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Abstract—Composite layers made in sapphire by implantation of 40-keV Cu+ ions at a dose of 1 × 1017 cm–2

and an ion beam current density varying from 2.5 to 10 µA/cm2 are studied. It is shown that ion implantation
makes it possible to synthesize a composite layer containing copper nanoparticles at the surface of the insulator.
However, the nanoparticle size distribution in this layer is nonuniform. The composite layer is exposed to high-
power excimer laser radiation with the aim of modifying the size and size distribution of the metal nanoparticles in
it. The resulting structures are examined by Rutherford backscattering, optical reflection spectroscopy, and atomic
force microscopy. It is found that the laser irradiation diminishes copper nanoparticles in the composite layer.
Experimental data on laser modification may be explained by photofragmentation and/or melting of the nano-
particles in the sapphire matrix under the action of nanosecond laser pulses. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Composite materials, such as insulators with metal
nanoparticles (MNPs) embedded in them, are promis-
ing optoelectronic materials. An example of their appli-
cation in optoelectronics is a pilot chip that integrates
metallic wires as conductors of electric signals with
fibers as guides of optical signals. In practice, light
guides are frequently made of synthetic sapphire
(Al2O3) or silicon oxide, which are applied on or buried
in semiconductor substrates. In this case, optical emit-
ters and electrooptic detectors that accomplish electric-
to-optic signal conversion are fabricated inside the
insulating layer. The light signal from a microlaser is
focused on a light guide and then transmitted through
the optoelectronic chip to a high-speed photodetector,
which converts the photon flux to a flux of electrons. It is
expected that light guides used instead of metallic conduc-
tors will improve the data rate by at least two orders of
magnitude. Moreover, there is good reason to believe that
optical elements will reduce the energy consumption and
heat dissipation, since metallic or semiconductor com-
ponents of the circuits may be replaced by insulating
ones in this case. Pilot optoelectronic chips currently
available are capable of handling data streams with a
rate of 1 Gbit/s, with 5 Gbit/s in sight.

Key elements of dielectric waveguides are nonlinear
optical switches, which must provide conversion of
laser pulses as short as several pico- or even femtosec-
onds. It is known [1, 2] that MNP-containing insulators
have a giant third-order nonlinear susceptibility.
1063-7842/05/5003- $26.00 0285
Because of this, their refractive index changes even if
the time of action is ultrashort. Therefore, such materi-
als may be used to advantage in integrated optoelec-
tronic devices. Among the many methods of MNP syn-
thesis in insulators, such as magnetron sputtering, the
convective method, ion exchange, sol–gel deposition,
etc., ion implantation (II) seems to be the most promis-
ing [3, 4]. Today, II is widely used in semiconductor
chip fabrication. Using II for MNP synthesis, research-
ers have reached the highest filling factors for metal
atoms embedded in an insulating matrix above the sol-
ubility limit. Furthermore, nearly any metal–insulator
composition may be fabricated using II. Finally, this
method allows for strict control of the doping ion beam
position on the sample surface and dopant dose (for
example, at ion-beam lithography).

The history of insulator–MNP composites made by
II dates back to 1973, when a team of researchers at
Lyons University (France) pioneered a method of syn-
thesizing particles of various metals (silver, sodium,
calcium, etc.) in LiF and MgO ionic crystals [5, 6].
Later, MNPs were successfully synthesized in various
materials, such as polymers, glass, artificial crystals,
and minerals. In this work, we consider the formation
of MNPs in synthetic sapphire (Al2O3), since this mate-
rial as an MNP-containing insulating matrix has been
studied to a much smaller degree than standard
waveguide materials, e.g., silicon dioxide.

As follows from the currently available publications
concerning ion synthesis of MNPs in Al2O3 [7–50] (see
© 2005 Pleiades Publishing, Inc.
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Monteiro et al. 2002 [24]
Types of metal nanoparticles and conditions for their synthesis in Al2O3 by ion implantation combined with post-implanta

Particle
type

Matrix
type

Radiation
energy, keV Ion dose, cm–2

Current
density,
µA/cm2

Matrix
temperature,

°C

Postimplantation
heat treatment

Parti
identific

techni

α-Fe α-Al2O3 100 4.0 × 1016 –200 TEM, XR
CEMS[0001] 160 7.0 × 1016 25

2.0 × 1017

α-Fe α-Al2O3 400 1.0 × 1017 240 Vacuum annealing at
700–1200°C for 1 h

TEM, XR

[0001] VSM

α-Fe α-Al2O3 160 4.0 × 1016 45 Annealing in Ar + 4% H2
at 1500°C for 1 h[0001]

α-Fe α-Al2O3
polycrist.

110 1.0 × 1017 10 25 TEM

α-Fe α-Al2O3 
[0001]

160 1.0 × 1017 2 25

Fe α-Al2O3
policrist.

60 0.2–1.2 × 1017 2

Fe Al2O3 85 4.0 × 1016 10–15 25 RM

[0001] 7.0 × 1016

1.0 × 1017

Fe Al2O3 380 1.0 × 1017 2 RM

4.0 × 1017

1.0 × 1018

α-Fe α-Al2O3 100 1.0–2.0 × 1017 2–3 25 CEMS

Fe α-Al2O3 160 1.0 × 1017 25 TEM, GIX
VSM[0001] 4.0 × 1017

[1120]

Fe α-Al2O3 160 1.0 × 1017

4.0 × 1017
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Refs.

White et al. 2003 [25]

UID

Saito et al. 1991 [26]

S Marques et al. 2001 [27]

2002 [28]

D, Meldrum et al. 2003 [29]

Farlow et al. 1990 [14]

Kobayashi et al. 1996 [30]

D Xiang et al. 2004 [31]

Donnet et al. 1991 [15]

Ila et al. 1998 [32]

Ikeyama et al. 2001 [33]

2002 [34]

Stepanov et al. 2001 [35]

2002 [36]

D Donnet et al. 1991 [15]

Battaglin et al. 1999 [37]

Rahmani et al. 1988 [38]

Rahmani, Townsend 1989 [39]
Table.  (Contd.)

Particle
type

Matrix
type

Radiation
energy, keV Ion dose, cm–2

Current
density,
µA/cm2

Matrix
temperature,

°C

Postimplantation
heat treatment

Parti
identifi

techni

Fe Al2O3 350 1.0 × 1017 –200 Annealing in Ar + 4% H2
at 1100°C for 2 h

XRD

25 TEM, SQ

Co α-Al2O3 20 0.5–5.0 × 1017 25

Co α-Al2O3 150 5.0 × 1017 25 SQUID, R

〈0001〉
〈0221〉
〈1120〉

Co Al2O3 140 8.0 × 1016 25 Annealing in Ar + 4% H2
at 1100°C for 2 h

TEM, XR
SQUID

–100

Ni α-Al2O3 160 4.0 × 1016 45 Annealing in Ar + 4% H2
at 1500°C for 1 h[0001]

Ni Al2O3 3000 1.6 × 1018 1 20–250 RM

[1120]

Ni α-Al2O3 64 1.0 × 1017 0.5 TEM, XR

Cu α-Al2O3
polycrist.

110 1.0 × 1017 10 25 TEM

Cu α-Al2O3 160 0.2–2.0 × 1017 <2 Annealing in air at 673°C
for 1 h

Cu Al2O3 2100 1.0 × 1017 –170 Vacuum annealing at
770–1270°C for 1 h

Cu Al2O3 40 1.0 × 1017 2.5–10 25 RS, AFM

Zr α-Al2O3 
polycrist.

110 1.0 × 1017 10 25 TEM, XR

Pd α-Al2O3 
polycrist.

2 1.0–5.0 × 1016 0.5 XPS

1.0

Ag Al2O3 50 4.0–19.0 × 1016 1–5 25 RS

–200
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Ila et al. 1998 [32]

Steiner et al. 1998 [40]

Ila et al. 1998 [32]

Alves et al. 1999b [41]

EM, White et al. 2003 [25]

Ohkubo, Suzuki 1988 [42]

Henderson et al. 1995 [43]

Ila et al. 1998 [32]

Marques et al. 2004 [44]

Can et al. 1994 [45]

1995 [46]

Sakamoto et al. 1999 [20]

R Hayashi et al. 2002 [21]

2003 [47]

 TEM Vallet et al. 2002 [48]

White et al. 2002 [49]
                   2003 [25]

Withrow et al. 2003 [50]

ctron Mössbauer spectroscopy; VSM, for vibrating
tions, see the text). The ions are listed in the order
Table.  (Contd.)

Particle
type

Matrix
type

Radiation
energy, keV Ion dose, cm–2

Current
density,
µA/cm2

Matrix
temperature,

°C

Postimplantation
heat treatment

Par
identifi

techn

Ag Al2O3 1500 0.2–2.0 × 1017 <2 Annealing in air at 773°C
for 1 h

Ag Al2O3 25–30 0.2–2.0 × 1017 0.6–6.2 25

Sn Al2O3 160 0.2–2.0 × 1017 <2 Annealing in air at 773°C
for 1 h

Pt Al2O3 160 5.0 × 1016 0.4 25

[0001]

Pt Al2O3 910 8.2 × 1016 200 Annealing in Ar + 4% H2
at 1100°C for 2 h

XRD, T
SQUID

Au Al2O3 400 6.8 × 1016 1200 TEM

[0001]

Au Al2O3 2750 2.2 × 1016 Annealing in Ar + 4% H2
at 1100°C for 1 h

[0001]

Au Al2O3 2000 0.2–2.0 × 1017 <2 Annealing in air at
973–1323°C for 1 h

Au Al2O3 160 1.0 × 1017 RS

Eu Al2O3 400 1.0 × 1016 8 34 Annealing in air at 1200°C
for 1 h

16

FeCo α-Al2O3 100 1.0–2.0 × 1017 2–3 25 CEMS

VSM, M

FePt α-Al2O3 Fe 350 Fe 1.0 × 1017 Fe 200–550 Annealing in Ar + 4% H2
at 1100°C for 2 h

SQUID,

Pt 910 Pt 0.5–1.1 × 1017 Pt 200, 500 XRD

Notes:Here, TEM stands for transmission electron microscopy; XPS, for X-ray photoelectron spectroscopy; CEMS, for conversion ele
sample magnetometry; MR, for magnetoresistance measurements; and RM, for resistive measurements (for the other abbrevia
they follow in the periodic table of elements.
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table), this matrix as a basis for a composite was of
interest for a long time. The table lists the types of
MNPs and conditions of their synthesis directly by II or
by II combined with heat treatments. While MNP syn-
thesis in Al2O3 has been extensively explored, there are
only few studies [15, 32–36, 38–40, 42, 43] devoted to
the synthesis of noble metal particles, which are the
most effective in terms of nonlinear optical properties.

For nonlinear optics, copper, which is optically
close to noble metals, is the most preferable material
[1, 2]. However, as follows from the table, II synthesis
of copper nanoparticles in Al2O3 without using auxil-
iary postimplantation heat treatments has not been
implemented up to now. The feasibility of creating
composites by implantation of low-energy (<100 keV)
copper ions into a single-crystal sapphire substrate was
demonstrated only recently [35, 36]. It should be noted
that the early attempts to create composites by irradiat-
ing Al2O3 by high-energy (130 keV–2.4 MeV) copper
ions [51–55] failed (copper particles did not form);
therefore, those works are omitted from the table. Sub-
sequent heat treatment of the substrates irradiated by
high-energy ions causes, along with the formation of
copper nanoparticles [33, 34], the growth of copper
oxide particles and CuAl2O4 spinel phase. Of special
interest is work [15], where copper nanoparticles were
synthesized in polycrystalline Al2O3 by moderate-
energy (110 keV) implantation. However, the polycrys-
talline state of sapphire is strongly different from the
single-crystalline one: an elevated density of structure
defects, specifically, grain (domain) boundaries, in the
former radically changes the MNP synthesis condi-
tions. Therefore, though mentioned in the table, work
[15] is beyond the scope of this review.

Thus, this review covers publications devoted to II
synthesis of copper nanoparticles of a desired size in a
sapphire substrate. Since the linear and nonlinear opti-
cal properties of MNPs are directly related to their sizes
[56], one may control the optical performance of a
composite as a whole by controllably varying the MNP
size and MNP size distribution. One way of changing
the particle size distribution while keeping a high value
of the filling factor is to anneal the composite by high-
power excimer laser pulses [57–63].

Emphasis in this work will be on modification of
II-synthesized MNPs in Al2O3 by exposing the compos-
ite to laser radiation.

EXPERIMENTAL

As substrates, we used thin sheets of synthetic poly-
crystalline sapphire, which offers a high optical trans-
parency in the spectral range 200–1000 nm. The plane
exposed to radiation was (1012). The implanted species
were 40-keV Cu+ ions with a dose of 1 × 1017 cm–2 and
an ion beam current density varying from 2.5 to
12.5 µA/cm2. Experiments were carried out in an ILU-3
implanter under a pressure of 10–5 Torr. Prior to implan-
TECHNICAL PHYSICS      Vol. 50      No. 3      2005
tation, the substrate was kept at room temperature; in
the course of implantation, it was continuously cooled
by running water. The samples were analyzed by Ruth-
erford backscattering (RBS) (the energy of 4He+ ions is
2 MeV) on a van de Graaf accelerator. The RBS spectra
were converted to copper ion profiles across the Al2O3
substrate using the Data Furnace computer program
[64]. Optical reflection spectra were recorded with a
Monolight one-beam fiber-optic device in the range
380–800 nm at normal incidence of the radiation on the
sample. The optical transmission in the range 200–
1000 nm was measured with a Perkin Elmer Lambda 19
two-beam spectrophotometer.

After implantation, the Al2O3 substrate was sub-
jected to 25-ns-wide pulses from an ALTEX-210
248-nm krypton excimer laser. The pulse repetition rate
was 1 Hz, and the total energy was 0.3 J/cm2 per pulse.
The energy variation from pulse to pulse was no more
than 2%, as indicated by a DGX FL150A-EX-RP laser
energy meter. To improve the laser radiation unifor-
mity, the light beam, before normal incidence on the
sample surface, was passed through a circular dia-
phragm of diameter 2 mm. Immediately before the irra-
diation by light, which was carried out in air, the sub-
strate was kept at room temperature. Since the irradia-
tion area was small (the light beam was limited by the
diaphragm), it was analyzed only by means of optical
reflection spectroscopy (RS).

The ion-implanted substrates and those irradiated
by the laser were imaged in a Solver-P4 scanning probe
microscope operating in the atomic force mode. Imag-
ing was accomplished in the vibration mode, and the
vibration amplitude of the sensitive microprobe near
the resonance frequency varied from 10 to 100 nm.
When the sample surface was scanned line by line, the
vertical displacement of the microprobe was detected
with a low-intensity laser beam reflecting from the ana-
lyzing tip. The surface profile was recorded in the tap-
ping mode. The measurements were performed in air.

LOW-ENERGY ION IMPLANTATION

Ion implantation is a most efficient method of mod-
ifying a several-micrometer-thick surface layer by
embedding the elementary impurity [3]. The degree of
modification depends on the material properties and II
parameters, such as the type and energy of an implant,
ion current density, substrate temperature, etc. Ion dose
F0, which specifies the implant amount, is one of the
basic implantation parameters. According to the impact
ion implantation has on insulators being modified, it
can be divided into high-dose and low-dose processes
(Fig. 1).

In the case of low-dose II (~F0 ≤ 5 × 1014 cm–2), the
ions implanted, after stopping and thermalization, are
dispersed throughout the volume of the insulator and
are well isolated from each other. The energy of the
implant is transferred to the matrix via electron shell
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excitation (ionization) and nuclear collisions, which
induce defects (to radiation-induced defects, one may
refer extended and point defects, amorphization and
local crystallization, precipitation of a new phase made
up of host atoms or implanted ions, etc. [3]). These
defects, in turn, may cause reversible and irreversible
changes in the material structure. Furthermore, II may
intensely sputter the surface of the insulating target, as
observed in the case of Cr+ and Ti+ implantation into
Al2O3 or Cu+ implantation into the MgAl2O3 spinel
matrix and SiO2 [65, 66] (Fig. 1). Sometimes, sputter-
ing competes with swelling, as in the case of spinels
and glasses exposed to extremely high ion current
beams [66] or in the case of inert gas ions embedded in
polymers [67].

The range of high-dose implantation may be divided
into two characteristic dose (irradiation time) sub-
ranges (Fig. 1). In the range 1015 ≤ F0 ≤ 1016 cm–2, the

1016 cm–2

Implantation

Annealing

Sputtering

Substrate

Supersaturation Nucleation Growth
Ostwald
ripening Coalescence

1017 cm–2 Ion dose

Fig. 1. Basic physical processes (from left to right) involved
in the formation of nanoparticles from an implant vs. the ion
dose with regard to surface sputtering under irradiation.
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Fig. 2. 40-keV Cu+ ion profiles in Al2O3 calculated with the

DYNA algorithm for ion doses of (1) 0.1 × 1015, (2) 0.3 ×
1015, (3) 0.6 × 1015, (4) 0.9 × 1015, (5) 1.2 × 1015, (6) 1.5 ×
1015, (7) 1.8 × 1015, (8) 2.1 × 1015, (9) 2.4 × 1015, and
(10) 2.7 × 1015 cm–2. D is the distance inward to the sub-
strate.
implant concentration exceeds the solubility limit of
metal atoms in insulators (in particular, in sapphire);
accordingly, MNPs nucleate and grow. The boundary
dose value depends on the type of the insulator and
implant. For example, for 25-keV silver ions implanted
into LiNbO3, the boundary dose was found to be F0 ≈
5.0 × 1015 cm–2 [68]; for 30-keV silver ions embedded
in epoxy resin, F0 ~ 1016 cm–2 [69]. The boundary dose
(at which MNPs nucleate) for copper implantation into
Al2O3 has not been reported in the literature.

The next subrange of high-dose implantation, F0 ≥
1017 cm–2, leads to the coalescence of already existing
MNPs with the formation of either MNP aggregates or
thin quasi-continuous films at the surface of the insula-
tor (Fig. 1). For example, in the case of 40-keV cobalt
ions embedded in epoxy resin, a dose exceeding the
above value favors the formation of thin-film metallic
labyrinth structures [70]. Postimplantation thermal or
laser annealing may alter the arrangement of MNPs in
an insulator as a result of coalescence or Ostwald ripen-
ing [3].

The works considered in this review were aimed at
studying composites consisting of the sapphire matrix
with isolated copper nanoparticles; i.e., the particles
were synthesized by high-dose (F0 ~ 1017 cm–2) implan-
tation. For the case of Cu+ implantation with a moderate
ion energy (40 keV), elastic ion energy losses prevail,
which causes oxygen and aluminum atom displace-
ments in the matrix and chemical bond breaking. It is
known that implantation of various metal ions into the
crystalline Al2O3 matrix leads to the amorphization of
the ion-doped layer even at relatively low doses (on the
order of 1015 cm–2) [3, 71].

Acceleration of an implant in the matrix is a long-
term process. The implant distribution in the target is
routinely described with the TRIM algorithm applied to
the statistical Gaussian distribution, which has a sym-
metric statistical profile [72]. However, as was shown
earlier [73–75], the TRIM algorithm works well in
describing the metal atom distribution across the insu-
lator at low-energy II (<100 eV) only if the implanta-
tion dose is very low (!1015 cm–2). This is because
TRIM ignores the effect of dynamic surface sputtering
(Fig. 1) and the variation of the target atomic composi-
tion with the amount of the implant accumulated.
Therefore, the DYNA algorithm [76, 77] seems to be
more appropriate for simulating the copper distribution
in Al2O3. DYNA includes pair collisions of the ions
with substrate atoms, thereby taking into account the
variation of the phase composition in the surface layer
with time because of target surface sputtering.

Figure 2 shows how the implant distribution varies
with the implantation time, i.e., visualizes the copper
accumulation in Al2O3. At low doses (F0 ≤ 0.1 ×
1015 cm–2), the DYNA- and TRIM-based distributions
coincide. However, as the dose grows, the Gaussian
profile changes to an asymmetric curve and the implant
TECHNICAL PHYSICS      Vol. 50      No. 3      2005
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concentration maximum shifts closer to the surface.
From a dose of 3.0 × 1015 cm–2 on, the copper profile in
depth of the sapphire is stabilized, i.e., becomes dose-
independent. This value manifests the upper bound for
the domain of applicability of the DYNA algorithm. At
higher doses, the implant concentration in the surface
layer will exceed the limiting solubility of copper in
sapphire [3] with regard to a low ion energy (40 keV),
which DYNA cannot take into account.

METAL NANOPARTICLE FORMATION 
BY HIGH-DOSE IMPLANTATION

Collisions of the accelerated copper ions with Al2O3
matrix atoms are accompanied by effective electron
losses in the latter. As a result, the Cu+ ions deionize
with the formation of neutral copper atoms Cu0. Basi-
cally, copper atoms may produce chemical bonds with
free matrix atoms, specifically, with oxygen atoms.
However, Cu–Cu bonding is energetically more favor-
able, as can be judged from the change in the Gibbs free
energy in copper–oxygen reactions, which is also
observed with silver atoms in silicate glass [77].

In view of the fact that copper atoms readily com-
bine with each other, an excess of the copper amount
over the solubility limit of copper in Al2O3 leads to the
formation of copper nanoparticles in the ion-doped
layer. As was noted earlier, the model approach based
on pair atomic collisions in a homogeneous amorphous
medium (which is involved in the DYNA algorithm)
becomes inefficient when the insulator contains metal
phase fragments [73]. Yet, the curves calculated at a low
dose of 2.7 × 1015 cm–2 (Fig. 2) may be helpful in pre-
dicting the MNP distribution across the sample at
higher doses. Consider the formation and distribution
of MNPs at higher doses.

Note first of all that an increase in the absolute cop-
per ion concentration in the depth profiles and the sur-
face sputtering coefficient depend on the implantation
time (or the time of implant accumulation) [73]. There-
fore, the particle nucleation and growth are also time-
dependent processes. Generally, the ion synthesis of
MNPs proceeds in several steps: (i) accumulation of
Cu0 atoms in a local near-surface area of sapphire,
(ii) supersaturation of this area by Cu0 atoms, (iii) for-
mation of nuclei consisting of several Cu0 atoms, and
(iv) growth of the nuclei. Clearly, the size of nanoparti-
cles forming at a certain depth from the surface corre-
lates with the filling factor for the metal in the insulator
at the same depth, since both parameters depend on the
ion concentration profile. Therefore, bearing in mind
the asymmetric copper atom distribution obtained for
the maximal dose used in the calculations (Fig. 2), one
can conclude that, when this dose is exceeded and the
distribution becomes asymmetric, larger copper parti-
cles (and, accordingly, higher filling factors) will be
observed closer to the Al2O3 surface, while finer parti-
cles will penetrate deeper into the matrix.
TECHNICAL PHYSICS      Vol. 50      No. 3      2005
The model predictions regarding the copper distri-
bution inward to the matrix have been corroborated
experimentally. By way of example, Fig. 3 shows the
RBS copper atoms profiles near the surface of the sap-
phire that were taken at a high (1017 cm–2) dose. Note
that the RBS method gives the distribution of only cop-
per atoms over the volume, ignoring the possible pres-
ence of the volume metal phase. In the experimental
distributions obtained at two ion current values, the
copper concentration reaches a maximum near the sur-
face, decreasing monotonically with depth down to
60 nm. This is in qualitative agreement with the curves
shown in Fig. 2. The discrepancy in the positions of the
maxima for two ion current values will be discussed
below.

Similar distributions of MNPs in depth were also
obtained in experiments on high-dose low-energy
implantation of ions into other insulators, as follows
from the electron microscopy data taken of the cross
sections of soda–lime silicate glasses with MNPs
[3, 78] or SiO2 with copper particles [79] and also from
the measurements of the reflection from the implanted
and back sides of silicate glass substrates with silver
particles [78, 80].

Figure 4 demonstrates the reflection spectra (thin
curves) taken from Al2O3 ion-doped by Cu+ ions at dif-
ferent ion currents. The wide reflection bands in the vis-
ible range directly indicate the formation of copper
nanoparticles in the sapphire volume. The bands can be
attributed to plasmon–polariton resonance (PPR) local-
ized in the particles [56]. By comparing electron micro-
scopic and optical data for MNPs synthesized by differ-
ent techniques, it was shown that this optical resonance,
which is due to collective oscillations of free electrons,
is observed in the visible range when the size of copper
particles lies between ≈2 nm and several tens of nanom-

0
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C, 1020 at. Cu/cm3

D, nm
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Fig. 3. RBS profiles of copper ions in Al2O3 at an ion dose

of 1017 cm–2 and two ion beam current densities. C is the Cu
ion concentration, and D is the distance inward to the sub-
strate.
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Fig. 4. Optical reflection spectra for copper-ion-implanted
Al2O3 (thin curves) vs. ion beam current density and the
spectra taken from the same samples subjected to post-
implantation laser annealing (thick lines).
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Fig. 5. AFM image of a fragment of the Al2O3 surface irra-
diated by copper ions at an ion beam current density of
7.5 µA/cm2. The values plotted in the X and Y axes are
given in nanometers. The step is the Z direction is 24 nm.
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eters [56]. Such reflection spectra are typical of copper
particles in an insulating matrix.

Figure 5 shows a fragment of the Al2O3 surface after
copper implantation at an ion beam current density of
7.5 µA/cm2. This image, obtained in an atomic force
microscope (AFM), illustrates characteristic semi-
spherical hillocks of mean size 20 nm, which are absent
on the nearly smooth surface of unimplanted Al2O3. The
hillocks seen in Fig. 5 result from surface sputtering dur-
ing II and are merely the tops of MNPs having nucleated
in the surface layer. It is assumed that sapphire is
removed (sputtered) with a higher rate than the metallic
phase. Estimates [73, 74] made for high-dose copper
implantation into sapphire show that the Al2O3 layer
sputtered may be several nanometers thick for the doses
and energies considered in this work. For Cr+ and Ti+

implantation into sapphire (with a dose of ~1017 cm–2),
similar thicknesses of the layer sputtered from the sap-
phire surface were observed, as measured by photon
tunnel microscopy [65]. At the same time, bare MNPs
were observed on the surface after low-energy
(<60 keV) high-dose implantation of Au+ into Al2O3

[47] and mica [81]; Fe+ into SiO2 [82]; and Ag+ into
Al2O3, Ta2O3, Si3N4, SiO2 [40, 83, 84], and soda–lime
silicate glass [4, 85]. The metal phase on the surface
was identified by glancing incidence X-ray diffraction
(GIXRD) [83].

As the ion current grows, the maximum of the
reflection spectrum shifts from 620 nm for 2.5 µA/cm2

to 650 nm for 12.5 µA/cm2 (see Fig. 4). Simultaneously,
the reflection intensity increases roughly by a factor of
1.5. Generally, interaction of an electromagnetic wave
with a single metal particle causes the effects of PPR
absorption and scattering if the particle size is less than,
or comparable to, the light wavelength [56]. In our case,
the size of the largest metal particles does not exceed
20 nm (Fig. 5); therefore, the optical PPR effects dom-
inate (Fig. 4).

The problem of extinction of light when a plane
electromagnetic wave interacts with a spherical particle
can be solved in terms of classical thermodynamics (the
Mie theory) [86, 87]. As for fine particles of noble met-
als, it is known [56] that Mie spectral resonances are
due to PPR effects and analytical Mie spectra may be
compared with experimental data. Therefore, the Mie
equations will be used to simulate the extinction spectra
for copper nanoparticles in Al2O3 and the model spectra
obtained will be compared with the experiment (Fig. 4),
as was successfully done previously for silver particles
synthesized in polymers by II [88]. In the calculations
described below, we used the complex optical constants
for Al2O3 [89] and copper [90] corrected for size effects
(limitations imposed on the free path of electrons)
observed in particles of size ranging from 1 to 200 nm
(this range is somewhat wider than in Fig. 5).

The model extinction spectra versus MNP size are
shown in Fig. 6, where a broad band covering most of
TECHNICAL PHYSICS      Vol. 50      No. 3      2005
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the visible range is seen. In the MNP size range consid-
ered, the PPR maximum shifts toward longer wave-
lengths with increasing particle size. Simultaneously,
the intensity of the extinction band grows and the spec-
tra somewhat broaden, which is in agreement with the
changes in the experimental spectra with increasing ion
current (Fig. 4). Such behavior of the reflection spectra
confirms the statement that copper particles in sapphire
grow with ion beam current density.

The most plausible reason for the increase in the
particle size is that implantation rises the Al2O3 matrix
temperature. For example, when low-energy Ag+ ions
were implanted into preheated (from 20 to 60°C) sili-
cate glasses at a moderate ion current density (3 µA/cm2

[91]), larger silver particles formed in warmer samples.
This is not surprising: an increase in the temperature
accelerates diffusion; that is, the mobility of the
implanted metal ions rises.

As was noted earlier, the process of MNP synthesis
may be subdivided into steps including the incorpora-
tion of the accelerated ions, their diffusion, and the
nucleation and growth of particles. In our case, how-
ever, all the samples were kept under identical condi-
tions (i.e., at room temperature) at the beginning of
implantation. It appears that different values of the ion
current density result in different rates of incorporation
of copper ions into the matrix (different rates of deliv-
ery of the ion energy, which heats up Al2O3). Thus, we
may conclude that the higher the ion current density,
the higher the rate of heating of the Al2O3 substrate
(temperature gradient) and the higher its temperature. It
is safe to speak of temperature-enhanced diffusion of
the metallic implants in the substrates at high-beam-
current implantation. At elevated temperatures and
temperature gradients in the Al2O3 matrix, the diffusion
mobility of copper ions in it grows, the ions drain faster
toward nuclei that have already formed, and the parti-
cles grow (diffusion growth). In “hot” samples, the
amount of ions unattached to the particles, i.e., remain-
ing dispersed in the implanted layer, is smaller than in
“cold” ones. Ostwald ripening also may contribute to
the growth of the particles: fine nuclei, which have a
lower melting point, dissociate into atoms, which serve
as building blocks for other (larger) particles. As a
result, the total number of the particles decreases.

Under the implantation conditions used in our
experiments, the matrix temperature was not so high
that the extremely high-power diffusion flux of embed-
ded copper atoms inward to the matrix could prevent
particle nucleation. However, as follows from the RBS
spectra in Fig. 3, the high ion current raises the copper
ion mobility and the RBS spectrum becomes diffuse. In
addition, its maximum slightly shifts inward to the sub-
strate, which is one more indication that the copper ion
mobility in this matrix is enhanced.

Broadening of the RBS spectrum implies a broad
particle size distribution across the depth. Therefore, it
would be of interest to estimate the feasibility of modi-
TECHNICAL PHYSICS      Vol. 50      No. 3      2005
fying implantation-synthesized MNPs by means of
laser annealing. This issue is considered in the next sec-
tion.

MODIFICATION OF METAL NANOPARTICLES 
BY LASER ANNEALING

In earlier experiments on annealing of ion-
implanted structures by an excimer laser (see review
[57]), UV radiation was used, which falls into the range
of strong absorption by insulators (e.g., soda–lime sili-
cate glass containing silver particles). Such annealing
usually leads to melting of the glass surface, including
the implanted layer, followed by rapid solidification. As
a result, the mean silver particle size diminishes,
because the heat of the matrix, which intensely heats
up, melts the particles. Melting is favored by a rela-
tively low melting point of the glass used (≈750°C),
application of high-power laser pulses, and also the fact
that the melting point of dispersed silver is close to the
melting point of the glass [57].

In this work, we apply the same approach to MNP
modification using an excimer laser. However, the
melting point of artificial sapphire is higher (1400°C)
than that of soda–lime glass and sapphire is more trans-
parent to 248-nm radiation (Fig. 7). Therefore, one can
assume that the laser radiation absorption in sapphire is
lower than in the glass and consider the annealing pro-
cess as direct particle–radiation interaction irrespective
of the matrix temperature.

From the spectra shown in Fig. 7, it follows that the
post-implantation transmission of the Al2O3 matrix in
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the UV range decreases possibly because of defects
induced by radiation [3]. Yet, the matrix remains fairly
transparent (35–40%) at the laser wavelength used in
the experiments (248 nm) especially versus the trans-
mission of soda–lime glass of the same thickness. It
should be noted that synthesized copper nanoparticles
also absorb UV radiation due to band-band transitions
just as in the bulk metal [56].

The reflection spectra taken from the implanted
samples subjected to laser annealing are shown by thick
lines in Fig. 4. The selective bands indicate that the
nanoparticles are present in the sapphire after the
annealing as well. However, in all the samples, the
maxima of these reflection bands turn out to be shifted
toward shorter waves and they are less high-power than
in the spectra taken immediately after implantation.
These changes are more pronounced in the case of
high-current II; in other words, samples with large cop-
per particles are more sensitive to laser radiation that
those with fine particles, which were synthesized at low
current densities.
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Fig. 7. Optical transmission spectra of Al2O3 before and
after copper implantation for different values of the ion
beam current density. The spectrum for nonirradiated soda–
lime silicate glass (S.g.) is given for comparison.
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Fig. 8. AFM image of a fragment of the Al2O3 surface irra-
diated by copper ions at an ion beam current density of
7.5 µA/cm2 and subjected to laser annealing. The values
plotted in the X and Y axes are given in nanometers. The step
is the Z direction is 48 nm.
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In terms of the Mie theory, which describes the opti-
cal properties of fine metal particles (see the previous
section, Fig. 6), the short-wavelength shift of the reflec-
tion maxima means that laser annealing of sapphire
decreases the mean size of the particles. This conclu-
sion is corroborated by AFM examinations. In fact, the
hillocks seen in the surface image after laser annealing
(Fig. 5) are smaller than those observed after the
implantation (Fig. 8) by one order of magnitude.

The features of interaction between high-power
laser radiation and a material depend on the laser beam
parameters, physicochemical properties of the medium
irradiated, and photoexcitation relaxation time. In our
composite, one can distinguish the relaxation and exci-
tation processes in the sapphire matrix and in the metal
inclusions. The wavelength of the excimer laser,
248 nm, falls into the absorption edge of Al2O3 (Fig. 7),
so that this radiation generates electron–hole pairs by
direct band-to-band electron transitions. In the metal
particles, the same radiation excites electrons in both
the valence and conduction band. In other words, the
optical energy absorbed starts heating the metal virtu-
ally at once, while in sapphire, the rate of band-to-band
electron transition (i.e., the density of electron–hole
pairs) increases gradually [92]. In metals, the time of
electron–electron collisions is on the order of 10–14–
10−13 s and the electron–phonon relaxation takes place
one or two orders of magnitude more slowly [93]. In
nonmetallic materials, band-to-band electron transi-
tions usually take from 10–12 to 10–6 s [92].

Note that the time intervals mentioned are much
shorter than the duration of laser pulses (25 ns) used in
this work. Therefore, although Al2O3 is considered as
transparent to the laser radiation (Fig. 7), a fraction of
the radiation is still absorbed by the sapphire matrix.
However, we may roughly assume that most of the
energy of the laser radiation is absorbed by the particles
and the transparent substrate has no time to heat up. If
so, the decrease in the metal nanoparticle size observed
in the experiment (Figs. 4, 5, 7) may be due to photo-
fragmentation [94]. This process means a decrease in
the total number of the particles in the layer implanted
when some of them disintegrate into atoms or tiny mol-
ecule-like clusters, which do not exhibit PPR-related
absorption (Fig. 9). Clearly, large particles, which have
a larger volume and cross-sectional area and, therefore,
absorb a greater amount of the laser energy, are more
prone to fragmentation. It is just large particles that,
when disintegrated, are responsible for the reduction of
the PPR band intensity and short-wavelength shift of
the PPR band. Earlier, metal particle fragmentation was
observed in colloidal solutions exposed to high-power
picosecond or nanosecond laser shorts at wavelengths
outside the PPR spectral range [94–96]. It was assumed
that fragmentation takes place when the laser radiation
causes electrons to move to the periphery of the parti-
cles, which thereby acquire an appreciable surface
charge (Fig. 9).
TECHNICAL PHYSICS      Vol. 50      No. 3      2005
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Fig. 9. Stages of silver particle fragmentation under the action of laser irradiation [94].
On the other hand, the conversion of the laser radia-
tion in metal particles may be treated as an energy
deposit (relaxation) directly into heating of the metal
making up the composite. The temperature may rise to
the melting point of copper particles synthesized, since
it is known that the melting point of a metal particle,
when in a solid matrix, may drop substantially when its
size decreases to the nanometer scale [97, 98]. It was
reported that the melting point of silver particles less
than 50 nm in size declined to ~500°C (cf. the melting
point of bulk silver, 960°C) [99, 100]. Consequently,
when the temperature of the particles exceeds their
melting point, they melt, diminish, and may even col-
lapse. In general, melting of nanoparticles is a nontriv-
ial process and its correct description requires that sev-
eral sequential stages be considered: surface atom
migration (surface premelting), structure fluctuations
(quasi-melting), and the formation of mixed (liquid–
solid) phases. The particles will collapse in steps, and
finer particles will decrease faster than coarser ones. In
general, a decrease in the particle size by a given melt-
ing mechanism will be reflected in the optical spectra in
the same way as in photofragmentation. Therefore, it is
still difficult to decide between the two mechanisms of
particle decrease at laser annealing. The difference
between them is that fragmentation breaks down prima-
rily large particles, while fine particles are more prone
to melting. Fragmentation seems to be a more vigorous
process and possibly is responsible for the changes
observed at laser annealing.

