

the i iant b d the limits of the i tigated . simple change of scale ceased to help. The problem was
(Seecln\:;arlan eyon € limits ot the investigate reglonsuccessfully solved by inverting the direct matrix by first

partitioning it into blocks(see, e.g., Ref. 26where the di-

mensions of the blocks also had to be suitably chosen. Recall

that in the least-squares method the diagonal elements of the
In the measurements of the angle we used the scheniaverse matrix determine the weights with which the errors

described in detail in Ref. 1: the central intersection point ofof the unknown quantities are summed, and therefore the

the branches of the separatrix= 1, ps() is sought; then inversion operation could not be eliminatid.

two points are calculated, one on each side of it. This makes As was noted in Ref. 1, the number of terms of the series

2. RESULTS OF MEASUREMENTS
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TABLE |. Coefficientsa,(m) of series(1.10 for the angle. AC=<(C(h) —E(h))2>1/2, 2.

m aa(m) A (9) where the angular brackets denote averaging over the inter-

1 —0.233376428864381610627639715 polation interval. Clearly, we cannot use the entire empirical
651844925562242 0.39710 “* 0.384<10“*  interval as this interval since the power-law dependence

2 —0.290818155124688860367364364 (1.10 in the theory developed in Ref. 11 characterizes only

03046408113 0.37010 % 0.334x10° % : : T e
3 0.014824955534894051786788200 the intermediate asymptotic limit. Therefore, the deviation
5854733 0.21%10 %2 0.177x10 _ _=
4 0.043182190148644921649679410 oc(h)=c(h)—c(h) (2.2

03978 0.83&1072° 0.647<10°*°  contains the most valuable and interesting information about

2 _O'0‘élf;fgfggggfggfgfggggffgff g?ﬁ:i 8'5@2 igiiz the additional nonadiabatic effects not comprehended in the
7 0.319169849155133631687 08850 1° 0525¢10-20  theory. Thus, as in Ref. 1, it was necessary in a given set of
8 —1.060531457633276423 0.1470°% 0.630<10-Y7  empirical data to also choose the optimal interpolation inter-
9 —4.38156420631767 0.12210 2 0.593x10°**  val (h;—h,), whereh,;=0.02 was the minimum value in the

10 —21.62868101831 010@10:23 0.440x 10:;; initial data. The smallest value dfc (2.1), together with the

E ’?Eéi“ﬁiﬂé 8'2;218704 8ﬁ§ 18705 accuracy of the found coefficients of seri@s10, served as

13 6810600 013%10°% 0395¢10- %  the main criterion herésee Tables | and )l

14 _61716.8 038% 10" 0.100x 10" The quality of the interpolation worsened not only when
15 —6.3755¢10"% 0.771x10"% 0.178x10"°2  h, was increased, as was noted above, but also when it was
16 —7.15¢10°% 0.981x10°® 0.199<10°*  decreased due to the small contribution of the higher powers
1 ~1.3x10°% 0591x10°%" 0.10% 10" ¢ py for small value ofh, and also due to a decrease in the

Note.For the number of digits of the coefficient exceeding the width of the numberN of po|nts part|c|pat|ng in the |nterpo|at|on The
column, the remaining digits are written in the same column, one row Iower.maIn results were obtained usmg the standard mterpolatlon
of minimizing the variance 4c)? [see(2.1)] and are pre-
l,§ented in Tables | and Il and Fig. 1.

The accuracy of the found coefficients, as in Ref. 1, was
estimated by two different methods. First, the standard de-
viation (root-mean-square ernof the interpolation was

M accessible in practice was bounded from above by erro
of calculation due mainly to the “noise” caused by the finite
accuracy of the empirical data(h). A radical increase in

this accuracyfrom 10 2°to 10 %% and, as a result, a radical ” , \
reduction of the level of this “noise” made it possible to calculated’, () (column 4 in the tablesi.e., the expected

increase the number of coefficients found in the present wor%:ro,r of the coefficients of the random mean-square error of
to M=17 (versus 10 in Ref. 1 With further increase of/, the initial empirical data. To take errors of a different nature

we not only do not obtain new coefficients, but we lose the into account, namely systematic errors, the values of the co-
ones we aiready hav@ee Fig. 1 in Ref. efﬂments were also determined as means over several inter-

The accuracy of the empirical dependentd is char- polations with a different number of data p0|r_1ts ln_ each:
acterized by the root-mean-square error Np= 20— 28 for the angle a_ndlp=_25— 35 for the invariant.

In fact, these values are listed in the tableslumn 2. A
relatively weak dependence of the means\grserved as the
TABLE II. Coefficientsb(m) of series(1.11) for the invariant. main criterion in our choice of these two groups. As the error
we adopted the root-mean-square error of the values of the

m b, (m) A (9 coefficients in a groupA (column 3 in the tables It can be

1 18.59891195820929735881714904 seen that the error in a group is greatestd therefore de-
1692488164817654712988  0.2430 ** 0.142<10°*  fining) in all cases. The difference in the two errors is a

2 ~4.34114127056816253677582933 definite indication of substantial systematic errors. The val-

04979013479225149  0.158.0 *° 0.183x10 * .
ues of the root-mean-square errors in a group probably also

3 —4.18326375909189413723327235 _ - s
65031001721936 0.18910 % 0.212x10 %7  determine the number of reliable decimal places of the coef-
4  —4.93413959073087940856342052 ficients.
930157 0.22&10 %2 0.219x10 *
5  —10.6454864428182042353564212
15457  0.23¢10°2° 0.20310°% 3 DISCUSSION OF RESULTS AND CONCLUSIONS
6 —35.8600816693504759710595553  0.20® 2* 0.166x10 %
7 —177.6036528919052715929381  0.36H) % 0.121x10 2 Following the scheme laid out in Ref. 1, let us consider
— 16 —18 - . . . .
g —1szétz5ffg§f§;§$;igggg 8-71;3;8713 g-zgi 18714 first of all the behavior of the coefficients of expansions
10 149475 48996254799 0.4%20-%  0.204¢ 10-10 (1.10, starting Wlth the data in Tables | ar_1d Il.
12 —51297631.6298 0.76210°% 0.286<10-%  ratio of the coefficients of the angle and the invariant has an
13 —1.33992212% 10 0.248<10"% 0.802x10"®  exponential form (the straight line passing through the
09 05 04 . .
14 —4.309712K10"%°  0.647x10"% 0.178<10" squares in Fig. 2
15 —1.6850<10"12 0.126<10"% 0.295¢10"%"
16 —7.88<10"%° 0.166<10"1? 0.331x10"%° a,/a,(m=ReM, R=0.7471-0.0539,
17 -4.9x10"% 0.110<10"*® 0.191x10"*3

v=1.3579-0.0089. (3.2)
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log (lah) data obtained by us leads to qualitatively different experi-
15 mental dependences in regard to the ratio of the coefficients
of series(1.10 because of the appearance in expressions
(3.2 of the additional factof 1+ Qexp@m)]. For m<8,
however, the two families of curves are quite similar. It is
interesting to note that dependen@el) for the ratio of the
coefficients of the angle and the invariant did not undergo
any change.

It is important to emphasize that since the empirical ex-
pressiong3.2) obtained here in the intermediate asymptotic
e limit h=<0.1 do not demonstrate any “anomaliesSee Fig.

2 4 6 8 10 12 14 16 18 2), their use is not limited to the number of coefficients ac-
m tually found. This makes it possible, with the help (8f2)
FIG. 2. Variation of the coefficients of the intermediate asymptotic limit and (3.4), to estimate quite accurately the residual terms of

(1.10 for the anglea, (triangles, the invariant @) (circles, and theirratio  series (1.10) not included in the interpolatiorithe solid
a,/a, (squares The solid curves plot the empirical dependen@$) and _ ; ; ; ;
(3.2 based on the data of our work. The thick points inside the symbols fordownward sloplng lines in Flg.)l

m=10 mark the values of the coefficients from Ref. 1, the dashed lines plot i
the interpolated dependences obtained there. R(h,M)= 2 a(m) h2m ~a(M+ 1)h2M +2 (3.5)
M+1

m=

' o . _ The above analysis of the coefficients makes it possible
Taking this into account, and the analysis presented in Refo more completely represent the global behavior of the in-

1, we can describe the interpolated dependences by means\pistigated dependences. First of all, both series—the series

the approximate expressions for the angle and the series for the invariant—diverge within
A the investigated range for sonte>h,,: for the angleh,
a,(m) ~—‘;(1+ Qed™ (3.29 ~exp(—(y+Qq)/2)~0.287, and for the invarianh.,~exp
m

(—g/2)=~ 0.569. However, the character of these depen-
for the invariant(the curve passing through the circles in Fig. dences for £h=0.1 (before the intermediate asymptotic
2) and region is qualitatively different.

The variation of the invariant is very well described by a

)/m “ H I} . .
cascade of exponentials.” The first of these exponentials
~ - qm
au(m) ~ AR mP (1+Qe™™) (3.20 (curvelin Fig. 1
for the angle(the curve passing through the triangles in Fig. | dc,(h)|~63~ ™" (3.6)

2). Using the values oR and y from Egs.(3.1), we replace

- ) which was discovered and received a clear explanation in
the coefficients for the angle,(m) by their reduced values P

Ref. 1, significantly exceeds the residual tef&b5). It de-
_ a,(m) A, scribes the perturbation of the separatrix by a more distant
au(m)=—p—e "M=—(1+Qei"). (3.9  resonance with frequency2=4. The simple theory devel-
m oped in Ref. 2 predicts a pre-exponential factor of 8, i.e.,
Comparison of expressiori8.2a and(3.3) shows that find- almost an order of magnitude less. This difference, however,
ing the values of the unknown quantitiés, p, Q, andq is completely explainable by a very complicatga the case
by the least-squares method can be done by using a corinder consideratiorsystem of resonances of higher approxi-

bined set{a,(m),a,(m)} after first removing some of the Mations.

first terms from it which clearly deviate from the interpolated ~ The second exponentiéturve 2 in Fig. 1, the interpo-
dependencdsee Fig. 2 and Tables | and)llin fact, the lation is over 34 points, the root-mean-square err@r13
interpolation was not done over the coefficients themselves, | sc,(h)|=A,e A2/ log(A,)= —23.45-0.11,

but over the common logarithms of their absolute valise®

Fig. 2. The interpolation involved 29 points and yielded the =~ B,=3.512+0.017, (3.7

following results: in contrast, is found entirely below the residual term. The

A,=-0.015710.00480, p=3.188+0.171, mechanism of its appearance for the present state of the
theory is completely unclear. The similarity of the value of

Q=2.224¢107°+9.93x10°°%, q=1.127-0.028, the factor 8, in the argument of the exponential to is

(3.4 noteworthy.
The root-mean-square error of this interpolation wds092, A curious situation arises for the angle: in the region of
and results of this interpolation are plotted in Fig. 2. divergence of the series representing it, no singularities or

Comparison of expressiori8.2) (they correspond to the anomalies are observed in the behavior of the funatig()
solid curves in Fig. Rwith (4.2) from Ref. 1, which corre- or its deviationdc,(h) from the interpolation. Moreover, the
spond to the dashed curves in Fig. 2, shows that processigtter is described completely satisfactorily by the residual
substantially more accurate and more extensive experimenttdrm(3.5), which is also represented in Fig. 1 only by its first
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Collisional relaxation in Sggas and its mixtures with He and Xe is studied by photon echo and
stimulated photon echo methods from the standpoint of the possibility of identifying the
contributions of different types of collisions. The nonexponential nature of the kinetic curve of
the photon echo is clearly observed for pure; SE is weaker in the mixture S+ Xe,

and it is virtually completely absent for high degrees of dilution of ®#h helium. These features
can be explained on the basis of estimates, made from experimental data, of the critical

delay between the exciting pulsésr which the nonexponential behavior should be most strongly
manifested In pure Sk it is possible to distinguish the contribution of the inelastic channel
(rotational relaxation and the contribution of weak collisions. To distinguish successfully the
relaxation channels in mixtures with buffer gases a heavier buffer gas and a much better

time resolution must be used. It is shown that data obtained on the orientation and alignment
relaxation rates by the stimulated photon echo method can serve as an upper limit for

the rates of inelastic processes which cannot be measured by the photon echo method. The
combined use of photon echo and stimulated photon echo methods made it possible to obtain data
on the cross sections for elastic and inelastic scattering of the collisional pairsSgH;

SK;—Xe, and SE—He. © 1999 American Institute of Physids$S1063-776(99)00507-1

1. INTRODUCTION motion of the particle. A number of parameters of the active
particle can change in a single collision, so that distinguish-
The shape of an isolated spectral line of a neutral gas ithg individual types of collisions becomes problematic.
determined by the translational motion of the particlebo-  Nonetheless, a description of collision types distinguished by
mogeneous line broadening — Doppler effect, line narrowthe final result is often used. Collisions with interruption of
ing — Dicke effec}, the interaction of particles with external the phase of the transition dipole moment, elastic scattering
electromagnetic fields or zero-point vibrations of the fieldpy small anglegcollisions with a change in the velocity of
(splitting or shift of a spectral line due to the dynamic Starktranslational motioy) depolarizing collisiongresponsible for
effect or natural line broadeningas well as by the interac- destroying the polarization moments induced by polarized
tion of particles in collisions(collisional homogeneous radiation on degenerate resonance levels; these collisions
broadening These processes can be closely interrelated, excharacterize the asymmetry of the interaction potential of the
ample being the control of the translational motion of par-particles, as well as inelastic scatteringor vibrational-
ticles by laser radiation(localization of atoms in the field of rotational transitions this is mainly rotational relaxati@re
a standing wavk the detection of collisional transitions in a distinguished.
nonresonant radiation fildradiative collisiong and the ob- Knowing the contributions of different collisional relax-
servation of asymmetry of the Doppler contour due to theation channels could be helpful for studying the characteris-
statistical dependence of collisions and translational motionic features of the interparticle interaction potentials and for
of the particles. investigating spectral line shapes. When stationary Doppler-
The methods of nonlinear las&o-called Doppler-frée  free spectroscopy methods are used, information about colli-
spectroscopy largely eliminate the contribution of translasions is contained in the shape of the homogeneously broad-
tional motion to line broadening, and performing experi-ened line, and it could be quite difficult to distinguish the
ments in weak electromagnetic fields decreases the contribgontributions of various channels. Our aim in the present
tion of field-induced defects to the natural line broadeningpaper is to analyze the possibility of using nonstationary,
which for molecular vibrational-rotational IR transitions is coherent, Doppler-free spectroscopy to distinguish elastic
small by virtue of the low probabilities of spontaneous tran-and inelastic scattering channels of molecules.
sitions. For this reason, the methods of Doppler-free spec- This work was performed by photon echo and stimulated
troscopy of molecules make it possible to concentrate inveghoton echo methods. The coherent nature of these phenom-
tigations on homogeneous collisional line broadening. ena gives these Doppler-free spectroscopy methods a number
Collisions change the internal state of the active particleof advantages over saturated-absorption methatteder op-
(absorbing or emittingand/or the state of the translational timal echo excitation conditions coherent spectroscopy meth-

1063-7761/99/89(1)/6/$15.00 24 © 1999 American Institute of Physics
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ods give a large increase in the signal/noise ratio and areesult of which the coherent emission from the medium de-
completely free of field-induced distortions. cays. This dephasing phenomenon can be detected as a decay
of free polarization agains the background formed by the
trailing edge of the exciting pulse. Doppler dephasing does
not lead to irreversible damping of the excitation — the mi-
croscopic polarization of individual particles continues to ex-
Coherent transient processes, including photon andst.
stimulated photon echo phenomena, have been successfully The action of a second resonant pulge¢he photon echo
used now for more than thirty years to investigate relaxatioris formed on a narrow spectral line, the optimal pulse area is
processes in matter. For gases the theoretical description @f) can change the sign of the phase for each particle. Further
these phenomena is well developétThis makes it possible growth of Doppler phases according to the previous (aw
to use the photon echo and a modification of this method t@roportion to the time and the velocity projection,) cre-
check theoretical models of collisional interaction of par-ates conditions for restoring the phasing of the radiation of
ticles experimentally. the particles that have interacted with the second exciting
We shall present a qualitative picture of the formation ofpulse at a moment approximately equal to twice the delay
echo responses in a gas of two-level atoms under the actidime T, between the exciting pulses. At this moment the
of unidirectional radiation pulses with the same frequency. macroscopic polarization of the medium is restored and
Modern photon echo theory is based on the semiclassicapontaneous emission from the particles is detected as coher-
approximation. The state of the medium is described by a&nt emission — the so-called photon-echo signal. The dura-
density matrix, and particle motion as well as relaxationaltion of the echo pulse is likewise of the order of the duration
processes are taken into account. The interaction with radiaf the exciting pulses.
tion is studied in the dipole approximation, and the radiation ~ The intensity of a photon echo is sensitive to inelastic
field is assumed to be classical. The dynamics of the intereollisions, as a result of which the particles leave the energy
action of a quantum system with resonant radiation idevels participating in the formation of the photon echo, and
well known to be determined by the Rabi frequencyto elastic collisions changing the translational velodityis
x=d- & /h, which characterizes the transition dipole mo- change affects the Doppler phasdfthe change in the lon-
mentd and the intensity?; of the electric field of the reso- gitudinal projection of the velocity is large, which corre-
nant electromagnetic radiation of thi pulse. If the dura- sponds to a strong-collisions model, the particles which have
tion of a pulse of resonant radiation is sufficiently short, thenundergone such collisions cannot then participate in the for-
under the action of the radiation field a two-level system cammation of a coherent response. For small changes in the ve-
complete only a part of the period of the Rabi oscillations.locity (weak collision$ the result depends on the delay time
This result in the formation of nonequilibrium populations of between the pulses. Such collisions can have a negligible
energy levels and nonzero polarization of the medium. Annfluence on the amplitude of the echo response for short
important parameter of photon echo theory is the area of thdelays and contribute to damping of the photon echo only for

2. MANIFESTATION OF VARIOUS INTERMOLECULAR
COLLISIONS IN PHOTON-ECHO PHENOMENA

exciting pulse large delaysT,,. As a result, nonexponential decay kinetics
of a photon echo with increasing relaxation rate is observed
6,= f d- £ (t)dt. for long delays7. The damping of a photon echo on the initial

section is determined by inelastic processes — rotational re-

If echo formation occurs on a narrow spectral line, i.e., if thelaxation, and the total contribution of elastic and inelastic
width of the spectrum of the exciting radiation is greater thanscatterings characterizes the decay rate for long délays
the Doppler width, the largest deviation from the equilibrium The effect of a second pulse can be not only to change
state is produced by a pulse with aa= 7/2. Likewise, in  the sign of the Doppler phase, which is equivalent to a phase
the opposite limiting case of echo formation on a wide specjump by the amounA ¢= —2kv,T4,. The second pulse also
tral line there exists an optimal area of the exciting pulse forconverts the nonequilibrium values of the off-diagonal ele-
the formation of the photon echo signal. ments of the density matrix to on-diagonal elements, i.e.,

At the moment when the exciting pulse ends, the parmicroscopic polarization into nonequilibrium populations of
ticles which have interacted with the exciting radiation andthe energy levels. The Doppler phadas T,, accumulated
have different velocity projectiong, are in-phase. As a re- up to this moment are stored in the populations of the energy
sult, a macroscopic polarization arises in the system. Thigevels, and they can be stored in the medium for a long time,
polarization engenders coherent spontaneous emission frodetermined by the irreversible relaxation of the energy lev-
the gas sample at the frequency of the exciting radiationels. A third pulse in the form of a traveling wave arriving
However, such a coherence state does not last long, sineéth a time delayT,; after the second pulse can convert
particles belonging to different velocity groups emit at dif- these nonequilibrium populations once again into the off-
ferent frequencies, shifted relative to the line centgrby  diagonal components of the density matrix and produce by
the amountAw=w— wy=kv, on account of the Doppler the phase jump mechanism described earlier the conditions
effect. In a time of the order of the duration of the exciting required to observe a coherent echo response at thettime
pulse after the pulse ends, the difference of the Doppler=T,; +2T,, — a stimulated photon echo. If an echo is
phases¢p=kv,t between particles moving different veloci- formed on a narrow spectral line, the optimal areas of all
tiesv, increases linearly with timéDoppler dephasingas a  three pulses for the amplitude of the stimulated photon echo
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log/pg, arb. units i0g (fp = Iy). arb. units FIG. 1. a — Decay kinetics of the photon echo
-0.5 -1.0 signal in Sk gas at pressure 2.5 mtorr. The gradual
~1.0+ a R change in the slope of the curve reflects the increas-
-L37 ing role of elastic scattering by small angles with
-1.5¢ 5ot increasing delay time. The critical delay time is ap-
o proximately 3.3us. The straight lines are least-
-2.0r 5l squares lines drawn through the points before and
25k -2.5 after a delay of 3.3s. b — Decay kinetics of the
’ photon echo signal in the gas mixture 2.5 mtorr
3.0+ -3.07 SK;+ 3.5 mtorr He.l, — Photon echo intensity at
the same SEpressure but without a buffer gas. The
-3.57 =351 curve can be approximated by a straight line, since
40 . ) N ) ) 40 ) . ) X elastic ‘and inelastic collisions appear in_ the entire
1 B 3 4 5 6 7 5 3 4 5 5 accesablg range of delays. The I|_ne is a Ie_ast-
DELAY TIME Ty, s DELAY TIME T,,, s squares line drawn through all experimental points.

are w/2. It is obvious that a stimulated photon echo shouldmixtures of Sg gas with He and Xe buffer gases on the
be sensitive only to relaxation processes acting on the popuransition P(33)\} of the vibrational modes;. The exciting
lations of the resonant energy levels during the delay timgulses were formed, using an electro-optic shutter, from the
T,3 between the second and third exciting pulses. Weak elasadiation of a continuous-wave GQaser with of the order
tic collisions during this time interval should not affect the of 10 kHz linewidth and with generation frequency near the
amplitude of the stimulated photon echo. center of the experimental transition in SF

Experiments in a molecular gas ordinarily employ de-  Figure 1a demonstrates the typical kinetics of the loga-
generate transition@ypical angular momentd=10—-100).  rithm of the intensity of the photon echo in SBas with a
This degeneracy must be taken into account when studyingonlinear section at the beginning of the curve, attesting to
the polarization properties of coherent responses. On thgonexponential decay of the echo signal. As already men-
other hand, the polarization features of echo generation opefbned in Sec. 2, the nonexponential behavior for short delays
up new possibilities for studying the characteristic featuresetween the exciting pulses is due to weak collisions. The
of collisional interactions. Thus, in Ref. 8 it was suggestedadditional dephasing of the ensemble of excited particles as a
that a stimulated photon echo be produced using light pulsegsult of weak collisions is determined by the expression
with specially chosen polarizations, making it possible to
study the so-called depolarizing collisions, which are simply 0p=kov,T1p,

coI_Iision_s that Qestroy the nonequilibrium polarization St_ate%here sv, is the collision-induced change in the projection
(orientation, alignment, and othgrormed on the magnetic ¢ yhe yelocity. If 5¢<1, then the contribution of velocity

sublevels of degenerate resonant levels. In in this methody,anging collisions to the decay of the photon echo can be
investigation of the decay kinetics of a stimulated phc’to”neglected and it can be assumed that the decrease of the

echo asa function C?f _the delay ting; makes it possible to photon echo with increasing deldy, is determined only by
determine three collisional decay rates for the resonant quaiajastic relaxation. On the other hand. the condition

tum levels:y'®) — the population relaxation rate\”) —the 5, 1 _ . qetermines the critical delay, between the
orientation decay raté&he orientation of an energy level by pulszesc, so that fof;,> T, the contributionc of weak colli-
resonant polarized radiation corresponds physically to thgjns t5 decay of a photon echo can no longer be neglected
production of a(rg;acroscomg magnetic-dipole moment in the, 4 the decay rate reflects the total contribution of inelastic
medium, and '~ — the alignment decay ratéhe align-  , 5ceq5es and elastic scattering by small angles. Thus, for

ment of an energy level corresponds to the induction of & T the decay kinetics of a photon echo is determined by
macroscopic electric quadrupole moment in the samplee o rojaxation rate/®) of the nonequilibrium populations of
differences in the values of these relaxation constants makeﬂtIe energy levelérotational relaxatioyy and the sectiofl ,,

possible to judge the presence or absence of asymmetry 11 akes it possible to measure the total relaxation rate
the interaction potential of the colliding particles.
The above-enumerated features of coherent transient I'i=%?+T .

rocesses give hope that various types of collisions can in .
Erinciple begstudieclia separately P wherel’ .. is the decay rate of the photon echo as a result of

elastic relaxation(velocity changing collisions In accor-
dance with this interpretation, both relaxation raj#% and
I' .. for pure Sk gas can be determined in photon-echo ex-
The experimental technique, based on the application gberiments performed for a wide range of deldys.
radiation from a continuous-wave narrow-band frequency- The decay kinetics of a photon echo in gas mixtures due
tunable CQ laser, a reference heterodyne laser, a system db collisions of resonant molecules with buffer-gas particles
electro-optic shutters for forming pulses, as well as lasers somewhat different from decay in a pure gas. For a mix-
locking and measurement automating systems, is describadre with xenon it is still possible to distinguish at the start of
in detail in Ref. 4. The photon echo was investigated in theahe kinetic curve a deviation from exponential behavior,
range of delayg,, from 1.5 to 10us in pur Sk gas and in  whereas in Sf—He collisions(for delaysT;,> 1.5 us acces-

3. EXPERIMENTAL RESULTS
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TABLE I. Inelastic relaxation rate/®) and the total rat& , of elastic and inelastic processes measured by the
photon echo method and estimates of the characteristic diffraction scattering angle and critical delays

Collision @ | R Pws \p, 0 &v,, T

, ) G
partners 10s . torr ! 10° s t-torr ! A A 10 % rad cm/s 10% s
Sk;— Sk <36+4.5 49.8+6.3 8.3 0.03 3.6 145 3.4
SK,—Xe not measured 27647 6.1 0.029 4.8 199 25
SFK,—He not measured 4467 3.8 0.13 3.5 4995 0.1

sible experimentallya monoexponential decay of the inten- T,,andT,;. The intensity(amplitude of the stimulated pho-
sity of the photon echo is observed, as Fig. 1b demonstrateton echo signal arising at the timte=2T,,+ T,3; depends
We shall endeavor to estimate the characteristic scatteguite strongly on the relative polarization of the exciting
ing angle as the diffraction anglé? using the ratio#  pulses — it is highest when the polarization vectors of all
=Ap/pw, Where the de Broglie wavelengtty =7%/uv g, three excitation pulses are parallel and lowest when the po-
u is the reduced mass of the collision partners, ang larization plane of the first pulse is rotated. Optically hetero-
=\8kgT/7u is the relative average velocity. The Weis- dyning was used to increase the sensitivity of detection of
skopf radiusp,, can be determined from the experimental stimulated photon echo signals corresponding to rotations of
data according to the formulay~0.365/T o/ NpuVren 22 the polarization of the first or second exciting puls€3he
where n,,; is the buffer-gas density. The diffraction- working laser was tuned to the center of the transition in
scattering angles calculated in this manner can be used ©F;, and the laser heterodyne frequency was off set by a
estimate the average change in the translational velocity ifixed amount using a frequency lock system. The strength of
weak collisions according to the relatidiv,~ 6v,. Inturn,  the detected signal is proportional to the amplitude of the
the velocity change in elastic scattering by small angleslectromagnetic field of the coherent response of the me-
makes it possible to estimafe.= w/kdv, and compare it dium.
with the experimentally observed value. The chosen vibrational-rotational transition in gSF
Table | shows the values af?, 'y, pw, \p, 6, 8V, makes it possible to use the large angular momentum
and T, for the collisional pairs Sf~SF,, Sk—He, and approximatiofi® (J is the angular momentum of a energy
SFK;—Xe. Estimates of the critical delay show good agreedevel). Another substantial simplification is due to the fact
ment with experiment in pure gas, and they explain the weakhat the relaxational characteristics of the upper and lower
nonexponential behavior in the mixture with xenon and thedevels of IR transitions are, as a rule, close in magnit(ate
absence of such behavior in the mixture with helium. It canis confirmed by the small contribution of phase-interruption
be concluded from the results obtained that the investigationollisions to the line broadening™.
of the decay kinetics of a photon echo in a wide range of ~ The collisional decay rates of the populatiop’, the
delays makes it possible to distinguish elastic and inelastiorientation 1), and the alignment/?) measured by the
contributions, if both ranges of delays between the excitingstimulated photon echo methGdare presented in Table 1.

pulses are accessible experimentally;<T, and T,>T,. For gas mixturesy!®) could not be measured by the
This condition is easier to satisfy by choosing a collisionstimulated photon echo method because of the weakness of
partner with a large mass. the echo signals. However, the measured orientation and

The stimulated photon echo method provides anothealignment relaxation rates can easily serve as an upper limit
possibility for distinguishing different types of collisions. A for the inelastic relaxation ratey!®), since = (®)
stimulated photon echo was produced iny §&s on the same +I'(*),8 where the positive additive correctidi*) describes
transition P(33/)\§(0)—>1 of the vibrational mode’; under  the collisional decay of the multipole moments produced on
the action of resonant radiation pulses cut out, using an eleclegenerate resonant levels. Indeed, as one can see by com-
trooptic shutter, from continuous-wave linearly polarized ra-paring the rates(*) in Table Il for pure Sk, the population,
diation from a CQ laser operating on the B§18) line. An  orientation, and alignment decay rates differ by 10—25%.
additional electro-optic crystal placed after the forming shut-  We also call attention to the fact that the value obtained
ter made it possible to rotate by 90° the linear polarization of
any of the three excitation pulses separated by time delays

TABLE lll. Total cross sectionsr, and cross sections for elastic and
inelastic scatteringsr,.. ando,y, obtained by comparative analysis of the
TABLE Il. The results of stimulated photon echo measurements of thephoton echo and stimulated photon echo experimental data. Estimates of the

populationsy!®, orientationy¥), and alignment/(?) relaxation rates. gas kinetic cross sectiom,;, are presented for comparison.

Collision 'y(o), ‘y(l), 7(2), Collision Oyces Oot Tioty Oin »
partners sl.torr? s t.torr?t s ttorr ! partners R Az Az Az

SF,—SF, (29+3).10° (32+3)-10°F (38+3)-10P SF,-SF, 150<0,,<185  350<0,,<385 535 120
Sk,—Xe not measured (162)-10° (16+2)-10° Sk,—Xe 120<0y=280 <160 280 95

SRs—He not measured (364)-1¢° (47+4)-1¢° SK—He 20<0<105 <85 105 55
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for (% in polarized stimulated photon echo experiments is5. CONCLUSIONS
less than value obtained for® from the initial section of
the kinetic curve of the standard photon echig,& T.) and
presented in Table I. The reason for the discrepancy is th
elastic collisions cannot be absolutely neglected even fo
times 0<T,,<T,; such collisions are always present. Since

their role increases witff1,, it can be concluded that the . . i~
12 n a wide range of delays between the exciting pulses has

discrepancy in the values of(® would not have been so L . S .
noticeable if it were possible to advance along the kinetiCQemonstrated that it is possible to distinguish the contribu-

curve of the photon echo to shorter deldays,, which is t'ﬁnf of thﬁ ellzist|3§?d 'nSAaSt'C ?roces?ttas |r|1(-thet-decay offa
technically very difficult to accomplish. In addition, when photon echo. In addition, the sections ot the Kinelic curve o

. . hoton echo with different decay rates are more clearly
the delay time decreases to approximately half the pulse di. P/0t! . i .
y bp y P (Hstmgwshable in pure SFgas. For gas mixtures elastic and

ration it becomes necessary to take account of the relaxatia . R .
during the application of a pulsé. E;E?t;:agrocesses can be distinguished by using a heavy
For elastic and inelastic scatterings ofgSR gas mix-
tures, the collision cross sections increase with the mass of

4. DISCUSSION the buffer particles.
) ) ) ) The stimulated photon echo method made it possible to

The data n Tables_ | and Il me_lke I p035|bl_e to eStImateinvestigate depolarizing collisions by measuring the relax-
fche Cross sect_|ons for inelastitationa) relaxation of _SE ation rates of the populations, orientation, and alignment.
in collisions with He and Xe as well as the cross sections fofry g g jentation and alignment relaxation rates measured by
scattering Pf Sk by sm.all anglesEO;n collisions with these the stimulated photon echo method can be used to determine
buff(%;s, using the relations o= y/nVre and ovee= (ot the ypper limit on the inelastic relaxation rates, which cannot
— V)NV The re_sultg of these est_lmates are presented. 'Be measured directly by the photon echo method in mixtures
Table Ill. The gas kinetic cross sections obtained for colli- SF, with a buffer gas.

sional pairs from data on the viscosity and diffusion of A combined analysis of the data obtained by photon and

7
gases’ in the hard-sphere model are also presented for COMstimulated photon echo methods gave a complete set of cross

parison.. ) . sections for elastic and inelastic processes for the collisional
It is evident from Table Il that the elastic scattering pairs Sk—SF,, SR—Xe, and SE-He

cross section for a heavy active Sparticle is greater for We thank the Russian Fund for Fundamental Research

collisions with a heavy buffer than for collisions with a light ¢ supporting this workGrants Nos. 97-02-18496 and 98-

buffer. This assertion is also true for the cross sections 062-16390 and we gratefully acknoWIedge the support pro-

inelastic processes. ; ; “ S
i . vided by the State Science Program “Laser Physics.
Our experimental value ofr,, for SF;—SFk; collisions y g 4

was found to be at least three times greater than the value of

the gas-kinetic cross sectiary;, calculated from the viSCOS-  ©g.mail: eugeny@isp.nsc.ru

ity and diffusion coefficients. The relatios,,~ 30, fol-

lowing from Table Il means that the relaxation of the non-

equilibrium population of a rotational sublevel of S5 on

the average three times more frequent than gas-kinetic colli¢v. G. Minogin and V. S. LetokhovThe Pressure of Laser Radiation on
sions. This surprising fact for a nonpolar molecule can be Atoms(Nauka, Moscow, 1986

) _
explained if it is assumed that there exists an exchangegi'e'(\l(gg%'e”ko' Usp. Fiz. Nauk3§(4), 593(1982 [Sov. Phys. Usp25,

mechanism of rotational relaxaticf. 3S. G. Rautian and 1. I. Sobel'man, Usp. Fiz. Na@@ 209 (1966 [Sov.
In the rotational relaxation modélthe average number  Phys. Usp9, 701(1967].
Z,o: of gas-kinetic collisions required to establish equilibrium _L- S: Vasilenko and N. N. Rubtsova, Laser Phys1021(1997).

. . . 5L. Allen and D. G. C. EberlyOptical Resonance and Two-Level Atoms
with respect to the rotational states can be determined as (Wiley, New York, 1975 [Russian translation, Mir, Moscow, 1978

51. V. Evseev, |. V. Ermachenko, and V. V. SamartsBepolarizing Col-
3(1+2b 2 lisions in Nonlinear ElectrodynamiagdNauka, Moscow, 1992
_ (1+2b) L. S. Vasilenko and N. N. Rubtsova, Opt. Spektrds®.697 (1985 [Opt.
rot 8b ! Spectrosc58, 422 (1985)]. )
81. V. Evseev, V. M. Ermachenko, and V. A. Reshetov, Zlksf Teor.
Fiz. 78, 2213(1980 [Sov. Phys. JETB1, 1108(1990].
which holds for “rough Sphere” mo|ecu|é§,which general °A. P. Kol'chenko, A. A. Pukhov, S. G. Rautian, and A. M. Shalagin, Zh.

hvsical nsideration how SHol I Her Eksp. Teor. Fiz63, 1173(1972 [Sov. Phys. JETRB6, 619 (1973].
E );S 0621 C()h S de. atr? S sho §f .O ec_u € ftohbe .e ® 10y, P. Chebotayev and L. S. Vasilenko, Progr. Quant. El&®) (1983.
fl pa "W erel is the moment o |.nert|a of the active par- up p, Kol'chenko, S. G. Rautian, and A. M. Shalagin, Preprint No. 46,
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Photon and stimulated photon echo methods make it
ﬁossible to study different types of collisions: rotational-
elastic collisions, elastic scattering by small angles, and
depolarizing collisions.
Our investigation of the decay kinetics of a photon echo
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A new method is proposed for describing selective excitation as the addition of information to a
thermodynamic system of atoms, decreasing the entropy of the system as a result. This
information approach is used to calculate the light-induced drift velocity. The computational
results are in good agreement with experimental data.1999 American Institute of Physics.
[S1063-776(19900607-1

1. INTRODUCTION which interact with a traveling light wave and undergo col-

. lisions with buffer-gas particles. Most experiments on light-
The observance of the second law of thermodynamics is gas p P g

f : . . Pduced drift have been performed with alkali-metal vapors
or all practical purposes, never considered in the study o .
the interaction of laser radiation with matter. It is assumed" 2" inert-gas atmosphere.

- . ,
that this law is observed automatically because of the strong Laser rad_latlon W_'t_h frequenay” close .to the frequgncy
increase in the entropy of the photons. Since this law is a0 ©f the main transition of an atom excites predominantly
inequality for strongly nonequilibrium processes, it cannot2!oms having a velocity such that the corresponding Doppler
be used to calculate some parameters on the basis of tigduency shiftk-v (k is the wave vectgrcompensates the
other parameters. However, in certain cases of selective eftequency offset»” —w,. Therefore a dip near the velocity
citation and of the collective process which it engenders, a@ppears in the velocity distribution of atoms in the ground
atomic system whose internal energy remains constant and &ate and a corresponding peak appears in the distribution of
which no heat is transferred can be studied separately. ThHbe atoms in the excited state. The average velocities of at-
action of the laser radiation can be described as the additiooms of each kind are nonzero and oppositely directed. Since
of information to the system. Light appears to mark the atthe excited atoms are subject to a greater resistance due to
oms that possess a prescribed property. In such a system thg buffer gas, the total flux of gas interacting with the ra-
process is close to equilibrium, and the inequality in the exdjation is likewise nonzero.
pression for the second law of thermodynamics becomes an  The question of the entropy change in such a system of

equality. atoms and photons is briefly considered in Ref. 7. It is shown

In Ref. 1 a generalized formulation of the second law of{are that the entropy decrease in the system of atoms is

thermodynamics is proposed for an isolated system. AcCOrdy, oy smaller than the entropy increase in the system of pho-
ing to Ref. 1, the entropy increas#H together with the

; ) . . . ) tons. The total entropy increases, and the process is irre-
informationd| entering the system satisfy the inequality

versible.

dH+dI=0, (1) However, the atoms can be studied separately. The pres-
sure in experiments with light-induced drift is much less than

where : .

atmospheric pressure, and the temperature is near 400 K, so
that the ideal-gas model is quite applicable to the mixture.

I=kg>, PInP, ) 9 q pp

1

The interaction cross sectigwhich changes when a photon
is absorbefldoes not appear in the equations describing the
behavior of the thermodynamic parameters. Hence it can be
assumed that this ideal gas is not subject to external pertur-
. . . bations and that the system is thermodynamically isolated.
The second law of thermodynamics without the informa- .

The entropy and internal energy of such a system do not

tion term, which, conventionally, can be neglected sikge L o o
is small, is ordinarily used to describe various thermody-Change' But the light-induced drift itself testifies that the en-

namic processes. In the present paper it is shown that whefPPY decreases, since part of the internal energy is converted
information is recorded on each atom of the system the inlNt0 ordered motion, as a result of which the temperature
dicated term plays an important large role and can decreadecreases. This contradiction can be resolved by keeping in
the entropy. mind that the light adds to the system information about the

As an example of such a process we shall consider lightdirection of motion of the particles. Light appears to mark
induced drift, which was predicted in Ref. 2 and has nowthe atoms moving in a prescribed direction. Then the entropy
been well studied=® The crux of the effect is that there decrease in the system does not exceed the amount of infor-
appears a directed macroscopic flux of absorbing particlemation entering the system.

is the information. The terrd| is added in connection with
the discussion of the influence of the so-called Maxwell’'s
demon.

