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The radial motion of matter in a gravitational field with a symmetry center in a comoving
reference frame is investigated for a realistic equation of state of matter. The dynamics of the
formation of an event horizon is investigated. ©1999 American Institute of Physics.
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1. INTRODUCTION

The formation of a black-hole event horizon has
tracted a great deal of attention on the part of physicists f
long time. An enormous amount of material has been writ
on this subject~see, for example, Refs. 1–4!; nevertheless,
the treatment of this problem within the general theory
relativity has created more questions than known solutio

One of the main questions concerning this problem
still the reciprocal influence of accreting matter on a bla
hole. The motion of test particles in the field of a black ho
has so far been considered for the most part, but they, a
know, do not exhibit a reciprocal influence, which can
enormous when a falling particle achieves the speed of l
as it crosses the event horizon.

1. In this paper we consider the special, but physica
real case of spherically symmetric accretion on a cen
body without allowance for rotation. The following notatio
is adopted: the speed of lightc and the gravitational constan
G are set equal to unity. In these units the gravitational
dius for a given massM is r g52M , i.e., the radius of the
event horizon in free space for the same mass concentrat
the center.

Let us devise a likely model for the evolution of th
system. We assume that our system is a cooling massive
having a radius R0 and a gravitational radius
RG0

52M (R0), whereRG0
,R0. The matter comprising this

body is initially at rest~‘‘dust’’ with the equation of state
P5a«, whereP is the pressure in the matter,« is the energy
density, anda is a constant!. In the next moment the matte
begins to fall freely.1! If it is assumed that the gravitationa
fields are not excessively strong and that the dust density2! is
fairly small in the initial moment, a force field with a finit
energy is needed to retain it in the initial moment. After th
field is removed, the dust leaves the system and cease
interact with it after a time of the order of the size of th
system, i.e., after a time much shorter than the time du
which the dust manages to partially settle and the grav
tional fields increase dramatically. Thus, this model is phy
cally consistent.

What subsequently happens to the system? The dus
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gins to fall toward the center of the body, increasing its me
density and the gravitational radiusr g(r ) for the massM (r )
at a certain radiusr. If we would ignore the reciprocal influ-
ence of the pressure of the moving matter on the dynamic
the system and on its gravitational field, then after all of t
matter has unavoidably fallen and the inequality

r g~r !52M ~r !>r ~1!

holds at one of the pointsr of the system, an event horizo
would form at that point according to Schwarzchild’s sol
tion for a gravitational field in a vacuum, i.e., the velocity
the falling matter relative to ther 5const surfaces would
reach the speed of light~see below!. Is this what actually
happens? The attainment of the speed of light by the ma
causes a change in the sign of the interval and is therefor
invariant event, which does not depend on the choice of
reference frame.

An attempt to solve this problem in a reference fram
which is stationary at infinity leads at once to a contradictio
In fact, the analytically exact, nonstationary model, in pr
ciple, cannot be studied. If, however, a simplification is ma
and it is assumed that the system is quasistationary at a
tain moment in time in the range from one radius to a cert
radius known to be large, but still far smaller than the dime
sions of the system, then it can be stated, at the very le
that the componentsgtt(r ) and grr (t) of the metric have
singularities ~zeros and poles! in this reference frame.3!

When the parameters of the system are chosen so that
would be a region in space where the inequality~1! is sure to
be satisfied, it becomes clear that the metric does not h
singularities, regardless of whether the inequality~1! is sat-
isfied.

This can be shown by assuming that if a singularity a
pears at a certain pointr 0, the component of the metric nea
it can be represented in the form

gii ~r !'const~r 2r 0!yi,

whereyi is a certain number. When such a metric is sub
tuted into the equations, it is found that they do not hav
solution for anyyiÞ0.
© 1999 American Institute of Physics
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This apparently indicates that the singularities and t
the horizon of the rapidly moving matter are eliminated~the
right-hand side of the Einstein equations, which is equa
zero in a vacuum, becomes singular in the presence o
trarelativistic falling matter when the radial component
the three-velocity tends to unity and the radial and tempo
components of the four-velocity tend to infinity; this is al
the reason for the elimination of the singularities of the m
ric!.

However, in reality all this stems from the inapplicab
ity of the quasistationary approximation in the case of stro
gravitational fields. It is inapplicable because the passag
time in the system is highly nonuniform due to the nonu
formity of the componentgtt(r ) of the metric. This cause
the picture, which appears to be stationary far from the c
ter, to become highly nonstationary to an observer approa
ing the symmetry center of the system.

Nevertheless, this does not remove the question po
do an horizon and a black hole appear in the real nonstat
ary case?

2. An answer to the question posed can be found
selecting a comoving reference frame. The problem w
solved in this frame in Ref. 1~Sec. 103! in the special case o
a50 ~see below!. Matter is at rest in the reference fram
chosen, and its motion can be evaluated only from the va
tion of the ‘‘circumferential’’ or photometric distancesr,
which are related to the center of the system and are defi
as the circumferences of the respective circles around
center: 2pr . When the radiusr is defined as such, it is con
venient to represent the metric in the form

ds25en dt22el dR22r 2~du21sin2 u dw2!. ~2!

HereR is the coordinate of a dust particle in the comovi
reference frame or its index, anden, el, andr are functions
of R and t. It is noteworthy that at zero pressure, i.e., wh
a50, we haven50, i.e., the reference frame is simult
neously synchronous.

To solve the problem posed we write out the Einst
equation in the comoving reference frame:

r 82e2l~11rn8/r 8!2e2n~2r r̈ 1 ṙ 22r ṙ ṅ !5118par 2«,
~3a!

2ṁ81ṁm82l̇m82n8ṁ50, ~3b!

S l12m1
2

11a
ln « D50, ~3c!

S n1
2a

11a
ln « D 8

50. ~3d!

Herem52lnr, a prime denotes differentiation with respect
R, and a dot denotes differentiation with respect tot. Equa-
tions ~3! were derived in Ref. 1@Eqs. ~2!, ~5!, and ~6! of
problem 5 in Sec. 100#.

It follows from ~3d! that

n52
2a

11a
ln «1 f * ~ t !
s

o
l-

f
al

-

g
of
-

n-
h-

d:
n-

y
s

a-

ed
he

and that by transforming the timet in the interval element~2!
the function f * (t) can be set equal to@2a/(11a)# ln «* ,
where«* is a constant with the dimensions of energy de
sity, which expresses the measurement scale of«. Then

n52
2a

11a
ln

«

«*
. ~4!

We next assign the indicesR to the dust particles so tha
r 5R in the initial moment. Under such initial condition
r 8(R,t) corresponds to (n0 /n)1/3, wheren(R,t) is the con-
centration of dust particles, andn0 is its value at the initial
moment.

Let us now ascertain the conditions which must be i
posed on the initial distribution of the dust. The most impo
tant among them is that the inequality~1! need not hold
within the matter at the initial moment. It means that there
no horizon in all space in the initial moment. It thus impos
an upper limit on the initial density of the dust and on t
initial dimensions of the system. More specifically, if th
initial density distribution of the dust is set equal to«0(R),
then, according to~1!, the maximum radius of the bodyRmax

is uniquely specified by the expression

Rmax52 E
0

Rmax
4p«0~R!R2 dR. ~5!

Then, it follows from~3c! and ~4! that

]

]t
@a~l12m!2n#50

or

n5a@l12m1 f * ~R!#, ~6!

where f * (R) is an arbitrary function that depends on th
initial conditions.

3. Let us now find the initial values for all the variable
in our problem. We have already assigned these valuesr
and«. From ~4! it follows that

n052
2a

11a
ln

«0

«*
. ~7!

To find the initial value ofl we take advantage of the fac
that the problem has already been solved fora50, and we
can therefore utilize the familiar expression forl0ua50 from
Ref. 1 ~Sec. 103.6!:

l0~R!52 ln@12S~R!#, ~8!

where fora50 we have

S~R!52M ~R!/R, ~9!

andM (R) is the mass within the radiusR at the initial mo-
ment.

The expression forS(R) for an arbitrary value ofa is
the same. It can be obtained from Eq.~4! in problem 5 of
Sec. 100 in Ref. 1, where the Einstein equations in matte
the comoving reference frame were found for a system w
a symmetry center. We write out this equation:
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2e2lFm91
3

4
m822

m8l8

2 G
1

1

r 2
1

1

2en
@ l̇ṁ1~ṁ !2/2#58p«. ~10!

Expressingm in terms ofr (m5 ln r2) and combining similar
terms, we can bring this expression into the form

8pr 8«r 252@r ~r 82e2l21!#81
r 8

en
@ l̇r ṙ 1~ ṙ !2#. ~11!

Taking into account the expression~8!, as well as the fact
that, according to the expression~100.23! in Ref. 1, the
equality

2M ~r !5E
0

r

8p«~ r̃ ,t ! r̃ 2 dr̃u t5const

holds for the initial moment in time, whenṙ 50 andr 851,
we obtain the expression~9! for S(R) after preliminarily
integrating~11! over R from 0 to R.

Substituting the expression~8! into ~6! and using~7!, we
find

f * ~R!52
2

11a
ln

«0

«*
1 ln@12S~R!#2 ln R4. ~12!

4. Now, plugging~6! into ~3b! and dividing everything
by ṁm8, we obtain the expression

1

ṙ
~2 lnm81m2l!•5

n8

r 8
5a

@l12m1 f * ~R!#8

r 8
. ~13!

Sincee2n(2r r̈ 1 ṙ 22r ṙ ṅ)5(e2nr ṙ 2)•/ ṙ and introducing the
notation

U~R,t !5~ ṙ !2, Q~R,T!5r 82e2l, ~14!

we see that Eq.~3a! can be written as an equation forU:

U̇

ṙ
1aU5s, ~15!

where

a~R,t !5
1

r S 12
r ṅ

ṙ
D ,

s~R,t !5
1

r FQS 11
rn8

r 8
D 2128par 2«Gen.

This equation has a solution which satisfies the ini
conditions:

U~R,t !5
1

g* ~R,t !
E

0

t

g* ~R, t̃ !s~R, t̃ ! r̃̇ d t̃,

g* ~R,t !5expF E
0

t

a~R, t̃ ! r̃̇ d t̃G . ~16!
l

FindingU, we can obtain an expression for the square of
velocity of the matter relative to ther 5const surfaces from
the form of the metric~2! ~see Appendix 1!:

V2~R,t !5Ue2nel/r 82. ~17!

The expression forg* can easily be found:

g* ~R,t !5C~R!re2n,

where the multiplierC(R) for g* (R,t), which does not de-
pend ont, can be taken out of the integral sign in~16! and
canceled; therefore, it can be set equal to unity. Then

g* s5r 82e2lS 11
rn8

r 8
D 2128par 2«.

Alternatively, since Eq.~13! can now be rewritten as

~2 lnm81m2l!•

ṙ
5

~ ln Q!•

ṙ
5

n8

r 8
, ~18!

we obtain

g* s5
~r ~Q21!!•

ṙ
28par 2«. ~19!

Equation~16! can now be rewritten in the form

U5
en

r
@r ~Q21!2R~Q021!12am~R,t !#, ~20!

where we have introduced the notation

m~R,t !5E
t

0

4p«̃ r̃ 2r̃̇ d t̃5E
r

R

4p«̃ r̃ 2 dr̃uR5cosnt. ~21!

5. For a50, using~6!, ~9!, ~18!, and~20!, we can easily
obtain an analytically exact expression forU andV:

Ua505S~R!S R

r
21D5

2M ~R!

r
2S~R!. ~22!

Substituting this expression into~17!, we obtain the follow-
ing expression for the velocity:

Va50
2 5

2M ~R!/r 2S~R!

12S~R!
. ~23!

HenceVa5051 when r 5r g52M (R). This coincides with
the results in Sec. 100 of Ref. 1, where the problem
already been solved for this case.

6. Finally, let us consider the location of the horizon4! in
the presence of a nonzero pressure. For this purpose we
the expressions~20! and~8! for e2l0 into formula~17!. After
some relatively simple transformations, we ultimately obta

r 5
2M ~R!12am~R,t !

12Q~12V2!
. ~24!

As will be shown in Appendix 1, the horizon appears at t
point and at the time where the velocity of the falling mat
relative to ther 5const surfaces reaches unity, i.e., whe
V51. In addition, the speed of light relative to the fallin
matter at this site is also, as always, equal to unity.

Hence, according to~24! and~9!, the horizon radiusr hor

is given by the formula

r hor52M ~R!12am~R,thor!. ~25!
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Thus, the horizon is displaced to a larger radius in comp
son to the value in a vacuumr 0hor

52M (R) by 2am(R,thor).
In this case the quantitym(R,t) has the meaning of the mas
which would accumulate if we would join layers of dust wi
the initial radiusR and the thicknessdr̃( t̃ ) to one another up
to the radiusr (R,t) at the moment when thisdr̃ layer passes
through the joining point.

7. Regarding the possible values ofa, we note thata
50 corresponds to dustlike matter without interactions
tween the particles. The results obtained for them are
same@see~23!# as the results for test particles in a cent
field of massM ~see Sec. 101 in Ref. 1!. However, of course,
such an equation of state of matter cannot correspon
reality near the horizon. It is reasonable to assume that
ultrarelativistic equation of state of matter, in whicha51/3,
holds near the horizon. Therefore, the location of the hori
should probably be sought with just such a value ofa.

8. When aÞ0, it would appear that the falling matte
should be slowed under the action of the pressure grad
and the horizon should therefore form later, i.e., be displa
toward smaller values ofr, but, as we have just shown, it i
displaced toward larger values ofr by 2am(R,thor). What is
the reason for this contradiction? It can be seen from
initial equations~3! that the reason should be sought in E
~3a!. For this purpose we explore Eqs.~3a! and ~4! in the
initial moment for the casea!1. At that momentṙ 50 and
r 851; therefore, we write

@12S~R!#S 122ar
«8

« D22r r̈ S «

«*
D 2a

'118par 2«.

Since

~«/«* !2a'112a ln
«

«*
, S~R!5

2M ~R!

R
, r 5R,

after performing some relatively simple transformations,
obtain the following expression in the linear approximati
with respect toa:

r̈ 52
GM~R!

r 2 F122a ln
«

«*
G2

¹P

r F12
2GM~r !

rc2 G
24paGrr, ~26!

wherer(R,r )5«(R,r )/c2 is the density of the matter. Here
for clarity we use the ordinary~Gaussian! system of units
with GÞ1 andcÞ1. It can be seen from~26! that the first
term corresponds to the ordinary Newtonian force of grav
and the second term corresponds to the interaction force
tween the particles, i.e, the pressure gradient~just this force
is the cause of the slowing of the fall of the matter in the fi
stage!. The remaining terms do not appear in the equation
motion in the Newtonian approximation~the corrections in
square brackets are also ignored in that case!, but, as we have
already seen, the last term begins to dominate over the
ond term at high energies; therefore, a shift of the horiz
toward larger radii appears. Thus, the contradiction has b
resolved. Physically this corresponds to the ‘‘gravity of pre
sure’’ in the general theory of relativity, which surpasses
gradient terms at high energies.
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9. The analysis performed allows us to draw the follo
ing conclusions.

First, a shift of the horizon toward a larger radius
comparison to the Schwarzchild radius due to the ‘‘gravity
pressure’’ has been discovered. We stress that this effe
purely dynamic and is not observed in the static case~after
all the matter has fallen!.

Second, according to the results in Appendix 2, the e
lution of the entire system at a constant value ofa is com-
pletely specified by the energy density distribution profile
the initial moment, i.e., for example, by the normalized de
sity distribution of the matter and by the value of the para
eterS at an arbitrary point on this distribution.

If the evolution of only one spherical layer of matte
with the indexR must be described, it is completely specifie
by three dimensionless parameters in the initial momen
that layer and, in this sense, does not depend on the in
distribution of the matter in the system below and above t
layer. However, this in no way signifies the independence
the spherical layers in general, since just these three pa
eters, as will be seen from Appendix 2, govern the inter
tion of the layers. Consequently, integration of the syst
leads to a complete family of self-similar solutions.

Third, according to Appendix 2, a local extremum a
pears on theV(R)u t5constcurve for a specific choice of initia
parameters, and whenV51, it leads to the formation of a
second apparent horizon in the system~an analog of the sec
ond horizon in the Reissner–Nordstro¨m and Kerr–Newman
solutions for an electrically charged rotating static bla
hole; for an interpretation of these solutions, see, for
ample, Refs. 5 and 6!.

APPENDIX 1

We have heretofore used the term horizon to refer t
trapping surface, or an apparent horizon, as it is called in
literature.

Let us ascertain the difference between an event hori
and an apparent horizon in greater detail in an example.
assume that we already have a stationary black hole of m
M and that there is an apparent horizon atr 52M . Now we
assume that another chunk of matter with a massdM falls
into our black hole. After it falls, the radius of the appare
horizon increases to 2(M1dM ). Thus, if an observer is
placed between these radii before the additional chunk
matter falls, he would then be outside the black hole,
after the chunk of matter falls he would be inside it. T
concept of an event horizon is global and is determined
the entire course of evolution of the black hole or, sta
differently, by all the mass which falls into it at any time.

The existence of an apparent horizon, which specifie
black hole locally, is sufficient for the existence of a bla
hole. As follows from our arguments, in the spherically sy
metric case the two horizons ultimately coincide and form
static black hole described by Schwarzchild’s solutio
Therefore, we shall henceforth use the term horizon to re
to the apparent horizon.

Let us prove that the horizon in a system with spheri
symmetry forms at the moment a falling particle with a no
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zero rest mass attains the speed of light relative to
r 5const surfaces at the same point. For this purpose
write the law of motion for the particle in the form

r ~R,T!5R2E
0

tAU~R, t̃ ! d t̃. ~27!

We now assume that we are located on a dust particle
the indexR` and that we are tracking a dust particle with t
index Rp , which sends us a light beam passing through
radii r p(Rp ,t), from the large radiusr `(t). The criterion for
determining that the dust particle has not yet reached
horizon is the fact that we still see light from it, i.e., as t
light propagates it still crosses the radiir .r p . Therefore, the
criterion for determining that the dust particle has reach
the horizon is an event in which the light propagating fro
Rp can no longer cross the radiir .r p . Let us express this
criterion mathematically.

In Fig. 1 the vertical straight lineabcde denotes the
world line of anRp dust particle in the coordinatesR andt of
the comoving reference frame from the moment of resta)
to the center of the system (e) at r 50. In this case of solid
curves passing through pointse, d, c, andb denote, respec
tively, lines of constant values ofr (R,t) for r 50, r ,r hor,
r 5r hor, andr .r hor. The dashed lines emerging from the
points denote the cones within which light emitted by theRp

dust particle can propagate~light cannot propagate outsid
these cones!. Therefore, according to the criterion indicate
above, the horizon forms at the point where the cone is
gent to ther 5const line. In the figure this line is designate
as r 5r hor, and it passes through pointc. For clarity, Fig. 1
shows that the light cone intersects lines withr .r p at point
b; therefore, there is still no horizon at that point. This figu
also shows that at pointd the light cone is located entirel
above ther 5const curve passing through pointd. Conse-
quently, this light cone intersects only lines withr ,r p , and
therefore pointd is already located below the horizon.

Let us examine the expression~27! on one of the
r 5const curves and take its complete differential on t
curve:

FIG. 1.
e
e

th

e

e

d

n-

t

05dR2AU dt2
1

2
E

0

t U8~R, t̃ !

AU~R, t̃ !
dR d t̃,

or

AU
dt

dR
U

r 5const

512
1

2
E

0

t U8~R, t̃ !

AU~R, t̃ !
d t̃. ~28!

Next, differentiating~27! with respect toR, we obtain the
following expression forr 8:

r 8512
1

2 E
0

t U8

AU
d t̃.

Using this expression, we obtain the following equation fro
~28!:

dt

dRU
r 5const

5
r 8

AU
. ~29!

Thus, we have found an expression for the slope of
r 5const curve relative to theR axis.

To find the slope of a light cone, by definition, for ligh
we haveds250. It thus follows from~2! that

dt

dRU
light

5Ael2n. ~30!

According to the foregoing statements, the criterion for t
absence of a horizon is the condition

dt

dRU
light

,
dt

dRU
r 5const

. ~31!

Substituting in it the expressions~29! and ~30! and using
~17!, we obtain this criterion in the form

uVu5
AUel2n

r 8
,1. ~32!

Here, according to~29!, the rate of motion of the matte
relative to ther 5const lines has the form

uVu5
dl

dt U
r 5const

5Ael2n
dt

dRU
r 5const

.

Thus, the assertion that a horizon forms at the mom
the matter attains the velocityV51 relative to ther 5const
surfaces has been proved. The horizon surface separate
gions in whichr is space-similar and time-similar.

APPENDIX 2

To solve the equations describing collapse, we first br
them into dimensionless forms. For this purpose it is con
nient to introduce the notation

x5r /R, g5
r0~R!

^r&
5

8p«0~R!R2

3S~R!
.

In this Appendix we find the ranges of permissible va
ues ofg andS, investigate the character of collapse at the
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values of the parameters, and obtain numerical solutions
V2. We must first of all know the form of the functionr 8(x).
Differentiating ~27!, we obtain5!

r 8~x!511
1

2
RE

1

x

@ ln U~R,x̃!#8 dx̃. ~33!

Unfortunately, an analytically exact expression forr 8 can be
found only in the casea50; the character of collapse can b
assessed exactly only at that value ofa. However, the main
features of that character, as will be seen below, remain
same as in the caseaÞ0. Therefore, let us first investigat
the casea50.

Thus, we should findr 8(R,x). According to the expres
sion ~22! for U, we obtain

ln@U~R,x!#5 ln@S~R!#1 lnS 1

x
21D .

Introducing the notationy5r 82x and taking into accoun
that x85y/R, we have

~ ln U !85
S8

S
2

y

Rx~12x!
.

The substitution of this expression into~33! gives

y~x!1x215
1

2 E
1

xFRS8

S
2

y~ x̃!

x̃~12 x̃!
G dx̃. ~34!

Differentiating ~34! with respect tox, we obtain

]y~x!

]x
1a* ~x!y~x!5s* ~R!, ~35!

where we have introduced the notation

a* ~x!5
1

2x~12x!
, s* ~R!5

RS8

2S
2152

3

2
1

3

2
g.

As can be seen, Eq.~35! coincides in form with Eq.~15!, and
the initial conditions,yu t5050, are the same; therefore, th
method used to solve it is similar. The solution has the fo

y~x!5r 82x5s* FA12x

x
arctanA12x

x
2~12x!G .

~36!

Let us find the domain ofr 8. First, the condition for
compression of the matter has the formr 8<1. Second, the
condition that dust layers with differentR do not intersect6!

has the formr 8.0. Thus,

0,r 8<1. ~37!

We assume that theV2(R) curve for t5tm5const has a
local extremum, and we presume~to fix ideas! that it is a
maximum. Then the horizon appears specifically at the lo
maximum, i.e., the pointR5Rextr. We now find the condi-
tion for a maximum. First, at that point we should ha
V2(Rextr,x)5Vextr

2 . Second, since it is the first point at whic
the velocity of the matter attains the valueVextr and since the
rate of collapse increases with time, in the vicinity of th
point we should haveV2,Vextr

2 , or
or

e

al

]V2~R,tm!

]R
.0, R,Rextr,

~38!

]V2~R,tm!

]R
,0, R.Rextr.

If it turns out that~38! holds with opposite inequality
signs, there will be a local minimum on theV2(R) curve at
the pointRextr at the moment the velocityVextr is attained at
that point; i.e., the matter will attain the velocityVextr last at
that point.

The condition for an extremum is written in the form

]V2~R,x!

]R
50,

where, according to~23!,

V2~R,x!ua505
121/x

12a/S~R!
.

Differentiating this expression with respect toR, we obtain

]V2

]R U
t5tm

5
S/R

12SF2y1
123g

12S G , ~39!

where it has been taken into account thatx85y/R and
S8/S5(3g21)/R. Then, with allowance for the fact tha
0,x<1, 0,g<1, 21,y<0, and 0,S,1, the condition
~38! can be rewritten in the form

2y.
3g21

12S
, R,Rextr,

~40!

2y,
3g21

12S
, R.Rextr.

If we introduce the notationz5A(12x)/x and take into ac-
count that, according to formula~23!, z5VA1/S21, from
~40! we obtain

3

2
~12g!Fz arctan~z!2

z2

11z2G2
3g21

12S
.0, R,Rextr,

~41!

3

2
~12g!Fz arctan~z!2

z2

11z2G2
3g21

12S
,0, R.Rextr,

or for the extremum point we can write

~12g!Fz arctan~z!2
z2

11z2
1

2

12SG2
4/3

12S
50.

This formula can be used to construct the plot ofg(S,Vextr)
separating positive and negative values of the deriva
(V2)8 and to determine the character of the extremum. T
corresponding curves for various values ofVextr are shown in
Fig. 2. The regions whereV8.0 are located above and to th
right of them, and the regions whereV8,0 are located be-
low and to the left of them.

It is seen from Fig. 2 that there can be~for a definite
choice of the distribution profile of the matter in the initi
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moment and of the parameterS at a certain pointR* ) two
values ofR, at whichV51 at a certain moment in time, and
therefore, the appearance of a second horizon in the sy
is possible.

The appearance of a second horizon is no news in
physics of black holes~see, for example, the Reissner
Nordström or Kerr–Newman solution in Ref. 7!.

The results obtained in this Appendix apply to the ca
of the absence of pressure, although the casea51/3 is of
experimental interest. Therefore, we used formulas~4!, ~6!,
~8!, ~9!, ~12!, ~17!, ~18!, ~20!, and ~33! to introduce new
dimensionless variables (n̂5n2n0 , l̂5l2l0 , Û5Ue2n0,
and «̂5«/«0) and equations for them. The initial condition
for them take the form

n̂05l̂05Û050, r 085 «̂051.

Designating the new coordinates asx5r /R and j5R/R*
(R* 5const) and introducing the parameters7!

h5j]jn0 , hcr5S
113ag

12S
, h5h/hcr ,

we obtain equations for the new variables in the form

en̂/a5x4el̂, «̂5~e2 n̂/a!(11a)/2,

ln~r 82e2l̂ !5E
1

x F j
]jn̂

r 8
1

h

r 8
G dx̃, ~42!

Û5en̂F r 82e2l̂~12S!211
S

x
2a

3gS

x E
1

x

«̂ x̃2 dx̃G ,
r 8511

1

2 E
1

x

j]j~ ln Û ! dx̃2
h

2
~12x!.

In the new variables the velocity is

FIG. 2. Plots of g(S) for the existence of a velocity maximum fo
t5const,a50, andVextr50.1 ~curve1!, 0.3 ~2!, 0.7 ~3!, and 1.0~4!.
em

e

e

V25
Ûel̂2 n̂

~r 8!2~12S!
.

Hencexhor5S12am̃, where

m̃5
m

R
5«0R2 E

x

1

4p«̂ x̃2 dx̃, «0R25
3gS

8p
. ~43!

We note that this formula and formula~36! can be used
to find the correctionsdr hor in ~25! for the displacement of
the horizon in the linear approximation with respect toa
since, according to Eq.~103.11! from Ref. 1 fora50, we
have

8p«r 25
2M 8

r 8
5

8p«0R2

r 8
,

or

«̂x251/r 8.

This expression can be substituted into~43! and a quadrature
expression can be obtained for the sought-for correction

In addition, we numerically integrated the equations
the caseaÞ0 using a difference scheme, and the results
various values ofa are presented in Fig. 3. According t
~25!, the plots ofV2(x) are displaced upward and to th
right, as they should be, asa is increased froma50 to
a51/3.

The numerical calculations confirm that the analytic
results of this Appendix remain valid for the real equation
state of matter:P5a«. Figure 4 shows plots ofg(S), j(S),
andh(S) for the special case of a Gaussian density distri
tion: «0(j)/«0(0)5exp(23j2). Comparing this figure with
Fig. 2, we see that theg(S) curve in Fig. 4 crosses theg(S)
curves in Fig. 2 in the downward direction roughly at th
point S'0.92, if we proceed fromj50 to j51. As can be

FIG. 3. Plots ofV2(x) for the initial conditionsS50.8, g50.6, h50.1, and
a50 ~curve1!, 0.15~2!, and 0.33~3!. The vertical straight line correspond
to the position of the apparent horizon fora50.
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seen in Fig. 4, the pointS'0.92 corresponds toj'0.85 and
h'0.1; therefore, since the region whereV8.0 is located
above and to the right of the curves in Fig. 2 and the reg
whereV8,0 is located below and to the left of these curve
the pointj'0.85 should be a local maximum on theV(j)
curve for a constant value oft.

This analytical result is confirmed by a numerical calc
lation of V(j)u t5constcurves, whose results are shown in F
5 with the predicted maxima.

To conclude this Appendix we would like to say a fe
words regarding the initial characteristics and distribution
the matter.

When the equations of the model were brought into
mensionless form, it was found that the solution for a sph
cal layer of matter with the indexR is completely specified
by three dimensionless parameters in the initial momen

FIG. 4. Plots ofg(S), h(S), andj(S) for «(j)/«(0)5exp(23j2).

FIG. 5. Plots ofV2(j) for t5const and various initial values of the velocit
V2 ~curves1–3!, as well as a plot of«(j)/«(0)5exp(23j2) ~curve4!.
n
,

-
.

f

-
i-

in

that layer: 0,S,1, 0,g,1, and 0,h,1. This corre-
sponds to assigning the initial conditions for the gravitatio
potential and two parameters which determine the distri
tion of the matter and the pressure gradient near the p
under consideration. Thus, upon integration we at once fin
whole family of self-similar solutions8!, which can be char-
acterized by these three parameters alone and which con
the dependence on the other layers of matter above and
low the radiusR considered.
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1!Only the gravitational forces and the forces of interaction between the

particles, i.e., the pressure, act on the matter.
2!In case under discussion the word ‘‘dust’’ does not, in any way, imply

absence of interactions between the particles, except in the casea50.
3!When there is an horizon, the components of the metric in the refere

frame which is stationary at infinity, like the Schwarzchild metric, mu
acquire singularities as the surface of that horizon is approached.

4!Here we are dealing with the so-called apparent horizon, or, as it is
called, trapping surface, whose definition has been given in Refs. 5 an
As for the event horizon, as will be seen below, after all the matter falls
coincides with the apparent horizon~for further details, see Appendix 1!.

5!Here and belowdx̃5( ṙ dt/R)uR5const and]/]x5(R/ ṙ )(]/]t)uR5const.
6!We consider just such a case, since intersection of the layers would sig

the appearance of an infinite density already at a radiusrÞ0, which is
forbidden by cosmic censorship~see, for example, Ref. 6!.

7!The significance ofhcr is that, according to~3a!, r̈ 50 whenh5hcr in the
initial moment, i.e., the system is in an unstable equilibrium. Here a
below ]j5]/]j.

8!For further information on this subject, see, for example, Ref. 3.
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High orders of perturbation theory. Are renormalons significant?
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According to Lipatov@Sov. Phys. JETP45, 216 ~1977!#, the high orders of perturbation theory
are determined by saddle-point configurations, i.e., instantons, which correspond to
functional integrals. According to another opinion, the contributions of individual large diagrams,
i.e., renormalons, which, according to t’Hooft@The Whys of Subnuclear Physics: Proceedings
of the 1977 International School of Subnuclear Physics (Erice, Trapani, Sicily, 1977), A. Zichichi
~Ed.!, Plenum Press, New York~1979!#, are not contained in the Lipatov contribution, are
also significant. The history of the conception of renormalons is presented, and the arguments in
favor of and against their existence are discussed. The analytic properties of the Borel
transforms of functional integrals, Green’s functions, vertex parts, and scaling functions are
investigated in the case ofw4 theory. Their analyticity in a complex plane with a cut from the first
instanton singularity to infinity~the Le Guillou–Zinn-Justin hypothesis@Phys. Rev. Lett.39,
95 ~1977!; Phys. Rev. B21, 3976~1980!# is proved. It rules out the existence of the renormalon
singularities pointed out by t’Hooft and demonstrates the nonconstructiveness of the
conception of renormalons as a whole. The results can be interpreted as an indication of the
internal consistency ofw4 theory. © 1999 American Institute of Physics.
@S1063-7761~99!00208-5#
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1. INTRODUCTION

Many problems in theoretical physics can be reduced
a calculation of functional integrals of the type

I 5E Dw exp~2S0$w%2gSint$w%!, ~1!

whose expansion in the coupling constantg gives an ordi-
nary perturbation scheme. In 1977 Lipatov1 proposed a
method for calculating the long-range expansion coefficie
of the integrals~1! on the basis of the following simple idea
If the functionF(g) is expanded in a series

F~g!5 (
N50

`

FN gN,

theNth expansion coefficient can be calculated from the f
mula

FN5 R
C

dg

2p i

F~g!

gN11
, ~2!

where the contourC encompasses the pointg50 in the com-
plex plane. Taking the integral~1! asF(g), we obtain

I N215
1

2p i E dg E Dw exp~2S0$w%

2gSint$w%2N ln g!, ~3!

and the appearance of an exponential function with a la
exponent at largeN raises hope that the saddle-point meth
can be employed. Lipatov’s idea is to seek the saddle p
in ~3! with respect tog andw simultaneously: it exists for al
the cases of interest and is realized on a function localize
1971063-7761/99/89(8)/11/$15.00
o

ts

-

e

nt

in

space, which is called an instanton. Moreover, the conditi
for applicability of the saddle-point method are satisfied
large values ofN.

The Lipatov technique, which was originally applied
scalarw4 theories,

S0$w%1gSint$w%5E ddxH 1

2
~¹w!21

1

2
m2w21

1

4
gw4J ,

~4!

was subsequently generalized to vector fields,2 scalar
electrodynamics,3,4 Yang–Mills fields,5 fermion fields,6 etc.
~see the collection of articles in Ref. 7!. The ultimate goal
was to apply it to theories of practical interest, viz., quantu
electrodynamics8,9 and quantum chromodynamic
~QCD!.10,11 As was pointed out already in Lipatov’s firs
paper,1 knowledge of the first few coefficients and their a
ymptotes permits approximate reconstruction of the G
Mann–Low function, opening up a direct route to the so
tions of the problem of confinement and electrodynamics
short distances.

However, a conception which raised some doubts
garding the Lipatov technique originated in 1977. It was i
tiated in a paper by Lautrup,12 which contained the following
curious remark. The typical result of calculations based
the Lipatov technique has a functional form,

I N5caNG~N1b!'caNNb21N!, ~5!

and the natural interpretation of it is that there is a factoria
large number of diagrams of the same order (ag)N. How-
ever, in general, such an interpretation is incorrect, si
there are examples of individualNth-order diagrams having
a value;N!. The latter are diagrams~Fig. 1! which contain
© 1999 American Institute of Physics
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long chains of ‘‘bubbles’’~bubble diagrams!. Such factorial
contributions of individual diagrams are called renormalo
since they appear only in renormalizable theories.1! Lau-
trup’s example~Fig. 1! was related to quantum electrod
namics, but similar diagrams exist in QCD and fou
dimensionalw4 theory.

Strictly speaking, nothing followed from Lautrup’s re
mark: the Lipatov technique is based on a formal calculat
of the functional integral~3! and does not rely in any way o
a statistical analysis of diagrams. It is natural to expect t
the renormalon contributions have already been taken
account in the instanton result~5!. In fact, no far-reaching
claims were made in Ref. 12 or in the relevant publicatio
appearing shortly thereafter.13,14

However, the tone of the publications advocating t
doctrine subsequently changed dramatically. The reason
t’Hooft’s lecture,15 which was delivered at a seminar in th
same year, 1977. The term renormalon was used in it for
first time, and it was asserted that renormalons are not c
tained in the instanton contribution~5!. The authors of the
subsequent publications16–30 considered t’Hooft’s opinion to
be self-evident and did not trouble themselves with argum
tation.

A convenient language for discussion, viz., the analy
properties of Borel transforms, was introduced in t’Hoof
lecture. The Borel transformation

F~g!5 (
N50

`

FNgN5 (
N50

`
FN

N! E0

`

dx xNe2xgN

5E
0

`

dx e2x (
N50

`
FN

N!
~gx!N,

which factorially takes into account the convergence of
ries, is widely used in the theory of divergent series.30 It is
convenient to rewrite it in the form

F~g!5E
0

`

dx e2xB~gx!, ~6!

B~z!5 (
N50

`
FN

N!
zN ~7!

FIG. 1. Example of a diagram for quantum electrodynamics, which mak
contribution;N! to the Nth order of perturbation theory.12
,
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s
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-

by introducing the Borel transformB(z) of the function
F(g). The Borel transform for a function with the expansio
coefficients~5!

BI~z!5(
N

caNNb21zN;~12az!2b, za→1 ~8!

has a singularity at the pointz51/a.
t’Hooft arrived at this result in a different way, withou

reference to the Lipatov technique. Rewriting the integral~1!
and the definition of the Borel transform~6! in the form

I 5E Dw exp~2S$w%/g!, ~9!

F~g!5E
0

`

dx e2x/gB~x!, ~10!

which can be accomplished by means of the replacem
w→w/Ag andx→x/g in ~4! and~6!2!, yields the Borel trans-
form of the integral~9!:

BI~z!5E Dwd~z2S$w%!5 R
z5S$w%

ds

u¹S$w%u
, ~11!

where the latter integration is carried out over the hypers
facez5S$w%. If an instantonwc(x), i.e., a classical solution
with a finite action, exists for the integral~9!, thendS$wc%
50 and the partial derivatives]S/]w i with respect to all the
variablesw i comprisingDw vanish; therefore,¹S$wc%50
and the Borel transform~11! has a singularity at the point

z5S$wc%, ~12!

which coincides with 1/a. In addition, there are singularitie
at the pointsmS$wc%, which correspond to solutions contain
ing m infinitely distant instantons. If it is assumed that th
singularity ~12! is closest to the origin of coordinates, th
result ~5! of the Lipatov technique is reproduced. Howeve
t’Hooft allowed the existence of singularities differing from
those of the instanton type: in this case the asymptotic
havior of the expansion coefficients can be specified by
singularity which is closest to the origin of coordinates.

t’Hooft regarded renormalons as a possible mechan
for the appearance of the new singularities. Let us use
arbitrary diagram for quantum electrodynamics and sin
out the line of a virtual photon with the indexk ~or an inter-
action line in w4 theory! in it ~Fig. 2a!: it corresponds to

a
FIG. 2. More general conception of renormalons.
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integration over a region of large momenta of the type

E
k.k0

d4k k22m,

wherem is an integer. If we assume that all the renormaliz
tions have been performed, the integral converges
m>3. Inserting a chain ofN ‘‘bubbles’’ into the photon line
~Fig. 2b!, we obtain the integral3!

E
k.k0

d4k k22m~b0 ln k2!N;b0
N E

0

`

dt tNe2(m22)t

;S b0

m22D N

N!. ~13!

Borel summation of a sequence of such diagrams gives
gularities at the points

z5
m22

b0
, m53,4,5, . . . . ~14!

The constantb0 is the first nonvanishing expansion coef
cient of the Gell-Mann–Low function~Sec. 2!, and with con-
sideration of the sign relationships (S$wc%,0, b0.0)
t’Hooft obtained the picture of singularities forw4 theory
shown in Fig. 3a.

It is not difficult to see that t’Hooft’s arguments regar
ing renormalons leave some cardinal questions unanswe

Why should significance be attached to individual s
quences of diagrams, which make up an infinitesimal fr
tion of their total number whenN→`?

How do we know that the renormalons have not alrea
been taken into account in the instanton contribution~5!?

However, the general formulation of the question of t
possibility of contributions of a noninstanton nature to t
asymptotics of the expansion coefficients has meaning
uncovers a hole in the mathematical foundation of the Li
tov technique. In fact, let the functionf (x) have a short
maximum at the pointx0 and a slow tail at large values ofx
~Fig. 4!, so that the contributions to the integral* f (x) dx
from the vicinity of the maximum and from the tail regio
are comparable. An investigation of the integral for a sad
point discloses a maximum atx0 and ~provided it is suffi-
ciently sharp! the formal applicability of the saddle-poin

FIG. 3. a! Picture of singularities forw4 theory given by t’Hooft.15 b!
Analyticity region according to the results of our work.
-
d

n-

d:
-
-

y

it
-

le

method; however, a calculation of the integral in the sadd
point approximation will be erroneous, since the contributi
of the tail will be lost. If such tails are present in the integr
~3!, the Lipatov technique can be incorrect.4!

The essential lack of nonsaddle-point methods for cal
lating functional integrals makes it impossible to directly i
vestigate the contribution of possible tails. But are there c
structive arguments pointing to their existence? In princip
such arguments exist, but they have a fairly intuitive a
ambiguous character and do not hold up to criticism wh
they are closely examined~Sec. 2!. As a result, the concep
tion of renormalons has been in a dialectic equilibrium, i.
it has not been proved or disproved. This uncertainty
caused the interest in high orders of perturbation theory
drop sharply and Lipatov’s program1 to remain uncompleted
For example, a preliminary result for quantum electrodyna
ics was obtained in 1978~Ref. 9!, but the parametersb andc
in the asymptotic relationI N5caNG(N/21b) have not yet
been calculated. Moreover, the first result for QCD appea
in 1991 ~Ref. 10! and was recently revised,11 but it is still
unsatisfactory~Sec. 4!, although the foundation for such ca
culations was completely ready in 1980.5,6 Finally, the at-
tempts to reconstruct the Gell-Mann–Low function ha
been confined tow4 theory.33–35

A reawakening of interest in asymptotic estimates h
recently been observed, but it has been confined almost
clusively to the renormalon doctrine.21–30 In particular, it is
generally accepted~see Zakharov’s review article21! that
renormalons determine the perturbation asymptotics in QC
However, the work within the renormalon approach has
ready raised some doubts: the summation of larger seque
of diagrams leads to dramatic renormalization of the ren
malon contribution and renders the common coefficient
front of them totally indefinite;30 in fact, it is impossible to
state that it does not vanish. On the other hand, the use o
Lipatov technique has provided significant progress in
theory of disordered systems36 and in the theory of
turbulence.37

This paper presents a detailed discussion of the exis
arguments in favor of renormalons, which are shown to
unsound~Sec. 2!. The analytic properties of Borel transform
are investigated in the example ofw4 theory ~Sec. 3!, and
their analyticity in a complex plane with a cut from the fir
instanton singularity to infinity is demonstrated~Fig. 3b!. It
rules out the existence of the renormalon singularities in

FIG. 4. Example of a function for which the saddle-point method is ap
cable, but gives an incorrect result.
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FIG. 5. Left-hand figure — density of statesn(E) in the
presence~solid curve! and absence~dashed curve! of a
random potential, right-hand figure — schematic rep
sentations of the eigenfunctions of Eq.~15!.
es

ti
an
th
th
e

oin
ra

on
ll
ch
n

le
ra
m
y
u

e
s
d

s

p

en-

-
r-

are
ob-
n-
all

gas
en-

of

er-

,
eal
ity

s of
of

h
r of
u-

see
-

cated by t’Hooft~Fig. 3a! and demonstrates the baselessn
of the conception of renormalons as a whole.

An hypothesis that Borel transforms have the analy
properties indicated above was advanced by Le Guillou
Zinn-Justin38 and underlies one of the most effective me
ods for summing perturbation series, which is known as
‘‘Borel conform.’’ The results obtained below provide th
mathematical foundation of this method.

2. PROS AND CONS

Let us discuss the arguments in the literature that p
to the existence of noninstanton contributions in the integ
~3!.

1. There have been numerous semi-intuitive asserti
which reduce to the notion thatinstantons do not exhaust a
of physics. This thesis is correct as long as the way in whi
it is understood is correct, but in the present case it is
relevant.

Historically, instantons first appeared when the sadd
point approximation was employed in the original integ
~1!. It was substantiated only in a narrow region of para
eters, and thus instantons did not, in fact, exhaust all of ph
ics. In the Lipatov technique the situation changed, beca
the saddle-point approximation is used not in the integral~1!,
but in the expression~3! for the expansion coefficients. Sinc
only large values ofN are considered, only a limited role i
assigned to instantons at the outset; however, the sad
point method is now always applicable5!, and there is a basi
to assume that everything is determined by instantons.

Let us illustrate the foregoing statements in the exam
of the Schro¨dinger equation with a random potentialV(x):

@ p̂2/2m1V~x!#C~x!5EC~x!. ~15!

At large negative values ofE its eigenfunctions~Fig. 5! are
s
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localized on the infrequent fluctuations of the random pot
tial ~a and b!, at large positive values ofE they are similar to
plane waves~d and e!, and in the vicinity of the bare spec
trum edge atE50 they have a highly broken, fractal cha
acter~c!. The problem of investigating Eq.~15! can be refor-
mulated in the language of an effective field theory, viz.,w4

theory with the ‘‘incorrect’’ sign forg ~Refs. 36 and 39!. In
this case the typical wave functions of localized states
described by instantons. The changes in the situation
served asE increases can be described in the following ma
ner in terms of instantons: At first, instantons have a sm
radius and a sparse distribution, i.e., they form an ideal
~a!; then the radius of the instantons increases, and their d
sity rises, i.e., they begin to interact with one another~b!;
they then condense~c!, and an instanton crystal forms~d and
e!. Only the case in Fig. 5a corresponds to applicability
the saddle-point method in an integral of the type~1!, and
thus the standard instanton approximation is very poor.

Let us examine this situation from the standpoint of p
turbation theory with respect to the random potentialV(x).
An ideal instanton crystal~e! corresponds to a plane wave
i.e., the zeroth order of perturbation theory. In a nonid
crystal~d! the higher orders have a larger role; in the vicin
of the bare spectrum edge~c! all the diagrams are of the
same order of magnitude, so that the high and low order
perturbation theory are equally significant. In the region
localized states~a and b! the dominant role shifts to the hig
orders: These states are not manifested in any finite orde
perturbation theory, and discarding the low-order contrib
tions does not influence their properties in any way. We
that Lipatov’s conception~high orders are determined by in
stantons! fits excellently into the existing physical picture.

Thus, the status of instantons in the integral~1! differs
greatly from that in the integral~3!. In our opinion, this
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accounts for the position taken by t’Hooft, since he wrote
classical paper on instantons40 specifically in the original in-
tegral ~1!.

2. Relationship to the logarithmic situation.15 Renorma-
lons exist only in renormalizable theories, but not in sup
renormalizable theories. If a theory is superrenormaliza
an upper bound of the typeaNgN can be obtained for the
contribution of an individual diagram, and the appearance
the multiplierN! in the asymptotic relation~5! can be attrib-
uted only to a factorially large number of diagrams. Ren
malons and, thus, a new mechanism for the appearanc
factorial contributions appear in renormalizable theories
can be expected that this mechanism is associated with
formation of the tails in the integral~3! and is disregarded in
the Lipatov technique.

In this argument everything except the last conclusion
correct. We can illustrate this in the case ofw4 theory, which
is renormalizable ford54 and superrenormalizable fo
d,4. Among the large set of integrations concealed in
symbol Dw in the integral~3!, we can single out one fo
which the limiting transitiond→4 is associated with quali
tative changes: it is the integration over the instanton rad
R ~Fig. 6!. For d significantly smaller than 4~for example,
d53), the integrand exp(2S$w%) has a sharp maximum as
function of R and allows saddle-point integration; whe
d542e, the maximum becomes gently sloping, and wh
d54, the instanton actionS$wc% does not depend onR at all.
In the latter case the integral diverges, leading to the lo
rithmic situation. We see~see the curve ford542e in Fig.
6! that the ‘‘activation’’ of renormalon contributions is, i
fact, related to the appearance of slow tails in the integral~3!,
but these tails are taken into account in the Lipa
technique.36

A certain enigma can arise. If the Lipatov technique i
saddle-point method, then how can it cover the definit
nonsaddle-point situation ford542e? The fact is that the
saddle point in a functional integral essentially never redu
to a simple maximum achieved at a single point: The ma
mum is degenerate in a certain space of finite dimensiona
Accordingly, a finite number of integrations should be p
formed exactly, rather than in the saddle-point approxim
tion. However, if the integration is performed exactly ove
certain variable~for example,R), it is of no significance
whether the degeneracy is exact (d54) or approximate (d
542e). Nevertheless, in the latter case technical difficult
arise, and the corresponding methods~constrained

FIG. 6. Dependence of the integrand~1! on the instanton radius in
d-dimensionalw4 theory.
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instantons41,42! have until recently been poorly developed.36

It is thus clear that even in cases where slow tails ac
ally appear in the integral~3!, the Lipatov procedure is suf
ficiently flexible and contains broad possibilities for deali
with them.

3. The limit n→`. There is an opinion that the existenc
of renormalon contributions can easily be proved by treat
then-componentw4 theory in the limitn→` ~and the analo-
gous models in QCD and electrodynamics!:16 The multiplier
n corresponds to a closed loop, and renormalon graphs
taining the maximum possible number of loops are isola
with respect to the large parametern. Although diagrams of
the same order, but with a smaller number of loops, c
make comparable contributions at large values ofN due to
the combination multipliers, they have a slower depende
on n; therefore, the renormalons cannot be canceled ide
cally.

This argument is valid in any finite order with respect
1/n. However, a detailed investigation of the structure of t
1/n expansion18,19 reveals the presence of numerous canc
lations, and although the situation cannot be totally elu
dated, the question is not resolved on the level of sim
arguments of the type indicated above.

It is not difficult to identify the crux of the problem here
As an example, let us consider the self-energyS(p,m) of w4

theory; it is clear from a diagrammatic analysis form50 and
values of the momentump close to the truncation valueL
that the (N11)th expansion coefficient forS(p,0)
2S(0,0) has the form of a polynomial inn

p2$AN~N!nN1AN21~N!nN211 . . . 1A1~N!n1A0~N!%,

~16!

in which the coefficientAN(N) is specified by renormalon
graphs:

AN~N!5const•S 2
1

16p2D N

N!. ~17!

If it is assumed that the renormalon contribution is contain
in the instanton contribution, the expression~16! should
transform into the Lipatov asymptotic relation at largeN @see
Eq. ~130! in Ref. 43 forM51 andp'L#:

p2abnN(n16)/2S 2
3

8p2D N

N! FGS n12

2 D G21

3E
0

`

dy y(n15)/3K1~y!2, ~18!

wherea,b;1, andK1(x) is a modified Bessel function o
the second kind. It is easily seen that an equality betw
~16! and ~18! is impossible whenn→`. This is a manifes-
tation of the ‘‘noncancelability’’ of renormalons.

However, the usual condition for applicability of the L
patov technique,N@1 at largen is generally replaced by a
more rigid condition, for example,N@n, andn then has a
bound of the type

n&n0~N!, ~19!
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which precludes going to the limitn→`. If it is taken into
account that the Lipatov asymptotic relation has limited
curacy (;1/N in relative units!, then the correct formulation
of the question is as follows. Can we construct an interpo
tion polynomial of type~16! with the high-order coefficien
~17! which would approximate the function~18! within an
assigned accuracy in the interval 0<n<n0(N), where
n0(N)→` asN→`? The answer to this question is positiv
~see the Appendix!; therefore, the assumption that the reno
malon contribution is contained in the instanton contribut
does not lead to contradictions.

4. Relationship to a Landau pole.16,19It is not difficult to
see~Fig. 2c! that the summation of a sequence of renorma
diagrams corresponds to ‘‘dressing’’ the interaction. The
lationship between the renormalized chargeg and the bare
chargeg0 is then given by the familiar expression44–46

g05
g

12b0gln~L2/m2!
, ~20!

which contains a pole at the point

Lc
25m2e1/b0g. ~21!

Under the literal interpretation of this pole in the spirit of th
early paper by Landau and Pomeranchuk,47 a graphic physi-
cal meaning can be assigned to renormalon singular
~Refs. 16 and 19!.6!

The dependence of the perturbation series on the tru
tion parameterL has the structure

c21L21c0 ln L21c1L221c2L24

1 . . . 1cnL22n1 . . . . ~22!

The first two terms are eliminated by a renormalizati
procedure, and the remaining terms, in principle, remain,
vanish in the limitL→`. Because of the pole in~20!, values
of L greater thanLc are unattainable in principle, and unr
movable uncertainties of the type

Lc
22n5m2e2n/b0g ~23!

appear in the theory. Similar uncertainties are generated
renormalon singularities, whose existence on the posi
semiaxis leads to ambiguity in the choice of the integrat
path in the Borel integral~6!. The path can be drawn to th
right or the left of thenth singularity~Fig. 7!, producing an
uncertainty in reconstructing the function from its Bor
transform:

dF~g!; R
z'zn

dz e2z/gB~z!;e2zn /g, ~24!

FIG. 7. Ambiguity of the choice of the integration path in the Borel integ
~6! in the presence of renormalon singularities.
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which, with allowance for the relationzn5n/b0 , coincides
with ~23!.

Of course, the literal interpretation of the Landau po
seems archaic, but after some modification of the argum
presented, a real meaning can be assigned to it. As
know,46 the dependence of the chargeg on the distance scale
L21 is given by the equation

dg

d ln L2
5b~g!5b0g21b1g31 . . . , ~25!

whose solution has a character that depends on the beh
of the Gell-Mann–Low functionb(g). The pole in~20! is
eliminated if b(g) changes sign or behaves asga with
a,1 at largeg. If, on the other hand,b(g) is positive and
increases asga with a.1 wheng→`, the pole is preserved
and the theory is internally inconsistent because it is imp
sible to determineg(L) for all L ~Ref. 46!. In the latter case
the position of the pole is given by the equation

ln
Lc

2

m2
5E

g

` dx

b~x!
, ~26!

which, for small values ofg, leads to the result

Lc
25const•m2e1/b0g, ~27!

which is distinguished from~21! only by an insignificant
constant multiplier. Thus, the existence of renormalon sin
larities seems fairly convincing for internally inconsiste
theories. Conversely, there is no basis for them in ‘‘goo
theories.7!

Since the behavior of the functionb(g) at g*1 is un-
known, the presence or absence of renormalon singular
is a matter of belief. We stress, however, the following c
cumstance. Factorial contributions of individual diagram
exist in all field theories in which the expansion of theb
function ~25! begins from the quadratic term: then the inte
action is described on thek21 scale by a formula of the type
~20! with the replacement ofL by k, whose expansion give
(b0 ln k2)N in the Nth order @see~13!#.8! Resolution of the
question of the internal inconsistency of a theory requi
knowledge of all the coefficients in the expansion~25!.
Therefore, it would be incorrect to assume that the form
existence of renormalons is an indication of the internal
consistency of a theory.

3. ANALYTIC PROPERTIES OF THE BOREL TRANSFORMS
OF w4 THEORY

3.1. Expansion of the class of Borel transformations

For the ensuing treatment it is convenient to expand
class of Borel transformations, setting

F~g!5E
0

`

dx e2xxb021B~gx!,

B~g!5 (
N50

`
FN

G~N1b0!
gN ~28!

l
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with the arbitrary parameterb0.0, instead of using~6! and
~7!. If B(g) and B̃(g) are the Borel transforms correspon
ing to the parametersb0 and b1 ~to fix ideas, we set
b1.b0), it is not difficult to derive the conversion formula

B̃~g!5
1

G~b12b0!
E

0

`

dx
xb12b021

~11x!b1
BS g

11xD . ~29!

We determine the analyticity region ofB(g) by constructing
the so-called Mittag–Leffler star,30 i.e., by drawing cuts for
all the singular points to infinity along rays drawn throu
these points from the origin of coordinates. Ifg lies in the
analyticity region ofB(g), the integration path in~29! does
not pass through its singularities andB̃(g) is also analytic. If
gc is a singular point ofB(g), the path of the integral~29!
for g5gc unavoidably passes throughgc , generating a sin-
gularity in B̃(g). For the interesting case of power-law si
gularities we have the correspondence rules

B~g!5AG~2b!S gc2g

gc
D→B̃~g!5AG~2b2b11b0!

3S gc2g

gc
D b1b12b0

~30!

for nonintegerb1b12b0 and

B~g!5AG~2b!S gc2g

gc
D b

→B̃~g!A
~21!n11

n! S gc2g

gc
D n

lnS gc2g

gc
D , ~31!

if b1b12b05n is an integer.
We see that the analyticity region for all the Borel tran

forms is identical and that it is sufficient to establish it f
any fixedb0. The choiceb051/2 is convenient for investi-
gating functional integrals, since a simple result is obtain
in that case for the Borel transform of an exponential fu
tion:

F~g!5e2g→B~g!5
cos~2Ag!

Ap

5
1

2Ap
$exp~2iAg1c.c.!%, ~32!

which preserves its exponential form. This permits writi
an explicit expression for the Borel transform of the fun
tional integral~1!:

BI~g!5
1

2Ap
E Dw exp~2S0$w%!

3@exp~2iAgSint$w%!1c.c.#. ~33!

The integrand is a regular function, and the analyticity reg
of BI(g) is determined by the condition for convergence
the integral.
-

d
-

-

n
f

3.2. Analyticity outside the negative semiaxis

For simplicity, let us consider scalarw4 theory. Gener-
alization to then-component case is trivial and reduces
only a complication of the notation. We assume thatm2.0,
bearing in mind the subsequent analytic continuation to
bitrary complexm2.

The integral~33! for w4 theory is defined well for posi-
tive values ofg, since its convergence is determined by
exponential function of2S0$w% and is obvious after the
Fourier transformation ofw(x):

S0$w%5
1

2 E ddx $~¹w!21m2w2%

5
1

2 (
k

~k21m2!uwku2. ~34!

For the analytic continuation to complexg we turn the inte-
gration path in~33!, setting

g5g̃eiC, w5w̃e2 iC/4, ~35!

whereg̃ and w̃ are real, andg̃.0. Then the integral in~33!
takes the form

E Dw̃ exp~2S0$w̃%e2 iC/2!@exp~2iAg̃Sint$w̃%!1c.c.#

~36!

and converges for2p,C,p. Thus, the Borel transform is
analytic outside the negative semiaxis.

3.3. Analyticity within a circle

We utilize the formal technique used in Refs. 3 and
and introduce the function

~R$w%!5
S0$w%2

4Sint$w%
. ~37!

We can then rewrite~33! in the form

BI~g!5
1

2Ap
E Dw

3expS 2F12 i S g

R$w% D
1/2GS0$w% D1c.c., ~38!

and after the replacement ofR$w% by the constantR0, it is
analytic within the circleugu,R0. Let us now have

R$w%>R0 ~39!

for all w, i.e., R0 is the exact lower bound ofR$w%.
Settingg52ugueig (2p<g<p), we have the inequal-

ity

uBI~g!u<
1

2Ap
E DwH expS 2F12U g

R0
U1/2

3cos
g

2GS0$w% D1exp~2S0$w%!J , ~40!

which ensures convergence of the integral in~33! and, con-
sequently, its analyticity within the circleugu,R0.
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To find R0, we consider the variational problem of min
mizing R$w%. It yields the equation

2Dw~x!1m2w~x!2Cw3~x!50. ~41!

where

C5
S0$w%

2Sint$w%
,

which, after the replacementw(x)→w(x)/AC, transforms
into the standard equation of an instanton ofw4 theory. Us-
ing it, we can easily show thatR05S$wc%, which establishes
the required analyticity region~Fig. 3b!. Questions concern
ing the absence of instantons in massive four-dimensio
theory47 are discussed in Sec. 3.5.

Apart from the integral~1!, some other functional inte
grals containing products of the typew(x1)w(x2) . . . w(xM)
in the preexponential factor are of interest. The presenc
such products does not influence the convergence, and a
proofs performed remain unchanged.

3.4. Invariance relative to algebraic operations

As t’Hooft pointed out,15 the singularities of Borel trans
forms are not shifted when algebraic operations are p
formed on the original functions. This can easily be prov
for a modified definition of the Borel transform~10!, which
differs from ~6! and ~28!, since

F~g!5F01F1g1F2g21F3g31 . . . ,

B~z!5F0d~z!1
F1

0!
1

F2

1!
z1

F3

2!
z21 . . . ~42!

andB(z) contains ad-function singularity at zero. The trans
formation of ~10! by means of the replacementg→1/z re-
duces to a Laplace transformation and allows inversion
can be used to express the Borel transform of the prod
F3(g)5F1(g)F2(g) in terms of the known Borel transform
of the factors:

B3~z!5E
0

z

dz8 B1~z8!B2~z2z8!. ~43!

It can easily be seen that thed-function singularity inB3(z)
corresponds to the definition~42! and that the singular point
for finite z coincide with the singular points ofB1(z) and
B2(z) ~see the analogous reasoning in Sec. 3.1!. In particu-
lar, the Borel transformgn is the functionzn21/G(n), which
is analytic for integer values ofn, and multiplication of the
function by gn does not alter its analytic properties in th
Borel plane.

If F2(z)51/F1(z), then

d~z!5E
0

z

dz8 B1~z8!B2~z2z8! ~44!

and thed-function singularity on the left-hand side cance
out with thed-function singularities inB1(z) andB2(z). At
finite values ofz the right-hand side contains singularitie
corresponding to singular points ofB1(z) andB2(z), which
al

of
the

r-
d

It
ct

are absent on the left-hand side and, therefore, compen
one another. This is possible only ifB2(z) has singularities
at the same points asB1(z).

The proof of the analogous statements for linear ope
tions, viz., summation, differentiation, integration, etc.,
trivial.

The standard definition of the Borel transform~6! is ob-
tained from~10! and~42! whenF050 after the replacemen
F(g)→gF(g). In this case thed-function singularities dis-
appear, and the remaining singularities are preserved a
same points due to the insignificance of the multiplierg. The
definition ~6! corresponds to the definition~28! with b051,
and, by virtue of Sec. 3.1, the analysis performed can
extended to arbitraryb0.

Since all the quantities entering into the theory, viz. t
Green’s functions, vertex parts, etc., can be expresse
terms of functional integrals with identical analytic prope
ties using algebraic operations~see the end of Sec. 3.3!, their
singular points in the Borel plane are the same as for
integral ~1!.

3.5. Renormalization procedure

The absence of ultraviolet divergences was implicitly a
sumed above. Inw4 theory this is correct ford,2. For
2<d<4 a continual theory without divergences can be d
vised by introducing counterterms into the Lagrangian.46,50

In the simple case where only renormalization of the mas
required (2<d,4) the corresponding term in~4! is rewrit-
ten in the form

m0
2w25~m21Dm2!w25~m21Ag1Bg2

1Cg31 . . . !w2, ~45!

where the coefficientsA,B,C, . . . are chosen so as to canc
the divergences. When counterterms are present, the ana
properties of integrals of the type~1! become more compli-
cated, since the coupling constant appears not only in
combinationgw4, but also in the form ofgw2, g2w2, etc.
One of the types of renormalon-related activity involved sp
cifically the introduction of additional terms into the La
grangian and tracing the renormalon singularities t
appear.16,18,19A question arises in this case in regard to t
cancellation of singularities by selecting the coefficients
front of the additional terms so as to achieve an absenc
divergences, for which an unequivocal answer could not
obtained.

A simpler route is to explicitly introduce regularizatio
and to use renormalization-group equations. Here we hav
mind the so-called truncation scheme:51 the vertex parts are
calculated as functions of the bare chargeg0 and the trunca-
tion parameterL using perturbation theory, then scalin
functions which depend only ong0 are obtained, and, finally
renormalized vertices, which depend on the renormali
chargeg, are constructed.50 In this case the explicit introduc
tion of counterterms is not required, but all the details as
ciated with their presence are taken into account, since
fundamental possibility of eliminating the divergences is
sentially used to write the renormalization-group equation
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The simplest regularization method consists of substi
ing we( p̂)w for the term (¹w)2 in ~4!, which is brought into
the form2wDw5w p̂2w, wherep̂ is the momentum opera
tor. If

e~p!5e~2p!, e~p!>0, ~46!

then both the entire structure of the instanton calculation49

and the proofs presented above are preserved. The
change occurs in the equation of the instanton~41!, which is
brought into the form

e~ p̂!w~x!1m2w~x!2w3~x!50. ~47!

When the regularization

e~p!5p21p6/L4 ~48!

is employed, the dependence of the actionS$w% on the in-
stanton radiusR in four-dimensionalw4 theory has the form
shown in Fig. 8.9! If L5`, there is degeneracy with respe
to the instanton radius in the massless theory,1 while there
are no instantons in the massive theory49 because of the
monotonic dependence ofS$w% on R. At finite values ofL a
minimum appears on the plot ofS$w% versusR at m2.0 ~the
dashed curves in Fig. 8!, and instantons appear in the ma
sive theory. Their actionS$wc% determines the positions o
the singularities in the Borel plane. ForL→` and arbitrary
m2.0 the value ofS$wc% tends to the instanton action of th
massless theory, and the positions of the singularities do
depend onm.10!

The renormalization-group equations~in the Callan–
Symanzik form! are valid for the verticesGL,N with N free
ends andL two-line links:50

F ]

] ln L2
1b~g0!

]

]g0
1S L2

N

2 Dh~g0!

2Lh2~g0!GGL,N~g0 ,L!50. ~49!

Writing out three such equations with differentL andN, we
can express the scaling functionsb(g0), h(g0), andh2(g0)
in terms of the verticesGL,N(g0 ,L) using algebraic opera
tions and differentiation operations, which do not shift t

FIG. 8. Dependence of the actionS$w% on the instanton radiusR in four-
dimensionalw4 theory in the absence of regularization~solid curves! and for
a finite truncation parameterL ~dashed lines!.
t-

nly

-

ot

positions of the singularities in the Borel plane. In the lim
L→`, where Eq.~49! is valid, the dependence of the scalin
functions onL disappears,50 and their singularities in the
Borel plane correspond to the massless theory.

The Gell-Mann–Low functionb(g0) defines the rela-
tionship between the renormalized chargeg and the bare
charge g0. Let the functionsF0 and F1 be such that
F0(g0)[F1(g). The relationship between the correspondi
Borel transformsB0 and B1 @in the sense of the definition
~10!# can easily be found for an infinitesimal charge tran
formation,g05g12b(g)dL/L @see~25!#:

B1~z!5B0~z!1
2dL

L

3E
0

z

dy @B0~y!1yB08~y!Bb~z2y!#, ~50!

whereBb(z) is the Borel transform of the functionb(g)/g.
Equation~50! is analogous to Eq.~43!; therefore, the analytic
properties do not change as a result of the transformatio
the charges.

The verticesGL,N diverge asL→`, but they become
finite after separation of the divergentZ factors from them
and the transition from the bare to the renormalized cha
Since theZ factors are, in turn, expressed in terms of t
verticesGL,N ~Ref. 50!, the renormalized vertices have th
required analytic properties.

The dependence of the scaling functions on the ren
malization scheme is given by the following conversi
formulas:51

b̃~q~g!!5b~g!
dq~g!

dg
,

h̃~q~g!!5h~g!2b~g!
d ln p~g!

dg
,

h̃2~q~g!!5h2~g!2b~g!
d ln p2~g!

dg
. ~51!

The forms of the converted functionsq(g), p(g), andp2(g)
for standard renormalization schemes~truncation, subtrac-
tion, etc.! in them are expressed in terms of the verticesGL,N,
so that the analytic properties of the scaling functions
identical in all the schemes. In general, the analytic prop
ties of the converted functions require additional investig
tion.

4. CONCLUSIONS

The results in Sec. 3 rule out the existence of renorma
singularities inw4 theory. If the arguments in Sec. 2 regar
ing the relationship to a Landau pole are considered conv
ing, w4 theory cannot be internally inconsistent. The sa
conclusion can be drawn on the basis of solid-state appl
tions: mathematically, a reasonable model of a disorde
system reduces exactly tow4 theory,36,39 and the internal
inconsistency ofw4 theory would signify the impossibility,
in principle, of obtaining a mathematical description of th
model. Therefore, a revision of the results in Refs. 34 and
in which indications of the internal inconsistency ofw4



o
y

t
n

ra
le

o

s
e

ns
’’
d

th
ic
da
tu
e
a
o
or
to
ion
e

th
ib
a

a
la

ith
a
is
n
i-
de
en
itu

m
-

s

ul-

-

-

nces
ing
nor-

hich

ut.
ul-

206 JETP 89 (2), August 1999 I. M. Suslov
theory were obtained on the basis of an approximate rec
struction of the Gell-Mann–Low function, is urgentl
needed.

The results of Sec. 3 refer only tow4 theory and canno
be extended directly to other field theories; however, alo
with the qualitative arguments in Sec. 2, they demonst
the futility of the conception of renormalons as a who
Therefore, it would be of interest to generalize the method
proof used in Sec. 3 to other cases.

In quantum chromodynamics~QCD! the renormalon
doctrine presently prevails.20–30However, the specific detail
of QCD in this context have never been stressed. For
ample, t’Hooft,15 speaking about QCD, gives explanatio
within w4 theory, and the term ‘‘naive non-Abelianization,
which essentially means the disregard of the particular
tails of QCD, appeared in some more recent publications.26,30

On the other hand, in QCD there is a special reason for
belief in renormalons, which has a purely phenomenolog
character. It can be established by treating experimental
that the contribution of the higher orders has a momen
dependence}1/q4 ~Ref. 22!. This dependence can easily b
obtained from renormalon graphs, but, as is generally
sumed, it cannot be obtained within the instanton meth
The latter is based on the results in Refs. 10 and 11, acc
ing to which the instanton contribution is proportional
1/q18. However, it can easily be seen that a contribut
;1/q4 appeared in Refs. 10 and 11, but contained div
gences which the authors found difficult to eliminate;11!

therefore, the corresponding term was ‘‘transported’’ to
renormalon sector with the reasoning that ‘‘this term contr
utes to the renormalon singularity, rather than to the inst
ton singularity’’ ~Ref. 10, p. 287!. If there are no renormalon
singularities, this contribution can be simply discarded;
present, there is therefore no valid Lipatov asymptotic re
tion for QCD.