CONCLUSIONS

In this work, we experimentally demonstrate the
feasibility of copper nanoparticle synthesis in a sap-
phire substrate at depths of several tens of nanometers,
which meets the requirements for the optoelectronic IC
technology. It is found that high ion beam current den-
sities used in the implantation of Cu+ ions into Al2O3
serve to increase the particle size, possibly because of
substrate heating and an increase in the copper ion
mobility. Basically, this effect opens the door to prepar-
ing composites with a desired size of metal particles
near the sapphire surface by varying the ion current
density during implantation. It is believed that applica-
tion of ion implantation for MNP synthesis, which is an
important step in IC technology, would cheapen opto-
NICAL PHYSICS      Vol. 50      No. 3      2005
electronic chips combining sapphire and a semiconduc-
tor.

The irradiation of implanted materials by high-
power pulses from an excimer laser decreases the mean
particle size and, accordingly, the spread in particle
size. Mechanisms behind the MNP modification, such
as particle fragmentation and particle melting, are dis-
cussed.

The table involving the currently available data on
ion synthesis of MNPs in a sapphire substrate in com-
bination with postimplantation heat treatments and list-
ing the relevant publications is the first published engi-
neer’s guide of this sort.
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Abstract—The problem of the development of instability in a bounded spatial region due to the collective
Cherenkov effect or the anomalous Doppler effect is studied in the linear approximation. Threshold conditions
for the onset of the convective and absolute instabilities of different longitudinal modes and their growth rates
are determined with allowance for reflections from the boundaries of the system. The dynamics of the develop-
ment of an initial perturbation during convective instability is simulated. © 2005 Pleiades Publishing, Inc.
1. FORMULATION OF THE PROBLEM 
AND BASIC EQUATIONS

The collective Cherenkov effect is one of the funda-
mental mechanisms for stimulated emission from elec-
tron beams in media with slowed waves. The physical
nature of the effect was considered in detail in [1, 2]. In
the electrodynamics of plasmas and plasmalike media,
the collective Cherenkov effect is classified as being
related to the wave–wave interactions [3] in which the
energy of one of the interacting waves is negative. Nez-
lin [4] pointed out the analogy between stimulated
emission from a beam in the case of a negative energy
of one of the interacting waves, on the one hand, and
another fundamental emission mechanism—the anom-
alous Doppler effect—on the other hand. In the litera-
ture on plasma physics, the collective Cherenkov effect
is often treated as one of the numerous beam instabili-
ties [5, 6]. With this approach, which is of course quite
justified, the fundamental role played by the collective
effect remains virtually untouched, however. At the
same time, the methods and terminology of the general
theory of instabilities, which was developed in plasma
physics and in the allied fields of science [7–9], can be
successfully applied to study the collective Cherenkov
effect. Such an attempt will be made here.

We start with the following set of equations, which
describe the interaction of a straight electron beam with
an electrodynamic waveguide system in the linear
approximation [10]:

(1)

∂
∂t
----- U

∂
∂z
-----+ 

 
2

Gb ω̂ k̂,( )ωb
2+ 

  Ab ωb
2Sb ω̂ k̂,( )Aw,–=

Dw ω̂ k̂,( )Aw ωw
2 Sw ω̂ k̂,( )Ab.–=
1063-7842/05/5003- $26.00 0298
Here, the functions Ab(t, z) and Aw(t, z) characterize the
states of the electron beam and electrodynamic system,

respectively; the differential operator Dw( , )
describes the dynamics of the electrodynamic system;
Gb, Sb, and Sw are dimensionless operators; ωw is a
quantity having the dimensionality of frequency; ωb is
the Langmuir frequency of the beam electrons; and the
frequency operator  and the longitudinal wavenum-

ber operator  are defined as

(2)

Equations (1) were derived under the assumption
that an electron beam propagates with the velocity U
along an electrodynamic system oriented in the z direc-
tion. Thus, for an infinitely long electron beam propa-
gating in an infinite electron plasma, we have [5] Gb =

Sb = Sw = 1, ωw = ωp, and Dw( , ) = –  +  +

3 , where ωp is the Langmuir frequency of the
plasma electrons and VTe is their thermal velocity.

An electron beam can interact resonantly with an
electrodynamic system only under conditions for which
the equations

(3)

(where ω and k are the frequency and wavenumber)
have a solution.

We assume that Eqs. (3), which determine a reso-
nant point in the (k, ω) plane, have the solution k = k0
and ω = ω0. Restricting our analysis to the resonant

ω̂ k̂

ω̂
k̂

ω̂ i
∂
∂t
-----, k̂ i

∂
∂z
-----.–= =

ω̂ k̂ ω̂ ωp
2

k̂
2
VTe

2

ω kU–( )2 Gb ω k,( )ωb
2– 0,=

Dw ω k,( ) 0=
© 2005 Pleiades Publishing, Inc.
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interaction between an electron beam and an electrody-
namic system, we represent the solution to Eqs. (1) in
the form

(4)

where (t, z) is the amplitude of an eigenwave of the

system. We also assume that the amplitude (t, z) var-
ies slowly in both space and time, i.e., that the follow-
ing inequalities are satisfied:

(5)

At this point, the beam wave amplitude (t, z) is
not yet assumed to be slowly varying. We substitute
solution (4) into Eqs. (1) and take into account the relation-

ships (ω0 – k0U)2 – Gb(ω0, k0)  = 0 and Dw(ω0, k0) = 0,
which hold at the resonant point. Using inequalities (5),
we then arrive at the following equations for the ampli-

tudes (t, z) and (t, z) (from which the tilde will be
omitted for brevity):

(6)

Here, Vg is the group velocity of the natural wave in an
electrodynamic system that is not perturbed by the elec-
tron beam. These fairly general equations describe two
limiting regimes in which an electron beam is stimu-
lated to emit natural waves of an electrodynamic sys-
tem: those of collective Cherenkov effect and single-
particle Cherenkov effect [1, 2] (and, of course, a tran-
sitional regime between them). In the regime of collec-
tive Cherenkov effect, in which we are only interested
here, the inequality

(7)

is satisfied and Eqs. (6) read

(8)

The upper and lower signs in the first of Eqs. (8)
refer to the resonance of the electrodynamic wave with
the fast and slow beam waves, respectively. The collec-
tive Cherenkov effect is the resonant interaction of the

Ab t z,( ) Ãb t z,( ) –iω0t ik0z+( )exp ,=

Aw t z,( ) Ãw t z,( ) –iω0t ik0z+( )exp ,=

Ãw

Ãw

∂ Ãw

∂t
----------  ! ω0 Ãw , ∂ Ãw

∂z
----------  ! k0 Ãw .

Ãb

ωb
2

Ãb Ãw

∂
∂t
----- U

∂
∂z
-----+ 

 
2

Ab 2i Gb ω0 k0,( )ωb
∂
∂t
----- U

∂
∂z
-----+ 

  Ab+−

=  ωb
2Sb ω0 k0,( )Aw,–

∂
∂t
----- Vg

∂
∂z
-----+ 

  Aw iωw
2 Sw ω0 k0,( ) ∂Dw ω0 k0,( )

∂ω
-----------------------------

1–
Ab.–=

∂
∂t
----- U

∂
∂z
-----+ 

  Ab  ! GbωbAb

∂
∂t
----- U

∂
∂z
-----+ 

  Ab
1
2
---iωb

Sb ω0 k0,( )
Gb ω0 k0,( )

-----------------------------Aw,+−=

∂
∂t
----- Vg

∂
∂z
-----+ 

  Aw iωw
2 Sw ω0 k0,( ) ∂Dw ω0 k0,( )

∂ω
-----------------------------

1–
Ab.–=
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electrodynamic wave with just the slow beam wave,
whose energy is negative. This is why we choose the
lower sign (the plus sign) in these equations and rede-
fine the amplitude Ab to write them as

(9)

where

(10)

is the parameter containing all information about the
physical nature of the particular system under consider-
ation (derivations of Eqs. (9) for various vacuum and
plasma systems can be found in [6]).

In what follows, the collective Cherenkov effect will
be considered in a bounded spatial region 0 < z < L.
Consequently, it is necessary to take into account
reflections of the beam-emitted electromagnetic wave
from the boundaries z = 0 and z = L. We denote by Bw

the amplitude of the electromagnetic wave propagating
in the opposite direction to the emitted wave of ampli-
tude Aw. Assuming that the oppositely propagating
wave does not interact with the electron beam, we write
the following obvious equation for its amplitude Bw:

(11)

Equations (9) and (11) should be supplemented with
the conditions for the wave amplitudes at the bound-
aries z = 0 and z = L. These conditions are essentially
dependent on the sign of the group velocity Vg. When
Vg > 0, it is said that the beam interacts with the forward
(copropagating) wave of the electrodynamic system;
the case Vg < 0 refers to the interaction with the back-
ward (counterpropagating) wave. For Vg > 0, Eqs. (9)
and (11) are supplemented with the boundary condi-
tions

(12)

where κ1 and κ2 are the coefficients of reflection of an
electromagnetic wave from the boundaries z = 0 and
z = L, respectively. The first of conditions (12) implies
that the electron beam remains unperturbed when it
reaches the boundary z = 0 (we assume that the beam
velocity is positive, U > 0, i.e., that the beam propagates
in the positive direction of the z axis).

∂
∂t
----- U

∂
∂z
-----+ 

  Ab ia2Aw,=

∂
∂t
----- Vg

∂
∂z
-----+ 

  Aw iAb,–=

a2 1
2
---ωbωw

2 Sb ω0 k0,( )Sw ω0 k0,( )
Gb ω0 k0,( )

-------------------------------------------------=

× ∂Dw ω0 k0,( )
∂ω

-----------------------------
1–

0>

∂
∂t
----- Vg

∂
∂z
-----– 

  Bw 0.=

Ab t 0,( ) 0, Aw t 0,( ) κ1Bw t 0,( ),= =

Bw t L,( ) κ2Aw t L,( ),=
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For Vg < 0, the boundary conditions have a different
form:

(13)

The objective of further analysis is to consider the
boundary-value problem given by Eqs. (9) and (11) and
boundary conditions (12), as well as that given by the
same equations and boundary conditions (13). Note
that boundary-value problems for Eqs. (9) were solved
by Gorbunov [11], who, however, treated them in a
somewhat different formulation and did not take into
account the wave described by Eq. (11).

2. COLLECTIVE CHERENKOV EFFECT 
IN THE INTERACTION WITH THE FORWARD 

WAVE (Vg > 0)

We begin by considering the case Vg > 0, in which
the emitted wave propagates in the same direction as
the beam. In other words, we analyze the excitation of
a forward wave in a bounded spatial region. We repre-
sent the solutions to Eqs. (9) and (11) in an exponential
form, ~exp(–iωt + ikz), and obtain the dispersion rela-
tions

(14)

Note that the quantities ω and k in these dispersion
relations are not actually a frequency and a wavenum-
ber but rather, in accordance with formulas (4), they are
deviations from the resonant values ω0 and k0.

Using dispersion relations (14), we write the general
solution to Eqs. (9) and (11) in the form

(15)

where the common factor exp(–iωt) is omitted and the
wavenumbers

(16)

are solutions to these dispersion relations (14) regarded
as equations for the wavenumber k.

In doing so, we can determine the condition under
which the process of emission from the beam can actu-

Ab t 0,( ) 0, Bw t 0,( ) κ1Aw t 0,( ),= =

Aw t L,( ) κ2Bw t L,( ).=

D1 ω k,( ) ω kU–( ) ω kVg–( ) a2+≡ 0,=

D2 ω k,( ) ω kVg+( )≡ 0.=

Aw z( ) A ik1 ω( )z( )exp B ik2 ω( )z( ),exp+=

Ab z( ) a2

ω k1U–( )
------------------------A ik1 ω( )z( )exp–=

–
a2

ω k2U–( )
------------------------B ik2 ω( )z( ),exp

Bw z( ) C ik3 ω( )z( )exp ,=

k1 2,
1
2
---ω 1

Vg

------ 1
U
----+ 

  1
4
---ω2 1

Vg

------ 1
U
----– 

  2 a2

VgU
----------– ,±=

k3
ω
Vg

------–=
ally be treated as a collective Cherenkov effect. The
sought condition is derived by inserting solution (15)
into inequality (7):

(17)

which implies that the beam electron density should be

sufficiently high (a ~ ).1

Substituting solution (15) into boundary conditions
(12) and eliminating constants A, B, and C yields the
following characteristic equation for determining the
frequency ω:

(18)

Since, in the general case, Eq. (18) can only be
solved numerically, we consider two limiting cases. For
a = 0 (i.e., when there is no electron beam), Eq. (18)
simplifies to

(19)

Introducing the notation κ1κ2 = |κ1κ2|exp(–iφ), we
obtain from Eq. (19) the expression

(20)

The imaginary part of this expression is the conven-
tional damping rate of the electromagnetic waves that
escape from the region 0 < z < L through its semitrans-
parent (|κ1κ2| < 1) boundaries z = 0 and z = L.

Another limiting case is given by the inequality

(21)

In this case, we expand the functions k1, 2(ω) in the
vicinity of zero and substitute the expansions into
Eq. (18) to obtain the expression

(22)

1 Inequalities (5) reduce to the inequality a ! ω0 (usually,

ωb ! ω0), which is weaker than condition (17).

a ! Gb

Vg

U
------ωb,

ωb

Vg/U

ik3L( )exp κ1κ2

ω0 k1U–
k2 k1–( )U

------------------------- ik1L( )exp=

+
ω k2U–
k1 k2–( )U

------------------------- ik2L( )exp .

κ1κ2 2i
ω
Vg

------L 
 exp 1.=

ω –i
Vg

2L
------ 1

κ1κ2
--------------ln φ

Vg

2L
------.+=

ω 2 U Vg–( )2

UVg

----------------------- ! a2.

ω L
Vg

------ L
Wg

-------+ 
  1–

=

× i κ1κ2
a

UVg

---------------L 
 cosh 

 ln φ+ ,
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where

(23)

is the so-called group velocity of amplified waves
[7−9]. Under the inequality

(24)

the imaginary part of expression (22) is positive, which
indicates that the system is unstable. It is known [7–9]
that the collective Cherenkov effect in the interaction
with the forward wave is a convective instability during
which any of the finite-amplitude perturbations is dis-
placed in the beam propagation direction and, as a
result, is damped at each spatial point as t  ∞. The
presence of the boundaries prevents the perturbations
from being displaced and, under threshold condition
(24), leads to their growth at each point z in the interval
[0, L].

It should be noted that the collective Cherenkov
effect, as well as some other beam instabilities, is of
considerable interest for many branches of physics,
including microwave electronics. Thus, the collective
Cherenkov effect2 in the interaction with the forward
wave underlies certain operating modes of a traveling
wave tube (TWT) [12, 13]. Inequality (24) is the condi-
tion for an amplifier to be self-excited, i.e., to start to
function as an oscillator. Plasma TWT oscillators oper-
ating in the regime of stimulated collective Cherenkov
effect were considered in [10, 14, 15].

3. COLLECTIVE CHERENKOV EFFECT 
IN THE INTERACTION WITH THE BACKWARD 

WAVE (Vg < 0)

Here, we investigate the case Vg < 0, in which the
emitted wave propagates in the direction opposite to the
propagation direction of the beam. In other words, we
analyze the excitation of a backward wave in a bounded
spatial region. Formulas (14)–(16) also hold for this
case but with Vg replaced by –Vg. We begin by consid-
ering a simple particular situation in which the bound-
ary z = L is perfectly transparent to electromagnetic
radiation. Substituting solution (15) into boundary con-
ditions (13) with κ2 = 0 gives the following characteris-
tic equation:

(25)

It is expedient to examine this equation separately
for the simplest case in which the beam velocity is

2 In this case, in vacuum microwave electrons, it has become com-
mon to speak of a large high-frequency beam space charge.

Wg

∂k1 2,

∂ω
------------ 0( ) 

 
1– 2UVg

U Vg+
----------------= =

κ1κ2
a

UVg

---------------L 
 cosh 1>

i k1 k2–( )L( )exp
ω k2U–
ω k1U–
-------------------.=
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equal to the group velocity, |Vg| = U. In this case,
Eq. (25) reduces to

(26)

It can be easily shown that Eq. (26) has zero solu-
tions, ω = 0, when

(27)

It is also easy to show that the solution ω = 0 is the
only real solution to Eq. (26). Let us find the frequency
assuming that equality (27) for n = 0 is slightly vio-
lated. Setting

(28)

we obtain the following expression for the frequency:

(29)

Frequency (29) is purely imaginary; moreover, we
have Imω > 0 only for δ > 0. This circumstance and rep-
resentation (28) yield the following threshold condition
for the onset of the instability due to the collective
Cherenkov effect in the interaction with the backward
wave in a system of finite length:

(30)

For πLδ ! 1, expression (29) can be represented as

(31)

In the general case, even the simplest equation (26)
can only be solved numerically. We introduce the
dimensionless frequency x and the beam density
parameter σ by the relationships

(32)

In these new variables, Eq. (26) takes the form

(33)

Figure 1 shows how the dimensionless frequency x
depends on the beam density parameter σ. We can see
that there are an infinite number of longitudinal modes.
As has already been mentioned, the thresholds for the
onset of the instabilities of each of the modes are given
by the expressions σ = π(2n + 1). The frequency of the
n = 0 mode is purely imaginary. As the parameter σ
changes from zero to plus infinity, the imaginary fre-
quency Imx of the corresponding mode changes from
minus infinity to unity. For small σ values, the imagi-
nary parts Imx of the frequencies of the remaining

2ik0L( )exp
ω k0U+
ω k0U–
--------------------, k0

1
U
---- ω2 a2+ .= =

2a
L
U
---- π 2n 1+( ); n 0 1 2 …., , ,= =

a
U
---- π

2L
------ δ, δ  ! 1/L,+=

ω i
2
π
---a 1 πLδ+ 1–( ).≈

a
π
2
---U

L
----.>

ω iaLδ ia
L
U
---- a

π
2
---U

L
----– 

  .= =

x
ω
a
----, σ 2a

L
U
----.= =

iσ 1 x2+( )exp
x 1 x2++

1 1 x2+–
---------------------------.=



302 KARTASHOV et al.
modes with the numbers n = 1, 2, 3, … also increase
and, in addition, the real parts Rex of the frequencies of
these modes are nonzero (more precisely, there are two
solutions with the same value of the imaginary part Imx
and with the real part Rex of the same magnitude but
opposite sign; in Fig. 1, only the modes with Rex ≥ 0
are shown). Near the instability thresholds for each of
the modes with the numbers n = 1, 2, 3, …, the real part

2

0
2π

R
e 

x

σ

1

0
0π

Im
 x

σ

–1

–2

1π 2π 3π 4π 5π 6π 7π 8π 9π 10π

1 2 30

4
1 2 3

3π 4π 5π 6π 7π 8π 9π 10π1π0π

4

6

8

10

1 2
3

4

Fig. 1. Dimensionless frequency x vs. beam density param-
eter σ in the absence of reflections, κ = 0.

0.4

0

x

σ

0.2

–0.2

–0.4

3.5 4.02.5 3.0

Fig. 2. Dimensionless growth rate Imx vs. beam density
parameter σ near the instability threshold. The solid curve
shows analytical solution (34), and the dashed curve pre-
sents the numerical solution to Eq. (33).

4

Rex vanishes. As the parameter σ increases further,
both solutions are such that the real part is zero, Rex =
0, and the imaginary part Imx has two branches: one
that increases to unity and the other that decreases to
minus unity.

In terms of variables (32), solution (29) is given by
the formula

(34)

Figure 2 compares analytical solution (34) near the
instability threshold (solid curve) with the correspond-
ing numerical solution to Eq. (33) (dashed curve). The
analytical solution is seen to coincide well with the
numerical one.

Let us discuss the physical meaning of threshold
condition (30). Recall that the collective Cherenkov
effect in the interaction with the backward wave is an
absolute instability during which the perturbations
grow without bound at any spatial point [7–9]. For Vg <
0 and |Vg| = U, the eigenfrequencies determined by the
first of dispersion relations (14) are given by the formu-
las

(35)

Consequently, the instability occurs only within the
wavenumber range

(36)

In a system of length L, the wavelengths of the per-
turbations cannot exceed the value λmax = 4L; therefore,
the minimal wavenumber is described by the relation-
ship

(37)

Relationships (36) and (37) imply that the instability
in a system of finite length is possible under the condi-
tion

(38)

which coincides with the original condition (30).
Hence, threshold condition (30) stems from the fact that
absolute instability cannot develop in a sufficiently
short system. As for the wave damping in such a system
(from expression (29) and Fig. 1, we see that the imag-
inary part of the frequency can be negative), it is of
course associated with the escape of radiation through
the boundaries z = 0 and z = L.

We now consider a more general case |Vg| ≠ U,
assuming again that κ2 = 0. We introduce the notation

(39)

x i
2
π
--- 1

π
2
--- σ π–( )+ 1– 

  .=

ω k2U2 a2– .±=

k
a
U
----.<

kmin
2π

λmax
----------

π
2L
------.= =

kmin
π

2L
------ a

U
----,<=

ξ U
Vg

--------, χ0
1
U
---- 1

4
---ω2 1 ξ+( )2 ξa2+ ,= =
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to represent Eq. (25) in the form

(40)

As is the case with Eq. (26), Eq. (40) has the solu-
tion ω = 0, provided that 2χ0L = π(2n + 1) (see equality
(27)). This circumstance yields the following threshold
condition for the onset of the instability of the longitu-
dinal n = 0 mode, which is a generalization of condition
(30):

(41)

Near the instability threshold for the n = 0 mode, the
frequency is given by the expression (see expression
(31))

(42)

Introducing the analogues of quantities (32),

(43)

we transform Eq. (40) to the equation

(44)

The replacement µx  x reduces Eq. (44) to
Eq. (33), so numerical solutions to Eq. (44) contain no
new information as compared to Fig. 1.

We now take into account reflections from the
boundaries of the system. Substituting solution (15)
into general boundary conditions (13) with κ1, 2 ≠ 0
gives the characteristic equation

(45)

Note that, for a zero beam density (a = 0), Eq. (45)
should have solution (20), as is indeed the case. As in
the absence of reflections, the case of different wave
velocities reduces to the case |Vg| = U, to which we are
restricting the analysis here. For simplicity, we also
assume that κ1κ2 = κ > 0, where κ is a positive real con-
stant.3 In terms of variables (32), we convert Eq. (45) to

3 The argument of quantity κ1κ2 determines how the wave phases
change in reflections and yields an insignificant correction to the
real part of the frequency, without changing its imaginary part.
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-------------------------------------------.=

a
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2
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Vg U
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ω ia
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Vg
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π
2
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Vg U
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-----------------– 
  .=

x
ω
a
----, σ 2a

L

Vg U
-----------------, µ 1 ξ+

2 ξ
------------,= = =

iσ 1 µ2x2+( )exp
µx 1 µ2x2++

µx 1 µ2x2+–
-------------------------------------.=

i k1 k2–( )L( )exp
ω k2U–
ω k1U–
-------------------=

+ κ1κ2

k2 k1–( )U
ω k1U–( )

------------------------- i k3 k2–( )L( ).exp
TECHNICAL PHYSICS      Vol. 50      No. 3      2005
a form convenient for further analysis:

(46)

We first find the thresholds for the onset of the insta-
bility. To do this, we set x = 0 in Eq. (46) and reduce it to

(47)

Since κ2 ≤ 1, Eq. (47) can be cast into the form

(48)

If we arrange the roots σ of Eq. (48) in increasing
order, then we arrive at the threshold conditions for the
onset of the instabilities of the longitudinal modes with
the numbers n = 0, 1, …, respectively. Thus, the thresh-
old condition for the n = 0 mode has the form

(49)

For κ = 0, inequality (49) passes over to threshold
condition (30). Taking into account the inequalities
x ! 1 and (σ – 2 ) ! 1, which hold near the
instability threshold given by inequality (49), we obtain
from Eq. (46) the following expression for the dimen-
sionless frequency:

(50)

Figures 3 and 4 show how the dimensionless fre-
quency x depends on the beam density parameter σ for
κ = 0.5 and 1, respectively. We see that the imaginary
parts of the upper branches of the pairs of neighboring
modes (namely, those with n = 1 and 2, with n = 3 and
4, etc.) are reconnected to one another. The lower
branches of these pairs of modes have the same values
of Imx, the real parts Rex being of the same magnitude
but opposite sign. As κ increases to unity, the parameter
σ corresponding to the threshold x = 0 approaches the
values 0, 4π, 8π, etc. (Fig. 4).

Of particular interest is the dynamics of the forma-
tion (relaxation) of the longitudinal mode in the collec-
tive Cherenkov effect in the interaction with the back-
ward wave. Let us consider the situation in which an
electron beam is perturbed at the initial time τ = ω0t =
0 by a solitary electromagnetic field pulse

(51)

iσ 1 x2+( )exp
x 1 x2++

1 1 x2+–
---------------------------=

– κ 2 1 x2+

x 1 x2+–
--------------------------- i

σ
2
--- 1 x2+ 

  i
σ
2
---x 

  .expexp

iσ( )exp –1 2κ iσ/2( )exp .+=

σ/2( )cos κ .=

a
U
L
---- κ( ).arccos>

κarccos

x i
σ/2 κarccos–

1 κ κarccos

1 κ2–
-----------------------+

----------------------------------.≈

Aw ζ 0,( )
A0

ζ
2nλ
-------- 

  , ζsin
2

k0z 0 2πnλ,[ ]∈=

0, ζ 0 2πnλ,[ ] ,∉





=



304 KARTASHOV et al.
where nλ = 6 is the dimensionless length of the pulse (in
units of wavelengths) and A0 = 1–4 is its amplitude.

We specify the following parameter values: the
beam density (normalized to ω0) is a = 0.01, the veloc-
ities (normalized to ω0/k0) are U = |Vg| = 1, the total
reflection coefficient is κ = 0, and the system length is
equal to 50 wavelengths. Corresponding to this set of
values is σ = 2π, which indicates that only the longitu-
dinal n = 0 mode is unstable (according to Fig. 1, we
have Imx ≈ 0.7). The pulse dynamics for the above
parameter values is illustrated in Fig. 5. An electrody-
namic pulse of amplitude Aw propagates in the negative
direction of the z axis. An electron beam that enters the
system through the boundary z = 0 and propagates in
the positive direction of the z axis is modulated and
excites a wave of amplitude Aw. As a result of the onset
of the absolute instability of the zeroth longitudinal
mode and the displacement of a wave packet accompa-
nied by the escape of radiation through nonreflecting
boundaries of the system, the oscillations relax to the
following quasi-steady pattern (in which the ampli-
tudes grow exponentially according to the law
~exp(xaτ) ≈ exp(0.007τ)): the beam modulation ampli-
tude Ab increases with z, reaches its maximal value at a
certain internal point of the system, and then decreases
toward the right boundary, while the amplitude of the
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Fig. 3. Dimensionless frequency x vs. beam density param-
eter σ for κ = 0.5.
electromagnetic wave is zero at the boundary z = L
(because this boundary is nonreflecting), increases
away from it, reaches its maximal value at an interme-
diate point, and then decreases toward the boundary z =
0. The behavior of the amplitudes Aw and Ab is non-
monotonic because it is deep inside the system that the
interaction between an electromagnetic wave and a
beam is strongest (at the left boundary, we have Ab = 0,
and, at the right boundary, we have Aw = 0). By the time
τ ~ 800–900 (which is as short as only several units of
the reciprocal of the growth rate), the longitudinal pro-
files of the amplitudes completely “forget” the structure
of initial perturbation (51). The case of a low group
velocity of the electromagnetic wave, |Vg| = 0.1 (Fig. 6),
is analogous to the previous one. Since electromagnetic
perturbations are displaced at low velocities, the ampli-
tude Aw is maximal very near the right boundary of the
system.

Figure 7 illustrates the dynamics of the development
of electromagnetic pulse (51) during the absolute insta-
bility for the same parameters as those in Fig. 5 but for
the reflection coefficients κ1 = 1 and κ2 = 0.5 (i.e., for
κ = 0.5). An initial pulse of amplitude Aw propagates in
the negative direction and is totally reflected from the
boundary z = 0 (at the time τ = 80). The reflected pulse
of amplitude Bw does not interact with the beam, prop-
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Fig. 4. Dimensionless frequency x vs. beam density param-
eter σ for κ = 1.
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agates to the right, reaches the boundary z = L (at the
time τ = 320), and is reflected from it, the reflection
coefficient being κ2 = 0.5. The pulse of amplitude Aw

that is reflected from the boundary z = L propagates
toward the boundary z = 0, and so on. Because of the
Cherenkov interaction of the electromagnetic wave of
amplitude Aw with the beam, the wave amplitude Aw and
beam modulation amplitude Ab increase. By the time
τ ~ 1200 (which is as short as only several units of the
reciprocal of the dimensionless growth rate), the oscil-
lations relax to the following quasi-steady pattern: the
wave amplitudes increase exponentially, while their
spatial profiles do not change with time. Moreover, the
longitudinal profiles of the amplitudes Aw and Ab are
analogous to those shown in Figs. 5 and 6, whereas the
amplitude Bw decreases exponentially with increasing z
because of the delayed displacement of the perturba-
tions.

Note that the collective Cherenkov effect in the
interaction with the backward wave underlies certain
operating modes of a backward wave tube (BWT)
[12, 13]. In conventional BWTs, the high-frequency
beam space charge either is low or moderately high
[16]; in the terminology used here, this corresponds to
the single-particle Cherenkov effect. In the present
paper, we have considered the opposite limiting case.
The methods that we have applied in our study differ
from those used to investigate BWTs in vacuum micro-
wave electronics. This is why the above results provide
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Fig. 5. Relaxation dynamics of oscillations during the abso-
lute instability in the absence of reflections for a = 0.01 and
U = |Vg| = 1.
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additional essential information on the physics of abso-
lute instabilities in bounded spatial regions. TWT
amplifiers based on the stimulated collective Cheren-
kov effect can be designed as beam–plasma
waveguides in a finite-amplitude external magnetic
field, like those considered in [17, 18].

4. ANOMALOUS DOPPLER EFFECT IN A FINITE 
SPATIAL REGION

We consider a monoenergetic electron beam that
propagates along the z axis and penetrates through a
dielectric layer 0 < z < L oriented perpendicular to its
propagation direction. Let there be an external mag-
netic field B directed along the beam. Assuming that the
quantities characterizing such a system are independent
of the transverse coordinates x and y, we write the fol-
lowing set of linear equations for the transverse compo-
nents of the electron velocity, V⊥  = Vx + iVy , and of the
vector potential of the electromagnetic field, A⊥  = Ax +
iAy:

(52)

∂V ⊥

∂t
---------- U

∂V ⊥

∂z
---------- iωBV ⊥+ +

e
mc
-------

∂A⊥

∂t
--------- U

∂A⊥

∂z
---------+ 

  ,–=

∂2A⊥

∂t2
------------ c0

2∂2A⊥

∂z2
------------–

mc
e

-------
ωb

2

ε
------V ⊥ .=

80

0 62.83
|A

b|,
 1

0–
5

ζ
125.66 188.50 251.33 314.16

0

0.35
0

0.03

|Aw|

|Ab| τ = 160
0.12

0.35
0

100
0

0

τ = 480

τ = 1200

|Aw|

|Aw|

|Ab|

|Ab|

|A
b|,

 1
0–

5
|A

b|,
 1

0–
5

|A
w
|, 

10
–

3
|A

w
|, 

10
–

3
|A

w
|, 

10
–

3

Fig. 6. Relaxation dynamics of oscillations during the abso-
lute instability in the absence of reflections for a = 0.01,
U = 1, and |Vg| = 0.1.



306 KARTASHOV et al.
1.5

0 62.83

|A
b|,

 1
0–

6

ζ
125.66 188.50 251.33 314.16

0

0.3
0

0.1

|Aw|

|Ab|

τ = 80
1

1
0

1.5
0

0

τ = 480

τ = 720

|Aw|

|Aw|

|Ab|

|Ab|

|A
b|,

 1
0–

6
|A

b|,
 1

0–
6

|A
w
|, 

|B
w
|, 

10
–

4
|Bw|

|Bw| |A
w
|, 

|B
w
|, 

10
–

4
|A

w
|, 

|B
w
|, 

10
–

4

|Bw|

40

0 62.83
|A

b|,
 1

0–
6

ζ
125.66 188.50 251.33 314.16

0

1
0

0.15

|Aw|

|Ab|

τ = 320
1

1
0

40
0

0

τ = 640

τ = 1200

|Aw|

|Aw|

|Ab|

|Ab|

|A
b|,

 1
0–

6
|A

b|,
 1

0–
6

|A
w
|, 

|B
w
|, 

10
–

4

|Bw|

|Bw| |A
w
|, 

|B
w
|, 

10
–

4
|A

w
|, 

|B
w
|, 

10
–

4

|Bw|

Fig. 7. Relaxation dynamics of oscillations during the absolute instability for κ1 = 1, κ2 = 0.5, a = 0.01, and U = |Vg| = 1.
Here, ωB = eB/mc is the electron gyrofrequency and

c0 = c/ , with ε being the dielectric constant. Equa-
tions (52) describe circularly polarized perturbations;
for definiteness, we assume that ωB > 0.

Let us investigate the interactions between an elec-
tromagnetic wave and an electron cyclotron wave. At
ω = ω0 and k = k0, the interaction between these two
waves is resonant and is described by the equations

(53)

which yield

(54)

The plus and minus signs in Eqs. (53) and two dif-
ferent frequencies in relationships (54) indicate that an
electron beam can interact with both a forward and a
backward electromagnetic wave.

Using representation (4) for the solution to
Eqs. (52), we obtain from them the following equations
for the slowly varying amplitudes:

(55)
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(56)

and the rest of the notation is the same as in Eqs. (52).
Equations (55) have the same form as Eqs. (9)

(which have been considered above), provided that the
parameter a2 introduced by the second of formulas (56)
is positive (see expression (10)). This is why it is nec-
essary to examine the sign of this parameter. For c0 > U,
both frequencies (54) are negative, so we have a2 < 0,
i.e., all solutions to Eqs. (55) are stable. This result is
quite natural because, for slower-than-light motions,
the radiation is emitted under conditions of the normal
Doppler effect [1, 2]. In such circumstances, the role of
the energy source for radiation is played by the energy
of the transverse motion of an electron; in the case at
hand, this energy is m|V⊥ |2/2. Consequently, under con-
ditions of the normal Doppler effect, the amplitude |A⊥ |
increases only when the velocity |V⊥ | decreases; for
V⊥ (t, 0) = 0, the beam electrons do not emit radiation
at all.

For c0 < U, the first of frequencies (54) is positive;
in this case, we have a2 > 0 and Eqs. (55) have unstable
solutions that grow at the rate ω = ia. This corresponds
to radiation emitted by a “superluminous” beam under
conditions of the anomalous Doppler effect [1, 2, 4]. In
order to describe the interaction of a beam with an elec-
tromagnetic wave at the first of frequencies (54), it is

Vg

k0c0
2

ω0
---------- c0, a2± 1

2
---

ωb
2

ε
------

ωB

ω0
------= = =
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necessary to set Vg = c0 > 0 in the second of Eqs. (55).
Hence, the anomalous Doppler effect in a dielectric
layer is described in exactly the same manner as the
collective Cherenkov effect in the interaction with the
forward wave (which has been analyzed in detail in
Section 2). This is why we do not give here any addi-
tional explanations concerning the anomalous Doppler
effect. Note only that, in special slowing-down struc-
tures (such as periodic structures, as well as plasma
waveguides in a finite external magnetic field), the
anomalous Doppler effect can also occur in the interac-
tion with the backward wave. Obviously, the results
that have been obtained in Section 3 of the present
study apply almost wholly to this case of the Doppler
effect.
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Abstract—In the framework of the many-body theory, the differential and total cross sections of elastic scat-
tering of slow electrons by the negative lithium ion Li– are obtained. Calculations are performed both in the
Hartree–Fock single-particle approximation and with regard to many-electron correlations, which take into
account the dynamic polarization of the core. Features observed in the behavior of the phases and cross sections
for p and d partial waves are associated with resonance scattering of electron waves. Considering the dynamic
polarization of the core by an incident electron heightens the diffraction character of the scattering. The
real process is compared with particle scattering in models with a repulsive potential. © 2005 Pleiades Publish-
ing, Inc.
INTRODUCTION

Great interest has been recently shown in the pro-
cess of photoabsorption by negative ions (see [1, 2] and
Refs. therein), which is due to an important role of
many-electron correlations in this process and its
intriguing features, which distinguish it from photoab-
sorption by neutral atoms. To date, negative ions have
been studied much more poorly than atoms or positive
ions (because dense beams of negative ions are hard to
produce). However, experimental potentialities for a
wider use of powerful sources of radiation, in particu-
lar, synchrotron radiation, have been increased in recent
years. Electron scattering by negative ions has been
understood in a still smaller degree than electron pho-
todetachment and is scarcely referred to in the litera-
ture, though this process is of no less interest than pho-
toabsorption. This is particularly true for the influence
of various polarization effects on the scattering process,
since the negative ion is a rather “loose” highly polariz-
able system. Notwithstanding the fact that Coulomb
repulsive interaction between the ion and an incident
electron generally prevails, it turns out that the polar-
ization of the ion considerably affects the behavior of
the phases and changes the scattering differential cross
section.

