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Abstract—The yield of neutrons from the thermonuclear-fusion reaction D(d,n)*He induced in a thin
skin layer by the interaction of a high-intensity laser pulse of picosecond duration with thin TiDx foils is
calculated. A multiple ionization of titanium atoms at the leading edge of the laser pulse is considered.
The heating of free electrons proceeds via induced inverse bremsstrahlung in elastic electron scattering
on multiply charged titanium ions. The electron temperature is calculated. It proves to be about 10 keV
at the laser-pulse intensity of 5 x 10'® W/cm? at the peak. The neutron yield is estimated at 10* per
laser pulse. These results are in qualitative agreement with experimental data. © 2004 MAIK “Nau-

ka/Interperiodica”.

1. INTRODUCTION

Thermonuclear fusion caused by the irradiation
of deuterated solid-state targets and clusters with
the field of superintense laser pulses was intensively
investigated both experimentally [1—5] and theoret-
ically [6—9]. The number of neutrons emitted in the
thermonuclear-fusion reaction D(d,n)*He induced
by the interaction of superintense laser pulses with
a dense subcritical deuterium plasma was measured
in [10]. It was found that, in such interactions,
neutrons arise as the result of a direct heating of
deuterons. These neutrons provide information about
the spectrum of accelerated deuterons and about the
heating mechanism.

The Coulomb explosion of substance is a dom-
inant mechanism in the case of femtosecond laser
pulses. A considerable number of electrons are re-
moved by the laser field from a plasma cloud, where-
upon this cloud expands rapidly owing to the Coulomb
repulsion of positively charged multiply ionized atomic
ions. Accelerated deuterons collide with one another,
generating the thermonuclear-fusion reaction. In the
case of picosecond (or longer) laser pulses, however,
the hydrodynamic pressure of the expanding electron
gas is the basic mechanism of expansion, a quasineu-
tral plasma expanding at a speed equal to the speed of
sound.

The present theoretical investigation is devoted
to considering the semiquantitative physics of the
above processes for the example of the irradiation of
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thin (10 pwm) TiD4 foils with the field of a superin-
tense laser pulse characterized by the peak inten-
sity of 5 x 10'® W/ecm?, the laser frequency of w =
1.18 eV, and the pulse duration (FWHM) of 1.5 ps.
These parameters are typical of experiments. Multiply
charged atomic ions of titanium that emerge at the
leading edge of the laser pulse are necessary for an
intensive heating of electrons owing to induced in-
verse bremsstrahlung [11]. Indeed, the frequency of
electron—ion collisions is proportional to the square
of the atomic-ion charge. In the case of superintense
light fields, ionization is an above-barrier process [12].

The Gaussian envelope of this pulse for the
radiation-field strength has the form

F = Fyexp(—t?/7?), (1)

where Fy = 11.9 a.u. is the value of the strength at the
peak and 7 = 1.27 ps.

Titanium deuteride TiD4 is a gray dielectric pow-
der of density p = 4.0 g/cm?. Its molecular mass is
51.9 amu, so that the concentration of solid TiDs is
ng = 4.64 x 10*2 cm=3. The main objective of this
study consists in approximately calculating the neu-
tron yield during and after the irradiation of TiD foils
with a superintense laser pulse having the aforemen-
tioned parameters. The basic quantity determining
the neutron yield is the kinetic energy of accelerated
deuterons, since the probability of the thermonuclear-
fusion reaction depends exponentially on this energy
because of the tunnel character of deuteron fusion.
A direct energy transfer from heated electrons to
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deuterons (and atomic ions of titanium) takes sev-
eral tens or even hundreds of picoseconds. Therefore,
there is no such transfer of energy in our case.

2. PENETRATION OF A LASER FIELD
IN A DEUTERIUM PLASMA

At the leading edge of a laser pulse, the electro-
magnetic field penetrates through the entire dielectric
plate and produces a single above-barrier ionization
of titanium atoms (the first ionization potential of the
titanium atom is equal to Ey = 6.8 eV). According
to the Bethe rule [13], the corresponding laser-field
intensity F} can be expressed in terms of the first
ionization potential E; as (hereafter, we employ the
atomic system of units where the electron charge and
mass and the Planck constant are equal to unity)

Fy = E?/4 = 0.0156 a.u. (2)

The instant of this above-barrier ionization is ¢; =
—3.27 ps at the leading edge of a laser pulse (the peak
of the pulse corresponds to the instant t = 0).

Thus, a dense plasma arises in the focal volume,
the corresponding plasma frequency being

wp = V4mng = 0.294 a.u. (3)

This frequency is much higher than the laser-pulse
frequency of w = 0.0434 a.u. Immediately upon the
first ionization, laser radiation therefore penetrates
only into a thin skin layer at the plate surface. The
small skin-layer depth is

I = c/w, = 247 A = 466 a.u. (4)

This value is much smaller than the thickness of a
TiDs plate (10 um). Therefore, the laser field does not
penetrate into the bulk of the plate until the critical
density of the arising plasma is achieved owing to
expansion. The critical plasma density is determined

from the relation
w = V4mn,. (5)

The result is n. = 1.01 x 10?* ecm™3. Thus, we have
Na/Ne = 46.

A considerable part of electromagnetic radiation
is reflected from the arising plasma. Therefore, the
electric-field strength within the skin layer is lower
than that in the incident electromagnetic wave. The
reflection coefficient depends on the degree of sharp-
ness of the plasma—vacuum boundary. We assume
that this boundary is not very sharp, so that it is qual-
itatively correct to equate the electric-field strength in
the skin layer to that in the incident wave.

Let us first consider the model of an expanding
plasma sphere in the focal volume, the initial radius
being set to Ry = 5 um. For the free-electron density
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to decrease to the critical value, this radius must
increase by the factor

R/Ry = (na/ne)'® = 3.6. (6)

This increase in the radius is rather great. In view of
this, neutron production in thermonuclear fusion will
be taken into account below only in the skin layer.

The main mechanism of the expansion of the
plasma cloud that is produced by a picosecond laser
pulse is a hydrodynamic expansion occurring at the
ion-sound speed [14]. This speed is rather low at
initial stages of the multiple ionization of titanium
atoms at the leading edge of the laser pulse, since
the emitted electrons have not yet been heated. As a
matter of fact, the plasma cloud does not expand until
the fifth ionization of titanium atoms occurs.

Deuterons arising upon the sequential ionization
of atoms in a TiDy film are light particles in relation to
atomic ions of titanium. Therefore, deuterons move
faster, so that the surface region of an expanding
plasma includes an excess number of deuterons
(together with the corresponding number of free
electrons that are necessary for preserving plasma
quasineutrality). The ion-sound speed is calculated
for deuterons. One must also consider that the num-
ber of deuterons is twice as great as the number of
atomic ions of titanium. The calculation is performed
for the time intervals between successive events of
titanium-atom ionization.

The main physical parameters characterizing the
interaction of laser radiation with a solid body are
quoted in Table 1. The first column gives the charge
Z of atomic ions of titanium that are generated at the
leading edge of the laser pulse. Deuterium atoms are
ionized between the instants of time that correspond
to Z = 2 and 3. The maximum charge of atomic ions
of titanium is Z = 12 for the given value of the laser-
pulse intensity at the peak.

The second column of Table 1 contains the ion-
ization potentials of multiply charged atomic ions of
titanium (in atomic units [15]). In the third column,
we present the quantum states of emitted electrons
within the atomic-shell model.

The fourth column displays the field-strength val-
ues at which, according to the Bethe model [ 12], mul-
tiply charged titanium ions of given degree of ioniza-
tion undergo above-barrier ionization (we disregard
tunnel ionization at the leading edge of the laser pulse
because of a high value of the laser intensity at the
peak and because of a short pulse duration):

F(Z) = (Bz)*/4Z. (7)
In the fifth column, we present the instants of time at
the leading edge of the laser pulse that were calcu-

lated according to (1); they correspond to ionization
at a given charge Z of a titanium atomic ion.
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Table 1. Main physical parameters characterizing the interaction of laser radiation with solid-state targets at the leading

edge of a laser pulse
Z Ez, a.u. State F, a.u. t, ps ¥ E., a.u. Wp, a.U. l,a.u.
1 0.290 452 0.0156 —-3.27 1.967 0.004 0.294 466
2 0.496 4s 0.0308 —3.10 1.403 0.011 0.416 329
3 1.010 3d? 0.0850 —2.82 0.726 0.085 0.657 208
4 1.591 3d 0.158 —2.64 0.490 0.277 0.720 190
5 3.649 3p° 0.666 —2.16 0.176 5.920 0.778 176
6 4.392 3p° 0.804 —2.08 0.160 7.960 0.354 387
7 5.175 3p* 0.956 —2.02 0.146 10.47 0.213 643
8 6.262 3p? 1.225 —-1.91 0.125 16.69 0.121 1130
9 7.060 3p? 1.385 —1.86 0.118 19.84 0.100 1370
10 7.935 3p 1.574 —1.81 0.110 24.49 0.086 1600
11 9.743 352 2.157 —1.66 0.089 46.20 0.059 3480
12 10.71 35 2.390 —1.61 0.084 55.00 0.056 3960

The sixth column contains the dimensionless
Keldysh parameter [13]

wV2E 7
=, (8)

which determines the character of ionization. Since v
< 1 for Z > 2, multiphoton ionization does not occur.
The seventh column gives the mean kinetic energy of
an electron emitted under conditions of above-barrier
ionization induced by the linearly polarized field of
laser radiation [16]:

’y:

E, = 3w/473. 9)

We can see that this kinetic energy is low in relation to
the thermal energy acquired by each electron heated
by a laser field.

In the eighth column, we display plasma-frequency
values calculated for a given instant of time by the
formula

wp = VAT(Z 4+ 2)na4(t), (10)

where the term “+2” takes into account two free
electrons escaping from two deuterium atoms in each
of the TiD2 molecules for Z > 2. The quantity n, () is
the current concentration of atomic ions of titanium;
it decreases with time because of plasma-cloud ex-
pansion. It follows that, with increasing charge Z, the
plasma frequency first increases and then decreases.
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The last column in Table 1 gives the skin-layer
depth determined by the relation

C

= ——. (11)
w? — w?

First, this quantity decreases owing to an increase in
the number of free electrons in the multiple ionization
of titanium atoms, but, later on, it begins to increase
because of plasma-cloud expansion.

3. HEATING OF ELECTRONS IN INDUCED
INVERSE BREMSSTRAHLUNG
IN THE MULTIPLE IONIZATION
OF TITANIUM ATOMS

The laser frequency is higher than the frequency
of electron—ion collisions because a fast heating by
a superintense laser field leads to the emergence of
hot electrons, which collide rarely with atomic ions.
Therefore, the kinetic energy that each electron ac-
quires upon one collision is equal to the doubled vi-
brational energy of the electron, F'2 /2w?.

The frequency of collisions between electrons and
atomic ions of titanium that have a charge 7 is given
by the relation

A2 ZPnG(Z)A
B 373/2 ’

which is known in plasma theory. This relation is valid
if the electron temperature is higher than the electron

(12)

Veg
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Table 2. Heating of electrons at the leading edge of a laser
pulse in the course of the multiple ionization of titanium
atoms

Z T, a.u. V,a.u. nq(Z)
6 370 0.24 1.25 x 1073
7 390 0.33 4.01 x 10~*
8 415 0.34 1.18 x 1074
9 390 0.34 7.28 x 1075
10 380 0.33 4.86 x 107°
11 420 0.34 2.10 x 1075
12 405 0.34 1.75 x 107°

vibrational energy. This inequality holds up to the
instant ¢ = —1.6 ps, which corresponds to the twelith
ionization of the titanium atom (see Table 1). Finally,
the quantity

T
A=1In R
is the quantum Coulomb logarithm.
Thus, the increase in the electron temperature
within this time interval is determined by the differ-
ential equation

3dT _ F? 4V2rnZ%n.(Z)A

2dt  2w? 373/2 ’
where n,(Z) is the concentration of atomic ions of
titanium at the instant corresponding to the charge Z.
Integrating this equation with respect to time, we find

the explicit time dependence of the growing electron
temperature in the form

10/ 27
9?2

where Tp is the electron temperature prior to the
ionization of a titanium atomic ion having the charge
Z.

(13)

(14)

T52(t) = Tp"* + na(Z)F2(t) Z2(t)A, (15)

The values of T" were calculated according to
Eq. (15) at each step of the multiple ionization of a
titanium atom. Table 2 presents the mean values of
the ion-sound speed

V= (16)

My’
where M, is the deuteron mass and T is the mean
electron temperature within the time interval between
the Zth and the (Z + 1)th ionization. At the end of
each step of ionization, we reduce the electron tem-
perature as

z
=TT,

Z+1 (17
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because new emitted electrons are produced with a
kinetic energy (see Table 1) lower than the kinetic
energy acquired by preceding electrons in electron—
ion collisions. Table 2 gives the values of the temper-
ature T. It also displays the results obtained for the
concentration of atomic ions of titanium by using the
relation
—
I+ VAL

The values of the skin-layer depth [ are given in
Table 1.

As was mentioned above, deuterons move much
faster than atomic ions of titanium. In view of this, the
ion-sound speed is calculated under the assumption
that the surface of the expanding plasma contains
only deuterons and electrons. Table 2 quotes data
beginning from the sixth ionization of titanium atoms,
since, at previous instants of time, the laser field is
rather weak and does not lead to the heating of elec-
trons. The instants of time in Table 2 correspond to
the instants of time in Table I for the ionization of
titanium atoms having a charge Z.

The surface of the expanding plasma is assumed
to be flat, since the expansion of the plasma in the
direction orthogonal to the target surface is rather
slow within the time interval being considered. The
calculations are stopped when the dimensions of the
plasma cloud become approximately identical in all
directions—that is, when the distances along the nor-
mal to the target surface are about the focal diameter
of a laser pulse (15 pm). In my opinion, this instant
of time also corresponds to the completion of the
thermonuclear-fusion reaction.

[t can be seen that the ion-sound speed V is
virtually constant. We assume that this speed does
not change upon the completion of the multiple-
ionization process either.

ne(Z +1) 7). (18)

4. HEATING OF ELECTRONS AT THE PEAK
AND THE TRAILING EDGE OF A LASER

PULSE
Upon the completion of the multiple ionization of
titanium atoms (¢ = —1.6 ps), the vibrational energy

of electrons becomes higher than their thermal energy
(see Tables 1, 2). In this case, relation (12) becomes
inapplicable and the frequency of electron—ion colli-
sions takes the form
o 47 Z2nq(t) A

C O (Ft)/w)
The increase in the electron temperature is calculated
from the equation

3dT F2(t) 47 Z%n,(t)A
2dt 2w (F(t)/w)?
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We use this equation in the time interval from —1.6
to +1.6 ps (that is, in the vicinity of the laser-pulse
peak), setting Z = 12. According to the data in Ta-
ble 2, the initial electron temperature is Ty = 405 a.u.
By numerically integrating Eq. (20), we find that,
within this time interval, the increase in the electron
temperature is moderate: AT = 25 a.u. The reason is
that the frequency of electron—ion collisions is small
because of a very high vibrational energy of electrons.
Thus, the final electron temperature at the instant
+1.6 ps is T'= 430 a.u. The final density of atomic
ions of titanium is n, = 1.4 x 107% a.u. The final
concentration of deuterons is twice as large as this
value.

At t > 1.6 ps, the vibrational energy of electrons
strongly decreases again at the trailing edge of the
laser pulse, and we must calculate the heating of
electrons according to formula (14), starting from
7 = 12. The result is

T°2(t) = T2 (ty = 1.6 ps) (21)
10v2m _, T 9
Z2A F :
+ o / na(t) F2(t)dt

to

This contribution to the heating of electrons is also
small because of a low concentration in a strongly
expanded plasma. A numerical calculation yields the
value of AT =5 a.u., so that the final electron tem-
perature is 7' = 435 a.u. = 11.8 keV. Of course, the
kinetic energy of deuterons differs from this value,
since the deuterons have the same velocity V' at the
surface of the plasma cloud as electrons (see Ta-
ble 2); therefore, this is the ion-sound speed. We
assume that this velocity becomes the thermal ve-
locity for deuterons because of their collisions upon
the passage of the laser pulse. The kinetic energy of a

deuteron can be estimated as
Ey= MyV?/2 =T/2 = 3T,/2. (22)

Thus, the final deuteron temperature is T; = 4 keV.

5. THERMONUCLEAR-FUSION REACTION

Inaccordance with [17], the rate of the thermonuc-
lear-fusion reaction D(d, n)*He is
(cV) =107 ecm3/s (23)
at the deuteron temperature of 4 keV. The neutron
yield is calculated according to the equation

N, = iNd@V)natf, (24)

where Ny is the number of deuterons that participate

in the thermonuclear-fusion reaction. A factor of 1/2
takes into account the reduction of the atomic density
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with time owing to plasma expansion; the second
factor of 1/2 takes into account the fact that Ny
deuterons collide with one another. The quantity ¢
is the nuclear-reaction time. This time can be es-
timated as t; = S1/2/V (later on, the plasma cloud
transforms into a spheroidal formation). Further, we
can recast Ny into the form

Ny = 21,5, (25)

where S = (15 um)? is the square of the focal radius
of a laser pulse, the ion-sound speed is V = 0.34
a.u. according to the data in Table 2, I = 176 a.u. is
the initial depth of the skin layer in the case of the
fifth ionization of titanium atoms, and n, = 0.00687
a.u. is the initial concentration of titanium atoms (the
concentration of deuterons is twice as large as this
value). Thus, we have Ny = 2 x 10! deuterons in the
initial skin layer.

Of course, only a small fraction of these deuterons
participate in the thermonuclear-fusion reaction. It
follows from relations (23) and (24) that Ng(oV) =
3.2 a.u.; therefore, the final result for the neutron yield
is N, = 2 x 10%,

Similar estimates follow from experiments with
deuterium clusters irradiated with superintense laser
pulses [2, 4]. It should be emphasized in conclusion
that the estimates obtained in this study are approxi-
mate because of imperfect data on the focal diameter
of a laser beam and on other parameters.

In addition, the following comment is in order: the
fact that part of the energy of the generated laser
plasma is expended in bremsstrahlung was disre-
garded in the present calculations.

6. CONCLUSION

The results of this study demonstrate (see also
[18]) that the heating of electrons is relatively small.
In [1], it was shown experimentally that some of the
electrons acquire an energy of a few MeV. This oc-
curs because of strong relativistic effects: the mag-
netic component of the Lorentz force acts on elec-
trons oscillating along the direction of the electric-
field vector at a speed close to the speed of light, this
component being directed along the vector of laser-
wave propagation—that is, orthogonally to the foil
surface. In the ultrarelativistic case, this force is on
the same order of magnitude as Fy. Over the skin-
layer thickness [, it accelerates an electron to a kinetic
energy of Fyl. Using the values of Fy = 12 a.u. and
1 = 4000 a.u., we find that such an electron acquires
an energy of about 2 MeV. In contrast to the pondero-
motive energy, this energy does not disappear when a
laser pulse is switched off.

Of course, an electron having such a high energy
cannot transfer it to a deuteron in a collision since
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such collisions are very rare. The process of energy
transfer looks as follows [19]. The flux of electrons
moving along the direction of the laser beam in a
plasma generates a strong ring magnetic field. In
turn, this magnetic field acts on the flux of electrons
in the radial direction, compressing it (pinch effect).
Ions do not have time to be compressed because of
inertia. As a result, the region of a noncompensated
negative charge arises on the beam axis, and this
leads to the propagation of the laser beam along this
axis (relativistic self-focusing) because of the absence
of screening. Therefore, the depth of the skin layer
effectively increases [20]. This increase leads to a
growth of the kinetic energy of some electrons in
relation to the above estimate of 2 MeV. After the laser
pulse is switched off, the Coulomb explosion of the
noncompensated negative charge occurs, whereupon
radially diverging electrons carry along deuterons by
virtue of the plasma-electroneutrality condition. The
deuteron energy becomes as high as a few hundred
keV; of course, this increases the probability of the
thermonuclear-fusion reaction with respect to the
above estimates for deuteron energies of a few keV.

Anotherfactor that causes the enhancement of the
heating of electrons comes into play in the case of
oblique incidence of a laser pulse onto a solid target.
In this case, there exists an electric-field-strength
component that is normal to the target surface (for
a linearly polarized electromagnetic wave of so-called
p polarization). Under the effect of this component,
free electrons inside the plasma oscillate in the nor-
mal direction, periodically escaping from the plasma
into a vacuum and returning to the plasma (with the
laser-field frequency). While an electron resides in a
vacuum, it can take, from the field, a kinetic energy on
the same order of magnitude as its vibrational energy
and return to the plasma with an energy that is much
higher than that which it had before. This “vacuum-
heating” mechanism was proposed by F. Brunel [21].
[t enhances the heating of both the electron and the
ion component. For thin foils, it is of importance
that, because of the aforementioned fast motion of
the electron flux, the charges are then separated in
the direction normal to the foil surface. Owing to the
emerging quasistatic electric field, ions escaping from
the back surface of the foil are accelerated to energies
of a few tens of MeV [22].
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Thus, there exist a great number of physical fac-
tors that lead to the heating of both the electron and
the ion component in a plasma irradiated with a su-
perstrong laser pulse of femtosecond and picosecond
duration.
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Abstract—The probability of internal gamma-ray conversion is theoretically investigated for hydrogen-
like ions versus the corresponding neutral atoms. The relevant calculations are performed by the relativistic
Dirac—Fock method. The results reveal that the effect of multiple ionization on the coefficients of internal
conversion in the K shell is maximal near the ionization threshold and for transitions of high multipole
order, where this effect can be as great as a few orders of magnitude. The distinction between the coefficient
of internal conversion in the K shell of a neutral atom and that in the respective hydrogen-like ion decreases
with increasing transition energy, but it remains sizable for transitions of practical importance. It is found
that the ionization of an atom to a hydrogen-like ion with allowance for conversion in external atomic
shells may change significantly (by up to eight orders of magnitude) the lifetime of the nucleus being
considered. The predicted effects can be observed in experiments with beams of relativistic heavy ions.

© 2004 MAIK “Nauka/Interperiodica”.

Owing to the commissioning of facilities that are
able to accumulate and identify relativistic reaction
products [1], there appeared, in recent years, the pos-
sibility of studying special features of nuclear pro-
cesses in highly ionized atoms [2—6]. A comparison of
theoretical results obtained in this realm with relevant
experimental data might serve as a modern test of
quantum electrodynamics. Moreover, investigation of
processes in multiply charged ions makes it possible
to discover and explore new nuclear processes—for
example, this led to the discovery of resonance sub-

threshold conversion for the 35.492-keV M1 transi-
tion in 1222 Te [4—6].