This work was stimulated by lengthy discussions w
P. G. Sil’vestrov, whom we thank for opposing the renorm
lon doctrine, for the critical remarks, and for general ass
tance in becoming familiar with the situation. We also tha
B. L. Ioffe, L. N. Lipatov, and the participants in the sem
nars at the Institute of Physical Problems, the P. N. Lebe
Physics Institute, the Institute of Theoretical and Experim
tal Physics, and the St. Petersburg Nuclear Physics Inst
for interest in this work and for useful discussions.

This work was carried out with financial support fro
the INTAS ~Grant 96-0580! and the Russian Fund for Fun
damental Research~Project 96-02-19527!.

APPENDIX

Construction of interpolation polynomials

The polynomial of degreeN which coincides with the
function f (x) at the pointsx0 ,x1 ,x2 , . . . ,xN , is defined by
the Lagrange formula:53

PN~x!5 (
k50

N
f ~xk!

c8~xk!

c~x!

~x2xk!
, ~A1!

c~x!5~x2x0!~x2x1!~x2x2! . . . ~x2xN!, ~A2!
n-

g
te
.
f

x-

e-
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and the interpolation error is given by the expression

RN~x!5 f ~x!2PN~x!5
f (N11)~j!

~N11!!
c~x!, ~A3!

wherej belongs to the interval (x0 ,xN).
The function~18!, which is of interest to us, behaves a

qn at n&N with slowly varyingq, so that lnq;ln N. Disre-
garding these slow variations and omitting the common m
tiplier in ~16! and ~18!, we have

f ~x!5qx, AN;
1

6NN3
. ~A4!

Sinceuc(x)u<DN11 in the interval 0<x<D, we obtain

uRN~x!u<
~ ln q!N11qD

~N11!!
DN11, ~A5!

and the interpolation error is small for

D&N/ ln N. ~A6!

To investigate the dependence of the coefficientAN on
the positions of the pointsxk , we setc(x)5Rec(x1 i0),
and calculating lnc(x1i0) using the Euler–MacLaurin for
mula, forc(x) we obtain the expression

c~x!5F~x!sinG~x!. ~A7!

In particular, for the power-law arrangement of points

xk5~k/N!aD, k50,1, . . . ,N, ~A8!

at a@1 we have

F~x!5~21!NAx~D2x!exp$N@a~x/D!1/a1 ln D2a#%,
~A9!

G~x!5pN~x/D!1/a.

For a high-order coefficient of the polynomial~A1! we ob-
tain

AN5 (
k50

N
f ~xk!

c8~xk!
;exp$~a2 ln D!N% ~A10!

~the sum is determined by the term withk51), and for
a; ln N the coefficientAN can be factorially small or facto
rially large, depending on the relationship betweena and
ln D, so that the required value of~A4! falls in the range of
variation. Thus, the required polynomial~16! exists in the
interval 0<n<n0, wheren0;N/ ln N.

* !E-mail: suslov@kapitza.ras.ru
1!In a broader sense, a renormalizable theory is one in which the diverge

are eliminated by renormalizing a finite number of parameters. Accord
to more precise terminology, such theories are subdivided into superre
malizable ~renormalizable ‘‘with a surplus’’! and renormalizable in the
narrow sense~marginally renormalizable!; the latter, which gave their
name to renormalons, are characterized by the logarithmic situation, w
is needed for the appearance of factorial contributions~see below!.

2!t’Hooft omitted the multipliers of the formgn, since integrals of the type
~1! usually appear in the form of a ratio and such multipliers cancel o

3!In quantum electrodynamics and QCD a polarization loop gives the m
tiplier k2 ln k2, and a photon~gluon! propagator gives 1/k2; in four-
dimensionalw4 theory a closed loop corresponds to lnk2, and an interac-
tion line corresponds to a constant. In all cases a chain ofN ‘‘bubbles’’
corresponds to (lnk2)N.
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4!The validity of the saddle-point method can be substantiated for con
gent finite-multiplicity integrals of functions of the type exp@lF(x)# in the
limit l→` ~Ref. 31!. The integral~3! can be brought into the form indi-
cated above, but, in general, it contains both ordinary ultraviolet div
gences and divergences associated with the transition to an infinite nu
of integrations. The ratio between the two integrals of type~1! must be
finite ~after the appropriate renormalizations!, but each of them taken in
dividually need not be finite.

5!Of course, instantons exist only in a part of the region of parameters,
this is not a restriction in the Lipatov technique: the values ofa, b, andc in
the asymptotic relation~5! are calculated exactly, and they allow analyt
continuation as functions of the physical parameters.

6!It is assumed below thatb0.0. For asymptotically free theories, in whic
b0,0, similar arguments are valid in regard to so-called infrared ren
malons. The latter are obtained from integrals of the type~13! with
m51,0,21,22, . . . in theregion of small momenta.

7!In particular, the result~27! is valid when the expansion~25! is truncated
at a finite number of terms provided the resultant polynomial is posit
On this basis it is easy to draw the erroneous conclusion that the high-o
terms of the expansion of theb function are insignificant. Parisi’s
arguments16,17 regarding the momentum dependence of Borel transfo
demonstrate just this point. In fact, the character of the solution of Par
equations17 depends significantly on the behavior ofb(g) at infinity. In
particular, they are easily solved for the model functionb(g)5b0g2/(1
1lg) with l@1 and lead to a result which differs qualitatively from th
one-loop analog.

8!The concrete form of the renormalon diagrams can differ somewha
different theories. For example, inw4 theory the significant diagrams d
not reduce to chains of ‘‘bubbles’’~Fig. 2c!, but form a so-called
parquet.48

9!This dependence can easily be obtained by characterizing an instant
two parameters, viz., its radius and amplitude, and performing a variati
estimation of the action. In the theory of disordered systems this co
sponds to the optimal-fluctuation method.35

10!For the dimensionalities 2<d,4 the influence ofL on the properties of
the instanton is insignificant, and the role of the renormalizations redu
to the fact that the renormalized mass appears in the equation o
instanton.36 The dependence ofS$wc% on m is preserved in this case.

11!Such divergences also appear inw4 theory, and a procedure for elimina
ing them is known.36
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52I. M. Suslov, Zh. Éksp. Teor. Fiz.106, 560~1994! @JETP79, 307~1994!#.
53A. O. Gel’fond, The Calculus of Finite Differences@in Russian#, Nauka,

Moscow ~1967!.

Translated by P. Shelnitz
Edited by S. J. Amoretty



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 89, NUMBER 2 AUGUST 1999
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Spectra of the electromagnetic radiation arising duringa decay of atomic nuclei as a
consequence of the motion of thea particle through a Coulomb potential barrier and in the
Coulomb field of the daughter nucleus are calculated via a quantum-mechanical approach. The
contributions of theE1 andE2 multipoles are calculated. Model problems of emission
during motion of a charged particle through a spherically symmetric, rectangular potential barrier
and a ‘‘cut-off’’ Coulomb barrier are treated. Numerical calculations are performed for
210,214Po and226Ra nuclei. Emission spectra are derived for ana particle propagating along
classical trajectories in these potentials. ©1999 American Institute of Physics.
@S1063-7761~99!00308-X#
ny
ss
ob
s

w-
o

a
ge
re
t
ti
y
oc

o
,
h

en

ct

is
s

ss
ng

he
as

i-
ider
a

ec-
an
at
er
a of

is-
ses
ht
of
ero
ical
he
b-
ti-

ions
e-
n
be
el

trah-
e

was
to
b-

ak
1. INTRODUCTION

Tunneling through a potential barrier is one of ma
purely quantum phenomena which have no analog in cla
cal physics. Experimentally, the process of tunneling is
served by recording particles that have already pas
through the barrier. The possibility exists in principle, ho
ever, of investigating the motion of a particle inside the p
tential barrier. This is so because as it passes through
gion of space with a nonzero potential gradient a char
particle emits photons. For these there is no barrier. By
cording the emission spectrum it is possible to assess
properties of the potential barrier. This additional diagnos
channel can be useful when studying the most diverse ph
cal phenomena in which tunneling of charged particles
curs ~e.g., in a tunneling microscope!.

One well-known tunneling process isa decay of atomic
nuclei. It is often accompanied byg emission with a discrete
spectrum corresponding to transitions from excited levels
the daughter nuclei populated duringa decay. Besides this
there is also emission with a continuous spectrum, which
come to be called bremsstrahlung.1–5 The nature of this
emission and its connection with tunneling through a pot
tial barrier are the subject of the present paper.

The experimental data on the bremsstrahlung spe
during a decay of210,214Po, 226Ra, and244Cm nuclei have
been published by two different research groups,
Russian/Italian1 and a Japanese one.2,3 These groups worked
with different nuclides. Taking this fact into account, it
nevertheless concluded that the results of the two set
experiments do not agree.2

An effort to explain the bremsstrahlung spectrum fora
decay of210Po was made in Ref. 2 based on the quasicla
cal approximation developed in Ref. 4 for a tunneli
charge. However, a quantum-mechanical calculation5 of the
electrical-dipole radiation with theE1-transition operator
taken in simplified form did not completely reproduce t
shape of the experimental spectrum in Ref. 2 or the qu
classical curve obtained there.
2081063-7761/99/89(8)/11/$15.00
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In the present work, within the framework of the quas
stationary approximation in quantum mechanics we cons
a model problem of emission during motion through
spherically symmetric, rectangular potential barrier~it is
solved analytically and gives an upper bound on the sp
trum! and problems of emission during motion through
ordinary Coulomb barrier and a Coulomb barrier cut off
some pointR2 ~see Fig. 1!. For these cases we also consid
the problem of emission in the classical approach. Spectr
the electrical dipole and electric-quadrupoleg radiation of an
a particle are calculated for three specific nuclei.

The system of units\5c51 is adopted in this work.

2. EMISSION PROBABILITY

Emission ‘‘under the barrier’’ is a special case of em
sion from a region forbidden for classical motion. Proces
of this kind are well known. An example is emission of lig
during atomic transitions. The electron wave functions
bound states in an attractive Coulomb field have nonz
amplitudes, including in the regions inaccessible to class
motion. Despite the rapid decay of the wave function in t
indicated regions, the contribution of the latter to the pro
ability of photon emission is completely real and easily es
mated. In such a calculation the energies and wave funct
of the atomic states are found with the help of the tim
independent Schro¨dinger equation, and the emissio
probability—by perturbation theory. Alpha decay can also
described within the framework of the single-particle mod
with time-independent wave functions.6 Correspondingly, an
attempt can be made to treat the emission of a bremss
lung photon in analogy with atomic transitions within th
framework of perturbation theory.5 Obviously, in such an
approach it is impossible to determine where the photon
emitted—under the barrier or outside of it. It is possible
speak of the contribution of a region to the emission pro
ability only in the sense of the total integral.

We will calculate in the center-of-mass system of thea
particle and the daughter nucleus. For brevity we will spe
© 1999 American Institute of Physics
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of the wave functions and coordinates of thea particle, but
by that we mean the wave functions and coordinates of
relative motion of thea particle and daughter nucleus.

The spectrum of the emittedg particles in the transition
of an a particle from the initial statec i to the final statec f

is described by the formula~see, e.g., Ref. 7!

dWg

dv
52pu^c f uĤ intuc i&u2r f , ~1!

wherer f is the density of final states of thea particle andg
quantum, andĤ int is the Hamiltonian of the interaction of th
a-particle current with the electromagnetic field.

If v is the energy of the emitted bremsstrahlung photo
K8 is the momentum of thea particle at infinity in the final
state, andm is its mass, then

r f5
mK8

~2p!3 dVa

v2

~2p!3 dVg .

The interaction of thea-particle currentj f i with a photon
having wave functionAl ~a plane wave with polarizationl
and momentumq is written as

^c f uĤ intuc i&5E d3r j f i~r !Al~r !. ~2!

The standard form of the transition current can be w
ten

j f i~r !5
Zeffe

2mi
~c f* ~r !¹c i~r !2~¹c f* ~r !!c i~r !!, ~3!

wheree is the charge of the proton and the effective cha
Zeff in the center-of-mass system depends on the multip
character of the transition. It can be expressed approxima
in terms of the atomic numberA and chargeZ of the decay-
ing nucleus. For an electrical-dipole transition

Zeff
E1'@2~A24!24~Z22!#/A,

and for an electrical quadrupole transition

Zeff
E2'Za52

~see Ref. 7!.
We expand the wave function in electric multipolesALm

E

and magnetic multipolesALm
M :7

FIG. 1. Coulomb potential barrier for210Po, spherically symmetric potentia
step, and Coulomb barrier cut off at the pointr 5R25r E .
e

s,
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e
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Al~r !5A2p

v
l (

L,m
A2p~2L11!i LDm,l

L @wq ,uq,~0!

3~ ilALm
E ~r !1ALm

M ~r !!#. ~4!

HereDm,l
L are the WignerD functions. The electromagneti

vector potentials are chosen in the Coulomb gauge

ALm
E ~r ;v!5A L11

2L11
j L21~vr !YLL21;m~n!

2A L

2L11
j L11~vr !YLL11;m~n!,

ALm
M ~r ;v!5 j L~vr !YLL;m~n!, ~5!

wherej L(x) is the spherical Bessel function,YLJm(n) are the
vector spherical harmonics

YLJm~n!5 (
m1 ,m2

~Lm11m2uJm!YLm1
~n!jm2

,

(Lm11m2uJm) are the Clebsch–Gordan coefficient
YLm1

(n) are the spherical functions, andjm2
(m2561,0) are

the components of the spin vector of the photon in the cy
cal basis.

Since only emission of electrical photons is possible
the problem under consideration,8 in what follows we will
work with the potentialALm

E . Also, besides the electric
dipole radiation, we also obtain formulas for the spectrum
the electric-quadrupole radiation, for the following reaso
First, the effective charge in theE1 transition is much less
than the effective charge in theE2 transition. Therefore, in
particular for fission of heavy nuclei, when the daughter n
clei ~fission fragments! have similar charge-to-mass ratio
the electric-dipole radiation can be suppressed and theE2
radiation can make a substantial contribution to the sp
trum. ~The formulas obtained in the present work also ap
to this case.! Second, the region in which the wave functio
are nonzero and consequently contribute to the radiatio
much larger than a nucleus. Third, the energies of thea
particles for decay of nuclei with short lifetimes are ve
large. For such nuclei the region of photon energies subs
tially greater than 1 MeV becomes accessible in the spec
measurements. At these energies not only can a retarda
effect be manifested, but also a contribution from theE2
radiation.

As for the wave functions of thea particles, we con-
struct them for the three potentials depicted in Fig. 1, that
for a spherically symmetric potential step, a Coulomb pot
tial barrier, and a Coulomb potential cut off at some po
R2 .

3. RECTANGULAR POTENTIAL STEP

The most suitable objects of study in connection w
bremsstrahlung duringa decay are even–even nuclei. Whe
they decay a single-line transition from the ground state1

of the mother nucleus to the ground state 01 of the daughter
nucleus is often observed. In this case, thea particle is emit-
ted by the mother nucleus only as anS wave.
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Let us first consider a model problem in which the ro
of the Coulomb potential barrier is played by a spherica
symmetric rectangular-step potential, as shown in Fig.
Noting that the angular and radial variables separate i
spherically symmetric field, we represent the wave funct
of the initial state as

c i~r !5f i~r !Y00~nr !.

The radial part of the wave functionf i(r ) is the solution
of the Schro¨dinger equation

r2
d2fL~r!

dr2 12r
dfL~r!

dr
1@r22L~L11!#fL~r!50

~6!

for L50. The variabler, referring to Fig. 1, is equal to
r5kr in region I, wherek5A2m(E2V1); r5kr in region
II, wherek5A2m(V22E); andr5Kr in region III, where
K5A2mE. The potentialsV1 and V2 are respectively the
well depth and barrier height, andE is the energy of thea
particle.

The solution of Eq.~6! for L50 that is regular at the
origin and satisfies the condition at infinity that it be a dive
gent spherical wave is obviously

f i~r !55
a0

sin~kr !

r
, 0<r ,R1 ,

b0
~1!

e2k~r 2R1!

r
1b0

~2!
ek~r 2R1!

r
, R1<r ,R2 ,

c0

eiK ~r 2R2!

r
, R2<r .

~7!

We determine the coefficientc0 from the normalization
condition on the current of the transmitted wave, i.e., wh
the particle current

j ~r !5
1

2mi
@c i* ~r !¹c i~r !2~¹c i* ~r !!c i~r !#

through the surface of the sphere of larger radius is equa
1:

R jds54pr 2 j r51.

Noting that the radial component of the particle curre
for the wave function~7! in region III is uc0u2va4pr 2, where
va5K/m is the velocity of thea particles, we obtain for the
normalization constantc051/Ava.

The matching conditions for the wave functions a
their derivatives at the pointsR1 and R2 give the values of
the coefficientsa0 , b0

(1) , andb0
(2) and the energyE as func-

tions of the magnitudes of the potentials and the widths
regions I and II.

The wave function of the final state should have t
asymptotic form ‘‘plane wave1converging spherica
wave.’’ 10 Therefore we begin its construction in region II
Employing the well-known expansion of a plane wave

eiK8r54p (
L50

`

(
m52L

L

i LYLm* ~nK8!YLm~nr ! j L~K8r !,
.
a

n

-

n

to

t

f

we can write the unknown wave function in the form

4p (
L50

`

(
m52L

L

i LYLm* ~nK8!YLm~nr !@ j L~K8r !1CLhL
~2!~K8r !#.

whereCL is a constant andhL
(2) is the Hankel function of the

second kind,11 defined by the general relationh(2
1)(x)

5 j L(x)6 inL(x), wherenL is the spherical Neuman func
tion.

The radial part of the wave function of the final state
regions I and II is written analogously as the wave functi
of the initial state. As a result, we obtain the wave functi
of the final state satisfying the conditions at the origin and
infinity:

c f~r !54p (
L50

`

(
m52L

L

i LYLm* ~nK8!YLm~nr !f f L
~r !, ~8!

f f L
~r !5H AL j L~k8r !,

@BL
~1!hL

~1!~k8r !1BL
~2!hL

~2!~k8r !#,

@ j L~K8r !1CLhL
~2!~K8r !#,

0<r ,R1 ,
R1<r ,R2 ,
R2<r .

~9!

If the energy of thea particle in the final state is equal t
E8, then the momenta in Eqs.~8! and ~9! are

k85A2m~E82V1!, k85A2m~V22E8!,

K85A2mE8.

The four matching equations for the wave functions a
their derivatives at the pointsr 5R1 andr 5R2 for theP and
D waves are solved analytically. Thus, the function of t
final state of thea particle is defined over all space.

Let us turn to the emission spectrum. The key elemen
its calculation is evaluation of the matrix element from E
~2! or, taking into account the expansion~4!, evaluation of
the matrix element

E d3r j f i~r !ALm
E ~r !. ~10!

Substituting the transition current~3! in explicit form in
expression~10! simplifies it. Integrating the second of th
terms making up the transition current~3! by parts while
taking into account the Coulomb gauge of the electric mo
pole

¹ALm
E 50

and the fact that both wave functions vanish at the ori
while the initial wave function vanishes at infinity, we fin
that

E d3r j f i~r !ALm
E ~r !5

Zeffe

mi E d3rALm
E ~r !c f* ~r !¹c i~r !.

~11!

From here on we can proceed in several different ways.
us consider some of them.
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3.1. Spectrum in ‘‘velocity form’’

The first approach consists in direct calculation
¹c i(r ) using the gradient formula~see, e.g., Ref. 7!, accord-
ing to which

¹c i~r !5¹f i~r !Y00~nr !52
df i~r !

dr
Y01;0~nr !. ~12!

We substitute this result into Eq.~11!. Next, using~4! and
~5! and integrating over all the angular variables, we find
following expression from formula~1! for the spectrum of
the emittedE1 photons:

dWg
~E1!

dv
5

8~Zeff
E1e!2

3p

K8v

m S uR0~v!u21
1

5
~R0~v!R2* ~v!

1R0* ~v!R2~v!!1
3

25
uR2~v!u2D . ~13!

The emission spectrum~13! is the spectrum of unpolarize
photons, for which all polarizations of the emitted quantu
have been summed over. The radial integrals in expres
~13! are defined as

R0,2~v!5E
0

`

dr r 2f f 1
* ~r ! j 0,2~vr !

df i~r !

dr
. ~14!

For most physical problems the approximationvr !1 is
valid, which allows us to neglect the matrix elementR2(v)
in comparison withR0(v) and replacej 0(vr ) by 1. In this
case, relations~13! and ~14! simplify substantially:

dWg
~E1!

dv
5

8~Zeff
E1e!2

3p

K8v

m
uR¹~v!u2, ~15!

R¹~v!5E
0

`

dr r 2f f 1
* ~r !

df i~r !

dr
~16!

~the radial matrix elementR¹ , as before, depends on th
energy of the emitted photon sincev enters into the wave
function of the final state~9! by way of the momentak8, k8,
andK8!.

Formulas~13!–~16! give the E1 bremsstrahlung spec
trum in the so-called ‘‘velocity form.’’12 @Following Ref. 12,
we have emphasized this fact by the symbol¹ in the notation
for the matrix elementR¹ in Eq. ~16!#.

3.2. Spectrum in ‘‘length form’’

The form of the spectrum which in the theory of brem
strahlung is sometimes called the ‘‘length form’’12 ~we de-
note the corresponding matrix element below asRr! follows
from Eq. ~11! with the help of the relation, well known in
quantum mechanics,9

^c f u¹uc i&5mv^c f ur uc i&.

Substituting it into Eq.~11! and carrying out manipulation
similar to those described above, we obtain instead of
mulas~15! and ~16! for the spectrum and radial matrix ele
ment the following approximate expressions:

dWg
~E1!

dv
5

8~Zeff
E1e!2

3p
K8mv3uRr~v!u2, ~17!
f

e

on

-

r-

Rr~v!5E
0

`

dr r 2f f 1
* ~r !rf i~r !. ~18!

For such a rapidly decreasing potential as a rectang
potential step, we can calculate using any of the above
mulas. The only point in question here is the greater or les
degree of complexity in the calculation of the integrals in t
radial matrix elements. However, for a Coulomb potentia
is necessary to use another method.

3.3. Calculation with a potential gradient

The most universal way of calculating the matrix el
ment ~11! was employed in Ref. 5. Taking into account th
definition p̂52 i¹ and commutativity of the momentum op
erator p̂ with the Hamiltonian of free motionĤ0 , from the
equation of motion for the components of the moment
vector in the Heisenberg representation

p̂ j52 i @ p̂ j ,Ĥ#

~the full Hamiltonian isĤ5Ĥ01V̂, whereV̂ is the interac-
tion! we at once obtain

c f* ~r !¹c i~r !5
1

v
c f* ~r !~¹V~r !!c i~r !. ~19!

Substituting the latter result into Eq.~11!, we can easily cal-
culate the desired transition matrix element.

Making use of the spherical symmetry of the potenti
we represent it in the form

V~r !5V~r !A4pY00~nr !.

From the gradient formula we obtain

¹V~r !52A4p
dV~r !

dr
Y01;0~nr !.

On the other hand, the wave function of the initial state is
S wave: c i(r )5f i(r )Y00(nr)51/A4pf i(r ). Employing
this fact, we can rewrite Eq.~19! as

c f* ~r !~¹V~r !!c i~r !5c f* ~r !S 2
dV~r !

dr Df i~r !Y01;0~nr !.

~20!

Comparison of formulas~20! and ~12! shows that they are
quite similar. If in formula~12! we make the substitution
df i(r )/dr→f i(r )dV(r )/dr, then repeating the derivatio
of formulas~13! and~14! taking the factor 1/v in expression
~19! into account, we obtain for the emission spectrum

dWg
~E1!

dv
5

8~Zeff
E1e!2

3p

K8

m

1

v S uR̃0~v!u21
1

5
~R̃0~v!R̃2* ~v!

1R̃0* ~v!R̃2~v!!1
3

25
uR̃2~v!u2D , ~21!

where

R̃0,2~v!5E
0

`

dr r 2f f 1
* ~r ! j 0,2~vr !

dV~r !

dr
f i~r !. ~22!
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FIG. 2. Emission spectra for a spherically symmetric potential step imitatinga decay of210Po. a—QuantumE1 andE2 spectra; b—E1 spectra:Cl—classical

@formula ~45!#, Q—Quantum @exact formula ~21!#, Q(‘ ‘ j 0’ ’)— approximation when only the radial matrix elementR̃0(v) is left in formula ~21!,
Q(‘ ‘1’’)—approximation used in Ref. 5,Q(‘ ‘ R2’ ’)— quantum-mechanical spectrum from formula~21! with matrix elements~23! in which the contribution
of the first term~i.e., the matrix elements at the pointR1! has been neglected.
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Formulas~21! and ~22! allow us to calculate the emis
sion spectrum systematically. If the radial part of the pot
tial has the form of a spherically symmetric step, i.e.,

V~r !5V1u~R12r !1V2u~r 2R1!u~R22r !,

whereu(x) is the Heaviside step function, then

dV~r !

dr
5~2V11V2!d~r 2R1!2V2d~r 2R2!.

Therefore, the integrals~22! can be evaluated at once wit
the help of delta functions, and the matrix elements simpl

R̃0,2~v!5~2V11V2!R1
2f f 1

* ~R1! j 0,2~vR1!f i~R1!

2V2R2
2f f 1

* ~R2! j 0,2~vR2!f i~R2!. ~23!

The electric-dipole emission spectra, calculated acco
ing to formula~21!, are shown in Fig. 2, where both matr
elementsR̃0(v) and R̃2(v) as given by formula~23! have
been used or the simplified expression has been used, w
the contribution of the terms containingR̃2(v) has been ne-
glected in formula~21!. The barrier parameters were chos
in order to modela decay of210Po ~i.e., reproduce the life-
time of the nucleus approximately and the energy of
emitteda particle exactly; see Sec. 5 for more details. It c
be seen, in particular, that it is not necessary to take
second term@proportional to j 2(vr )# in the expression for
the electricE1 multipole ~5! into account in this case: th
graphs of the spectra with the exact operator and the app
mateE1 operator coincide. As for the approximation dev
oped in Ref. 5, it works well at relatively low energies a
somewhat more poorly at higher energies.@The scheme used
in Ref. 5 is equivalent to discarding the terms withR̃2(v) in
the formula for the emission probability~21! while simulta-
neously using the approximationj 0(vr )→1 in the matrix
elementR̃0(v) in formula ~22!#. Note should also be mad
of the considerable contribution to the radial integralR̃0(v)
in formulas~22! and ~23! and, accordingly, to the emissio
probability at low energies of the left-hand boundary of t
potential step, specifically, the pointr 5R1 ~see Fig. 2!.
-

:

d-

ere

e

e

xi-
-

Let us turn now to an estimate of the electric-quadrup
emission. The calculation is analogous to that of theE1
emission spectrum. The wave function~5! of the photon
must be taken with angular momentumL52. As a result, the
radial wave function of the finite state~9! enters into the
matrix elements withL52. The final expression for theE2
spectrum has the form

dWg
~E2!

dv
5

8~Zeff
E2e!2

3p

K8

m

1

v

9

5
~ uR̃1~v!u2!, ~24!

where

R̃1~v!5E
0

`

dr r 2f f 2
* ~r ! j 1~vr !

dV~r !

dr
f i~r !. ~25!

We limit the discussion here to the first term in the expr
sion for the electric multipole withL52 in formula ~5!. In
fact, this is equivalent to using the Siegert theorem~see, e.g.,
Ref. 7! in the case when the emission probability is calc
lated in ‘‘length form’’ in terms of the electric-quadrupol
moment of the transition of the system. The contribution
the second term, as will become clear below in the insta
of the E1 spectrum, is substantially less.

The E2 emission spectrum for a rectangular potent
step is plotted in Fig. 2. As expected, theE2 emission at
relatively large energies of theg photons becomes first sub
stantial and then dominant in the spectrum.

3.4. ‘‘Length form’’ and the Siegert theorem

Let us consider the approach based on the Siegert t
rem in more detail. Toward this end, we make use of a w
known expression for the longitudinal potential7

ALm
Y ~r ;v!5A L

2L11
j L21~vr !YLL21;m~n!

1A L11

2L11
j L11~vr !YLL11;m~n!. ~26!

Comparison of expression~26! and formula~5! for the
electric potentialALm

E leads to the approximate identity
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ALm
E ~r ;v!'AL11

L
ALm

Y ~r ,v!, ~27!

which is valid provided

j L11~vr !

j L21~vr !
!1. ~28!

Condition ~28! is satisfied over a much wider range
energies than the conditionvr !1 used in the derivation o
formulas~15!–~18!. In fact, even forx[vr 51 the relations

j 2~x!/ j 0~x!,1/10, j 3~x!/ j 1~x!,1/30

are valid~see Ref. 11!. Therefore, the formulas obtained wit
the help of relation~27! work somewhat better than thos
obtained forvr !1.

The longitudinal potentialALm
Y in the form ~26! is de-

rived ~see Ref. 7! with the help of the gradient formula from
the expression

ALm
Y ~r ;v!5

1

v
¹ j L~vr !YLm~n!.

Using the property ofALm
Y , and also relation~27!, we

obtain the following approximate expression for the elec
multiple:

ALm
E ~r ;v!'

1

v
AL11

L
¹ j L~vr !YLm~n!. ~29!

To calculate further, we need the equation of continu
for the transition current~3!. It is derived in the standard
way. The Schro¨dinger equation for the wave function of th
initial state is multiplied on the left by the complex
conjugate of the wave function of the final state, and
Schrödinger equation for the complex-conjugate of the wa
function of the final state is multiplied on the right by th
wave function of the initial state. The one equation is th
subtracted from the other, and we obtain the desired equa
of continuity

¹ j f i~r !5 iZeffevc f* ~r !c i~r !. ~30!

Integrating by parts in Eq.~10! taking relations~29! and
~30! into account, we find the following relation for the ma
trix element of the interaction of the transition current w
the field:

E d3r j f i~r !ALm
E ~r ;v!'

2 iZeffeAL11

L E d3rc f* ~r ! j L~vr !YLm~n!c i~r !.

The emission spectrum is now calculated the same
it was done above. Finally, we have

dWg
~EL!

dv
5

4~2L11!~L11!

Lp
~Zeff

E1e!2K8mvuRjL~v!u2,

where

RjL~v!5E
0

`

dr r 2f f L
* ~r ! j L~vr !f i~r !.
c

y

e
e

n
on

y

From these formulas in the limitvr !1 and using the expan
sion

j L~vr !'~vr !L/~2L11!!!

we can easily obtain formulas in ‘‘length form’’ for emissio
of any multipolity, including relations~17! and~18! obtained
above.

Depending on the purpose of the problem, the shape
the potential, the form of the wave function, etc., it is po
sible to use one of the formulas obtained in the present
tion to calculate bremsstrahlung spectra.

Let us consider, for example, the region of formation
theE1 bremsstrahlung spectrum in ‘‘length form,’’ procee
ing from formula~18!. If we are talking here of the transition
between two states of the discrete spectrum, then the exp
sion

Zeff
E1eE

0

`

dr r 2f f 1
* ~r !rf i~r ! ~31!

would have the meaning of the dipole moment of the tran
tion of the system. In our case, the dimensions of expres
~31! are fm3. Nevertheless, taking this correspondence i
account, for simplicity we will speak here of the dipole m
ment of the transition. Figure 3 shows how the real a
imaginary parts of the radial integral in expression~31! be-
have, with the contributions from regions II and III show
separately. It can be seen that on the whole, region III do
nates. However, the contributions from both regions
similar in magnitude but have different signs. Thus, the

FIG. 3. a—real part, b—imaginary part of the radial integral of the dip
moment of the transition~31! for a spherically symmetric potential step i
regions II ~under the barrier! and III ~the region of free motion!.
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pole moments of the transition in regions II and III canc
out for the most part in the given problem geometry.

4. COULOMB POTENTIAL BARRIER

Let us now consider the emission spectrum of ana par-
ticle as it traverses a Coulomb potential barrier. The poten
acting on thea particle is written as

V~r !5V1u~R12r !1
ZdZae2

r
u~r 2R1!, ~32!

whereZd is the charge of the daughter nucleus. The wa
functions of thea particle in region I are the same as in th
previous section; specifically, they are spherical Bessel fu
tions j L(kr). In the region where the repulsive Coulom
potential acts~for r>R1! the radial wave functions of thea
particle are found by solving the time-independent Sch¨-
dinger equation

d2fL~r !

dr2 1
2

r

dfL~r !

dr
1S 2mE22m

ZdZae2

r

2
L~L11!

r 2 DfL~r !50,

which as a result of the substitutions

fL~r !5
uL~r !

r
, K5A2mE, r5Kr , h5

ZdZae2

K/m

reduces to the Coulomb wave equation11

d2uL~r!

dr2 1S 12
2h

r
2

L~L11!

r2 DuL~r!50. ~33!

The solutions of Eq.~33! are the regularFL(h,r) and irregu-
lar GL(h,r) Coulomb wave functions.11 These functions
have the asymptotic limits

FL~h,r! 5
r→`

sin~r2h ln 2r2Lp/21sL!,

GL~h,r! 5
r→`

cos~r2h ln 2r2Lp/21sL!,

where

sL5argG~L111 ih!

~see Ref. 11!. Therefore, in the initial state the combinatio
of functions

A 1

K/m

G0~h,r!1 iF 0~h,r!

r
.

will have the asymptotic limit of a diverging spherical wav
normalized to unit particle current. Using this expression,
write the radial wave function of the initial state in the for

f i
C~r !5H a0

sin~kr !

r
, 0<r ,R1 ,

A 1

K/m

G0~h,r!1 iF 0~h,r!

r
, Ri<r .

~34!
l

al

e

c-

e

The coefficienta0 is determined from the matching con
dition at the pointR1 . The equation for the energy of th
quasi-stationary state has the form

cot~kR1!5
K

k

G08~KR1!1 iF 08~KR1!

G0~KR1!1 iF 0~KR1!
.

We construct the wave functions of the final state
analogy with functions~8! and~9!. It can be easily seen tha
when the Coulomb interaction is switched off, i.e, wh
h50 and correspondinglysL50 holds, the function

4p (
L50

`

(
m52L

L

i LeisLYLm* ~nK8!YLm~nr !
FL~h,K8r !

K8r

goes over to the expansion of a plane wave in spher
Bessel functions. The combination of functions

GL~h,K8r !2 iF L~h,K8r !

K8r
.

has the asymptotic limit of a ‘‘converging spherical wave
Thus, we can write the wave functions of the final state a

c f
C~r !54p (

L50

`

(
m52L

L

i LeisLYLm* ~nK8!YLm~nr !f f L
C ~r !,

f f L
C ~r !

5H AL j L~k8r !, 0<r ,R1 ,

FL~h,K8r !

K8r
1CL

GL~h,K8r !2 iF L~h,K8r !

K8r
, R1<r .

~35!

Using the two matching equations for the wave functions a
their derivatives at the pointR1 it is easy to find to find the
coefficientsAL andCL and thereby determine the wave fun
tions of the final state over all space.

The emission spectrum is calculated according to form
las ~21! and ~22! with functions~34! and ~35!. Substituting
the derivative of the potential~32!

dV~r !

dr
5S 2V11

ZdZae2

r D d~r 2R1!

2
ZdZae2

r 2 u~r 2R1!,

into the formulas for the radial matrix elements leads to
following expressions for the matrix elements, which shou
be substituted in formula~21! in place of formulas~22!:

R̃0,2~v!5~2V1R11ZaZde2!R1f f 1

C* ~R1! j 0,2~vR1!f i
C~R1!

2ZaZde2E
R1

`

drf f 1

C* ~r ! j 0,2~vr !f i
C~r !. ~36!

The integral in expression~36! with wave functions~34! and
~35! converges and can be calculated numerically.
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5. TRUNCATED COULOMB BARRIER

To verify that the shape of the barrier has an affect
the bremsstrahlung spectrum, let us consider a potentia
the form

V~r !5V1u~R12r !1
ZdZae2

r
u~r 2R1!u~R22r !, ~37!

which is a Coulomb potential barrier cut off at the poi
r 5R2 . Taking the results of the two preceding sections in
account, the wave functions of thea particle in the indicated
potential have the following form:

the wave function of the initial statec i
C̃(r )

5f i
C̃(r )Y00(nr), where

f i
C̃~r !55

a0

sin~kr !

r
, 0<r ,R1 ,

b0
~1!

F0~h,Kr !

r
1b0

~2!
G0~h,Kr !

r
, R1<r ,R2 ,

A 1

K/m

eiK ~r 2R2!

r
, R2<r ;

~38!

the wave function of the final state

c f
C̃~r !54p (

L50

`

(
m52L

L

i LYLm* ~nK8!YLm~nr !f f L
C̃ ~r !,

f f L
C̃ ~r !55

AL j L~k,r !, 0<r ,R1 ,

BL
~1!

FL~h,K8r !

K8r
1BL

~2!
GL~h,K8r !

K8r
, R1<r ,R2 ,

~ j L~K8r !1CLhL
~2!~K8r !!, R2<r .

~39!

Substituting the derivative of the potential~37!

dV~r !

dr
5S 2V11

ZdZae2

r D d~r 2R1!2
ZdZaee

r 2

3u~r 2R1!u~R22r !2
ZdZae2

r
d~r 2R2!

along with wave functions~38! and ~39! into formula ~22!,
we obtain the following formula for the matrix elements:

R̃0,2~v!5~2V1R11ZdZae2!R1

3f f 1

C̃* ~R1! j 0,2~vR1!f i
C̃~R1!

2ZdZae2E
R1

R2
drf f 1

C̃* ~r ! j 0,2~vr !f i
C̃~r !

2ZdZae2R2f f 1

C̃* ~R2! j 0,2~vR2!f i
C̃~R2!. ~40!

The emission spectrum calculated according to form
~21! with the matrix element~40! is plotted in Fig. 4. The
Coulomb barrier, potential step, and cut-off Coulomb barr
for which the spectra depicted here were calculated, moda
decay of214Po. The Coulomb barrier was cut off at the poi
R25r E . This is the right-hand boundary of the spherica
symmetric potential step. Its heightV2 was determined by
n
of

o

a

r,

equating the quasiclassical transmissivity coefficients of
Coulomb barrier and the potential step, i.e., in fact from
equality of the arguments of the exponentials

E
R1

r E
drA2m~V22E!5E

R1

r E
drA2mS ZdZae2

r
2ED .

For V2 this gives

V25ES 11S arccosAR1 /r E2AR1 /r EA12R1 /r E

12R1 /r E
D 2D .

It can be seen from Fig. 4 that the quantum-mechan
emission spectra for the spherically symmetric potential s
and for the cut-off Coulomb barrier for energiesv<1 MeV
are very similar, i.e., at low energies the emission spectr
for these potentials is formed mainly in region III. This stat
ment is in agreement with the behavior of the radial mat
elements in Fig. 3. This is completely natural f
v<1 MeV. The regionr;1/v;40 fm ~where both of the
considered potential barriers already terminate! will work
most effectively only for extremely high-energyg photons
with v'1/r'5 – 7 MeV.

6. EMISSION DURING MOTION ALONG A CLASSICAL
TRAJECTORY

Let us consider the emission spectrum of ana particle
moving in a Coulomb potential along a classical trajecto
from the point of closest approachr E , where the initial ki-
netic energy of thea particle is equal to zero, to infinity
where its kinetic energy is equal toE.

The electric-dipole bremsstrahlung spectrum is d
scribed by the well-known expression8

dWg
~E1!

dv
5

2~Zeff
E1e!2

3p

1

v
uwvu2, ~41!

in which wv is the Fourier transform of the acceleratio
w(t):

wv5E
0

`

dtw~ t !eivt.

FIG. 4. Experimental data for214Po and226Ra ~corrected data of Ref. 1! and
210Po ~from Refs. 2 and 3!. Graphs E1: Q2C and E2:
Q2C—quantum-mechanical calculation of theE1 andE2 emission spectra
for tunneling through a Coulomb barrier; the graphsE1: Cl2C—classical
calculation ofE1 emission for motion in the Coulomb field of a nucleu
from the point of closest approachr E to infinity.
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FIG. 5. Experimental data for214Po,226Ra
~corrected values taken from Ref. 1! and 210Po
~from Refs. 2 and 3!. E1: Q–C traces andE2:
Q–C traces— quantum calculation of th
E1 and E2 emission spectra for tunneling
through the Coulomb barrier; E1:Cl –C
traces— classical calculation of theE1 emission
for motion in the Coulomb field of the nucleu
from the point of minimum approachr E to in-
finity.
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The acceleration is determined from the equation of m
tion

w~ t !5
ZaZde2

mr~ t !2 ~42!

with initial conditions

r ~ t50!5r E , v~ t50!50.

Integrating Eq.~42!, we find the equation of the trajectory

Ar ~ t !

r E
Ar ~ t !

r E
211 lnSAr ~ t !

r E
1Ar ~ t !

r E
21D 5

vat

r E
,

~43!

whereva5A2E/m. This dependencer (t) is used to calcu-
late the Fourier transform of the acceleration from Eq.~42!
and, correspondingly, the emission spectrum.

In the case of a potential step it is also possible to fi
the ‘‘classical’’ electric-dipole emission spectrum. Towa
this end, we draw a sloping line from the point at which t
a particle ‘‘exits’’ from the rectangular potential barrier~this
is the intersection point of the energy lineE and the outer
vertical wall of the barrier, located in Fig. 1 atr 5R2! to the
point at which it intersects ther axis, r 5R3 , where
R3.R2 . ~That is to say, thea particle does not ‘‘fall’’
straight down upon appearing at the outer wall of the rect
gular barrier but rather ‘‘rolls down’’ along a sloped plane!
The equations of motion in this case have the form

mw~ t !5E/DR, R2<r<R3 ,

mw~ t !50, R3,r , ~44!

whereDR5R32R2 , and the initial conditions are analogou
to those considered above:r (t50)5R2 , v(t50)50. Inte-
grating Eq.~44!, we find the equation of the trajectory

r ~ t !5
E

2mDR
t21R2 , 0<t<T,

r ~ t !5vat1R3 , T,t,

whereT52DR/va is the time it takes the particle to mov
from R2 to R3 .

The Fourier transform of the acceleration
-

d

-

wv5E
0

T

dt
E

mDR
eivt5vaeivDR/va

sin~vDR/va!

vDR/va

in the limit DR→0 is va . Therefore, for the classicalE1
emission spectrum of a particle ‘‘falling’’ in the field of th
vertical potential wall we obtain

dWg
~E1!

dv
5

2~Zeff
E1e!2

3p

1

v
va

2. ~45!

Spectra corresponding to formulas~41! for various nu-
clei are plotted in Fig. 5. As for the classical emission sp
trum for the vertical potential wall~45!, it is shown in Figs.
2 and 4. Note that in contrast to the usual Coulomb case,
a potential step the quantum-mechanicalE1 spectrum lies
above the classical spectrum in the low-energy region.

7. RESULTS OF CALCULATIONS FOR 210,214Po AND 226Ra

We present a sequence of calculations ofa-decay emis-
sion spectra of specific nuclei for the problem with a Co
lomb barrier. We choose the size of the well fora decay of
a nucleus with atomic numberA according to the formula

R151.2@~A24!1/3141/3# fm

~the bremsstrahlung spectrum varies only slightly asR1 var-
ies within reasonable limits!. Next, proceeding from the ex
perimental value of the energy of thea particle in the center-
of-mass systemE, we calculate the values of the Coulom
functions and their derivatives in the initial state at the po
r 5R1 . From the equation for the energy of the qua
stationary state for fixedE we find a set of values for the
potentialV1 . The magnitude of the latter is the main fact
determining the lifetime of the quasi-stationary state. T
bremsstrahlung spectrum, as was noted in Ref. 5, is inse
tive to V1 . However, this is valid only in the absence
bound states withL51,2 in a potential well of depthV1 .
Levels withL51 can lie quite low. In addition, theE1 reso-
nance in the bremsstrahlung spectrum at these levels is
row. Therefore, to calculate theE1 spectrum out to photon
energiesv'1 MeV requires several values of the potent
V1 . The E2 emission spectrum is another matter.E2 reso-
nances are very broad. A level withL52 is present and is
found quite close to theL50 level for all values ofV1



t

it
ib

re
ns

ca

b

th

-

th
p
ity

um
he
s
a
f.

rit
g

c-

w
te
e

e

ex

er

om
e
b
x
a
en

ra
r-
er

i
o
t
rm
ce

en-

sent
n
ical
ary
ent
on

ion
he
he
he

di-
3 is
it is
out-
ess
ust
re-
el-
ple
e.
ou-
oint
i-

es

e-
in

i-
ted
the
the
ide
ial

c-
n
tial
e
of

-
is

cal-
nt
of

or
ond
er

,
es-

ian

217JETP 89 (2), August 1999 E. V. Tkalya
except for the one for which the well has the smallest dep
For the nuclei considered here this value of the potentialV1

is positive. The majority of the photon spectra presented
the figures were calculated for just such potential wells w
smallest depth. In this case, clearly, the situation is poss
in which the energy of the final state is less thanV1 and the
momentumk8 becomes imaginary. In this case it is mo
convenient to work with a combination of Hankel functio
in region I, using the fact thatj L(x)5hL

(1)(x)1hL
(2)(x). In

the remaining cases the calculation is analogous to the
V1,0.

At present, the most reliable experimental data availa
are for the210Po nucleus.2,3 Figure 5 displays, in addition to
the indicated experimental values, curves calculated in
quantum-mechanical approach according to formulas~21!
and~36!, and also~24! and~25!, of theE1 andE2 emission
spectra for passage of ana particle through a Coulomb bar
rier. These include curves corresponding toE1 emission~41!
arising upon the motion along a classical trajectory in
Coulomb field of a nucleus from the point of closest a
proach, where the kinetic energy is equal to zero, to infin
where the kinetic energy is equal toE ~43!. Our quantum-
mechanical result for the electric-dipole emission spectr
in a Coulomb potential is in excellent agreement with t
calculation of Ref. 5. At present, there is probably no ba
for speaking of a disparity between the experimental dat2,3

and the theoretical calculations obtained here and in Re
The experimental data for the210Po and226Ra nuclei are

from Ref. 1. These results were later subjected to the c
cism of the authors of Refs. 2 and 3. The misunderstandin
partly due to the fact that Ref. 1 presents data on the em
sion spectrum ofg radiation at an angle of 90° to the dire
tion of motion of thea particles~this is noted in the text of
the article!. The data were not averaged over angle. Ho
ever, this fact is in no way reflected in the graphs. Correc
values for 210Po and226Ra, i.e., values averaged over th
angles of emission of theg quantum, were provided for th
present publication by N. V. Eremin,1! who performed all of
the measurements for Ref. 1 in his own time. Now the
perimental points for226Ra lie ~see Fig. 5! systematically
above the quantum-mechanicalE1-emission probability
curve for tunneling through the Coulomb barrier and are v
close to the line corresponding to classicalE1 emission in a
Coulomb field. However, the experimental values for214Po
relative to the analogous calculated curves behave c
pletely differently. They lie systematically below th
quantum-mechanicalE1-emission spectrum for the Coulom
potential. Such fundamentally different behavior of the e
perimental data seems quite strange. Still more problem
is the fact that the experimental values for such differ
a-emitters as210Po and226Ra ~the energies of thea particles
are, respectively, 7.687 MeV and 4.785 MeV in the labo
tory system! essentially coincide. From Fig. 5 it may be su
mised that in addition to the bremsstrahlung in the exp
ment with 226Ra discussed here, bremsstrahlung arising
the scattering ofa particles on neighboring nuclei was als
measured. However, the data on214Po speak otherwise. I
follows from them that the emission process in the fo
considered here simply does not exist. Instead, some pro
h.
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is being measured whose probability is practically indep
dent of the energy of thea particles. It is clear that this
cannot be the bremsstrahlung investigated in the pre
work if only because for214Po the spectrum in the regio
vg'100– 200 keV should already be close to the class
limit. The question is probably still open, and it is necess
to carry out new experiments with increased measurem
accuracy and rejection of processes involving scattering
neighboring nuclei.

In conclusion let use address briefly another quest
touched on, in particular, in Ref. 3. This is the problem of t
so-called ‘‘destructive interference of amplitudes in t
under-barrier and outside regions.’’ According to Ref. 3, t
fact that the quantum curve of theE1 spectrum for a Cou-
lomb field lies below the classical curve~Fig. 5! can be ex-
plained by destructive interference of amplitudes in the in
cated regions of space. Note that the discussion in Ref.
about one and the same amplitude whose magnitude
proposed to estimate separately in the under-barrier and
side regions. According to the model of the emission proc
used in the present work, such interference of regions m
be understood as contributions of integrals over different
gions of space in the calculation of the transition matrix
ements to the total radial integral. In this sense the exam
with a spherically symmetric potential step is instructiv
~This barrier is convenient because in contrast to the C
lomb case the barrier boundary is found at the sample p
r 5R2 for the initial and final states, and there is no ‘‘trans
tional’’ region.! For a potential step the quantum curve li
above the classical curve up to energies of several MeV@Fig.
2b#. It would seem that a ‘‘constructive interference of r
gions’’ should take place. Let us consider the spectrum
‘‘length form,’’ formed by the dipole moment of the trans
tion ~31!. Indeed, in Fig. 3 there are energies of the emit
photons at which the transition dipole moments have
same sign and add. However, for most of the energies
signs of the dipole moments in the under-barrier and outs
regions are different, and the contributions to the total rad
integral largely cancel, i.e., ‘‘destructive interference’’ o
curs, if we follow the logic of Ref. 3. Let us turn now to a
analysis of formulas for the matrix elements of the poten
gradient~23!. Here it is generally unclear how to treat th
radial matrix elements from the viewpoint of interference
regions. In contrast tor , the operatordV/dr is localized at
the point r 5R2 , i.e., precisely at the boundary of two re
gions. The situation thus depends on how the spectrum
calculated, on the operator whose matrix element we are
culating. There is nothing similar in the case of differe
diagrams or amplitudes. Therefore, if we are speaking
‘‘interference of regions,’’ we must first specify the operat
about whose spatial distribution we are talking, and sec
bear in mind the explicit limitations of the concept und
discussion.

The author is grateful to A. M. Dykhne, N. V. Eremin
and N. P. Yudin for useful discussions of a number of qu
tions touching on this paper.
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A formula for describing theN-electron ionization of atoms by a dc field and laser radiation in
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1. INTRODUCTION

The first to observe multi-electron ionization of alka
earth atoms by laser light were Suran and Zapesochny�

1 ~a
review of their paper and of earlier work can be found
Ref. 2!. At present such studies constitute one of the m
avenues of research in the physics of the interaction of str
laser light and atoms.3

To interpret the experimental data, a number of theo
ical models have been proposed, some dealing with the
rect effect of laser light on atomic electrons,4–8 others con-
sidering the formation of highly stripped ions due to t
inelastic scattering of previously emitted ions by the par
ion.9–11 These models make it possible to explain many f
tures of the phenomenon.12–16 Nevertheless, the difficulties
inherent in the theoretical description of the formation
highly stripped ions in a laser field not associated with
elastic scattering4–8 make it impossible to properly appl
these mechanisms in the interpretation of the experime
data.

At the same time, relatively simple formulas provide
satisfactory description of the formation of singly charg
ions in a laser field.17–19Eichmannet al.20 developed an em
pirical generalization of these formulas~known as the formu-
las of the ADK~Ammosov–Delone–Kra�nov! theory! to de-
scribe the formation of highly stripped ions. Hence it wou
be reasonable to generalize the existing theory of tunne
in atoms to the case of nonsequential multiple ionization
atoms. The aim of the present work is to solve this proble

An obvious analog of the phenomenon being discus
is the Josephson effect in solid-state theory. Zakhar’ev21 has
proposed a number of ideas concerning the difference
tween single-particle and multiparticle tunneling effects.
comparison of these ideas with the results of the pres
work shows that for tunneling in atoms the difference is n
as trivial as described in Ref. 21.

2. ASYMPTOTIC BEHAVIOR OF THE MULTI-ELECTRON
WAVE FUNCTION

Let us recall some facts that will make the understand
of the main concept of the proposed model easier. As we
known, to describe optical transitions in complex atom
Bates and Damgaard22 modified the Slater model~see Ref.
23!, basically retaining the nodeless nature of the Slater
bitals. Unlike the Slater model, the effective nuclear cha
2191063-7761/99/89(8)/4/$15.00
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ceases to be a fitting parameter for the valence electron
an atom, since it coincides with the residual ion charge. T
effective principal quantum number, however, is unique
determined by the electron binding energy. All this mea
that one must consider the asymptotic region of electron m
tion, where the atomic potential is of the Coulomb type. T
high accuracy of oscillator-strength calculations achieved
the Bates–Damgaard method~see Sobelman’s book cited i
Ref. 24! and the clear physical justification allows us to u
this methods for calculating other atomic characteristics
termined by large electron–nucleus distances.

Another characteristic determined by large electro
nucleus distances, where the electron–external-field inte
tion becomes comparable to the attraction energy of the
sidual atom, is the tunneling probability. Thus, the Bate
Damgaard method can be used to describe the tunne
effect. Such a procedure has been recently developed in
25 for tunneling calculations in Rydberg molecules, a
some conditions for the applicability of the method were a
estimated.

Suppose thatN equivalent~i.e., belonging to the same
atomic shell! electrons are removed from an atom via tu
neling. The asymptotic behavior of the radial part of t
N-electron wave function in the Bates–Damgaard appro
mation is determined by the product of properly symm
trized one-electron asymptotic wave functions:

cn lm~r !5Cn lb
23/2S r

bD n21

expS 2
r

bDYlmS r

r D ,

Cn l5~2pn!21/2S 2

n D n

L~«!,

L~«!5S 12«

11« D ( l 11/2)/2

~12«2!2n/2, ~1!

whereZ is the residual-ion charge,a5\2/me2 is the Bohr
radius,m ande are the electron mass and charge~the abso-
lute value of the charge!, b5an/Z, and«5( l 11/2)/n. The
constantCn l in ~1! is determined in the quasiclassical a
proximation without the assumption thatl !n ~this assump-
tion was adopted in Ref. 19!. In view of this, the function
L(«) arises, withL(«)→1 as«→0. In this limit the expres-
sion for the constantCn l in ~1! becomes formula~11! of Ref.
19 with an inaccuracy corrected~the numbere52.718̄
should be omitted!.
© 1999 American Institute of Physics
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The expression forCn l in ~1! was obtained under th
assumption that«,1. For «.1, the quasiclassical approx
mation breaks down, with the result that numerical meth
must be used to calculateCn l ~see, e.g., Ref. 26!.

The principal quantum numbern is determined by the
electron binding energy. IfE1 /e, E2 /e, etc., are the first,
second, etc., ionization potentials of the atom, the princ
quantum number of thej th electron detached from the ato
is n j5(2aEj /Z2e2)21/2. But if the electrons are equivalen
i.e., belong to the same shell, and are detached from the a
simultaneously, for all these electrons

n5S 2aEN

NZ2e2D 21/2

, ~2!

whereEN5( j 51
N Ej is the binding energy of theN electrons.

Note that in this model the asymptotic behavior of t
bound-electron wave function@Eq. ~1!# depends on how
many electrons get detached from the atom. This parti
allows for multi-electron effects in the initial state of th
atom. Formula~2! is similar to the one derived by Eichman
et al.20 empirically.

Now we considerN-electron ionization as the detach
ment from the atom of anN-electron cloud, a quasiparticle o
sorts that has a massNm and carries a charge2Ne. Here in
the region in which ionization takes place we consider
distances between the electrons in the cloud to be m
smaller than the distance between the atomic core and
center of mass of the cloud. Denoting the distance betw
the i th and j th electrons byxi j and the radius vector of th
position of the cloud center of mass byR, we can write

xi j !R. ~3!

Since the interaction between atom and laser field is con
ered in the dipole approximation, the effect of the field onN
individual electrons is equivalent to the effect of the field
a quasiparticle with a charge2Ne located at the pointR. As
for the interaction between the quasiparticle and the C
lomb field of the atomic core, the error introduced by igno
ing this field is of order (xi j /R)2, which is small in view of
the adopted condition~3!.

The problem that we must solve to describe mathem
cally the model is similar to the one that appears, say
nucleara-decay theory, i.e., we must construct the quasip
ticle wave functionC$n lm%

(N) (R,$xi%) at large distances from
the residual system using the one-particle wave function
the system in the initial state~symbols in braces represe
sets of quantum numbers or the coordinates of individ
particles!. To solve this problem we examine the asympto
behavior of the functionC$n lm%

(N) as R→`, which is repre-
sented by the product of the asymptotic one-electron w
functions ~1!. Clearly, the radial dependence of~1! intro-
duces the factor exp$2NR/b% (R/b)N(n21) into the asymptotic
functionC$n lm%

(N) . To obtain the angular dependence we m
specify the way in which the variablesR and$xi% are intro-
duced. Since in a linearly polarized field the problem is a
symmetric, the projections of the orbital angular momenta
the noninteracting electrons on the direction of polarizat
are conserved. Hence it is convenient to leave the azimu
anglesw i the same as in the initial spherical system of co
s
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dinates with the atomic nucleus as its origin. The change
variables will affect only the absolute values$r i% and the
polar angles$u i%. The behavior asu→0 of the Legendre
polynomials in the spherical functions in~1! is given by the
formula

Pl
umu~cosu i !;~21! umu ~ l 1umu!!

~ l 2umu!!
sinumu u i

2umuumu!

5~21! umu ~ l 1umu!!
~ l 2umu!!

~r i
22r iz

2 ! umu/2

2umuumu! r i
umu .

Replacingr i with R and r iz with Rz and introducing the
parabolic coordinatesj5R1Rz andh5R2Rz for the cloud
center of mass, we can write the asymptoticN-electron wave
function for j@h:

C$n lm%
~N! ~R,$xi%!5Bf~j,h!x~$r i ,u i%!

3)
j 51

N
exp$ imjw j%

A2p
,

B5a23/2Cn l
N S Z

n D 3N/2S l 1
1

2D N/2

3)
j 51

N
~21! umj u

umj u!
F ~ l 1umj u!!
~ l 2umj u!!

G1/2

,

f~j,h!;expF2
N~j1h!

2b G S j

2bD N(n21)S h

j D M /2

, ~4!

whereM5( j 51
N umj u andx is the wave function~normalized

to unity! of the electron’s motion within the cloud. Note tha
among the 2N variables$r i ,u i% there are only 2(N21) in-
dependent variables. The functionf~j,h! describes the mo-
tion of the cloud’s center of mass.

3. TUNNELING PROBABILITY

Further calculations of the tunneling probability are ca
ried out by the standard procedure,17,27 with allowance for
the fact that the mass of the electron cloud isNm and the
charge is2Ne. Inserting the functionf~j,h! in the Schro¨-
dinger equation describing the motion along the parab
coordinatej asj→`,

d

dj S j
df

dj D1S b2
ENNm

2\2 j Df50,

we arrive at a formula for the constant associated with
separation of the variables:

b5
N

b FN~n21!2
M21

2 G . ~5!

Here we ignore the centrifugal potential since it decays r
idly as j→`.

Assuming that the external fieldF(t) varies slowly, we
adopt the quasiclassical approximation for the wave funct
fF(j,h) describing the motion of the electron cloud’s cen
of mass in the field. In the subbarrier region,
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fF~j,h!5kS jup~j!u
\ D 21/2

expH 1

\ E
j1

j

up~j!udjJ , ~6!

p~j!5\S 2
ENNm

2\2 1
b

j
1

1

4j2 1
N2em

4\2 Fj D 1/2

, ~7!

wherej1 is the larger root of the equationp(j)50. By com-
paring the expression~6! with the functionf~j,h! in ~4! at a
point j0 inside the interval

2\2b

ENNm
.b!j0!

2EN

NeF
5

eZ

bnF
~8!

we find k:

k~h;j0!.S Nj0

2b D 1/2

expH 2
1

\ E
j0

j1
up~j!udjJ f~j0 ,h!.

~9!

The condition for the existence of the interval~8! yields a
restriction on the external field,

F!Fa[
eZ

b2n
5

e

a2 S Z

n D 3

, ~10!

which differs from the condition that arises in the descripti
of the one-electron tunneling effect only in the way in whi
n is defined. Note that ifn is much larger than unity, which
is the case, say, for Rydberg states, the inequality~10! is
replaced by a stronger one,

F,
Z3e

16n4a2 , ~11!

which follows from the condition for the existence of a p
tential barrier.28

Equations~6! and ~9! define the functionfF(j,h) out-
side the barrier. With allowance for~8!, we have an expres
sion for the square of the absolute value of this function:27

ufF~j,h!u25
\Nj0

2bjp~j! S j0

2bD 2N(n21)S h

j0
D M

3expH 2
Nh

b
2

16\2

3N2meF S ENNm

2\2 D 3/2

2bS 2\2

ENNm D 1/2

ln
NeFj0

8EN
J . ~12!

Using ~2! and ~5!, we can easily see that the dependence
the arbitrary parameterj0 has in fact dropped out of~12!:

ufF~j,h!u25
\N~h/b!M

2Mjp~j! S 2Fa

F D 2N(n21)2M11

3expS 2
Nh

b
2

2NFa

3F D . ~13!

The ionization probability is determined by the flux of th
probability density~13! through a plane perpendicular to th
z axis:27

Wn l
(N)~F !;2pE

0

`

vzufF~j,h!u2r dr,
n

vz5
2p~j!

Nm
, r5Ajh, dr.Aj

h
dh.

Substituting~4! and ~13! in this formula yields

Wn l
(N)~F !5

p\

a2m

M ! ~ l 11/2!NCn l
2N

2M22NM11 S Z

n D 3N21

3)
j 51

N
~ l 1umj u!!

~ umj u! !2~ l 2umj u!!
S 2Fa

F D 2N(n21)2M11

3expH 2
2NFa

3F J . ~14!

This formula determines theN-electron tunneling probability
in a dc field to within a factor accounting for the overlap
the wave functions of the electrons remaining in the at
and the wave functions of the same electrons in the ini
state. Obviously, this factor cannot exceed unity~a more ac-
curate evaluation can be done only numerically!. Note that
the factorN in the exponent of the exponential function
~14! in no way exhausts the dependence of the exponen
N, as Zakhar’ev21 believed. In view of Eqs.~2! and~10!, the
dependence onN is much more complicated and is dete
mined by the spectrum of the particular atom. Figure 1
picts a numerical example illustrating this statement.

We will assume that

F~ t !5F0 cosvt, ~15!

wherev is the frequency of the laser field. As is well know
tunneling in a laser field is possible when the Keldysh29 pa-
rameterg5(A2mE1/eF)v is small ~hereE1 is the binding
energy per electron!. Applying the technique developed b
Keldysh29 to a particle of massNm and charge2Ne, we can
easily see thatN-electron tunneling is possible when the p
rameter

gN5
A2mEN /N

eF
v ~16!

is small. Since the energy of detachment of each subseq
electron increases with the number of the electron,N-
electron tunneling requires field values that are lower th
those required by anN-electron tunneling cascade.

We substitute~15! in ~14! and average the result over th
time intervaltP@2p/2v,p/2v# ~see Ref. 18!.1! In view of

FIG. 1. Probability ratio of triply-charged noble-gas ion formation by tw
different channels~see the text!.
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the inequality~10!, the resulting integral can be evaluated
the saddle-point method. If the condition~11! is met, the
saddle point ist50. The final formula is

Wn l
(N)~F0!5

A3p\

a2m

M ! ~ l 11/2!NCn l
2N

2M23/2NM13/2 S Z

n D 3N21

3)
j 51

N
~ l 1umj u!!

~ umj u! !2~ l 2umj u!!
S 2Fa

F0
D 2N(n21)2M11/2

3expH 2
2NFa

3F0
J . ~17!

We note once more that the dependence onN of the expo-
nent of the exponential function in~17! is not exhausted by
the factorN written explicitly.

4. NUMERICAL EXAMPLES

Unfortunately, the above formulas cannot be related
rectly to an experiment, since, in addition to the possibi
of direct N-fold ion formation there is the possibility o
many cascade channels and other ionization mechanism
which inelastic collisions of electrons and ions a
responsible.9–11 Comparing the theoretical results with e
perimental data requires solving certain kinetic equation
problem that merits a separate investigation. Hence this
tion considers only a few illustrative examples.

Figure 1 depicts the probability ratio of triply-charge
noble-gas ion formation by two different channe
A→A1→A31 and A→A21→A31. The two probabilities are
denoted byW(1;2) andW(2;1), respectively, and have th
same dependence on the laser pulse length. Cle
W(1;2)/W(2;1) is notequal to unity, as follows from the
Zakhar’ev results.21

The following result is also of interest: the probabilitie
of two-electron tunneling for neutral atoms may be high
than the probabilities of one-electron tunneling for the c
responding singly charged ions. For instance, for the Ar a
the two-electron tunneling probability exceeds the proba
ity of a one-electron process for the Ar1 ion at intensities
I .1014.88W cm22. The same result is true for Kr a
I .1014.76W cm22 and for Xe atI .1014.34W cm22. At the
same time, for the light noble gases He and Ne, the o
electron tunneling probabilities are two orders of magnitu
higher that the probabilities of the two-electron process
the corresponding neutral atoms atI .1015W cm22. These
facts prove that there exists a wide range of experime
situations arising in multiphoton tunneling.
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in the direction opposite to the positivez semiaxis.
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In this paper a kinetic equation is derived for the distribution function in the variableq
52 sin(q/2) for the case of a scattering cross section of general form under the assumption that
the region of multiple scattering~the diffusion region! is small. The limits of the kinetic
equation are discussed, with no restrictions imposed on the scattering angles. It is found that the
equation has a solution in the form of an integral. Finally, it is established that the solution
is applicable over the entire range of angles, from 0 to 180°. ©1999 American Institute of
Physics.@S1063-7761~99!00508-9#
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1. INTRODUCTION

The Moliere theory1! of multiple scattering1,2 is gener-
ally accepted and used in modeling and calculating the p
sage of particles through matter~see, e.g., Refs. 3–6!. The
theory employs the small-angle approximation, sinqdq is
replaced byqdq, and the scattering cross section has
form s(d)}d24, whered is the scattering angle. The distr
bution function found in Refs. 1 and 2 in the small-ang
region is close to Gaussian,f (q)'2 exp(2q2/l2)/l2, i.e.,
describes the diffusion of particles in angle space due
multiple collisions with small-angle scattering. For the sa
of brevity we will call the corresponding region of angles
a solution with a characteristic sizel the diffusion region.
Moreover, in the solution we can specify a region known
the multiple-scattering region into which a particle lands
among the multiple sequence of collisions some were la
angle, and the limiting region of single scattering, where
particle experiences only one collision and the distribut
function has the formf (q)}q24, i.e., follows the angular
dependence of the cross section itself.

In this paper we will examine, for a cross section
general form and without resorting to the small-angle
proximation, the kinetic equation for the distribution fun
tions in the variable

q52 sin
q

2
. ~1!

The variableq determines the momentum transfer, and
cross section can also be expressed in terms of a sim
variable, x52 sin(d/2). Moreover, we have sinqdq5qdq,
which makes it possible to generalize the results obtai
earlier in the small-angle approximation. Operating with
this approach, we will obtain the solutions for the Rutherfo
and Mott cross sections. The accuracy of the results will
verified, in particular, by the Monte Carlo method over t
entire range of angles.
2231063-7761/99/89(8)/9/$15.00
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2. THE KINETIC EQUATION AND ITS SOLUTION

We introduce the following notation:i is the vector of
the direction of propagation of the initial particles~Fig. 1!,
s(n–n8)dV/2p is the differential cross section of scatterin
particles with the initial directionn8 into the solid angledV
along directionn, and f (n–i,t)dV/2p is the number of par-
ticles in the solid angledV after they have travelled the
distancet. The starting kinetic equation is

] f ~n–i,t !

]t
52N f~n–i,t !E s~n–n8!

dV8

2p

1NE s~n–n8! f ~n8–i,t !
dV8

2p
, ~2!

whereN is the number of scattering centers per cubic ce
meter anddV8 corresponds to the directionn8. Here all the
quantities are expressed in terms of the cosines of the an
It is important for our further discussion to note thatdV8 is
the surface element of a unit sphere and that the integra
Eq. ~2! can be interpreted as integrals over this surface.

We introduce the vectors

x5n2n8, q5n2 i, q85n82 i

and, in accordance with~1!, replace the variables cosd,
cosq, and cosq8 by new variables~see Fig. 1!,

x52 sin
d

2
5un2n8u,

q52 sin
q

2
5un2 iu,

q852 sin
q8

2
5un82 iu. ~3!

Here f (n–i,t)sinqdq5f(q,t)qdq, the right-hand side of the
equation contains an integral ofs(x)@ f (q8)2 f (q)#, the
quantitiesx, q, and q8 are the sides of a triangle, andq8
5uq2xu. If we direct thez axis alongn, we havedV8
5xdxdw, and the explicit dependence ofq8 on q, x, andw
has the form
© 1999 American Institute of Physics
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q825q222~q'x' cosw1qzxz!1x2,

x'
2 5x2S 12

x2

4 D , xz5
x2

2
,

q'
2 5q2S 12

q2

4 D , qz5
q2

2
.

We derive a kinetic equation in which integration is ca
ried out over a planar surface.

Two domains of integration in*s(x) f (q8)xdxdw are
important: the domain of smallx and the domain of smal
q8, i.e., the neighborhoods of the maximum of the cro
section and of the maximum of the distribution function. T
distance between the centers of these two domains, poinn
and i, is q ~Fig. 1!. The first domain is of order (x2)1/2 in
size, with x25(s t)

21*0
2x2s(x)xdx (st is the total cross

section!, and determines the diffusion of particles along t
directionn. The second~diffusion! domain of the solution2!

is

l!1, ~4!

in size ~in this domain f (q8);1/l2@1) and describes the
scattering of particles that travel at small angles ton; in
particular, it describes large-angle scattering. We will
sume that condition~4! is met. By examining specific ex
amples we can show that if this condition is violated, ene
losses by the particle travelling in matter become large
hence Eq.~2! breaks down.