In this work, we theoretically study elastic collisions
between electrons and negative ions. The object of
investigation is the Li– ion, which has been extensively
studied in recent years in the context of photodetach-
ment processes [2]. To determine the scattering charac-
teristics, such as the phase, amplitude, and partial and
total cross sections, we apply the methods of the many-
body theory, which have been advantageously applied
to neutral atoms. As the zeroth-order approximation,
the Hartree–Fock single-particle approach [3] is taken.
The polarization of the core by an incident electron,
1063-7842/05/5003- $26.00 ©0308
which has a profound effect on the collisions, is taken
into account in terms of the Dyson equation [4].

The Li– ion has a closed outer shell and is spheri-
cally symmetric. This allows us to perform calculations
with simple models and, comparing the calculation
results with those obtained from the first principles,
gain a better insight into elastic scattering of electrons
by this ion.

In this paper, the atomic system of units is used, m =
e = h/2π = 1 (the energy is given in rydbergs (Ry)).

CALCULATIONS IN THE FRAMEWORK 
OF SINGLE-PARTICLE APPROXIMATIONS

The wave functions of the ground state of a negative
ion are calculated in the Hartree–Fock (HF) approxima-
tion. The HF method of self-consistent field is based on
the assumption that the electrons in the atom move
independently in some average field and takes into
account electron–electron interaction only partly [3].
However, this method, being consistent with the idea
of independent motion of electrons in the average
field  of  an ion, usually serves as the zeroth-order
approximation in taking into account many-electron
correlations [5].

The elastic scattering cross section for electrons

with energy E and momentum k =  is expressed
through the scattering phases δl(E) of partial waves l by
the formula [6]

(1)

E

σ E( ) σl E( )
l 0=

∞

∑=

=  
π
k2
---- 2l 1+( ) 1 2iδl k( )( )exp– 2,

l 0=

∞

∑
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where δl(k) is the phase of elastic scattering of partial
wave l. It is determined from the asymptotic behavior
of the wave function of a scattered particle [6],

(2)

Knowing an expression for the wave function at
r  ∞, one can determine the phases of the partial
waves and the elastic scattering cross section.

The scattering phases are found in two ways: (i) by
solving the HF equation for an incident electron in the
field of the frozen core (i.e., in the field of the negative
ion obtained in the HF approximation) and (ii) by solv-
ing an integral equation that includes the polarization
potential of the core. The phase of an lth partial wave of
elastic scattering of an incident electron with momen-
tum k is found by the standard formula [5]

(3)

Here, Jl(kr) is the Bessel function. The value of V(r),
the scattering potential, is determined through combi-
nations of the integrals of radial wave functions Pj(r) =
rRj(r) [5], where subscript j runs from 1 to S (S is the
number of shells in the ground state of the ion),

(4)

(5)

(6)

Here, Z is the nuclear charge of the negative ion, γµ(S +
1, j) are the angular coefficients of direct interaction
between the incident electron and the electrons of a jth
shell, and Nj is the number of electrons on a jth level.

METHOD OF PHASE FUNCTIONS

To explain the behavior of the HF phase, we used
simplified models of scattering of an electron by the
negative ion, namely, the scattering by a uniformly
charged ball and the scattering by a uniformly charged
sphere. The radii of the ball and sphere were set equal
to the average radius of the lithium ion Li– (R =
1.89 a.u.) and their charges Z, equal to –1. The so-
called short-range part of the potential of the uniformly
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charged ball is of the simple form U(r) = (3R2 – r2)/3R3,
r ≤ R. Beyond the uniformly charged ball, the potential
is equal to the Coulomb potential, V(r) = 1/r (r > R).

The method of phase functions consists in passing
from the Schrödinger equation to an equation for a
desired quantity (the scattering phase in our case) [7].
For this purpose, two functions, δl(r) and A(r), are intro-
duced into consideration. Physically, they have the
meaning of the scattering phase and the asymptotic
amplitude of the wave functions for scattering by a
sequence of “truncated” potentials of different range.
The asymptotic value of function δi(r) as r  ∞ is
equal to the desired phase of scattering by the total
potential, δl(∞) = δl. Moreover, the equation for the
phase function is free of amplitude function A(r),

(7)

which significantly simplifies the solution of the prob-
lem. Here, U(r) is the short-range part of the potential.
It should be emphasized that this phase also depends on
Coulomb parameter η = 1/k because of the interference
with the short-range potential. Equation (7) involves
Coulomb functions [8] Fl(kr, η) and Gl(kr, η), which
are regular and irregular (at r = 0) solutions to the
Schrödinger equation with the Coulomb potential.
Solutions to Eq. (7) rapidly converge to desired values
δl(∞).

DYNAMIC POLARIZATION POTENTIAL

The HF approximation, as well as the models con-
sidered above, disregard many-electron effects, in par-
ticular, the polarization of the core by an incident elec-
tron, though it is well known that negative ions are
highly polarizable, since the binding energy of outer-
shell electrons is rather low. Therefore, to adequately
describe and determine the phases, amplitudes, and
cross section of elastic scattering, one should go
beyond the scope of the single-particle approximation.
In this paper, the dynamic polarization of the negative
ion by an incident electron is taken onto account in
terms of the Dyson equation [4, 9]. In matrix form, the
Dyson equation for the reducible properly energy part

of a one-particle Green’s function, (r, r', E), is written
as [4, 9]

(8)

where |El〉  are the one-particle wave functions of the
electron, 〈|Σ(E)|〉 is the irreducible properly energy part

d
dr
-----δl r( ) 1

k
---U r( ) δl r( )Fl kr η,( )cos[–=

+ δl r( )Gl kr η,( )sin ]2,

δl 0( ) 0,=

Σ̃

E1l Σ̃ E( ) E2l〈 〉 E1l Σ E( ) E2l〈 〉=

+ νp E2l Σ E( ) E'l〈 〉 E'l Σ̃ E( ) E2l〈 〉 E'd
E E'–
--------------,∫
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of the Green’s function, and the integral is taken in the
sense of the principal value.

Irreducible properly energy part Σ(E) has the mean-
ing of the nonlocal polarization potential that depends
on electron energy E and embodies the electron–core
correlation interaction.

The irreducible properly energy part Σ(E) of the
one-particle Green’s function is convenient to partition
into two components, namely, the Hartree–Fock compo-
nent and the one defined by correlation interaction [4],

(9)

The properly energy part in the HF approximation,
ΣHF, is the self-consistent average field by which an
atom (ion) acts upon an electron being scattered. It is

determined, along with electron scattering phase ,
by calculating the wave functions in the HF system of
equations.

Thus, our goal is to calculate the correlation part of
the potential. Since the HF approximation includes the
first order of the perturbation theory in Coulomb inter-
action, matrix element Σcor(E) in the lowest order of the
perturbation theory may be represented by the flow dia-
gram [4]

(10)

Here, the right-arrowed lines correspond to the incident
electron (ν1 = (E, l)) and to the excited electrons of the
ion (ν2); the left-arrowed, to the resulting vacancy
(hole); and the wavy line, to Coulomb interaction. As
was shown by previous calculations [4, 5], the contribu-
tion of the third-order diagrams to the properly energy
part is usually less than 10% of that from the second-
order ones. Therefore, the calculation of the correlation
polarization potential is restricted to diagrams (10).

A correction to the HF scattering phase is deter-
mined through the matrix element of reducible properly
energy part (8) in which the irreducible properly energy
part now includes only the correlation interaction,

(11)

Correction (11) was calculated with the modified
software used earlier in atomic calculations [5]. First,
the wave functions of the ground state of the negative

Σ E( ) ΣHF E( ) Σcor E( ).+=

δl
HF

+

+ + .

ν1 ν4 ν1 ν1 ν4

ν1 ν1 ν1

ν1

ν2

ν2

ν2 ν2

ν1

ν4 ν4

ν3

ν3

ν3

ν3

∆δl E( ) π El Σ̃ E( ) El〈 〉–( ).arctan=
lithium ion were calculated in the HF approximation.
Then, the HF wave functions and the scattering phases
of an incident electron in the frozen HF field of the neg-
ative ion were found. It is known that these wave func-
tions constitute a complete orthonormal basis for deter-
mining many-electron correlations [5]. The HF wave
functions were calculated with a relative accuracy of
10–7, and the corresponding HF phase was found with
an accuracy of ≤5%. With these wave functions, matrix
element Σcor(E) was calculated using the second-order
perturbation theory (see (10)) with regard to the trans-
ferred monopole, dipole, and quadrupole moments
(∆l = 0, 1, 2) in terms of Coulomb interaction, as was
done in [4]. Then, the reducible properly energy part of
the Green’s function was determined by solving inte-
gral equation (8) and corrections to the scattering phase
were found.

RESULTS AND DISCUSSION

At the first stage, the phases and partial cross sec-
tions were found by the HF method and the results
obtained were compared with the known results for
scattering by the Coulomb repulsive field. In the gen-
eral case (with allowance for orbital moment l), the
phase of scattering by the Coulomb field is determined
through the gamma function [10],

(12)

The phases of scattering of various partial waves by
the Coulomb repulsive field are smooth functions of the

incident electron energy and tend to zero as k =  
0. The HF phase of the s wave also monotonically
decreases with an increase in the electron energy. How-
ever, the energy dependences of the HF scattering
phases of the p and d waves were found to behave dif-
ferently from the Coulomb case. In particular, the phase
of the p wave exhibits a peak about π/4 high at ε ≈
5.4 eV (Figs. 1, 2).

To determine the contribution of exchange interac-
tion to the behavior of the phases and, in particular, to
see whether it is responsible for the specific shape of
the p and d waves, the scattering phases of the electrons
were calculated in the Hartree approximation (without
regard to exchange interaction). Comparison of the
results obtained in terms of the HF and Hartree approx-
imations indicates that neglect of exchange interaction
changes the height of the peak in the p and d phases
insignificantly, although it shifts this singularity by
3.4 eV toward higher energies of the incident electron
(curve 3 in Fig. 2). The scattering phase curves for the
s wave undergo a similar shift. This effect can be
explained by the attractive character of the exchange
potential in the HF equations. However, it should be
noted that, if the energy of the incident electron exceeds
13 eV, the shifts of the phase curves obtained in the
model and HF calculations differ considerably, appar-

η l Γ l 1 i
1
k
---+ + 

  .arg=

ε
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ently because of the difference in the short-range
behavior of the Coulomb and HF potentials. To be sure
of this, we calculated a correction to the p phase within
the perturbation theory [10],

(13)

Here, ∆U(r) is the difference between the Coulomb and
Hartree potentials and Jl + 1/2(kr) is the Bessel function.

With this correction, the Hartree phase approaches
the Coulomb phase more rapidly at high energies, the
general behavior remaining unchanged.

It is also clear that the singularities in the behavior
of the p and d phases are due to diffraction of the elec-
tron waves by the structure of the negative ion. To gain
greater insight into the physical nature of the singulari-
ties in the scattering phases, we solved simple model
problems: scattering by a uniformly charged ball and
by a uniformly charged sphere. It turned out that the
phases of the p and d waves also vary nonmonotoni-
cally and exhibit singularities of about π/4 and π/6,
respectively (Figs. 1, 2). Considering the variation of
these phases with the radius of the ball (sphere) unveils
the position of these singularities versus the radius of
the scattering field (Fig. 3). With increasing (decreas-
ing) radius of the model potential, this singularity shifts
toward higher (lower) energies. As field radius R tends
to zero, the scattering phase turns into the Coulomb
phase. Thus, the results of model calculations corrobo-
rate the diffraction nature of the singularities observed
in the behavior of the scattering phases.

∆δl ∆U r( ) Jl 1/2+ kr( )[ ] 2r r.d

0

∞

∫–=

1.0

0.5
0
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Fig. 1. Energy dependence of the scattering phase for the
partial p wave in different approximations. Model calcula-
tions: (1) Coulomb repulsive field, (2) uniformly charged
ball, and (3) uniformly charged sphere. Calculations of scat-
tering by the Li– ion: (4) local parametric potential taking
into account the polarization of the core by an incident elec-
tron (α = 162 a.u., r0 = 5.2 a.u.), (5) Hartree–Fock approxi-
mation, and (6) Dyson equation.
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The elastic scattering phases were also found using
the local parametric potential

(14)

which takes into account the polarization of the core by
an incident electron. Here, α is the dipole polarizability
and r0 is the range of the potential.

The parameters were chosen in such a way that the
behavior of the p phase approximated its behavior in
the dynamic potential as closely as possible. The dipole
polarizability calculated was found to be close to the
polarizability of a Li atom, α = 162 a.u., and parameter
r0 was equal to 5.2 a.u. The results of calculation of this
phase using parametric potential (14) are presented in
Fig. 1 (curve 4).

Figures 1 and 2 also show the scattering phase of the
p and d waves that was calculated with the Dyson equa-
tion, i.e., with regard to the dynamic polarization of the
core by an incident electron. The inclusion of the polar-
ization potential is seen to significantly affect the
behavior of the partial scattering phases. While the
polarization potential merely heightens the phase peak
to π/2 for the p wave (Fig. 1), the phase peak of the par-
tial d wave (Fig. 2), which reaches π/3 at an energy of
13.6 eV, can be almost completely attributed to many-
electron effects. However, the effect of the polarization
potential on partial scattering waves of higher multi-
pole order weakens rapidly with growing l.

The partial and total cross sections were calculated
by formula (1). The phase peaks in the p wave exert a
scarce influence on the scattering partial cross section,
while the minor phase singularity in the d wave notice-
ably changes the partial cross section at energies higher

Vpol
α

r2 r0
2+( )2

----------------------,–=

1

δl

E, eV
5 10 15 20 25 30 35 40

2

3

4

5

6
1
2
3
4
5

Fig. 2. Energy dependence of the scattering phase for the
partial d wave in different approximations. Model calcula-
tions: (1) Coulomb repulsive field and (2) uniformly
charged ball. Calculations of scattering by the negative Li–

ion: (3) Hartree approximation, (4) Hartree–Fock approxi-
mation, and (5) Dyson equation.
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than 2.7 eV. Figure 4 compares the partial cross sec-
tions of scattering of the d wave that were found in dif-
ferent approximations. The cross section obtained with
allowance for many-electron effects is seen to have an
extra interference minimum at an energy of ≈2.7 eV,
where the phase of the d wave approaches π. For the
total cross section of elastic scattering of electrons by
the negative lithium ion, the interference structure is
similar (Fig. 5). The cross sections obtained with the
Dyson equation and in the Hartree–Fock approxima-
tion differ most considerably at incident electron ener-
gies of 2.7–20 eV. This means that the effects associ-
ated with the dynamic polarization of the core become
essential in this range of electron energies [11].
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5 10 15 20 25 30 35 40 45
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50 55 60

Fig. 3. Model calculations of the scattering phase for the p
wave. (1) Coulomb repulsive field. The dependence of the
phase on the radius of the uniformly charged scattering ball
(R = 1.89 a.u.) of radius (2) R/2, (3) 2R, and (4) R.
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Fig. 5. Energy dependence of the total cross section of elas-
tic scattering of electrons by the negative lithium ion:
(1) Coulomb repulsive field, (2) uniformly charged ball,
(3) Hartree–Fock approximation, and (4) taking account of
polarization with the Dyson equation.
Obviously, the phase singularities of the waves scat-
tered are bound to be more pronounced in the elastic
scattering differential cross section [6],

(15)

where

(16)

is the amplitude of electron scattering by angle θ. The
electron scattering amplitude peaks at θ = 0 and
declines with increasing θ, changing sign, so that the

dσ 2π θ f θ( ) 2dθ,sin=

f θ( ) 1
2ik
-------- 2l 1+( ) 2iδl( )exp 1–( )Pl θcos( )

l 0=

∑=
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Fig. 4. Energy dependence of the partial cross section for
the d wave in different approximations. Model calculations:
(1) Coulomb repulsive field and (2) uniformly charged ball.
Calculations of the scattering by the negative Li– ion:
(3) Hartree–Fock approximation and (4) taking account of
polarization with the Dyson equation.
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Fig. 6. Differential cross section of elastic scattering of
electrons by the negative lithium ion for an electron energy
of (1) 5, (2) 15.5, and (3) 36 eV.
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differential cross section exhibits diffraction maxima
and minima.

The elastic scattering differential cross sections cal-
culated with regard to many-electron effects are shown
in Fig. 6. The main features of the diffraction pattern
are observed at the same energy values (3.5 and
15.5 eV) at which the behavior of the p and d waves
becomes nonmonotonic. For these values of the elec-
tron energy, the second-order diffraction maxima are
more intense than the first maximum. The inclusion of
dynamic polarization enhances the difference between
the intensities of the first- and second-order maxima, as
was shown in [12]. At low energies (E < 2.7 eV) and
energies exceeding 34 eV, the second- and higher-order
maxima are always less intense than the first maximum.

CONCLUSIONS
Elastic scattering of electrons by negative ions still

remains a poorly studied domain of the physics of col-
lisions. However, the results on electron photodetach-
ment from negative ions and electron scattering
obtained in this paper uncover intriguing effects. In par-
ticular, it is demonstrated that the structure of the nega-
tive ion is responsible for the nonmonotone behavior of
the phases of p and d partial waves, which are caused
by the diffraction of electron waves on a finite-radius
object. This feature is absent in scattering of a symmet-
ric s wave. It is shown that many-electron correlations,
in particular, the dynamic polarization of the core elec-
trons by an incident particle, should be taken into con-
sideration in description of elastic scattering of slow
electrons. Electron diffraction that arises in electron
scattering by negatively charged ions brings about per-
ceptible qualitative changes in the scattering character-
istics. The results obtained may be able to be used in
studying scattering by other negative ions and various
negatively charged clusters, including fullerenes.
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Abstract—Unsteady evaporation and condensation growth of a quiescent spherical drop are studied in the case
when the surface temperature and the saturated vapor concentration on the surface of the drop are variable and
experience a jump in the Knudsen layer. A general (i.e., valid for any time scale) expression for the rate
of change of the radius as a function of time is found. From this expression, first approximations for infinitesi-
mal and large times are derived separately by asymptotically expanding relevant functions. The formulas
derived are analyzed and compared with those known from the conventional theories, for which purpose the
rate of evaporation of the drop in air is calculated in a wide range of initial conditions. © 2005 Pleiades Pub-
lishing, Inc.
INTRODUCTION AND PROBLEM
DEFINITION

In [1, 2], we elaborated a theory of unsteady evapo-
ration and condensation growth of a quiescent spherical
drop that takes into account concentration and temper-
ature discontinuities in the Knudsen layer near the sur-
face of the drop. A general (in the sense that it applies
to any time scale) expression for the rate of change of
the radius of the drop as a function of time was found,
and formulas for infinitesimal and large times sepa-
rately were derived from that expression. Also, the
domain of applicability of the formulas derived previ-
ously for the quasi-steady and unsteady variation of the
radius was determined. When posing the boundary con-
ditions, we assumed that the saturated vapor concentra-
tion on the surface of the drop is constant, while the
temperature may slightly vary.

In this work, we consider a more general case when
the temperature and saturated vapor concentration on
the surface of the drop are variable and are related, in a
linear approximation, via the Clapeyron–Clausius
equation.

The constituents of a binary gaseous mixture are
molecules of the substance of the drop and a carrier gas
that does not experience phase transitions in a given
temperature range. Following Maxwell [3], we assume
that the vapor concentration at the surface is equal to
the saturated vapor concentration at a given surface
temperature. It is also assumed that the radius R of the
drop is much larger than the free path of gas molecules
at a given temperature ((R @ λ) but is not so large that
concentration and temperature discontinuities may be
disregarded. The (relative) vapor concentration c1 and
1063-7842/05/5003- $26.00 ©0314
the temperature T of the vapor–gas mixture are
described by the set of equations

(1)

(2)

with the initial and boundary conditions

(3)

(4)

(5)

(6)

(7)

Here, r is the radial coordinate of the spherical coordi-
nate system with the origin at the center of the drop; t is
the time; D = nm2D12/ρ, where D12 is the coefficient of
interdiffusion of the binary mixture components; n =
n1 + n2; n1, m1 and n2, m2 are the molecular concentra-
tions and masses of the first and second components,
respectively; ρ is the density of the binary vapor–gas
mixture; and a is the diffusivity of the binary mixture.

In boundary conditions (5)–(7), , , , and
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 are the gasdynamic coefficients of concentration
and temperature discontinuities [4, 5]; L is the specific
heat of the phase transition for the substance of the
drop; and κ is the thermal conductivity of the vapor–gas
mixture.

Equations (1) and (2) and conditions (3)–(7) should
be complemented by the approximate linear Clapey-
ron–Clausius equation [6]

(8)

which is valid for a small variation of the surface tem-
perature. Here, c1s(t) = c1(Ts) = n1(Ts)/n, where n1(Ts) is
the concentration of the saturated vapor of the sub-
stance of the drop at a surface temperature Ts = Ts(t),

(9)

and k is the Boltzmann constant.

It should be noted that quantity Lm1 involved in
expression (9) is one order of magnitude higher than
kTs0 for most liquids (including water, alcohols, and
ethers) when the surface temperature of the drop is
below the melting point [7]. Therefore, we put νs0 > 0.

In view of (7), boundary conditions (5) and (6) can
be represented in a form that is more convenient to ana-
lyze:

(10)

(11)

where

Quantities χc and χT, which were first introduced by
us in [1, 2], are called the composite coefficients of con-
centration and temperature discontinuities, respec-
tively. They are generally nonnegative. Vanishing of
either of them is the necessary and sufficient condition
for the existence of the corresponding discontinuity.
The left-hand sides of (10) and (11), which are func-
tions of t, will be referred to as

(12)
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SOLUTION METHOD

We will solve the problem using the integral Laplace
transformations [8] designated as follows:

With boundary conditions (3) and (4), we find the
maps of Eqs. (1) and (2),

which are the ordinary second-order differential equa-
tions in unknown functions S(r, p) and θ(t, p), where r
is an independent variable and p is a parameter. The
general solutions to either of the linear equations with
variable coefficients have the form [9]

(13)

(14)

where A, A', B, and B' (“constants” of integration)
depend on the conditions of the problem.

First, in view of boundary conditions (3) and (4), we
find that
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Now, introducing the designations

we write boundary conditions (7), (8), (10), and (11) in
the mapping space,
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where

Solving algebraic set of equations (16) yields

(17)

(18)

(19)

where

(20)

Denoting p as z, we will consider the quadratic tri-
nomial δ = g0z2 + g1z + g2. Its zeros z1 and z2 are real and
different, since

If

are positive quantities, we have

By virtue of relationships (15) and (17), functions
(13) and (14) can be expressed as
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where αc = (r – R)/  and αT = (r – R)/ .
The functions that will be frequently used below in

the original space are designated as follows:

Passing to the original space by formulas (18) and
(19), we find, respectively, the time dependences of the
saturated vapor concentration and temperature on the
surface of the drop,

(23)

(24)

where

From maps (21) and (22), we find in the original
space, respectively, the concentration distribution and
temperature field in the medium around the drop,

(25)

(26)

where

Up to now, the radius R of the drop was assumed to
be constant. Such an assumption, however, is valid only
if the weight of the drop far exceeds the weight of the
evaporant that left the surface of the drop during the
process considered.

It is known [3, 10] that the rate of unsteady variation
of the radius is given by the formula

where γ is the density of the drop and (∂c1/∂r)|r = R is
found from Eq. (25).
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2 t
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Thus, we have

(27)

where

ANALYSIS OF THE SOLUTIONS
Functions (23)–(27) found in the original space lin-

early depend on ε ≠ 0, which is given by expression
(20). Then, it is clear that evaporation (dR/dt < 0) or
condensation growth (dR/dt > 0) of an aerosol drop will
take place only if ε ≠ 0; otherwise, dR/dt = 0, as follows
from (27).

It is easy to check (for example, using maps (18) and
(19) of respective functions (23) and (24)) that the tem-
perature and the saturated vapor concentration on the
surface of the drop can be constant iff

Consider the behavior of Eqs. (23) and (24) at t 
0+. In this limit, we have

Generally, this means that

Designating ∆c1s = c1s(t  – c1s(t)|t = 0, ∆Ts =

Ts(t  – Ts(t)|t = 0, we find that

Thus, at t = 0, functions c1s(t) and Ts(t) experience a
jump in the sense adopted in this paper. It can be said
that functions (12) experience a similar jump at t = 0.

It is of interest to contrast the vapor and temperature
distributions at the outer boundary of the Knudsen layer
and on the surface of the drop (i.e., inside this layer).
From expressions (25) and (26) at r = R (i.e., at the
outer boundary of the Knudsen layer), we get

(28)
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∑+ ,=

C β j( )
R2β j

2 R D a+( )– β j Da+

g0β j
2 g2–

------------------------------------------------------------------------.=

D a, χc χT .= =

c1s t( ) c10

εκχ c

g0
-----------, Ts t( ) T0

εlχT

g0
----------.+–

c1s t( ) t 0+→ c1s t( ) t 0=≠  = c1s0,

T s t( ) t 0+→ T s t( ) t 0=≠  = T s0.

) t 0+→

) t 0+→

∆c1s

c1s0νs0

g0
---------------- εclχT εTκχ c+( ),=

∆T s
1
g0
----- εclχT εTκχ c+( ).=

c1 r t,( ) r R=

=  c10
εκ D

R
--------------- a

g2
------- A β j( )ϕ β j t,( )
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2

∑– ,–
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(29)

The difference between the values following from
(28), (29) and from (23), (24) is a quantitative measure
of the effect of the Knudsen layer.

Let us now discuss at length expression (27) for the
rate of unsteady variation of the radius, which was
derived for any allowable time from 0 to +∞. Note first
of all that formula (27) is a generalization of the for-
mula

(30)

where ξ = D(c1∞ – c1s0)nm1/γ and β = (R + χc) /χcR
[1, 2].

Formula (30) follows from (27) at νs0 = 0.

Consider asymptotic expansions of function ϕ(βj, t)
for infinitesimal and large values of t,

(31)

(32)

Leaving the zeroth- and first-order terms in (31) and
(32), we get the corresponding approximations of for-
mula (27),

(33)

(34)
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It is worth noting that formulas (34) derived for t @
0 are the generalizations of the well-known formulas
[3, 10]

(35)

which are usually derived by solving only one station-
ary or, accordingly, nonstationary equation of diffusion
that disregards concentration discontinuities (as well as
temperature discontinuities, since the process of heat
conduction is neglected). Formulas (35) are obtained
from (34) at χc  0 and νs0  0 (χT  0).

From general formula (27) and formula (33), we
find that

is a finite quantity. At the same time, from the second
formula in (35), dR/dt tends to infinity at t  0+. At
t  +∞, we find from (27) and (34) that

To gain a better understanding of the effect of the
factors taken into consideration in this paper on
unsteady evaporation and condensation growth of a
spherical drop, let us calculate the rate of change of its
radius by formulas (33)–(35) for the case when water
drops evaporate (ε < 0, ξ < 0) in air. To be brief, we will
hereafter write “the rate of evaporation” instead of “the
rate of change of the radius of the drop.” It is of interest
to compare the numerical values of the rate of evapora-

dR
dt
-------

ξ
R
---,

dR
dt
------- ξ

R
--- 1 R

πDt
--------------+ 

  ,= =

dR
dt
-------

t 0+→
lim

εDnm1κ
γg0

---------------------=

dR
dt
-------

εDnm1κ Da

γg2R2
---------------------------------.

Table 1.  Values of coefficient α0∞ = v0/v∞

T0, K 283 293 303 313 323

Rm × 10–6,
m

1 7.77 7.19 6.74 6.62 6.64

5 34.84 31.95 29.72 29.09 29.20

10 68.69 62.89 58.44 57.17 57.40

Table 2.  Values of coefficient α0q = v0/vq

T0, K 283 293 303 313 323

Rm × 10–6,
m

1 2.80 1.78 1.12 0.73 0.49

5 13.98 8.90 5.58 3.65 2.45

10 27.97 17.79 11.17 7.30 4.90

Table 3.  Values of coefficient αq∞ = vq/v∞

T0, K 283 293 303 313 323

Rm × 10–6, 1 2.78 4.04 6.04 9.06 13.55

m 5 2.49 3.59 5.32 7.97 11.92

10 2.46 3.54 5.23 7.83 11.72
tion that are calculated by newly derived formulas (33)
and (34) for infinitesimal and large times not only with
each other but also with those calculated by formulas
(35). Such a comparison is of value, since expressions
(33) and (34) involve the composite coefficients of con-
centration and temperature discontinuities, while for-
mulas (35), which were derived in terms of earlier the-
ories [3, 10], do not take into account these discontinu-
ities. Moreover, the temperature does not enter into (35)
in explicit form. Therefore, when comparing the rates
of evaporation found by formulas (33) and (34) with
those found by formulas (35), we put T0 = Ts0 in (33)
and (34) and hence, ξ = εDnm1/γ.

Clearly, the first equations in (33)–(35) are easily
integrated to give the average rate of evaporation, v  =
(R2 – R1)/(t2 – t1). Subscripts 0, ∞, and q used below
mean that the velocity is found from the formula for
infinitesimal times, that for large times, or the quasi-
stationary formula:

where Rm = (R1 + R2)/2 is the mean radius.
Putting

we obtain the following expressions for the positive
quantities:

(36)

where ζ = c1s0νs0l/κ > 0, from which it follows that

Since α0q is proportional to Rm, the discrepancy
between velocities v 0 and v q also varies in proportion
to Rm. The numerical values of α0∞, α0q, and αq∞ that
were determined from formulas (36) for Rm = 1 µm,
5 µm, and 10 µm are listed in Tables 1–3 for a number
of initial temperatures.

Based on α0∞ listed in Table 1, one can argue that the
rates of evaporation calculated by the first formulas in
(33) and (34) (infinitesimal and large times, respec-
tively) differ substantially. Within the initial tempera-
ture interval considered, the ratio between the rates var-
ies insignificantly, while varying considerably with Rm
at the same temperature; namely, |(dR/dt)∞| sharply
decreases with size of the drop. The value of α0q
declines with temperature. The values of αq∞ in Table 3
indicate that the ratio between rates v q and v∞ is weakly
dependent on the size of the drop. Also, the discrepancy
between the rates increases with rising initial tempera-
ture, being not very large at T0 = 283 K, v q ≈ 2.5v∞.

v 0
ξκ
g0
------, v ∞

ξκ
g0 κ c1s0νs0l+( )Rm+
---------------------------------------------------, v q

ξ
Rm
-------,= = =

v 0 α0∞v ∞, v 0 α0qv q, v q αq∞v ∞,= = =

α0∞ 1 1 ζ+( )α0q, α0q+=
κ Rm

g0
----------,=

αq∞ 1 ζ 1
α0q
--------,+ +=

v ∞ v 0 , v ∞ v q .< <
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It turns out that the discrepancies between the rates
of evaporation calculated by the first and second formu-
las in (34) and (35) (for the initial conditions being the
same) are nearly identical. To check the validity of this
statement, we note that the second formulas differ from
the first ones solely in the parenthesized factors. The
expression of interest from the second formula in (34)

can be represented in the form 1 + αR/ , where

α = (1 + ζ )/(1 + ζ + g0/κR). For evaporation of
water drops in air at R = λ102, this expression takes the
values given in Table 4.

Parameter R influences α insignificantly, so that we
may take α ≈ 1 irrespective of the size of an evaporating
drop. Thus, the expressions that differentiate the second
formulas from the first ones in formulas (34) and (35)
have nearly the same values for water drops evaporat-
ing in air.

The quantitative comparison of the velocities
(Tables 1–3) should be complemented by a table of
rates of evaporation calculated by one of the formulas
discussed under the same initial conditions. For the first
of formulas (33), we obtain Table 5, which lists the
rates of evaporation of a water drop in dry air for several
initial temperatures.

πDt

D/a

Table 4

T0, K α

283 0.937

293 0.935

303 0.941

313 0.964

323 1.004

–6.2

0 6.6

dR
/d

t ×
 1

04 , m
/s

t × 1010, s
7.4 8.2, 8.4

–7.8

–9.2

–10.9

–12.8

283 K

293 K

323 K
313 K

303 K

Figure.
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It is noteworthy that, according to this formula, the
average and instantaneous rates coincide; that is, v 0 =
(dR/dt)0. Note also that general formula (27) for the rate
of change of the radius coincides with the right-hand
side of the first of formulas (33) in the limit t  0+.
Consequently, it is correct to say that Table 5 lists the
rates of evaporation of water drops in dry air at the zero
time of the process (at T0 = Ts0).

In (33)–(35), it remains for us to analyze the second
formula of (33). Unlike the right-hand side of the first
formula, that of the second one is time-dependent and,
therefore, may shed light on the variation of the radius
during the evaporation process. For water drops evapo-
rating in air at different initial temperatures, the second
formula of (33) gives dependences plotted in the figure.
The rate of evaporation is seen to vanish over a short
period of time (less than a nanosecond).

CONCLUSIONS

In this work, we obtained a general (valid for any
time scale) expression for the rate of unsteady change
of the radius of the drop and derived its approximants
for infinitesimal and large times. Taken together, the
formulas make it possible to take into account a large
number of factors considerably influencing the process.
These formulas show that the rate of unsteady evapora-
tion of water drops in air rapidly decreases within a
short time interval after the beginning of the process
and strongly depends on the initial temperature and size
of the drop. Comparing the rates of evaporation calcu-
lated by these formulas and by the formulas for quasi-
steady and unsteady evaporation from the earlier theo-
ries, which ignore concentration and temperature
drops, suggests that the latter are of limited applicabil-
ity and can be replaced by more adequate (more gen-
eral) formulas obtained in this work.
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Abstract—The problem of nonlinear oscillations of the finite amplitude of an uncharged drop of an ideal
incompressible conducting liquid in an external uniform electrostatic field is solved for the first time by analyt-
ical asymptotic methods. The problem is solved in an approximation quadratic in amplitude of the initial defor-
mation of the equilibrium shape of the drop and in eccentricity of its equilibrium spheroidal deformation. Com-
pared with the case of nonlinear oscillations of charged drops in the absence of the field, the curvature of the
vertices of uncharged drops nonlinearly oscillating in the field is noticeably higher, whereas the number of res-
onant situations (in the sense of internal resonant interaction of modes) is much smaller. © 2005 Pleiades Pub-
lishing, Inc.
(1) Investigation into free nonlinear oscillations of a
charged drop, which was pioneered two decades ago
and is being continued today [1–10], is of both scien-
tific and applied value. Researchers have gained better
insight into the physics of the oscillations and instabil-
ity of drops against their self-charge. Unfortunately, the
same cannot be said of nonlinear oscillations of a drop
placed in an electrostatic field although this physical
object is also frequently encountered in many applica-
tions. A charged drop in an electric field is much more
difficult to treat analytically, because several small
parameters are involved in the problem. To date, no
efforts to asymptotically investigate the nonlinear oscil-
lations and stability of an uncharged drop in external
fields in the second-order approximation (let alone
higher order approximations) in oscillation amplitude
have been made. A distortion of the equilibrium spher-
ical shape of the drop in external electric, acoustic, and
aerodynamic fields, as well as in the field of centrifugal
forces, is obviously bound to change the oscillation
characteristics, as was noted in [3]. For example, when
placed in an electrostatic field, the drop takes a shape
that is close to an elongate spheroid. Unfortunately, the
oscillations of spheroidal uncharged and charged drops
in a uniform external field have been calculated only in
the approximation linear in oscillation amplitude
[11−16].

A deviation of the equilibrium shape of a spheroidal
drop from the shape of an equivoluminar sphere can be
considered as a small steady deformation of the spher-
ical shape. As a dimensionless parameter characteriz-
ing such a deviation, it is natural to take eccentricity e
of the drop. The ratio of the amplitude ξ of capillary
oscillations of a spheroidal drop to the radius R of an
equivoluminar sphere is taken to be the second small
parameter, ε ≡ ξ/R. Actually, calculations of the oscilla-
1063-7842/05/5003- $26.00 ©0321
tions of a spheroidal drop in the first-order approxima-
tion in dimensionless oscillation amplitude ε must also
include the second-order approximation in eccentricity
ε (i.e., in dimensionless electrostatic field strength)
[11–16]. Then, using expansions in both small parame-
ters and leaving terms ~εe2 in the solution makes the
problem virtually nonlinear.

In asymptotic calculations using several small
parameters, one must properly select the orders of
smallness of the parameters left. For example, let ε ~ e2

[13, 14, 16] in the problem considered. Then, calcula-
tion in an approximation ~εe2 must also take into
account terms ~e2, which was not done in [13, 14, 16].
Therefore, the results obtained in those papers are
incorrect.

If we assume that e2 is much larger than ε (see [11,
12, 15, 17]), terms ~ε2 may be omitted in calculation of
order εe2. However, works [11, 12, 15, 17] were aimed
at deriving and analyzing dispersion relations for
charged spheroidal drops rather than at studying the
time evolution of the initial deformation, which is rou-
tine in solving nonlinear problems. The basic result of
the studies conducted in an approximation that is linear
in oscillation amplitude and quadratic in eccentricity e
of the drop (i.e., in an approximation of order εe2 under
the condition that e2 @ ε) was a dispersion relation
derived for three-dimensional oscillations of an
extended charged spheroidal drop. If mode interaction
is neglected, the oscillations are given by [15]

ω2 n n 1–( ) n 2+( )αn{–=

– 3e2 n3 2n 1–( ) n 2+( )αn+[ ]κ n
m } ;
 2005 Pleiades Publishing, Inc.