1063-7761/99/89(1)/5/$15.00 30 © 1999 American Institute of Physics
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2. SECOND LAW OF THERMODYNAMICS FOR 4. INFORMATION AND THE PROBABILITY OF ABSORPTION
AN ADIABATICALLY ISOLATED SYSTEM OF A PHOTON

The characteristic transition time to the drift state is  The information recorded on each sodium atom is deter-
identical to the free-flight time of a metal atom. When this mined by the expression
time has elapsed, the velocities of the atoms change, and |
information is lost and rerecorded by a new flux of photons.  |(P)=Ke[PInP+(1=P)In(1-P)], ™

At such short times heat-exchange with the thermostgt can RfhereP is the probability that an atom moving in one of two
neglected and_t_he sys_tem_can be assumed to_ be_ adlabatlt_taéjh‘ections will be marked by being transferred into an ex-
closed. In addition, drift with a constant velocity is an equi- tjted state. In what follows. we shall study a one-
librium process. Then the expressidn becomes an equality gimensional problem and we shall assume the velocity to be
its projection on the direction of propagation of the beam.
Since information is recorded on each sodium atom, the
amount of information added to the systemuil, times
3. THE ENTROPY CHANGE AND THE DRIFT VELOCITY greater ¢ is the fraction of sodium atoms in the mixture and
N, is Avogadro’s number
According to the law of conservation of momentum, the From Eq.(7) follows
flux of metal atomg(sodium in most experimentss com-
pensated by an opposite flux of the buffer gas: Al=vR[PInP+(1-P)In(1-P)]. (8)

The maximum amount of information will be added to
the system if a wide-band laser radiation marks all metal

whereu andu are the velocities anthy, andm, the masses atoms moving in the same direction and does not mark any

of the molecules, andy, andn,, are, respectively, the con- atom moving in a different direction, i.e., B=1/2. This is

centrations of sodium and buffer gas. Since entropy is addiossible if the spectrum of the laser radiation “covers” ex-
tive, the entropy change can be written as actly half the Doppler spectrum, i.e., the laser spectrum de-
’ cays rapidly in the wings. This same conclusion can be

AH=NgAH4+NyAHya, drawn on the basis of a complicated kinetic i.nvestiga}?ion.
We shall now calculate the probabili§y of information

whereNy, andN, are the numbers of metal and buffer-gas begin recorded on a single atom about the direction of mo-
atoms, respectively. In the mixtures employed, the metation of the atom.

concentration is more than 4@imes lower than the buffer- The information recording time is the time interval dur-
gas concentration. No large changes in the entropy of th#g which the velocity of an atom does not change much.
metal occur. Therefore the second term can be neglected, afdis time is close tor, if the buffer-gas atoms are heavier
the buffer-gas concentration can be assumed to be the sarffitan the metal atoms and one collision is sufficient for infor-

dH=—dlI. (3

UMyaNna= UgMgNyg, (4)

as the mixture concentratiam mation about velocity to vanish. In the general case it is
The ideal gas model can be used to determine the err(1+ Mya/Mg).
tropy change. Then we have per mole The number of photons with frequeney (wavelength
\) entering the region of interaction with an atom over this
3 T time is determined by the expression
AH=sRIn—,
Na
M=-—o7| 1+ ) ,
hw 9

whereT; andT; are the initial and final temperatures aRd

is the universal gas constant. where J is the radiation intensity and is the interaction

The appearance of a macroscopic flux with drift velocity ¢ross section neglecting Doppler broadening, since the latter
ug means(for constant internal energy of the systetimiat the  \ij| be taken into account separately, and collision broaden-

temperature decreases by the amaung/3kg . Then ing, since phase interruption does not occur over the free-
flight time. Then
2
3 2ug
AH:—RIn(l——_), 5 NMAw
2 3v?Z o= '
9 4Aw|
wherevg is the mean-square thermal velocity of the buffer-yhere A w is the natural linewidth and w, is the width of
gas atoms. o _ the laser spectrum.
Substituting the expressid8) into Eq.(5) and then into Each of these photons interacts with an atom with prob-
Eq. (4) gives the drift velocity as a function of the informa- apjlity P, taking account of the dependence of the transi-
tion: tion frequency of an atom on its velocity. The probabilty

_ _ is given by Maxwell's distributior(since the frequency and
L LN 24l velocity are uniquely related by the relatiom— wq
u= vgl1—expg ——1 |- (6) _

MNaNNa g =2mVIN):

3
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(0— wg)? Substituting the expressiofil) into Eqg. (8) and then
Pp=Aexp———, into Eq. (6) we find the frequency dependence of the drift
@ velocity. This dependence has a characteristic, centrosym-
where a=272kgT/myA? and A is a normalization con- Mmetric relative to the pointd,0), tilda-shaped form. The
stant. expression6) makes it possible to find analytically the op-
What is the probability of a given direction being timal radiation intensity and the optimal pressyse(on
marked? The difficulty of this question is due to the fact thatwhich the free-flight time depends as-1/p).
the absorbed photon contributes information not only about
the direction of motion of the particle but also about
the velocity of the particle. To take account of the effect of
the velocityv of the marked particles on the drift velocity The dependences of the drift velocity on the frequency
u it is convenient to represent in the discrete form and intensity of the laser radiation and on the type and pres-
vi=Av[v/Av], where [x] is the integer part ofx and sure of the buffer gas have been obtained in Ref. 6, where
Av=NAw/27 plays the role of the resolving power of the experimental results on light-induced drift of sodium in inert
radiation measuring the velocity. We shall consider the casgasegzenon, argon, and heliunare presented. To compare
Av< \/? Then the motion of a single particle with velocity the above-described theory with experiment, a more realistic
v; is equivalent to the motion dfquasiparticles each moving scheme of Na levels, taking account of the hyperfine splitting
with velocity Av in the same direction. Thus, we obtain a of the 3S,,, ground state into two levels -1 with degen-
gas of quasiparticles with velocitiesv and —Av differing  eracy g;=3 and F2 with degeneracyg,=5 (Awpis
only by the direction of motion. The interaction can be as-=2-1772 MHz) — must be considered. This splitting is of
sumed to mark one of thé such particles but with a the same order of magnitude as the Doppler broadening of

5. THREE-LEVEL MODEL OF LIGHT-INDUCED DRIFT

i=[v/Av] times greater probability the spectral lines and introduces an uncertainty in the record-
5 ing of information about the direction of motion of a sodium
(@i~ wo) atom.
Pi=A|wi—w0|eXp—2- 9 o o . .
a The probability of excitation of an atom is once again

given by Eq.(11), but Eqg.(10) cannot be used to determine

Here we took account of the fact thatAv=(w—wo)/A®  p(int). The fact that an electron can undergo a transition
and we have incorporated al;-independent factors into the  om the levelF1 or from the levelF2 with probabilities

normalization constant. To sum the probabilit{®sin order

to calculate the normalization constant, it is convenient to AwQg, (0—Awpge)?
use the fact thahw<<a and to switch to integration. We Pl:(g +g Wra EXp o?
obtain 1ee
Awg, w?
Aw (w;j— wg)? Py=———————exp—, (12
Pi:?hﬂi_woleXpT- (gl+92)\/;a aZ

respectively, must be taken into account. The frequency is
Switching back to continuous frequencies does not intromeasured with respect to the frequency of the transition fre-
duce any substantial changes: quency from thé=2 level. The probabilityP(int) is given by
5 the sum ofP; andP,:
(0= o)

e w Aw (0—Awpe)? w?
P(int)= —————=—| g1exp—————— + g exp—; |.
is the probability that one photon, which has entered the (91+9) ma “« “«
region of interaction with an atom, interacts with the atom ) } ] o (13
(int) and records information about the direction of motion of I the ground state is split, the interaction itself does not
this atom. uniquely mark the direction of motion of an atom, as hap-
It is necessary that over the free-flight time the interacPened in the two-level model. TherefdPint) does not de-
tion has occurred an odd number of times, since if the firsfermine the information recorded on an atom, but rather it
interaction transfers the atom into an excited state, then th@fmMPly gives the number of atoms participating in the record-
second interaction leads to induced emission, the third intef9 Of information. The information itself is determined by
action once again excites the atom, and so on. Therefore dff€ conditional probability>(t dir/int) of error-free(t) deter-
even-numbered interactions erase information. The averaggination of the direction(dir) provided that an interaction
number of interactions i®(int)M. The probability of the occurred at frequency. The expressiofB) can be rewritten
number of interactions being odd is probabilityR{intyM @S
~ 1. Then the probability of three or more interactions can be  A|=yRP i(P[tdir/int)]. (14)
neglected. We obtain the probability that over the free-flight
time information about the direction of motion of an atom
will be recorded on the atom and not erased:

) Aw
P(int) = — |w— wo|exp
o

If an interaction has occurred at a frequency in the inter-
val o = Aw/2, then there are only two possible variants: The
direction of a particle is determined incorrecilf) or cor-
P=P(int)M[1—P(int)]M 1. (1)  rectly (t):
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u, m/s

-5.5¢

p, torr

FIG. 3. Drift velocity versus the pressupefor xenon withJ= 10 W/cn?

and w=1.15 GHz.
FIG. 1. Drift velocity u versus the offseb of the laser frequency. Compu-

tational results(lines) and experimental data(dots: 1 — helium (A),
p=10 torr,J=12 W/cn?; 2— argon @), p=8.1 torr,J=8 W/cn?; 3 —

venon ), p=2 tort =12 Wirt: Spondinaty the prabaniiny of nomuniue derenlnaton i
P(2)=2P,P,
P(tdir/int)=1-P(fdir/int). (19  and has a maximum between the frequencies of the transi-
It is simpler to findP(fdir/int) as tions from the level$=1 andF2.

If the ground state is determined uniquely, the probabil-
ity of an error in determining the direction is zero:

P(fdir/1)=0.

If the level is not determined uniquely, the probability of
an error in determining the direction is the same as the prob-
ability of determining any direction. We have similarly to the
expression(10)

P(fdir)
P(int) ’

whereP(f dir) is the probability that the interaction occurs at
frequencyw and in the process the direction of motion of the
atom which has interacted with the light will be indicated
incorrectly.

Evidently, the direction of motion of the marked atom
depends on the type of ground stafel or F2. Once again
there are only two variants: the type of ground state is deter- P(fdir/2)= 5
mined uniquelyP(1) or nonuniquelyP(2). HenceP(fdir) 91t Q)
can be represented as

2 X exp

P(folir)z_El P(fdir/j)P(j).
=

P(fdir/int)=

g1(w—Awpts)

(0—Awpyge)? 2

w
—— T Qwexp—|. (16)
o o

Substituting the expressiofib) into Eq. (14) and the
P(1) is the sum of the probabilities that the type of theexpression(14) into Eq.(6) gives the frequency-dependence
particlesF1 andF2 is determined uniquely: of the drift velocity.
In Figs. 1-4 the theory is compared with the results of
P(1)=P1(1=P2)+P5(1-Py), the experiment described in Ref. 6.
To obtain the theoretical curves the ratiof the sodium
and buffer-gas concentrations was treated as an adjustable

u, m/s . parameter, since its value was not given in Ref. 6. However,
5 5 = it should be noted that this parameter alone makes it possible
to obtain the correct dependences of the drift velocity on four
t J, Wicm?
0 . . h
4 8
- L—-4 u, m/s
-2t 0 He Ar Xe
. _
g
—4r ’_QI§_< -4 i
’ 3

FIG. 2. Drift velocity versus the laser radiation intensityComputational -8

results(lines) and experimental datgdots: 1 — helium (A), p=6 torr,
w=1.1 GHz;2—argon @), p=8.1torro=—0.3 GHz;3— xenon ©), FIG. 4. Drift velocity versus the type of buffer gag=5.4 Torr,
p=1.4 torr, 0=1.1 GHz. J=12 Wi/cn?, andw=1.1 GHz.
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different parameters for xenon and argon. For helium the Generalizing this result, it can be stated that the behavior

transition time to the drift state is also an adjustable paramef a complicatedi.e., described by a large number of differ-

eter, since the approximations employed are inapplicable iént parametejssystem is similar to that of a random system.

the mass of a metal atom is much greater than the mass offehe complexity could be due not only to the large number of

buffer-gas molecule. particles, but it can also be due to the large number of factors
The drift velocity v as a function of the offset of the influencing the process. Such a complicated system should

laser frequencys, measured from the frequency of the tran- be described by statistical laws in the language of thermody-

sition F2, is shown in Fig. 1 for various buffer gases, radia-namic parameters.

tion intensities], and pressureg. 6. CONCLUSIONS
It is evident that the theoretical and experimental results”

for argon and xenon are in good agreement with one another. The foregoing analysis has shown that there exist real

In contrast to the similar curves in the two-level model, ourPhysical processes whose description requires the second law
plot becomes asymmetric. of thermodynamics in the generalized formulation given by

For helium the theory gives only an approximate de-Stratonovich, i.e., taking account of the information entering
scription, since if the mass of the buffer-gas atoms is small, ifhe system. One such process is selective laser excitation of
cannot be assumed that information about the direction ofetal atoms in a buffer gas. Taking account of the informa-
motion of a metal atom is erased after one collision. Theion introduced into the gas mixture makes it possible to
discrete-time description is not completely applicable forcalculate the light-induced drift velocity and to obtain good

such systems. agreement with the experimental data on the basis of a com-
Figure 2 shows the drift velocity as a function of the Paratively simple model. It has been shown that a thermody:-
laser radiation intensity. namic system can mean not only a system consisting of a

The drift velocity increases with the radiation intensity large number of particles but also a system described by a
up to a certain value corresponding to saturation. Saturatiol@fge number of parameters.
is possible beacues over the free-flight time an atom can | am deeply grateful to Yu. A. Kravtsov for an interest-
interact twice with the radiation. This leads to induced emisJng discussion and a number of valuable remarks and B. A.
sion and erasure of information. The existence of a maxiSrishanin and A. S. Chirkin for reading the manuscript and
mum in the drift velocity as a function of pressure can befor helpful suggestions for improving it.
explained similarly.

Figure 3 shows the drift velocity as a function of pres-
surep for xenon. Finally, Fig. 4 shows the drift velocity as a
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A new class of exact solutions with a singularity at finite titeellapse is obtained for the
nonlinear Schrdinger equation. ©1999 American Institute of Physid$1063-776(99)00707-6

The nonlinear Schidinger equation, where the nonlin- wherep=|r| anquo is a real function.
earity corresponds to an effective attraction, arises in many |n contrast to Refs. 1 and 3, we shall seek the collapsing
physical problems. It appears that such an equation was firgp|ution in the form
obtained in an investigation of strong Langmuir turbulénce ~
and in the problem of self-focusing of wave beah&ubse- o(p.Hh =N{fe(pA(1)) (6)
guently, the nonlinear Schdmger equation was actively in-
vest|gated irrespective of the physical problem giving rise to
% In dimensionless variables the nonlinear Scimger
equation(NLS) is ordinarily written in the simple form
lg—w+Aw+|wlz"w 0, (1) IN(po.t)
ot

without imposing any preliminary constraints on the phase

LetN(pg,t) be the number of particles inside a sphere of
radiuspy. Then Egs(2), (5), and(6) give

—apo o (po>\)d Lo?(poN)

whereys is a scalar function in d-dimensional space antl
is the Laplacian operator. = _zaa_X)\dpg—lgDZ(po)\), 7
The uniform stateyy=aexp(a®t) is unstable with re- J
spect to infinitesimal disturbances for amy-0 [the disper-  \yhere o= a(d) and is determined from the relations
sion law isw?=K?(K?—20a?), ¢=(a+ dy)exp(@)].
For 0d<2, it appears that states of the form
I'(d/2)

b= exXp(—iot)(r),
In EqQ. (8) S(p) is the area of a sphere of radips From Eq.
where y(r) is a periodic function of the coordinates, are (7) we find
realized. Fored=2 Eq. (1) possesses solutions with a sin-
gularity at a finite timety,. We shall investigate such solu- %: _2‘9_)()\ 9
tions below. The equatiofil) conserves the total number of O gt dap
“particles” and the total energy. We find for the particle flux

densityj, the standard equation

In=i1(yVy* —y* V), V=grad. 2 x(p.t)=xo(t)—
The energyE, in a volumeV is given by the expression

2 412
dV=adpp®?, S(p)Zapdfl, a=—=—=. (8

The general solution of this equation is
p2 2N

4\ ot (10

where the functiong(t) and\(t) depend only on the time
1 1 t

=_ d 2_ T 1.2+ 0) .
Ev 2 J'vd r[ V¥l 1+o ¥ ] ' © Another equation — expressing the quality of the energy
flux through a surface to the change in the energy flux inside

Using Egs.(1) and(3) we easily find the volume — arises from Eq$3) and (4):

JEy 1 f (Vl//* a¢+ IP* @ q y oxo
=3 = 1] , 0
a2 )s a ot y° 1{@ (Y| ye (y)+§<p(y)) 2)\2¢(2y) 0
The equationg2) and (4) will be used below to obtain
the singular solutions of Eq1). YR AL 2 y2e? (N2
We shall seek the collapsing solution of Ed) in a AN2 O\ at oY (¢") aN6 | at
d-dimensional space in a spherically symmetric form
. . )\do 2
P(r,t)=oe(p,H)expix(p,t)), (5) ol b f dyy'” [(‘P(y))

1063-7761/99/89(1)/6/$15.00 35 © 1999 American Institute of Physics



36 JETP 89 (1), July 1999

i

N doado—2
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ot
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I

wherey=pg\. Let us assume thai(t) is a power-law func-
tion of the form

/

11

A~ (to—t) ", (12
Then from Eq.(11) we find

1 9[10N

B R _+\4v—-2

N at(x at) (to= ™%,

1 [on\?

N R _t+\4v—2

)\6((%) (to—t) ,

1l o 1 [on\? N ar o

NEiaE: - (= De—p™ e (13

From Egs.(13) it follows that there exist two values of the
parameter, v=1 andv=1/2, for which Eq.(11) can pos-
sess an exact solution in the case of the critical dimensio

do=2. If do+# 2, then there exists one distinguished value of

the parametep,

2
" 2+do’

for which the time-dependence of the “leading-order” terms

(14

14

is the same. Setting the sum of these terms to zero in th

regiondo>2 gives an equation for the collapsing function
in the leading-order approximation.

For the critical dimensiordo=2 it follows from Egs.
(13) that the values of the parameterfall into two subre-
gions,v<1/2 andv>1/2.

The behavior of the functiont§—t)*”~2 changes at the
boundary ¢=1/2) of these regions.

We shall now consider the most interesting case of the

critical dimensiondo=2. We shall investigate first the par-
ticular valuesy=1 and 1/2 for which the system of equa-
tions (10) and(11) possesses an exact solution.

a. v=1. In this casdsee Eq(13)]

C

)\:to—_t.

(19

From Eq.(11) follows an equation for the phagg(t):

2

(9)(0 C2C

ot to
Using Eqgs.(15) and(16), Eqg. (11) can be written as

5

CoN\2,  xo(t)= + const. (16)

d

yd—l ay

a-19%
ay

J
—d/r2+1 d/2
y _ay(y so))[

—Coo+ cpz‘ﬁl] =0. (17)

A simple check shows that the function
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H 2 v 2
go(px(t))exp{'i e

—t 4(ty—t)

di2
®

+i cons}
(18

is an exact collapsing solution of Eq4), where the function
¢(p) is a solution of the ordinary differential equation

r

It follows from Eg. (19) that a (normalized solution
decreasing rapidly at infinity exists only f@,>0. This so-
lution has been obtained and investigated in Refs. 4—6.

We note that foiIC,>0 two types of asymptotic behav-
ior are possible at infinity:

¢~ (C2)1/2"+ Asin(\20Cyp+ consy/p(d—l)m’

which arises on a two-parameter family of solutions, and

p(pt)=N

1 9
pd-1dp

a-19¢

dp

)—ngo-i- p?7t1l=0. (29

const
(2 (d—l)/2exﬁ_ chp)v
P

which can be realized only on a one-parameter family of
solutions.
N We shall now consider the second family of solutions of
Egs.(10) and(11) corresponding to the case=1/2.

b. v=1/2. In this casg¢see Eq.(13)]

C d
N=—n0o, ﬁzcz)\z, xXo=—C,CIn(ty—1t)+const.
to—t' ot
(20
8sing Eqgs.(20), Eq. (11) can be put into the form
- d 1 o9 ., do
y d/2+l&_(yd/2¢)] ] _<yd l_)
y yd-1ay ay
%p
— 20+1( _
Cyrp+ 16C? +o ] =0. (21

We shall examine the solutiop of Eq. (21) that causes
the expression in the second set of braces to vanish:

o

This equation corresponds to the motion of a particle in a
field with the potentialJ, shown in Fig. 1, to which a term
depending on the dimensiahof the space must be added:

2

)_C2¢+ pee

16C?

1 9

pdfl ap

a-17¢

+ 20+l:0_
ap ¢

(22

(d=1)(d-3)

1
- 2 (23

p

In the regionp<<1 we find from Eq.(21) a solution that
is regular at the origin:

2

p°A ‘
¢=A+E(C2—A2")+

p A
4(d+2)

! C,—A%9)(C,— (20 +1)A% !
X E( 2~ W(Cy—(20+1) )_16C
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FIG. 1. Form of the potential energy = —¢**~r/16C* for Eq. (22), FIG. 2. The functione for the parameter$A,C,C,}={3.4,1,4 (1) and

{A.C.C}={34.1.3 d=3. {5.5937,2,1.5 (2).

whereA>0 is an arbitrary constant. In the regipe>1 the

asymptotic behavior op is determined by the expression  #1(p,t*)=0, andt* is the onset time of collapse.
We note that increasing the parameiincreases the

width of the subbarrier region and at the same time decreases
sharply the probability of formation of an initial fluctuation

. . leading to collapse. Therefore fluctuations for which
l/vhere.B '?hatC?nSt‘im t?at de??kr:ds oA, tC’ CAZ}(':“C'S e;sy C~C,~1 andC, passes near the top of the potential barrier
o verify that for all values of the constan{8, C, C} the evidently are most likely to lead to collapse.

B _[p?
¢~Wsm %—ZCCZIanrcons ,

func_;[_lrc])n ¢ hz;stno smg.ularltfles Iat flnltfeﬂ:/alues pi € The values of the function in three-dimensional space
ere exists a region ot values ot the pgrame@ 2 (d=3) are presented in Fig. 2 for two sets of parameters
and_<p(0) V\_/here the solutl_on of Eq22) outside of the po- {A, C. C,} — (3.4, 1, 3 and{5.5937, 2, L. The values of
tential barrier is exponentially small. Let p* and ¢'(p*) are, respectively,{p* =4.815, o' (p*)
p*=p*(C,Cy,0(0)) (24 =-0.082 and{p*_=13.13,<p’(p*)=—2.63 1073},
be the first zero of the functiop(p). We set ¢. v>1/2. In this case
~ ¢(p) forp<p*, C aXo
= A(t)= , ——=C,\2 28
e(p) [0 for p>p*. (25) ® (to—1)” ot 2 (28
Then the collapsing solutiotk(p,t) of Eq. (1) is given by .~ 1/ only the “leading-order” terms in Eq(11),
the expression which grow most rapidly as the singular poity is ap-
4/~ ) proached, can be set equal to zero. Using E2f.and(11)
P(p,t)=Ngye(pA(t))exp —iCCyIn(to—t) we obtain the following equation for the functiasm
ip’ +i }4_ (p,t) (26) a1 9 ar 20+1
- i cons 1), - e _ o
8(ty—1) Pa(p y &y(d ®) Copto
where ¢;(p,t) is the solution of the linear inhomogeneous 1 s 5
equation I a-129) | _
erd_1 &y(y ay)] 0. (29

Py
i —+A 4 20 + 20 + 2(0—1),,.2,1%
dat L e Vil The collapsing solution of Eq1) for »>1/2 has the form

d
ﬁ) A?{f”exp{—icczln(to—t)

iC,C?
i | . w<p,t>=x?{f¢<px<t))em{ :

(2v—1)(tp— )1
ip?
8(tr— 1)

+ consx} 5( P ) =0, (27 ipv

- m - m"’l ConS} + l//l(p,t), (30)
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where¢(p) is the solution of Eq(19) (for it the expression
in the second set of braces in E@9) vanisheg and the
function ¢ is the solution of the linearized equati@h with
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2 N C
2+do’ (to—t)"'

V=

right-hand side arising as a result of the nonvanishing of the

small residual terms in Eq11). A detailed investigation of
the functionys, will be given separately.

d. v<1/2. Vanishing of the leading terms in E¢L)
gives the equation

(9X0 C2 1 (7)\ 14
It N(tp—1)2 N At to—t

(33

Substituting the expressiori83) into Eq.(11) and equating

y“””li(dd’zso)] ( —Cop+ H1-v) y?¢ =0, (31) to zero the terms which are of leading order in the parameter
y 4 (to—1) "1, we obtain an equation for the functign
where
d v(l—v)
C 1% C —dr+1 7\ ,d2 _ 2
A= , ﬁ: _z(to_t)ZV*Z_ (32) [y &y(y (P)]( CZ‘P+ 4 Yoo
(t—t)r  dt  C
Vanishing of the expression in the second set of braces in +Cda+2¢20+1] =0. (34)
Eq. (31) does not lead to a nontrivial solution.
e. We shall now consider the case of supercritical dimen-
siondo>2. In this case From Eq.(34) we find
|
v(l=v) , Her d+ 2/ C, |
{CZ_ 5 Y oy oAy
e(y)= X 1/2 (35
01
y>2( v(l—v))
|
Thus fordo>2 the collapsing solutio/(p,t) is From Egs.(3) and(37) we find
H 2
lvp _“ Jp d-1
_ydr _ Ey==1] d
P(p,t) =Ny QD(P)\(t))eXP{ A(t—1) VT J, PP
. 2 29(1+0)
iCy 2, 23| 9X Gri2, o N 2(1+0)
+ +i const + 1), X[<P>\ (— TN (") ¢ ,
(1—20)C¥(ty—t)+ 2" } bl P lto
(36) ‘9_EV_ 2y d-1) [~ ' r% ﬁ_X&_X 2
o AN (vetyel)e' o+ | (39

where the functiorp(p) is determined by Eq.35). Just as in
the casec [Eq. (30)], the functiony,(p,t) is the solution of
the linearized equatiofl) with right-hand side arising be-
cause of the nonvanishing of the residual terms in (&d).
A detailed investigation of the functiogl; will be given
separately.

For 0=1 a solution of the form(33) and (35) in the
three-dimensional case has been obtained in Ref. 7.

f. Weak collapse.

In the supercritical regiond>2) Eqg. (1) can have
exact collapsing solutions of the form

Y(p,t) =N\"(p\)expliy), (37)

where N\=\(t), x=x(p,t), and 7 is a constant. For
v#d/2 Eq.(7) for the phase assumes the form

ax pon 2v—d 1 1 In (v -
T TN T T Tz it dy y'"te?(y).
pNIt - o2(y) yimtaZ dto

(39)

For all terms in Eqs(38) and (39) to have the same time-
dependence the following conditions must be satisfied:

vo=1, x(p,t)=xo(t)+x(p\),

1 on dxo 1 on 40
3ot oMt TR Gt 40
From Egs.(40) we find
e —= (1) G, (to—t)
= il = 5 n - 1
\/to__t Xo 2 0
108 1 d Ci\?
_ Xo_ *“1 (41)

NEt o pc?’ dt ac?

We now consider the case=3, o= 1. Using Eqs(41), Egs.

(38) and(39) for the phasey and modulusp can be put into
the form
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~ Y
[T 2| —
X'+ dy ye ) 0, o
I"l
19 ( ﬁ(p) 6f
- ——(C.+ )_ 2_
¥y y +¢° 202( 1HYX) —e(x")
(42) 3T
We note that any solution of the system of equatiGt) is 4l
an exact solution of the nonlinear equatidn. Let
y 3 ¢
zZ= f dy y’e®. (43
0
24
The moduluse and phasey are related simply with the
function Z as Ir
NrZ. yZ'— o}
e=— X'=~ "% (44)
y 4c°z 20 2 4 6 8 10 12 14 16
and the functior¥ itself is a solution of the ordinary differ- Y
ential equatiof FIG. 3. The functionsy andy’ for the parameter§A,C,C,}={4,2,2.
(Z//)Z 2(2/)2 1
" __ _+ o Z/
227y c2| ! 4c2(y 2 _ ,
) g- Weak collapse for arbitraryd,o}. Once agair Eq.
VARV 4 t
ly ) o 45 (43)] we se
8c*z’ :
. . y -1 2 \/Z—
In the regiony<1 we obtain from Eq(45) =/, dy y" re%(y),  e(y)= W (49
5
Z(y)=Ay>+ >1/5 . (46)  The equation for the pha$88) assumes the form
whereA>0 is an arbitrary constant. In the regigs-1 the yZ'+(2lo—d)Z (50
solution of Eq.(45) is 4C27'
2 4
Z—By— 2BCC, N ZBS (B—ZCE)JF N a7 An equation for the modulug(y) can be easily obtained

from Egs.(1) and(37):

The equation45) admits the existence of poles of the form

2y

Yo=Y’
However, forA>0 it is impossible to reach such a pole.
Since the only possible asymptotic solution of E&p) in the
limit y—o is determined by Eq(47), there exists a three-
parameter family of solutions of Eql) of the form (37).
These parameters afé, C, C,}. Just as in the cade, the
region of physical collapse is bounded: The onset tifhef
collapse corresponds tg<<y*. For y>y* we must set
e(y>y*)=0, which will result in the appearance of outgo-
ing waves. For the appropriate choice of the paraméte@
and C, it is possible to makep(y*)/¢(0)<1, even if
y* < 1. Weak collapse has been studied in Refs. 7 and 9. We
have shown that the problem of weak collapse reduces to
solving a single ordinary differential equation for the real
function Z, and the solutions form a three-parameter family.
Figures 3 and 4 show the functioggy) and}’(y) for two
sets of parametersA(C,C;)=4,2,2 and A,C,C,)=3,1,1.
The ratio ¢(0)/e(y*) for the parameters in Fig. 3 is
¢(0)/(y*)=71.3 andy* =2.26.

7~ —

(48)

3t
4
2-
l.
7
ot
-2 0 2 4 6 8 10 12 14 16

y

FIG. 4. The functionsp andy’ for the parameter§A,C,C;}={3,1,1}.
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1 d _ (7@ Cl y ~,
RIPREN LT

yd=1 dy ay 2C? 2C

—o(x")?+ ¢ 1=0. (51)

Substituting into Eq(51) the explicit expressions for the

functions ¢ and} [Egs. (49) and (50)] we obtain a single
equation for the real functiog:
1

(z? (d-1)(d-3)_ 1

ZMm—
27’ 2y? c?

C,Z'

y(yZ'+(2lo—d)Z)
4C?

(yZ'+(2l0—d)Z)?
8c4z’

2(ZI)O'+1

BT (52
y(d=Do

The equation(52) is an extension of Eq(45) to arbitrary

values of{d,c}. There exist three values of the parameter

>0 such that fory—0 the functionZ can be expanded in

the series
Z(y)=Ay"+ Ay 24 (53

1. The valuer=d—2/c>0 can occur only ifd>2(1
+1/0). Then the coefficiend is a single-valued function of

12
(d=v)(v+d—4)
4p '

2. The valuer=d obtaines for arbitrary dimension and
arbitrary A>0.

3. The valuer=4-d obtains only ford<2. The coef-
ficient A>0 is arbitrary. All solutions have the same
asymptotic behavior foy— o:

B1

+ ...
y2

(59

Z=yd2/(r( B—

Yu. N. Ovchinnikov and I. M. Sigal

Just as in the casgl=3, =1}, for arbitrary{d,o} ¢
must be cut off fory>y*. The most appropriate point for
this is the position of the deep minimum of the functign
Evidently, only the values of the parametéss, C, C,} for
which such a minimum exists can be realized.

For the critical dimensiomlo=2 exact solutions of the
nonlinear Schrdinger equation which have a singularity at a
finite time ty were obtained. These solutions correspond to
the parameterg=1 and 1/2. It was shown that collapsing
solutions also exist for>1/2.

Exact solutions of the NLS which describe weak col-
lapse in the supercritical regiand>2 were obtained. These
solutions form a three-parameter fam{l,C,C,}.

A collapsing solution arises in a bounded region of
space, and an initial distribution of a special form is required
in order for a singularity to arise. In numerical simulation or
in real physical objects collapse will arise from fluctuations
that lead to collapse and that appear with close to maximum
probability.

Yu. N. Ovchinnikov was supported by grant CRDF RP1-
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Simple analytical representation for Delbru " ck scattering amplitudes at high energies
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We use a new representation for the semiclassical Green’s function of the Dirac equation in the
Coulomb field to find an exadin the parameteZa) expression for the amplitudes of small-

angle Delbrek scattering of high-energy photons. The values of these amplitudes agree with those
obtained in earlier calculations, but the structure of the expressions is much simpler than

that of previously known representations, which makes numerical calculations much easier.

© 1999 American Institute of Physids$1063-776199)00807-0

In recent years the process of Délbkuscattering (the  tions. However, the new representations of amplitudes are

1
72—m2+i0

coherent photon scattering in the electric field of atoms vianuch simpler when used in numerical calculations, since
virtual electron-positron pairshas been thoroughly studied they contain integrals of lower multiplicities.

by theoretical and experimental methddstom the theoret- As shown in Ref. 9, it is convenient to write the Del-
ical viewpoint, the process is interesting because of the imbrick scattering amplitude in a form that contains the
portant role of the higher-order terms in the perturbation-Green’s functiorD(r,r’|e) of the squared Dirac equation,
theory series in the paramet@w(Z|e| is the nuclear charge,

a=e?=1/137 is the fine-structure constaatis the electron D(rl,r2|s)=< r r2> ’

charge, andi=c=1). The range of high photon energies,

o>m (m is the electron magsis especially important in R

studies of Delbiok scattering by experimental methods. A Where’=y%(e +Za/r)— yp, with p=—iV.

significant increase in the accuracy of measuring the Del- Interms of the function®(r,r'|¢), the amplitude of the
brick scattering cross section was achieved in a recerfifocess has the fortn

experiment conducted at the G. I. Budker Nuclear Physics

Institute with 140—450-MeV photons in the 2.6 to 16.6 mradM =iaf drodryexpli(ky-ri—Kky-ry)}

scattering-angle range. Exdgt Z«) expressions for the am-

plitudes of Delbrgk scattering in the Coulomb field, valid . ke

for w>m and small scattering angles, were obtained by XJ deTr[(2€] - po~&5kp)D(r2 1|0~ e)]
Cheng and Wid;® who summed the perturbation diagrams

for the interaction with the external field in a certain approxi- ~ X[(2€1-p1+81Kk;)D(ry,r5| —&)]+2ia€} -e;
mation. In Refs. 7 and 8 these amplitudes were found by
using the semiclassical Green’s function of the Dirac equa- XJ dr exp{i(kl_kz).r}f deTrD(r,r|e), (1)

tion in the Coulomb field. In Refs. 9 and 10 the semiclassical
Green’s function of the Dirac equation was obtained for anwvheree; andk; (e, andk,) are the polarization and four-
arbitrary spherically symmetric decreasing field, making itmomentum of the initialfinal) photon, ang; ,=—iV,. In
possible to calculate the Dellwki scattering in a screened the limit w>m the main contribution to the cross section of
potential. the process is provided by momentum transférs-m,
Recently a successful experiment was conducted at thehich corresponds to small photon scattering angles. In this
G. |. Budker Nuclear Physics Institute to observe anothercase the contribution of the last term (i) to the amplitude
nonlinear QED effect, the splitting of a photon in the electriccan be ignored, since it depends solely on the momentum
field of an atom(the preliminary results of this experiment transfer vectorA=k,—k;, and the amplitude for>A is
can be found in Ref. )1 Exact(in Za) expressions for the proportional tow (see, e.g., Ref.)2
amplitudes of photon splitting, valid fas>m, can be found The uncertainty relation implies that the lifetime of a
in Refs. 12—14, where a new representation for the semiclasirtual electron—positron pair is~|r,—r|~ o/(m?+ A?)
sical Green'’s function that substantially simplifies the pro-and that the characteristic impact parameters @rel/A.
cess of calculating the amplitudes was derived. In the presettence foro>A>m?/w the angles between the vectds,
paper the calculation method developed in Refs. 12-14 ik,, r,, and—r, are small and we can use the corresponding
used to find the amplitudes of Dellwki scattering at high expansion. The characteristic values of the angular momen-
energies >m) and small photon scattering angles. As ex-tum arel ~wp~ w/A>1, so that the semiclassical approxi-
pected, the values of the amplitudes obtained by the newnation holds. In the case of a screened Coulomb potential,
formulas coincide with those known from earlier calcula-the effect of screening manifests itself only in the limit
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A~r_'<m, where the screening radius in the Thomas— dry [=dr,

Fermi model isr;~(ma) 12~ Y3 In the present paper we M=— —2 de SKJ e

limit ourselves to momentum transferd>m? w,r* o M1 Jo T2

which provide the principal contribution to the total cross dg, dg, 2iZa .

secion of the process. Note that this restriction is not required J J 27 K_) —1|exgi®}T. ()

in calculating Coulomb corrections, and the expressions ob-

tained in the present paper for these corrections are valid fdi€"®

all A<w. A modification of the Born amplitude foA 1 1

~m?/w was studied by Cheng and Wuand a thorough ‘1>=§[ ; )Q2+—Q ‘A+g-A-m (f1+fz)}

discussion of the effect of screening can be found in Ref. 9. 1 4
In view of momentum conservationyl(Z=0)x§(k, ) ) o

—k,), i.e., for the case at hand\¢0) we haveM (Z=0) the functionT for different polanzatlons has the form

=0. It is convenient to subtract from the integrand fdrin 202 2 ( 1 1 1

(1) its value atZ=0. It is for this difference that the above TH:E_ Ser a E [ rl

Q2 2|}

statement of the smallness of the angles betweemnd

—r4, which contribute the most to the integral, is valid. )
A convenient representation f@(r,,r,|e), the semi- T+—:ﬁ(e'Q) ' ®)

classical Green’s function for the squared Dirac equation in

the Coulomb field, was obtained in Refs. 12 and 13. For th&"d we have introduced the notation=w—e, Q=0

case of small angles between the vecters andr, we have  + Y2, @1dd=0;—dz. To arrive at(3), we integrated by
(the z axis is directed so that it forms a small angle with theParts with respect tq, andq;, so that theZIeZntlre dependence
vectorr,) on Za is contained in the factorqg(/qg,)<'““—1. We also

replaced variables according tq ,—(ex/w)ry,. The ex-

pression forT ., in (5) can be made simpler if if3) the

variablesr,; andr, are replacedtemporarily by the vari-

ablesR=rqr,/(r,+r,) andt=r,/r, and the term in the
square brackets if5) proportional toQ? is integrated by
parts with respect t&k. The result is

2Q% w’m?

ik ) a-q
D(rl,r2|8)=Wexp{lx(rﬁrz)}fdq 1+Zaaz}

2(rq+r
><exp{i;<q(l—2)+i;<q-(01+02)

2rqro < 4 - 2
pr iz L r1r2+28:<r1r2(r1+r2) . (6)
x( > ) , 2 Further transformations amount to the following. We pass
q from the variables); andq, to the variables) andQ. Then
the integral with respect tq becomes
wherea= 9y, k?=e?—m? N=¢/k, andq, 6;, and@, are J= daf (la+Ql 2lza_1 expl’ _ I—q-A} @
two-dimensional vectors in they plane, with @,=r, /r, Q*[\]la—Q| ] 2 '

and@,=r,, /r,. Formula(2) contains only elementary func- as shown in Ref. 12, this integral can be transformed into
tions, and the angleg, and 6, enter only in the factor (lq+Al| 22 _ .

sl Lenz0q)
—1llexp —=q-Qf. (8
a-af]  THER T 290

explig-(0,+ 6,)}. Hence representatiof®) of the Green'’s 3= f ﬂ
Using this representation and the parametrization

function is very convenient for calculations. A?]|
We direct thez axis parallel to the vectdt;. Note that
in the small-angle approximation there is no need to allow
for corrections to the transverse part of the polarization vec- Q%) . dx rox2
tor e,, and the longitudinal part of, can be expressed in exp[ 2 ]_'rlf Eexp{ i __'Q X] ©
terms of the traverse part by employing the relaterk,
=0, i.e., &),= —&-Alw. Thus, the transverse part of the
polarization vector of the final photon with a given helicity
can be replaced by the polarization vector of a photon propar
gating along the axis and having the same helicity. Below
we use the notatioe for this vector in the case of positive [M ++] i am? J g j g
€] daq

M

wherex is a two-dimensional vector lying in the same plane
as Q, we can easily evaluate the integrals(8), first with

espect ta 4, then with respect tQ, and finally with respect
. As a result we obtain
q+ 2iZa

helicity; the polarization vector with negative helicity d5. M, T2A202 ( ) - 1}
Then, to describe Delbok scattering, we need only find two
helical amplitudesM . and M, _. The other twoM _ _ dx m2(e2+ k%) + w?x-v
andM _ ., can be found by interchangiregand e* . f (OC+m?)2(v2+ m2)2{ 4dek(e-v)? ]

Substituting(2) in (1), we expand the amplitudes for the
case of small angles, wheir, dr,~r?r3dr, dr,d6, d,. (10
Calculating the trace of the-matrices and evaluating the where q.=|g.|, g+=q*A, and v=x+q/2+A(e
elementary integral with respect #§ and 6,, we obtain —k)2w.
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For further integration it is convenient to writ&@0) in a
different form. Using the identities

m? 1V v v v
(v2+m2)2_§ YW24m2 A2 m??

Vv lV 1 v 1
VZ+m?HZT 27 Zem? T T aviem?

and integrating by parts with respectgpwe find that

M++ 2iZa
[MJ— Jyee[eal3
dx q-
(Z+m?)2(v+m?) | q_z)

w’x—(e2+ k?)v
X dek(e-v)e

2a(Za)m?
2202

Q+

(11)
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o SlnhTSII’l(ZZaT)
smﬁ2 T+ az)372

72:a

___ 2™ b (2a?-1
= SnnZa) eP/;,(2a°—1),

(15
where a?=4B/[(B+ (1+5s)?)(B+(1—s)?)]. Note thata?
<1 for all s andB>0.

The final expressions for the Dellwkiscattering ampli-
tudes are

++=|a(§n:")wf dsf dt a®[2—t(1— 2]
X[4SBSin(22a7'0).71
+[B%2—(s2—1)?]cog2Zay).7>], (16)

a(Za)w(e-A)? (1 (1
M, _=i %fodsfo d'[az'[(SZ—l)

Using Feynman parametrization of the denominators, we

evaluate the integral with respectt@nd in the integral with
respect tee introduce the variable=2¢/w—1. The result is

M++ 4 Z )m N 2iZa
[M+] a(ﬂ'iz wJ dsf dq(q )

1 q+ 0-
><fo[t(l—t)(q+8A)2+4rT12] ( gt q_z)

[t(1—s?)—2](q+sA)
2t(1—s?)(e,q+sA)e |

(12

The integration with respect tg is done by a trick used in
Refs. 13 and 14. We multiply the integrand(it2) by

B ld 20-A
1= [ ooy iy

A\2 1
(21 A2 _ 2 Azl o
=(a +A)f Iyl ( y) A<y2 !

change the order of integrating with respecgtandy, and
implement the shifg—q+ A/y. After all this is done, the

) , (13

integral with respect tq can easily be evaluated. Changing

the variabley =tanh¢— ), where

1 B+(1+s)? 2

2B (1-9)2

4m

T A% (1-v) (14)

To=

we find that integrating with respect toreduces to calculat-
ing two integralgthe same integrals as in Ref.)lekpressed
in terms of the derivative of the Legendre functid,(x):

.?1=azj dr
0

2

coshrcog2Zar)
(sint? 7+a?)%?

2ma

= ., 2—
sinh(7Za) ImP;;,(2a°—1),

X[4sB(1—1t)sin2Zary) .71 +[B?(2—3t)

+2B(s?+1)(1—2t)— (s>~ 1)%t]cog2Za1y) . 7>5].

Let us now discuss the asymptotic behavior of the Del-
briick scattering amplitudes fak<m andA>m, which fol-
lows from (16). The simplest calculation in this representa-
tion is that of the asymptotic expression fAr<m, in the
limit B~m?/A?>1, a®~4/B<1, and the functions7 , are

T1=1, Fr=—2Zaa*Ina+C+Rey(1+iZa)],
where C=0.577... is Euler's constant, and(x)

=dInT'(x)/dx. Also, T1g~1/B<1. Inserting the asymptotic
expressions for7; , in (16) yields

2
m**lzi—w(iﬁ) wfldsfltdt %m
+- 0 0
[2-t(1-5%)]
2(1—s?)(3t—2)(e-A)%/A2["
7

2

LU
t(1-t)AZ

—Rey(1+iZa)

Calculating the elementary integrals, we find that fio?/
<A<m we have

__28a(Za)2w m e Rew(14iz
=g |y T ey(1+iZa)),
da(Za)?w(e-A)?
M, =i a(Za) w(e-4)" (18)

9m?A?

To establish the asymptotic behavior of the amplitudes
in the limit A>m, it is convenient to start witl{12). The
region 1-t~m?/A?<1 provides the main contribution to
the integral. If in(12) we evaluate the integral with respect to
t in this approximation, we get
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[M++] a(Za)wJ’ J
M, q+sA) o
oped for the photon splitting problem can be successfully
(q+ q_){ —(1+32)(q+sA) used to solve various QED problems in the Coulomb field at
>< — ——

az 2(1—52)(e,q+sA)e]' (19 high energies.