Bearing all this in mind and takingq!1, we can assume
that, due to the smallness ofx, q, andq8, the points repre-
sented by the vectorsi, n, andn8 lie in plane tangent to the
spherical surface at the pointn. We introduce a cylindrical
system of coordinates centered at the pointn. The surface
element isdV85xdxdw5dx, and

] f ~q,t !

]t
5NE s~x!@ f ~ uq2xu,t !2 f ~q,t !#

dx

2p
. ~5!

This is a kinetic equation in which the arguments a
defined by~3! and the vectorq lies in the integration plane
which we assume flat. Our approximation amounts to go
over to a planar surface in Eq.~2! or, what is the same, to
q825q222qx cosw1x2. Here the small-angle approxima
tion, which amounts to replacingx andq with d andq, is not
used and, as the further investigation will show, is super

FIG. 1. Geometric representation of the variablesx, q, andq8.
s

-

y
d

g

-

ous. The range of the argument off (q) is assumed infinite,
which is possible because we havef (q)!1 for sufficiently
largeq if condition ~4! is met.

By integrating~5! with respect toq we obtain the nor-
malization condition, and by multiplying both sides of th
equation byq2 and integrating the result with respect toq,
with q2dq replaced by (q8212q8x1x2)dq8 in the first term
on the right-hand side, we obtainq2:

E
0

`

f ~q!qdq51, q25E
0

`

f ~q!q3dq5Nts tx
2.

For Eq.~2! these integrals are~see Sec. 3!

E
0

2

f ~q!qdq51,

q25E
0

2

f ~q!q3dq52@12exp$2Q1%#, Q15
1

2
Nts tx

2 .

~6!

Now assume that the important domains of integrat
are far apart,q.l, so that the transition to Eq.~5! is not so
obvious. We estimate the error of the right-hand side wh
we go from Eq.~2! to Eq. ~5!. We assume thatf (q8) is a
smooth function in the first domain ands~x! in the second.
To within terms of orderx2, in the first domain we have

f ~q8!' f ~q!1x
] f

]x
1

1

2
x2

]2f

]x2 .

After integrating over the solid angleV8 (dV85xdxdw),
we obtain an expression for the contribution to the right-ha
side of Eq.~2!:

1

4
Ns tx

2~ L̂1 l̂ ! f ~q!,

L̂5
1

q

]

]q
q

]

]q
, l̂ 52

1

q

]

]q

q3

4

]

]q
.

We note in passing that in this new approximation~ac-
tually, the Fokker–Planck approximation; see, e.g., Ref.!
the diffusion equation leads to the same integrals~6! as Eq.
~2!, but the separation into regions of multiple and sing
scattering in the solution, a physical result determined by
specific dependence ofs on x, is lost.

As for the second domain, we can proceed in the sa
manner, i.e., expands(x)5s(uq2q8u) up to terms of order
q82 and integrate overV8 (dV85q8dq8dw). The resulting
contribution isNs(q)1 1

4Nq2(L̂1 l̂ )s(q).
Analogous approximations for Eq.~5! have no terms

with l̂ which yield the desired estimate. This justifies the u
of Eq. ~5! over the entire range of angles. First, if conditio
~4! is met, the particles appear in the region withq@l due to
large-angle scattering. In this region the effect of diffusi
~the terms withL̂ and l̂ ) can be ignored, and both equation
for the number of particles in the intervaldq over patht
yield f (q,t)qdq'Nts(q)qdq, which corresponds to the
probability of single scattering. Second, asq gets smaller,
the difference between the right-hand sides decreases~due to
the factorq2/4 in the operatorl̂ in comparison toL̂) and for
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q;l becomes small. For instance, whens(q)}q24 holds

we havel̂ s(q)52 1
8q

2L̂s(q). If we allow for the fact that
f (q)'Nts(q) and q2'Nts tx

252Q1 , the error of the
right-hand side of Eq.~5! is estimated at2NQ1 l̂ s(q),
which gives rise to the following error in the solution

d f ~q!;2Nl̂s~q!E
0

t

Q1dt52
1

4
q2Nt l̂s~q!.

Assuming thatq2;l2, we find (q.l) that

d f ~q!;
l2

4

1

q

]

]q

q3

4

]

]q
f ~q!,

In the region wheref (q) decreases faster than 1/q2, d f is
positive. In the case of the Rutherford cross section we h
f (q)}q24 andd f / f ;l2/2. The upper bound onl is deter-
mined by the admissible error. Forj5d f / f ;l2/2,5% we
obtainlmax;0.3.

To estimated f when q,l, we use the normalization
condition,

E
0

q0
f ~q!qdq512E

q0

`

f ~q!qdq;1,

E
0

q0
d f ~q!qdq52E

q0

`

d f ~q!qdq;
l2

4 Fq3

4

] f

]qG
q;q0

.

In the last integral we have used the formula ford f , and
q0;l is the value ofq at which the errord f changes sign. If
we assume that forq smaller than or of orderl the distribu-
tion function is close to Gaussian,f (q)'2 exp(2q2/l2)/l2,
we find that the value ofq at whichd f (q)50 is q05&l.
This leads to a qualitative estimate for the diffusion regio

*0
q0d f ~q!qdq

*0
q0f ~q!qdq

;
d f

f
;

l2

4 Fq3

4

] f

]qG
q5q0

;2c
l2

2
,

wherec52/e2'0.3 is a numerical factor.
As a result we conclude that forq.l the relative error

j(q) is of orderl2/2 and is weakly dependent onq, and for
q,l the relative error is of order20.3l2/2. As for the
limits of our approximation, we also note that for Eq.~2!
q2'2Q12Q1

2, i.e., Eq.~5! provides an overvaluedq2 with a
relative error;l2/4.

Thus, under quite reasonable restrictions, the equatio
valid for all angles. With an infinite domain of definition th
solution can be found by the Fourier–Bessel method.2. For
f (q,0)5d(12cosq)5d(q)/q we have

f ~q,t !5E
0

`

hdhJ0~hq!exp$2Q~h!%,

Q~h!5NtE
0

`

s~x!xdx@12J0~hx!#. ~7!

If condition ~4! is met, we can retain, say, in the Rut
erford cross section the dependences(x)}x24 for x.2.
This reduces the number of particles in the diffusion reg
because they scatter into the regionx.2, further reducing
the normalization integralI norm5*0

2f (q)qdq, which equals
ve

:

is

n

unity if the upper limit of integration in infinite. These ef
fects, however, are small and can be taken account by
justing the number of particles in the diffusion region.

We note in conclusion that the small-angle approxim
tion ~the Moliere formula! can be obtained by replacingx
and q with d and q in ~7!. The general nature of the cros
section is lost in this case.

3. THE RUTHERFORD CROSS SECTION

For the Rutherford cross section

sR~x!5
2s2k~x!

x4 ,

wheres254pe4z2Z(Z11)(pv)22, p is the momentum,v
is the velocity of the scattered particle with chargez, and
k~x! allows for the atomic form factor, which cuts off th
cross section at small angles, we can use the Moliere the
since the formulas forsR(x) and the solutions~7! coincide
with their small-angle approximation. Below we will briefl
discuss this theory in an interpretation that corresponds to
results of Sec. 2.

The initial parameters in this theory are the cutoff ang
xa and xc

25Nts2. The cutoff angle8 is defined by the rela-
tionship xa

25x0
2(1.1313.76(Zze2/\v)2), where x05\/pa

5\/(p30.885a0Z21/3), wherea is the Fermi radius of the
atom, anda0 is the Bohr radius. The quantityxc

2 can be
interpreted as the probability of a particle being scattered
an angleq.60° (q.1), since for large angles we have

E
1

`

f ~q!qdq'NtE
1

`

sR~q!qdq5xc
2 .

While the details of the dependence ofsR on x are not taken
into account at small angles, the cutoff of the cross sectio
taken into account by the expression1,2

E
0

k

k~x!
dx

x
5 ln

k

xa
2

1

2
,

with k(k)51 for k@xa . Such an approach is possible if

l@xa . ~8!

Partitioning the integral forQ into two integrals,

E
0

k

¯1E
k

`

¯ ,

wherexa!k!dq, and assuming that the intervaldq of the
argument in the solution is small (dq!l), we can limit
ourselves to valuesh,1/dq in the Fourier expansion, i.e.
cut off the upper limit in~7! at 1/dq!1/xa . Then we have
kh!1 and, putting 12J0(hx)'h2x2/4 in the first integral
andk(x)51, we arrive at the approximate expression2

QR~h!5
1

4
xc

2h2Fb2 lnS 1

4
xc

2h2D G ,
b5 ln

xc
2

xa8
2 , ln xa85 ln xa2

1

2
1C,

C50.577, xa8
251.167xa

2 , ~9!
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which reduces to

QR~h!5
u2

4 S 12
1

B
ln

u2

4 D , u25Bxc
2h2,

for B2 ln B5b.
Ignoring the second term in the parentheses, we ob

the Gaussian distribution of the particles in the diffusion
gion,

f ~q,t !52 exp~2q2/l2!/l2

with the mean-square value

l5xcAB

of the quantityq. From the relationB5 ln(l2/xa8
2), condition

~8!, and the equation forB it immediately follows that3!

B@1, xa!xc!l!1,

where the chain of inequalities is augmented by condit
~4!. Sinces t's2/xa

2 , for the average number of collision
we haveNts t'xc

2/xa
2@1.

A remark concerningl is in order. The equation forB
can be replaced by the equationl25xc

2 ln(l2/xa8
2), or @with

the integral divided in the same way as in the derivation
formula ~9!#

l25NtE
0

al

x2sR~x!xdx, a5exp$12C%51.53,

which differs from the formula forq2 with cross section
cutoff ~or cutoff of the upper limit in the integral! at x
5al. We see that as the lengtht of the path of a particle
and hencel increase, more and more collisions with ev
increasing collision angles become involved in the diffus
process, and the range of angles contributing to diffus
increases in proportion tol. To a certain extent this explain
the meaning of the equation forB and shows that the existin
recommendations that the upper limit should be set roug
to \/prN ~this value is determined by the nuclear for
factor,9 with r N the radius of the nucleus! are correct forq2,
i.e., for estimates. The use of the Moliere formulas is pr
erable for the size of the diffusion region and in practic
cases whereal!\/prN holds.

Expanding exp$2QR(h)% and the solution~7! in power
series in 1/B yields1,2

f R~q!'
2 exp$2X2%1B21f (1)~X!1B22f (2)~X!1¯

l2 ,

~10!

whereX5q/l, and

f (n)~X!5
1

n! E0

`

uduJ0~Xu!expH 2
u2

4 J Fu2

4
ln

u2

4 Gn

are universal functions~i.e., functions ofX only!. The for-
mulas and tables that are commonly used in calculating
functions f (1) and f (2) can be found in Ref. 2. In the limi
q@l the term with

f (1)~X!52 exp$2Z%~Z21!@Ei~Z!2 ln Z#

22@122 exp$2Z%#
in
-

n

f

r

n

ly

-
l

e

(Z5X2) provides the main contribution,f (1)(X)'2/X4, and

f R~q!'
2xc

2

q4 . ~11!

Allowing for the fact that*0
`jdj f (n)(j)50 holds forn

>1 ~see Ref. 1!, we arrive at an expression for the norma
ization integral:

I norm512expH 2
4

l2J 2B21F (1)S 2

l D2B22F (2)~2/l!,

whereF (n)(X)5*X
`jdj f (n)(j), and, forX@1, we have

F ~1!' X22 , F ~2!' 2X24 ln X2.

The difference betweenI norm and unity is small~of order
l2/4B) and can be removed by introducing a correction fa
tor into the diffusion part of the solution.

Note that here Eqs.~9! and~10! were derived only with
condition ~8! taken into account; condition~4! ensured the
validity of solution~7!. If condition ~8! is not met, the num-
ber of collisions is small, the fraction of the nonscatter
particles in the solution, equal to exp(2Ntst), is large, and
the concepts of a multiple-scattering region and its sizel
lose all meaning. Here the quantity (x2)1/2 becomes the char
acteristic small size. The solution~7! remains valid since in
the small-angle region (q!1) the transition to a flat domain
of integration is always possible, while forq@(x2)1/2 Eqs.
~2! and ~5! yield close results.

An alternative approach consists in solving Eq.~2! ex-
actly in the form of a series:

f ~cosq,t !5(
l 50

`
2l 11

2
Pl~cosq!exp$2Ql~ t !%,

Ql~ t !5E
0

p

Nts~cosd!sinddd@12Pl~cosd!#, ~12!

where Pl are Legendre polynomials, andf (cosq,0)5d(1
2cosq). @This yields to the above formulas~6!#. For the
Rutherford cross section we have2,10

Ql'
1

2
xc

2h l
2S ln

2

xa
1

1

2
2Sl D ,

Sl5
1

2 E21

1 12Pl~x!

12x
dx5 (

k51

l
1

k
, ~13!

whereh l5Al ( l 11).
Let us reduce the series~12! to integral form.~For the

small-angle approximation this problem has been exami
by Bethe.2!. Allowing for the fact that the representation o
Pl(cosq) in the form of a hypergeometric function yields
series in powers ofq2 and that for small anglesPl(cosq)
'12hl

2q2/4, we replacePl(cosq) by the functionJ0(h lq)
in which the expansion ofJ0(h lq) for small angles is the
same. The resulting series can be transformed as follow

(
l 50

`
2l 11

2
g~h l !5

1

2 (
l 50

`
1

2
~g~h l 11!1g~h l !!D l ,
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whereD l5xl 112xl , andxl5h l
2 . Each term in the sum on

the right-hand side is an approximation of the integral
g(x) in the interval (xl ,xl 11) by the trapezoid rule, i.e., th
series reduces to the integral

1

2 E0

`

g~x!dx5E
0

`

g~h!hdh.

Thus, if we replace cosq with q, cosd with x, Al ( l 11)
with h, and Pl(cosq) with J0(hq), we arrive at a genera
relationship between the series~12! and the integral~7!. For
the Rutherford cross section we have~since Sl' ln hl1C
11

6hl
221¯),

Ql'
1

2
xc

2h l
2S ln

2

xa
1

1

2
2C2 ln h l D ,

i.e., we arrive at formula~9!. This approach will be used in
Sec. 4 to study the case of the Mott cross section~spin-12
particles!.

4. THE MOTT CROSS SECTION

For the cross section

sM~x!5sR~x!S 12
1

4
b2x2D , b5

v
c

,

we representQ(h) in ~7! as QM(h)5QR(h)1dQ(h),
where

dQ~h!5NtE
0

`

ds~x!xdx@12J0~hx!#,

ds~x!52
1

2
s2b2x22 .

The integral diverges ifds~x! is not cut off atx52. No such
problem arises for a solution in the form of a series, a
instead of~13! we obtain

Ql'
1

2
xc

2h l
2S ln

2

xa
1

1

2
2Sl D1dQl ,

dQl52
1

2
xc

2b2Sl , ~14!

i.e., for the Mott cross section we have the series~12! with
~14!. PuttingSl' ln hl1C, we reduce the series to an integr
~see Sec. 3!. Note that the resulting value of

dQ~h!52
1

2
xc

2b2~ ln h1C!

can be found from the relation

dQ~h!5Nt lim
«→0

S E
«

2

ds~x!xdx2E
«

`

ds~x!J0~hx!xdx D ,

i.e., with only the first integral cut off. This approximation
sufficiently accurate for the case we are examining here

After u is replaced bylh andX by q/l, we get
f

d

l

f M~q!5
1

l2 E
0

`

uduJ0~Xu!expH 2
u2

4 J
3expH u2

4B
ln

u2

4
2dQ~u!J ,

dQ~u!52
1

2
xc

2b2S a1
1

2
ln

1

4
u2D , a5 ln

2

l
1C.

Here we must bear in mind that in this case the correction
the Rutherford cross section is much smaller than the la
for x<l and is comparable to the latter whenx;1 holds,
i.e., is important in the large-angle region. Hence it is enou
to find only the correction to the functionf (1) in ~10!, which
provides the main contribution at large angles, while t
variations of l and hence of the parameterB caused by
changes in the cross section can be ignored.

We expand the second exponential function in the in
grand to within second-order terms in 1/B and keep only the
first-order term indQ(u), ignoring the terms with products
of dQ(u) and powers of 1/B. The result is

f M~q!5 f R~q!1
1

2B
b2c~l,X!, ~15!

c~l,X!5exp$2X2%@2a1 ln X22Ei~X2!#. ~16!

Formula~16! follows from the fact that

c~X!5E
0

`

uduJ0~Xu!expH 2
u2

4 J S a1
1

2
ln

u2

4 D .

The first term in the square brackets yields 2a exp(2X2). We
find the derivative of the remaining integralI (X) with re-
spect toX. Allowing for the fact that

dJ0~Xu!

dX
5

u

X

dJ0~Xu!

du

and integrating by parts, we arrive at the equation

d~X2I ~X!!

d~X2!
5

f (1)~X!

2
2exp$2X2%.

Solving it, we obtain~16!.
Note that in the diffusion region the contribution of th

second term in~15!, ;B213 ln(1/l), is small, as expected
For instance, the term withf (1) yields a contribution of order
B21l22. The main contribution comes from the singl
scattering region. In this region, in the first order inxc

2 we
obtain

f M~q!'2xc
2S 12

1

4
b2q2D 1

q4 . ~17!

5. THE MONTE CARLO METHOD

The accuracy of the solutions~10! and ~15! with ~16!
was verified by summing of the corresponding series@Eqs.
~12!–~14!# and that of the Rutherford cross section, also
solving Eq.~2! by the Monte Carlo method with the cros
section in the form2,8 sR(x)52s2(x21xa

2)22. The total
cross section iss t5(s/xa)2/(11xa

2/4).
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In the Monte Carlo method, to obtain the distributio
function f (q) with the required statistical accuracy one mu
accumulate a fairly large number of events in which the r
dom angleq is determined after a particle has travelled
path of lengtht. The direct method consists in Monte Car
calculations of the number of collisionsn on the patht by
the Poisson distribution with a meann̄5Nts t and a Monte
Carlo calculation in each collision of the scattering angled
combined with a calculation of a new value ofq until all
collisions are exhausted.

To calculated, the random valueF of the integral of the
distribution function for the quantityx52 sin(d/2) is gener-
ated:

F~x!52xa
2S 11

xa
2

xg
2D E

x

xg xdx

~x21xa
2!2 ,

xg52, 0<F<1. ~18!

In view of the fact that F5F(x)5(12x2/xg
2)/(1

2x2/xa
2)21, we have

x52 sin
d

2
5xaA 12F

F1xa
2 /xg

2.

The new value of the angleq can be found, say, from
the expression

q52 sin
q

2
5Ar 1

21r 2
222r 1r 2 cosn,

where n is the random azimuthal angle andr 1 and r 2 are
determined by the value ofq before the collision:

r 152 cos
d

2
sin

q

2
, r 252 sin

d

2
cos

q

2
.

Such an approach is effective when we need to findf (q)
in the diffusion region. However, in the single-scattering
gion, where the probability of finding a particle is low, it
difficult to achieve the required accuracy. To determinef (q)
in the entire region we can proceed as follows. We divide
t
-

-

e

domain x into intervals (x i 21 ,x i), i 51,...,N, x050, xN

52, and divide events into mutually exclusive classes w
two selection rules: thei th class has no collisions withx
.x i and at least one collision with the value ofx in the i th
interval. The events for which only the first rule holds belo
to the first class. Here the distribution function is

f ~q!5(
i 51

N

Wi f i~q!,

where f i(q) is the distribution function for the class wit
numberi , and Wi is the probability of events of the give
class taking place. The formulas forWi and the distributions
by the number of collisions in classes are given in the A
pendix. This division into classes makes it possible to obt
histograms forf (q) with the occupancy of the channels
the number of events being close to uniform. As the valu
of the quantities

FIG. 2. Dependence of the ratiosf (q)/ f (q) ~curve 1! and q f (q)/q f(q)
~curve2! on q for the Rutherford cross section. The curves were calcula
for cases 1, 2, and 3 of Table I and for these cases are indistinguishab
the figure.
FIG. 3. Theq-dependence off (q)l2/2: ~a! and ~b!,
the results of calculations off (q) by formula~10! for
the cases 1, 2, and 3 of Table I~curves1, 2, and3!
and by the Monte Carlo method~dots!; ~c!, the results
of calculations off (q) by formulas~15! and~16! for
the cases 1 and 2 of Table I~curves1 and2! and by
the series~12! with ~14! ~dots!; the curve28 was ob-
tained forc(l,X)50.
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h5(
i 51

N
Wimi

Mi
, S25(

i 51

N

mi S Wi

Mi
D 2

,

in the channels build up~hereMi is the number of selecte
events of thei th class,mi is the number of events of thei th
class, andS2 is the variance ofh), the fact that another even
of the i th class finds itself in a channel addsWi /Mi to h and
addsWi

2/Mi
2 to S2, i.e., accumulating two histograms is su

ficient. The quantitymi /Mi corresponds tof i(q). The nor-
malization ofh andS to the value of the channel yieldsf (q)
and the statistical error.

6. DISCUSSION

First we note that Eqs.~11! and~17! yield correct prob-
abilities of infrequent collisions,f (q)qdq'Nts(q)qdq,
i.e., the above solutions can be used in the entire rang
angles. In Fig. 2 we compare the solution~10! with the
small-angle approximation for the Rutherford cross secti
The difference become appreciable when the angles

FIG. 4. The dependence ofj on q/l: curves1, 2, and 3 represent the
deviation of f (q) calculated by~10! from the value calculated by the serie
~12! with ~13! for the cases 1, 2, and 7 of Table I, and the dots indicate
deviations from the Monte Carlo results for the cases 1 and 2.
of

.
re

large, i.e., when, in accordance with~11!, we have
f (q)/ f (q)'(q/q)4 and q f (q)/q f(q)'(q/q)3 and they
reach their corresponding limits (2/p)4 and (2/p)3 at q
5180°. Such comparison is meaningless for the Mott cr
section, since in the small-angle representation the cross
tion becomes negative forq.120°/b2.

A comparison of the solutions with more exact results
done in Figs. 3 and 4 and Tables I and II. Figures 3a and
clearly indicate agreement between the solution~10! and the
solution obtained by the Monte Carlo method over the en
range of angles, and Fig. 3c indicates agreement betwee
solution~15!, ~16! and the series~12!, ~14! and also the dif-
ference between the solution~15!, ~16! and the solution~10!
in the large-angle region.

Table I lists the data on pions scattered by gold (Z579
andA5196.97;r is the density!; jmax, j~0!, andj~2! are the
maximum and boundary values of the relative deviat
j(q)5@ f (q)2 f GS(q)#/ f GS(q) in the interval 0<q<2.
Here f is the solution ~10!, and f GS is the Goud-
smith–Saunderson10 solution given by Eq.~12! and ~13!.
The nature of thej vs. q dependence for large values ofB
~curve3 in Fig. 4! at q;l intersects the axisj50 and the
valuej~2! agree with the estimates of Sec. 2. The valuejmax

lands in the multiple regionq/l;2. Asl decreases,j~0! and
jmax first decrease and then increase. This fact and the
havior of curves1 and 2 in Fig. 4 can be explained by th
insufficient number of terms in the expansion~10! for small
values ofB. In this case, in the multiple-scattering regio
the error introduced by the solution~10! is estimated at
j(0); f (3)(0)/2B3, i.e., is of the order of the first discarde
term, f (3)55.94. In the multiple regionq/l;2 the error is
larger and, since heref (0) is small andf (1), f (2), and f (3) are
of the same order,jmax;1/B2. Assuming the in the single
regionj;l2/2, we find thatj(0).l2/2 for l2,5.94/B3, or
xc

2,5.94/B4, i.e., in almost all problems encountered
practical cases the solution in the single region will be m
exact.

Table I shows that the approximate value of the up
bound on the size of the diffusion region islmax;0.3. Note
that at l50.3 the normalization integral is equal to 0.99
and that the mean-square value ofq in the interval 0<q
<2 deviates from the value obtained by formula~6! by less
than 1%. Asl diminishes, the accuracy of these quantiti
increases.

The approximations~9! and~13! have their limits, since
they were derived under the assumption thath,l !1/xa . The

e

TABLE I. The Rutherford scattering cross sections~for pions! at Ekin550 MeV andxa52.7731024.

No. rt, g/cm2 l B n̄ j~0!, % jmax, % j~2!, %

1 0.00375 3.5131023 4.93 32.7 25.38 5.52
2 0.015 8.1431023 6.61 131 21.63 2.68 0.01
3 0.060 1.8131022 8.21 523 20.76 1.59 0.03
4 0.24 3.9631022 9.77 2.093103 20.43 1.11 0.12
5 0.4 5.2631022 10.34 3.493103 20.35 1.06 0.25
6 2 0.127 12.11 1.743104 20.35 1.74 1.01
7 4 0.185 12.86 3.493104 20.47 3.17 2.06
8 10 0.304 13.85 8.713104 20.93 8.63 5.24
9 40 0.640 15.34 3.493105 23.57 50.7 38.6
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TABLE II. The Mott scattering cross sections~for electrons! at Ekin515 MeV andxa56.8931024.

No. rt, g/cm2 l B n̄ j~0!, % jmax, % j~1!, %

1 0.00375 9.1031023 5.01 34.8 24.99 5.25 –
2 0.015 2.1031022 6.68 139 21.57 2.61 0.06
3 0.030 3.1531022 7.49 278 21.05 2.00 0.12
4 0.06 4.6831022 8.28 556 20.75 1.61 0.23
5 0.12 6.9331022 9.06 1.113103 20.58 1.43 0.44
6 0.24 0.102 9.84 2.233103 20.50 1.51 0.90
7 0.4 0.135 10.41 3.713103 20.49 1.86 1.57
8 1 0.224 11.42 9.283103 20.66 4.04 4.04
9 2 0.328 12.17 1.863104 21.07 8.66 8.66

10 4 0.477 12.93 3.713104 21.99 16.8 16.8
n

tis
it
c

ss

e

th

riv

a
l
o

rin
gl
x

re
th

in
the

ion
r-

gle

een
for
les

all

n
on

-

e
nt
series~12! must be cut off atl ,hm;1xa , wherehm is the
value ofh at whichQ(h) assumes its maximum valueQm ;
otherwise it diverges. If we employ the approximation~9!
and an infinite upper limit, the integrals~7! are also diver-
gent. The value of exp(2Qm) must be small. For instance, i
the diffusion region the term in the series~12! corresponding
to hm must be small in comparison tof (0)'2/l2. For the
cases1, 2, and 3 of Table I, log@(2hm11)exp(2Q(hm))/
2f (0)# takes the values26.1, 219, and272, respectively.
For q,4l the agreement between~12! with ~13! and the
results of Monte Carlo calculations for case 1 is still sa
factory ~Fig. 4!. This leads to the approximate lower lim
lmin /xa;10, but the series does not ensure sufficient ac
racy in the single region, where the value off (q) is small
~the upper bound onj~2! obtained by the Monte Carlo
method for this case is less than 1%!.

The data on scattering in aluminum for the Mott cro
sections are listed in Table II, wherej is the relative devia-
tion of ~15! with ~16! from the series~12! with ~14! in the
interval 0<q<1, and yield the same results.~A comparison
at q52 is almost impossible in view of the very small valu
of f (2) and the approximate nature of the solutions.!

Note that in the above examples, forl;lmax the amount
of energy lost by a particle in matter is large, i.e., when
particle path in matter is properly limited the conditionl
,lmax is met.

7. CONCLUSION

Our research has shown that the starting point in de
ing the theory was the idea that the sizel of the diffusion
region is small, and no need for the small-angle approxim
tion arises. For values ofl interesting from the practica
viewpoint, the kinetic equation derived for a cross section
a general form with no restrictions imposed on the scatte
angles can be applied in the entire range of scattering an
and the results obtained in the small-angle appro
mation can be generalized by simply replacingq with
q5sin(q/2).

Over a broad range of values ofl interesting from the
practical viewpoint, the solutions obtained for the single
gion are much more accurate than those obtained for
multiple and multiple-scattering regions, i.e., the series~10!
for the last two regions must be refined.~Here we do not
discuss the separate problem of the accuracy ofxa , which is
-

u-

e

-

-

f
g

es,
i-

-
e

equally important for all the solutions. We only note that
the single region the solution is basically determined by
parameterxc

2 .)
The work contains a general result, a kinetic equat

with a solution in the form of an integral, which is a gene
alization of the results obtained earlier in the small-an
approximation~the Rutherford cross section!, and a new re-
sult, the distribution function for spin-1

2 particles~the Mott
cross section!. A basis for allowing for the nuclear form
factor and the absorption of particles in a nucleus has b
developed. The results can be employed when allowing
multiple scattering in step-by-step passage of partic
through the detector~computer simulation!, when the par-
ticle path is interrupted and in each small displacement
interaction processes are taken into account.

APPENDIX

By Pi we denote the probability ofx having its value in
the interval (0,x i), and bymi , ni , andn2mi2ni the num-
ber of collisions in an event with the value ofx in the inter-
vals (0,x i 21), (x i 21 ,x i), and (x i ,2), correspondingly, with
n the total number of collisions. The probability of such a
event occurring is determined by a polynomial distributi
and is equal to

n!

mi !ni ! ~n2mi2ni !!
Pi 21

mi pi
ni~12Pi !

n2mi2ni,

wherepi5Pi2Pi 21 .
The probability of an event of thei th class occurring

with the numbers of collisionsn andni is ~in this formula we
put n2mi2ni50, exclude the case withni50, and allow
for the fact that the value ofn in the events obeys the Pois
son distribution with the mean valuen̄)

v i~n,ni !5exp$2n̄%
n̄n

n!

n!

~n2ni !!ni !

3Pi 21
n2ni~pi

ni2d0ni
!, iÞ1,

where d0ni
is the Kronecker delta. Reasoning in the sam

manner, we arrive at a formula for the probability of an eve
of the first class occurring with the number of collisionsn:

v1~n!5exp$2n̄%
1

n!
~ n̄P1!n.
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The total probabilityWi of finding an event in thei th class
can be obtained by summing the above probabilities oven
and ni . When summing overni , we perform the transfor-
mationPi 21

n2nipi
ni5Pi

nan2nibni ~herea1b51) and, allowing
for the fact that the probabilities in the binomial distributio
sum to unity, obtain

(
ni

v i~n,ni !5exp$2n̄%
n̄n

n!
~Pi

n2Pi 21
n !, iÞ1.

Summing overn and allowing for the fact that the probabil
ties in the Poisson distribution sum to unity, we get

W15exp$2n̄~12P1!%,

Wi5exp$2n̄~12Pi !%2exp$2n̄~12Pi 21!%, iÞ1.

Since 12Pi5Fi5F(x i), where Fx i
is defined in~18! at

xg52, we finally arrive at the formula

W15exp$2n̄F1%,

Wi5exp$2n̄Fi%2exp$2n̄Fi 21%, i 52,...,N.

Note thatFN50, and hence(Wi51, i.e., the division into
classes encompasses all the events.

As shown by the formula forv1(n), the number of col-
lisions in the events of the first class normalized to un
~divided byW1) is distributed according to the Poisson la
with the meann̄(12Fi). In this class, the values ofx in
collisions are selected from the interval (0,x i), in accordance
with formula ~18! in which we putxg5x i . For the other
classes we define the number of collisions asn5mi1ni .
Passing in the formula forv i(n,ni) to the variablesmi and
ni , we find that the probability of the values ofmi and ni

occurring in thei th class is proportional to the product o
two factors:

;
ami

mi !
S bni

ni !
2d0ni D;exp$2a%

ami

mi !
S exp$2b%

bni

ni !

2exp$2b%d0ni D , a5n̄Pi 21 , b5n̄pi .

Thus,mi obeys the Poisson distribution with the meann̄(1
2Fi 21) except for the caseni50. After mi andni are gen-
erated randomly then collisions are sampled, and amon
theseni collisions are sampled uniformly and at random w
the value ofx occurring in the interval (x i 21 ,x). In the
remainingmi collisions the values ofx occur in the interval
(0,x i 21).

* !E-mail: yurchenko@vxinpz.inp.nsk.su
1!A brief exposition of this theory is given in Sec. 3.
2!In this paper we will assume that most collisions are small-angle. T

causes diffusive broadening of the initial beam of particles in an ang
region;l. Note that we assume thatx2'd2 andq2'q2.

3!For B.1 the value ofB can be found by the method of successive a
proximations:B(n)5b1 ln B(n21). For instance, forB(0)51 we haveB(3)

5b1 ln(b1ln b)'b1(111/b)ln b. A possible refinementB̃5b11/2b2

1(110.958/b)ln b yields, forb.2.6 (B.4), a value ofB with an error
smaller than 1.431022%, while the error introduced by the formulaB
5b1 ln B̃ is smaller than 231023%.
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Polarization effects in the interaction between light and multilevel quantum systems
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We develop a theory that describes the interaction of radiation and multilevel particles on the
basis of the classical description of the orientation of angular momentum. For examples
of application of this theory we take the problems of stimulated Raman scattering and of
parametric generation of light in four-wave mixing. We find that the efficiency of the radiation
processes largely depends on the polarization of the pump waves and on the types of optical
transitions (DJ) and to a much lesser extent on the value of the angular momentumJ. We also
explain some polarization phenomena observed in experiments on four-wave mixing.
© 1999 American Institute of Physics.@S1063-7761~99!00608-3#
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1. INTRODUCTION

Lately there has been an upsurge of interest in the p
lem of the interaction of radiation with multilevel system
This, in particular, is true of radiation frequency conversi
in resonant processes and of inversionless amplificatio
multilevel systems. The theoretical analysis of such pr
lems, which is very complicated in itself, becomes ev
more complicated when polarization phenomena accom
nying such processes come into the picture. The thing is
in studying such phenomena we cannot limit ourselves to
model of nondegenerate states of quantum systems~atoms
and molecules! and we are forced to allow for degeneracy
the energy states in the orientation of angular momentum
the case of strong fields, such problems sometimes allow
exact solution when the angular momentumJ is small (J
50,1), but at large values ofJ the difficulty of finding such
a solution increases immeasurably.

Fortunately, in the limitJ@1 we go over to the classica
way of describing the orientation of angular momentu
which simplifies the above problems to such an extent
the representations of the model of nondegenerate s
again come to the fore. More than that, in this approximat
the well-known results of the model of nondegenerate st
can be slightly modified and then fully used for solving pro
lems in which the degeneracy of atomic or molecular sta
is important. The present paper is devoted to the substa
tion of the above assertion and details examples of the
cessful use of the proposed method in specific problems

The plan of the paper is as follows. In Sec. 2, to deve
the results of Ref. 1, we display a method of passing to
classical description of the orientation of angular moment
in the kinetic equations for the density matrix. This passa
is done via a transition in the form of the well-known Wign
transformation for translational motion. As a result, we d
rive equations for the elements of the density matrix
which the dependence on the magnetic quantum numberM
is transformed into a dependence on the angles specif
the orientation of angular momentum~as parameters!. In
2321063-7761/99/89(8)/11/$15.00
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other words, the equations become exactly the same as in
model of nondegenerate states. In the next order of the
proximation in the parameter 1/J, the equations acquire
terms describing the dynamics of the orientation of angu
momentum driven by an external perturbation.

In Secs. 3 and 4 the proposed method is used to ana
polarization effects in resonant radiative processes.

Section 3 examines the problem of amplifying a com
nation wave in a three-level system. We analyze the dep
dence of the amplification coefficient for the combinati
wave on the wave polarization and on the polarization of
pump wave and also on the types of atomic and molec
transitions involved in the pumping and generation of t
combination wave.

Section 4 studies the problem of resonant four-wa
parametric interaction. We succeed in explaining certain
perimentally detected features of the polarization of the pa
metrically generated wave as a function of the polarizatio
of the pump waves. More than that, we find that the e
ciency of generation depends significantly on the choice
polarization conditions. We give specific recommendatio
for such a choice.

2. INTERACTION BETWEEN A QUANTUM SYSTEM AND AN
EXTERNAL PERTURBATION WITH THE ORIENTATION
OF THE ANGULAR MOMENTUM DESCRIBED IN CLASSICAL
TERMS

To pass from the quantum mechanical description of
orientation of angular momentum to the classical descripti
we follow the results of our earlier work.1–3

We take a quantum system subjected to an external
turbation V̂. Its behavior is described by the well-know
mathematical apparatus of the density matrixr̂, which
makes it possible to allow for various types of relaxati
processes~see, e.g., Refs. 4–6!. The method by which we
propose to pass to the classical description of rotatio
states can be used only within this apparatus. The equa
for the density matrix that can be used for a broad spect
© 1999 American Institute of Physics
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of problems has the form~in the interaction representation!

dr̂

dt
1Ĝ~ r̂ !5

i

\
@r̂,V̂#, ~1!

where relaxation processes are accounted for by the

Ĝ( r̂) ~this term may be very complicated and can inclu
integral operations!, while the dynamic part is represented b
the commutator@ r̂,V̂#.

In the so-calledJM-representation, the elements of th
density matrixr̂ arer(aJMua8J8M 8). HereJ is the value of
the angular momentum,M is the value of the projection o
the angular momentum on the quantization axis, anda rep-
resents the set the other quantum numbers, which chara
ize the eigenstate of the quantum system with the un
turbed Hamiltonian.

To make the formulas less cumbersome, we introd
the compact notation

rnn8~M uM 8!5r~aJMua8J8M 8!,

Vnn8~M uM 8!5V~aJMua8J8M 8!,

by incorporatingJ into the set of quantum numbersn. In the
present paper we focus on dynamic processes@the right-hand
side of Eq.~1!#, while in relation to relaxation process w
adopt the simplest model of relaxation constants~see, e.g.,
Refs. 4 and 6!, so that Eq.~1! written for the components o
the density matrix becomes

drnn8~M uM 8!

dt
1Gnn8@rnn8~M uM 8!2rnn8

0
~M uM 8!#

5
i

\ (
n1 ,M1

@rnn1
~M uM1!Vn1n8~M1uM 8!

2Vnn1
~M uM1!rn1n8~M1uM 8!#, ~2!

where thernn8
0 (M uM 8) are the values of the density matr

elements in the absence of the perturbationV̂, and the relax-
ation constantsGnn8 are independent of the quantum num
bersM andM 8.

Obviously,

rnn8~M uM 8!5rn8n
* ~M 8uM !,

Vnn8~M uM 8!5Vn8n
* ~M 8uM !,

in view of the hermiticity ofr̂ and V̂.
Now we assume, as a basis for passing to the class

description of the orientation of angular momentum, that
values of the quantum numbersJ in Eq. ~2! are large
(J,J1 ,J8@1). In the classical picture, angular momentu
has a well-defined direction or, in other words, its project
on an arbitrarily chosen direction is well-defined. From t
viewpoint of the elements of the density matri
rnn8(M uM 8), which describe the coherence between
states with angular momentum projectionsM and M 8, this
means that for an arbitrarily chosen quantization axis
value ofrnn8(M uM 8) is essentially nonzero only if there is
small difference betweenM and M 8, at least in the limit
uM2M 8u!J. More precisely, the effective intervaluM
2M 8u characterizing the quantum indeterminacy in the
rm
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r-

e
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e

e
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gular momentum projection must not exceed the limits spe
fied by the characteristic angle scale in the given proble
Here it is natural to interpret the averageM̄5(M1M 8)/2 as
the classical value of the projection of angular momentum
the chosen quantization axis.

When this requirement is met, it is convenient to intr
duce the new variables

rnn8~M̄ ,m!5rnn8~M uM 8!,

M̄5 ~M1M !8/2 , m5M2M 8,

and similarly for the matrix element of the interaction a
the matrix elements of other operators. In view of what h
been said earlier, under classical conditions the value
rnn8(M̄ ,m) must be a rapidly decreasing function ofm: the
interval umu,meff!J where rnn8(M̄ ,m) is essentially non-
zero, is the measure of indeterminacy in the magnitude of
angular momentum projection in conditions close to clas
cal. Note that these requirements are met automaticall
applied to the interaction matrix element. Indeed, when
have dipole interaction,Vnn8(M̄ ,m) is finite only for m50,
61!J, and in the event of an interaction of arbitrary mu
tipole orderk we haveumu<k, so that forJ@k the value of
Vnn8(M̄ ,m) is a ‘‘sharp’’ function of m, while the depen-
dence onM̄ is always smooth in the interval2J,M̄,J,
according to the explicit form of the coefficients of vect
addition in terms of whichVnn8(M̄ ,m) can be expressed.

These facts suggest that it may be useful to introduc
new representation for the density matrix and forV̂ via the
transformation

rnn8~M̄ ,f!5
1

2p (
m

exp$ imf%rnn8~M̄ ,m!,

Vnn8~M̄ ,f!5(
m

exp$ imf%Vnn8~M̄ ,m!. ~3!

The factor 1/2p in the transformation forrnn8 is introduced
so that the following normalization condition holds:

(
M̄

E
0

2p

rnn~M̄ ,f!df5rnn , ~4!

wherernn is the population of the staten. For other opera-
tors the transition to the new representation is carried ou
the same way as forV̂. The inverse of~3! ~for rnn8! is

rnn8~M̄ ,m!5E
0

2p

exp$2 imf%rnn8~M̄ ,f!df, ~5!

and similarly forVnn8 .
Using ~3! and ~5!, we can establish that the quantu

mechanical average of a physical quantityA is calculated
according to the rule

^A&5 (
n,n8

(
M ,M8

Ann8~M uM 8!rn8n~M 8uM !

5 (
n,n8

(
M̄

E Ann8~M̄ ,f!rn8n~M̄ ,f!df. ~6!
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Note that as for the variables referring to angular mom
tum, the averaging in~6! is according to a rule commonl
used for classical distribution functions. This is to be e
pected since the transformation~3! is in direct analogy with
the transition to the well-known Wigner representation
translational motion, and for this representation we have
actly the same type of averaging. On the other hand,
corresponding averaging rule indicates that the choice of
representation for the density matrix is an important stage
the way to the classical description.

Applying a transformation of type~3! to Eq. ~2!, we
arrive at an intermediate equation:

S d

dt
1Gnn8D rnn8~M̄ ,f!2Gnn8rnn8

0
~M̄ ,f!

5
i

2p\ (
n1 ,m1 ,m2

exp$ i ~m11m2!f%

3Frnn1S M̄1
m2

2
,m1DVn1n8S M̄2

m1

2
,m2D

2Vnn1S M̄1
m2

2
,m1D rn1n8S M̄2

m1

2
,m2D G , ~7!

wherem15M2M1 andm25M12M 8.
Next we discuss a situation that is close to the classi

This means that the angular momenta are large and that
projections on a specified direction have a small indeter
nacy ~in the case of Eq.~7!, about the valueM̄ !. As men-
tioned earlier, under such conditionsrnn8(M̄ ,m) is a sharp
function of the second argument and a smooth function
the first argument~the matrix elementVnn8(M̄ ,m) automati-
cally has these properties!. This fact makes it possible, firs
to consider the first arguments as continuous and, secon
use the expansion in the small correctionsm1/2 andm2/2 in
these arguments, e.g.,

rnn1S M̄1
m2

2
,m1D 5rnn1

~M̄ ,m1!

1
m2

2

]

]M̄
rnn1

~M̄ ,m1! 1¯ ,

Vn1n8S M̄2
m1

2
,m2D 5Vn1n8~M̄ ,m2!

2
m1

2

]

]M̄
Vn1n8~M̄ ,m2! 1¯ .

~8!

We keep only the first two terms in the expansion, wh
means that Eq.~7! becomes
-

-

r
x-
e
e
n

l.
eir
i-

f

to

F d

dt
1Gnn8Grnn8~M̄ ,f!2Gnn8rnn8

0
~M̄ ,f!

5
i

\ (
n1

@rnn1
~M̄ ,f!Vn1n8~M̄ ,f!

2Vnn1
~M̄ ,f!rn1n8~M̄ ,f!#

1
1

2 (
n1

@$rnn1
~M̄ ,f!,Vn1n8~M̄ ,f!%

2$Vnn1
~M̄ ,f!,rn1n8~M̄ ,f!%#. ~9!

Here$¯ % is what is called the Poisson bracket, which op
ates according to the rule

$A,B%5
1

\ F ]A

]M̄

]B

]f
2

]A

]f

]B

]M̄
G .

The first term on the right-hand side of Eq.~9! is the
principal term, and the second is of the next order of sm
ness in the parameter 1/J!1, in powers of which the expan
sions in~8! are done. However, the principal term may va
ish if the interaction operator causes transitions only betw
the sublevels of a single energy state (Vnn1

(M̄ ,f)

5dnn1
V(M̄ ,f)), so that only the second term is left on th

right-hand side of Eq.~9! and the equation becomes

dr

dt
5

]V

]f

]r

]M
2

]V

]M

]r

]f
, M5\M̄ .

~Here we have not written the label of the energy state
plicitly, and the relaxation constants are assumed equa
zero.! This equation has the standard form of the class
Liouville equation and describes the classical precession
angular momentum in the fieldV. For this equation to have
the classical form, we corrected the sign of the phase in
transformations~3! in comparison to that used in Ref. 1.

Note that the quantity\M̄[M is the projection of the
classical angular momentum on thez axis. Obviously,M
andf are canonically conjugate variables. This corrobora
among other things, the above interpretation of the anglf
in Eqs.~3!.

Of course, in the general case described by Eqs.~9!, the
terms containing Poisson brackets are responsible for
precession of angular momentum, but this precession ta
place in specific conditions, under which the external pert
bation is capable of causing transitions between the ene
level of the particle. This has a certain impact on the nat
of such precession.

In the present paper we do not touch on the problem
analyzing the precession of angular momentum. We li
ourselves to the study of transitions between quantum sta
Here in Eq.~9! we can drop the terms containing the clas
cal Poisson bracket. The result is the equation
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F d

dt
1Gnn8Grnn8~M̄ ,f!2Gnn8rnn8

0
~M̄ ,f!

5
i

\ (
n1

@rnn1
~M̄ ,f!Vn1n8~M̄ ,f!

2Vnn1
~M̄ ,f!rn1n8~M̄ ,f!#. ~10!

Equation~10! differs from the equation of the model of non
degenerate states only in one respect: it contains the de
dence onM̄ andf as parameters. This constitutes a radi
simplification of the problem: if we know the solution to
problem in the model of nondegenerate states, allowing
degeneracy due to rotational motion amounts to replac
Vnn8 with Vnn8(M̄ ,f) in the known solution and to averag
ing the desired characteristic according to rule~6!.

In a classical situation the readily interpreted charac
istic is the orientation in space of the angular moment
operator. This~classical! image is convenient when the ex
ternal perturbationV̂ involves a group of energy states who
angular momentaJn have values close a certain valueJ̄

within an intervalDJ! J̄. In the given system of coordinate
the orientation of angular momentum can be character
by the azimuthal~f! and polar~u! angles. The azimutha
angle is present in the formulas, while the polar angle
related to the projectionM̄ of the angular momentum on th
quantization axis and is naturally defined by the form
cosu5M̄/J̄. The indeterminacy in defining cosu, related to
the spread of the values ofJ in the group of ‘‘active’’ levels,
produces an error in specifying the direction of the angu
momentum,;DJ/ J̄, which can be much smaller than th
quantum indeterminacy in finding the direction of the ang
lar momentum ifJ̄@1. The latter is 1/AJ at best.

Thus, allowing for all the remarks we have made, we c
introduce a new variable~instead ofM̄ ! in the elements of
the density matrix and the external perturbation:

rnn8~u,f![ J̄rnn8~M̄ ,f!, Vnn8~u,f![Vnn8~M̄ ,f!
~11!

~we hope that retaining the same notation forV and r will
not result in a misunderstanding!. The normalization coeffi-
cient J̄ was chosen so that in the new variables the aver
of a quantityA is calculated by the rule

^A&5 (
n,n8

E
0

p

sinuduE
0

2p

dfAnn8~u,f!rn8n~u,f!.

~12!

Here instead of~4! we have

E
0

p

sinuduE
0

2p

dfrnn~u,f!5rnn . ~13!

If we introduce~11! into Eq. ~10!, we get
en-
l

r
g

r-

d

s

r

-

n

e

F d

dt
1Gnn8Grnn8~u,f!2Gnn8rnn8

0
~u,f!

5
i

\ (
n1

@rnn1
~u,f!Vn1n8~u,f!

2Vnn1
~u,f!rn1n8~u,f!#. ~14!

Here the orientation angles of the angular momentum act
parameters.

The only question that remains is: what is the expli
form of the matrix elementsVnn8(u,f)? In each specific
situation this problem can be solved fairly easily. Here
examine the case of the electric dipole interaction, where

V52m•E52(
s

~21!sEsm2s ,

with Es and ms the cyclic components of the electric-fiel
and dipole-moment vectors. According to the Wigne
Eckart theorem, in theJM-representation the matrix ele
ments for the cyclic components of the dipole-moment v
tor are7

~mnn8~M uM 8!!s5exp$ ivnn8t%~m̃nn8~M uM 8!!s ,

~m̃nn8~M uM 8!!s5
mnn8

A2J11
CJ8M8,1s

JM .

Here vnn8 is the transition frequency between statesn and
n8, CJ8M8,1s

JM is a vector addition coefficients, andmnn8 is the
reduced dipole-moment matrix element, which satisfies
property8 mnn85(21)J2J8mn8n

* .
Using the asymptotic behavior (J,J8@1) of the vector

addition coefficients,7

CJ8M8,1s
JM

5dM2M8,sDs,J2J8
1

~0,u,0!,

cosu5
M̄

J̄
, J̄5

J1J8

2
,

and applying the transformation~3! with allowance for~11!,
we obtain

~mnn8~u,f!!s5exp$ ivnn8t%~m̃nn8~u,f!!s ,

~m̃nn8~u,f!!s5
mnn8

A2J̄
Ds,J2J8

1* ~f,u,0!, ~15!

whereD is the Wigner rotation matrix:

Ds,s8
1

~f,u,g!5exp$2 isf%ds,s8
1

~u!exp$2 is8g%.

The explicit form of this matrix andds,s8
1 can be found in

Ref. 7.
Now let us assume that the external radiation field ha

spectral componentEv with a frequencyv close to the fre-
quencyvnn8 of the n2n8 transition, i.e.,

Ev~ t !5E exp$2 ivt%1E* exp$ ivt%.

In this case what is known as the resonance approximatio
valid, and for the matrix element of the dipole interactio
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with the given spectral component of the electric field
obtain an expression in theuw-representation:

Vnn8~u,f!5exp$2 iVnn8t%Ṽnn8~u,f!,

Vnn85v2vnn8 , vnn8.0,

Ṽnn8~u,f!52(
s

~21!sEs~m̃nn8~u,f!!2s

52
mnn8~21!J82J

A2J̄
(
s

EsDs,J82J
1

~f,u,0!.

~16!

HereE is the complex-valued amplitude of the electric fie
of the selected wave.

In deriving the second relationship in~16! we used Eqs.
~15! and the following property of D-matrices:7

D2s,2s8
1* (f,u,g)5(21)s82sDs,s8

1 (f,u,g).
The interaction matrix elements for the reversed tran

tion can be calculated by using the hermiticity property:

Vn8n~u,f!5Vnn8
* ~u,f!. ~17!

If the external field contains spectral components that ar
resonance with other transitions, the problem is solved
similar manner.

In conclusion of this section we note that Eqs.~9! and
~14! are a natural generalization of the equations obtaine
Ref. 1 for the model of two-level particles in a resonant fie
Earlier Ducloy,9,10 using another method~based on the rep
resentation of coherent states!, derived classical equation
~i.e., classical with respect to the orientation of angular m
mentum! that contained only the elements of the density m
trix of a two level atom that are diagonal in the energy leve
This particular case corresponds to conditions of incohe
excitation~a wide emission line!. When these conditions ar
met, Eqs.~14! ~and the corresponding equations in Ref.!
give rise to equations that coincide with the Ducloy equ
tions in Ref. 9 and 10.

Equations~9! and ~14! can be generalized in a straigh
forward manner to the case where the translational motio
the particles is taken into account, with terms responsible
various type of collision incorporated into the new equatio

3. STIMULATED RAMAN SCATTERING

Below we discuss some examples of using Eqs.~14! to
describe radiative processes in multilevel systems. We b
by examining the process of stimulated Raman scatterin
a three-level system. The transition diagram is depicted
Fig. 1. A strong pump field in resonance with them–n tran-
sition creates the necessary conditions for amplifying
probe wavep in the m– l transition. In its simplest variant
Raman scattering is a two-photon process. To avoid hav
to allow for one-photon process, we assume that in the
sence of radiation the only level that is populated isn. Our
problem is to describe the formation of polarization in t
combination wave as depending on the pump wave polar
tion and the transition types.
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As is well known~see, e.g., Ref. 4!, within the model of
nondegenerate states, the expression for the polarizatioPp

of the medium at the frequency of the combination wave
the obvious structure

Pp52 iAm̃ lmṼml
p uṼnmu2rnn

0 . ~18!

HereA is a factor that incorporates the frequency detunin
and the relaxation constants of the states involved in
process and may take into account the inhomogene
broadening effect~this is unimportant for our further discus
sion since, as noted earlier, only the matrix elements that
written explicitly in ~18! are to be modified!, andrnn

0 is the
population of the staten in the absence of radiation. O
course, Eq.~18! can also be easily derived from Eq.~14!.

In accordance with the procedure developed in Sec
generalizing Eq.~18! to the case where the atomic and m
lecular states are degenerate in the orientation of ang
momentum in the limitJ@1 consists in introducing the de
pendence on the anglesu andf into the quantitiesm̃, Ṽ, and
rnn

0 and in integrating with respect tou andf:

Pp52 iAE m̃ lm~u,f!Ṽml
p ~u,f!uṼnm~u,f!u2rnn

0 ~u,f!

3sinududf. ~19!

The explicit form of the functionsm̃ lm(u,f) and Ṽ(u,f) is
given in ~15! and ~16!. We assume that in the absence o
pump wave the staten is not anisotropic, i.e.,rnn

0 is inde-
pendent ofu andf. Thenrnn

0 can be taken outside the inte
gral sign, so that with allowance for the normalization co
dition ~13! we get

Pp52 i
A

4p
rnn

0 E m̃ lm~u,f!Ṽml
p ~u,f!uṼnm~u,f!u2

3sinududf. ~20!

In steady-state conditions, the variation of the amplitu
Ep of the probe wave as the wave propagates can be
scribed by the equation~by virtue of the simplified Maxwell
equations!

S n•
]

]r DEp52p ikPp, ~21!

where n is the unit vector pointing along the direction o
propagation of the probe wave. Here, obviously, the follo
ing condition must hold:

n•Ep50 ~22!

FIG. 1. The three-level scheme for Raman scattering. The pump wave
resonance with then–m transition, and the combination wave is generat
in the m– l transition.
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~the tranversality condition for a electromagnetic wave!. If
we substitute~20! in Eq. ~21! and allow for~15! and~16!, we
arrive at an equation for the circular components of the e
tric field vector of the probe wave:

S n•
]

]r DEs
p5

1

2 (
s8

ass8Es8
p , ~23!

whereass8 is a matrix whose components are

ass85
kA

4

ummlu2

\
rnn

0 E DsD lm

1* ~f,u,0!Ds8D lm

1
~f,u,0!

3uṼnm~u,f!u2 sinududf, ~24!

with D lm5Jl2Jm .
The real part of this matrix determines the amplificati

of the combination wave, and for this reason we call it t
amplification matrix for the combination wave. In the ge
eral case of an arbitrary polarization of the pump wave,
matrix ass8 is not diagonal. However, using the properti
of D-matrices and~24!, we can see that the matrixa/A is
Hermitian and hence the matrixa is a normal matrix, i.e.,
aa†5a†a. This implies11 that there is a unitary transforma
tion that diagonalizes this matrix. Accordingly, there must
‘‘normal’’ combination waves, i.e., waves with polarization
that do not change in the course of propagation.

Suppose that a combination wave is propagating al
the z axis, which we assume to be the polar axis; the dir
tion of propagation of the pump way may be arbitrary. Th
in accordance with~22!, the electric field vector of the com
bination wave has only two finite circular componentss
561), which means that for the amplification matrixass8
we can take a 2-by-2 matrix. We look for the solution of E
~23! in the form Ep}exp(az/2). For the eigenvaluesa6 of
the matrixa we have

a65
a11111a2121

2

6AS a11112a2121

2 D 2

1a1121a2111. ~25!

The circular components of each of two normal com
nation wavesEp6 are related by formulas

~a12a1111!E11
p15a1121E21

p1 , ~26!

~a22a2121!E21
p25a2111E11

p2 . ~27!

Obviously, in view of what was said above concerning t
properties of the matrixa, the polarizations of the norma
combination waves~Ep1 and Ep2! must be mutually or-
thogonal. As these two normal waves propagate in the
dium, they are amplified differently~if the radicand in~25! is
finite!. If this is the case, one of the normal waves, mo
preciselyEp1, finds itself in preferable conditions becau
for it the amplification coefficient is larger and hence th
wave is generated spontaneously.

But if the radicand in~25! is zero, which is possible if
the conditions

a11115a2121 , ~28!
c-

e

e

e

g
-
,

.

-

e

e-

e

a112150, ~29!

are met simultaneously, there is no preferable polarizatio
the combination wave in the amplification coefficient.

Using ~24! and the explicit expressions for the Wign
D-matrices,7 we can easily establish that the condition~28! is
met if at least one of the transition of the problem is aQ-type
transition~Dnm50 or D lm50!.

Now let us see when condition~29! is met. To this end,
integrating in~24! with respect tof and using the property7

dss8
j (u)5(21)s82 jd2ss8

j (p2u), we arrive at an expres
sion for a1121 :

a11215
pkA

4

um lmu2umnmu2

J̄\3
rnn

0 E11E21* ~21!Dnl

3E d1D lm

1 ~u!d1D lm

1 ~p2u!d1Dnm

1 ~u!d1Dnm

1

3~p2u!sinudu. ~30!

The integrand in~30! is always positive.
According to~30!, the condition~29! is met whenE11

50 or E2150. Thus, not one of the normal combinatio
waves has preference in the amplification coefficient if
least one transition is of theQ type and, simultaneously, on
of the circular components of the pump wave is zero in
given system of coordinates. In all other cases one of
normal combination waves will be amplified to a grea
extent.

Below we focus on the dependence of the polarizat
state of the normal combination waveEp1 with maximum
amplification on the pump wave polarization and transiti
types.

We begin by examining in greater detail the case wh
one of the transitions is of theQ type. Then condition~28! is
met, and from~25! and~26! we can obtain a relationship fo
the circular components of the vectorEp1:

A

uAu
ua1121uE11

p15a1121E21
p1 . ~31!

This implies uE11
p1u5uE21

p1u, which means that the polariza
tion of the waveEp1 must be linear. How is this polarizatio
oriented in relation of the pump wave polarization? We
lect thex andy axes so that the Cartesian components of
projection of the vectorE of the pump wave on a plan
perpendicular to thez axis are coupled by the formula

Ey5 ibEx , b,1. ~32!

This choice of thex andy axes corresponds to a situation
which the x axis is directed along the major axis of th
polarization ellipse formed by the projection ofE onto the
xy plane. Since the cyclic and Cartesian components of
arbitrary vector are related by the formulas

E1152
1

&
~Ex1 iEy!, E215

1

&
~Ex2 iEy!,
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Ex5
1

&
~E212E11!, Ey5

i

&
~E111 iE21!, ~33!

for the circular components ofE we have

E1152
12b

&
Ex , E215

11b

&
Ex . ~34!

Accordingly, Eq. ~31! yields expressions for the Cartesia
components ofEp1:

Ex
p15

1

&
E21

p1S 12
uAu
A

a1121

ua1121u D ,

Ey
p15

i

&
E21

p1S 11
uAu
A

a1121

ua1121u D .

Using Eq.~30! for a1121 , we get

Ex
p15

1

&
E21

p1@11~21!Dnl#,

Ey
p15

i

&
E21

p1@12~21!Dnl#. ~35!

Recall that we are dealing with a situation in which
least one transition is of theQ type. Here, ifDnl50 ~both
transitions are of theQ type!, Ey

p150, i.e., the linearly po-
larized combination wave has the maximum amplificat
coefficient, and its field vectorEp1 is directed along the
major axis of the polarization ellipse of the pump wave. B
if uDnl51u, thenEx

p150, which means thatEp1 is orthogo-
nal to the major axis of the polarization ellipse of the pum
wave.

Now we turn to the case whereuD lmu5uDnmu51. For-
mula ~26!, which links the different circular components o
the combination waveEp1, becomes

@ uE21u22uE11u21A~ uE21u22uE11u2!21u 2
5E11E21* u2#E11

p1

5 2
5E11E21* E21

p1 , ~36!

whereD lm5Dnm561. WhenD lm52Dnm561 holds,E21

andE11 in Eq. ~36! must be interchanged.
We again select the orientation of thex and y axes so

that the Cartesian components of the vectorE of the pump
wave are related via~32! but the circular components are st
related via~34!. In this system of equations, formula~36!
yields an equation that connects the Cartesian componen
Ep1:

Ey
p15 ib8Ex

p1 , ~37!

where the ellipticity parameterb8 for the combination wave
is expressed in terms ofb as follows:

b85
10b211b21A1198b21b4

10b112b21A1198b21b4
, at D lm5Dnm561,

~38!
t

t

of

b85
210b211b21A1198b21b4

210b112b21A1198b21b4
, at D lm52Dnm561.

~39!

Thus, we see that for the specified transitions the pol
ization of the normal combination wave with maximum am
plification proves to be elliptic if the polarization of the
pump wave is also elliptic.

We examine the limitb!1, i.e., the case in which the
polarization of the pump wave is close to linear. Equatio
~38! and ~39! then yield

b855b at D lm5Dnm561,

b8525b at D lm52Dnm561. ~40!

In both cases the polarization of the combination wave
close to linear and is oriented in the same as the polariza
of the pump wave, but the ellipticity parameter of the com
bination wave is five times larger than that of the pum
wave. More than that, from~40! it follows that the electric
vector of the combination wave rotates in the same direct
as that of the pump wave ifD lm5Dnm561 and in the op-
posite direction ifD lm52Dnm561.

In the other limit,b→1, i.e., when the polarization of the
pump wave is close to circular, Eqs.~38! and ~39! yield

b8→1, at D lm5Dnm561,

b8→21, at D lm52Dnm561.

This means that the polarization of the normal combinati
wave with maximum amplification is also close to circula
and that the electric vector of the combination wave rota
in the same direction as that of the pump wave ifD lm

5Dnm561 and in the opposite direction ifD lm52Dnm

561.
In the particular case where the pump wave has sim

polarizations~linear or circular!, the normal modes of the
combination wave propagating collinearly are waves of t
same polarization or of orthogonal polarization. Tables I a
II list the polarizations of the normal mode of the combin
tion wave with maximum amplification according to the po
larization of the pump wave and the type of transition.
other words, the data listed in Tables I and II indicate t
polarization of the wave generated spontaneously.

Although our results were obtained with the orientatio
of angular momentum (J@1) described in classical terms
qualitatively they are valid for small values ofJ. For in-
stance, it is known that for the three-level syste

TABLE I. Polarization of the combination wave with maximum amplifica
tion when the polarization of the pump wave is linear~indicated above the
table!.
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1s3– 2p7– 1s4 in Ne, which was used by Rittneret al.12 to
design a Raman laser@the linearly polarized pump wave wa
in resonance with the 1s3– 2p7 transition (Dnm51) and the
combination wave was generated in the 2p7– 1s4 transition
(D lm50)#, the amplification coefficient for the combinatio
wave whose polarization is orthogonal with respect to
polarization of the pump wave is larger than for the com
nation wave whose polarization coincides with that of t
pump wave. This result agrees with our result obtained
the specified types of transition.

4. FOUR-WAVE PARAMETRIC MIXING

Let us examine the problem of parametric generation
a wave resulting from the action of three pump waves in
four-level quantum system. The possible patterns of a fo
level system in which the wave is generated in the transit
to the ground state are depicted in Fig. 2. Hereva , vb , and
vc are the frequencies of the four pump waves andvd is the
frequency of the generated wave.

Our problem amounts to establishing the dependenc
the polarization of the parametric wave on the polarizatio
of the pump waves and types of transition and to finding
polarization conditions for the pump waves from the stan
point of the efficiency of generation of a parametric wave

Within the model of nondegenerate states, we have
following expression~the approximation of low-intensity
pump waves; see Ref. 13! for the polarization of the medium
at the frequencyvd of the generated wave, which can also
easily obtained from Eq.~14!:

Pd52 iAm̃14Ṽ43
c Ṽ32

b Ṽ21
a , ~41!

TABLE II. Polarization of the combination wave with maximum amplifi
cation when the polarization of the pump wave is circular~indicated above
the table!. The notation arb. means that the polarization of the combinat
wave can be arbitrary.

FIG. 2. Several four-level transition schemes used for parametric genera
with four-wave mixing.
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wherem̃14 is the matrix element of the dipole moment in th
1–4 transition,Ṽnm is the matrix element of the potential o
the interaction with the pump wave in resonance with
n–m transition (n,m51,2,3,4), andA is a proportionality
factors, which incorporates the relaxation constants, the
homogeneous broadening effect, the conditions for re
nance between frequencies of the pump waves and the
sitions in the quantum system, and the populations of
states. For the problem under discussion the specific form
the factorA is unimportant.

In accordance with the general approach formula
above, to generalize Eq.~41! to the case of states that a
degenerate in the orientations of angular momentum,
must assign the dependence on the anglesu and f to the
dipole moment and the matrix elements of the interact
potential and then integrate over the various orientations
angular momentum:

Pd52 iAE m̃14~u,f!Ṽ43
c ~u,f!Ṽ32

b ~u,f!Ṽ21
a ~u,f!

3sinududf. ~42!

The equation for the generation of the waved has the form
@cf. Eq. ~21!#

]Ed

]z
52p ikPd. ~43!

Using the expressions~15! and ~16! and integrating in~42!
with respect to the anglef, we arrive at a relationship for the
circular components of the polarization vector of the medi
~the transition diagram in Fig. 2a withv21,v32,v43.0!:

Ps
d5 (

s1s2s3

Tss1s2s3
Es1

a Es2

b Es3

c ,

~44!

Tss1s2s3
5 iA~21!sm14m43m32m21

p

2J̄2
ds,s11s21s3

3E
0

p

dsD14

1 ~u!d2s1D21

1 ~u!d2s2D32

1 ~u!d2s3D43

1

3~u!sinudu,

whereDnm5Jn2Jm andD211D321D431D1450.
For the transition diagram in Fig. 2b~v21.0, v32,0,

andv43.0!, the polarization of the medium has the form

Ps
d5 (

s1s2s3

Tss1s2s3
Es1

a ~21!s2~E2s2

b !* Es3

c , ~45!

while for the transition diagram in Fig. 2c~v21.0, v32.0,
andv43,0! we have

Ps
d5 (

s1s2s3

Tss1s2s3
Es1

a Es2

b ~21!s3~E2s3

c !* ~46!

with the same tensorTss1s2s3
as in Eq.~44!.

Equation~44! clearly shows that the tensorTss1s2s3
de-

pends significantly on the types of transitions conside

n
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here, and its final calculation is possibly only after the
types have been specified. Note that this tensor has the
lowing symmetry property:

Tss1s2s3
5T2s2s12s22s3

. ~47!

Because of the presence of the Kronecker delta in~44!, many
of its elements are zeros. To establish the full form of t
tensor, it often suffices to calculate only three eleme
T11121 , T11211, and T12111, and then use the symmetr
property to calculate the three remaining nonzero eleme

If pump waves with circular polarizations are used, t
form of the tensorTss1s2s3

imposes certain restrictions o
the indices of the circular components of the polarizations
these waves. In particular, for the transition diagram of F
2a, a parametric wave cannot be generated when all
pump waves have the same circular polarizations. The po
ization of one of the pump waves must be orthogonal to
polarizations of the other two pump waves. On the ot
hand, for the transition diagram of Fig. 2b the generation
a parametric wave is allowed when all the pump waves h
same circular polarizations and forbidden when the circu
polarization of the pump waves in resonances with the 1
and 3–4 transitions are the same and the polarization of
wave in resonance with the 3–2 transition is orthogona
those two.

As an example, we focus on the particular case involv
the transitionsD21521, D3251, D4350, and D1450 and
simple polarizations of the pump waves. Suppose that
three pump waves propagate in the same directionz and are
linearly polarized, with the electric vectors of two of the
waves oriented along the same axis~thex axis! and the elec-
tric vector of the third wave, e.g., the wavec, is rotated in
relation to thex axis in thexy plane through an anglea ~Fig.
3a!. The electric field of wavec can be written

Ec5nxEx
c1nyEy

c , Ex
c5Ec cosa, Ey

c5Ec sina,
~48!

wherenx andny are the unit vectors along thex andy axes,
andEx

c andEy
c are the components of the electric field of t

wavec with the same phase. Below we are interested in
state of polarization of the parametric wave as a function
the anglea.

FIG. 3. Orientations of the electric field vectors of the pump waves and
parametrically generated wave:~a! the electric field vector of wavec is
rotated through an anglea in the xy plane, and~b! the electric field vector
of wavea is rotated througha. The angleb characterizes the orientation o
the electric field vector of the generated wave.
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Before we go any further, we should note that if Eq.~44!
is valid the superposition principle operates in each pu
wave separately. This means that we can consider the
tributions into the polarizationPd of the medium made de
generate by virtue of the fieldsEx

c and Ey
c separately. We

denote the polarization of the medium generated by the fi
componentEx

c by Pdi and that generated by the field comp
nentEy

c by Pd'.
Since we are dealing with pump waves that are linea

polarized, it is convenient to calculate the components of
tensorT in Cartesian coordinates, using Eqs.~44! and the
relationship~33! between Cartesian and circular componen
Direct calculations under the specified conditions and w
D21521, D3251, D4350, andD1450 yield

Px
di

5 2
15 BEx

c , Py
di

50,
~49!