The effect of atomic-shell screening on the prob-
ability of the internal-conversion process was dis-
cussed in many studies for ordinary atoms (see [7]
and references therein) and for muonic atoms in 8, 9.
However, the majority of studies considered changes
in the internal-conversion probability that were due
either to the use of different atomic potentials in
calculations or to a low-multiplicity ionization of an
atom.

The objective of the present study is to analyze
the behavior of the internal-conversion coefficients
in hydrogen-like ions versus the behavior of the
internal-conversion coefficients for the respective
neutral atoms. The importance of such calculations
became obvious as soon as the development of
experimental techniques made it possible to study,

Dnstitute of Physics, St. Petersburg State University, St.
Petersburg, 198504 Russia.

at the GSI accelerator and at GANIL, nuclei de-
prived of electron shells. The effect of screening can
be assessed on the basis of a comparison of the
probabilities of the same conversion transition in a
neutral atom and in the respective hydrogen-like
ion. The distinctions between the probabilities of
deexcitation by conversion must manifest themselves
in the distinction between the lifetime of an excited
level in a hydrogen-like ion and that in the respective
neutral atom. Such distinctions between the lifetimes
can explored experimentally.

We have performed comparative calculations of
the coefficient of internal conversion in the K shells
of the neutral atoms and hydrogen-like ions of 30Zn,
esEr and g1 Tl. The choice of chemical elements was
not dictated by the requirements of specific experi-
ments, but it was motivated by the need for consid-
ering, for a theoretical analysis of the effect, represen-
tative elements from various regions of the periodic
table. The calculations for the neutral atoms were
performed by the Dirac—Fock method, exchange in-
teraction being exactly taken into account [10—12].
For a neutral atom, the internal-conversion coeffi-
cient was calculated with allowance for a hole in the
shell where conversion occurred; that is, the wave
function for the conversion electron was determined
in a self-consistent field of an ion having a vacancy in
the K shell. For hydrogen-like ions, the electron wave
functions in the initial and final states were calculated
in the Coulomb field of a nucleus with allowance for
its finite size. It is advisable to recall that the inclusion
of both the static and the dynamical effect of finite
nuclear sizes plays an important role in the theory
of conversion [13]. These effects lead to considerable
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Table 1. Distinctions A in percent [see Eq. (1)] between the coefficients of internal conversion in the K shell of a neutral

KARPESHIN et al.

atom per electron and the internal-conversion coefficients for the corresponding hydrogen-like ion

A E,, keV EM kev El M1 E2 M3 M4 E5
30 12.695 0.3 ~11 9.8 ~19 ~16 —43 —91
12.995 0.6 —6.5 —5.1 —14 ~11 ~36 -85
13.395 1.0 —4.0 ~2.6 ~10 ~7.8 —29 ~78
22.395 10 1.4 2.4 —0.1 2.3 ~1.1 —17
42.395 30 2.4 3.0 2.0 3.8 3.0 —2.9
112.395 100 3.0 3.3 2.9 3.9 4.0 1.9
512.395 500 3.3 3.4 3.3 3.6 3.7 3.3
1012.395 1000 3.3 3.4 3.4 3.5 3.5 3.5
68 67.637 0.3 —32 -31 —37 —36 —53 —92
67.937 0.6 —22 —21 —28 —27 —46 —89
68.337 1.0 ~16 ~15 —23 —22 —41 —86
77.337 10 ~3.4 -2.3 ~7.8 ~6.3 ~18 —52
97.337 30 -0.9 0.0 -3.3 ~1.8 —6.6 —24
167.337 100 0.6 1.1 -0.3 0.9 ~0.2 —5.8
567.337 500 1.5 1.6 1.4 1.9 1.9 1.2
1067.337 1000 1.6 1.7 1.6 1.9 2.0 1.8
81 99.063 0.3 ~38 ~37 —43 —42 —58 —92
99.363 0.6 —27 —26 -33 —32 —50 —90
99.763 1.0 —20 ~19 —27 —26 —45 88
108.763 10 —4.8 ~3.6 ~10 -9.0 —22 —60
128.763 30 ~1.9 —0.7 —5.1 -37 | —10 -31
198.763 100 ~0.1 0.7 -1.3 —0.1 —2.1 -8.8
598.763 500 1.2 1.4 1.1 1.6 1.4 6.4
1098.763 1000 1.3 1.6 1.4 1.7 1.8 1.6

Note: The internal-conversion coefficients for neutral atoms were calculated with allowance for a hole in the K shell (see main body of
the text); E;CH) is the conversion-electron energy in a hydrogen-like ion.

deviations of the internal-conversion coefficients from
those values that could be obtained in the calcu-
lations with Coulomb wave functions, especially for
transitions of low multipole order. By way of example,
we indicate that, for M1 transitions in heavy nuclei,
the inclusion of finite nuclear sizes may change the
internal-conversion coefficient by a factor of 3.

In the case of a neutral atom, experimental data
on the K -electron binding energy from [14] were em-
ployed in the calculations, while, for a hydrogen-like
ion, use was made of the theoretical values obtained
from the calculation by the Dirac—Fock method.

Table | presents the distinctions between the co-
efficients of internal conversion in the K shell of a
neutral atom per electron, o7F, and the internal-

at »
conversion coefficients afZ for the hydrogen-like ion

of the corresponding element; that is, the quantities

7L _ 7L
A — (M) - 100%, (1)

TL

at
where 7 labels the electric (7 = F) or the mag-
netic (1 = M) type of nuclear transition and L is
the multipolarity of the transition being considered.
The internal-conversion coefficients are given for
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eight values of the transition energy F, such that
the kinetic energies of the conversion electron for

hydrogen-like ions, E2H>, take the same values in the

range 0.3 < E2H> < 1000 keV for all of the elements
being considered. The results reveal that, by and
large, the effect of multiple ionization on the internal-
conversion coefficient is maximal in the vicinity of
the threshold and for transitions of high multipole
order. In those cases, the changes in the coefficient
of internal conversion in the K shell of a hydrogen-
like ion in relation to the coefficient of internal con-
version in the K shell of the respective neutral atom
may be as large as one order of magnitude. With
increasing transition energy, this difference in the
internal-conversion coefficient decreases fast, but it
may remain sizable for 100- to 200-keV transitions,
which are of practical importance.

Against this background, it may seem surprising
that A depends only slightly on the atomic number Z
of an element. This quantity increases with increasing

Z at low energies (ELH) < 10 keV) and decreases

slightly for heavier elements if Egﬁm > 100 keV. This
behavior may be understood if one considers that
electron—electron interaction is characterized by
the small parameter 1/Z. In the behavior of the
internal-conversion coefficient for high multipole or-
ders, strong threshold effects that lead to the violation
of electron—muon scaling were previously indicated
in [9], where the values of these coefficients were
compared with the conversion coefficients for muonic
atoms. Physically, these effects may be explained by
the fact that a conversion electron must overcome
a strong attracting field (the higher the degree of
ionization, the stronger this attracting field). At
higher energies, an electron easily escapes from the
atom being considered. It follows that, in the vicinity
of the threshold, the internal-conversion coefficient is
greater for an atom than for the respective ion, but
that the inverse is true for these coefficients at high
energies.

It should be noted that, in the values of the
internal-conversion coefficients for a neutral atom,
there is an uncertainty that is associated with the
inability of the modern theory of conversion to resolve
conclusively the question of whether it is necessary
to take into account the hole in the shell upon
conversion [12, 15]. Allowances made for the hole sig-
nificantly affect the internal-conversion coefficients at
low kinetic energies of the conversion electron (Fj <
1 keV). However, the nuclear transition energies
E, listed in Table 1 are not very small in relation
to the ionization threshold for the K shell in the
neutral atoms since the K -electron binding energy is
higher for a hydrogen-like ion than for the respective
neutral atom. Since electron—electron interaction is
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Table 2. Distinctions A in percent [see Eq. (1)] between
the coefficients of internal conversion in the K shell of
a neutral atom per electron and the internal-conversion
coefficients for the respective hydrogen-like ion in the case
of 30Zn (the internal-conversion coefficients for the neutral

atom were calculated without allowance for a hole in the K
shell)

(H)
Er B B

KoV klév’ M1| E2 |M3| M4 | E5
12.695 0.3-9.21-9.2-12 |-8.31-37 |-90
12.995 0.6 —-4.5—-4.4| —=72-3.0-29 |-84
13.395 1.0-2.0-2.0| —4.1}-0.1}-22 |-76

22.395| 10 24| 2.8 34| 72| 4.5-13
42.395| 30 2.7 3.4 38| 6.7 6.6/ 0.3

112.395| 100 3.1] 3.4 3.,5| 52| 5.8 3.7
512.395| 500 3.2| 3.3] 3.4 39| 42| 39
1012.395| 1000 3.1] 3.2 33| 3.6| 3.8 3.7

Table 3. Binding energies ex of the K electron and its
densities in the vicinity of a nucleus, pk(0), for neutral
atoms and hydrogen-like ions

ek, keV px(0), a.u.
30Zn ‘ 6sEr ‘ g1 Tl 30Zn ‘ 6sEr ‘ 81Tl
Atom
9.663 |57.489]85.536 | 0.1413(6) | 0.4642(7)| 0.1294(8)
H-ion

12.395 | 67.337] 98763 0.1462(6) | 0.4733(7) | 0.1317(8)

Note: Figures given parenthetically indicate the order of magni-
tude.

characterized by the parameter 1/Z, it becomes clear
that the effect of the hole is the most significant at
small Z. The distinctions A between the internal-
conversion coefficients for the K shell in 3gZn are
given in Table 2 for the case where the internal-
conversion coefficients for the neutral atom were
calculated without taking the hole into account. From
a comparison of the data in Tables | and 2, it can
be seen that, at the smallest values considered for
the energies F., the deviations A calculated with
allowance for the hole differ somewhat from those in
which the hole was disregarded, but that the order of
magnitude of these distinctions and their character
are similar in the two cases in question.

The distinctions A are determined by a number of
factors, which partly compensate one another.
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Table 4. Coefficients of internal conversion in the K and L shells along with the total internal-conversion coefficients

ol for the g1 Tl atom

E, keV | Ej keV | Shell El M1 E2 M3 E4 E5

86.536 1.0 K | 0468(0) | 0.103(2) | 0.476(0) | 0.103(3) | 0.427(—2) | 0.104(—3)
Ly | 0.522(=1) | 0.165(1) | 0.154(0) | 0.253(3) | 0.787(2) | 0.109(4)
Ly | 0232(=1) | 0.172(0) | 0.417(1) | 0.363(2) | 0.244(4) | 0.340(5)
Ls | 0.243(=1) | 0.151(=1) | 0.355(1) | 0.434(3) | 0.174(4) | 0.234(5)
apt | 0.599(0) | 0.127(2) | 0.110(2) | 0.111(4) | 0.625(4) | 0.968(5)

185.536 | 100.0 K | 0744(=1) | 0.121(1) | 0.201(0) | 0.171(2) | 0.139(1) | 0.397(1)
Ly | 0.882(—2) | 0.186(0) | 0.268(—1) | 0.681(1) | 0.143(1) | 0.113(2)
Ly | 0227(=2) | 0.192(—=1) | 0.135(0) | 0.131(1) | 0.232(2) | 0.192(3)
Ls | 0.202(—2) | 0.155(—2) | 0.851(—1) | 0.436(1) | 0.108(2) | 0.836(2)
ot | 0.915(—1) | 0.148(1) | 0.531(0) | 0.341(2) | 0.505(2) | 0.416(3)

Note: Figures given parenthetically indicate the order of magnitude.

Among these, we first indicate the K-electron
binding energy e, which increases with the degree
of ionization. As a result, the conversion channel
involving the K shell may be completely closed if
the transition energy is close to the threshold. An
excited nuclear level then decays either through a
different channel or through subthreshold resonance
conversion. This is the case for the £, = 35.492 keV
M 1 transition in 1272 Te that was considered in detail
in [4—6]. Table 3 displays the values of ex for the
elements being considered. There, we present the
experimental values of the binding energies from [14]
for atoms and the calculated binding energies for the
respective hydrogen-like ions. It can be seen that, in
the absolute values, the increase in ex with the de-
gree of ionization is much more pronounced for heavy
elements. For example, e increases by 13.2 keV in
g1 Tland only by 2.7 keV in 39Zn. Therefore, it is more
probable to observe experimental manifestations of
this effect in heavy elements.

Second, the total internal-conversion coefficient
a{of, which determines the lifetime of a nuclear level,
receives, in the case of a neutral atom, a contribution
from all atomic shells higher than the K shell. From
Table 4, it can be seen that, for g1 T1, this contribution
is about 20% for the case of E1 and M1 transitions.
But even for E2 transitions at the conversion thresh-
old (Ex ~ 1 keV), the contribution of the Ly and Lg
shells alone is one order of magnitude greater than
the contribution of the K shell. For higher multipole
orders of L = 4 and 5, the contribution of all other
shells may exceed the coefficient of internal conver-
sion in the K shell by several orders of magnitude (up
to eight!). Accordingly, the effect of ionization on the
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lifetime of a nucleus may be formidable, also reaching
several orders of magnitude.

Third, a strong static effect arises upon the dis-
appearance of screening in hydrogen-like ions. This
effect consists in that, both in the initial and in the
final state, the electron wave functions are pulled
toward the nucleus being considered. The respective
growth of the electron density in the vicinity of the
nucleus leads to an increase in internal-conversion
coefficient. In connection with the ionization of 253U
by laser radiation, this effect was previously discussed
in[16]. It was estimated on the basis of a comparison
of the internal-conversion coefficients for an atom and
the respective hydrogen-like ion for the case where
both values were calculated by using the same bind-
ing energy. The conversion-electron energies then
take the same value for the atom and for the ion, so
that the distinction between the respective internal-
conversion coefficients is entirely due to the pulling
of the wave functions toward the nucleus. In our
calculations, we used the experimental value of the
binding energy ek for the neutral atom [14].

The effect of pulling is illustrated in Table 5, which
displays the distinctions A between the coefficient
Oz;'tL for the ggEr atom and the coefficient o‘zﬂ)ﬁ for the
respective hydrogen-like ion,

A — (%ﬁ — O‘;tL
aTL
at

L

> -100%, (2)

the coefficient & being calculated with the same
value of e as the internal-conversion coefficient for
the neutral atom in question. For the neutral atom,

the internal-conversion coefficients were rescaled to
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Table 5. Static-effect-induced distinctions A in percent [see Eq. (2)] between the internal-conversion coefficients for the

neutral atom of ggEr and the respective hydrogen-like ion

E,, keV Ej, keV El M1 E2 M3 M4 E5
57.789 0.3 -19 —26 73 92 1255 1.6(7)
58.089 0.6 ~10 —17 87 108 1131 1.0(6)
58.489 1.0 ~5.0 ~12 93 114 968 1.6(5)
67.489 10 5.0 -9.3 62 79 213 744
87.489 30 4.7 0.9 33 46 86 172

157.489 100 2.7 1.8 14 21 34 50
557.489 500 1.6 1.4 3.1 7.3 10 12
1057.489 1000 0.7 1.0 1.1 4.4 6.0 6.6

Note: Figures given parenthetically indicate the order of magnitude.

one electron. As might have been expected, A is
positive in the majority of cases; that is, o‘zfoﬁ for a
hydrogen-like ion is greater in magnitude than a;tL
for the respective atom. Only for transitions of low
multipole order (E'l and M1 transitions) at low ener-
gies, By, < 10 keV, are the internal-conversion coeffi-
cients for a hydrogen-like ion less than their counter-
parts for the respective atom, but the distinctions A
are modest in those cases. For other transitions, how-
ever, the effect may prove to be significant. By way of
example, we indicate that, for the E; = 0.3 keV Eb5
transition, the internal-conversion coefficients for the
atom and the respective hydrogen-like ion differ by
seven orders of magnitude. For the same E5 multipo-
larity, as well as for the M5 multipolarity (the results
of the calculations for the M5 transition are not in-
cluded in Table 5), the distinction near the maximum
values of the internal-conversion coefficients at E;, ~
30 keV is more than twofold. It should be emphasized
that this effect is caused primarily by the change in the
conversion-electron wave function, since the effect on
the K -electron wave function does not exceed a few
percent (see the values given in Table 3 for the density
in the vicinity of the nucleus).

However, there exists a fourth effect. It is asso-
ciated with the fact that the energy and the phase
space of the conversion electron decrease upon taking
into account an increase in the K-electron binding
energy. This effect reduces internal-conversion co-
efficients. It should be noted that, while the static
effect increases internal-conversion coefficients by an
order of magnitude, the changes in them because of
the effect of the phase-space reduction occur in the
opposite direction and may be as great as two orders
of magnitude, as in the case of E, =12.7 keV Eb5
transitions in 3gZn. At low conversion-electron en-
ergies, the internal-conversion coefficients eventually
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prove to be an order of magnitude smaller in ions than
in neutral atoms. In general, the actual distinctions A

are much less than the static-effect-induced distinc-
tion A.

By using the renormalization method [7, 10],
which is well known in the theory of internal con-
version, it can be shown that, if the radius of the
region where internal-conversion coefficients are
formed [17] is small and if the kinetic energy of the
conversion electron is not very low (a few tens of keV
or higher), the internal conversion coefficients obey
the renormalization relation
a0

)

~ ; (3)
(0

Q

Table 6. Distinctions A in percent [see Eq. (4)] between
the conversion-electron density near the nucleus in the
g1 Tl atom and its hydrogen-like ion

E;CH), keV

0.3 |—-37.8|-38.1]—43.1|-58.5|-78.4]-92.1
0.6 |—26.9|-27.3|-33.1|-50.8|-73.8 |—89.9
1.0 |-20.6 |—21.0|—-27.2 |—45.9 |-70.3 |—-87.9

10 —-5.2| —5.6 |—10.5 |—23.8 |—42.1 |-60.0
30 —24| -2.7| =5.3|-12.0|-21.4|-32.2
100 -10| -1.0| -1.7| =3.7| —6.5|—10.0
300 -03| -02| -0.3| -0.7| —1.4| —-2.3
500 -0.2| -0.1 01} -0.2] -0.5| —-0.9
1000 -0.1| -0.0 0.1 0.2 0.1 0.0
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Table 7. Coefficients of internal conversion in the K shell of the hydrogen-like ion of gsEr

EM kev El E2 E3 E4 E5

0.3 0.253(0) 0.637(0) 0.679(0) 0.439(0) 0.202(0)

0.6 0.285(0) 0.726(0) 0.800(0) 0.549(0) 0.277(0)

1.0 0.301(0) 0.776(0) 0.892(0) 0.659(0) 0.371(0)

10 0.254(0) 0.815(0) 0.161(1) 0.270(1) 0.434(1)

30 0.143(0) 0.551(0) 0.159(1) 0.433(1) 0.120(2)

100 0.350(—1) 0.135(0) 0.452(0) 0.150(1) 0.512(1)

300 0.486(—2) 0.146(—1) 0.409(—1) 0.113(0) 0.316(0)
500 0.183(—2) 0.489(—2) 0.120(—1) 0.286(—1) 0.677(—1)
1000 0.526(—3) 0.125(—2) 0.259(—2) 0.501(—2) 0.939(—2)

EM keV Ml M2 M3 M4 M5

0.3 0.254(1) 0.280(2) 0.871(2) 0.130(3) 0.116(3)

0.6 0.287(1) 0.314(2) 0.987(2) 0.152(3) 0.144(3)

1.0 0.302(1) 0.329(2) 0.105(3) 0.168(3) 0.172(3)

10 0.244(1) 0.243(2) 0.945(2) 0.256(3) 0.584(3)

30 0.129(1) 0.108(2) 0.487(2) 0.186(3) 0.670(3)

100 0.280(0) 0.159(1) 0.675(1) 0.274(2) 0.110(3)

300 0.333(~1) 0.118(0) 0.352(0) 0.103(1) 0.299(1)

500 0.108(—1) 0.317(—1) 0.775(—1) 0.184(0) 0.433(0)
1000 0.227(—2) 0.553(—2) 0.108(—1) 0.199(—1) 0.359(—1)

Note: Figures given parenthetically indicate the order of magnitude.

1 2 . .
where ag ) and ag ) are the internal-conversion co-

efficients in the ith atomic shell that are calculated
in atomic fields by methods that take into account

screening differently and p§1>(o) and pZ@)(O) are the
electron densities in these fields. In the case being
considered, the index (1) refers to a hydrogen-like
ion, while the index (2) refers to the respective neutral
atom.

Our calculations revealed (see Table 3) that the
change in the density px(0) of K electrons in the
vicinity of the nucleus upon going over from an atom
to the respective hydrogen-like ion is 3.5% for 39Zn,
2.0% for gsEr, and 1.8% for g; TI. A comparison of
these changes with the data in Table 1 shows that,

for energies in the region E;{m > 100 keV, relation (3)
is indeed valid to within a few percent. At lower val-

ues of Ezm, however, the distinctions A are great
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and differ significantly from the above changes in
the K -electron density—by way of example, we in-

dicate that, at the energy value of E;CH) = 0.3 keV,

E5 E5
. is greater than o

a oy by a factor of about 10 for
all of the elements considered here. Therefore, it is
the conversion-electron wave function that is pre-
dominantly responsible for so drastic a change in the
internal-conversion coefficients. For a few values of
the energy Egﬁm and a few values of the relativistic
quantum number k= (I — j)(2j + 1), where [ and
Jj are, respectively, the orbital angular and the total
angular momentum of the electron, the changes in the
electron density in the vicinity of the nucleus, p,;(0) =
19 (0)]?, where 1),,(0) is the corresponding value of
the continuous-spectrum wave function, upon going
over from the g1 Tl atom to its hydrogen-like ion are
given in Table 6.
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Table 8. Coefficients of internal conversion in the K shell of the hydrogen-like ion of g1 Tl

EM kev El E2 E3 E4 E5
0.3 0.109(0) 0.161(0) 0.115(0) 0.532(—1) 0.184(—1)
0.6 0.127(0) 0.189(0) 0.138(0) 0.669(—1) 0.248(—1)
1.0 0.136(0) 0.205(0) 0.155(0) 0.794(—1) 0.320(—1)
10 0.132(0) 0.241(0) 0.289(0) 0.304(0) 0.313(0)
30 0.900(—1) 0.203(0) 0.373(0) 0.679(0) 0.129(1)
100 0.314(—1) 0.844(—1) 0.218(0) 0.580(0) 0.162(1)
300 0.625(—2) 0.166(—1) 0.432(—1) 0.111(0) 0.288(0)
500 0.268(—2) 0.697(—2) 0.168(—1) 0.385(—1) 0.868(—1)
1000 0.860(—3) 0.216(—2) 0.455(—2) 0.873(—2) 0.160(—1)
EM keV Ml M2 M3 M4 M5
0.3 0.228(1) 0.152(2) 0.296(2) 0.281(2) 0.160(2)
0.6 0.265(1) 0.176(2) 0.347(2) 0.337(2) 0.200(2)
1.0 0.285(1) 0.189(2) 0.375(2) 0.376(2) 0.235(2)
10 0.266(1) 0.167(2) 0.394(2) 0.616(2) 0.780(2)
30 0.169(1) 0.957(1) 0.270(2) 0.622(2) 0.132(3)
100 0.504(0) 0.219(1) 0.671(1) 0.194(2) 0.554(2)
300 0.755(~1) 0.232(0) 0.581(0) 0.143(1) 0.352(1)
500 0.258(—1) 0.687(—1) 0.149(0) 0.316(0) 0.666(0)
1000 0.542(—2) 0.128(—1) 0.235(—1) 0.407(—1) 0.693(—1)

Note: Figures given parenthetically indicate the order of magnitude.