We then use the identityl3) to evaluate the elementary
integrals with respect tg and, finally, with respect t®.  «g_mai: A1 Milshtein@inp.nsk.su
Then we change variableg:=tanhz, and forA>m obtain

4a(Za

M, =l ——>— f drsin2Zar)
L. Meitner, H. Ktsters, and M. Delbik, Z. Phys.84, 137 (1933.
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In this paper the procedure of large-scale averaging of the magnetic-field diffusion equation with
the a-term curk(r,t)B(r,t) is used to show that a nonuniform distribution of the turbulent

helicity fluctuationgmore precisely, the fluctuations of the coefficientwith a zero average value
gives rise to large-scale amplification of the initial magnetic field. A detailed study is

carried out of the dependence of the resulting large-seaé&ect on the characteristics of the
correlator({a(r,t)a(r’,t"))) in a rotating medium with a nonuniform distribution of the

angular velocityw=w(p,z) (p is the distance for the rotation axi3. The effect of helicity
fluctuations and the diffusion coefficient on the turbulent diffusion process is also

investigated. ©1999 American Institute of PhysidsS$1063-776(99)00907-3

1. INTRODUCTION =U(r,t)+u’(r,t) (U={u) and(u’)=0) is assumed fixed.

The quantitiesu=(u’?(r,t)), 7o, andR, characterize the

field in a turbulent medium requires the presence of helicitya.werage amphtqde of the turk_)ulent vel_o_cny, the average life-
time of correlations of Eulerian velocities, and the average

i.e., the helicity correlaton(1,2)=(u(1)-curlu(2)) must be : . -

L . .- length of such correlations. Sometimes the auxiliary param-

finite. The caseh>0 corresponds to right-handed helicity, _ : o _
eterty=Ry/uq is used(it is known as the reversal time of

while h<0 corresponds to left-handed helicity. Such a me- ; " : :
dium may be isotropic, but it certainly must be reflection-turbUIent vortice; The average magnetic fie(@) is defined

. . . 5\5 the average value over the volumd.® and over the
agymmetrlc. Theefmpllflcatlon mechaznlsm was de\./e|0peaveraging timeTy, which are much larger that the charac-
_pnmarl_ly_ by Parker and Stee_nbegiet al”and is descr_lbed teristic lengthRy and lifetime ry of correlations of turbulent
in detail in the monographs cited in Refs. 3-5. A straightfor-

L . . movements(if the reversal time of the turbulent vortices
ward qualitative explanation of the turbulent magnetic dy- eets the conditiot,=Ry/Uy< 7, it is sufficient to require
namo can be found in Ref. 6. It is based on the fact thaEn 070 =r0 q

chaotic helical movements generate an average(&npar- hat T>1to).
allel or antiparallel to the average magnetic fiekE) By averaging Eq(1) and assuming that the average field

=a(B). According to this common notation, the phenom-<B> is a smooth function on distancesR, and times= 7o
enon became known as theeffect. Note thauo;(—h) ie. (or =1, if to=<7o) One can obtairisee Refs. 3-the equa-

left-handed helicity gives rise to induction of a currépt tion of diffusion for the average magnetic field:
parallel to the average fiekB), while right-handed helicity (

It is well known that amplification of the initial magnetic

gives rise to induction of a current opposi®). The induc-
tion of such a current is the reason for the amplification of
the average magnetic fiel®B). The existence of thex ef- —curl a(r,t)(B)—curl[U(r,t)(B)]=0, (2
fecthas been confirmed by experimehts.

The initial equation describing the evolution of the mag-WhereU(r,t) is the velocity of regular motion of the liquid
netic field is the induction equation or gas. Note that the coefficients of turbulent diffusion,

D(r,t), and thea effect, a(r,t), in this equation can depend
d 5 on (B) parametrically, since the turbulent velocity field
(E —DpV )B(r,t) =curlu(r,t)B(r,t)], (D) u(r,t) depends omB. Kichatinovet al®° used the functional
dependence oD (r,t) and «(r,t) on u(r,t) but, in solving
whereD,,= c?/4mro is the moleculafohmic) diffusion coef-  the Navier-Stokes equation, allowed for the fact that the field
ficient, o is the electrical conductivity of the plasma, and u(r,t) depends oB. The derivation of Eq(2) from Eq. (1)
u(r,t) is the Eulerian velocity of motion of matter. The requires only that the average fi€ld) be smooth, so that we
Navier-Stokes equation, which we will not write here, relatescan take it outside the integral sign. Then under the integral
u(r,t) andB(r,t), so that actually the velocitu(r,t) is a  sign there remains another, peaked, téeng., see Refs. 10
functional of B(r,t), and vice versa. For weak magnetic and 1). We also note that here we have assumed, for sim-
fields (B%/8w<pu?/2) one usually ignores the effect Bfon  plicity, thatD(r,t) anda(r,t) are scalar quantities, although
turbulence and considers E@.) in the kinematic represen- in an anisotropic turbulent medium they are pseudotensors of
tation, where the ensemble of turbulent velocitig@,t) the third and second ranks, respectivedge Ref. B If we

a—(:— DmV2)<B)+curI D(r,t)curkB)

1063-7761/99/89(1)/11/$15.00 45 © 1999 American Institute of Physics
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neglectD,, in Eq. (1), the equation has an exact solution in the termD is negative, i.e., the helicity fluctuatiorimore
Lagrangian variables. The derivation of E@) from this  precisely, the fluctuations of the coefficiemtwhich are pro-
solution is especially simpl:*3but it uses only the smooth- portional to helicity reduce the diffusion of the magnetic
ness of the average magnetic fi¢Bl). Exact formal expres- field.
sions for the coefficient®(r,t) and «(r,t) in terms of the Vishniac and Brandenbutyused Eq.(4) for computer
field u(r,t) of Eulerian velocities or the field(r,t) of La-  simulation of the evolution of the average magnetic field in
grangian velocities can be found in Refs. 10—13. Using thesan accretion disk. They also examined the case where there
expressions and specifying the statistical properties of th& a chaotic distribution of the helicity fluctuatioas with a
ensemble of initial velocities, we cait least in principle  zero averagey,=0 in the disk. It was foundnumerically
fully describe the evolution of the average magnetic field inthat this gives rise to a large-scale distribution of the mag-
a turbulent medium by solving ER) and the Navier-Stokes netic field, i.e.,a’-fluctuations act as aa effect.
equation. Lately there has been an increasing number of at-  Sokolov® found that the presence of helicity fluctuations
tempts of computer simulations of the evolution of the mag-does indeed cause amplification of the large-scale magnetic
netic field based directly on E¢l) and Navier-Stokes equa- field even at zero average helicity. He assumed that there are
tions. However, in studying the influence of helicity two averaging ensembles, over the turbulence velaityt)
fluctuations on the large-scateeffect we will find it conve-  proper and over the helicity distribution ensemtig]1,2)
hient to begin with the diffusion equatid@). =(u(1)-curlu(2)). Physically it is difficult to imagine that
these two ensembles can exist separately, since knowing the
. . ~velocity field u(r,t) obviously means that we know the he-

If (---) in (2) is assumed to be the average over fairlyjicity correlator h(1,2)=(u(1)-curlu(2)) and generally all
small-scale turbulent motions, the coefficiei¢r,t) and  the correlators. Hence the idea of two averaging ensembles

a(r,t) are still random functions with respect to large-scalecgp actually be realized by the use of two averaging proce-
averaging. We will denote the procedure of large-scale avergyres, a fairly small-scale and a large-scale one.

The large-scale averaging procedure

aging by double angle bracketg; --)). Using this notation, The authors of all the cited papers did not do large-scale
we can write the following relationships: averaging of Eq(4) in general form. In this paper we will
D(r,t)=Dgy+D’(r,t), derive the gengral formulas for the renormalized coefficients
of turbulent diffusion and thea effect, the phenomena
((D(r,1)))=Dgo, ((D'(r,1)))=0, (3)  caused by helicity correlations in the turbulent medium. Us-

ing a medium with differential rotation as an example, we
will show both quantitatively and qualitatively the reason for
{a(r,H)))=aqy, {{a'(r,1)))=0. the emergence of a large-scaleeffect. We will use the
eneral theory discussed in Refs. 10 and 11, where the pro-
Here and below we assume that the large-scale average V‘%édure of averaging over the ensemble of realizations of

uesDo and a; are constants. Note that the procedures ofy oy ating quantities is carried out by using the stochastic
small- and large-scale averaging have long been used in Stesreen’s tenso6; (r,t:r',t'), deriving a renormalized equa-
tistical physics(see, e.g., Ref. 34 y

¥ ) , _tion for this tensor, and obtaining an hierarchy of nonlinear
Substituting(3) in (2), we obtain the master stochastic equations for the average teng@;;(r,t;r',t')). The aver-

a(r,t)=agt+a’(r,t),

equation aging procedure proper is described in Refs. 10 and 11 in
9 general form for an equation of the for(g), which can be
ot~ (Dmt Do) V?|(B)— ag curkB) — curl[ U(B)] applied to our initial stochastic equaticd).
The helicity of a turbulent medium, h(1,2)
=curla’(r,t)(By—curlD’(r,t)curkB). (4 =(u(1)-curlu(2)), is described by a two-point velocity cor-

relator (here and below we use the convenient notation
f(r,,ty)=f(n), dr,dt,=dn, dr’' dt'=d2, R=r—r’, 7=t

—1t', etc). This means that helicity fluctuations are described
by velocity correlators of the fourth and higher orders. A

direct study of the dynamics of correlations whose orders are
so high is extremely difficult. Note that in the classical work

Iii(j())(r,t)(B,-(r,t)>= Lij(r,t)<Bj(r,t)), (5) of Kazantsel’ and in a number of later treatmeritsee Refs.

R 18 and 19, the dynamics of magnetic-field fluctuations was
where the nonstochastic operatdf) and the stochastic op- studied for turbulence without helicity, which requires only
eratorL represent the left- and right-hand sides of E. knowing the second-order velocity correlatdtg(1)u;(2)).

The first to examine this equation for the casdJef0,  The advantage of all these treatments is that their authors
D’=0, and ;=0 and an infinite isotropic medium were begin directly from the master induction equatidn and do
Kraichnart® and Moffatt® Performing in(4) the procedure of not resort to the procedure of the second, large-scale, aver-
large-scale averaging in the quasilinear approximation, thegging. The procedure of double averaging used in the present
again arrived at equatiof2) for ((B(r,t))) in the diffusion  paper makes it possible to study the effect of helicity fluc-
approximation, which, however, contained the renormalizeduations(as fluctuations of thex effect in a fairly simple
turbulent diffusion coefficienD,,+Dy+D. They found that manner. At present such an approach is probably the only

The right-hand side of Eq4) is a stochastic function of
coordinateg and timet. We note once more that the small-
scale average fieldB) is stochastic with respect to large-
scale averaging.

Equation(4) can be written in brief symbolic form:
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one that can be used to study helicity fluctuations. Here g, is the unit antisymmetric pseudotensce,,(,=

For practical applications of the theory we will now de- —e,,,, etc), G;;(1;2) is thestochastic Green’s tensor of the
velop it is important to understand that the helicity fluctua-initial equation(4), i.e., the solution of this equation with
tion correlator is a fundamental quantity having the samesource S;;=&;;6(r—r') 5(t—t'). Here Gi(jo)(l;Z) denotes
status for turbulence as the ordinary two-point velocity cor-the Green’s tensor of Eq4) without the right-hand side.
relator (u;(1)u;(2)). More than that, for a given correlator This tensor is nonstochastic. Taking the irreducible parts in
(ui(1)u;(2)) the helicity fluctuation correlator for non- the expressions means that we must drop the reducible parts
Gaussian ensembles may be arbitréa/least in principle  of the form
Usually the correlatoKu;(1)u;(2)) is found from experi-

ments or observations or is simply specified in a plausible J dz<<Fis(1)>>Gg?1)(l;2)<<Knm(2)>>- (10)
form for numerical calculations. This is even more true in
relation to the helicity fluctuation correlator, which is ex- The formula forD;;(r,t) is more cumbersome than for-

tremely sensitive to the specific form of the ensemble ofmula(9), and we will use the convenient notation mentioned
initial velocities, the boundary conditions, and the actingearlier:

forces. . .
Note that for all practical purposes the second average Diik(1)=—irreducible part of
can be realized either by averaging over large volumes or by
averaging over long time intervals. X f d2[ejm((a’(1)Gi(1;2)

X(V@a' (2)Ry)))

2. GENERAL FORMULAS FOR THE KINETIC COEFFICIENTS 2
+{(a'(1)Gi(1;2)V;”D'(2)))
The general theory, presented in Refs. 10 and 11, makes , D
it possible to obtain from(4) a formally exact integro- —{(a’(1)G;j(1;2)Vi”D'(2)))
differential equation for the large-scale averaged magnetic —e.e (D' (INVDG.(1:2
field ((B)). Using the symbolic form of Eq4) [see Eq(5)], ts€im({(D"(D(V7Gsr(1:2))

for the case of a Gaussian ensemble we obtain X(V@a' (2)R))) —eys((D' (1) VI
LO(1)((B;(1)))=irreducible part of XGg(1;2)VPD"(2))) +es((D" (1) VY
- - X Ggi(1;2)VPD' (2)))]. 11
% [ 42 (Ln0G (12T m2)) =12V (2] D
The functionD'(r,t) is even in the helicityh and the
X((Bj(2))). (6)  function a'(r,t) is odd. This means that the correlator
((D'(1)a’(2))) is zero if the average helicitg, vanishes.

All the formulas become much simpler for this case. Since
according to Ref. 20 the turbulent diffusion coefficient is

If we again use the fact that the fie{dB)) is smooth, this
equation in the diffusion approximation becomes

5 | almost independent of helicity for a degree of helicity
E_(Dm“LDO)V ((B))—agcurk(B)) a=<0.5, the contribution of the cross terms of the form
((D'(1)a’(2))) is probably small even forg# 0. Even at
—curl[U((B))]=curlE, (7)  100% helicity the decrease in the diffusion coefficient is in-
E;= a; (1, ((B;(1,H))) + Dy (1, Vi ((B;(1,1)).  (8) tS|gn|f|cant, about 30%. Hence below we will ignore the cross
erms.
The Ieft-hand Side Of Eq(?) COinCideS W|th the |eﬁ'hand There are Severa' Ways of Obtaining an approximation

side of Eq.(4). Equations(7) and (8) are the equations of a series for the stochastic Green’s tengy(1;2) (see Refs.
turbulent magnetic dynamo in the diffusion approximation.1g and 1). Inserting this a series int®) and (11) yields

The pseudotensos;(r,t) andDj;(r,t) are generalizations  approximation series for the kinetic coefficients(r,t) and
of the pseudoscalar coefficieatand the turbulent diffusion Diji(r,t), respectively.

coefficientD and describe the effect of the helicity fluctua- For the case of the stochastic equatiéh) with
tions a’(r,t) and the fluctuations of the turbulent diffusion p _,0, plugging the iterations of the ordinary integral equa-
coefficient,D’(r,t), on the evolution of the average mag- tion for Gy;(1;2) into the formulas foD, and «, leads to a
netic field ((B)). Their exact expressions are given by theseries in powers of the parametég=uy7y/R,, Which
formulas makes it possible to calcula®, and ay only whené&,<1.
a;;(1) =irreducible part of This result is understandable since the expansion is in pow-
ers of the Green’s function

R o ™ i
\T)=—————€exp — ,
" (47D )32 4D

AP which describes molecular diffusion rather than convective
X(rtr’ t) Ve (r',t)))]. (9 transport by turbulent movements. To obtdlg and a in

XJ dr’JOtdt’[ejnm((a’(r,t)Gm(r,t;r’,t’)

XVr,na,(r,vt,)>>_eitsernj<<D,(r’t)Vthr
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this case we are force@ee Refs. 10 and 110 use a renor- find the total energies of the magnetic fields?)(t) and
malized equation foiG;;(1;2), with the average Green's AW)(t), generated by the effect in the entire space in the
function (G;;(1;2)), for which there is a hierarchy of non- time r, of action of a helicity fluctuatior(it should be re-
linear equations, used for the absolute term. The tensafalled that in the final analysis, &s», turbulent diffusion
(Gjj(1;2)) directly describes the convective nature of theyj| destroy these fields We will examine the limits of
transport of the impurity field, and iterations in powers of sma|l, y=Dyp27,<1, and largeDop3o>1, turbulent dif-
(Gij(1;2)) lead to an asymptotically convergent series forg sion. We have

Dy and aq at all values of&,. A fairly good result is

achieved if instead dB;;(1;2) weplug in the average tensor

(Gij(1;2)) satisfying the first equation in the hierarchy

(what is kn.own as the Direct Interaction Approximation, or A7)~ B_(Z)V agVoPoTs
DIA, equation. 87 " 7om 27

The stochastic equatiof¥) used in the present paper
differs from Eq.(1) in that its left-hand side describes turbu-
lent transport of the magnetic fieltb be sure, in the rough,
diffusion, approximatiop by the coefficientsD, and «ay. sz 8 2

} . ! X . PoT
This suggests that we can do without complicated iteration ~ A®M)(7y)~A)(7,) 0 2 0 (14)
techniques in relation to the renormalized equation for 64X 72mV2
Gjj(1;2) and thesolution of the nonlinear equation for
(Gjj(1;2)). Inthis case the iterations of the ordinary integral
equation forG;;(1;2), for y<1 and
Gij(1;2=G{(1;2)
~ 2 2
+f d3Gi(r?)(l;S)an(S)ij(S;Z), (12 AO)(x )%iv w
* 87 54727 D2’
will probably make it possible to obtain fairly accurate val-
ues ofaj;(r,t) andDjj(r,t).
For an example that supports these expectations we take oo 4
the simple problem of funding the fieB(r,t) in an infinite apVop
Pl P ; oy AD(7g) = AO7g) 000 15

medium that is at rest as a whole and where a helicity fluc-
tuation is of the forma(r,t) = aq exp{—r?/riexp—t/z,} for
t>0. The initial fieldB, is assumed uniform. Solving E#)
with the absolute term

648x 817°Dj

for y>1. Let us estimate the ratig&")/A(® for the model
O oo S R2 of a helicity fluctuation in the form of a separate turbulent
Gij’(1;2)= Wex - m region where there are rotational movements of one type of
helicity, right-handed or left-handed. Such a model is prob-
and the use of the first iteration of E@.2), we arrive at the ably the limit of a helical pattern. According to Ref. 20, the
expressions following estimates holdDo~u37,/3 and ag~uyéy/3 for
£<<1, and Dg~ug/py and ag=~ug for §>1. The case
vy<1 corresponds t0§(2)<1, while the casey>1 occurs
when &;>1. As a result we obtain

BO(p,t) = agVoi(px By)

t p2
Xf dra(t—7)ex ——2(1+Dopg7')
0 Po

2\/2.-3 (1) 4 (1)
- agVoPo A & A
B_(l):(g__pZ_p_p_)Bo_& O o~ —<1, nO) ~0.002, (16)
i ij g ]877\/; AT 45 A y>1

ftd J’t—fd a(t—71a(t—7—17")

x| dr 7’ 2_7\572
2+DgpgT’

° ° ( oPo7") i.e., the series of iterations 'ﬂ3i(j°) converges well.

We will now do all calculations in the zeroth approxi-
' (13 mation, where the exact expression @y (1;2) isreplaced
by G{?(1;2). Inthis approximation, the formulas contain no
where we have introduced the notatidfy= m/?rg, Po reducible terms, and so the phrase “irreducible part of” can
=2y, and a(t)=exp—t/n}; BO(p,t) and BX)(p,t) are  be discarded.
the Fourier transforms in the variablef the fieldsB(©)(r t) To make our reasoning more graphic, we write the ex-
andB™X)(r,t), respectively. Using these expressions, we willplicit expression for the components of the tenaqi(r,t):

1+Dopg7’
2+ DopoT,

p2
X ex;{ - —z( Dopa7+
Po
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GYT.~GYT, GRT,~GRT, GYT,~GYT,

wi(1)= [ d2| BEHT-G0T, BET-GOT, TGO, ). @
0 0 0 0 0 0
G(zy)-rz_(-?"gz)-ry ng)Tx_ng)Tz ng)Ty—G(zy)TX
|
Here, for brevity, we have used the notatiom; ((D"?(r,1)))=D3.

={(a'(1)VPa'(2))), andi,j—x,y,z.

To simplify matters, in applications one commonly usesin this notation, the formulas fax andD for the case of an
the average value of the diagonal elements of the tensqgotropic turbulent medium assume the form
ajj(r,t), which has the meaning of the amplification coeffi-

cient of the magnetic field: 2 (= t B
1 a=—§JO dpfodfsza(p,r)gl(p,f), (22
a(r,t)=§a”(r,t)=emmf d2 G912
1 (= t
X({a'(1)V&a'(2))). (18) D=—§fo dpfodr 2p’Ep(P, 7)ol P, 7)

We see that when there is amplification of the field, the
Green’s tensor must have an antisymmetric part. Similarly,
the quantityD = (1/6)e;xDjjx has the meaning of the aver-

age diffusion coefficient. It should be recalled that the total

J
+Ea(p17)§0(p17)+pEa(va) %@O(pﬂ-) . (23)

coefficients of diffusion and thex effect areD,,+Dy+D
and o+ a, respectively.

Formula(22) shows that helicity fluctuations in an isotropic
medium results in amplification of the already existing

If the correlations of the helicity fluctuations are short- €ffect. To estimate the contribution we take,(p,7)= a3

lived, ({(a'(r,t)a’(r',t")))xs(t—t"), then, allowing for the

property Gnm(r,t;r’,t)=8,mé(r—r’), we find that «;;

=—eVi(a'?(r,1))) anda=0, i.e., there is no field am-
plification. This is in full agreement with the conclusion
drawn by Sokolot that it is imperative to study the effect of

X 8(p—Pa)exp(=1T,):

2.2 2
2 alpaTa

T 3 Doplr,t 1) adp2

(24)

helicity fluctuations, assuming that the time these fluctuaThe conditions for the diffusion approximation require that

tions remain correlated is finite.
The isotropic turbulence case

Below we will write the expressions far andD in the

the denominator iff24) be positive, i.e., the sign af must
coincide with the sign of the coefficielat,.

As for the additional contribution d23) to the turbulent
diffusion coefficient, we see that the on the whole the fluc-

frequently used model of an isotropic turbulent medium WithtuationsD’(r,t) (the first term and ' (r,t) (the second and

helicity. In this case
GO(R,7)=H(7)[ 8;go(R. ) +e Vigs(R, D], (19

where R=r—r’, r=t—t’, H(7)=1 for >0, andH(7)
=0 for 7<<0. The Fourier transforms of the functiogg and
g, have the following form:

@o(p,r)zf dRgo(R,7)exp(—ip-r)

=cosh agpr)exp(—Dop?7), (20

1
T1(p,7)=— Esmwaopf)exp( —Dgp?7).

In the absence of helicityy,=0 andg;=0. At this point it
is convenient to introduce the fluctuation spectra

((a’(r,t)a’(r,t-l-T)))Efwdp E.(p,7), (21
0
((a'(r,n))=af,

(.00 (1,4 )= | “dpEg(p.n),

third termg provide a negative contribution, i.e., reduce the
initial coefficient D,,+Dy. The fact that the fluctuations
D’'(r,t) reduce the diffusion coefficient becomes under-
standable if one recalls that in finding the mean free path of
a particle with two scattering mechanisms one should take
the sum of the reciprocals:|}{.a= 1111+ 11,. Actually, the
turbulent diffusion coefficient is proportional to a certain
mixing lengthl. Hence for an ensemble of two processes
with D=Dy+AD and D=D,—AD the mean value is
Dmea=Do[1— (AD/D)?]<D,. Note that Moffat when
considering the effect o&’(r,t) on turbulent diffusion, ob-
tained only the second term if23). This is the result of
using a less accurate method in studying the problem. Actu-
ally the new term in23), the third term, provides a positive
contribution, whose value may reach two-thirds of the sec-
ond, negative, term.

Thus, in a uniform and isotropic turbulent medium, he-
licity fluctuations only enhance the already existimgffect.
The situation is different in nonuniform and anisotropic tur-
bulent media. In such media, helicity fluctuations may cause
large-scale amplification of the magnetic field even at zero
average helicity. This becomes especially evident if we turn
to media with differential rotation.
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3. THE @ EFFECT IN A NONUNIFORMLY ROTATING the Green'’s tensor integrated with respect to the difference of
MEDIUM the azimuthal angles)=¢,— ¢,. We will denote this ten-

The most important examples of such media are the cori>> by (G =(GGi(p1.21:p2,2;7)). Integrating Eq(25)
vective shell of the sun and the motion of magma inside the" with respect to the angl$ we arrive at exact expressions for
Earth. The accretion disks around stars and interstellar gage component$ >'
also participate in differential rotation.

2m
0 0
3.1. Integral equation for the Green’s tensor <G( )> <G( )> G, = fo dycosygo(R,7),

It is convenient to write the equation for the Green’s
tensorG{?)(r,t;r’,t') satisfying Eq.(4) without the stochas- 27
: . i ide i i (G)=G)=| dygo(R7)
tic terms on the right-hand side in the form of an integral 2z = o (USRS
equation. For the case consideredg=0 and U(r,t)
=w(p,2)(er)=e,pw(p,2), this equation in a cylindrical " w
system of coordinatess{ 3= p,¢,z) has the form (6=a,,= ffxd23fo dps p3

G(1;,2)=9'%(1-2)
X | d7' G (p1,21:p3,25,7—7")
de w(3)g(0)(l 3) G(O)(3;2) fo T ©1(pP1:41,P3,4£3, T T
X(V,,0(p3,23))G 1 (p3.23:p2,22;7'),
f d3 p3g{(1-3)[(VPw(3))G!Y(3;2) 29

+(VP¥0(3))G(3:2)1, (25)

wherep is the distance from the observation paip, ¢,z)

to the rotation axigz, the indexy runs through all valueé,

¢, andz), and the other indices are fixed. The Green'’s tensor % deT/ G, (p1.21:p3,23)T—17')
(0)(R 7) is the ordinary diffusion Green’s functiog;; (1 0

—2) 6ij9o(R,7) (i,j=X,y,2) written in a cylindrical sys-

tem of coordinates, with

(O)> G, f dzsf dps p3

X(Vz,0(p3,23))Gy(p3.23:p2:22;7").

The other componem(sG“”) are equal to zero. Note that in
calculatingG, and Gy, mtegrals with respect t@/ lead to
Bessel functions of imaginary argument, i.e., these compo-
nents are of an explicit analytic form.

When there is axial symmetry, the scalar fluctuation cor-
relatorA(1;2)=({a'(1)a’(2))), obviously, also undergoes

1 R?
go(R,7)= WGXP{ - m} . (26)

It should be recalled that the transition from Cartesian
coordinates to cylindrical is done by using a unitary matrix
U sk(¢) according to the following relationships:

Ag=Ugl@)A, no changes under rotations of the system of points 1 and 2 as
_ o a whole, ie., it can be written in the formi\(1;2)
Gup(1;:2)=U4i(01)Gij(1;2)Uj5( @2), (27) —A(zl,zz,p1,|r(1)—r(2)| 7), where the vector, (p,¢) de-

_ ~ termines the point of a point in they plane. The Green’s
a1 =Usil@)ai(r,HUjs(¢). tensor(G'%) integrated with respect to the differengeof
The tilde indicates the transpose of a matﬁbfﬁ Ug, and  azimuthal angles is the part Cﬂ‘(o) that is independent ap.
summation is implied over repeated indices. The componenié/hat is the contribution of this part to the tensey,? If we
of the matrixU ,(¢) are transform(G{%)) into (G} by (27) and then calculate first

) cose  sing 0 the tensora”(l) [see(17)] and thena,5(1), we obtain

Ugl@)=| ¢ —sing cosep O ]. (29 @, (1) =a,,(r,1) = ay,(r,t)=a,(r)=0, (30
z 0 0 1
t
According to (27), the Green’s tensor has the forgﬁf)g(l aw(p,z,t):—%p(p,z,t):—f dr’f dr
0

—2)—Ua (o1— <p2)go(R 7). One can easily verify that the
tensorG )(r,t;r',t") depends on the difference of azimuthal

XCOSd/GL(Z_ Z,7p1p,;7-)
angles, ‘lf P17 ¢2.

XVIA(Z,2 ,p,|r =11 ],7),

3.2. Green'’s tensor for axisymmetric problems

t
When Eg.(4) is used to find the magnetic field, it is a‘PZ(p'Z’t):_f dr deTGL(Z_Z P:P"57)
often assumed that the distribution of field sources or the ) )
initial field is axisymmetric. In this case it is enough to know XV,A(z,2',p,|r.—r],7),
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t 4
a'w(p,z,t)=f dr JOdTGH(Z—Z p,p";T)[COSYV A C)
+siny V A], £
t A «BY
aw(p,z,t)—jdr J'odT 5 /,
e, (D)
X{—cosyG,,(z,p;2",p";7)V,A 1
ror. ’ i 7’ y
+cosy Gy (z,p;2,p"; 1)V A ¢ B(2) B 7 B
+siny G, (z,p;2 ,p"; )V A} ; B('Z/)/ B‘\
For brevity, in the last two formulas we have omitted the 2/ Ey (1)
arguments ofA(z,z’,p,|r, —r]|,7).
Clearly, when the helicity fluctuation distribution is uni- /
form along the rotation axisA(z,z',p,|r. —r|,7)=A(|z t

! _ 27 AAE@2Y
—7'|,p,Ir, —r[],7)), the components,,=a,, vanish be- O
cause they are odd im—2z'. In the absence of differential
rotation in thez-coordinate @ (p,z) = w(p)), the component FIG. 1. The mechanism for the occurrence of a transversfect (the
anz is zero and_?,wp depends O¢Z—Z’|, which means that «,,-componentdue to the nonuniform distribution of helicity fluctuations
when the distribution of the fluctuations is uniform, the prin- along th_e rotation axiz and the differential rotation in the perpendicular
. . . e . plane withw= w(p).
cipal componentr,,,, which determines the amplification of
the magnetic field, is zero.

Thus, for ana effect to exist ,,#0) to exist, there x axis, i.e.,p=0. Then the sum of these terms can be rep-
must be a dependence of the angular veloaiign the coor-  resented a&,(1;2)V}A. As in the case with the first term
dinatez or a nonuniform distribution of helicity fluctuations (Fig. 1), we select the points’2and 2’ at equal distances
along this coordinate or the two factors must act simultafrom the circlep=p, (see Fig. 2 The average magnetic
neously. Here thev effect is highly anisotropic—only the field Bye (1) in this case is parallel to the axis. The emf's
azimuthal component of the magnetic field induces an azig(2') andE(2”) induced by thex'(r,t) field are also par-
muthal current, which results in amplification of the poloidal gjle| to they axis. The electric currents generated by these

component of the average field. emf's induce at the potr2 a finite magnetic field(2) di-
rected along the axis. Due to differential rotatiofiw de-
3.3. Qualitative explanation of the  a effect pends on z), this field acquires, with a probability

xG,,(1;2), anazimuthal component at the observation
point 1, where it generates an effxG,,(1;2)V,A. For
simplicity, in Fig. 2 we depicted the contribution from points
2’ and 2 in the xy plane, but the same is true for other
planes parallel to th&y plane.

Let us qualitatively examine the generation of the emf
E, parallel to the average fiek{B,)). We will begin with
the contribution of the first term ir,, in (30). Suppose that
the initial uniform magnetic field is directed parallel to the
azimuthal basis vecta,(1) at the observation point (see
Fig. 1). At points 2 and 2', which are located at equal
distances for thexy plane, this field induces the er&f(2’)
=a'(2")Boe,(1) andE(2")=a'(2")Bye,(1). Thecurrents
generated by these emf’s induce at point 2 in tiyeplane The left-hand side of Eq4) (at ap=0) describes the
two magnetic fieldsB’ andB”, which are perpendicular to evolution of the average magnetic field due to diffusion
the initial field but point in opposite directions. The net field (D,+Dy# 0) and due to transport of “frozen-in" field lines
B(2)=B’+B" is directed along the rotation axis at an angleby regular motion. In our integral equati¢25) the diffusion
y=¢1— ¢, to the radial basis vectoe,(2), i.e., B,(2) process is described by the tensgf(1;2)=U (¢1
= —cose B’ +B"|. Due to radial differential rotatiofw de-  — ¢2)go(R,7), which corresponds to diffusive transport of
pends orp), this radial component transforms, with a prob- the field lines in an isotropic medium, i.e., the initial direc-
ability «G,(1;2), into the azimuthal component at point 1 tion of these lines is conserved. It is for this reason ty@l
and generates the azimuthal emf E o contains finite termgf,‘l}=sin(<pl—cp2) go=—gg’g, according
—cosy G, (1;2)a’ (1)V;a'(2)Bee,(1) at this point. The size to which, say, the fieldB,, which was initially radial, ac-
of the circles in Fig. 1 corresponds to the relative values ofjuires a¢-component as a result of diffusive transport to
the functiona’(r,t). This picture shows again that for this another point, and vice versa. Substitution gff”(R,r)
part of thea,, effect to exist the distribution of fluctuations = 6j;go(R,7) corresponding togffg into (17) leads to a
must vary along the-coordinate or the componef,,, of purely antisymmetric tensat;; , i.e., thea effect properthe
the Green'’s tensor must be nonuniform. emf is directed parallel to the average magnetic fieldes

In examining the contributions of the second and thirdappear here. Differential rotation with= w(p) directly cre-
terms it is convenient to place the observation point 1 on thates(due to the frozen-in field linegsn azimuthal component

3.4. An approximate expression for the Green’s tensor in
the general case
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(2]

e
\»

FIG. 2. The mechanism for the occurrence of a transverse
effect (the @ ,-componentdue to the nonuniform distribution
of helicity fluctuations perpendicular to the rotation azis
and the longitudinal differential rotation with= w(z).

A B(2) 2’@213(2")
/’/

= B(I) £

X {B)

field from the radial component and yields an additional conproblem. All this suggests that the proposed expression for
tribution to theG%)-component of the Green’s tensor. How- G{))(1;2) can beused in practical calculations and esti-
ever, we have seen that diffusion partially transforms thisnates. Thus, plugginggoﬁ)(l—Z) into the integral terms of
azimuthal component into the radial component, giving riseEq. (18), we arrive at the following expression for
to an additional contribution tG?). The inverse sequence, G{J)(1;2):
first diffusion and then differential rotation with = w(p),
gives an additional contribution tGE)?P). When o= w(p) d P
holds, thez-component of the field cannot transform into the Gup(1:2)=U45(1)g0(1-2)— w[uaﬁ( P+ e
radial or azimuthal component, so that in this ca3§) z
=G{?=0. In the general case of rotation with=w(p,z), asing—ccosy csing—bcosy hsing—g cosy
neither diffusion nor differential rotation can transform the acosy+csing ccosy+bsing hcosy+gsing
horizontal(in the rotation planecomponent of the field into x g
the vertical component. Hen@@{?)=G{")=0 always holds. 0 0 0
Differential rotation with w=w(z) generates from the (31)
z-component the azimuthal componer®$)+0), which _ _
th(ré))ugh diffusion creates the radial component, leading t¢i€re we have introduced the notation
G, #0.
" All these qualitative conclusions are corroborated by the  f(1;2)= J d3 w(3)go(1—-3)go(3—2),
master integral equatiof25).

In the axisymmetric case, the second term on the right- ,
hand side of Eq(25) contributed nothing, which enabled us 3(1;2):f d3 p3(V,@(3))cos ¢’ go(1-3)go(3—2),
to find an exact analytic expression for the average Green’s
function (G{J). According to(10), to calculate the tensor b(1;2)=f d3 pa(V,0(3))Si? ¢’ go(1—3)go(3—2),
ajj(r,t) we must know the Green’s tensor in general form
and not only its axisymmetric part. For this general case we
express the Green’s tens@ﬁ?g(l;Z) in theform of asum of ¢(1;2)= f d3 p3(V,0(3))sinyg’ cosy’ go(1—3)go(3
the absolute term of Eq25), g'0}(1-2), and the first itera-
tion of the equation. The structure of this expression is of the -2),
most general form, i.e., only the compone@t)=G'? are
egual Fo zero. This expression is probably q.une.accurate, 9(1;2)=J d3 p3(V,0(3))sing’ go(1—3)ge(3—2),
since it allows for the first orders of the diffusion and
differential-rotation processes, while higher-order processes
provide small contributionghis follows from general physi- h(1;2)= | d3 p3(V,w(3))cosy’ go(1—3)ge(3—2), (32
cal considerations|t should alsobe recalled that in magnetic
dynamo theory the system of coordinates rotates togethef=¢,— ¢,, and ¢’ =¢3—¢,. Interestingly, integrating
with the medium with a constant angular velodity, so that  (31) with respect toy leads to the axisymmetric Green’s
w(p,z) stands for the remaining part of the angular velocity,tensor(29), i.e., this approximation incorporates the previ-
which often (say, for the sunis much smaller tharwg. ous, axisymmetric, approximation.
Usually the gradients of the angular veloci¥y,» andV v, Using (31), we can easily write the components of the
are also smooth functions on the characteristic scales of thtensor a.(r,t) explicitly. Here we will limit ourselves to



JETP 89 (1), July 1999 N. A. Silant'ev 53

the most important, diagonal, components. For conveniencabove is fully applicable in relation to the second and third
we first write the general formulas for these components: terms in(36) and (37). Attention should be focused on the
first terms in these formulas, which appear because of the

o (r,t)=f d2{—siny G(1;2)VPA(1;2) term with the derivative with respect to the azimuthal angle
pp e in the master integral equatiaq@5). We will begin this ex-
+cosy Gg‘g(l;Z)ng)A(l;ZH[sinzﬁfo) planation from fundgmental cons.iderations. .
The exact solution of Eq.25) in the absence of differ-
><A(l;2)—coswvfpz)A(1;2)]69(1;2)}, ential rotation, i.e., in the case of uniform rotation with a

33) constant angular velocity,, has the following forn®:

GO1;:2)=U (= won)o(|z—2'|, p?+p'?

aw(r,t):f d2{-cosy G)(1;2)VIPA(1;2)
—2pp’ cOLY— wq7), 7). (38)

—siny GO(1;2)VPIA(1;2) . . . o . .
The physical meaning of this solution is very simple: it de-

+[cos¢V(pz)A(1;2) scribes the ratio of frozen-in magnetic field and, simulta-

neously, the thermal diffusion of this field in accordance

- EINE (0)(1 -
+sing VI PA(L;2)]G 7 (1;2)}, (34 With the varying distance from the moving point 2 to the
fixed observation point 1. Susbstituting this solution(33)
azz(r,t)zf d2[G(1;2)VPA(1;2) and (34) yields
_ )1 (2) .
G (1:2V,7A(1;2)]. (39 app=aw=—f d2 sin(wor) VPA(1;2)gs. (39

First we see thatr,,(r,t)=0, since in a medium with differ-

ential rotation withw=w(p,z) the component&?’=G{)  This formula describes the occurrence of theffect due to
are equal to zero. We also note that the difference from théhe rotation of the induced magnetic field. Indeed, let the
corresponding formula in the case of using the axisymmetriaverage field(B)) = const be directed along theaxis (see
Green’s tensofformula (29)] is very large. Therey,,,(r,t) Fig. 3. In accordance with the values of the function

=0, since(G!Y)=(G(?)=0, and the first term ii33) con-  a’'(r,t), the emf's generated at point$ and 2’ are E(2")

tributed nothing because it is odd in =a'(2'){(B)) andE(2")=a’(2"){({(B)). The electric cur-
Inserting the components of the ten$8t) into (33) and  rents corresponding to these emf’s induce at point 2 the re-
(34) yields sulting fieldB’ +B” directed parallel to th& axis. Due to its
frozen-in nature, the field rotates about the rotation axis, so
app(p,Z,t)=f d2{-fVPA(1;2) - (asir? that a COI’npOﬂGI’BHZ.SiI’.l(wO?') |B’'+B"| pgrallgl to.the aver-
age field({B)) but pointing in the opposite direction appears
+bcod ) VPA(1;2) at the observation point 1. This is the component that gener-
ates an emf at point 1 in the same direction, i.e.qaeffect
+hsin¢/[sinz/;V§,2)A(1;2) is present. However, when only uniform rotation is consid-
B ) nra. ered noa effect appears, since we implicitly assumed that
cosy Vo A(L:2) ]}, (38 the average field(B)) is fixed in relation to the fixed obser-
vation point 1. Actually({B)) also rotates and no relative
a(P(P(p,Z,t):J' d2{—fV§2)A(1;2)—(a cos ¢ rotation through the angley7 occurs. This becomes espe-
cially clear if we examine the problem in a rotating system of
+bsir? ) VPA(L;2) coordinates, where,=0.
Darq. In the presence of differential rotation we have already
+hcosy[cosy V,"A(1;2) excluded the constant component of the angular velocity by
+sin¢VEf)A(1;2)]}, (37) going over to a rotating system of coordinates. With such a

system of coordinates we can assume that the average field is

We see that the components,, and «,,,, are of the same fixed in relation to the point of observation and that the
order. This means that in calculating the kinetic coefficientanechanism depicted in Fig. 3 does indeed work. The func-
ag,(r,t) we must use the Green'’s tensor in general formtion f(1;2) corresponds to the solutio88) if we assume
The part of this tensor that is averaged over the azimuthahat locally the angular velocityw(p,z) is constant and,
angle strongly distorts the structure®g,(r,t), although the more than thatw(p,z)7 is much smaller than unityi.e.,
order ofe,,, remains unchanged. In a medium with rotation, f —w7g,). Substituting the functiorf(1;2) for sin(wo7) go
all the componenta,(r,t)=ag,(p,zt) are independent of ~wy7g, we obtain the first terms i(86) and (37). Thus, the
the azimuthal angle, which is the consequence of the fact thaerm with f(1;2) describes thex effect caused by local ro-
the fluctuation correlator is uniform in the angle&(1;2) tations of the frozen-in induced magnetic fields.
={(a'"(1)a'(2)))=A(Z1,22,p1,P2, 91— ©2,7). Sometimes in magnetic dynamo problems the average

A qualitative explanation of the emergence of taef-  valuea, (r,t)=(a,,+ a,,)/2. Formulag36) and(37) yield
fect due to helicity fluctuationgsee Figs. 1 and)2given  for this quantity a relatively simple expression:
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FIG. 3. The mechanism for the occurrence of a transversgect
due to the nonuniform distribution of helicity fluctuations along the
z axis and the rotation of the induced magnetic field.