Px
d'50, Py

d'5 4
15 BEy

c ,

whereB is a factor depending, in particular, on the amp
tudes of the other pump waves.

Equation ~43! implies that Ed}Pd, so that the pump
waves are linearly polarized, and so is the generated w
Equations~49! readily lead to a relationship between th
angle b of the orientation of the polarization plane of th
waved and the anglea:

tanb5
Py

d'

Px
di

52
Ey

c

Ex
c

52 tana. ~50!

In particular, when the anglea is small, the polarization
plane of the parametrically generated wave proves to be
tated though an angle that is twice the given angle for w
c.

Now let us see what happens when, in contrast to
previous case, the polarization planes of wavesb andc pass
through thex axis and the polarization plane of wavea is
rotated through the anglea in thexy plane~Fig. 2b!, i.e., the
field of wavea has the form

Ea5nxEx
a1nyEy

a , Ex
a5Ea cosa, Ey

a5Ea sina.

For this transition pattern the Cartesian components
the polarization vector of the medium at the frequencyvd

are

Px
di

5 2
15 BEx

a , Py
di

50,
~51!

Px
d'50, Py

d'52 1
15 BEy

a .

It is clear that the generated waved has linear polariza-
tion rotated through the angleb with respect to thex axis in
the xy plane. This angle is related toa as follows:

tanb5
Py

d

Px
di 52

1

2

Ey
a

Ex
a 52

1

2
tana.

Thus, the polarization plane of waved is found to be
rotated in the opposite direction in comparison to wavea and
through a smaller angle.

We have examined the case where all the pump wa
are linearly polarized. A similar analysis can be carried o
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when one of the waves,c or a, is elliptically polarized. For
instance, let us examine the case where the electric fiel
wavec is Ec5nxEx

c1 inyEy
c .

The polarization of such a way is elliptic and the ratio
the axes of the ellipse isbc5uEy

c/Ex
cu. Generalization to the

case of the results~49! is obvious:

Px
di

5 2
15 BEx

c , Py
d'5 i 4

15 BEy
c ,

and in turnEx
d}Px

di andEy
d}Py

d' . This implies that the field
of wave d is related to the field of wavec by the formula
Ed5Q(nxEx

c12inyEy
c), whereQ is a proportionality factor.

The ellipticity parameters of the generated wave isbd

5uEy
d/Ex

du52bc.
Thus, the presence of ellipticity in the polarization of t

pump wavec generates ellipticity in the polarization of th
parametrically generated wave, but with a larger elliptic
parameter.

If in the situation where the polarizations of wavesb and
c are linear and directed along thex axis and the polarization
of wave a is elliptic we reason in the same way as in t
above discussion, we can easily find that the generated w
is elliptically polarized with an ellipticity parameter relate
to the ellipticity parameter of wavea according to the for-
mulabd5ba/2. We see that in this case the ellipticity param
eter of waved is smaller than that of wavea.

Note that the differences in the polarizations of the g
erated wave, which depend on the polarization of wh
wave,c or a, differs from linear, are fully determined by th
differences in the transition types~D1251, D3450! and do
not depend on the type of the four-level transition pattern

The particular case of the transition types in the fo
level system considered here corresponds to the condit
of the experiment conducted by Apolonskiiet al.,14 who
studied the generation of radiation in four-wave mixing
vapors of sodium dimers (Na2). The arrangement of level
and the transition patter in their experiment corresponde
a double Lambda scheme with the following values of an
lar momenta:J1549, J2548, J3549, andJ4549. Such
large values ofJi fully agree with the conditions for a clas
sical description of the orientation of angular momentu
The results of Ref. 14 were obtained for coinciding line
polarizations and the three pump aves propagating in
same direction. Here the generated fourth wave had the s
polarization. In a special measurement, Apolonskiiet al.14

carried out a rotation of the polarization plane of one pu
wave ~the wavec in the present notation! though a certain
angle and found that the polarization plane of the genera
wave rotates in the same direction but through a larger an
Apolonskii et al.14 gave no explanation of this effect. It ca
be explained quite convincingly on the basis of the desc
tion, developed in the present paper, of parametric gen
tion with four-wave mixing. Figure 4 presents a quantitati
comparison of the experimental data taken from Ref. 14
the theoretical results obtained by formula~50! for the de-
pendence of the angle of rotation of the polarization plane
the generated wave~angle b! on the anglea between the
planes of polarization of wavec and of the other two pump
waves. We see that the agreement is satisfactory, w
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serves, in particular, as an additional argument in favor
the assertion that in the experiments of Apolonskiiet al.14

parametric generation was indeed achieved with four-w
mixing.

The key issue in the problem of converting the radiati
frequency by using resonant radiative processes in gas
media is the question of conversion efficiency. It is seen t
the correct choice of the polarization conditions plays
important role here. For different transition types, differe
relationships between the polarizations of the pump wa
are optimal. In this sense, four-level transition schemes
be divided into three classes. The first class consists of
transition schemes in which all transitions are of theQ type
~all D50!; the second class consists of transition scheme
which two transitions are of theQ type and the remaining
transitions are of theP and R types; and the third clas
consists of transitions schemes in which there are noQ-type
transitions~all uDu51!.

A simple analysis based on~44! shows that if in a four-
level scheme at least one transition hasD50 ~this means
that there is at least one more transition withD50!, it is
advisable to use linear polarizations in all four pump wav
Here the gain in the intensity of the generated waves is
times that in the case of circular polarizations with the sa
pump-wave intensities. The use of the same linear polar
tion of the pump waves is the optimal choice for the fi
class of four-wave schemes. The generated wave will h
the same polarization. The situation where the linear po
izations of two pump waves in resonance with the transitio
with equal values ofuDu coincide and the polarization of th
remaining pump wave is orthogonal to those polarization
the optimal choice for the second class of four-lev
schemes. In this case the polarization of the generated w
will coincide with the polarization of the latter pump wav
Note that in the experiment conducted by Apolonskiiet al.14

the situation where the polarizations of all the pump wav
coincide is not the optimal choice. To optimize the proce
of generation of a parametric wave, the polarizations of
pump wavesa and b should be linear and the same, whi
the polarization of wavec should be orthogonal to the firs
two. The generated wave will have the same polarization
that of wavec, and its intensity, according to~49!, will be

FIG. 4. Comparison of the theoretical curve and the experimental resul
measurements of the dependence of the angleb specifying the orientation of
the electric field vector of the generated wave on the corresponding anga
for wavec.
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four times higher than in the case where all three pu
waves have coinciding linear polarizations.

The situation where all three waves are circularly pol
ized is the optimal choice for the third class of four-lev
schemes. Here the gain in the intensity of the genera
waves will amount to the same factor of 9/4 in comparison
the case of linear polarizations of the pump waves. Howe
here we must be careful in selecting the correct relation
tween the polarizations of the waves. For instance, if we t
the scheme in Fig. 2a, the circular polarizations of two pu
waves in resonance with the transitions with equal value
uDu must coincide and the polarization of the remaining pu
wave must be orthogonal to those polarizations. The ge
ated wave will have a polarization coinciding with the pola
ization of the first two pump waves.

Strictly speaking, the conclusions drawn about the o
mal polarization conditions are true only in the approxim
tion of low-intensity pump waves. In condition wher
higher-order nonlinear effects become important, the con
sions may change, especially if we allow for possible rel
ation processes in the system of magnetic sublevels~colli-
sions that reorient the angular momentum!. This general case
merits a separate investigation.

5. CONCLUSION

In our study we have stressed the simplicity and prod
tivity in solving problems associated with the interaction
quantum objects with an external perturbation when the
entation of angular momentum can be described by the
of classical tools. In particular, in dealing with the proble
of the resonant interaction of radiation and a multilevel s
tem we succeeded in formulating a procedure by which
well-known solutions of many problems obtained in t
model of nondegenerate states can easily be generalize
the case of degeneracy in the orientation of angular mom
tum. Of course, the specific examples studied in this pape
first order in the intensities~Raman scattering in a three-lev
system! or in the amplitudes~four-wave mixing in a four-
level system! of the pump fields can be analyzed in the co
mon quantum mechanical approach, but this means one
to deal with complicated formulas involving the use of 3J-,
6J-, and 9J-symbols, which implies knowing the appropria
mathematical tools that make it possible to operate w
these mathematical objects~see, e.g., the paper of Lam an
Abrams,15 who examined the problem of the four-wave i
teraction with a two-level system in theJM-representation,
and Refs. 16 and 17, where this problem was solved u
p
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the irreducible-tensor representation!. Our approach yields
results without resorting to complicated mathematical too
since everything reduces to integrating simple express
containing trigonometric functions. More than that, with
this approach there will be only a slight increase in difficu
ties if we are forced to incorporate strong fields with ar
trary ~elliptic! polarizations into the picture, while the ord
nary quantum mechanical approach in solving such proble
may not lead to an analytic solution.

We also found that to ensure maximum efficiency
radiation frequency conversion we must properly select
polarizations of the pump waves.

The authors are grateful to A. A. Apolonski� for provid-
ing experimental data and for discussing the results. T
work was made possible by a grant from the Russian F
for Fundamental Research~Grant No. 98-02-17924!.
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Ultranarrow beams of electromagnetic radiation in media with a Kerr nonlinearity
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The vector structure of a self-channeling electromagnetic field is determined by solving the
complete system of Maxwell’s equations in a transparent medium with a Kerr nonlinearity. Self-
channelling with an asymmetric angular distribution of the field occurs at powers several
times the critical self-focusing power. As the power is increased, a universal~self-similar! field
structure develops in which only the scales change as the power is varied. Self-
channelling with a channel width much smaller than the~linear! wavelength of the light, i.e., a
‘‘needle of light’’ with an extreme concentration of radiant power, is found to occur.
© 1999 American Institute of Physics.@S1063-7761~99!00708-8#
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1. INTRODUCTION

Extremely high concentrations of radiant energy can
achieved by reducing the duration of laser pulses~femto- and
attosecond range! and by transverse compression of the be
~micron and submicron transverse dimensions!. The latter
process can occur in transparent media with a self-focu
type of nonlinearity in the refractive index.

The basic phenomenon of self-focusing of radiation w
predicted by Askaryan in 19621 and was subsequently stud
ied actively both experimentally and theoretically.2–6 The
main theoretical studies are based on a slowly varying
plitude ~the quasioptical approximation!, which assumes, in
particular, that the beam is much wider than the wavelen
of the light. In this approximation the beam is compressed
a point focus in a Kerr~with a cubic nonlinearity! medium
when the power exceeds a critical value, so that the ques
of the final stage of self-focusing near a nonlinear focus
still open and can only be answered using a complete sys
of nonlinear Maxwell’s equations. Several attempts ha
been made to analyze this considerably more complica
system for a real~two transverse dimensions! geometry, but
only for a series of special cases.6 Here an important restric
tion has been that beams with a strictly axisymmetric int
sity distribution have been considered.6 Even in the quasiop-
tical approximation, beams of this sort carry a pow
considerably beyond the critical value, which usually in
cates that they are unstable.7 The instability of such beam
against small perturbations has been demonstrated.8 Another
factor which limits the nonlinear focusing of radiation is th
possible deviation of the nonlinearity of the medium from
Kerr nonlinearity or even the destruction of the mediu
However, when the saturation intensity for the nonlinearity
high enough, this factor is less important than the ‘‘no
paraxiality’’ of ultranarrow beams~with widths comparable
to or less than the wavelength of the light!.

Thus, the question of the final stage of the self-focus
of radiation and possibility of forming ultranarrow beam
~needles of light! in a medium with a nonlinearity close to
2431063-7761/99/89(8)/6/$15.00
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Kerr nonlinearity remains open. The task of this paper is
analyze this question when the assumption of strict axisy
metry of the radiant intensity distribution breaks down a
its more complicated polarization structure is taken into
count.

In Sec. 2 we describe the basic initial equations for
problem in the case of quasimonochromatic radiation wh
is examined throughout this article. Here the central poin
the introduction of a vector potential similar to the Her
vector with a definite gauge. As far as we know, this a
proach has not been applied before to nonlinear optics p
lems. Since the electric and magnetic field strengths are
pressed in terms of the vector potential, this makes
possible to account for the vector character of the elec
magnetic field in a simpler way. Another important circum
stance for the following discussion is a rigorous treatmen
the radiation power as the integral of the longitudinal co
ponent of the Poynting vector, averaged over the period
the optical oscillations.

In Sec. 3 the vector nature of the problem is furth
simplified by choosing a particular solution for which th
vector potential contains only one nonzero cartesian com
nent. This is justified by a numerical simulation illustratin
the unimportance of mixing of the components of the vec
potential. In the quasioptical limit, here we obtain the w
known solution corresponding to linearly polarized radiatio
It may be expected that other solutions will be characteri
by a higher power~for the same propagation constant!.

In Sec. 4, an approximate asymptotic solution of t
nonlinear wave equation is introduced for the case of a be
power substantially exceeding the critical~threshold! self-
focusing limit. The starting point is the assumption~con-
firmed by subsequent numerical calculations! that the light is
predominantly linearly polarized and the field structure
approximate axisymmetric. Here a discrete set of station
self-channelling regimes is determined; these differ in th
topological charge~an azimuthal index characterizing th
change in phase on going around the beam axis! and radial
index ~the number of zeroes in the radial function!. Of these
© 1999 American Institute of Physics
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244 JETP 89 (2), August 1999 Semenov et al.
regimes, the fundamental regime, which corresponds t
nodeless radial function and the lowest power~for a given
propagation constant!, stands out and is all that is consider
afterward. The complete vector structure of the field is c
structed for it and found to be invariant~within changes in
scale lengths! for arbitrarily high powers.

The next two sections are devoted to a numerical an
sis of the problem. In Sec. 5 the iteration procedure for
merically solving the nonlinear Maxwell’s equations is d
scribed. The results of the calculations are given in Sec
The Conclusion contains a general discussion and the res

2. BASIC EQUATIONS

We shall consider monochromatic radiation~at fre-
quencyv) with electric fieldsẼ and magnetic fieldsH̃ of the
form

Ẽ5
1

2
@E~r !exp~2 ivt !1c.c.#,

H̃5
1

2
@H~r !exp~2 ivt !1c.c.#. ~1!

In general, in a nonlinear medium fields also develop at
quency multiples (3v, etc.!. Their amplitudes, however, ar
negligible when~as assumed! the synchronism conditions ar
not satisfied. Then the nonlinear component of the elec
induction can be written in the form6,9

Dnl5A~E•E* !E1
B

2
~E•E!E*

5S A1
B

2 D ~E•E* !E1
B

2
@~E•E!E* 2~E•E* !E#. ~2!

The relationship of the coefficientsA and B in Eq. ~2! de-
pends on the mechanism of the nonlinearity. For a strict
nonlinearity in gases and liquids we haveB50 and the term
on the right hand side of Eq.~2! with the square bracket
vanishes. As will shown later~Secs. 3–5!, in the case to be
examined below, where the polarization of the radiation
close to linear, this term is significantly smaller than t
preceding one. Then the medium is isotropic and a sc
nonlinear permittivity can be introduced, withD5«E, where

«5«01«2uEu2. ~3!

For self-focusing media, the nonlinearity coefficient satisfi
«2.0. The magnetic permeability of the medium is assum
constant, withm51.

We introduce the vector potentialP using the relation

H52
iv

c
curlP. ~4!

The first Maxwell equation (curlE2( iv/c)H50) and the
definition ~4! imply

E52¹f1
v2

c2
P, ~5!
a

-

y-
-

6.
lts.

-

ic

n

s

ar

s
d

wheref is an arbitrary function~scalar potential!. Substitut-
ing Eq. ~4! in the second Maxwell equation (curlH
1( iv/c)D50) and subjecting the scalar potentialf to the
condition

f52
1

«
div P, ~6!

we obtain using Eq.~5! an equation for the vectorP,

DP1
«v2

c2
P2¹ ln « div P50. ~7!

Based on Eqs.~5! and~6!, the electric field strengthE can be
expressed in terms of the potential as follows:

E5
1

«
curl curlP. ~8!

We shall seek ‘‘homogeneous beams’’ with a field th
falls off exponentially with distance from the beam axis a
retain their form along the axis of propagation

P~x,y,z!5P~x,y!exp~ igz!,

whereg is the real propagation constant. Here Eq.~7! for the
components of the vectorP(x,y) is written in the form

D'Px2g2Px1
«v2

c2
Px2

]~ ln «!

]x

3S ]Px

]x
1

]Py

]y
1 igPzD50,

D'Py2g2Py1
«v2

c2
Py2

]~ ln «!

]y

3S ]Px

]x
1

]Py

]y
1 igPzD50, ~9!

D'Pz2g2Pz1
«v2

c2
Pz50,

whereD' is the transverse Laplacian operator.
The power densitySz of the radiation is defined as th

average of thez-component of the Poynting vector over th
optical period,

Sz5
c

8p
ReE* 3Hz5

c

8p
Re~Ex* Hy2Ey* Hx!, ~10!

and the powerP as the integral of the power density over th
transverse cross sectionS,

P5
c

8p
ReS E

S
~Ex* Hy2Ey* Hx!dSD . ~11!

It is convenient to use the normalized variables

x85kx, y85ky, z85kz, g85g/k, k5A«0 v/c,

E85E/En , H85H/A«0 En , P85Pv2/c2En , ~12!

«8511«nl , «nl5
«2

«0
uEnu2uE8u2.
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Here we choose the normalization coefficientEn so that the
nonlinearity parameter isCnl5(«2 /«0)uEnu251. Then the
final solutions have the form

D'8 Px82g82Px81«8Px82
]~ ln «8!

]x8

3S ]Px8

]x8
1

]Py8

]y8
1 ig8Pz8D 50,

D'8 Py82g82Py81«8Py82
]~ ln «8!

]y8

3S ]Px8

]x8
1

]Py8

]y8
1 ig8Pz8D 50, ~13!

D'8 Pz82g82Pz81«8Pz850,

with

E85
1

«8
curl8 curl8$P8 exp~ ig8z8!%,

H852 i curl8$P8 exp~ ig8z8!%, ~14!

and

«8511uE8u2. ~15!

In the following we work with the normalized system of Eq
~13!–~15! and omit the primes.

3. CHOICE OF POTENTIAL

Since the general solution of Maxwell’s equations is d
scribed by only two independent functions,10 the component
Pz can be set equal to zero. The field described by the c
ponentPx corresponds to a linearly polarized beam with
electric field oriented along thex axis in the case when th
transverse dimensions of the beam are much greater tha
wavelength. To relate a Maxwellian spatial soliton to a qu
sioptical one, we shall consider the case where the vectoP
has only one nonzero component, e.g.,P5(P(x,y),0,0).
This can be done because, as shown by calculations, for
tonlike field structures the terms in Eq.~13! containing
](ln «)/]x and ](ln «)/]y are small and do not qualitativel
change the solution over a wide range of energies. Then
~13! becomes the scalar equation

D'P2g2P1«P50, ~16!

and the field strengths are given in terms ofP by

E5
1

« F iS g2P2
]2P

]y2 D 1 j
]2P

]x ]y
1kS ig

]P

]x D G ,

H5 jgP1ki
]P

]y
. ~17!

If the potentialP is an even function inx andy, then the
nonlinear permittivity« and thex-component of the electric
field strength are also even functions inx andy, Ey is odd in
x andy, andEz is odd inx and even iny. In addition, if the
-

-

the
-

li-

q.

potentialP is real, then the componentsEx andEy are also
real, whileEz is purely imaginary. These properties will b
satisfied below. In this case, the expression in the squ
brackets in Eq.~2! has the form

~E•E!E* 2~E•E* !E52@ iEzEzEx1 jEzEzEy

2k~ExEx1EyEy!Ez#. ~18!

Note that on the right hand side of Eq.~18! the longitudinal
componentEz of the electric field shows up as a factor.
the quasioptical limit (g→1, power close to the critical self
focusing power!, this component is small:

uEz /Exu2;~l/w!2!1

(l is the wavelength of the light andw is the beam width!.
As calculations show~Sec. 5!, as the propagation constantg
increases, the amplitude of the longitudinal component
creases, but its relative fraction stabilizes at a low level, e
in the case of extremely high powers. This justifies negle
ing the anisotropy in the nonlinearity and introducing a s
lar nonlinear permittivity.

We introduce the normalized powerP85P/P0 , where
P0 is the critical self-focusing power in the quasista
approximation,6

P0511.7
c«0

3/2

8pk2«2

. ~19!

Substituting Eqs.~19! and ~17! in Eq. ~11!, we obtain an
expression for the normalized power,

P85
g

11.7
ReS E

S

1

« S g2P* 2
]2P*

]y2 D P dSD . ~20!

4. APPROXIMATE ASYMPTOTIC SOLUTION

We shall construct the asymptotic solution of these eq
tions for high powers~compared to the critical self-focusin
power! or for the limit g@1. Numerical calculations~Sec. 6!
show that, for the chosen polarization, the electric field h
predominantly anx-component, with the potential distribu
tion being close to axisymmetric. In this case, Eq.~17! im-
plies that

E'Exi'
g2

«
P i,

so that, given Eq.~15!, we have

«511
g4

«2
uPu2. ~21!

At high intensities, we can neglect unity on the right ha
side of Eq.~21!. Then

«5g4/3uPu2/3, ~22!

and Eq.~16! takes the form

1

g2
D'P2P1UPg U2/3

P50. ~23!
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We eliminate the large parameterg from Eq. ~23! and intro-
duce new scales for the transverse coordinatesr' and poten-
tial P:

r̃'5gr' , P̃5P/g. ~24!

Then we arrive at the following equation:

D̃'P̃2P̃1uP̃u2/3P̃50. ~25!

Note that the form of the nonlinearity~a power of 2/3 in Eq.
~25! instead of the power of 2 in the ordinary quasioptic
approximation! indicates effective saturation of the nonlin
earity ~nonparaxiality effect!.

We shall seek localized solutions~modes! of this equa-
tion that fall off sufficiently rapidly with distance from th
beam axis. In general, Eq.~25! is valid only near the beam
axis, where the field is large. At the periphery, we should
the linear equation~with a dielectric permittivity«'1) and
match its solution~expressed in terms of cylindrical func
tions! with the solution of Eq.~25!. However, this procedure
leads to a correction of higher order in the small parame
g21, so that in the rest of this section we shall examine
solution of Eq.~25! over the entire region of the transver
coordinates.

We seek a solution of Eq.~25! in polar coordinates
(r ,w) of the form

P̃5C~r !exp~ imw!, m50,61,62, . . . ~26!

Now the real radial functionsC are determined by the equa
tion

d2C

dr2
1

1

r

dC

dr
2S 11

m2

r 2 D C1C5/350 ~27!

with the boundary conditions

C;r umu ~r→0!, C→0 ~r→`!. ~28!

The modes are labeled by two integral indices:n
50,1,2, . . . ~radial index, equal to the number of zeroes
the function for finiter, 0,r ,`) and m50,61,62, . . .
~azimuthal index!. Some of the first radial functions are plo
ted in Fig. 1. As the indices increase, the maximum am
tude and power of the corresponding beam increase.
power

FIG. 1. Radial functions for the ‘‘optical needle’’ regime. The pairs
labels (n,m) on the radial profiles denote the radial and (n) and azimuthal
(m) indices.
l

e

r
e

i-
he

Pnm5gCnmP0 ,

whereP0 is the critical self-focusing power~19!. The coef-
ficients Cnm for the first modes, computed from a modifie
Eq. ~20! including a contribution to the permittivity from
only thex-component of the electric field strength, are

C0,053,9, C1,0523,6, C2,0559,0,

C3,05110,2, C4,05177,2,

and

C0,1513,3, C1,1542,4, C0,2524,4, C1,2563,0.

The lowest power~for a given value ofg) corresponds to the
fundamental moden5m50, which, accordingly, is the mos
stable. This type of self-channelling will be considered in t
following calculations.

In the present approximation the fundamental mode

the axisymmetric part of theEx component,Ex
(0).gP̃1/3,

while the other components of the field,Ey andEz , and the
asymmetric correction to the fundamental component,Ex

(1) ,

are expressed in terms ofP̃ in accordance with Eq.~17!:

Ez5
ig

«̃

dP̃

dr
cosw, Ey5

g

2«̃
Q~r !sin~2w!,

Ex
(1)5

g

2«̃
@R~r !2Q~r !cos~2w!#,

Q~r !5
d2P̃

dr2
2

1

r

dP̃

dr
52

2

r

dP̃

dr
1P̃2P̃5/3,

R~r !5P̃2P̃5/3, «̃5P̃2/3. ~29!

As noted above, the componentsEx and Ey of the electric
field are real, whileEz is purely imaginary. According to Eq
~29!, all the field components have a simple angular dep

dence. Given the bell shape ofP̃(r )5C0,0(r ), it is easy to
confirm that the componentiEz has two extrema~a maxi-
mum and a minimum!, while Ey has four extrema~two
maxima and two minima!. When the contribution of the
componentsEy and, especially,Ez to the permittivity is
taken into account, a recalculation of the radiation pow
according to Eq.~20! yields a reduction in the coefficient
Cnm . ~For example, thenC0,053.) The beam width satisfie
w;g21, so that for sufficiently high powers, arbitrarily na
row stationary beams~needles of light! are formed. The pos-
sibility of obtaining light beams narrower than the wav
length in a linear medium can be explained qualitatively
the fact that, for strong fields, the effective wavelength in
Kerr medium decreases owing to an increase in the nonlin
refractive index. The maximum~axial! power densitySz

(0)

and axial intensityI (0)5Ex
2(r 50) increase rapidly with the

total power:Sz
(0);g3 and I (0);g2. Note that all the field

components (Ex , Ey , Ez) are of the same order ing ~first!,
so that with increasingg, only the scale of the field structur
varies.
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5. NUMERICAL ALGORITHM

We shall solve the system of Eqs.~13!–~15! for a given
power ~20! iteratively. First, using the distribution
«N21(r ,w) calculated in the previous iteration, wherer ,w
are the polar coordinates andN51,2, . . . is theiteration
number, we find the distributionPN(r ,w) from the following
equation that corresponds to Eq.~13!:

D'PxN2gN
2 PxN1«N21PxN

2
]~ ln «N21!

]x S ]PxN

]x
1

]PyN

]y D50,

D'PyN2gN
2 PyN1«N21PyN

2
]~ ln «N21!

]y S ]PxN

]x
1

]PyN

]y D50. ~30!

As an initial distribution«(r ,w) we chose the distribution fo
a soliton with the same energy in a medium with the sa
rated nonlinearity, calculated in the parabolic approximati
Equation~30! for a given«N21(r ,w) determines the discret
mode spectrum of an inhomogeneous~in r andw) dielectric
waveguide. As noted above, the terms that ‘‘intermingl
the componentsPx and Py of the vector are extremely
small; hence, the eigenvaluesgN

2 of the system of Eqs.~30!
are essentially doubly degenerate. The degeneracy is e
removed by the terms (](ln «)/]x)(]Px /]x) and (](ln «)/]y)
3(]Py /]y) in the case where the distribution«N21 is not
axisymmetric. In the first iteration, the modes are stric
doubly degenerate and we have the possibility of choos
the polarization state~e.g., to setPy50). From the solutions
of Eq. ~30! we choose the fundamental mode, in accorda
with Sec. 4, as the nodeless distributionuPN(r ,w)u ~from the
pair of modes with the maximumgN) and with a polarization
close to that of the preceding iteration. In the numerical
gorithm for solving Eqs.~30!, we represent the componen
of the vectorP in the form of an expansion in eigenvalues
the Sturn–Liouville problem for the linear wave equati
inside some auxiliary cylinder.

Using Eqs.~14! and ~15! we find the nonlinear permit
tivity «N from the values ofPN calculated from Eq.~30!.

This approach is easily generalized to the case of o
forms of nonlinearity~e.g., including saturation!.

6. COMPUTATIONAL RESULTS

One of the most important characteristics of se
channelling is the dependence of the radiation power on
propagation constantg. Figure 2 shows a plot of this rela
tionship with the powerP normalized to the critical self-
focusing power~19! andg normalized to the wave numberk
of the radiation in a linear medium~12!. The quasioptical
approximation corresponds to the intervalg21!1, where
the power is near critical. Asg increases, the power rise
and, when the terms](ln «)/]x and](ln «)/]y are neglected,
the dependence becomes linear for largeg in agreement with
the analytic description of Sec. 4.

Figure 3 shows effective beam widthw as a function of
the propagation constant. The width was defined as
-
.

’

ily

g

e

l-

er

-
e

w5

E
S
uEu2r 2dr dw

E
S
uEu2rdr dw

. ~31!

As the power is reduced on approaching the critical pow
~the quasioptical limit!, the beam width increases withou
bound. As the power is increased, the beam width decrea

The vector structure of the field is strongly dependent
the power~or is uniquely related to it by the propagatio
constant!. In the quasioptical limit the componentsEy andEz

are negligibly small~see Sec. 3!. As the power increases
their relative contribution becomes larger. Here when
terms ](ln «)/]x and ](ln «)/]y are neglected, it become
stable and in the limit of high powers, in accordance w
Sec. 4, a universal field structure develops in which
maximum intensity of the longitudinal field component
roughly a factor of 10 smaller than that of the transve
component. Only its scales change with increasingg. The
approximate description of Sec. 4 correctly reflects its ma
characteristics. When the solutions that take the interm
gling of the components of the vector potential into acco
are solved, the result is similar, but the ratio of the pe
intensities of the longitudinal and transverse components
creases to one third. This characteristic field structure is
lustrated in Fig. 4.

FIG. 2. Radiation power as a function of the propagation constantg: the
smooth curve is a calculation neglecting the terms containing](ln «)/]x and
](ln «)/]y; in the dashed curve the terms including](ln «)/]x and](ln «)/]y
are included in first order perturbation theory; and, the points are the s
tion with full inclusion of the terms containing](ln «)/]x and](ln «)/]y.

FIG. 3. The effective beam withw as a function of power~calculated ne-
glecting the terms containing](ln «)/]x and](ln «)/]y).
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FIG. 4. Distributions of the electric field intensity over th
transverse cross section of a beam in the ‘‘needles of ligh
approximation: a — the intensity of the transverse fie
componentI'5uExu21uEy

2u; b — intensity of the longitu-
dinal field componentI i5uEzu2, P54P0 .
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These calculations confirm the existence of rather n
row light beams~optical needles! at powers several time
greater than the critical self-focusing power in the quasi
tical approximation.

7. CONCLUSION

By solving the complete system of Maxwell’s equatio
for a transparent medium with a Kerr nonlinearity, we ha
thus determined the vector structure of the electromagn
field during self-channelling regimes. It has been found t
these regimes exist for powers exceeding the critical s
focusing power. As the power is increased, a universal~in-
variant! field structure develops in which only the scal
change. In particular, self-channelling with a channel wid
smaller than the~linear! wavelength of the light or needles o
light can occur. With their extremely high concentration
optical power, these regimes can be of both scientific
applied interest.

Of course, the results presented here were obtained
der certain assumptions. The major limitation is the deviat
of the nonlinearity of the medium from a Kerr nonlineari
~3! at high radiation intensities. In this case, saturation of
nonlinearity must be taken into account, for example, in
form

«5«01
«2uEu2

11uEu2/I S

, ~32!

whereI S is the saturation intensity. The Kerr nonlinearity~3!
is obtained from Eq.~32! for uEu2!I S . The case«2uEu2

.«0 is also possible for«2I S@«0 , which determines the
conditions for applicability of the preceding analysis. A
other important question is the analysis of the stability
these regimes and the conditions for their development.
though the way the power depends on the propagation
r-

-

e
tic
t
f-

f
d

n-
n

e
e

f
l-
n-

stant indicates that the regime is stable according to
Kolokolov–Vakhitov criterion,11 it should be recalled tha
this has been proven only in the quasioptical approximati
In practice, power at a level exceeding the self-focusing cr
cal power is not sufficient for the formation of needles
light. The initial beam profile is also important, since broa
high power beams of light break up into isolate
‘‘filaments.’’7 More detailed study of the stability and fea
tures of self-channelling in media with saturation nonline
ity is required.
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Mechanism of spontaneous radiation relaxation of an impurity atom in a photonic
band-gap crystal
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On the base of the concept of radiative interaction between atoms of two different species, a
novel electric-dipole mechanism of spontaneous radiating relaxation of an impurity atom in a
medium with a gap in the photonic density of states about the transition frequency has been
suggested. A kinetic equation for an impurity atom has been derived, and polarizations of the
photonic band-gap crystal and an induced electromagnetic wave at the spontaneous
transition frequency due to the suggested mechanism have been investigated. The parameters of
the induced wave are determined by those of the suggested mechanism, and this dependence
can be used in experimental investigations of these parameters. ©1999 American Institute of
Physics.@S1063-7761~99!00808-2#
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1. INTRODUCTION

Recently a lot of attention has been focused on emiss
and propagation of electromagnetic waves under condit
when some structural and/or dynamic factors impede th
processes in certain ranges of field parameters. For exam
in structures formed by periodic dielectric layers, Bra
reflection1–3 prevents penetration and propagation of we
electromagnetic waves of certain frequencies, whereas a
ficiently intense electromagnetic fields of the same frequ
cies can propagate in the regime of band-gap sol
waves.4,5 A polariton branch in the spectrum and a gap in t
excitation spectrum due to interaction between light and
optically dense medium6–9 may also prevent penetration o
weak electromagnetic waves of specific frequencies and
to multistable reflection regimes for intense waves, th
self-oscillations,10 and penetration into the dense mediu
There can be other causes leading to gaps in the densi
states of electromagnetic waves. There is now availab
fairly wide range of materials in which the propagation
optical waves of specific frequencies is forbidden in the cl
sical sense.11 We call such media photonic band-gap~PBG!
crystals, although this term is usually applied to a more n
row range of periodic dielectric structures. We will disrega
the geometrical factors which may lead to closing the gap
the density of states of electromagnetic waves that propa
in certain directions.

If an impurity atom is embedded in a PBG crystal so th
the frequency of the interatomic transition coincides with
band gap of photon states, the lifetime of the excited stat
such an impurity atoms is unusually long. Such a state o
excited atom in a PBG crystal is called either localized lig
or a bound state of the atom and photon.1–3,12–14Investiga-
tion of the dynamics of excited atoms in PBG crystals is
interest for various branches of physics and shows m
promise in view of application to fabrication of various com
ponents of the quantum computer.15

Lifetimes of excited states of impurity atoms in PB
2491063-7761/99/89(8)/9/$15.00
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crystals were calculated by many researchers.16–26They usu-
ally considered situations when the transition frequency
an impurity atom is close to an edge of the band gap i
PBG crystal. In this case, the dynamics of the spontane
light emission is anomalous and demonstrates a set of
markable features16–18because the Markovian approximatio
cannot be used in calculations. Introduction of two identi
interacting impurity atoms to such systems makes the pr
lem the more interesting.23 With a large number of impurity
atoms, the band gap can contain a lot of impurity levels24

Another approach to the localized photon problem is dem
strated in Refs. 25 and 26. It is noteworthy that some
thors, in addition to application of various approaches, to
into account effects of external electromagnetic fields.27

As concerns the role of PBG crystal media in the ana
sis of the dynamics of an excited atom under conditions
photon localization, it is usually limited to the interactio
between an atom and collective optical modes of the m
dium, which are related, in one way or another, to its ex
tation spectrum.22–26 This paper focuses the reader’s atte
tion on a general mechanism of spontaneous relaxation o
impurity atom in a PBG crystal under conditions when t
conventional optical relaxation is forbidden because of
gap in the density of photon states. Interaction between
impurity atom and atoms of the PBG crystal is treated
cally, without taking into account collective processes a
assuming that only neighboring atoms are involved, wh
are considered in isolation from the rest of the PBG crys
atoms. Undoubtedly, the dynamics of an excited impur
atom in a PBG crystal presents a very complicated probl
A self-consistent approach should take into account the
tire hierarchy of interaction processes, separate the main
tributors, and analyze their effect on the development of
stabilities of various kinds. There is every reason to take i
account the mechanism suggested in this paper in a
consistent theory, especially in problems concerned w
© 1999 American Institute of Physics
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additional action of external electromagnetic fields on an
purity atom.27

The underlying idea of the suggested mechanism
spontaneous radiation relaxation can be easily understoo
the base of the following considerations~see Fig. 1!. It is
known that atoms of two sorts where electric-dipole opti
transitions between their energy levelsEb

im→Ea
im ~the impu-

rity atom or atom of species I! and two-photon transitions
EC

PBG→EA
PBG ~the PBG crystal atom or atom of species!

are allowed interact with one another in an electromagn
field of frequencyV when the following condition is satis
fied:

Eb
im2Ea

im'EC
PBG2EA

PBG1\V, ~1!

so that the excitation can be transferred from one atom
another and a photon of frequencyV can be emitted or ab
sorbed, depending on the initial populations of atomic lev
For example, if the impurity atom is in the excited state a
the PBG crystal atom is in the ground state, the impu
atom is de-excited from the levelEb

im to Ea
im as a result of

interaction between the atoms in the optical field, and
PBG crystal atom is excited from the lower levelEA

PBG to the
higher levelEB

PBG as a result of the two-photon transition.
this process, a photon is emitted whose frequencyV can be
outside the band gap in the photonic density of states. Th
processes have been discovered and investigated in deta
researchers of atomic collisions, who call them radiat
atomic collisions.28–30Such processes are observed in coh
ent optical fields of high amplitudes. Many different pr
cesses may also occur in addition to that discussed in
paper, depending on the configuration of atomic energy
els. ~see Fig. 2 and Refs. 29 and 30!.

In this paper, the radiative two-photon mechanism
excitation transfer applied to atomic collisions as a feas
mechanism of spontaneous radiative relaxation of an im
rity atom in a PBG crystal. In contrast with the approa
developed earlier,28–30 in which the atomic dynamics wa
described in terms of the classical theory of depolariz
atomic collisions,31–33 the relaxation dynamics of an impu

FIG. 1. Diagram of energy levels of an impurity atom and an atom o
photonic band-gap crystal essential for the mechanism under consider
and the density of photon states near the transition frequency of the imp
atom.
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rity atom in a PBG crystal should be described in terms
radiative atomic collisions combined with a consiste
quantum-mechanical description of the emitted electrom
netic field, and an adequate model of photonic heat reserv
with allowance for the real density of photon states in t
PBG crystal. The model system discussed here include
impurity atom, an atom of a PBG crystal, and a photonic h
reservoir. Since the frequencies of emitted photons in
suggested mechanism are outside the band gap in the de
of photon states in the PBG crystal, and since the widths
impurity atomic levels are much smaller than the charac
istic frequencies over which the photonic density of sta
changes, the photonic heat reservoir in this problem can
treated as broad-band. The relaxation dynamics of an im
rity atom can then be conveniently described using the
quantum-mechanical equation34 and a unitary transformation
changing the initial Hamiltonian of the problem to an effe
tive Hamiltonian.30 In this case, the parameters of the pho
nic density of states are incorporated in the coupling cons
in the Ito equation. The basic parameter, which character
the relaxation dynamics of an impurity atom, also determin
the polarization of a PBG crystal at the frequency of spon
neous radiation in the suggested model. This paper consi
a coherent mechanism generating polarization of a P
crystal under coherent pumping of impurity atoms and th
environment. This model disregards the collective effects
sociated with transfer of excitations of atoms of PBG crys
through the bulk. These processes undoubtedly affect the
rameters of the radiation mechanism under discussion,
such collective effectsper secannot block its action. They
should be taken into account as the theory is developed
ther.

The reported work is a natural continuation of the pre
ous work35 involving the analysis of a two-photon mech
nism of relaxation of atomic states through simultaneo
emission and/or absorption of two photons, one of wh
belongs to an intense coherent wave described in clas
terms and the other to a quantum-mechanical photonic
reservoir. The relevant relaxation rate proved to be prop
tional to the coherent wave amplitude.35 In the case studied
in this paper, a photon from an intense coherent wave
replaced with excitation of an atom of a PBG crystal. Owi
to Raman-like processes, the emitted photon is outside
band gap in the photonic density of states. The two-pho
relaxation mechanism yields a very small coupling const

a
on,
ity

FIG. 2. An alternative configuration of levels involved in radiative pr
cesses.
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of this spontaneous radiative mechanism, which is a func
of the density of photon states and parameters of interac
between an impurity atom and neighboring atoms of
PBG crystal, which allows us to ignore this relaxatio
mechanism in usual situations. In a PBG crystal, howev
where the density of photon states corresponding to the p
ton emitted in the usual transition between the excited
ground states is zero, the conventional relaxation mechan
is blocked. In this case the small relaxation rate and
mechanism that determines this process can be the dec
factors that determine lifetime of the excited state of
impurity atom and the channels through which the exc
energy is dissipated. Probably, the calculated rate will
different when collective states of the PBG crystal are ta
into account by this mechanism, but this should be a topic
a dedicated study.

The paper is organized as follows. Section 2 presents
initial and effective Hamiltonians of the problem. In Sec.
the Ito quantum equation, the kinetic equation for the imp
rity atom, and the relaxation operator are derived. Sectio
treats the polarization of the PBG crystal and emission o
coherent wave at the spontaneous radiation frequency du
coherent pumping of the material. In Conclusions, we w
analyze factors that affect the relaxation rate of the impu
atom. Appendix describes the relation between the par
eters of the unitary transformation that relates the Hami
nians in the interaction and Schro¨dinger representations.

2. INITIAL AND EFFECTIVE HAMILTONIANS OF THE
PROBLEM

The full Hamiltonian of the system, which includes a
impurity atom, an atom of the PBG crystal, and a photo
thermostat, is written in the form

H5H im1HPBG1H th1Vim–PBG1Vim1VPBG, ~2a!

whereH in , HPBG, andH th are the Hamiltonians of the sepa
rate components of the system under consideration, res
tively, the termsVim andVPBG describe interaction betwee
the photonic thermostat on one side, and the impurity
PBG crystal atoms, respectively, on the other, wher
Vim–PBG determines the dipole–dipole interaction betwe
the atoms. It is convenient to use the one-dimensional
proximation for the photonic heat reservoir and express
components of the full Hamiltonian as follows:

H im5(
a

Ea
imaa

1aa , HPBG5(
b

Eb
PBGbb

1bb ,

H th5(
l
E dv \vclv

1 clv ,

Vim52 i\ ( E dv K~v!~elv•daa8
im

!aa
1aa8clv1H.c.,

VPBG52 i\ ( E dv K~v!~elv•dbb8
PBG

!bb
1bb8clv1H.c.,

Vim–PBG5(
aa8
bb8

Uab,a8b8aa
1aa8bb

1bb8
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Ua,b,a8b85~~daa8
im

•dbb8
PBG

!l 223~daa8
im

• l!~dbb8
PBG

• l!!l 25. ~2b!

Here the superscripts im and PBG label parameters that c
acterize the impurity atom and the PBG crystal atom, resp
tively. For example,Ea

im is the energy of an isolated impurit
atom in the state of rest characterized by quantum num
a. The creation and annihilation operators for the impur
atom in a state with energyEa

im are denoted byaa
1 andaa ,

whereas the similar operators for the PBG crystal atom
bb

1 and bb . The creation and annihilation operators of
photon with frequencyv and polarization vectorelv are de-
noted byclv

1 andclv . The central frequency of the photon
heat reservoir is denoted byV. Assume that creation an
annihilation operators satisfy the Bose commutation ru
As regards the atomic operators, this is a matter of con
nience, because the final results are the same as those fo
Fermi commutation rules. Further,d is the operator of the
atomic dipole moment, andl is the separation between th
impurity atom and the nearest atom of the photonic h
reservoir. The coupling constantK(v) is proportional to the
density of photon statesg(v):K(v)5A2pv/\g(v).

An important point is that, in contrast with the prev
ously reported studies,12–14,16–27the excited level of the im-
purity atomEb

im , which coincides with the band gap of th
photonic density of states, is set at a considerable dista
from the gap edge, so that the corresponding detuningDg

im is
markedly larger than the frequency shift of the transiti
under consideration due to interaction with gap-edge p
tons. In this case, the effect of the localized photon12,13 on
the impurity atom can be disregarded, and the relaxa
mechanisms discussed in the earlier publications12–14,16–27

are inessential. The separationl between the impurity atom
and the PBG crystal atom is assumed to be much shorter
the characteristic wavelength, then the dipole–dipole c
pling of the atoms of different sorts is determined by t
longitudinal electromagnetic field and little affected by t
gap in the density of states of transverse electromagn
field. This is another feature distinguishing the situation u
der discussion from the resonant dipole–dipole interact
between identical atoms, whose efficiency depends on
smallness ofDg

im , i.e., the proximity of the excited impurity
level to the band-gap edge in the density of phot
states.12,13,20–22Finally, in the interaction operatorsVim and
VPBG, whose shape is similar to that of the operator of re
nant dipole–dipole interaction, the central frequencyV of
the optical field differs from that of the impurity transition b
the frequency of the two-photon transition in the PBG crys
atom and is far from the band-gap edge in the photonic d
sity of states, so that the photonic ensemble can be treate
a broad-band heat reservoir. This approach is different fr
that suggested by John and Wang,13 where the frequencies o
photons re-emitted by impurity atoms are close to the b
gap edge, and the proximity between frequencyV and the
impurity transition frequency is important~Dg

im should be
small!. The resonant condition~1! for V relates transition
frequencies in atoms of different species and does not
pose a limitation on the position ofV with respect to the
band-gap edge. Thus, the conditions discussed in this p
are, in a sense, opposite to those introduced in the ea
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studies,12,13,20–22so that the relaxation mechanisms asso
ated with the localization photon, ‘‘dressing’’ of the impurit
atom by the localized photon field,12,13 and the respective
terms in Hamiltonian~2! can be neglected.

Let us consider the Schro¨dinger equation of the system

i\
]

]t
uC&5HuC&.

Following the conventional technique applied to reson
processes,30 let us introduce, using the unitary operatore2 iS,

the new state vectoruC̃&5e2 iSuC&, which follows the equa-
tion

i\
]

]t
uC̃&5H̃uC̃&

with the Hamiltonian

H̃5e2 iSHeiS2 i\e2 iS
]

]t
eiS. ~3!

The unitary property of the transformation means that
observable quantities in the problem remain unchanged.
us determine a transformation that would clearly empha
the dominant role of resonant processes@condition~1!# in the
nondiagonal matrix elements of the Hamiltonian. To th
end, let us expressS andH̃ as series in powers of constan
that couple the atoms to the electric field of the photonic h
reservoir and to one another:

S5S(10)1S(01)1S(11)1...,

H̃5H̃ (00)1H̃ (10)1H̃ (01)1H̃ (11)1..., ~4!

where the integersm andn in each pair of the indices denot
themth order in the coupling constant between the atom
the field ~the first index! and thenth order in the coupling
constant between the atoms~the second index!. We have30

H̃ (00)5H im1HPBG1H th ,

H̃ (10)5Vim1VPBG2 i @S(10),H̃ (00)#1\
]

]t
S(10),

H̃ (01)5Vim–PBG2 i @S(01),H̃ (00)#1\
]

]t
S(01),

H̃ (11)52
i

2
@S(01),Vim1VPBG#2

i

2
@S(10),Vim–PBG#

2
i

2
@S(01),H̃ (10)#2

i

2
@S(10),H̃ (01)#

2 i @S(11),H̃ (00)#1\
]

]t
S(11),

H̃ (20)52
i

2
@S(10),Vim1VPBG#2

i

2
@S(10),H̃ (10)#

2 i @S(20),H̃ (00)#1\
]

]t
S(20),
i-

t

ll
et
e

at

d

H̃ (02)52
i

2
@S(01),Vim–PBG#2

i

2
@S(01),H̃ (01)#

2 i @S(02),H̃ (00)#1\
]

]t
S(02). ~5!

Hereafter the brackets denote the commutator of two op
tors: @A,B#5AB2BA.

Since only resonant processes involving photons of
electromagnetic field and atomic excitations are efficient,
should setH̃ (10)5H̃ (01)50; hence we derive expressions f
S(10) and S(01) under the condition that the electromagne
field is turned on adiabatically:

S(10)5(
aa8
bb8

l

E dv K~v!H ~elv•dbb8
PBG

!bb
1bb8

vbb8
PBG

2v

1
~elv•daa8

im
!aa

1aa8

vaa8
im

2v J clv1H.c.,

S(01)5 i\21 (
aa8
bb8

Uab,a8b8

vbb8
PBG

1vaa8
im aa

1aa8bb
1bb8 ,

vaa8
im

5~Ea
im2Ea8

im
!/\, vbb8

PBG
5~Eb

PBG2Eb8
PBG

!/\ ~6!

~note that the interaction representation is more conven
for specific calculations~see Appendix!!. Let us retain in
H̃ (11), in addition to the diagonal elements, only the term
responsible for the resonant processes@Eq. ~1!# and the ap-
proximation of a rotating wave. The other terms determ
operatorsS(11), S(20), etc., and they are inessential for th
further consideration. Their expressions only confirm that
selected approach is self-consistent, because these term
not have resonant denominators. This procedure is f
identical to that described in earlier publications.30,35 As a
result, the effective Hamiltonian can be expressed in
form

Heff5H im1HPBG1H th1H̃ (11)1H̃ (02), ~7!

H̃ (11)5 i\ (
l
E dv K~v!R1clv1H.c., ~8a!

R15hl~ l !ab
1aabA

1bC ,

hl~ l !5(
b

H UbA,ab~elv•dbC
PBG!

\~vbA
PBG2vba

im!
1

~elv•dAb
PBG!Ubb,aC

\~vbC
PBG1vba

im! J ,

~8b!

H̃ (02)5(
ab

uab~ l !aa
1aabb

1bb ,

uab~ l !5 (
a8b8

Uab,a8b8Ua8b8,ab

\~vaa8
im

1vbb8
PBG

!
. ~9!

In deriving Eq.~8b!, we have used the resonant condition~1!
for the process under consideration and set in the interm
ate formulasvbA

PBG1v'vbC
PBG1vba

im and vbC
PBG2v'vbA

PBG

2vba
im .
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The termH̃ (02) describes the broadening and shift of t
impurity atom levels due to collisions. Wherever possible
will be either neglected or expressed in the simplest form

The termH̃ (11) determines the mechanism of radiati
relaxation under consideration. Here the main paramete
hl( l ), because it depends on the separationl between the
atoms and on the configuration of energy levels of PBG cr
tal atoms. A felicitous selection of atoms in the model can
principle, lead to considerably higherhl( l ), which is indi-
cated by the denominators in the components ofhl( l ). The
dipole moments corresponding to transitions from the lev
EA

PBG andEC
PBG to other levels are also large, especially tho

minimizing the denominators mentioned above. The spo
neous radiation relaxation rates can be calculated by stan
rules with the help of Eq.~8b!. A more important task, how
ever, is derivation of the kinetic equation for the impuri
atom, because versatile problems of the quantum optics
be solved on the basis of this equation. The radiative p
cesses under consideration determine the relaxation ope
in the kinetic equation and polarization of the PBG crysta

3. ITO EQUATION AND RELAXATION OPERATOR

Assume that the photonic thermostat in our system
described by conventional equations34–36

^cl
1~ t !cl8~ t8!&5Nphdll8d~ t2t8!,

^cl~ t !cl8
1

~ t8!&5~11Nph!dll8d~ t2t8!,

^cl
1~ t !cl8

1
~ t8!&5^cl~ t !cl8~ t8!&50,

cl~ t !5
1

A2p
E dv exp@2 iv~ t2t0!#clv , ~10!

whereNph is the density of thermostat photons,t0 is a certain
initial moment of time with respect to which the photon
operatorsclv andclv

1 are determined. The main assumpti
of this approximation is that the coupling constant does
depend on the frequency, but is equated to its value at
central frequencyV of the photonic thermostat:

K~v!5K~V!5Ak/2p. ~11!

This assumption is known as Markov’s approximation.34

Let us write the Heisenberg equation for a certain ope
tor A characterizing the complex of the impurity atom a
the neighboring atom of the PBG crystal:

Ȧ52
i

\
@A,H im1V1HPBG1H̃ (02)#

1Ak@A,R1#c~ t !2Ak@A,R1
1#c1~ t !. ~12!

Here we have assumed that~1! operators of the photonic hea
reservoir change with time as operators of a noninterac
system;~2! the Markovian approximation applies;~3! polar-
ization effects can be neglected. In order to enable furt
application of the kinetic equation to the nonlinear optics
the impurity atoms in PBG crystal, we have added the
t
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-
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e
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erator V, which takes account of various possible intera
tions of the impurity atoms, e.g., with the external coher
fields, to the impurity atom operator.

Further, let us introduce Wiener’s quantum-mechani
process:34

B~ t,t0!5E
t0

t

dt8c~ t8!, @B~ t,t0!,B1~ t,t0!#5t2t0 ,

and the Ito conventional integration and differentiation rul
In order to keep some elements of notation used in the
vious studies,35,36 the same letter is used in the notation
Wiener’s process. After standard transformations,34–36 we
obtain the Ito quantum-mechanical equation in the form

dA52
i

\
@A,H im1V1HPBG1H̃ (02)#dt

1Ak@A,R1#dB~ t !2Ak@A,R1
1#dB1~ t !

1
k

2
$~11Nph!~R1@A,R1

1#1@R1 ,A#R1
1!

1Nph~R1
1@A,R1#1@R1

1 ,A#R1!%dt, ~13!

where the Ito increments obey the algebra

dB1~ t !dB~ t !5Nphdt, dB~ t !dB1~ t !5~11Nph!dt,

dB~ t !dB~ t !5dB1~ t !dB1~ t !5dB~ t !dt5dt dB~ t !

5dB1~ t !dt5dt dB1~ t !5dt dt50

and, instead of the Leibnitz rule, the Ito rule for differenti
tion of products applies:

d~A1A2!5~dA1!A21A1dA21~dA1!~dA2!.

Further manipulations with nonanticipating operators
front of the Ito increments lead to an equation for the tw
particle density operator for a group consisting of the imp
rity atom and the neighboring PBG crystal atom:

d

dt
`1Î`5

i

\
@`,H im1V1HPBG1H̃ (02)# ~14!

with the relaxation operator of the form

Î`52
k

2
~11Nph!~2R1

1`R12`R1R1
12R1R1

1` !

2
k

2
Nph~2R1`R1

12`R1
1R12R1

1R1` !. ~15!

The kinetic equation for the density operatorr for the
impurity atom is derived from Eq.~15! by calculating the
trace with respect to the variables of the PBG crystal ato

d

dt
r1Ĝr5

i

\
@r,H̄ im1V#, ~16!
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Ĝr52
k

2
~11Nph!TrPBG~2R1

1r ^ r0
PBGR12r

^ r0
PBGR1R1

12R1R1
1r ^ r0

PBG!

2
k

2
NphTrPBG~2R1r ^ r0

PBGR1
12r ^ r0

PBGR1
1R1

2R1
1R1r ^ r0

PBG!. ~17!

Herer0
PBG is the density operator for the PBG crystal atom

in the neighborhood of the impurity atom. This density o
erator is determined at the initial moment and describes
equilibrium distribution of these atoms over their energ
and a certain distribution of these atoms over the dista
from the impurity atom. In the case where a more detai
analysis, which takes into account the polarization proper
and degeneracy of atomic states, is needed, the operatorr0

PBG

includes a distribution over mutual alignments of the imp
rity and PBG crystal atoms. The trace in Eq.~17! is calcu-
lated over the variables of PBG crystal atoms surround
the impurity atom.

The HamiltonianH̄ im of impurity atoms takes into ac
count the shifts of atomic levels due to interaction with PB
crystal atoms. This interaction results in a spread of the
quency of theEb

im→Ea
im transition around a certain centr

frequency. This spread is ignored in what follows.
The matrix elements of the relaxation operator for t

energy levels of the impurity atom the frequency of the tra
sition between which coincides with the gap in the photo
density of states are given by the formulas

~ Ĝr!ba5H k

2
~11Nph!uh~ l !uA

21
k

2
Nphuh~ l !uC

2 J rba ,

~ Ĝr!aa52k~11Nph!uh~ l !uA
2rbb1kNphuh~ l !uC

2 raa ,

~ Ĝr!bb5k~11Nph!uh~ l !uA
2rbb2kNphuh~ l !uC

2 raa . ~18!

Here uh( l )u2 denotes the square of the radiative interatom
interaction parameter averaged over the interatomic
tances:

uh~ l !uA
25^Auuh~ l !u2r0

PBGuA&,

uh~ l !uC
2 5^Cuuh~ l !u2r0

PBGuC&.

The index denoting the dependence of the basic param
h( l ) on the polarization of emitted photons is omitted b
cause we have ignored polarization effects. The ket-vec
uA& and uC& denote states with energiesEA

PBG andEC
PBG.

The structure of the relaxation operator defined by E
~18! reflects the obvious fact that, if a PBG crystal atom is
the excited state (^Cur0

PBGuC&Þ0), then, concurrently with
the process described above, there is a reciprocal proce
which a photon from the heat reservoir is absorbed, the P
crystal atom transfers to its ground stateEA

PBG, and the im-
purity atom is driven to the excited state.

The coefficients in front of the matrix elements in E
~18! are determined by the probabilityg im that the excited
impurity atom spontaneously emits a photon in accorda
with the suggested mechanism:
-
e

s
e

d
s

-

g

-

-
c

c
s-

ter
-
rs

.

in
G

e

g im5kuh~ l !uA
2. ~19!

Here the photonic heat reservoir is assumed to be em
(Nph50), and PBG crystal atoms are assumed to be in
ground state (̂Cur0

PBGuC&50).

4. POLARIZATION OF PBG CRYSTAL

Let us discuss the effect of the suggested mechanism
spontaneous radiation relaxation on the polarization of
PBG crystal. We assume for convenience that the ato
transitionsEb

im→Ea
im andEC

PBG→EA
PBG are driven in a coher-

ent manner, i.e., the nondiagonal elements of the corresp
ing density matrices are nonzero:

rba5rba
in exp@ i ~k•r2vba

imt2w im!#,

rCA5rCA
in exp@ i ~K•r2vCA

PBGt2wPBG!#, ~20!

whererbd
in andrCA

in are the density matrices at a certain m
ment of timet in , k andK are the wave vectors, andw im and
wPBG are constant phases. We assume that, when a ce
level of excitation is achieved at the timet>t im , external
fields neither act on the PBG crystal nor propagate thro
it.

The Eb
im→Ea

im transition of the impurity atoms can b
excited by the three-photon resonant interaction with
pulsed coherent wave of a carrier frequencyvba

im/3 if this
frequency is outside the band gap in the photonic density
states. Similarly, theEC

PBG→EA
PBG transition can be excited

in a coherent manner through the two-photon interact
with a coherent wave with the carrier frequencyvCA

PBG/2,
which is also outside the band gap. Anyway, utilization
multi-photon interactions with coherent waves of differe
frequencies, however, allows us to circumvent the difficu
associated with the coincidence between the photonic b
gap and the frequencies of pumping optical waves. Here
do not discuss details of these coherent processes. Note
that our analysis is limited to the model in which such c
herent processes have little effect on the assumed phot
density of states in the PBG crystal, and the pulsed envelo
of the coherent pumping waves are necessary to rule
alternative multiphoton processes that develop in PBG c
tals when radiative relaxation through the main channel
forbidden because of the presence of the band gap in
photonic density of states.

PolarizationP of the PBG crystal due to the mechanis
of spontaneous radiative relaxation and optical coherenc
the states of impurity atoms and their environment@Eq. ~20!#
is determined by the general formula

P5Tr~`~dim1dPBG!!.

Using a unitary transformation, we can rewrite this expr
sion in the form

P5Tr~e2 iS`eiS~e2 iSdimeiS1e2 iSdPBGeiS!!

'Tr~r ^ rPBG~dim2 i @S,dim#2 i @S,dPBG#1¯ !!

'Tr~r ^ rPBG~dim1dPBG2 i @S(01),dim#

2 i @S(01),dPBG# !!. ~21!
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It is clear that, in addition to the usual polarization
impurity atoms in the PBG crystal, they are also polarized
the combined frequenciesvba

im2vCA
PBG(P(2)) and vba

im

1vCA
PBG(P(1)):

P(2)52\21rbarCA
PBG* (

b
S UaC,bbdbA

PBG

vbC
PBG1vba

im

1
dCb

PBGUab,bA

vbA
PBG2vba

im D 1c.c., ~22!

P(1)52\21rbarCA
PBG (

b
S UaA,bbdbC

PBG

vbA
PBG1vba

im

1
dAb

PBGUab,bC

vbC
PBG2vba

im D 1c.c. . ~23!

Hereafter we again disregard the polarization effects and
not include in an explicit form averaging over interatom
distance. Then Eq.~22! can be written in a more compac
form using the notation~8b!:

P(2)52rbarCA
PBG*h* ~ l !1c.c. .

Since the frequencyvba
im2vCA

PBG[V is assumed to be
outside the band gap in the photonic density of states, a
interaction with the coherent optical waves in the time int
val t>t in , a coherent wave due to coherent matrix eleme
~20! propagates through the PBG crystal, whose electric fi
is given by the equation

Eind
(2)5E (2)~ t2x/c!

3exp$ i @~k2K !•r2Vt2w im1wPBG#%1c.c.,
~24!

E (2)~ t !522p ixLrba
in rCA

in*h* ~ l !

3exp@2~g im1gPBG!~ t2t in!/2#.

The propagation of the induced wave is determined by
condition of spatial synchronismuk2K u25V2/c2, wherec
is the phase velocity of the wave with carrier frequencyV in
the PBG crystal. Thex-axis is aligned with the propagatio
direction of the induced wave, andL is the dimension~in the
x-direction! of the region where the optical coherence d
scribed by Eq.~20! is generated.

It is clear that the amplitude of the induced wave
controlled by the parameterh( l ), which determines the rat
of the spontaneous radiation relaxation by the mechan
under discussion.

The damping of the induced wave described by Eq.~24!
depends on both the relaxation matrix of the optical coh
ence of the impurity atom by the mechanism under con
eration (g im) and the relaxation of the two-photonEC

PBG

→EA
PBG transition~with the rategPBG). If there are no levels

betweenEC
PBG andEA

PBG to which optical transitions from the
level EC

PBG are allowed, and if the other relaxation process
can be ignored,gPBG;g im , the decay rate of the induce
wave allows us to estimate the time of spontaneous radia
by the suggested mechanism.

If there are other levels betweenEC
PBG andEA

PBG to which
optical transitions from levelEC

PBG are allowed at a fre-
t

o

er
-
ts
ld

e

-

m

r-
-

s

n

quency outside all band gaps in the photonic density
states, we havegPBG@g im , and the decay of the induce
wave is not controlled by the mechanism of spontane
radiation suggested in this paper.

5. CONCLUSIONS

In this paper, we have discussed an important exam
of a multiphoton process which has become feasible du
the progress in modern techniques of fabrication of photo
band-gap materials, in which conventional one-photon p
cesses are suppressed because of the presence of ban
in the density of photon states. In contrast to the mechan
of the two-photon~quadrupole! relaxation of an impurity
atom, which was suggested by John and Wang,12,13 the two-
photon mechanism of spontaneous relaxation describe
this paper incorporates interaction between two atoms, s
is essentially different from the previous one.12,13 Its effi-
ciency essentially depends on the mean separation betw
an impurity atom and its nearest neighbor from the PB
crystal atoms~in this respect, the efficiency of the suggest
mechanism is not lower than that of the quadrupole mec
nism! and the configuration of energy levels of the atoms
PBG crystal. The most favorable, for the processes un
discussion is when the PBG crystal atom has a levelEb

PBG

.EC
PBG such that the denominatorvbA

PBG2vba
im in the expres-

sion for the basic parameterh( l ) is minimal, so that this
parameter increases sharply. A high polarizability of PB
crystal atoms~large dipole momentsdbC

PBG anddbA
PBG! is also

favorable for the mechanism of radiative relaxation und
discussion.

An increase in the spontaneous relaxation rate of an
purity atom should also take place when not one, but a se
levelsEC1

PBG, EC2
PBG,... of PBGcrystal atoms, to which two-

photon transitions from theEA
PBG level are allowed, satisfy

condition ~1! with different frequenciesV of emitted pho-
tons:

Eb
im2Ea

im'EC j
PBG2EA

PBG1\V j , j 51,2,...

If the frequenciesV j , where j 51,2,...,M , are outside the
band gap in the photonic density of states, and the dif
encesuV j2V j 8u are larger than the widths of the corre
sponding spectral lines of both PBG crystal and impur
atoms, then, according to Lax,37 the frequenciesV j can be
treated as central frequencies of decoupled photonic heat
ervoirs, which can be labeled by the same subscr
j 51,2,...,M . Then the matrix elements of the relaxation o
erator~18! and the rate of spontaneous relaxation~19! of an
excited impurity atom can then be expressed as

~ Ĝr!ba5rba (
j 51

M H k j

2
~11Nph j !uhj~ l !uA

2

1
k j

2
Nph j uhj~ l !uC j

2 J ,
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~ Ĝr!aa52rbb (
j 51

M

k j~11Nph j !uhj~ l !uA
2

1raa (
j 51

M

k jNph j uhj~ l !uC j
2 ,

~ Ĝr!bb5rbb (
j 51

M

k j~11Nph j !uhj~ l !uA
2

2raa (
j 51

M

k jNph j uhj~ l !uC j
2 ,

g im5(
j 51

M

k j uhj~ l !uA
2,

where the parameters labeled byj derive from similar pa-
rameters considered above as a result of an obvious ge
alization. The case whereVs'(Eb

im2Ea
im)/\ and the transi-

tion frequency (Eb
im2Ea

im)/\ of the impurity atom is close to
an edge of the photonic band gap deserve a special treatm

Note once again that the aim of the reported study wa
demonstrate what novel quantum-mechanical mechan
can be realized in photonic band-gap crystals. We have
aside the issue of the effect of these processes on the de
of photon states and neglected all collective effects that
be associated with this dependence. The objects treate
our analysis~an impurity atom and its closest neighbor fro
PBG crystal atoms! were considered in isolation from th
PBG crystal. This approximation, however, has allowed u
give a clear description of the suggested mechanism of s
taneous radiation relaxation and generation of polarizatio
the PBG crystal.

In this paper, we have not discussed the processes l
ing to the optical coherence described by Eq.~20!. The point
is that the features of PBG crystals also determine the
cific properties of the three-photon excitation of impur
atoms. In this case, the dominant relaxation mechanism i
alternative two-photon process studied in the earlier wor35

The nonlinear optics of impurity atoms in PBG crystals u
der three-photon excitation deserves a dedicated inves
tion. In this context, the results concerning coherent con
of PBG crystals should be revised.

This work was part of a project sponsored by the R
sian Fund for Fundamental Research~Grant 98-02-17429!.

I wish to express my gratitude to V. P. Yakovlev an
A. I. Maimistov for illuminating discussions.

APPENDIX

Let us determine the relations between the Hermit
operators which determine the unitary transformation of
Hamiltonian leading to the effective Hamiltonian in the i
teraction and Schro¨dinger representations. In the represen
tion of interaction, we have
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uC̄&5expS 2
iH 0t

\ D uC&, i\
]

]t
uC̄&5H̄uC̄&,

H̄5expS iH 0t

\ D ~Vim–PBG1Vim1VPBG!

3expS 2
iH 0t

\ D5V̄im–PBG1V̄im1V̄PBG,

H05H im1HPBG1H th .

If the Hamiltonian in the interaction representation
subjected to a unitary transformation with a view to sepa
ing the effective Hamiltonian:

uC̃˙ &5e2 iQuC̄&, i\
]

]t
uC̃˙ 5 H̃̄uC̃˙ &,

H̃̄5e2 iQ~V̄im–PBG1V̄im1V̄PBG!eiS2 i\e2 iQ
]

]t
eiQ,

and the conventional expansion in powers of the coupl
constant is performed:

Q5Q(10)1Q(01)1Q(11)1¯, H̃̄5H̄
˜ (10)1 H̃̄ (01)1H̄

˜ (11)1¯

using the obvious formulas

H̃̄ (10)5V̄im1V̄PBG1\
]

]t
Q(10),

H̃̄ (01)5V̄im–PBG1\
]

]t
Q(01),

H̃̄ (11)52
i

2
@Q(01),V̄im1V̄PBG#2

i

2
@Q(10),V̄im–PBG#

2
i

2
@Q(01),H̃̄ (10)#2

i

2
@Q(10),H̃̄ (01)#1\

]

]t
Q(11),

H̃̄ (20)52
i

2
@Q(10),V̄im1V̄PBG#2

i

2
@Q(10),H̃̄ (10)#

1\
]

]t
Q(20),

H̃̄ (02)52
i

2
@Q(01),V̄im–PBG#2

i

2
@Q(01),H̃̄ (01)#

1\
]

]t
Q(02),...,

then, assuming that the equalitiesH̃ (m,n)5exp

(2iH0t/\)H̃̄(m,n)exp(iH0 t/\) and H̃ (0,0)5H0 hold, we obtain
by comparing with Eq.~5! ~or through direct calculation! an
important simple relation

Q(m,n)5exp~ iH 0t/\!S(m,n)exp~2 iH 0t/\!,

which allows us to obtain the effective Hamiltonian and t
corresponding unitary transformation in the Schro¨dinger rep-
resentation using the interaction representation.
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Generation of sub-Poissonian light by a four-level microlaser with a high- Q cavity
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We develop a kinetic theory that describes the behavior of a monatomic four-level laser when
the atom is fixed inside a high-Q optical cavity. Such a statement of the problem is
similar to that used in the experiment of G. M. Meyer, H.-J. Briegel, and H. Walther@Europhys.
Lett. 37, 317 ~1997!#. The condition that the number of photons is large and the photon
fluctuations are small is employed. We show that by selecting the parameters of the periodic
electromagnetic pulses exciting the atom one can achieve regular pumping of the upper laser level
and generate sub-Poissonian laser light. We also discuss the reasons why the statistical
pattern of the radiation differs from the micromaser pattern with regular injection of atoms.
© 1999 American Institute of Physics.@S1063-7761~99!00908-7#
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1. INTRODUCTION

The term ‘‘microlaser’’ is usually used in connectio
with systems in which a small number of atoms~or even one
atom! interact with the laser mode. There are two ways
ensure the effectiveness of this interaction. First, by fixin
small number of active atoms in one way or another~say, by
using an atomic or ionic trap! in an optical cavity and excit-
ing them by an external electromagnetic field. Second,
using atomic fluxes with low concentrations of atoms as
active medium. Both approaches were realized in exp
ments conducted by Walther and co-workers.1,2 Since the
problem ceased to be purely speculative, it requires thoro
physical substantiation and detailed theoretical study.