 

322

        

SHIRYAEVA 

 

et al

 

.

                                                                                                  
where n is the mode number, m is the azimuth eigen-
value, and dimensionless parameter Wq (Rayleigh
parameter) characterizes the stability of the drop
against its self-charge. The critical value of parameter
Wq, Wq ≡ Wq*, is four [1].

From the above dispersion relation, it is seen that the
oscillation frequencies of all modes of a spheroidal
drop decline with increasing e. By equating the fre-
quency squared with zero, it is easy to find the critical
value of parameter Wq, Wqsph at which an extended
spheroidal drop becomes unstable against nonaxisym-
metric oscillations as a function of n, m, and the drop
eccentricity,

Wqsph = (n + 2)[1 – (e23n2 /(n – 1)(n + 2))].

At n = 2 and m = 0, it is easy to obtain an expression
for the critical value of parameter W for the fundamen-
tal mode of axisymmetric oscillations that specifies the
stability of the entire drop, Wqsph = 4[1 – (2e2/7)].

According to [17], for a drop in the form of an oblate
spheroid, the expressions written above remain valid if
the eccentricity squared changes sign. In particular, the
critical value of parameter W for an oblately spheroidal
drop takes the form

This expression implies that a charged oblately
spheroidal drop is stable against virtual axisymmetric
perturbations and nonaxisymmetric perturbations with
an azimuth eigenvalue meeting the condition m2 ≤
(n(n + 1)/3). Otherwise, m2 > (n(n + 1)/3), nonaxisym-
metric modes with corresponding azimuth eigenvalues
are unstable. For example, a charged oblately spheroi-

dal drop is unstable against virtual deformations ~ ,

, and so on.

The aforesaid is also true for nonspheroidal distor-
tions of the equilibrium shapes of drops suspended in
an electromagnetic field [18]. In that case, the oscilla-
tion spectrum was calculated in the (εβ)-order approx-
imation, where β is a small dimensionless parameter
characterizing the equilibrium deformation of the drop
in a magnetic field and ε is the dimensionless oscilla-
tion amplitude.

In this work, we analyze nonlinear oscillations of an
uncharged drop placed in a uniform electrostatic field,
assuming that ε ~ e2 and leaving terms ~εe2 and ~ε2.

αn 1
Wq

n 2+
------------– 

  , Wq
Q2

4πR3σ
----------------,≡ ≡

κn
m n n 1+( ) 3m2–[ ]

3 2n 1–( ) 2n 3+( )
--------------------------------------------,≡

κn
m

Wqsph

=  n 2+( ) 1 e2 n n 1+( ) 3m2–[ ] n2

n 1–( ) n 2+( ) 2n 1–( ) 2n 3+( )
---------------------------------------------------------------------------+ .

P2
2

P3
3

(2) Consider the time evolution of the surface shape
of an uncharged liquid drop nonlinearly oscillating in
uniform electrostatic field E0. We assume that the liq-
uid is ideal, incompressible, and perfectly conducting
and has density ρ and surface tension coefficient σ.

In the absence of an external field, the drop has a
spherical shape of radius R. The presence of weak
external electrostatic field E0 causes a small distortion
of the equilibrium shape. In the spherical coordinates,
this distortion can be represented in the form of expan-
sion in Legendre polynomials,

where amplitudes an (|an| ! R) are determined from the
pressure balance at the equilibrium surface of the drop.
It should be taken into account that electric field pres-
sure pE, which gives rise the distortion of the equilib-
rium spherical shape, must have the same order of

smallness as the distortion, pE ~  ~ an. Writing the

pressure of the surface tension forces, , and elec-

tric field pressure  up to terms ~an,

and setting up the pressure balance, we obtain

Comparing this expression with the equation of a
spheroidal surface that is written up to terms ~e2,

one sees that the equilibrium surface shape of an
uncharged drop in a weak electrostatic field may be
viewed (up to terms ~e2) as a spheroid whose eccentric-

ity is related to the field strength as e2 = (9 R/16πσ).

Note that the dimensionless combination WE ≡ R/σ
(the so-called Taylor parameter) characterizes the sta-
bility of the drop against its surface charge induced by
external uniform electrostatic field E0. The value of
parameter WE that is critical in terms of such instability,
WE ≡ WE*, is equal to ≈2.62 [12].
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Let an equilibrium weakly spheroidal drop with
eccentricity e initially (t = 0) undergo axisymmetric
perturbation ξ(θ, t) of fixed amplitude ε that is consid-
erably smaller than the radius of the drop. Our goal is
to find the resulting spectrum of capillary oscillations
of the drop (i.e., the shape of the drop) at t > 0. We
assume that the drop is always axisymmetric. Then, in
the spherical coordinate system with the origin at the
center of mass of the drop, the equation for the surface
of the drop written in dimensionless variables such that
ρ = σ = R = 1 has the form

(1)

The flow of the liquid in the drop that is caused by
the distortion of the equilibrium surface is assumed to
be potential with velocity field potential ψ(r, t). The
velocity field is defined via potential gradient as
V(r, t) = grad(ψ(r, t)). Assuming that the velocities of
hydrodynamic flows in the drop are much lower than
the propagation velocity of electromagnetic interac-
tions, we will consider the electric field near the drop as
electrostatic and describe it through potential Φ(r, t),
which, in turn, is related to field strength E by the well-
known relationship E = –grad(Φ).

The mathematical statement of the problem is as fol-
lows:

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
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(11)

Here, ∆ is the Laplacian (except for the symbol before
pressure p). Conditions (8) and (9) must be fulfilled at
any (including the initial) time instant. Therefore, at t =
0, they specify the amplitudes of the zeroth, ξ0, and
first, ξ1, modes in the expansion of initial perturbation
ξ(θ) in Legendre polynomials; that is, the amplitudes of
the zeroth and first modes are specified by the initial
deformation rather than being arbitrary.

In expressions (6)–(11), ∆p is the difference
between the constant pressures inside and outside the
drop in equilibrium;

the electric field pressure; pσ = divSn, the pressure of
surface tension forces (divS is the surface divergence);
n, the unit normal to the surface given by (1); ΦS(t), the
electric potential that is constant over the surface; ε, the
amplitude of the initial perturbation of the surface
shape (small parameter of the problem); hi is the coef-
ficient defining the partial contribution of an ith vibra-
tional mode to the initial perturbation; Ξ, a set of the
numbers of initially excited vibrational modes; and

(12)

are the constants determined from conditions (8) and
(9) at the zero time up to terms ~εe2 and ~ε2.

To simplify the following mathematics and easily
separate out terms due to the spheroidal shape of the
equilibrium drop in final expressions, we introduce a
formal parameter β, e2 ≈ βε. Since it was assumed that
e2 ~ ε, β ~ 1. This parameter is needed only in order that
the product εβ can be changed to e2. It is remembered,
in addition, that, when seeking for the equilibrium
shape of the drop in the field, we obtained the relation-
ship between the eccentricity and electric field strength,
which has the form

in the dimensionless variables.
(3) To find a solution to the problem stated, we will

apply the method of many scales, as was done previ-
ously in [1–10, 12–14, 16, 18]. Desired functions ξ(θ,
t), ψ(r, t), and Φ(r, t) are represented in the form of
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expansions in powers of small parameter ε and are con-
sidered to be dependent not merely on time t but on var-
ious time scales introduced via small parameter ε: Tm ≡
εmt (m = 0, 1, 2,…). We restrict our consideration to the
quadratic approximation and so will look for depen-
dences of the desired quantities only on two time scales
T0 and T1,

(13)

The electric field potential is expanded in half-inte-
ger powers of parameter ε, since E0 ~ ε1/2. Component
Φ(0)(r, θ) of the potential defines the equilibrium
weakly spheroidal shape of the drop in the field,

(14)

while increment Φ(1)(r, θ, T0) characterizes the distor-
tion of the equilibrium surface.

The pressures of the electric field, pE, and surface
tension forces, pσ, entering in dynamic boundary con-
dition (6), are given by the following expansions:

(15)

where components

are independent on perturbation ξ(θ, t), being the pres-
sures at the equilibrium surface of the spheroidal drop.
They meet the equilibrium pressures balance

(16)

and, consequently, cancel one another.

Substituting expansions (13) and (15) into the set of
Eqs. (2)–(11) yields a set of boundary-value problems
of different orders of smallness for finding functions
ξ(m), ψ(m) (m = 1, 2), and Φ(1). It is obvious that each of
functions ψ(m) and Φ(1) has to satisfy linear equations (2).

Solutions to Eqs. (2) for the first- and second-order
functions meeting conditions (3) and (4) are written in
the form

(17)
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∑

Corrections to the equilibrium surface of the drop
are also represented in the form of expansions in Leg-
endre polynomials,

(18)

(4) A set of equations for first-order coefficients

(T0, T1) and (T0, T1) in the solutions obtained
for hydrodynamic potential ψ(1)(r, θ, T0, T1) and surface
perturbation ξ(1)(θ, T0, T1) is derived from boundary
conditions (5), (6), (8), and (9) after grouping the terms
linear in parameter ε, which specify the distortion of the
equilibrium shape.

Recall that relationships (16) must be taken into
account in the expansion of dynamic boundary condi-
tion (6). Because of this, the set of the first-order

boundary conditions for (T0, T1) and (T0, T1)
that is derived from (5) and (6) is no different from a set
for first-order coefficients in the problem of oscillations
of an uncharged spherical drop in the absence of an
external field,

where

(i) After straightforward transformations, we get

differential equations in coefficients (T0, T1),

(19)

The solutions to Eqs. (19) are harmonic functions of
time T0 (at n ≥ 2) with T1-dependent coefficients,

(20)

Hereafter, c.c. means terms complex conjugate to the

terms written and (T1) and (T1) are real func-
tions for which the T1 dependence can be found from
consideration of the problem in the next order of small-
ness.
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From conditions (8) and (9), written in the linear
approximation in ε, it follows that

(21)

Note that expressions (21) do not contradict (19) at
n = 0 and 1.

(ii) Equations in coefficients (T0) appearing in
solution (17) are derived from conditions (7) and (10)
by grouping terms ~ε3/2, which are due to distortion
ξ(θ, t) of the equilibrium spheroidal shape,

Substituting the expressions for Φ(0) and Φ(1) into
these expressions yields

(22)

where  are the Clebsch–Gordan coefficients.

(5) (i) A set of the second-order boundary conditions
that is derived from (5) and (6) will contain both terms
quadratic in surface perturbation ξ(θ, t) and those
allowing for interaction between perturbation ξ(θ, t)
and the equilibrium shape of the spheroidal drop,

where

Substituting lower order solutions (14), (17), (18),
and (20)–(22) into the above equations, we obtain, after
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tedious transformations, an equation for desired sec-

ond-order coefficients (T0),

(23)

It is remembered that the Clebsch–Gordan coeffi-
cients are different from zero only if their subscripts
meet the conditions

(24)

In order that a solution to Eq. (23) be free of secular
terms (i.e., terms indefinitely increasing with time), it is
necessary that the inhomogeneity function (the right of
(23)) be free of terms proportional to exp(iωnT0) (i.e., of
terms describing a periodic external action with fre-
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quency ωn equal to the natural frequency of an nth
mode). To this end, the condition

(25)

from which one can find the dependences of the first-
order amplitudes on “slow” time T1, must be met.

Expressing (T1) in (25) via real functions (T1)

and (T1) and requiring that the real and imaginary
parts of the equation vanish, one easily obtains

(26)

where  and  are constants determined from the
initial conditions.

With (26), one can write, instead of (20), an expres-

sion for amplitudes (T0, T1) that includes the
dependences on both time scales,

(27)

Solving Eqs. (23) subject to relation (25), we obtain

an expression for amplitudes (T0) (n ≤ 2),

(28)

where

Note that, since this quadratic-in-ε approximation

allows us to find the dependences of coefficients 
only on time scale T0, it suffices to take in (28) that

 = exp(i ), where  and  are real con-

stants. The dependences of coefficients  on time T1
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Considering the terms due to perturbation ξ(θ, t) of
the equilibrium surface of the spheroidal drop in the
second order of smallness in ε, we can find, from con-
ditions (8) and (9), expressions for nonlinear correc-
tions to the amplitudes of the zeroth- and first-order
modes,

(29)

(ii) With expansions (13) substituted into initial con-
ditions (11), the latter transform into a set of equations
for functions ξ in the first and second order of small-
ness,

From these equations, one can find real constants

, , , and  appearing in (27) and (28).

Satisfying the initial conditions in the first approxi-

mation in ε, we obtain  = hiδn, i and  = 0 (i ∈

Ξ, n = 0, 1, 2, …); in the second approximation in ε, we
find

where δn, i is the Kronecker delta.

Using these expressions, we write the first- and sec-
ond-order amplitudes in expansion (18) for the shape of
the vibrating drop in the final form,
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(30)

Thus, with (1), (13), and (18), we find an analytical
expression for the shape of the oscillating surface of an
uncharged drop exposed to an external uniform electric
field as follows:

(31)

where amplitude coefficients (t) (i = 1,2) are
defined by (30).

Figures 1a and 3a show the calculated (by (31)) non-
linearly oscillating shapes of an uncharged conducting
drop in uniform electrostatic field E0 (at WE ≈ 0.5WE*).
The zero time (t = 0) is represented by the thin curve,
while the thick curve corresponds to t = (2π/ω2), that is,
to the situation at the end of the oscillation period of the
fundamental mode (n = 2). For comparison, Figs. 1b
and 3b show the calculated [5] nonlinearly oscillating
shapes of a charged drop for Wq ≈ 0.5Wq* at the same
initial deformation and at the same time instants. It is
easy to see that the curvature of the vertices, as well as
the field strength and the probability of initiating a
corona discharge [19] near the surface of a nonlinearly
oscillating drop, increases with the number of modes
responsible for the initial deformation of the drop.
Other conditions being equal (i.e., the Rayleigh and
Taylor parameters being roughly equal to half their crit-
ical values), the curvature of the vertices of uncharged
drops in a uniform electrostatic field is larger than for
charged drops in the absence of the field.

(6) From expressions (30) and (31) for nonlinear

amplitude corrections  and from the form of coef-
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ficients  (see (28)), it is seen that nonlinear correc-

tions  to the oscillation amplitude exhibit a reso-

nance: when  – (ωl ± ωm)2 = 0 (the frequencies are
defined by relationship (19)), they diverge, indicating
an internal resonant interaction between nth, lth, and
mth modes [6, 8]. Calculations show that there exist
only two resonant situations at n, l, m < 100: n = 8, l =
m = 5 and n = 16, l = m = 10. Both resonances are
degenerate and take place when the shape of an
uncharged spherical drop executes nonlinear oscilla-
tions [20]. In the third order of smallness in oscillation
amplitude, the frequencies in the resonance condition

 – (ωl ± ωm)2 = 0 are obviously defined by relation-
ships allowing for the influence of the external field
(with regard to corrections for sphericity),

λ lijn
±( )

Mn
2( )

ωn
2

ωn
2

n n 1–( ) n 2+( ) e2

2 n n 1–( ) n 2+( )
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(a)
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–1.0

0.5

(b)

0.5–0.5–1.0–1.5

–0.5

1.0

–1.0

1.51.0

Fig. 1. Contours of the nonlinearly oscillating shape of the
drop at the zero time (thin curve) and at the end of the oscil-
lation period of the fundamental mode (thick curve) for the
case when the initial deformation is specified by a superpo-
sition of the fourth and sixth modes at h4 = h6 = 0.5 and ε =
0.25. (a) Uncharged drop in a uniform external electrostatic
field and (b) charged drop.
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(see (27)), or, equivalently,

In such a case, the number of resonances increases
drastically; however, this situation is more appropriate
to study in the third order of smallness.

(7) In the above analysis, it has been assumed that
the field-induced eccentricity squared has the same
order of smallness as the surface oscillation amplitude,
e2 ~ ε. It should be noted, however, that these parame-
ters are independent. Moreover, for example, drops in
thunderstorm clouds are featured by an oblongness of
several tenths of the drop radius, which can be consid-
ered as a quantity of the zeroth order of smallness. If the
problem under consideration is stated under the
assumption that e2 @ ε, the second-order electric field
pressure component

n n 1–( ) n 2+( )
9E0

2

32π n n 1–( ) n 2+( )
---------------------------------------------------G1 n( ).–

pE
2( ) ξ( ) 1

8π
------ ∂
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–1.0 1.0

Fig. 2. Same as in Fig.1 when the initial deformation is
specified by the 19th mode alone at h19 = 1 and ε = 0.25.
should be viewed as a first-order parameter and
included into the set of boundary conditions for the
first-order amplitudes,

In this case, instead of (19), we arrive at the differ-
ential equation

(32)

where the frequency is defined by the expression

(33)

r 1: 
∂ξ 1( )

∂T0
----------- ∂ψ 1( )

∂r
------------– 0;= =

∂ψ 1( )

∂T0
------------ pE

2( ) ξ( )– pσ
1( ) ξ( )+ 0.=

∂Mn
1( ) t( )

∂T0
2

-------------------- ωn
2Mn

1( ) t( ) n
3E0

2

4π
--------- A n( )Mn 2–

1( ) t( )[–+

+ C n( )Mn 2+
1( ) t( ) ] 0,=

ωn
2 n n 1–( ) n 2+( )

3E0
2

4π
---------B n( )–≡

≡ n n 1–( ) n 2+( ) 4e2

3
--------B n( )– .

0.5

(a)

1.50.5–0.5–1.5

–0.5

1.0

–1.0

0.5

(b)

0.5–0.5–1.5

–0.5

1.0

1.5

1.0–1.0

–1.0 1.0

–1.0

Fig. 3. Same as in Fig.1 when the initial deformation is
specified by the 20th mode at h20 = 1 and ε = 0.25.
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In (32) and (33),

If mode interaction in Eq. (32) is neglected (that is,

the terms ~ (t) and (t) are omitted), expres-
sion (33) turns into a dispersion relation for the problem
of surface oscillations of an uncharged drop exposed to
a uniform electrostatic field on the assumption e2 @ ε.

CONCLUSIONS
It is shown that nonlinear oscillations of an uncharged

drop of an electrically conducting liquid in an external
uniform electrostatic field are qualitatively similar to
nonlinear oscillations of a charged drop (see [1–10]).
The quantitative discrepancy is associated with the
equilibrium sphericity of the drop in the field. The most
considerable difference between the physical objects
compared that is revealed in the calculations of the sec-
ond order of smallness in oscillation amplitude shows
up as an appreciable decrease in the number of resonant
situations for nonlinear oscillations of an uncharged
drop in the field.
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Abstract—Longitudinal acoustic oscillations in a cylindrical cell are considered. The temperature and velocity
distributions over a periodically unsteady boundary layer are found. An expression for the characteristic decay
time of pressure oscillations is derived. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Longitudinal pressure oscillation in cylindrical cav-
ities is a widespread phenomenon. A typical example is
wind instruments, such as a flute, organ, etc., where
sounding is based on the self-oscillation effect [1]. The
timbre (tone quality) depends on the instrument mate-
rial and design, as well as on the manner of sound
extracting. Also, the timbre is known to depend on the
acoustic power distribution over higher spectral har-
monics. Next, the spectral radiation power depends on
the difference between the energy spent by an external
source per unit time to generate a given harmonic and
the dissipation power. Finally, the dissipation power is
related primarily to the effects of viscosity and heat
conduction and depends on the geometry of the acous-
tic resonator.

Along with wind instruments, longitudinal pressure
oscillations (which inevitably pose threats) are
observed in water pipes, where these pressure waves
are also associated with the self-oscillation effect [2].

One more example is hermetically sealed cells of
nuclear-pumped lasers, where longitudinal pressure
waves are due to longitudinally nonuniform impulsive
heating of the gas mixture [3]. After the impulse,
damped pressure oscillations are observed in the cells
[4, 5]. The pressure specifies the amount of energy
introduced into the lasing medium and characterizes
1063-7842/05/5003- $26.00 0330
gas-dynamic processes taking place in the laser cell.
Therefore, it is usually used as a key parameter in test-
ing the results of numerical simulation of gas dynamics
in nuclear-pumped lasers. On the other hand, numerical
simulation of damped longitudinal pressure oscillations
is rather difficult. This is because the dimension of the
problem rises and two length scales appear in the direc-
tion normal to the side walls of the cell: the main-
stream flow and the much thinner boundary layer.
These features of the flow may introduce large errors
into the simulation results: in [4], making allowance for
the effect of numerical viscosity [6] led to much faster
decay of pressure oscillations than was observed in the
experiments.

This author suggests a gas-dynamic model of longi-
tudinal acoustic pressure oscillations in a cylindrical
cell. This model makes it possible to describe the struc-
ture of a temperature–velocity boundary layer with
periodically unsteady temperature and velocity and
derive a simple expression for the characteristic time of
pressure wave decay.

1. BASIC EQUATIONS
A complete system of gas-dynamic equations con-

sists of the equations of conservation of momentum and
energy, as well as the continuity equation. With the dis-
sipation energy neglected, the system is written as [7, 8]
(1)

∂tρu ∇ u⋅( )ρu+  = –∇ p ∇ µ∇⋅( )u ∇ µ ∇ u⋅( ){ } /3+ +

∂tρ ∇ ρ u⋅( )+ 0=

∂t p/ γ 1–( ) ρu2/2+{ }

+ ∇ u γp/ γ 1–( ) ρu2/2+{ }⋅( ) ∇ λ∇⋅( )T .=







Here, u ≡ (u, v, w), ρ, T, and p are the velocity vector,
density, temperature, and pressure of the gas, respec-

tively; µ is the dynamic viscosity; λ is the thermal con-
ductivity; and γ is the adiabatic exponent.
© 2005 Pleiades Publishing, Inc.
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Let coordinate axis 0z be directed parallel to the
generatrix of the cylindrical surface and the cell length
be 2L. The geometry of the problem is shown in Fig. 1.

Consider pressure oscillations in an acoustic
approximation, assuming that the following relation-
ships are valid:

(2)

Here, P0 and ρ0 are the mean pressure and density of the
gas in the cell.

Using Eq. (2) and neglecting second- and higher-
order terms, we obtain from system (1)

(3)

The main reasons for longitudinal pressure oscilla-
tion decay are viscous stresses at the side walls of the
cell (the effect of viscosity) and heat conduction
through these walls (the effect of heat conduction).
Since the pressure varies periodically, the effects of vis-
cosity and heat conduction are significant only in the
near-wall region (boundary layer) with characteristic
size δ. Below, we assume that all the linear dimensions
of the cell (length, width, and radius of curvature of the
side walls) are much larger than the characteristic thick-
ness of the temperature–velocity boundary layer. With
this condition satisfied, the influence of the cross-sec-
tional shape on the structure of the boundary layer may
be neglected in Eqs. (3) and the boundary layer may be
considered as locally planar. Moreover, in Eqs. (3), the
terms due to longitudinal diffusion may be neglected in
comparison with those of transverse diffusion; i.e., we

may put ∇ 2 ≈ , where  =  +  is the trans-
versal Laplace operator.

Because of the presence of the boundary layer, the
pressure distribution over the cross section of the cell is
nonuniform even if longitudinal acoustic waves alone
are excited. The characteristic time of pressure trans-
verse relaxation is τ ~ δ/υ, where υ is the speed of
sound. Similarly, the characteristic time of pressure
longitudinal relaxation is T ~ L/υ, which is much longer
than the transverse relaxation time, T @ τ. Therefore,
the pressure distribution over the cross section of the
cell may be regarded uniform on time scales exceeding
the transverse relaxation time.

To derive an equation for the pressure, we average
system (3) over cross section S of the cell. Taking into
consideration attachment conditions at the side walls
and neglecting the longitudinal viscosity and thermal
conductivity (which are much lower than the transverse
parameters), we recast the first and third equations in

ρ ρ0 ∆ρ, ∆ρ  ! ρ0+=

p P0 ∆p, ∆p  ! P0.+=



ρ0∂tu –∇ ∆ p( ) µ∇ 2u µ∇ ∇ u⋅( )/3+ +=

∂t∆ρ ρ0 ∇ u⋅( )+ 0=

∂t∆p γP0 ∇ u⋅( )+ γ 1–( )λ∇ 2T .=





∇ x y,
2 ∇ x y,

2 ∂xx
2 ∂yy

2
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(3) (normal n is directed into the cell) as

(4)

Here, 〈…〉  means averaging over the cross section and l
is the cross-sectional perimeter.

The correction to the pressure satisfies the relation-
ship 〈∆p〉 ≅ ∆ p. From system (4), we obtain an inhomo-
geneous wave equation for the pressure,

(5)

The pressure, temperature, and density of an ideal
gas are related by the Clapeyron ideal gas law [7]. In the
acoustic approximation, it has the form

(6)

Here, cv is the specific heat at constant volume; T0 is the
gas mean temperature in the cell, which is equal to the
wall temperature; and ∆T is the temperature correction,
T = T0 + ∆T.

Using Eq. (6) and the continuity equation (the sec-
ond equation in system (3)), we bring the momentum
equation along axis 0z and energy equation into the
form

(7)

ρ0∂t w〈 〉 –∂z∆p
1
S
--- µ∂w

∂n
-------dl

l

∫°–=

∂t∆p
γ 1–
-----------

γP0∂z w〈 〉
γ 1–

------------------------+
1
S
--- λ∂T

∂n
------dl.

l

∫°–=











∂tt
2 ∆p υ2∂zz

2 ∆p–

=  
γ 1–

S
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∂t
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∂n
------dl

γP0

ρ0S
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∂z
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∂z
-------dl.
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∫°+
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∆p/ γ 1–( ) cv T0∆ρ cVρ0∆T .+=

ρ0∂tw ∂z∆p– µ∇ x y,
2 w+=

cpρ0∂t∆T ∂t∆p λ∇ x y,
2 ∆T ,+=
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0

Fig. 1. Schematic of the cylindrical cell.
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where cp is the specific heat at constant pressure.

Equations (5) and (7) constitute a closed system of
integro-differential equations of damped longitudinal
pressure oscillations in the acoustic approximation.

Let us solve this system under the assumption of
weak decay. In this case, a solution to Eq. (5) is the
interference of standing waves with slowly varying
amplitudes Pn,

(8)

where k = πn/L is the wavenumber, ωn = knυ is the cir-
cular frequency of an nth oscillation mode, and ϕn is the
oscillation phase.

In Eq. (8), the boundary conditions at the end faces
of the cell are ∂z∆p(t, ±L) = 0. From the condition of
slow decay, the condition |∂tPn| ! ωnPn follows; there-
fore, the pressure in system (7) has the form of (8) and
amplitudes Pn may be regarded as time-independent
(quasi-stationary).

2. CALCULATION OF VISCOUS FORCE 
AND HEAT FLUX TO THE WALL OF THE CELL

Since system (7) is linear, a general solution to it can
be sought as a superposition of solutions for pressure
waves of type

(9)

(for convenience of calculations, here traveling waves
are used instead of standing ones), where the plus and
minus signs refer to waves propagating from right to
left and vice versa, respectively.

Standing waves (8) result when two counterpropa-
gating waves with equal amplitudes superpose. Substi-

∆p Pn knz( ) iωnt iϕn+( ),expcos
n 1=

∞

∑=

pn Pn iωnt iknz iϕn+±( )exp=

0.4
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fn

x/δ1

1.0 1.5 2.0 2.5 3.0
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0.8

1.0

1
2

4
8

Fig. 2. Distribution of the temperature and velocity in the
boundary layer (the figures by the curves indicate the mode
number).
tuting Eq. (9) into system (7) yields

(10)

(here, x is the coordinate along the inner normal to the
wall; x = 0 at the wall). As boundary conditions for sys-
tem (10), we use the attachment condition wn(0, z, t) =
0 and the equality of the gas and wall temperatures,
Tn(0, z, t) = 0. At infinity, the velocity and temperature
are set finite, |wn(+∞, z, t)| < ∞ and |Tn(+∞, z, t)| < ∞.
Below, we are interested in a solution at t  ∞, i.e.,
only in a particular solution to system (10). Therefore,
initial conditions are omitted. A solution of system (10)
is sought in the form

(11)

Substituting Eqs. (9) and (11) into system (10)
yields the following differential equations for ampli-

tudes Wn and :

(12)

Particular solutions to system (12) subject to the
boundary conditions mentioned above are

(13)

where ν = µ/ρ0 is the kinematic viscosity and χ = λ/cpρ0
is the diffusivity.

It is seen from system (13) that the thickness of the
boundary layer for an nth mode in the case of steady
pressure oscillations is time-independent and equals

 = (2ν/ωn)1/2 for the velocity boundary layer and

 = (2χ/ωn)1/2 for the temperature boundary layer. The
velocity–temperature distribution for several oscilla-
tion modes in the boundary layer is shown in Fig. 2.
This distribution is uniquely described by the function
fn(x) = 1 – exp(–x/δn)cos(x/δn).

From Eqs. (11) and (13), one can easily determine
the viscous stress acting on the wall of the cell and the
heat flux density through the wall. The phases of both
are π/4 ahead of that of the pressure,

(14)

ρ0∂twn ikn pn µ∂xx
2 wn+±=

cpρ0∂tTn iωn pn λ∂ xx
2 Tn+=




wn Wn x( ) iωnt iknz iϕn+±( ),exp=

Tn Tn x( ) iωnt iknz iϕn+±( ).exp=



T̂n

µ∂xx
2 Wn iωnρ0Wn– iknPn+−=

λ∂ xx
2 T̂n iωncpρ0T̂n– iωnPn.–=




Wn Pn 1 x i 1+( ) ωn/2ν( )1/2–{ }exp–( )/ρ0υ±=

T̂n Pn 1 x i 1+( ) ωn/2χ( )1/2–{ }exp–( )/cpρ0,=



δn
υ

δn
T

µ∂xwn 0 z t, ,( ) pn νωn( )1/2 iπ/4( )/υexp±=

λ∂ xTn 0 z t, ,( ) pn χωn( )1/2 iπ/4( ).exp=
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3. PRESSURE OSCILLATION DECAY
To determine the rate of pressure oscillation decay,

we substitute expressions (14) for the viscous stress and
heat flow density into Eq. (5). Taking into account the
condition of slowly varying pressure oscillation ampli-
tude, |∂tPn| ! ωnPn, we arrive at the equation

(15)

Note that the form of Eq. (15) does not depend on
the traveling wave direction; i.e., the time variation of
the oscillation amplitude is identical for both traveling
and standing waves. A solution to Eq. (15) is sought in
the form

(16)

where ∆ωn ! ωn is the oscillation frequency pulling
and τn @ 1/ωn is the characteristic decay time of pres-
sure oscillations for an nth mode.

Substituting Eq. (16) into Eq. (15) and neglecting
terms of the second order of smallness yields the final
expression

(17)

It follows from Eq. (17) that higher modes decay
faster (τn ~ 1/n1/2) than lower ones; as a result, the free
oscillation spectrum degenerates to the fundamental
mode with time.

Thus, taking into account viscosity and heat conduc-
tion generates two effects: (i) exponential decay of
pressure oscillations and (ii) oscillation frequency pull-
ing. The second effect is weak and may be neglected in

∂tt
2 pn υ2∂zz

2 pn–

=  –il pnωn
3/2 ν1/2 γ 1–( )χ1/2+{ } iπ/4( )/S.exp

pn Pn iωnt i∆ωnt– iknz– t/τn–( ),exp=

1/τn ∆ωn lωn
1/2 ν1/2 γ 1–( )χ1/2+{ } / 23/2S{ } .= =

Parameters of the fundamental mode of pressure oscillations in
the laser cells of the LUNA-2M setup [9] for several inert gases

He Ne Ar

P0, atm 1 2 0.7 1 0.25 0.5

, mm 0.29 0.21 0.30 0.25 0.35 0.25

, mm 0.35 0.25 0.35 0.3 0.42 0.3

τ1, ms 13 19 29 35 34 49

∆ω1/ω1, % 3.0 2.1 3.0 2.5 3.6 2.5

δ1
v

δ1
T
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most cases. It follows from Eq. (17) that the character-
istic decay time increases with cross-sectional area of
the cell. For example, in the case of a circular cell, τn ~ r,
where r is the radius of the cell.

The table lists a number of characteristic parameters
for the fundamental mode of pressure oscillations for
several inert gases for a LUNA-2M laser setup [9]. The
total length of the laser cells is 2.4 m; the cross-sec-
tional area, S = 2.1 × 10–3 m2; and the cross-sectional
perimeter, l = 0.48 m [9]. In the calculation, we took
T0 = 300 K. In this case, the contribution of heat con-
duction to the rate of pressure oscillation decay is about
45%, while that of viscosity is about 55%. It is seen
from the table that the thickness of the temperature–
velocity boundary layer equals two- or three-tenths of a
millimeter; the typical decay time, several tens of mil-
liseconds; and the relative oscillation frequency pull-
ing, several percent. These values are typical of hermet-
ically sealed cells used in nuclear-pumped lasers.
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Abstract—A pulsed magnetic technique for generating mechanical pressure impulses is developed. Using this
technique, polymethyl methacrylate and gabbrodiabase are tested in various loading schemes. It is shown that
the experimental data are reasonable to analyze in terms of a structure-and-time approach. © 2005 Pleiades
Publishing, Inc.
Material fracture is a complex process involving dif-
ferent scale levels, as follows from the extensive body
of fractographic and X-ray diffraction data taken from
materials subjected to rupturing loads. In statics, rup-
turing loads are routinely described in terms of the
static strength and cracking resistance (stress intensity
factor) of a material. Under dynamic loading, one more
coordinate, time, appears, which makes the process
description more difficult: fracture now proceeds not
only on different scale levels but also evolves in time. It
has been shown in a number of works that the strain-
rate dependences of the strength and cracking resis-
tance, which also traditionally characterize the material
at fracture, are valid for only a particular loading
scheme (see, e.g., [1]). In other situations, they cannot
adequately describe the material behavior.

An account of fracture under dynamic loading can
be given with the approach developed in [2]. The basic
static parameters (strength and cracking resistance) are
complemented by a parameter characterizing the pro-
cess evolution in time: the incubation (structural) time
to fracture. Within this time interval, which is a material
characteristic, the damage builds up and reaches a crit-
ical level under threshold loads. Processes preceding
fracture on the macrolevel may differ considerably:
emergence of dislocations at grain boundaries (in met-
als), rotation of molecular globules, formation of voids,
etc. In dynamic, as also in static, tests, threshold loads
causing fracture of the material on the macrolevel are
determined given the parameters of a loading impulse.

PULSED MAGNETIC LOADING TECHNIQUE

Central to investigating material fracture under
impulsive loading are knowledge of the pressure
impulse parameters and application of loading schemes
such that the stressed state can be determined by solv-
ing relevant problems of continuum mechanics.
1063-7842/05/5003- $26.00 0334
The available methods of determining the pressure
impulse in a solid may be divided into two major
groups. The first one embraces those methods in which
the loading impulse parameters are found from the
velocity of the specimen’s free surface. The velocity (or
displacement) of the free boundary may be measured,
e.g., by a laser interferometer or with a capacitive or
inductive sensor. The methods of this group share the
following drawbacks: the need for reconstructing the
pressure impulse from the free surface velocity under
the assumption that elastic perturbations arising in the
material under loading are small (the acoustic approxi-
mation) and the need for special loading schemes to
determine a particular stressed state. The second group
covers the methods using pressure transducers, which
generate a signal depending on the pressure impulse
parameters. The complicated amplitude–frequency
response (AFR) of the transducers provides reliable
measurements only in narrow time and amplitude inter-
vals. Therefore, one must have a set of transducers with
AFRs fitting well different parts of the amplitude–fre-
quency spectrum of the signal expected.

One can greatly simplify analysis of material frac-
ture by applying a pulsed magnetic method to generate
a loading impulse. It is known that the current passing
in conductors generates a magnetic field and, interact-
ing with this field, gives rise to a ponderomotive force.
Generally, the direction and distribution of the acting
forces depend on the current distribution over the cross
section of the conductors, as well as on their geometry
and arrangement. In a perfect conductor, a unit surface
is subjected to the force (magnetic pressure)

(1)

which is directed normally to it. Here,  and  are the
surface current density and magnetic induction at a
point on the surface.

Pm
1
2
--- J B×[ ] ,=

J B
© 2005 Pleiades Publishing, Inc.
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In the case of plane-parallel s-thick wires h distant
from each other (h ! b, where b is the width of the
wires), the edge effect can be neglected (accurate to the
order of h/b) and the current (magnetic pressure) distri-
bution may be assumed to be uniform [3]. Then, the
instantaneous value of magnetic pressure Pm is given by

(2)

where B is the magnetic induction and µ is the perme-
ability (for a nonmagnetic material, µ = µ0 = 4π ×
10−7 H/m).

To reduce the error in pressure impulse determina-
tion that is due to the compression work of the wires,
their thickness is minimized through the current inte-
gral

(3)

where I(t) and tc are the instantaneous current and the
time of its action, respectively.

The ultimate value of the current integral at which,
e.g., copper is still in the solid phase equals 0.89 ×
1017 A2 s/m4 [4].

At a certain relationship between the dimensions of
the plane wires, their inductance can be minimized and
the energy may be rapidly introduced into the magnetic
field of the system.