It can be seen that, at small E;{m, the distinction

ion at
A, = [M] . 100% (4)
P (0)
is about a few tens of percent. The values of A,
are especially great for large values of k. We note
that, although Table 6 presents the distinctions in
question only for k < 0, the distinctions A,; for corre-
sponding x > 0 take approximately the same values.
Comparing the values of A, with the corresponding
distinctions A between the internal-conversion coef-
ficients from Table 1 for g1 Tl, we can conclude that
the distinction A between the coefficients of internal
conversion in the K shell for an atom and the respec-
tive hydrogen-like ion is indeed due predominantly
to the difference in the continuous-spectrum wave
functions. Moreover, it turns out that, in the present
case, the changes in the internal-conversion coeffi-
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cients are proportional to the changes in the electron
densities in the initial and the final state; that is,

o ., P(0) pi"(0)

azl pit(0) pt(0)”
where p,;(0) is the electron density in the final state at
that value of k which makes a dominant contribution

to the conversion matrix element in summation over
final states.

Relation (5) holds to a high precision, which is
a fraction of a percent even for very low energies

(5)

Ezm. By way of example, we indicate that, for the
E5 transition, the leading contribution to the coef-
ficient of internal conversion in the K shell comes
from the term corresponding to k = —6. At Kk = —6,
the distinction A, is —92.1% for g1 Tl in the case of

the lowest energy considered here (E;CH> =0.3 keV).
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Coefficients a™* of internal conversion in the K shell for
(solid curves) the hydrogen-like ion of g; Tl tallium and

(dashed curve) its neutral atom versus the energy EﬁcH’
of the conversion electron in the hydrogen-like ion. The
values of the internal-conversion coefficients for the atom
correspond to the actual number of electrons in the K
shell.

It follows that the result obtained with the aid of
formula (5) for the change in the internal-conversion
coefficient upon going over from the g; Tl atom to
the respective hydrogen-like ion is —92.0%. A direct
calculation (see Table 1) also yields —92%. Let us
consider yet another example—that of the M4 tran-
sition, in which the main contribution comes from the
k = —4 term. According to the calculation with the
aid of Eq. (5), the change in the internal-conversion

coefficient a™4 for g Tl at EZ:H) = 0.3 keV is —57.8%;
a direct calculation yields A = —58% in this case. So
high a precision of fulfillment of the above proportion-
ality relation, which takes into account changes in the
density in the vicinity of the nucleus for the electron in
the initial and in the final state is due to the fact that,
even at very low conversion-electron energies and for
transitions of high multipole order, the radius of the
region where the coefficient of internal conversion in
the K shell is formed is about the radius of the K shell
itself.

[t should also be noted that the internal-conversion
coefficients for hydrogen-like ions may differ from the
internal-conversion coefficients for atoms not only in
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magnitude but also in the character of their energy
dependence. By way of example, we indicate that, in
the case of a neutral atom, the internal-conversion
coefficients for transitions of low multipole order (El,

M1) decrease with increasing ELH) at the lowest

values of the energy EEGH); at the same time, the
internal-conversion coefficients for a hydrogen-like

ion at the same values of E;cm first increase and begin
decreasing only at energies of about a few keV. For
transitions of high multipole order, the above increase
in the internal-conversion coefficients persists up

to E;CH> values of a few tens of keV. This can be
seen from the figure, where the internal-conversion
coefficients a1, aM1 o4 and o4 forthe g; Tl atom
and for the respective hydrogen-like ion are displayed

versus the energy EEGH). The values of the internal-
conversion coefficients for the atom were rescaled to
the actual number of electrons in the K shell. The
figure clearly demonstrates the distinctions between
the magnitude and the behavior of the internal-
conversion coefficients for a hydrogen-like ion and
the magnitude and the behavior of the internal-
conversion coefficients for the respective neutral
atom. This effect provides a spectacular illustration
of how the attraction field, which becomes more
intense with increasing degree of ionization, affects
internal-conversion coefficients near the threshold.
The threshold distinctions between the electron and
muon internal-conversion coefficients in the case of
the E3 and F4 multipolarities [9] are similar to the
above distinctions.

Since the distinctions between the magnitude and
the behavior of the internal-conversion coefficients
for a hydrogen-like ion and the magnitude and the
behavior of the internal-conversion coefficients for the
respective neutral atom may be quite significant, as
was shown above, and since the first experimental
investigations of nuclear transitions in hydrogen-like
ions and nuclei completely deprived of their electron
shells were performed at GSI and GANIL, we present
the internal-conversion coefficients for the hydrogen-
like ions of the ggEr and g1 Tl elements in Tables 7
and 8. The present investigation of strong threshold
effects arising upon ionization may be of use in inter-
preting relevant experimental data. For example, the
results reported in [4, 6], where, for the case of mul-
tiple ionization, the coefficients of internal conversion
in the K and L shells of the '25Te atom were found
to be invariable up to the threshold of conversion in
the K shell, initially seemed paradoxical. This cir-
cumstance stimulated the discovery of discrete con-
version. From the above results, it follows, however,
that, for a different multipole order, the behavior of
the internal-conversion coefficients could be totally
different.

Vol.67 No.2 2004
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The results of the calculations that were performed
for three elements provide a qualitative pattern of the
dependence of the coefficients of internal conversion
in hydrogen-like ions on the number of the element
and on the transition energy and multipolarity. These
data make it possible assess the expected lifetimes
with respect to radioactive decay for a nucleus in the
hydrogen-like state and the state completely deprived
of the electron shell. Knowledge of these lifetimes is of
paramount importance for some applications, such as
the investigation of astrophysical processes [18].
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Abstract—The reduced adiabatic hyperspherical (RAHS) basis suggested previously is used to calculate
elastic and spin-flip cross sections in the processes (au)r + a — (ap)p + a, a = (p, d, t), for collision
energies 1073 < e < 102 eV. The rapid convergence of the method is demonstrated: to achieve an accuracy

of ~1% in the calculated cross sections, it is sufficient to use N < 10 of the basis RAHS functions.
The comparison of the obtained results with the previous ones is presented. © 2004 MAIK “Nau-

ka/Interperiodica”.

INTRODUCTION

The low-energy collisions in symmetric mesic
atomic systems with two open channels

(ap)F +a— (ap)pr +a
(F = F', elastic; F # F', spin-flip)

(F and F" are the total spins of mesic atom ap in
the initial and final ground states, respectively, and
a = p,d,t)areimportant for the description of various
mesic atomic processes, especially muon-catalyzed
fusion[1].

In contrast to the asymmetric case [2], in symmet-
ric low-energy collisions at e < 0.5 eV, the spin—spin
interaction of muon with nuclei should be taken into
account [3]. This interaction results in the hyperfine
splitting AE, ~ 0.1 eV of the ground-state energy
E, of mesic atom ap. In asymmetric systems, this
splitting is negligible as compared with the isotopic
one (~ 100 eV), but it certainly has to be taken into
account in the symmetric case because it is compara-
ble with the typical collision energies of mesic atoms
(e =0.04 eV at T = 300 K).

The most extended and systematic calculations
of cross sections of the symmetric collision pro-
cesses were performed previously in the adiabatic
approach [4], which is based on the decomposition
of the three-body wave function over solutions of the
Coulomb two-center (CTC) problem [5, 6]. However,

*This article was submitted by the authors in English.

bst. Petersburg State University, St. Petersburg, Russia.

Dlnstitute for High Energy Physics, Protvino, Moscow oblast,
142284 Russia.

this expansion converges slowly because the CTC
basis does not properly represent the three-body wave
function at large internuclear distances, and for its
adequate description, it is necessary to keep too many
CTC basis functions, including functions of the CTC
continuous spectrum [7].

The disadvantages pointed out are absent in the
adiabatic hyperspherical approach (AHSA)|[8], which
generalizes the traditional adiabatic approach and is
widely used for the description of the Coulomb three-
body systems in atomic and mesic atomic physics [9].

Several years ago [10], we suggested the reduced
adiabatic hyperspherical approach (RAHSA) for the
description of the aforementioned processes. In the
framework of RAHSA, we developed the uniform nu-
merical method [11, 12], which was successfully ap-
plied for the calculations of energies and local charac-
teristics of bound states [13, 14] and resonances [15,
16] in the three-body mesic atomic systems as well
as for the description of the scattering processes in
the asymmetric systems pud, put, and dut[2, 16, 17].
The main points of our algorithm are the following:

(i) To simplify the calculation of basis functions at
nonzero angular momentum J, we use the reduced
adiabatic hyperspherical (RAHS) basis [10, 11].

(ii) To overcome the numerical difficulties caused
by the quasicrossings of the RAHS energy terms,
we, first, use the variational principle for the simul-
taneous calculation of both basis functions and their
derivatives with respect to hyperradius p and, second,
reduce the scattering problem for the radial system
to the boundary-value problem using the reference
functions that satisfy boundary conditions at large

p[18].

1063-7788/04/6702-0226$26.00 © 2004 MAIK “Nauka/Interperiodica”
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(iii) To overcome difficulties produced by the long-
range matrix elements, we use in the numerical cal-
culations the asymptotic formulas for RAHS matrix
elements at large p.

In[19], the decomposition of the three-body wave
function over eigenfunctions of the adiabatic hyper-
spherical (AHS) Hamiltonian, which includes the
spin—spin interaction, has been used. On the con-
trary, we use the decomposition over RAHS basis
and take into account the spin—spin interaction in the
system of radial equations.

In what follows, we will present the calcula-
tions of the partial-wave a - (J <5) and total oy;
cross sections of the elastlc and spin-flip collisions
in all symmetric mesic hydrogen atom systems
(pup, dud, tut) at collision energies 1073 < e <
102 eV by the method developed earlier [2, 10—15, 17].

1. SPATIAL RAHS BASIS

In the Jacobi coordinates {R, r}, the Hamiltonian
of the three-particle system with charges 7, = Z;, =
—Z, =1 and masses mgq, mp, my (mq > my) has
the form

. 1 1
H=-——"Ap— —A, s |
iR 2, +V+ V. (1)
1 1 1
V=s-——= ,

R=r,—rp, r=r, +r

b
Mg + My ma—l—mb’

where the mesic atomic units (A = e =m, = 1) are
used, r, and r, are the vectors connecting nuclei a
and b with the muon. Hamiltonian (1) includes the
spin—spin interaction Vi of the muon with nuclei,
which can be written in the form [3]

Vs = A[d(ra)sq - s+ 0(rp)sp - s (2)
A 5(Ta) 5(Tb)
T dr | 2 2 S

where s, s, and sy, are spins of the muon and nuclei a
and b. Constant A depends on the system considered
and determines the hyperfine splitting AE, of the
ground state E, of the atom au by the formula

S lns(ra = O F(Fy + 1)

where F} =0, F5 =1 for pu and tu, and Fy = 1/2,
Fy = 3/2 for du, and v, is the ground state wave
function of ap atom. The values of AFE, are the fol-
lowing [20]:

AE, = 0.1820 ¢V,

AE, = — Fi(F1 +1)],

AFE; =0.0485 eV,
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In the hyperspherical coordinates (p, x, ),
p= (2MR? 4 2ur?)1/2,
tan(x/2) = (u/M)"*r/R,
cos =R -r/Rr,

p € [0,00), x € [0,7], ¥ € [0, 7], the Hamiltonian &
(1) takes the form [12]
.19 50 J-21-3)
o= P’ L +hf v, @3
58p 8p+p20082x/2+ Ve (3)
where 1 and J are the muon orbital angular momen-
tum and the total one, respectively:

~

1=—irxV,], J=1-i[RxVg],
p___t 9 sind— 0 L 6—2
~ sind oY 89 sin?9 0p?”
The RAHS Hamiltonian
4 0 0
R = — — )4V
P sin? (8x sin? Xgy ) +V(p,x)

is used in our method mstead of the tradltlonal AHS
Hamiltonian h = hf 4 [J2 — 2(1- J)]/[p? cos?(x/2)]
containing the Coriolis term [8, 9].

The spatial RAHS basis [10] for symmetric sys-
tems (mg = my) is defined as the set of eigen-

functions ¢75M(p|x, 9, ®,0,¢) = 71N (p|2) of six

commuting operators: h® (index 7), J2 (index J),
Js (index K), J# (index m >0), Py (index A =
+(—1)7), and P (index p = +1). Here, J3 and .J} are
the projections of J onto the third axes of space-fixed

and rotating frames, respectively; P, is the inversion
operator of all coordinates,

Py: R—-R, r1—-r (5)
(P—>7+P,0 -1 —0,p =7 — ),
R = (R,@,(I)), r= (T7§7(p);

P is the inversion operator of muonic coordinates,

P r—-r (p—ep+md—-m—1), (6)

its eigenvalues p =1 and p = —1 corresponding to
gerade (g) and ungerade (u) states of the system
apa.

The spatial RAHS basis function can be repre-
sented in the form of the product

fnffpk(plx,ﬂ $,0,¢) (7)
= ©imp(pX; 0) Dy, (2,0, ),
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where D2 (9,0, ) is the symmetrized Wigner D
function, and function @y (p|x, ) is the eigenfunc-

tion of Hamiltonian h,,(p|x, ), which acts only on
variables y and 9 [10, 13]:

R @imp(P1X, 9) = Ejmp(p)@imp(plx,9),  (8)
4 o ., 0
By = ————— [ = sin? y—
p? Sin2x<3x T Xax
0 m2
_ V7
sm2@°> *

Ejmp(p) being the corresponding eigenvalue (RAHS
energy term).

PN
sin ¥ 09 sin 09

For description of the scattering processes of
atoms in the ground state, we need only RAHS basis

functions with K = 0 and normal parity A = (—1)”.
In what follows, the indices K and X\ will be omitted:

WIEMplx,9,2,0,0) =¥l (o),  (9)

jmp

d§) = sin? x sin © sin Vdxd9d®dOdp.

The relation defining the symmetry of these functions

with respect to permutation P, of nuclei (a < b)
takes the form

Putp(p1) = p(=1)7 4, (012);
Pn = fjtotfD
(P—>7+P,0 >71—0,0p— —p, ) -7 —10).

(10)

2. SPIN-SPATIAL RAHS I AND F BASES

The basis elements in the space of the three-body
spin functions are the common eigenfunctions of six
commuting spin operators and they are specified by
corresponding quantum numbers: spins of nuclei s,
and sp (in our case s, = s = s), spin of the muon
su (s, = 1/2), the total spin S of three particles, its
projection S, and, finally, the total spin of any two of
three particles—the total spin I of nuclei (functions of
I type) or the total spin F of the atom au (functions of
F type). For the three-particle spin function of I type
with total spin S, its projection S, and total spin of
nuclei I, we use the notation

X = 3. (a,b: I 0), (11)

where o is the set of spin variables (we will omit it
below), and the phase factor is chosen according to

Condon and Shortley [21].3)

$The connection of our notation with that in the monograph
of Edwards [22] is given by the relations x3;(a,b : jap|c) =
w((Ja, jo)Jab, Je, J, M). Inour case, jo = jb = 8, je = ju =
1/2.
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The symmetry ofxgz (a,b: I|p) with respect to the
nuclei permutation is defined by the equation [23]

X3 (a,b: Ip) = (=1)*7'x& (b,a: Ilp).  (12)
As the spin of the muon is equal to 1/2, the nuclear
spin I in the subspace of three-body spin functions
with fixed S and S, can take only one, I =S5 —1/2
(if S >2s—1/2), ortwo, [ =S+1/2 (if S <2s—
1/2), values; i.e., the spin subspace has one or two
dimensions. The case of one dimension is a trivial one.
In the case of two dimensions, the spin functions (11)
with I = S £ 1/2 form the I basis in this subspace.
We define the spin-spatial RAHS basis function of
I type X]JT{L as the product of the spatial RAHS basis

function ¢, Sh(11y:
Up(PIDXE, (a,b 2 ;o). (13)

Properly symmetrized basis function X ]mp(p\Q o) is
defined by the relation

Pl o) =

(9) and spin function of I type x
X7 (ol ) =

XjL(pl.0),  (14a)

]mp(
where indices p and I are connected by the relation
p=(-1)7*" (14b)

Relations (14) provide the correct symmetry of the
spin-spatial RAHS basis functions (13) with respect
to permutation of nuclei: they are symmetric (p =
+1 = g) for bosons (ddu case, s = 1) and antisym-
metric (p = —1 = wu) for fermions (ppp and ttu cases,
s = 1/2), as follows from Egs. (10), (12), and (14b).

The basis functions X]Jmp(pm,a) tend at large
p to the properly symmetrized atomic functions,
which does not correspond, however, to definite
atomic spin. This is not suitable for the statement
of the scattering problem with adequate account
of spin—spin interaction of muon with nuclei. The

spin—spatial RAHS F-basis Yj{f(pm,a) instead

of I-basis ijmp(p\Q,a) should be used for this
purpose:
Vil (pl©,0) ZUFp Sp(pl2,0),  (15)
F={F)}, a=12  F>F.

The matrices Uy, = U}, (s, S) at fixed (s, S) have the
following explicit form. At even J, we have
PP, tut
s=1/2, §=1/2
Fi=0, Fy=1

(16)
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1 V3) (X,
v/ 2\v3 1) \x,/)

dud
s=1,5=1/2
FL=1/2, F, =3/2
iy 1 (1 Vv2) (X,
v V3\v2-1)\x,)

dud
s=1,5=3/2
Fy=1/2, F, =3/2
iy 1 (Vs 1) (X,
v.) V6\_-1 5/ \x,
Yo, =Y (pl9, ), Xp = X, (0l 0),
p=g,u.

At odd J, the indices g and u have to be exchanged
in (16).4

The spin—spatial RAHS F'-basis function
Yj‘g(p\(l,a) tends, for p — oo, to the atomic wave

function with spin F' properly symmetrized with
respect to nuclear permutation.

3. SYSTEM OF RADIAL EQUATIONS

The decomposition of the three-body wave func-
tion with fixed s, S, S., J, K = 0,and A = (—1)” over
F-basis Y;]I" (15) has the form

oo J
‘I]J(rv R,0) = ,0_5/2 Z Z Z jJTT}:(p)

j=1m=0 F
x Yilr (plQ,0).

(17)

The substitution of this expansion into the Schrodin-
ger equation

(H-E)¥/ =0 (18)

YThe analogous matrices used in [24] differ from (16) due
to the different definition of spin function corresponding to
I=1.
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leads to the system of coupled differential equations
for hyperradial functions F " (p) at fixed total angular
momentum J (index J is omltted)

82 15
.S {EZFF/ 3T
F/

j=1m/=0
9 FF’ FF’ 9
+ 5 ap im,jm/ ( ) Qim,jm’(p) 8/)

}ff;éf(p) =

BFF/:

(19)

FF’
sz jm

+ RFF' (p) + VEE
P>

im,jm/ im,jm/

At fixed J, 4, m, j, m/, matrix elements
{EFF" ngm,,Qf;f?;m,,Rﬂ;m} are connected
with matrix elements By, calculated earlier [2, 12]
with RAHS basis functions (p|€2) by the orthog-

onal transformation

FF' _ -1
B = E UrpBpy Up, e
,p’

Jmp

(20)

At m =m/, B,y = Byd,y and explicit expressions
BFF' at even J have the form

ppp, tut
s=1/2,8=1/2

=0 FK=1

for

(21)

pre L[ By+3Bu V3(B, - Bl
1 \Vv3B 3B, + B,

s=1, S—1/2

P =1/2, F,=3/2
gre_ 1 By+2By \/i(Bg—Bu)
3\vaB 2B, + B,

s=1,5=3/2
Fi=1/2, F, =3/2
—V5(Bg — Bu)
B, + 5B,

BEF _ 1 5B, + By,
6 _\/B(Bg - BU)
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141
3
10 -
6_
N=6-12
| 2 "0 B oooBoch oa g oR3HY
N=4%
21 ]
N=2 {AE, =0.1820 eV
T R AR TTY B AT T ETY R R A T T ST AT A T ETY B A SR T T]
1073 1072 10! 100 101 102
81,eV

Fig. 1. Partial-wave cross section o{{% (¢1) of elastic scattering (pp) r=o +p — (pp)r=0 +p, J = 0, S = 1/2, calculated with
different number N of RAHS basis functions. Circles and squares are the results from [24] and [4], respectively.

o135, 1079 cm?

1072 107!

Fig. 2. Partial-wave cross section o5’ (e2) of spin-flip (pp) r=

number N of RAHS basis functions. Circles and squares are

For odd J, these expressions differ from the displayed
ones by the substitution g < wu.

In Eq. (19), the matrix VAF
teraction V5 (2) is diagonal with respect to F, F’ at

p — 00.

, of spin—spin in-

We restrict ourselves in this paper to the approx-

imation in which matrix elements sz#;;n/ differ from
zerofori =j =1, m =m’ = 0 only, and, in addition,
we neglect the p dependence of this matrix:

FF’

Vioio(p) = Vfg%(oo) = Vrrr, (22)

102
&, eV

109 10!

o+p— (pu)r=1+p,J =0,8 = 1/2, calculated with different
the results from [24] and [4], respectively.

where diagonal matrix Vg is given by the equations

ppp, tut
AE,; (-3 0
s=1/2 Vi = 1 ;
0 1
Fi=0 F=1
(23)
dud
AE; (-2 0
s=1 Vrpr = =
0 1
Fy=1/2, F, =3/2
(24)
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633, 1078 cm?