All attempts to explain the behavior of microlasers~mi-
cromasers! by well-known theories have met with forma
difficulties.3–5 This, for instance, was well illustrated by B
iegel and Englert,6 who found that generalizations may lea
to such difficulties as, say, the appearance of negative d
onal elements in the density matrix of the lasing field. This
to be expected, however, since an important requirem
used in deriving the kinetic equations in these papers
that the number of atoms participating in lasing be lar
Indeed, there, at a certain stage, the field matrix acquire
increment over a long time intervalDt ~the minimum dura-
tion required by the theoretical analysis! owing to the inter-
action between the laser mode and the atoms excited to
laser state in the same interval. Then the contribution to
increment of the atoms excited outside the interval was
nored, which is physically justified only if there are man
2581063-7761/99/89(8)/9/$15.00
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excited atoms in the time intervalDt and they are distributed
along the time axis more or less uniformly. Note that t
cited papers deal with a large numbers of different ato
~rather than with a single atom excited many times!, since
the object under investigation was a two-level system and
excitation involved atoms from an external source. But w
will happen if there is only one atom~or a small number of
atoms! and we must allow not only for two laser levels b
also for auxiliary levels from which the atom goes to t
laser states and to which it later returns? Proper theore
analysis can answer this question.

A possible approach to this problem was developed
Ref. 7 for micromasers. The researchers used a new me
which, we believe, may be especially useful for microlasi
involving a small number of photons. In the present paper
assume, in describing a microlaser, that the cavity has a
Q-factor and that there is a substantial buildup of photo
during steady-state lasing in the laser mode. This make
possible to use the approximation of small photon fluct
tions, so that employing the common method of the kine
equation for the density matrix of the lasing field appears
be the optimum approach.

One reason for our investigation is that we believe tha
present there is no theory of a microlaser. Another reaso
that a microlaser with pulsed pumping may prove to be
promising source of sub-Poissonian light. The reader w
recall that the greatest achievements in this area of quan
electronics were made with a semiconductor laser.8 How-
ever, the experimental difficulties associated with the use
© 1999 American Institute of Physics
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solid-state lasers are well known, so that other avenue
research that may prove promising must be investigated
building the theory of a microlaser, we begin with the situ
tion that was realized in the experiments described in Re
The researchers localized, via an ionic trap, a Ca1 ion inside
an optical cavity. Excitation was done by an external el
tromagnetic field. The Ca1 ion can effectively by repre-
sented by a four-level ‘‘atom.’’ Our theory adopts all the
assumptions, but we also assume that the excitation
pulsed, which makes to possible, by varying the pulse
rameters, to realize different types of excitation of the act
medium, from completely stochastic~Poissonian! to regular.

The physical situation discussed in this paper is sim
to the one presented in Ref. 4: the object of investigation
the same, a four-level atom, and it is assumed that a powe
and short pulse of electromagnetic radiation excites the a
~or all the atoms! from the ground state through the upp
state to the intermediate state, which is the upper laser s
However, the mathematic tools used in Ref. 4 and in
present paper are different. Here we examine the atom
truly four-level atom, with not only the lasing field bein
incorporated into the picture but also the pump field. T
allows us to meaningfully discuss the problem for any nu
ber of atoms, since any degree of excitation of the grou
state can be taken into account.

At the same time, the four-level atom was needed in R
4 only to justify the concept of regular excitation of th
medium. After the regularity of pumping had been fully e
tablished, the two-level atom was taken as the base for
culations. Of course, it is well known that a four-level ato
can be effectively reduced to a two-level atom with const
pumping to the upper laser level, but for this to be true
must assume that we can ignore the variations in the po
lation of the ground state. It is clear from general consid
ations~and this is shown below! that in this case the excita
tion of the laser level can only be stochastic in nature.
ensure regularity we must require that all the atoms~or a
single atom if there is only one atom, but with a probabil
equal to unity! simultaneously leave the ground state beca
of the pump pulse acting on them. And there is no way
which this situation can be reduced to that of a two-le
atom under constant pumping.

2. A PHYSICAL MODEL OF A LASER

We assume that a single four-level atom is in a trap
the intersection of the axes of two optical cavities~Fig. 1!.

FIG. 1. The schematic of a thought experiment in which1 is the ionic trap,
2 is the microlaser,3 is the exciting pulsed laser, and4 is the direction in
which the laser light travels to a photodetector.
of
In
-
2.

-

is
-

e

r
is
ful
m

te.
e

a

s
-
d

f.

-
l-

t
e
u-
r-

o

e
n
l

t

One of the cavities belongs to the microlaser being stud
and the other is the cavity of an auxiliary pulsed laser u
the excite the atom.

The level diagram of the atom is depicted in Fig. 2. T
pulsed pump radiation with a Rabi frequencyVp is in reso-
nance with the atomic transition 0–3. Together with spon
neous emission in the 3–2 transition that takes place wi
rateg3 , the pumping ensures that the upper laser level 2
populated. When the threshold is reached, this ensures la
in the 2–1 transition with the Rabi frequencyV. Finally,
spontaneous emission with a rateg1 again brings the atom to
the ground state 0.

To simplify the situation mathematically, we adopt ce
tain relationships that link the characteristic temporal para
eters of our problem. First we require thattp , the time it
takes the pump pulse to transfer the atom from the gro
state to the upper laser state, be the shortest time in
problem. Later we will show that this time obeys the formu

tp5
g3

4Vp
2 . ~1!

We also assume that the longest characteristic time inte
is the lifetime of the laser mode,̧21. It is this requirement
that will enable us to set up the master equation for
density matrix of the lasing field.

The other characteristic times areTp ~the length of the
pump pulse!, T ~the pulsed pumping period; see Fig. 3!, V21

~the Rabi period of lasing!, andg1
21 ~the time of spontaneou

relaxation of the lower laser state!.
Interacting with the external pulsed pump field and t

vacuum fields that ensure spontaneous emission, the a
leaves~at a certain time! the ground state 0 and returns

FIG. 2. Energy level diagram of the atom:Vp is the pump Rabi frequency
andV is the Rabi frequency of the output laser radiation.

FIG. 3. The temporal pump pulse pattern:Tp is the length of the pulse,T is
the pulsed pump period, andtk5t01kT, wherek50,61,62,... .
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that state after a characteristic time has elapsed. We req
here that this characteristic time be much shorter than
pump periodT. This, in particular, means that immediate
before the arrival of the next pump pulse the atom is sure
be in the ground state. At the same time, a requirement
plays an important role in the kinetic theory considered
that the evolution of the field in the cavity be much slow
than the evolution of the atomic system. This means that
constantk21 must be much larger than all the characteris
atomic constants. More than that, to guarantee steady-
lasing under pulsed pumping, we require that

T!k21. ~2!

If we also require that the pump pulse lengthTp and the
characteristic timetp that it takes the upper laser level
become populated due to the pump pulse be shorter than
Rabi periodV21 of lasing,

Tp ,tp!V21, ~3!

then in the course of these time intervals we can ignore
evolution of the atomic states related to the laser field. At
same time, for our specific purposes of sub-Poissonian
ing, we will assume that the laser field saturates the ato
transition and hence

V21!g1
21 . ~4!

Collecting all these requirements, we arrive at the followi
inequalities:

Tp ,tp!V21!g1
21!T!k21. ~5!

3. THE MASTER KINETIC EQUATION

According to the chosen physical conditions expres
by the inequalities~5!, the evolution of the atomic variable
proceeds much faster than that of the field. As noted ear
this is achieved by selecting a high-Q optical cavity. Under
these conditions the kinetic approximation is valid and,
least in principle, we can write the equation for the dens
matrix r of the lasing field. In general this equation can
written

ṙ5~ L̂1kR̂!r. ~6!

The operatorkR̂ is the damping of a field oscillator with
rate k. In the Glauber representation, which we use in o
theory, there is the well-know relationship

R̂5
]

]u
u, a5Au exp$ iw%. ~7!

Herea is the eigenvalue of the operator of annihilation o
laser photon:

aua&5aua&, @a,a†#51. ~8!

The operatorL̂ determines the laser evolution related to t
interaction of the laser oscillator with the active medium, i.
the single atom in our case. Strictly speaking, in steady-s
lasing, i.e., after all transient processes have ceased, thi
erator is a periodic function of time:L̂(t)5L̂(t1T). Since
ire
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we agreed that the pump pulse is very short, we can ign
all evolution of the field at these moments and write

L̂5(
k

m~ t2tk!Ŝ~ t2tk!, ~9!

where tk and tk1Tp (k5...,0,1,2,...) is thebeginning and
end of thekth pump pulse~Fig. 3!, and the functionm is
defined as

m~ t !5H 1 if Tp,t,T,

0 otherwise.
~10!

We study the physical situation involving many las
photons and ignore all field variations that occur during
pump period, since only one photon is added to the fi
during that time. This allows us to write

r̄5
1

T E
t2T/2

t1T/2

r~ t8!dt85r~ t !. ~11!

Thus, after averaging Eq.~6! over the periodT the equation
becomes

ṙ5~SC1kR̂!r, ~12!

since

LC 5
1

T E
t2T/2

t1T/2

L̂~ t8!dt85
1

T E
0

T

Ŝ~ t8!dt85SC . ~13!

Below we construct the operatorSC explicitly.

4. THE EQUATION IN THE GLAUBER REPRESENTATION

What are the formal steps that must be taken to const
the operatorSC? First we must write, using the common a
proach, the starting equation for the density matrixF̂ of the
atom and the quantized lasing field. This equation must
low, among things, for the interaction between the atom a
the pump field and for all important spontaneous relaxati
~see Fig. 2!.

Then we write the equation in the diagonal Glauber re
resentation. As a result, the density matrixF̂, still remaining
an operator in relation to the atomic variables, become
c-number function in relation to the complex-valued amp
tude a of the lasing field~and of the pump field,ap): F̂

5F̂(ap ,a,t).
Next we factorize the density matrix:F̂5ŝr1p̂. Here

ŝ is the density matrix of the atom interacting with th
‘‘classical’’ pump and lasing fields whose amplitudes a
respectively,ap anda, r is the sought matrix of the lasing
field, andp is the term responsible for the atomic–field co
relation. We assume that the atomic matrixŝ obeys a stan-
dard kinetic equation. All this makes it possible to write
complete system of equations for the matricesr and p̂,
which will depend onŝ as a parameter.

The next step amounts to adopting a kinetic approxim
tion with allowance for the fact that atomic motion in ou
conditions is much faster than field motion. More than th
in the approximation of a large number of photons we c
also ignore the periodic dependence associated with
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pulsed pumping of the medium. Using the adiabaticity of
system and ignoring, in the first step, the dependence ofr on
t, we can use the equation forp̂ to obtain the explicit de-
pendence ofp̂ on r. Plugging this adiabatic solution into th
equation forr and averaging the result over the periodT, we
obtain the sought expression forSC .

Now we discuss each step in detail. A master equa
that allows for two fields~a classical and a quantum! and
spontaneous decays can be derived on the basis of very
eral ideas:

Ḟ̂52 i @V̂,F̂#2R̂atF̂. ~14!

The Hamiltonian

V̂5 ig~au1&^2u2a†u2&^1u!1 igp~apu0&^3u2ap* u3&^0u!
~15!

allows for the interaction of the classical pump field with t
amplitudeap and the quantum lasing field represented by
photon operatorsa and a† @Eq. ~8!#. Here u i &^ku are the
standard atomic projectors, and the operatorR̂at ensures
atomic relaxation with ratesg1 andg3 ~see Fig. 2!.

We use the Glauber representation in our theoretical
cussions. Then Eq.~14! can be written

Ḟ̂52 i @V̂0 ,F̂#2R̂atF̂1gD̂F̂. ~16!

Now the first term on the right-hand side describes the in
action of the atom with only ‘‘classical’’ fields, since th
Hamiltonian

V̂05 ig~au1&^2u2a* u2&^1u!1 igp~apu0&^3u2ap* u3&^0u!
~17!

contains the complex-value lasing amplitudea ~anda* ) in-
stead if the photon operatorsa anda†. The term

D̂F̂5
]

]a
u1&^2uF̂1

]

]a*
F̂u2&^1u ~18!

is responsible for the formation of the statistical properties
lasing.

5. FACTORIZATION OF THE DENSITY MATRIX

Let us write the density matrix of the atom and the las
field as follows:

F̂5ŝr1p̂, ~19!

where ŝ is the atomic density matrix, which describes t
behavior of the atom in two ‘‘classical’’ fields with ampli
tudesap anda and allows for real spontaneous relaxation

ṡ̂52 i @V̂0 ,ŝ#2R̂atŝ, ~20!

andr5TratF̂ is the density matrix of the lasing field in th
diagonal representation, which is the result of taking
trace of the total matrix. Since Tratŝ51, we have@according
to ~19!# the following relationship:

Tratp̂50. ~21!

Combining all these formulas with the starting equation~16!
yields
e

n

en-

s

s-

r-

f

,

e

ṙ5g
]

]a
~s21r1p21!1c.c. ~22!

On the right-hand side we have terms of two types: those
are independent ofp̂ and describe semiclassical ‘‘noiseless
development of lasing, and those that are dependent op̂
and are responsible for the statistical aspect of the probl
Separating these terms, we can write Eq.~22! as

ṙ5gD̄r1gS ]

]a
p211

]

]a*
p12D . ~23!

Here D̄5Trat.(Ds) and, with allowance for the definition
~18!,

D̄r5 d̂1

s21

a
r. ~24!

The operatord̂1 is defined as follows:

d̂15
]

]a
a1

]

]a*
a* 52

]

]u
u. ~25!

In writing ~23! we allowed for that fact that in our condition
s21/a5s12/a* .

In the same way as we derived Eq.~23! we can derive an
equation forp̂:

ṗ̂52 i @V̂0 ,p̂#2R̂atp̂1g~D̂2D̄ !ŝr

1g@D̂p̂2Trat~D̂p̂ !ŝ#. ~26!

6. THE ITERATION SERIES FOR THE CORRELATION
MATRIX p̂

To expressp̂ in terms ofr, we must use Eq.~26!. Since
this equation cannot be solved directly, we employ an ite
tion procedure. To this end we assume that the princ
terms in Eq.~26! are those that contain no derivatives wi
respect to the complex-valued amplitudes of the lasing fie
The terms containing such derivatives are small compare
the principal terms. Bearing this smallness in mind, we c
write p̂ in the form of a series in the power of this ‘‘smal
ness’’:

p̂5p̂01p̂11p̂21¯ . ~27!

The zeroth approximationp̂0 obeys the equation

ṗ̂052 i @V̂0 ,p̂0#2Ratp̂0 . ~28!

We can always require that initially there be no correlati
between the atom and the lasing field. But then, in view
the homogeneity of the differential equation~28!, the corre-
lation matrix p̂0(t)50, provided thatp̂0(0)50.

Allowing for all this, we can write the equation for th
first iterationp1 :

ṗ̂152 i @V̂0 ,p̂1#2R̂atp̂11g~D̂2D̄ !sr. ~29!

Similar equations can be obtained for all subsequent ite
tions, and more than that, there are no grounds for igno
them at the given stage. Such ground could arise if we w
certain that we are dealing with classical fields, whose sta
tical properties are described adequately even by phen
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enological Maxwell equations with stochastic sources. In
case, however, among other things, we will attempt to
scribe situations in which the lasing field becomes s
Poissonian. Hence we are forced to retain not only the
iteration, which contains the first derivatives with respect
the complex-valued amplitudes of the lasing field, but a
the iterations of all orders, thus allowing for the derivativ
of all orders with respect to the complex-valued amplitud
Nevertheless, we will show that even for nonclassical fie
the higher-order iterations contribute nothing to the spectr
of photocurrent fluctuations.

Let us analyze Eq.~29!. Allowing for the fact that we are
interested only in solution in the interval between the pul
that excite the active medium,t i1Tp,t,t i1T, since in our
conditions

p ik5(
i

m~ t2t i !p~ t2t i2Tp!, ~30!

we can write Eq.~29! in terms of the matrix elements:

ṗ225g~ap121p21a* !1gS22,

ṗ1152g1p112g~ap121p21a* !1gS11,

ṗ1252
g1

2
p122g~a* p222p11a* !1gS12,

ṗ2152
g1

2
p212g~ap222p11a!1gS21. ~31!

This system must be augmented by the normalization co
tion ~21!:

p001p111p221p3350. ~32!

The inhomogeneous terms

Sik5@~Ds! ik2D̄s ik#r ~33!

can be written explicitly in the form

S0052 d̂1

s00s21

a
r, S115 d̂1

~12s11!s21

a
r, ~34!

S2252 d̂1

s22s21

a
r, S3352 d̂1

s33s21

a
r,

S0352 d̂1

s03s21

a
r, S1252 d̂1

s12s21

a
r1

]

]a
s22r.

~35!

We see that to write the inhomogeneous terms in the fi
form, we must know the explicit expressions for the e
ments of the atomic density matrix,s ik , also in the time
interval between the pump pulses. In Appendix A we fi
these elements, which have the following explicit depe
dence:

s11~ t2t i2Tp!5s0

4V2

v2 sin2Fv2 ~ t2t i2Tp!G
3expF2

g1

2
~ t2t i2Tp!G ,
r
-
-

st
o
o

.
s
m

s

i-

al
-

-

s22~ t2t i2Tp!5s0H 4V2

v2 cos2
v

2
~ t2t i2Tp!

3expF2
g1

2
~ t2t i2Tp!G1

g1

2v

3sinv~ t2t i2Tp!2
g1

2

4v2 cos2 v

3~ t2t i2Tp!J expF2
g1

2
~ t2t i2Tp!G ,

~36!

s12~ t2t i2Tp!52s0

ga*

v Fg1

v
sin2

v

2
~ t2t i2Tp!

1sinv~ t2t i2Tp!G
3expF2

g1

2
~ t2t i2Tp!G .

The quantity

s0[s22~Tp2t i !512expS 2
Tp

tp
D ~37!

is population of the upper laser level by the time the pu
pulse has ceased to act.

We see that the Rabi oscillations have the frequency

v5
g1

2
A11I , I 5

16V2

g1
2 . ~38!

In Appendix B the matrix elementsp ik are calculated explic-
itly under the assumption that the periodic functionr(t) is
ignored. The matrix elementp12 we are interested in has th
form

p125 d̂1

1

a
F1~ t !r1 d̂2

1

a
F2r. ~39!

In addition to the operatord̂1 , we introduce another differ-
ential operator,

d̂25
]

]a
a2

]

]a*
a* 52 i

]

]w
, ~40!

and the notation

F1~ t !5
V

2 H ~12s11!s21

a J ^ H S sinvt2
1

AI
sin2

vt

2 D
3expS 2

g1t

2 D J 1
V

2 H s22s21

a J
^ H S sinvt1

1

AI
sin2

vt

2 D expS 2
g1t

2 D J , ~41!

F2~ t !5
g

2
$s22% ^ H expS 2

g1t

2 D J , ~42!

and define the convolution of two functions:
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$g1~ t !% ^ $g2~ t !%5E
0

t

g1~ t8!g2~ t2t8!dt8. ~43!

7. THE MASTER EQUATION AVERAGED OVER THE PERIOD

Now we can write Eq.~23! explicitly:

ṙ5
]

]u
uFk1(

i
m~ t2t i !g s21~ t2t i !/aGr

1(
i

m~ t2t i !F2S ]

]uD 2

2uF1~ t2t i2Tp!

1
1

u

]2

]w2 F2~ t2t i2Tp!Gr1$¯%. ~44!

Here $¯% stands for terms containing high-order derivativ
with respect tou and w, which follow from the iteration
series~27!.

We see that the coefficients in Eq.~44! are functions of
time, in accordance with the fact that the pumping of t
resonant medium is a function of time. The reader will rec
that we have limited ourselves to the approximation of la
photon numbers in the lasing mode and thus can ignore
field variations over one pump period since at most only o
photon is added to this field in this time interval. This mea
that Eq.~44! can be averaged over the pump period, in vi
of which it acquires the form

ṙ5
]

]u
uS k1

gs̄21

a D r2S ]

]uD 2

2uF̄1~u!r

1
1

u

]2

]w2 F̄2~u!r1$¯%. ~45!

In the case of strong lasing (V@g1) we have

F̄1~u!52
s0

2gT

1

u S ns

u
1

s0

2 D , ns5
g1

2

4g2 , ~46!

F̄2~u!5
gs0

g1
2T

. ~47!

To calculate the functions

F̄ i~u!5
1

T E
0

T

Fi~ t ! dt, i 51,2, ~48!

we must use the explicit expressions~41! and ~42!. More-
over, mathematically we can simplify matters if we bear
mind that the periodT is much longer than atomic times
Then, in averaging, integration with respect to times from
to T can be replaced by integration from 0 tò, which yields

$g1~ t !% ^ $g2~ t !%5Tḡ1ḡ2 . ~49!

Doing the necessary integrations, we arrive at

s2152
2gas0

v2T S 12
g1

2

8v2D ——→
V@g1

2
gas0

2V2T
,

e
ll
e
ll

e
s

0

~12s11!s2152
2gs0

v2T F12
g1

2

8v2 2s0

3V2

2v2 S 12
5g1

2

8v2D G
——→

V@g1

2
gs0

2V2T S 12
3

8
s0D ,

~50!

s22s2152
gs0

2

v2T F1

4
1

3V2

v2 1
g1

16v S 11
g1

v

2
2V2

v2

g1

v
2

7g1
2

v2 D G ——→
V@g1

2
gs0

2

4V2T
,

s225
s0

g1T F4V2

v2 1
g1

2

v2 S 1

2
1

V2

v2 2
g1

2

8v2D G ——→
V@g1 s0

g1T
.

8. THE APPROXIMATION OF SMALL PHOTON
FLUCTUATIONS

Now, to simply the equation still further, we adopt th
requirement that the photon fluctuations be small:

u5n1«, n@«, ~51!

wheren is the semiclassical steady-state solution of the la
problem for the number of photons. Clearly, this requirem
can be met only ifn@1.

The semiclassical truncated equation forn can be writ-
ten as follows. In the master equation~45! we drop all de-
rivatives with respect to the field variables except the fir
order derivatives. Then we multiply the modified equation
u and integrate the results over all the values ofu andw. We
get result is

ṅ52~k1 gs̄21/a!n50. ~52!

Thus, the condition for steady-state lasing is

k5
2g2s0

v2T S 12
g1

2

8v2D . ~53!

A useful condition in the case of lasers is the threshold c
dition

4g2s0

g1
2T

5k. ~54!

Now we can employ condition~51! and, keeping only the
principal terms, write the master kinetic equation in a sa
rating laser field (V@g1) in the form

]r

]t
5k

]

]«
«r1knj

]2r

]«2 1
k

4ns

]2r

]w2 1$¯%, ~55!

where

j52
1

2 S g1
2

2V2 1s0D ~56!

is the statistical Mandel parameter, which is a characteri
of intracavity photon fluctuations:Dn25n(11j).
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9. THE PHOTOCURRENT SPECTRUM IN THE DETECTION
OF MICROLASER RADIATION

In the photodetection of single-mode lasing, we can
a formula for the photocurrent spectrum in the Glauber r
resentation in the approximation of small photon fluctu
tions:

i v
(2)5 i shot

(2) S 11
2k

n
ReE

0

`

««~ t ! exp$ ivt%dtD . ~57!

Applying standard mathematical techniques, we can use
master equation~55! to obtain the differential equation

««
˙
~ t !52k««~ t !. ~58!

Its solution

««~ t !5«2 exp$2kt% ~59!

contains the unknown quantity«2, which can be found by
solving an equation that follows from~55!:

«
˙ 2522k«212kjn50. ~60!

Note that the terms in Eq.~55! denoted by$¯% and contain-
ing higher-order derivatives with respect to the comp
variables of the field contribute nothing to~58! and~60!, and
this conclusion is independent of the type of mathemat
approximation employed.

Performing the required mathematical manipulations,
can easily obtain an expression for the photocurrent sp
trum:

i v
(2)5 i shot

(2) S 122uju
k2

k21v2D . ~61!

From the qualitative point of view it is clear that there is
dip in the spectrum at near-zero frequencies against the b
ground of shot noise, which is frequency-independent. A
known, this dip indicates the quantum nature of light, wh
manifests itself in a specific physical situation. The depth
the dip is determined by the Mandel parameterj, whose
value ~56! depends on the efficiency of the excitation of t
atom to the upper laser level in the course of one pu
pulse. We already know that the excitation efficiency
given by the quantitys0 of ~37!. Clearly, if Tp@tp , then
s0'1 andj521/2. Thus, if we select the parameters of t
pump pulse so that by the end of the action of the pulse
atom is sure to be on the upper laser level, regular pump
of the laser medium is guaranteed, which leads to s
Poissonian lasing with maximum suppression~down to zero!
of shot noise at zero frequency. In the opposite caseTp

!tp), pumping stops being reliable and the lasing becom
Poissonian, since suppression of the near-zero freque
shot noise can be ignored. These physical results are sim
to those obtained in Ref. 4 for lasers. Thus, we have corro
rated the assumption made in the Introduction that suc
microlaser can serve as a source of sub-Poissonian light
maximum manifestation of the quantum properties.

At the same time we see~even at the level of the maste
quantum equation! that this system is in every respect unlik
a maser,5 which comes as a surprise if we reason on the b
e
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e
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of the purely corpuscular phenomenology of light. Indeed
microlaser with periodic excitation of the atom and a ma
in which the atom periodically arrives in the cavity do th
same thing, i.e., periodically excite the laser mode by add
exactly one photon to it. From the viewpoint of corpuscu
phenomenology, there should be no difference in the sta
tics of lasing. We see, however, that this is not the case.
reason is that photons are not simply small ‘‘balls’’—the
are quantum mechanical particles described, say, by w
functions. In the case of a maser, when we can ignore re
ation from the laser levels and use the mathematical mo
of Jaynes and Cummings,9 these wave functions differ from
those in the case of a single atom, where relaxation is imp
tant. We see that not only the regularity with which ne
photons appear in the cavity is important in the formation
the correlation properties of lasing but so are the quan
mechanical states of these photons.

To be able to estimate the results correctly, we m
understand at what values of the physical parameters will
conditions ~5! be met. Clearly, the valuesk;1015s21, g
;108 s21, T;1027 s, andg1;10 s21 ensure that the condi
tions ~5! are met. When making the estimates, we must b
in mind that, according to~53!, in the saturation regime
(gAn@g1) we haven;(kT)21. This physical situation is
an improvement in the sense of theQ-factor of the cavity
and the efficiency of the interaction between the laser w
and the medium compared to the case considered, sa
Ref. 10, where it is assumed thatk;106 s21 and g
;107 s21.

This work was made possible by Grants from INTA
RFBR ~Grant 95-0656!, the Russian Fund for Fundament
Research~Grant 98-02-18129!, and the State Committee fo
Institutions of Higher Learning~Grant 95-0-5.4-66!.

APPENDIX A: BEHAVIOR OF A FOUR-LEVEL ATOM IN TWO
CLASSICAL EXTERNAL FIELDS, THE PULSED PUMP
FIELD AND THE LASING FIELD

Let us assume that we are dealing with a four-level at
whose energy level diagram is depicted in Fig. 2. Puls
coherent pumping with a complex-valued amplitudeap in-
volves only the 0–3 transition of the atom, while the lasi
field with the complex-valued amplitudeap involves the 1–2
transition of the atom. All this is expressed by an interact
Hamiltonian written in the dipole approximation,

V05 ig~au1&^2u2a* u2&^1u!1 igp~apu0&^3u2ap* u3&^0u!,
~62!

where theu i &^ku are the standard projection operators.
Bearing in mind that there is spontaneous relaxation

the transitions 3–2 and 1–0, we can write the following s
tem of equations for the elements of the atomic density m
trix:

ṡ0052gp~ap* s301aps03!1g1s11,

ṡ335gp~ap* s301aps03!2g3s33,

ṡ0352gpap* ~s332s00!2
g3

2
s03,
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ṡ3052gpap~s332s00!2
g3

2
s30,

~63!
ṡ1152g~a* s211as12!2g1s11,

ṡ225g~a* s211as12!1g3s33,

ṡ1252ga* ~s222s11!2
g1

2
s12,

ṡ2152ga~s222s11!2
g1

2
s21.

Since we have chosen the pumping to be pulsed with a
riod T, the steady-state solution of this system of equati
will also be a periodic function of time with the same perio
Hence we can find the solution in any one time interval
which the pump pulse acts and in any time interval betw
pump pulses. The complete solution of the problem can
written

s ik5(
i

@~12m~ t2t i !!s ik~ t2t i !

1m~ t2t i !s ik~ t2t i2Tp!#, ~64!

where we have introduced the notation

m~ t !5H 1 if Tp,t,T,

0 otherwise.
~65!

A1. Evolution of the atomic states during the action of a
pump pulse „0<t<Tp…

Taking into account the initial inequalities~5!, we can
write the system of equations~63! as follows:

ṡ0052gp~ap* s301aps03!,

ṡ335gp~ap* s301aps03!2g3s33,

ṡ0352gpap* ~s332s00!2
g3

2
s03, ~66!

ṡ3052gpap~s332s00!2
g3

2
s30,

ṡ1150, ṡ225g3s33, ṡ1250, ṡ2150.

We assume that during the action of a pump pulse there
be a transition~partial or complete! of the atom from the
ground state to the upper laser state. Since our condition~5!
ensure that before each new pulse the atom finds itself in
ground state, we have the unique finite initial condition

s00~0!51. ~67!

In our approximation of a fairly weak and short pump puls
we can write the following finite solutions:

s00~ t !5expH 2
t

tp
J , s00~ t !512expH 2

t

tp
J , ~68!

where
e-
s

.

n
e

ly

he

,

tp5
g3

Vp
2 ~69!

is the characteristic time in the course of which a pump pu
transfers the atom from the ground state to the upper la
state.

A2. Evolution of the atomic density matrix in the time
interval between pump pulses „Tp<t<T…

Now the system of equations for the elements of
atomic density matrix assumes the form

ṡ1152g~a* s211as12!2g1s11,

ṡ225g~a* s211as12!,
~70!

ṡ1252ga* ~s222s11!2
g1

2
s12,

ṡ2152ga~s222s11!2
g1

2
s21,

with the finite initial condition

s22~Tp!5s0 . ~71!

We go over to the Laplace transformation:

xik~p!5E
0

`

dts ik~ t !exp$2pt%. ~72!

For the quantitiesxik(p) we can now write a system of al
gebraic equations,

~g11p!x1152g~a* x211ax12!,

2s01px225g~a* x211ax12!,
~73!

~g1/2 1p!x1252ga* ~x222x11!,

~g1/2 1p!x2152ga~x222x11!,

which can be solved relatively easily:

x11~p!5s0

2V2

~p1g1/2!~p1g1/22 iv!~p1g1/21 iv!
,

x22~p!5s0

2V21~p1g1!~p1g1/2!

~p1g1/2!~p1g1/22 iv!~p1g1/21 iv!
, ~74!

x12~p!5x21* ~p!

52s0

ga* ~p1g1!

~p1g1/2!~p1g1/22 iv!~p1g1/21 iv!
.

As before, by

v5A4V22
g1

2

4
~75!

we have denoted the Rabi frequency, with which the ma
elements oscillate in a strong field when 4V.g1 .

Using the inverse Laplace transformation, we obtain

s11~ t !5s0

4V2

v2 sin2
vt

2
expS 2

g1t

2 D ,
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s22~ t !5s0F4V2

v2 cos2
vt

2
expS 2

g1

2t D
1

g1

2v
sinvt

g1
2

4v2 cosvtGexpS 2
g1t

2 D , ~76!

s12~ t !5s21* ~ t !52s0

ga*

v S g1

v
sin2

vt

2
1sinvt D

3expS 2
g1t

2 D .

APPENDIX B: AN ANALYTIC SOLUTION FOR THE
CORRELATION MATRIX p̂

We seek the solution of the system of equations~31! via
the Laplace transformation:

xik~p!5E
0

`

p ik~ t !exp$2pt%dt. ~77!

Allowing for the fact that all the initial data are zeros, in th
Laplace representation we arrive at a system of algeb
equations:

px225g~ax121x21a* !1gS22~p!,

~g11p!x1152g~ax121x21a* !1gS11~p!,
~78!S g1

2
1pD x1252ga* ~x222x11!1gS12~p!,

S g1

2
1pD x2152ga~x222x11!1gS21~p!.

The reader will recall that we use the adiabatic approxim
tion and ignorer(t). Here

Sik~p!5E
0

`

Sik~ t !exp$2pt%dt. ~79!
ic

-

For our purposes we are interested only in the matrix e
ment

x12~p!5S12~p!
g

p1g1/2
1g2a* $S11~p!p2S22~p!~p1g1!

22@aS12~p!1S21~p!a* #%Q21~p!, ~80!

where

Q~p!5S p1
g1

2 D S p1
g1

2
2 iv D S p1

g1

2
1 iv D . ~81!

Performing the inverse Laplace transformation, we arrive
the sought time dependence in form~39!.
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It is shown theoretically that application of an external electromagnetic field with specially
selected frequencies in a dielectric containing impurity atoms allows a scintillation process of
emission from impurity atoms to be activated which does not involve phonons. The
process is similar to that in a conventional scintillator except that the field is completely controlled.
The behavior of the emission process can change radically as the amplitude and frequency
of the external field are varied, thus providing a means for wide-range control of such a ‘‘field
scintillator.’’ © 1999 American Institute of Physics.@S1063-7761~99!01008-2#
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1. INTRODUCTION

The near field of a radiating system of charges is kno
to be predominantly longitudinal, so that in dense dielectr
an excited atom transfers energy to an unexcited a
through a longitudinal field by dipole–dipole interactio
rather than through the emission and absorption of transv
waves. For this reason an atom residing in the interior o
dense dielectric cannot emit transverse waves, and
atomic excitation energy migrates through the material fo
long time. In a scintillation detector with excitonic energ
transfer the excitation energy is usually transported to
emission center,1,2 for example, an impurity atom whose ex
citation frequency is lower than the excitation frequency
an atom of the main~host! material and lies outside the ab
sorption band, allowing radiation to propagate freely fro
any point of the dielectric to the outside. The excess ene
is spent in the generation of phonons, greatly reducing
probability of the reverse process and leading to incohe
emission from different impurity atoms. The concentrati
of scintillating impurities must be small enough that t
dipole–dipole transfer of excitation between impurities su
presses the emission process.

Since impurity atoms transport the excitation energy o
material this way only with phonon production, it is difficu
to control the emission process. However, the requisite c
ditions can be created for instigation of another emiss
process similar to that in an ordinary scintillator, except t
it is entirely field-controlled. For this it is sufficient for th
scintillator to be exposed to an external electromagnetic fi
with a specially selected frequency. The new process dif
from the conventional version in that the excess energy is
transported by phonons, but by the external field.

The nature of the emission process can change dr
cally as the amplitude and frequency of the external field
varied, permitting total control of the process.

The theory of the field scintillator and the assessmen
its properties and the necessary conditions for its creat
are of interest.
2671063-7761/99/89(8)/4/$15.00
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2. IMPURITY ATOM IN AN EXCITED MATERIAL PARTICLE

We consider a dielectric with a small concentration
impurity atoms, whose electronic states have energiesE1

,E2,E3 . Assume that 0–3 transitions between the grou
state with energyE0 and theE3 state are forbidden and 1–
transitions betweenE1 and E2 states are forbidden as wel
and let 0–1, 1–3, 3–2, and 2–0 transitions be allowed.
choose impurity atoms such that the energy of the first
cited level of a host atom coincides with the energyE2 of the
second excited level of an impurity atom. A high-ener
particle transmitted through the dielectric excites atoms,
most populated level being the first excited level of the h
atoms. The excitation energy then migrates through the
terial via resonant dipole–dipole interaction between ato
of the material.

The second excited energy level of an impurity ato
participates in the migration of excitation energy to the o
side together with host atoms and therefore becomes p
lated as a result of transmission of the high-energy parti
However, since the 2–1 transition is dipole-forbidden, t
first excited level of an impurity atom does not becom
populated, and so transverse waves are not radiatedin
transition from the first excited state to the ground state.
us now assume that an auxiliary external electromagn
field propagates in the scintillator as the sum of two pla
waves:

E~r ,t !5E2 cos~k2•r2v2t !1E1 cos~k1•r2v1t !, ~1!

whose frequenciesv1 andv2 are close to the resonant fre
quencies of the 1–3 and 2–3 transitions,v315(E32E1)/h
andv325(E32E2)/h, i.e., they obey the inequalities

uv12v31u!v31, uv22v32u!v32.

The action of the field~1! induces transitions between theE2

andE3 states and between theE3 andE1 states. As a resul
of these transitions the excited level of an impurity ato
with energyE1 is populated, so that emission takes place
the frequencyv105(E12E0)/h, which is outside the ab-
sorption band, thereby ensuring the free escape of radia
from the material.
© 1999 American Institute of Physics
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Consequently, the excitation energy generated by
high-energy particle in the material goes over to radiat
that can be utilized to detect the high-energy particle. I
helpful to bear in mind that the scintillation process d
cussed here occurs only under the influence of the elec
magnetic field~1!, so that the behavior of the process
dictated entirely by this field. We also note that in the cho
of impurity atoms for the field scintillator the critical require
ments are altogether different from those in the case of
conventional scintillator, and so the impurity atoms cons
ered here, generally speaking, cannot support the opera
of a scintillator in the conventional regime. It must therefo
be assumed that the conventional scintillator operating
gime is impossible in this medium.

We now consider the dielectric after a high-energy p
ticle has left it, at which time the particle responsible for t
excitation of its atoms has ceased to act, but the excita
energy is still migrating through the entire material. In th
case the excitation energy is concentrated primarily in lo
lived elementary excitations of the material, which are lo
gitudinal electromagnetic plane waves.

The electric field of this wave is known to have the for

E~r ,t !5E exp$ iq0•r2 ivpt2 i ~a/2!q0
2t%, ~2!

where the frequencyvp causes the dielectric function to van
ish, «(vp ,q50)50 ~Ref. 3!. In general the field in the ex
cited material must be a superposition of longitudinal wa
~2!. We can assume in the first approximation that the sa
field E0(R,t) acts on an atom at a pointR in the interior of
the medium, regardless of whether this atom belongs to
impurity or the host material. The population amplitu
c(R,t) of the first excited level of a host atom situated at t
point R is related to the field by the equation

ih]c~R,t !/]t52d0
•E0~R,t !exp~ iv20t !,

hvc~R,v!52d0
•E0~R,v1v20!, ~3!

where d0 is the matrix element of the transition from th
ground state to the first excited state of a host atom. If, on
other hand, an impurity atom occupies the pointR, the popu-
lation amplitude of the second excited level of this ato
a2

0(R,t) without external fields is related to the field by th
equation

ih]a2~R,t !/]t52d20•E0~R,t !exp~ iv20t !, ~4!

where

dmk5E dqCm* ~q!dCk~q!

is the transition dipole moment in the impurity atom. It fo
lows from Eqs.~3! and ~4! that

a2
0~R,t !5xc~R,t !, x5ud20u/ud0u.

It is a well-known fact that the local fieldEloc(R,t) act-
ing on a material atom does not coincide with the aver
macroscopic field, so that if the macroscopic field~1! is
given, an atom at the pointR is acted upon by the loca
field4–7
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Eloc~R,t !5E2
loc cos~k2•R2v2t !1E1

loc cos~k1•R2v1t !

5~1/3!$@«~v2 ,k2!12#E2 cos~k2•R2v2t !

1@«~v1 ,k1!12#E1 cos~k1•R2v1t !%. ~5!

If the radiation energy is much smaller than the to
excitation energy of the material, the population amplitude
the first excited energy level of host atomsc(R,t) can be
assumed not to change as a result of radiation, i.e., to b
given quantity. The total field acting on an impurity ato
consists of the fields near the frequenciesv20, v32, and
v31. The field atv20 is the fieldE0(R,t) generated by ex-
cited host atoms; the other frequencies are associated
the auxiliary field~1!, which produces resonant transition
between impurity levels 2–3 and 3–1. The fieldE0(r ,t) ex-
erts a nonresonant influence on other transitions in an im
rity atom, i.e., is much weaker and can be disregarded.

We denote byai(R,t) the population amplitude of the
i th level of an impurity atom occupying the pointR under
the influence of the auxiliary field~1!. We assume tha
a2(R,t)!1; the population of the ground state is then clo
to unity, and to lowest order we can seta0(R,t)51. Retain-
ing only resonant terms, we can now obtain a system
equations describing the behavior of the population am
tude ai(R,t) of the states of the impurity atom under th
influence of the total field from the Schro¨dinger equation.

We first consider the case of exact resonance,v15v31

andv25v32. Introducing the notation

V135V31* 5~1/2!~E1
loc
•d13!exp~2 ik1•R!,

V235V32* 5~1/2!~E2
loc
•d23!exp~2 ik2•R!, ~6!

we can obtain a system of equations for the amplitudes in
form

ih]a3~R,t !/]t52V32a2~R,t !2V31a1~R,t !, ~7!

ih]a2~R,t !/]t5x ih]c~R,t !/]t2V23a3~R,t !, ~8!

h]a1~R,t !/]t52V13a3~R,t !. ~9!

Fourier-transforming the amplitudes in time, from Eqs.~7!–
~9! we can obtain a system of three linear inhomogene
algebraic equations

hva1~R,v!1V13a3~R,v!50, ~10!

hva2~R,v!1V23a3~R,v!5hvxc~R,v!, ~11!

hva3~R,v!1V31a1~R,v!1V32a2~R,v!50. ~12!

Solving this system of equations, we readily find the pop
lation amplitude of the first excited state of the impuri
atom:

a1~R,v!

5
~E1

loc
•d13!~E2

loc
•d32!xc~R,v!exp$ i ~k22k1!•R%

u~E1
loc
•d31!u21u~E2

loc
•d32!u224~hv!2

.

~13!

It is evident from Eq.~13! that the population of the firs
excited state of the impurity atom is directly proportional
the population of the first excited level of the host atom.
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3. EMISSION FROM IMPURITY ATOMS IN EXACT
RESONANCE

It follows from the preceding discussion that three e
cited states of the impurity atom are populated in the exc
material under the influence of the auxiliary field. By a
sumption, 3–0 transitions are dipole-forbidden, and only 2
and 1–0 dipole transitions from excited states to the gro
state are possible. The 2–0 transition causes dipole–di
transfer of excitation energy to nearby atoms of the majo
material, and the frequency of this transition lies in the a
sorption band. Consequently, radiation can escape from
material to the outside only by virtue of a 1–0 transition. T
frequency of the 1–0 transition lies in the transparen
range, so that the radiation interacts weakly with the mate
and is freely emitted from it if there are no other like imp
rity atoms in the vicinity~i.e., within a distance shorter tha
the wavelength! of the emitting impurity atom. If such atom
are present, competition arises between the dipole–di
transfer of excitation energy to the nearest impurity atom
the emission of a transverse wave. The emission of a tr
verse wave by the impurity atom is the main avenue of
excitation of the impurity if the number of impurity atom
per unit volumen1 satisfies the inequality

n1,~v10/c!3. ~14!

On the other hand, the dipole–dipole transfer of excitat
between host atoms plays the dominant role if the numbe
host atoms per unit volumen0 (n0@n1) obeys the inequality

n0.~v20/c!3. ~15!

When inequality~15! is satisfied, the 1–0 transition curre
at an impurity atom situated at the pointRa becomes a
source of transverse waves. The total current is equal to
sum of the transition currents in each atom, and in the dip
approximation the Fourier transform of the total current h
the form

j01~r ,v!52 ivd01(
a

a1~Ra ,v2v10!d~r2Ra!,

and after carrying out a coordinate Fourier transform we fi

j01~k,v!52 ivd01~2p!23(
a

a1~Ra ,v2v10!

3exp~2 ik–Ra!. ~16!

Assuming that the material is transparent at the frequencyv,
we can easily obtain an equation for the angular and
quency distribution of the radiation:

d2U

dV dv
5

v2

«1/2~v!
u@k–d01#u2H(

a
ua1~Ra ,v2v10!u2J

1(
a

(
bÞa

a1~Ra ,v2v10!a1* ~Rb ,v2v10!

3exp$2 ik•~Ra2Rb!%. ~17!

The summation in Eq.~17! is carried out over all impurity
atoms. If inequality~14! holds, the double-sum term in~17!
is small in comparison with the first term. For a unifor
-
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distribution of impurity atoms the summation overRa can be
replaced by integration. In view of this, the following rela
tion can be obtained by means of Eq.~13!:

d2U

dV dv

5
v2

«1/2~v!
E d3R

3U@k–d01#xV13V23c~R,v2v10!exp$ i ~k22k1!•R%

h2~v2v10!
22uV13u22uV23u2

U2

.

~18!

If the denominator in Eq.~18! is not too small, we can dis
regard absorption at the frequenciesv1 and v2 . Equation
~18! is then simplified:

d2U

dV dv

5

v2u@k–d01#
2uuxV13V23u2E d3Ruc~R,v2v10!u2

«1/2~v!$h2~v2v10!
22uV13u22uV23u2%2

.

~19!

In the frequency range where the denominator in~19! be-
comes small, the imaginary part of the permittivity for th
frequenciesv1 andv2 must be taken into account, and th
more rigorous Eq.~18! must be used instead of~19!.

4. SCINTILLATOR EMISSION INDUCED BY A LONGITUDINAL
WAVE

As an example we consider radiation generated in
scintillator when the longitudinal plane wave~2! is transmit-
ted through it. The local field acting on an atom of the m
terial differs from~2! by the factor@«(v,q)12#/352/3:

E0
loc~r ,t !5~2/3!E0 exp$ iq0•r2 ivpt2 i ~a/2!q0

2t%. ~20!

Substitution of this expression into Eq.~3! gives

c~R,v!52d0
•E0~1/hv!exp~ iq0•R!

3d~v2v202vp2aq0
2/2!. ~21!

Equation~21! can be used to transform the angular a
frequency distribution of the scintillator radiation energ
~19! to the form (V is the working volume of the scintilla-
tor!

d2U

dv dV

5
V u@k–d01#u2uV13V23u2ud20•E0u2d~v2v202vp2aq0

2/2!

2p39h2«1/2~v!$h2~v2v10!
22uV13u22uV23u2%

.

~22!

It is readily seen from the expression derived for the radia
energy distribution that the scintillator emission frequen
does not depend on the direction of the longitudinal wa
vector.
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5. DISCUSSION OF THE RESULTS

It is important to note that, together with the proce
discussed here, the reverse process can also take p
where the field of a high-energy particle takes a bound e
tron of an impurity atom from the ground state to the fi
excited state, i.e., induces a 0–1 transition, and the auxil
field ~1! takes this electron in succession into the exci
state 3 and then into the excited state 2 of the impurity at
This process competes with the primary process under
cussion, but it is much weaker, being proportional to
energy transferred by the particle to excitation of one fi
excited level of all the impurity atoms, whereas the intens
of the primary process is proportional to the energy from
high-energy particle that goes into excitation of all the h
atoms. However, the impurity concentration must satisfy
equality ~14!, so that the forward process is many tim
stronger than the reverse process. Consequently, the
tence of the reverse process can be ignored, and the resu
relative error is of order the density of the impurity atom
n1 /n0 .

The first consideration in selecting a specific material
the field scintillator is the fact that in an impurity-free mat
rial the resonant excitation corresponding to the first exc
level of a bound atomic electron should propagate thro
the entire sample essentially without any losses. This beh
ior can be confirmed experimentally by a comparativ
simple procedure. In particular, therefore, we can rule out
substances in which emission centers are not bound to im
rities. In selecting the impurity atom, it is necessary above
that the energy of its second excited level coincide with~or
be sufficiently close to! the energy of the first excited level o
the host atom. It is safe to say that the principal condition
selecting the impurity atom is that the first and third ene
levels of bound electrons in the impurity atoms must be s
ated outside the absorption band and that dipole transit
between the ground and third excited levels of the atom m
be forbidden, along with transitions between the first a
second excited levels of the impurity atom.

In regard to the positions of the first and third levels
the impurity atom, once the principal condition has been m
the energy differencesE32E2 andE22E1 are not so criti-
cal. For example, these energy differences can be in diffe
frequency intervals. Other choices of impurity atoms w
different positions of the electron energy levels are also p
sible. For example, the ‘‘third’’ excited level can be an e
ergy level below the second level, i.e., below the first exci
level of the host atom~this arrangement of the impurity lev
els has been used previously8 in an investigation of the co
herent part of the impurity radiation!. In this case the reso
nant field will also induce emission from impurity atoms, b
then emission will also be possible without a resonant fie
thus undermining the controllability of the scintillator. Whe
the above arrangement of the levels is used without a r
nant field, emission from impurity atoms can take place o
through the thermal excitation of a bound electron of
impurity from the second to the first excited state, and t
process can be disregarded forv32@kT. Another possible
example is an arrangement in which the excited energy
s
ce,
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els of the impurity atom are in positions such that the ‘‘firs
excited level is above the second level, i.e., above the
excited level of the host atom. In this case emission fr
impurity atoms is possible only when a resonant field is
plied, but then only part of the impurity radiation energy
supported by excitation of the host material, and part of
radiation energy emerges at the expense of a reduction in
energy of the resonant field. The accuracy of determina
of the host excitation energy required for the acquisition
information about the properties of high-energy particles
diminished in this case. Such an arrangement of the impu
atom energy levels is therefore unsuitable for the field sc
tillator.

The foregoing discussion shows that the field scintilla
is feasible over an extensive region. Consequently, the c
struction of such a scintillator is a realistic propositio
where the energy of electron degrees of freedom excited
high-energy particle in a dielectric is converted into radiati
emitted by impurity atoms in a process that is fully mai
tained and controlled by a specially selected external elec
magnetic field. The process differs from a conventional sc
tillator in that the excess energy~the difference between th
energy of excitation of an atom of the medium and the em
ted photon energy! is not transported by phonons, but by th
external field.

As a result, if the host material of the scintillator and t
impurity atoms are fixed, the distribution of the scintillato
radiated energy~19! or ~18! is determined entirely by the
amplitudes and frequencies of the auxiliary external fi
driving the process. Shutting off the external field stops
scintillator from emitting, despite the conservation of exci
tion energy in the material. Varying the frequencies of t
auxiliary external field causes the intensity and frequen
spectrum of the radiation to change.
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Quasiclassical approximation with the centrifugal potential excluded
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We develop a modification of the WKB method~the modified quantization method, or MQM!
for finding the radial wave functions. The method is based on excluding the centrifugal
potential from the quasiclassical momentum and changing correspondingly the phase in the
Bohr–Sommerfeld quantization condition. MQM is used to calculate the asymptotic coefficients at
zero and at infinity. We use the examples of power-law and funnel potentials to show that
MQM not only dramatically broadens the possibilities of studying the energy spectrum and the
wave functions analytically but also ensures accuracy to within a few percent even when
one calculates states with a radial quantum numbernr;1, provided that the angular momentuml
is not too large. We also briefly discuss the possibility of generalizing MQM to the
relativistic case~the spinless Salpeter equation!. © 1999 American Institute of Physics.
@S1063-7761~99!01108-7#
nic

10
ti

l

r
fie

b

In

ne-
en-
in

t at
d

ly

l
p-
m

n
oef-
he
ec-
e
fly
ns,

m
for

s

a-

asi-
1. The quasiclassical approximation~the WKB method!
is one of the most effective methods of quantum mecha
and mathematical physics~see, e.g., Refs. 1–8!. A modifica-
tion of the WKB method was proposed in Refs. 9 and
The approach consisted in excluding the centrifugal poten
from the quasiclassical momentum,p(r )→ p̃(r ), and taking
this potential into account by changing the phaseg l in the
Bohr–Sommerfeld quantization rule:

E
0

r 0
p̃~r ! dr[E

0

r 0

A2@Enr l
2V~r !# dr5p~nr1g l !. ~1!

Here and in what follows\5m51, nr50,1,2,... is the radia
quantum number,r 0 is the turning point,1! andg l depends on
the orbital angular momentuml and the potential’s behavio
at small distances. If the potential is attractive and satis
V(r )}r a (a.22, which excludes the fall-to-center case2!,
we have9,10

g l5
2l 13

4
if a.0, ~2a!

g l5
2l 131a

2~21a!
if 22,a,0. ~2b!

In particular, for short-range potentials with a Coulom
singularity at zero (a521, Yukawa, Hu¨lthén, etc., poten-
tials!, the right-hand side of Eq.~1! containsnr1 l 11[n,
the principal quantum number, and the dependence ofEnr l

on l exists only in the corrections to the quantization rule~1!.
Note that for potentials that are finite at zero (a>0) the
quantization rule~1! with g l5(2l 13)/4 is given in Ref. 5.

The approach specified by~1! and ~2! ~we refer to it as
the modified quantization method, or MQM! broadens the
possibility of studying the energy spectrum analytically.
2711063-7761/99/89(8)/8/$15.00
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the present paper we generalize MQM to the case of confi
ment potentials, which have only a discrete spectrum of
ergy levels, and use it to calculate the radial wave function
the subbarrier region, including the asymptotic coefficien
zero distances~Sec. 2!. A comparison with the exact an
numerical solutions of the Schro¨dinger equation for power-
law potentials shows that the MQM formulas are not on
exact in the asymptotic limitnr→` but retain their high
accuracy even for states withnr;1, provided that the orbita
angular momentum is not too large. In Sec. 3, MQM is a
plied to the funnel potential, often used in quantu
chromodynamics,11,12 which makes it possible to obtai
equations for the energy spectrum and the asymptotic c
ficient at zero analytically. Quasiclassical formulas for t
asymptotic coefficients at infinity are derived in Sec. 4. S
tion 5 studies the possibility of generalizing MQM to th
relativistic case. The results of our investigation are brie
discussed in Sec. 6. Finally, some details of the calculatio
namely, the study of MQM~1! for the funnel potential and
the general properties of the quantization integral in~1!, are
grouped in Appendices A and B.

2. The idea of excluding the centrifugal potential fro
the quasiclassical momentum is based on the fact that
highly excited states (nr@1), where the wave functions ha
many nodes, this potential is important~for l;1) only at
small distances, while in the main region of particle localiz
tion the potential acts as a perturbation}\2 and can be dis-
carded in the quasiclassical approximation. Here the qu
classical wave function can be written

xEl
WKB~r !5

C

Ap̃~r !
sinH E

0

r

p̃~r !dr2pd l J , ~3!
© 1999 American Institute of Physics
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where for the normalized bound-state wave function
have2,3

C5
2

ATr

, Tr5
2p

v r
52E

0

r 0 dr

p̃~r !
. ~4!

The value ofd l can be found by matching the quasicla
sical wave function to the exact solution of the Schro¨dinger
equation satisfying the boundary condition

xEl~r !5cEl r
l 11, r→0, ~5!

wherecEl is the asymptotic coefficient at zero~i.e., at very
small distances!. The solution of the matching problem de
pends on the shape of the potentialV(r ) at small distance
~i.e., in the region where the classical principles bre
down!, the energyE, and the orbital angular momentuml .

We begin with the case of high energiesE5k2/2. Here a
potential that is regular at small distances can be interpr
as a perturbation. If we limit ourselves to first-order pert
bation theory in the potentialV(r ), it is convenient to write
~3! in the form

xEl
WKB~r !5

C

Ak
@sinf0~r !1f1~r !cosf0~r !#, ~6!

whered l5d l
(0)1d l

(1) ,

f0~r !5kr2pd l
(0) , ~7!

f1~r !5E
0

r

~Ak222V~r !2k!dr2pd l
(1)

~specifying the factorkr in the phasef0(r ) explicitly is
equivalent to ignoring the potentialV). On the other hand, in
the absence of a potential,

xEl
(0)~r !5AAkr Jn~kr !'AA2

p
sinS kr2

p l

2 D ,

kr@n2, n5 l 1
1

2
. ~8!

The region withr @n2/k is where the exact and quasiclas
cal wave functions are matched. By comparing~6! and ~7!
with ~8! we find that

d l
(0)5

l

2
, A5Ap

2k
C. ~9!

Now we can use the asymptotic form~asz→0) of the Bessel
function Jn(z) and Eqs.~4! and find that

cEl
(0)5

Av r

G~ l 13/2! S E

2 D (2l 11)/4

~10!

~the zeroth approximation!. In this approximation, the energ
spectrum of the particle is determined by the quantizat
rule ~1! and ~2a!, in which

g l5d l
(0)1

3

4
5

2l 13

4
.

We see that the quantization rule holds for alla.22.
e

k

ed
-

n

Formula ~10! was derived withV(r ) ignored at small
distances. We allow forV(r ) by perturbation-theory tech
niques. To this end we use the Green’s function of the ra
Schrödinger equation for a free particle:

GEn~r ,r 8!5~21! lpAr ,r . Jn~kr,!J2n~kr.!,

wherer , (r .) is the smaller~larger! of the numbersr and
r 8. The first-order correction~in the potential! to the unper-
turbed solution~8! is

xEl
(1)~r !52E

0

`

GEn~r ,r 8!V~r 8!xEl
(0)~r 8!dr8

5~21! l 11ApAkrH Jn~kr !E
r

`

rV~r !Jn~kr !

3J2n~kr !dr1J2n~kr !E
0

r

rV~r !Jn
2~kr !drJ ,

~11!

with xEl5xEl
(0)1xEl

(1) .
For r→0, only the first term in the braces, which

proportional tor l 11 @as in ~5!#, is important. This leads to
renormalization of the asymptotic coefficient at zero:

cEl
WKB5cEl

(0)$11dl~E!%, ~12!

dl~E!5~21! l 11pE
0

`

rV~r !Jn~kr !J2n~kr !dr.

In view of the rapid oscillations of the Bessel function
the asymptotic behavior ofdl(E) at high energies is deter
mined by the behavior of the potential asr→0. For poten-
tials with a power-law asymptotic behavior,V(r )5gra/a,
we have2!

dl~E!5~21! l 11g
pG~2a21!G~11a/2!

2aG~2a/2!G~2n2a/2!G~n2a/2!

3S 2

kD a12

~13!

~see formula 6.574.2 in Ref. 13!. In particular,

dl~E!5g
p

2~2E!1/2, 2g
p~n221/4!

4~2E!3/2 , 2g
n32n

12E2

~14!

for a521, 1, and 2, respectively. For the logarithmic p
tential V(r )5g ln r, the coefficientdl(E)}(ln E1bl)/E can
be obtained analytically by passing to the limita→0 in ~13!.
Note that the larger the exponenta, the less important is the
potentialV(r ) at small distances and the faster the correct
~14! decreases with increasing energy:dl(E)}1/E11a/2.

The case of attractive power-law potentialsV(r )
52z/r b (0,r ,`) with 0,b[2a,2, where there is
level crowding asE→20, can be examined along simila
lines. When solving the Schro¨dinger equation at small dis
tances~in the region where the classical principles do n
work!, we can discard the term with the energy,

xEl
(0)~r !5AAr JmS A8z

22b
r 12b/2D , m5

2l 11

22b
. ~15!
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TABLE I. The accuracy of MQM calculations of the asymptotic coefficients at zero for power-law potentialsV(r )5r a/a.

l a nr50 1 2 3 10

0 2 1.50225 1.83987 2.05704 2.22186 2.88969
2.8(23) 1.1(24) 2.0(25) 5.8(26) 9(28)

21 2.04124(21) 1.20962(21) 8.06872(22) 5.84237 1.59817(22)
1.0(22) 1.3(23) 5.2(24) 2.1(24) 6.1(26)

1 1 9.23722(21) 1.20480 1.39708 1.54805 2.19768
6.4(23) 2.8(23) 1.6(23) 1.1(23) 2.0(24)

2 1.22658 1.93940 2.56558 3.14218 6.53295
23.0(24) 23.5(25) 28.5(26) 23.0(26) 26(28)

21 9.01601(23) 6.98771(23) 5.35462(23) 4.21685(23) 1.40121(23)
2.8(22) 6.3(23) 2.2(23) 1.0(23) 4.1(25)

2 1 4.36675(21) 6.77368(21) 8.81660(21) 1.06500 2.08230
27.9(24) 22.6(23) 21.9(23) 21.3(23) 23.0(24)

2 7.75759(21) 1.45131 2.17697 2.94763 9.23898
5.5(23) 8.1(24) 2.3(24) 8.6(25) 2.3(26)

21 2.20092(24) 2.03986(24) 1.73900(24) 1.46814(24) 5.84389(25)
1.4(22) 2.2(23) 6.0(24) 2.1(24) 2.6(26)

3 1 1.66280(21) 2.93371(21) 4.19592(21) 5.45822(21) 1.43173
24.6(22) 22.6(22) 21.7(22) 21.2(22) 22.5(23)

2 4.14661(21) 8.79628(21) 1.45870 2.14715 9.69891
1.6(22) 2.9(23) 9.2(24) 3.8(24) 1.2(25)

Note: For givennr and l , the first row gives the exact value of the coefficientcnr l
and the second, the errorhnr l

from ~20!. Notation:a(b)[a310b.
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Hence

cnr l
(0)5

2(m11)/2zm/2v r
1/2

G~m11!~22b!m11/2, ~16!

with the frequencyv r given by the same expression in~4!.
Allowing for the term with the energy by perturbatio

techniques, we arrive at formula~12!, but now

dl~E!5
4pE

sinpm

~22b!b/(22b)

~8z!2/(22b) E
0

`

z(21b)/(22b)

3Jm~z!J2m~z!dz.

In particular, for the Coulomb potentialV(r )52Z/r we
have

cnl
WKB5Zl 13/2

2l 11

~2l 11!!n3/2 H 12
l ~ l 11!~2l 11!

12n2 J , ~17!

which coincides with the expansion of the exact coeffici
cnl at zero~see Ref. 2!.

We illustrate the accuracy of the quasiclassical results
the example of power-law attractive potentials,V(r )
5r a/a. For a.0 we use Eqs.~1!, ~2a!, and~10! to find the
quasiclassical expressions for the energy levels and
asymptotic coefficients at zero:

Enr l
WKB5FeaS nr1

1

4
~2l 13! D G2a/(21a)

, ~18!

ea5A2p a121/a
G~~213a!/2a!

G~1/a!
,

cnr l
(0)5A aea

21a

~Enr l
WKB!b l

2(2l 21)/4G~ l 13/2!
, b l5

l 112a21

2
,

~19!

where we have allowed for the fact thatv r5]Enr l
/]nr ; the

corrections tocnr l
WKB are given by formulas~13! and ~14!.
t

y

he

A comparison of the results of calculatingcnr l
WKB and the

cases witha521, 1, and 2 is done in Table I, which list
the values of the exact asymptotic coefficientscnr l

and of the
ratio

hnr l
5

cnr l
(0)

cnr l
$11dl~Enr l

WKB!%21. ~20!

For s states in the case of Coulomb and linear potentials,
asymptotic coefficients~12! coincide with the exact coeffi-
cients,

cnr0
5

2

~nr11!3/2 ~a521!, cnr0
5& ~a51!,

and therefore are not listed in Table I.
Table I shows that even for states withnr;1, the error

of the MQM formulas is usually no more than a few perce
and rapidly decreases with increasingnr . Note the important
role of the correctiondl(E). Formulas~10! and ~15! of the
zeroth approximation are asymptotically exact in the lim
nr→`, but fornr;1 andlÞ0 they produce large errors an
can only be used for making estimates@see, e.g., the contri
bution of dl to ~17!#.

Several remarks concerning the quantization rule~1! and
~2a! are in order. The quantization rule suggests that lev
with the same values ofN52nr1 l are, in a certain sense
degenerate;3! this effect is similar to the well-known acciden
tal degeneracy of the energy spectrum of a spher
oscillator.2,3,5 Figure 1 illustrates this fact, depicting the e
ergy spectrumEnr l

of the lower states in the case of powe
law potentials with the exponentsa51 and 4. Clearly, for a
given value ofN, the proximity of levels with different val-
uesl is violated only as the orbital angular momentum g
larger~but thes andd levels and the energies of thep and f
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FIG. 1. The energy spectrumEnr l
of the lower states in the

potentialV(r )5r a/a with a51 and 4. Dots depict the exac
energy values, with the respective values of the orbital an
lar momentuml and the quantum numberN52nr1 l placed
near the dots. The symbol3 denotes the quasiclassical valu
provided by~18!.
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states are always close to each other; asN increases, the
levels with larger values ofl begin to move closer to the
these levels!.

Now let us study the corrections to the quantization r
~1! and ~2a! that arise when we allow forV(r ) at small
distances. Note that in the quasiclassical regionr @n2/k ~but
whereV(r ) is still much smaller thank2) only the second
term in the braces in~11! is important. This term correspond
to the correction to the phasef0(r ) that arises because th
potential V(r ) has been taken into account in~6! and ~7!.
Equating~6! and ~11! yields

d l
(1)5

1

p E
0

r

$prV~r !Jn
2~kr !1Ak222V~r !2k%dr ~21!

for r @n2/k. In the case of power-law potentials wit
a,1, the integral becomes a constant, which is independ
of r and modifies the quantization rule~1! and ~2a!:

E
0

r 0A2@Enr l
WKB2V~r !#dr

5pFnr1
l

2
1

3

4
1d l

(1)~Enr l
WKB!G . ~22!

For instance, for potentials with a Coulomb singular
V(r )52Z/r asr→0, the integration in~21! can be extended
to r 5`. We obtain

d l
(1)~E!5

1

pkaB
@ ln kaB111c~ l 11!#, kaB@1, ~23!

whereaB51/Z is the Bohr radius, andc(z) is the logarith-
mic derivative of the gamma function.

3. For the funnel potential

V~r !52
Z

r
1gr, 0,r ,`, ~24!

the quantization integral~1! can be calculated analytically
which makes it possible to easily study the energy spect
Enr l

~see Appendix A!.
For states withEnr l

.0, the asymptotic coefficients a
zero can be calculated by the formula

cnr l
WKB5cnr l

(0)~11dl
(C)1dl

(L)!, ~25!

where the coefficientscnr l
(0) have been defined in~10!, the

correctionsdl
(C) anddl

(L) refer to the Coulomb and linear~in
e

nt

m

r ) parts of the potential~24! and are given by~14!, and the
energyEnr l

WKB is determines by the quantization rule~22! with

phase~23!.
However, for potentials with a Coulomb singularity

zero, formulas~12! and ~25! can modified even more by
allowing exactly for the effect of this potential at any ener
values E5k2/2.0. Here the solution of the radia
Schrödinger equation is given by the regular Coulomb fun
tion Fl(2Z/k,kr); see Ref. 14. Using the asymptotic expre
sion of this function asr→0, we can show that if we allow
for the Coulomb potential at small distances Eqs.~12! be-
come (q51/kaB)

cEl5cEl
(0)H 2pq

12exp~22pq!Y )
s51

l S 11
q2

s2 D J 1/2

~26!

~for l 50 the product must be set to unity!. Replacing
cnr l

(0)(11dl
(C)) in ~25! with ~26!, we arrive at the modified

expression for the asymptotic coefficientcnr l
WKB .

A comparison of the results of MQM calculations of th
energy levels and the asymptotic coefficients for the fun
potential with the exact values obtained by solving t
Schrödinger equation numerically is done in Table II fo
l 50, 1, and 2. Here we have taken the valuesZ50.68812
andg51/2, which are used in QCD to describe the states
charmoniumcc̄ ~see Ref. 12!. The accuracy of the calcula
tions is characterized by two quantities,

TABLE II. The results of MQM calculations for the funnel potential~24!;
Z50.68812 andg51/2.

l 50

nr 0 1 2 3 4

Enr l
0.49018 1.61443 2.42105 3.10454 3.7165

«nr l
20.132 25.0(23) 21.6(23) 27.9(24) 24.7(24)

cnr l
2.08332 1.66335 1.53617 1.46909 1.4258

hnr l
4.0(22) 5.1(23) 2.3(23) 1.4(23) 9.8(24)

l 1 2

nr 0 1 2 0 1 2

Enr l
1.30557 2.14835 2.85424 1.84780

«nr l
23.8(22) 21.4(22) 27.2(23) 24.6(22)

cnr l
0.89695 1.07009 1.18071 0.31027 0.45700 0.574

hnr l
1.1~22! 9.0~23! 6.2~23! 6.8~22! 3.4~22! 2.2~22!
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enr l
5

Enr l
WKB

Enr l
21, hnr l

5
cnr l

WKB

cnr l
21. ~27!

Table II shows that the quasiclassical valuesEWKB and
cWKB are accurate to within a few percent~with the excep-
tion of the energy of the ground state, for whichkaB

51.44, while, strictly speaking, the quantization rule~22!
and~23! can be applied only ifkaB@1). Thus, for the funnel
potential, as in the case of power-law potentials, MQM p
vides acceptable accuracy in calculating the energy le
and the asymptotic coefficients at zero.