Discharge of a capacitor bank directly through a
low-inductance load, specifically, through a set of plane
wires or a one-turn solenoid, is the most efficient and
simplest way of generating high current pulses.

For the given configuration, the shape of the pres-
sure impulse depends on that of the current passing in
the plane wires. In the equivalent circuit of a pulsed cur-
rent generator (PCG) (Fig. 1), the transient is described
by the equation

(4)

provided that the inductance is constant. This equation
is solvable under the initial (t = 0) conditions I = 0, U =
U0, and dI/dt = U0/L, where L, R, and C are the induc-
tance, resistance, and capacitance of the circuit, respec-
tively; U0 is the voltage across the capacitor; and I is the
current in the circuit.

A nonlinear resistor inserted in the current circuit
greatly affects the shape of the current pulses. In partic-
ular, it makes it possible to generate unipolar current
pulses. In the technology of high pulsed currents, non-
linear resistors made of Vilit, Tervit, and zinc oxide
have gained most acceptance [5–7].

As a pulsed current source, we used a specially
designed PCG that forms current pulses of amplitude to

Pm
1
2
--- I

b
---B

1
2
---HµH

B2

2µ
------,= = =

Ic I t( )/ sb( )( )2 t,d

0
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∫=

L
d2I

dt2
------- d RI( )

dt
--------------

1
C
---- I+ + 0,=
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1.2 MA with a pulse rise time of 1.5 µs at an inductive
load of 25 nH [8]. The shape of the pulse is controlled
using a set of 16-mm-high resistors (Vilit disks) of
diameter 72 mm. Precalibrated resistors from one lot
that were used in the experiments had the I–V charac-
teristic of form

(5)

where a0 = 1100 [V cm–1(A/s m2)–α] and α =
0.14 [V A−α s m2α – 1] are the material parameters and hR

and SR are, respectively, the height and cross-sectional
area of the resistor.

To reduce the inductance of the resistor set, four par-
allel-connected branches with two disks in each were
applied.

INTERFEROMETRIC TEST

If the current is uniformly distributed over the cross
section of b-wide wires, the parameters of the pressure
impulse acting on the wires and the parameters of the
current pulse are uniquely related by expression (2).

To check the correspondence between the magnetic
pressure impulse and the pressure impulse applied to
the specimen, we used the method of laser interferom-
etry. The test specimen is covered by a reflecting coat-
ing (evaporated aluminum). A loading assembly (plane
wires) is mounted on the opposite side of the specimen
and tightly pressed against it. Castor oil is used to
improve the acoustic contact. The dimensions of the
loading assembly provide generation of a plane com-
pression shock wave in the specimen, and the size of
the specimen excludes the arrival of surface waves at
the detection zone throughout the measurement pro-
cess.

UR a0hR
I

sR

-----
α

I( ),sgn=

1
120–180 5–

7

2 3

L

R
C

Q

Pm

i

Fig. 1. Pulsed current generator and loading scheme.
(1) Loading unit, (2) test specimen, and (3) mirror plane.
L, inductance; C, capacitance; and R, nonlinear resistance.
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The interferometer used in the experiments was sim-
ilar to a two-channel Michelson interferometer and
measured the displacement of the reflecting surface [9].
The signal was recorded with a TDS-457C oscillo-
scope.

Laser interferometry allows one not only to detect
the shape of a loading impulse but also to measure the
velocity of a longitudinal wave in the material. Figure 2
shows the current pulse in the sphere-plastic specimen
and the displacement of its free surface that are recon-
structed from the interferogram.

In the acoustic approximation, the displacement
velocity of a boundary may be set equal to the double
mass velocity of particles in an incident wave [10]. Dif-
ferentiating the free surface displacement with respect
to time, one can determine the mass velocity of the par-
ticles and reconstruct the pressure impulse, using the
simple relationship

(6)

where ρ0 is the density of the material, C1 is the speed
of sound in the material, and u is the velocity of the free
surface.

Figure 3 shows the magnetic pressure impulse cor-
responding to the current in Fig. 2 and the mechanical
pressure impulse reconstructed by the above technique
from the time dependence of the free surface displace-
ment (see also Fig. 2). Test specimens were made of
polymethyl methacrylate (PMMA) and sphere plastics.
The impulses differ by 5–7% in amplitude possibly
because of difficulties in differentiation (a finite num-
ber of points are taken on the interferogram that visual-
izes the time dependence of the free surface displace-
ment when the velocity of the surface is found from the
decay of the wave in the material) and the acoustic
approximation inaccuracy.

P ρC1u/2,=
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t, µs
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Fig. 2. (1) Current I in the load and (2) displacement U of
the free surface of the sphere-plastic specimen.
EXPERIMENTAL TECHNIQUES 
OF DETERMINING THRESHOLD RUPTURING 

LOADS

Material fracture is obviously a multistage process
including formation of the stressed state, which may
cause damage and its buildup; cracking; and crack
propagation. It is reasonable to study the process at the
least possible rupturing loads. In this case, there is no
need to analyze the amount of the energy spent on
cracking and crack propagation. Prior to cracking, the
stressed state can be analyzed in terms of continuum
mechanics and linear mechanics of fracture. When
designing the experiment, one should bear in mind that
there may appear the need to treat the stressed state not
only analytically but also numerically (the analytical
treatment is preferable).

The pulsed magnetic technique of loading sug-
gested in this work allows for various loading schemes
and conditions [11].

(i) Wave loading of cracked specimens. In the case
of specimens that have macrodefects like cracks, the
following scheme may be realized (Fig. 4). In the plane
specimen, a 2- to 3-mm-wide notch is made that termi-
nates in a groove 2–3 mm long and 0.2 mm wide. Thin
copper wires of width equal to the thickness of the
specimen are inserted into the groove and brought into
acoustic contact with the edges of the notch. The cur-
rent passing along the wires generates a pressure (equal
to the magnetic pressure) that uniformly acts on the
edges of the notch throughout its length. The test results
for several materials are given in Figs. 5 and 6. Thresh-
old rupturing loads Ptr, r were found by extrapolating the
length Lcr of a developed crack to zero (Lcr  0).

(ii) Testing of specimens with quasi-static stabili-
zation of the wave field. Clearly, the wave stressed
state cannot form if the specimen sizes are much

0.4

0 0.5

P

t, µs
1.0 1.5 2.0 2.5 3.0

0.6

0.8

0.2

1

2

Fig. 3. (1) Magnetic pressure impulse and (2) mechanical
pressure impulse recovered from the measured free bound-
ary velocity.
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smaller than the loading impulse wavelength, i.e., if

(7)

where c1 is the velocity of the wave, T is the pressure
impulse duration, and D is the characteristic size of the
specimen.

Therefore, with small specimens meeting this con-
dition, one can carry out high-loading-rate experiments
without considering the wave character of loading. In
this case, the stressed state can be found by solving rel-
evant static problems.

The scheme of the experiments with small speci-
mens is shown in Fig. 7. The 24 × 5 × 6-mm specimen
with a central notch 2 mm deep and 0.2 mm wide was
placed on rigid supports. Loading is accomplished by a
striker, which is in acoustic contact with the wires. A
magnetic pressure produced by the current in the wires
is converted to a force that is transferred to the striker.
This force is proportional to the contact surface of the
striker and the magnetic pressure. The striker imparts
this force to the specimen. Thus, three-point dynamic
loading is realized, for which the stressed state of the
specimen is well known.

In this way, we determined the threshold rupturing
loads for PMMA and gabbrodiabase specimens with
sizes meeting condition (8).

Static tests were performed with R-05 and RMU-
0.05 testing machines. The experimental results are
summarized in Table 1.

(iii) Wave loading of defect-free specimens.
Defect-free specimens are routinely tested under cleav-
age conditions. The striker generates a compression
wave (impulse) at one end of the specimen, and the
wave, having passed through the specimen, reflects
from the other (free) end as a rarefaction wave. The
parameters of the initial pressure impulse are recovered
from the velocity of the free surface and depend on the

c1T  @ D,

100

L R

A

1

P

200

0.
3

3
A

20
0

Q

C

3

Fig. 4. Electric circuit of the setup and loading scheme. C
and L are the storage capacitance and self-inductance of the
pulsed current generator, respectively; Q is the high-voltage
switch; and R is the nonlinear resistance. (1) Test specimen.
The dimensions are given in millimeters.
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velocity and size of the striker, as well on the properties
of the material it is made of.

In our case, plane wires of different configurations
providing the validity of formula (2) served as a loading
unit. The specimens to be shock loaded were gabbrodi-
abase and PMMA rods measuring 180 × 5 × 6 mm. The
wires were glued to the polished end face of the rod
with a monomolecular adhesive, and the PCG was
switched on. The loading scheme is depicted in Fig. 1.
The threshold rupturing load amplitude was found by
raising the load up to fracture. Each of the specimens
was loaded once.

40

0 100

Lcr, mm

P, åê‡200

30

20

10

1

234

Fig. 5. Experimental data for the brittle fracture threshold
for 10-mm thick specimens made of organic glass. The time
to maximum is (1, 2) 1.0, (3) 2.0, and (4) 4.3 µm. (h) Data
obtained on the ξ-2 setup.
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Lcr, mm

P, MPa100 200

20
1 2

Fig. 6. Experimental data for the brittle fracture threshold
for 12-mm thick gabbrodiabase specimens. Loading by a
single impulse of duration (1) 8.2 and (2) 3.6 µs.

i

1 2 3 4

Pm
R L Q

C

Fig. 7. Equivalent electrical circuit of the pulsed magnetic
setup and loading scheme. Pm, magnetic pressure; i, cur-
rent; C, total capacitance of the capacitor bank; Q, switch;
R, impulse-shaping Vilit resistance; L, self-inductance of
the capacitor bank; 1, loading unit (copper wires); 2, striker;
3, test specimen; and 4, fixed supports.
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It should be noted that these experiments were
aimed at determining the dynamic rupture strength at
the macrolevel. The pressure impulse amplitude below
which the specimen did not disintegrate into two parts
was determined. In other words, the macroscopic frac-
ture threshold was found. The shape of the current pulse
was specified by the nonlinear resistor and corre-

10

10–6

σtr, r/σs

10–5

100

1

2

1
10–4

t, s

Fig. 8. Rupturing stress vs. impulse duration. σtr, r and σs
are the dynamic and static strength, respectively. (1) Gab-
brodiabase and (2) PMMA.

Table 1.  Experimental data for small specimen fracture

Notch
depth, mm

Impulse
duration, µs

Rupturing
force, N

PMMA 2.5 ± 0.1 Statics 68 ± 6

PMMA 2.5 ± 0.1 7.0 805 ± 40

Gabbrodiabase 2 ± 0.1 Statics 195 ± 6

Gabbrodiabase 2 ± 0.1 4.1 3920 ± 30

Table 2.  Parameters of PMMA and gabbrodiabase

Parameter PMMA Gabbro-
diabase

σs, static strength (MPa) 72 17.54

K1c, static cracking resistance (stress 

intensity factor) (MPa )

1.1 2.4

τ, structural time to fracture found
in experiment (1) (µs)

32 ± 3 130 ± 5

τ, structural time to fracture found
in experiment (2) (µs)

34 ± 5 77 ± 5

τ, structural time to fracture found
in experiment (3) (µs)

32 ± 3 72 ± 5

c1, longitudinal wave velocity (m/s) 2350 5630

cr , wave velocity in the rod (m/s) 2130 5000

ρ0, density (kg/m3) 1180 2890

m

sponded to the first half-cycle of a sinusoid. The ruptur-
ing load amplitude versus impulse duration is shown in
Fig. 8.

STRUCTURE-AND-TIME APPROACH 
TO ANALYZING EXPERIMENTAL DATA

From the experimental data, one can determine the
stressed state of the specimen and select a fracture cri-
terion. A structural–time criterion seems to be the most
suitable for analyzing the experimental data, since it
generally takes into account space–time nonuniformi-
ties of the stress field in the specimen.

In the general case, such a criterion (first introduced
in [2]) has the form

(8)

Here, d and τ are the structural size and structural time
to fracture, r and θ are the polar coordinates, σs is the
material static strength, and σ(r, θ, t) is the tension at
the crack tip (r = 0). Criterion (8) makes it possible to
generalize the principles of linear mechanics of fracture
to fracture dynamics. For the plane stress state, struc-
tural size d, which is determined from quasi-static tests
of cracked specimens, can be expressed through the
quasi-static fracture toughness (critical stress intensity
factor) and quasi-static strength by the simple formula [1];

d = 2 /(π ). According to the approach adopted,
σs, K1c, and τ constitute a set of basic parameters char-
acterizing the strength properties of the material. This
criterion allows one to study media with and without
macrodefects from a unified point of view. Let us ana-
lyze the experimental data by solving relevant problem
using the structural–time criterion.

(1) It was shown [12, 13] that, prior to arrival of the
waves reflected from the specimen boundary, the exper-
imental conditions correspond to the following prob-
lem. An infinite elastic plane with a semi-infinite notch,
R2\{(x, y) : x ≤ 0, y = 0}, experiences impulsive loading
applied to the edges of the notch, σy = –p(t), σxy = 0,
subject to U|t ≤ 0 = 0 (initial condition) and ∀ t > 0 : U =
const + O(rβ), r  0, β > 0 (this condition provides
the uniqueness of a solution to the problem). In the
experiments, the load was applied as unipolar impulses,
p(t) = PmQ(t).

For cracked specimens, the structural–time criterion
can be rearranged to the form

(9)

where K1(t) is the current stress intensity factor and τ is
the structural (incubation) time to fracture.

1
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From (9), it follows that the lowest (threshold) rup-
turing amplitude of the loading impulse is found by the
formula

(10)

where

is the function of the longitudinal and shear waves and
function

is found by solving the dynamic problem with initial
and boundary conditions.

Threshold rupturing loads are determined from
experimental data. With (10), one may find the struc-
tural time to fracture. For the PMMA, this time equaled
32 µm. For the gabbrodiabase, the structural (incuba-
tion) time to fracture determined by (10) was found to
be τ = 130 µm. This time far exceeds the time the wave
load takes to travel the double distance from the crack
edge to the specimen boundary, 2l/c1. Hence, by the
time of fracture, the stressed state no longer meets the
conditions of the problem, unlike the PMMA [12, 13],
and parameter τ determined from (10) for the gabbrodi-
abase does not meet the experimental conditions. It can
be argued that this parameter for gabbrodiabase lies in
the interval 2l/c1 < τ ≤ 130 µs.

(2) Consider the case when the striker (steel prism)
is in direct contact with the specimen to be tested and
wires. The striker is subjected to an impulsive force
F(t) = P(t)s, where P = Pm(sin(ωt))2 is the pressure
exerted by the wires, s is the area of the striker base that
the force acts on, and t1 is the duration of the impulsive
force.

It was shown [14] that the inertia of the system has
a considerable effect on the parameters of an impulsive
load acting on the specimen. In a linear elastic approx-
imation, the force transferred to the specimen is given
by

(11)

where ν =  is the natural oscillation frequency of
the system, m is the mass of the striker, k is the stiffness,
and A is the amplitude.
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According to (11), the duration and amplitude of the
impulse acting on the specimen have the form

(12)

It is obvious from these relationships that the inertia
of the loading unit’s components (striker) significantly
affects the impulsive load parameters. Specifically, the
amplitude of the impulse declines, while its duration
grows. For example, an impulse of duration 12.7 µs
transforms into a 217-µs-long impulse.

Since we are dealing with the quasi-static mode of
stress field stabilization in this case, the stress intensity
factor may be taken to be proportional to the applied
load in the form

(13)

where Gs is the rupturing force under static loading.
The structural time to fracture is determined from

(10), (11), and (13).
(3) In cleavage experiments, a pulsed tension is pro-

duced by the rarefaction wave, which arises after the
compression wave has reflected from the free end face
of the specimen. Here, not only the material properties
are responsible for fracture but also the amplitude,
shape, and duration of the impulse. The stressed state
observed in these experiments is analytically the easi-
est, since it is completely specified by the rarefaction
wave. Under these conditions, the structural–time crite-
rion turns into

(14)

where σ(s, x) is the stress at a point x at a time s, τ is the
structural time to fracture, and σs is the static strength
of the material.

When an impulsive load is generated by the pulsed
magnetic technique, the parameters of the impulse are
known exactly. Therefore, the structural time of the
material can be found if the threshold value of the
impulse amplitude is known.

Table 2 lists the physicomechanic parameters of the
materials tested, along with the structural times deter-
mined from the experimental data. The experiments on
dynamic fracture were carried out with a PCG-50/250
pulsed current generator at the St. Petersburg State
Polytechnical University and a ξ-2 setup at the
St. Petersburg State University.

CONCLUSIONS
The pulsed magnetic technique of loading greatly

simplifies related experiments and allows one to deter-
mine the parameters of an impulsive pressure applied to
the specimen accurate to 5%.
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A unique relationship between the impulsive pres-
sure parameters and current distribution in the loading
unit makes a desired loading scheme in specimens of
different configuration feasible.

The experiments revealed that fracture is a thresh-
old-type process and also that the rupturing load ampli-
tude increases as the impulsive load duration decreases.

Analysis of the experimental data in terms of the
structure-and-time approach showed that the structural
time to fracture in various loading schemes is virtually
the same. Therefore, the structural time to fracture may
be included in the set of basic material parameters.

The material characteristics found experimentally
(static strength, cracking resistance, structural time to
fracture, etc.) in combination with the structure-and-
time approach make it possible to predict the material
behavior under impulsive loading of any type.
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Abstract—Crystallization in the Al–Si, Al–Ge, and Al–Si–Ge systems at centrifugation is studied. Of them,
the Al–Si system is the least prone to sedimentation. In the others, sedimentation considerably changes the
structure of the alloys at the bottom of the ingots compared with their top. At certain concentrations of the con-
stituents, the number of crystallites in the lower part of the ingot is larger than in the upper part and the crystal-
lites at the bottom are coarser than at the top. The Si : Ge atomic ratio in the Al–Si–Ge system changes by a
factor of 2–12 against the initial ratio (1 : 1) when the (Si + Ge) concentration changes as a result of centrifu-
gation. Also, this ratio changes over the crystal surface (in the samples not subjected to centrifugation, this ratio
remains unchanged over the surface). Crystallites in the Al–Si–Ge system are covered by Ge. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

Centrifugation of metallic melts has been exten-
sively explored in a variety of systems from Al and Mg
to Fe–C, Bi–Cd, Pb–Sb, and many others [1–3]. In all
the cases, centrifugation was found to modify the struc-
ture and properties of the alloys crystallized. This pro-
cess most significantly affects the constituent distribu-
tion in the upper and lower parts of the ingot: the
greater the difference between the densities of the con-
stituents, the greater the difference in constituent distri-
bution at the top and bottom. This fact may be attributed
to the different densities of the states in which the con-
stituents are in the melt (associates, etc.) or to hydrody-
namic flows appearing in the melts at centrifugation
[4]. Direct experimental corroboration of such states
and flows in multicomponent metallic melts is today
absent. The nonuniform distribution of the components
in the melt modifies the overall structure of the ingot
crystallized, be it of eutectic, hypoeutectic, or hypereu-
tectic composition. The ingot contains areas with a dif-
ferent amount of so-called colonial precipitates (eutec-
tic, etc.), as a result of which the structure is greatly
modified. Such inhomogeneity inevitably changes the
properties of these materials.

In this work, we study the effect of centrifugation on
the structure and composition in the Al–Si, Al–Ge, and
Al–Si–Ge systems with various concentrations of Si,
Ge, and (Si + Ge). The first of the systems listed is of
great practical value, while the others, though not appli-
1063-7842/05/5003- $26.00 ©0341
cable in practice yet, are good model systems for such
investigation.

EXPERIMENTAL

The compositions of the systems studied were as
follows: Al–Si (10, 12.7 (eutectic alloy), and 15 at.%
Si), Al–Ge (20, 28.4 (eutectics), and 40 at.% Ge), and
Al–Si–Ge (5, 10, 20, and 25 at.% (Si + Ge)). The start-
ing materials were ingots of the same compositions
grown by melting in the suspended state in a He atmo-
sphere with subsequent quenching in a copper mold.
The samples obtained had a length of 9 cm and a diam-
eter of 6 mm. Starting Al and Ge were of 4N and 3N
purity, respectively, and n-Si had a resistivity of 2000 Ω
cm. The experiments were performed on a high-tem-
perature centrifuge (Clarkson University, Potsdam,
New York, USA) with an arm length of 150 cm. The
acceleration was equal to 7 g. The weight of the alloys
centrifuged was varied from 5 to 10 g. The material was
placed into 14-cm-long alundum test tubes with an
inner diameter of 6 mm, and the tubes were sealed in
evacuated (rough vacuum) quartz ampoules (three
tightly packed tubes in an ampoule). The test tubes con-
tained small bars (6–8 cm long and ≈6 mm in diameter)
of alloys of desired composition. The test tubes and the
ampoule must be in intimate contact in order to prevent
vibration at centrifugation, which may cause cracking
and seal failure at high temperatures. The time it takes
for the furnace to reach a maximal temperature was 2–
3 h. The centrifuge was switched on at 420°C, when
 2005 Pleiades Publishing, Inc.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Al–Ge system. (a, b) Top and bottom of the ingot with 20 at.% Ge (hypoeutectic composition), (c, d) top and bottom of the ingot
with 28.4 at.% Ge (eutectic composition), and (e, f) top and bottom of the ingot with 40 at.% Ge (hypereutectic composition). ×100.
alloys that melt at the lowest temperatures (Al–Ge
eutectics with a melting point of ≈420°C) and the
Al−Si−Ge system (a melting point of ≈430°C) start
melting. At a maximal temperature of 900–1000°C, the
furnace was kept for 4 h. Then, it was switched off, the
alloys were furnace-cooled to crystallization for about
1 h, and the centrifuge was switched off. After the
experiment was completed, the alundum test tubes with
the melt solidified were withdrawn from the quartz
ampoule (which was continuously kept under a rough
vacuum) and broken. From the upper and lower parts of
the metallic bars (ingots), two pieces 5–7 mm long
were cut off at a distance of 5–7 mm from the respective
end of the ingot in order to reject a pipe cavity and a
rounding at the bottom of the ingot (i.e., the part most
distant from the axis of the centrifuge). Microsections
made from these pieces by the conventional technique
were examined in an optical microscope and in a Cam-
ebax microanalyzer to determine the amount of Si and
Ge (lines KA and LA at 10 kV) in the crystallites.

RESULTS AND DISCUSSION

The optical microscopy examination corroborates
the observation (see [1–3]) that acceleration, even as
low as 7 g, influences the behavior of the systems.
The structure and mechanical properties of the Al–
Si system with different Si concentrations was
described in considerable detail elsewhere [4]; here,
this system will be outlined only briefly. According to
our data, Si (more specifically, a solid solution of Al in
Si) accumulates in the upper part of the ingot, while Al
(more specifically, a solid solution of Si in Al) concen-
trates mostly in its lower part. This is consistent with
the values of the densities of these materials in the solid
state: 2.70 g/cm3 for Al and 2.33 g/cm3 for Si. The pub-
lished data are contradictory: some of the authors (we
among them) argue that, after centrifugation, Si accu-
mulates at the top of the ingot [1]; others reason that Si
concentrates at the bottom [5]. Both statements seem to
have the right to exist, since the result depends on the
experimental conditions (on a melting technique, initial
concentrations of Al and Si, temperature, how much the
melt is heated over the liquidus temperature, heating
and cooling rates, etc.).

In the Al–Ge system, the difference between the
densities of the components is appreciable: 2.70 g/cm3

for Al and 5.32 g/cm3 for Ge). Therefore a considerable
separation of the elements at centrifugation may be
expected because of Ge sedimentation. Figure 1 shows
the microsections made of the upper and lower parts of
TECHNICAL PHYSICS      Vol. 50      No. 3      2005
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(k) (l)

Fig. 2. Al–Si–Ge system. (a, b) Top and bottom of the ingot with (Si + Ge) = 10 (5 + 5) at.%, (c, d) top and bottom of the ingot with
(Si + Ge) = 20 (10 + 10) at.%, (e, f) top and bottom of the ingot with (Si + Ge) = 30 (15 + 15) at.%, (g, h) top and bottom of the
ingot with (Si + Ge) = 40 (20 + 20) at.%, and (k, l) top and bottom of the ingot with (Si + Ge) = 50 (25 + 25) at.%. ×100.
the Al–Ge ingots with different Ge concentrations. In
the alloy of hypoeutectic composition (20 at.% Ge)
(Figs. 2a, 2b), the amount of bright oval precipitates (up
to 500 µm across) of a solid solution of Ge in Al (here-
after, Al) at the top is higher than at the bottom; in other
words, the amount of a solid solution of Al in Ge (here-
after, Ge) at the bottom is higher, which indicates sedi-
mentation. The top of the eutectic composition
(28.4 at.% Ge) (Fig. 2c) also differs from its bottom
(Fig. 2d) by the presence of oval areas of Al. These
areas are easily distinguishable by thin unidirectional
hatches, which are the traces of fine polishing of Al by
a paste with 0.05-µm Al2O3 grains (such a paste is
extremely difficult to remove completely). At the bot-
tom of this ingot, a high density of Ge dendrites is seen
but ovals are virtually absent. In the hypereutectic ingot
(40 at.% Ge), oval Al areas at the top (Fig. 2e) are
smaller in size than in the previous cases, while at the
bottom (Fig. 2f), such areas are absent but the density
of Ge crystallites is very high. It is noteworthy that
large Ge crystallites are observed along the circumfer-
ence of the eutectic and hypereutectic compositions at
the bottom (in the former case, individual crystallites
TECHNICAL PHYSICS      Vol. 50      No. 3      2005
are seen; in the latter, the density of the crystallites is
high and their size reaches 1.4 mm). Thus, centrifuga-
tion of this system results in sedimentation and, accord-
ingly, makes its structure inhomogeneous (the struc-
tures of the upper and lower parts are different from
each other).

The Al–Si–Ge system differs dramatically from the
first two in type and composition of precipitates. Figure 2
shows the lower and upper parts of the ingots with dif-
ferent (Si + Ge) concentrations. Only when the (Si +
Ge) concentration equals 10 at.% (5 + 5) are individual
crystallites not observed in the microsections. How-
ever, the upper (Fig. 2a) and lower (Fig. 2b) parts differ
in density of needles (which actually are plate crystals),
“asterisks” (when the rays issue from the same center)
of the α solid solution of Al in Si + Ge, and oval precip-
itates of the β solid solution of Si + Ge in Al (hereafter,
the α and β phases will be referred to as Si + Ge and Al,
respectively). Accordingly, the (Si + Ge) concentration
is higher in the lower part of the ingot. The bright oval
Al areas and dark Si + Ge needles were first to be ana-
lyzed on the Camebax microanalyzer. In the phase dia-
gram depicted in Fig. 3a, where the initial and final
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Fig. 3. (a) General view of the ternary Al–Si–Ge phase diagram with a limited solubility of the components in two binary systems
and unlimited solubility in the third binary system [8]. e1 and e2, eutectic points in the Al–Si and Al–Ge systems. The arrows indi-
cate alloys crystallizing at Si + Ge = (5 + 5), (10 + 10), (20 + 20), and (25 + 25) at.%, as well as the temperature–concentration
routes of crystallization of these compositions (curves 1, 1', 1", 1'", 2, and 3). The concentration (5 + 5) is on the right and the others
on the left of the intereutectic recess (the depression of the liquidus surface between the Al–Si and Al–Ge eutectics). The same com-
positions are represented in the polythermal section. In the concentration triangle, the projections of the curves with arrows, as well
as the ratios Si : Ge found by chemical analysis, are shown. (b) Polythermal section of the ternary Al–Si–Ge phase diagram that
passes through the line connecting the point of Si : Ge = 1 : 1 (initial ratio) with the Al corner (in panel (a), this dash-and-dot line
is in the middle of the triangle at the base of the diagram). The regions (L + α) and (L + β) are regions of primary crystallization (in
panel (a), the solidi of these regions are shown by thin continuous lines). The region (L + α + β) is the region of secondary crystal-
lization (in panel (a), it is shown as a dotted extended segment). Points k, l, m, and n in both panels are the points of beginning of
the phase transformations and growth of (Si + Ge) and Al crystallites at different initial (Si + Ge) concentrations. Points o and p are
the points where the crystallization of these compositions in the region of secondary crystallization is completed.
(point o in curve 3) crystallizing compositions are indi-
cated, this composition is on the right of the recess
between the eutectics in the Al–Si and Al–Ge systems.
The results of chemical analysis differ radically from
those for the remaining concentrations of Si + Ge (see
below). For example, Al contains from 1.4 to 2.8 at.%
(Si + Ge) both at the top and at the bottom of the ingot.
The spread in concentration may be associated with the
fact that Al successively crystallizes first from the pri-
mary (L + β) crystallization region along line no (1.4–
1.7 at.%) and then from the secondary (L + α + β) crys-
tallization region (2.0–2.8 at.%) at the lowest tempera-
ture (Fig. 3b). In the needles, the Al content varies from
0.01 to 0.60 at.% and the ratio Si : Ge, from almost pure
silicon to almost pure Ge (the amount of the latter is
somewhat higher at the bottom). Unfortunately, too
small sizes of crystallites (5–10 µm) in this ingot allow
chemical analysis only at one site. Thus, the combined
content of Si and Ge dissolved in Al does not exceed the
solubility of pure Ge in Al (2.8 at.% [5]).

The chemical analysis data for the ingots with other
(Si + Ge) concentrations (20, 40, and 50 at.%) are con-
TECHNICAL PHYSICS      Vol. 50      No. 3      2005
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Fig. 4. Chemical analysis (Camebax microanalyzer) data for (Si + Ge) = (1) 20 (10 + 10) at.% (top and bottom), (2') 40 (20 +
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and filled symbols (triangles for Si and circles for Ge) refer to the uncentrifuged sample (Si + Ge = 20 + 20). The tops and bottoms
of the ingots are shown in the figure. N, points on the crystallite surface.
siderably different from those reported above. It comes
as no surprise since the crystallites precipitated here
(α solid solutions of Al in Si + Ge) lie on the left of the
recess between the eutectics (Figs. 3a, 3b).

At a (Si + Ge) concentration of 20 at.% (10 + 10)
(Fig. 2d), rather large composite crystallites (quarter-
foils) arise along the circumference at the lower part of
the ingot; at the top, a high density of the needles (plate
crystallites) is observed (Fig. 2c). Starting from a con-
centration of 30 (15 + 15) at.%, individual crystallites
precipitate in both the upper and lower parts of the
ingot. Some of the crystallites at the bottom (Figs. 2f,
2h, 2l) are coarser than those at the top (Figs. 2e, 2g,
2k). The space between these coarse grains is filled
with eutectics that are finer than those at the top. At
30 at.%, individual crystals are observed largely along
the perimeter, while at 40 (20 + 20) and 50 (25 +
25) at.% (Si + Ge) they occupy the entire surface of the
microsection. Thus, as a result of centrifugation-
induced sedimentation in the ternary Al–Si–Ge system,
the top and bottom of the ingots with initial (Si + Ge)
concentrations of 30 (15 + 15) at.% or lower become
quantitatively and qualitatively dissimilar. To estimate
TECHNICAL PHYSICS      Vol. 50      No. 3      2005
changes in the ratio Si : Ge, we analyzed the chemical
composition of the tops and bottoms of the ingots with
20, 40, and 50 at.% (Si + Ge). As a reference, we took an
ingot with 20 at.% (Si + Ge) that was not centrifuged.

As follows from Fig. 4, the initial ratio Si : Ge =
1 : 1 changed, depending on the concentration, to
(12 : 1)–(7 : 1) for (10 + 10), (7 : 1)–(2 : 1) for (20 + 20),
and (6 : 1)–(3 : 1) for (25 + 25). In addition, the ratio
Si : Ge varied over the surface of crystallites in the
ingots centrifuged. In the reference (uncentrifuged)
ingot, this ratio remained the same throughout the sur-
face (filled dots in Fig. 4). All the crystallites indiscrim-
inatively were coated by Ge. The composition of the
coatings over the crystal was the same (≈100% Ge), as
demonstrated by Camebax measurements at three to
five points on the surface, while the thickness of the
coatings was estimated as varying between 10 and
40 µm. Note also that the difference between the top
and bottom of the ingots widens with increasing initial
(Si + Ge) concentration.

We also checked the Al content in the ingots with
Si + Ge = 20, 40, and 50 at.%. It turned out to be insig-
nificant, no higher than 0.02 at.% (the ultimate solubil-
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ity of Al in Si and Al in Ge is, respectively, 0.016 and
1.2 at.% [5]). One thus may conclude that the solubility
of Al in Si–Ge solid solutions is close to its ultimate sol-
ubility in Si.

It should be noted that an excess of Si in the crystal-
line precipitates was also observed in other works [6, 7]
for low initial (Si + Ge) concentrations, 2(1 + 1) and 1
(0.5 + 0.5) at.%, and initially equiatomic (1 : 1) ratio
Si : Ge in the Al–Si–Ge ingots obtained without centrif-
ugation. The precipitates in the works cited were also
covered by Ge.

The results can be explained from the phase diagram
for the Al–Si–Ge system. Figure 3 shows its general
view (Fig. 3a) and polythermal section (Fig. 3b). The
general view gives an insight into phase transforma-
tions (at points k, l, m, and n) in the concentration range
studied. The arrows indicate transformation routes and
crystallizing compositions (in the concentration trian-
gle and along the Si–Ge axis). The ratio Si : Ge in the
forming crystals is seen to differ greatly from the initial
value. The situation is roughly the same as in the binary
Si–Ge system (thin continuous line ab inside the
“disk”), where this ratio in the emerging compositions
far exceeds the initial ratio Si : Ge = 1 : 1. It may be sup-
posed that the crystallization of the α solid solutions in
our case is akin to that in the binary system and may
proceed in two ways. The former does not imply cen-
trifugation: first, crystallization goes along line 1
(Fig. 3a) and the composition of the ingot (in our case,
the sample with (20 + 20) at.% was studied) remains
nearly constant (the Al content during crystallization
varies insignificantly). After the system has reached the
solidus, it quickly solidifies (slides down to point p
along line 2) and the crystallites are covered by Ge.
This is confirmed by the data of chemical analysis (the
continuous curves and filled dots in Fig. 4): the ratio
Si : Ge in the crystallites remains almost the same. The
second way (curves 1', 1", and 1"') is possible at centrif-
ugation: acceleration results in variable compositions
of the crystallites, and, as a result of Ge sedimentation,
they grow along the “inclined curve”: throughout the
concentration range, the Ge content (and the ratio
Si : Ge) varies over the crystallite surface (Fig. 4).
Here, as in the former case, once the system has
reached the solidus (but now at a point where the ratio
Si : Ge is smaller), it quickly solidifies (slides down
along line 2 to point p) and the crystallites are also cov-
ered by Ge. The polythermal section (Fig. 3b) shows
the region of secondary crystallization, in which pre-
cipitation of α and β solid solutions is completed. In the
former case (Fig. 3a), the crystallites are covered by
nearly pure Ge (Fig. 4). In the latter (Fig. 3b), the crys-
tallites appear as aluminum ovals and bright areas
between the needles in Figs. 2a and 2b.

CONCLUSIONS

(1) Centrifugation of the Al–Si, Al–Ge, and Al–Si–
Ge melts with different concentrations of Si, Ge, and
(Si + Ge) at a low acceleration of 7g in the temperature
interval 900–1000°C for 4 h causes intense precipita-
tion of a solid solution of Si in Al (β solid solution for
the Al–Si system) and α solid solutions (Al in Ge and
Al in Si + Ge for the Al–Ge and Al–Si–Ge systems,
respectively). For a (Si + Ge) concentration of (10 + 10)
at.% in the Al–Si–Ge system, the crystallites at the bot-
tom of the ingot are coarser than at the top. In general,
the crystallites at the bottom of the Al–Si–Ge ingot con-
tain a somewhat higher Ge concentration than at the
top. These results are associated with sedimentation of
heavier components (Al, Ge, and Si + Ge), which
shows up as solid-state crystallites or colonies (associ-
ates) in the starting melts.

(2) As a result of centrifugation-related sedimenta-
tion, the ratio Si : Ge varies over the surface of the crys-
tallites grown from the Al–Si–Ge melt with Si + Ge =
(10 + 10), (20 + 20), and (25 + 25) at.% (recall that this
ratio remains unchanged in uncentrifuged ingots). For
(Si + Ge) = (5 + 5) at.%, the crystallites of the α solid
solution (Al in Si + Ge) contain no more than 0.02 at.%
in both the upper and lower part of the ingot. The oval-
shaped precipitates of the β solid solution (Si + Ge in
Al) contain no more than 6 at.% (Si + Ge). These fig-
ures do not exceed the ultimate solubilities of Al, Ge,
and Si in the related binary systems.
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Abstract—An experimental setup and photochemical approaches used for extracting highly enriched mercury
isotopes at the Russian Research Center Kurchatov Institute are described. In the extraction process, selectively
excited mercury atoms are oxidized in the presence of 1,3-butadiene. Along with the Hg-198, Hg-199, Hg-200,
and Hg-202 isotopes, the least abundant mercury isotope, Hg-196, has been produced for the first time with a
concentration as high as 97%. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The home and world markets demonstrate a bur-
geoning demand for mercury isotopes, which are
applied in various fields of science and technology. The
consumption of the Hg-198, Hg-199, Hg-200, and Hg-
202 isotopes has greatly increased to date, since, in a
number of countries, they are being used to solve the
problem of environmental protection against industrial
mercury and mercury compound waste [1, 2].