» i) E(Q27)

“ i (a0 [* i | Thad
a, (p,z,t)y=— dz Odp p . dy| | f(1;2) a~o— + 3 (V,0)gitr(74)

% z p
a(1;2)+b(1;2)|_, 2 a?

e VIAL) + = (V) (7). (41)

Z

h(l;Z)V'A 1;2 40

2 pAL2)] (40 Here a?~({a'?(r,t))) is the level of fluctuationsr, is the

All the formulas obtained in this paper suggest that a nonl'fetlme of helicity correlations, andl, andL., are the char-

uniform distribution of helicity fluctuations causes a Iarge-gﬁigftm:i%g;?: rzfla':slglljngcr:g”t)éiﬁigﬁglﬁg;uj;:?;n?;tstrgf
scale a effect. As for the longitudinalalong the rotation ' y ' y

axis) a effect, the general formulés5) requires that finite the fluctuations probably manifests itself most strongly near

componentﬁg?p) anngg) are needed for such an effect to the boundaries of the regioffor the sun, say, this is the

exist. The idea that the field lines are frozen-in implies that'PPE' and lower edge of the convective Zone .
If we assume that each turbulent vortex transfers, in the

such an effect is possible if in addition to rotation there are rocess of scale fractionation, its angular moment to smaller
types of motion that eject matter out of the plane of rOtation'\F/)ortices then to make estirr;ates v?/e can assume dRat
Primarily this is convective movements of matter accompa- ' T

. . . ~ug (which is usually done in estimaesvhereug is the
nied by expansion of the volume occupied by gas. 0 o . 0 .
y exp P ya characteristic velocity of turbulent movements. What is im-

portant is that helicity fluctuations are inherent in any turbu-
lence and are in no way related to Coriolis forces. As is
known, Coriolis forces imply, when there is convection and
4. ESTIMATES OF THE a EFFECT AND DISCUSSION differential rotation, the existence of an average heliaigy
which we set to zero in our discussion in “pure form” of the
In view of the complexity of the above formulas, esti- novel mechanism for amplification of the average magnetic
mates of thex effects made by these formulas are qualitativefield by helicity fluctuations. These independent coefficients
rather than quantitative. First we take the quantiti€p,z) are relatively weak and can be added, with the quadratic
=w and the gradienty ;0 and V,w outside the integral effects being ignored. We also note tm%tcan strongly de-
sign, assuming them to be fairly smooth functions.pend on the magnetic field. We must take the turbulent ve-
This vyields f(1;2)=w7ge(1—2), a(l;2)=b(1;2) locities and the distribution of the helicity fluctuations at the
~(V,0)190(1-2)lg4x(7), and h(1;2)~(V,w)7go(1  values that they had when formed by all the factors: the
—2)l4iw(7), whereljq(7)~6D,7 determines the diffusion temperature, pressure, magnetic field, boundary conditions,
distance in timer. As noted earlier, the coefficients,, and  etc. The characteristic lifetime of a fluctuation correlation is
a,, are of the same order, with the result that our estimateprobably longer than the lifetime, of a turbulent vortex,
refer to the average value of these quantities, Using the and so for estimates we assume that 7. The turbulent
foregoing estimates of the functiois a, b, andh and Eq. diffusion coefficient is usually estimated d@,~ugR,
(40), we arrive at the final estimate: whereR is the characteristic size of a turbulent vorige
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mixing length. Plugging all these quantities int@1), we and reflection-asymmetric turbulence, helicity fluctuations

arrive at a detailed estimate: only amplify an already existing effect. In a medium with
differential rotation, a nonuniform distribution of the turbu-
) Ro  epn Ro  epn Ro o . e
ai>§o(wR0)L_+§o (Rova)L_+§o (Ronw)L—y lent helicity fluctuations produces large-scale amplification
z P z of the average magnetic field even at zero average helicity.

(42 For this case thex effect is highly anisotropic: the average
whereéy=uUq7y /Ry is a dimensionless parameter characteremf not directed parallel to the longitudinal component
izing turbulencethe Strouhal numberlt is usually assumed (along the rotation axjsof the magnetic field, i.e.q,=¢,
that§,=1. This parameter can be also be written as the ratio=0. All transverse components of the tensgy(r,t) are of
of the vortex lifetime to the time of one rotatior§,  the same order and can become equal to the coefficients
=T19lty, Wheretg=Ry/ug. If the vortex has time to make caused by Coriolis forces. It is also shown that the fluctua-
many rotations, thegy>1. tions of the diffusion coefficient and helicity reduce the ini-

In estimating thex effect caused by the Coriolis force it tial turbulent diffusion coefficient.
is usually assumed thato~Ryw (see, e.g., Ref. 21 The
estimate(42) shows that the coefficient, , which reflects  *E-mail: silant@inaoep.mx
the nonuniformity in the distribution of the helicity fluctua-
tions, may become equal te, or even larger thaw,. True, LE N Parker. Actronfve. 122 263 (168
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mechanism may be important only near the boundaries of thegg (1964,
region considered, where the distribution of fluctuations var-3H. K. Moffatt, Magnetic Field Generation in Electrically Conducting Flu-
ies most. ids, Cambridge Univ. Press, Cambrid¢ge978.
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Poisson—LieT-duality in quantumN=2 superconformal Wess—Zumino—Novikov—Witten
models is considered. The Poisson-[igluality transformation rules of the super-Kac—Moody
algebra currents are found from the conjecture that, as in the classical case, the quantum
Poisson—LieT-duality transformation is given by an automorphism which interchanges the
isotropic subalgebras of the underlying Manin triple in one of the chirality sectors of

the model. It is shown that quantum Poisson—Tiduality acts on théN=2 super-Virasoro
algebra generators of the quantum models as a mirror symmetry acts: in one of the chirality sectors
it is a trivial transformation while in another chirality sector it changes the sign obitie
current and interchanges the spin-3/2 currents. A generalization of Poisson-duigity for the
quantum Kazama-—Suzuki models is proposed. It is shown that quantum Poissdh—Lie
duality acts in these models as a mirror symmetry also.1999 American Institute of Physics.
[S1063-776(9900207-3

1. INTRODUCTION in Refs. 16—26. In particular, in Ref. 26 it was shown that PL
T-duality in the classicalN=2 superconformal WZNW
Target-spacg(T) dualities in superstring theory relate (SWZNW) and Kazama—Suzuki models is a mirror duality.
backgrounds with different geometries and are symmetries at is reasonable to expect that Pl-duality in the quantum
the underlying conformal field theory? versions of these models will be a mirror duality also. More-
The mirror symmetr@discovered in superstring theory over, it is tempting to conjecture that PL-duality is an
is a special type oT-duality. At the level of conformal field adequate geometric structure underlying mirror symmetry in
theory it can be formulated as an isomorphism between twguperstring theory. Motivated by this we propose a quantiza-
theories, amounting to a change of sign of thgl) genera-  tion of PL T-duality transformations in th&l=2 SWZNW
tor and an interchange of the spin-3/2 generators of the leftand Kazama—Suzuki models.
moving (or rightmoving N=2 superconformal algebra. Quantum equivalence among PI-duality related
Mirror symmetry has mostly been studied in the contexto-models was studied perturbatively in Ref. 27 and Ref. 22,
of Calabi-Yau superstring compactification. Importantand it was shown that PL dualizability is compatible with
progress has been achieved in this direction in the last fewenormalization at 1 loop. In particular it was shown in Ref.
years, based on the ideas of toric geométiry particular, in 22 that 1-loop beta functions for the coupling and the param-
Ref. 5 toric geometry mirror pair construction was proposedeters in the two simplest examples of Atduality related
Though it seems quite certain that pairs of Calabi—Yau manimodels are equivalent. This allows us to suggest that their
folds constructed by these methods are mirror, one needs tmuivalence extends beyond the classical level with appro-
show that the proposed pairs correspond to isomorphic corpriate quantum modification of PT-duality transformations
formal field theories, to prove that they are indeed mirror.rules.
Progress in this direction was made in Ref. 6, but a complete In the present note the PL-duality transformation rules
arguments has yet to be carried out. In fact, the only rigorof the fields in quantumN=2 SWZNW models will be
ously established example of mirror symmetry, the Greene<found starting from the conjecture that as in the classical
Plesser constructiohjs based on the tensor products of thecase, quantunN=2 SWZNW models are PL self-dual and
N=2 minimal model$ For a review of mirror symmetry the PLT-duality transformation is given by an automorphism
and toric geometry methods in Calabi—Yau superstring comef the super-Kac—Moody algebra in the rightmoving sector.
pactifications see the lectures of Greéne. Then we obtain PLT-duality transformation rules using the
Recently, Strominger, Yau, Zasldrelated mirror sym-  Knizhnik—Zamolodchikov equation, Ward identities and a
metry in superstring theory to the quantum Abeliaduality =~ quantum version of the classical formula which relates the
in fibers of toricaly fibrated Calabi—Yau manifolds. generators of rightmoving super-Kac—Moody algebra to its
The Poisson—Li€PL) T-duality, recently discovered by PL T-duality transformed. We show that the generators of
Klimcik and Severa in their excellent work,is a generali- the N=2 super-Virasoro algebras transform under PL
zation of Abelian and non-Abeliafi-dualities!?~**This gen-  T-duality like a mirror duality: theU(1) current changes
eralized duality is associated with two groups forming asign and the spin-3/2 currents permute. Thus, the results are
Drinfeld double!® and the duality transformation exchangesin agreement with the conjecture proposed in Ref. 28 that
their roles. Many aspects of these ideas have been developeadrror symmetry can be related to a gauge symmeédnyto-

1063-7761/99/89(1)/8/$15.00 5 © 1999 American Institute of Physics
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morphisn) of the self-dual points of the moduli space of the 8, G(z. ,x_,0,,0_)
N=2 superconformal field theorigSCFTg (for the N=0 "

version of this conjecture see Ref.)29hen we consider =a,(z_,0,)G(z,,z2_.,0,.,0_),

guantum PLT-duality in the Kazama—Suzuki models and

propose a natural generalization of the quantunTRluality 02 G(z:+,2-,0,,0.) 4
transformation. We show that as in the SWZNW models

quantum PLT-duality in the Kazama—Suzuki models is a =-G6(z,,2.,0,,0_)a_(z.,6.),

mirror duality also.
The structure of the paper is as follows: In Sec. 2 we
briefly review PLT-duality in the classicaN=2 SWZNW
model following?® In Sec. 3 we describe Manin triple con-
struction of the quantur=2 SWZNW models on the com-

p?crt]groups andfpﬁ);alnvt\?e F’I;;dualr:ty tlr:?Edsfolr.matlon rfules An additional ingredient demanded by thie=2 super-
of the quantum fields. We show that Riduality transfor- o ymg) symmetry is a complex structufeon the finite-

mation is given by an automorphism of the underlying Ma- jimensional Lie algebra of the model which is skew-

nin triple which permutes isotropic subalgebras of the t”ple'symmetric with respect to the inner prodygt. 33 That is,

Then we ob_tain transformation rules of the rightmoving we should demand that the following equations be satisfied
=2 super-Virasoro algebra generators. In Sec. 4 we preseqt, g

the Manin triple construction of the Kazama—Suzuki models.

67155+G:(Gilf+(z—)Q+G)a

8. GG =€ (z,)Q_GG 1, ®)

wherea.. areg-valued superfields.

We show that they can be described @ganin triple)/ P=—1, (Ixy)+(x,Jy)=0,
(Manin subtriplg-cosets. We define quantum Pl-duality
transformation in the Kazama—Suzuki models as the subset [JX,JY]—=J[Ixy]—=J[x,Jy]=[X,y] (6)

of the transformations of the numerator triple which stabi- . . .
for any elementx, yin g. It is clear that the corresponding

lizes the denominator subtriple. Then we easily find transfor-l_ie roup is a complex manifold with lefor right) invariant
mation rules of the rightmovingl=2 super-Virasoro alge- group P g

bra generators of the coset. At the end of the section Pl(épmplex structure. In th.e following we shall denote the real
T-duality in theN=2 minimal models considered briefly as ie group and the real Lie algebra with the complex structure
satisfying(6) by the pairs 5,J) and (g,J) respectively.

an example. 5 .
xamp The complex structurd on the Lie algebra defines the
second supersymmetry transformatibn
2. POISSON-LIE T-DUALITY AND MIRROR SYMMETRY IN (G™%5,,6)%=7.(z-)(J)H(G 'D.G)",
THE CLASSICAL N=2 SUPERCONFORMAL WZNW 7)
MODELS (8, GG H2=7_(z,)(J)D_GG H".

In this section we briefly review PII-duality in the  whereJ,,J, are the left invariant and right invariant complex
classicalN=2 SWZNW models, following>?° structures orG which correspond to the complex structure

We parameterize the super world-sheet by introducing  The notion of Manin triple is closely related to a com-
the light cone coordinates. and Grassman coordinatés.  plex structure on a Lie algebra. By definitibha Manin
(we use theN=1 superfield formalism The generators of triple (g,g. ,g_) consists of a Lie algebrg with nondegen-
the supersymmetry and covariant derivatives satisfying therate invariant inner product) and isotropic Lie subalge-

standard relations are given by brasg. such that the vector spage=g, ®g_ .
With each pair ¢,J) one can associate the complex Ma-
Q.= +i©.9., D.= ~i0.4-. (1)  nin triple (g",9; ,9-), whereg" is the complexification o
90 - - 90 . N andg- are *i eigenspaces aof. Moreover, it can be proved
The superfield of thél=2 SWZNW model that there ex_ists_ a one-to-one _correspo_n(_jence_ betwgen a
complex Manin triple endowed with an anti-linear involution
G=g+i®_y,+iO y_+i0_06O_ .F (2)  which conjugates isotropic subalgebrasg.—g- and a

real Lie algebra endowed with an ad-invariant nondegenerate
takes values in a compact Lie gro@pso that its Lie algebra  inner product(,) and complex structurd which is skew-
g is endowed with an ad-invariant nondegenerate inner prOdsymmetric with respect tQ>.32 The conjugation can be used
uct(,). The action of the model is given by to extract a real form from a complex Manin triple.
Now we have to consider some geometric properties of
stzzf d2xd2®((G*1D+G,G’1D_G>)—f d?xd?2edt theN=2 SWZNW models closely related to the existence of
complex structures on the groups. We shall follow Ref. 25.
IG Let us fix some compact Lie group with the left invariant
X<Glﬁ,{G1DG,G1D+G}> (3)  complex structure @,J) and consider its Lie algebra with
the complex structureg{J). The complexificationg” of g
and possesses manifelst=1 superconformal and super- has the Manin triple structureg(,g. ,g_). The Lie group
Kac—Moody symmetrie¥’ version of this triple is the double Lie group
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(G% G, ,G_),* 3 where the exponential subgroup.
correspond to the Lie algebrags . The real Lie groufs is

S. E. Parkhomenko 7

2) The (G,J)-SWZNW model admits PL symmetty;*’
with respect tdG ;. action so that we may associate with each

extracted from its complexification with the help of conjuga- external surfac&  (z, ,z_,0,,0_)CG,, of the model a

tion 7 (it will be assumed in the following that is the her-
mitian conjugation

G={geG'r(g)=g"}. ®)
Each elemeng G" from the vicinity G, of the unit element
from G admits two decompositions:

9=0.9-'=9-9;". 9
Taking into accoun(8) and(9) we conclude that the element
g(ge G;) belongs toG if

7(g+)=0:" (10

These equations mean that we can parameterize the elemeffi the superfield -

of
C,=G;NG (11

by the elements of the complex gro@, (or G_), i.e., we
can introduce complex coordinatéhey are just matrix ele-
ments ofg, (or g_)) in the startC,.

To generatd9) and (10) one has to consider the sét

mapping (“Noether charge’) V_(z,,z_,0,,0_) from
the super world-sheet into the grou_. The pair
[Gi(zy,z.,060,,0_),V_(z,,z_,0,,0_)] can be lifted
into the the double&s":

CI)(Z+ Lo a®+ 1®7):G+(Z+ Lo 1®+ 7®7)

XV_(z4,2_,0,.,0_). (20

Moreover, the surfac€0) can be rewritten in the form

®(z.,0.)=6G(z.,0.)H Yz, ,0_). (21)

HereG(z.. ,0.)CG is a solution of the5-SWZNW model
is given by the solution of the equa-
tion

H- D, H_=2(1,)", (22)

where ()~ is g_-projection of the conservation current
|, =G 'D,G of the model.

3) With the appropriate modifications the above state-
ments are true also for the mappind®) andG_ action on

(which we shall assume in the following to be discrete andG. Thus, one can represent the surf&26) in the “dual”

finite) of classesG,\G"/G_ and choose a representatiwe
for each clasfw] e W. It gives us the stratification a&".%®

C_ _
G —U‘W|EWG+WG,—U|W‘EWGW. (12
There is a second stratification:
C_ _
G —U‘WlewG,wG+—U|W‘EWGW. (13

We shall assume, in the following, that the representatives
have been chosen to be unitary:

r(w)=w"1. (14)

It allows us to generaliz€9) as follows:

g=wg.g-"=wg_g;", (15)
where

g+teGY, g.eG" (16)
and

GY=G,Nnw iG,w, G"=G_Nnw G_w. (17

In order for the elemeng to belong to the real grou@

the elementg. ,g. from (15) must satisfy(10). Thus, the
formulas(10) and (15) define the mapping

¢, :GY—C,=G,NG. (18
In a similar way one can define the mapping
¢, :GY—C,=G,NG. (19

parameterizatiort

P(z.,0.)=G(z.,0.)H, Yz, ,0_), (23)

where G(z. ,0.) is the dual solution of th&5-SWZNW
model and the superfield . is given by the similar equation

HI'D H =2(1,)", (24)

where ()™ is theg, -projection of the dual conserved cur-
rentl ,.=G"'D,G.
4) Under PLT-duality

t:G(2-,0.)—G(2-,0.)=G(2z-,0.)H(z, ,0_), (25
where
H=H_'H,, (26)
the conserved rightmoving curreht transforms as
() =00" (1) =07, 27)

while the conserved leftmoving current=D _GG™ ! trans-

forms identically:
t:(1_)*—=(1_)*. (28

Moreover, the classical rightmoving= 2 super-Virasoro al-
gebra maps under PL-duality as follows?®

33T, T+igK—TFidK, (29)

In Refs. 25 and 26 the following statements werewhere = are the spin-3/2 currentd, is the stress-energy

proved.

1) The mappingg18) are holomorphic and define the
natural(holomorphig action of the complex grou@ , onG;
the setW parameterizes th& -orbits C,, .

tensor, andK is the U(1) current, while the leftmoving
N=2 super-Virasoro algebra maps identically. Thus, PL
T-duality in the classicaN=2 SWZNW models is a mirror
duality.
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3. POISSON-LIE T-DUALITY AND MIRROR SYMMETRY IN 5 1
THE QUANTUM N=2 SUPERCONFORMAL WZNW s - :_< aj 2t §f§bilﬂa¢//blﬂ°1) , (36)
MODELS Ja
We start with the Manin triple construction of the 253 ol. a 2 e
N=2 Virasoro algebra generators of the quantum SWZNwW K= —Oa| Py — a(fcl —f%0),

model on the group@,J).323338 q

Let us specify an orthonormal basis

1 1
T=- _:(jaja+jaja):_ 51(8¢a¢a— ’ﬁaa‘pa):i
(E3E,,a=1,..d} (30) q

in the Manin triple ¢°,9. ,9_), so that{E?} is a basis in 2A3
. It ) . c=3|d— . (37
g., and{E,} is a basis ing_. The commutation relations q
and Jacoby identity in this basis take the form _ _
The set of current§36) can be combined into the super-
[E? EP]=f3PEC, fields
[Ea,EL]=fSEe, (32) 1 1
bl TanTe r*=—3"+0|T¥< K|, (38)
o) 2

[E® Ep]=fp.E—fi°E,,

fgbfg°+f3°fga+f§afgb= 0 :nghat the energy-momentum super-tensor is given by the
fgbfgc+fgc ga+f2a gb: 0! (32) 1 1 2
F=§(F++F’)=—a:(DI,I):Jr3—qz:<l,:{l,l}:):. (39

a ¢bm a fbm b fam b fgam_ ¢m cab
fmcfd _fmdfc _fmcfd +fmdfc _fcdfm'

Let us introduce the matrices Here | denotes Lie algebra valued super-Kac—Moody cur-

rents of the affine superalgebga
Bo=f fe0+fofl, ,  AR=fd fbe, (33 peralgety

. , - _ | =12E,+1,E?,
Let j3(2), ja(2) be the generators of the affine Kac—Moody
algebrag”, corresponding to the fixed bagi? E,}, so that . \ﬁ . T,
the currents? generate the subalgebga and the currents "=-V3¥ +®(J +(§ b YU T g )
ja generate the subalgehya (we shall omit in the following (40
the super-world-sheet indices, keeping in mind that we are | =— \ﬁlﬂ +0
in the rightmoving sector The singular operator product ex- é 278
pansiong OPES between these currents are the following:

1
S F2 e+ 501y

Jat

We now propose a quantum version of the Pduality

1 transformation. Perhaps the most comprehensive way to find
i%(2)j°(w)= _(Z_W)_2§ k(E®,E) PL T-duality transformation rules for the quantum fields of
the model is to quantize canonically the Sfetsos canonical
+(z—w) "2 °(w) +reg, transformations for PT-duality relatedo-model€! and then
define and solve the quantum version of the equati@gs
§o(2)jp(W) = —(z—w)‘zi K(E,,Ep) (24), and (26). Though developing thi§ approach for the
2 =2 superconformal field theory is an important problem and
lec worth solving, it is beyond our reach at the present moment.
T(Z=wW)ap (W) Freg, (34) Instead we determine the quantum counterpart of the
1 mapping(25) as an automorphism of the operator algebra of
ja(z)jb(w)=—(z—w)‘25(q5§+ k(E?®,Ep)) the quantum fields, defined by right multiplication by the
rightmoving matrix-valued functiorH(Z), which implies
+(z=w) " H(FRei °— 550 (w) + reg, that N=2 SWZNW model is PL self-dual. We propose a

o very simple way to find the matrix elements bf using
Wherek(x,y) denotes the Killing form for the vectors y of super-Kac—Moody Ward identities and the Knizhnik—
g“. Let 43(2), ¥,(2) be free fermion currents which have Zamolodchikov equation.

the following singular OPEs: In the N=1 superfield formalism an arbitrary conformal
VA2 (W) = — (2— W)~ 182+ reg, (35  superfield is defined by the following OPE%.

A _——1/2 A
Then theN=2 Virasoro superalgebra currents and the cen- | (Z0F*(Z2)=Z1; E*F(Z,) +reg,

; ~33,38 41
tral charge are given BY |(Z0)FN(Zy) = Z5%E FN(Z,) + reg. (41)

2 1 a ¥
St=" R+ ZfC Py | HereE?, E, denote the generators of tge in the represen-
Ja Vlat g lan Y Ye tation with the highest weigh,
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_ .1
[(Zy)FNZ2) =215 "AFN(Z5) + 2155 DFN(Zy)

+Z 1, 29F N (Z,) +reg, (42
where the conformal dimensiah is given by
A:CA/q, CAE_(EaEa+EaEa). (43)

S. E. Parkhomenko 9

By virtue of (52) Eq. (48) takes the form

FAHIDH(Z)=:FA(EndH HIEndH)I—1)1):(2).
(53

Using super-Kac—Moody Ward identitiést is easy to see
that (53) decays into the system of equations

N Qo

and we have used the standard notations for even and odd H-1pH=0,

world-sheet super-intervals between a pair of poigis
:(Zi !i)! i:1,2:

215=2,-2,—0,0,, ®12:Zi/22§®1_®2’ (44)
so that
Zn+1/2 ZI]1_2®12! nEZ. (45)

We postulate the quantum version of the form(28&):
t:FNZ2)—»FEN2Z)=FN2)H(2), (46)

which is the quantum counterpart (#5) (here and in what

EndH 1)JEndH)J—1=0. (64

Its solution is given by the constant matrix anticommuting
with J:

DH=0, JEndH)+EndH)J=0. (55)

In the orthonormal basis we have chosen, any matrix which
anti-commutes with) should have the form

2 ollo s

1 0 (56)

follows the leftmoving coordinate dependence of the fields
will be omitted for simplicity. It follows from the Sugawara wherehis an arbitrary complex matrifthe bar denotes com-

formula (39) and the OPE$41) and(42) that the conformal

plex conjugation Let us denote by Auty,J) the group of

superfield FA(Z) of the model satisfies the Knizhnik— automorphisms ofj which commute withJ. It is clear that

Zamolodchikov equatioii

9DFA(2)+:FA| ((Z2)=0,

5 (47)

which is a quantization of the classical relatiorG !

DG. In view of (46): the dual fieldF” satisfies the similar
equation

IpENZ)=—

> FAM:(2)

=—:IV:AH’1IH:(Z)+glv:AH’lDH(Z). (48)

i
EndH)= .

10 67

is a solution of(55). Hence each solution @55) should have
the form:

0 1\/m O m O
EnO(H)=<1 0)(0 E)' (0 a)eAut(g,J). (58)

In view of (52) End(H) should be also an automorphism of
the algebrag. It imposes on the matrir the relation

m°Pm,,= 55 (59)

Let us go back for a moment to the classical case andhe next condition we should demandtfs=1 (that is, PL
consider Eqs(22), (24), and(26). Using them we can write  T_duality is an involutiop. It gives the second relation fom:

H™IDH=2(I*—H 4 H). (49)
As its quantum version we propose

gf:AH’lDH(Z)z—Z:IV:A(T*—H’l “H):(2). (50
The substitution50) converts(48) into

FAI =172 =FMHY I T=1D)H):(2). (51

Using the left-invariant complex structudeon the groupG
one can rewrite it in the form

SFAIENdH)IN:(2)=:F:(2), (52)

Where we have introduced the notation BrAgix=HxH"~

m°Pmy,= 8¢ (60)

Therefore the set of POI-duality transformations in thél
=2 superconformal WZNW model on the group manif@d
is given by the set of matricg$8) satisfying(59) and (60).
Hence, under the quantum PL-duality the currentg40)
transform as

t125mePl,,  1,—mylP, (61)

or in components,
t:l/fa_’mabl//bv ja*mabjbv 'r//a_’aab‘r/fby ja_’aabjb-
(62

Taking into account(36), (59), and (62) we find the PL

xeg’ and we imply that Endf) belongs to the group of T-duality transformation of th&l=2 Virasoro superalgebra
super-Kac—Moody algebra automorphisms. The equatiogrents:

(52) means that EndH{) interchanges the isotropic subalge-

bras of the Manin triple because it anticommutes with the *

complex structure.

IZE—)E, ttK——-K, T-T. (63
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Notice that, as in the classical case, Piduality acts in - 2 1
the leftmoving sector as an identity transformation. There- 2 = —( P i+ —f‘;ﬁ:wawﬁwy:),
fore we may conclude that quantum Pl-duality in the = Vg 2
N=2 superconformal WZNW models is a mirror duality and
has a geometric realization which is given by PL Kcs:(

G- -holomorphic action on the target space of the model. q

Here a remark is in order. In many examples of the
N=2 SWZNW models on the compact groups Tes=

o (69

B a 2 . ‘c_Fc;
_5a Yy ‘/’ﬁ:_a(ch —f Jc)r

1
(SU(3),SU(2)xU(1),...) thetransformations(61) coin- a
cide with Weyl reflections. In these cases mirror symmetry 1
was interpreted by the authors of Ref. 28 as a gauge symme- + = (uRu+ u ),
try. They presented also a contradictory exam3&J(2) q
X SU(2) SWZNW model, where the Weyl reflections failed \where
to give mirror symmetry. It follows from our formulé6l)
that in this example mirror symmetry is given by an external 3= f"j‘/“/, fa=17
automorphism of the Lie algebrau(2)xsu(2). This ex- e ek .
ample illustrates the general picture: Piduality is given by T R A N TIPS (e (70)
an automorphisminternal or externalwhich interchanges
the isotropic subalgebras of the underlying Manin triple.

1
(jaja"'jaja):_ E:(ﬁ(/fa‘r//a_ l/fa&‘r//a):

s Ca=tafa +iafye, (69

satisfy the OPEs of the=2 super-Virasoro algebra with the
central charge

Ces=Cgy—Ch. (72

4. POISSON-LIE T-DUALITY AND MIRROR SYMMETRY IN This is just theN=2 extensiof? of the Goggard—Kern—
QUANTUM KAZAMA—SUZUKI MODELS Olive construction formulated in terms of Manin triples and
can be checked by direct calculations.

In this section we consider PI-duality in Kazama— 4
The Kazama—Suzuki model based on the c@Bé&t can

Suzuki models. Kazama and Suzuki have stufitlie con- .
ditions under which arN=1 superconformal coset model P& obtained from the SWZNW model on the groGpby

. 43 -
can have an extra supersymmetry, giving rise toNan2 gauging an anoma_ly-free subgrolp ) m view of the _Ma-
superconformal model. Then ti=2 superconformal coset NN triple construction68) and (_71) this implies CI_aSS|CaIIy_
theories were classified more accurately in Ref. 41. Theifhat the currents co_rre.spondmg to the Manin subtriple
conclusion can be reformulated as follows. Suppose the mah.h+.h-) should vanish:
nin t.riple (g‘%‘,g+ ,0-) associate(_j with the pairg(J) has a 1(Z)=1,(2)=0. (72)
Manin subtriple fb,h, ,h_), thatis,h, Cg. are subalgebras
of g. such thath=h,@h_ is a subalgebra af" and 7:h, In quantizing the theory canonically one should impose in
—h_. Notice that the Manin subtriple specified above de-some way such constraints on physical states. We impose
fines(with the help of the involutiorr) a pair (,J) such that

k=h andkCg. 1(Z)®(Z)=reg, 1i(Z1)P(Z,)=reg, (73
Assume that the bas(80) is chosen so that the subbasesthat is, the physical states of the coset are the highest vectors
{Ei i=1,.dp}, {Ei=1,...dy} (64) of the trivial ﬁ—representation.

Under PLT-duality (61) the set of constraint&73) will
are bases in the subalgebtasandh_, respectively. Let us transform, in general, into another set of constraints giving
consider a vector subspace another coset model. Therefore we should define PL
T-duality transformations in the Kazama—Suzuki model as

a=g'/h (65 the subset 0of(58)—(60) which stabilizes the set73), or
generatedover C) by the vectors equivalently, as the subset which stabilizes the Manin sub-
triple (h,h,,h_). Taking into account this condition and
{E%a=dy+1,..d}, {E,a=dy+1,.d} (66)  using (61) we obtain PLT-duality transformation rules for

The Manin triple construction of the Kazama—Suzuki modeldh€ current(68) of the N=2 super-Virasoro algebra,

is given by the following. * ¥
Proposition t% _’é v UKo = Kesy Tes— Tes, (74)

Suppose the isotropic subspaces which are similar to63). It is clear that PLT-duality in the

a.=ang. (67) leftmoving sector is given by the identity transformation.
Let us consider an example of the Kazama-—Suzuki
are Lie subalgebras. Then the currents model based on the coset(2)/(U(1)xU(1)) (the N=2
n minimal mode). The complexification ofu(2) is the Lie
2 :i P ot Ef)’ Py algebragl(2,C). In this case the commutation relatiof8l)
NG © 2 7 in the orthonormal basi€30) are given by
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[E®,EY=E!, [Eq,E;]=E;, [EYE;]=-E°+E,. It is clear that there is a direct generalization of this
(75 example to the coset mode®BU(1)", wherer is the dimen-
sion of the maximal torus of the group. the PL T-duality
transformation will act on the maximal torus as an Abelian
R—1/R T-duality (at the self-dual poinf while in the
N=2 Kazama—Suzuki model it will act as an axial-vector
duality*® In the non-Abelian coset models the Rtduality

The isotropic subalgebras. andg_ of the complex Manin
triple are generated by the vect®$, E* andE,, E, respec-
tively. The currents of the super-Kac—Moody algebra

QI(Z,C) are characterized by the following OPEs

13(Z)1%(Z,) = Z;H2F019(2) + reg transformation rules of the fields are given by the non-
2 e ’ Abelian generalization of the axial-vector duality via Ref.
la(ZD)V(Zo) =Z1%5,1(2) +reg, (76)  46. In principle they can be found using the non-Abelian

generalization of the super-parafermidii®). Some aspects
of this construction in the non supersymmetric case can be
found in Ref. 47.

Thus, in summary, we conclude that quantum PL

wherea, b, c=0, 1 and the structure constants are given byr_y,ajity in the Kazama—Suzuki models is a mirror duality
(75). The Manin subtriple defining our coset model is given o4

by
h=h,eh_, h,=CE° h_=CE,. (77

Thus, the Manin subtriple corresponds to the
N=2U(1)?>-SWZNW model which is described by the pair

of scalar complex free superfield€(2), Xo(Z) with obvi- o7 ama_Suzuki models. The PL-duality transformation

ous OPEs rules in the quantunN=2 SWZNW are found using the
X%(Z1)Xo(Z2) = —2 109Z1,. (789 Manin triple construction of thél=2 SWZNW models, the
R Knizhnik—Zamolodchikov equation. Ward identities, and the
The currents of the super-Kac—Moody algelt§2,C) can  conjecture that, as in the classical case, TRduality is given
be realized in terms of the fields’(Z), Xo(Z) and super- by constant automorphisms of the rightmoving super-Kac—

13(Z)p(Zy)=— Zleg Spt Z AR e = 12% ) +reg,

5. CONCLUSION

In this work we have considered the Htduality trans-
formation in quantumN=2 superconformal WZNW and

parafermionsSt(z), S;(2):* Moody algebras of the models which interchange the isotro-

Ja Ja pic subalgebras of the underlying Manin triples. We have
|o:_q DXO. |0=—qu0, shown that in these models Pl-duality is a mirror duality.

2 2 We have thus given a geometric realization of the mirror

symmetry in these models. Notice also that our results are in
, (79 agreement with the conjecture proposedf that mirror sym-
metry can be considered as a gauge symmgthjch is ex-
tended in some cases by the external automorphisimihe
) 1 0 self-dual points of the moduli space of the=2 supercon-
11=1S; ex \/_E(XO_X )| formal field theories.
We have given Manin triple construction of the
The super-parafermion OPEs are deduced from the OPHsazama—Suzuki models, representing them (&4anin
(76) and (78) and the null-vector relation in the trivial triple)/(Manin subtriple)cosets. By means of this represen-

1
|1=isleXp(——(xo—x°)

Vg

Su(2)-representation. tation we defined PLT-duality transformations in the
The most general PLT-duality transformation in Kazama-—Suzuki models as the subset ofTPduality trans-
U(2)-SWZNW model is given by formations of the numerator triple which stabilize the de-

10,1 N nominator triple. It was shown that, thus defined, PL
o ol T-duality is a mirror duality also. An interesting open prob-
lem is to find the corresponding geometric picture of PL

t—explig)ly, |I1—exp—ig)lt _ ) ; .
T-duality and mirror symmetry in the classical Kazama—
where ¢ is an arbitrary real number. We see that the con-syzuki models.

straints transform into itself. From these formulas we easily  Qur results are useful in discussing Calabi—Yau super-

find the PLT-duality transformations of the parafermions of string compactifications and allow us to conjecture that PL
the coset T-duality is an adequate geometric structure underlying mir-
1 : . 1 ror symmetry. The extension of our results to the Gepner
S—epid)S, Sioexp-ig)S. (81) construction of superstring vaclidsee also, Ref. 4avould
Thus, the PL T-duality transformation acts in the be a test of the conjecture.
U(1)2-subspace of th&J(2)-SWZNW model as the usual Another interesting problem is to quantize the equations
R—1/R T-duality (at the self-dual point while the PL  (22) and(24) and determine the quantum version(21) and
T-duality transformatior{81) corresponds to the axial-vector (23). Moreover, their solution is important in the context of
duality of the coseBU(2)/U(1)? (to see this is enough to quantum PLT-duality and mirror symmetry; it may be useful
recover the leftmoving constraints also in discussing-duality for open strings an@-branes on

(80)
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Solutions which approximately describe the effect of strong thermal self-action of a laser beam

in weakly absorbing mediggases and liquidshave been obtained. This paper considers

the regimes of thermal conductivity, transverse flows of gases at subsonic and supersonic
velocities, transonic nonlinear regime, and gravitational convection in a horizontal beam.

Assuming that the shape of transverse intensity distribution is constant, and that the wave front
can be approximated by a second-power polynomial, ordinary differential equations and

their solutions for average transverse dimensions of beams have been obtained. These approximate
solutions are in satisfactory agreement with exact solutions1989 American Institute of
Physics[S1063-77619901007-0

1. INTRODUCTION Under conditions of strong thermal self-action, quasi-
stabilization (or saturatiop of perturbation parameters

Propagation of an intense laser beam through nonlineafhamely, the peak intensity, its shift, and transverse intensity
absorbing medigliquids and gasesds described by a system distribution was detected in experimefits* and numerical
of equations that includes the Navier—Stokes aerohydrodyealculationst?~° With the help of averaged characteristics
namic equations and the wave-optic equation in the parabolitransverse dimensions and deviation angles associated with
approximatior;? which is the nonlinear Fresnel or Schro a smoothed wave frop@and dimensionality considerations,
dinger equation. The related aero-optic effects occur on opapproximate solutions have been obtained in the case of
tical paths in the laboratory, in the atmosphere, and in techpurely convective air flow and in the case of gravitational
nological laser facilities. The optical configurations involved convection in a horizontal beati A polynomial approxima-
can vary: horizontal, vertical, focused, parallel, and divergention of the wave front phase at large Fresnel numbers al-
beams; optical configurations defined by mirrors, lensesiowed us to relate the average characteristics to the coeffi-
telescopes and other devices. In the hydrodynamic aspect ofents of this polynomial and derive ordinary differential
the problem, the following situations and effects are of greaequations for average radii and shifts in the simple, purely
interest: a uniform air flow which is either longitudinal or convective regime of transverse air fld.
transverse with respect to the laser beam; effect of thermal In this paper we present the derivation of equations and
conductivity, viscosity, acoustic perturbationgressure solutions for average radii and shifts in the case of a trans-
variations; subsonic, transonic, supersonic, and hypersonigerse air flowing through a laser beam with velocities rang-
regimes; gravitational convection. Theoretical and experiing between zero and hypersonic values, including the tran-
mental investigations of the entire variety of different re-sonic regime, for the case of gravitational convection in a
gimes is labor-consuming. In the case of a strong thermahorizontal beam, and also for a stagnant, thermally conduc-
self-action, a numerical solution in the limit of geometrical tive medium. The assumptions and conditions used in deriv-
optics is impossible because of large local gradients. ing these equations are formulated and generalized.

In the case of small perturbations of the beam due to
heating and changes in the refraction index of the medium, a
linearized Gebhardt—Smith solution of optical (_aquat?‘_ons 2 STATEMENT OF THE AERO-OPTIC PROBLEM
(see also Refs. 4 and,%btained for a transverse air flowing
through a parallel laser beam in the approximation of geo-  Propagation of an intense laser beam in a nonlinear me-
metrical optics without allowance for the viscosity, thermaldium is described by a parabolized wave equation of the
conductivity, and acoustic perturbations in the medium, haparaxial (small-angl¢ optic for the transverse component
played an important role. This solution was used in describef a slowly varying electric field amplitudg. In the physical
ing gas-dynamic regimes of thermal self-refraction in a uni-variables “radiation intensity = E* E — deviation angled
form transverse air floR. Generalization of the Talanov =V, ®,” where ® is the wave front phase of the beam,
transformatioh of transverse coordinates of focused beamsy = e, 9/ gx+ gdldy, we obtain a system of equations for
to the case of a variable beam radius defined in vacuum anghe eikonal and energy conservation
utilization of similarity transformations in hydrodynamic
equations allowed us to derive linearized solutions of aero-

: - . - . . . i 1 1
optic equations for complex optical configurations in various Z 49V ) 9=NV o+ —V . {—v2 1
gas-dynamic conditior. 9z - SEPT=CAS INTA i@

1063-7761/99/89(1)/14/$15.00 56 © 1999 American Institute of Physics
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V is the medium velocityy, x, B8, andx are the coefficients

of the kinematic viscosity, thermal diffusivity, thermal ex-

) _ ) ) _ pansion[for gasesBTy=—(Ty/pg)(dp/dT)=1], and the
The coordinatez is measured in units of the optical path 5giapatic constant; ang is gravitational acceleration. The
lengthL, the transverse coordinatgsandy are measured in densityp, temperaturd, and pressure are divided by their
un_its of the cha.racte.risti(initial) beam radi_usr‘_o, t_he angle initial valuespg, To, andp,. Let us consider the following

¥ is measured in units afy/L, andz the radiation intensity  gjyations: in a stagnant medium the heat flow is due to the
is measured in units dfo=Po /7Ty, wherePy is the total - qyasij-stationary thermal conductivity; under a transverse air
initial power of the beam. The parameters of optical similar-gqoy along thex-axis at a constant velocity,, 7=ro/ug; in

ity are the following: the Fresnel numbéf=2mTg/\L,  the case of steady gravitational convection alongyHaais
where\ is the radiation wavelength; the radiation attenua-iy 5 horizontal beam with a characteristic velocity =v,

tion (absorption numberN,,= aL, wherea is the absorption =(aPog/TrponT0)1’3, 7=ro/vg. In the case of gravita-

coefficient of the medium; the self-action numb&  tiona| convection, by equating to the Froude number Fr we

=(L/zr)?, wherezT.zrol\/Q(Tolno)(gn/aT) Is the length  ohtain the scales of velocity, and density(temperaturg
of thermal self-actionQ=aPq7/(7r5poCpTo) is the pa-  perturbations:

rameter of temperature and density perturbatipg, Tg,

Cp, andng are the density, temperature, specific heat at a _( aPy r0)1’3
constant pressure, and the refraction index in the unperturbed <9~ E :
medium, andr is the heating time constant. Here we assume

a linear relation between the refraction index and changes ifhe scales of gas-dynamic similarity parameteshether

a+1f)V
5 1

INl+V,9=—N,. (2

2/3

2
mr OpOC pTO

the density and temperature of the medium: they are smaller or larger than, or of order of uhitye the
Euler number Eu (Ea 1/kM? in gases, wherél =u,/c is
An= ﬁ—nAT, A—TzQTl (33 the Mach numbergc=\xpy/pg is the spegd of sound in the
aT To gas, the Reynolds number Re, and thecké number Pe

depend on the specific situation and determine the gas-

in the case of liquid and
q dynamic regime of self-action. The Prandtl number is Pr

on Ap =Pe/Re.
An=—Ap, —=Qpq,
ap p 00 P1
p Ap 3. BASIC IDEAS OF THE APPROXIMATE METHOD
n=1+y—=ng+(Np—1)— (3b) . .
Ps Po We have a weak self-action &t<1 in almost parallel

in the case of gas, whergis the Gladstone—Dayle constant, @nd divergent beams. Strong self-action takes plactl at
and p, is the density under standard conditions. For air, in=1 @nd also in t'gh“Y focu;ed beams un_der conditions of.a
particular,p,=1.225 kg/n, and for the visible and infrared Weak or notable nonlinearity of the medium. The approxi-
optical ranges we have=2.9x 10~ 4. The perturbations of mate description of the weak self-action is based on the fol-
density, p;, and temperaturel,, are derived from the con- |0wing underlying ideas.

ditions of mass, momentum, and energy conservation, and 1 Letus introduce average transverse dimens{cauii)
from the medium equation of state: ay and ay, and displacements; andy. of the center of

gravity of the intensity distribution, which are functions of

d—?+pdivV=O, @) the longitudinal coordinate alone:
Y g 1 ff 5
_ = A’ a,(z2)= X—X dx dy,
pgr TEUVP=— £ (1+Qpy)+ o A'V+- -, (5) «(2) \/ (X=Xc)“qdx dy,
dTl K dp—l 1 A’T 6 -
@t eengdr YR pA TR (6
x(@)= | [ xadxay ®)
p=pT, (7 o
where
d_7 V,V, A'= L7 (rozﬂz a,(z)= fj( -yc)%qdxd
a—a*‘ WV, _E+a_y2+ T 32 yl2)= y—¥Ye)q Y
r2 r2 .
Re= V—i Pe=—2, Pr=—,
yc(2)=f fyqu dy, 9
V2 s
Fr— L __Po

1 u 1
L9BTo poV{ where
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* 1 day
Coy(2)= —, Cy=0.
ax,y,z)=1(x,y,2)/W, W(z)=f f ldx dy. 24(2) a,(z) dz xy
—w For the case of an axially symmetrical beam, we have
For simplicity the powei is assumed to be constant along B ,C2 _
the optical path:N,<1. We consider two-dimensional P(r.z)=cotr 2t ¢:=0,

(plane and three-dimensional beams, in particular, an axially

symmetrical one, where the displacement is zero. The aveﬁnd for a plane beam

age radius of the axially symmetrical beam is given by the ,C2
formula D (X,z)=Co+[X—Xc(2)]c1+ (X—X¢) ?+ -
_ “ _ * We assume that in the three-dimensional configuration there
a(z)=2m o q(r.zgrdr,  W(z)=2m o Irdr. is a symmetry with respect to one coordinater y; in this

(100  case the off-diagonal coefficient is zeg, =0.