4. We consider the bound states of a particle for the c
of potentials that vanish at infinity:V(r )52Z/r 1o(1/r 2) as
r→` with Z>0. Here the asymptotic expression for the no
malized wave function is

ck lm~r !'2Ck lk
3/2~kr !n21e2krYlm~ r /r ! , ~28!

wherek5A22E, E is the energy level, and the paramet
n5Z/k is the effective principal quantum number~also of-
ten denoted byn* ). The asymptotic coefficientsCk l ~as well
as the asymptotic coefficients at zero@Eq. ~5!# are often en-
countered in quantum mechanics and its applications.
quasiclassical approximation for these coefficients was s
ied in Ref. 15. We have found it convenient to write t
quasiclassical formulas for theCk l and the quantization rule
proper in a more general form.

Let

V~r !52
g

2R2 v~x!, x5
r

R
, ~29!

whereR is the characteristic radius,g is the dimensionless
coupling constant, and the functionv(x) determines the
shape of the interaction potential. Then the quantization c
dition and the expression for the asymptotic coefficie
become4!

Ag Q~z!5N, N5nr1g l , ~30!

Ck l
WKB5F2

8pNzQ8~z!

Q~z! G21/2FN
zx0

Q~z!G
2sN

3expH N
J~z!

Q~z!
2

~ l 11/2!2

N
J1~z!Q~z!J , ~31!

where s5v`/2zQ(z), z5kR/Ag, EN
WKB52gz2(2R2)21,

v`5 limx→` xv(x)52ZR/g, and we have introduced th
functions

Q~z!5
1

p E
0

x0(z)
Av~x!2z2dx, v~x0!5z2, ~32!

J~z!5zx0~z!2E
x0(z)

` FAz21v~x!2z1
v`

2zxGdx, ~33!

J1~z!5
1

2 Ex0(z)

` dx

x2Az22v~x!
, ~34!

which are determine byv(x) ~the shape of the potential!; see
Appendix B.
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These formulas provide an easy way of calculating
energy spectrum and the asymptotic coefficients. Let us c
sider several examples in which the calculations can be d
analytically.

~1! For the attractive Coulomb potential,v(x)51/x, g l

5 l 11, N[n5nr1 l 11 is the principal quantum numbe
and Z5g/2R. A simple calculation by the above formula
yields

Q~z!5
1

2z
, x0~z!5

1

z2 , s51,

J~z!5
112 ln 2

2z
, J1~z!5z.

This implies that the exact spectrum of the Coulomb level
En52Z2/2n2 and that the MQM formula for the asymptoti
coefficient is

Cnl
WKB5

1

A8pn
S 2e

n D n

expH 2
~ l 11/2!2

2n J . ~35!

A comparison with exact values of the coefficientsCnl taken
from Ref. 2 is done in Table III, which lists the values
h̃nr l

5Cnl
WKB/Cnl21. Note that

Cnl
WKB

Cnl
512

n

24@n22~ l 11/2!2#
1¯ , n→`. ~36!

We now turn to short-range potentials, for whic
Z5v`50.

~2! For the Hülthén potential,v(x)5(ex21)21, g l5 l
11, N[n5nr1 l 1151,2,... ~as for the Coulomb poten
tial!, x0(z)5 ln(11z22), and

Q~z!5A11z22z, J~z!52S tanh21 y

y
2 ln 2zD , ~37!

where y5z/A11z2, 0,z,`. The quantization condition
~30! yields

z5
1

2 SA g

gn
2Agn

g D , En
WKB52

~g2n2!2

8R2n2 ~38!

for n,Ag ~the values ofg equal togn5n2 correspond to
occurrence of a bound state!. For s levels, the quasiclassica
MQM spectrum coincides with the exact spectrum.9

The functionsQ and J can also be calculated analyt
cally for the potentialsv(x)51/cosh2 x and exp(2x). For
further details see Appendix B.

5. Let us briefly discuss the application of MQM to th
relativistic case. We limit ourselves to the Salpeter equat

TABLE III. The accuracy of MQM calculations of the asymptotic coeffi
cient at infinity.

l nr50 1 2 3 10

0 24.30(22) 22.09(22) 21.39(22) 21.04(22) 23.8(23)
1 2.85(22) 27.5(24) 25.0(23) 25.6(23) 23.3(23)
2 0.147 4.53(22) 1.82(22) 7.9(23) 21.8(23)
3 0.306 0.118 5.88(22) 3.33(22) 1.5(23)

Note: This table lists the values ofh̃nr l
in the case of a Coulomb potentia
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for two relativistic quarks in a state with the orbital angu
momentuml in the center-of-mass reference frame:5!

$Ap21m1
21Ap21m2

21V~r !%cn5Mncn . ~39!

The quasiclassical mass spectrumMn is determined by
the quantization rule~1!, in which with allowance for rela-
tivistic kinematics we have

p̃2~r !5
1

4M2 @M22~m11m2!2#@M22~m12m2!2#,

~40!

where M5Mn2V(r ), and V(r 0)5Mn2m12m2 , with r 0

the turning point. For the confinement potentialV(r )5sr ,
the quantization integral~1! becomes

J5E
0

r 0
p̃~r !dr5

~m11m2!2

4s E
1

e2 dx

x
A~x21!~x2m2!,

x5FMn2sr

m11m2
G2

,

and can be calculated analytically:

J5
~m11m2!2

4s H ~e221!j2~11m2!ln~11j!

2
1

2
~11m!2 ln

e221

12m2 12m ln
e

j2mJ ,

e5
Mn

m11m2
, m25S m12m2

m11m2
D 2

, j5Ae22m2

e221
,

~41!

with e.1>m>0 and j.1. The equationJ5p(nr1 l /2
13/4) for Mn can easily be solved numerically.

If m11m2!Mn , then~41! yields

Mn
222~m1

21m2
2!S ln

2Mn

m11m2
1

1

2D
12F S m1

m11m2
D 2

ln
2m1

m11m2

1S m2

m11m2
D 2

ln
2m2

m11m2
G1OS ~m1

21m2
2!2

Mn
2 D

54psS nr1
l

2
1

3

4D , ~42!

wherenr is the radial quantum number. Note that the co
stantg in ~42! corresponds to the value adopted in MQM f
potentials that are finite at zero@see Eq.~2a!#.

The above formulas become much simpler in the cas
quarks with equal masses and also in the limitm1 /m2→0.
Thus, form15m25m we havep̃5AM224m2/2, and

MnAMn
224m224m2 cosh21

Mn

2m
5~4nr12l 13!ps

~43!

~see Refs. 20 and 21!. In particular, atm50 ~massless
quarks!, the quasiclassical spectrum can be found explici
-

of

:

Mn5Mn
(0)5A~4nr12l 13!ps, n50,1,2,... . ~44!

A comparison of~44! with the results of numerical calcula
tions done by Ceaet al.20 and Basdevant and Boukraa21

shows that the accuracy of the quasiclassical approxima
is impressive: even for the lowest state withnr5 l 50 the
error d does not exceed 3% and rapidly decreases with
creasingn, while although the accuracy decreases with
creasing l , for l<3 and nr.0 it is still satisfactory (d
<5%). Thus, MQM may be of use also in studying relati
istic wave equations.

6. Here are some final remarks.
~1! In MQM, the quasiclassical momentum is written

the same way as in the one-dimensional case, but the
stant g in the quantization rule changes. By excluding t
centrifugal potential from the quasiclassical momentum o
can obtain analytic formulas for the energy spectrum and
wave functions~in particular, for the asymptotic coefficient
at zero and infinity! for states with finite orbital angular mo
menta.

~2! The MQM formulas are asymptotically exact fo
nr@1,l . To make then valid in the region of small values
the radial quantum number,nr;1, one must allow for cor-
rections that depend on the behavior of the potential at sm
distances.

~3! Such corrections are especially important in calcul
ing the asymptotic coefficients at zero. In the case of smo
potentials, allowing for these corrections ensures a accu
to within a few percent in calculations of nodelessp, d, and
f states.

The authors are grateful to Yu. A. Simonov for discu
sions of the results. The work was partially supported b
grant from the Russian Fund for Fundamental Resea
~Grant 98-02-17007!.

APPENDIX A

In the case of the funnel potential~24!, the quantization
integral ~1! can be calculated analytically,6! which yields an
equation for the energy spectrum,

Z

k 2F1S 1

4
,
3

4
;2;2

16gZ

k4 D5N, ~A1!

whereN5nr1g l , andk5A22E. Let us examine two ex-
treme cases.

~a! For deep levels, which are determined primarily
the Coulomb potential (E,0, and N[n is the principal
quantum number!, Eq. ~A1! yields

kn5
Z

n S 12
3

2
l2

1

4
l22

39

16
l32¯ D , l→0, ~A2!

wherel5n4g/Z3 is the effective~dimensionless! coupling
constant. The perturbation-theory series for screened C
lomb potentials of the general form

V~r !5
Z

r (
k50

`

vkr
k
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has been constructed by McEnnanet al.24 and Grant and
Lai.25 Their results imply that

knl5
Z

n F12
1

2
~32r2!l2

1

4 S 123r212r42
5

2n2Dl2

2
1

16S 39220r2111r4214r61
6015r2

n2 Dl32¯G ,
~A3!

with r5Al ( l 11)/n. For nodeless (r2512n21) states this
expansion agrees with the one in Ref. 26. A comparison
~A2! and~A3! shows that the quasiclassical equation~A1! is
a good approximation forn@1,l and especially fors states.

~b! The other extreme case,Z→0, E.0, and N5n
2(2l 11)/4, requires an analytic continuation of Eq.~A1! to
positive energy valuesE[e/2.0, which can be done usin
formula 15.3.21 of Ref. 14:

Z

~e2116gZ!1/4 2F1S 1

2
,
1

5
;2;

1

2 F11
e

~e2116gZ!1/2G D5N.

~A4!

Hence

e5e0$112z@ ln z2~2 ln 211!#1O~z2 ln z!%, ~A5!

e05~3pgN!2/3, z5
Z

~2pN!4/3g1/35
1

@~3p!4l#1/3,

~A6!

with e0 coinciding~at l 50) with the quasiclassical spectru
in the linear potential. The expansion~A5! contains the term
z ln z, which is nonanalytic inz. However, allowing for the
correction~23!, which in our case is equivalent to replacin
N with

NH 12
Z

pNe0
1/2F ln

Z

e0
1/2212c~ l 11!G J ,

balances the effect of this term, and the final result is

e5e0$122z@ ln~3pN!12 ln 22c~ l 11!#1O~z2!%.
~A7!

Thus, the correction~23! to the quantization rule no
only yields qualitative agreement between the quasiclass
and exact spectra but also ensures a correct analytic de
dence of the energy levels on the parameters that deter
the behavior of the potential at small distances.

APPENDIX B

Let us examine the general properties of the quantiza
integral Q(z). Suppose that in~29! we havev(x)'ax2r

→` as x→0, 0,r,2 ~we assume thatv(x).0 and
v8(x),0 for 0,x,`). Then we havex0(z)}z22/r as
z→` and

Q~z!'a1z2(22r)/r, a15a1/r G

S 22r

r D
2ApG~r21!

. ~B1!
f

al
en-
ine

n

But if the potential is finite at zero,v(0)5v0 , the only val-
ues ofz that Eqs.~30!–~34! contain are those from the in
terval (0,z,Av0).

Another limiting case isv(x)'exp(2bxs) as x→`.
Herez→0 andx0(z)}(2 ln z)1/s, so that

Q~z!5Q~0!2b1z~2 ln z!2(12s)/s1¯ , ~B2!

Q~0!5
1

p E
0

`
Av~x!dx, b15

1

sb1/s ,

J~z!5c1z~2 ln z!1/s1¯ , c15S b

2D 21/s

. ~B3!

We illustrate these formulas using the examples of
Yukawa and Hu¨lthén potentials. In the first casev(x)5(ex

21)21, r5s5a5b51, anda151/2, so that

Q~z!5H 12z1
1

2
z21¯ , z→0,

1

2z
2

1

8z3 1¯ , z→`,

~B4!

and in the secondv(x)5e2x/x, so that

Q~z!5HA2

p
2z1¯ , z→0,

1

2z
2

1

4z3 1¯ , z→`.

~B5!

Note that the analytic representation ofQ(z) in the case of
the Yukawa potential is complicated.9

Equation ~30! determinesz and the energy levelsE
52gz2/2R2 as functions of the coupling constantg. In par-
ticular, when thenl-level appears,

gnl
WKB5Q22~0!N2. ~B6!

Finally, we note that for attractive potentials with
power-law decrease at infinity,v(x)5ax2r asx→`, 0,r
,2, the law governing level crowding to the edge of t
continuum (n→`) can easily be derived:

Enl'2
A

2R2 g2/(22r)N22r/(22r), A5a1
2r/(22r) ~B7!

@the notation is the same is in~B1!#. In the limit r→2 the
levels in the energy spectrum move farther apart.

Note added in proof (May 20, 1999):The quasiclassica
quantization conditions for the Salpeter equation in the c
of two massless quarks and for a system consisting of a l
quark and a heavy antiquark were discussed by V.
Morgunov, A. V. Nefediev, and Yu. A. Simonov~submitted
to Phys. Lett. B! in connection with studies of a rotatin
string and the meson spectrum in QCD.

* !E-mail: karnak@theor.mephi.msk.su
1!In other words,p̃(r 0)50. Note that for attractive potentials monotonical

increasing withr , the left turning point in~1! is alwaysr 50.
2!Usually the integral in~12! needs to be regularized, and this can be co

veniently done by an analytic continuation in the parametera.
3!Of course, this result is approximate and the degeneracy is lifted in

higher orders of the quasiclassical approximation.
4!The first equation can be found in Ref. 9.
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5!We ignore spin in our calculations~for a derivation of Eq.~39! see Refs.
16 and 17!. The WKB method for fermions obeying the Dirac equatio
~including states lying near the edge of the lower continuum! was devel-
oped in Refs. 18 and 19.

6!Here we have used formula 15.3.1 from Ref. 14 and the quadratic Kum
transformation 15.3.19. Similar transformations have proved useful in
theory of the Stark effect in a strong field.22,23
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A phenomenological free-energy density for a mixture of a nematic with a cholesteric liquid
crystal is constructed on the basis of symmetry considerations. The possible spatially nonuniform
distribution of the individual components of the medium is taken into account. From a
microscopic description of a mixture of two cholesteric liquid crystals and a nematic with a
cholesteric liquid crystal, the dependence of the reciprocal of the pitch of the cholesteric spiral on
the concentration of the cholesteric liquid crystal is determined, and the results agree with
all experimental data. It is shown that at mesophase temperatures a spinodal decomposition, or
stratification, of the mixture is possible and the possible resulting supermolecular structures
are determined. Specifically, it is found that the spinodal decomposition in nematic–cholesteric
mixtures could be responsible for the distortion of the ideal spiral structure and for the
appearance of a second period in the director distribution. ©1999 American Institute of Physics.
@S1063-7761~99!01208-1#
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1. INTRODUCTION

Practical applications of liquid crystals are based on
variation of the space–time distribution of the director und
the action of external parameters — electric and magn
fields, light, mechanical stresses, and temperature. Cho
teric liquid crystals for information displays have foun
greatest applications in optics and thermography. The
quired working parameters can also be attained by vary
the internal characteristics of the mesophase — by add
external impurities, whose effect at the microscopic le
gives the required macroscopic behavior. The best kno
and best studied such media are induced cholesterics.
introduction of chiral impurities into a nematic liquid cryst
leads to spiral twisting of the mesophase with the pitch of
spiral inversely proportional to the impurity concentratio
When the concentration of the chiral additives is sufficien
high, we have nematic–cholesteric mixtures. Such mixtu
have found wide applications for information displays.1–8

The phenomenological theory of cholesteric liquid cry
tals has been well-developed a long time ago3–5 and is in
good agreement with experimental data. The situation
worse for the microscopic description of spiral twistin
mechanisms in nematic–cholesteric mixtures, where
character and strength of the interaction between the m
ecules of the nematic and chiral impurities must be ta
into account.9–22 The production of a supermolecular stru
ture of an induced cholesteric liquid crystal, investigated
de Gennes,2,3 presupposes that the chiral mixture embedd
in the nematic liquid crystal is capable of distorting the lon
range order. Since a nematic liquid crystal transfers st
torques under the combined action of the impurities, a n
supermolecular spiral structure is induced. This appro
presupposes that the regions of distortion of the orientatio
order overlap and that it is more suitable for describing
permolecular structures induced by macroscopic impurit
2791063-7761/99/89(8)/9/$15.00
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The induction of gyrotropy would be of a threshold charac
with respect to the concentration of impurities, since it wou
be determined by the efficiency of the interaction betwe
the macroimpurities via the distortion of the director field

A systematic analysis of the behavior of all macrosco
impurities as a whole embedded in a nematic liquid crys
was performed in Ref. 23, where the effective interact
energy between them via the elastic field of the distortions
the director is determined and the possible supermolec
structures induced by the macroimpurities are described
describe the behavior of the microimpurities embedded
the mesophase and also mixtures of individual liquid cr
tals, where the sizes of the molecules of the individual s
systems do not differ much, it is necessary to have a the
that takes into account the character and strength of the
termolecular interaction. This is the difference between
approach that we propose and the previously develo
approach.2

The objective of our work is to construct a systema
phenomenological theory of nematic–cholesteric mixtu
which take into account the possible induced supermolec
structures that are determined by the character of the in
molecular interaction. The well-developed statistical me
ods for describing solid interstitial or substitutio
solutions,24–26with allowance for the orientational order, ca
be used for this purpose and the most general dependen
the elastic constants of a mixture on the concentrations of
components can be determined. This makes it possibl
describe from a unified standpoint all existing experimen
data on the concentration dependence of the reciprocal o
pitch of the cholesteric spiral in nematic–cholesteric a
cholesteric–cholesteric mixtures.8,27–30The phenomenologi-
cal expression for the free energy of a nematic–cholest
mixture can also be written on the basis of general symm
considerations, which take into account the character of
physical quantities describing the medium.15 It is only nec-
© 1999 American Institute of Physics
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essary to take into account the fact that in mixtures th
exists, together with the director, another vector that cha
terizes the state of the medium — the gradient of the c
centration of individual components. Then, writing out
possible invariants, we obtain the phenomenological fr
energy density of the mixture. The possible supermolec
structures induced in the mixture can be determined by m
mizing the free energy obtained.

The introduction of chiral impurities induces a spir
twist of the nematic liquid crystal. This twist is of a non
threshold character, and for low cholesteric concentrati
the pitch of the spiral is inversely proportional to the conce
tration of the cholesteric liquid crystal. Analysis of the fre
energy of nematic–cholesteric mixtures shows that, toge
with the induction of gyrotropy, the conditions for a spatia
nonuniform distribution of the concentration of individu
components of the system can be realized in the medi
The existence of a diffusion mode in nematic–choleste
mixtures was indicated some time ago by Kats.31 The exis-
tence of a spatially nonuniform distribution of impurities
the induced cholesteric liquid crystal, in turn, can lead to
distortion of the ideal spiral structure and could be resp
sible for the appearance of a second, incommensurably la
period in the distribution in the angle of emergence of
director, which has already been observed exp
mentally.32–34 In the present paper, the conditions for t
appearance of new supermolecular structures in nema
cholesteric mixtures are determined and the temperature
concentration required for the individual subsystems in or
to observe these structures are estimated.

2. MICROSCOPIC APPROACH TO THE DESCRIPTION OF
LIQUID-CRYSTAL MIXTURES

In this section we shall briefly consider how the equat
for the phenomenological free-energy density for a mixt
of two liquid-crystal substances is derived from first pri
ciples. This will enable us to establish the general dep
dence of the Frank elastic constants on the concentratio
one component in the mixture. Let us consider a mesoph
with a combination of impurities, whose physical propert
are different from those of the liquid-crystal molecules. Fo
microscopic description of such a medium, we shall emp
the well-developed approach24–26 in the theory of multicom-
ponent subsitution solution with allowance for an addition
degree of freedom — the orientation of the molecules.
shall therefore assume that initially the centers of gravity
the rod-shaped molecules were located at the sites of a
tice, whose form does not play a fundamental role up
switching to the continuum approximation. This model
completely identical to the model of a multicomponent allo
the only difference being that each site is occupied b
different kind of molecule, each characterized by a conti
ous series of orientational states. The configurational Ha
tonian of such a system, taking into account the orienta
of the molecules, can be written in the form
e
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H5
1

2 (
a,a8,R,R8

E dVm,m8Va,a8~m,R,m8,R8!

3ca~m,R!ca8~m8,R8!, ~1!

where the indexa determines the kind of molecule, the ve
tor m8 characterizes the orientation of the molecule,R is the
radius vector of the position of the molecule,*dVm,m

5*dVm*dVm8 is the integral over possible orientations
the molecules,Va,a8(m,R,m8,R8) is the pair interaction en-
ergy between molecules of thea anda8 kinds with orienta-
tions m andm8 located at the pointsR andR8, ca(m,R) is
a random function taking on the values 1 or 0, depending
whether or not a particle of thea species with orientationm
is located at the pointR. The condition of conservation o
the total number of particles assumes the form

N5(
a,R

E dVmca~m,R!, ~2!

where the summation extends over all sites of the ini
lattice. The partition function of the system is described
the Hamiltonian~1! with a fixed number of particles:

Z5d~N2N~ca!! (
$ca50%

$1%

expH 2
H

u J .

The sum is calculated taking into account all possible c
figurations of the particles. The summation over all possi
distributions of the particles in the system corresponds t
path integral over the realizations of the distributio
ca(m,R). Following Refs. 25 and 26, the partition functio
of the canonical ensemble can be represented as

Z5Z0 expH 2
1

2u (
a,a8,R,R8

E dVm,m8Va,a8

3~m,R,m8,R8!^ca~m,R!&^ca8~m8,R8!&J
3K expH 2

1

2u (
a,a8,R,R8

E dVm,m8Va,a8

3~m,R,m8,R8!Dca~m,R!Dca8~m8,R8!J L , ~3!

where^ca(m,R)& is the average occupation number of mo
ecules of thea kind with orientationm at the siteR, and
Dca(m,R)5ca(m,R)2^ca(m,R)&. The symbol ^ . . . &
means averaging over an ensemble of noninteracting
ticles, andZ0 is the partition function that determines th
entropy component of the free energy. The free energy c
responding to~3! is25,26

F5u(
a,R

E dVm^ca~m,R!& ln^ca~m,R!&

1
1

2 (
a,a8,R,R8

E dVm,m8Va,a8~m,R,m8,R8!

3^ca~m,R!&^ca8~m8,R8!&2u
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3 lnK expH 2
1

2u (
a,a8,R,R8

E dVm,m8Va,a8

3~m,R,m8,R8!Dca~m,R!Dca8~m8,R8!J L . ~4!

In the mean-field approximation, if we use the therm
dynamic perturbation theory, we can separate explicitly
free energyFc and the correlation energyFcor as

F5Fc2Fcor,

where

Fc5u(
R

$^c1~m,R!& ln^c1~m,R!&

1^c2~m,R!& ln^c2~m,R!&%

1
1

2 (
R,R8

E dVm,m8V1,1~m,R,m8,R8!^c1~m,R!&

3^c1~m8,R8!&12V1,2~m,R,m8,R8!^c1~m,R!&

3^c2~m8,R8!&1V2,2~m,R,m8,R8!^c2~m,R!&

3^c2~m8,R8!&, ~5!

Fcor5u (
n51

`
Mn~x!

~2u!nn!
, ~6!

x5
1

2E dVm.m8Va,a8~m,R,m8,R8!Dca

3~m,R!Dca8~m8,R8!,

M1~x!5^x&, M2~x!5^x2&2^x&2,

and Mn(x) are semi-invariants of ordern. In what follows,
we shall stay within the mean-field approximation a
switch to a continuum description of the system by replac
summation by integration

(
R

→rE dV, r5
N

V
.

In addition, we assume that the spatial and orientational
tributions of the particles are independent of one anoth
Then the total distribution function can be represented a
product of the spatial concentration and orientational dis
bution function as

^c1~m,R!&5~12c~R!! f ~m,R!,

^c2~m,R!&5c~R!g~m,R!,

where c(R) is the concentration of one component, a
f (m,R) andg(m,R) are the orientational distribution func
tions of the liquid-crystal and impurity molecules, respe
tively. We assumec(R) to be the concentration, or relativ
fraction, of the cholesteric component in a nemati
cholesteric mixture. For our further arguments we assu
that the orientational distribution functions of the nema
liquid crystal and the impurity are identical, so that only t
spatial distribution functions of the concentration differ
-
e

g

s-
r.
a

i-

-

e

t

each point. This means that the nematic liquid crystal and
impurity molecules are characterized by the same order
rameter. This assumption is valid if it is assumed that
molecules of the impurity and the nematic liquid crystal a
indistinguishable with respect to geometric dimensions a
the character of the intermolecular interaction. All these
sumptions are valid for typical nematic–cholesteric mixtur
Averaging the intermolecular interaction potential over t
orientational distribution functions causes the appearanc
a product of the squared order parameter and an effec
interaction, which depends on the director vector at differ
points of the medium:9–18

s2Ṽi j ~r ,n~R!,n~R1r !!5E dVm,m8Vi j ~m,R,m8,R8! f

3~m,R! f ~m8,R8!. ~7!

Taking this fact into account and settingf (m,R)
5g(m,R), we can write the free energy of a liquid cryst
with an impurity in the form

Fc5urE dRc~R!ln c~R!1~12c~R!!ln~12c~R!!

1
r2s2

2 E dRE dr ~12c~R!!

3~12c~R8!!Ṽ1,1~r ,n,n8!12c~R8!

3~12c~R!!Ṽ1,2~r ,n,n8!c~R!c~R8!Ṽ2,2~r ,n,n8!.

~8!

Analysis of this formula makes it possible to understand
dependence of the elastic constants of the liquid-crystal m
ture on the concentration of one component. It can be c
cluded immediately that this dependence has the form

Ki j ~c!5~12c!2Ki j
a 12c~12c!Ki j

ab1c2Ki j
b , ~9!

whereKi j
a and Ki j

b are the elastic constants of the first a
second components, respectively; they are due to the in
molecular interaction of molecules of the same kind. T
elastic constantsKi j

ab are due to the interaction between mo
ecules of different kinds. In the most general case the a
age intermolecular interaction potential can be written as11–18

V~n,n8,r !5I ~n•n8,n•r ,n8–r ,r !

1J~n–n8,n–r ,n8–r ,r !•~n3n8!•r .

Here the first term describes the orientational order of
molecules, and the second term is responsible for the app
ance of the Lifshitz invariantn3curln or for inducing a
cholesteric spiral. The second term is absent in nematic
uid crystals, and therefore for nematic–cholesteric mixtu
we can immediately write the dependence of the recipro
of the pitch of the spiral on the concentration of the chol
teric liquid crystal as
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qnem2chol5
K2~c!

2K22~c!

5
2c~12c!K2

ab1c2K2
b

~12c!2K22
a 12c~12c!K22

ab1c2K22
b

, ~10!

whereK2 is the elastic constant in the Lifshits invariant. Th
formula describes the entire diversity of experimental d
with the corresponding parameters.8,27–30For low concentra-
tions the linear dependence of the reciprocal of the pitch
the spiral on the concentration of the cholesteric liquid cr
tal is determined by the chiral interaction between molecu
of cholesteric and nematic liquid crystals~CLCs and NLCs!.
If it is assumed that the constant in the denominator va
very little, K22(c)' const, then a simple analysis shows th
when the signs of the constantsK22

ab and K22
b are different,

i.e., the signs of the chiral interactions CLC–NLC and CLC
CLC are different, the dependenceq(c) has a maximum
(K22

ab.0) at the concentration

cmax5
K2

ab

2K2
ab2K22

. ~11!

When the concentration is doubled,c052cmax, a transition
of the mixture into the nematic phase is observed, and
high concentrations the twist changes sign. This situa
occurs for mixtures of right-hand cholesterics with nema
liquid crystals, for example, for a mixture of MBBA with
cholesteryl chloride.27 However, if the signs of the constan
K22

ab andK22
b are the same butuK2

abu.uK22u, then the func-
tion q(c) possesses a maximum at the pointcmax which does
not vanish anywhere. This corresponds to a mixture of c
lesteryl propionate with butoxybenzylidene-n-butylaniline.8

For uK2
abu,uK22u the reciprocal of the pitch increases mon

tonically with the cholesteric concentration and reaches
maximum value at the reciprocal of the pitch in the pu
cholesteric liquid crystal. This is observed for a mixture
cholesterylpropioanate with butoxybenzylideneaminob
zonitrile.8

A similar formula can be written for the reciprocal of th
pitch of the spiral in a mixture of two cholesteric liqui
crystals:

qchol2chol5
K2~c!

2K22~c!

5
K2

a~12c!21K2
ab2c~12c!1K2

bc2

K22
a ~12c!21K22

ab2c~12c!1K22
b c2

. ~12!

The denominator in this formula is always positive, and a
parently it is essentially independent of the concentrati
since it determines the orientational order of the molecule
a preferred direction. The numerator is determined by
chiral interaction between molecules in a manner so that
constantsK2

a , K2
b , and K2

ab can have different signs. De
pending on the magnitude of these constants, various ex
mental situations, which are described in detail in Ref. 8,
arise. For example, forK2

a2K2
ab.0 andK2

b2K2
ab.0 the

concentration dependence of the reciprocal of the pitch of
spiral has a minimum. If the conditionsK2

a ,K2
b.0 and
a

f
-
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ts

f
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-
,

in
e
e

ri-
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K2
ab,0 are satisfied, then for sufficiently largeuK2

abu the
dependence of the reciprocal of the pitch vanishes twice
manner so that the mixture is left-handed at low and h
concentrations and right-handed at intermediate concen
tions. This situation occurs for a mixture of cholesteryl-2-~2-
ethoxy-ethoxy!ethyl carbonate with amyl-n-~4-cyanoben-
zylideneamino! cinnamate.8

3. SUPERMOLECULAR STRUCTURES IN
NEMATIC–CHOLESTERIC MIXTURES

We now give a phenomenological description of
nematic–cholesteric mixture and find the possible super
lecular structures in it. Using the long-wavelength expa
sions of the director and concentration in the form

na~R8!5na~R1r !5na~R!1r b]bna~R!

1
1

2
r br g]b]gna~R!,

c~R8!5c~R1r !5c~R!1r b]bc~R!1
1

2
r br g]b]gc~R!,

we obtain from Eq.~8!, after some simple transformation
the final expression for the free-energy density of a nem
with a cholesteric liquid crystal, with allowance for the po
sible spatially nonuniform distributions of the concentrati
and director and all symmetry invariants of the system:

Fc5M ~¹a!22Na21Da41~K111w1a!~div n!2

1~K221w2a!~n3curln!21~K331w3a!

3~n3curln!21~K21va!~n3curln!

1A1div n~n–¹a!

1A2~n3curln!•¹a1A3~n•¹a!2. ~13!

Herea is the deviation of the cholesteric concentration fro
a uniform background:

c~R!5c01a~R!.

The spatially nonuniform distribution of individual com
ponents presumes that the medium is separated into sec
with different concentrations of the chiral~or nematic! mol-
ecules. In this stratification there are no sharp bounda
between regions with different concentrations. This is
smooth spatial redistribution of the concentration of in
vidual components in the sample. Both components m
well, but for a certain character and strength of the interm
lecular interaction it is energetically more favorable for the
to produce a nonuniform distribution of the individual co
stituents of the medium. This process proceeds purely
diffusion, but it is caused by the internal intermolecular i
teractions. A similar phenomenon is observed in solid int
stitial and substitution solutions,24 the only difference being
that in the latter there is spatial order, i.e., a crystal latti
while in liquid-crystal mixtures there is no spatial order b
there is orientational order of long molecules around a p
ferred direction — the director vector.

The quantitieswi and v are derivatives of the corre
sponding Frank constants at the equilibrium concentratio
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wi5S dKi~c!

dc D
c0

and v5S dK2~c!

dc D
c0

.

All information about the induction of gyrotropy is containe
in the constantK2(c), which for a mixture depends on th
concentration more strongly than all other Frank consta
Therefore it can be asserted thatuwi u!uvu. In what follows
we assume thatwi50.

The expression~13! is the Landau free energy of
nematic–cholesteric mixture at temperatures below the s
odal decomposition temperature of the mixture. It conta
two order parameters — the director and the concentra
nonuniformity. The phenomenological constantsM, Ai , and
Kii are determined in terms on the microscopic interact
potentials and, in order of magnitude, are proportional
U0 /l0 , whereU0 is the characteristic intermolecular inte
action energy, andl0 is the average distance between t
molecules. For example, for the interactionV(r )(m–m8)2

we obtain the following expression in the one-constant
proximation:

K52
4p

3
r2s2E

l0

`

V~r !r 4dr.

Similarly, using the chiral interaction potentialW(r )
3(m–m8)(m3m8)•r, we obtain the constantK2 in the form

K252
4p

3
r2s2E

l0

`

W~r !r 4dr.

From physical considerations the constantN should have the
form

N5a~T* 2T!,

whereT* is the spinodal decomposition temperature of
given mixture in the isotropic phase. In other words, t
temperatureT* would be the spinodal decomposition tem
perature if it were higher than the temperature of
nematic–cholesteric mixture — isotropic liquid transitio
This temperature does not depend on the orientational o
parameters and is determined exclusively by the part of t
microscopic interaction potential between two molecules t
does not depend on the orientation of the molecules. Us
the second concentration derivative of the first entropy te
in Eq. ~8!, we estimate this temperature to be

T* .
U0

kb
c~12c!.

The characteristic molecular interaction energy at a dista
equal to the average range of the molecular forces
U0;0.0120.1 eV, which gives the estimateT* ;(102

2103)c(12c) K. It should be noted that the phenomen
logical expression for the free-energy~13! could be written
immediately without invoking the microscopic theory. Th
free energy should contain invariants with derivatives of
director and concentration of degree no higher than sec
Here we have restricted the analysis to terms that are
total derivatives. However, invoking the microscopic theo
we can put in a more concrete form the dependence of
elastic constants and the spinodal decomposition tempera
s.
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on the concentration of the cholesteric liquid crystal. No
we can study directly the supermolecular structures that
possible in nematic–cholesteric mixtures.

3.1. Supermolecular structures along the axis of the spiral

Let us consider the expression~13! in the one-constan
approximation for the case where all variables depend o
on the coordinatez along the axis of the spiral. The directo
can be represented as

n5~cosw cosu, sinw cosu, sinu!.

Then the free energy can be rewritten as

Fc5M ȧ22Na21Da41K~ u̇21cos2 u•ḟ2!2~K21va!

3cos2 u•ḟ1
DA

2
sin~2u!• u̇ȧ1A3 sin2 u•ȧ2, ~14!

DA5A12A2 .

We see that the twistḟ enters by itself as an independe
variable. For this variable the Euler–Lagrange equation
therefore be written in the form

]Fc

]ḟ
50.

This leads to the following relation between the local twist
the pointz and the concentration at this point:

ḟ5
K21va

2K
. ~15!

This relation shows that the concentration and director d
tributions are related to one another, and to determine e
librium concentration distribution this expression for th
twist must be substituted into the initial functional~14!. The
free energy density will then depend on the two variableu
anda. The appearance of the concentration nonuniformitya
below the spinodal decomposition temperature can cause
director to leave the nematic–cholesteric plane. We ass
that the angleu of emergence of the director from the ch
lesteric plane is small. Then, expanding in powers ofu up to
the quadratic term and substituting the expression~15! for
the twist, we can write the free-energy density of the mixtu
in the form

Fc2F05M ȧ22Ña21Da41K u̇21
~K21va!2

4K
u2

1DAuu̇ȧ1A3u2a2. ~16!

HereF052Kq2 is the free-energy density of an ideal spira
we took into account the normalization condition*a(z)dz
50. As one can see from this expression, the local rela
between the concentration and the twist~15! leads to renor-
malization of the coefficientN and a decrease of the spinod
decomposition temperatureT* of the isotropic liquid:

Ñ5N1qc8
2K5a~Tc2T!,

Tc5T* 2
qc8

2K

a
.
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Here Tc is the spinodal decomposition temperature of
nematic–cholesteric mixture, which already depends on
orientational order parameters via the elastic constants
Since the order parameter is itself temperature-depend
the following equation can be obtained for the spinodal
composition temperature:

Tc5
c~12c!

kb
~U02s2~Tc!V0!, ~17!

whereU0 and V0 are of the same order of magnitude a
determine the characteristic intermolecular interaction
ergy, whereU0 determines the orientation–independent p
of the interaction, andV0 describes the chiral interactio
between the CLC and NLC molecules. Since the order
rameter is always less than 1, the spinodal decompos
temperatureTc differs very little from the temperatureT* ,
appearing in front ofa2 in the Landau expansion, and it ca
also be estimated as

Tc;~1022103!c~12c!K,

which falls into the temperature range of the mesophase.
maximum for concentrationc51/2, i.e., for an equal numbe
of nematic and cholesteric molecules in the nemat
cholesteric mixture.

On the basis of the Onsager kinetic equations it can
shown24 that for spinodal decomposition the wave with wa
number

g5
1

A2
A Ñ

M
;

1

l0
ATc2T

Tc
,

where l0 is the average distance between the molecu
(l0550 Å), grows most rapidly. The wavelength of the co
centration wave can then be determined by the relation

lc;l0A Tc

Tc2T0
. ~18!

We assume that spinodal decomposition already occur
the liquid-crystal phase that has been formed; i.e., the t
peratureTc is less than the temperature of the transition in
the isotropic phase. We shall consider the situation where
temperature is only negligibly less than the temperatureTc

and we can assume thatTc /(Tc2T);100. The wavelength
of the concentration wave is then estimated to belc

;500 Å. The time required to establish such a concentra
wave can be estimated assuming that this is a purely d
sion process. If it is assumed that the size of the nonuni
mity is l;500 Å, and that the typical diffusion coefficien
of the liquid-crystal molecules3,5 is D'431026 cm2/s, then
the time required to establish the nonuniformity ist'l2/D
'631026 s. For this reason, we shall consider a concen
tion wave to be established, and we assume that the non
form twist corresponding to this concentration wave
formed in accordance with Eq.~15!. We write the concentra
tion wave in the form

a5a0 cos~gz!,

and we shall examine the conditions under which this c
centration nonuniformity will lead additionally to the eme
e
e

nt,
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-
t
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n
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gence of the director from the cholesteric plane. Botha and
u are zero in the ideal-spiral state, and therefore below
spinodal decomposition temperature both variables are
finitesimals of the same order of magnitude:

u;« and a;«.

For a systematic analysis we shall first restrict the analysi
the terms proportional to the third power of« inclusively,
i.e., we drop in Eq.~16! terms proportional toa4 andu2a2:

dFu5K u̇21~b01b1a!u̇21DAuu̇ȧ,

b05Kq2, b15qv.

We shall seek the solution for the angleu(z) in the form

u~z!5u0 sin~mz2x~z!!, ~19!

where the functionx(z) varies much more slowly than th
linear term in the phase,ux8(z)u!m. Substituting this ansatz
we obtain the standard functional35–39

dFu

u0
2

5
K

8
$~g2ċ !222j cosc14q2%, ~20!

which describes the incommensurate phase in the distr
tion of the angleu(z). Here we took into account thatg
52m andc(z)52x(z), and the constantj has the form

j5
a0

K S Kq21
DAg2

2 D .

For a nontrivial solution to exist the conditiondFu,0 must
be satisfied. The condition of an extremum for the functio
~20! has the form of the sine-Gordon equation

d2c

d2z
2j sinc50

with the solution

z2z05E
0

c dx

AC22j cosx
, ~21!

where C.2j is the integration constant. For the class
solutions~21! the free energy is a function of the parame
C, which is determined by minimizing the free energy. Su
stituting into Eq.~20! the solution obtained and using th
relation

dc

dz
5~C22j cosc!1/2,

we obtain the final expression for the free energy as a fu
tion of the parameterC:

dFu

u0
2

5
K

8 H C14q21g22
4gp

l
2

4j

l E0

2p dx cosx

AC22j cosx
J ,

~22!

where l is the period of variation ofc(z), which can be
expressed in terms of the elliptic functions as

l 5E
0

2p
AC22j cosxdx5

2g

Aj
K~g!, g25

4j

C12j
.
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Finally, the free energy can be expressed in terms of
elliptic functions as

dFu

u0
2

5
K

8 H C14q21g22
2gpAj

gK~g!

14jF12
2

g2
1

2E~g!

g2K~g!
G J . ~23!

We can investigate the asymptotic behavior of this
pression. AsC→2j (g→1), we have

E~g!→1, K~g!→ lnS 4

A12g2D .

It can be concluded on the basis of this asymptotic beha
that the free energy~22! possesses a minimum with respe
to C, i.e., cÞ0 and an incommensurate phase exists if

j,jc5
p2g2

16
. ~24!

If this condition is not satisfied, then the expression~22!
possesses a minimum atC52j, c50. In this case the en
ergy is

dFu

u0
2

5
K

8
$4q21g222j%. ~25!

The conditiondFu,0 requires that the angleu be nonzero if
the following relation is satisfied:

4q21g2,2j52
a0

K S Kq21
DAg2

2 D . ~26!

This relation relates the reciprocalq of the pitch of the cho-
lesteric spiral, the wave numberg of the concentration wave
and the amplitudea0 of the concentration wave. If this rela
tion is satisfied, then the concentration nonuniformity~the
concentration wave! will lead not only to nonuniform twist-
ing but also to periodic emergence of the angleu from the
cholesteric plane with a period twice that of the concen
tion wave. In addition, if 2j,p2g2/8 or, equivalently,

g.
2q

Ap2

8
21

'4q,

then a phasec(z)Þ0, incommensurate with respect to th
period of the concentration wave and the pitch of the cho
teric spiral, will appear in the distributionu(z) of the angle.
This relation between the wave vectors of the concentra
wave and the cholesteric spiral actually always holds, si
estimates for the period of the concentration wave giv
value of the order of 500 Å , which is much smaller than t
pitch of the cholesteric spiral,P;5000 Å. Therefore it can
be assumed thatg@q. We can then rewrite the necessa
energy condition~26!, under which the angleu is nonzero:

DA.
K

a0
. ~27!
e

-

or
t

-

s-

n
e
a

If for a definite amplitudea0 of the concentration wave th
differenceDA5A12A2 is a factor of 1/a0 greater than the
Frank elastic constantK, then the director will periodically
leave the cholesteric plane in the direction of the axis of
spiral. The angle of emergence will have the form

u5u0 sinS gz

2
2x~z! D .

At short distances this is a periodic function with a ‘‘fast
period 4p/g, twice that of the concentration wave. The fun
tion x(z) changes very little at such distances. However,
large distances the functionx(z) has the form of a ‘‘devil’s
staircase’’ and changes periodically byp with the periodl
@4p/g. This is how the existence of the incommensura
phase is manifested in the distributionu(z) of the angle.

However, if the relation between the elastic consta
and the amplitude of the concentration waveDA.K/a0

does not hold as the amplitudea0 of the wave increases, the
the spinodal decomposition of the mixture will be accomp
nied only by self-consistent adjustment of the local twist
the given concentration nonuniformity without the direct
emerging from the cholesteric plane~15!. For large ampli-
tudes of the concentration wave the terms proportional toa4

in the Landau expansion can no longer be ignored. Th
terms lead to a bound on the amplitude of the concentra
wave and establish an equilibrium configuration in the co
centration distributiona(z).

Let us now consider a configuration such that the dir
tor does not leave the cholesteric plane. We write the Lan
free energy up to termsa4 as

Fc2F05M ȧ22Ña21Da4. ~28!

HereF052Kq2 is the free-energy density of an ideal spira
Ñ5a(Tc2T).0. The free energy is a functional similar t
the LagrangianL5T2U, where the variablez plays the role
of time. The potential energy is a quartic polynomialU

5Ña22Da4. It has a maximum at the pointamax
2 5Ñ/2D.

The conserved quantity is the energy

H5T1U5M ȧ21Ña22Da4.

Different periodic distributionsa(z) correspond to dif-
ferent oscillations in the potentialU with total energyH. The
maximum energy at which a periodic solutiona(z) still ex-
ists corresponds to the total energy

H5Umax5
Ñ2

4D
.

The concentration distribution corresponding to this ene
can be found from the law of conservation of energy

M ȧ21Ña22Da45
Ñ2

4D
,

which gives

a5amax5cothA Ñ

2M
z. ~29!
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This formula describes the separation of the mixture at te
peraturesT,Tc into two regions with a different fraction o
the cholesteric component. Correspondingly, each com
nent will have its own twist~or pitch of the spiral!. The total
decrease of the free energy of the nematic–cholesteric m
ture, as compared with the free energy of an ideal spiral
a given configuration, has the form

Fc2F052V
Ñ2

4D
,0, ~30!

whereV is the volume of the system. A similar separati
into two phases was studied by de Gennes and Brocha2

who investigated a suspension of macroscopic magnetic
purities in a nematic in the presence of a magnetic fie
They showed that a magnetic field, parallel to the direc
applied to a suspension with compensated macroscopic m
netic moment leads to separation of the suspension into
parts with oppositely directed magnetic moments.

We can therefore draw certain conclusions. A concen
tion nonuniformity leads to a nonuniformity of the twistin
of the spiral along thez axis in accordance with Eq.~15!, so
that the nonuniformity of twisting is directly proportional t
the concentration nonuniformity. If the spinodal decompo
tion temperatureTc is less than the temperature of the tra
sition into the isotropic phase, then forT,Tc two scenarios
are possible. In the first one, if the relation~27! is satisfied,
then a concentration wave will cause the director vecto
leave the cholesteric plane periodically. The distributi
u(z) of the angle of emergence of the director has a la
period that is incommensurate with the period of the conc
tration wave. In the second scenario, if the relation~27! is
not satisfied, then the concentration nonuniformity will gro
and an equilibrium stratification of the entire sample into t
phases with different contents of the cholesteric liquid cr
tal in each one will be established. In addition, a differe
pitch of the cholesteric spiral will be established in ea
phase. The thickness of the transitional region is of the or
of

d l;l0A Tc

Tc2T
,

wherel0 is the distance between the molecules. Now,
shall examine separately the case where a concentra
wave appears in a direction perpendicular to the axis of
spiral.

3.2. Supermolecular structure in a direction perpendicular
to the axis of the spiral

Let us consider an arbitrary direction perpendicular
the axis of the cholesteric spiral. We denote it byx. We
return to the most general functional~13!, which takes into
account the spatially nonuniform distribution of the comp
nents in the nematic–cholesteric mixtures. As shown abo
we can setwi50 and take into account only the cofacto
which is associated with the nonuniformity of the concent
tion, in the Lifshitz invariant. We shall use the one-const
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approximation. We also setA15A25A, so thatDA50. We
can then rewrite the free-energy density of the mixture in
form

Fc5M ~¹a!22Na21K~~div2 n!1~curl2 n!!

1~K21va!~n3curln!1A~div n!~n•¹a!

1~n3curln!•¹a). ~31!

We write the director in the form
n5(cosw cosu, sinw cosu, sinu), whereu is the angle be-
tween the director and the cholesteric plane. We sea
5a(x), wx50, u5u(x,z), andwz5q. Actually, we wish to
find for a wave propagating in a direction perpendicular
the axis of the spiral at least one solution with energy l
than that of the undistorted spiral. We assume the twist al
the axis of the spiral to be constant and equal toq. We shall
take into account only the terms which are second-order
finitesimals in the angleu and the concentration nonunifor
mity a. We can then rewrite the free-energy density in t
form

Fc2F05Max
22Na21dFu ,

dFu5K~ux
21uz

21u2q2!1Aaxuz cos~qz!

1Aqaxu sin~qz!2vuxa sin~qz!. ~32!

Here dFu is the elastic part of the free energy, which
associated with the director. The combinationsuxa sin(qz),
uzax cos(qz), and uax sin(qz) are encountered in the las
three terms. They all have the same form if we write t
ansatz for the concentration and angle in the form

a5a0 cos~gx!, u5u0 sin~gx!sin~qz!. ~33!

The elastic part of the free energy will then assume the fo

dFu5
Ku0

2

4
~g212q2!2

gu0a0

4
~2qA1v !.

From the condition]dFu /]u050 for a minimum of the free
energy we obtain a relationship between the amplitude of
concentration wave and the amplitude of the angle of em
gence of the director from the cholesteric plane:

u05a0

~v12qA!g

2K~g212q2!
. ~34!

The free-energy density for such a structure will then
determined by the relation

dFu52a0
2 ~v12qA!2g2

16K~g212q2!
,0. ~35!

In summary, we conclude that a concentration nonuniform
in a direction perpendicular to the axis of the spiral leads
a two-period structure in the orientation of the director. T
angle of emergence of the director from the cholesteric pl
possesses a period along the axis of the spiral that eq
exactly the pitch of the cholesteric spiral and it possesse
additional period in a perpendicular direction, equal to t
period of the concentration nonuniformity in this directio
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Physically, this means that at locations where the concen
tion of the cholesteric liquid crystal is higher, the rate
twist is also higher. This applies for directions parallel a
perpendicular to the spiral.

4. DISCUSSION

In our study we have systematically determined the p
nomenological free-energy density for an arbitrary mixtu
of two liquid-crystal substances. We used a procedure
methods similar to the microscopic theory of multicomp
nent interstitial and substitution solid solutions24 but with
allowance for the orientational interaction of individu
molecules.25,26We have thus obtained the dependence of
Frank elastic constants on the concentration of individ
components. Special attention was devoted to a mixture
nematic and a cholesteric liquid crystal. A general express
in agreement with all possible experimental situations w
obtained for the dependence of the reciprocal of the pitch
the spiral on the concentration of the cholesteric liqu
crystal.8,27–30It was shown that spinodal decomposition, i.
spatial concentration separation of the mixture, is possibl
a mixture of a nematic with a cholesteric liquid crystal
mesophase temperatures. The period of the spatially m
lated distribution of individual components exhibits critic
behavior as the spinodal decomposition temperature is
proached. The most general expression for the free-en
density, which takes into account the concentration sep
tion of the mixture, was obtained, and the possible super
lecular structures in the distribution of the director and co
centration were analyzed. Two cases of a concentration w
were examined systematically — in the direction of the pi
of the spiral and in a perpendicular direction. Two possi
scenarios of spinodal decomposition were constructed f
concentration wave along the spiral. First, as the amplit
of the wave increases, the director adjusts self-consiste
which necessarily leads to a nonuniform twist along the a
of the spiral. In addition, the director can leave the chol
teric plane periodically. The distributionu(z) possesses a
period that is incommensurate with the period of the conc
tration wave. Second, if the condition~15! for emergence of
the director is not satisfied, then spinodal decomposition
the direction of the spiral leads to further separation of
medium into two phases with a different fraction of the ch
lesteric liquid crystal in each one. Correspondingly, ea
phase has its own pitch of the cholesteric spiral. Both s
narios lead to the existence of a second period in the di
bution of the director in the direction of the axis of the spi
for a nematic–cholesteric mixture. The appearance of a
ond period in the director distribution was observed exp
mentally in Refs. 32–34.

We have shown that a concentration wave in a direct
perpendicular to the axis of the spiral leads to doub
periodic emergence of the director from the choleste
plane. The period of variation of the angle of emergen
along the axis of the spiral equals the pitch of the spi
while the period of variation of the angle of emergence in
perpendicular direction equals the period of the concen
tion wave in this direction.
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Threshold effects in homeotropically oriented nematic liquid crystals in an external
electric field
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The electric field-induced orientational transition in a homeotropically oriented nematic liquid
crystal cell is investigated. The interaction with the field as a result of anisotropy of the
permittivity and flexoelectric polarization is taken into account. For an arbitrary energy of
interaction of the nematic with the substrate simple relations are derived for determining the
threshold characteristics of the phase transition. It is shown that, in contrast with planar
orientation, in fields above a critical value a periodic structure can occur only by virtue of the
flexoelectric effect. The resulting dependences for the threshold parameters in the given
geometry are exceptionally useful for determining experimentally the surface energy and the
difference in the flexoelectric coefficients. ©1999 American Institute of Physics.
@S1063-7761~99!01308-6#
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1. INTRODUCTION

One of the remarkable properties of liquid crystals is
ability to change their orientational structure under the infl
ence of comparatively weak external fields. This particu
sensitivity is most conspicuous in the Kerr and Cotto
Mouton effects near the transition from the nematic to
isotropic liquid phase, in the flexoelectric effect in nemati
and in the Fre´edericksz effect.1–3 These effects are currentl
drawing considerable attention in connection with the wid
spread practical application of liquid crystals in optical d
vices for imaging data. As a rule, effects of this kind a
observed in small samples, so that their energy of interac
with the substrate has a significant influence on the struc
of the liquid crystal. It is essential, therefore, that the tr
values of the corresponding parameters be taken into acc
in solving problems associated with the reorientation of l
uid crystal cells.

The best-known orientational phase transition in nem
liquid crystals is the Fre´edericksz effect, where the uniform
distribution of the director changes in the presence of a
tain threshold field.1–3 In 1985 it was discovered4 that the
structure resulting from such a transition for an initia
planar-oriented nematic and rigid boundary conditions
also be periodic, depending on the ratior 5K2 /K1 of the
Frank elastic constants: whenr exceeds a certain critica
value r c , the Fréedericksz transition induces an aperiod
distortion of the layer, and forr ,r c it induces a periodic
distortion. Simo´es et al.5,6 have conducted a theoretical an
experimental study of periodic structures occurring in suc
geometry in fields above the Fre´edericksz threshold in lyo
tropic nematic cells. It is important to note that the appro
mation of rigid anchoring to the substrate is often used in
theoretical description of nematic liquid crystals, because
solution of the problem becomes enormously complica
when the finiteness of the surface energy is taken into
count. It has been shown7,8 that the type of structure forme
depends on the anchoring energy with the substrate, bu
2881063-7761/99/89(8)/4/$15.00
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form of this dependence cannot be established analytica
The possible existence of a periodic distribution of t

direction in a planar-oriented nematic cell with rigid boun
ary conditions has been investigated previously by Pi
et al.9,10 in a study of the flexoelectric effect. This effec
which was discovered by Meyer11 in 1969 and is associate
with anisotropy of the configuration of nematic liquid cryst
molecules, is linear in the field, whereas the Fre´edericksz
transition, which is caused by anisotropy of the dielect
permittivity, is a quadratic function of the field. Galato
et al.12 have published a generalized pattern of the beha
of a nematic layer in an external electric field, taking both
these effects into account, for planar orientation and ri
anchoring to the substrate; in the paper they also discuss
fluctuations of the director in such a system and have deri
a phase diagram for the two possible types of distortio
The problem is exceedingly involved in this case and is
amenable to analytical solution.

Because of the threshold character of the effects in qu
tion, they provide a very useful tool for measuring the p
rameters of nematics, but the achievement of this goal
quires simple analytical expressions for the thresh
characteristics of the system.

In this paper we investigate the behavior of nematic l
uid crystals in an external electric field for an initially ho
meotropically oriented director in the most general case
arbitrary surface energy and various Frank elastic consta
In this geometry a dispersion relation between the field a
the period of the structure can be derived in a very sim
form, greatly simplifying the calculations and permitting th
critical parameters of a nematic to be calculated as functi
of the anchoring energy and the thickness of the cell.
show that the resulting static structure can be either perio
or aperiodic, depending on the ratio between the elastic c
stantK2 and the electric constants of the nematic. It is s
nificant that a periodic structure can emerge in such a sys
only when flexoelectric polarization is present in it.
© 1999 American Institute of Physics
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The results of the study offer good possibilities for t
experimental measurement of such important characteri
of nematics as the surface energy and the difference in
flexoelectric coefficients.

2. PERIODIC FLEXOELECTRIC STRUCTURE IN A NEMATIC
LIQUID CRYSTAL

We consider a homeotropically oriented nematic liqu
crystal cell contained between plane-parallel plates in an
ternal electric field. We introduce a Cartesian coordinate s
tem with origin at the center of the cell and with thez axis
normal to the plates. LetE5(E,0,0) denote the electric field
vector. The director vector can be written in the for
n5n01dn5(nx(y,),ny(y,z),1), where dn5(nx(y,z),ny

3(y,z),0) is a small deviation of the director from its equ
librium orientationn05(0,0,1). We assume that the stru
ture formed in the cell under the influence of the field
homogeneous inx, since the creation of such a distribution
the director requires the smallest field.8,12,13The correspond-
ing increment of the free energy, to within second-ord
terms indn, has the form1,2,12,13

DF5
1

2E dr$K1~]yny!21K2~]ynx!
21K3@~]znx!

2

1~]zny!2#2eE2nx
222eEnx]yny%, ~2.1!

whereKi ( i 51,2,3) denote the Frank constants,e5«a/4p,
«a5« i2«' is the anisotropy of the permittivity,« i and«'

are the permittivities along and across the axis of the n
atic, respectively,e5e12e3 is the difference between th
flexoelectric coefficients, and the symbol] j ( j 5x,y,z) is the
partial derivative with respect to the corresponding coor
nate. For definiteness we assume that«a.0.

The condition for the existence of an equilibrium orie
tational structure stipulates that the variational derivati
dDF/dnx and dDF/dny are equal to zero; after integratio
by parts this condition yields the system of equations

K2]y
2nx1K3]z

2nx1eE]yny1eE2nx50,

K1]y
2ny1K3]z

2ny2eE]ynx50. ~2.2!

Taking into account the symmetry of the system~2.2!, we
look for a solution in the form

nx5sin~qy!u1~z!,

ny5cos~qy!u2~z!, ~2.3!

where q is the wave number andu1,2(z) are certain func-
tions. The system of equations~2.2! can now be rewritten in
the form

ÂS u1~z!

u2~z!
D 50, ~2.4!

where the matrixÂ is equal to

Â5S 2K2q21eE21K3]z
2 2eEq

2eEq 2K1q21K3]z
2D . ~2.5!
cs
he

x-
s-

r

-

i-

s

To solve Eq.~2.4!, we diagonalize the matrixÂ by the
transformationÛ21ÂÛ; the matrix Û is formed from the
eigenvectors ofÂ and has the form

Û5S 2eEq 2eEq

f 2g f1g D , ~2.6!

where

f 5~K12K2!q21eE2,

g5Af 21~2eEq!2. ~2.7!

Multiplying Eq. ~2.4! on the left byÛ21 and transforming to
the new variables

S u18~z!

u28~z!D 5Û21S u1~z!

u2~z!
D , ~2.8!

we obtain

S 2Q21]z
2 0

0 2P21]z
2D S u18~z!

u28~z!
D 50, ~2.9!

where

P5A 1

2K3
@~K11K2!q22eE21g#, ~2.10!

Q5A 1

2K3
@~K11K2!q22eE22g#. ~2.11!

The solution of the system~2.9! has the form

S u18~z!

u28~z!D 5S a1eQz1a2e2Qz

b1ePz1b2e2PzD , ~2.12!

wherebi andci ( i 51,2) are constants of integration. Takin
~2.3!, ~2.6!, ~2.8!, and~2.12! into account, we obtain expres
sions for the functionsnx(y,x) andny(y,z):

nx~y,z!52eEq~a1eQz1a2e2Qz

1b1ePz1b2e2Pz!sin~qy!,

ny~y,z!5@~ f 1g!~a1eQz1a2e2Qz!

1~ f 2g!~b1ePz1b2e2Pz!#cos~qy!. ~2.13!

The coefficientsai andbi in Eqs.~2.13! are determined from
boundary conditions imposed on the directorn(x,y,z) to de-
scribe the surface energyW.

3. INTRODUCTION OF BOUNDARY CONDITIONS

To analyze the influence of the nematic-substrate
choring energyW on the formation of the flexoelectric struc
ture, we consider boundary conditions in the form3

Wu16K3]zu150, z56L/2,

Wu26K3]zu250, z56L/2 ~3.1!

~we assume that the surface energy is identical on diffe
plates!. Substituting Eqs.~2.13! into ~3.1!, we obtain a sys-
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tem of four equations for evaluating the coefficientsai and
bi . Setting its determinant equal to zero, we have

detŜ50, ~3.2!

where the matrixŜ has the form

Ŝ5S ŜQ ŜP

~ f 1g!ŜQ ~ f 2g!ŜP
D ,

ŜQ5S ~W1K3Q! exp~QL/2! ~W2K3Q!exp~2QL/2!

~W2K3Q! exp~2QL/2! ~W1K3Q!exp~QL/2!
D ,

ŜP5S ~W1K3P! exp~PL/2! ~W2K3P!exp~2PL/2!

~W2K3P! exp~2PL/2! ~W1K3P!exp~PL/2!
D .

It is readily confirmed that Eq.~3.2! reduces to the con
dition

detŜQ detŜP50,

which can be rewritten in the form

F tanh~QL!1
2jQ

11j2Q2GF tanh~PL!1
2jP

11j2P2G50,

~3.3!

where j5K3 /W is a characteristic length representing t
influence of the bounding solid surface on the orientation
the nematic in a certain wall region.

It is evident from Eqs.~2.7! and ~2.10! that P is real-
valued for any values ofE andq. In light of expression~3.3!
this means that the system of equations~3.1! has a nontrivial
solution only under the condition

tanr5
2hr

r22h2
, ~3.4!

where

h5L/j, r5 iQL, ~3.5!

which in conjunction with~2.7! and ~2.11! yields a disper-
sion relation forE(q):

E~q!5!S r2

L2
K31K2q2D S r2

L2
K31K1q2D

r2

L2
eK31~eK11e2!q2

.

f

Minimizing the latter expression, we obtain the critical wa
number and critical field corresponding to the surface ene
W:

qc5
r

L
A mK3

e21eK1

,

Ec5
r

L
AK3

e
d, ~3.6!

where

m5
e

AK1K2

Ae21e~K12K2!2e,

d5A e

m1e S 11
mK2

e21eK1
D S 11

mK1

e21eK1
D , ~3.7!

andr5r(W,L,K3) is the smallest root of Eq.~3.4!, the one
that determines the threshold field. We now examine limit
cases.

For rigid anchoring of the director to the substrate, i.
for W5`, the boundary conditions~3.1! assume the form

S u1~z56L/2!

u2~z56L/2!D 50. ~3.8!

FIG. 1. Dependence of the critical wave numberqc on the elastic constan
K2 for different values of the difference in the flexoelectric coefficients:~1!
e12e350.33310211 C/m; ~2! 0.5310211 C/m. The solid curves corre-
spond to W5` ~rigid anchoring!, and the dashed curves toW
50.001 erg/cm2 ~compliant boundary conditions!. Typical parameters of
nematic liquid crystals have been used in the calculations:«a50.1, K1

50.731026 dyn, K350.531026 dyn, L51023 cm.
er-

ic

1
-

FIG. 2. Dependence of the threshold charact
istics of a nematicqc ~a! and Uc ~b! on the
anchoring energy with the substrateW for vari-
ous values of the difference in the flexoelectr
coefficient: ~1! e12e350.33310211 C/m; ~2!
0.5310211 C/m; ~3! 0.67310211 C/m. The
same typical nematic parameters as in Fig.
plusK251026 dyn have been used in the calcu
lations.
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From Eq.~3.4! we find r5p. In the one-constant approx
mation, i.e., forK15K25K3 , Eqs. ~3.6! coincide with the
results of Ref. 13. The asymptotic form of the critical field
the limit W→` has the form

Ec'Ec
`S 12

2K3

WL D ,

where

Ec
`5

p

L
AK3

e
d

is the threshold value for rigid boundary conditions.
For an unbounded sample, which corresponds toW50,

Eq. ~3.4! yields r50, which in conjunction with definition
~3.5! leads to a linear functionE(q):

E5qA K1K2

eK11e2
.

In this case, therefore, the effect does not have a thres
character, i.e.,Ec

050, and every value of the fieldE corre-
sponds to its own wave numberq, i.e., its own period of the
flexoelectric structure.11,13 For low energiesW the solution
has the form

Ec'A2W

eL
d.

As W increases, obviously,r increases monotonically
from ruW5050 to ruW5`5p.

4. DISCUSSION

We now analyze the results. It is evident from Eqs.~3.6!
and ~3.7! that the type of structure formed in a homeotro
cally oriented nematic liquid crystal cell under the influen
of an external electric field is dictated by the sign ofm,
which depends on the parameters of the nematic:e, e, K1 ,
and K2 . For m.0 the functionE(q) has a minimum at a
point qcÞ0, and form<0 the minimum field corresponds t
q50. It is significant that this sign does not depend on
Frank constantK1 .

In the caseeK2 /e2,1, atE5Ec a phase transition take
place in the nematic liquid crystal cell from the homog
neous homeotropic state to a periodic flexoelectric struc
~periodic Fréedericksz effect! with wave numberqc , where
the existence of flexoelectric polarization, i.e., the requ
ment eÞ0, is a necessary condition for such a transitio
This is the way in which the behavior of a homeotropica
oriented nematic cell in an external electric field differs fu
damentally from that of a planar-oriented cell, because in
latter the director can acquire a periodic distribution ev
without the flexoelectric effect.4–8 The fact that the behavio
of the periodic structure is controlled specifically by t
Frank constantK2 is attributable to the resulting twist disto
tion described by this constant in such a transition.

For eK2 /e2>1 the ordinary~aperiodic! Fréedericksz ef-
fect occurs atE5Ec . This criterion does not depend on th
nematic-substrate anchoring energy.

The dependence of the threshold characteristics o
nematic on the surface energyW is shown in Fig. 2. We note
ld

e

-
re

-
.

-
e
n

a

that forW.0.01 erg/cm2 these characteristics do not chan
appreciably. It is evident that the functionqc(W) is more
sensitive thanUc(W) to the difference in the flexoelectri
coefficients.

Figure 1 shows the dependence of the critical wave nu
ber qcL/p on the Frank elastic constantK2 for different
values of the difference in the flexoelectric coefficients
connection with rigid and compliant boundary condition
The existence of the critical valueK2

0 defined by the equation
eK2

0/e251 is evident in the graph: The periodic flexoelectr
effect occurs forK2,K2

0, and the aperiodic Fre´edericksz
transition occurs forK2>K2

0.
Figure 3 shows graphs ofUc andqc as functions of the

cell thicknessL for various energies of interaction of th
nematic with the substrate. Notably, the critical paramet
are highly sensitive to the thickness of the cell, and the
sulting graphs can be used for the experimental determ
tion of the nematic-substrate anchoring energy and the
ference in the flexoelectric coefficients.
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Properties of shock-compressed liquid krypton at pressures of up to 90 GPa
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The following quantities of shock-compressed liquid krypton are measured behind a plane shock
front at pressures up to 90 GPa: compressibility up to densities of 7 g/cm3, brightness
~color! temperatures of 6000–24000 K, and electrical conductivities of 40–60000 (V•m)21.
X– t diagram methods are used to estimate sound speeds of up to 5.5 km/s at pressures
of 30–75 GPa. The optical absorption coefficients in the violet and red~30–300 cm21) are
measured at pressures of 20–90 GPa from the rise in brightness of the shock front luminosity. The
optical reflection coefficient of the shock front~;13%! at a pressure of 76.1 GPa is
measured for the first time. ©1999 American Institute of Physics.@S1063-7761~99!01408-0#
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1. INTRODUCTION

Compressed inert gases are convenientsubjects for s
ies of the properties of close-packed substances at extr
pressures and temperatures. When the initial densities o
liquids are high it is easy to reach pressures of 100–1
GPa and densities of 10–20 g/cm3 in physical
experiments,1,2 while the optical transparency of the liqui
makes it possible to record the luminosity of a shock fro
through the layer material that is not yet compressed.2,3 The
quasi-isentropic compressibility of liquid argon has be
measured1 to densities of 7 g/cm3 at pressures up to 50
GPa. Measurements have been made2 of the quasi-isentropic
compressibility of liquid xenon to densities of 13 g/cm3 at a
pressure of 200 GPa, as well as of its compressibility, brig
ness~color! temperatures, and electrical conductivity duri
shock compression to 70 GPa. Studies have been made o
compressibility and brightness temperatures3 of liquid argon
up to 70 GPa, as well as of its electrical conductivity.4

Simultaneous measurements of the compressibility
temperatures make it possible to obtain thermodynamic
complete information on the state of the shock-compres
material, which is important for creating new theoretic
models and verifying existing models. Measurements of
electrical conductivity yield additional information on th
behavior of the band gap with increasing temperature and
the density of the shock-compressed material.

The experimental studies of shock-compressed liq
krypton reported here fill a gap in research on the proper
of the inert gases, since krypton has not been studied at
pressures and temperatures before.

2. EXPERIMENTAL RESULTS

Shock adiabat

As in the studies of liquid argon and xenon,2,3 in the
present experiments we used a cell with which it was p
sible simultaneously to record the shock speed and the ra
tion from its front. The initial state of the liquid krypton
corresponds to a temperature ofT05120 K and density of
2921063-7761/99/89(8)/7/$15.00
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r052.41 g/cm3. For correct calculation of the shock
compression pressures, both the isentropic expansion o
Al, Cu, or Fe shields through which the shock emerges i
the liquid krypton caused by the differences in their dynam
impedances and the rise in the initial density of the shield
materials as they were cooled toT5120 K were taken into
account.

The experimentally measurable parameter in this wor
the shock speedD in the liquid krypton, with a mean squar
error in the average of less than6(1 –1.5!%. From this value
and the parameters of the shock wave in the shield, the ‘
flection’’ method5 gave the parameters of the shock, viz., t
pressureP and the post-shock mass velocityU.

The experimental values of the shock speedD are plot-
ted in Fig. 1 as a function of the mass velocityU, along with
the best-fit curve to the experimental data. Each value
obtained by averaging the velocities measured by four or
pairs of probes in four or five independent experiments. T
highest measured speed,D58.4960.13 km/s atU54.84
km/s, corresponds to a pressureP587.661.8 GPa and den-
sity r56.8160.38 g/cm3. The sound speed in liquid krypto
under standard conditions,cs5690 m/s, was taken into ac
count in the statistical analysis of the experimental data. T
approximation~fit! has the form

D5~0.70060.042!1~1.94360.034!U

2~0.112560.0064!U2. ~1!