0 00000,

1072 10! 109 10!

102
&, eV

231

Fig. 3. Partial-wave cross section o34’ (£2) of elastic scattering (pu) =1 +p — (pp)r=1+p, J = 0, S = 1/2, calculated with
different number N of RAHS basis functions. Circles and squares are the results from [24] and [4], respectively.

G{f, 10720 ¢m?
151

10

0 o—0 0 —0

102 107! 100 10!

102
&, eV

Fig. 4. Partial-wave cross sections o7 (¢2), J = 0—4, S = 1/2 (solid curves) and total cross section o'y (2) (dashed curve)

of elastic scattering (pu) F=0 + p — (pi) F=0 + p. Squares are the results from [4].

4. CROSS-SECTION CALCULATIONS solutions have the form [2]

To calculate K matrix K79 = {K3%,} = {KJ§ F280) = 0,

in the case of two open channels o, 8 = 1,2, which '

corresponds to two spin values in the initial F' = F,

i=1-N, m=0-/J,
a,0=1,2

and final F’ = Fj states, one has to find the regular fiaﬁ(p) - 0, i=2-N, m=0-J
at p — 0 solutions ffm(p) = fﬁg(p) of the truncated P 0 f=1.2

system (19) with 5 < N. Two linearly independent ’ T

solutions f]arf(p) of that system enumerated by in- ﬁ)ﬁ(P)p = 0050‘5 sin(ggp — mJ/2)

dex o = (1,2) correspond to the different initial spin

1/2 [~ JS
states F' = F,. The boundary conditions for these + (9a/ap) / K45 cos(qap — 5 /2).

PHYSICS OF ATOMIC NUCLEI Vol.67 No.2 2004
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ok iAEd=0.0485 eV
1l 1 L il 1 Lol Lol Lol
102 107! 10° 10! 102
€,eV

Fig. 5. Partial-wave cross section {7 (1) of elastic scattering (dp)p=1/2 +d — (dp)p=1/2 +d, J = 0,5 = 1/2, calculated
with different numbers N of RAHS basis functions. Circles and squares are the results from [24] and [4], respectively.

107! 10° 10! 102
&, eV

Fig. 6. Partial-wave cross section U{QS(EQ) ol spin-flip (dp) p=1/2 +d — (dp)p=3/2 +d, J = 0,5 = 1/2, calculated with
different numbers N of RAHS basis functions. Circles and squares are the results from [24] and [4], respectively.

Here, g2 = &, is the relative kinetic energy of frag- K75 [24];

ments in the channel F, p i 5a[3(DJS)2 n (K;{S)Q
ea=F — F,, (26) Tap (5) = %(2‘] + 1) (1 — DJS)2 T (G‘]S)Q’ (27)

where E, = E19(00) + V, is the energy of the ground ~ where e = (g4, €p) is scattering energy reckoned from
state of (ap)p atom with atomic spin F = F,, V, = FE, or Ejg,
: o —2

VFQFQ is dgﬁned by Eq.(22),and Jg = J + O(M~%) DS = KISKIS — K{SK{S,
is defined in [2]. 7S 7S 7S
G = Kijy + K3,

For given total angular momentum J and total ko = (2ua)1/2qa - (gluaga)l/{
spin S, the cross sections agg(z-:) of the transition —1

-1 —1
i . He = (Mg +m +my .
F, — Fjp are expressed in terms of matrix elements ¢ (e 2 ’

PHYSICS OF ATOMIC NUCLEI Vol.67 No.2 2004
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645, 10720 cm?
30

25
20
15k

10

0_

1l 1 Lol 1 Lol 1 Lol 1 Lol

1072 107! 10° 10! 102
&,, eV

Fig. 7. Partial-wave cross section o35 (2) of elastic scattering (dp) p—z/2 +d — (dp) pr=3/2 +d, J = 0, S = 1/2, calculated
with different numbers N of RAHS basis functions. Circles and squares are the results from [24] and [4], respectively.

Gé‘g, 10720 cm?

24+ 011
16}
8_
0
1 Lol 1 Lol 1 Lol 1 Loyl
1072 107! 10° 10! 102

&, eV

Fig. 8. Partial-wave cross sections o3 (e2) of elastic scattering and spin-flip for the process (du)r, +d — (dp)ry + d,
J=1,8=1/2, Fy =1/2, F, = 3/2. Squares are the results from [4].

The partial-wave and total cross sections averaged  expressions for cross sections aiﬁ have the form

over all possible S at given F,, and Fg have the form

(tw)p +t — (tp)pr +t (F1 = 0, Fp = 1), the explicit T2

J JS=1/2 7 JS=1/2
> 11 = 011 » 012 = 0p ; (30)
J 5 _Js _ J
Top = gWaso-a,@7 Taf = JZOUaﬁv (28) o ngszl/z o }UJ5=1/2 n ZUJS=3/2
i = 21 = 3921 v 022 = 302 3722
where
s 25 + 1 For the collisions (du)p +d — (dp)pr +d (Fy =
Was = (2Fa 4 1)(28 + 1) <29) 1/2, F2 = 3/2), we obtain
is the statistical weight of the state with total spin S g _ L gs=ip n 2 js=3/2 (31)
in the collision of atom (au)g, and nucleus a with 911 = 3% 371 ’
spin s. For the collisions (pp)p +p — (pp) pr + p and ;1 gs—ip 2 gs—ape

3 012 + 3 012 )

PHYSICS OF ATOMIC NUCLEI Vol.67 No.2 2004
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o33, cm?

10—19 -

L

10—20

10—21

107>

10—23

102 107!

10° 10! 102

S

Fig. 9. Partial-wave cross sections 31 (€2), J = 0—5 (solid curves) and total cross section 5 (e2) (dashed curve) of spin-flip
(dp) p=s/2 +d — (du) p=1/2 + d, S = 3/2. Circles and squares are the results from [24] and [4], respectively. (Resonance shift

for J = 3 is presented separately.)

635, 107 cm?

107! 10° 10! 102

1072

Fig. 10. Partial-wave cross sections o35’ (£2), J
scattering (dp) p—3/2 +d — (dp) p=3/2 +d, S

&, eV

S

= 0—3 (solid curves) and total cross section o5, (e2) (dashed curve) of elastic
= 5/2. Squares are the results from [4].

L gs=1/2 | 1 js=3/2 ~ ~ , -

oy = R /24 30 2 y RAH]Snlia:ts func;(}ns gojmf(gﬂx,ﬁ)Q(]) and r?a)

1X elements . ) , : o ] s

g 1 gsmip 1 gs—3p 1 _ys—s)2 7 ZTP’]]mp g impjm'p P |
Oy = £03 + 305 5022 . R imip (p) were calculated on the orthogona

5. NUMERICAL ALGORITHM

To calculate the RAHS basis functions, matrix
elements, and the K matrix, a numerical code has
been developed that can be used to calculate the char-
acteristics of various three-body systems. The main
features of the numerical algorithms were outlined
in[11, 14].

PHYSICS OF ATOMIC NUCLEI

finite-element grid [V, x Ny] using the second-order
Lagrange elements. The calculations were performed
on theinterval of p[0.01v2M, 30v/2M |. The grid step
Ap along the interval was adapted according to [14].
The number of nodes in y and 9 was taken equal
to N, = 131 and Ny = 61 for calculation of all mesic
molecular systems. This provided an accuracy of cal-
culation of ~107° for all matrix elements. The ac-

Vol.67 No.2 2004
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G‘]’]S, 10720 cm?

12

M AE,=0.2373 eV

235

102 107!

JS

Fig. 11. Partial-wave cross section oy}

109

102
81, eV

10!

(e1) of elastic scattering (tpu)r—o +t — (tp)pr—o +t, J = 0,5 = 1/2, calculated

with different numbers N of RAHS basis functions. Circles and squares are the results from [24] and [4], respectively.

o3, 1072 cm?

8

“\u\

1072 107!

JS

Fig. 12. Partial-wave cross section oy

10°

10!

(e2) of elastic scattering (¢p) F—=o +t — (tp)r=1+1t,J = 0,5 = 1/2, calculated with

different numbers N of RAHS basis functions. Circles and squares are the results from [24] and [4], respectively.

curacy of calculation of potential curves Ejy,,(p) (8)

is ~107% for 0 < p < 10v/2M and becomes worse
(~107?) with increasing p. Matrix elements were
calculated with the set of basis functions m = 0,4 =
1-6; m =1, ¢ = 1 for gerade (p = g) and ungerade
(p = u) states, respectively, for the pup, dud, and tut
systems.

The final results have been obtained with the num-
ber N =12 of RAHS basis functions ¢jmy(p|x,?)
(7)withm = 0, j < N = 6 for gerade and ungerade
states. The test calculations for the systems pup and
dud at J =1 show that the contributions of basis
functions with m = 1 or j > 6 are less than 2%, and

PHYSICS OF ATOMIC NUCLEI Vol.67 No.2 2004

they have not been taken into account in the final
results.

To solve the system of radial equations (19), we
use 300 finite elements on the interval 0 < p < p* =
500. This provides results with a relative accuracy of
~10~%*in a wide region of collision energies excluding
a narrow interval (=~0.01 eV) near threshold e = AFE;,
of the collision tu + t.

The reliability of calculations is also confirmed by
the symmetry of the K matrix: in our calculations

KJ5 = K3 with a relative accuracy of ~107°.
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107!

1072

109 10! 102

&, eV

Fig. 13. Partial-wave cross section o35’ (£2) of elastic scattering (tu) p=1 +t — (tu)r=1 +t,J = 0, S = 1/2, calculated with
different numbers N of RAHS basis functions. Circles and squares are the results from [24] and [4], respectively.

61}, cm?

10—19

1072

10—21

]
6 8 10
&, eV

Fig. 14. Partial-wave cross section o1’ (€2) of the scattering process (tu) p=1 +t — (ti) F=o + t, S = 1/2 in the vicinity of
resonance in the partial-wave J = 2 at e; & 4 eV. Circles and squares are the results from [24] and [4], respectively.

6. RESULTS AND DISCUSSION

The calculated elastic and spin-flip cross sections

075 (€q) are presented in Figs. 1—13. The first chan-

nel corresponds to the spin state F; = 0 for pu and
tp atoms and Fy = 1/2 for du atom. For the second
channel, F» = 1 for pu and tu atoms and Fy = 3/2
for dp atom. The results obtained demonstrate the
rapid convergence upon increasing the number N of
RAHS basis functions used and fairly good agree-
ment with the results obtained in the improved two-
level approximation [24] (circles), in the adiabatic-
expansion method [4] (squares), and in the hyper-
spherical close-coupling method [19] (in Fig. 1, re-

PHYSICS OF ATOMIC NUCLEI

sults of [19] for pu + p collision coincide in the scale
of the figure with those of [4]). The significant dis-
crepancies take place for the tut system (see Figs. 12
and 13) and for the dud system with J = 3 (Fig. 9).
Threshold phenomena at e = AE, (see Figs. 1, 5,
and 11) need special treatment, especially more ac-
curate asymptotic expressions for the effective poten-
tials. On the average, the results of the calculations
in the improved two-level approximation [24] agree
with our results with a precision of 10—15%, and
results obtained in the adiabatic approach [4] agree
with a precision of 1—5%. However, in the vicinity of

Vol.67 No.2 2004
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Table 1. Spin-flip rates X7/ and A, for the reaction (pp) p—1 +p — (pp) pr—o +p
£2,eV J=0 J=1 J=2 J=3 J=4 Ap
0.005 | 0.171 x 10! 0.202 x 10? 0.171 x 101!
0.010 | 0.171 x 10*! 0.431 x 103 0.171 x 101
0.100 | 0.172 x 10*! 0.840 x 10% 0.138 x 10° 0.172 x 101
0.500 | 0.162 x 10*! 0.169 x 10° 0.367 x 102 0.162 x 101
1.000 | 0.144 x 10! 0.773 x 10° 0.624 x 103 0.892 x 103 0.144 x 1011
5.000 | 0.878 x 10 | 0.293 x 108 0.779 x 10° 0.359 x 102 0.885 x 102 0.881 x 10%°
10.000 | 0.660 x 10*° | 0.117 x 10° 0.189 x 10% 0.383 x 10* 0.163 x 10° 0.674 x 10'°
50.000 | 0.317 x 101° | 0.949 x 10° 0.163 x 1011 | 0.560 x 10® 0.578 x 10° 0.204 x 100
100.000 | 0.227 x 10'% | 0.135 x 1019 | 0.528 x 1019 | 0.144 x 10'° | 0.422 x 10® 0.104 x 10!
Table 2. Spin-flip rates \;] and \q for reaction (dp) p=s/2 +d — (dp) pr=1/2 + d*
g2, eV J=0 J=1 J=2 J=3 J=4 A
0.005 | 0.371 x 10® 0.181 x 106 0.373 x 108
0.010 | 0.387 x 108 0.416 x 10° 0.391 x 108
0.100 | 0.591 x 108 0.151 x 108 0.379 x 10° 0.741 x 108
0.500 | 0.102 x 10° 0.299 x 10° 0.269 x 10° 0.366 x 102 0.401 x 10°
1.000 | 0.130 x 10° 0.875 x 10° 0.555 x 10* 0.314 x 10° 0.100 x 100
5.000 | 0.205 x 10° 0.383 x 10%° | 0.620 x 107 0.128 x 10° 0.258 x 10* 0.404 x 10'°
10.000 | 0.229 x 10° 0.456 x 10%° | 0.100 x 10° 0.115 x 107 0.511 x 103 0.489 x 10'0
50.000 | 0.190 x 10° 0.323 x 10% | 0.493 x 101 | 0.266 x 1019 | 0.887 x 10® 0.111 x 10!
100.000 | 0.137 x 10° 0.227 x 10'% | 0.526 x 1019 | 0.922 x 108 0.341 x 10'% | 0.114 x 10!

* The contribution A7 = 0.181 x 10° at J = 5 at eo = 100 eV is much less than at J = 4. It is included in A\q.

resonance (see Fig. 14), these discrepancies became
substantial.

The partial-wave A/ and total \, spin-flip rates are
defined by the relations
Xa=>_ AN,
J

where o3, is the averaged spin-flip cross section (28),
(30), (31); v, is the relative velocity of the (ap)p, + a
system; and ng = 4.25 x 10?2 cm~3 is the density of
liquid hydrogen.

(32)

J J
)\a = UleanO,
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The rates A\, are presented in Fig. 15 and in Ta-
bles 1—3: at collision energy €2 <1 eV, A\, = const
and A; & const; Ay &~ const only at e5 < 0.01 ¢V and
it changes drastically: ~30 times in the energy range
0.01-1.0 eV and ~500 times in the energy range
0.01—100 eV; the quite specific resonance structure
takes place at 3 > 1 eV. The rates A, are in good
agreement with results of [4, 24, 25, 19]. At the
same time, the theoretical value of A4 for the reaction
(dp)p=3/2 +d — (dp) p—1 /2 + d still differs substan-
tially (~40%) from the experimental one [26]. The
reason for such a large difference is not yet clear.
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Table 3. Spin-flip rates A/ and\; for reaction (tu) p—1 +t — (tp)pr—o + ¢

€2, eV J=0 J=1 J=2 J=3 J=4 e
0.005 | 0.119 x 100 0.119 x 1019
0.010 | 0.119 x 10*° | 0.552 x 10* 0.119 x 10%°
0.100 | 0.120 x 10'*° | 0.890 x 10° 0.120 x 10'°
0.500 | 0.122 x 10'° | 0.131 x 107 0.108 x 10° 0.122 x 1010
1.000 | 0.119 x 1019 | 0.487 x 107 0.204 x 107 0.119 x 10'°
5.000 | 0.942 x 10° 0.667 x 108 0.377 x 1019 | 0.124 x 102 0.478 x 1019

10.000 | 0.785 x 10° 0.133 x 10° 0.164 x 10 | 0.997 x 102 0.255 x 100

50.000 | 0.420 x 10° 0.236 x 10° 0.972 x 10° 0.125 x 10° 0.270 x 10! 0.163 x 1019

100.000 | 0.307 x 10° 0.231 x 10° 0.495 x 10° 0.100 x 106 0.216 x 10° 0.103 x 100

Table 4. Elastic cross sections o1 of the reaction (py)r=o + p — (pu) F=0 + p at room temperature (collision energy

e =0.04eV)
References o11, 10721 cm? Remarks
Zeldovich and Gershtein, 1960 [27] 1.2 Scattering length approximation
Cohen et al., 1960 [28] 8.2 Adiabatic expantion
Dzhelepov et al., 1965 [29] 167 £+ 30 Experiment
Alberigi et al., 1967 [30] 7.6+0.7 Experiment
Matveenko and Ponomarev, 1970 [31] 2.5 Two-level adiabatic approximation
Matveenko et al., 1975 [32] 0.23 Two-level adiabatic approach
Ponomarev ef al., 1979 [33] 35 “Simple approach” in two-level adiabatic approximation
Bertin et al., 1978 [34] 14+2 Experiment
Melezhik et al., 1983 [35] 19 Adiabatic approach
Bracci et al., 1989 [4] 41 Adiabatic approach (=500 basis functions)
This work 40.2 AHSA (12 basis functions)
Elastic  scattering process (pu)r—o+p —  mation of the elaborate and tedious calculations that

(pi) F=o + p for many years was a subject of experi-
mental and theoretical investigations, whose contro-
versial results are presented in Table 4. We hope that
our calculations will help to close a long discussion of
this problem.

One of the main results of this paper is the confir-

PHYSICS OF ATOMIC NUCLEI

were performed in the adiabatic representation [7].
These calculations were used as a basis for the prepa-
ration of the atlas of mesic-atom scattering cross
sections [36], which was used for the description of
muon-catalyzed fusion kinetics. This paper gives an
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Fig. 15. Spin-flip rates Aq(g2) (32) for the

independent cross-check of all these calculations and
confirms almost all results obtained previously.
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Abstract—The evolution of a fissile nucleus from transition fission states specified at the saddle point of
the deformation potential to fission states associated with prescission configurations of this nucleus and
characterized by a pearlike shape of the nucleus is studied within the quantum-mechanical theory of fission
processes that is based on the time-independent formalism. The coefficients of P-even asymmetries in the
angular distributions of a light fragment and a third particle are calculated on the basis of the idea of the
one-step mechanism of the production of a third particle and two fragments from the ternary fission of nuclei
that is induced by polarized thermal neutrons. In order to confirm the developed concepts, it is proposed to
repeat, at a higher level of statistical accuracy, experiments devoted to observing left—right asymmetries

in the angular distributions of alpha particles from the ternary fission of nuclei.

ka/Interperiodica”.

1. INTRODUCTION

Correlations of the P-even type in the binary fis-
sion of nuclei that is induced by polarized thermal
neutrons were discovered by the authors of [1-3],
who studied the coefficients (ab@) associated with
the emergence of left—right asymmetry of the form
nir - [ng X o] in the angular distributions of fission
fragments, where ni g = kpp/krp, ng =k, /ky, and
|o| = 1; here, k,, and o are the neutron wave vector
and spin, respectively, while ky r is the light-fission-
fragment wave vector. For 233U target nuclei, the

coefficient (aLF) proved to be
(arp)? = —(0.233 £ 0.025) x 107%. (1)

In[4, 5], an experimental investigation of the anal-

ogous coefficient ()¢ for the ternary fission of 23U
nuclei resulted in estimating it at

(afR)f ~ —(0.57 £ 0.13) x 1073, (2)

whence one can see that the sign of this coefficient is
identical to that of the coefficient in (1) and that its
magnitude is commensurate with that in (1) and is
independent of the energy of a third particle.

In the angular distribution of a third particle from
the ternary fission of 233U nuclei that is induced by
polarized thermal neutrons, there appears the coef-
ficient (aTP) of left—right anisotropy, which is as-
sociated with correlations of the form nrp - [ng X o]
(where ntp is the unit vector aligned with the wave

© 2004 MAIK “Nau-

vector ktp of the third particle), the value of this
coefficient being [4]

(afp)’ =

This estimate was obtained for the case where an
alpha particle was taken to be the third particle. The
value in (3) is much less in magnitude than the analo-
gous coefficient (aLF) in(2)foralight fragment orig-
inating from the ternary fission of a 233U nucleus and
is uncertain at the statistical-accuracy level currently
achieved in experiments.

A theoretical investigation of P-even correlations
for binary nuclear fission was performed in [6], where

it was shown that the scale of the experimental coef-

ficients (ab@) can be qualitatively explained.

On the basis of the ideas developed in [7—9], it
was concluded in [5] that the coefficient (ozbl?) of
left—right asymmetry for a light fragment from binary
nuclear fission is close in magnitude to the analogous
coefficient (aLF)t for ternary fission. At the same time,
two situations proved to be poss1ble in [5] for the
values of the coefficients (afp)* for a third particle,

depending on the mechanism of ternary nuclear fis-
sion. For the one-step mechanism, in which case
two fragments and a third particle emerge simul-
taneously upon a double rupture of the neck of a
fissile nucleus, the asymmetry coefficients (ak?) and
(a%ﬁ) are close in magnitude. But for the two-step
(sequential) mechanism of ternary fission, in which
case a single rupture of the neck of a fissile nucleus

—(0.08 £ 0.08) x 1073, (3)

1063-7788/04/6702-0241$26.00 © 2004 MAIK “Nauka/Interperiodica”
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leads to the formation of two fission fragments at the
first stage, whereupon one of these fragments emits

a third particle, the coefficient (a%g)t must be close
to zero because of the presence of a large number
of statistically independent channels of third-particle
emission.

In[5], it was assumed that the experimental value

of the coefficient (a%g)t in (3) is indicative of its

proximity to zero; on this basis, it was concluded there
that ternary nuclear fission proceeds via the two-step
mechanism.

On the basis of the ideas of the theory of open
Fermi systems [10], methods developed in analyz-
ing the angular distributions of protons emitted by
polarized deformed nuclei [11, 12], and A. Bohr’s
concept of transition fission states [7], a quantum-
mechanical approach to describing binary nuclear fis-
sion was proposed in[13, 14]. This approach, supple-
mented with the use of the adiabatic approximation
for the asymptotic region of the fissile system, made it
possible to obtain an explicit dependence of partial-
width amplitudes and potential fission phase shifts
on the spins, relative orbital angular momenta, and
orientation of the axes of fission fragments. In [15],
this approach was generalized to the case of ternary
nuclear fission.

On the basis of the ideas developed in [13—16],
the coefficients of P-odd asymmetries in the angu-
lar distributions of fragments originating from binary
and ternary nuclear fission were explored in [17], and
arguments in favor of the one-step mechanism of
ternary nuclear fission were adduced there.