Initially, interest in the Hg-196 isotope was related
to its usage in medicine for disease diagnosis. Then,
mercury enriched by Hg-196 to 2–4% was used in light
sources in an attempt to raise their efficiency [3]. Wider
usage of Hg-196, e.g., in light sources for photochemi-
cal devices or in mercury analyzers, was retarded
because of the impossibility of increasing its concentra-
tion to 96% or more.

Mercury enriched by Hg-196 with a photochemical
method was first produced by French researchers in
1968 [4]. They designed an experimental separator that
produced the Hg-196-enriched product with an output
of 1 mg/day, measured a number of basic constants
characterizing the process, and carefully investigated
photochemical oxidation of mercury by oxygen in the
presence of 1,3-butadiene (C4H6). It turned out that iso-
topically enriched mercury is produced with the partic-
ipation of the [HgO2]* excited complex (the asterisk
denotes the excited state). The reaction scheme sug-
gested in that work is shown in Fig. 1.

In this context, of interest are works of German sci-
entists [5, 6] who also used the photochemical reaction
of mercury oxidation in the presence of 1,3-butadiene
to produce Hg-196. As a light source, they applied a
low-pressure lamp filled with Hg-198-enriched mer-
cury. The emission line of this lamp was broadened so
that the Hg-196 isotope was excited by the wing of this
line.
1063-7842/05/5003- $26.00 ©0347
In spite of the impressive results achieved in the lab-
oratory conditions, little is known about the commer-
cial introduction of the photochemical processes. One
of sparse examples is the pilot-scale photochemical
technology of mercury isotope separation.

The author developed a technology and designed an
experimental setup for extraction of highly enriched
mercury isotopes [7, 8]. Along with the Hg-198, Hg-
199, Hg-200, and Hg-202 isotopes, the mercury isotope
Hg-196 was produced for the first time with a concen-
tration as high as 97%. A number of novel physical and
technical approaches made it possible to automate the
enrichment process, render it continuous, and minimize
operating personnel [9].

The essence of the experimental process is photo-
chemical oxidation of excited mercury atoms by oxy-
gen in the presence of 1,3-butadiene. The atoms are
excited by the resonance radiation (wavelength λ =
253.7 nm) from a low-pressure mercury lamp. This
reaction provides a high selectivity of separation, which
is of special importance in concentrating mercury iso-
topes with (partially or completely) overlapping reso-
nance lines.

First, emphasis was on developing production tech-
nology for the most abundant and most expensive Hg-
196 isotope.

Hg + hv(253.7 nm) Hg*

+C4H6

+O2

Hg + C4H6*

Hg + O2*

[HgO2]* + C4H6 HgO + A

Fig. 1. Route of the photochemical reaction (A stands for
by-products).
 2005 Pleiades Publishing, Inc.
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SEPARATION OF THE Hg-196 ISOTOPE

Enrichment of mercury by Hg-196 is a specific pro-
cess, since natural mercury contains this isotope in
small amounts (0.146%) and the spectral situation is
rather complicated. The hyperfine structure of the mer-
cury resonance line at 253.7 nm is shown in Fig. 2. The
center of the absorption line of Hg-196 is offset from
the absorption line components of Hg-199 and Hg-201
by 0.088 and 0.093 cm–1, respectively, and from the
lines of Hg-198 and Hg-201 by 0.137 and 0.150 cm–1,
respectively. Therefore, not only the desired isotope
Hg-196 but also the Hg-198, Hg-199, and Hg-201 iso-
topes are enriched.
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Fig. 3. Photochemical separating unit: (1) photochemical
cell, (2) low-pressure mercury-vapor lamp, (3) isotope fil-
ter, (4) inlet pipe, (5) outlet pipe, and (6) electrodes.
Enrichment of mercury by Hg-196 proceeds in sev-
eral stages, with the product enriched at the previous
stage being used as a raw material at the next one.

The efficiency of the setup to a great extent depends
on the design of the separating unit (Fig. 3), which con-
tains photochemical cell 1, low-pressure mercury-
vapor lamp 2, and isotope filter 3 (if necessary).

The low-pressure mercury-vapor lamp with desired
light characteristics was designed specially for initiat-
ing the photochemical reaction and represents a quartz
tube with cathodic areas and a cooling-water jacket sol-
dered on the tube. The lamp is mounted at the axis of
the separating unit.

The simplest design of the photochemical cell rep-
resents a two-wall volume between two coaxial quartz
tubes soldered to each other or flange-sealed at the side
faces. The cell is configured with inlet pipe 4 for
reagent delivery (oxygen, mercury, and 1,3-butadiene)
and outlet pipe 5 for removal of the enriched mercury
and reaction products. On the outer surface of the cell,
two electrodes 6 made of nickel foil are placed facing
each other. One of them is grounded, and the other is
under a varying potential of frequency 50–60 kHz and
amplitude 6–10 kV when it is necessary to initiate a
spatially uniform high-frequency discharge in the inner
space of the cell to remove the recovery or clean the cell
from organic deposits in the oxygen atmosphere. The
working gap was selected in such a way that the radia-
tion of the mercury lamp is utilized most effectively. At
the first cycle of mercury enrichment by Hg-196, when
the optical density in terms of this isotope is low, cells
with a wide (25 mm or more) gap are used. At the sec-
ond and subsequent cycles, the gap is usually not wider
than 5–6 mm.

The isotope filter, which is applied for filtering out
the radiation from the lamp, is placed between the cool-
ing jacket and the inner wall of the cell. Structurally, the
filter represents two coaxial quartz tubes 8–9 mm apart
that are soldered to each other at the ends. The filter is
filled with mercury of natural isotope composition (the
concentration of the desired Hg-196 isotope is
0.146%). The efficiency of the filter depends on its
working gap and cold-point temperature, as well as on
the molecular weight and pressure of the quenching
gas. Hydrogen, which has a large cross section of
quenching the 253.7-nm resonance line and prevents
scattering of the mercury-absorbed radiation, served as
a quenching gas most frequently. Sometimes, when it
was necessary to broaden the mercury absorption line
in the filter, a heavier gas, e.g., nitrogen, or a gas mix-
ture (hydrogen and argon, nitrogen and argon, etc., in
various proportions) was used. The mercury absorption
linewidth in the filter may also be controlled by varying
the cold-point temperature. Significantly, as the cold-
point temperature rises, the absorption of the lamp radi-
ation at the center of the line of transparency is
enhanced, which may reduce the output of the setup.
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The enrichment process consists in the following. A
working mixture of oxygen and 1,3-butadiene circu-
lates in the closed loop of the setup, entraps the mercury
vapor from the evaporator, and supplies it to the sepa-
rating units, which are connected in series, in parallel,
or in series parallel depending on the operating condi-
tions. In the separating units, mercury atoms excited by
the mercury lamps are oxidized and the oxide deposits
on the inner surface of the photochemical cells. The
mercury depleted by the desired isotope or by several
isotopes (waste) remains in the cooled trap. Hydrogen
is pumped through the separating units at regular inter-
vals, a high-frequency discharge is initiated, and the
mercury oxide enriched by the desired isotope is
reduced to the metal. The reduction of enriched mer-
cury from its oxide is described in [10]. The hydrogen
flow entrains the metallic mercury vapor and carries it
to the liquid-nitrogen-cooled collector. The setup may
switch the operating conditions according to the super-
visory program inserted. Necessary operating condi-
tions are set with the circuits that are controlled by sig-
nals from the automatic control unit [11].

The filter–lamp system was optimized in only one
parameter, the cooling water temperature. Since the
lamp is mounted on the inner tube of the filter, the cold-
point temperature of the filter was specified by the cool-
ing water temperature.

SEPARATION OF THE Hg-196 ISOTOPE 
BY THE DIRECT ENRICHMENT METHOD

In the direct enrichment method, the desired iso-
tope, which is collected in a separated-isotope collec-
tor, is excited by mercury lamp and enters into the
chemical reaction of oxidation.

In the production of Hg-196, we used four parallel-
connected photochemical separating units with a gap of
25 mm, an isotope filter with a gap of 8 mm that was
filled with mercury of natural isotopic composition, and
hydrogen as a quenching gas.

When the mercury was enriched by Hg-196, we
tried the following expedients: filtering-out of the lamp
radiation, process cyclization, and successive replace-
ment of the depleted mercury in the lamps by the
enriched mercury extracted from the isotope collector.

The feasibility of enrichment process cyclization
was studied in an attempt to produce mercury with a
Hg-196 concentration as high as possible. After the first
cycle, the Hg-196 concentration in the product was 5–
7%. This mercury was used as a raw material for the
second cycle of enrichment, etc.

The Hg-196 concentration in the enriched product,
C, versus Hg-196 concentration C0 in the raw material
is shown in Fig. 4. From cycle to cycle, the enrichment
factor for Hg-196 declines, while the enrichment fac-
tors for foreign (impurity) isotopes (especially for Hg-
200 and Hg-202) increase. This is because the mercury
TECHNICAL PHYSICS      Vol. 50      No. 3      2005
atom density at the entrance to the reaction cells must
be decreased in each of subsequent cycles.

In the last cycle but one, the Hg-196 concentration
in the mercury reached 90% but reduced to 87.5% after
the last cycle. This mercury was then used in mercury-
vapor lamps. Further enrichment by Hg-196 turned out
to be impossible, since, when the rate of evaporation is
low, the product is heavily contaminated by isotopes of
the raw material used in the current cycle and also in the
previous cycles.

The cost of the mercury thus enriched was
extremely high. The experiments performed demon-
strated that direct enrichment is appropriate if the
desired isotope concentration does not exceed 60–62%.
Isotopes of higher concentrations (<90%) may be
obtained with the negative enrichment method, in
which impurity (and not desired) isotopes are excited
and extracted from the raw material.

SEPARATION OF THE Hg-196 ISOTOPE 
BY THE NEGATIVE ENRICHMENT METHOD

In this method, a mercury-vapor lamp of certain iso-
topic composition excites impurity isotopes, which are
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Fig. 4. Hg-196 concentration C in the product vs. Hg-196
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then oxidized, while the desired isotope is collected in
the trap as waste.

In this case, we employed a lamp filled with Hg-
196-depleted mercury (0.08%). Impurity isotopes were
extracted without using an isotope filter.

In these experiments, the process was also cyclic.
The dependence of Hg-196 concentration C in the
product on Hg-196 concentration C0 in the raw material
is presented in Fig. 5 for the direct and negative enrich-
ment processes. Clearly, the efficiency of negative
enrichment reaches a maximum when the raw material
is preenriched to 50–55%. Therefore, Fig. 4 shows the
final stages of enrichment of Hg-196.

The method of negative enrichment is seen to be
more efficient in separating Hg-196, since the mercury
vapor density at each subsequent cycle is higher than in
the preceding one. Accordingly, at each subsequent
cycle, the output of the setup increases, the losses of the
valuable raw material decline, and the probability that
the product will be contaminated by the background
mercury decreases.

CONCLUSIONS
The basic result of this work is that the Hg-196 iso-

tope is produced in high concentrations (up to 97%) for
the first time. This became possible owing to the joint
application of two, direct and negative, enrichment
methods and also to the application of original physical
and technical approaches in designing the setup. With
light sources that contain a high concentration of Hg-
196, one can further optimize the photochemical
method both in terms of extracting isotopes with over-
lapping resonance lines from naturally occurring iso-
tope mixtures and in terms of raising the output of the
photochemical setup for large-scale production of the
Hg-196 isotope. Production of highly enriched Hg-196
offers considerable scope for its application in other
areas of applied and fundamental physics, as well as in
pollution prevention programs, geology, etc.
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Abstract—Results are presented from experimental studies of the time evolution of the plasma channel pro-
duced by a high-current electron beam (with an electron energy of Ee = 1.1 MeV, a beam current of Ib = 24 kA,
and a pulse duration of t = 60 ns) in helium, nitrogen, neon, air, argon, krypton, xenon, and humid air (air : H2O)
at pressures from 1 to 760 Torr. It is shown that, in gases characterized by a small ratio of the collision frequency
to the gas ionization rate ui, the electron beam produces a broad high-conductivity plasma channel, such that
Rb/Rp < 1, where Rb and Rp are the beam and channel radii, respectively. As a result, large-scale resistive hose
instability is suppressed. © 2005 Pleiades Publishing, Inc.
† INTRODUCTION
Particular interest in application of relativistic elec-

tron beams (REBs) propagating in gaseous media is
motivated not only by their unique capability of trans-
porting high-density energy fluxes through gases, but
also by the possibility of using them to initiate a num-
ber of selective plasmochemical reactions or synthesize
compounds in beam plasmas [1–3]. However, stable
transportation of an REB through a gaseous medium
can be disturbed or even terminated because of the
onset of large-scale instabilities, among which the most
dangerous is resistive hose instability (RHI) [4]. This
instability has been the subject of many theoretical and
experimental studies [5–8]. In studying mechanisms
responsible for RHI, particular attention has also been
paid to the processes accompanying the formation of
the plasma channel produced by the beam in a gas [9–
13]. These studies were performed, however, for a lim-
ited number of gases (air, nitrogen, and argon) within a
narrow pressure range. Therefore, it is rather difficult to
reveal general features of REB transportation stability
in different gases at different experimental conditions.
The determination of these general features and taking
them into account can help to develop methods for sup-
pressing RHI in various technological applications with
the participation of high-current electron beams.

EXPERIMENTAL SETUP
Experiments were carried out on a Tonus accelerator

[14], generating REBs with an electron energy of Ee =
1.1 MeV, a current of Ib = 20–24 kA, a current pulse
duration of te = 60 ns, and a diameter at the exit from

† Deceased.
1063-7842/05/5003- $26.00 ©0351
the accelerator of 5 cm. The generated high-current
REB was injected through an titanium anode foil of
thickness 50 µm into a 9.2-cm-diameter metal drift tube
(DT) filled with a gas (helium, nitrogen, neon, air,
argon, krypton, xenon, or humid air (air : H2O)) at a
pressure from 1 to 760 Torr (Fig. 1). Experiments were
performed at two different DT lengths: L1 = 0.4 m and
L2 = 1.4 m. Varying the DT length, we could perform
necessary measurements at distances from the acceler-
ator anode at which large-scale instabilities insignifi-
cantly affected the beam propagation (L1) and at dis-
tances at which the REB propagation was substantially

R1

1 2 3

4 5

6

7R2 C3

C2 R3

R4

V0

C1

R5

R6

C4 C5

L

Fig. 1. Scheme of the experimental setup and the measure-
ment circuits: (1) accelerator cathode, (2) anode, (3) drift
tube, (4) experimental chamber for measuring the conduc-
tivity, (5) annular clamps for foils, (6) measurement foils,
(7) sectioned evacuated Faraday cup, (C1–C5) measurement
and compensating capacitors, and (R1–R6) measurement
resistors.
 2005 Pleiades Publishing, Inc.
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Table 1

Gas Molecular
mass

ρ,
kg/m3

ν,
109 s–1

U0,
eV

σg,
10–16 cm2

Ethr,
kV/cm

Et/P,
V/(cm Torr)

α,
ion s/cm3

He 4.0 0.17 6.69 24.5 2.83 2.4 13.0 1.7 × 10–8

Ne 20.1 0.90 4.20 21.5 4.14 5.3 1.9 2.1 × 10–7

N2 28.1 1.25 7.45 15.5 7.80 46.0 1.4 × 10–6

Air 28.9 1.29 16.3 31.2 42.0 2.5 × 10–6

Ar 39.9 1.78 5.90 15.7 6.46 7.5 3.6 3.0 × 10–7

Kr 83.8 3.74 5.30 14.0 7.54 17.5 6.0 × 10–7

Xe 131.3 5.58 5.80 12.0 9.16 18.2 2.0 × 10–6

Air + H2O 13.9 25.0

Notes:ρ is the mass density, ν is the collision frequency at 15°C and a pressure of 760 Torr, U0 is the ionization energy, σg is the gas-kinetic
ionization cross section, Ethr is the static breakdown field, Et/P is the breakdown threshold at pressures close to atmospheric, and α
is the dissociative recombination coefficient.
affected by the onset of instability (L2). The REB trans-
portation efficiency through the DT (defined as the ratio
Ib/Iinj of the beam current Ib measured by an evacuated
Faraday cup at the end of the DT to the beam current Iinj
at the exit from the accelerator) was determined at the
distances L1 and L2 from the accelerator anode. The dis-
tribution of the beam current density across the trans-
portation channel was measured by a sectioned Faraday
cup (see [15]). We also measured the time evolution the
plasma channel produced by the REB in a gas and the
radial profile of its conductivity by the method
described in [16].

PARAMETERS OF THE GASES USED

When a high-current REB propagates through a
dense neutral gas, the conductivity and the time evolu-
tion of the formed plasma channel depend on the char-
acter of atomic and molecular processes occurring in
the gas. It is well known that the number of these pro-
cesses is more than one hundred. Among those, the
most important are electron-impact ionization (includ-
ing elastic and inelastic collisions and electron energy
loss through the excitation of vibrational and rotational
atomic levels); stepwise dissociation; photoionization;
avalanche ionization by secondary electrons and ions,
by plasma electrons acquiring energy in high-fre-
quency Langmuir oscillations, and also due to energy
gained from molecular vibrations; electron–electron
and electron–ion recombination; the formation of clus-
ters and negative ions; and selective chemical reactions
proceeding in the REB transportation channel. The
character of these processes depends not only on the
parameters of the REB itself (the electron energy, beam
current, and beam diameter), but also on the pressure
and sort of the gas. With the set of gases used in our
experiments, we could study the beam transportation
through media that differed markedly by their basic
parameters and constants. The gaseous media used in
our experiments are listed in Table 1 in order of increas-
ing molecular mass and mass density ρ (kg/m3). The
table also presents a number of the gas constants that
are most important in our opinion. It is obvious that we
are interested, first of all, in the parameters determining
the ionization processes: the ionization energy U0, the
collision frequency ν, and the gas-kinetic ionization
cross section σg. For the process of gas breakdown by
an REB, the most important parameters are the static
breakdown field Ethr and the breakdown threshold Et/P
at pressures close to atmospheric (where Et is the break-
down field and P is the gas pressure) [17].

RESULTS AND DISCUSSION

Figure 2 shows distributions of the REB current
density je across the transportation channel. The distri-
butions were measured with the help of a sectioned
Faraday cup for DTs of lengths L1 = 0.4 m and L2 =
1.4 m. For the sake of clearness, the figure also shows
the radial profiles of the conductivity of the beam
plasma σ for a DT of length L1 = 0.4 m. In our experi-
ments, the gas pressure ranged from 1 to 760 Torr; how-
ever, because of the limited space of this paper, Fig. 2
presents only the data for a gas pressure of P = 300 Torr,
which reflects all the characteristic features of the
results obtained. The measured current transportation
efficiency Ib/Iinj through the gases under study for a DT
of length L2 = 1.4 m is presented in Table 2.

The fairly high values of the REB transportation
efficiency at a DT length of L1 for most of the gases
under study can be explained in terms of the REB prop-
agation stability. The interaction of the REB with the
generated plasma ensures almost full charge neutraliza-
tion and a high degree of current neutralization fm,
which is defined as fm = Ip/Ib, where Ib is the electron
beam current and Ip is the plasma current induced by
the vortex electromotive force [18]. In this case, the
electron beam current is lost predominantly due to ion-
ization and scattering by gas atoms at an increased gas
TECHNICAL PHYSICS      Vol. 50      No. 3      2005
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Fig. 2. (a) Measured radial profiles of the conductivity σ of the plasma channels produced by REBs in different gases for a DT
(2) 20, (3) 30, (4) 40, (5) 50, (6) 60, (7) 70, and (8) 80 ns. (b, c) Distributions of the current density je (measured with the help
channel of a high-current REB in different gases for DTs of lengths (b) L1 = 0.4 m and (c) L2 = 1.4 m at the following inst
(60) 60, ns. The time is counted from the start of the REB pulse. The numbers of the lamellas of the sectioned Faraday cup
following radii R: (1) 0, (2) 1.15, (3) 3.15, (4) 4.15, (5) 2.15, and (6) 4.25 cm.
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Table 2.  Current transportation efficiency Ib/Iinj and the calculated degree of current neutralization fm in the gases under study
for L2 = 1.4 m

Gas
1 Torr 10 Torr 100 Torr 300 Torr 760 Torr

Ib/Iinj fm Ib/Iinj fm Ib/Iinj fm Ib/Iinj fm Ib/Iinj fm

Ne 0.70 0.78 0.70 0.75 0.60 0.70 0.50 0.68 0.40 0.67

Ar 0.68 0.72 0.60 0.68 0.56 0.64 0.45 0.62 0.30 0.60

He 0.67 0.70 0.65 0.65 0.40 0.63 0.20 0.59 0.10 0.59

Air 0.68 0.72 0.58 0.68 0.32 0.65 0.30 0.60 0.28 0.58

N2 0.75 0.70 0.50 0.67 0.20 0.62 0.22 0.58 0.18 0.58

Air : H2O – – 0.45 0.60 0.35 0.58 0.30 0.56 0.10 0.54

Kr 0.45 0.70 0.45 0.68 0.15 0.65 – – – –

Xe 0.45 0.68 0.28 0.64 0.10 0.60 – – – –
pressure in the DT. A change in the character of REB
propagation is reflected in the beam transportation effi-
ciency at a DT length of L2 = 1.4 m. In most of the
gases, the most probable process considerably reducing
the REB transportation efficiency is the onset of large-
scale instability, which manifests itself as a displace-
ment of the electron beam from the DT axis or even as
the forcing of the beam onto the DT wall (Fig. 2c).
Small transverse oscillations of the REB at a distance of
L1 = 0.4 m from the accelerator, which are most pro-
nounced for He, N2, and air (Fig. 2b), grow consider-
ably with increasing pressure and transportation length
(to L2 = 1.4 m). The disturbance of the beam propaga-
tion is certainly related to the onset of large-scale resis-
tive instability. The mechanism for the onset of RHI in
a finite-conductivity plasma can be explained as fol-
lows: The beam particles moving in their own magnetic
field are affected by the centrifugal force arising at
small random oscillations (bends) of the beam. Under
the action of this force, the REB is displaced in the
transverse direction over a distance on the order of its
radius over a time longer than the diffusion time of the
magnetic field in the ambient plasma, td = 4πgre/c2,
where g is the plasma conductivity and re is the beam
radius. The velocity with which the magnetic field is
displaced depends on the plasma conductivity, so the
REB magnetic field shifts in the transverse direction
more slowly than the REB itself and is retarded in phase
with respect to the beam displacement. The motion of
the beam relative to its own magnetic field induces a
reverse plasma current Ip, which is spatially separated
from the REB current Ib. Due to the repulsive interac-
tion between these oppositely directed currents, the
amplitude of the beam displacement increases further.
As a result, RHI develops, which manifest itself in the
increase in the amplitude of transverse oscillations of
the REB. Such oscillations lead to the termination of
the beam transportation at distances that do not exceed
one to three betatron lengths Lbet = πre(IA/Ib)0.5, where
IA is the Alfvén current [19]. Under our experimental
conditions, Lbet is on the order of 0.3–0.35 m. The
results presented in Fig. 2 certainly indicate the growth
of such REB transverse oscillations, whose amplitude
is initially (at L1) small and then (at L2) increases due to
the onset of RHI to such a high value that the beam is
expelled onto the DT wall, so its transportation
becomes impossible.

In [20], the development of RHI of an REB with
parameters comparable to those in our experiments was
studied. An electron beam with a particle energy of Ee =
1 MeV and a current of Ib = 2–10 kA was injected into
air at pressures of 0.1–630 Torr. The velocity of the
transverse displacement of the REB was determined
with the help of inductive detectors as a function of the
gas pressure P and transportation length L. The mini-
mal velocity of displacement U = 107 cm/s corre-
sponded to P = 0.77 Torr. In this case, the displacement
amplitude was as low as 1.0–1.2 mm and the frequency
of hose oscillations was fhose = 30 MHz. As the gas pres-
sure was increased further, the velocity of displacement
sharply increased and reached a value of U ~ 109 cm/s
at P = 100 Torr. At P = 630 Torr, the amplitude of the
transverse oscillations of the beam far exceeded its
diameter (L > 0.7 m, fhose = 180 MHz).

Obviously, the onset or suppression (or a substantial
retardation) of RHI of a high-current REB propagating
through different gases depends on the conductivity of
the formed plasma channel and on the character of the
interaction of the fields induced in the beam–plasma
system. Thus, in [21, 22], using the results from prelim-
inary experiments and numerical simulations based on
a “hard beam” model, which allowed one to analyti-
cally study the dispersion properties of RHI, it was
shown that RHI is suppressed when the radial profile of
the equilibrium plasma current Rp is substantially
broader than the electron beam profile Rb (i.e., when
Rp @ Rb). On the other hand, when Rp = Rb, there is an
additional mechanism for enhancing RHI. It is evident
that, for Rb/Rp > 1, the instability increases substantially
because the reverse plasma current is concentrated
TECHNICAL PHYSICS      Vol. 50      No. 3      2005
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mostly inside the beam. As a result, the repulsive inter-
action of the oppositely directed beam and plasma cur-
rents is very efficient and leads to a displacement of the
REB from the conducting channel. If Rb/Rp ! 1, then,
due to avalanche ionization, most of the plasma current
flows outside the beam; this is favorable for confining
the REB near its propagation axis. Apparently, it is
these plasma processes that are responsible for our
experimental results obtained for Ne and Ar (Fig. 2). In
this case, small (with an amplitude less than the beam
radius) transverse oscillations of the REB are not
enhanced as the gas pressure and the transportation
length increase. At the same time, in N2, He, and air,
transverse oscillations of the REB terminate the beam
transportation. A high-current beam propagating in Ne,
Ar, Kr, and Xe produces a uniform and broad (Rb/Rp <
1) high-conductivity plasma channel with a character-
istic maximum at the periphery of the beam (Fig. 2a).
The latter indicates that the gas breakdown occurs in
the radial direction. The plasma channel ensures the
stable propagation of the REB and the suppression of
its transverse oscillations over the entire propagation
length. On the other hand, in He, air, and N2 and in an
air : H2O mixture, the radius of the conducting channel
tends to Rp = Rb with increasing pressure and the radial
profile of the conductivity undergoes synchronous
oscillations correlating with the transverse oscillations
of the REB; as a result, the current transportation effi-
ciency is substantially reduced. Taking into account
that the parameters of high-current REBs injected into
different gases were the same, we can conclude that the
significant difference in the shapes of the measured
radial conductivity profiles of the plasma channels in
these gases can only be explained by different plasma-
production mechanisms. The general features of the
formation of the plasma channels and their influence on
the REB propagation in different gases can be
described as follows.

When a high-current REB with parameters corre-
sponding to our experiments is injected into a neutral
gas at a pressure of 1–760 Torr, the leading part of the
beam is broken under the action of the unneutralized
radial electric field. The electrons from this part of the
beam have time to ionize the gas, so the charge of the
following part of the beam is neutralized. The slow sec-
ondary electrons and ions generated in the course of
ionization are more strongly affected by the space
charge field and, up to fe = 1, move predominantly in the
radial direction and leave the region occupied by the
beam. After the space charge of the REB is completely
neutralized, the secondary electrons no longer escape
from the beam and participate in ionization, being
accelerated in the longitudinal electric field Ez. In our
case, the time during which the space charge is com-
pletely neutralized does not exceed 1–4 ns [18].

The maximal density of the plasma produced by gas
breakdown is determined by the balance between the
ionization rate u1 and the loss of charged particles by
TECHNICAL PHYSICS      Vol. 50      No. 3      2005
diffusion, recombination, deposition on the DT wall,
etc. Gas breakdown is characterized by the well-
defined threshold; i.e., breakdown occurs only at fields
that exceed a certain value of Et/P, which depends on
the experimental conditions, including the sort of gas
(see Table 1). The existence of the threshold is
explained by the fact that the rate ui of electron-impact
ionization of atoms depends strongly on the electric
field and that there are mechanisms hindering the devel-
opment of an avalanche. The avalanche is retarded by
both electron energy losses and the loss of electrons
themselves. In the former case, the electrons gain
energy sufficient for ionization more slowly; in the lat-
ter case, the chain multiplication reactions are broken.
The electrons expend their energy on the excitation of
the atomic and molecular electronic states and molecu-
lar vibrations and lose it in elastic collisions. As an
example of such a redistribution of energy, Fig. 3 shows
data obtained for nitrogen and air [17]. These results
were confirmed by numerical simulations [23], which
showed that a broad (Rb/Rp < 1) plasma channel forms
in gases in which the ratio of the collision frequency to
the ionization rate ui is sufficiently small (i.e., when
υ/ui < 1). Our results obtained for Ar, Ne, Kr, and Xe
can be regarded as an experimental verification of this
numerical model. We compared the data presented in
Table 1 (V and Et/P) and the radial profiles of the con-
ductivity to the corresponding parameters for other gas-
eous media. The high ionization rates ui characteristic
of Ne and Ar determine the low breakdown thresholds
Et/P for these gases at pressures close to atmospheric
(1.9 and 3.6 V/(cm Torr), respectively). The ionization
features of these gases are also confirmed by the results
from studies of their static breakdown voltages in a
plane anode–cathode gap. These results, which were
obtained at different gas pressures P and gap lengths d
and which are known as Paschen curves, are presented
in Fig. 4 [17]. Over a wide range of gas pressures, the
breakdown voltages Vt for Ne and Ar are the lowest.
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Fig. 3. Fractions of the electron energy expended on (1) O2
vibrations, (2) O2 and N2 rotations, (3) elastic losses, (4) N2
vibrations, (5) N2 and (6) O2 electronic excitations, and
(7) ionization of O2 and N2.
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It is evident that, in addition to the above mechanism
for plasma channel formation, we should also take into
account the effect of the radial component of electric
field, which is equal to

where U is the voltage, r2 is the DT radius, and r1 is the
beam radius.

Under our experimental conditions, E(r) is on the
order of ~105 V/cm. In [24], it was shown that, in this
case, the radial electric field is displaced to the periph-
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Fig. 4. Threshold potentials Vt of different gases as func-
tions of the pressure p and discharge gap length d (Pas-
chen’s curves).

Fig. 5. Formation of the conducting channel around the
REB: (1) the radial profile of the REB current density jb(x),

normalized to the maximal REB current density  at the

point of injection and (2) the radial profile of the plasma
channel conductivity σ*(x) (in arb. units). The radial coor-
dinate x is normalized to the initial REB radius a0.

jb
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ery of the beam in the course of charge neutralization.

The electric field E = (  + )1/2 reaches its maximum
at the beam edge, and the avalanche multiplication of
electrons results in the formation of a conducting chan-
nel surrounding the beam and suppressing RHI (Fig. 5).
It is transverse breakdown that forms a maximum in the
radial profile of the plasma conductivity at the periph-
ery of an REB propagating in Ar, Ne, Kr, or Xe. After
breakdown, the conductivity of the plasma produced is
very high and the electric field decreases to several hun-
dred V/cm and lower.

Our results are qualitatively confirmed by the results
obtained in [25, 26], where spatiotemporal behavior of
the plasma conductivity was numerically reconstructed
from the measured density distributions of the plasma
and beam currents, Jp(r, t) and Jb(r, t). It was shown
that, when an REB with a maximum of the current den-
sity at the beam axis is injected into air or argon, the
plasma current has a maximum at the periphery of the
plasma channel. This effect is explained by the ava-
lanche ionization that develops in the space charge field
displaced to the DT wall.

CONCLUSIONS

The main results from our experiments on studying
the effect of the parameters of the plasma channel pro-
duced by a high-current REB on the beam transporta-
tion stability in dense gases can be formulated as fol-
lows:

(i) In gases in which the ratio of the collision fre-
quency ν to the ionization rate ui is small (i.e., ν/ui < 1),
a high-current REB forms a broad high-conductivity
plasma channel such that Rb/Rp < 1, where Rb and Rp are
the beam and channel radii, respectively. As a result,
large-scale RHI is suppressed. For gases in which
Rb/Rp > 1, RHI is enhanced.

(ii) The formation of a broad (Rb/Rp < 1) high-con-
ductivity plasma channel is preceded by the displace-

ment of the maximum of the electric field E = (  +

)1/2 (where Ez is the longitudinal electric field and Er

is the radial electric field) to the REB periphery, where
gas breakdown then occurs. The formed plasma chan-
nel, with a maximal conductivity at the beam edge, also
suppresses the onset of RHI.
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Abstract—Projection microprocessing of materials by Nd : KGW laser shots (1.06 µm) is considered. Specif-
ically, a practically feasible method of processing transparent materials (sapphire, fused quartz, and glass) by
means of a laser-induced plasma is suggested. These materials are marked, in particular, by applying a control-
lable liquid-crystal mask on them. Also, a relief diffraction grating of period 3 µm is patterned on their surface.
The effect of the transverse size of the area illuminated on the processing parameters is studied. It is established
that the density and temperature of the laser-induced plasma grow with increasing transverse size of the torch,
with the energy density of the laser radiation being the same. The plasma torch reverses the pressure and wave-
length dependences of the rate of ablation of transparent materials as compared to those of metals. © 2005 Ple-
iades Publishing, Inc.
INTRODUCTION

Material processing by nanosecond laser pulses can-
not be described in simple terms, since the resulting
physical pattern is very complicated. The basic pro-
cesses arising when a laser pulse strikes a transparent
material are shown in Fig. 1. The overall process can be
subdivided into separate sequential stages (which is
sometimes incorrect, since the stages may proceed
simultaneously), such as absorption of the pulsed radi-
ation by the material and then its heating, melting, and
sublimation. Intense sublimation generates a recoil
pressure wave in the material. A high intensity of laser
radiation may cause optical breakdown in the target
vapor and, accordingly, a shock wave originating at the
site of optical breakdown. Also, a plasma torch, which
is capable of influencing the physical pattern of pro-
cessing, may appear. Specifically, the plasma may
absorb or completely reflect the radiation, depending
on its temperature and density, thus screening the target
and altering the thermal kinetics. Usually, plasma
screening of the target should be minimized. However,
the effect of plasma absorption may contribute to pro-
cessing under certain conditions. An example is laser
processing of transparent insulators, in which the radi-
ation is not absorbed but its energy may be transferred
to the material through the intermediate plasma phase.
The transverse size of an area being processed is of
great importance in processing of both metals and
transparent insulators.

The aim of this work is to comparatively study how
the transverse size of the plasma torch influences pro-
jection microprocessing of transparent insulators and
metals. In addition, we suggest a practically feasible
1063-7842/05/5003- $26.00 ©0358
method of microprocessing transparent materials, such
as sapphire, fused quarts, and glass, using a laser-
induced plasma.
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Fig. 1. Physical processes arising when a laser shot acts on
a nontransparent material. (1) Laser beam, (2) shock wave
front propagating from the site of ablation and optical
breakdown, (3) plasma generated by optical breakdown in
the material vapor, (4) material sublimation, (5) molten
material splashed out beyond the laser spot under the action
of the shock wave, (6) front of the recoil pressure wave in
the material, and (7) nontransparent material.
 2005 Pleiades Publishing, Inc.
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EXPERIMENTAL SETUP

The optical scheme of the experimental setup is pre-
sented in Fig. 2. As a radiation source, we used a Q-
switched water-cooled Nd : KGW laser of our own
design that is pumped by a flash lamp. The laser output
at a wavelength of 1.06 µm may reach 100 mJ, and the
pulse duration is 10 ns. A polymer amplitude mask [1]
and a liquid-crystal digital panel were used as stencils.
Since the cross-sectional diameter of the laser beam on
the mask is 3 mm and the mask measures 25 × 25 mm,
a need appears for scanning the beam over the mask.
Scanning averages the intensity nonuniformity over the
beam’s cross section. We used two scan units (sets of
mirrors) 2 and 3, which were mounted on the axis of a
step motor. A rotation of the motor axis causes the beam
to move parallel to the X or Y direction. The scan
parameters (the width and number of steps and the size
of the scan zone) were controllably varied. Galilean
telescope 5 is used to decrease the mask–objective dis-
tance and place the beam at the center of the objective
during scanning. The image of the mask is projected
onto specimen 8 (fixed on x–y–z adjustable table 9)
through quartz triplet objective 7 with a focal length of
5 cm. Positioning and processing of the specimen can
be observed through a microscope composed of objec-
tive 7 and eyepiece 12.

MICROPROCESSING OF TRANSPARENT 
MATERIALS

The method of microprocessing suggested in this
paper is a modification of the method of laser-induced
plasma-assisted ablation (LIPAA) elaborated by Zhang
et al. [2, 3]. They processed transparent fused quartz in
a vacuum chamber with a metallic target placed at a
small distance from the specimen. The beam of a
Nd : YAG laser (the second and fourth harmonics)
passed through the specimen and fell on the target,
causing its ablation and generating an ablation (metal-
vapor) plasma. The plasma, in turn, contributed to the
ablation of the rear (target-facing) transparent speci-
men surface, which is exposed to the same laser beam.
With such an approach, Zhang et al. managed to pattern
diffraction gratings of depth 0.9 µm and period 20 µm
with a hole diameter of 0.7 µm in a 0.5-mm-thick fused
quartz specimen. The advantage of this method is that
there is no need for an expensive UV laser with photon
energies above the absorption edge of a material; the
disadvantage is the need for evacuating the chamber.