5. Applying coordinate transformatiofil) to the equa-
tions for the medium4)—(7) and the similarity transforma-
tion to the main perturbations of the gas-dynamic parameters

2. It is convenient to use displaced and compregsad
tended transverse coordinates:

Cx=X(2)  y=Y(2) a like
a2 " Tam pi(X,y,2)=R(&,n)A(2), T,1=T(& 7)B(2),
3.In the experimenfs’~**and numerical calculations for p1=P(&,7)C(2), ui(x,y,z2)=U(&7)D(2), (14)
the convectivé, supersoni¢? and other gas-dynamic B B
regimes®~*° perturbations saturate with increasiNgand z vi=V(&nE(2), wi=W(E n)F(2),

the deviation from the initial direction stabilizes, the peakwe obtain the relations between functiohsB, C, D, E, and
amplitude and form of the transverse intensity distributionF, on the one hand, and average radii, on the other. For
f(&,7m) tend to constant characteristics. An increase in thgunctionsR, P, T, U, V, andW we formulate an autonomous
thermal self-action paramet&¥ is equivalent to an increase problem, which does not includeif equations are written

in the coordinatez. In a uniform gas flow, these characteris- for coordinatest and 5. For example, for the functiop, we

tics can be maintained approximately constant within certairobtain formulas like
intervals over long sections of the optical path comparable to

its total lengthL and the thermal self-action length (Ref. (X,y,2)= R(&,7)
12). A similar quasi-stabilization of perturbations also takes 1Y, aQ’aQ(z) '

place in the case of gravitational convection due to heating , . ,
of the medium in a verticA145 or horizontatl3 laser 6. Let us substitute the approximation of the anglén

beam. We assume that the shape of the transverse intensfif form of polynomiai(13) on the left of the eikonal equa-

distribution (£, ) is constant along the optical path, and the ioN (1) @nd the functiorp, in the form given by Eq(14) or

power density varies due to changes in the mean radii; (12 On the right. Let us integrate E¢l) with the weight
function q(x,y,z)=1/W across the beam. Taking into ac-

f(&,7m) (&) count the condition of energy conservati(®) with the in-
= m or I(r,z)= 11k tensity given by Eq(12), we obtain an equation for displace-
X y a2 . . .
mentsx. andy,. Calculating the divergence of each term in
r—x:7Xz) Eqg. (1) and repeating the integration with the weight function
=, (12 g, we obtain ordinary differential or integral-differential
equations for mean radé, anda, [and, in general, for the
wherek=0 ork=1 in a plane or axially symmetrical beam, function A(z)]. In the first stage, we omit the correction for
respectively. diffraction effects, which is of the order of the inverse
4. Under the conditions of saturation of the thermal self-Fresnel number squared, to avoid complications. Near the
action effect we approximate in the general case the wavéocal point, the diffraction term makes the main contribution

(15

1(x,y,2)

a(z)

front phased by a second-power polynomial and should be taken into account.
Below the approximate method for investigating a laser
P(%,y,2)=Cot[X=Xc(2) Jer, t [y —Ye(Z)]Cay beam self-action will be tested taking as examples various

C, c, aero-optical problems.
+(x=%0)? 5+ (YY) P

2 4. QUASI-STEADY THERMAL CONDUCTIVITY
F (X=X (YY) Oy 13 In a stagnant medium where thermal conductivity is the
where dominant mechanism transmitting perturbations anek Pe
(and also in the case of a transverse air flow with a small
dxe dy. 1 da velocity, V| <x/ro), we can set to zero the left-hand side of

cx(2)= G0 D=7, CalD)= a(z) dz’ Eq. (6) in the quasi-steady limit,>r2/y. Over the charac-
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FIG. 1. Normalized universal solution, average radii
Y, and expansion angleg=constdY/dX as func-
tions of the normalized coordinadé measured along
the laser beam in the case @) defocusing andb)
self-focusing. The exponent in ER6) is (curvesl)
m=1; (2) 5/3; (3) 2; (4) 3; (5) 15.

teristic time scaler=r2/y the Pelet number Pe 1. Since d2a b
pressure fluctuations are smaller th@nacoustic perturba- —= iﬁ
tions can be ignoredy~ const. Perturbations of the density dz*

and temperature are of the order@fand, as follows from in new independent variables, Y, andX,
Eq. (7), have opposite signgi;=—T;. The equatior(6) of

thermal conductivity takes the form Y= —exp(* ¢?),

QD: ]
1 J K (9P1_ f(f) p _alik(Z)R(f) \/% "
2 K9ES 9&  al+tki,’ 1= ' + 2
a’(z) gk 9¢ & al'kz i M \ﬁijﬂexqitz)dt},
al 2 0

(16 =
%an be written in the form

wherek=0 and 1 for the plane and axially symmetrical con-
figurations, respectively. The procedure described in Sec. 3

yields 2 (¢
Y=exp(*¢?), X=*— f exp( = t?)dt. (19
d’. b, dx.(0) Ja Jo
dZ2  ak’ Xe(0) =Xe1, az  lers The normalization conditions for the radiiYsand anglee
a7 are selected in such a way that the solution should not in-
d2a b da(0) clude the constants;, 6, andb, and the focal point be set
—=—— a(0)=a;, ——=0,, at X==*1. The solution determined by E(L9) is shown in
dz a2 dz Fig. 1 (curvesl). Note that an absolutely steady regime of
where thermal conductivity is impossible in both plane and axially
symmetrical configurations.
@ W,
b= d¢ 2 5. AIR FLOW CROSSING A HORIZONTAL LASER BEAM
0, k=1,

Let us consider a uniform air flow with a constant veloc-
N (=, . ity V. =up>x/rgq, v/ry aligned with thex-axis. The viscos-
b= L f2(&)(7£)"d¢>0, ity and thermal conductivity can be ignored because Re,
0 Pe>1. The characteristic time is=rq/ug. Linearization of
ai, Xc1, 01, and 6, are the initial valuesat z=z,=0) of  medium equation$4)—(7) yields the following equation for
the average radius, displacement of the center of gravity ofhe principal term in the density perturbatiph:
the intensity distribution, beam expansion angle, and the rate

: o : . 9 9\2 a 4
of the center-of-gravity deviation from the axis, respectively, M2 —+—| —V? (_ + _) p1=V2I. (20)

In the case of a plane beark< 0) the solution is trivial: | the steady-state limtt> 7 and for a plane beam, this equa-
72 22 tion and its solution take the form

a(z)=a;+z0,+ =b, X.=X+z20,+—=Db.. (18

( 1 1 2 c cl cl 2 c &pl f(g) 1 £
. . . — =, p=— f(£1)dE=R(£).
For an axially symmetrical beank€ 1), a universal so- € M?2-1 Me—=1 J -

lution of a more general equation (22
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For displacemenx. and average radius(z), we derive the 6, (the case of self-focusing corresponds to the minus sign,

following expressions from the eikonal equatii): by—>i|bylzib) is expressed in the new variableg X)
5 andY(X):
d%. b b= N foc 2(6)de
dzZ2 a@’ " wm2-1) J-= ’ o= b ool v SO
\/C—l: 1 yl ayj_ ’ y2ba
. dx(0)
Xe(0)=Xe1,  —g>— = bea, 2 zCi’Z+ @1 +[tanhl¢>1 Oy
42a m| 2b 1342 —tan to, #1 JC,
—=——, b=0, a(z)=a;+z64, 22 i 6
2 a2 (2)=a,+26, (22 in the fornt
1 2 tanh 1o
b.a; 012 Y=—-, =—| = ¢ 2+[ |- (25
xc(z)=xcl+z¢9c1+0—i 1+a—l 1¥¢ T 1¥¢ —tan "¢

In a flow moving with a velocity comparable to the sound
velocity, M>1 orM <1 (the case of a transonic flow will be
considered separate)yacoustic perturbations of the pressure
are essential. A transform like that described by 84) is
V\Possible only under an additional conditiay=consta,,
which does not hold, in general, because it is violated as
h/lz—>0 [see Egs(23) and(24)]. In specific cases where this
condition holds, the solution fa,(z) is similar to Eq.(25).

0.z
1+ ——
1

X|1n -1|+1

With the initial conditionsx.;=0 andé.;=0 in a subsonic
flow, the beam shifts downstream with respect to the flo
(be<0), and in a supersonic flow it shifts upstreai, (
>0). The heated gas acts as an optical wedge or prism, for
shifts the beam without broadening if it is initially plane-
parallel (¢,=0).

In the case of a three-dimensional beam in the steadyq GENERAL FORM OF THE BASIC EQUATION FOR

. : o . AVERAGE RADII
state convection regime, which is realized at the small Mach

numbers,M?<1, we have the following solutions for the The examples discussed above indicate that the average
density perturbation: radii (or the maximum one, which is transverse with respect
to the flow are determined by equations like
R(&7) £
=) R(&m)=— f(&1,7)déq, d2a b
y - —=*x——, b>0, m>0,
dz2  a"(z)

and the corresponding equations far, a,, anda, (the

variabley.=0): (26)

da
d2xc bc a(0)=al, 0(0): E=01
dZ  aay(2) The exponenin and the form of the similarity transformation
) of the sought-for functions and independent coordinate mea-
%: _bx a,(z)=ay+260 (23) sured along the beam that would exclude from the universal
A2 aa(z)’ ™ e solution similarity parametera;, 6,, andb [Egs.(19) and
(25)] depend on the specific gas-dynamic regime. The plus
d’a, by B da,(0) sign corresponds to a defocusing mediud¥/dz>0, the
— = &(0)=ay, —-—=06y, (24 . . . )
dz aj(z) dz expansion angle increagethe minus sign corresponds to a
focusing medium @6#/dz<0, the expansion angle de-
where creases Recall that the initial parameters, namely, the mean
2 radiusa, and angled,, are divided by the characteristic pa-
b= — N f2 4 d b.—0 rameters andrq/L. Letm>1 (the variants witrm=0 and
SR (&mdédy,  b=0, 1 were considered in the previous sectjomdultiplying Eq.
—w (26) by 2da/dz, we obtain the first integral
N £ 9% 292 zzi—Zb
by:—v—vfff(f,n)ﬁx a—nzdéldfdn>0- dz/  (—-m+1)amt U
- - 2b
Equation(24) is the free-fall equatioiiRef. 18, Sec. 6.188 Ci= 61+m' (27)
1

In the case of zero initial conditionx{=0, 6.=0, 6,,=0,
and 6,,=0), the beam deviates upstream with respect to thérom Eqs.(26) and(27) we derive
aerodynamic flow and is extended in the transverse direction.

A universal solution of Eq(24) for the average beam thick- a(z)=
nessa, in the direction transverse to the flow and for angle

+2b 1(m—1)

(M=1)(Cy— 6?)
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+p \Um For the average radius in Efl), we obtain, following the

a(z):<d0/dz> (28)  procedure described in Sec. 3.6, E26) with the exponent
m=3, and its solution is given by E@31).

Solutions can be obtained in an EXp"Cit form, as will be In the case of an axia”y Symmetrica| beam:(]_), we

shown below, only in the specific case mf=3 and in the  derive the following expressions from the eikonal equation
case of largem, m>1. Implicit relations can be obtained in (1) for the functiona(z):

the formz(a), 6(a), but the formz(6), a(d) is more con-

venient, in particular, because the sign of derivadvédz in d’a_ b b=const TV j”’fi gifz dé
the first-order equation is unchanged over the entire space g2 a5z)’ W Jo dé\>dé¢ '
—w<z<% in both focusing and defocusing cases. Using (33

Eq. (28), we derive from Eq(27) the expression In the case of a focusing mediunb<€0) the universal

+2p m/(m-1) solution in variablesp, Y, andX,
PP TOSE— do=*+bdz (29
(m=1)(Cy—6°) el 2 yoa 2c1)1’4
(P: T = - 4l = . )
In Secs. 4 and 5 we gave solutions of E26) for m=0, 1, Jc, o 2at b
and 2[see Eqs(18), (19), and(25)]. In the nonlinear optics, 33\ 114
the nonlinearity of the third order in the fie (i.e., E°) is 2| (2% 1) 1
. R R . = Z+F &y, —— 2E ay, = y
often considered, when the nonlinear correction to the dielec- B b N7 V2
tric function of the mediunithe functionp, in Eq. (1)] is _
proportional to the light intensity (Ref. 19, p. 280 We has the formwe assumé=|b])
assume a quasi-steady shape of the transvgrse intensity dis- 1 2 1 1
tribution and apply the procedure discussed in Sec. 3.6tothe Y=———7, X= 7 F| a, T —-2E a,T ,
eikonal equation, where we set (1+¢%) 2 2 34
f(¢) r—x; (2) where
=constl(r,z)= , = 30
pa 9= 5y e (30
— —1 — —1
For a plane beamkE0) the constanb,=0 and the dis- a=C0S (1+ 7)1 @;=CO —(1+<p§)1’4’

placement is absent at zero initial conditiong,&0, 6.,
=0). The average radius is determined by E§) with the T 1 T 1
exponentm=2, and its solution is given by E@25). B=12 2E<§’ E) - F(E’ ﬁ) 1 =1.198,
In an axially symmetrical beanmkE& 1) the average ra-
dius a(z) and anglef(z) are described by Eq26) at m F(a,k) andE(a,k) are the elliptic integrals of the first and
=3. A universal solution in terms of variables Y, and X, second kindRef. 20, Sec. 1.2.79

0 2
P= o Ci= 91“—”; , 7. TRANSONIC STEADY-STATE REGIME
1 1
Fundamental differences between the regime, which is
v= & X—& +a101 nonlinear from the viewpoint of gas dynamics, and the
-a b N \/5 Z= C, | neighboring subsonic and supersonic regfthemppear at
small values of the transonic similarity parametér= (1
aN (= —M?)/Q?? such that|K|<0.29, as follows from an exact
—_ - ! 2 1
b=—const 1 J'O §[F(&)]°d¢, numerical solutiorf> This fact is indirectly confirmed by
. . ) o experiment& conducted in a transonic wind tunnel filled
is derived from Eq(29) in an explicit form: with a mixture of air and hexafluoric sulphur Siith an
1 % absorption coefficientz=20 m . The beam generated by a
Y= ={J1xX?, o=— ) (31) CO, laser \=10.6 um) had a powerP,=500 W and a
V1F¢® NESE diameter 2,=1.5 mm. The parametgiK|>2. No shock

A similar solution was given in Ref. 19, p. 286 only in the waveﬁ were dete(;:ted. hod of i all b
beam-axis vicinity and in the case of an approximate descrip- The proposed method of average radii allows us to ob-

tion of beams whose wave fronts remained spherical or cy'Ealn a universal solution in the case [¢|<1. Let us con-

lindrical in media with cubic nonlinearity. sider a three-dimensionql beam symmetr.ical in the cgordi—
In a medium with a fifth-order nonlinearity, we have nate . .In a transqnlc flow, aCOU_St'C perturbations
propagating upstream in the flow are driven by the flow at a
f2(¢) velocity close to that of sound. Thus perturbations are accu-
az(”—k)(z)' (32 mulated in the region of radiation, the region occupied by the
perturbations expands in the transverse direction by a factor
In the case of a plane beark£0), we haveb,=0. Thereis Q%3 and the characteristics of perturbations in gas-
no displacement at zero initial conditions.{=0, 6.;,=0).  dynamic parameters, in particular, the density, increase to

pr=const1?(r,z)=
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Q?? (Ref. 22. The problem is separated into the internala certain number. The expansions of the sought-for functions
problem in the region with dimensionsy~r, and the ex- in powers of the small parameter up to the third order have
ternal one in a wider regior~r,, y~yQY3~1. Then their  the form

solution are matched. Within the radiug the density per-

turbations are independent of the transverse coordipate —=1+Q%3p;+Qp,+Q¥3p5.. .,

The beam is extended and displaced owing to the thermal °

self-action only along th&-axis directed along the flow. The

p
radiation intensity in the regime of a quasi-steady distribu- a:1+Q2/3p1+sz+ Q*3p; ...,

tion is described by the equation (37)
f(&,y) X—X¢(2) u 213 4y
AL S e —=1+Q%%u;+Qu,+Q*3u;.. . .,
1(X,y,2) TOR a2 ™ Q7" u; +Qup+ Q™ ug
Let us determine the function which describes the main v V1(£,Y) u g
component of the density perturbatign=R(¢)/a'(z), i oo Q +Q"v,+Q%y; ..
_ : . Uo a(z)
=const. For the internal problem, we have the following 5
expansions for calculated parameters: We have taken into account that the functigp for y—0
should match the solutiom; of the internal problem ayg
£:1+Q2/3p1+ Qpot- -+, £=1+Q2’3p1+Qp2+ ..., —. Substitution of expansion§37) in the initial gas-
Po Po dynamic equation$4)—(7) leads to the following system of
equations(up to the third order which are necessary for
u v X : oo .
—=1+Q%U;+QuUy+ -+, —=0Qv;+Q¥v,+---. closing the problem in the lowest-order approximation: in
Uo Uo the first-order approximation
From Eqgs{(4)—(7) we derive in the first-order approximation ~
of the perturbation theor Pu(éy.2) Vi alt2(z
P y pP1=—W= p ; (?_§ (z )—=0, (38
J J
(9§(l?1ﬂL u;)=0, a—g(KUﬁ p1)=0, in the second-order approximation
Y.2) v Ip2
J IP1 =—u :&, —ZialtYz)—==0 (39
a_g(pl_Kpl)ZO, W:O' p2 2 P PY: (2) fy (39
(39 in the third-order approximation

p1=—U1=p1(£,2)/k

d 8p1 . ﬂVl
In the second-order approximation the equations have the a_g(p3+ U3)=2pla—§—a'(2)a—~-
form y
J [ P3 dp1
Jd (9V1 d P2 R L,
g(p2+U2) a(z)—y ag( U+ —| =0, g(Ku3+p3) 0, &f( p Ps) (k=Dp1—7 9’
K (9Vl apZ P2 K&_+aj+1( ) p3 =0
a(z) 9F — +——=0, &f( Pz)—f(f ), 9E y
and their solutions are Here we have taken into account that the transonic similarity

parameteK is zero. From the first three equation we derive

&pl i V _
(k+1)py 5z —al( )——o. (40)
ay
0y — KUy — K fy avi(é,y') dy’ Equations(40) and (38) close the problem for the functions
2 7 a2 ' p, andV, in the lowest-order approximation. The similarity
transformation

1 y
Vl(vaiz): ﬁ fO f(éay,)dyrv
(36)

P2 (¢ , ,
p2= ?—ﬁmf(é y)dé’. Ry(& 7)
) p1(X,y,2)= ———

The functionp, is independent of and determined by the (r+1)™a
solution of the external problem, like the functigmsandu, 4
related to the former by Eq35). The second-order approxi- n=(k+1)Yy=[(k+ 1)Q]1’3 " j=— 3 (41)
mation is needed to close the problem in the first-order ap-
proximation. reduces the problem in the first-order approximation to the

Let us introduce for the external problem a compressediniversal form which is independent of the similarity num-
coordinatey=yQY3al(z) such thay~1 fory>1, wheregjis  bers and coordinatealong the beam axis:
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IRy IV, The differences between the displacement and increase in the
Yo an 0, Ry,Vile—wiymse—0, average radius are the linear function and the constant factor
b./b. This result also applies to other regimes with# 0
aRl V4 % andb#0.
9E =0, Vi(£0)= fo f(&y)dy. (42) In the region around the speed of sound, where the Mach

number satisfies the conditid?*<|M?—1|<1, the den-
The gas-dynamic problem is reduced to a nonlinear secongity perturbation is described by the linearized equatii,
order equation like the Tricomi equatiéh.There are nu- where the gradients in the direction perpendicular to the flow
merical methods for solving this problefh. can be ignored, i.e., E421) and its solution are valid. The
Thus, we have obtained a result which is important forconstantsb, = b,=0. The average radii follow linear func-
the optical part of the problem of the laser beam self-actiontions:
the density perturbation function within the transverse di-
mensionr y, according to Eq(41), has the form a(Z)=aut 200, a(z)=ay,+20y.

The displacement, [recall thaty.=0 by virtue of the sym-

R(¢) Ri(§,7=0) i —1(x. — i - i -
pi(x2)= —=—, R()= 1—1/3 (43) metry relatlonl(x,y,z) [(x,—y,z)] is determined, in gen
a“(z) (k+1) eral, by the equation
An initially collimated beam suffers neither displacement nor  d?x, b,

expansion in the direction perpendicular to the gas flow. "> = (Byat 20,0) (agy + 204)
From the eikonal equatiofl) we derive the following equa-
tions for the displacement.(z) and average radius(z) in

the direction along the gas flow: b= — L f f f2(¢,7)dédy,
(M2-1)W
d?x, b dx.(0)
% o X=X, — o = b, . : o .
dZZ a°¥(z) z whose solution can be easily obtained in the explicit form. In

(44)  the specific case afy;=0, the displacemen. is described
by the corresponding formula in E@22). In practice,b,
#0, since the assumption that the form of the intensity dis-
tribution is constant is not absolutely accurate. The param-
where etera, in this case is given by Ed25).

be Wfff(gy) (g)d§dy,

N i d?R( )
—V—ijf(f,y) e dédy.

The similarity transformation and integration of EQ9) at
m=5/3 in variablesp, Y, X andb— = |b|—*b,

da b da(O)_(9
dZ2 a3z’ dz

8. DEVELOPED STEADY-STATE GRAVITATIONAL
CONVECTION IN A HORIZONTAL LASER BEAM

The characteristic velocity/, in this case is that of
gravitational convectioh®2>:26 Vi =vy=(aPyg/
mpoCpTo)'3, and the characteristic transient time is
—rO/vg The viscosity and thermal conductivity are negli-
gible, Pe, Re>=1. We assume that the beam is symmetrical
relative to the verticay-axis: 1 (x,y,z) =1(—X,y,z). The lin-
earized medium equatiorig)—(7) have the form

_ o C 62 3b - Cy 372 Ju  ov
e= \/C—lr 1 1—a%/3 ’ =a 3b ’ 5"‘ &_y:O, u!V|X—>1w_>o| Vly_)_w—>0'
o v Ipy
ZCZ ¢1(3+2¢1)1 P1= 01 ’ u&—i_va_y—’_wz_plr plvpl|x—>too_>0; (47)
2(3b)3/2 2(1+¢ )3/2 \/C—l
yield the following universal solution: u%ﬂ%: _ M
X ay a(2)ay(2)
-9 2
= ; X = tM‘ (45) The similarity transformation
(1% ¢?)32 2(17% ¢?)32 2/3 13
The displacement. can be easily calculated by substituting u= a_y U 7)., v= a_x V(&,7),
on the right-hand side of EQq.44) the expression
(b./b)d?a/dZ? and integrating this equation twice with the _R(&7n) (& ZISP
initial conditions: pl_ailsa)l,’_y P1= 3, (&,m)

X(2)= b [a(z) ay— 01Z]+Xc1+ 0ca 2. (46)

reduces the system of equations to a form which does not
include the coordinate:
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U oV oV N IP beam in conditions of convective gas flow we habg
GE + P =0, U 9 +V%+ Fr i R, =0.354 andb,,= —0.28N. In other examples with more
complicated optical configurations, the numerical factor re-
lating the similarity parametens,, b,, andb., of the ap-
E +V% =—f(&n). proximate method to the self-action similarity numbéwas

) ) . . in accurate solutions no greater than unity for the larger av-
From the optical equations we derive the following system Oferage radius and twice as small for the displacement. The

equations for the average radii and displacemggtz): system of ordinary differential equations can be easily solved
2 for arbitrary exponents in power functions of average radii
d<a, by da,(0) : ) ) _
=—<ms - &(0)=a,, 4z~ O ay and a,. If there is a universal analytical solution, the
dz ay a, " (z) z estimate of perturbations is, naturally, simpler. A compli-

) cated optical configuration can be divided into sections, and
d ay _ by a,(0)=a da,(0) -0 perturbations imposed on different analytical solutions can
dZ2  aZ%af%z’ o dz v be estimated in each section for different heat-transfer
(48) mechanisms.

d’ye b dy.(0)
dZ ailsa‘yuys(z) DA T e 9. LIMITING CASE OF LARGE m
where Equations(28) and(29) in variablese, Y, andX,
bﬁﬁfff(&n)ﬁz—RdMn, o C,= HfiL,
w : 23 Jc. (-m+1)af?
m—1 1/(m-1)
- ff (e Ragdn, B Cl) ’
W ) an? w[ [me1)mm-1)c. | Um-1)
. S E e I R
bcyzvﬁv f f f(&, n)g—idgdn. +r t_a:::]—llill 1

For an estimate, it is usually sufficient to calculate thehave an obvious asymptotic analytical solution fo- 1.

larger transverse beam radias-a,. Let us assume that, 1
=consta,. Then the first line in Eq(48) reduces to an Y=TM%
equation like(29) with the exponen=2. The solution for (1+¢%)
the average radius is given by E®5), the displacement [tanl‘(wX/Z) 1
y.(2) is determined by Eq46) with a=a, and an unknown o= + ( )
numerical factor: tan( —wX/2)

1 — 2
1= —In(1%¢?)+0 =l

(50
m

2 (tanh 1 1
=

b _
Yc(2z) =const b—cj[ax(z) —aa— 0az]+ Yt Oyrz. X=1_ tan Lo +

(49) Compare solution$19), (45), (25), (31), (34), and(50) ob-
Thus, our technique allows us to estimate perturbations in &ined atm=1, 5/3, 2, 3, 5, andn>1, respectively. Table |
laser beam without solving hydrodynamic equations. Thdists similarity transformations, equations, and their solutions
constantsb,, by, be,, bcy, etc. proportional to the self- for all cases discussed above. Figure 1 shows curvemfor
action parameteN can be determined by comparing ap- =1, 5/3, 2, 3, and 15 in defocusing and focusing media. The
proximate solutions to experimental data or more accurateate of the average radius in defocusing media and over the
numerical calculations obtained previously for typical situa-larger sections of optical paths in focusing media, except
tions, as was done, following a known algorithffor model  sections near the focal points, increases with decreasing ex-
optical configurations in the regime of purely convective ponentm in the second-order equatid@6) for the average
transverse gas floWand for the regime of gravitational con- radius starting withm=1. The universal solutions obtained
vection in a horizontal bearf.For an annular beam with an for all m cover the whole range of various situations in the
outside diameter a factor of 2.86 larger than the inside diaminitial statement of the problem:<9b<<oo, —0<§;<x, 0
eter, the calculations yiel,=0.54N, b¢,=—0.47NN in <a;<«. Settingz=0 (and ¢4;) and then calculatingp,
the case of a flow along the-axis; b,=0.35N, b, =¢(z=1), we find appropriate sections of universal curves,
=0.15N, and b.,=—0.193N in the case of gravitational which describe the beam perturbations plotted in physical
convection along the verticgtaxis. For a Gaussian focused variables. This section can contain no waists of the beam or
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TABLE I. Universal solutions of Eq(26) describing focusing and defocusing of a laser beam in a nonlinear medium in the aberration-free approximation of
geometrical optics: average transverse dimengiadiu a=ag,s/ro and corresponding expansion angle s/ 6,=da/dz versus the coordinate mea-
sured along the beam axis= z,p,s/L.

Heat transfer
mechansims;
m Transformations Equations Solutions plane beam
D=2;
three-dimensional beam
D=3
thermal conductivity
D=3
9 V <xIrgp,
= \/%
a dy Y=exp(*¢?) t>rdlx;
= — + 2 o
Y=g, eXPEe) 5(=¢;<p
1 2 [z eXF(‘_Wpf) = y 2 J‘q; et trans;ersze flow,
=—l— de p- =+x— | exp=ti)dt =
Vr & X" exp(F ¢?) Vv Jo convectionM2<1;
\ﬁ+ o subsonicM <1;
“\3 . exp(+t)dt supersonidv > 1
0
o= —
Ve,
3b transverse
C= @i—m
)
5/3 Y=a[C,/3b]%? dy 5 1 transonic
Ty =29 e
dx (15¢% flow; D=3;
G i(3%2¢)) de 2 ¢(3¥2¢7)
_ + T (13 02)52 =+
= 2@ 21 P92 d 3(15¢9) 2015 9P
|17 M2|<Q2/3
transverse convetion
0 flow, D=3
¢
VCy
%b v 1 M2<1,
Ci= =4 T 1F¢7? .
subsonic
v aC; d_Y: Z‘P =E +o tanh:l(,o supersonic
2b d 2 T 1I<p2 —tan 143
/2 2/3 _M2l<1-
=E ZC? L%t d_gD:iZ(lJ—r‘PZ)Z QF<[1-M?|<1;
| 2b T 1% (p% dX 4

tanh 1o,

—tan ¢, -
gravitational
convection

in horizontal beam,
D=3
P 1 cubic
_ Y =1%xX
T =¢
P b dy nonlinearity
C,=|F+— T T
17|01 ai‘ d
/C de + D=3;
Y=a F1 ﬁ=t(l_¢2)3/2 X = _‘P
ViFe nonlinearity
C, a6, +X of fifth power,
X=z—=* =
b~ b NS _—
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Continuation of Table I.

m Transformations Equations Solutions

focusing mediun{minus sign

@=01\/C,
C,=b/2a%— ¢ Y=(1+¢?) "M
Y=a(2C,/b)*
> V2| 2303)“4+F 1 av_p R !
_ve = — = e S
Bl o) T\ dx 2 B N
1 de 1
—2E| ay,— == B(1+¢?)>" —2E(a,—
( 1@) dx V2
B=1.198 a=cos (1=¢?)
Y:(liqDZ)fl/(mfl)
0 dy 1 |n(11¢2)+o 1)
o ax m-1? N m
m>1 m-1 \Ym-1 de = tani wX/2) 1)
— R — 2ym/(m-1) — -
Y=a b Cl) ax t2(1+(p) ) [tar(wa/Z)Jro(m)
Co— 02_ X* 2 (tanht <p N ( 1
T m- 1)a1 I Twl-tante Yim
7 (m—1\™m-1 H(m-1) tanh ! ¢,
2 Z( 1 ) (F) [tan’1 zpl}

focal points(in situations with defocusingA beam can be N=1; Mach numbeiM =0-85; 1.1-2.0. The numbers of
compressed or extended in both defocusing and focusing meaeshpoints aré, =256, 512, and 1024\,= 200800, the

dia, depending on the initial conditions. step widthsAx=0.01-0.05 andAz=0.0025-0.01; the di-
mensions of the studied region atg = (10—20)rqg, Zpnys

10. COMPARISON BETWEEN APPROXIMATE AND EXACT =2z;. The results are shown in Figs. 2—4. The profile of a

SOLUTIONS perturbed beam is approximately constant over the section

1. In order to illustrate the performance of the suggestedl/'—zl-5_2- Further calculations are difficult because of
technique, we have obtained an exact numerical solution fd@rge local gradients around the intensity peak. In Fig. 2a the
the case of a plane collimated Gaussian beam in uniforrdverage transverse beam dimens#wgalculated using the
transverse subsonic and supersonic floms=(1; D=2) approximate methofisee solution(22)] is compared to the
with the initial conditions exact numerical solution. The error is within 7%. The beam
displacementx. calculated by the approximate method is
(z=0x)=exp(—x?), ®(z=0)=const, ¥2z=0)=0. very close to the exact calculatidffig. 2b). The intensity
The similarity numbers were selected as follows: the Fresngbrofile shape is approximately constant only around the in-
numberF>1, absorption numbeX =0, self-action number tensity peak, as one can see in Fig. 3. Therefore, the constant

FIG. 2. Comparison between approximate calculation@oav-
erage beam dimensiora/r, and (b) center-of-gravity shifts

X I1 o of the intensity distributioridashed linesand exact values
(solid lineg for the Gaussian beam under a transverse gas flow:
(1) M=0.01;(2) 0.5; (3) 1.5. The similarity numberg>1, N,
=0,N=1.
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FIG. 3. Profiles of exact numerical solutions for the Gaussian
beam propagation under a transverse gas fi@v:M=0.1; (1)
z/IL=1.5;(2) 1.7;(3) 1.9; (b) M=1.5; (1) zZ/L=1/6; (2) 1.8;(3)

2.0.

b in solution(22) is in fact nonzero, and in the exact solution 11. SOLUTIONS WITH FOCAL POINTS
the average transverse dimensiaz) approximately fol-
lows a linear function. Figure 4a shows the constanver- e
sus the Mach number. In the vicinity of the poist=1  ¢&n be reduced by an order of magnitudeg. 10. The

neither the exact nor approximate solution applies. Figure 4ghinimal dimension at a focal poingy, is limited by a dif-
shows the initial values, (zy/L =1.5), x.1(zo/L=1.5) as fraction and is of the order of the inverse Fresnel number,

functions of M. The initial slopes of the curvea(z) and  &t/o~F ", as follows from the eikonal equatidfy. In the
x.(2) are 6,/(ry/L)=0.337, 0.344, 0.405, 0.572, 0.956, Previous sections, we have disregarded the wave effects, thus

1.735, 2.162, 1.123, 0.2175, and 0.046B./(ro/L) admitting an error of the order ¢ 2. In most aero-optical
1135 —1.149 —1.280. —1593 —2370 —3.057  Problems, the equation for the average transverse beam di-

4.854. 2.711. 0.8813. and 0.3544Mt=0.01. 0.1. 0.3. 0.5 mensions, which takes into account the diffraction, can be
07 085 1.1 1.2 15 and 2.0 respectivély. "7 777 reduced to a general ordinary differential equation

In a focusing medium, transverse dimensions of a beam

2. As a second example, we have calculated an exact d2a 1 +b c
numerical solution for an axially symmetrical beam in a —= +
quasi-steady-state heat-conducting reginme=(; D=3) dZ a@|a™Yz) F%a?(z)
and compared it with the approximate solutidr®). a(0)=a 0(0)= 6 (51)

Figure 5a shows intensity profilér)/I, at the moment b 1
t=77 in different cross sections. The intensity profiles areThis equation is valid at all the Fresnel numbErgust as the
similar. The relative change in the average radi(®) over initial equation(1). The first integral of Eq(51) for m>1 is
the time intervalr is 2.47, 1.42, 0.90, 0.63, and 0.47% at
momentst=37, 47, 57, 67, and 7r, respectively. This in- g2=
dicates the existence of a quasi-steady state.

Figure 5b shows the mean radiagz)/r,, deviation
angled/(ry/L), and “constant”b as functions ot along the - 2b c
optical path. Note a slight change lin(as was expected, on Ci= ‘91+(_ m+1)am ! + F232° (52)
the basis of our assumptiprand excellent agreement be- ! !
tween approximate calculations of the average radius an is obvious that atn=3 diffraction cannot compensate for
deviation angle, on the one hand, and accurate calculations self-focusing since the second term on the right side cannot

, b,c>0, m>0,

da
dz

2 +2b c ic
(—m+1)am™?! F2a2 "

the sectiore/L=1.5—3.0, on the other. grow faster than the first a&—0.
bC a]/ro, xd/r0
3 a 4r b
2 2

[
T

FIG. 4. (a) Parameteb, and (b, curvel) initial average dimen-

Or sionsa, /ry and (b, curve 2) displacement.; /r, in the cross
) or section atzy /L =1.5 versus the Mach numbéf.
_2_\ ,
-3 ; .
0 1 2 0 1 2
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1, alrys b: @y /L)
2.0r b
! FIG. 5. (a) Transverse distributions in the initially Gauss-
L5f ian beam in the heat-conducting regime of self-action in
cross sectionél) z/L=0; (2) 1.0;(3) 1.5;(4) 2.0;(5) 2.5;
10k (6) 3.0.(b) Average radiusa/rq [curvesl, the exact solu-

tion is shown by the solid line, the approximate solution
(19 by the dashed ling(2) “constant” b, and(3) angle of
3 expansiord/(ry /L) with respect to initial axis as functions

03 M of the optical path lengtk. The time moment for all curves

is t="77; similarity numbersN=1, F>1, N,=0.

1. Let us analyze the solution on an optical path includ-There is a satisfactory agreement between these two solu-
ing a focal point, taking as a example an axially symmetricalkions in front of the focal point, at the focus, and behind the
beam that propagates through a focusing medium in the heafecal point toz=3L.

conducting regimer(i= 1, the sign in front ob in Eq. (51) is 2. A second example of an optical path with a focal point
minus, andD =3). The first integral of Eq(51) is is a focused plane bean®{<0) under transverse subsonic
and supersonic gas flowsnE 1; D=2) in the limit of geo-
— d_a: + _ _ ¢ metrical optics aF> 1. In this case the constaht=0 [Eq.
= * 2blna +C;. (53 . : .
dz F2a? (22)]. The transverse beam dimension decreases following a

. L linear functiona(z)=a;—2z|64|. Within the distancez—z
Here the plus sign corresponds to the section in front of the (2)=a,—2|0,] f

focal point, whered=0, and the minus sign corresponds to ~F~" from the focus az;~a, /|6y, we have to take dif-
point, ; ’ ) 9 P . fraction into account, i.e., obtain a solution in the neighbor-
the section behind the focal point. In the case of the Gaussmﬁlood of the focal point in extended coordinatds:(z

initial intensity distribution and a plane initial wave front, . .

exact numerical calculations performed Mt —2 and F —2q)F and match it to the ex.ternal S_9|Ut'0n At»Z o on

—3 demonstrated that relative changes in the average radilis¢ Scalez~1 (Ref. 27. In this specific case, the general

are within 0.46% at the moments- 4, the focal distance is solution of Eq.(51), which satisfies the conditions of both

2~2.20L at t=47, the minimal radius isa(z;=2.2)/ the e_xternal and internal problems, is the upper brgnch of

=0.4969, and the constants ape=0.5307,c=2.190, and Solution (31), whereb must be replaced bg/F2. The mini-

C,=c/F2. The intensity profiles are shown in Fig. 6a. Be- Mal_beam dimension is diffraction limited; it isy

hind the focus, the bell-shaped intensity distribution persists= VC/(F|64]).

at least on the path section extending to the po#BL. At Using the basic equatiofpl) atb+#0 and equating ap-

the focal point, the peak intensity is almost seven timegroximately the second term on the right side to the first

higher, in accordance with the approximate formula,  term, we can estimate the beam compression at the focal

~(as/rg) " 2~F2. point: a;~1/F%, wherea=2/3, 1, 3/2, and 2 an=0, 1, 5/3,
Figure 6b illustrates the dynamics of formation of a fo- and 2, respectively. By equating the left-hand and right-hand

cusing lens. At the moment the quasi-steady state sets in,sides, we estimate the longitudinal dimension of the focal

=47, and the solution of the approximate equati(s8)  region:z—z;~ 1/F#, where3=1/3, 1, 2, and 3 ain=0, 1,

(dashed lingis close to the exact solutiofsolid curve5).  5/3, and 2, respectively.

FIG. 6. (a) Intensity profiles for a Gaussian beam in a focusing
medium (N=—2, F=3) in a quasi-steady heat-conducting re-
gime in the following cross section$l) z/L=0; (2) 1.0; (3)

1.5; (4) 2.0; (5) 3.0; the timet=4r. (b) Average radiusa/r
versus the optical path length on a section including the focal
point: the solid curves show exact solutions at moménks

=0; (2) 0.0255; (3) 0.063%; (4) 1.303r; (5) 4.00r; the ap-
proximate quasi-steady solution is shown by the dashed line.
The constantd=—0.5307,c=2.190, the Fresnel numbér
=3. The initial radiusa(z=0)/ro=1, the expansion angle
0(z=0)/(rq/L)=0.
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The thermal evolution of the competition between the ferro- and antiferromagnetic exchange
interactions in (FggsNig 351 xMny alloys, which display different magnetic properties, depending
on composition and temperature, is investigated. The distribution functions of the magnetic
hyperfine fieldsP(By,) for °Fe are determined by Késbauer spectroscopy in the temperature
range 5—-300 K for the alloys witk=0, 0.024, 0.082, 0.136, 0.195, and 0.252. The

temperature dependence of the integrated intemg(fly) is analyzed for the low- and high-field
portions of P(Byy). The features found in the behavior lo{ T) are interpreted as results

of variation of the ratio between the competing exchange interactions of different signs as a result
of the thermal destruction of antiferromagnetic Fe—Fe exchange bonds. It is shown that the
changes in the spin structure in the low-temperature range are due to the thermal destruction of
Fe—Fe exchange bonds. One of the consequences of this destruction is “reenti@mce”

increase in the hyperfine field with increasing temperature for some of the Fe)aftines
relationship between the thermal destruction of Fe—Fe exchange bonds and the magnetic
transitions of the Fe—Ni—Mn system to the spin-glass state is considered99@ American

Institute of Physicg.S1063-776(099)01107-3

1. INTRODUCTION in regions with a high local concentration of iron the
ferromagnetic spin structure becomes unstable and condi-

Magnetic systems with competing exchange interactiongons conducive to the formation of frustrated states

of different sign display a large variety of types of magneticang states with antiferromagnetic spin orientations are
ordering(ferromagnetism, antiferromagnetism, spin-glass Ol¢reated(see Refs. 2 and 3 and the references cited there
dering, and reentrant spin-glass ordejingoncentrated The Mn-Fe exchange interaction in an fcc lattice is

magnetic system_s, in which dlbr mos) of the atqm; have.a antiferromagnetic and strongcompared with the Fe—Fe
nonzero magnetic moment are most characteristic in this re- ; : )
xchange interaction therefore, even a small admixture

spect. The theoretical analysis of the magnetic behavior ogf Mn increases the competition between the exchange

felzjscl:t??)?T:Ztlilllsa;/i?);ysCgenr}fli)“r(r::é?jdﬁ;: fin(,j]g{g'“::;ge?g?gtg;:énteractions of differ_ent sign and causes local disturbances
to real magnets containing magnetic atoms of different type<?! (he ferromagnetic structure of the alloys. The mag-
Experimental investigations of the relationship between thd!€tic Properties of Fe-Ni-Mn alloys depend strongly
behavior of competing exchange interactions and the mag?" €0mposition and temperature. Investigations of the
netic structure on the microscopic level would be of greatMagnetic — phase  diagrams — of dgNi;_,Mn,)oss
interest. (Ref. 3, (FeyedNiozdi—x(FeysMnoidx (Ref. 4, and

A characteristic example of systems with competing ex-(F&.eNio.s91-xMny (Ref. 5 systems have shown that a
change interactions and strong spatial inhomogeneity in thEansition to the spin-glas¢éSG) state is characteristic of
distribution of the exchange fields is provided by disorderedhese alloys. Two magnetic transitio(tse appearance of a
Fe—Ni—Mn alloys with an fcc structure. In the ferromagneticreentrant spin glagsas well as the formation of a mixed
alloy Fe, gNig 35 the ferromagneti¢FM) exchange coupling (FM+SG) phase, were observed over a broad range of con-
constantslgqy; andJyn (Which are equal to 450 and 600 K, centrations. Considerable spin polarization was observed for
respectively are several times greater than the antiferromagthe SG phase ofFe) gsNig 35 1-_,Mn, alloys even in very

netic (AFM) coupling constandrer. (Ref. 1). Nevertheless, weak magnetic field$10—60 mT; and significant shifts of

1063-7761/99/89(1)/7/$15.00 70 © 1999 American Institute of Physics
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the characteristic temperatures were observed in strongéhne resonant absorption effect and the resolving power for
fields>® detecting M@sbauer radiation with an energy of 14.4 keV.
The unusual behavior of the SG phase in an external The distribution functions of the magnetic hyperfine
magnetic field has been explained within the phenomendfields P(B,;) were calculated using histograth3he result-
logical cluster model of Shigat al.® but the question of the ant Massbauer spectrum was represented by the convolution
mechanism of the formation of the SG phase in theof the distribution functionrP(By;) and an elementary mag-
Fe—Ni—Mn system remains open. One necessary conditionetic sextet. The widths of the histogram intervals were cho-
for the formation of an SG phase is the presence of a signsen so that they would slightly exceed the instrumental width
changing exchange interaction between the magnetic centeo$ the components of the magnetic sextets. This allowed us
(atoms or magnetic clustérsFor “classical” (magnetically to use the direct method for minimizing th¢ functional
dilute) spin glasses, the indirect long-range exchange intertusing the FUMILI minimization prograimand to eliminate
action via conduction electrons has been regarded traditiorthe need to employ a smoothing procedure. The variable pa-
ally as such an interaction. In the case of concentrated spirameters for minimizing the? functional were the compo-
glasseqgwhich include the SG phase of the Fe—Ni—Mn sys-nents of theP(By,) histogram, the relative intensities of the
tem) this interaction cannot play a decisive role, and thesecond and fifth components of the magnetic sexietthe
formation of the SG phase should be regarded as a conskrewidths, the isomer shift, and the correlation coefficients
guence of the competition among the exchange interactionisetween the hyperfine field and the quadrupole splitting.
between atoms of different types over short distances. ElucicThis correlation was introduced to take into account the
dation of the concrete mechanisms for the formation andveak asymmetry of the absorption spegtfor spectra with
decomposition of the SG phase in the Fe—Ni—Mn system i@ resolved hyperfine structure the variable parametelif-
of fundamental importance for developing a theory of con-fered from 2.0 by no more than 108vhich corresponds to
centrated spin glasses. random orientations of the spins in the sampléhe spectra
Mossbauer spectroscopy offers a possibility to observavith a poorly resolved structure were treated with the fixed
spin configurations of different types and to classify thesevaluea=2.0. Some other features of the method for treating
states according to the amplitude of the magnetic hyperfinéhe spectra were described in Ref. 8.
field Bys. The possibility of performing measurements overa  In most casesgthe alloys with a high manganese concen-
broad temperature range permits, in particular, obtaining dat&ation and all the alloys at high temperatyrdse satellite
on the effective exchange fields and the thermal stability oktructure ofP(By;) is complicated and poorly resolved. For
perturbed spin configurations. The use of this method tdhis reason, a method based on consideration of the total
study disordered Fe—Ni—Mn alloys is based on an analysi§integrated intensitiesl in selected ranges of variation of
of the hyperfine-field distribution function®(By;). The B;; was employed in analyzing the temperature dependence
present work included Wesbauer investigations ¢#(By,) of the components of the distribution functions. Such a data
for °Fe in (Fe, gNig 391 xMn, alloys in the concentration analysis method enabled us to eliminate the possible errors in
range O0=x=<0.252. Attention was focused for the most partthe determination of the intensities of the individual compo-
on studying the temperature dependencé® (B for dif- nents ofP(By) and to represent the temperature dependence
ferent ranges of values @&,;. The features of this depen- of the low- and high-field intensitiek(T) in a simple and
dence are interpreted as results of the influence of the tengraphic form.
perature on the competition between the exchange
interactions of different sign. An earlier Mesbauer study of
(FeyeNig 391 xMn, alloys was described in Ref. 7. The de- 3. EXPERIMENTAL RESULTS AND DISCUSSION
pendences of the mean hyperfine fiéR}) on composition 3
and temperature were obtained in that work. The temperature Figure 1 shows the Mesbauer absorption spectra mea-
dependence of the structure B{By,) was not examined in sured &5 K and the corresponding hyperfine-field distribu-
Ref. 7. tion functionsP(By;) for the alloys withx=0, 0.024, 0.082,
0.136, 0.195, and 0.252. The hyperfine-field distributions

P (B for the same alloys at various temperatures are shown
2. EXPERIMENTAL METHOD in Figs. 2 and 3.