The present study is aimed at analyzing the coef-
ficients of left—right asymmetry in binary and ternary
nuclear fission with the aid of the concepts formulated
in[13—15, 17] and at investigating, on this basis, the
mechanisms of binary and ternary nuclear fission.

2. STRUCTURE OF THE WAVE FUNCTIONS
FOR NEUTRON RESONANCES AND THEIR
FISSION WIDTHS

As was shown in [6], P-even asymmetries for the
binary fission of unpolarized target nuclei character-
ized by a spin I, its projection My onto the z axis of the
laboratory frame, and a parity = and exposed to po-
larized thermal neutrons inducing this fission process
arise because of interference effects in the angular
distributions of light fission fragments emitted from
s- and p-wave neutron resonances that are populated
upon neutron capture by a target nucleus. We de-
scribe a neutron-resonance state in terms of a wave
function WJeMem™s and a complex energy EJo™ =
(Eome —iT'Jo™s /2), where EJo7 is the real part of

the resonance energy; I'Je™ is the total decay width
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of the resonance; the index o takes the values s and p
for s- and p-wave neutron resonances, respectively;
and the indices J,, M,, 75, and o specify, respec-
tively, the spin, its projection onto the z axis of the
laboratory frame, parity, and other quantum numbers
of the neutron resonance in question with 7, =7
and 7, = Ty = —m. Because of the dynamic enhance-
ment of the Coriolis interaction effect on the structure
of neutron-resonance states, there occurs, in a de-
formed axisymmetric compound nucleus, a complete
mixing of neutron-resonance states described by the
wave functions \I!g‘}(]\f"”" and characterized by a fixed
value of the spin projection K, onto the symmetry
axis of a compound nucleus [18], this axis being
aligned with the 2’ axis of the intrinsic coordinate
frame associated with this nucleus. Therefore, the
neutron-resonance wave function WJoMo7o has the
form

JoMsmo __ § J, Jo Mo
\I]Uo' oo — a}((ra\ljo-%aa (T’ (4)
Ko

where the signs of the coefficients aigd are distributed

at random, while the mean values of their moduli are

equal to (2.J, 4+ 1)~%/2. The total fission width of the
neutron resonance specified by the wave function in
the form (4) can then be represented as [18, 19]

Lgrme = (agg, )*Tog. (5)
Ko

Using Bohr’s concept of transition fission states
[7], one can isolate, in the wave function \Ilg(;(]\f"”",
the component that is related to the wave functions
\IJ{;(]Y"”” for the above transition states r as [6]

Jo Moo __ § : JoTo, JoMoTo 2 : JoTo \[yJo MoTo

\IIJKU - ng USOI/K,, + bTO’Ko-\I/TKO- ’
v T

(6)

where N wave functions gpi”KJ‘f””” that are associated

with nucleonic particle—hole excitations of the nu-
cleus form a multinucleon basis of random Wigner
matrices [7]. The coefficients big}r("d and br‘]g}}‘; in (6)
have a random character, the mean values of their
squares being equal to 1/N. The transition fission
states are specified at those values of the deformation
parameters 3y (A = 2,3,4,...) of the compound nu-
cleus that correspond to the saddle point of the defor-
mation potential, 8\ = f\ad; as a matter of fact, these
are doorway states for physical nuclear-fission chan-
nels, and this explains the large fluctuations of the
fission widths of the neutron resonances involved [7].
The evolution of a fissile nucleus from transition fis-
sion states to asymptotic states, where there appear
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fission fragments, occurs in accordance with the dy-
namical quantum-mechanical scenario.

In order to explain P-even and P-odd asymme-
tries in binary nuclear fission induced by polarized
neutrons, Sushkov and Flambaum [6] assumed that
the nucleus undergoing fission has a pearlike ax-
isymmetric shape in transition fission states. Their
assumption, which was crucial there for this explana-
tion, was criticized by Bunakov and Gudkov [8, 9] in
view of the fact that, as a rule, the nucleus undergoing
fission does not have static octupole deformations at
the saddle point of the deformation potential, where
one defines [7] transition fission states, such deforma-
tions appearing only in prescission nuclear configura-
tions.

In developing the quantum-mechanical theory of
the fission process, it was shown [13—15] that partial
fission widths are controlled by the structure of the
wave function for a fissile nucleus in the vicinity of the
point of its scission into fission fragments (R =~ Rs),
where R = Ry — Ry, R; being the c.m. coordinate of
the 4th fission fragment (i = 1,2, A; < As). Obvi-
ously, this coordinate is that of the relative motion of
the fragments, while the solid angle Q = 6, ¢ spec-
ifies the direction of the radius vector R in the lab-
oratory frame and, simultaneously, the direction ny g
of light-fission-fragment emission. The trajectories
along which the nucleus undergoing fission travels
from the saddle point to the scission point R = Rg.
may lie in different valleys of its deformation poten-
tial. If one introduces a set of wave functions W;/#'™

corresponding to states of a fissile nucleus in the
above valleys near the point R = Ry at deformation-
parameter values associated with the multipolarity
1 B = By, and with various fission modes ¢, then,

in the vicinity of this point, the wave function for
the nucleus undergoing fission and arising upon its
evolution from a transition fission state at the saddle
point with the wave function \I/qJ%“ to various fission

modes ¢ admits the representation [19]

Zcq’/‘K qJIJ‘(/Iﬂ—v (7>

where the coefficients chK are of a dynamical char-
acter. For fragment-mass- and fragment-charge-
asymmetric fission processes, the wave function
W™ describes a fissile-nucleus state where the

nucleus has a pearlike axisymmetric shape and where
static octupole (u = 3) deformations differ from zero,

355 # 0. The total fission width ['Jomob with respect

to the binary fission of a 0 J, M, 7, neutron resonance
can then be represented in the form

=) (afe )2 (0loqe P (clere )’ Tl (8)
Kosrq

Jomab
FUCFCF
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where Fq‘];g;"b is the total fission width with respect
to the mode where the nucleus undergoing fission
has the wave function \Ilq‘];(](\f””. In turn, the quantity
Fg;(:”b is determined by the sum of partial fission
widths [13, 14]; that is,

=2 T = X

eJ1J2j L

Jaﬂo'b JoTeb
F qKscJ1J2j L (9>

where J; is the spin of the ith fission fragment; L
is the relative orbital angular momentum of fission
fragments; j is an intermediate spin that is deter-
mined by the vector composition of the spin Jy and
the orbital angular momentum L; and the index ¢
combines the spin projections Kj;, the parities m;,
and other quantum numbers o;, including the atomic
weights A;, the charges Z;, the energies E;, and the
deformations (3,; of fission fragments. In (9), primary
fragments are taken to mean fission fragments, the
term “primary fragments” being associated with the
fact that the rupture of the nucleus undergoing fission
leads to the production of these fragments in states
that are strongly nonequilibrium in the values of their
deformation parameters ;. As the result of their
subsequent evolution, the fragments go over to highly
excited states that are equilibrium in the values of
their deformation parameters, whereupon they under-
go deexcitation, emitting neutrons and gamma rays
and transforming into final fission fragments that oc-
cur in the ground or long-lived isomeric states usually
recorded by detectors.

[f use is made of the concept of a pearlike axisym-
metric shape of the fissile nucleus in the prescission
state, the wave function for this state can be repre-
sented in the form [7]

12J +1
JM7r _

% (1~ Sxc0){ D (@G (€)
(D DY (6}
61 0VZD 0 ()X 50 (€],

where D{,-(w) is a generalized spherical harmonic
that is dependent on the Euler angles (o, 8,7) = w
characterizing the orientation of the axes of the fissile
nucleus with respect to the axes of the laboratory
frame. The intrinsic wave functions for the fissile nu-
cleus, xg,(§) for K = 0 and xgx (§) for K # 0, which
are dependent on the intrinsic coordinates & of the
nucleus, have the form

(10)

(a=m)

u fi e 12
an(g)—f(¢qn(§)+ pqu(f)) ;

A=)

Xf{K(é)*T(%K( )+ mpgr(§))i 2,

(11)
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where p is the operator of the reflection of spatial
coordinates and the functions v, (§) and ¥4k (€) are
not parity eigenstates and correspond to a pearlike
shape of the fissile nucleus. We also have Xg?(é’) =

TXqx (§), where 7 is the time-inversion operator and
Xgn(€) is an eigenfunction of the operator 7 for the
17[7]

In turn, the wave function \I!gzj}ém(wi,fi) for the

ith axisymmetric fragment that does not involve static
odd deformations, including octupole deformations,
can be represented in the form (10), where the indices
Jgm Kwé are replaced by the indices J;0;m; K;w;&; and
where the intrinsic wave functions x7, X;rT(* and xg,

eigenvalue n = (—

are replaced by the respective intrinsic wave functions
Xoik,» X% and x7¢,,. for fission fragments.

With the aid of the methods developed in [13, 14],
it can be shown that the fission width Fg}gc (9) is
independent of the spin J and the parity 7 of the
nuclear state in question, but that it is determined
exclusively by the structure of the wave functions for
this state and for the fission fragments in the channel ¢
[see Egs. (10) and (11), respectively]. Therefore, the
neutron-resonance fission width T'Je™® (8) can be
represented in the form

et = Y7 (age ) (bfare ) (ke Thce (12)
Ksrqce

3. ANGULAR DISTRIBUTIONS
OF FRAGMENTS ORIGINATING
FROM BINARY NUCLEAR FISSION
INDUCED BY POLARIZED THERMAL
NEUTRONS

Following [6], we choose the z axis of the labo-
ratory frame to be aligned with the direction of the
polarized-neutron spin o and represent the incident-
neutron wave function in the form

) =4m Z i (k) (13)

Jizlnmn

e X1/2 1/2

x lejnmn(Qk ) In f/Qm 1/2 Jlnjz(r”’a-)’

where ®j; ; (ry, o) is the spin—orbit wave function
for a neutron having an orbital angular momentum
ln, its projection being denoted by m,,, while the solid
angle Qy = specifies the direction of the vector kj, in the
laboratory frame.

Relying on the theory of resonance nuclear re-
actions in the formulation that was given in [16]
and which takes correctly into account the symme-
try properties of wave functions under time inversion
and using the formalism that was developed in [6,
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13, 14], we find that, in the c.m. frame, the differ-
ential cross section for (n, f) reactions of polarized-
neutron-induced binary fission of unpolarized target
nuclei having a spin I and a spin projection M7 onto
the z axis of the laboratory frame can be represented

in the form

dUb (0 QO) 27‘(‘2
nf\" 2
—_— = A, (0
a0 k% (21_’_1);’ M[( 7()0751752)’ )
I

(14)
where the amplitude Ay, (0, ¢, &1, &2) is given by

AM[(Hv ()0761752) = Z

sdsKsqc

Jsm JsT
x § :brsK qu \/ qKSc
uiﬂ DT (0, 0,61, E2)

JpMp Jiz J,
CI]MIjzcll/2m 1/2Y1mn (Q)ay

Js M Js
CIl/2M11/2Y00(Qk)aKs

(15)

DY

pJpKpjjzmngc
X§ :ber qu

In Eq. (15), we have used the notation

quﬂ' V F;];Lﬂeiém
s

Jp My
qK pj ZJC\I/ o p ( 7()0751752)‘

= e (16)
E—El™+ 25
2
JpT s ‘n
e\ L€
Upj = T
E—EP" +
2
\IIJMTF( 7()0761752) (17)

= 2J+1{DMK(30,49 0) fe(&1,62)

+ (_1)J+K7TDM7k(§07 07 O)f(_:(gla 52)}7

where F is the total c.m. energy of the nucleus under-

going fission; v/ '™ and p]n " are the amplitudes

of the width of, respectively, s- and p-wave neutron
resonances; 04, and dp;, are the potential neutron

phase shifts; 62 is the potential fission phase shift in
the channel ¢; and the functions f. and fz are defined
in terms of the fission-fragment wave function (11)
and those that are time-conjugate to them as

fe(61,62) = X5, 1, (§1)X00 1, (§2)
+ (= 1)J1+K1XUIK1(fl)XagKQ(&)
+ (=D)HENT ke (GO (&)

(18)

Vol.67 No.2 2004



P-EVEN CORRELATIONS IN BINARY AND TERNARY NUCLEAR FISSION

+ (_1)J1+J2+K1+K2X;—Kl(fl)X;—KQ(f2)a
these functions being different from zero under the
condition that the indices K; = 4| K| of the functions

Xo, i, and X2 satisly the constraint 3, K; = K. In

constructing expression (15), it was considered that
the potential fission phase shifts 62 are independent
not only of the spin and parity of the fissile nucleus but
also of the spins, parities, and orbital angular momen-
ta of fission fragments [13, 14]; also, use was made of
rather accurate [20] A. Bohr’s approximation [7] for
the angular distributions of fission fragments. Sub-
stituting the amplitude given by (15) into (14) and
performing integration with respect to the intrinsic
variables &1 and &, of fission fragments with allowance
for the orthonormality of the functions X7, (&) and

Y

X27(&), we reduce the differential cross section (14)
to the form
do? (0, p) T 1
nf\’» _

4
where (%2(?7;1)%10) is the total cross section

for (n, f) reactions of binary nuclear fission induced
by polarized thermal neutrons with allowance for only
s-wave neutron resonances, the quantity Ag being

1 Jo\2pdem s
A= > @J+ D(ag )bk bl
ss' JsKsrq
X (e )T Re (wl ™ (uli ™))

The term A, (0, ¢) appearing in (19) and determining
the character of P-even asymmetries has the form

Al((g,@) = Z Q(J57quj7K87I)Fng
spJsJpjKsmngq

(20)

(21)

Jsm () IoT\x _Js Jp
X Re{uss (ups ) a3 a%l.

Jpm  JpT
xS (Ve bk o, ) Yioma (¥, (2)

r

m 47

2
X (011/2?11"/2(1/%%)) (1) 3 },

where
Q(Jsajpvijsvl) :2(2JS+1)(2JP+1) 2j+1
(22)
J, T J,
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In (21), the index 7 labels that transition fission state
of the p-wave neutron resonance involved which, in
the vicinity of the nuclear scission point, transforms
into the same intrinsic state ¢ of the nucleus under-
going fission as the transition fission state r of the
respective s-wave neutron resonance.

Upon expressing the Cartesian projections of the
unit vector ny in terms of spherical harmonics de-
pending on angles that specify the direction of this
vector in the laboratory frame [21],

(e = | TV109) - Yul0,0)) (29)

(ng)y = \/?HYM(HMP) +Yi-1(0,9)};

(Ng). = \/%Ylo(éﬁ ®),

and employing similar formulas for the unit vector ny g
determining the direction of light-fission-fragment
emission, this direction being coincident with the di-
rection of the vector R by definition of this vector, we
can recast the quantity A4, (6, ) into a form where P-
even asymmetries are isolated explicitly. Specifically,

we have
)

Al (07 ()0) =
spJsJpKsjrg

Jsm ‘]pﬁ- Js Jp Jsm ‘]pﬁ— Jsm ‘]pﬁ—
x\/Isn \ Lin 0k ax bk bapre, Corke, Cor ke,
.= -1 =Jp7 |71
e T
2

Q(Jsv Jp7j7 Ksaj)FZKS (24)

X

E—E}™ + E—E"" +

X {(I‘lk . nLF) cose — ﬂjnLF : [nk X 0'] sin E},

where
1, j=1/2,
=4t =V (25)
-1/2, j=3/2;
E—E}™+ i
E-pr 4 D

In deriving Eq. (24), use was made of the fact that, for
thermal neutrons, the potential neutron phase shifts
dsn and dy,, are much smaller than unity.

Defining the coefficient of P-even left—right
asymmetry as
b

b

(aLF)b = ma (26)

where o8 and o are the differential cross sec-
tions (19) for the cases where a light fission fragment
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is emitted, respectively, along and against the direc-
tion of the neutron vector [k, x o], and employing
Egs. (19) and (24), we can obtain

o =4 2

Q(JS7 Jp)ju Ksu I)FZKS

spJsJpKsjrq
(27)
x AT Tyimade aze bl bl et et
> E_E:gfsﬂ_i_@ ! E_Egpﬁ_i_ iFép” -
X Bjsine.

In the simplest case where, in the vicinity of the
thermal point, only one s- and only one p-wave neu-
tron resonance are significant, their spins being de-
noted by Js and J,, respectively, formula (19) can be
significantly simplified with allowance for (24). The
result is

dO'z (0,0) ol .
J:T - ﬁ L+ A2y, () (28)
J

X (l’lk sNpFCcose — ﬁjl’l]_]:[l’lk X 0'] Sin&')},

where o8 is the total cross section for (n, f) reactions
involving the excitation of one s-wave neutron reso-
nance [17],

™ (2J54+1)
k22(2I +1) (

JsmbJsT
Fss ]'_‘87?1

stﬂ
E—E}l™? + <T>

o} =

S, (29)

and where ngspJp (7) has the form

b

. . Lok,
ngspJp(j) = Z Q(Jsv‘]pvijs’I)ﬁ
Ksrq $

(30)

T
o | B — gl 4 150
pjn 5 2
X FJST( J /L-]_:‘JPT_I'
sn 7 P
E—-E)7?
p + 2

Js JP Jsm Jpﬁ Jsm Jpﬁ-
X ag ay by bepre Corke Cokcys

the total width T'/s™ with respect to the binary fission
of the s-wave resonance being given by (8). In this
case, the coefficient (ab}i)b of left—right asymmetry
[see Eq. (27)] takes the form

) . 1
(o)== "dby 0 ()8 simez= - (31)
J
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If we assume that the fission widths of s- and p-wave
neutron resonances are determined by the only values
of the parameters K, r, and ¢, formula (31) reduces
to a formula similar to its counterpart in [6], the
distinction between these two being associated with
the difference in the definition of the phase ¢ in (25),
where the symmetry of neutronic widths under time
inversion and the properties of the potential neutron
and fission phase shifts are taken consistently into
account.

In general, formula (27) for the asymmetry coef-
ficient differs from its counterpart in [6], first, by the
inclusion of the Coriolis mixing of the spin projections
K in neutron resonances; second, by a clear defini-
tion of the potential fission phase shifts; and, finally,
by the inclusion of the evolution of a fissile nucleus
from transition fission states r to asymptotic states
q, in which the nucleus has already assumed pearlike
shapes.

The experimental values of the coefficients (ak?)b

of P-even left—right asymmetries in binary nuclear
fission induced by polarized thermal neutrons are
about 10~* [1—4], which is close to the ratio of
the neutronic widths of s- and p-wave neutron
resonances in the vicinity of the thermal point [6],

Jsm JpT ~ ~ —4
U5 /U0 =~ (knRa) = 3 x 10775,
where R4 is the radius that the nucleus undergoing
fission has in the region of the first minimum of the
deformation potential. Since the coefficients a{(ss and

b;{;}r(s for s-wave neutron resonances are close to,

this ratio being

respectively, the coefficients ai& and bg;;ss for p-
wave neutron resonances and since the phase ¢ is not
small, so that | cose| = |sine| [6], it follows from (27)
that the values of the coefficient (akg)b have a correct

. . Jsm JpT .
scale if the coefficients c;7- and ¢, 7} are quite close

in magnitude. From Eq. (8), it follows that, in this
case, the total fission widths of s- and p-wave neutron
resonances are also close. This implies that, at the
saddle point of the deformation potential, the energies
EJsmEs and BT of the JymrK, and J,aiKs
transition fission states, which have opposite parities
and which determine the fission widths of s- and p-
wave neutron resonances, must be higher than the
fission-barrier energy and that their differences must

. . Jeomr JpT
be quite small for the coefficients ¢;*% and ¢, 7x

to be close in magnitude. A detailed analysis of this
situation will be given in a subsequent publication.
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4. COEFFICIENTS OF P-EVEN
ASYMMETRIES IN TERNARY NUCLEAR
FISSION

Here, use will be made of the results presented
in [15], where, in contrast to time-dependent ap-
proaches traditionally applied in these realms [22], the
quantum-mechanical theory of ternary nuclear fission
is developed on the basis of the theory of open Fermi
systems [10] with the aid of the time-independent
formalism and the adiabatic approximation for a light
and the complementary heavy fragment in the asymp-
totic region of the nucleus undergoing fission into two
fragments and a third (lightest) particle. Under the
assumption that two fragments and a third particle,
which is taken to be an alpha particle, are produced
simultaneously through the one-step mechanism, the
double-differential cross section for the process in
which unpolarized nuclei bombarded with polarized
thermal neutrons undergo ternary fission can be rep-
resented in the form [16]

d?ot (0,0,03)  dot (0,¢) -
nfi\7o _ _nf\ 2
dQdQs  dQ |M(63)["-

(32)

Here, the differential cross section do ds(] #) | is given
by the formulas that are obtained from (19)—(25)
by replacing the binary-fission-channel index ¢GL,
where ¢ = 01 K109K5 and 8 = JyJ5j, by the ternary-
fission-channel index ¢BLIA, where [ is the orbital
angular momentum of the third particle with respect
to the center of mass of two ternary-fission frag-
ments and the index A specifies the dependence of the
fission-width amplitudes on the asymptotic energy
E,, of the alpha particle involved. Of course, this
entails the replacement of the fission width Fch of
the prescission state ¢ with respect to binary fission
by the fission width FEKC of the analogous state with
respect to ternary fission and the replacement of the
potential fission phase shiit 62 for binary fission by
the analogous phase shift &¢,, for ternary fission. The
amplitude M (63), which depends on the angle 65
between the directions of alpha-particle emission and
the emission of a light ternary-fission fragment, is

given by [15]
03) = > aiYio(6s),
1

where the coefficients g; are such that the distribution
| M (65)|? satisfies the normalization condition

[ @Ry =" la -
l

with Qg being the solid angle that specifies the di-
rection of alpha-particle emission in the laboratory

(33)

(34)
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frame. Using the expansion

and the theorem of multiplication of generalized
spherical harmonics [7], we can represent the distri-

bution [ M (63)|? in the form

M (03)[* = ZBEYEO 03) (36)
U *
=> B 7 Yen (Q3)Y 0 (8),
LM
where
(20 + 1)(20 + 1)
B‘_%:glgl’ i#60) \/ Ar(2L+1) (37)

In order to describe a P-even left—right asymme-
try of the form ki - [k, x o] that correlations be-
tween the direction of light-fragment emission and
the neutron vector [k, x o] induce in the angular
distribution of fragments originating from the ternary
fission of nuclei bombarded with polarized resonance
neutrons, it is convenient to fix the direction of third-
particle emission at an angle of 83 = 90° with respect
to the direction of light-fragment emission. In this
case, all harmonics corresponding to odd values of
L do not contribute to |M(63)|?; as a result, the

distribution [ M (63)|? is identical for the directions of
light-fragment emission along and against the vector
[k, x o]. For a light ternary-fission fragment, the
coefficient (afR)! of left—right asymmetry will then
be given by expression (27), where it is necessary to
make the substitutions corresponding to the transi-

do® (0, dot (6,
tion from %us(0:¢) to %y (0, ¢) i

n Eq. (32). Ii

the relative probabilities W, of alpha-particle emis-
sion in ternary fission, which are given by Wy, =
FZK /FqK , have approximately the same value for

all fission modes ¢, the asymmetry coefficient (aﬂ?)

will be close to the corresponding coefficient in (27)
for binary nuclear fission. For 233U fission induced

by thermal neutrons, it is of importance to refine the

value of the coefficient (ozbl?) in (2) experimentally,

since a comparison of this coefficient with the analo-

gous coefficient (ozbl?) in (1) would make it possible

to assess the dependence of the probabilities W, q on
the types of prescission configurations ¢ of the nu-

cleus undergoing fission. It is also of interest to study

the coefficients (Oébli) in the ternary fission of nuclei

like 235U and 239Puy, since the coefficients (au‘i) are
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already known for the binary fission of these nuclei
that is induced by polarized thermal neutrons.