In our method, this disadvantage is eliminated by
directly pressing a rubber target against the rear surface
of a transparent specimen (Fig. 1a), which is in air
under atmospheric pressure. We experimented with
glass, fused quartz, and sapphire using the setup shown
in Fig. 2. Figure 3 demonstrates an inscription (mark-
ing) engraved on the single-crystal sapphire specimen
by the method suggested. Using a controllable liquid-
crystal digital panel, similar micromarking was
TECHNICAL PHYSICS      Vol. 50      No. 3      2005
engraved on the fused quartz and glass. The advantage
of a liquid-crystal mask is that it makes it possible to
change the surface pattern without being replaced.

Scanning of the mask took 15 s at a pulse repetition
rate of 20 Hz. The pulse peak energy was 20 mJ. At a
13-fold demagnification provided by the projection
system, the energy density reached 48 J/cm2. In all the
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Fig. 2. Optical scheme of the experimental setup.
(1) Nd : KGW laser beam, (2) X scanner, (3) Y scanner,
(4) mask, (5) Galilean telescope, (6) mirror for the wave-
length 1.06 µm, (7) projecting objective lens, (8) specimen,
(9) x–y–z adjustable table, (10) protective light filter,
(11) mirror, and (12) eyepiece for observation. (a) The spec-
imen is a sapphire plate with a rubber target tightly pressed
against the rear sapphire surface, (b) the specimen is a sap-
phire plate with a rubber target placed at a distance of
0.6 mm from the rear sapphire surface, and (c) metallic
specimen.

1mm

Fig. 3. Inscription (micromarking) engraved on the sapphire
specimen (5 µm per division).
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cases, the processing resolution was 10 µm and the
depth of marking, about 10 µm. Each point was pro-
cessed by seven laser pulses. The ablation rate was
found to be 1.4 µm per pulse (for LIPAA in a vacuum,
it was no higher than 30 nm per pulse [2, 3]). Sapphire
turned out to be more prone to cracking than quartz.
Possibly, this is because the thermal expansion coeffi-
cients of these materials differ noticeably (0.5 ×
10−6 deg–1 for fused quartz and 9.0 × 10–6 deg–1 for sap-
phire). In addition, crystalline sapphire is a birefringent
material; therefore, two images corresponding to the
ordinary and extraordinary rays appear on the rear sur-
face at a certain orientation of the crystal and laser radi-
ation polarization. In the experiments with a controlla-
ble slit, which will be discussed below, the rays diverge
most noticeably: by 2–3 µm in the 5-mm-thick speci-
mens. However, birefringence is not observed in the
inscription shown in Fig. 3, because the specimen is
thin (2 mm thick) and the resolution is closer to 10 µm.

Let us discuss the physical mechanisms behind our
version of LIPAA (recall that it differs substantially
from the original method [2, 3]). Laser breakdown gen-
erates a target-vapor plasma near the target and a trans-
parent specimen. The temperature and density of the
plasma grow in an avalanche-like manner (owing to
laser radiation absorption in the process of inverse
bremsstrahlung of electrons colliding with ions and
neutral atoms) and may vary over wide limits. Accord-
ing to [4], the laser-induced plasma temperature during
ablation of fused quartz varied from 15 000 to 60 000°C
depending on the plasma torch geometry (the energy
density of the 266-nm fourth harmonic of the Nd : YAG
laser was 48 J/cm2 and the spot diameter, 50 µm). The
temperature and density of the plasma were the lowest
at the ablation of a flat surface, i.e., for the freely
expanding torch. When the ablation took place in a
cylindrical cavity of diameter 80 µm, i.e., when the
expansion of the plasma confined by the cylinder walls
was nearly one-dimensional, its temperature and den-
sity were the highest. In our case, the energy density of
the laser pulse also equaled 48 J/cm2 and the plasma
was severely confined in a microscopic cavity between
the sapphire and rubber target, which arose because of
ablation and deformation. Therefore, we may tenta-
tively assume that the plasma temperature and density
in our case are equal to the highest values reached in [4]
(T = 60 000°C, the electron density ne = 8 × 1018 cm–3).
Contact transfer of the plasma energy to the transparent
material seems to be the most plausible mechanism of
energy transfer here. This assumption is corroborated
by the following observation. Sometimes, when the
energy density of the pulse exceeded 60 J/cm2, the
plasma pressure became so high that the plasma pene-
trated outside the processing spot between the target
and sapphire, causing surface melting of the sapphire in
areas beyond the reach of the laser radiation. Then,
when the slit was projected onto the sapphire—rubber
target assembly, the strip of the material removed was,
as a rule, 5 µm wider than the slit image; in other words,
the material was removed from areas that were not
directly exposed to the laser radiation. There lies a dis-
similarity between our version and the original [2, 3]
version of the LIPAA method (in the original version, a
metallic target is several millimeters distant from a
specimen in a vacuum). Zhang et al. [2, 3] wittingly
used a plasma generated by an external laser (not par-
ticipating in the process) and found that ablation takes
place only if the laser radiation directly interacts with
the plasma. That is, the plasma does not cause ablation
in the absence of the laser radiation. It appears that, in
our case, the plasma temperature and density are suffi-
ciently high for contact ablation to proceed even in the
absence of the radiation. This is quite natural, since not
only is the specimen–target gap different in the two ver-
sions but also the energy density at the rear surface of
the specimen (48 J/cm2 in our version and as low as
7.7 J/cm2 in [2, 3]). However, other ablation mecha-
nisms where a plasma interacts with laser radiation
must not be ruled out. It has been speculated [2] that, if
the gap between a metallic target and a specimen is nar-
rower than several hundreds of micrometers, the fast
components of the plasma, such as ions, radicals, elec-
trons, and clusters, may reach the surface during a laser
pulse. In this case, energy and charge transfer to the
specimen surface may give rise to short-lived centers
absorbing the radiation. When the gap is wide, the spec-
imen is first covered by an absorbing metallic field,
which initiates ablation during subsequent irradiation.
Ablation using a laser-induced plasma has one more
feature that, to a great extent, governs its efficiency.
Under the above conditions of plasma torch formation
at the rear surface of the transparent material, the
plasma temperature and density reach a maximum just
near the surface. This is because the front of the plasma
density and/or temperature maximum is known [5] to
move toward the laser beam as laser-induced break-
down develops. Under direct ablation, the plasma front
will move away from the surface, while, in our case,
conversely, it will approach the surface of the transpar-
ent material, reaching a temperature and density maxi-
mum near it.

To see how the transverse size of the plasma torch
influences the process of ablation using a laser-induced
plasma, we designed a setup that is somewhat different
from that shown in Fig. 2. Here, the beam of the same
laser was directed (without scanning) to a controllable-
width optical slit, which was placed instead of the
mask, and the test specimen was placed in a sealed
chamber with a quartz window. The chamber can be
both evacuated and filled with air under an elevated
pressure. The specimen was composed of a 6-mm-thick
sapphire plate and a rubber target, which was offset by
0.6 mm from the rear surface of the sapphire (Fig. 2b)
rather than being pressed against it. The image of the
optical slit was projected with a 13-fold demagnifica-
tion onto the rear surface of the sapphire plate. The
laser pulse energy was kept constant at a level of 21 mJ,
TECHNICAL PHYSICS      Vol. 50      No. 3      2005
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the number of pulses was 30, the laser beam diameter
on the slit was 2 mm, and the width of the slit was
smoothly varied from 10 to 500 µm. The laser output
density on the projection of the slit onto the sapphire
specimen was 50 J/cm2. The minimal width d of the slit
projection at which ablation is initiated was measured
as a function of the air pressure. From this dependence
(Fig. 4), it follows that the minimal ablation-initiating
width decreases with increasing pressure. Typically, the
visually observable ablation of the sapphire exposed to
the laser-induced plasma appears as follows. At a slit
image width of 5 µm and a pulse energy density of up
to 20 mJ, optical breakdown does not occur under
atmospheric pressure: only a faint reddish glow is local-
ized on the rubber target surface. Ablation is not
observed either. When the pulse energy exceeds 20 mJ,
the image of the slit on the sapphire undergoes optical
breakdown: there appears a bright white glow of the
plasma near the image of the slit the sapphire surface.
Only then does sapphire ablation take place. This
means that the target is needed only for generation of an
initial slightly ionized “seed” plasma. The concentra-
tion and density of the plasma that are sufficient for the
ablation of the specimen material are attained at its sur-
face, where the electric field of the light wave is the
highest.

Let us turn to the role of the transverse size of the
processing zone. For a laser photon energy of 1 eV, the
onset of an electron avalanche in a monoatomic gas
with a neutral atom ionization potential of 10 eV is
established with the empirical criterion [5]

(1)

where τ is the laser pulse width (s), n is the density of
the gas (cm–3), and E is the strength of the light wave
electric field (V/cm). If inequality (1) is met, an elec-
tron absorbing the photons in three-particle collisions
with atoms and ions (inverse bremsstrahlung) takes the
energy sufficient for ionization of a neutral atom during
the action of the pulse. In practice, however, one should
take into consideration electron energy losses, such as
excitation energy losses, as well as those due to trap-
ping of electrons by electronegative impurities and
escape of electrons out of the irradiation zone. In our
case, it is electron escape that is responsible for the
threshold dependence of the ablation on the slit width.
Therefore, the above criterion of onset of ablation
should be complemented by the condition that the elec-
tron diffusion length during a pulse does not exceed the
transverse size of the illuminated zone,

(2)

where D is the electron diffusion coefficient and d is the
transverse size of the illuminated zone.

Condition (2) explains the threshold dependence of
optical breakdown and ablation on the slit image width,
and the pressure dependence of the threshold slit image

τnE2 1023,≥

Dτ( )1/2 d ,≤
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width follows from both criteria, since the diffusion
coefficient depends on the gas density as 1/n.

As the slit image width increases to 40 µm, atmo-
spheric-pressure ablation by the laser-induced plasma
changes to optical breakdown inside the sapphire, with
the breakdown channel rapidly propagating across the
specimen. This point deserves special consideration in
view of the fact that the breakdown threshold, like the
ablation threshold, also depends on the slit width in our
experiment at the same laser energy density. It is known
that the basic reason for optical breakdown in transpar-
ent materials is local heating of absorbing impurities by
the laser beam [5]. Clearly, the heating of the centers is
controlled by thermal diffusion. Taking into account
that the thermal diffusion length in sapphire during the
pulse is l ~ 2(ξτ /ρc)1/2, where ξ is the thermal conduc-
tivity, ρ is the density, τ is the pulse duration, and c is
the specific heat, we have to accept that the onset of
breakdown at an illuminated zone width of 40 µm does
not fit in the model adopted. Indeed, widening of the
illuminated zone above 0.6 µm would not radically
change the thermal distribution near the absorbing cen-
ters but would merely increase their number. Therefore,
we believe that, in the case considered, the UV radia-
tion of the laser-induced plasma outside the specimen is
the basic contributor to optical breakdown. Most of the
energy of a high-temperature plasma may be reradiated
in the vacuum ultraviolet range. The UV radiation may
affect the ablation process, since it is absorbed by a
transparent material and, thus, may stimulate absorp-
tion of the primary laser radiation by the formerly trans-
parent material. Zhang et al. [6], who observed a simi-
lar phenomenon, used two lasers in experiments on
fused quartz ablation: a low-output 157-nm F2 laser and
a high-output 248-nm KrF laser. The radiation of the
former (157 nm) was absorbed by defect-related levels
in the fused quartz, thereby inducing absorption of the
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Fig. 4. Minimal width d of the slit image projection that is
necessary for ablation initiation vs. air pressure P.
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248-nm radiation (which the material was initially
transparent to). In our case, the plasma radiation in the
vacuum ultraviolet range seems to play a major part in
breakdown development, producing an induced-
absorption layer before the propagation front. Zhang
et al. believe that the plasma generated in their experi-
ments by a laser beam providing an energy density of
no higher than 7.7 J/cm2 on the target cannot radiate in
the vacuum ultraviolet range. In our case, such a possi-
bility must not be ruled out, since the plasma is gener-
ated by a beam with an energy density of 48 J/cm2 and
is localized immediately at the surface of the material.
Although the laser-induced plasma was not spectrally
analyzed, we may assume that the plasma temperature
reached 5.17 eV, starting from the results obtained in
[4], where fused quartz ablation was accomplished
under similar conditions. As follows from the Planck
formula, such a plasma gives up most of its energy as
radiation in the vacuum ultraviolet range (≥6.2 eV). For

1

2

3

4 5

3

Fig. 5. Optical scheme for patterning diffraction gratings
using the laser-induced plasma. (1) Laser beam, (2) Fresnel
biprism, (3) mirror, (4) glass plate, and (5) rubber.

Fig. 6. Relief diffraction grating on the glass when viewed
through an optical microscope. (2 µm per division).

Fig. 7. Diffraction pattern in the far-field zone for the He–
Ne laser beam diffracted by the diffraction grating depicted
in Fig. 7.
an absolutely black body with a temperature of 5.17 eV,
the ratio of the radiant emissivity at hν = 6.12 eV to that
at hν = 5.17 eV equals 1.3. As the width of the irradia-
tion zone increases, energy losses due to electron
escape out of it decline and, accordingly, the plasma
temperature and density grow. Eventually, as the
plasma torch widens, its UV radiation tends to shorter
wavelengths and becomes sufficiently intense for opti-
cal breakdown to propagate from the plasma gas to the
solid in a threshold-like manner.

We believe that the absorption induced by the UV
radiation of the plasma is also of significance under
subthreshold conditions as a contributor to the complex
mechanism of ablation, which may be viewed as con-
fined optical breakdown.

Let us now turn to experiments on patterning relief
diffraction gratings on glass using our version of the
LIPAA method (see Fig. 5). A laser beam (1.06 µm,
10 ns, 20 mJ) of diameter 3 mm was bifurcated with a
Fresnel biprism, and then the two beams were brought
to a 0.5 × 1.0-mm spot at the glass–rubber interface
under atmospheric pressure. The number of laser shots
was varied from one to five. Under these conditions, a
relief diffraction grating with a spacing of 3.0 µm was
patterned on the surface at the contact between the laser
radiation and the laser-induced plasma. The image of
the grating when viewed in an optical microscope is
shown in Fig. 6. The diffraction pattern in the far-field
zone observed for the diffraction of a He–Ne laser
beam (632.8 nm) is demonstrated in Fig. 7. The angle
between the zeroth- and first-order beams is 12.2°,
which agrees with the microscopic measurements of
the grating spacing. The total first-order diffraction effi-
ciency is close to 9%. The absence of higher diffraction
orders suggests that the shape of the grating is near-
sinusoidal.

Let us return to the effect of the transverse size of
the plasma torch on projection laser microprocessing.
This point is of great significance both for transparent
materials and metals, since the mask may have open
areas of different size. We tackled this problem because
of the need to explain the “edge effect” arising in con-
ventional projection microprocessing of metals. It was
noticed that, on large irradiated areas more than 20 µm
across, the depth of material removal along its circum-
ference is much greater than at the center. This appears
to be an effect (detrimental in this case) of the laser-
induced plasma. In the middle of an extended open
area, energy losses due to the diffusion of electrons out-
side the irradiation zone are insignificant. Therefore,
the plasma density may reach a critical value at which
electron plasma frequency ωp = (4πnee2/m)1/2 (where ne
is the electron concentration, e is the electron charge,
and m is the electron mass) becomes equal to the laser
radiation frequency. Under this condition, the plasma is
absorbed to the maximal extent, so that the target may
be totally screened. At the edges, the situation is differ-
ent. Here, the electron losses are high, since the elec-
TECHNICAL PHYSICS      Vol. 50      No. 3      2005
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trons diffuse out of the irradiation zone; accordingly,
the plasma temperature and density are lower than at
the center and it is more transparent to the laser radia-
tion. The width of the graded zone is about 10 µm.

This effect was studied at length using the above
scheme with a controllable-width slit. The specimen
was 20-µm-thick nickel foil (Fig. 1c). The pulse energy
was 21 mJ; the energy density on the target, 50 J/cm2;
and the width d of the slit on the foil surface was varied
from 0 to 160 µm. We estimated the number of laser
shots necessary for complete removal of the material
from half the area occupied by the slit image. The num-
ber of shots versus the width of the exciting slit is
shown in Fig. 8 for different air pressures in the cham-
ber. As might be expected, the material is most effec-
tively removed in a vacuum. The necessary number of
shots (30) is minimal for a slit width in the interval from
10 to 20 µm at all the pressures. The slight increase in
the number of shots for narrower slits is apparently due
to objective lens aberrations and thermal diffusion,
which travels a length of 1 µm for 10 ns in nickel. For d
less than 2 µm, the material is removed incompletely.
As d rises to 60 µm in a vacuum, the number of shots
increases to 50 and then remains unchanged. At pres-
sures of 4.9 × 104, 9.8 × 104, and 1.4 × 105 Pa, another
situation is observed. For d larger than 20 µm, the num-
ber of shots increases drastically; the higher the pres-
sure, the greater the increase. It is obvious that this
observation, as in the case of the transparent materials,
is a result of a correlation between the parameters of the
laser-induced plasma and the transverse size of the pro-
cessing zone. At small d (from 2 to 20 µm), the energy
losses due to electron escape outside the processing
zone are too high for optical breakdown to occur in the
material vapor. As a result, the rate of material removal
is the highest. As the slit image width increases further,
the electron energy losses due to diffusion decline and
a laser-induced plasma arises, which partially absorbs
the radiation and, thereby, retards the rate of removal.
When a critical plasma density is reached, the laser radi-
ation cannot penetrate to the surface. Yet, ablation takes
place at the edges of the slit image because of the edge
effect. Such was indeed the case in the experiments.
Through removal of the material was first observed at
the edges, and the resulting “peninsula” gradually
diminished in size due to edge ablation. The critical
plasma density can be estimated from the relationship
ncλ2 ≅  1015 m–1 [7], where nc is the critical plasma den-
sity and λ is the laser radiation wavelength. This esti-
mator gives 1021 cm–3 for the critical plasma density at
the center of the image. The rate of material removal as
a function of the air pressure can also be found through
the pressure dependence of the electron diffusion coef-
ficient. When d exceeds 80 and 110 µm for pressures of
9.8 × 104 and 1.4 × 105 Pa, respectively, the number of
shots remains the same or even decreases slightly. It
seems likely that the material is mechanically removed
by the shock wave of the expanding plasma.
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CONCLUSIONS

Our study indicates the need for taking into account
the transverse size of the plasma torch in designing
tools for projection microprocessing of materials. The
screening effect of the laser-induced plasma can be
avoided if the characteristic size of the area being pro-
cessed does not exceed 20 µm at a laser wavelength of
1.06 µm. Evacuation of the chamber with the specimen
allows processing of a larger area.

When transparent materials are processed, the rate
of ablation using a laser-induced plasma increases with
transverse size of the plasma torch and the process cul-
minates in laser breakdown of the material. The effi-
ciency (rate) of ablation of transparent materials as a
function of the air pressure and laser wavelength varies
inversely to that of metals.
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Abstract—Coalescence conditions under which the asymptotic behavior of the distribution function differs
substantially from the Lifshitz–Slezov (LS) classical distribution are found in terms of an approach that
includes the finiteness of the grain size during phase transitions. If the grain growth kinetics is controlled by
monomer diffusion and grain dissolution, an intermediate asymptotic regime of coalescence may arise that
eventually changes to LS-like diffusion. The change in the prevailing grain growth mechanism shows up in the
crossover effect for scaling indices that describe the time dependence of the grain size. © 2005 Pleiades Pub-
lishing, Inc.
Nucleation of a new phase due to supersaturated
solid solution decomposition can be subdivided into
two stages: the fluctuation growth of nuclei from the
supersaturated solid solution and the stage of coales-
cence, at which coarser grains grow via dissolution of
finer ones. Late in the phase transition, the latter stage
(Ostwald ripening) dominates the former, so that the
fluctuation stage may be neglected. The coalescence
kinetics has been extensively studying since the classic
paper by Lifshitz and Slezov was published [1]. They
found the universal grain size distribution for the new
phase to which any initial distribution tends in the limit
t  ∞ (see also the monographs [2, 3] and review
[4]). However, Lifshitz and Slezov implicitly assumed
that grains may be infinitely large. Most of the works
devoted to this problem consider a class of solutions meet-
ing the (Lifshitz–Slezov (LS)) assumption. In a recent
work [5], the coalescence kinetics was treated on the
assumption that the grain size has an upper limit and it was
shown that the asymptotic behavior of distribution func-
tions (DFs) where the maximal grain size tends to zero by
a power (of order m) law is radically different from the
asymptotics considered by Lifshitz and Slezov.

In this work, we numerically and analytically inves-
tigate the coalescence kinetics in a supersaturated
homogeneous solution, assuming that the maximal size
of new-phase grains is finite. The time evolution of the
grain size distribution is derived. The situations where
the grain growth kinetics is controlled either by the rate
of dissolution (the earlier stage of coalescence) or by
monomer diffusion (the later stage of coalescence) are
considered. The transition to the final distribution via
an intermediate asymptotic coalescence regime is dem-
onstrated, and the duration of this regime is estimated.

Consider the general case when the grain growth
kinetics is governed by the competing processes of dif-
fusion and dissolution. Then, the growth rate of a grain
1063-7842/05/5003- $26.00 0364
of radius a is routinely described by the dimensionless
equation [5]

(1)

where β is the rate of dissolution and D is the monomer
diffusion coefficient.

In (1), quantities b = σ/(n0 – n00) and b0 = σ/(n0∞ –
n00) are the expressions for the grain critical radius (σ =
2ενn00/(kT)); n00 and n0∞ are the equilibrium monomer
concentrations over the spherical and plane surface of a
solute, respectively; n0 is the initial monomer concen-
tration in the solution; ε is the surface energy; ν is the
specific volume of the monomer; T is the temperature;
and k is the Boltzmann constant. Hereafter, the true
(and critical) grain size comes in units of b0 and the

time, in units of (D + βb0)/νDβσ.

Generally, the kinetic equation of coalescence [1]
and Eq. (1) cannot be solved jointly in analytical form.
However, there are two extreme cases that allow for an
asymptotic description. For one of them (the grain
growth is controlled by monomer diffusion), the
asymptotic DF was found in [5]. Let us consider the
other case, when the grain growth kinetics is controlled
by the rate of dissolution, D @ βa (the earlier stage of
growth). Then, Eq. (1) reduces to

(2)

In the general case, the DF is factorized in the same
way as in the LS problem,

In the factorized form, it can be represented as the
product of regularly varying (self-similar) function
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P(V) of distribution over grain size alone (where V is
the ratio of the grain size to maximal grain size aL, V =

a/aL) and nonstationary factor N(t') = N0 (a0)da0,

which equals the number of new-phase particles per
unit volume. Finally, we will assume that the initial DF,

(3)

exhibits a characteristic power-law behavior near a
maximum initial grain size, aL(t = 0) ≡ L, and vanishes
at a0 > L. Here, Φ(a0) is an arbitrary function, m is an
arbitrary number (m > –1), and C < L is an intermediate
size that specifies the area where the power tail of the
initial DF is localized. Assumption (3) reflects a real
experimental situation [6]. Indeed, in experiments
[6, 7] with Ni–Pb and Fe–Cu solutions, the distribution
like (3) with a characteristic grain size L1 = 50 nm (the
Ni–Pb system) and L2 = 30 nm (the Fe–Cu system) was
observed.

Solving the kinetic equation by the same method as
in [5] in view of (2) and (3), we obtain

(4)

where λ = (m + 4)/(m + 1) is found from the condition
of finiteness of the new-phase volume [5].

Note that the time dependences of the characteristic
sizes are power functions with an exponent of 0.5,

(5)

for the density of new-phase particles, the exponent
equals –1.5: N(t') = B(2t'/λ)–3/2.

If the grain growth kinetics is controlled by mono-
mer diffusion (the later stage of coalescence), the DF
takes a more complicated form [5]

(6)

where λ = (2m + 5)/(m + 1), A1, 2 = 0.5[(λ –

1)  ± (λ + 1)]/ , and V1, 2 =

( )/2. The time-dependent nucleus sizes
follow the LS law,

(7)
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accordingly, the new-phase particle density declines
monotonically, N(t') = Bλ/t'. Asymptotic distribution
(6), which arises at the later stage of coalescence sub-
ject to the finiteness of the grain maximal size, differs
substantially from the classical LS distribution [1]. This
is because the tails of distributions that decrease too
slowly may significantly alter the DF asymptotics [8,
9]. Note also that DF (6) passes to the LS distribution
[1] in the limit m  ∞.

Comparing the exponents in expressions (5) and (7)
reveals the crossover effect for the kinetic indices,
which shows up when the prevailing grain growth
mechanism changes. In fact, the square-root law aL ~
t1/2 and b ~ t1/2, which is valid at the earlier stage (the
grain growth kinetics is controlled by the rate of disso-
lution), changes to the LS classical law aL ~ t1/3 and b ~
t1/3 later in the growth (the growth kinetics is controlled
by monomer diffusion). It should be emphasized that
ratio aL/b does not change in time, indicating that the
asymptotic DF found is self-similar. The crossover
effect predicted in this work is bound to take place also
in the LS classical model [1].

The numerical solution of the complete set of
kinetic equations [5] supports the results of the asymp-
totic analysis. We found that an intermediate asymp-
totic regime of coalescence may set in in the general
case, when the grain growth kinetics is governed by the
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Fig. 1. Evolution of (a) the characteristic grain sizes and
(b) distribution function P(V) during coalescence in the
homogeneous solid solution (χ = 10, m = 2, L = 2). (a) aL(t)
is the maximal grain size; b(t) is the critical grain size; and
(1)–(4) time evolution of new-phase grains, which are
parametrized by initial grain size a0 = a (t = 0). (b) A1 stands
for distribution function (4); A2, for distribution function
(6); LS, for Lifshitz–Slezov distribution function [1]; and
(1)–(6) time evolution of the distribution function calcu-
lated numerically.
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competing processes of monomer diffusion and grain
dissolution. Time t1 for which the DF approaches the
asymptotics (curve 4) and time ∆t for which the DF
remains close to it (with a deviation of no more than
10%) depend on ratio χ = D/(βb0) @ 1: both t1 and ∆t
grow with χ. In Fig. 1b, this situation is shown for χ =
10. Here, the durations of the first and second stages are
t1 ≈ 212 and ∆t ≈ 188 time steps, respectively. The time
taken to reach final asymptotics (6) (with a deviation of
≈15%) is about 50 000 time steps. Comparison of the
minimal sizes, (aL/b)theor = 1.333 and (aL/b)calc = 1.391,
and self-similarity parameters, λtheor = 3 and λcalc =
2.55, demonstrates fairly good agreement between the
theoretical and calculated values.

Analyzing the experimental data [6], one can esti-
mate the typical value of χ for a specific two-phase sys-
tem. Specifically, for the Pb–Ni system, χ ~ 103; for the
Fe–Cu system, χ ~ 104. Then, it follows that the inter-
mediate stage may last several tens of seconds under
real conditions. On the assumption that ∆t ~ χn (where
n ~ 1), it is easy to check that the intermediate stage
lasts ∆t ≈ 2 s for the Pb–Ni system and ∆t ≈ 2 s for the
Fe–Cu system.
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Abstract—Single-phase coarse-grained CuIn3Se5 ingots are grown by horizontal oriented crystallization from
the near-stoichiometric melt. Photosensitive structures based on the interface between these crystals and an
electrolyte (H2O) are created. It is shown that the CuIn3Se5 ternary compound is a direct-gap semiconductor
with an energy gap Eg . 1.1 eV (T = 300 K). H2O/CuIn3Se5 photoelectrochemical cells seem to be promising
for efficient wide-band photodetectors of natural light. © 2005 Pleiades Publishing, Inc.
Fundamental research on I–III–VI2 ternary com-
pounds has led to the development of
ZnO/CdS/CuInGaSe2 thin-film solar cells with the
highest quantum efficiency (19%) among photoelectric
converters of this class [1, 2]. However, it has been
shown that, along with I–III–VI2 ternary compounds,
there exist other, more complex, phases like I–III2n + 1–
VI3n + 2, where n = 1, 2, 3, …, in the class of I–III–VI
compounds. Such coordination-ordered phases, which
usually lie on I2VI–III2VI3 pseudobinary sections of the
related ternary diagrams, open up fresh opportunities
for controlling the basic properties of compound semi-
conductors without doping [3–5]. Also, the above spe-
cific feature of atomic interaction in I–III–VI systems
allows for coexistence of phases differing in coordina-
tion order [6]. Therefore, study of the new phases
grown as bulk homogeneous crystals would help to
elaborate new approaches to controlling the properties
of compound diamond-like semiconductors up to pro-
viding conditions for self-organization of quantum-size
inclusions. In this work, we report the results of pio-
neering experiments with optical electrochemical cells
based on bulk CuIn3Se5 crystals.

(1) The crystals were grown by horizontal oriented
crystallization of the near-stoichiometric melt. Dissoci-
ation in the liquid–solid–vapor system was suppressed
by controlling the selenium vapor pressure in an evacu-
ated quartz ampoule with the melt. The ingots grown
were coarse-grained.

The phase composition of the crystals was deter-
mined with a Cameca-SX 100 X-ray spectral micro-
probe analyzer. The concentration of copper, indium,
and selenium was in accordance with the chemical for-
1063-7842/05/5003- $26.00 0367
mula of the compound. The diffraction patterns taken
from various areas of the ingots corresponded to the
imperfect structure of chalcopyrite. The unit cell
parameters calculated by the least squares method from
reflections in the range 2θ > 60° were found to be a =
5.766 ± 0.001 Å and c = 11.499 ± 0.005 Å, which
agrees with the known data for this compound [4].

(2) As can be judged from the sign of the thermal
emf, these crystals, like those grown by the vertical
Bridgman method [3], have p-type conductivity at
300 K. However, the resistivity ρ of the horizontally
grown ingots turned out to be several orders of magni-
tude higher than in the vertically grown ones. This is
attributable to different offsets from the stoichiometry
in the variously grown crystals.

Figure 1 shows the temperature dependence of ρ for
one of the samples. In the temperature range 280–
380 K, this dependence is exponential,

(1)

where k is the Boltzmann constant and Ea is the activa-
tion energy of acceptor centers (under the assumption
of heavy compensation by donors, it was estimated as
Ea ≈ 0.52 eV [7]).

It should be noted that, at thermal cycling, the
curves ρ(T) do not exhibit hysteresis throughout the
temperature range under study irrespective of the rate
and sense of temperature variation. This suggests that
the coordination order of atoms in CuIn3Se5 crystals
remains unchanged (i.e., the crystals do not experience
first-order phase transitions) in the temperature range
considered.

ρ ρ0 Ea/kT( ),exp=
© 2005 Pleiades Publishing, Inc.
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(3) Light-sensitive electrodes to the cells were made
in the form of 0.1 × 5 × 10-mm rectangular sheets. An
ohmic contact was produced by thermally evaporating
a pure silver film of thickness d = 1–2 µm on the
CuIn3Se5 wafer, and the electrodes were soldered to the
film with pure indium as a solder. To avoid direct con-
tact with the electrolyte, the CuIn3Se5 surface with the
ohmic contact was covered by an insulating lacquer.
When the electrode thus prepared was immersed in the
electrolyte, only the free front surface of the CuIn3Se5

crystal was in contact with the electrolyte. As a counter
electrode of the photoelectrochemical cell, a sharpened
platinum wire (d ≈ 0.3 mm) or a quartz window covered
by a high-conductivity transparent In2O3 film was used.
The photoelectric response of the cells was studied in
the fast photovoltage mode at a light flux modulation
frequency f = 20 Hz. Distilled water served as an elec-
trolyte.

As follows from the steady-state I–V characteristics,
the rectification ratio (the ratio between the forward and
reverse currents at a bias |U| ≈ 5 V) of the cells equals
≈10 as a rule. Illumination of the cells reproducibly
caused the photovoltaic effect. Importantly, the photo-
voltage sign is independent of the incident photon
energy throughout the sensitivity range of the cells,
photon fluence, and position of the light probe
(≈0.4 mm in diameter) over the light-reception area.

6

2.5 3.0

ρ, Ω cm

103/T, K–1

5

3.5

7

Fig. 1. Temperature dependence of the resistivity of the
CuIn3Se5 crystal grown by the horizontal Bridgman
method.
The open-circuit photovoltage and the short-circuit
photocurrent are, respectively, the logarithmic and lin-
ear functions of the incident photon flux density. The
cells were invariably more sensitive when exposed
from the side of the electrolyte, and the best structures
offered a sensitivity as high as Sm = 7500 V/W. This
value exceeds the sensitivity value obtained in our ear-
lier In/p-CuIn3Se5 and ZnO : Al/p-CuIn3Se5 solid-state
structures (see table), which were made on the same
crystals as the H2O/CuIn3Se5 cells. It should be noted
that CuIn3Se5-based cells do not exhibit any degrada-
tion of the photosensitivity. Therefore, there is reason to
think that the CuIn3Se5 crystals under study, as well as
other compound diamond-like semiconductors, are
highly stable against photocorrosion [8, 9].

Figure 2 compares the typical spectral dependences
of conversion quantum efficiency η("ω) (this efficiency
is defined as the ratio of the short-circuit photocurrent
to the number of incident photons) for the H2O/p-
CuIn3Se5 cells and In/p-CuIn3Se5 and ZnO : Al/p-
CuIn3Se5 solid-state structures. The photoelectric
parameters of both structures are listed in the table.
From Fig. 2, it follows that the energy position of the
long-wavelength photosensitivity edge, as well as the
energy position of photosensitivity absolute maximum

100

1 meV

η

"ω, eV

103

102

101

2.0 3.0

1

2

3

1.0

Fig. 2. Spectral dependences of the conversion quantum
efficiency for (1) H2O/p-CuIn3Se5, (2) In/p-CuIn3Se5, and
(3) ZnO : Al/p-CuIn3Se5 structures at T = 300 K. The struc-
tures were illuminated by natural light from the side of
(1) H2O, (2) In, and (3) ZnO. The spectra are slightly
shifted along the vertical axis to avoid superposition.
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"ωm, do not change in going from the solid-state struc-
tures to the photoelectrochemical cells (see table). The
fact is that the energy position of the long-wavelength
edge in these structures, while so different, depends on
band-to-band absorption in CuIn3Se5. Therefore, the
long-wavelength edge of photosensitivity in all the
structures is linearized in the coordinates (η"ω)2–"ω
(Fig. 3) and extrapolation of the curves in the limit
(η"ω)2  0 yields close values of the cutoff energy.
According to the theory of band-to-band absorption in
semiconductors [10], this energy corresponds to the
energy gap of the CuIn3Se5 ternary semiconductor
compound (see table) and direct optical band-to-band
transitions.

In the photoelectrochemical cells, the spectral range
of high photosensitivity is wider than in the solid-state
structures, as represented by the FWHM δ of the spec-
tra η("ω) (see table). For the solid-state structures, this
parameter is no greater than 0.34; for the cells, it is

0
1.05

(η"ω)2

"ω, eV

0.2

1.20

0.4 1

2
3

1.10 1.15

Fig. 3. (η"ω)2 vs. "ω for the structures based on the
CuIn3Se5 crystals grown by the horizontal Bridgman
method. (1)–(3) Mean the same as in Fig. 2.

 
Photoelectric properties of the CuIn3Se5-based cells at T = 300 K

Structure "ωm, eV Sm, V/W δ, eV Eg, eV

In/CuIn3Se5 1.15 30 0.17 1.08

ZnO/CuIn3Se5 1.15 80 0.12–0.34 1.07

H2O/CuIn3Se5 1.16 7500 0.9 1.12
TECHNICAL PHYSICS      Vol. 50      No. 3      2005
nearly three times higher. This fact, combined with the
photosensitivity value Sm = 7500 V/W, indicates that the
interface in the photoelectrochemical cells is of lower
recombination activity than that in the In/p-CuIn3Se5
and ZnO : Al/p-CuIn3Se5 solid-state structures.

Thus, even early samples of photoelectrochemical
cells based on the CuIn3Se5 ternary compound with an
ordered arrangement of vacancies offer a higher photo-
sensitivity and a wider spectral range of high photosen-
sitivity than well-known In/p-CuIn3Se5 [3] and ZnO :
Al/p-CuIn3Se5 [11] solid-state structures. Our results
demonstrate that these cells may be viewed as candi-
dates for wide-band photoelectric converters.
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Abstract—It is shown that a rotating body containing a permanent magnet may be in stable noncontact equi-
librium when placed in the field of a stationary magnet. It is assumed that the magnets are of a cylindrical shape
and their magnetizations are aligned with the cylinder axis. The field of the magnets is simulated by two turns
with direct current, which makes it possible to analytically find the forces and force moments acting on the mov-
able magnet subjected to the field of the stationary one. Instability of the equilibrium state of a suspended body
when its weight is counterbalanced by the repulsive force exerted by a stationary magnet follows from the Earn-
shaw theorem. It is demonstrated here that such instability may be removed with gyroscopic forces due to rota-
tion of the suspended body. It turns out that the rotation of the movable magnet may stabilize not only its unsta-
ble angular but also translational degrees of freedom, which is a newly discovered effect. © 2005 Pleiades Pub-
lishing, Inc.
INTRODUCTION

According to the Earnshaw theorem [1, 2], a set of
stationary particles that interact with forces that are
inversely proportional to the particle spacing squared
cannot be in stable equilibrium. The forces of interac-
tion between electric charges, elementary currents, and
permanent magnets, as well as gravitational forces, are
examples. It is because of the Earnshaw principle that
many attempts to design passive noncontact suspen-
sions using permanent magnets have failed. In our case
of two axially magnetized cylindrical magnets, this
equilibrium state is easy to realize in practice. If the like
poles of the magnets face each other (see Fig. 1) and the
lower magnet is fixed, one can find a point on its axis
where the weight of the upper (movable) magnet is
counterbalanced by the repulsive force from the lower
one. Figure 2 plots repulsive force F(h) between two
coaxial magnets against their center distance. The inter-
section of curve F(h) with the straight line of constant
weight mg gives two equilibria. The upper one (on the
right of Fig. 2) is stable against vertical displacements.