The test samples dfFe gNig 351 xMn, were prepared  3.1. Hyperfine-field distributions ~ P(By) at 5 K
. ) ¢ o
by fusing the metals with a purity no poorer than 99.9%; the Let us briefly consider some features of the structure of

ingots were rolled into foils haV|_n_g a thickness @flo_,um P(Byy) at 5 K. For FgeNio s more than 90% of the inten-
and rapidly cooled. The composition and homogeneity of the .; . > . o
: . ._Sity is concentrated in the principal maximum, which is cen-
alloys were monitored by x-ray fluorescence microanalysis ) L .
L . tered atB,;=34.5 T. The profile of the principal maximum
the deviations of the concentrations of the components from o .
. - i o of P(Byy) can be easily interpreted on the assumption of a
the nominal composition did not exceed 0.1 at.%. The man-, _.‘° T, : : :
. statistical distribution of Fe and Ni atoms at the lattice points

ganese concentration range choses k6<0.252) covers the

entire sequence of magnetic phases of this systEM, if the magnitude of the magnetic hyperfine field acting on the

FM+ SG, SG, and AFM® The Mosshauer absorption spec- nuclegs of an Fe atom in a giyen atomic configuration is
tra were measured in the temperature range 5-300 K. Resg_escnbed by the following familiar formula:
nance detectors were employed to increase the magnitude of Bp=aupet b[ Npgttpet (12— Neg) unil, 1)
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where uge and uy; are the magnetic moments of the Fe andspin reorientation in some Fe atoms under the influence of
Ni atoms, andng is the number of nearest-neighbor Fe at-the antiferromagnetic Mn—Fe interaction. Raising the con-
oms in the particular configuration. The first term in this centration of Mn to 8.2% leads to destruction of the principal
formula is the contribution of the intrinsic magnetic momentmaximum and the formation of a broad hyperfine-field dis-
of the specific atom t®y,;, and the second term is the total tribution in the range 9-36 T. When the Mn concentration is
contribution of the atoms in the local environmentg. If  increased further, a rapid increase in the intensity of the low-
pre=2.5 pg and uyi=0.6 pg, a comparison of the ob-  field components and a general shift of the hyperfine-field
served profile of the principal maximum with a calculation gjstribution toward lower values dBy; are observed. The
based on formulgl) (with consideration of the binomial ihteqrated intensity in the randg,<4 T for the alloys with
distribution of the atoms of different types in the first coor-, _ 5 082 0.136. 0.195. and 0.252 is equal, respectively, to
dination sphergyields the following values for the coeffi- 8, 13, 16, and 33%. Raising the manganese concentration

clents: leads to a rapid decrease in the mean value of the hyperfine
a=94 Tlug, b=0.5 Tlug field (Byy), which is equal to 32.6, 28.9, 21.9, 16.1, 14.5, and

(a doubled number of histogram intervals in comparison toll'9 T for the alloys withx=0, 0.024, 0.082, 0.136, 0.195,

Fig. 1 was used to analyze the profile of the principal maxi-2nd 0.252, respectively. .

mum) The values of andb which we found are typical of The values 0By, exceeding 8—10 T can be explained on
ferromagnetic iron alloys. The presence of weak satellitdhe basis of the approximation of Ed) in terms of the spin
lines (with a total intensity of 6—8%can be attributed to the flip occurring as a result of the influence of antiferromagnetic

formation of perturbed spin configurations in regions with aFe—Fe and Mn—Fe exchange interactions. The states with
high local concentration of irofi’ B,<<8 T cannot be attributed solely to the spin flip. The Fe

The replacement of Fe and Ni atoms by Mn atomsatoms in such states must have a temperature-dependent
quickly destroys the ferromagnetic spin structure of the almean value of the magnetic momejk)r less than the
loy. The alloy withx=0.024 exhibits intense satellites with nominal value ofur.. The decrease ifu)r means that the
Br~22 T andB,~28 T to the left of the principal maxi- exchange fields for some Fe sites are very small and the local
mum, which can easily be attributed within formul®) to  magnetization is not in a state of saturation even at
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T=5K. The possibility for the formation of such states fol- A further analysis of the behavior &(B;) for alloys of
lows from a theoretical analysis of systems with competingvarious composition was performed using integrated intensi-
exchange interactiorts. ties (see Sec. R For the alloys withx=0.082 the tempera-
ture dependences of the integrated intensiti¢$) for the
3.2. Influence of the thermal destruction of Fe—Fe exchange low-field (By<<5T) and high-field By>17 T) ranges, in
bonds on the competition between exchange which the behavioral features &§(T) are most clearly dis-
interactions played, were compared. The low-field range includes only

As can be seen from Figs. 1 and 2, for the alloys withstates of Fe atoms for whidlas was pointed out aboyéhe

low manganese concentrations the structureP¢By,) is  exchange fields are known to be sméile., frustrated or
relatively stable over a broad range of temperatures. In pamearly frustrated statgst 5 K. Conversely, the states of the
ticular, a rise in temperature to 200 K is not accompanied high-field range with large values & at 5 K are charac-
by a significant increase in intensity in the low-field region. terized by values of the temperature-dependent mean mag-
This means that at low manganese concentrations most of thgtic moment x )7 equal(or closé to the nominal value of
perturbeq. spin configurations are characterized by high the&lFe_ For the alloys withk=0 and 0.024 the intensity of the
mal §tab|llty. It can be concluded th@n agreement ,W'th the low-field satellites is very small; therefore, in these cases
g?;'gr?;fi'slgﬁggaea;hgggz Ctgugggchogzta]tﬂfngea:ﬁo\;esrywi th only the temperature dependencel g(fT) for the region of

) the principal maximum B,;=30—38 T) was considered.

x=0.136(Figs. 1 and 3 a rise in temperature is accompa- h | h c . f .
nied by rapid displacement of the distributioR¢B,,) to- The results are shown in Figs. 4 and 5. As is seen from Fig.

ward weaker hyperfine fields and an increase in intensityh for alloys with high manganese concentrations the tem-
nearB,;~0. The increase in intensity near zero valueBgf Perature dependences of the high- and low-field integrated
clearly indicates occurrence of the “fusing” of frustrated intensities have characteristic features, which are most
spins considered in the theory of systems with competinglearly displayed for the alloys withx=0.136 and
exchange interactiorts. x=0.195. A rapid rise in the integrated intensity in the low-
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FIG. 3. Hyperfine-field distribution$(By) for
the alloys withx=0.136, 0.195, and 0.252 at
various temperatures.

field region and a synchronous decrease in the high-fielgrated intensity at strong fields, i.e., a return of some of the
region are observed in the temperature range 40-70 Kke atoms to states with large valuesBy (“reentrance”)
When the temperature is raised further, both the increase when the temperature is raised in the range=110
intensity at weak fields and the decrease at strong fields-130 K. For the alloys wittk=0 and 0.024 the intensity of
cease. In the case of the alloy with-0.136 these intensities the principal maximum decreases rapidbimost abruptly
remain constant in a broad temperature range. The alloy witfor the alloy withx=0) when the temperature is raised in the
x=0.195 clearly displays an anomalous increase in the interange 50—70 KFig. 5). In the range 110-130 K the inten-
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FIG. 4. Temperature dependence of the integrated
intensity I (T) at strong B, >17 T) (a) and
weak B<5T) (b) fields for the alloys withx
=0.082 @), x=0.136 ©), x=0.195 (A), and
x=0.252 (V). The measurement errors do not ex-
ceed the size of the symbols.
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I, % extent in all the alloys investigated; however, it is difficult to
100f observe the melting of spins and “reentrance” in the alloy
90 umer 1 & 8 with x=0.082 because of the low concentration of states
ameaa,, with weak exchange fields and the complicated satellite
80r . structure of the hyperfine-field distribution. In the alloy with
70+ fe. x=0.252 “reentrance” is not observed because of the low
a e .
° 000, . temperature for the transition of this alloy to the paramag-
60r P00 % netic state
¢ o : .
50k o The thermal destruction of Fe—Fe exchange bonds ac-
° counts for the features of the magnetic phase diagram of the
40 ° . .
° (FeyeNig391_xMn, system and the mechanism for forma-
30r ® tion of the SG phase in these alloys. Let us focus our atten-
, , . ° tion on the fact that the temperature range in which the
0 50 100 150 r K200 anomalies of ((T) considered above are observed coincides

with the temperature range of the transitions to the SG phase
FIG. 5. Temperature dependence of the integrated intehgi®) in the  (Or @ mixed FMi-SG phasg We also note that the tempera-
region of the principal maximumB,=30-38 T) for the alloys with  tures of these transitions depend weakly on the manganese
x=0 (M) andx=0.024 (). The measurement errors do not exceed the concentration?. This suggests the existence of a direct rela-
size of the symbols. tionship between the transition to the SG phase and the ther-
mal evolution of the Fe—Fe exchange bonds. The cluster
model of the SG phase of the Fe—Ni—Mn system proposed
sity remains constant for the alloy witk=0, while an in- by Shigaet al® accounts for the behavior of this phase in
crease in the integrated intensity, which corresponds to thexternal magnetic fields, but does not specify the nature of
“reentrance” just described, is clearly seen for the alloy withthe sign-changing exchange interaction between the clusters.
x=0.024. Iron is the dominant component in the alloys under consid-
It is significant that these features of the behavior oferation; therefore, even in the alloys with a considerable
Is(T) are observed in the same temperature ranges for alloypanganese concentration the antiferromagnetic Fe—Fe ex-
with different manganese concentrations. Clearly, significanthange bonds should play a decisive role in the formation of
reorganization of the spin structure of the alloys takes placsites with weak sign-changing exchange fields. Magnetic
at these temperatures due to variation of the ratio betweeclusters form in regions with large contributions from ferro-
the contributions to the exchange interaction. It is natural tanagnetic Ni—Ni, Ni—Fe, and Ni—Mn exchange bonds, while
theorize that such variation of the ratio between the exchanga relatively weak sign-changing interaction appears in re-
interactions of different sign is associated with the antiferro-gions with a high local concentration of iron. The tempera-
magnetic Fe—Fe exchange interaction, which has a very lowure range for stability of the SG phase should coincide with
characteristic temperatu@. A rise in temperature should the range for stability of the Fe—Fe exchange bonds, as is
cause the thermal destruction of Fe—Fe exchange bonds arahserved in the alloys considered. The relative compositional
consequently, a change in the balance between the compétdependence of the critical temperature for decomposition
ing interactions(which is especially significant in regions of the SG phase is a natural consequence of such a mecha-
with a high local concentration of irgnOne obvious conse- nism for the formation and decomposition of the sign-
guence of the thermal destruction of Fe—Fe exchange bondhanging exchange interaction. The existence of a region
is a decrease in the antiferromagnetic contribution to the exwith a mixed (FM+SG) phase is attributed to spatial fluc-
change interaction at temperatures closeBto The corre- tuations of the local concentration of iron and the gradual
sponding change in the balance between the contributions twourse of the destruction of the sign-changing exchange in-
the exchange field should be manifested in the behavior dferaction as the temperature is raised. The SG phase does not
the local magnetization ar},;, primarily for the Fe sites at form in the alloys withx=<0.04 because of the low concen-
which the energy of exchange interaction is comparable tération of Fe sites with weak exchange fields.
k®. At such siteB,; decreases rapidly with increasing tem- It is noteworthy that, according to the results of our mea-
perature, but at temperatures abev&0 K the thermal de- surements, in the alloys witk=0.136 and 0.195 some of the
struction of Fe—Fe bonds causes an increase in the resultaf¢ atoms remain in the magnetically ordered state at tem-
exchange field and a corresponding ris@jp. The increase peratures above 50-70 Ke., above the nominal tempera-
in By with increasing temperature accounts for “reen-tures for decomposition of the SG phase found from an
trance,” which is manifested experimentally as a plateau oranalysis of the magnetization curvesThe rapid increase in
the plots of the integrated intensity versus temperature ahe integrated intensity at weak fields in the range 50—-70 K
strong fields(or even as a rise in this intensity for the alloys corresponds to decomposition of the SG phase, but complete
with x=0.024 andx=0.195). The temperature range in passage of the system into the paramagnetic state does not
which “reentrance” is observed agrees well with the esti-occur. As follows from the form of the magnetic phase
mate of the exchange coupling constdpsr.found by low-  diagram® this deviation from the data in Ref. 5 cannot be
angle neutron scatterirlg. attributed to special features of the sample-preparation pro-
The phenomena just described should take place to sonwess or small variations in the composition of the alloys. It
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can be theorized that in the concentration raxge0.14  *E-mail: delyagin@srdlan.npi.msu.su
there is a mixed-phase region at temperatures above the ndfe-mail: erzink@srdlan.npi.msu.su
mal temperature of the transition to the SG phase, whichis—
not manifested in the magnetic measurements because of the
small contribution of the magnetic transition to the magneti-
zation and its highly diffuse nature. Our measurements do, _ _
not permit identification of the type of magnetic ordering, g"n' stth,\‘fr'%ﬁieH';?‘k;Wgoﬁa Lsﬁ‘;véfr;sg'(l':égga”e“' M. W. Stringfellow,
but the existence of a magnetically ordered phase at; g wijler and J. Hesse, Z. Phys. B, 35 (1987.
T>70 K follows unequivocally from the data presented in M. Shiga, T. Satake, Y. Wada, and Y. Nakamura, J. Magn. Magn. Mater.
Figs. 3 and 4. The temperature of the magnetic transition in4$1, N}Eggﬁ?i Ando, and M. Takahashi, Phys. Reva8, 6334(1980
the alloy withx=0.252 was found to be equal t690 K, in 5 i ' : ' : e :
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The polarization state of a second-harmonic wave after reflection from a semi-infinite, optically
isotropic magnetic medium is considered for the three characteristic uniform-

magnetization directions corresponding to the linear magneto-optical Kerr effects. Expressions
for the complex amplitudes of the wave field which specify the nonlinear Kerr effects,

viz., the polar, meridional, and equatorial effects, are obtained in a first approximation with
respect to the magnetization. The dependences of these effects on the angle of incidence of the
inducing wave obtained as a result of a numerical experiment are presented. Analytical

formulas are found for them at small angles of incidence. A comparative analysis of the linear
and nonlinear Kerr effects is made. €999 American Institute of Physics.
[S1063-776(099)01207-X]

1. INTRODUCTION dynamics on magnetic surfaces and in ultrathin layers on the
real time scaldin the femtosecond rang@
Low-dimensional magnetic systertsurfaces, thin films, Thus, nonlinear magneto-optical effects offer a new

multilayer structures, quantum dots, and quantum wia@s  promising tool for investigating magnetic surfaces and inter-
attracting a great deal of attention. Many unexpected an¢hces in magnetic films and multilayer structures with high
nontrivial effects associated with the properties of magnetigpatial and temporal resolution, especially surface magnetic
surfaces and interfaces have been discovered in recent yeassisotropy and interlayer exchange, magnetic domains,
These include giant magnetoresistance, significant surfaaguantum wells, noncollineaicanted surface and interlayer
anisotropy, deviations of the magnetic moments on a surfacetructures, and the relationship between the geometric rough-
from their bulk values, oscillating exchange interactions beness and the magnetic, tunneling, and transport properties of
tween neighboring magnetic layers, and strong biquadratiaanostructures.
exchange in multilayer structures. Apart from their unques-  However, in order to reliably compare nonlinear and lin-
tionable fundamental significance, these systems are of gregar magneto-optical effects and to use them to investigate
practical interest for magnetic memory, sensors, etc. magnetic surfaces and other low-dimensional magnetic
Some new magneto-optical effects associated with thatructures, tools must be developed to describe nonlinear
surfaces of magnetic media, viz., the nonlinear secondmagneto-optical effects within the familiar approach that is
harmonic Kerr effects, were recently predicted and detectediidely used in linear magneto-optics. Within this approach
soon thereaftet.® Although second-harmonic generation is the magneto-optical properties of a material are described by
forbidden in materials with an inversion center, and mostwo complex parameters: the refractive indaxand the
widely encountered material&e, Co, Ni, FeNi, etd.are  magneto-optical paramet€)=¢,,/n?, wheree,, is an off-
such, space-inversion symmetry is broken at a surface or afiagonal element of the dielectric tensor of the medisee,
interface. Time-reversal symmetry is also broken in magnetdor example, Ref. 24
The breaking of these symmetries leads to the appearance of This paper describes a calculation of the complex ampli-
second-harmonic magneto-optical phenomena, which haveide of the second harmonic of a wave reflected from a semi-
been found to significantly surpass the corresponding lineanfinite space filled with a ferromagnetic material for arbi-
effects in magnitud&® The large value of the polarization trary angles of incidence of the inducing wave in the three
plane rotation angle of a second-harmonic wéedative to  geometric configurations which are usually set up in
the polarization of the inducing wayvensures high contrast magneto-optical experiments, viz., in the configurations of
between regions with oppositely directed magnetization. Fothe polar, meridional, and equatorial Kerr effects. The polar-
example, it can exceed 50% in a Co(C0D0 multilayer ization states of a reflected second-harmonic wave are calcu-
structure> In an Fe/Cr multilayer structure and in single- lated. Analytical formulas for the nonlinear magneto-optical
crystal iron whiskers the ratio between the nonlinear anderr effects at small angles of incidence of the inducing
linear Kerr rotation is of the order of $qRef. . A com-  wave® and the results of numerical experimetas arbitrary
parison of the linear and nonlinear equatorial Kerr effectsangles, which characterize these effects as well as the ratios
was made in Ref. 7. Nonlinear Kerr effects have been suchetween them and the corresponding linear effects, are pre-
cessfully employed for probing buried interfaces in sented.
multilayer films*®1! and spin-polarization quantum We note that nonlinear magneto-optical effects are de-
wells!?~1 They are also interesting for studying the spinscribed by aT-odd axial fourth-order tensor. On the one

1063-7761/99/89(1)/9/$15.00 77 © 1999 American Institute of Physics
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hand, such a tensor corresponds to the great diversity eftomic fieldE*, the ratiol=Eg,/E* of the surface electric
these effects, and, on the other hand, the large number @giq E,, (which breaks the even symmetry at the surfdoe
components in it creates certain difficulties and uncertaintieg+ (for N), and the magnitude of the magneto-optical gyrot-
in the analysis of an experiment. In the present work W&opy (for M), which is determined by the magneto-optical

utilize a theory of magnetic symmetry and an adequate hierparameterQ and usually satisfies the conditid@<1, are
archy of small parameters, which permit considerable reducgmg| parameters.

tion of the number of parameters needed to completely de-  Here expansion inN actually means expansion in

scribe nonlinear magneto-optical effects. NEg,f as can be shown in the following manner. Let us
assume that there is a surface layer, in which the properties

2. NONLINEAR POLARIZATION AND MAGNETIZATION OF A of the medium vary in such a manner that their variation can

MEDIUM be described using the polar vectorwhich is parallel toN.

The influence ofA on the optical properties of the medium

o . . ; . ill be characterized b¥,;, although these quantities, in

monic in magnetic media were considered in Refs. 15 an eneral, should not be considered identical. The nonlinear

26-29. Accprdmg to Refs. 15 apd 2.6_29’ nonllnearoptical properties can then be described using the nonlinear
magneto-optical effects can be described in terms of electro-

dynamics using the nonlinear electric polarization ve@&pr susceptibilityy®), so thatP= y*Eq,£E or E:X(S)AE' In
which includes components that are proportional to the loca@€neral, the properties of the tensgf® and x(*) can differ
magnetization vectofor other basis vectors in the case of somewhat, but this difference does not influence the ensuing
more complicated magnetic structurel the polarizationP ~ arguments. Assuming that the thickness of the surface layer
is localized on the surface of the medium, the nonlinea€@n be less than the wavelength of the light, we can use a
magneto-optical effects are caused exclusively by the predunction to go over to a local description of the surface po-
ence of these surfaces and are determined by the distributid@rization. The averaged produgf’’Ereliably reflects the

Some theoretical aspects associated with the second h

of the magnetization on these surfaces. nonlinear surface susceptibility®). Consideration of terms
The second-order nonlinear surface optical polarizatiorP! higher order irN implies allowance for contributions of a
can be written in the forit° polarization vector of the type®=x®E, EsuEsuEE,
) which are clearly at leasf? times smaller than the terms
Pi=Xijk (M)E;E, (2.1 taken into account above. The latter follows from the known

where the nonlinear surface susceptibiliff?) depends on relation P"**/P"~1/E* (Ref. 30. There may be cases in
the magnetizatioM, andE; is a component of the electric WhiCh Esyr E*; expansion inNEg, is then inapplicable,
field of the light wave. The properties of the third-rank polar@nd the theory under consideration is not completely general.
tensorxy® and its dependence on magnetization are deter- The use of the expansiori2.23 and (2.2 reduces the
mined by the time-reversal symmetry and the symmetry ohumber of parameters needed to describe nonlinear magneto-
the surface. The time-reversal propeftyithout allowance —Optical phenomengin comparison to the general formula
for dissipation requires that Re(® be an even function of (2.D]. We can show this by comparir(@.1) with (2.2) and

M and that Iny®® be an odd function. It follows from sym- (2.28. Formula(2.2g can naturally be represented in a ma-
metry arguments that the polarizatiBrcan be represented in frix form, just as(2.1), where the third-rank tensor has the

the form following form in Voight's notation:
P=Po+Pm, (2.2 0 0 0 0 eg 0

where the magnetization-independent contribution is 0O 0 0 es 0 O 23
Po=x1E(E-H) + x,E?N, (2.2a €y €y €3 O 0 O

and the contribution which is linearly dependentMnis
Pm= X3E(E(m-N))+ x,E3(m-N) We recall that it is symmetric relative to interchange of the

indicesj andk. Such a form for the tensoy(?) corresponds
Fxs(E-M)(E-N)+xe(E-N)(E-m). 220 45 the limiting ©om symmetry group(the Curie group A
Here y; and y, are the nonlinear optical parameters, uniform electric field, for example, has this symmetry. It
X3 - - - ,Xe are the nonlinear magneto-optical parametersfollows from (2.239 thatezz=e3;+2eys, i.€., the tensop(i(jzk)
m=M/M is a vector which characterizes the magnetization(M =0) is specified in our case by two independent param-
direction, andN is a normal to the surface. SinBes a polar  eters, rather than three, as requiredsay symmetry. How-
vector, only two independent combinations of the polar vecever, there is no contradiction between formula®ag and
tors N and E, which are second order i, form the polar (2.3, since(2.2a corresponds to the linear approximation
vector Py and only four independent combinations formedwith respect tof. Taking into account the next term with
from E andN and the axial vectom give P,,. respect tof in the expansion inf2.23 in, for example, the
The relation(2.2) should be regarded as an expansion ofform N(N- E)?2, we obtaineg;= e+ 2,5+ O(?).
P(E,N,M) in E, N, andM. We restrict the analysis to the After reflection from a medium with an inversion center,
terms which are quadratic iB and linear inN andM. The a second-harmonic wave, in general, includes the influence
ratio of the light-wave fielcE to the magnitude of the intra- of not only the surface components, but also the bulk com-
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X3 response to passage of the medium from a state with uniform
IN . Kn magnetization(l) to a state without magnetizatior g} is
— ‘o convenient only for a wave with the frequeney The analo-
ny X2 gous definition for the nonlinear case, which was used in
fh f £ _Ref. 24, gives an unbou_nded increasedims the angle of
k P incidence decreases. It is therefore more convenient to use
o o " the definition
EJ () E: k —
E, S=(1—1g)/(1+1y). (3.3
FIG. 1. Determination of the normal modes with a frequeacfor a semi- ~ We shall also define the linear equatorial effect by analogy

infinite magnetic medium. with (3.3).

To examine the nonlinear magneto-optical Kerr effects
we must use the results of the solution of the linear problem:
the reflection matrix and the representations of the normal
$fodes in a magnetic medium for the orientationsnofvhich
appear in the definitions of the linear Kerr effects. In this
case the dielectric tensor of the magnetic medium is

ponents of the polarizatioR. However, the latter are mani-
fested to a considerably weaker extent, especially in the ca
of metals®!

3. POLARIZATION STATE OF REFLECTED WAVES

1 —imzQ  imy,Q
In order to investigate nonlinear magngto—qptlcal Kerr e(w)=n? im3Q 1 —imQ|, (3.4
effects and compare them to the corresponding linear effects, . :
—-im,Q  imQ 1

we must determine the polarization state and the intensity of
the reflected waves at the frequencieand 2w. This can be  wheren is the complex refractive index (Im>0), andQ is

done most simply in the case where reflection occurs from ghe magneto-optical parameter, which depends linearly on
semi-infinite, optically isotropic magnetic medium, in which magnetization. The magnetic permeability is assumed to be

the uniform-magnetization direction is characterized by theequal to unity.

vectorm (Fig. 1). The crux of the problem is to find the
componentE! andE{’ of the electric field of the wave at
 and the components!” andE{’ at 2. The polarization
factor can be introduced ag= —E{/E("” or y=EY/E},

An incident waveE() =E{)exdi(kx—wt)] and a re-
flected waveE" =E{) x exi(k("x— wt)], which propa-
gates in a transparent medium;&0) with the refractive
indexngy(w), can be represented in the form of waves véith

depending on which of the two directions, viz., the directionandp polarization, which are related to one another through
of s or p polarization, respectively, is chosen for measuringthe reflection matrix

the polarization plane rotation angle. The polarization factor

y for the second harmoni@ tilde is used to denote quanti-
ties related to the second harmonstiould be introduced by
analogy with the one from the definitions qf The Kerr

=)
"
ED

E(
EQ)

Fss Tsp

, (3.9

Fps Tpp

whose elements depend on the optical parameters of the two

rotation (the rotation angle of the major axis of the polariza- media. In the semi-infinite region of the magnetic medium

tion ellipse is found from the relatiotf

2 Rey
tan 26= 5" (3.1
1-|x|
The ellipticity is defined in the following manner:
1 S 2Imy
7= s arcsin———. (3.2
2 1+|x|?

The signs ofé and » correspond to the direction of obser-
vation of the wave vectok(". If 0< < /4, the wave has
left-elliptic polarization, and if— 7/4< <0, it has right-
elliptic polarization. In the case of linear polarizatiom (
=0), the condition Iny=0 should hold. Circular polariza-
tion corresponds top=w/4 (left) and = — /4 (right).

the two solutions of Fresnel's equation correspond to two
normal modes. Knowledge of all three components of the
electric field is needed for each of them.

4. REFLECTION MATRIX AND COMPLEX FIELD
AMPLITUDES OF A WAVE AT THE FREQUENCY

We next present the elements of the reflection matrix
and the formulas for the complex field amplitudes appearing
in the definition(2.2) of the nonlinear surface polarizatfon
for the three directions ah (Fig. 1).

4.1. Polar geometry, m =(0,0,1)

The magnetization is orthogonal to the surface of the
medium and lies in the plane of incidence. The elements of

These definitions clearly also apply to the nonlinear polathe reflection matrix are

and meridional Kerr effects if the quantities appearing in
(3.1) and (3.2 are construed as those pertaining to the sec-

ond harmonic. We note that the signsé&nd » also depend
on the representation of the plane wave.

The definition of the equatorial Kerr effect as the relative

changed=(1—1g)/14 in the intensity of a reflected wave in

X~ Y™
rss—x—+, rpp—Y—+, (41)
2
ingn“Q
lsp= —Ips= e COSep, (4.2
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where X* =nqcosp=\n’>—a?, Y*=ny/n?— a’=n’cosp, ik SR

and a=ngsine. Nt ' /
The components of the electric field in the magnetic me- - £(w,) y
dium are Po(xy o X,
I ) X Em
:ZHOCOS(p E(i)+m QE(i) X, ,
1 s + P |’
X+ 2Y ~(r)
B
2ng cos<p in2Qcose . FIG. 2. W - i
_ 2= 2E0) — 0} . 2. Waves with the frequencys governed by the nonlinear surface
2= N E X+ — e+ Es | 43 polarizationP. )
E.—_ 2Moacose| ) 1NQ g . - N
3 v+ P oy TS The complex amplitudes of the field in the magnetic medium

are
If the incident wave has linear polarization, the reflected

wave will have elliptic polarization with the major axis of - _ 2NoCc0S¢ 0
the polarization ellipse turned through a certain angle, which ' xX* s
is determined from3.1).
2N, COSe ian’Q _
ZZOY—+ n?—a?— cose |EY, 4.7
4.2. Meridional geometry, m =(0,1,0)
o 2n, COS@ in’Q .
The magnetization is parallel to the surface of the me;=— ————| a+ ——(ng+Jn’—a? cose) [EY .
dium and lies in the plane of incidence. This effect, like the Y Y

polar effect, consists of the appearance of ellipticity and ro-
tation of the polarization plane of the reflected wave if the;
incident wave is linearly polarized. The elementsandr

are determined fron4.1), and

The equatorial effect clearly takes place only for oblique
incidence.

i angn?Q cose

rep=lps= -
SPPS Yt P a2

The surface polarization P=(Py+ P,,,) exdi(KosaXo

The components of the electric field in the magnetic medium_ , )], wherew= 2w and the wave numbéts= w./c, is a

are source of plane waves with a frequenay, which are
damped in the semi-infinite magnetic mediyfig. 2). To

(4.4 5. NORMAL MODES WITH A FREQUENCY OF 2 w

_ 2nycose -E(‘) ian®Q £ find the polarization state of these waves, Maxwell's equa-
e s T Nt =2 P | tion must be §0Ived in the two regions'.
In the region of the magnetic mediums(>0)
2ny cose | , . ian®Qcose curlH=—i e(wg)E, curlE=i H. 5.1
2:Y—+ ‘/nZ_QZES) NN E(l) wsge(wg)E, Wslo (5.9
' 4.5) Here the dielectric tensor
2 1 —imgQ  im,Q
E :_Znoﬂ E(')_ Q Y+ @ E(') A( ):'ﬁZ —im 6 1 —im 6
s Y+ X+ zm FLes 3 !
—-im,Q  im;Q 1

contains the refractive indeﬁzn(ws) and the magneto-

optlcal paramete®=Q(w).
In the region of the transparent mediury £ 0) with the
efractive indexny=no(ws)

4.3. Equatorial geometry, m =(1,0,0)

The magnetization is parallel to the surface of the me
dium and orthogonal to the plane of incidence. The equality
rsp="rps=0 signifies that the reflected wave has the samé

polarization as the incident wave. The elementis deter-
mined from(4.1), and the other diagonal element is

v-
rpp:Y_+

(4.6

curlH=—i wssonoE, curlE=i ws,uoﬁ. (5.2

The boundary conditions at the surface,£0) can be ob-

tained as was done in Ref. 33. The following relations are

obtained as a result:
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E;-E;=0, E;-E,=
Hy —Hi =0y (mQP3—iP,),
H;_ngws(mzép3+|Pl)

_iaﬁ_2k05851P3,

(5.3

Equations (5.1), whose solution has the form of a
plane wave E=Egexfi(kx—wst)] with a wave vector

k=Kkos(0,2,7), reduce to the following wave equation in
matrix form:
a2+ '}/2_712 iﬁzm3b _iﬁzmzé El
-in?mQ y?*-n? —ay+inm Q|| E,|=0. (5.9
inm,Q —ay—in’mQ a?-n? Es

This equation can be solved only for values+ofvhich are
solutions of Fresnel's equation

y*—[2(n?— a?) —n%Q?%(1-m3)]y*— 2n?Q*m,msary
2Q7[n? (5.5

+(n?=a?)?-n —(1-mj)a?]=0.

Since the medium is assumed to be semi-infinite, of the four
roots of Eq.(5.5 only those which correspond to two waves
departing from the surface, i.e., normal modes, have physical o)

meaning. Their form depends on the directiomofWe next
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koSESle'Z)
WsMo

H(L2=

=2 i=2R T2 2

nc in“Q(n“—vy7,)
X exp(ik®2x)| — — —12 ,

Y12 a(n®’—a _712)

in2Q(n?— 93, )
71,2(F‘z_ a’— 3’%,2) .
Equatorial effectm=(1,0,0). It follows from(5.5) that
Y125 Y=N n’—a?
and the normal modes are

EM=EDexp(ikx)(1,0,0,

~ kOsEBl)
HO =22 axnikx)(0,y, ,
westo Aikx)(0,y,— a)
(5.8
~ ~ ~ ay+in?Q
E(Z)Z Egzz)eX[il kX)( 0,1,— W) s

ko E2) -~ [M2(y+ial
_fostoz exp(ikx)(—(fz ZQ),o,o .
wWso n“—a

present representations of the normal modes in the first ap-

proximation with respect t&Q for the orientations ofm

Here the first mode has polarization, and the vectdg®®

which correspond to the definitions of the three magnetolies in the plane of incidence, but is not orthogonal to the

optical Kerr effects.
agraph *Polar effectm=(0,0,1). It follows from(5.5
that

1.
y12= \Vn*— azian,

and Eq.(5.4) gives two modes

E@2=ELDexpik2x)(+ £,1,— a(n2—a?) "1y, ),
(5.6)
~ ékosE
HL2=== expu KED%) (Ey1 0, % 915, F @),
Wsfo

whereg=invn2— a2, ki) =ko(0,a, ¥;), the upper sign cor-

responds to the first mode, and the lower sign corresponds to

the second mode.
agraph *Meridional effectm=(0,1,0). To find the nor-
mal modes from5.4) we need the exact values of

- R ...
V10— \/nz— a’— EnZQZI nQ \/ &+ ZnZQZ.

Then

E@2=ELexp(ik(2)x)

X( in2Q(n?— %,
~ 2 1
ayp(n?—a?—yi,)

T2 .2

n“—vy

1, 1,2
ayi12

(5.7

wave vector.

It follows from (5.2) that only one plane wave
EM=EQexdi(kx— wg)] with the wave vector K
= kOSﬁo(O, sing, cosp) propagates in the transparent medium
(x3<0) (Fig. 2. In contrast with the normal modes in the
magnetic medium, this wave can be represented in the form
of a superposition of waves with and p polarization. In
particular, at the surface

EO=(ED ,EVcosy,EL siny),
(5.9
kos O E _EM EM gj
" ——(Ep’, —Eg’ cosy, —Eg7 siny).
Wgio

The boundary condition€.3) are satisfied if the relation

RO =

. No .
sing= = sing,
No

(5.10

which can be called the reflection law for a wave with the
frequencywg, holds. If the refractive index of the transpar-
ent medium does not depend on frequency, we hiawep.

6. NONLINEAR POLAR KERR EFFECT

In the casen=(0,0,1) the expressior(5.6) for the nor-
mal modes and the boundary conditiof#s3) give the fol-
lowing representations of the and p components of the
reflected wave with the frequenays in terms of the compo-
nents of the nonlinear surface polarization:
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FIG. 3. Polarization plane rotation
angle and ellipticity for the nonlinear
(solid lines and linear(dashed lines,

to which the right-hand scale reférs
polar (a) and meridional(b) Kerr ef-
fects for s and p polarization of the
incident wave.

~ iKos i ~ ~
E=——| P+ ——(P,n%cosy— angPs) |,
STex | oy 2 v oP3
(6.7
— ikes | = in2G
Eg)_ ..(.)i n2—a2P2+aP3—T?P1 y
egY | 2X

where X" =ngcosi+\n?—a?, Y =nyVn?—a?+n’cosy,
and a@=ngsing. According to(2.2), in the configuration of
the polar Kerr effect the components Bfare

P1=x1E1E3+ (x5+ x6) E2E3,
Py=x1E2E3— (x5t x6)E1E3,
P3=x2(E1+ES) + (X1t x2)E3,

where the complex amplitudds,, E,, andE; are known
from (4.3). Thus, thes and p components of the reflected
wave with the frequencw, are now defined in terms of the
sandp components of the incident wa!) and the optical

parameters of the medium. In particular, if the incident wave

hass polarization(Fig. 1), then

2 ~ o~
~ akps [ 2ngcose . noQ noQ
EY)= ~s+ n EQ| | xa —tXxeT |

2gX X Y Y
(6.2
. 2
~ iakgs [ 2NgCOSE
=T o B xe
80Y X
and if it hasp polarization, then
2
,E(Sr): alios 2ng cosg ES))
80)(Jr YJr
1 |n2Q Q
X[EX]_ X+ +,?—+(\/n - n20031//+azﬁo)
~ o
non“Q
+X22?—+_|(X5+X6)\/n2—(12],
(6.3
. 2
NEg)=— |a505 2ng cose ES)
80Y+ Y+

X[ x1(V(N2—a?)(n2— a?) — a?) — x,n?].

In each case the reflected wave with the frequengyis

elliptically polarized. Substitution of the parameerfound
from (6.2 or (6.3 into (3.1) and (3.2 gives the results
needed: the polarization plane rotation angle and the elliptic-
ity for the second harmonic. In a first approximation with
respect to the angle of incidengethe corresponding formu-

las for the complex angié+i7 are fairly compact. In fact,
if the incident wave has polarization (Fig. 2) and 795 is
measured from the direction fop polarization f
=EV/EY), then

1
2i

NeNQ  x1 , NoQ
N(No+n) X2 ng+n

Bs+in= . (6.4)

The Kerr angle~0p+i77p (p polarization of the incident wave
and y=E{/E() in this approximation likewise does not
depend onp:

~ o~ ~11[ nQ | _Xs5TXs
0p+|77p—|n[ > n0+n+Q)_| X1
~ x|\t noeQ
X{n—n— - == =_- (6.5
X1 2n(ng+n)

As an example we present some characteristic plots of
the polarization plane rotation angle and the ellipticity versus
the angle of incidence (Fig. 39 for the linear @, 7) and
nonlinear §,7) Kerr effects whemy=n,=1, n=n=2.36
+3.48, O=Q=—0.034+0.003 (n and Q correspond to
iron), x2/x1=0.1, x;/x1=0.01, Imy,;=0, and |]
=3,...,6(the values of these ratios are close to the values
given in Refs. 34 and 35For s polarization of the incident
wave, the direction fop polarization was chosen as the di-
rection for measuring the angl . As can be seen from the
curves, the polarizations of the reflected waves with the fre-
guenciesw and wg are nearly orthogonal in this case. It
should be noted that in the case of normal incidence the
nonlinear polarizatiorP has only one nonzero component
P4, and, as follows froni6.1), (6.2), and(6.3), the reflected
wave is totally absent since=0. However, the polarization
factor y is nonzero because of the linear dependence of the
field components om. This means that ag— 0, the polar-
ization plane rotation angle and the ellipticity can have fairly
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large valuegas can be seen from Fig),3vhile the intensity
of the reflected wave becomes infinitesimally small.