Let us now consider, for a third particle emitted in
ternary nuclear fission, theoretical values of the co-
efficient (an) of P-even left—right asymmetry cor-
responding to a correlation of the form ks - [k, x o].
Experimentally, this coefficient was measured in [4]
without fixing the direction of light-fission-fragment
emission, in which case it is implied that the double-
differential cross section (32) is integrated over the
solid angle Q. If one considers that the spherical
harmonic Yj_,,, (2) appears in expression (21) for
the quantity A; determining P-even asymmetries and
integrates, over the solid angle €2, this harmonic mul-
tiplied by the function Y%,,(£2) appearing in the distri-
bution [ M (63)|? [see Eq. (36)], it is straightforward to
doy, (05, ¢3)

dQs

associated with the third particle, the formula that is
obtained from formula (19) [with allowance for (21)]

danf(e ®)

derive, for the differential cross section

for the differential cross section upon re-

placing the index b by the index ¢ and the function
Y1_m,, () by the function n3Y1_,,, (Q23), where 73 is

independent of m,, and is given by n3 = By+/47/3.

The coefficient (afp)! of P-even left—right asymme-
try in the angular distribution of a third particle is then
expressed in terms of the analogous coefficient for a
light fragment as

(o7p)" = ms(app)" (38)

[t should be noted that that the factor n3 in (38)
coincides with the factor n3 that was found in[17] and
which relates the coefficient of P-odd asymmetry for
a third particle to that for a light fragment in ternary
nuclear fission induced by polarized thermal neutrons.
For 233U fission, the value of the factor 73 was calcu-
lated in [15, 17] for the case where an alpha particle
was taken to play the role of a third particle, informa-
tion about the experimental angular distributions of
alpha particles being employed in those calculations.
The result was 13 = 0.116. Using formula (38) and

the value of the coefficient (afR)? in (1) for 23U target

nuclei in order to estimate (aug) we obtain

(afp)t = —(0.26 £ 0.03) x 1077, (39)
A comparison of the value of the coefficient (aT}E,)

in (39) for 233U with the corresponding experimental

value in (3) leads to the conclusion that the nonzero
value of the (a%g) in (39) could be observed as soon
as the statistical accuracy of relevant experiments is

improved by at least a factor of 4. An experimental
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corroboration of the results obtained by theoretically
calculating, for an alpha particle from ternary nu-
clear fission induced by polarized thermal neutrons,

the coefficient (an) of P-even left—right asymmetry

and the coefficient (« pNC) of P-odd asymmetry [16]
would confirm the one-step mechanism of ternary
nuclear fission.

5. CONCLUSION

The above analysis of the evolution of a fissile nu-
cleus from neutron resonance states through transi-
tion fission states to prescission nuclear states having
a pearlike axisymmetric shape has confirmed the po-
tential of the developed quantum-mechanical theory
for describing binary and ternary nuclear fission.

[t is highly desirable that experimentalists inves-
tigate P-even and P-odd asymmetries for a third
particle from ternary fission at a statistical-accuracy
level that is sufficient for testing the predictions of the
present study.
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Abstract—The possibility of deriving an approximate unitary solution to integral Faddeev equations
within the K -matrix formalism is considered. Explicit expressions for the amplitudes of elastic, inelastic,
and quasielastic three-body scattering are obtained under the assumption of a mechanism of a truly
single collision. Specific calculations are performed for quasielastic-scattering reactions of the d(N, 2N )N
type. Good agreement between the results of these calculations and experimental data indicates that,
in developing approximate methods, it is highly desirable to respect fundamental physical principles.
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Investigation of quasielastic scattering reactions
belonging to the (N,2N) and (N, Na) types and
to some similar types provides important infor-
mation about nuclear-physics problems. Although
quasielastic-scattering reactions are multiparticle
processes in the majority of cases, some model
assumptions are usually made in order to reduce their
description to solving relevant three-body problems.
For this reason, the approach proposed by Faddeev|[1]
had a crucial effect on the development of theo-
retical methods for studying quasielastic-scattering
reactions. Since severe technical difficulties impede
attempts at directly solving Faddeev equations, one
has to invoke various approximate methods. How-
ever, approximate amplitudes that such methods
produce often do not obey three-body unitarity. There
exist, however, unitary schemes [2—4], but they are
rather cumbersome and inconvenient in practical
calculations.

One of the unitary schemes was proposed in[5]. Its
basic idea consists in approximately solving Faddeev
equations within the K-matrix formalism, which
makes it possible to preserve the unitarity of the 7'
matrix.

Let us consider the scattering of three nonrela-
tivistic particles in the approximation of pair interac-
tion,

V=)V, (1)
where V, is the potential simulating the interaction of
particles 8 and v (a8 = 123, 231, 312).

The three-body Green’s function for free particles,
Go(Z), can be broken down into non-Hermitian and

Hermitian parts, G1(Z) and G3(Z), respectively,
1 1
G1(2) = 5Go(2) = 5Go(Z"), (2)

Gal2) = G0l Z) +3C0(Z). ()

where Z is a complex parameter, Re(Z) = E being
the total energy of the system.

We introduce the Hermitian operator K (Z) as that
which satisfies the equation

K(Z)=V —VGy(2)K(Z). (4)

The T matrix for three-body scattering can then
be expressed in terms of the operator K (Z) as

T(2) ={1+ K(2)G:(Z2)} 'K(Z).  (5)

Thus, we can avoid explicitly solving the Lipp-
mann—Schwinger equation for the 7" matrix with the
Green’s function Go(Z). Instead, we solve Eq. (4) for
the Hermitian K (Z) matrix, whereupon we express
the 7' matrix in terms of the operator K(Z). An ad-
vantage of this method for finding 7'(Z) is that any
approximate solution to Eq. (4) ensures the unitarity
of the T" matrix. However, there are well-known diffi-
culties associated with Eq. (4), which are character-
istic of the three-body character of the problem and
which give no way to solve it unambiguously. Follow-
ing Faddeev’s idea, we introduce auxiliary operators
K*(Z),

3
K(Z)=) K*(2), (6)
a=1

for which one can write the set of Faddeev integral
equations
K*(Z) = Ko(2){1 ~ G2(2)[K7(Z) + KV(Z)]}(?)

1063-7788/04/6702-0250$26.00 © 2004 MAIK “Nauka/Interperiodica”
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where the operator K,(Z) is a two-body Hermitian
operator characterizing the three-body problem and
satisfying the integral equation

Ko(Z) = Vo {1l — Go(2)Ko(2)). (8)

From the definition, it can be seen that the operator
K, (Z)is an analog of the full two-body T,,(Z) matrix
in the three-body problem:

To(Z) = Vall - Go(Z)Tu(2).  (9)
These operators are related by the Heitler equation
To(Z) = Ko(Z)[1 = G1(2)Ta(2)].  (10)

We will further consider only the leading-order
solution to Egs. (7) and suppress the argument Z (we
assume that all operators depend on it):

K~ K,. (11)

The analogous approximation in the Faddeev
equations for the T' matrix is referred to as the three-
body impulse approximation (TBIA) [6]. For this
reason, the approximation specified by Eq. (11) is
called the unitarized three-body impulse approxima-
tion (UTBIA). We deem that it is this approximation
that corresponds to a truly single collision because
it provides a unitary solution to the problem in
the lowest order such that the total probability is
conserved. From formulas (5), (6), (10), and (11), we
then obtain

T =Y (1-T3G1)(1 —ToGh)
afy
x {(1 = T,G1)(1 — ToG1) (1 — ToG1T5GH)
x (1 —ToGy) + T,G1(1 — T3G1)
x (1 —TaG1} T,
where a8y = 123, 231, 312.

Of course, expression (12) is very complicated and
is therefore inappropriate for applications in prac-
tice, but it can be simplified if the operator norm
||T,G1T,G1|| is much smaller than unity,

1T, G TG | < 1. (13)

[t can be expected that the higher the energy of colli-
sions, the higher the accuracy to which the condition
in (13) is satisfied. The simplified form of expres-
sion (12)is

T=> {1 (T, +T3)G1}T.
afy

(12)

(14)

In contrast to (12), expression (14) satisfies three-
body unitarity only with the precision specified by the
condition in (13).

From expression (14), it follows that, in the Fad-
deev iteration series, the first-order terms and the
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second-order terms involving the non-Hermitian part
of the Green’s function must be retained in order to
ensure the unitarity of the approximate T matrix.

The operator in (14) describes the scattering of
three free particles. Given the expressions for the
asymptotic wave functions, one can apply this oper-
ator to any specific three-body problem. We consider
two such problems.

(i) Elastic (or inelastic) scattering of particle 1 on
the (2, 3) bound system:

14+(2,3) = 1+(2,3). (15)
The respective matrix element has the form
M = <kV, ‘I’f|T3-|-T2 —T3G1T5 (16)

— ToG 1 T5]¥, ko),

where W; and W are the wave functions for the (2, 3)
bound system in the initial and the final state, re-
spectively, and the symbol kv (kv) stands for the
momentum of the projectile and the projection of its
spin before (after) the collision.

In the case of elastic scattering, formula (16) re-
duces to the Osborn formula [7] in the approxima-
tion of fixed scatterers or the Glauber—Sitenko for-
mula [8, 9] with allowance for the eikonal approxima-
tion. It should be noted that, under relevant condi-
tions, the Glauber—Sitenko formula is an exact for-
mula for elastic scattering in the sense that it involves
all terms of the iteration series associated with multi-
ple scattering.

(ii) Particle 1 breaks the (2, 3) bound system into
its constituents,

14(2,3) > 1+2+3, (17)

so that, in the final state, there appear three free
particles having momenta ki, ko, and ks and spin
projections vy, v, and vs.

Usually, this process is referred to as a disintegra-
tion process. Its matrix element has the form

M = (kyvi, kovo, ksvs|T3 + Ts (18)
— (Tl + TQ)Gng — (Tl + T3)G1TQ|‘I’i,k0V0>.

Let us consider the particular case where two
final-state particles are recorded in coincidence, their
energies Fy and Es being much greater than the
energy of the third particle:

Ey, By > Es. (19)

This is precisely the condition under which the
quasielastic reaction mechanism is realized. In this
case, it is natural to assume that the breakup of the (2,
3) system is caused by the interaction of the recorded
particles. This means that only the terms involving
the operator T3 must be retained in (18).
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Fig. 1. Differential cross section for the reactions (a) d(p, 2p)n and (b) d(p, pn)p versus E1 for E = 65.0 MeV and 1 = —0; =
43.57°: (solid curve) results of the UTBIA calculations and (dashed curve) results of the TBIA calculations. The displayed

experimental data were borrowed from [14].

Thus, the UTBIA expression for the matrix ele-
ment describing the quasielastic-scattering reaction
in question has the form

M(UTBIA) = (kll/l, kQVQ, k31/3|T3
— (T + T2)G1 T3 — T3G1 1|V, koup).-

(20)

For the sake of comparison, we also present the
TBIA expression for this matrix element:

M(TBIA) = <k11/1, kgl/g, k3l/3‘T3’\I/Z‘, k01/0>. (21 )

A nucleon—deuteron (Nd) collision is one of the
most familiar three-body reactions. The problem of
elastic (or quasielastic) Nd scattering can be solved
in a closed form for any realistic NN potential. Two
different NN potentials leading to the same two-
nucleon on-shell amplitudes may yield, in the three-
nucleon problem, two different two-nucleon off-shell
amplitudes. For this reason, an analysis of Nd scat-
tering by a reliable theoretical method can help to
select more appropriate NN potentials. On the other
hand, various approximate methods for solving three-
body problems can be tested by applying them to
Nd scattering with an eye to extending the ones
that passed this test most successfully to more com-
plicated cases. It should be noted that the reaction
d(N,2N)N is the simplest quasielastic-scattering
process, the majority of other processes belonging
to this type involving composite fragments. In view
of this, we perform here a systematic analysis of the
reactions d(p, 2p)n, d(p, pn)p, and d(n, 2n)p for var-
ious sets of kinematical parameters and assess the
potential of the UTBIA.

PHYSICS OF ATOMIC NUCLEI

As a rule, experiments studying quasielastic-
scattering reactions are carried out in coplanar geom-
etry in the laboratory frame and are based on detecting
two final-state particles in coincidence, their solid
angles (€21, Q9) and the energy of one of them (say,
Ey) being measured at a given projectile energy. The
remaining kinematical parameters can be determined
from the energy- and momentum-conservation law.

The general form of the differential cross section
for the reaction d(IN,2N)N is

d3o 3 4 Sk:lk:%
——— =T m°—= 22
dQldQQdEl 8 kO ( )
S JAM|?

spins

>< )
|2]€2 — ko COS(QQ) + k1 COS(¢91 + (92)|

where m is the nucleon mass, ¢; and 6y are the

scattering angles of the detected particles, and A is
the operator of antisymmetrization with respect to
identical particles. Summation is performed over the
projections of the spins of the initial-state and final-
state particles; these spin projections appear explicitly
upon going over to the partial-wave expansions of the
deuteron wave function ¥; and of the matrix elements
of the operators T,. We use the system of units in
whichh=c¢=1.

Further, the differential cross section is plotted as
a function of only one of the parameters 61, 62, and
FE4 (most often F7) by projecting the fivefold differ-
ential cross section onto the respective axis. The Fy
dependence is sometimes replaced by the dependence
on the so-called arc length S [10, 11] related to the

Vol.67 No.2 2004
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Fig. 2. Asin Fig. I, but for E = 41.5 MeV and 6, = —0> = 43°. The displayed experimental data were borrowed from [15].
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Fig. 3. As in Fig. 1, but for E = 30.0 MeV and 61 = —02 = 42.5° in the reaction d(p,2,p)n and 61 = —02 = 43° in the
reaction d(p, pn)p. The displayed experimental data were borrowed from [15].

energies of the final-state particles by the equation

dS = \/dE? + dE2,

where S = 0for F, = 0and £ # 0.

The differential cross section do/(d€21d22dS) can
readily be determined with the aid of formulas (22)
and (23).

(23)

Preliminary calculations of the differential cross
section for the reaction d(N,2N)N that were based
on the UTBIA were performed in [5, 12] by using
only S-wave two-nucleon amplitudes (L = 0). Here,
we pursue further a systematic analysis of this re-
action, taking into account other partial waves (151,
1P1, 1D2, 351 + 3D1, 3P1, 3P2 + SFQ, and 3D2) and
considering various sets of kinematical parameters.
In our calculations, we use the off-shell two-nucleon
T, matrices and the radial part of the deuteron wave

PHYSICS OF ATOMIC NUCLEI

function for the Mongan potential [13], which is non-
local and separable. Some typical results of our cal-
culations are shown in Figs. 1—=5. The solid curves
correspond to the UTBIA calculations with the ma-
trix element (20). For the sake of comparison, we
also present (dashed curves) the results of the TBIA
calculations with the matrix element (21). The re-
spective experimental data were borrowed from [10,
14—16]. It can be seen that, in all cases, the UT-
BIA results faithfully reproduce special features of the
measured differential cross sections. We deliberately
pay particular attention to the low-energy domain
(E <100 MeV), where the reaction mechanism is
unclear and where the reaction amplitude is more
sensitive to off-shell effects, so that it is easier to
reveal advantages of various theoretical methods and
their drawbacks. With increasing energy (at E >
100 MeV), the aforementioned problems gradually
become nonexistent, whereupon all methods appear
to provide equivalent results.

Vol.67 No.2 2004
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Fig. 4. As in Fig. la, but for the dependence of the differential cross section on S at E = 19.0 MeV for (a) 61 = —0, = 41°
and (b) 61 = 52° and 02 = —63°. The displayed experimental data were borrowed from [10] (the dashed curve in Fig. 4a

corresponds to the right-hand scale).
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Fig. 5. As in Fig. 1, but for the reaction d(n,2n)p at E = 13.0 MeV for (a) 61 = —02 = 50.5° and (b) 61 = 39° and
02 = —62.5°. The displayed experimental data were borrowed from [16] (the dashed curve in Fig. 5a corresponds to the right-

hand scale).

[t is interesting to note that, with decreasing en-
ergy, the differential cross sections for the quasielas-
tic-scattering reactions d(p,2p)n and d(p,pn)p in
the same kinematical domains differ substantially.
This is a consequence of the Pauli exclusion prin-
ciple. Indeed, it follows from this principle that, at
low energies, a proton—neutron pair can be either in
the 1Sy or in the 3S; state, whereas a pair of pro-
tons can occupy only the former state. As a result,
the maximum of the differential cross section for the
quasielastic-scattering reaction d(p,pn)p is 2 to 3
times larger than that for d(p, 2p)n. The theoretical
results show such a difference only upon the unita-
rization of the respective amplitudes—that is, upon
taking into account the single-scattering mechanism

PHYSICS OF ATOMIC NUCLEI

in accordance with our procedure, which we believe
to be consistent. With increasing energy, the con-
tribution of other states increases, with the result
that the difference between the pp and np amplitudes
gradually disappears. Therefore, the differential cross
sections for pp and np collisions become nearly iden-
tical (see Figs. 1a and 1b).

From a general analysis, it follows that the role of
unitarization becomes less significant with increasing
energy. However, both the magnitude and the shape
of the differential cross section depend strongly on the
scattering angles 6 and 65 of detected particles.

The proposed unitary method is simpler than other
unitary methods. However, it proved to be quite
efficient and, what is of importance, involves no free

Vol.67 No.2 2004
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parameter. It is remarkable that UTBIA calculations
are able to reproduce adequately the differential-
cross-section shape, which is rather complicated.
This agreement is observed even at the energy of
E =13 MeV (Fig. 5), although there is no reason
to believe that the condition in (13) is satisfied at this
energy value.

The results of the present study demonstrate that
approximate theoretical methods that respect fun-
damental physical principles are consistent and are
able to provide an adequate description of observed
processes.
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Abstract—The mean values of the momenta and emission angles of charged pions and protons in the
laboratory frame are presented both for the total ensemble of interactions between 4.2-GeV/c protons
and a carbon nucleus and for six groups of events characterized by different degrees of collision centrality.
The distributions with respect to the total and the transverse momentum are presented for the particles
being studied, along with the longitudinal-rapidity distributions. Our experimental data are compared
with the predictions of the cascade—evaporation model and of two versions of the refined FRITIOF
model. It is shown that, as the degree of collision centrality becomes higher, the mean momenta and
rapidities of secondaries decrease, the transverse momenta remain virtually unchanged, and the mean
angles of particle emission increase. This is consistent with the pattern of particle cascading in nuclei.
However, the mean transverse momentum (p;) of participant protons that was obtained on the basis of the
cascade—evaporation model decreases with increasing degree of collision centrality, in contrast to what is
observed in our experiment. A satisfactory description of experimental data is obtained on the basis of the
refined FRITIOF model taking into account A* and A isobars. The stopping power of carbon nuclei for

4.2-GeV/c protons is also determined. © 2004 MAIK “Nauka/Interperiodica”.

INTRODUCTION

The interactions of protons with a carbon nucleus
(pC interactions) at a momentum of 4.2 GeV/c under
the conditions of 47 geometry were explored in a
number of studies [1—9]. A detailed analysis of the
multiplicities of charged secondaries from collisions
between protons and carbon nuclei at various values
of the impact parameter was given in [9]. The present
study is a continuation of that which was reported
there. Here, we present the kinematical features of
secondaries, including the momentum, angular, and
rapidity distributions of charged pions and protons
for six groups of pC interactions from peripheral to
central ones. In just the same way as in [9], the ex-
perimental results are compared with the predictions
of the cascade—evaporation model [10] and two ver-
sions of the modified FRITIOF model. The stopping

power of a carbon nucleus for 4.2-GeV/c protons
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is considered individually. Investigation of these fea-
tures is of importance for reconstructing the space-
time pattern of pC interactions at various values of
the impact parameter—in particular, for clarifying the
role of particle rescatterings in a carbon nucleus and
for obtaining deeper insight into the mechanism of
hadron—nucleus interactions.

[t is well known that the spectrum of fast leading
protons in pA interactions can be described quite
successfully on the basis of the Glauber approach—
that is, within the pattern of successive collisions
between an incident particle and the nucleons of the
target nucleus [11, 12]. In the central rapidity region
and in the region of target-nucleus fragmentation,
where, at energies of a few GeV, the contribution of
target-nucleus nucleons is large, one can expect a
violation of this pattern. Therefore, it is interesting
to investigate the features of leading and nonleading
hadrons.

[t is assumed that the intranuclear-cascade model
[13] describes particle yields from hadron—nucleus
interactions well at the energy value being consid-
ered. It was shown in [9] that this model reproduces
the multiplicity distributions of particles produced in
pC interactions. At the same time, the model con-
siderably overestimates the multiplicity of negatively
charged pions in multinucleon collisions. It can be
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expected that the drawbacks of the cascade model will
manifest themselves most clearly in the momentum
distributions of negatively charged pions, especially in
multiple collisions.

In the Glauber approach, as well as in the cas-
cade model, it is assumed that hadron—nucleus and
nucleus—nucleus interactions can be represented as
a set of elementary-particle interactions.