However, the system possesses two double instabil-
ities. The movable magnet tends to rotate through 180°
and shift normally to the axis. Martynenko [3] showed
that a charged particle being in unstable equilibrium in
a static electric field may be changed to stable equilib-
rium when placed in a sufficiently high magnetic field,
which acts in the same manner as gyroscopic forces.
Denisov [4] demonstrated that the conservative stabil-
ity of such a system may be raised to asymptotic stabil-
ity by introducing dissipative forces in the rotating
coordinate system.
1063-7842/05/5003- $26.00 0370
In this work, we show that rotation of the movable
magnet may transfer it to conservatively stable equilib-
rium. Unlike the standard gyroscopic stabilization tech-
niques, the approach proposed provides stabilization
not only of angular but also of translational degrees of
freedom. The forces and force moments acting on the
movable magnet when it is slightly offset from equilib-
rium are determined using the results of [5], where pon-

h2

mg

F(h)

ω

R2

0

j2

h

h1 R1

j1

0'

Fig. 1. 
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deromotive interaction between two cylindrical axially
magnetized magnets was found.

1. PROBLEM DEFINITION 
AND ASSUMPTIONS

It is assumed that the movable magnet (which a
coaxial rigid body is attached to) placed in the field of
the coaxial stationary one is in equilibrium when the
magnets are h distant from each other, h far exceeding
the thicknesses h1, 2 of the magnets. The currents in the
magnet-simulating turns can be written as I1 = j1h1 (sta-
tionary magnet) and I2 = j2h2 (movable magnet), where
j1, 2 are the surface current densities, which depend on
the magnet materials and produce their axial magneti-
zation. The currents in the turns are in opposition to
each other. In Fig. 3, the turns with the currents are
shown together with translational and angular displace-
ments. The stationary and movable turns (numbered 1
and 2, respectively) are related to coordinate systems
(0, ζ, η, ξ) and (0', ξ', η', ζ') with their origins at the cen-
ters of the respective turns. The movable body is
assigned a mass m (the center of mass coincides with
the center of the turn), as well as axial, C, and equato-
rial, A, inertia moments.

In the generalized coordinates, the position of the
movable body (given by vector q) is specified by
(i) translational displacements ξ, η, and ζ–h of its cen-
ter of mass; (ii) Krylov angles of inclination, ϑ1 and ϑ2,
of its axis 0'ζ' to the 0ζ vertical axis of the stationary
magnet (turn 1); and angle ϑ3 of its own rotation about
the 0'ξ' axis of symmetry of the movable magnet. In
noncontact equilibrium (Fig. 1), the generalized coordi-
nates (degrees of freedom) of the movable magnet have
the values

(1.1)

2. EQUATION OF MOTION OF THE MOVABLE 
MAGNET

To derive an equation of motion for the movable
magnet, let us write the Lagrangean function [6]
through deviations of the generalized coordinates from
those corresponding to equilibrium:

(2.1)

where

(2.2)

ξ0 η0 0, ζ0 h; ϑ 10 ϑ 20 0;= = = = =

ϑ 3 ϑ 30.=

L q( ) m
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dt
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2 dη

dt
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2 dζ
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+ +=
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A
2
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dϑ 2

dt
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ϑ 1cos
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2

U q( ) mgζ ,–+

U q( ) L1 2, qi( )I1I2=
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is the force function of ponderomotive interaction
between two turns with currents I1 and I2 (which is sim-
ilar to that considered in [5]) and L1, 2(qi) is the mutual
induction of the turns with currents I1 and I2, which
depends on all the generalized coordinates except angle
ϑ3. If the motion of a freely suspended body is assumed
to be nondissipative, the Lagrangean equations will
take the form

m
d2ξ
dt2
-------- dU

dξ
-------– Q1, m

d2η
dt2
--------- dU

dη
-------– Q2,= =

Fig. 2. (1) F(h); (2) mg(h); (3) k(h); and (4) o(h).
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(2.3)

where

(2.4)

is the magnitude of the kinetic moment vector for a
rotating suspended body.

This vector is constant in magnitude, since angle ϑ3
(through which the magnet rotates about its axis of
symmetry) is a cyclic coordinate. Hereafter, it is
assumed that dissipation and generalized forces Qi are
absent. Our aim is to provide stability in a conservative
approximation. For Eq. (2.3) to be used, force function
U still needs to be determined.

3. FORCE FUNCTION AND LINEARIZED 
EQUATIONS OF MOTION

The problem of finding force function U(q)
involved in the equation of motion (2.3) of the freely
suspended magnet implies finding of the contour inte-
gral

(3.1)

where µ0 is the permeability of vacuum; I1dl(1) and I2dl2
are differential current elements in the stationary and
movable turns, respectively; and |r1 – r2| is the distance
between the current elements.

Physically, the contour integral in (3.1),

is the mutual induction of two loops, which depends on
the vector q of the generalized coordinates. Currents I1
and I2 are assumed to be constant and independent of
the generalized coordinates. In the general case, the
contour integral reduces to an elliptic integral. How-
ever, if R2/h, ξ/h, η/h, ζ/h, ϑ1, and ϑ2 ! 1, this integral
admits an analytical representation that is similar to that
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found in [5]. Force function (3.1) can then be recast (up
to terms of the second order of smallness in generalized
coordinates) as

(3.2)

Function (3.2) allows for analytical expressions for
the forces and force moments acting on the movable
magnet from the field of the stationary magnet when the
coordinates of the former deviate slightly from the
equilibrium values given by (1.1). In equilibrium, the
gravitational force is counterbalanced by the repulsive
force between the magnets. According to (2.3), we get

We designate dϑ3/dt as ω, write the Lagrangean
equation in complex variables θ = ϑ1 + iϑ2 and u = ξ +
iη, and normalize them by introducing the time and
length scales

Eventually, we arrive at the dimensional equations
of motion

(3.3)

where

A number of remarks regarding force function (3.2)
and Eqs. (3.3) need to be made. First, in total agreement
with the Earnshaw theorem, the sum of the longitudinal
and two transverse stiffnesses equals zero. The param-
eters of the system should be taken such that the longi-
tudinal stiffness in equilibrium will be positive (i.e., k >
0) and the equation for longitudinal coordinate ζ1 sta-
ble. In transverse coordinates u, the stiffness is half as
high (in magnitude) and negative, which causes insta-
bility. Another reason for instability is the destabilizing
moment, which arises when the axis of the suspended
magnet is inclined. This instability in angular variables
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may be removed gyroscopically, i.e., by rotation. Sec-
ond, the transverse translational and angular coordi-
nates are interrelated (the term with ηϑ 1 – ξϑ 2 in force
function (3.2)). It is this interrelation that allows us to
look forward to stabilization by rotation in both angular
and transverse translational coordinates. To show the
possibility of such stabilization is, in essence, the goal
of this work. Third, the conventional gyroscopic stabi-
lization techniques are effective if the rotation fre-
quency exceeds some critical value (ω > ω1). In our
case, conversely, a frequency is bound to exist (ω2)
above which stability is lost, since angular deviations
tend to zero as ω  ∞ (and, consequently, the inter-
play between angular and translational coordinates dis-
appears). Fourth, the axial stiffness, being negative near
the supporting magnet; decreases in magnitude with
height, vanishes; and becomes positive (see Fig. 2,
where lift F(h) and axial stiffness k(h) are plotted
against normalized height h = h/R1). The body may be
stabilized by rotation at a small distance from the “zero
point.” Directly at the zero point, the lift is maximal and
far exceeds the weight of the suspended magnet for
high-coercivity materials. Then, there appears a broad
possibility to control the weight of the suspended body
so as to find the point in height where the stiffness has
a desired value and also to provide a desired value of
inertia moment A (and normalizing factor L). Fifth,
since both the longitudinal and transverse stiffnesses at
the zero point equal zero, the tempting idea of finding
stable equilibrium in a nonlinear approximation (the
Lyapunov critical case of linear approximation) arises.
This, however, comes into conflict with one basic prop-
erty of harmonic function U: its minimal or maximal
value cannot be reached inside the domain where ∆U =
0. Hence, an expansion of the force function in powers
of small deviations in any order of smallness will fail.

If a solution to set (3.3) is found in the form aeisτ, the
characteristic equations of this set take the form

(3.4)

(3.5)

For the suspension to be stable, it is necessary that
the roots of Eqs. (3.4) and (3.5) be real. For (3.5) to be
stable in longitudinal coordinate ζ, it is necessary that

k > 0, i.e., that 4h2 –  > 0, which is the case for the
upper equilibrium state. One can check that (3.4) also
has a finite domain of stability. In fact, if kΞ – 1 = 0, Eq.
(3.4) has a zero root and its characteristic equation
reduces to a third-degree equation. It is known that a
third-order equation has real roots if its discriminant is
negative [7]. It is easy to check that it is negative if
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From these conditions, it follows that  is real if
k2 < 1/8. Next, from the condition kΞ – 1 = 0, it follows
that the height of the suspension must be h = 0.632R1.
To eliminate the zero root, it is assumed that kΞ – 1 =
µ ! 1. Then, the least root of the characteristic equation
is roughly equal to s1 = µ/Hk. The characteristic poly-
nomial is divided by s – s1, and the terms with s1 to a
higher power than the first are disregarded. Eventually,
it can be represented as

where b = –H, c = k +1/k + µ/k, and d = –Hk. The roots
are real if

Thus, characteristic equation (3.4) has a finite
domain of stability in parameters k, µ, and H.

4. FINDING THE DOMAINS 
OF STABILITY

It is assumed that Eq. (3.5) is stable; that is, k > 0.
The domain of stability is sought from the condition
that the roots of (3.4) are real. Equation (3.4) of the
fourth degree has three parameters, k, Ξ, and H, which
characterize the dimensionless transverse stiffness,
dimensionless destabilizing moment, and dimension-
less rate of rotation. The domain of stability was found
by numerically calculating the roots. First, a value of Ξ
was specified and then boundary values of H1 and H2
were found such that the roots remained real in some
range of k. The sweep in k, Ξ, and H makes it possible
to find the domain of stability in terms of these param-
eters. The results are summarized in Table 1.

The calculation show that there exists a lower bound
for Ξ roughly equal to 2.62 (Ξ = 2.63, k = 0.451, H1 =
2.9407, and H2 = 2.9417 also belong to the domain of
stability). For Ξ above this lowest value, there exist
finite ranges of k and H that belong to the domain of sta-
bility. In Table 1, the largest value of k is taken as close
to the upper bound of the domain of stability as possi-
ble, while its smallest value is close to the lower bound
if k > 0.01 at this bound. Near the boundary values of k,
those of H1 and H2 are almost coincident.

5. ANALYSIS OF A SPECIFIC SYSTEM

By way of example, let us consider a suspension
consisting of permanent magnets made from Sm–Co
alloy (j0 = 600 kA/m) or 21SA320 strontium ferrite
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Table 1.  Boundary values of H1 and H2 vs. Ξ and k

Ξ = 2.9 Ξ = 3.1 Ξ = 3.4 Ξ = 4.0

k H1 H2 k H1 H2 k H1 H2 k H1 H2

0.333 3.147 3.150 0.220 3.2812 3.2825 0.05 3.473 3.474 0.01 3.850 4.010

0.340 3.149 3.156 0.250 3.289 3.300 0.10 3.482 3.497 0.04 3.852 4.043

0.350 3.152 3.164 0.337 3.303 3.401 0.20 3.495 3.577 0.08 3.854 4.096

0.360 3.154 3.175 0.370 3.386 3.486 0.335 3.790 3.881 0.15 3.858 4.218

0.380 3.159 3.202 0.380 3.520 3.525 0.336 3.805 3.887 0.24 3.863 4.489

0.403 3.198 3.249 0.377 3.826 3.892 0.27 4.017 4.654

0.409 3.257 3.267 0.343 3.927 3.931 0.285 4.758 4.783

θ = 70 Θ = 14.0 Θ = 30.0 θ = 60.0

0.01 5.235 7.866 0.01 7.465 21.104 0.01 10.949 67.096 0.01 15.490 202.49

0.04 5.236 8.109 0.02 7.465 21.639 0.02 10.949 71.781 0.015 15.490 222.49

0.12 5.236 9.122 0.03 7.465 22.247 0.03 10.949 78.821 0.018 223.652 243.51

0.15 7.586 9.869 0.05 7.465 23.789 0.035 66.511 84.592 0.0187 251.89 252.18

0.16 10.193 10.301 0.07 7.465 26.214 0.037 87.007 88.231

0.161 10.325 10.361 0.08 28.425 28.541 0.0374 89.130 89.253

Table 2.  Parameters of the magnets and top

j1, j2,
kA/m

d2,
mm

mmax,
g

m1,
g

m2,
g

R2,
cm

A,
g cm2

C,
g cm2

L,
cm Ξ k H1, H2 f, Hz

600 16 395 8.2 375 9.97 4.99 0.92 Unstable

600 10 154 3.2 140 6.1 3.05 1.50 "

600 5 39 0.8 30 2.82 59.6 119 1.41 3.25 0.26, 0.28 3.41–3.47 5.06–5.15

250 20 32 8.6 20 2.30 37.3 57.2 1.14 7.3 0.13, 0.14 5.66–10.03 12.2–21.6

250 16 21 5.5 12 1.78 16.5 20.8 0.97 8.6 0.10, 0.11 5.83–12.28 16.5–34.8
(j0 = 250 kA/m) and a Plexiglas inert mass (top) of den-
sity 1.2 g/cm3 (Table 2). The diameter and height of the
lower magnet are taken to be 55 and 15 mm (Sm–Co)
or 100 and 15 mm (strontium ferrite), respectively. The
respective heights of the suspended magnet and cylin-
drical inert mass are taken to be 5 mm and 1 cm. Our
aim is to calculate the maximal lift (and the correspond-
ing maximal mass mmax that can be held in place) and
the mass m1 of the suspended magnet for its different
diameters d2. Let inertial mass m2 be such that the sum
of this mass and the mass of the magnet is somewhat
smaller than the maximal value. We start with calculat-
ing the radius R2 of the inertial mass, inertia moments,
reduced radius L, and (knowing the reduced radius) Ξ.
From found Ξ and Table 1, one can judge whether the
domain of stability is reached, as well as find permissi-
ble values of k and the range of rotation frequencies
where the suspension is stable. In Table 2, for those val-
ues of Ξ belonging to the domain of stability, two val-
ues of k are shown at which the allowable range of rota-
tion frequencies is rather wide. The calculated range of
rotation frequencies, which is common for both k, is
given in both dimensionless (H1, 2) and dimensional
form (f, Hz).

From Table 2, it follows that, when the diameter of
the upper Sm–Co magnet equals 10 and 16 mm, Ξ <
2.62 and the suspension is unstable. When the diameter
of this magnet is 5 mm, the system becomes stable in a
narrow range of large k. For the case of the strontium
ferrite magnets (the diameter of the lower magnet is
larger than in the case of the Sm–Co magnets), the
destabilizing moment has a moderate value (Ξ = 7.3
and 8.6) and the system is stable in an appreciably wide
range of rotation frequencies and at a not too low trans-
verse stiffness.

CONCLUSIONS

Martynenko [3] demonstrated that the Earnshaw
prohibition for stable confinement of a charge in the
field of other charges may be removed by introducing a
magnetic field. The Lorentz force arising in this case
acts like gyroscopic forces. Stabilization is possible if
the degree of instability is odd. Accordingly, the signs
and arrangement of the charges are taken such that dis-
TECHNICAL PHYSICS      Vol. 50      No. 3      2005
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placements along the axis of the charges will be stable
and those in two transverse directions unstable. In our
case, the situation is similar, while somewhat more
complicated. For two magnets with their like poles fac-
ing each other, axial displacements are stable and trans-
verse displacements are unstable. However, instability
in two angles is added in this case. The angular instabil-
ity is removed by conventional means (gyroscopically,
i.e., by rotation of the top). Unlike [3], “gyroscopic
forces” here act in angular, rather than in transverse
translational, coordinates. The feasibility of such stabi-
lization is proved in this work. It is of fundamental
importance that the transverse instability can be
removed by rotation only if the angular instability takes
place. It is easy to find an arrangement of the magnets
such that the stabilizing, instead of the destabilizing,
moment arises in the presence of the transverse insta-
bility. It suffices to interchange their positions and
match the orientations of the fields. In such a system,
stabilization by rotation is impossible.
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Abstract—The evolution of the plastic strain macrolocalization pattern in low-temperature creep of commer-
cial purity aluminum is studied. The localization pattern depends on a stage in the creep curve. At the stage of
steady-state creep, localization zones propagate in the form of a wave traveling with a velocity proportional to
the rate of buildup of the total strain. It is found that the volumes where the creep and strain localization wave
propagation are activated equal each other. Based on estimates of the activation volumes, it is shown that the
velocity of plastic strain localization waves is governed by thermally activated dislocation movement. © 2005
Pleiades Publishing, Inc.
INTRODUCTION

Macroscopic localization of plastic flow, which is
observed throughout the process from the yield point to
failure, may develop as a self-excited phase wave [1–4]
when equidistant plastic flow zones move with a uni-
form velocity along an object under load. This type of
localization was first discovered at the stage of linear
hardening [1] in stretching of Cu–Ni–Sn single-crystal
alloy in the state of supersaturated solid solution. Later,
self-excited phase waves of strain macrolocalization at
the stage of linear hardening under dynamic loading
were observed in pure single-crystal and polycrystal-
line metals and alloys with different crystal structures.
A dispersion relation for these waves was derived, and
the dependence of their velocity on the strain hardening
coefficient was found [2–4]. However, strain localiza-
tion under other test conditions, e.g., under creep, has
not been studied (the only exception is our work [5]).

Results of creep tests contain more information and,
specifically, make it possible to determine the type and
activation parameters of micromechanisms underlying
plastic flow from macroscopic measurements [6]. In
this work, an attempt is made to reveal the type of strain
macrolocalization under creep.
1063-7842/05/5003- $26.00 0376
EXPERIMENTAL

The specimens used were recrystallized A85 com-
mercially pure aluminum crystals (for their chemical
composition, see the table). Planar specimens, double
blades with operating part dimensions of 40 × 6 ×
1.8 mm, were stamped out from cold-rolled sheets and
then subjected to recrystallization annealing at 775 K
for 2.5 h. The specimens recrystallized had grains of
size D = 75 ± 8 µm, and their conventional yield
strength was σ0.2 = 53 ± 7 MPa.

Creep tests were carried out on an Instron-1185 test-
ing machine at different stress levels σ. From the time
of load application on, the general elongation ε(t) of the
specimen as a function of time was monitored. Concur-
rently, the displacement vector (r) field for points on the
surface of the specimen being deformed was recorded
by the method of speckle interferometry [7]. Speckle
images were taken in strain increments of 0.2%.

Numerically differentiating displacement field
r(x, y) with respect to coordinates, one can obtain the
components of the plastic strain tensor in the plane
stress state (for details, see [3]). Here, we will keep
track of local elongation εxx along the axis of tension,
which is the most suitable component for studying the
distribution of plastic flow macrolocalization and, at the
same time, carries much information. The distributions
Chemical composition of the aluminum specimens studied in this work (wt %)

Si Fe Pb Ga Zn V Ti Ni Mn Mg Cu Al

0.15 0.07 0.016 0.01 0.008 0.005 0.0035 0.0035 0.0025 0.002 0.0014 Remainder
© 2005 Pleiades Publishing, Inc.
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of other important components (shear εxy and rotation
ωz) are much more complicated.

RESULTS AND DISCUSSION

We analyzed the creep curves shown in Fig. 1,
which were obtained at stresses of 64.8, 62.5, and
60.2 MPa. The curves have three characteristic stages
[7]. Fitting of the curves (Fig. 1, curve a, σ = 64.8 MPa)
shows that ε(t) can be approximated as ε = 2 × 10–2lnt +
0.2 for the unsteady stage and as ε = 5 × 10–4t + 0.25 for
the steady stage. Such behavior is consistent with the
conventional concepts of creep [8]. Further on, we will
concentrate on the steady stage, where the creep rate is
constant,  = const, and is convenient to compare with
the parameters of local strain distribution evolution.

At the steady stages of creep, the distributions of the
component εxx of the plastic strain tensor over the spec-
imen turned out to be periodic for all the stresses. These
distributions are similar to the patterns observed at the
stage of linear strain hardening under dynamic loading
[1–4] (Fig. 2). At each time instant, the plastic strain is
localized within particular equidistant zones of the
specimen. Regions adjacent to the strained zones
remain virtually intact (unstrained). The spatial period
(the wavelength λse of the self-excited wave) of the set
of localization zones remained constant throughout the
stage of steady creep, 3.5 ± 0.5 mm. It did not change
either when the applied stress was varied. The same
pattern was observed earlier [5], but the wavelength of
the self-excited wave in that work was 6.0 ± 1.0 mm.

The analysis of the local elongation distributions
showed that the velocity of the localization maxima at
the steady stage is uniform. For each of the stresses, the
velocities of the localization zones were determined by
the technique used in [3]; that is, the positions of the
localization zones, x, were plotted against deformation
time (Fig. 3). For each of the maxima of εxx, such a
dependence is a straight line, the coefficients of corre-
lation between t and x being no less than 0.99. From the
slope of these straight lines, one can find the velocity of
macrostrain localization zones (the velocity of the self-
excited wave); from the spacing between the zones, the
wavelength λse of the self-excited wave. It became
obvious that traveling self-excited waves of macros-
train localization arise at the steady stages of creep,
which are similar to those observed at the stages of lin-
ear hardening under dynamic loading.

For the stress interval studied, it is established that
the velocity of the self-excited waves is a linear func-
tion of the creep rate at the stage of steady creep
(Fig. 4). Earlier [5], this fact was observed for self-
excited waves with one-order-of-magnitude-lower
velocities, so that our findings correlate with the results
of that work. The quantitative difference between them
stems from the fact that, in [5], the experiments were
performed on Al specimens with a grain size of

ε̇
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≈10 mm. Because of this, the level of deforming
stresses decreases by a factor of 1.5–2.0; accordingly,
the creep rate is an order of magnitude lower. More-
over, the wavelength of the self-excited wave usually
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Fig. 1. Creep curves obtained at (a) 64.8, (b) 62.5, and
(c) 60.2 MPa.
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Fig. 2. Local elongation distribution over the specimen at
the steady stage of creep. σ = 62.5 MPa, ε = 0.172.
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Fig. 3. Dynamics of strain localization zones at the linear
stage of creep for the Al specimens at σ = 60.2 MPa.
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grows in coarser grains. The dependence λse(D) for Al
under dynamic loading was investigated in a wide
range of D [3], and it was found that λse ~ lnD for D >
50 µm.

The proportionality between the velocity of self-
excited waves and the creep rate suggests that the
micromechanisms behind creep and propagation of
self-excited strain localization waves are identical. It is
known [8] that creep in metals is governed by thermally
activated motion of dislocations and the creep rate is
given by the kinetic relationship

(1a)

where Uc is the activation energy of creep;  = const;
k is the Boltzmann constant; T is the temperature; and
γc is the force constant [9], which is represented as the

ε̇c ε̇∞
Uc γcσ–

kT
---------------------– 

  ,exp=

ε̇∞
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Fig. 4. Velocity of the self-excited waves vs. creep rate at the
steady stage.
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Fig. 5. (1) Creep rate and (2) strain localization wave veloc-
ity under different stresses.
product of the true volume of activation and the coeffi-
cient of atomic bond overstress. With this coefficient,
average stresses can be converted to local stresses act-
ing at the site of a thermal fluctuation event.

In fact, in coordinates ln –σ, the curve (σ) is
approximated well by straight line 1 in Fig. 5. At the
steady stage of creep, the Vse versus σ dependence is
approximated by curve 2 in Fig. 5,

(1b)

where V0 = const.
From the slope of straight lines 1 and 2, one can esti-

mate the values of γc and γse for creep and propagation
of self-excited localization waves, respectively,

(2)

The values γc = 2.9 × 10–26 m3 and γse = 2.2 ×
10−26 m3 estimated with (2) are close to each other but
differ from those obtained in [5] for coarse-grain Al.

According to [10], low-temperature creep (below
400 K for Al) proceeds via dislocation glide in a set of
local obstacles (stoppers) that are overcome by thermal
activation. In this case, γ = bdl [9, 10], where b is the
Burgers vector. If a stopper is d ≈ b across, one can
assume that the overstress coefficient is proportional to
the length l of a dislocation loop unpinned by thermal
activation. In Al, b = 0.286 nm [10], and so l ≈ γ/b2 ≈
270 nm. The order of l can be estimated from the mean
spacing between dislocations of a forest, l ≈ ρ–1/2, which
act as pinning centers, at a reasonable dislocation den-
sity (ρ ≈ 1.5 × 109 cm–2).

The coincidence of force constants γc and γse of the
micromechanisms responsible for the creep rate and the
propagation velocity of self-excited waves of plastic
flow localization is hardly accidental. In a number of
works [3, 11], we studied the velocity of plastic flow
localization waves as a function of the coefficient of lin-
ear strain hardening under dynamic loading. It was
found that this velocity depends on the ratio between
the densities of mobile and sessile dislocations, as well
as on the characteristic size of the dislocation structure
being formed. Thus, the dislocation mobility plays an
important part under both dynamic loading and creep.
In the latter case, its effect seems to be more distinct.

CONCLUSIONS

(1) Plastic strain is macroscopically localized under
creep as well. At the stage of steady creep, the wave pat-
tern of strain localization is observed, which is gener-
ally similar to the pattern at the stage of linear harden-
ing under dynamic loading.

(2) The velocity of localized plastic flow waves var-
ies in proportion to the rate of steady creep.

ε̇ ε̇

V se V0
Use γseσ–

kT
------------------------– 

  ,exp=

γ kT
∂

∂σ
------ ε̇ln( ).=
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(3) The coincidence of the activation volumes esti-
mated from the stress dependences of the creep rate and
self-excited wave velocity suggests that both creep and
self-excited wave propagation have a dislocation
nature.
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Abstract—Results are presented from experimental studies of autonomous long-lived plasma objects in free
atmosphere with a visible afterglow lasting 2 s. The experimental setup is described, and the energy conditions
ensuring the generation of such plasma objects are determined. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Studies of long-lived plasma objects (LPOs) are
mainly related to the problem of ball lightning (BL).
This problem has been actively studied over a long time
both theoretically and experimentally [1–12].

Studies of LPOs that are remote from both the dis-
charge chamber wall and energy sources are important
for understanding the nature of BL, testing lightning
protection systems, plasma chemistry, creating high-
power pulsed open sources of optical radiation, and
accumulation and transportation of electromagnetic
energy.

Experimental studies aimed at generating plasma
objets possessing some properties of BL (shape, size,
color, velocity, lifetime, and decay) under laboratory
conditions are reviewed in [13]. There are various
means for generating LPOs: an erosion discharge
[14, 15], a capillary discharge [16, 17], a microwave
discharge and its modifications [18], etc. Since natural
BLs occur in free atmosphere, most of the experiments
were performed with atmospheric air.

Experiments in which the working medium is air
saturated with water vapor seem to be the most promis-
ing, because such a medium most closely models natu-
ral conditions for the origin of BL. Using an erosion
discharge, one can produce glowing objects with a
diameter of 7–19 cm and lifetime of 0.5–1.0 s [19, 20].
It is shown experimentally that LPO lifetime depends
on many parameters: the size and shape of the central
electrode, the discharge voltage, the amplitude and
duration of the current pulse, and the temperature and
conductivity of the water deposited on the electrode
[21].

In most experiments, a capacitor bank was used as a
power supply (e.g., in [14], the capacitance was varied
from 650 µF to 5 mF and the stored energy was varied
from 50 to 200 J, while in [15], these quantities were
216 µF and 100 kJ, respectively) and the current pulse
duration was a few microseconds. Over such a short
1063-7842/05/5003- $26.000380
time, an LPO decays before it transforms into a stable
structure.

The aim of this study was to produce LPOs with an
afterglow time of up to 2 s in free atmosphere at normal
pressure. For this purpose, an inductive energy storage
unit with a current pulse duration of ~100 ms and high
stored energy (of about 500 kJ) was used. No additives
to the discharge plasma other than the products of elec-
trode material erosion were used.

EXPERIMENTAL FACILITY FOR GENERATING 
LPOs

The experimental setup for producing and studying
LPOs consisted of four main parts: a power supply,
switches, a generator, and a system for monitoring the
LPO parameters [12, 22, 23]. A schematic of the exper-
imental setup is shown in Fig. 1. The storage induc-
tance was fed from nine VAKG-12/6-3200 rectifiers
connected in parallel. The parameters of the power sup-
ply were as follows: the input circuit voltage was 380 ±
38 V, the circuit frequency was 50 Hz, the rated output
power was 38.4 kW, the rated rectified current was
3200 A, and the rated rectified voltage was 12 V (mode I)

1

2 3

4

5 6

7

L0

Fig. 1. Schematic of the experimental setup: (1) block of
nine VAKG-12/6-3200 rectifiers, (2) MGG-10-U3 switch,
(3) VMG-10 switch, (4) plasma gun, (5) program mecha-
nism, (6) recording system, (7) 75ShSMUZ shunt, and (L0)
storage inductance.
 © 2005 Pleiades Publishing, Inc.
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or 6 V (mode II). Electric energy (about 500 kJ at a
feeding current of 3000 A) was stored in the inductive
storage with a total mass of 4000 kg. The power circuit
was switched by an MGG-10-U3 switch (with a break-
ing current of 45 kA, turn-on time of ≤0.4 s, and clear-
ing time up to arc extinction of 0.14 s) and a VMG-10
switch. LPOs were produced using a plasma gun made
of nonmagnetic materials.

The facility operated as follows: After switch 2 was
turned on, the storage inductance L0 = 6.5 × 10–4 H was
connected to rectifier bank 1. When the stored magnetic
energy reached a necessary value, the storage induc-
tance was switched to load 4 (plasma gun) by switch 3.
After 0.07 s, switch 2 was turned off and the diaphragm
of the plasma gun exploded under the action of the
break induced current. The 0.07-s time interval was
chosen in order for the diaphragm to remain unde-
stroyed at a feeding voltage of 4 V and, at the same
time, for switch 2 to provide a quite reliable contact.
The switches, rectifiers, and recording system 6 were
controlled by program mechanism 5. The current in the
discharge circuit was measured using shunt 7.

The main component of the facility was a plasma
gun used to generate autonomous LPOs in free atmo-
sphere with an afterglow time of up to 2 s. A schematic
of the plasma gun is shown in Fig. 2. The discharge was
initiated with the help of 100-mm-diameter conducting
diaphragm 4 composed of seven 8-µm Al foils. This
number of foils was experimentally shown to be opti-
mal. The diaphragm was placed on dielectric plate 3
(textolite, Plexiglas, cardboard, etc.), to which it was
pressed by ring electrode 2, made of a nonmagnetic
material (stainless steel or brass). Electrode 1, made of
two to eight (depending on the experimental condi-
tions) stranded wires with diameters of 1.0–2.4 mm,
was connected to the diaphragm center. The opposite
ends of the wires were connected (over a circle) to elec-
trode 6. To reduce the effect of the magnetic field gen-
erated by electrode 6 on the formation of LPOs, elec-
trode 6 was placed below the discharge gap, whereas
the current was supplied to electrode 5 via guide racks 7.
All the elements were made of nonmagnetic materials
and set on support 8. It was shown experimentally that
the use of magnetic materials hindered the formation of
stable LPOs; this was indicated by the fact that, in this
case, the afterglow time was as short as a few tenths of
a second. The design of the gun was rather compact and
allowed one to vary the LPO size by changing the inner
diameter D of the ring electrode from 60 to 150 mm.

The parameters of the experimental setup and LPO
were simultaneously recorded on a UF-67-135 photo
paper using a K-115 oscilloscope. Figure 3 shows typ-
ical waveforms of the current I, voltage U, and visible
radiation intensity P recorded with the K-115 loop
oscilloscope. The discharge current was recorded by
the oscilloscope indirectly, using the voltage drop
across the 75ShSMUZ shunt. The discharge voltage,
including the electrode voltage drops, was measured
TECHNICAL PHYSICS      Vol. 50      No. 3      2005
between the axial and ring electrodes. The discharge
current and voltage were recorded by the oscilloscope
with the help of MO14-1200 galvanometers with an
accuracy of 5%. The optical characteristics of LPOs
were recorded using an AIETs2-S photometer with an
F-2 vacuum photodetector. The operating spectral
range of the photocathode (at a half-maximum level)
was 320–600 nm. Special measurements showed that
the time constant of the photometer was no more than
5 ms.

EXPERIMENT

Figures 4 and 5 show photographs of the experimen-
tally obtained autonomous LPOs. The photographs
were taken manually from a distance of 4 m on the
Kodak-400 color film using a Zenit ET photo camera
equipped with an MIR-1V lens (with a relative aperture
of 8 and an exposure of 1/125 s). At the bottom of the
photographs, parts of the plasma gun can be seen. In the
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Fig. 2. Plasma gun: (1) central electrode, (2) ring electrode,
(3) dielectric plate, (4) conducting diaphragm, (5, 6) elec-
trodes, (7) guide racks, (8) support.
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initial stage, the LPO has a mushroom shape (Fig. 4),
and by the end of the formation process, it transforms
into a sphere (Fig. 5) with a diameter of 35–40 cm. It
should be noted that the above photographs present the
results obtained in different discharges. The dark verti-
cal structure overlapping the periphery of the sphere is
the holder of the measurement system. One second
after the termination of the energy supply, the distance
from the center of the sphere to the plasma gun was
70 cm. In the case at hand, the current amplitude was
10.2 kA and the current pulse duration was 100 ms.

Revealing physical processes responsible for the
prolonged afterglow of the observed LPOs is beyond
the scope of this study. Note, however, that photometric
measurements of the LPO glow showed that the total
radiation energy emitted by an LPO exceeds the sum of
the thermal energy of particles, the ionization energy,
and the energy of phase transformations in the con-
densed disperse phase. Depending on the experimental
conditions, the radiated energy varied from 1.6 ± 0.7 to
10.8 ± 4.4 kJ. Hence, a fraction of the energy might be
stored in, e.g., an electromagnetic field; i.e., an autono-
mous LPO can be regarded as a mirrorless photon trap.

10 cm

Fig. 4. LPO in the initial stage of formation.
This is confirmed by the fact that, in about one-tenth of
the experiments, the LPO glow intensity somewhat
increased prior to its decay (a “hump” in the radiation
intensity in Fig. 3). Such behavior cannot be explained
using a cooling plasma concept.

Experiments showed that there were certain thresh-
old parameters (or critical experimental conditions)
under which LPOs arose in free atmosphere and existed
for a rather long time. It was found in [19] that the dura-
tion of the LPO afterglow depended nonlinearly on the
discharge energy (as well as on the discharge current).
As a first approximation, the duration of the LPO after-
glow on the discharge energy was assumed to be linear
and was determined by the least squares method. The
intersection of this linear dependence with the abscissa
(where the lifetime is zero) gave an energy of 40 kJ,
which corresponded to the discharge energy at a current
of 10.4 kA. However, there is no sufficient reason to
seek for the dependence of the LPO lifetime on the dis-
charge energy in such a form. The actual behavior is
more complicated, and the criterion for the formation
of LPOs is still unknown. The observed statistical rela-
tionship between the LPO lifetime and the deposited
electric energy can be regarded as fairly appropriate
(the correlation factor is 0.32 for a significance of χ2 =
0.1). This means that the statistical relationship is deter-
mined by a more complicated combination of the
parameters, which has yet to be found.

Fig. 5. LPO at the end of the formation stage.
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CONCLUSIONS
Experiments on the generation of autonomous

LPOs with energy densities comparable to those typical
of natural ball lightnings have been carried out. For
autonomous LPPs with a diameter of 30 cm and stored
energy of 10 kJ, the calculated energy density is
~0.7 J/cm3, which agrees with the data for BLs [9]. In
BLs, the energy density varies from 2 × 10–3 to 2 ×
102 J/cm3, the average energy density being relatively
low, on the order of 1 J/cm3.

An analysis of the video and photo information, as
well as the waveforms of the glow intensity, shows that
it is possible to obtain autonomous LPOs with a diam-
eter of 30–35 cm and a visible afterglow lasting 2 s.
Depending on the experimental conditions, the radiated
energy varies from 1.6 ± 0.7 to 10.8 ± 4.4 kJ.
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