Measurements of the kinetic parameters of shock wav
their speedD and mass velocityU, have been the principa
source of information on the properties of shock-compres
materials up to now. Studies of the shock compressibility
liquid krypton at pressures up to.90 GPa and densities.7
g/cm3 have convincingly demonstrated that the rise in t
shock speed is reduced as the shock amplitude increa
which is equivalent to an increase in the compressibility.
© 1999 American Institute of Physics
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Brightness temperatures

A semiempirical equation of state with parameters ba
solely on shock adiabat data relating the pressure and de
in a compressed state cannot provide a correct descriptio
the experimental data over a wide range ofP–r –T states.
Parameters calibrated in a singlestudy do not adequately
scribe other physical properties of a material. Thus, exp
mental measurements of the temperatures are importan
they make it possible to verify and refine the methods
describing the thermal components.

In this paper the temperatures are measured by recor
the radiation from the shock front and comparing it with t
emission from a standard source with a known temperat
This method makes it possible to measure the brightn
temperatureTb of an emitting layer of material with the sam
monochromatic brightness at a given wavelength as a
body at temperatureT, that is,

I P~l,Tb!5I ~l,T!5«~l,T!I P~l,T!, ~2!

where «(l,T) is the emissivity of the body andI P(l,T)
5C1l25/@exp(C2 /lT)21# is the Planck function. Here th
constants have the valuesC151.19310216 W•m2

•sr22 and
C250.0144 m•K, l is the wavelength of the radiation, andT
is the temperature.

This method was originated by Model’6 and has been
developed subsequently for studies of temperature in sh
compressed condensed media, including ionic crystals7–11

These papers show convincingly that it is possible to de
mine the temperatures of transparent, condensed, sh
compressed substances from their thermal radiation,
their various optical characteristics have been studied ex
sively: emission has been observed and, at high press
(P.100 GPa!, nonequilibrium emission from shock
compressed specimens of the ionic crystals NaCl, KCl, Cs
and LiF. In addition, the absorption coefficients of NaC
CsBr and other ionic crystals were measured under sh
compression conditions for the first time.

FIG. 1. Shock Adiabat of liquid krypton:j — experimental results from
this paper,h — sound speed; curve — approximation.
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The first data on the measurement of brightness temp
tures in shock fronts in liquid argon and nitrogen were pu
lished in Ref. 12. These data12 have been extended3 to 70
GPa in liquid argon. Data have been published2 on measure-
ments of brightness temperatures in the red at shock fron
liquid xenon. Experiments on the break in theT–P curves
near 8000-10000 K for liquid argon and xenon revealed
effect that has been related2,3 to the kinetics of electronic
excitation in the conduction band that were first observed
studies of ionic crystals.10,11 Recent papers have reporte
temperatures of 4000–14000 K at pressures of 18–90 GP
liquid nitrogen13–15and temperature measurements in sho
compressed liquid xenon.16

In our present work a photographic method2,3 is used to
detect the emission from shock waves in liquid krypton
wavelengthsl5670 and 430 nm. In order to increase th
information yield from the experiments, we have also me
sured the brightness temperatures of shock fronts in liq
krypton in the green (l5500 nm! using a high-speed pho
tomultiplier with a known photocathode sensitivity.

Figure 2a shows a streak photo of a shock front in liqu
krypton in the red region of the spectrum at a pressure
63.2 GPa, and Fig. 2b shows a densitometer scan of
blackening density of the film in this experiment. The stre
photo and densitometer scan shown here are typical of
experiments with liquid krypton. Four characteristic regio
can be identified in the scan of Fig. 2b:~1! a sharp rise in the
emission brightness to a maximum over a period of 100–
ns occurs in segment 0–1;~2! in segment 1–2, after an op
tical thickness;1 for the emitting layer is attained, th
brightness remains constant until the shock is overtaken

FIG. 2. ~a! A streak photo of the luminosity of a shock front in liqui
krypton and~b! a densitometer scan of the film blackening.
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release wave from the direction of the impact plate~striker!
at point 2;~3! from that time on in segment 2–3 the sho
compression pressure falls and the brightness of the f
decreases; and~4! after the shock wave emerges from t
liquid, it is still strong enough to make the air radiate, as c
be seen in segment 3–4. The time resolution in these exp
ments is.1.531027 s. The brightness temperature was e
timated from the amount of blackening of the film in th
constant-brightness segment~1–2!. The duration of this seg
ment was determined by the time the liquid existed in
compressed state and decreased as the shock-compre
pressure was raised.

The results of the present work are plotted as a func
of pressure in Fig. 3. Also shown there are the gasdyna
temperatures, including the emissivity of a shock front
liquid krypton and a fit curve.~See below.!

The assumption that the drop in the emitted intensity
time t* ~see Fig. 2b! is associated with a release wave whi
catches up with the shock front makes it possible to ob
additional information on the sound speed in the sho
compressed liquid krypton by theX–t diagram method.5 The
resulting values of the sound speed are plotted with an a
racy of 66% as a function of the mass velocity of the pa
ticles in Fig. 4, together with an approximate fit curve for t
following form within the region studied:

C5~0.7060.10!1~1.6060.10!U2~0.1260.02!U2.
~3!

In choosing an approximation, we have taken into acco
the sound speed in liquid krypton under normal condition

Absorptivity of shock-compressed liquid krypton

The emissivity«(l,T) @Eq. ~2!# must be estimated in
some way or other in order to determine the true tempera
from the measured brightness. In practice,«(l,T) is deter-

FIG. 3. Temperature of shock-compressed liquid krypton:s — in the red
(l5670 nm!, h — green (l5500 nm!, and n — violet (l5430 nm!
regions of the spectrum;d — true temperature (T515600 K for «50.9,
T518000 K for «50.9, T519800 K for «50.85, T523400 K for «
50.87, T526200 K for«50.85); curve — approximation.
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mined experimentally for the direction normal to the surfa
of the emitting body and~for a weak wavelength depen
dence! this yields

«~l,T!5«~T!5const. ~4!

Estimating«(T) under shock-compression conditions
often difficult. Thus, the shock front temperature in liqu
nitrogen13–15 and xenon16 has been estimated by choosin
the value of« in Eq. ~2!. An analysis of the results of Refs
13–16 indicates that« behaves irregularly as the temper
tures and pressures increase and enters as a purely m
ematical quantity chosen to provide the best fit to the exp
mental data. Thus, the question of the relationship betw
the fit parameter« and the absorptivity«* determined from
the basic equation

«* 1t1R51 ~5!

must be answered in order to fit the experimental tempe
tures.

Since« and «* are equivalent in a state of thermod
namic equilibrium, the emissivity« can be estimated usin
Eq. ~5! if we measure the reflectivityR and transparencyt of
the emitting body. The transparency of a substance du
shock compression has been estimated in studies of ga6

and of NaCl.9 The transmission of the radiation in Refs.
and 9 was determined in accordance with the Bouguer
mula:

t5e2a l , ~6!

wherea is the linear absorption coefficient for the radiatio
in a layer of thicknessl.

In the present experiments we have also studied
transmission of a layer of shock-compressed liquid Kr us
the pyrometer described in Ref. 9. The emission was
tected in the violet and red regions of the spectrum us
interference filters with transmissions of;50% at wave-
lengths oflv5407 nm andl r5605 nm. A typical oscillo-
scope trace of the increasing emission intensity during

FIG. 4. Post-shock speed:j — experimental data, curve — approximation
h — sound speed under normal conditions.
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FIG. 5. Brightness as a function of time for a pressure of 18 GPa: a — oscilloscope trace~markers 40 ns!; b —results of data processing:d — experimental
values; curve — approximation according to Eq.~7! for a561 cm21.
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experiment (P518 GPa! is shown in Fig. 5a. The increasin
brightness, as in Refs. 6 and 9, is attributed to the grow
layer of material compressed by the shock wave with
absorption coefficient~averaged! of a.

The intensity of the emission from a plane layer in t
direction normal to it is given by

I 5I 0@12e2a l #5I 0@12e2a(D2U)t#. ~7!

Here I 0 is the intensity of an optically dense layer,l 5(D
2U)t is the thickness of the layer of shock-compress
heated material, andt is the time for the shock wave to mov
through the material. It is easy to obtain a formula for es
matinga from Eq. ~7!:

a52
1

~D2U !t
lnS 12

I

I 0
D , ~8!

where the change in intensityI /I 0 with time was determined
from oscilloscope traces similar to those in Fig. 5a, whileD
and U were obtained from the compressibility experimen
The results of an experiment at a pressure of 18 GPa
shown in Fig. 5b.

The measured optical absorption coefficients of liqu
krypton in the red and violet ranged over 10 to 300 cm21 for
pressures of up to 80 GPa. Our results are plotted in Fig
Also shown there is an approximat fit to all the data:

ln a5~6.9460.18!2~2.11660.205!3104/T. ~9!

The absorptivity of the shock-compressed layer, negle
ing reflection, was calculated from the expression

«>12e2a(D2U)t. ~10!

Estimates show that for the measured values of the abs
tion coefficient, even at a level of 70% of the maximu
amplitude of the light pulse, the absorptivity of the shoc
compressed liquid krypton is high and can differ from un
mainly because of the reflectivity.

The method for measuring the reflection coefficientR at
the shock front in transparent dielectrics has been descr
elsewhere.8 It has been used by Kormer in studies ofR in
ionic crystals and liquids, which thus far are still unique.
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In the present experiments we study the reflective pr
erties of shock fronts in liquid krypton for the first time. A
in Ref. 10, the reflection was measured using the intrin
luminosity of the shock. The arrangement for studying t
reflection of light from a shock front in liquid krypton is
shown in Fig. 7a.

The emission from the shock front1 reflected at an angle
of ;10° from a copper mirror2 located in the liquid volume
3 was directed onto an external mirror4 and, further, onto
the inlet objective of a high speed camera. At the same ti
the emission of the shock front itself was recorded. It is cl
from the figure that the brightness in the segmentk–m is
determined by the emission from the front and by the lig
reflected from the copper mirror2, while that in the segmen
m–n is determined only by the emission from the front. T
intensity of the total emission in the segmentk–m can be
estimated using the formula

FIG. 6. Optical absorption coefficient in shock-compressed liquid krypt
Experimental data:h — in the red (l r5605 nm! and j — violet (lv
5407 nm! regions of the spectrum ; straight line — approximation.
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FIG. 7. Setup for measuring the reflection of ligh
from a shock front in liquid krypton:~a! experi-
mental apparatus,~b! a streak photo.
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for
I 5I 0@11jh#~12R!, ~11!

whereI 0 is the intrinsic intensity of the shock front andj, h
and R are the reflection coefficients of the copper mirro
shock front, and free liquid–air boundary, respective
An experiment for liquid krypton was done according
this scheme for a wavelengthl5430 nm and a pressure o
76.1 GPa. A streak photo of this experiment is shown in F
7b and a densitometer scan of the film blackening, in Fig
The jump in intensity associated with reflection from t
shock front shows up clearly. The image shown in Fig.
was scanned photometrically perpendicular to the film pla
An analysis of the experimental data and an estimate u
Eq. ~11! yield h.13%. The reflectivityj of the copper mir-
ror at small angles of incidence (.10°) was estimated to b
.70%.17 The densitometer scan of a control experiment a
pressure of 76.1 GPa without a copper mirror reveals

FIG. 8. Densitometer trace:d0 is the film background andDd is the jump in
blackening associated with the reflection of light from the shock front. T
photometric scan was made perpendicular to the film.
,
.

.
.

b
e.
g

a
o

intensity jump. The present estimates show that when
reflection is taken into account, the absorptivity of shoc
compressed krypton at 76.1 GPa is.0.87.

Measuring three brightness temperatures in our exp
ments made it possible to estimate the true temperature
shock front in liquid krypton. It was assumed that the abso
tivity is independent of wavelength, i.e.,

«viol5«green5« red5«.

The spectral density of the emitted brightness which b
described the brightness density for the measured bright
temperatures was calculated from Eq.~2! by fitting « andT.
The absorptivity«viol.0.87 in the violet measured in th
present experiments served as a control for estimating
true temperatures. As an example, Fig. 9 shows the spe
density of the brightness at 76.1 GPa calculated using
Planck formula for«50.87 andT523400 K, which was
taken as the true temperature. The true temperatures for o
shock compression pressures in liquid krypton were de

e
FIG. 9. Spectral density of the emission brightness at a pressure of
GPa:d—experimental data; curve, calculated using the Planck formula
T523400 K and«50.87.



-

t

297JETP 89 (2), August 1999 Glukhodedov et al.
FIG. 10. Electrical conductivity of shock-
compressed liquid krypton as a function of tem
perature~a! and pressure~b!: j — experimental
data; the straight line is a fit to the four lowes
points.
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mined in similar fashion and are shown in Fig. 3. Al
shown there is an approximation curve for these data a
function of pressure~in GPa!:

T523151366P20.7P2. ~12!

As can be seen from Fig. 3, the difference between
brightness temperatures decreases as the pressure is red
Thus, in choosing an approximation, it was assumed tha
to pressures of.35 GPa and temperatures.12000 K the
measured and true temperatures coincide.

Our measurements of the optical absorption and refl
tion permitted an experimental estimate of the emissiv
which is a more sensitive parameter for verifying the vario
theoretical models than the shock pressure when determi
the true temperature in the shock fronts. Studies of th
parameters are important for evaluating the struct
~smoothness! of a shock front.

Electrical conductivity

Additional information on the behavior of liquid krypto
at high pressures and temperatures was obtained by me
ing the electrical conductivity, which is directly related to th
free electron density and band gap.

In our experiments we used a method18 for measuring
the conductivity that has been used before in studies
xenon2 and argon.4 Our results are shown in Fig. 10a. In th
experimental plot ofG(1/T) one can distinguish a segme
where the electrical conductivity of krypton has a depe
dence characteristic of amorphous semiconductors, i.e.,

G5G0exp@2E~T,V!/2kT#. ~13!

Here E(T,V) is the energy gap between the valence a
conduction bands,V51/r, wherer is the density, andG0

depends weakly on the temperature. The experimental po
in the initial segment of logG(1/T) were fit by least square
to a linear curve with 90% confidence, which yielded a ba
gap E511.360.4 eV in shock-compressed liquid krypto
As can be seen from this figure, this experimental value
characteristic only of the initial part of theG(1/T) curve, and
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as the temperature rises the gap shrinks and the conduc
evidently saturates as a function of temperature. Similar
havior has been observed before in liquid xenon.2 For liquid
argon within the range studied here up toG.23104

(V•m)21, the conductivity typically depends linearly o
temperature.4

The behavior of the experimental data as a function
the amplitude of a shock wave in liquid krypton is shown
Fig. 10b. The figure shows clearly the saturation in the c
ductivity, which approaches a limit of.63104 (V• m!21

at .70 GPa. In experiments with liquid nitrogen, the te
dency of the conductivity to saturate15 at .100 GPa has
been identified with a dissociative phase transition in
liquid nitrogen in a shock wave. Similar behavior of the co
ductivity has been observed in experiments with liqu
hydrogen,19–21 for which saturation at.140 GPa has been
attributed to metallization of hydrogen in the shock wave

Shock compression presents unique opportunities
studying the transition of dielectrics into a metallic sta
since the density increase is accompanied by a substa
rise in temperature and increase in the number of free e
trons. This smears out the dielectric–metal transition, wh
creates the preconditions for observing a continuous tra
tion of dielectrics to the metallic state.22 In this case, the rise
in the number of free electrons causes a rise in the opt
reflectivity from the shock front, as we have observed exp
mentally at a pressure of 76.1 GPa.

3. CONCLUSION

Various properties of shock-compressed liquid krypt
at pressures up to 100 GPa have been studied extensive
the first time in this paper, including compressibility on th
Hugoniot adiabat, post-shock sound speed and electrical
ductivity, optical absorption coefficient of the layer of shoc
compressed material, and the temperatures and optical re
tivities at the shock front.

The set of experimental data presented here can be
to create an exact equation of state for krypton at high p
sures and temperatures.
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111, 2099~1997! @JETP84, 1145~1997!#.

2V. D. Urlin, M. A. Mochalov, and O. L. Mikhailova, High Press. Res.8,
595 ~1992!.

3F. V. Grigor’ev, S. B. Kormer, O. L. Mikha�lova, M. A. Mochalov, and
V. D. Urlin, Zh. Éksp. Teor. Fiz.88, 1271 ~1985! @Sov. Phys. JETP81,
751 ~1985!#.

4L. A. Gatilov, V. D. Glukhodedov, F. V. Grigor’ev, S. B. Kormer, L. V
Kuleshova, and M. A. Mochalov, Prikl. Mekh. Tekh. Fiz.1, 99 ~1985!.

5L. V. Al’tshuler, Usp. Fiz. Nauk.85, 197 ~1965! @Sov. Phys. Usp.8, 52
~1965!#.
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A gauge-free description of magnetohydrodynamic flows of an ideal incompressible fluid, which
takes into account the freezing-in of the magnetic field and the presence of cross invariants
containing the vorticity, is obtained. This description is an extension of the canonical formalism
well-known in ordinary hydrodynamics to the dynamics of frozen-in flux lines.
Magnetohydrodynamics is studied as the long-wavelength limit of the two-fluid model of a
plasma, in which the existence of two frozen-in fields – curls of the generalized momenta of the
electron and ion fluids – follows from the symmetry of each component with respect to
relabeling of the Lagrangian labels. The cross invariants in magnetohydrodynamics are limits of
special combinations of topological invariants of the two-fluid model. A variational
principle is formulated for the dynamics of frozen-in magnetic flux lines, and the Casimir
functionals of the noncanonical Poisson brackets are found. ©1999 American Institute of
Physics.@S1063-7761~99!01508-5#
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1. INTRODUCTION

It is well known that the law of freezing-in of flux line
follows from the Euler equations for an ideal liquid~pro-
vided the flow is isentropic!. A consequence of this law i
Kelvin’s theorem on the conservation of the circulation
the velocity along an arbitrary streamline.1 From the stand-
point of the Lagrangian formalism, the conservation of the
quantities is due to the special symmetry of the equation
ideal hydrodynamics.2–6 In a Lagrangian description eac
fluid particle is labeled by a three-dimensional vectora. The
dynamics of the fluid is determined by indicating the po
tions x(a,t) of each fluid particle at an arbitrary moment
time t. The equations of motion for mappingr5x(a,t) fol-
low from the variational principle

dE L$x~a,t !,ẋ~a,t !%dt50.

The LagrangianL of the fluid admits an infinitely paramet
ric symmetry group — it assumes the same value on
mappingsx(a,t) for which the Eulerian characteristics of th
flow are the same — the densityr(r ,t) and the velocity
v(r ,t). Such mappings differ from one another only by
relabeling of the Lagrangian labelsa, which is why in En-
glish the symmetry group is called the relabeling group.
conservation laws for the vorticity are a consequence of
symmetry of the Lagrangian with respect to relabeling of
labels~according the Noether’s theorem!. The most genera
formulation of these laws postulates the existence of a lo
vector Lagrangian invariant — the Cauchy invariant.7

A similar situation occurs in ideal magnetohydrodyna
ics ~MHD!. In contrast to ordinary hydrodynamics, in MH
the flux lines of the magnetic fieldB are frozen-in,8 but the
lines of the vorticity fieldV are not. Nonetheless, in th
course of the motion the vorticity cannot reach arbitra
states, since in addition to the topological invariants of
2991063-7761/99/89(8)/12/$15.00
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magnetic field, the so-called ‘‘cross’’ invariants containin
the vorticity are also conserved. We call topological inva
antsI $S% of a certain solenoidal fieldS functionals whose
variation is zero if the variation of the field has the ‘‘froze
in’’ form

dS5curl@dx3S#.

Such a variation shifts the flux lines of the fieldS by the
small amountdx(r ) without changing the topological char
acteristics of the field. Hence follows a criterion for a give
functional to be topological:

@curl~dI /dS!3S#50.

Specifically, the integral of the magnetic helicity

I h$B%5E ~B curl21 B!dr

is a topological invariant of the magnetic field. From th
geometric standpoint,I h is measure of the linkage of mag
netic flux lines,9 and for smooth mappings, to within a con
stant factor it is the same as the Hopf invariant.

The best known cross invariant of MHD is, probably, t
cross-helicity integral

I c5E ~V curl21 B!dr5E ~v•B!dr ,

which characterizes the number of linkages between the
tex and magnetic flux lines.9 The freezing-in of the magnetic
flux lines and the existence of cross invariants can be ea
explained from the standpoint of the relabeling symmet
The point is that ordinary MHD can be regarded as the lo
wavelength~or low-frequency! limit of the two-fluid model
of plasma, where the ion and electron fluids interact with o
another via the self-consistent electromagnetic field~see, for
example, Ref. 10 and a recently published paper6!. As is well
known,11 for each component there is a law of freezing-in
© 1999 American Institute of Physics
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the curl of the generalized momentum in its own substan
For this reason, before passage to the MHD limit, in a tw
fluid system two frozen-in fields are present explicitly:

V15curlvi1
e

mic
B

and

V25
me

mi
curlve2

e

mic
B,

each with its own combination of topological invariants.
the limit of interest to us the dimensional parame
a5mic/e is small compared to the ratiouBu/uV11V2u of
the characteristic values. Formally, the passage to the M
limit means that the parametera must be set equal to zero
preserving the order of magnitude of the quantit
B'2(mic/e)V2 and V5V11V2'curlvi . The approxi-
mate equalities are used because the electronic inertia i
nored and the ion velocityvi and electron velocityve are
assumed to be the same in the leading order. Then the
fields V1 andV2 degenerate into one field, whose lines a
the same as the flux lines of the magnetic field. To avoid
loss of half of the topological integrals of motion on passi
to the limit a→0, we must examine the limit for each topo
logical invariantI $B% of the magnetic field:

C F 5 lim
a→0

I $B1aV%2I $B%

a
5E S dI

dBD •Vdr ,

which is an integral of motion of ideal MHD. The set of a
C F is the set of cross invariants. Specifically, using t
formula the cross-helicity integralI c can be obtained from
the magnetic-helicity integralI h .

In this paper we report the results of a study of the m
tion of frozen-in fields in ideal MHD. It describes the flow
that fix all labeling integrals of motion. The analogous re
resentation in ordinary hydrodynamics — the Weber tra
formation7 — has been known for a long time; a particul
case of the latter is the parameterization of flow by the Cl
sch variables. One of the basic results of this paper is
extension of Weber’s representation of the case of id
MHD. This new representation contains a complete vec
field — a Lagrangian invariant. In ordinary hydrodynami
this invariant ensures conservation of the Cauchy invari
As a result, it ensures all conservation laws for the vorticit5

In MHD this vector field ensures conservation of the cro
invariants. In contrast to hydrodynamics, it cannot be
pressed explicitly in terms of the observed fields. It is sho
that the analog of the Weber representation for MHD can
obtained by passing to the limita→0 from a pair of ordinary
Weber representations which parameterize the genera
momenta in the two-fluid model. Such a limit procedu
shows the meaning of all quantities appearing in the res
The same answer is obtained by direct integration of
MHD equations in the Lagrangian description.

Another result of this work is that the parameterizati
found helps to formulate a variational principle for the d
namics of magnetic flux lines in incompressible MHD. T
approach employed is based on the integral representatio
e.
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frozen-in solenoidal fields, which fixes all of their topolog
cal properties. The magnetic flux lines are the new dyna
cal objects. Each flux line is enumerated by its Lagrang
label and admits a gauge freedom in its parameterizat
Such a description is intermediate between the Lagrang
and Eulerian descriptions.12–14 The gauge-invariant equa
tions of motion obtained for the form of the lines determi
only the transverse dynamics on which the observed qua
ties depend. The condition of conservation of the volume
each magnetic tube is not imposed in the form of a c
straint, but rather it is an integral of motion that, according
Noether’s theorem, follows from the symmetry of the ne
Lagrangian with respect to relabeling of the magnetic fl
lines. This formulation of ideal incompressible MHD is sim
lar to the representation of incompressible flows in ordin
hydrodynamics by means of frozen-in vortex lines.13,15 The
new representation of incompressible MHD flows describ
best the fields with a complicated topology, as well as loc
ized structures such as magnetic filaments.

This paper is organized as follows. In Sec. 1 the requi
information about the canonical formalism for general h
drodynamic systems is given and the Weber representa
for generalized momenta is obtained. In Sec. 2, a model
termediate between the two-fluid model of plasma and m
netohydrodynamics — the so-called Hall MHD or MH
with dispersion16 — is studied. In Sec. 3 the Weber repr
sentation for ordinary MHD is obtained from this model b
passage to a limit. In Sec. 4 a gauge-free description of m
netic and vortex fields in incompressible MHD systems
introduced, the equations of motion are written out, and
variational principle is formulated for the dynamics of th
new objects. The question of Casimir functionals of non
nonical Poisson brackets is also discussed in Sec. 4~Ref. 17!.
In Sec. 5, a method for choosing a gauge, which gives
nonically conjugate dynamical quantities in the new desc
tion, is demonstrated for two-dimensional MHD.

2. THE CANONICAL FORMALISM FOR A FLUID

For simplicity, we consider one-fluid systems first, a
then we make obvious generalizations to multicompon
models. We shall be interested in the mechanical motion
liquid as a continuous medium, and therefore we shall exa
ine Lagrangian systems for which the elements of confi
ration space are the mappingsr5x(a) of the three-
dimensionala-space of the labels of ‘‘fluid particles’’ into
the physicalr -space. The description of motion by giving th
dependence of the mappingsx on the timer5x(a,t) is gen-
erally called the Lagrangian description. This mapping de
mines the density fieldr(r ,t) and the velocity fieldv(r ,t),
and it is always possible to choose a labeling so that
density is expressed in terms of the Jacobian of the map

Jx5deti]x/]ai

without an additional factor which depends ona:

r~r ,t !5
1

deti]x/]ai U
a5x21(r ,t)

, v~r ,t !5 ẋ~a,t !ua5x21(r ,t) .

~1!
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The dependences of all physical quantities (r,v) and also the
fields f external to the medium on the coordinatesr and time
t give the Eulerian description of flow.

We distinguish among all possible Lagrangia
L$x(a),ẋ(a), f (r ), f t(r )% the ones that possess symme
with respect to relabeling of the labelsa ~relabeling group!.
This means that the indicated functionals are determi
completely by the Eulerian characteristics of the flow: t
density, the velocity, and the external fields. The variation
the external fields that is required to construct the equat
of motion of the fields is done directly in the Eulerian re
resentation. For this reason, we shall first study Lagrang
of the form L5L$r,v%. Lagrangians of many physicall
important systems possess the indicated symmetry. In
case a closed system of equations in an Eulerian repres
tion can be written for the quantitiesv and r. An equation
for the density is obtained from the kinematic relation b
tween the variation of the density and the small displacem
dx„a… ~the argumentt is dropped for brevity!:

dr~r !52¹~r~r !dx~a~r !!!. ~2!

This relation follows from Eq.~1! and gives the continuity
equation

r t1¹•~rv!50. ~3!

To write the dynamical Euler–Lagrange equation

d

dt S dL

d ẋ~a!
U

x~a!

D 5
dL

dx~a! ẋ(a) , ~4!

in the Eulerian representation it is necessary to use the
mula

dv~r !5d ẋ~a~r !!2~dx~a~r !!•¹!v~r !,

which follows from the definition~1!, together with Eq.~2!
for substituting into the equality of the variations

E S dL

d ẋ
•d ẋ1

dL

dx
•dxD da5E S dL

dv
•dv1

dL

dr
dr Ddr .

A simple integration by parts gives

dL$r,v%

dx~a!
U

ẋ(a)

5S ¹S dL

dr D2
1

r S dL

dvm
D¹vmD U

r5x(a,t)

, ~5!

p~a,t ![
dL$r,v%

d ẋ~a!
U

x(a)

5S 1

r S dL

dv D D U
r5x(a,t).

~6!

Herep(a,t) is the generalized momentum, which, in gener
is different from the velocity. This circumstance is very im
portant for many models.

The equation of motion~4! is now~the generalized Eule
equation!

~] t1v•¹!S 1

r

dL

dv D5¹S dL

dr D2
1

r S dL

dvm
D¹vm . ~7!

The equations~3! and ~7! completely determine the motion
As an example, we shall consider the relativistically

variant expression for the action of a barotropic liquid~in
dimensionless variables!:
d

f
s

ns

is
ta-

-
nt

r-

l,

-

I r5E Lrdt52E dtE dr «~rA12v2!, ~8!

wherer is the number density of the conserved particles
the laboratory reference frame,rA12v25 r̃ is the density in
a locally comoving reference frame, and«( r̃) is the relativ-
istic internal energy density of the liquid, including the re
energy. It can be easily shown that the extension of the E
equation in the well-known textbook by Landau and Lifsh
~see Ref. 1, Eq.~134.10! to relativistic isentropic flows is
identical to Eq.~7!, if we substitute in it the given Lagrang
ian and take into account the fact that the relativistic e
thalpy can be expressed asw5]«/]r̃:

~] t1v•¹!S vw~ r̃ !

A12v2D 52¹w~ r̃ !A12v2. ~9!

We underscore that the continuity equation must be writ
for r and notr̃. It can then be represented as

] tS r̃~w!

A12v2D 1¹•S r̃~w!v

A12v2D 50, ~10!

which makes it possible to treat the pair (w,v) as dynamical
quantities. The generalized momentump can be determined
from the formula

p5w~rA12v2!
v

A12v2
. ~11!

We see that in relativistic hydrodynamics the generaliz
momentum depends in a nonuniversal manner on the ve
ity. The relation betweenp andv is unique for each equation
of state, and it contains the densityr. In the nonrelativistic
limit v!1, r!1, r̃'r, w( r̃)'11wnr(r), we have, as
might be suggested, the equations of ordinary hydrodyn
ics in whichwnr(r) is the nonrelativistic enthalpy.

Next, using the standard rules, we switch from the L
grangian to the Hamiltonian formalism. In this case, we u
instead of the generalized velocityẋ5v a different variable
— the generalized momentump5dL/d ẋ. In the Eulerian
representation it is expressed by Eq.~6!. We determine the
Hamiltonian functional as

H5E ~p~a!• ẋ~a!!da2L5E S dL

dv
•vDdr2L. ~12!

Here the velocityv must be expressed in terms ofp using
Eq. ~6!. It is easily verified that it can be determined, usi
the known Hamiltonian, by the formula

v5
1

r S dH

dp D U
r

. ~13!

The following relation holds between the derivatives:

dL

dr U
v,s

5
p

r S dH

dp D U
r

2
dH

dr U
p

. ~14!

In the variables$r,p% the dynamical system correspon
ing to a certain HamiltonianH$r,p% assumes the form
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r t1¹•S dH

dp D50, ~15!

pt5F S dH

dp D3
curlp

r G2¹S dH

dr D , ~16!

as can be verified using Eqs.~5!, ~6!, ~13!, and~14!. Calcu-
lating the time derivative of a certain functionalF$r,p%, we
obtain an expression of the formḞ5$F,H%, where the
right-hand side is a bilinear antisymmetric form, determin
for any two functionalsF$r,p% andG$r,p%:

$F,G%5E S curlp

r FdF

dp
3

dG

dp G Ddr

1E S dG

dr
¹•S dF

dp D2
dF

dr
¹•S dG

dp D Ddr . ~17!

It can be verified that this formula determines the hydro
namic Poisson bracket.17 Besides the indicated antisymmet
property this form also satisfies the Jacobi identity

$$F,G%,H%1$$H,F%,G%1$$G,H%,F%50.

We shall now consider another example — a nonrelativ-
istic barotropic fluid in a fixed external potential field. Th
Lagrangian is

Lnr5E S r
v2

2
2«~r!2rf~r ! Ddr ,

where «(r) is the ordinary nonrelativistic internal energ
andf(r ) is the potential of the external force, for examp
the gravitational potential. The generalized momentum
this case is the velocityp5v, and the Hamiltonian is a sum
of the kinetic, internal, and potential energies:

Hnr5E S r
p2

2
1«~r!1rf~r ! Ddr .

The equations of motion obtained from Eqs.~15! and ~16!
have the well-known form

r t1¹•~rv!50, vt5@v3curlv#2¹S v2

2
1w~r!1f~r ! D .

As already mentioned, hydrodynamic-type systems p
sess an infinite number of integrals of motion. To demo
strate this fact we shall examine the time derivative of
quantityum(a,t)5pk(]xk /]am). Using the Euler–Lagrange
equation and Eqs.~5! and ~6!, we obtain

u̇m5 ṗk

]xk

]am
1pk

] ẋk

]am
5

]xk

]am
S ]

]xk
S dL

dr D2pm

]vm

]xk
D

1pk

]vk

]am
5

]

]am
S dL

dr D .

Integrating this relation with respect to time, we obtain t
so-called Weber representation7

pk~a,t !
]xk~a,t !

]am
5u0m~a!1

]w~a,t !

]am
, ~18!

where the scalar potentialw satisfies the equation
d

-

,
n

s-
-
e

ẇ~a,t !5
dL

dr
5S p

r
•S dH

dp D2
dH

dr D .

Conservation of the ‘‘transverse’’ component of the fie
u(a,t) follows from Eq.~18!. This is equivalent to the asse
tion

eabg

]pk~a,t !

]ab

]xk~a,t !

]ag
5~curlau0~a!!a5V0a~a!. ~19!

The equality~19! is, precisely, a formulation of the conse
vation laws, since its right-hand side is time-independent
this form the integrals of motion are expressed in terms
the local characteristics of the flow and are simply a Cau
invariant.7 A different ~and equivalent! formulation involves
choosing an arbitrary solenoidal fieldg(a) and studying the
integral

I g5E pk~a,t !
]xk~a,t !

]am
gm~a!da. ~20!

Substituting here the Weber representation~18! and integrat-
ing the term withw by parts, we conclude thatI g5const.

Choosing the fieldg(a) in a special form such that th
field is concentrated on a closed contour gives Kelvin’s th
rem on the conservation of the circulation

G5 R p•dr

along a streamline.1 We note that a direct application of No
ether’s theorem also gives the integrals of motion~20!. Let
us consider a one-parameter group of transformations of
Lagrangian labelsag

t(a), which is the solenoidal vector field
g(a) ~the solenoidal nature of the field follows from the co
stancy of the density!. Let us consider an arbitrary mappin
x(a,t). Irrespective of the value of the group parametert, all
mappings xg

t(a,t)5x(ag
t(a),t) describe the same flow

$r(r ,t),v(r ,t)%. For this reason, the Lagrangian assumes
value on such mappings. Noether’s theorem states that in
case there exists a conservation law18

E p•S dxg
t

dt DU
t50

da5 const.

Using for smallt the formulas

ag
t~a!5a1tg~a!1O~t2!,

xg
t~a,t !5x~a1tg~a!1O~t2!,t !5x~a,t !

1t~g~a!•¹a!x~a,t !1O~t2!,

we immediately obtain the expression~20! for I g .
The formula~19! can be rewritten in the following form

which determines a relation between the vorticityV(r ,t)
5curlp(r ,t) of the flow and a Cauchy invariant:

V~r ,t !5
~V0~a!•¹a!x~a,t !

det~]x~a,t !/]a!
U

a5x21(r ,t)

5E d~r2x~a,t !!

3~V0~a!•¹a!x~a,t !da. ~21!

The formula~21! shows that the lines of initial solenoida
field V0 are deformed by the mappingx(a,t), while preserv-
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ing all topological properties of the field in the process. S
cifically, the degree of linkage of the vortex lines, which
determined by the helicity integral*p•Vdr , remains
unchanged.9 It is easy to see that this conservation la
applies to the family~20! and corresponds to the choic
g(a)5V0(a).

All calculations performed above admit an obvious ge
eralization toN-fluid hydrodynamics. In multicomponent hy
drodynamic models, where the state of system is descr
by several fieldsr j and vj , the curl of each generalize
momentum is frozen into its own substance with labelaj .
Weber’s representations consisting ofN formulas parameter
ize each generalized momentum. We also note that in ce
models, it is more convenient to use instead of the dens
r j the quantities to which they are proportional, for examp
the concentrationsnj of particles of a definite kind. This is
the situation in the two-fluid model of plasma studied belo

3. FROZEN-IN FIELDS IN MAGNETOHYDRODYNAMICS

It is well-known that in ideal MHD the magnetic field i
frozen into the fluid. The laws of conservation of the top
logical invariants of the magnetic field, for example, t
measure of linkage of the magnetic flux lines,19,11,20are re-
lated to this fact. Besides these integrals of motion, there
exist so-called ‘‘cross’’ topological invariants, whose expre
sions contain the curl of the velocity. To understand th
origin we recall that the MHD equations can be obtained
the low-frequency~or long-wavelength! limit from a two-
fluid model of plasma, where electrons and ions are con
ered to be two separate fluids. Each component admi
labeling symmetry, and therefore the system contains
independent frozen-in fields,21 i.e., two series of topologica
integrals of motion. As will be shown below, the long
wavelength, or low-frequency, limit means neglecting el
tronic inertia. The cross integrals of MHD in this case co
respond to the limits of the special combinations
invariants of the two-fluid model.

Let us consider the two-fluid model of plasma in whi
the state of the system is described by the following fiel
n1 andn2 — ion and electron densities;v1 andv2 — veloci-
ties of the ion and electron fluids; andA — the vector po-
tential of the electromagnetic field. Let the scalar potentia
zero, which fixes the gauge. We shall ignore the elect
mass as compared with the ion massm and assume that th
conductivity of the medium is infinite, i.e., one fluid can flo
without friction through the other. Let the velocities be no
relativistic and the electric field much smaller than the m
netic field. Accordingly, the action of the fluid and the fie
can be written as

I 2 f5E S mn1

v1
2

2
1

e

c
~n1v12n2v2!•A

2
1

8p
~curlA!22«~n1 ,n2! Ddrdt, ~22!

where«(n1 ,n2) is the internal energy of the fluids. Variatio
of the action according to the scheme~7! gives the continuity
equations
-

-

ed

in
es
,

.

-

so
-
ir
n

d-
a

o

-
-
f

:

e
n

-
-

curl curlA5
4pe

c
~n1v12n2v2!, ~23!

~] t1v1•¹!mv15
e

c
~2At1@v13curlA# !2¹

]«

]n1
, ~24!

052
e

c
~2At1@v23curlA# !2¹

]«

]n2
. ~25!

To these equations we must add two continuity equation

n1,t1¹•~n1v1!50, n2,t1¹•~n2v2!50. ~26!

Now, since by definition

curlA5B,

and also in the gauge chosen

2
1

c
At5E,

Eq. ~23! is easily recognized as the equation for the qua
tationary magnetic field,8 Eq. ~24! is the equation of motion
for the ions, and from Eq.~25! we obtain an equation for the
freezing of the magnetic field into the electronic compone

Bt5curl@v23B#.

Applying the operation div to Eq.~23! gives, using the con-
tinuity equations, the relation

n1,t2n2,t50.

Integrating over time gives the condition of electric neutr
ity

n15n25n.

We note that a different choice of the arbitrary integrati
function @n12n25C(r )# is physically unjustified, becaus
this would make the model under study, where quasineut
ity is assumed at the outset, non-self-consistent. Elimina
n2 andv2 from the equations written down and making th
substitutionv15v gives the system~MHD with dispersion16

or Hall MHD6!

~] t1v•¹!mv52¹w~n!1
1

4pn
@curlB3B#,

w~n!5
]

]n
«~n,n!,

nt1¹•~nv!50, Bt5 curlF S v2
c

4pen
curlBD3BG .

~27!

We note that ordinary magnetohydrodynamics is obtain
from these equations in the limit of high concentrations a
small gradients~the MHD limit!, where in the last equation
the term (c/4pen)curlB can be ignored compared tov. At
the same time, the vector potentialA of magnetic field must
be large compared with the characteristic values of (mc/e)v,
so that the magnetic and inertial terms in Euler’s equat
would be at least of the same order of magnitude. From th
requirements follows a necessary condition for applicabi
of ideal MHD
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nL2@mc2/e2,

whereL is the spatial scale.
It is noteworthy that if the indicated term is not disr

garded, hiding thereby the symmetry of the initial system,
obtain two different frozen-in fields

V252
e

mc
B,

which is frozen into the electronic component, and the fi

V15curlS v1
e

mc
AD5V2V2 ,

which is frozen into the ionic component. Therefore there
two series of topological invariantsI $V1% andI $V2%. We
call topological invariants of a solenoidal field all possib
quantitative characteristics that remain unchanged un
variations of the field that reduce to a continuous deform
tion of the flux lines of the field. In the present paper, the
fore, a frozen-in solenoidal field is imagined to be a contin
ous set of lines that do not start or end anywhere, they
not created and do not vanish with time, and they do
intersect one another in the course of the motion.

In the MHD limit the sum of the frozen-in fields~i.e., the
field V) is ‘‘infinitely’’ small compared with each field, so
that the corresponding invariantsI $B1(mc/e)V% and
I $B% are almost equal to one another. To preclude a los
half of the invariants, we must consider the following lim
for eachI $B%:

C I 5 lim
a→0

I $B1aV%2I $B%

a
5E S dI

]B
•VDdr , ~28!

which is an integral of motion of ideal MHD. The set of a
C F replaces the second series of topological invariants
the system~22! in the MHD limit. Therefore, in ordinary
MHD each topological integral, which contains only th
magnetic field, corresponds a ‘‘cross’’ invariant~28!. For
example, from the magnetic-helicity integral

I h$B%5E ~A•B!dr

we obtain the cross-helicity integral

I c5E ~A•V!dr ,

which characterizes the number of linkages of the vortex
magnetic flux lines.

Following the formalism expounded above, we sh
switch to the Hamiltonian description of the system~22!.
The generalized momenta are determined in this case by
formulas

p15mv11
e

c
A, p252

e

c
A. ~29!

The Hamiltonian has the form
e

e

er
-
-
-
re
t

of

f

d

l

he

H2 f5E S n1~p11p2!2

2m
1

c2

8pe2
~curlp2!21«~n1 ,n2!D dr .

~30!

For generality, we shall consider all two-fluid Hamilto
nians of the special formH$p11p2 ,2a curlp2 , n1 , n2%,
wherea is a parameter. We introduce the notation

p5p11p2 , B52a curlp2 .

All such systems possess the integral of motion

n12n25C~r !.

We are interested in the casen15n25n, for which the equa-
tions of motion can be rewritten as

pt5F S dH

]p D3
curlp

n G2¹S dH

dn D1FcurlS dH

dB D3
B

nG ,
~31!

Bt5curlF S dH

dp
2a curlS dH

dB D D3
B

nG , ~32!

nt1¹S dH

dp D50. ~33!

It can be easily verified that the Poisson brackets for s
systems have the form

$F,G%5E S B

n S Fcurl
dF

dB
3

dG

dp G2Fcurl
dG

dB
3

dF

dpG D D
3dr1E S curlp

n FdF

dp
3

dG

dp G Ddr

2aE S B

n Fcurl
dF

dB
3curl

dG

dBG Ddr

1E S dG

dn
¹S dF

dp D2
dF

dn
¹S dG

dp D Ddr . ~34!

If a is set equal to zero, these brackets become the Poi
brackets of ordinary MHD.17 This limit corresponds to an
infinite increase in the absolute values of each of the ge
alized momentap1 andp2 with their sum remaining finite.

4. WEBER’S REPRESENTATION FOR
MAGNETOHYDRODYNAMICS

We shall now determine into what Weber’s represen
tion transforms for an ion fluid in the limita→0. As a result,
the flow velocities of the electronic and ion fluids becom
the same. As long asa is finite, we have two different,
though slightly different from one another, mappingsx1(a)
andx2(c), wherea is the label of the ion fluid, andc is the
label of the electron fluid. We write the corresponding W
ber representations for each generalized momentum:

p15¹amu0m
(1)~a!1¹w (1), p25¹cmu0m

(2)~c!1¹w (2).
~35!

The field dependencesu0m
(1)(a) and u0m

(2)(c) are such that if
they are reduced to the same argument, then their sum
be finite but small compared with each term separately:
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u0m
(1)~a!1u0m

(2)~a!5u0m~a!.

Sincex1(a) andx2(c) are almost the same, we can assert t
in the expression~where, for simplicity, we omit the argu
ment t)

c~r !5a~r !1d~a~r !!

the quantityd@a(r )# is small compared with the other term
and is an infinitesimal of ordera. Since the ion density
equals the electron density, there is the additional condit

deti]a/]r i5deti]c/]r i .

This condition implies that¹a•d50 for small values ofd.
Let us now take the sum of the two expressions from
~35! and retain only terms that are not small for smalla:

p5¹amu0m~a!1¹cmu0m
(2)~c!2¹amu0m

(2)~a!1¹w̃

'¹amu0m~a!1¹dmu0m
(2)~a!1¹amdlu0m,l

(2) ~a!1¹w̃.

Now we shall no longer distinguish betweena andc. Intro-
ducing the notation

w5dmu0m
(2)1w̃, dl /a52elabSb,a~a,t !

for the solenoidal fieldd(a,t)/a and using the equality

B0~a!52a curla u0
(2)~a!,

we rewrite this relation in the form

pk

]xk

]am
5u0m~a!1w ,m~a,t !1B0l~a!~Sl,m~a,t !2Sm,l~a,t !!.

~36!

This formula is an extension of Weber’s representation
one-fluid hydrodynamics in the case where the system c
tains a frozen-in magnetic field.14 We shall show that it can
also be obtained directly by partial integration of the MH
equations written in the Lagrangian representation. T
MHD Lagrangian has the form

L* 5E S r
v2

2
2r«̃~r!2

B2

8p Ddr .

Here «̃(r) is the specific internal energy. The pressure c
be expressed in terms of this energy as follows:

p~r!5r2~]«̃/]r!,

and the enthalpy can be expressed as

w~r!5]~ «̃r!/]r.

The first term is the kinetic energy, the second term is
internal energy, and the last term is the magnetic energy.
LagrangianL* can be written in terms of the mappin
x(a,t) as follows:22

L* 5E ẋ2

2
da2E «̃~Jx

21~a!!da2
1

8p

3E S B0~a!•¹ax

Jx~a! D 2

Jx~a!da. ~37!
t

n

.

o
n-

e

n

e
he

Here a formula similar to Eq.~21! was used to represent th
frozen-in magnetic fieldB(r ,t) in terms of Lagrangian quan
tities. The generalized Euler equation for one-fluid mod
with a frozen-in magnetic field can be obtained similarly
Eq. ~7! and has the form

~] t1v•¹!S 1

r

dL

dv D5S 1

r FB3curl
dL

dB G1¹S dL

dr D
2

1

r S dL

dvm
D¹vmD , ~38!

which in this case gives

~] t1v•¹!v52¹w~r!1
1

4pr
@curlB3B#. ~39!

Examining the time derivative ofpk(]xk /]am), we obtain
without any special difficulties the representation~36!, and
the equations of motion for the quantitiesw andS appearing
there are

ẇ~a,t !5S p

r S dH

]p D2
dH

]r D U
r5x~a,t !

, ~40!

Ṡm~a,t !52
]x

]am
•S dH

]B D U
r5x~a,t !

. ~41!

Here it is assumed that the corresponding representation
the frozen-in magnetic field@a formula of the type~21!# and
the representation~36! for the momentum field are subst
tuted into these equations. Together with the equation
x(a)

ẋ~a,t !5
1

r S ]H

]p D U
r5x~a,t !

. ~42!

Eqs.~40! and ~41! form a closed system that corresponds
a fixed flow topology determined by the fieldsB0 and u0 .
Here the HamiltonianH$r,p,B% written in the Eulerian rep-
resentation is obtained from the LagrangianL$r,v,B% ac-
cording to the standard formula~12!, but it depends not only
on the momentum and density but also on the magnetic fi
Thus, the MHD Hamiltonian has the form

H* 5E S r
p2

2
1r«̃~r!1

B2

8p Ddr ,

and the equations of motion~42!, ~41!, and~40! are

ẋk~a!5pk5
]am

]xk
S u0m1

]w

]am
1B0aS ]Sa

]am
2

]Sm

]aa
D D , ~43!

2Ṡa~a!5
1

4p

]xk~a!

]aa

]xk~a!

]am

B0m~a!

Jx~a!
, ~44!

ẇ~a!2
pk~a!pk~a!

2
1w~Jx

21~a!!50. ~45!

If the transformation law for the components of the ve
tor S for transforming to the Eulerian representation is giv
as
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Sk~r !5
]am

]xk
Sm~a!,

then the following parameterization of the velocity field
MHD is easily obtained from Eq.~43!:

v~r !5u0m~a!¹am1¹w~r !1
@B~r !3curlS~r !#

r~r !
.

The presence of a term withu0(a) ensures that the values o
the topological cross invariants will be nontrivial. In the pa
ticular caseu050 this formula is identical to the result ob
tained in Ref. 23, where the question of introducing cano
cal variables into MHD was considered and it was sho
that ~for u050) the fields (B,S) and (r,w) form
canonically-conjugate pairs.

5. MHD-TYPE SYSTEMS IN THE INCOMPRESSIBLE LIMIT

We shall now go over to incompressible MHD fluid
First, for simplicity, we consider the case of finitea, so that
there are two different solenoidal fieldsV1 and V2 , each
being frozen into its own substance. The entire dynam
then occurs in the class of isorotational fields,24 and from the
isovorticity follows topological equivalence,19 which can be
expressed by formulas similar to Eq.~21!:

V1~r ,t !5E d~r2R1~a,t !!~V1
0~a!•¹a!R1~a,t !da,

~46!

V2~r ,t !5E d~r2R2~c,t !!~V2
0~c!•¹c!R2~c,t !dc, ~47!

Here the mappingsR1(a,t) and R2(c,t), in contrast
to x1(a,t) and x2(c,t), do not carry any information abou
density. Specifically, the corresponding Jacobia
J15deti]R1 /]ai andJ25deti]R2 /]ci need not necessaril
be equal to unity.12 Thereforea andc are no longer labels o
fluid particles, but rather they are more formal quantities.
information about topological properties is contained in
time-independent solenoidal fieldsV1

0(a) and V2
0(c). This

representation of the fieldsV1 and V2 possesses a gaug
freedom, since the same field can be parameterized by
ferent mappingsR. Indeed, it is possible to switch to coo
dinatesn1(a), n2(a), and j(a) in Eq. ~46! such that this
formula can be rewritten as

V1~r ,t !5E
N 1

d2nE d~r2R1~n,j,t !!
]R1~n,j,t !

]j
dj

~48!

and similarly forV2 . HerenPN 1 is the label of a vortex
line lying in a fixed two-dimensional manifoldN 1 , andj a
parameter along this line. This form of expression holds
cally for an arbitrary frozen-in solenoidal field; it holds glo
bally only if the flux lines are closed. The gauge freedom
connected with the possibility of choosing a parameter al
the lines and with the identity of the vortex lines themselv
which makes it possible to rename the labelsn. Gauge trans-
formations of the first type exist for any field topolog
Transformations of the second type, however, exist onl
V1

0(a) possesses globally determined vortex surfaces.
i-
n

s

s

l
e

if-

-

s
g
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The variational derivatives with respect to the new va
ables are determined by the formulas

dH

]R1
5F ~V1

0
•¹a!R13curlrS dH

]V1~R1! D G , ~49!

dH

]R2
5F ~V2

0
•¹c!R23curlrS dH

]V2~R2! D G , ~50!

A characteristic property of the new variational derivatives
that they are transverse with respect to the direction of
corresponding vortex lines. It is easy to see that only tra
verse displacementsdR1 anddR2 give rise to variations of
the fields and, correspondingly, vary the Hamiltonian.

The equations of motion for the fieldsV1 and V2 ,
which are curls of the generalized momenta, follow from t
noncanonical Poisson brackets

$F,G%5E S V1•Fcurl
dF

dV1
3curl

dG

dV1
G

1V2•Fcurl
dF

dV2
3curl

dG

dV2
G Ddr . ~51!

These equations are

V1,t5curl@curl~dH/dV1!3V1#,

V2,t5curl@curl~dH/dV2!3V2#. ~52!

Substituting here the representations~46! and~47!, perform-
ing a series of intermediate calculations~similar to Ref. 12!,
and taking account of Eqs.~49! and ~50!, the equations of
motion for R1(a,t) andR2(c,t) can be written as

@~V1
0~a!•¹a!R13R1,t#5dH/dR1 ,

@~V2
0~c!•¹c!R23R2,t#5dH/dR2 . ~53!

These equations determine only the transverse veloci
Velocities along vortex lines can be chosen arbitrarily, wh
has no effect on the dynamics of the fields and is due to
longitudinal gauge freedom. These equations follow from
variational principle with the Lagrangian

L5~1/3!E da~@R1,t3R1#•~V1
0~a!•¹a!R1!

1~1/3!E dc~@R2,t3R2#~V2
0~c!•¹c!R2!

2H$V1$R1%,V2$R2%%. ~54!

We underscore that in constructing the equations of m
tion by varying the expression~54! arbitrary variationsdR1

anddR2 , including variations that do not conserve the to
volumes enclosed by some vortex surfaces, are admissib
is easy to verify that the conservation laws for all such qu
tities, which should hold because the incompressibility
both liquids, in reality are integrals of motion of the syste
~53! and follow, according to Noether’s theorem, from th
symmetry of the Lagrangian with respect to the relabeling
the vortex lines. Therefore, foraÞ0 the situation is com-
pletely similar to that occurring in ordinary one-fluid hydro
dynamics in the description of incompressible fluids
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frozen-in vortex lines.12,15 The entire difference consists i
the presence of two frozen-in fields instead of one. We w
out here the specific two-fluid Hamiltonian, which on subs
tution into Eq.~54! corresponds in the limita→0 to ordi-
nary incompressible MHD:

H MHD
a 5

a2

8pE ~~V2
0~c!•¹c!R2~c!!2

deti]R2 /]ci dc1
1

8p

3EE~~V2
0~c1…–¹1!R2~c1!•~V2

0~c2…–¹2!R2~c2!!

uR2~c1!2R2~c2!u

3dc1dc21
1

4p

3E E ~~V1
0~a!•¹a!R1~a!•~V2

0~c!•¹c!R2~c!!

uR1~a!2R2~c!u

3dadc1
1

8p

3EE~~V1
0~a1…–¹1!R1~a1!•~V1

0~a2…–¹2!R1~a2!!

uR1~a1!2R1~a2!u

3da1da2 . ~55!

The first term in this expression is the magnetic energy

M5
1

8pE B2dr ,

and the last three terms are the kinetic energy of the inc
pressible liquid

H52
1

2E V•D21Vdr .

If V2
0(c)50, we have here the Hamiltonian of ordinary h

drodynamics.
The limit a→0 can be taken in the representation of t

fields, in the equations of motion, and in the Lagrang
similarly to the manner in which Eq.~36! was obtained. As a
result, we obtain the following parameterization of the fie
V5V11V2 andB:

V~r ,t !5E d~r2R~a,t !!~~V0~a!1curla@B0~a!

3U~a,t !# !•¹a!R~a,t !da, ~56!

B~r ,t !5E d~r2R~a,t !!~B0~a!•¹a!R~a,t !da. ~57!

Here the fieldU(a,t) is not necessarily solenoidal for th
reason mentioned above that the Jacobians of the mapp
R1 andR2 , which appear in Eqs.~46! and~47!, are arbitrary.
The relation between the variational derivativedH/dU and
the old variational derivatives with respect toV and B is
given by the formula

2
dH

dUm
5

]R

]am
F ~B0•¹a!R3curlr

dH

dV~R!G . ~58!

The analogous formula fordH/dR is
e
-

-

n

s

gs

dH

dR
5F ~B0•¹a!R3curlr

dH

dB~R!G
1F ~~V01curla@B03U# !•¹a!R3curlrS dH

dV~R! D G .
~59!

The Poisson brackets for the incompressible MHD s
tems can be obtained from Eq.~51! by making the substitu-
tions V15V1a21B andV252a21B and taking the limit
a→0. It has the form17

$F,G%5E S V•Fcurl
dF

dV
3curl

dG

dVG Ddr

1E S B•S Fcurl
dF

dB
3curl

dG

dVG
2Fcurl

dG

dB
3curl

dF

dVG D Ddr . ~60!

Substituting the relations~56! and~57! into the equations of
motion for V(r ,t) andB(r ,t)

Vt5curl@curl~dH/dV!3V#

1curl@curl~dH/dB!3B#, ~61!

Bt5curl@curl~dH/dV!3B#, ~62!

which follow from Eq. ~60!, with allowance for Eqs.~58!
and ~59!, gives the equations of motion forU andR

@~B0•¹a!R3Rt#~]R/]al!52dH/dUl , ~63!

@~~V01 curla@B03U# !•¹a!R3Rt#

2@~B0•¹a!R3~Ut•¹a!R#5dH/dR. ~64!

It is easily verified that the limiting Lagrangian is

L5E da~@~B0•¹a!R3~U•¹a!R#•Rt!1~1/3!

3E da~@Rt3R#•~V0•¹a!R!2H$V$R,U%,B$R%%,

~65!

and the HamiltonianHMHD of incompressible MHD is

HMHD5
1

8pE ~~B0~a!•¹a!R~a!!2

deti]R/]ai da1
1

8p

3E E ~~V~a1…–¹1!R~a1!•~V~a2…–¹2!R~a2!!

uR~a1!2R~a2!u

3da1da2 , ~66!

where, for brevity, we have introduced the notation

V~a!5V0~a!1curla@B0~a!3U~a,t !#.

Thus, we have a variational principle for MHD-typ
Hamiltonian dynamics of two solenoidal vector fields who
topological properties are fixed byV0(a) and B0(a). We
underscore the difference between the system of equat
~40!, ~41!, and ~42!, which can describe an incompressib
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liquid only as a limiting and technically ‘‘inconvenient’
case, and Eqs.~63! and ~64!, in whose derivation incom-
pressibility was assumed at the outset and actively used
result, all dynamical quantities in them are free of couplin
The result of solving the system~40!, ~41!, and ~42! is the
real motionx(a,t) of fluid particles with conservation of th
volumes, while by solving the system~63! and ~64! it is
possible to determine the fieldsB(r ,t) andV(r ,t) from Eqs.
~57! and~56! and even the motion of frozen-in magnetic flu
lines, but not the real particle distribution along these lin
In other words the Lagrangian~65! makes it possible to ob
tain more information about the flow than the Eulerian re
resentation provides, but less information than the comp
Lagrangian description.

We note that the equations of motion have a gau
invariant form, and they can be solved for the time deriv
tives only because of the gauge invariance of the Ham
tonian. The two arbitrary functions arising in the process c
be chosen on the basis of convenience. For example, g
the form of the magnetic flux lines in various coordina
systems, they can be parameterized by one of the three
ordinates, while the component of the vectorU alongB0 can
be set to zero.

We now discuss the question of the Casimir function
of the Poisson brackets~60!. These brackets are thea→0
limit of the two-fluid brackets~51!, whereV15V1a21B
and V252a21B. By definition the Casimir functionals
C$V1 ,V2% of the bracket~51! satisfy the equations

curl@curl~dC/V1!3V1#50,

curl@curl~dC/dV2!3V2#50. ~67!

The geometric meaning of the conditions~67! is that the
Casimir functionalsC are constants on a set of isorotation
fields:

dC50 if dV15curl@dx13V1#,

dV25curl@dx23V2#,

and the small displacementsdx1 anddx2 preserve volumes

~¹•dx1!50 and ~¹•dx2!50.

From the equalities~67! it follows that

@curl~dC/dV1!3V1#5¹CC
(1) ,

@curl~dC/dV2!3V2#5¹CC
(2) ,

whereCC
(1) andCC

(2) are scalar functions, and their constan
level sets are vortex surfaces, as is obvious from these
mulas. It makes sense to make a special effort to single
the Casimir functionalsCt, for which CCt

(1)[0 and CCt
(2)

[0. Such functionals remain unchanged even when the
placementsdx1 anddx2 do not preserve volumes. Therefo
it is natural to identifyCt with the topological invariants o
the fieldsV1 and V2 . The parameterization~46! and ~47!
fixesCt, since the Jacobians of the mappingsR1 andR2 are
not necessarily 1. All other Casimir functionals of the brac
ets~51!, which are related to the preservation of the volum
of the vortex tubes, are integrals of motion of the dynami
system~53!. Therefore the labeling symmetry of the fluids
As
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not completely exhausted, in general, by switching to
description of the flows by means ofR1 andR2 — symmetry
with respect to relabeling of the vortex lines remains in t
Lagrangian~54!. Nonetheless, it is necessary to take in
account that the presence of globally determined vortex
faces in the fieldsV1 and V2 and especially the closure o
the vortex lines are an additional symmetry. Fields with su
properties are atypical. For this reason, flows of general fo
in which the vortex lines are entangled in a complicat
manner are described completely adequately even by
~46! and~47! and hardly require any different representatio

In the limit a→0 we have the parameterization~56! and
~57!, which fixes all topological Casimir functionalsCt,
which in this case degenerate into topological invariants
the magnetic field and cross invariants. Both satisfy the c
ditions

@curl~dCt/dV!3V#1@curl~dCt/dB!3B#50,

@curl~dCt/dB!3V#50.

All other Casimir functionals of the brackets~60!, for ex-
ample, the volumes of the magnetic tubes in the presenc
global magnetic surfaces, are dynamical conservation law
the system~63! and ~64!.

In concluding this section we point out that the Poiss
brackets~60! can be directly transformed to new variables
means of Eqs.~58! and ~59!. Introducing the notation

h5~B0 .¹a!R, w5~~V01curla@B03U# !•¹a!R,

d* F

dU
5

dF

dUm

]am

]R

they can be written as

$F,G%5E S h•Fd* G

dU
3

d* F

dU G D ~h•w!

uhu4
da

2E S h

uhu2
•S FdF

dR
3

d* G

dU G2FdG

dR
3

d* F

dU G D D da.

~68!

It is important that the gauge invariance of the functionals
used in the calculations. This gives the identities

S h•
d* F

dU D50, S w•

d* F

dU D2S h•
dF

dRD50.

We note that variational derivatives with respect toV0

andB0 were not required to transform the brackets direc
to new variables. This confirms that these fields carry inf
mation about the Casimir functionals.

6. TWO-DIMENSIONAL INCOMPRESSIBLE
MAGNETOHYDRODYNAMICS

In two-dimensional incompressible MHD the magne
flux line formulism can be put into a simpler form. A mag
netic field in a plane is given by a single scalar functi
A(x,y,t) ~the z component of the vector potential!, whose
contour lines are the magnetic lines and are transported
the flow. The (a1 ,a2) plane divides into regions separate
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by separatrices — the contour lines of the functionA(a1 ,a2)
that pass through its saddle points. Curvilinear coordina
(j,A) can be introduced in each such region. The coordin
j parameterizes the magnetic flux lines and admits a ga
invariance. The vortex fieldV and the vectorU also have a
single nonzeroz component. The parameterization of th
fields for two-dimensional flows can be rewritten as

V~r ,t !5E d~r2R~j,A,t !!~V0~j,A!2U ,j!djdA,

~69!

B~r ,t !5E d~r2R~j,A,t !!R,j djdA, ~70!

whereR5(x,y). The equations of motion forU andR are

x,jyt2xty,j52dH/dU, ~71!

~V0~j,A!2U ,j!yt1Uty,j52dH/dx, ~72!

~V0~j,A!2U ,j!xt1Utx,j52dH/dy. ~73!

It is convenient to introduce a dynamical variableF(j,A,t)
defined to within an arbitrary additive functionf (A) as

F ,j5V0~j,A!2U ,j . ~74!

In general,F is a multivalued function. The change inF
around a closed magnetic flux line is determined by the
tegral

D~A!5 R V0~j,A!dj.

This change depends on the label of the lineA, but it does
not depend on the time and is therefore a topological inte
of motion. It is easy to see that the conserved quanti
D(A) are closely related to the cross invariants — Casi
functionals of the Poisson brackets~60!, which in the two-
dimensional case can be written as

C F5E VF~A!dxdy.

It is easy to see that the Lagrangian for the dynamical sys
~71!–~73! can be written in the form

LMHD2D5E ~x,jyt2xty,j!FdjdA2H$x,y,F%. ~75!

We see here that the kinematic part of the Lagrangian
two-dimensional MHD~for an individual magnetic flux line!
is identical to that for the dynamics of the free surface of
ideal liquid in two-dimensional potential flows.25 Preserva-
tion of the areas bounded by each magnetic flux line follo
from the symmetry of the Hamiltonian with respect to t
group of transformations

F~j,A!→F~j,A!1t f ~A!.

Locally, one of the Cartesian coordinates can be taken as
parameterj. Let the functiony(x,A,t) give the form of the
magnetic flux lines. The variablesy and F in this case are
canonically conjugate quantities that satisfy the equation
motion

yt5dH/dF, F t52dH/dy.
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As a very simple example, we write out the Hamiltonian f
nonlinear Alfvén waves against the background due to a u
form magnetic fieldB05(1,0):

HA2D5
1

8pE S 11y,x
2

y,A
DdxdA

2
1

8pE E F ,x1
~x1 ,A1!F ,x2

~x2 ,A2!

3 ln~~x12x2!21~y12y2!2!dx1dA1dx2dA2 .

~76!

The solutionF50, y5A corresponds to a rest state with th
field ~1, 0!. The part of this Hamiltonian that is quadratic
the small perturbationsF(x,A,t) and h(x,A,t)5y(x,A,t)
2A has the form

H A2D
(2) 5E d2k

~2p!2 S k1
2

k1
21k2

2

uFku2

2
1

k1
21k2

2

8p
uhku2D .

~77!

This expression gives the well-known dispersion relatio
low-amplitude Alfvén wavesv2(k)5k1

2/4p.

7. CONCLUSIONS

Let us sum up the results. The main results of this wo
are contained, first, in Eq.~36!, which is an extension of
Weber’s representation to the case where a magnetic
frozen into the liquid is present and, second, in Eqs.~56!,
~57!, and ~63!–~66!, which describe incompressible MHD
flows with fixed topology and establish a variational pri
ciple for the dynamics of new objectsU andR. It was also
shown that incompressible flows can be described by me
of frozen-in vortex fields for any numberN of components in
N-fluid hydrodynamic models@since Eqs.~46!, ~47!, ~53!,
and ~54! admit an obvious generalization#.
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11V. V. Yan’kov, Zh. Éksp. Teor. Fiz.107, 414 ~1995! @JETP 80, 219
~1995!#.

12E. A. Kuznetsov and V. P. Ruban, JETP Lett.67, 1076~1998!.
13E. A. Kuznetsov and V. P. Ruban, Zh. E´ksp. Teor. Fiz.115, 894 ~1999!

@JETP88, 492 ~1999!#.
14E. A. Kuznetsov and V. P. Ruban, inMHD Waves and Turbulence, Lec

ture Notes in Physics, edited by T. Passot and P.-L. Sulem~Springer-
Verlag, New York, 1999!.

15V. Berdichevsky, Phys. Rev. E57, 2885~1998!.
16V. I. Karpman,Nonlinear Waves in Dispersive Media~Nauka, Moscow,

1973!.
17P. J. Morrison and J. M. Greene, Phys. Rev. Lett.45, 790 ~1980!.
18B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko,Modern Geometry

~Nauka, Moscow, 1979!.
19M. I. Monastyrski� and P. V. Sasorov, Zh. E´ksp. Teor. Fiz.93, 1210

~1987! @Sov. Phys. JETP66, 683 ~1987!#.
20S. S. Moiseev, R. Z. Sagdeev, A. V. Tur, and V. V. Yanovski�, Zh. Éksp.
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Collective defect formation in the high-temperature superconductor YBa 2Cu3O7 under
the influence of adsorbed water molecules

B. M. Gorelov* )
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The mechanisms for defect formation stimulated by the adsorption of water molecules in the
surface of YBa2Cu3O7 ceramic are studied, together with the types of defects and their
distributions. It is found that a water layer physically bound to the surface reduces the rates of
annihilation and capture of positrons, changes the amount of barium and copper on the
surface by a factor of two, and inhibits diffusive jumps of nickel atoms. A layer of adsorbed
water excites subthreshold formation of 1021cm23 interstitial Ba and Cu1 atoms and transitions of
oxygen from O1 to O5, andvice versain the volume of crystallites, and the migration of
defects and accumulation of Ba atoms in the surface layer, which block diffusive jumps of Ni
within the volume of the crystals. These effects are related to the excitation of collective,
low-frequency weakly damped motion of heavy holes in the crystal volume when defects are
formed on the surface by physically adsorbed H2O molecules, which is accompanied by
Coulomb repulsion of cations from intermediate layers into interstitials and the migration of
defects in the field of the collective excitations. ©1999 American Institute of Physics.
@S1063-7761~99!01608-X#
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1. INTRODUCTION

The existence of low-frequency, collective excitations
heavy (h) carriers, the so called acoustic plasmons, is a b
condition for the plasmon mechanism of high-temperat
superconductivity.1–6 The distinctive features of acoust
plasmons are their phonon vibration frequencies and the
sibility of their dissipationless propagation through a crys
without Landau damping on light (l ) and heavy carriers. The
Landau damping is weakened if the phase velocity of
collective excitations of theh-carriers is such that

u5Vq /q@vFh ,vFl ~1!

or

vFh!Vq /q!vFl , ~2!

where vFh and vFl are the Fermi velocities of theh- and
l -carriers,q is the wave number,V5(4pnhe2/mh* )1/2 is the
plasma frequency, andnh andmh* are the concentration an
effective mass of theh-carriers. If the inequality is not sat
isfied under normal conditions, then it is possible to amp
and excite acoustic plasmons which move without dissi
tion through a crystal, creating perturbations in the cha
density, especially by introducing defects. In that ca
weakly damped acoustic plasmons result from the interac
of electrons with perturbations in the charge densitydr i in
the neighborhood of the defects~i is the number of defects!,
whose Hamiltonian is

dH5(
i

dr i~q!Vil /«~q,v!

and the matrix element6 has the form
3111063-7761/99/89(8)/10/$15.00
f
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n

gpl~k,q!5E dr(
l ,i

Ck2q,l* ~r !
q2wq

4pe«~q,v!
Vil Ck,l~r !,

~3!

whereCk2q,l* andCk,l5un(r )eik–r are the Bloch wave func-
tions of an electron in thel th band~n is the number of the
site!, wq is the Fourier transform of the potential,Vil is the
Coulomb part of the electron–plasmon interaction,«~q,v! is
the permittivity, andv is the frequency. Here the excitatio
of weakly damped acoustic plasmons can apparently oc
with a small number of defects or local density perturbatio
If so, then the formation of defects on the surface of hig
temperature superconducting~HTSC! crystals allows weakly
damped collective motion of theh-carriers to be excited
throughout the crystal.