As to the FRITIOF model [14, 15], it assumes
a two-body kinematics of inelastic nucleon—nucleon
interactions; that is, a + b — o’ + ¥, where a’ and ¥’
are excited states of primary nucleons. The excited
states are characterized by a mass. The projectile
mass increases as the result of successive collisions
in the target nucleus, and this leads to an increase in
the multiplicity of particles produced in its decay. In
the present version of the FRITIOF model, it is as-
sumed that excited nucleons of a target nucleus leave
the nucleus without undergoing additional collisions
and decay beyond it. In order to simulate cascade
processes in a target nucleus within the modified
FRITIOF model, use is made of the Reggeon cascade
model [16]. A more detailed description of the model
can be found in[17, 18].

The possibility of describing, on the basis of
the FRITIOF model and the intranuclear-cascade
model, the multiplicities of particles produced in
pC interactions at p, = 4.2 GeV/c was investi-
gated in [9]. It was shown there that the cascade—
evaporation model [10] overestimates the multiplicity
of negatively charged pions in multinucleon interac-
tions, but that the FRITIOF model underestimates
the multiplicity of product pions. Since it was noticed
in the experiment that the multiplicity of positively
charged pions is proportional to the multiplicity of
participant protons, there arose the idea to take into
account, within the FRITIOF model, p — n + 7+
and n — p+ 7~ transitions caused by the existence
of virtual AT and A® isobars in nuclei or their
appearance in the Reggeon cascade. This made it
possible to obtain a satisfactory description of the
multiplicities of product particles versus the degree
of centrality of collisions between protons and carbon
nuclei.

Below, we present the kinematical features of par-
ticles in events differing by the degree of collision
centrality. These data make it possible to reveal those
phase-space regions where attempts at describing
experimental results on the basis of the existing mod-
els run into the most serious difficulties. First of all,
an analysis of peripheral interactions enables us to
test the correctness of simulating elementary inter-
actions. In multinucleon interactions, one can expect
manifestations of collective effects. If they exist (for
example, a fireball involving all colliding nucleons
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arises in central collisions), the kinematical features
of particles must be weakly dependent on the degree
of collision centrality. It will be shown below whether
this is indeed so.

The ensuing exposition is organized as follows.

In Section 1, we give a brief description of special
features of the experimental data used here. Further,
we present the kinematical features of charged pions
in Section 2 and the properties of participant protons
in Section 3.

In Section 4, we determine the stopping power of
carbon nuclei. In the physics of fast-particle propa-
gation through matter, the stopping power is defined
as the mean kinetic energy lost by a particle per unit
path. It is assumed that these losses are low and that
the particle moves nearly along a straight line. In the
physics of nuclear collisions, energy losses are high,
and it is difficult to discriminate between the projectile
that survived and particles knocked out of the target.
Therefore, the change in the rapidities of interacting
nucleons is more often considered in high-energy
physics [19, 20]. A systematics of the stopping power
of nuclei that was found in this way is given in [21].
For a determination close to the classical one, use is
usually made of model calculations. We rely on the
FRITIOF model version that takes into account delta
isobars. As was shown in [9], the momentum region
p > 1.4 GeV/c is dominated by surviving protons,
the momenta of nucleons knocked out of the target
nucleus being less than 1.4 GeV/c. In Section 4, the
features of leading (p > 1.4 GeV/c) and nonleading
(p<l4 GeV/c) protons are considered separately;
also, data on the distribution of energy between dif-
ferent types of secondaries are given there.

In the Conclusions, we summarize the main re-
sults of our study.

1. EXPERIMENTAL DATA

The experimental data used here were obtained on
the basis of processing stereophotographs from the 2-
m propane bubble chamber constructed at the High
Energy Laboratory of the Joint Institute for Nuclear
Research (JINR, Dubna), placed in a magnetic field
of strength 1.5 T, and irradiated with a beam of pro-
tons accelerated to a momentum of 4.2 GeV/c at the
JINR synchrophasotron.

Methodological issues associated with selecting
events of inelastic pC interactions from the entire
ensemble of proton interactions with propane (CsHg)
by introducing corrections for the number of secon-
daries and their angular and momentum features, as
well as weights taking into account positively charged

particles of momenta in excess of 0.5 GeV/c, were
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Table 1. Mean multiplicities of particles from pC interactions at 4.2 GeV/c versus the degree of collision centrality @
according to (expt) our experimental data and (FRITIOF) the predictions of the FRITIOF model with allowance for A

isobars
<npart7p>v <npart7p>v
Ney — -
Q e, % (=) () (npart-p) 0.3 < p <1.4(GeV/c) p > 1.4(GeV/e)
1 Expt. 2289(27.3)| 0.522 £0.013 | 0.416 + 0.010 | 1.054 +0.015 0.466 4+ 0.011 0.588 4 0.020
FRITIOF 28457 (28.4)| 0.479 +0.004 | 0.379 £ 0.003 | 1.088 + 0.005 0.303 4 0.003 0.785 4 0.006
2 Expt. 3814 (45.6)| 0.321 £ 0.007 | 0.660 £ 0.008 | 1.743 +0.010 1.003 + 0.010 0.740 4+ 0.018
FRITIOF 37635 (37.6)| 0.321 +0.003 | 0.662 £+ 0.004 | 1.658 + 0.004 0.864 4 0.004 0.794 4 0.005
3 Expt. 1477 (17.6)| 0.423 £ 0.016 | 0.965 £ 0.020 | 2.526 + 0.024 1.863 + 0.025 0.664 4+ 0.027
FRITIOF 16675(16.7)| 0.424 £ 0.005 | 0.787 £ 0.006 | 2.624 + 0.007 1.912 + 0.007 0.712 4+ 0.007
4 Expt. 575(6.9)| 0.476 £+ 0.027 1.22 £0.04 3.22 +0.04 2.65 4+ 0.05 0.57 £ 0.04
FRITIOF 9551(9.6)| 0.448 +0.006 | 0.857 4+ 0.008 3.54 +0.01 2.927 £ 0.010 0.62 + 0.01
5 Expt. 164(2.0)] 0.43+£0.05 1.40 £+ 0.08 4.02 +0.09 3.55 £ 0.10 0.47 £+ 0.06
FRITIOF 5166(5.2)| 0.45 4+0.01 0.89 £ 0.01 4.46 £+ 0.02 3.923 +0.016 0.54 £ 0.01
>6 Expt. 52(0.6)| 0.36 +0.07 1.58 £0.16 5.10+£0.18 4.54 +0.21 0.56 £ 0.11
FRITIOF 2516(2.5)| 0.46 +0.01 0.93 £0.02 5.75 £+ 0.03 5.316 4+ 0.024 0.44 £+ 0.01
All Expt. 8371(100)| 0.407 4+ 0.006 | 0.706 £ 0.007 | 1.860 + 0.010 1.192 £+ 0.011 0.668 4+ 0.012
events| FRITIOF 100000(100)| 0.406 4+ 0.002 | 0.640 £ 0.002 | 2.085 + 0.004 1.346 + 0.004 0.739 4 0.003

Note: In parenthesis, we present the fraction (in %) of events corresponding to given Q.

considered in[1, 2, 22]. In the ensemble of pC interac-
tions that was subjected to the analysis, we selected,
among secondary particles, positively and negatively
charged pions, participant protons of momentum in
the region p > 0.3 GeV/c, and evaporated protons of
momentum in the range 0.15 < p < 0.3 GeV/c. Y

The degree of centrality of a pC interaction was
characterized by the quantity @ defined as Q@ = n4 —
N = Npe,,,» Where ny and n_ are the multiplicities of,
respectively, positively and negatively charged parti-
cles in an event and n,,,,, is the multiplicity of evapo-
rated protons. The quantity @) correlates with the im-
pact parameter of a hadron—nucleus collision [9]. The
degree of collision centrality grows with increasing Q.

The number of pC events analyzed here and the
mean multiplicities of secondaries for all pC inter-
actions and for six event groups characterized by
different degrees of collision centrality are given in Ta-
ble 1. The results obtained by analyzing the multiplic-
ity distributions of secondaries are presented in [9],
along with the @ dependences of the multiplicities.

YProtons of momenta below 150 MeV/c are not recorded in
the propane bubble chamber because of a short range (I <
2 mm).
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Table 1 also displays the mean multiplicities of sec-
ondaries according to the predictions of the modified
FRITIOF model taking into account a 20% admix-
ture of A* and AY isobars among the nucleons of the
carbon nucleus. In [9], the experimental data on the
multiplicities of secondaries were compared with the
predictions of the modified FRITIOF model. In the
present study, we consider the kinematical features
of secondaries in six event groups characterized by
different values of Q).

2. KINEMATICAL FEATURES OF CHARGED
PIONS

The mean values of the total ((p,)) and the trans-
verse ((pf)) momentum of negatively charged pions
and the mean values of their emission angles in ex-
perimental events are given in Table 2, along with
respective predictions of the FRITIOF model taking
into account delta isobars. The same experimental
data are also shown in Fig. 1, together with the results
of the calculations within the cascade-evaporation
model and within the FRITIOF model taking into ac-
count delta isobars. As might have been expected, the
mean momenta of particles decrease with increasing
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Table 2. Mean momenta and emission angles of pions in pC interactions at 4.2 GeV/c versus the degree of collision
centrality @ [according to (expt) our experimental data and (FRITIOF) the predictions of the FRITIOF model taking

into account A isobars]

Q (pr-), GeV/e | (pF ), GeV/e | (0,-),deg | (prr), GeV/e | (F ), GeV/e | (0+), deg

1 Expt. | 0.56740.014 | 0.246 £ 0.005 | 45.2+£1.0 | 0.564 + 0.007 | 0.239 + 0.002 | 39.1 + 0.4
FRITIOF | 0.496 4 0.003 | 0.241 +0.001 | 47.4+0.3 | 0.592+0.004 | 0.238 4 0.001 | 38.2+0.3

2 Expt. | 0.518 £ 0.010 | 0.2554+0.004 | 49.54+1.0 | 0.554 4 0.004 | 0.269 + 0.002 | 47.7 + 0.3
FRITIOF | 0.449 4 0.003 | 0.222 4+ 0.001 | 49.6 0.3 | 0.533+0.002 | 0.242 £ 0.001 | 44.0 £ 0.2

3 Expt. | 0.42440.014 | 0.248 +0.007 | 57.3 £ 1.5 | 0.505 £ 0.006 | 0.275 £ 0.003 | 55.3 £ 0.5
FRITIOF | 0.378 £0.003 | 0.214 +0.001 | 56.4+0.4 | 0.428+0.003 | 0.229+0.001 | 51.4 £ 0.3

4 Expt. | 0.37540.018 | 0.236 £ 0.011 | 62.1 £ 2.3 | 0.475 £ 0.007 | 0.265 + 0.004 | 57.4 + 0.7
FRITIOF | 0.333 £ 0.003 | 0.207 £ 0.002 | 60.9 £ 0.6 | 0.373 +0.003 | 0.217 + 0.001 | 55.2 + 0.4

5 Expt. 0.38+0.04 | 0.215+0.025 | 62.3+4.9 | 0.430 + 0.8012 0.267 + 0.007 | 64.9 + 1.2
FRITIOF | 0.314 £ 0.004 | 0.208 £ 0.002 | 63.1£0.8 | 0.337 +0.002 | 0.209 + 0.002 | 58.6 + 0.5

>6 Expt. 0.45+0.07 | 0.27+0.06 | 62.3+11.0 | 0.446 +0.020 | 0.30 £ 0.012 | 68.7 + 2.0
FRITIOF | 0.295 £ 0.005 | 0.199 £ 0.003 | 66.8 1.1 | 0.311 4 0.004 | 0.203 £+ 0.002 | 61.5 0.7

All Expt. | 0.503 4 0.007 | 0.248 +0.003 | 50.8 £ 0.6 | 0.528 + 0.003 | 0.265 = 0.001 | 50.3 £ 0.2
events | FRITIOF | 0.429+0.002 | 0.224 4 0.001 | 52.4+0.2 | 0.480+0.001 | 0.232+0.001 | 47.6 +0.1

degree of collision centrality. The mean momenta of
positively charged pions exceed the mean momenta of
negatively charged pions both in the @ = 2—4 groups
and in the entire ensemble of pC interactions (see Ta-
ble 2). In @ =1 events, which are predominantly
proton—neutron interactions, the mean momenta of
positively and negatively charged pions agree with
each other.

Within the errors, the mean transverse momentum
of negatively charged pions is independent of Q). The
mean transverse momentum of positively charged pi-
ons, (p), increases in going over from Q@ = 1to Q =
2 events and then remains at the same level up to
@ = 5 events. In the group involving the most central
(Q > 6) events, one can observe an approximately

10% increase in (p¥ ) with respect to the momentum
at smaller values of Q.

The mean pion emission angles quoted in Table 2
grow with increasing @. This is characteristic of the
pion-production process—as the impact parameter
decreases, the probability of pion rescattering be-
comes higher, which leads to a decrease in the mean
momentum of pions and to an increase in the mean
value of their emission angle; this is eventually re-
sponsible for a weak dependence of the mean value
of p; on the degree of centrality of pC interactions.

PHYSICS OF ATOMIC NUCLEI
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Figures 2—7 display the distributions of charged
pions with respect to the kinematical variables. As
can be seen, the total-momentum distributions of
positively and negatively charged pions become softer
upon going over from peripheral (Q < 2) to central
(Q > 4)interactions; therefore, the mean momenta of
pions decrease (see Table 2 and Fig. 1). The spectra
of positively charged pions are on average somewhat
harder than the spectra of negatively charged pions.
In the most central (@ > 6) interactions, the spectra
of negatively and positively charged pions differ in
shape (Figs. 2, 3) but the respective mean momenta
are identical.

The transverse-momentum distributions of pions
depend on @ more weakly than the total-momentum
distributions (see Table 2 and Figs. 4, 5). The
overwhelming majority of pions have transverse-
momentum values not higher than 0.5 GeV/c; nev-
ertheless, hard collisions resulting in the production
of high-p; pions occur in the interactions of protons
with a carbon nucleus (see Figs. 4, 5).

The rapidity distributions of negatively and pos-
itively charged pions are shown in, respectively,
Figs. 6 and 7 for six groups of events characterized
by various degrees of centrality of pC collisions.
One can see that, as the quantity @ increases, the
maximum of the pion distributions shifts to the region
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Fig. 1. Mean features of charged pions versus Q: (closed circles) experimental data; (solid and dashed curves) results of the
calculations performed on the basis of the FRITIOF model, respectively, with and without allowance for A* and A° isobars;
and (dotted curves) results of the calculations on the basis of the cascade—evaporation model.

of carbon-nucleus fragmentation. Figure I illustrates
the change in the mean rapidities of charged pions
as we go over from peripheral to central interactions.
The mean rapidities of charged pions change from
values corresponding to proton—nucleon interactions
at 4.2 GeV/c ((y)pn = 1.1) to smaller values that
characterize proton—nucleon interactions at lower
energies. The mean rapidities of positively charged
pions exceed somewhat the mean rapidities of neg-
atively charged pions, and this is natural in the case
of incident protons. It should be emphasized that, in
@ = 1 events, the distribution of negatively charged
pions has two maxima, that at y ~ 0.5 and that at
y ~ 1.5 (see Fig. 6). In all other distributions, there is
no two-peak structure.

The theoretical models qualitatively reproduce the
@ dependence of the mean momentum of pions. The
predictions of the FRITIOF model disregarding delta
isobars are in the best agreement with the experi-
mental data (see Fig. 1). However, this version of
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the model considerably underestimates the multiplic-
ities of product pions [9]. The cascade—evaporation
model overestimates the multiplicities of pions [9].
The multiplicity of negatively charged pions is well
described by the FRITIOF model taking into account
the production of delta isobars (see Table 1). All mod-
els underestimate the mean transverse momenta of
pions. The differential distributions with respect to p
and p; enable us to draw more specific conclusions
about the drawbacks of the models.

The predictions of the theoretical models and the
experimental data differ most strongly at low and
high momenta of pions (see Figs. 2, 3). According to
the data in Figs. 2 and 3, the cascade—evaporation
model overestimates the yield of soft pions (p <
300 MeV/c). The FRITIOF model disregarding
delta isobars strongly underestimates the yield of
soft pions; for this reason, this model gives high
values of the mean momenta. In the FRITIOF model
version taking into account delta isobars, the mean
momenta of negatively charged pions are below the

Vol.67 No.2 2004
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Fig. 2. Distributions of negatively charged pions with respect to the total momentum at various values of Q. The notation is

identical to that in Fig. 1.

corresponding experimental data, and this is due
to a small yield of energetic pions. The situation
around the spectra of positively charged pions is more
complicated. In @ = 3—4 events, the shape of the cal-
culated spectra strongly differs from the experimental
distributions—the model underestimates the yield of
fast pions (see Fig. 3). Events of this group involve
essentially multiparticle interactions. Investigation
of such interactions may give impetus to a further
development of the models.

An analysis of the differential distributions with
respect to py and of the model predictions leads to
results that are similar to those presented above.
The cascade-evaporation model overestimates the
yield of pions having low transverse momenta (p; <
200 MeV/c) (see Figs. 4, 5). All models underesti-
mate the probability of the production of pions having
high transverse momenta and describe poorly the
spectra of positively charged pions in multiparticle
interactions (see Fig. 5).

The strongest discrepancies between the theoret-
ical predictions and the experimental data are ob-
served for the rapidity distributions of charged pions.

PHYSICS OF ATOMIC NUCLEI

As can be seen from Figs. 6 and 7, the cascade—
evaporation model assumes an excess production
of pions in the target-fragmentation region. The
FRITIOF model disregarding delta isobars leads to
overly hard spectra; moreover, it strongly underesti-
mates the multiplicity of pions produced in multin-
ucleon interactions (see Figs. 6, 7). The FRITIOF
model version taking into account delta isobars gives
intermediate results that are the most acceptable, but
there remain problems in it that are associated with
the description of multinucleon collisions.

3. KINEMATICAL FEATURES
OF PARTICIPANT PROTONS

As was shown in [9], the predictions of all models
for the multiplicities of participant protons in the
groups of interactions under consideration are in
agreement with the experimental data. Therefore, an
analysis of the distributions of protons with respect to
kinematical variables becomes of paramount impor-
tance. The mean kinematical features of participant
protons are quoted in Tables 3 and 4. Figure 8
supplements the data in Tables 3 and 4, giving a

Vol.67 No.2 2004
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Fig. 3. Total-momentum distributions of positively charged pions at various values of Q. The notation is identical to that in

Fig. 1.

general idea of the model predictions. Figures 9—
11 display the differential distributions of participant
protons.

According to the experimental data, the momen-
tum spectrum of participant protons becomes consid-
erably softer as we go over from peripheral to central
interactions (see Figs. 8, 9%)). The mean momentum
of protons decreases by a factor greater than two
(see Table 3 and Fig. 9) as @ changes from one
to six. To a considerable extent, these changes are
due to an increase in the fraction of target protons
(whose momentum is on average less than 1 GeV/c)
among the total number of participant protons. In
@ = 1 events, the mean multiplicities of leading pro-
tons (p > 1.4 GeV/c) and protons arising as target-
nucleus fragments (p < 1.4 GeV/c) are commensti-
rate, but, with increasing @), this relationship changes
sharply. Figure 9 clearly illustrates the enrichment of

»The presence of protons with momenta p > 4 GeV/c in the
momentum distributions is associated with errors in deter-
mining the momentum of energetic particles. The maximum
admissible error in determining the momentum of a particle
was 30%.
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the spectrum of participant protons in target protons
with increasing @.

Among target protons, we singled out two groups:
the first included protons of momenta from 0.3 to
0.75 GeV/c, while the second consisted of protons
having momenta from 0.75 to 1.4 GeV/c. A greater
fraction of target protons belonged to the first group.
Protons of this group are characterized by a weak @
dependence of the mean momentum (see Table 3 and
Fig. 8). Most likely, this is because the probability
that protons from this group undergo inelastic inter-
actions in the nucleus is low. The mean momentum
of target protons, which are faster (p > 0.75 GeV/c),
decreases with increasing ). This conclusion can be
drawn from a comparison of the @ dependence of
the mean momenta of all target protons (0.3 < p <
1.4 GeV/c) and the proton momenta from the interval
0.3—0.75 GeV/c (see Tables 3, 4). This result indi-
cates that fast target protons participate in inelastic
interactions in the nucleus.

The mean transverse momentum of participant
protons is independent of the degree of collision cen-
trality from @ = 2 (see Table 3 and Fig. 8). This is
due to strong correlation between the decrease (with
increasing @) in the mean momentum of participant
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Fig. 4. Transverse-momentum distributions of negatively charged pions at various values of Q. The notation is identical to that

in Fig. 1.

protons and the increase in their mean emission angle
(see Table 3). This feature is peculiar to target pro-
tons (see Table 4) constituting the majority of par-
ticipant protons. Leading protons (p > 1.4 GeV/c)
show a totally different dependence of the mean trans-
verse momentum on Q: the values of (p;) are 1.5 to
2 times higher in central than in peripheral interac-
tions (see Table 4). This circumstance has virtually no
effect on (p;) of all participant protons because lead-
ing protons constitute but a small fraction of them.
Central interactions are characterized by a relatively
small (about 25%) reduction of the leading-proton
momentum in relation to peripheral interactions, but
the respective increase in the mean emission angle is
rather large (by a factor of 2 to 2.5) (see Table 4).

In Fig. 10, the transverse-momentum distribu-
tions of participant protons are shown for events
characterized by different values of ). One can see
that the experimental data agree well with the distri-
butions calculated within two versions of the modified
FRITIOF model; there is also agreement with the
predictions of the cascade—evaporation model up to

pe < 1.4GeV/e.
As one goes over from peripheral to central in-

PHYSICS OF ATOMIC NUCLEI

teractions, the mean rapidities of participant protons
are shifted, in just the same way as those of pions,
from the value of y = 1.1, which corresponds to p/N
interactions, to smaller values (see Fig. 8). Figure 11
displays the rapidity distributions of participant pro-
tons for events characterized by different degrees of
centrality of pC interactions. For @ = 1 events, the
rapidity distribution of participant protons has a two-
peak structure. A broad peak at y ~ 1.7 is associated
with leading protons and is analogous to that in pn
interactions. It seems that the peak at y ~ 0.5 is
related to the peak appearing in the distributions of
negatively charged pions (see Fig. 6) and is caused
by processes like n — p 4+ 7~. With increasing @,
the rapidity distributions are shifted to the region of
target-nucleus fragmentation.