7. NONLINEAR MERIDIONAL KERR EFFECT

If the incident wave is linearly polarized andh
=(0,1,0), the reflected waves with frequencies equabto
and wg will be elliptically polarized with the major axes of

the polarization ellipsoids turned through certain angles

(Kerr rotation relative to thes polarization of these waves.
In order to find the Kerr angle and the ellipticity for the
second harmonic, we must substitute the expressibrng
for normal modes into the boundary conditids3) and use
(5.9. As a result, thes and p components of the reflected
wave with the frequencwg will be as follows:

—ry iKos i an?Q cosy
EN=—— P+ ———P,

(‘JOXJr 2V \/712— a?

azﬁo
_|Q 1+ P3 ;
2Y* \Vn2—a?
(7.7
5 iko = ian?Q
|(or)_ ~S+ aP3+ \/ﬂz—azpz‘f‘ fpl s
goY 2X*\n?—a?

where, according td2.2), the components of the nonlinear
surface polarization are

P1=x1E1Es+ (xa+ xa)EL + (Xat X6)E3
+(xa— Xs)E3,
P2=x1E2E3+ (X3~ xe)E1E2,
Ps=X2(ET+E3)+ (X1+ X2) E5+ (xa+ xs)EqEs,
and the complex amplitudes;, E,, andE5; can be found

from (4.5).
If the incident wave has polarization, then

- Kos [ 2ngcose 2
E(f):_ —E(l)
S —)-(+ X+ S
€0
a’n
2Y*\n?—a?
- ozZFlo .
—x2Q 1+ ———¢ —i(xatxa | (7.2
2Y*Vn?—a?
: 2
~ iakgps [ 2NgCOSE .
= | B xe
80Y X

and if it hasp polarization, then

A. K. Zvezdin and N. F. Kubrakov 83
2
- Kos [ 2ngcose
EO——= [ 22 g
80)(Jr YjL
. a®ny+n?\n?— a’cosy
2Y"\n?—a?
a’n?Q o azﬁo
+ |+ xon“Qf 1+
2X*\n?=a? 2Y*Vn?—a?
+ixan?—ixsa®+iyxe(n>—a?)},
(7.3
. 2
B i ai(o,s 2ny cose ()
80Y+ Y+ p

X [xa(@?= (72— a?)(n’— a?)) + xon?].
Determining the polarization fact&r from (7.1) or (7.2
and (7.3) and substituting it into(3.1) and (3.2), we can
easily obtain the polarization plane rotation anglend the

ellipticity 7 of the reflected wave. For small values@fand
s polarization of the incident wave we have

- EUY in
y= o= X2 . a4
Es N x1Q—x2Q—i(xs+ xa)
and forp polarization we have
~ Eg) nn x2Q+i(xs+xe)
X==== = (7.5
Ep’ INoe  x2n—xin

In Fig. 3b both® and 7 depend on the polarization of the

incident wave and the angle of incidence in the case of the
linear and nonlinear meridional Kerr effects. We used the
same values of the required parameters as those used to con-
struct the plots in Fig. 3a.

8. NONLINEAR EQUATORIAL KERR EFFECT

To calculate the intensities appearing in the definition
(3.3 of this effect we need the complex amplitude’ and

E{, which are found after plugging the normal mod6s)
into the boundary condition&.3) for m=(1,0,0):

o ks | = in’Q
Ep = A n"—a«w P2+C¥P3_~_
SoY
X[ a cosyP,— (Ng+ Vn?2—a? cosy)P3] |,
(8.1
- ik
EO=—2p,,
80)(+

where, as follows fron{2.2), the components of the nonlin-
ear polarization
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P1=x1E1E3— (x3— x6)E1E2,

P2=X1E2Ea— (Xat X6)El— (Xat+ X2 E5
_(X4_X5)E§,

P3=x2(E1+ES) + (X2t x2) B3~ (xs+ Xxs)E2E3

are specified in terms of the complex amplituéigs E,, and
Es, in accordance withi4.7). Regardless of whether the in-
cident wave hass or p polarization, the relatiorE{"”=0
holds; i.e., the reflected wave with the frequensy will
have only ap component(see Fig. 2 This property is also
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observed in the case of films, as has been confirmed!G. 4. Dependence of the nonline@olid lines and linear(dashed line,
right-hand scaleequatorial Kerr effects on the angle of incidence and po-

experimentally’. If the incident wave has polarization, then

. 2 L~

- ikos [ 2ngcoSe . in’Q
(—_70s | £70=72F (i) _x
Ep _80’?+ N Es ) [XZ at v+

X (n+\n?—a? cosy) —(X4+Xe)\/n2—a2], (8.2

and forp polarization we have

. 2
B |k£S 2ng cose 0
80Y+ Y+ p

_ 2a? cosp

x[)(l —|n2Q( nz—az(l—Y—+

2a?
— Y_+(n0+ \/nz—aECOS(p))
+ a[az— \/(ﬁz—az)(nz—az)]
ia’n?Q -
+(Vn2— a2+ JnZ— a?)cosy]

[No
2ia’ngQ in%0Q
A * Y+

X (No+ VNn?—a? cosy) | + xsVn2—a? a?
— V(2= a?) (0%~ a?) ]~ xun? V- o?
+)(5a2( Vn?—a?+ m)} .

In order to determine the intensity of the reflected wye
all the magnetization-dependent

(Q,Q.x3, ... .xe) Must be set equal to zero.
After calculating the intensity front8.1) or (8.2 and

+—=
Y+

(8.3

(8.3) and substituting it int@3.3), we obtain the characteris-

tic 5 of the nonlinear equatorial Kerr effect. We note that

asymptotic expansiod=1+0(¢?) holds as¢—0, while
2

the relative change in intensity € 1)/l yx ¢~ “.
Figure 4 shows plots 06 versuse for s andp polariza-

tions of the incident wave. The characterisfiof the linear

parameters*

larization of the incident wave.

equatorial effect was determined in a similar manner for
comparison. All the parameters correspond to those for
which the plots in Fig. 3 were constructed.

9. CONCLUSIONS

The principal results of this work include the analytical
expressions found for a semi-infinite magnetic medium,
which characterize the and p components of the reflected
second-harmonic wave in terms of optical and magneto-
optical parameters of the media provided the uniform-
magnetization directions correspond to the three directions
which were adopted in the classification of the linear
magneto-optical Kerr effects. All the results are given in the
linear approximation with respect to the magnetization-
dependent parameters. Equations which relatesthed p
components of the reflected second-harmonic wave to the
nonlinear surface electric polarization have been obtained.
This made it possible to determine the polarization plane
rotation angleithe Kerr rotation and ellipticity of that wave
for arbitrary polarization of the incident wave.

Expressions which characterize the nonlinear magneto-
optical Kerr effects, viz., the polar, meridional, and equato-
rial effects, have been found. Plots of these effects as func-
tions of the angle of incidence for incident waves wstbr p
polarization have been presented for known values of the
parameters. It has been shown that they significantly surpass
the corresponding linear magneto-optical Kerr effects. Al-
though application of the method described here to layered
media would be of greater interest, the results which we
obtained can be useful for illustrating the features of the
nonlinear magneto-optical Kerr effects.

JE-mail: zvezdin@magnof.phys.msu.su
YA great deal of attention has also been attracted by bulk nonlinear

magneto-optical effects, especially in so-called magnetoelectric materials,
in which the second harmonic appears because of the odd symmetry of the
magnetic structure with respect to space inverstdfi.Sharp intensifica-

tion of second-harmonic generation due to the appearance of magnetic
order has been observed in BikFgBelow the transition point to the anti-
ferromagnetic stat¥. The nonlinear magneto-optical effects in the magne-
toelectric material GIO; were thoroughly studied in Ref. 18. They are also
clearly expressed in films of magnetic gari&t& and in the Heussler

alloy.®

the
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It is shown that the diffusive formation of the boundary of a crystal moving uniformly over the
surface of another crystal should be accompanied by flattening of the displacement fields

of the crystal lattice in the vicinity of vacancies. As the relative velocity of the crystals rises, the
flattening of vacancies leads to lowering of their dipole moments and an increase in the
number of contact atoms on the interface between the crystals. This phenomenon should be
manifested most strongly for high rates of relative motion of the bodies and for small contact areas
in the nanoscopic range. It is noted that the decrease in the dipole moment of a vacancy

into which a contact atom diffuses can be the reason for the passage of the kinematic interface
between the contacting crystals into a quasimolten state. It is concluded that friction in a
polyatomic contact should differ qualitatively from friction in the monatomic contacts created in
atomic-force microscopy. €1999 American Institute of Physid§1063-776(99)01307-4

1. INTRODUCTION of the contact to an electron current was proposed as the
quantity averaged over the sliding states.

The reviews of experimental and theoretical studies of  Disregarding the question of the structural level at which
the features of the friction between solid materials in Refs. Islip occurs, we can see something in common in these stud-
and 2 show that the question of the mechanism of friction ides: the original models were constructed on the basis of an
still of great interest. A large portion of these studies focusednterface with a static potential well. It is difficult to imagine
on the properties of the monatomic contacts used in atomidiow stick-slip motion can be realized without the generation
force microscopy.’ One of their features is generalization of vacancies by the crystal boundariese, for example, Ref.
of the results of experiments with monatomic contacts to thé 1) or, in other words, without the diffusion of atoms among
case of polyatomic contacts, which is based on an implicivacant lattice sites under the action of external stresses. In
assumption that the mechanisms of friction are identical irfaCt, if the characteristic value of the force sufficient for de-
both systems. Nevertheless, there has been no experimenta¢hing one atom from the surface of a crystal is assumed to
verification or even theoretical substantiation of this assumpbe of the order of 10* dyne;? then under loads of the order
tion. of, for example, 10 dyne, the number of contact atoms dif-

Another portion of these studies focused directly onfUSing into vacancies at a given moment during stick-slip
polyatomic contacts. Special mention should be made here §fotion is of the order of 10 The role of these T0atoms in
Refs. 8—10, in which the concept of “stick-slip” motion was shaping the frictional forces or electrical conductance of con-

adopted as a basis for developing models of the mechanisficts ¢an .be taken into account phenomgnologmally, bUt a
of kinematic friction in “solid-on-solid” systems. The es- more detailed approach based on evaluation of the variation

sence of this mechanism is that one crystal moving over thgf the number of diffusing atoms as a function of the external

surface of another crystal, which should be considered rigi&Ondltlons for carrying the experiment is also possible.

. . - . N In this paper we shall describe the dynamics of the for-
and fixed, experiences periodic locking, which is overcome_ _.. . . .
: . . ~ . mation of a moving force contact and give an estimate of the
with resultant passage of the original crystal into a sliding

variation of the number of contact atoms as a function of the

state. In this case some physical chargcterlst|cs, being AVe3|ative velocity of the bodies in the contact under the action
ages over a lattice period, turn out to differ in absolute valu%f an external force. The development of Tomlinson’s old
from the characteristics associated with crystals in a Stati‘éonceptioﬁ3 of a relationship between the number of contact
state. These ideas underlie the work in Refs. 8 and 9, whichiyms on an interface with an external load. which was

have a theoretical character and in which the microscopigqopted in Ref. 14, is based on a solution of the problem of

periodic lattice potential was proposed as the factor providgipole simulates an elementary act of diffusion of an atom
ing for the locked state, and the frictional force was prOpOSGdrom a lattice point into a vacancy. As a Wh0|e, diffusion
as the quantity which is averaged over the sliding states. Thehould govern two processes. At first a static equilibrium is
same ideas underlie the experimental study in Ref. 10, irstablished on the interface between the deformable crystal
which the macroscopic side of the problem was consideredand the absolutely rigid substrate in the absence of relative
However, microscopic surface irregularities were proposednotion between them along the contacting surfaces. This is
as the factor providing for the locked state, and the resistand®llowed by the establishment of a dynamic equilibrium, un-

1063-7761/99/89(1)/6/$15.00 86 © 1999 American Institute of Physics
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der which the deformable crystal moves over the surface offraphic properties of the crystal. The uniformly moving di-
the rigid substrate, causing the dynamic transport of atompole characterizing the force field of a moving vacancy can
and vacancies, while maintaining a static equilibrium in thebe represented by the force density
direction perpendicular to the interface. In this case the dif-
fusive motion of an atom can be regarded as an elementary _ (O)i _
) Fi(r,t)=—P}; S(r—vgt), (2
act of passage of the moving crystal from a locked state to a IXn
sliding state, and the motion formed as result of many diffu-

sive acts of the interface can be regarded as an instantaneoff h \uti ; ith inh . f th
picture of stick-slip motion. The solution of Eq.(1) with an inhomogeneity of the

A description of such a detailed mechanism of friction /P& (2) iS known from problems concerning moving elec-

using the ordinary electron-phonon model of crystals wouldredynamic multipoles> The principal result for a multipole

hardly be possible at present. In this paper we therefore rdfioving with a vellocity not gxceeding t'he rgte of prqpagation
strict the discussion to the model of a crystal in the form ofof electromagnetic waves in the medium is flattening of the

an infinite continuous medium containing moving point forceIevel lines of its force field. The degree of flattening depends

sources. Nevertheless, just such an approach allows us to <@ the velocity of the multl_pole. .
The analogous effect in a deformation problem should

in the stage of formulating the problem that the force fields

of moving atoms and vacancies, which account for the relat,’e expressed in the form of the flattening of the displacement

tive motion of the crystals, must be flattened. The ensuiné'eId S(r.1) in the vic_in!ty of a vacancy ar_1d, therefore, in the
analysis shows that a consequence of the flattening of the™M of the ghange in its force state, Wh'Ch can be described
dipole force fields should be an increase in the number oPy a force-dipole tensor. The change in the dipole tensor of a

contact atoms in the interacting crystals. This result leads tgsca;pqg in wm, Ehohmg' flfead to' a chﬁnge in the foﬁe dStati of
conclusions which can find application in the analysis ofine fixed atom which diituses into that vacancy. Under the

grain-boundary slip in polycrystals and the relative motion ofgon_d|t|ons of constancy _m_c the ex;ernz_al load and static equi-

nanocrystals in nanocrystalline materials. Ilbm_Jm of the contact p:_;u(m the direction perpendicular to
the interfacg a change in the force state of a contact atom
should lead to a change in the total numiepf contact
atoms on the interface between the crystals. Finally, since the

2. FORMATION OF A KINEMATIC INTERFACE degree of flattening of a vacancy should be determined by

. . the dipole velocityvy, we conclude that a function(v,
We assume that an interface between crystals or indi- P Yo (Vo)

vidual crystallites in polycrystals is formed only by the dif- exists.

fusive motion of atoms among vacant sites in the crystal

lattice. In this case the movement of atoms into vacancies,

whose initial velocities are equal to zero, specifies a stati€. FLATTENING OF THE ELASTIC FIELD OF A VACANCY
interface. A moving, or kinematic, interface formed by the i _ _

uniform motion of one crystal relative to the surface of the We restrict the analysis to the solution of Eg) for the

other is specified by the movement of atoms into vacancie§35€ of an infinite crystal, which implies dlsregard_ Of. the
moving with an initial velocityv, possible differences in the bulk structure of the strain fields

The numbem of contact atoms at a static interface is of vacancies located on the surface of the crystal and in its

determined by the external load and the parameters of thléulk. The tools of elasticity theory together with the concep-

interactions between atoni!4 At a kinematic interface the 10N ©of & point force dipole give satisfactory results for a
value ofn should also depend on the velocity. The basis discrete medium?® but the problems which can be solved
for this can be as follows ' within such an approach have been formulated mainly for an

The movement of atoms into vacancies should be aCi_nfinite crystal. This is due not only to the technical difficul-
companied by considerable dynamic lattice strains, whicfiies in taking into account nontrivial boundary conditions,
can be described using point force dipoté&® Assuming but also to the futility of quantitatively refining the solutions,

that a vacancy moving in the direction of an atom fixed by anwhich, at best, should have a qualitative character. We shall
interatomic bond creates a volumetric strain in the Crystaltherefore restrict the discussion below to qualitative results

we consider the equation and quantitative estimates with no more than order-of-
magnitude accuracy and we shall disregard the known dif-
Di(r,t)s(r,t)=F;(r,t) (1) ferences in the forces of interatomic bonds and, therefore, the

L . . dipole moments of vacancies that move along the surface of
for the dynamic displacements of lattice atoms from their

S - ) ) a crystal and in its bulk.
equilibrium positions s (r,t). The differential operator We seek the solution of Eq1) for one component of the
D (r,t) is defined in the form of a matrix:

displacements of a point in a continuous isotropic medium
52 52 described by two elastic constants. Setting

Dik(r,t)=podik— —H
at

hereP{Y) is the static force-dipole tensét.

ik,mn ’
IXmdXn |_|ik,mn: C440ik Smnt (C11— C44) Sikmn,

where pg is the density of the medium, and; ,, is the  wherecy; andcy, are the longitudinal and transverse elastic
Huang tensot® which describes the elastic and crystallo- constants, we obtain the equation
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Fs,(r 1) 52 2 5 Let us test the validity of formuld5) for the limiting
pox—z— Cim> tCu| —5+— Sy(r,t) value of the velocityy,=0 corresponding to the case of an
at ox*? ays Jz interface between crystals. If we assume that the static dipole

P P tensor is formed by a vector dyad, i.e.,
=—|plO__ 4 pO)__ (0) —_
{PXX 2 Py Gy ay *Pa Jz o(r = Vot). foxXo foxYo TfoxZo
o~ ~ ~ (0)—
After we go over to the new variables=¢x, y=y, andz P foyXo Toyyo foyZol,
=z, where¢= \/c,,4/cy,, it takes the following form: foXo  fozYo fozZo
1 (92 where fo(foy,foy,fo,) and ro(xg,yo,2o) are, respectively,
2_ = h tors of the dipole force and its moment arm, for the
Vi—-— sx(r t) the vec p ;
Cy simplest case of an isotropic medium with one elastic con-
stant k=cq;=Cy4 and for a velocityvy,=0 formula (5)
_ 1 gP(O)_ n P(O)_ n P(O) yields a relation which describes the displacement field of an
\C11/Cyy ax Yy iz elastic medium in the vicinity of a static vacancy,
X 8(X— Evet) 8(Y = Voyt) 8(Z—vost), (3)

1
9(r)— fo("o r,
wherec,= \C44/pg is the velocity of transverse strains of the it
medium. which obeys the familiar ~2? decay law!’

The solution of Eq(3) can be found using an expansion The estimates o$ for typical values of the elastic con-
of the displacements in monochromatic plane waves. Usingtants show that the displacemer® amount to 102
standard transformations, we obtain the Fourier component 10" of the interatomic distance in a region with a char-
of the displacement field acteristic length measured in nanometers. Therefore, the flat-

tening of the displacement fields on a kinematic interface can
Sk, ) alter the distance between the moving bodies and make a
. 0 0 0 contribution to the variation of the parameters of the inter-
:|[§Pf(x)kx+ Pk + PiPka] S £k ox t KyVoy + kaVor — w) atomic interactions. This contribution will clearly be com-
(27)3\c11Can( kP — w?/c?) petitive toward the change in the forces of the interatomic
bonds when a vacancy passes from the bulk to the surface.
Nevertheless, we also disregard this contribution.

The static displacemenggr) are not needed below. We
shall also ignore the estimates of the dynamic displacements
s(r,vp,) and the differences between the latter and the static
. (4)  displacements, since, as will be seen from the following, the
4arr*3\C11Cas decisive physical characteristic of a point force dipole mov-

L _ _ ing i tal is its dipole moment, rather than the structure
Here the coefficientsy = 1/1-v2,/cZ, wherea=x,y,z Ing In a crys
correspond to strains propagating either with the longitudinaP! the force field, which is specified by assigning of the

velocity ¢;= \C11/pg When k=1 or with the transverse ve- dipole tensor. Such an approach is consistent with the gen-
locity ¢, whenk=t. The vectorp* andr* have the follow- erally accepted opinion regarding the role of the dipole ten-
ing cor;IponentS' ' sor in describing the properties of point defetts.

Inverse Fourier transformation of the functisg(r,t) gives
the strain field of the medium in the vicinity of a uniformly
moving vacancy:

(p*-r*)
S (1t)= Yx1 Yyt Yz P

p* = (0) (0)
(7X|§PXX ’yytpxy Y2tPxz), 4. DIPOLE MOMENT OF A UNIFORMLY MOVING VACANCY

r* =y €(X=Voxt), Yyt(Y = Voyt), v2((Z—= Vo) . The components of the dipole teng®®) are not inde-
pendent parameters of the model. Since the medium is as-
signed by the elastic constants and the atomic volume, the
displacement of an atomic volume to infinity or the forma-
S (r,Voy) tion of a vacancy, which amounts to the same thing, leads to

©) the appearance of an extended fqrce field with the parameters
2P+ POy Pz Z fo andrg, which should be fupctlon_s of the model param-

XX Xy 1-v2/c? eters. For the model of a medium with a moving source, the

_ z independent parameters are supplemented by the source ve-

V2, 22 3 locity vg. Thus, on the basis of the deduction of flattening of
A 011044( 1— _) ( EC+y2+ —) the force field of a moving source, we can pose the question
1-v3,/c? of finding the dependence df andr, or a combination
) thereof onvg.
We utilize the fact that the displacement functic®),

have oblate level lines along the direction of motion of thewhich is applied to the description of displacements of points
vacancy. in an atomic lattice, should be normalized to the dipole for-

At t=0 the displacements of a vacancy moving alongzhe
axis with the velocityy=(0,0v¢,)

Ct
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mation volume(). Since a dipole describes the force field of

a vacancy in the problem under consideration, we et
equal to the atomic volume. Thdh=m/p,, wherem s the

atomic mass. In the absence of experimental data on the \
numbem of contact atoms, it is reasonable to make estimates
with no more than order-of-magnitude accuracy. Therefore,
the known possible deviations of the vacancy formation vol-

ume from{) can be ignored.

We assume that the original force field in the vicinity of
a vacancy is spherically symmetric. In this case the compo-

nents of the dipole forcé,,=f,,=f,,, the components of
the moment arm of the dipole forcey=y,=2, and the

components of the force-dipole tendéﬁf)=f0220. We cal-

culate the normalization integral

f S(r,voy) dS=Q (6)

in the approximatiorf= 1, for which the displacement com-
ponent is

YfosZo(X+Y+ ¥*2)
sa: 1
Ao\ (XP+ y2+ 7222)3

where y=1/\1— 8%, B=v,/c,, andc,=k/py. In this
case the integrals) takes the form

[2xy+(y*+1)(x+Yy)z] dS
r /(X2+y2+ ,y222)3
ds
TN [ —
rVx2+y2+ y%z2

where we have introduced the notatids- yf,zg/4mk. The

@)
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FIG. 1. Variation of the relative dipole moment of a uniformly moving
vacancy.

which characterizes the variation of the components of the
dipole tensor of a uniformly moving force dipole as a func-
tion of its velocity.

Figure 1 presents an illustration of formul&0). It fol-
lows from the plot ofB/tanh !B that an increase in the ve-
locity of a dipole moving in an elastic medium is accompa-
nied by a decrease in its dipole moment. The physical basis
of the decrease in the dipole moment is the condition of
conservation of the formation volume of the dipole as its
force field is flattened. This condition requires compensation
for the increase in the magnitude of the displacements of the
deformable medium with increasing velocity of the dipole
due to the decrease in the dipole force and its moment arm.
In other words, if the formation volume remains constant, the
vacancy becomes less rigid as its velocity increases. When
B=1,i.e., when the dipole moves with the velocity of sound,
the force-dipole moment vanishes. It can be stated that a

transition to spherical coordinates reveals that the first intefnear continuous medium “does not see” its own dipole
gralin (7) is equal to zero, and the second integral takes theq e source, which moves with the strain propagation veloc-

form

sinede

Al ——————.
Vsirt 6+ y?cos 6

A calculation of the integra(8),

)

2m7A fl du
1

Vy?-

“LUP+ (4P 1)

27A \/1+1/(y2—1)+1‘
= In ,
V=1 |1+ i2—1)-1

and conversion to the parametgr give the value of the
integral

_foZo |14B|  fozotanh '
J S(r,vq,) dS= 2% lnl—,B_ B .

Substituting(9) into the original normalization integrdb)

9

ity in the medium. When3=0, formula (10) leads to the
familiar relationfy-ro=3x( (Ref. 14, which specifies the
components of the dipole tensor of a static force dipole.
The decrease in the dipole moment of a vacancy into
which an atom located on the interface between the media
diffuses leads to a decrease in the energy of formafiai
the vacancy, sincExP((B), and to a decrease in the self-
diffusion energy. This can correspond to passage of the in-
terface into a quasimolten state similar to the one observed in
particles of small dimensior8.The quasimelting of the in-
terface can, in turn, be the cause of both the decrease in the
kinematic frictional force in comparison to the static fric-
tional force and the increase in the electrical resistance of a
moving contact in comparison to a stationary contact. A de-
tailed analysis of these factors requires the use of a more
complicated interaction Hamiltonian than the one which
leads to Eq(1). This applies, in particular, to the problem of
the electrical conductance of a kinematic contact, whose so-
lution is associated with the need to ascertain the particular

and returning to the vector notation, we obtain the scalafeatures of the percolation of electrons through an interface

product

3B

=——-«k( 10
tanhfl,BK (19

fo-ro

in a system of ions having translational degrees of freedom.

The relation(10) also allows us to state that the decrease
in the dipole moment of a vacancy into which a contact atom
diffuses should alter the number of atom-vacancy pairs pro-
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viding for the kinematic contact between the solids. difference between surface and bulk bondghich leads to

diffusive redistribution of the atoms at the interface between
5. NUMBER OF CONTACT ATOMS ON A KINEMATIC the crystals under the action of the forEg and to an in-
INTERFACE crease in the number of atoms

The number of contact atoms can be found by utilizing ~ 1he value off o is unknown, but it appears in the scalar
the condition of static equilibrium between the crystals along?rduct(10). Additional relations which permit the determi-
the x axis, which is perpendicular to the direction of their Nation of fo, can be established from the solution of the
relative motion. For an external forég perpendicular to the dynamic problem of a moving atom in a crystal. This prob-
interface between the crystals, the number of contact atord€™ iS based on Eql), in which the force nonuniformity,
should be

__Fo (=, P, (-~
n(ﬁ)—m (ll) F|(|',t) f,(t)ﬁ(l’) Pm(t)axn&(r): (12)

If fox<<Fo/n, the external force per interfacial atom exceeds
the force of an interatomic bon@vithout allowance for the is specified by the dynamic dipole tensor

foxXo foxYo fox[Zo+2(1)]
P(t)=| foyXo foyYo foylZo+2(1)] ,
[fOz+fz(t)]X0 [f02+fz(t)h/0 [f02+fz(t)][zo+z(t)]

wheref(f,(t),f,(t),f,(t)) is the vector of the force acting on wheren(0)="F,/f,,(0) is the number of contact atoms at
an atom with a mass, andr (x(t),y(t),z(t)) is the displace- the stationary boundary.
ment vector of the atom. An analysis of Eqs(10) and (16) shows that the de-
The solution of Eq(1) with the force density11) was crease in the vacancy dipole moment caused by the flattening
given in Ref. 14 in the wave-band approximation. The resultof its force field should lead to an increase in the number of
include the frequency of the field of limiting strains, contact atoms with increasing velocity of the crystal that
_ 13 moves relative to the substrate. Since the number of contact
o= (16xC, /m)™, (13 atoms at the stationary interface varies in the range from the
at which the absorption of energy occurs in the system, andalue n(0)=1, which is realized in atomic-force micro-
the relation between the vectors of the dipole force and it$Cope, to the highest theoretically possible value, which is
moment arm, restricted by the number of atoms on the surface of the crys-
tal n(0)~N?2 whereN is the total number of atoms in the

fo=—maw?ro, (14 sample, the intermediate and most typical vane)~ 10°,
which ensures that the moments of the forces appearing updiich corresponds to a lodeh= 10° dyne, can be used for
deformation of the crystal are equal to zero. estimates. _ o

A combined solution of Eqs(10), (13), and (14) gives For example, assuming thef~10° cm/s within an or-
the component of the dipole force vector der of magmtude, fqr a crysta! or a grain boundary ina

polycrystal moving with a velocity,=10? cm/s we obtain
B an increment of the number of contact atoms
fox(B)=Fox(0) \| ——— (19
T Ntannip An=n(8)—n(0),

where fo,(0)=16""x©*% and the component of the vector equal toAn(10~3)~1C%. Another pair of estimates for other
of the moment arm of the dipole force values of B gives An(10 ?)~10* and An(10™!)~10F.

%ol B) = (Q1/16) Y2\ Bltanh 14, These results are illustrated in Fig. 2. The functidn(B)

has a logarithmic character because the vacancy dipole mo-
which depend on the rate of uniform motion of the crystalment vanishes ag—1. At fairly high rates of relative mo-
relative to the rigid substrate. tion of the crystals the change in the number of contact at-
Assuming that the magnitude of the forEg is assigned, 0ms can be very significant. It thus follows that the flattening
from Egs.(11) and(15) we find that the number of contact of the vacancy force field, which can be ignored in the case
atoms on the kinematic interface in a crystal/absolutelyof a single diffusion event on a fairly extensive boundary,

rigid-substrate system is can make an appreciable contribution to the changes in prop-
= erties which depend on the number of contact atoms on a

tanh *8 kinematic interface. Thus, the phenomenon of the flattenin
n(8)=n(0) (16 P o

B’ of vacancies and alteration of the number of contact atoms
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An — situ, although the alternative of measuring the number of
6 ] contact atoms as a function of the relative velocity of the
10 / bodies has not been ruled out. Such an experiment can be

yd based on measurements of the current flowing through a con-
/ tact pair. In this case, however, the approach described in
4 this paper will not be adequate for explaining the variation of

the current. The increase in the number of contact atoms as
the crystal moves should increase the electrical conductance
of the entire contact, which is a parallel group of point con-
10 tacts, but the decrease in the vacancy dipole moment can
0 0.08 016 5 diminish the conductance of an individual point contact to a
FIG. 2. Dependence of the increment of the number of contact atoms on théonsiderable extent. Allowance for the latter calls for signifi-
relative velocity of crystals having a number of contact atorif®)~ 10° in cant complication of the formulation of the problem of kine-
the static state. matic friction.
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It is shown that in crystal lattices with a basis the cooperative behavior of a certain type of

atoms performing optical long-wavelength vibrations in a double-well potential of the field of the
matrix lattice may lead to the formation of a bistable sublattice. As a result of the interaction

of the metastable states of such a sublattice with the vibrational states of the matrix lattice, the
elastic and thermal properties of the crystal acquire anomalous, hysteresis-like, temperature
curves. The concepts developed in the paper make it possible to obtain a qualitative interpretation,
which agrees with the experimental data, of the hysteresis-like temperature dependence of

the speed and absorption of ultrasonic waves, the specific heat, and the thermal conductivity in
superconducting yttrium and bismuth cuprates. 1@99 American Institute of Physics.
[S1063-776(199)01407-9

1. INTRODUCTION each ion vibrates in a double-well asymmetric poter(frag.

- . . . . 1) oriented, say, along one of the crystallographic axes. In
Precision experiments in which the propagation of ultra- . .
T _15 i the absence of ordering long-range forces the ions may be
sound in highT,. superconductots*® and ferroelectric con- thought of bei | t entirelv ind dent of
ductors (see, e.g., Refs. 16 and )1was studied detected ought ot as being aimost entirely independent of one an-

temperature hysteresis of the speed of ultrasdand Pal’- other. In this case, in addition to the intrawell vibrations in
val' et al.% Kim et al.8 and Borisovet all’ detected tem- the limit ®<U (where® =kgT is the temperature expressed

perature hysteresis of the absorption coefficient of ultral™ Nergy units andl is the height of the potential barrier
sound that was found to encompass a temperature rang_@e ions are capable, due to thermal fluctuations, of_perforr_n-
from ten to hundred kelvins. More than that, in the samdnd Slower movements, say, hop across the potential barrier
temperature range superconductors revealed hysteresis @M one stable position to another with a probability
havior of specific hed#? and thermal conductivitf*2>  *exp{—U/@}. At high temperatures@=U/2) the ions are
What is remarkable is the large interval of temperature hysPassing, i.e., they oscillate above the barffer,
teresis and at the same time the absence of relaxation in the Under realistic conditions there are always correlations
measured parameters in the hysteresis re(gome samples between the displacements of the ions in a crystal. The cor-
were kept at a fixed temperature for several hpukithough  relation between the relative displacement of the ions in the
there is still no universal opinion concerning the nature ofsublattice may be so strong that a cooperative effect could
the observed anomalies, it is obvious that they are related iarise in which the displacement of one atom would generate
one way or another to the metastable states of the crystaimilar displacements of the neighboring ions, i.e., a coher-
lattice. The absence of relaxation processes may indicate, f@nt ensemble acting as an integral whole is formed. Such a
instance, that the metastable states form in conditions of situation has a large probability of occurring in highly polar-
strong correlation of the lattice degrees of freedom, sincézed systems. In this case a change in an external parameter,
otherwise local energy fluctuation would rapidly destroy thee.g., the temperature, gives rise to a coordinated shift of the
metastable states. atoms of the sublattice considered. The cooperative behavior
Below we show that this anomalous, hysteresis, behaviosf the ions of the correlated sublattice makes the sublattice
of the elastic and thermal characteristics of such compoundsnresponsive to fluctuations since, being “bombarded” by
may be due to the presence in them of an anharmonicalljhe quanta of the reservdie.g., by the phonon of the matrix
unstable, strongly correlated sublattice that executes optic@ttice), the sublattice perceives a perturbation as an integral
long-wavelength vibrations in the field of the matrix lattice. whole. Such unresponsiveness, or rigidity, of the sublattice,
which prevents the separate ions from behaving indepen-
2. A MODEL OF A STRONGLY CORRELATED BISTABLE dently, extends over distgpces of order the _coherenc_:e length
SUBLATTICE and means that the transition of a separate ion from intrawell
dynamics to above-barrier dynamics can occur only when
the entire coherent volume undergoes such a transition, since
the probability of the entire correlated ensemble consisting
In a crystal lattice with a multiatomic basis we examine of n particles surmounting the barrier simultaneously is pro-
a sublattice formed by ions of a single species. Suppose thabrtional to exp—nU/@} (hereU has the meaning of the

2.1. Independent and strongly correlated particles in a
double-well crystal potential; a bistable sublattice

1063-7761/99/89(1)/15/$15.00 92 © 1999 American Institute of Physics
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varianceo can be found by the fluctuation-dissipation theo-

U introduce the statistical-mean displacem@jt, the dynamic
displacementsq(t)=q(t)—(qg), and the variancer={(q
—(q))?). Then, using the relationshiggsq)?")=(2n—1)
‘ X...x3c" and((8q)?""1)=0 (n is an integey, valid in the
¢ adopted approximation, we find that
T ] ; 3
c a Y
e Pyns, Y4 2 2 2
\ / (Ham = 5(@)2= 4>+ z{a)*+mO20— 7 302
b u d ()
\ / where
— 2
a Huy sz[a 2B8(q)+3y(o+(q)9)] )
i m
: is the effective frequency characterizing the sublattice. The
o % 1 rem:
FIG. 1. The schematic of the potential and the dynamics of transitions for a 1 Q
strongly correlated bistable sublattice. o= ﬁcoth% (5)
m

potential of the entire sublattice per partigléor this reason, (we setr =1 throughout the papkrthe relation betweerr

even atn~ 10 the activation transitions of the correlated en_and(q) can be established from the condition for stability of
semble(and hence of each particle comprising the ensemble® sublattice{ 9H g/ 9(59) ) =0:
across the barrier are unlikely to occur, even at temperatures (B8—3(q))o=a(q)— B(q)?+ ¥(q)°. (6)

~U/2. . . .
Thus, when being heated, a strongly correlated sublattica € free energyF, which we must know in order to give a

. S : S complete statistical-thermodynamic description of the sys-

will evolve from vibrations in the global minimum to above- . . S L

. . . . .~ tem, is established by the Bogolyubov variational principle:
barrier vibrations, with the slower component of motion,

hops from the global minimum to the local and back, being a L, B, Y,
almost entirely excluded. Of course, due to renormalization, F<Fo—(HanmHo)o= §<q> N §<q> + Z<q>
in a strongly correlated sublattice the double-well ion poten-
tial differs from the “bare” potential inherent in independent
particles, so that it would be more natural to speak of a
douple—well potential folr the ent.ir.e coherent sublattic_e Pel here F, is the free energy corresponding to the Hamil-
particle, and all fluctuation transitions across the barrier fo'ionian of the pseudoharmonic approximation

such a sublattice can be ignored, as we have just seen. , '

m
Ho= (@)~ 5(0)%+ @)+ o+ Tlo(s2. (@)

|2'hQ S 7
+6In sm% Z'ya, (7

2.2. Model Hamiltonian and the derivation of the main

lationshi . . .
reiationsiips The closed system of equatio(®—(8) makes it possible, at

To thoroughly study the dynamics of such a sublatticeleast qualitatively, to describe the thermal behavior of the
consisting ofN particles we need to write down the sublat- pistable sublattice model considered here.
tice HamiltonianH, . Disregarding insignificant details, we
may assume that the coherence length extends over the entire
sublattice, i.e., the lattice is a single coherent ensemble. Theh3- Temperature dependence of the dynamic and statistical

characteristics of a bistable sublattice
H;=NHgpn, (1) Th . .
e results of numerical calculations by formul@s—
whereH,,, is the reducedto a single ion Hamiltonian of  (7) are illustrated by Figs. 2 and 3.
the strongly correlated lattice. We write the latter Hamil- Figure 2a) depicts the temperature dependence of the
tonian in the form of an anharmonic oscillator in a double-mean displacemer{ty) of the sublattice. The solution repre-
well potential with asymmetric wells formed by the field of sented by curvel, which lies below the asymptoté&he

the matrix lattice: dashed ling and has the shape of a hysteresis curve, de-
P« B y scribes the transition of the sublattice from the global mini-
Hanr= 5=+ qu— §q3+ Zq"’, (20 mum(see Fig. 1to passing trajectorie@bove-barrier oscil-

lations when the system temperature is raised from absolute
wherem is the ion mass and andp are the coordinate and zero; in the high-temperature limit{q) approaches its
canonically conjugate momentum of the ion along a speciasymptotic valuéq),s= 8/3y. Above the asymptote there is
fied direction fixed, say, by one of the crystallographic axesthe solution represented by cure which is related to the
We examine the thermal behavior of the sublattice in thepossibility of the sublattice being in the second, local, mini-
approximation of self-consistent phondfisTo this end we mum at low temperatures. However, the probability that the
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(9)q,

FIG. 2. Temperature dependence of the
statistical-mean displacemen(y) (a), the
varianceo (b), and the effective frequendy
0.2k (c) of a bistable sublatticdd) The statistical-
mean displacemerit)) for an anharmonic os-
cillator calculated by the molecular-dynamics
method with allowance for kinetic-energy
fluctuations;(e) the same for the case where
(q)q the kinetic-energy fluctuations are weaker by
0 a factor of 100;00={(0)as, To=0(do), and
1.0r Qo=Q(qg,00). The parameters of the
/—_— bistable potential are u;=0.03eV, q;
=0.073A,q,=0.14 A, andT,=173K. The
curvesl and?2 describe the motion of the lat-
tice in the global and local minima of the po-
tential, respectively. The dotted curves repre-
0.5F sent unstable solutions.

0.5 1.0 L5 T,

local minimum will be occupied is extremely low, since the independent particles, will be ignored throughout the paper
thermal fluctuations that would take the system from the glo{nor will it be depicted in the figures, with the exception of
bal minimum to the local one are suppressed by the stronglfigs. 3 and &
correlated movements of the atoms in the sublatsee Sec. The hysteresis behavior of the statistical-mean displace-
2.1). Hence the contribution of this solutidsee also Figs. ment{(q), the displacement variance, and the effective
2(b) and Zc)], which would be effective for the case of frequency() of the sublattice(Fig. 2) is explained by the
nature of the temperature dependence of the free erfergy
per particle(Fig. 3). The “low-temperature” branches of the
F/F. hysteresis curves in Fig. 2 correspond to the free energy of
the sublattice in the left, global, minimutourvel in Fig. 3),
while the “high-temperature” branches correspond to the
free energy of above-barrier vibratiofisurve 2 in Fig. 2);
curve 3 in Fig. 3 describes unstable states; and cuhwor-
responds to solutions that refer to the positions of the sublat-
tice in the right, local, minimum.

At the pointT, the free energies become equal, and un-
der the condition of total equilibrium at this point there
would have been a transition of the sublattice from intrawell
vibrations to above-barrier vibrations or back, depending on
whether the system is heated or cooled. However, Fig. 3
shows(and so does Fig.)2hat “overheated’[in the interval
(Ty,T,)] or “supercooled”[in the interval [Ty,T;)] meta-

2 stable states may set iisee the discussion belopwWhen

or heated, the sublattice, reaching the boundary of the meta-
stable region at point,, suddenly changes its dynamics: it

) ) 2 ) undergoes a first-order transition from intrawell vibrations to
0.2 0.7 7T, above-barrier vibrations, with the frequency decreasing ap-

_ ~proximately twofold(see Figs. 2 and)3when cooled, the
FIG. 3. Temperature dependence of the free energy of a bistable SUbIattlcginIattice entering the reaion of metastable states and ap-
curvesl and4 correspond to states in the global and local minima, c@rve ! 9 9 p

corresponds to above-barrier states, and cGrgerresponds to an unstable Proaching t_he regi_on boundary at. poiff, discontinues itS.
solution;u;=0.03 eV, q;=0.073 A, q,=0.14 A, andT,=173 K. above-barrier motion and “falls” into the deeper potential
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well, retaining its previous frequency of vibrations in the system takes when the temperature is lowered. As the tem-
process. The hysteresis regidm =T,— T, depends prima- perature of the thermostat decreases, the sublattice gradually
rily on the depth of the local minimum: as the depth de-goes over to lower paths down to patton which the sub-
creasesAT becomes smaller, and at the transition pdipt lattice average kinetic enerdg , i.e., the temperaturg,;, is
vanishes completely; at this point the first and second temmuch lower than the oné,, or T.,) that the sublattice had
perature derivatives dfq), o, andQ) become infinite, which  when it emerged from the left well and went over to passing
corresponds to a second-order transition. trajectories. A further decrease in temperature will force the
Thus, at the point3, andT,, where the boundaries of sublattice to “fall” onto one of the low-lying paths in the
the metastable regions are crossed, at the ggjnthere the left well (due to the broken symmefrysay onto patha,
free energies are equal, and at the transition pdinthe  without changing its average kinetic energy, ile,, will be
states of the correlated, ordered, sublattice change, i.eequal toK., or T,=T.. Thus, the size of the hysteresis
order-order transitions of the first- or second orders occur. region isK, —K.=K,—K, or, what is the same thing,.:
What is interesting is that the results of molecular-—T.=T,—T,.
dynamics modeling agree completely with our results ob-
tained by the self-consistent phonon approximation.
Molecular-dynamics calculatiori&ig. 2) show that when the
fluctuation hops across the barrier are effecfiie case of
independent particlgseven at fairly moderate temperatures
the second, local, minimum may become occugiediccor-  3-1. The total lattice Hamiltonian

dance with the Boltzmann factor expU/0}), and we will The interaction of the anharmonic vibrations of a

have a monotonic temperature dependéifiég. 2(d)] of the  pistable lattice and the phonon excitations of the matrix lat-
displacement and hence of the other parameters, the difce may lead to experimentally observable effects. For in-
placement variance and the effective frequency of the Syssiance, the scattering of a traveling acoustic mode of the
tem’s vibrations. As the probability of fluctuation transitions matrix lattice by perturbations caused by the vibrational mo-
drops, due to the realization of a correlated state in the suljon of the bistable lattice in a double-well potential gives

lattice, the temperature dependence of the displacement apde to singularities in the real and imaginary parts of these
the other parameters acquires the shape of a hysteresis curyggdes, which must be observable in experiments, in particu-

lar, in the anomalous behavior of the elastic and thermal
characteristics of the crystal, such as the spgled elastic
modulug and decay of ultrasound and the thermal conduc-
tivity. Thus, to study these questions we must focus on the
The hysteresis behavior of a strongly correlated sublatinteraction between the vibrational degrees of freedom of the
tice in an asymmetric double-well potential can easily bematrix and the bistable sublattice.
understood from qualitative physical considerations based on  We write the total lattice Hamiltonialkl normalized to
classical statistical physics. the number of atoms in the bistable sublattice as
In view of the broken symmetry, at low temperatures the
sublattice is in the left, global, minimum. As a result of heat- H=Hp+Hanrt Hin ©

ing, the oscillation trajectorie@he behavior of the system is The first term on the right-hand side of E§), H;,, models
examined using the tools of classical statistical phystfs  the phonon Hamiltonian of the lattice and is taken in the
the ions of the correlated sublattice gradually rise to the verfgrm of the Hamiltonian of a set of harmonic oscillators

tex O (Fig. 1) of the potential barrier, because the fluctua-ywhose parameters are normalized to the empirical values of
tions in a coherent ensemble are supprestes aspect was  the Jattice constants of the crystal:

discussed earligr At first glance, when on path, the sub- ) )
lattice (and hence each ipreould, as its temperature grows, H _2 (&Jr yIom 2)
either go over to the closest passing orbiby reducing its =\ 2 2 Xk
velocity (since the distance between the stopping points in-

creasesor find itself in the right well. However, both cases Wherexy, px. ux, andwy are the displacement, momentum,
are impossible. Finding itself, for instance, on the path Mass, and frequency of theh oscillator(mode. The term
which is directly above the barrier, and hence reducing itd1ann iS the Hamiltonian describing the bistable sublattice; it
kinetic energy, the sublattice would be at a lower temperals defined in(2). The last term in(9), Hiy, allows for the
ture (since in the classical limit the temperature is simply thecoupling of the lattice oscillators and the bistable sublattice;
average kinetic energyand this would violate the isother- it is chosen in the form of a sum of the cubic and quartet
mal condition(the sublattice is in contact with the thermo- !nteraction terms:

sta). Hence eventually the sublattice will find itself on a H o—H®+H® (11)
higher path, say’, starting from which it will rise higher it =it TNt

and higher as the temperature increases. Neither can the sub-

lattice go from pattb in the left well to pathd in the right, Hi(r?t):qzzk M, HEP=022 Mo Xiexer (12)
since it would have to lower its average kinetic energy, i.e., kK’

its temperature. We now consider the reverse course that thvehere\, and\,,, are the coupling coefficients.