All models describe rather well the momentum
spectra of protons for Q > 3. For @ = 1 and 2 events,
one can observe that the results of the calculations
deviate strongly from experimental data (see Fig. 9).
In the spectrum of protons that is predicted by the
cascade—evaporation model for @ = 1, there is a peak
at p ~ 4 GeV/c due to elastic rescatterings of inci-
dent protons on nucleons of the target nucleus and
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Fig. 5. Transverse-momentum distributions of positively charged pions at various values of Q). The notation is identical to that

in Fig. 1.

a minimum at p ~ 3 GeV/c due to an unsatisfac-
tory simulation of NNV interactions. In the FRITIOF
model disregarding delta isobars and elastic rescat-
terings, there is no peak. However, this model predicts
an overestimated yield of protons having momenta
of about 2 GeV/c and underestimates the yield of
soft protons. The predictions of the FRITIOF model
version taking into account delta isobars are close to
the experimental data everywhere, with the exception
of the region around p ~ 4 GeV/c. Thus, the existing
methods for taking into account elastic rescatterings
within a nucleus cannot be considered to be satisfac-
tory.

The agreement between the momentum spectra
calculated within the FRITIOF model and the exper-
imental data is improved for @ > 2. As previously, the
cascade—evaporation model predicts a peak at p ~
4 GeV/c in Q = 2 events and dips at p ~ 3 GeV/c
in @ > 2 events.

The models describe well the transverse-momen-
tum distributions of protons everywhere, with the ex-
ception of the region of high p; (p; > 1.5 GeV/c). It
should be noted that, in peripheral interactions (Q <

PHYSICS OF ATOMIC NUCLEI

3), the yield of protons having low p; (p; < 0.4 GeV/c)
is underestimated (see Fig. 10).

The drawbacks of the models manifest themselves
most clearly in describing the rapidity distributions of
protons (see Fig. 11). Considering @) = 1 events, one
can see that, in disagreement with the experimental
data, the cascade—evaporation model leads to a min-
imum in the region of the first maximum at y ~ 1.7.
Since events of this group are enriched in proton—
neutron interactions, the minimum is unambiguously
associated with an unsatisfactory simulation of the
proton spectra in NN collisions within the model.
The peak at y ~ 2 in the results of the calculations
is due to elastic rescatterings. The FRITIOF model
disregarding delta isobars predicts an overestimated
proton yield in the central region. The predictions of
the FRITIOF model version taking into account delta
isobars are closer to the experimental data. All models
fail to describe the peak at y ~ 0.5.

For @ = 2 events, the models make similar pre-
dictions, but the cascade—evaporation model and the
FRITIOF model version taking into account delta
isobars describe the peak at y ~ 0.4 somewhat better.
Thus, there exist problems in theoretically describing
peripheral interactions.

Vol.67 No.2 2004
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Fig. 6. Rapidity distributions of negatively charged pions at various values of Q). The notation is identical to that in Fig. 1.

The modified FRITIOF model taking into account
delta isobars and the cascade—evaporation model
qualitatively reproduce the rapidity distributions of
participant protons for Q > 3 events. Here, the most
serious difficulties arise at y ~ 0.

4. STOPPING POWER OF A CARBON
NUCLEUS

[t is of interest to determine the stopping power of
a nucleus as light as the carbon nucleus for protons
having the momentum of 4.2 GeV/c and its depen-
dence on the degree of centrality of pC interactions.
The stopping power of a target nucleus is character-
ized by the energy lost by a projectile in its interaction
with the target. In order to determine the stopping
power of a target nucleus, it is therefore necessary to
single out, among all secondaries, the primary particle
that survived upon the interaction and to measure its
energy. This is not always possible.

For a leading proton, Agakishiev ef al. [3] took
a positively charged particle having the highest mo-
mentum in an event. In experiments with electrons,
a greater part of leading protons [19, 20] could be
identified. We applied a different approach to separat-
ing leading protons, that which is based on the use
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of the FRITIOF model. Since the FRITIOF model
describes satisfactorily the momentum spectra of all
participant protons, it would be natural to assume
that it also describes satisfactorily the spectra of lead-
ing protons and participant protons from a target nu-
cleus. This assumption formed a basis of our method
for separating leading protons. Within the FRITIOF
model version taking into account delta isobars, one
can obtain the spectra of leading protons and par-
ticipant protons from a carbon nucleus (see Fig. 2
in [9]). The boundary between the two spectra, p°,
was chosen with allowance for the condition

<np—lead>(pp—lead < pb) = <nptar>(pp1ar > pb)'

From this condition, it follows that p® = 1.4 GeV/c:
the mean multiplicity of leading protons having mo-
menta in the region p < 1.4 GeV/c appears to be
0.1, while the mean multiplicity of target protons
with momenta of p > 1.4 GeV/c is 0.09. Further, all
protons having momenta in excess of 1.4 GeV/c are
considered to be leading, while participant protons
of momentum in the range 0.3 < p < 1.4 GeV/c are
taken to be target protons (see Table 1 and Fig. 2
in[9]).

From the point of view of the modified FRITIOF
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Fig. 7. Rapidity distributions of positively charged pions at

model taking into account delta isobars, the chosen
boundary is the most appropriate for selecting leading
protons from peripheral (Q < 2) interactions—that
is, for the majority of pC interactions. In these events,
the fraction of leading protons having momenta in the
region p < 1.4 GeV/c s less than 10%.

In central interactions, a primary proton loses a
considerable part of its energy (see Table 4), and the
fraction of leading protons having momenta in the
region p < 1.4 GeV/c increases to 40%. As follows
from the data in Table 1, the number of such events
does not exceed 8%.

As to the fraction of target protons having mo-
menta in the region p > 1.4 GeV/c, it is maximal
in Q =1 events and decreases fast to 1% in Q > 5
events. This result reflects the softening of the spectra
of fast target protons with increasing @), which was
discussed above (see Table 4). According to the mod-
ified FRITIOF model taking into account A isobars,
the admixture of target protons among protons of
momentum in the region p > 1.4 GeV/c varies from
15 to 8%, depending on @, while the admixture of
leading protons among protons of momentum in the
range 0.3—1.4 GeV/c is 7 to 8%.

various values of Q. The notation is identical to that in Fig. 1.

A comparison of the experimental mean multiplic-
ities of leading and target protons with their counter-
parts calculated within the modified FRITIOF model
involving delta isobars shows (see Table 1) that, for
the majority of the groups, the distinction does not
exceed 10%. The mean angular and momentum fea-
tures of leading protons and protons originating from
fragmentation are presented in Table 4. It can be
seen that, in the interaction with a carbon nucleus,
the primary proton loses a considerable part of its
momentum. In central collisions, this part is equal, on
average, to half of the primary momentum.

A feature that is peculiar to leading protons from
experimental events, but which is not reproduced by
the model predictions, is that their mean transverse
momentum increases sharply as we go over from
peripheral to central interactions (see Table 4).

The mean momentum of target protons decreases
with increasing @, but to a lesser extent and owing
primarily to protons of momentum in the region p >
0.75 GeV/c because the mean momentum of protons
with momenta of 0.3 < p < 0.75 GeV/c is virtually
independent of @ (see Table 3). The mean transverse
momentum of target protons is independent of @ for

all @ > 1 events, remaining at a level of 400 MeV/c.

PHYSICS OF ATOMIC NUCLEI Vol.67 No.2 2004



FEATURES OF pC INTERACTIONS 267

Table 3. Mean momenta and emission angles of participant protons in pC interactions at 4.2 GeV/c versus the degree of
collision centrality @ according to (expt) our experimental data and (FRITIOF) the predictions of the FRITIOF model
taking into account delta isobars

art-

Q (ppart-p), GeV/e <pltjar1_p>, GeV/c | (Opari—p), deg (Ppart-p), Ge\ég!ig _ lz)).’?fé\e/\//c/‘cwpm—p% deg
1 Expt. 1.878 +£0.024 | 0.394 4+ 0.006 | 21.2+0.4 0.500 £ 0.004 | 0.305+0.004 | 44.9+0.8
FRITIOF| 2.331 +0.007 | 0.444 +0.001 | 16.9+0.1 0.549 £+ 0.002 | 0.332+0.003 | 42.6 £0.4
2 Expt. 1.542 4+ 0.011 | 0.444 4+ 0.003 | 30.5+0.3 0.488 £0.002 | 0.328+0.002 | 53.4 4+ 0.5
FRITIOF| 1.666 +0.005 | 0.474 £ 0.001 | 30.3£0.1 0.520 £0.001 | 0.376 £0.001 | 57.94+0.2
3 Expt. 1.108 £ 0.013 | 0.451 +0.004 | 41.6 +£0.5 0.473+£0.003 | 0.335+£0.003 | 59.2+£0.7
FRITIOF| 1.121 +0.004 | 0.463 +0.001 | 42.7+0.2 0.502 +£0.001 | 0.379+0.001 | 63.0+0.2
4 Expt. 0.902 +£0.015 | 0.440£0.001 | 48.0£0.7 0.467 £0.003 | 0.336 £0.004 | 62.1£1.0
FRITIOF| 0.905 4 0.004 | 0.441 £0.001 | 48.7£0.2 0.492 £0.001 | 0.379£0.001 | 64.5+0.2
) Expt. 0.778 £0.020 | 0.429+0.009 | 49.0+1.1 0.468 +£0.006 | 0.336 £0.006 | 58.3 +1.4
FRITIOF| 0.790 +0.004 | 0.428 +0.001 | 52.7+0.2 0.487 £+ 0.001 | 0.377+0.001 | 65.6 0.3
>6 Expt. 0.751£0.032 | 0.454 £0.015 | 56.2 £ 2.0 0.457 £0.009 | 0.344£0.010 | 65.4+2.4
FRITIOF| 0.686 +0.004 | 0.409 +0.002 | 56.7£0.3 0.474£0.001 | 0.374£0.001 | 66.7£0.3
All Expt. 1.368 + 0.007 | 0.437+0.002 | 35.0+0.2 0.479+0.001 | 0.330+0.001 | 56.5+0.3
events | FRITIOF| 1.362 +0.002 | 0.452 4+ 0.001 [38.22 £ 0.07 0.499 0.376 62.42 + 0.1

Table 4. Mean momenta and emission angles of leading and target protons in pC interactions at 4.2 GeV/c versus the
degree of collision centrality @ according to (expt) our experimental data and (FRITIOF) the predictions of the FRITIOF
model taking into account delta isobars

0 (Ppartp), GeV/e| (P P), GeV/e| (Bpariy), deg | (ppartp), GeV/e| (B ), GeV/e| (Bparty), deg
p>1.4GeV/c 0.3<p<14GeV/c

1 Expt. 2.76 £ 0.03 0.424 + 0.011 10.0 £ 0.2 0.764 £ 0.008 | 0.357 £ 0.005 | 35.4 + 0.6
FRITIOF | 2.894 £+ 0.006 | 0.453 4+ 0.002 | 10.67 + 0.06 0.874 +£0.003 | 0.418 £0.002 | 33.24+0.2
2 Expt. 2.66 + 0.02 0.519 + 0.006 12.8 £ 0.2 0.717 £0.004 | 0.388 £0.002 | 45.3 +0.3
FRITIOF | 2.643 £ 0.05 0.498 £+ 0.002 | 12.84 £+ 0.06 0.768 £ 0.002 | 0.451 £0.001 | 46.4+0.2
3 Expt. 2.354+0.03 0.594 + 0.013 16.5+0.4 0.665 £+ 0.005 | 0.400 £ 0.004 | 50.5 4+ 0.5
FRITIOF | 2.277 £ 0.006 | 0.533 4 0.003 15.4+0.1 0.690 £ 0.002 | 0.437 £ 0.001 | 52.94+0.2
4 Expt. 2.12+0.03 0.625 + 0.022 18.6 £ 0.7 0.638 £ 0.007 | 0.400 £ 0.005 | 54.4 + 0.8
FRITIOF| 2.113 £ 0.007 | 0.509 4 0.004 15.6 0.2 0.650 £ 0.002 | 0.427 £ 0.001 | 55.7 0.2
5 Expt. 2.02 4+ 0.06 0.682 4+ 0.049 21.24+1.7 0.613 +£0.011 | 0.396 £0.008 | 52.7+ 1.2
FRITIOF | 2.012 £ 0.009 | 0.496 & 0.006 15.7 4+ 0.2 0.621 £0.002 | 0.418 £0.001 | 57.8 0.2
>6 Expt. 2.02+0.10 0.816 + 0.076 269+ 34 0.594 +£0.017 | 0.410£0.012 | 59.8 + 2.1
FRITIOF| 1.889 £+ 0.012 | 0.442 4 0.009 14.5 4+ 0.3 0.586 + 0.002 | 0.407 £ 0.001 | 60.1 0.3
All Expt. 2.58 £ 0.01 0.519 4+ 0.005 13.3+£0.1 0.687 £0.003 | 0.391 £0.002 | 47.1 +0.2
events | FRITIOF | 2.589 + 0.003 | 0.490 £ 0.001 | 12.94 4+ 0.04 0.692 +0.001 | 0.431 £0.001 | 52.1 £0.1
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Fig. 8. Mean features of participant protons versus Q: (left-hand graphs) features of all participant protons and (right-hand
graphs) features of protons having momenta in the range 0.3 < p < 0.75 GeV/c. The notation is identical to that in Fig. 1.

Target protons are characterized by large emission
angles. In the @ > 1 groups, the FRITIOF model
satisfactorily reproduces the features of protons hav-
ing momenta in the region 0.3 < p < 1.4 GeV/c (de-
viation does not exceed 10%).

Knowing the energy carried away by leading pro-
tons whose momenta take values in the region p >
1.4 GeV/c, one can find the kinetic energy AT =
To — (Niead-p) (Tiead-p) expended by a projectile proton
in the course of interaction with a carbon nucleus.
At the momentum of 4.2 GeV/c, the kinetic energy
of a proton before the interaction is Ty = 3.36 GeV.
Table 5 lists the values of AT that were obtained for
all groups of pC events in the experiment and from
the calculation within the FRITIOF model involving
delta isobars. It can be seen that, in the course of
interaction with a carbon nucleus, a proton loses a
considerable part of its energy even in a peripheral
collision. As we go over from Q@ =1,2to Q@ =05, 6
events, this fraction increases from 60 to 80%. The

calculations within the FRITIOF model lead to a
similar result (see Table 4). Therefore, even such a

PHYSICS OF ATOMIC NUCLEI

light nucleus as that of carbon has a high stopping
power for protons of momentum 4.2 GeV/c.

The conditions of our experiment make it pos-
sible to obtain the distribution of the energy AT
among secondary particles—that is, to determine the
total energies of positively and negatively charged
pions, participant protons from the target nucleus
(0.3 < p < 1.4 GeV/c), and evaporated protons (p <
0.3 GeV/c). The values of these energies are given in
Table 5. It can be concluded from the data in this table
that, in @ = 1, 2 events, charged particles carry less
than half of the energy AT. With increasing @, the
energy fraction carried away by positively charged pi-
ons increases owing to the growth of their multiplic-
ity. In contrast to this, the total energy of negatively
charged pions remains virtually unchanged within
the interval @ = 2—6. With increasing @, the energy
fraction carried by target protons grows owing to an
increase in their multiplicity (see Tables 1, 5). The
general pattern is as follows: with increasing @, the
energy losses of a primary proton in a collision with
a carbon nucleus grow, the energy carried away by
positively charged pions and protons increases, and

Vol.67 No.2 2004
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Fig. 9. Total-momentum distributions of participant protons at various values of Q. The notation is identical to that in Fig. 1.
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Fig. 10. Transverse-momentum distributions of participant protons at various values of (). The notation is identical to that in
Fig. 1.

PHYSICS OF ATOMIC NUCLEI Vol.67 No.2 2004



270

(1/Nev)dN/dypart—p Q _

1.5

GALOYAN et al.

0.8+
I 1.OF
0.4F
0.5+
0 10 '
3_

0

3 -1

Ypart-p

Fig. 11. Rapidity distributions of participant protons at various values of @. The notation is identical to that in Fig. 1.

the energy of negatively charged and neutral particles
is virtually independent of @ (this is not so only for
@ = 1 events).

The FRITIOF model systematically underesti-
mates the energy carried away by positively and
negatively charged pions.

CONCLUSIONS

(i) New experimental data on the kinematical fea-
tures of secondaries from pC interactions at a mo-
mentum of 4.2 GeV/c have been presented versus the
degree of collision centrality.

(ii) It has been shown that, with increasing de-
gree of collision centrality, the mean momenta and
mean rapidities of secondaries decrease, the trans-
verse momenta remain virtually unchanged, and the
mean emission angles increase.

(iii) With the aid of the FRITIOF model taking
into account delta isobars, the boundary between
leading and nonleading protons has been found to
be 1.4 GeV/c. It has been established that a weak
dependence of the mean momentum on @ is typical
of nonleading protons. The mean transverse momen-
tum of leading protons in central interactions (p >

PHYSICS OF ATOMIC NUCLEI

1.4 GeV/c) is 1.5 to 2 times higher than that in
peripheral collisions characterized by @ ~ 1,2.

(iv) The stopping power of a carbon nucleus has
been determined. It has been shown that, in inter-
actions, protons lose a significant fraction of their
energy. Upon going over from peripheral events char-
acterized by @ = 1, 2 to central events characterized
by @ = 5, 6, this fraction increases from 60 to 80%.

(v) It has been found that, in @ =1 and @ =2
events, charged particles carry less than half of the
energy lost by leading protons. With increasing @,
the energy fraction carried away by positively charged
pions increases owing to the growth of their multi-
plicity. The total energy of negatively charged pions
undergoes virtually no changes in the interval @ =
2—6. With increasing @, the energy fraction of target
protons grows owing to an increase in their multiplic-
ity.

(vi) It has been established that the models used
underestimate the mean transverse momenta of pi-
ons. The cascade—evaporation model overestimates
the yield of soft pions (p <300 MeV/c). In the
FRITIOF model version taking into account delta
isobars, small values of the mean momenta of pions

Vol.67 No.2 2004
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Table 5. Energies (in GeV) carried away by secondary particles in pC interactions at 4.2 GeV/c versus the degree of
collision centrality @ according to (expt) our experimental data and (FRITIOF) the predictions of the FRITIOF model

taking into account delta isobars

Q My | SEe | SE PImedSP<r) $E, | S
1 Expt. |2.193 £0.032]|0.311 + 0.012]0.245 + 0.007| 0.138 +£0.004 |0.018]0.712 + 0.015]1.481 £+ 0.035
FRITIOF|1.703 £ 0.005|0.250 £ 0.003|0.234 + 0.003| 0.110 + 0.001 0.005 |0.599 £+ 0.004|1.104 + 0.006
2 Expt. [1.962 + 0.018]0.175 £ 0.005[{0.383 £ 0.006] 0.267 £ 0.004 | 0.012]0.837 £ 0.009|1.125 + 0.020
FRITIOF|1.871 £ 0.007]0.154 £ 0.002|0.371 £ 0.003|  0.257 £ 0.002 | 0.007 {0.789 + 0.004|1.081 £ 0.008
3 Expt. |2.299 £ 0.031]|0.193 £ 0.009|0.515 £ 0.012|  0.440 +£ 0.008 0.019 (1.167 £ 0.017|1.132 + 0.035
FRITIOF|2.270 £ 0.008]0.175 £ 0.002|0.362 £ 0.004| 0.474 £ 0.003 0.019 (1.030 £ 0.006{1.240 4+ 0.010
4 Expt. |2.565 4+ 0.035|0.195 + 0.014({0.615 £ 0.022| 0.582+£ 0.015 0.020 {1.412 4+ 0.030{1.153 + 0.046
FRITIOF|2.507 £ 0.010{0.165 &£ 0.003|0.348 £ 0.004| 0.654 &+ 0.006 0.029 (1.196 £ 0.008{1.311 +0.013
) Expt. [2.755 4 0.062|0.179 £ 0.026{0.650 + 0.040{ 0.727 £0.032 | 0.021 |1.577 £ 0.057|1.178 4+ 0.084
FRITIOF|2.668 &+ 0.012]0.158 £ 0.004|0.333 & 0.006] 0.812 £ 0.008 | 0.031 {1.333 £ 0.010|1.337 £ 0.016
>6 Expt. |2.642 + 0.130]0.174 £ 0.041|0.757 + 0.082| 0.881 + 0.061 0.014 {1.826 +£0.110]0.816 +0.170
FRITIOF|2.846 £ 0.015]|0.154 &+ 0.004|0.321 £ 0.008| 0.994 + 0.010 0.016 {1.486 £+ 0.014{1.361 4+ 0.021
All Expt. |2.145 £ 0.013]|0.217 £ 0.004|0.393 £+ 0.004| 0.297 +0.004 | 0.015]0.922 + 0.007|1.223 + 0.022
event§FRITIOF|2.028 + 0.006{0.187 £+ 0.012]0.326 + 0.012| 0.337 £+ 0.002 0.012(0.862 + 0.003|1.166 + 0.007

are associated with the small yield of energetic pi-
ons. All models underestimate the probability of the
production of pions having high transverse momenta.
The models describe poorly the spectra of positively
charged pions from multiparticle interactions.

(vii) All models describe rather well the momen-
tum spectra of protons in @ > 3 events. For periph-
eral events characterized by @ = 1 and 2, the results
of the calculations differ considerably from the experi-
mental data. The inability of the cascade—evaporation
model to describe the proton spectrum at Q = 1isdue
to an unsatisfactorily simulation of NV interactions.

(viii) The FRITIOF model describes qualitatively
the distribution of energy between product particles.
The model systematically underestimates the energy
carried by positively and negatively charged pions.
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Abstract—Various flow phenomena observed by a unique emulsion method are reviewed. The experi-
mental data of the emission of projectile and target fragments and relativistic particles in collisions of
1—160 A GeV/c 160, 22Ne, 28Si, 32S, 84Kr, 197Au, and 2°®Pb nuclei with 198 Ag (8°Br) targets are
investigated. The transverse-momentum approach, the flow-angle analysis using principal vectors, the
azimuthal correlation functions, the method of azimuthal correlations between charged secondaries, and
the method of Fourier expansion of the azimuthal angle distributions are applied. Evidence of the directed
flow of spectators has been obtained in the medium-impact nuclear interactions. In azimuthal distributions,
with respect to the reaction plane, the signal of the elliptic flow of participants has been observed.
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1. INTRODUCTION

Reactions between heavy nuclei at high energies
have been investigated for a number of years at
the Dubna, Brookhaven, and CERN accelerators. A

characteristic feature of nucleus—nucleus collisions is
that the direction of the outgoing particles projected
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onto the transverse plane is correlated with the
orientation of the impact parameter. These azimuthal
correlations are usually referred to as "collective
flow" [1].

The directed fluid-like emission of nuclear matter
in energetic collisions of two nuclei was first predicted
by [2]. Then many experiments were devoted to the
study 