3. INTERACTION BETWEEN THE BISTABLE SUBLATTICE
AND THE MATRIX LATTICE

2.4. Qualitative interpretation of the hysteresis behavior of
a bistable lattice with strongly correlated particles

(10
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3.2. Deriving the Dyson equation for the phonon Green'’s

function {Qlxk))y=> Mier({QIQ)Y - {{Xier | X 1))
kH
To find the renormalized frequencies of the matrix lattice
and the corresponding decay coefficients, we use the method ir (0)
: P 9 y : ) + 2 2N kr{(Q QX)) (Xkr| Xk ) )y
of equations of motion for two-time retarded Green’s K" Ky
functions?®

(20
(X0 X (7)) = =10t =" )([Xi(1) Xp0 (1) ])

1 (= _ , ir((ka1|Xk,>)w=E )\k"'ir((QXk1|Q>>w'<<Xk"|Xk/>>E,,O)
:Zﬁmdw expl—io(t—t")} "

XX X)) (13) t 2 2N kg "({ Q| QX))
Ko

where(---) denotes the operation of quantum-statistical av- )

ing[eee e i XX )V s (21)
eraging,[---, ---] stands for a commutator, ar@{ 7) is the w
Heaviside step function. Differentiating the Green’s function
(13) first with respect tot and then with respect tb' as
described in Ref. 28, we arrive at three coupled equations for ©) ©)
the Fourier transforms of the Green'’s functions: (X)) 0= (X X100V +k2k” Mt (Xl Xk o

thus yielding

X)) o X(QIQN) . ((xirlxi))”

% [ @2 = ) Sgor— 2( 7+ (0)?) N ger ] (X

. + E ANy N Xie| Xier EUO)
=0+ 3 e Qb)) LRI (14 ity Mo )
Xir<<QXk"|QXk0>>iar)'<<Xk1|xk>>£?)
2 Lo (02 = 04) Bk, = 20+ K QI
! 2 e (X))

_ k' K" k
=3 (RN +A(QIRN (15 Ol O o)
kEl [0 (07— ) Siri, = 20+ (@) N ] QX))o + X 2gehe{ (X
K K" Ky
" P QLN (Qxel Qe 19 XUQIQK N (el )P (@2
where The two Iast_“interference” terms in22), containing the
Q=2(a)dq+ ()% U Garotsmaliness i he mractity. Naner han the second

The superscript “ir” indicates that the corresponding and can be discarded. We also ignore the co!’ltribu.tion of
Green’s function is irreducible, i.e., it cannot be reduced tPff-diagonal components of the Green's functions ('g‘) the
lower-order functions by decoupling the product of single-lowest-order approximation, assuming thédx| X)),

time operator$® = S (X x ), and write Eq.(22) in the form of the
We define the Green’s function in the lowest-order ap-Dyson equation:
proximation as - _
(a1 o 1= (XN D) =My (), (23
2 [ (02— 0F) Sigo— 2\ where the self-energy part has the form
kH
0)_
X (0 (@) N (X[ X)) = S - (18 My (@) =AX(Q|Q)),+ Z AN o N
Then Eqgs(14)—(16) become _ k ’k_
X QX [ QX)) (24)
(XX o= (X3 N+ X 2)\k"k1<<xk|xk”>>500) with
k”,kl

(QIQ)),=4(a))( 59| 5a)),+({(5a)?(59)?)),,

+2(q)(((89](8a) %)), + (((89)% 50)).,),
X QX)) (19 (25)

Xir«QXkl|Xk’>>w+§ N (X X)) &
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"(( Qi Qi) = 4(a)*({ Saxi] 8a%ir)). ({80l 8a)),— ({60l 60)) ) =[M(0?~ Q)] 7%, (30)
+ 1 80) il (80) X))t + 2(al) with ((59|59)){?) the Green’s function corresponding to the
X (({ 59%| (80) Xy ) HamiltonianH, [Eq. (8)], and
HIGoaBda ) @ (gm0l x)
Eilt;]hould be recalled that the operaris defined in Eq. =[,uk(w2—wﬁ)—ZKkk(0+<Q>2)]_l- (31)

This enables us to explicitly calculate the exact Green’'s
3.3. An approximate calculation of the self-energy part function <<Xk|xk>> on the basis 0f23)
© .

It is convenient to express the higher-order Green’s

functions that enter intd,(w) [see Eqs(25) and(26)] in

terms of correlation functions via the spectral theoféfior 5 4 Determining the shift and decay of the lattice mode

instance, for one of these Green’s functions we have frequencies
"(((80) 2% (89) X)) The renormalized frequencies of the lattice modss,
1 (= de' ®' . and the decay coefficienis, can be found by solving the
=— | exp—+1 f dt equation
27 ) _cw—w Q) e

Xexp[—iw’t}("[(6q(t))zxk(t)][(5q(t’))2Xk,(t’)]">. (<<Xk|Xk>>Sl?))71_ReMk(E{)k‘FiS)"‘i Im Mk(&')k+is)=O,

(32
(27)
The correlation function ii27) can be decoupled by forming Where
pairwise two-time averaggsingle-time averages, according
to the definition of the “ir” operation, are equal to zgro _ A
ir 2 rp2 7\ 1ir ! wk%wk+_kaij(o-+<q>2) (33)
("L(8a(t) *x (DI (5a(t")) X (1)]") ik

~2684e{89(1) 8a(t))?- (X (D) xi(t)), (28) s the pole of the Green’s functigiix,|x))(?. From(32) it

where the factor 2 reflects the two possible ways of pairing®!lows that
the operator$q taken at times andt’. By analogy with the

diagrammatic technique, we can assume that adopting the o~ 1 -
approximation(28) is equivalent to ignoring the vertex cor- Sk~ Okt 2k ReMy(@tie), (34)
rections in the processes of interaction between phonons and
the vibrations of the bistable sublattice. The spectral theorem 1
can be used to express the one-particle correlatof28nin Fy=-— Y ImM(otie). (35
terms of the corresponding Green’s functions: Fr@k
T(89) 2] (80) 2 )T For our further investigations it is enough to determine
" the contributions to the renormalized frequencigsand de-
dw,dw,dwg cay coefficientsI'y of the cubic,H{3), and quartetH{%,
~ 26k j j f w—(w;+ 0w+ w3) interactions in the first nonvanishing orders: the firsHiSri)
e and the second il{> for &, and the second irl{} for I',.

Dealing with the first term in the expressi¢24) for the

eXpl(w1+ wot w3)/O}—1 self-energy part in the same way as we did28), where the

X
[explw,/O}—1][exp{w,/O} —1][exp{w3/O}—1] exact one-particle Green's functions are replaced by their
1 1 lowest-order approximation&80) and (31), we arrive at an
X| = =1Im{(89|89)) . +is|| — =IM(59|59)) 0. +ic expression for the contribution td (w) of the cubic inter-
T 1 T 2 . .
action in second order:
1
X _;|m<<xk|xk>>w3+ia . (29) (3)/~ \_ 2 <q>2
Mk ((Uk)_4)\k m(a‘)Z_QZ) + m(a)2_492) ’ (36)
In the same way one should deal with the remaining Green’s k K
functions in the expression foM,(w); some of these, n
namely those in the parentheses in Eg$) and(26), vanish — ot A=+ MGz 3
in view of approximations of the forn28). Next, in calcu- BT Ok BT KT o B K (@0)- 37

lating (29) we can ignore the self-energy parts of the one-
particle Green’s functions by writing them in the lowest- Reasoning in a similar manner, we find an expression for the
order approximation: second term ir24) resulting from the quartet interaction:
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M@y Fmam? =] a0+ 1) o a1
, k=A4mA 5 | ) )]wkgg\i- (41)
- 2
T MO g %: M @k whereé=w,/wy. The above equation shows that the quartet
interactionH{® has almost no damping effect on vibrations
40Q)? (Q—o)[nN(w)—n(Q)] in the ultrasonic frequency range. Indeed, for reasonable val-
X1 4a) D= (U= )2 ues of the parametefa =8 A~2, 0=10%s"1, T=273K,
and 6=1) we have the estimate
(Q+ @)1+ n(@y)+n(Q)]
+ ~2 ~—2 I o K
Di— (Q+ D) —~10"%—, (42)
Wy Kp

2
29 o [n(Q)+1] n(“’k’) n*(Q)[n(@y) +1] i.e., the decay of acoustic vibrations becomes significant only

m{) —(2Q-y)? at maximum frequencieskkp).
29+wk, [n(Q)+ 1]2[n(wk,)+ 1]-n?(Q)n(Dy)
me) —(2Q+ oy ) 3.5. Temperature hysteresis of the shift and decay of the

lattice mode frequencies as a result of interaction

Zwk’ n(Q)[n(Q)+1] (3g  With the bistable lattice

~ ~2
mQ z—a)k,

The temperature dependence of the frequency shift
_ _171-1 A (T) is determined by the dependence of this shift on the
wheren(x) =[expix/O}—1] " characteristicgq), o, andQ), which experience temperature
hysteresis, and by the competition between negdfme()
>wy) cubic and positivegfor \,>0) quartet contributions.
Indeed, for instance, when the sample is cooled, the stable
states of the correlated sublattice become metastable, and at
gwe temperaturd ; the sublattice suddenly goes over to an-
other stable branctsee Figs. 2 and)3as a result of which
related abrupt changes are experienced by the frequency
shifts A, of the acoustic modes of the matfisee Eqs(33),

The decay coefficient$',, which can be expressed in
terms of ImM{’(@,+is), are due to processes of creation
(annihilatior) of one or two vibrational quanta of the bistable
sublattice accompanied by processes of absorptenis-
sion) of two quanta of the matrix lattice, and also to pro-
cesses of elastic scattering of the quanta of the matrix lattic
that do not change the vibrational state of the bistable sub?
lattice. On the basis df35) and (38) we can write

2 (36), and(37)] interacting with the sublatticé~ig. 4). Now,
a )\kk’ . . .
I=—xs ——1 4(0)%([n(@)—n(Q)] when heated, the sublattice is on this new branch up to a
2@ 7 e temperatureT,, after which it again suddenly returns to its
X[ 8( @+ p— Q) — S —ar— Q) ]+[1 old, high-ltempgrature, stable pranch,l thus bringing about a
sudden(discontinuous change inA, (Fig. 4). Figure 4 de-
+n(@) +FN(Q) [ 8@ — o+ Q) — 8By + Dy picts theA, vs. T curves calculated by formula83), (36)
1 and(37) for different ratios of the competing interactions of
T+ ——T(n(Q)+1)2N( D) — n2(O, the third (\,) and fourth §,,) orders.
D m{) )+ 1) (@) () The temperature dependence of the decay of an acoustic

mode (') for k~Kkp is depicted in Fig. note that here we
allow for neither the nonlinearity of the matrix lattice proper,
2 a nonlinearity that provides a nonhysteresis contribution to

—20)]+ g n(Q)(n(Q)+ D[ 5@y — i) decay, nor for other decay mechanignishe decay that is
the largest(the high-temperature branch of curvgfar the
scattering of lattice modes by perturbations caused by above-
barrier vibrations of the bistable sublattice suddenly becomes
smaller(the low-temperature branch of the curyeathen the

To do some estimates, it is enough to examine the onesublattice abruptly reduces the amplitude of its vibrations
dimensional model of a lattice in the Debye approximation.after it has been “captured” by the global minimum as a
Plugging the expression for the coupling coefficient in theresult of cooling, The stable branch of cureepresents the
form contribution to scattering of the local minimum of the
bistable potential. Actually this contribution will be smaller,
since it must be multiplied by a quantity proportional to
exp{—AF/kgT}, whereAF is the difference of free energies
of the sublattice in the local and global minima; hence, the
(r; is the radius vector of thgth atom in the matrix lattice, system is heated from absolute zero, the increase in decay
and \ is a constant whose dimensions are éminto (39), follows almost exactly the low-temperature branch of curve
we find that fork<kp/2 and wp=Q (kp and wp are the 1, and then the decay suddenly increases, going over to the
Debye wave vector and frequencgnly elastic processes high-temperature branch and thus completing the hysteresis
provide nonvanishing contributions to decay: cycle.

X(N(D)+ DD+ B—2Q) — (D —

— oty (39

M
A : —
)\kklzmjzl eXp{I(k’-i—k)rj} MM WyWr (40)



JETP 89 (1), July 1999 A. P. Sa ko and V. E. Gusakov 99

b loy YBa,Cu;0;_ s compound, each apical atom(4) interacts
— along the crystallographic axgswith the two nearest neigh-
T bors, the atoms Q) and Cu2) (I¢,1y=1.80-1.86A and
lcuzy=2.30-2.45 A; see Refs. 30 and)3tvhose coordina-
tion in oxygen is not the same. The nature of the bond of the
apical atom varies substantially: from covalent for the super-
conducting compound YB&u;O;_ 5 to ionic for a nonsu-
perconducting compourid. Participating in the transfer of
holes from the basal planes to the Gug@anes, an apical
atom manifests a number of features in the temperature de-
pendence of the vibrational states. For instangeay
studies’>=® ion-channeling  experiment&®” Raman
spectroscopy° and neutron scattering measureménts
have revealed that the total energy of an apida)@tom, as
a function of the position along the crystallographic axis
has two minima. Note that pyro- and piezoelectricity have
been detected in single crystals of YBarO, s, which
suggests that there is macroscopic polarization alongcthe
axis (see, e.g., Ref. 42The occurrence of macroscopic po-
larization is usually attributed to the anharmonic motion of
O(4) ions#?43

The nontrivial dynamics of the strongly correlated apical
O(4) atoms in a double-well potential must also directly
manifest itself in the nature of the interaction between the
vibrational states of the atoms and the electron subsystem of
the crystal, which in addition to the participation of apical
atoms in charge transfer from the basal plane to the LuO
FIG. 4. Temperature dependence of the relative shift of the acoustic modeplane may be.o.neﬁjethe reasons for the formatlon. of Mgh-
oftr;e r-natrixwith allowance for cubic interactiga), quartet interactioiib), SUpercondUCtIVIt}ﬁ' More_ than that’ as we will ShOW
and competition of quartet and cubic interactiofs; u;=0.03ev, q,  Shortly, by allowing for the interaction between the bistable
=0.073A, q,=0.14 A, To=173K, \o/m@?=8.3A"2 and\,=3.74  oxygen sublattice and the vibrational states of the matrix
X10 %teV-A~3, lattice we can explain a number of experimentally estab-
lished phenomena: the temperature hysteresis of the specific
heat and thermal conductivity and of the speed and absorp-
tion of ultrasound in yttrium and bismuth cuprates.

Oh

-0.02L__. , 1 .
04 08 12 16 17,

4. EXPERIMENTAL PREREQUISITES FOR THE EXISTENCE
OF A BISTABLE SUBLATTICE IN SUPERCONDUCTING
OXIDE CUPRATES

At present there are many papers that point to the impor-
tant role that the apical oxygen atom plays in the formation

: : 5. TEMPERATURE HYSTERESIS OF THE SPEED AND
Ogmzssuaifo;d;ﬁ';%r%mf:r::;iigf Ya&icbg:\ io?;s(,:or:;\ 11 DECAY COEFFICIENT OF ULTRASOUND IN HIGH- T, OXIDE
P g ap : CUPRATES. COMPARISON OF THEORY AND

EXPERIMENT
Ty relunits The temperature hysteresis of the speed of ultrasound
was observed by the methods of ultrasound spectroscthy
8 / (see also the review by Lubenaisal'®) soon after the dis-
/ covery of highT. superconductivity in a number of oxide
6f cuprates, including the compounds YBarO,;_; and
Bi,SrLCqCuw,0g. This phenomenon can be observed not
a only polycrystals but also in single crystals, not only super-
. I conducting but also in nonsuperconducting high-com-
l e pounds. The temperature interval of the hysteresis changes
2r N \\g from sample to sample and depends on the oxygen nonsto-
,/’" ""“\;/ ichiometry and the way in which the sample is prepared. The
oL~ / - values 55 and 215 K were fixed as the most reliable limits of
0 75 150 225 TK hysteresis at the lower and higher ends of the temperature

FIG. 5. Temperature dependence of the decay of the acoustic modes of tlllgterval’ althoth th? upper_llmlt vgas found to often move
matrix in a crystal with a bistable sublattice;=0.03eV, q,=0.073A,  Up to 270 K |_ntereSt|ng|ya Kinet al. (Se_e also Ref. )46-|50_
q,=0.14 A, andT,=173K. observed distinct temperature hysteresis of the absorption of
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Az:/v0
1 / a
|
l ! ! FIG. 6. Temperature dependence of the relative
-0.04- e variation of the speed of an ultrasonic wava):
i—/ and(d) represent the results of calculations for a
e crystal with a bistable sublatticéhe dotted
curves represent an unstable solutjomith (a)
osove, b u;=0.03eV, q;=0.073A, g,=0.14 A, and
o *e Mol pkw2=8.3A72, and (d) u;=0.04eV, q;
/ . % =0.073A, ,=0.14A, and \.=3.74
or S . . X102'eV-A73  Av/vy=ey(T)/e (300 K)
. . —1+(A-BT), with A=0.19 and B=7.05
..l . “- e X 10’_4 the constants (determined  from _
N - . / - experiment$ of the linear dependence approxi-
0.04F ;5 . ‘, mating the contribution of the main lattice. The
’ *e%geqet’ 0.1r kY experimental data for YB&u;O; in the direc-
‘ ) tion of the crystallographic axis at 12 MHz
c W (Ref. 2 are depicted in Fig. ®), and those at
F RN % the frequency 1.2810°s ! in Fig. 6(c). Fi-
R o R,
0.08+ A % ALY nally, the experimental data for f8r,Ca,Cu,0q
" i - A °:\ (see Ref. pare depicted in Fig. @).
1 e H Q’oo
0.04pe . ¢ \ \ .‘ °
~
. -, 7 : S oo
el X
o} A Y or .
0 90 180 270 T,K 90 180 2700 T,K

ultrasound in a single-crystal YB@u;O,_ s sample, and the Wherek is the wave vector of the mode at whose frequency
regions of hysteresis of the speed and the absorption of uthe ultrasonic measurements are carried out. As shown by
trasound were found to coincide. further investigations, for an yttrium cuprate the quartet in-
Various mechanisms for explaining these phenomenéefaCtionHi(,ﬁ) in the HamiltonianH;,; [see Eq.(11)] is the
have been proposed. Among these are the redistribution ¢Rost probable one. Here, in the first-order perturbation in
oxygenl3 the motion of twinning boundarié€, and the H{P we have[see Eqs(33) and (34)]
presence of a ferroelecttftor martensitié phase transition.
However, no satisfactory and consistent interpretation of the

temperature hysteresis of the speed and absorption of ultra- 2 .
sound was proposed in these papers. where o and (q)© are calculated self-consistently by Egs.

We believe that a qualitative explanation of these phe-(4)_(6) and we have allowed for the fatsee Eq(40)] that

_ 2 . . _
nomena can be found if we assume that yttrium and bismut kk_)‘“‘;wt'ﬁ Flguri 6?) l(:eplcts th_? tentwpiﬁratfure depen
cuprates have a bistable oxygen sublattice that modulates t gnece ol the speed of u rasound(T), at the frequency

phonon spectrum of the matrix lattice. Indeed, as we showe 4§5><ifs q Z%lcu!?rtfd" theoreﬂ;:allé)l/ frgmAthe f?rrgltjlas
within the scope of the general theory in Sec. 3, in this cas ), (44), and(40) with allowance for4)—(6). As applied to

the renormalized frequencies of the matrix and their imagi- Ba,Cls0;- 5, the model parameters were specified in the

nary parts acquire a hysteresis temperature dependence,f g(k))vvllng_ way- the/ ba{gwggg“erl‘iy of ag ?') 'on "; ;[he

that the elastic constants of the crystal will vary in the same?h0 a anlmL;rg, /m) ~tt ) Cmf]'évﬁ?t; € err_?lne f:ﬁm

manner. To compare the theoretical curves with the experi- € Spectra ot Raman scatlering o° i € position otthe
econd, local, minimumg,~0.14 A, was found from the

mental data we only need to know the empirical values of the

parameters of the matrix and the sublattice and the nature (B‘geasured ra(_:hal d|st.r|but|on functidfi; ~0/2; the height
the interaction between the two of the potential barriery;~0.03 eV, was chosen such that

the hysteresis would land into the 100—-200 K temperature

range; and the coupling constant=8.3 A2 was chosen
5.1. Hysteresis of the speed of ultrasound in YBa  ,Cu30;_5 such that the theoretical values of the maximum difference in
tPe speeds of ultrasound on the bistable branches of the hys-
Yeresis curve would agree with the experimental data. In
Figs. 8b) and Gc) we depict, for the sake of comparison
with the calculated curves, the experimental @atan the
v(T)=constg,(T), (43 temperature dependence of the speed of longitudinal ultra-

el M=w 1+ N(o+(a)?)], (44)

The temperature-dependent renormalized frequency
the long-wavelength phonons,, directly determines the
speedv(T) of an ultrasonic wave:
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sound propagating in the ceramic and single-crystal samplesonsequence of the change in the interaction between the
of YBa,Cu;0;_ 5. The theoretical curves reflect fairly well bistable sublattice of @) atoms and the matrix.
the experimentally observed behavior of the speed of ultra-
sound: I.n the hysteresis region, hlgh speeds are.re?‘,hzed g??;. Hysteresis of the absorption coefficient of ultrasound
the cooling mode and low speeds in the heatifigawing” ) in YBa.C
2CU307_5
mode. Thus, at reasonable values of the model parameters, _ _ 8
not only do the size and temperature interval of the hyster- ~As noted earlier, Kinet al.” clearly detected a tempera-
esis loop agree with the experimental data but so does tHélre hysteresis in the absorption of a longitudinal ultrasound

sense of tracing of the hysteresis loop in the cooling-heating/ave with a frequency of 5 MHz propagating in a single-
cycle. crystal sample of YBE w0, _ 5. A small hysteresis of the

damping constant was also observed by Pal’-\éalal* in a
ceramic YBaCuO,_ 5 at 1.25<10°s L. The absorption of
) o ultrasound was greater when the sample was heated than
5.2. Hysteresis of the speed of ultrasound in Bi - ,Sr,Ca;Cu20s  \yhen the sample was cooled. The hysteresis regions for ab-
The experimentally observed pattern of the temperaturorption and for the speed of the wave were found to coin-
hysteresis of the speed of ultrasound in bismuth cuprates, i@ide, but the hysteresis loops were traced in opposite direc-
particular, in BjSLCaCu,0Og differs from that for tions. The explanation of these facts follows directly from
YBa,Cu;0,_ 5: the higher values of the speed of ultrasoundour previous discussion. Indeed, the absorption coefficient
in the hysteresis region are realized in heating, while they, of an ultrasound wave with a wave vectoiis given by
lower values are realized in coolifid.Such behavior of the the formula
elastic properties in bismuth cuprates can be explained if we Y
assume that third-order anharmonicity dominates in the in-  a,=——r, (46)
teraction between the matrix lattice and the bistable oxygen v(T)
sublattice, so that we can assume thgt=0. In this case, wherevy, is the attenuation of the wave, which includes as a
according to(34) and (36), the renormalized frequency is component the decay coefficient of the hysteresis type,

given by the formula reflecting the presence of the quartet interactitf}) (see
2 Egs. (39), (41), and (42) and Fig. 5 and the contributions
el(T~w— 2|< (o+4(q)?), (45  from other scattering mechanisms: due to the nonlinearity of
2mO° uyw the matrix lattice proper, the effect of defects, the boundaries
where we have allowed for the fact th@t> w, holds in the ~ Of the sample, etcy(T) is the speed of ultrasound given by
experiment and that we had,= w} at A, ~0. formulas(43) and(44). But, as noted earlier, the decay con-
Figure Gd) depicts the temperature dependence of theétantl'y in the ultrasonic frequency range is extremely small,
speed of ultrasound at 7.5 MHz calculated () and (45  1-€., other scattering mechanisms are effective. Hence the

with allowance for the self-consistent equatid#s—(6) for anomalous temperature behavior of the absorption coeffi-
both heating and cooling. When making numerical estimatessient can be related only to the hysteresis dependence of the
we assumed the parameters of the bistable potential to be ti§eedv(T) of ultrasound. Figure (&) shows the results of a
same as those for yttrium compounds. We did, however, adgheoretical calculation of the absorption coefficient by
just the height of the potential barrier, which, like the cubic Eds. (46), (43), and (44) (the attenuationyy is assumed
coupling constank,, was chosen so that the calculated val-temperature-independenend Fig. 7c) depicts the experi-
ues of the temperature integral and size of hysteresis woulghental data. We see that there is not only qualitative agree-
agree best with the experimentally observed values. For th@ent between the experimental data and the theoretical esti-
sake of Comparison, in F|g.(6 we dep|ct the Corresponding ma.tes(the extent and the sense of traCing of the hyStereSiS
experimental dependerfctor ultrasonic longitudinal waves [00p) but also a correspondence in the relative discrepancy
propagating in a BBr,Ca,Cu,0g single crystal. The theoret- between the absorption on the heating and cooling curves.
ical curve represents fairly well the features of this depen- ~ Note that temperature hysteresis of the speed and ab-
dence: the cooling curve lies below the heating curve, whilesorption of ultrasound of a similar type was observed by
the coincidences of the size and interval of the hysteresis iBOrisov et al*’ in LIKSO, crystals.
which the hysteresis loop is observed are realized at reason-
able values of the parameters of the bistable and matrix Ia% HYSTERESIS BEHAVIOR OF THE THERMAL PROPERTIES
tices. OF HIGH-T, OXIDE CUPRATES IN THE NORMAL STATE

Thus, we conclude that the interaction between the meta- _ i -
stable states of the strongly correlated oxygen sublaftie 6.1. Hysteresis behavior of specific heats
apical Q4) atomg and the matrix lattice in the highz com- In the process of doing precision measurements, Vargas
pounds YBaCu0,_ 5 and BbSr,CaCu,Og results in renor- et al'81® detected a temperature hysteresis of the specific
malization of the elastic constants of the matrix lattice andheat at constant pressut€p(T), for the highT. cuprates
in the final analysis, an experimentally observable tempera¥Ba,Cu,0O;_5 (0=0—1) in the 190-230 K temperature
ture hysteresis of the speed of ultrasound in the 60—270 Kange. The heating curve was found to have a sharp peak at
temperature range. The inversion of the hysteresis branch@?0 K, while the cooling curve was found to have a fairly
when yttrium cuprates are replaced by bismuth cuprates is lroad (~10K) maximum at 205 Ksee Fig. 8)]. Kumar
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et al?° obtained similar results. Vargas al1®'°and Kumar
et al?°
instability; in particular, they relate the narrow peak in the
heating curve to the disordering of oxygen atoms in the
Cu(1)-O(1)chains, assuming that the interaction of these de-

A. P. Sa ko and V. E. Gusakov

FIG. 7. Temperature dependence of ultrasound
absorption:(a), the results of calculations af
«1/v for a crystal with a bistable sublattice with
u;=0.03eV, q;=0.073A, andq,=0.14A;

(b), the experimentally measured absorption co-
efficient for the longitudinaCs; mode at 5 MHz

in the YBaCw,0; crystal®

(7), we can find the expressions for the specific heats at
suggest that such anomalies are due to the latticeonstant displacement and at constant pressure:

grees of freedom and the lattice modes leads to a structural can _ M — 2 § Jo

T : X C<q> kB kB mQ <+ Yo y
phase transition. We believe that these experimental facts 70 (@ 2 ) (@
can be explained within the scope of the idea that com- (47

pounds of the form Y—Ba—Cu—O contain a strongly corre-
lated bistable oxygen sublattice. Experiments have shown

that the hysteresis interval may change by several tens of
kelvins depending on oxygen contefife., on the way in p=
which the sample, chiefly ceramic, is preparedater we

will return to the problem of finding the hysteresis interval

for the specific heaC, measured in the experimerifs:®

Here we determine the contributions introduced by the
bistable sublattice to the general value of the lattice specific
heats at constant pressu@®”, and at constant volumeon-
stant mean displaceme(d)), C{g, . Using formulag3) and

C(q). rel. units

7@

Cp, rel. units

Cp' rel. units

i ) = —a(q)+ B(q)?
€]

— Wy +a(B—3¥(a)). (48)

These expressions make it possible to calculate the specific
heat at constant pressure:

FIG. 8. Temperature dependence of the specific
heat at constant pressur@ and (b)] and con-
stant volume(c) for a crystal with a bistable
sublattice: for a harmonic crystéturve 1), and
for a crystal with a bistable latticeurves2 and

3). Curves2 and3 were calculated for different
values of the bistable potential. The dotted
curves represent unstable solutionsy,
=0.03eV,q;=0.073 A, andq,=0.14 A. Fig-
ure 8b) depicts the experimental results for
YBa,Cus0; (see Ref. 19
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@(ap/g®)<2q> 3 from the metastable state to a stable state, the interval
Co'= C?S>—kBW= B<m92+§70) (T}, T%) exactly determines the real interval of hysteresis
prod behavior of the specific heat and other properties of RAigh-
do @[(ﬁ—Sy(q))(aa/&®)<q>]2 compounds with a bistable sublattice in conditions of the
X 20 B(B—39(q))(dcl3{q))e—mQ?’ given experiment. This is the reason why in their experi-
@ ments Vargaet al®1%observed a hysteresis interval for the
(49 function C(T) that was narrowefFig. 8b)] than the theo-
py 2mQO2 retical interval[Fig. 8@]. Unfortunately, we know of no
(£> ) o(Q,0,0), experimental data on th€ vs. T curves for temperature
(a) scanning rates so different that the “shrinking” of the hys-

Py teresis loop can be followed as the temperature scanning
(a—) =2(B—3%(q))¢(Q,0,0). (50) rates change from high to low, i.e., as the thermodynamic
(@) 0 parameters become more quasistatic.
4m?°Q20%+40mo—h?
80°m’0°+3y(4m’Q2¢?+40mo—4h?) "

o(Q,0,0)= 6.2. Temperature hysteresis of the thermal conductivity in
high- T, cuprates

The temperature dependence of the specific heat at con-
stant volume(at constant mean displacemei@fy,, con-  ,owskiet al,?1" 2 Terzijska?* and CohA® found a tempera-
structed from(47) with allowance for(50), exhibits tempera- {1 hysteresis of the thermal conductivity of the high-
ture hysteresis[Fig. 8(c)]. The hysteresis curve is compounds YBfCu,0, 5 (1:2:3 and RBaCu,Og (1:2:4;
transformed according to the shape of the anharmonic poteny— Dy, Gd, and Elin the 70-230 K temperature range.
tial U in which the atoms @) move: it consists of one 100p  The maximum relative discrepancy between the values of the
if the metastable minimum lies fairly high above the global hermal conductivity on the upper and lower branches of the
minimum and of two loops if the metastable minimum pysieresis curve amounts to more than 5%. What is remark-
moves downward so that the potential becomes more symMype js that the shape of the hysteresis curve, which is single-
metric[see the part of the caption referring to Figc). loop for all 1:2:4 superconductors, for 1:2:3 compounds de-

Figure 8a) depicts the temperature dependence of thg,ends on the index of oxygen nonstoichiometry. &0 a
specific heat at constant pressu@g;', constructed from the  gingle loop is observed in experiments, while for oxygen-
above formulas. When the sample is cooled and the Jaint  gepleted §=1), nonconducting, compounds the hysteresis
is reached from the righC{" becomes infinite and then sud- ¢rve consists of two loops with a definite sense of tracing of
denly drops to the finite valua; when the sample is heated the contour when the sample is first cooled and then heated.

and the poinfT; is reached from the lefCy" again becomes  The effect of the hysteresis behavior of the thermal conduc-

infinite and then suddenly drops to the valBeThe size of  tjyity is unusual and interesting not only in itself but also
the hysteresis intervalT(,T,) depends on the values and pecause the reason why it appears is related to the mecha-
ratios of the parametexs, 8, andy of the oxygen sublattice pism of highT . superconductivity.

(in this specific case they were selected equal to the values in | the highT. compounds 1:2:3 and 1:2:4 studied in the
Sec. 3. In the state of thermodynamic equilibrium the sys-ahove experiments, heat is transferred primarily by long-
tem has no memory and the hysteresis disappears, i.e., thgvelength acoustic phondiigsee also our attempt in Ref.
function C3(T) becomes single-valued; it has, however, asg to relate the anomalies in the thermal conductivity of the
singular point at the temperatuilgy at which the values of 1:2:3 compound to optical excitations of the sublattice of
the free energies for the cooling and heating curves coincid%picm oxygen atoms @)). Below we will show that the
The interval To,T,) in heating and the intervallo, T2) i pysteresis of the thermal conductivity can be directly related
cooling determine the temperature range in which the systemy the scattering of these acoustic modes by vibrational ex-

(sublattice passes through a sequence of alternating unstablgtations of the bistable oxygen sublattice of thetOons.
(metastablestates.

In real compounds to which our model can be applied, it S '
is impossible to reach the theoretical boundary points of “su- ~ The Kubo formula for the kinetic thermal conductiviy
percooling” (T;) and “overheating” (T,). The longer the can be a_pprOX|mater expressed in terms_ of the square of the
system is left to itself in the region of metastable states, th@ne-particle Green’s functioB, for acoustic phonons trans-
higher the probability that, thanks to fluctuation processes, iferring heat:
will go over to the other, stable, branch of the hysteresis Ke
curve before it reaches the boundary pointor T, and K= 3IV0 2 wﬁvﬁ
hence the narrower the hysteresis regidop—T;>T,; and K
T,—T,<T,. If the lifetime of a given metastable state of y fw explw/ O}

In the process of doing precision measurements, Je-

6.2.1. Remarks about the formula for thermal conductivity

the oxygen sublattice at a certain temperaiftiféthe cooling
curve or T4 (the heating curveexceeds the time the system
is kept in the given state, i.e., the rate of scanning of thevherev,=V,wy is the phonon group velocity, and is the
temperature in the experiment is such that fluctuation provolume occupied by the system. We write the Green’s func-
cesses are unable to initiate the transition of the sublatticBon as G(w)=[w— wy—A(w)+iy(w)] . The fre-

. wW[ImGk(a}—Hs)]z, (52
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K, rel. units K, rel. units
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[ K
H b "ewt FIG. 9. Theoretical curves representing the tem-

r PA \q& perature dependence of specific heat in crystals
k i AN with a bistable sublatticeta), cubic interaction

between the bistable sublattice and the matrix is

4r L dominant; (b), competition between cubic and
quartet interactionsy;=0.03 eV, q;=0.073 A,
0.23F ;=014 A, To=173K, Ay /uwi=83A2
and \,=3.74x10 2 eV-A 3. The insets sche-
0.15¢ matically depict the experimental res@hs’ for
2r 0.08l RBa,Cu,0; and YBaCwO, () and RBaCu;Og
. (b).
) 150 750 T, K 50 150 250 T K
quency shiftA(w) of the kth acoustic mode is due to the 7 *=r * 4y + 7.+ 7 L+ 7yl = A+ BT
interaction between this mode and the other modes of the
+CTxgx,T/T)+EX2T3+DI(x,T). (54)

matrix, defects, electrons, etc., and the bistable sublattice.
The same can be said of the rate of scattering of an acoustithe terms in the expression for the relaxation time describe
phonon, vy, related to the lifetime of this phonon by the the scattering by the boundaries, point defects, electrons, ma-
formular () =[2y(w)] 1. We write the Green’s function trix phonons, and the bistable sublattice, ay,T/T.) is
approximately asG(w+ie)~(w—wy—A+iy) L, re- the ratio of the relaxation times in the normal and supercon-
placing » in the expressions for the frequency shift and de-ducting states® the functionsA (x,T) andI'(x,t) are speci-

cay byw,: A=A (wy) and y= y(wy). fied by Egs. (37), (33), (36), (39, and (41), with x
Then for y, /w,<1 we can write the expressidbl) in =w, /kgT. When necessary, we can allow for the contribu-
the forn?* tion to second order irh-li(,ft) in the frequency shift by using

K Egs. (34) and (38). The effect ofl'(x,t) is not appreciable
B 2 2 exp{sk/®} 1 . . .. .
= _22 wivi 5=, (52) against the background of other mechanisms, but it is obvi-
30°V% (exple/O}—1)" 2 ous that it is the frequency shifh(x,t) of the acoustic
wheree,= w,+A,. This formula differs from the standard Modes, which enters into the exponential factoréB), that
expressiof? in explicitly allowing for the effect of the fre- basically determines the temperature dependen¢&(dj.
guency shiftA, . Below we assume that the frequency shift
A=A (T) is caused solely by the interaction between the6.2-2- Numerical estimates of the thermal conductivity
acoustic phonons and the vibrations of the bistable oxygen Numerical calculations oK(T) by formula (53) with
sublattice, with the frequency renormalization due to theallowance for the expressio37), (33), (36), (39), (41), and
nonlinearity of the matrix lattice proper, the interaction with (54) and for the self-consistent equatio@®—(6) show that
defects and charge carriers, etc., included in the definition ofvhen the cubic interaction between the matrix and the
wy. Such separation of contributions is natural since theybistable sublattice dominates, the hysteresis curve for the
differ qualitatively: as established earlier, the contribution oftnermal conductivity in the 70—-230 K temperature range
the bistable sublattice to the renormalization of the frequeneonsists of a single loofFig. Aa)]. It is this hysteresis loop
cies of the matrix lattice is of a hysteresis nature, i.e., itghat is observed in experiments involving stoichiometrdc (
temperature behavior when the sample is cooled differs from=0) samples of 1:2:3 and 1:2:4 compouridee the inset in
its behavior when the sample undergoes heafiftpaw-  Fig. 9a)]. What is interesting is that when the quartet inter-
ing”). action dominatesNy>0), the temperature dependence of
The formula that is commonly us&dto calculate the K(T) basically retains its shape, although the hysteresis
thermal conductivity of the high, 1:2:3 and 1:2:4 com- cycle is traced in the opposite direction, with the sense of
pounds must be modified; into the exponents we must introtracing of the cycle agreeing with the one observed in ex-
duce the frequency shiftA, (T) caused by the heat- periments if\,,<0. As a result of the competition of com-
transferring phonons scattered by the bistable oxygeparable contributions of the cubic and quartet interactions,
sublattice, which means that in the reciprocal phonon lifeawhich probably occurs for nonconducting {®=06)
time, rk’l, we must separate this additional relaxation chansamples of 1:2:3 compounds, the hysteresis part oKths.
nel, which leads to decay, earlier denotedllyy As aresult T curves becomes two-lodiFig. 9Ab)] and the temperature

K

we have a formula for numerical calculations: regions of the two-loop and the one-loop hysteresis coincide,
wmadkeT AX,T) as they do in experiments.
K =const T3 f dx ¥ exp{ X+ i ] Thus, the interaction between the metastable states of the
0 KT sublattice of apical @} atoms and the matrix gives rise to a

X

A(x,T) -2 temperature hysteresis (_)f the renormslize_d frequ_encies of t_he
exp{x+ T ] —1) (X, T), (53 heat-transferring acoustic modes, which in the final analysis
B is the reason for the hysteresis behavior of the thermal con-

where ductivity in the highT, 1:2:3 and 1:2:4 compounds; here the
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region of bistable thermal conductivity coincides with thetice to the total specific heat and the shape of the hysteresis,
region of bistability of the oxygen sublattice. The form of the one-loop or two-loop, depends on the relative positions of
hysteresis curve, one-loop or two-loop, and the sense of trathe global and local minima of the potential, the reason for
ing of the hysteresis loops fd¢(T) depend on the ratio of the hysteresis of the thermal conductivity is the hysteresis
the contributions, to the renormalization, of the cubic andtemperature renormalization of the heat-transferring acoustic
quartet terms in the interaction between the matrix and thenodes and the shape of the bistable thermal-conductivity
bistable sublattice. curve (one-loop or two-loop and the sense in which the
loops are traced depends on the ratio of the contributions, to
the renormalization, of the cubic and quartet terms in the
interaction between the matrix and the bistable sublattice.

We have examined the situation in which in a crystal  In all the effects examined in this paper, the region of
lattice with a multiatomic basis the atoms of a certain specieéemperature hysteresis coincides with that of the hysteresis of
perform optical vibrations in an asymmetric double-well po-the bistable sublattice, since the elastic and thermal proper-
tential generated by the field of the matrix lattice. If theties of the crystal depend on the main parameters of the
motion of such atoms is strongly correlated, i.e., is of a cosSublattice: its statistical-mean displacement, the displace-
operative nature, this suppresses fluctuation above-barrig@ient variance, and the effective vibration frequency.
transitions of separate atoms from one energy minimum to
other, in view of which(and because of broken symmetry of ACKNOWLEDGMENTS
the potentigl metastable states may become realizable for
the ensemble of atoms considered, thus producing a bistabgaS
sublattice. The critical temperature of the transition of such a
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