A weakly damped displacement of collective excitatio
of degenerateh-carriers with a periodically modulated den
sity can be accompanied by low-energy subthreshold de
formation if the carriers are strongly localized and the ex
tation frequencies are low when

Vq5qu<vD , ~4!

wherevD is the Debye frequency. Since the time for an ato
to escape a lattice site satisfiestd>vd

21 during subthreshold
defect formation,7 whenVq<vD holds the localization time
for the antinodes of the charge of the acoustic plasmons
the lattice ions is sufficient to push them into interstices a
to form a defect. When the motion is collective, the ent
subsystem ofh-holes participates in the subthreshold defe
formation, so that dissipationless propagation of acou
plasmons can be accompanied by the formation of an ano
lously large numbernd of defects, satisfyingnd@Nd

i ~Nd
i is

the number of defects on the surface! and can approachnh .
© 1999 American Institute of Physics
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In addition, dissipationless collective motion ofh-carriers
can be accompanied by capture ofnd generated and intrinsic
defects by the electric fields of the acoustic plasmons and
mass transport of defects through the crystal to scatte
sites, such as the surface, intercrystallite boundaries, and
cancy clusters. When acoustic plasmons scatter on the
face and when there is a large number of migrating defect
is possible for them to accumulate in the surface region,
atomic composition of the surface can change, and intern
diffusive jumps can be blocked.

Note that subthreshold defect formation requires that
screening of the Coulomb repulsion of the ions in the int
stices of the lattice on the part of thel -carriers be weakene
or entirely absent, so that subthreshold defect formation
take place in the layers of an HTSC lattice, where thel - and
h-layers are spatially separated. In YBa2Cu3O7 these layers
are the intermediate Ba–O and Cu1–O layers, since8–11 the
l -carriers are localized in wide bands (Z1) formed by
dp-orbitals of the Cu2, O2, and O3 atoms in the cupr
layers, and theh-layers, in a narrow band (Z2) formed by
dp-orbitals of Cu1, O1, and O4 atoms of the intermedi
layers and Cu2 of the CuO2 layers. In addition, the band
structure is characterized by a wide vacancy band (Z3)
formed bydp-orbitals of Cu1, O1 and O4 atoms, and a n
row band with weak overlapping ofpx- and py-orbitals of
O2 and O3 atoms~Z4 band! can also form.12 However, in
the cuprate layers, subthreshold defect formation is impr
able because of screening of the Coulomb repulsion fo
by the l -carriers.

Local perturbations in the electron density at the surf
of HTSC crystals can be created with the aid of physica
adsorbed water molecules. Thus, physically adsorbed2O
dipoles pull atoms, especially Ba,13,14out of YBa2Cu3O7 and
form vacancies. The screening of the perturbations in
charge densitydr i in the neighborhood of the surface defec
can excite weakly damped acoustic plasmons throughou
volume of the YBa2Cu3O7.

Note that when YBa2Cu3O7 interacts with water, it
degrades.15–19 The degradation depends on the interfa
~HTSC-liquid, HTSC-vapor! and the density of the ceramic
and impurities in the HTSC or in the medium. Thus, und
normal conditions, ceramics with a density higher th
4.5 g/cm3 and single crystals of YBa2Cu3O7 interact equally
weakly with water vapor~the effect of intergrain boundarie
is insignificant, since20 they occupy 2.1–4.2% of the area!,
while the less dense samples decompose, with faster de
dation if carbon dioxide or halogen impurities are presen

In an atmosphere of water vapor, degradation and
plantation of H2O molecules into the lattice take place in a
adsorption process following chemical binding of the m
ecules with atoms on the HTSC surface and probably
characterized by different rates, since decomposition is
termined by the rate of reactive diffusion and implantation
determined by the rate of diffusion into the lattice. Both pr
cesses take place after formation of a physically bound p
layer of definite thickness on the surface.21 Differences in the
surface morphology of the samples affect the thickness of
layer of adsorbate, since for equal vapor pressuresp and
adsorption timest, the thickness satisfies
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h~p,t !.m~p,t !~mss!21vH2ONA
2/3M 22/3r21/3 ~5!

~wherem, ms , andM are the masses of the adsorbed wat
sample, and a gram mole of water,s is the specific surface
area of the adsorbent,vH2O is the landing area of an H2O

molecule,r is the density of water, andNA is the Avogadro
number! is less on HTSC samples with a developed surfa
s. However, by varyingp or t, on samples with different
areass it is possible to obtain the same value ofh and a
similar interaction process with the H2O molecules. In addi-
tion, by varyingh, it is possible to resolve the excitation o
acoustic plasmons by a physically bound layer of water p
to the onset of chemical adsorption and the implantation
H2O molecules into the lattice, and by varyingt, to resolve
the combined effect of initially physically bound water an
then of a different number of H2O molecules implanted into
the lattice.

Note that the defect formation on an HTSC surface
physically bound H2O molecules is possible if the thicknes
of the polylayer permits formation of a solvation coat
molecules whose interaction with the atoms in the lattice
sufficient to pull them off into the polylayer. For finite di
mensions of the coat, defect formation is characterized b
threshold dependence on the polylayer thickness. In addit
in the volume of dense polycrystalline samples, where
sorption does not occur or is small and the sizes of the po
are small for formation of a solvation coat, defect formati
and collective motion of theh-carriers can be excited unde
the influence of the adsorbate in the crystallites at the s
face. However, as they move without dissipation in the v
ume of the crystal, acoustic plasmons propagate from cry
to crystal within the sample volume and this may stimula
subthreshold defect formation and accumulation of defe
on the surface of crystallites that are not in contact w
water.

Therefore, physically adsorbed water molecules c
stimulate low-frequency collective excitations ofh-carriers,
whose dissipationless motion causes subthreshold forma
of a large number of defects in the intermediate Ba–O a
Cu1–O layers, the migration of defects in the volume
crystals, and their transport to the surface. Defect forma
is characterized by a threshold dependence on the water
thickness, accumulation of defects at the surface of crys
and changes in the atomic composition of the surface.

This paper is a study of defect formation stimulated
water molecules adsorbed on the surface of YBa2Cu3O7, and
of the spectrum of the defects and their distribution. Def
formation in intermediate layers of YBa2Cu3O7, where pos-
itrons are annihilated,22 and the defect migration are studie
by positron temporal spectroscopy. X-ray structural analy
is used to measure the lattice parametersa, b, andc and the
parameterh5(CO12CO5)/(CO11CO5) ~where CO1 and
CO5 are the concentrations of oxygen atoms at O1 and
sites!, which characterizes the filling of O1 and O5 sites
oxygen.23–26The accumulation of defects in the surface lay
of crystals was determined using atomic Auger analysis
by measuring the diffusion coefficient of nickel atoms.
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2. EXPERIMENTAL SAMPLES AND TECHNIQUES

The objects of study were x-ray single-phase polycr
talline samples of YBa2Cu3O7 with a density of 5.5 g/cm3

~porosity '14%! and an average grain size of 5–15mm,
obtained by solid phase synthesis form a mixture of grou
powders of Y2O3, BaCO3, and CuO. Synthesis was a
'900 °C in air for'20 h, followed by grinding of the re-
sulting tablets, mixing and compressing at 950 °C in air
'24 h, and a final annealing in oxygen with a smooth red
tion in temperature at 500– 420 °C over'64 h. Three poly-
crystalline blocks were obtained, from which three types
samples were prepared with different amounts of intrin
defects. Dispersed samples with particles sizes of 17–20mm
and a specific surface of 1 m2/g were obtained by dispersin
the polycrystalline samples.

Nonstoichiometric compounds YBa2Cu3O72d with
d.0 were obtained by annealing samples withd50 in
vacuum. The amount of oxygen was determined using x-
structural analysis and a Q-1500 oxygen thermodesorp
drift indicator.

Water molecules were adsorbed on the YBa2Cu3O7 sur-
face at room temperature and vapor pressures 0,p
,19 Torr after annealing of the samples in a vacuum
1023 Torr at temperatures below 180 °C for'2.5 h. The
amount of adsorbate was determined using MacBain
ances with a sensitivity of 231025 g. Thermogravimetric
measurements and differential thermogravimetric anal
~DTA! were performed on the dispersed samples using
Q-1500 drift indicator with a heating rate of 5° C/min.

The samples were placed once in an water-vapor at
sphere during the measurements employing temporal p
tron spectroscopy, x-ray phase analysis, and tracer atoms
repeatedly when determining the atomic composition of
surface. After exposure was completed, the polylayer of
sorbed water was removed from the crystallite surface.

The positron annihilation spectra were measured at ro
temperature on an instrument from ORTEC whose h
maximum resolution function is 220 ps with a resolution o
ps. A 22Na positron source with an activity of 20mCi was
used, mounted between two samples of size 10310
31.5 mm3. The positron annihilation ratel f and capture rate
v were determined from the expressions27

l f5I 1 /t11I 2 /t2 , v5I 2~1/t121/t2!, ~6!

wheret1 , t2 and I 1 , I 2 are the lifetimes of the positrons i
the quasi-free and bound states and the corresponding in
sities.

X-ray structural analysis was done on DRON-2 a
ADP-1 diffractometers. Dispersed samples of YBa2Cu3O7

were used for measuring the parametersa, b, c, andh. The
parameterh was determined from the ratio of the structur
amplitude of the 012 and 102 reflections.23–26

The atomic composition of the surface was determin
using an 09-IOS-10-991 Auger spectrometer with an elec
beam diameter of'50mm and a current of 1026 A, from an
average of 4–5 measurements of the composition at diffe
points on the sample surface. Prior to the measurements
samples were kept in a vacuum of 1023 Torr for about 2
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days. During the measurements, the pressure was b
1029 Torr. No degradation was observed in the sample co
position in the vacuum owing to loss of weakly boun
oxygen28 or the action of the electron beam.29

The diffusion coefficient of nickel atoms was measur
by the layer removal method30 using radioactive tracers
(63Ni). The diffusion profiles developed in an air environ
ment and were determined with a step size of 3–5mm to a
depth of 150–250mm.31

3. EXPERIMENTAL RESULTS AND DISCUSSION

The formation of a physically bound polylayer and th
evolution of the chemosorbed states of the H2O molecules
can be followed using data from a thermogravimetric ana
sis of the YBa2Cu3O7 samples after adsorption of water
p518.7 Torr~Fig. 1!. After heating in vacuum to 180 °C an
retention under normal conditions, the initial samples w
characterized by a mass loss atT>412 K owing to desorp-
tion of oxygen O1 from the crystal lattice~Fig. 1a!. For an
exposuret<120 min and adsorption ofa,1 mmol/g, the
samples are characterized by a mass loss and a DTA s
implying absorption of heat at temperatures of 55– 105
~Fig. 1b!, which indicates the evaporation of water from th
surface. The amount of absorbed heat,Q.25– 30 kJ/mol, is
typical for desorption of physically bound water. Against
background of heat absorption, at'82 °C, there is a narrow
exothermic DTA peak caused by the release of heat and
dicating a phase transition within the polylayer that can
related to a transition from an orientation-ordered state of
H2O dipoles to a disordered state in the near-surface w

FIG. 1. Temperature variations in the mass loss according to thermog
metric analysis~1! and the DTA signal~2! of samples of YBa2Cu3O7 after
adsorption of water: initial samples~a!, 0.5 ~b!, 1.2 ~c!, and 2.2 mmol/g~d!.
The inset shows the adsorption isotherms (T521 °C) for exposures of 15
~curve1!, 120 ~2! and 360 min~3!.
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layer during heating.21,32 With increasing adsorption time
t.120 min and amounts of adsorbed water up toa
.2 mmol/g, in the thermogravimetric and DTA curves the
are initially three and then four bound states of the H2O
molecule which correspond to a reduction in mass and
absorption of heat at temperaturesTd'208, 330, 370, and
778 °C with heats of desorptionQd.38, 99, 72, and 68
kJ/mol ~Fig. 1c and 1d!. The values ofTd andQd are typical
of H2O molecules bound by a hydrogen bond to atomic s
roundings in a crystalline lattice.33 The evolution of the poly-
layer and the bound states reflects the adsorption isother
T521 °C~inset to Fig. 1d!. For p<16 Torr andt>15 min, a
increases with pressure and does not depend on expo
i.e., a layer of physically bound water is formed on the s
face and H2O molecules are not implanted in the lattice. F
p.16 Torr an increase in the absorptiona with time t is

FIG. 2. The lattice parametersc ~a!, a ~b!, and h ~c! as functions of the
amount of adsorbed water.
e

r-

at
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observed owing to an increase in the amount of physic
bound water and the number of molecules in the lattice.

Note that the presence of physically bound H2O mol-
ecules on an YBa2Cu3O7 surface causes a drop in the lattic
parameterc with fixed a and random changes inh ~Fig. 2!.
The parameterh varies over 0.02<h<0.4, which indicates
a migration of'131021cm23 oxygen atoms between O
and O5 sites. Since the energy of O1↔O5 migration is
'1.7– 2.03 eV,34 while the collisional displacement energ
of O1 and O5 atoms is at least 4.5–10 eV,35,36 the mecha-
nism for ejection of O1 and O5 atoms from lattice nodes
subthreshold and the heavy carriers which eject the O1
O5 atoms are localized in intermediate layers and there
occupy the narrow bandZ2.

The reduction inc by physically adsorbed H2O mol-
ecules can be related to compression of the lattice when
Coulomb repulsive force between Y, Ba, and Cu catio
weakens during formation of cation defects and some
them escape.~The development of oxygen vacancies cau
c to increase.!

When water molecules are implanted in the lattice,
drop inc is lessened and for 1.1,a,2.5 mmol/g,c does not
change. As the number of H2O molecules in the lattice in-
creases, whena>2.5 mol/g holds, the volume of the lattic
increases because of a sharp rise ina ~Figs. 2a and 2b!. The
oscillations inh for a.1.1 mol/g are apparently caused b
physically adsorbed water molecules~Fig. 2c!.

Note thatb does not change as a result of adsorption
Thus, the effects of a physically bound water polylay

predominate at early times and for low levels of adsorpt
and it causes defects to develop, apparently in the ca
sublattice, and leads to the migration of oxygen in the ba
plane. As the adsorption time increases, this process is
companied by the implantation of H2O molecules in the lat-
tice, where they form four nonequivalent states.

The lifetimes of positrons for different amounts of a
sorbed water on three types of samples are listed in Tab
The samples of the first type were subjected predomina
TABLE I. Annihilation parameters and characteristics of vacancy clusters before and after adsorption of water molecules

a, mmol/g t1 , ps I 1 , % t2 , ps I 2 , % r 1 , Å N1 , 10216 cm23

0(1) 16266 7265 301615 2865 3.2 2.0
0(2) 17065 8465 331637 1665 3.5 1.1
0(3) 149613 6165 248625 3865 3.0 2.7
0.08(1) 16866 7564 318619 2565 3.3 1.8
0.31(1) 159610 6369 281618 3668 3.1 2.6
0.34(2) 18865 8064 394628 2064 3.6 1.2
0.45(1) 17367 6666 312614 3466 3.1 2.3
0.61(1) 18466 7464 351617 2564 3.3 1.6
0.63(2) 18069 6969 321628 3169 3.2 1.9
0.83(1) 20565 7964 380623 2164 3.4 1.1
1.62(2) 18067 7066 347626 3066 3.3 1.9
1.83(3) 184610 7365 332630 3065 3.2 1.8
2.71(3) 18269 6867 336621 3267 3.2 2.0
2.78(3) 18861 7167 347621 2968 3.2 1.7
2.84(3) 19868 7766 361624 2366 3.3 1.3
2.92(3) 20167 7965 370625 2065 3.3 1.1

Note: The superscripts in the first column correspond to the three types of samples.
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to the action of physically adsorbed water molecules, wh
the second and third types were subject to the implanta
of H2O molecules into the crystal lattice, as well as to t
water polylayer. The rates of positron annihilation and c
ture are plotted in Fig. 3 as functions of the amount of a
sorbed water. Three regions of different behavior stand ou
the l f(a) curve: a region wherel f drops smoothly, which
corresponds to the effect of a physically adsorbed wa
layer; a region wherel f is independent ofa for 1.1,1
,2.5 mmol/g, in which H2O molecules are implanted int
the lattice after the polylayer has acted; and a region wh
l f decreases fora.2.5 mmol/g, which corresponds to a
increase in the volume of the lattice as the number of m
ecules in the lattice increases. Here the reduction inl f owing
to the physically bound H2O dipoles correlates with the dro
in the lattice parameterc, while implantation of H2O mol-
ecules in the lattice fora<2.5 mmol/g has no effect onl f

andc ~Figs. 2 and 3a!.
The annihilation rate is related to the charge density

the electrons,n2(r ) and positronsn1(r ) by37

l f5
pr 0

2c

e2 E d3rn1~r !n2~r !«@n2~r !#, ~7!

where

n2~r !5e(
i ,l

C i ,l* ~r !C i ,l~r !, n1~r !5eC1* ~r !C1~r !,

C i ,l(r ) andC1(r ) are the electron and positron wave fun
tions, r 0 and e are the classical radius and charge of t
electron,c is the speed of light, and«@n2(r )# is the polar-
ization factor. Since the positrons are annihilated in the
termediate layers,22 whose electron densityr includes the
densityrcore of the core electrons of Ba, Cu1, O1, O5, a

FIG. 3. The rates of annihilation~a! and capture~b! of positrons as functions
of the amount of adsorbed water~the symbolss, 1, and, correspond to
samples of type 1, 2, and 3!. The inset shows the rate of annihilation
YBa2Cu3O72d as a function of the oxygen content.
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O4 and of the electrons in theZ2 (r32) andZ3 (r33) bands,
when the carriers are strongly localized inZ2 and theZ3
band is a vacancy band, we can write

l f5pr 0
2c«r.pr 0

2c«~rcore1r321r33!, ~8!

where the polarization factor38 « is given by

«~r s!5110.1512r s12.414r s
3/222.01r s

2

10.4466r s
5/210.1667r s

3, ~9!

and«52.3 for r s5(3/4pr)1/351 (r51.631024cm23).
The change inl f owing to a water polylayer for

a50.9 mmol/g is Dl f5l f(0)2l f(a)50.75 ns21, which
corresponds to a density changeDr54.331022cm23. Here
Dr is roughly an order of magnitude greater than the den
of free carriers, which is given by39 r311r321r3355
31021cm23 ~r31 is the carrier density in theZ1 band!, i.e.,
Dr.r311r321r33 andDr.r321r33. Sincer32@r33, we
haveDr.rcore and

Dl f5pr 0
2c«Dr.pr 0

2c«Drcore. ~10!

Therefore, the reduction inl f is caused by the emer
gence of core electrons from the annihilation process du
defect formation. In the Ba–O and Cu1–O layers, these
fects are evidently Ba and Cu1 cations. When they fall in
interstices, their positive charge repels a positron, reduc
the overlap ofC i ,l(r ) andC1(r ); this prevents annihilation
of the core electrons and reducesr.

Note that the formation of interstitial O4 and O1 defec
is improbable. The emergence of atoms into the intersti
can change the overlap of the wave functionsC i ,l(r ) and
C1(r ) and the magnitude ofl f , but, when the defect has
negative charge, the noninvolvement of the core electron
annihilation becomes unlikely. WhenZ3 is a vacancy band
the redistribution of oxygen from O1 into O5 also apparen
has no effect onl f , since the O1 atoms do not escape fro
the annihilation volume.

The appearance of Ba and Cu1 vacancies in the lattic
consistent with a reduction inc, since the loss of cations
reduces the Coulomb repulsion among the Y, Ba, and
ions in the different layers and can make the layers co
closer in the lattice.

The number of defects formed in the intermediate laye
nd.Dr/ne , can be estimated assuming that the aver
number of core electrons of the interstitial atoms knock
out from annihilation isne545 ~Ba, O4, O1, Cu1 atoms!.
Thennd equals 9.631020cm23. Herend is reduced becaus
of the largene , since the deep core electrons are not
volved in annihilation, while the number of O1 and O4 a
oms in the annihilation volume evidently does not chan
However, given that the escape energy for Ba and Cu1 at
from a lattice site is 20–25 eV,35,36,40the numbernd of de-
fects formed in the volume of the crystals as a result
physically adsorbed water on the surface indicates a s
threshold mechanism and a collective defect formation p
cess. Since subthreshold defect formation takes place in
Ba–O and Cu1–O layers and is caused by highly locali
carriers, these carriers areh-carriers in theZ2 band.
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Implantation of H2O molecules in an YBa2Cu3O7 lattice
at 0.9<a<2.5 mmol/g does not changel f , which may ex-
plain the absence of overlap in the wave functions of
electrons in the H2O molecules and the positron when th
molecules are localized in the interstices of the Ba–O
Cu1–O layers, where repulsion of a positron by the latt
cations and the protons of the molecule prevent annihilat
and in the layers of the lattice, to which positrons do n
penetrate. The coordination bonding of the interstitial H2O
molecules with barium and oxygen ions does not affectl f .41

The sharp drop inl f for a>2.5 mmol/g is probably cause
by distension of the lattice as the amount of H2O in the
volume of the YBa2Cu3O7 increases andr decreases.

Three regions of different behavior can be identified
the n(a) curve ~Fig 3b!. There is a region wheren changes
rapidly because of the layer of physically adsorbed water
a,0.9 mmol/g~the n(a) curve is drawn through the point
for a sample of the first type!, where the behavior ofn re-
flects changes in the concentrationN1 and radiusr 1 of the
intrinsic defects in the samples that capture the positr
which serve as probes for subthreshold processes acco
nying defect formation in the volume of the crystals. T
others are regions wheren varies weakly as H2O molecules
are implanted into the lattice, with 0.9<a<2.5 mmol/g and
where it falls sharply as the volume of the lattice increas
with a.2.5 mmol/g.

The capture rate is related to the concentration and
dius of the defects~that capture positrons! by

n54pr 1N1D1 , ~11!

where D1 is the positron diffusion coefficient. The defe
radius is42

r 15@x2~11y!2/~2mU/\2!#1/2, ~12!

wherem is the mass of an electron,\ is Planck’s constant,U
is the depth of the potential well of the defects,x5(1/y)
3@l ft2 /(11y2)21#, x5p2arctan(1/y). In the initial
samples withU52 eV, D150.1 cm2/s,43 r 153 – 3.5 Å, and
N15(1.1– 2.7)31016cm23 ~see the Table!, i.e., the defects
are vacancy clusters consisting of 9–13 point vacancies
the Table shows, the behavior ofn(a) is caused by the
changes inN1 in the course of weak oscillations inr 1 , so
both an increase and a decrease in the number of vac
clusters in the volume are observed owing to the physic
adsorbed H2O molecules on the surface. This is evidence
~the stimulation of! association and dissociation reactions
point defects and vacancy clusters and of the recombina
of vacancy clusters on the surface during adsorption~which
are possible when defects migrate in the crystals!. Here the
spread inn may be related to the random predominance
association, dissociation, or recombination in the convers
of the defects in different exposures.

Note that when implantation into the lattice takes pla
the water molecules do not fill vacancy clusters, since p
tron annihilation does not occur in water.44 The drop inn for
a.2.5 mmol/g is related to a reduction inN1 for constant
r 1 , probably caused by compression of the vacancy clus
as the lattice distends.
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The drop inl f caused by a physically adsorbed wat
polylayer for a,0.9 mmol/g is analogous to the drop inl f

as 4.231021cm23 O1 atoms are removed from Cu1–O1 la
ers whend increases in YBa2Cu3O7 from zero to 0.6~inset to
Fig. 3a!. The escape of such a large number of oxygen ato
would lead to a growth in the lattice parameters and to s
pression of superconductivity, while the parametersa andb
remain constant,c decreases, and the temperature dep
dence of the dc resistance andTc do not change. This show
that the amount of oxygen in the intermediate layers does
change and the drop inl f may be related to the nonpartic
pation of the core electrons of Ba and Cu1 in positron an
hilation after they have been pushed out into the interstic
The constancy ofa and b may be related to the fact tha
with physical adsorption, subthreshold defect formati
takes place in the intermediate layers, while defects do
develop in the yttrium layers and in the cuprate layers
sponsible for high-temperature superconductivity. In t
Cu2–O layers, the energy spectrum of thel - andh-carriers
may not change and the temperatureTc may not shift. Note
that, for a constant oxygen content, transitions of 1
31021cm23 atoms from O1 to O5 sites do not affectTc .45

On the other hand, the drop inr32 associated with Ba and
Cu1 defect formation in the intermediate layers and O1→O5
transitions can increase the number of holes in theZ2 and
Z1 bands in the Cu2–O layers. Then the plasma frequencV

and the average frequencyṼ of the acoustic plasmons in
crease, but the critical temperature5,6

Tc5Ṽ expF2
11l

l2mc* ~11l!G ~13!

may not vary if the increase inṼ is compensated by a si
multaneous enhancement in the Coulomb repulsion as
pseudopotentialmc* increases. Here

mc* 5mc
0@11mc

0 ln~EF /Ṽ!#21

is the Coulomb pseudopotential,

l5
2

p
N~0!E

0

` dv

v
^Ṽc~q!Im «21~q,v!&5mc

`2mc
0,

is the coupling constant,

mc
`5N~0!^4pe2/q2&, Ṽc~q!54pe2/«~q,v!q2,

EF is the Fermi energy, andN(0) is the density ofl -carriers
at the Fermi level.

The differences in defect formation by a physically a
sorbed water polylayer and when H2O molecules are im-
planted into an YBa2Cu3O7 lattice show up in the tempera
ture dependence of the surface resistanceRs measured at a
frequency of 10 GHz by the cavity resonator method in
TE011 mode~Fig. 4!. For T.Tc the resistanceRs decreases
under the influence of physically adsorbed water and
creases when H2O molecules are implanted into the cryst
lattice, while forT,Tc , Rs increases in both cases. Ther
fore, in the normal state, an increase in the number of def
with subthreshold defect formation reducesRs , while an in-
crease in the number of H2O molecules in the interstice
increasesRs . In the superconducting state, an increase in
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number of defects through subthreshold defect formation
implantation of H2O molecules increasesRs . This behavior
of Rs can be explained by noting that forT.Tc the resis-
tance isRs5(sd)21 ~wheres is the resistivity andd is the
skin depth! and is determined by scattering of carriers in
skin layer with a depthd.20mm, while for T,Tc , the
resistance isRs52m0v Im | ~wherev is the frequency,m0

is the magnetic permeability, and| is the complex penetra
tion depth46! and is determined by dissipation of carrier e
ergy in a layer with a depth roughly equal to the penetrat
depthl.600– 2000 Å.47 Sinced@l, the behavior ofRs is
related to the different distributions of defects in the layerl
andd2l. Assuming that physically bound water stimulat
a nonuniform distribution in which defects accumula
within a thin surface layerl ,l, while H2O molecules in the
lattice are distributed uniformly within a layer of thicknessd,
the growth inRs for T,Tc can be explained by an increas
in l as the number of defects increases, and forT.Tc the
growth in Rs is caused by enhanced scattering ofl -carriers
on H2O molecules and the drop inRs by weaker scattering
on defects in a layer of thicknessd2 l .

Therefore, H2O dipoles physically adsorbed on a
YBa2Cu3O7 surface stimulate subthreshold formation
;1021cm23 Ba and Cu1 defects, O1↔O5 migration in the
intermediate layers, and the recombination of more th
1015cm23 vacancy clusters when there is no defect format
in the cuprate layers. Here the defects apparently accumu
in a thin surface layer of the crystallites. The H2O molecules,
as they are implanted into the crystal lattice, appear to
localized at interstices and form coordination bonds with
atomic surroundings.

The accumulation of an anomalously large number
defects owing to a physically adsorbed water polylayer i
thin surface layer of crystallites shows up through a cha
in the atomic composition of the surface and the blocking
diffusion transitions within the volume. The dependence
the surface composition on the water vapor pressure fo
fixed adsorption time oft5120 min is shown in Fig. 5. This
figure shows that the concentration of Ba and Cu ato
changes suddenly atp.17 Torr, while the amount of oxygen
is essentially constant. Increasing the adsorption time fr
30 to 120 min with a constant pressure of 18.7 Torr and
adsorption of 0.1<a<0.3 mmol/g leads to a smooth chang

FIG. 4. Temperature variations in the surface resistance of YBa2Cy3O7 after
exposure for 0~1!, 90 ~2!, and 240 min~3! in water vapor at 18.7 Torr.
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in the Ba and Cu concentrations with a constant O conten
the surface layer~inset to Fig. 5!. Note that the number o
yttrium atoms in the surface layer also did not change.

Therefore, the effect of physically bound water mo
ecules on an YBa2Cu3O7 surface has a threshold character
begins atp.17 Torr and is characterized by an enrichme
of the surface layer in barium atoms, a depletion in cop
atoms, and constant content of oxygen and yttrium. T
change in the number of Ba and Cu atoms on the surf
indicates that the defects formed within the volume are
terstitial atoms and vacancies of Ba and Cu. This is in go
agreement with the reduction inc(a) andl f(a) asa rises to
1.1 mmol/g~Figs. 2 and 3a!. In addition, the change in the
amount of Ba and Cu by a factor of two indicates forc
diffusion of the atoms under the influence of the physica
adsorbed water. The diffusion field can be estimated fr
the excess concentration of Ba,Dnd5n(a)2n(0).5
31014cm22, for a Ba charge state ofZ521 and «54:48

E5ZeDnd /«0«.4.53108 V/cm. This magnitude ofE is
possible if the Ba and Cu atoms migrate through the crys
trapped in the field of the weakly damped plasmons.

It may be assumed that the change in the atomic com
sition is caused by the effect of the electric fieldEm created
by n adsorbed H2O molecules on the crystal surfaces:

Em5(
i 51

n
3R~mR!2R2m

4p«0«R5 , ~14!

wherem is the dipole moment. However, it is unlikely tha
the field will have a threshold effect and such a select
action on Ba, Cu, and Y cations and, specifically, on
diffusion of Ba to the surface and Cu within the volum
without affecting Y and oxygen, especially O1 whose ene
to escape from a node is substantially lower than for Ba
Cu. With increasinga, as a polylayer of water develops o
the surface, the effect ofEm becomes weaker because of t
increase in«. The thickness of the physically bound wat
layer increases asp rises, so that the adsorption49 is given by

a5Gp/62.4d~12«!T, ~15!

whereG is the Henry constant,d is the specific mass of the
sorbent, and« is the porosity. As the atomic composition o

FIG. 5. Elemental composition of the surface as a function of water va
pressure for an adsorption time of 120 min. The inset shows the ato
composition as a function of exposure time for a pressure of 18.7 Torr
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YBa2Cu3O7 changes, estimates ofh from Eq. ~5! for dis-
persed samples with 0.2,a,0.6 mmol/g, vH2O510.2 Å,50

andr51 g/cm3 give 40,h,100 Å. For these values ofh,
the permittivity of the water layer is«.58– 111,51 andEm is
attenuated by a factor of«. In addition, with adsorption and
a transition from a monolayer to a polylayer, the Coulom
barrier to chemosorption of the H2O molecules decrease
Thus, the interaction energy of atomic speciesa in the HTSC
in a charge stateqa

0 with atoms in the H2O molecules is

U5
1

8p«0« (
i ,a

qa
0Va

i , ~16!

where

Va
i 5(

j ,b

qb
j

ur ia2r j bu

is the electrostatic potential created by thej atoms of the
b-th H2O molecule at thei -th atom, reduced by a factor« as
a polylayer develops, which may explain the onset of
implantation of H2O molecules into the YBa2Cu3O7 crystal
lattice after formation of a polylayer withh.40 Å. This
thickness permits formation of a solvation coat which is s
ficient to draw Ba into the polylayer, induce perturbatio
dr i at the surface, and induce shielding oscillations of
h-carriers in the volume. Thus, the change in the atom
composition of the surface is associated with volume p
cesses of subthreshold defect formation and defect migra
stimulated by the perturbationsdr i owing to physically ad-
sorbed H2O molecules. It may be assumed that defects c
tured by the field of collective excitations ofh-carriers that
move without dissipation migrate through the crystals
places where they are scattered, in particular to the interg
boundaries—surfaces where the Be atoms accumula
while the Cu atoms are trapped in the volume. Part of
defects participate in association or dissociation reactio
including with vacancy clusters.

The buildup of a high concentration of defects in t
surface layer and at the boundaries of YBa2Cu3O7 crystallites
serves to block diffusion jumps of nickel atoms in the vo
ume and at the surface. Thus, in the original samples, di
sion is characterized by a surface component

Ds53.16310210exp~20.17/kT! ~17!

at temperatures31 of 200– 412 °C and by a volume compo
nent

Dv51.031022 exp~21.3/kT! ~18!

at temperatures of 412– 500 °C~Fig. 6!. Keeping the samples
in water vapor for 120 min suppresses the volume com
nentDv and stimulates the surface slow componentDs

s and
fast componentDs

r , which are given~in cm2/s! by

Ds1
s 53.231029 exp~20.27/kT!,

Ds1
r 52.531026 exp~20.37/kT! ~19!

~curves1 and18 in Fig. 6!. Increasing the time spent by th
YBa2Cu3O7 in water vapor to 360 min leads to a reduction
e

-

e
c
-

on

p-

in
—
e
s,

-

-

the preexponential factor inDs
r and an increase in that forDs

s

without changing the activation energy for either:

Ds2
s 56.3131029 exp~20.28/kT!,

Ds2
r 56.331026 exp~20.37/kT! ~20!

~curves2 and28 in Fig. 6!.
Heating samples kept for 360 min in water vapor a

rate of 5 °C/min to 400 °C removes the H2O molecules from
the crystal lattice52 and essentially restores both componen

Ds3
s 54.031029 exp~20.27/kT!,

Ds3
r 53.631026 exp~20.37/kT! ~21!

~curves3 and38 in Fig. 6!. This heating does not reconstitu
the componentsDs andDv of the original samples.

Note that the diffusion profiles in the volume of th
samples were determined by removal of layers, while in
dense ceramics with a layer of adsorbed water, contact
made with grains lying mostly on the sample surface. Dif
sion transitions, however, are blocked in crystals lying in
bulk of the ceramic that do not come into contact with t
water layer. Defects can accumulate on the surface of c
tallites lying within the volume when collective motion o
the h-carriers is stimulated by perturbations in the char
density at the intergrain boundaries, perturbations create
acoustic plasmons that move without dissipation, exci
within the crystallites and found on the sample surface.

Thus, physically bound water suppresses volume dif
sion of Ni atoms and stimulates the two surface diffusi
components,Ds

s and Ds
r . Implanting water molecules into

the crystal lattice during chemosorption acts in oppos
ways on the preexponential factors inDs

s and Ds
r , without

changing the activation energy. Annealing the H2O mol-
ecules restores both components.

Suppressing volume diffusion transitions of Ni atom
can be evidence of the accumulation of a large numbe

FIG. 6. Diffusion coefficient of Ni atoms as a function of temperature b
fore ~dashed curve! and after adsorption of water molecules for 120 min~1,
18!, 360 min~2, 28!, and 360 min with subsequent heating to 400 °C~3, 38!.
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interstitial atoms in the surface region. Occupation of int
stices by atoms increases the factorq5md /M , wheremd is
the number of occupied interstices,M is the overall number
of interstices, and forq→1 the diffusion coefficient takes th
form53

Ds,v5~12q!D0 exp~2E/kT!, Dv→0, ~22!

i.e., volume transitions are blocked and diffusion is su
pressed. In addition to this, interstitial atoms stimulate dif
sion transitions along different nonequivalent interstices
the surface layer, which leads to the fast and slow com
nents ofDs with different activation energies.

Implanting water molecules into the interstices of t
lattice without changing the lattice parameters and elec
density does not affect the activation energies forDs

s and
Ds

r . However, with localization in nonequivalent interstic
the H2O molecules can either increase or reduce the pote
energy of nickel atoms at different interstices, such asuO

anduT . In the special case of diffusion along two types
interstices,53 we have

D5a l 2v
l1qm2K

qm2 expS 2
D

kTD , ~23!

wherea is a geometric factor,l is the jump length,v is the
vibration frequency of an atom at an interstice,m512«,
K5A(l13qm)2212qm, l5112«, and «5exp@(uO

2uT)/kT#, the opposite behavior ofDs
s andDs

r with increas-
ing q when H2O molecules are implanted into the interstic
andD remains constant can be explained by an increase
decrease in the differenceuO2uT .

In the case of diffusion transitions from a node at
interstice, when54

D5
1

6
l 2~gtgtz!

21/2expS 2
D

kTD , ~24!

whereg is the number of vacant nodes andtg andtz are the
residence times at a node and at an interstice, the behavi
Ds

s and Ds2
r during implantation of H2O molecules into the

lattice can be related to a drop ing with opposite changes in
tg andtz .

Note that the behavior ofDs2
s andDs2

r after heating in-
dicates different types of interstitial defects which block t
diffusion transitions. The recovery ofDs

s andDs
r is caused by

the removal of H2O molecules which have been implante
into interstices during chemosorption, while the irreversi
suppression of volume diffusionDv is caused by the lack o
effect of heating on the interstitial defects, in particular
Ba atoms that accumulate in the surface layer because o
physically adsorbed H2O molecules.

Therefore, the blocking of diffusion transitions by N
atoms shows that physically adsorbed H2O molecules cause
the surface layer of YBa2Cu3O7 crystallites to be enriched b
a large number of interstitial atoms. Here the blocking eff
can be evidence of migration stimulated by the adsor
molecules or of defect mass transport in the volume of
crystals.

To summarize, H2O molecules adsorbed on YBa2Cu3O7

surfaces stimulate subthreshold formation of anomalou
-

-
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o-

n

ial

f
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of

e
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ly

high ~comparable to that of the free carriers! concentrations
of defects in intermediate layers~vacancies and interstitia
Ba and Cu1 atoms!, O1↔O5 transitions, migration and con
version reactions of defects in the volume of the crystals,
accumulation of defects, apparently in a thin layer at
surface and at the intercrystallite boundaries.

Here the subthreshold defect formation and the num
and type of defects indicate that there is a subsystem
strongly localized holes which lie in theZ2 band, that the
motion of the holes is excited by low energies and is coll
tive, and that carriers move through the crystal at low f
quencies (;vD) and without dissipation. Subthreshold d
fect formation evidently takes place as a result of t
Coulomb ejection of Ba and Cu1 cations into interstices
moving holes, which are predominantly localized at oxyg
atoms, whosep-orbitals make the major contribution to th
hybridization of thepd-orbitals of the band, and as a resu
of the migration of interstitial defects in the field of the co
lective excitations toward the boundaries and surfaces of
crystallites, where they accumulate, perhaps, during sca
ing of acoustic plasmons. The transitions of oxygen from
sites to O5 and back, as well as their random character,
probably caused by the mutual repulsion of holes and
neighboring atoms.

In conclusion, the author thanks V. T. Adonkin, G. N
Kashin, I. B. Kevdina, V. S. Mel’nikov, D. V. Morozovska
V. M. Pashkov, and G. M. Shalyapina for help in the me
surements and for useful discussions.
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Phase transitions and magnetic-transport phenomena in the system
La2/3Ba1/3„Mn12xCox…O3
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A study is performed of the crystalline structure, magnetization, and magnetotransport properties
of the system La2/3Ba1/3~Mn12xCox)O3 with perovskite structure. It is shown that cubic
solid solutions exist over the entire range of cobalt concentrations 0<x<1. Compositions with
x<0.2 are ferromagnets with maximum resistance nearTC . Compositions with 0.2,x,0.4
manifest properties of inhomogeneous ferromagnets. Measurements of magnetic properties indicate
the absence of long-range magnetic order in compositions with 0.5<x<0.9, which are
probably spin glasses. The spontaneous magnetization of cobaltate (2mB per formula unit!
corresponds to ferromagnetic ordering of the moments of the Co31 and Co41 ions found in the
intermediate spin state. It is conjectured that the magnetoresistance consists of an extrinsic
and an intrinsic contribution. The first arises as a result of intergrain transport of spin-polarized
charge carriers, and the second, as a result of magnetic ordering nearTC . The
magnetoresistance is essentially independent of the spontaneous magnetization and decreases
abruptly as the cobalt concentration is increased with a corresponding transition from long-range to
short-range magnetic order. ©1999 American Institute of Physics.@S1063-7761~99!01708-4#
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1. INTRODUCTION

The giant magnetoresistance effect in manganates
attracted considerable attention. This has been due, on
one hand, to a clarification of the nature of the phenome
and, on the other, to the possibility of practical applicatio
At present there are several points of view regarding
phenomenon.1–4 Nagaev5,6 has analyzed different situation
realized in different types of magnetic semiconductors,
cluding oxides. Note that on the basis of theoretical ar
ments it is hard to predict the magnitude of the effect
different magnetically ordered media. For this reason,
search for new magnetoresistive materials continues.7,8

Among oxides with mixed valence of the 3d ions, man-
ganates and cobaltates with perovskite structure pos
similar magnetic properties. Replacement of lanthanum i
by an alkaline-earth ion leads to ferromagnetism and meta
conductivity in both types of oxides. Manganates and cob
tates of rare-earth ions manifest the giant magnetoresist
effect during metamagnetic phase transitions.9,10 However,
the magnetotransport phenomena in oxides of the t
La12xSrxMnO3 and La12xSrxCoO3 are completely different.
Cobaltates of the form La0.5Sr0.5CoO32x manifest a small
positive magnetoresistive effect, which gradually decrea
as the temperature is increased,11,12 whereas manganate
manifest a large negative magnetoresistive effect near
Curie point. Cobaltates remain metallic during the transit
from the magnetically ordered phase to the paramagn
3211063-7761/99/89(8)/4/$15.00
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phase, whereas manganates undergo a metal–insulator
sition nearTC . Therefore it is of unquestionable interest
trace out the changes in their properties as the concentra
is shifted from manganate to cobaltate.

2. EXPERIMENTAL PROCEDURE

Samples with compositions La2/3Ba1/3~Mn12xCox)O3

(0<x<1, Dx50.1) were prepared by solid-state reactions
high temperatures. Especially pure quantities of the star
materials La2O3, BaCO3, Mn2O3, and Co3O4 were mixed in
stoichiometric relations and pressed into pellets. A prelim
nary anneal was performed at 1000 °C; next the pellets w
ground up and pressed again. The final anneal was ca
out at temperatures from 1470°C~manganate! to 1200 °C
~cobaltate!. The synthesis temperature was lowered u
formly as manganese was replaced by cobalt. The sam
were cooled slowly~at a rate of 80°C per hour! to room
temperature. X-ray phase analysis did not reveal any tra
of foreign phases. The oxygen content in some of
samples was determined thermogravimetrically. It was fou
that the oxygen content was close to stoichiometric. Acco
ing to the x-ray structural analysis, the resulting compo
tions were characterized by a cubic unit cell. The lattice c
stant increased as a function of the cobalt content froma
57.873 toa57.913 Å.

The magnetic measurements were performed on a c
mercial vibration magnetometer in magnetic fields up
© 1999 American Institute of Physics



d
a-

-
-

o

ti

e
ss
re
-
a

te

rr
o

pi

t
it

rp
ra

ce
olu-
r’’
n is

nds
g-
rval

is

he
ws

. As
in-

the
ses

oth
ion.
n-

in-
near
with

-
tem-

e
ld

322 JETP 89 (2), August 1999 Troyanchuk et al.
16 kOe. The conductivity was measured on samples with
mensions 232310 mm. The contacts were formed by ultr
sound indium soldering.

3. RESULTS AND DISCUSSION

The composition La2/3Ba1/3MnO3, according to the mag
netic measurements~Fig. 1!, is a magnetically soft ferromag
net with magnetic moment 3.5mB per formula unit at 5 K
with Curie temperature 350 K.

As the cobalt content is increased, the ferromagnetic
dering is preserved up to a cobalt content ofx50.2. As the
cobalt content increases further, the spontaneous magne
tion begins to decrease steeply~Figs. 1 and 2!. In composi-
tions with 0.4<x<0.9 the spontaneous magnetization do
not exceed 0.1mB per formula unit. The large paraproce
indicates that exchange interactions between ions of diffe
nature are weakened~Fig. 1!. As the cobalt content is in
creased, the coercive force grows steeply, reaching a m
mum ;12 kOe atx50.4 ~Fig. 2!. This is followed by a
smooth fall of the coercive force to 3 kOe in pure cobalta

As the cobalt content is increased fromx50.9 to x51,
the spontaneous magnetization grows abruptly to 2mB per
formula unit. Such a spontaneous magnetic moment co
sponds to parallel orientation of the cobalt magnetic m
ments, which are probably found in an intermediate s
state in pure cobaltate.

Results of a study of the temperature dependence of
magnetization are presented in Fig. 3. Compositions w
cobalt concentrationx,0.4 are characterized by a sha
transition from the magnetically ordered state to the pa

FIG. 1. Dependence of the magnetization on the field at 4.2 K. The m
surements were made as the field was decreased after cooling in a fie
15 kOe.
i-
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magnetic state. In compositions with 0.4<x<0.9 the transi-
tion is strongly washed out in temperature, which is eviden
of an inhomogeneous clustered magnetic state of these s
tions. The temperature of the ‘‘magnetic order–disorde
transition decreases smoothly as the cobalt concentratio
decreased tox50.3. For 0.5<x<0.9 the freezing point tem-
perature of the magnetic moments of the clusters depe
weakly on the cobalt concentration. Blocking of the ma
netic moments of the clusters takes place over a wide inte
of temperatures.

Compositions with 0<x<0.2 reveal a maximum in the
temperature dependence of the resistivity. This maximum
located near the Curie temperature~Fig. 4!. In the composi-
tion with x50.2, the resistivity again decreases after t
transition to the magnetically ordered state, and then gro
again as the temperature is lowered, like a semiconductor
the cobalt concentration increases further, the resistance
creases abruptly, and no anomalies in the resistivity near
critical temperature are observed. The resistivity decrea
abruptly in pure cobaltate. This compound is a metal b
before and after the ferromagnet–paramagnet transit
NearTC the resistivity decreases insignificantly in the tra
sition to the magnetically ordered state.

The magnetoresistance@R(H50)2R(H)#/R(H50) of
compositions with 0,x,0.2 is maximum near the Curie
temperature and reaches 20% in a 9-kOe field.

Below the Curie temperature the magnetoresistance
creases smoothly as the temperature is lowered, and
liquid-nitrogen temperatures becomes commensurate
the magnetoresistance nearTC . For x50.4 no maximum in
the magnetoresistance nearTC is observed. In this composi
tion the magnetoresistance increases gradually as the

FIG. 2. Dependence of the spontaneous magnetization~left axis! and the
coercive force~right axis! on the cobalt concentration.

a-
of
a-
a

FIG. 3. a! Temperature dependence of the magnetiz
tion in a field of 100 Oe, measured after cooling in
field of 100 Oe. b! Analogous dependence forx50.5
measured after cooling in a field of 100 Oe~filled
circles! and in zero field~empty circles!.
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FIG. 4. Dependence of the resistivity~a! and
magnetoresistance measured in a field of 9 k
~b! on temperature for various cobalt concentr
tions: l — x50, j — x50.1, h — x50.2,
d — x50.3, s — x50.4, m — x50.5, , —
x50.6, L — x51.
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perature is lowered. In all compositions with 0<x<0.3 the
low-temperature parts of the magnetoresistance near liq
nitrogen temperature are similar in magnitude. Forx>0.5
the magnetoresistance is extremely small: it is less than
in a 9-kOe field at 120 K according to our data. In pu
cobaltate the magnetoresistance is negative~around 3% at
120 K in a 9-kOe field!. We did not detect a maximum in th
magnetoresistance nearTC in La2/3Ba1/3CoO3.

Usually the properties of perovskites are interpreted
terms of the concept of double exchange.1,4 However, there
are a number of factors contradicting this point of view.6,13

We believe that the ferromagnetism of orthomanganate
due to the positive exchange interactions Mn31 –O–Mn31

and Mn31 –O–Mn41. The cobalt ions in perovskites can e
ist in the oxidation states12, 13, and14. On the basis of
our magnetic studies it is difficult to narrow down these p
sibilities. It has been reliably established that the cobalt i
in the perovskite phases Ln~Co0.5Mn0.5)O3 ~Ln is a lantha-
noid! exist in the divalent state, and manganese in the
ravalent state.14,15

From the results of x-ray structural studies of the co
pound La0.5Ca0.5MnO3 doped with a small quantity of coba
ions (;8% of the total number of manganese ions! we con-
clude that the cobalt ions are found in the divalent stat16

Apparently, the configuration Co211Mn41 in a perovskite
matrix is more stable than the configuration Co311Mn31.
We therefore have grounds to assert that the cobalt ion
compositions with a large manganese content are found
marily in the divalent state. Co21 ions, as a rule, should b
surrounded by a larger number of Mn41 ions in comparison
with their average number. The Co21 –O–Mn41 exchange
interaction in La~Co0.5Mn0.5)O3 is positive, whereas the su
perexchange Mn31 –O–Co21 is negative.14 The superex-
change Co21 –O–Mn41 is somewhat smaller in magnitud
than the exchange interaction Mn31 –O–Mn41 since the
Curie temperature for La~Co0.5Mn0.5)O3 is 240 K ~Ref. 14!.
Therefore, when Co21 ions are introduced the positive ex
change interactions are weakened due to the appearan
additional bonds between cobalt and manganese.
x50.1 the magnetic moments of manganese and cobal
apparently aligned, whereas forx50.2 nonferromagnetic re
gions are formed, which is manifested in a decrease of
magnetic moment to a value 10% below the calculated va
~Fig. 2!.

We believe that starting with this composition the so
solutions decay into microregions enriched with mangan
d-

%
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or cobalt. In the manganese-rich microregions an antife
magnetic structure is realized at low temperatures, while
the cobalt-rich regions a ferromagnetic structure is realiz

The ferromagnetism in these compositions is due t
positive interaction of the type Co21 –O–Mn41. In accord
with these assumptions, the coercive force grows abru
~Fig. 2!, since the compound La~Co0.5

21Mn0.5
41)O3 is a mag-

netically hard material.
As the cobalt content is increased abovex50.3 the co-

balt ions begin to transition to the trivalent state, which lea
to destruction of ferromagnetism based on the superexcha
Co21 –O–Mn41.

We think that the magnetic states in the solid solutio
with 0.5<x<0.9 have a clustered nature. In microregio
containing an enhanced concentration of Co21 ions, ferro-
magnetic clusters are formed, while in microregions enrich
with Co31 and Mn41 ions antiferromagnetic or paramag
netic clusters are formed, depending on the nature of
magnetic state of Co31. From the available magnetic data
is hard to say in which magnetic state the Co31 ions are
found, whether it is the low-spin state or an intermediate s
state. The absence of long-range antiferromagnetic order
factor testifying in favor of the low-spin state. In principle
different spin states of cobalt can coexist, depending on
immediate environment of both types of Co31 ions. For
x50.5 a dependence of the magnetization on the prehis
of the sample appears at a quite high temperatureT5225 K.
This is due to the presence of clusters in which the posi
superexchange Co21 –O–Mn41 dominates. In compositions

FIG. 5. Magnetic phase diagram of the system of solid solutio
La2/3Ba1/3(Mn12xCox)O3: F1 — ferromagnet based on the exchange inte
actions Mn31 –O–Mn31, Mn31 –O–Mn41, and Co21 –O–Mn41, P — para-
magnet; SG — spin glass, and F2 — ferromagnet based on the supere
change Co31 –O–Co41. Below the dashed curve the magnetization depe
on the magnetic prehistory.
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close to La2/3Ba1/3CoO3, Co41 ions appear. The positive ex
change interaction Co31 –O–Co41 leads to the appearanc
of ferromagnetic order in cobaltate.17 The magnetic phase
diagram is depicted in Fig. 5.

In the interpretation of the transport properties of orth
magnets it is very important to know which of the bands
responsible for the conductivity. In our view, the most jus
fied point of view is the one according to which electr
transport is realized via the 3d band formed by hybridization
of eg orbitals of manganese and 2p orbitals of oxygen.18 At
the Curie pointTC the compound La2/3Ba1/3MnO3 undergoes
a metal–insulator phase transition. This indicates that
width of the 3d band in this compound is close to the critic
width at which the metallic state is realized. At the Cu
point TC the spin-split 3d bands coalesce, which gives th
motion of the charge carriers a nonactivation character.
magnitude of the magnetoresistance in this case is de
mined by the magnitude of the conductivity jump in the r
gion of the Curie pointTC and by how muchTC is shifted by
the magnetic field toward higher temperatures, i.e., by
sensitivity of the magnetic order parameter to an exter
magnetic field. In pure cobaltate the connection between
conductivity and the type of magnetic state is much m
tenuous than in manganate@Fig. 3~b!#. Therefore, the mag
netoresistance peak, if it exists, is very small, and we did
record it. We think that the conduction band in cobaltate
much wider than in manganates as a consequence o
strong hybridization of the cobalt 3d orbitals and the man
ganese 2p orbitals, or the narrow 3d band overlaps with the
wide valencep band.

When manganese is replaced by cobalt, some of the
tice sites occupied by cobalt ions become inaccessible
motion of charge carriers; this leads to suppression of
metallic state at low temperatures. However, the magnet
sistance peak in the compositions withx50.1 andx50.2 is
not decreased in magnitude, which testifies to the strong
fluence of magnetic order on the conductivity. The mag
toresistance peak disappears atx50.4, which corresponds to
the boundary of the existence region of the ferromagn
phase. However, in all of the compositions in the ran
0<x<0.4 there is one more component of the magneto
sistance, which gradually increases as the temperatur
lowered and varies only weakly as manganese is replace
cobalt.19 This component can be attributed to intergra
-
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s
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or
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by

transport of spin-polarized charge carriers. This transport
pends strictly on the direction of the spins in the regions
both sides of the intergrain boundary, which can lead t
giant magnetoresistance effect.19 This component of the
magnetoresistance probably has only a weak dependenc
the magnitude of the spontaneous magnetization~see Figs. 1
and 4!.
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Multicritical behavior of weakly disordered systems with two order parameters
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We present a field-theoretic description of phase transitions in weakly disordered systems with
two coupled order parameters. Using the two-loop approximation and the Pade´–Borel
summation technique, we carry out a renormalization-group analysis of the scaling functions for
three-dimensional systems and identify the fixed points corresponding to stable multicritical
behavior. We also study the effect of frozen point impurities on the nature of the phase diagrams.
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There is a broad class of systems in which the obser
phase transitions cannot be described by a single order
rameter transformed according to a single irreducible rep
sentation. This is especially evident in magnetic cryst
where the magnetic structure is described by two or m
irreducible representations~the antiferromagnets Cr2TeO6,
KCuF3, GdAlO3, MnF2, and the like!. Structural phase tran
sitions that require several order parameters for their desc
tion have been detected in KMnF3, boracites, and other sub
stances. The phase diagrams of such systems conta
singular multicritical point, which is either bicritical o
tetracritical.1,2 In the first case, two lines of second-ord
phase transitions intersect at this point, while in the sec
there are four lines of second-order phase transitions
intersect at this point. Near the multicritical point, the syst
exhibits specifically critical behavior characterized by co
petition of the different types of ordering. Here, if bicritic
behavior is realized, one order parameter expels the o
while tetracritical behavior allows for a mixed phase
which both types of ordering coexist.

The model Hamiltonian of a homogeneous system w
two coupled order parametersf and c belonging to two
different irreducible representations of dimensionalitiesn
andm has the form

H05E ddxH 1

2
@r 1f21r 2c21~¹f!21~¹c!2#

1
u10

4!
~f2!21

u20

4!
~c2!21

2u30

4!
f2c2J , ~1!

f25(
i 51

n

f i
2 , c25(

i 51

m

c i
2 , ~¹f!25(

i 51

n

~¹f i !
2,

~¹c!25(
i 51

m

~¹c i !
2.

An analysis of the problem of phase transitions in suc
system was done by Lyuksyutovet al.3 and ~independently!
by Kosterlitz et al.4 in the one-loop approximation by th
Wilson renormalization-group technique within the scope
the «-expansion method, where«542d (d is the dimen-
sionality of the system!. Lyuksyutovet al.3 attempted to fol-
3251063-7761/99/89(8)/6/$15.00
d
a-

e-
ls
e

p-

a

d
at

-

er,

h

a

f

low the dependence of the multicritical behavior on the nu
bersn and m. However, numerous studies of systems w
one order parameter done in recent years suggest that us
the one-loop approximation~and the more so when use
within the«-expansion method! yields predictions that differ
substantially from real critical behavior. To establish t
situation with multicritical phenomena and to find the depe
dence of the multicritical behavior on the structure of t
order parameters, we used in Ref. 5 the two-loop approxi
tion to provide a field-theoretic description of a syste
whose Hamiltonian is~1!. We used the mass theory o
Parisi,6 which makes it possible to describe three-dime
sional systems directly, without resorting to the«-expansion.
Studies of critical phenomena have shown7 that such an ap-
proach provides the most meaningful description of criti
behavior and its use together with methods of summation
asymptotically convergent series yields extremely accu
results. In Ref. 5 we carried out a renormalization-gro
analysis of the scaling functions in the two-loop approxim
tion combined with the Pade´–Borel summation technique
and identified the fixed points corresponding to stable bicr
cal and tetracritical behavior.

For a system with two coupled order parameters th
are three types of stable fixed points corresponding to dif
ent values ofn andm. The corresponding domains of exis
tence in thenm plane obtained in the one-loop approx
mation3,4 are depicted in Fig. 1a and those obtained in
two-loop approximation5 in Fig. 1b. The fact that the patter
changes so dramatically indicates that there is little res
blance between the one-loop representation and real m
critical behavior. Note that the first type corresponds to
isotropic fixed point, at whichu1* 5u2* 5u3* and the Hamil-
tonian ~1! effectively coincides with the Hamiltonian of
system that has a single (n1m)-component order paramete
and completeSO(n1m) symmetry, which is higher than th
SO(n)3SO(m) symmetry of the initial system~this is a
manifestation of an asymptotic symmetry, due to fluctu
tions, at the multicritical point!. For points of the second
type, all three valuesui* are finite and may not coincide. Th
lowest symmetry of the initial Hamiltonian,SO(n)
3SO(m), corresponds to such points. Points of the th
type correspond to decoupled order parameters, sinc
© 1999 American Institute of Physics
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FIG. 1. The regions of stability of the fixed point
determined in Refs. 3 and 4 in the first order of th
«-expansion~a! and in Ref. 5 via the field-theoretic
approach in the two-loop approximation withd53
~b!.
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these pointsu3* 50. Here the higher symmetrySO(n)
% SO(m) corresponds to such points. According to Ref.
the edge of the stability region of an isotropic fixed point
the straight linen1m52.9088, i.e.,SO(2) is the highest
asymptotic symmetry of the system, and the domain of e
tence of points of the second type becomes so narrow th
contains only five physically interesting point. The app
ciable change in the values of the fixed points and in
conditions for their stability, established in Ref. 5, is respo
sible for an appreciable change in the phase diagrams in
critical region and results in other types of the symmetry
the system at the multicritical point.

We study the effect of frozen point impurities on th
multicritical behavior of a system with two coupled ord
parameters. As is well known,8 the disorder in a system gen
erated by the presence of frozen impurities manifests itse
the form of random perturbations of the local critical tem
perature or in the form of random fields. Because a rand
field breaks the symmetry of the system with respect t
change in the sign of the order parameter, the statistical p
erties of systems with this type of disorder differ substa
tially. Ferro- and antiferromagnetic systems containing n
magnetic impurity atoms in the absence of an exter
magnetic field may serve as an example of disordered
tems with a perturbation of the random-critical-temperat
type, while in a uniform magnetic field the presence of no
magnetic impurity atoms in anisotropic antiferromagn
manifests itself in the form of random fields.9 In the present
paper we study the multicritical behavior of system with
disorder of the random-temperature type. Such behavior
occur in disordered systems in which, as in MnAs~see Ref.
10!, a sequence of phase transitions is described by intro
ing two coupled order parameters of different nature, para
eters that correspond to the structural and ferromagn
phase transitions, or inXY-like antiferromagnets of the typ
of Cr2TeO6, KCuF3 , and the like,11 in which a multicritical
point appears in a zero external magnetic field. In some c
the description of the multicritical behavior of disorder
binary alloys consisting of atoms of two species with
mixed exchange interaction may correspond to the introd
tion of disorder of the random-critical-temperature type in
system with coupled order parameters.12,13

The effect of disorder of the random-temperature type
the multicritical behavior of the systems was studied
Izyumov et al.,12 Laptev and Skryabin,13 and Lisyanski� and
Filippov14 by the «-expansion method in the one-loop a
proximation. However, above we have clearly shown, us
,
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the example of a homogeneous system, that the predict
of the one-loop approximation do not agree with the r
multicritical behavior. In disordered systems one can exp
even larger discrepancies, a fact suggested by studies of
ordered systems characterized by a single order p
meter.15,16 For disordered systems described by the Is
model in the one-loop approximation, accidental degener
occurs in the system of renormalization-group equations
the interaction vertices. This makes it impossible to use
given approximation in studies of the unique class of dis
dered systems in which the presence of an impurity has a
effect on the characteristics of the critical behavior of su
systems. In the present paper we discuss the results of ap
ing the field-theoretic approach in the two-loop approxim
tion directly for three-dimensional systems.

The Hamiltonian of a system with two coupled ord
parameters that contains frozen impurities of the rando
temperature type can be represented in the form

H@f,c#5H0@f,c#1H imp@f,c#, ~2!

where H0@f,c# is the Hamiltonian of the homogeneou
system@Eq. ~1!#, and the termH imp@f,c#, which specifies
the interaction of the impurities and the order-parameter fl
tuations, can be written

H imp@f,c#5
1

2 E ddx@V1~x!f21V2~x!c2#. ~3!

Here theVi(x) are the potentials of the random field of th
impurities with a Gaussian distribution, whose correlators
the case of point impurities are given by the expressions

^^Vi~x!&&50,

^^V1~x!V1~x8!&&52u40d~x2x8!,

^^V2~x!V2~x8!&&52u50d~x2x8!,

^^V1~x!V2~x8!&&52u60d~x2x8!. ~4!

Applying the replica method, we can easily average over
random distribution of impurities and reduce the problem
statistically describing a weakly disordered system to tha
statistically describing a homogeneous system with the ef
tive Hamiltonian

Hrepl@f,c#5 (
a51

k

H0@fa ,ca#1
1

2 (
a51

k

(
b51

k

@u40fa
2fb

2

1u50ca
2cb

212u60fa
2cb

2 #, ~5!
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which containsk images~‘‘replicas’’ ! of the initial homoge-
neous componentH0 and a number of additional terms wit
impurity verticesu40, u50, andu60, which specify the effec-
tive interaction, via the impurity field, of the (k3n)- and
(k3m)-component order parameters. This statistical mo
is thermodynamically equivalent to the initial disorder
model in the limitk→0.

It is known that in the field-theoretic approach17 the
asymptotic critical behavior and the structure of the ph
diagrams in the fluctuation region are determined by
Callan–Symanzik renormalization-group equation for
vertex parts of the irreducible Green’s functions. To calc
late theb-functions ~the scaling functions! as functions of
the renormalized interaction verticesui ( i 51,...,6), which
enter into the renormalization-group equation, we use
standard method based on the Feynman diagrammatic
nique and the renormalization procedure.7 As a result, in the
two-loop approximation, we arrived at the following expre
sions for theb-functions:

b1~u!52u11
n18

6
u1

21
m

6
u3

2124u1u42
41n1190

243
u1

3

2
2m

27
u3

32
23m

243
u1u3

22
184m

81
u1u3u6

2
16m

9
u3

2u62
400n12096

81
u1

2u4

2
5920

27
u1u4

22
8m

9
u3

2u4 ,

b2~u!52u21
m18

6
u2

21
n

6
u3

2124u2u5

2
41m1190

243
u2

32
2n

27
u3

32
23n

243
u2u3

2

2
184n

81
u2u3u62

16n

9
u3

2u6

2
400m12096

81
u2

2u52
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27
u2u5

22
8n

9
u3

2u5 ,

b3~u!52u31
2

3
u3

21
n12

6
u1u31

m12

6
u2u314u3u4

14u3u5116u3u62
5~n1m!172

486
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3
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2u32
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22
m12
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3
u2u3u6

264u3u6
2264u3u4u6264u3u5u6 , ~6!
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Perturbation-theory series are known to be asympt
cally convergent and the vertices of the interaction of
order-parameter fluctuations in the fluctuation regionr 1 ,r 2

→0, are large enough so that Eqs.~6! can be used directly
Thus, to extract the necessary physical information fr
these expressions we employed the generalized Pade´–Borel
method used for the summation of asymptotically converg
series. Here the direct and inverse Borel transformations g
eralized to the six-parameter case and retaining the symm
of the system have the form
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TABLE I. Values of the fixed points of a disordered system and the eigenvalues of the stability matrix.

n m u1* u2* u3* u4* u5* u6* bi ( i 51,...,6)

1 1 1.588 92 1.588 92 0 20.034 48 20.034 48 0 0.461260.222i , 0.0362,
0.461260.222i , 0.0362

1 2 1.588 92 0.938 32 0 20.034 48 20.000 26 0 0.461260.222i , 0.0183,
0.0183,0.6671,0.0017

1 2 1.588 92 0.934 98 0 20.034 48 0 0 0.461260.222i , 0.0172,
0.0172,0.6673,20.0017

1 3 1.588 92 0.829 62 0 20.034 48 0 0 0.461260.222i , 0.0834,
0.0834,0.1315,0.6814

1 3 1.588 92 1.283 57 0 20.034 48 20.070 98 0 0.461260.222i , 0.3266,
0.3266,5.9782,23.1324

2 2 0.938 32 0.938 32 0 20.000 26 20.000 26 0 0.6671,0.0017,0.0017,
0.0005,0.0005,0.6671

2 2 0.934 98 0.934 98 0 0 0 0 0.6673,20.0017,20.0017,
20.0017,20.0017,0.6673

2 3 0.938 32 0.829 62 0 20.000 26 0 0 0.6671,0.0017,0.0659,
0.0659,0.1315,0.6814

2 3 0.934 98 0.829 62 0 0 0 0 0.6673,20.0017,0.1315,
0.6814,0.0648,0.0648

3 3 0.829 62 0.829 62 0 0 0 0 0.6814,0.1315,0.1315,
0.6814,0.1315,0.1315
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f ~u1 ,...,u6!5 (
i 1 ,...,i 6

ci 1 ,...,i 6
u1

i 1u2
i 2u3

i 3u4
i 4u5

i 5u6
i 6

5E
0

`

e2tF~u1t,...,u6t !dt,

~7!

F~u1 ,...,u6!5 (
i 1 ,...,i 6

ci 1 ,...,i 6

~ i 11¯1 i 6!!
u1

i 1u2
i 2u3

i 3u4
i 4u5

i 5u6
i 6 .

To analytically continue the Borel image of a function, w
introduce a power series in an auxiliary parameterl,

F̃~u1 ,...,u6 ,l!5 (
k50

`

lk (
i 1 ,...,i 6

ci 1 ,...,i 6

k!

3u1
i 1u2

i 2u3
i 3u4

i 4u5
i 5u6

i 6d i 11¯1 i 6 ,k , ~8!

to which we apply the Pade´ @L/M # approximation at the poin
l51. To calculate theb-functions in the two-loop approxi
mation, we use the@2/1# approximant. Multicritical behavior
is determined by the existence of a stable fixed point sa
fying the system of equations

b i~u1* ,u2* ,u3* ,u4* ,u5* ,u6* !50, i 51,...,6. ~9!

The requirement that a fixed point be stable reduces to
requirement that the eigenvaluesbi of the matrix

Bi , j5
]b i~u1* ,u2* ,u3* ,u4* ,u5* ,u6* !

]uj
~10!

lie in the right complex half-plane.
The resulting system of summedb-functions for eachn

andm contains a broad spectrum of fixed points. Table I li
stable fixed points of a system for the values ofn andm of
the uppermost interest to physics and a number of fi
points that are unstable in the two-loop approximatio
s-

e

s

d
,

which we will need in our further analysis. Table I also lis
the eigenvalues of the stability matrix for the correspond
fixed points.

An analysis of the nature of the fixed points and th
stability suggests the following: the presence of impurities
the system causes fluctuation decoupling of the order par
eters and ensures only one type of stable multicritical beh
ior, the tetracritical behavior with the common symmetry
the system beingSO(n) % SO(m). Here, for one-componen
order parameters (n5m51), the presence of impurities i
important and leads to a critical behavior with expone
corresponding to those of the disordered Ising model.16 As
for the cases withn51, m52, andn52, m52, although
calculations show that the fixed point with finite values
the impurity verticesu4* andu5* for both order parameters i
stable, we believe that in the higher orders of the approxim
tion the fixed point that is stable is the one at which, for t
same general effect of decoupling of the order paramet
the values of the impurity vertices are finite only for on
component order parameters. A possible indication of this
on the hand, the weak stability of fixed points of the first ty
accompanied by the weak instability of fixed points of t
second type and, on the other, that a similar situation ar
in the analysis of the effect of impurities on the critical b
havior of systems with one order parameter in the two-lo
approximation.18 For n,m>3 only the homogeneous fixe
point that is stable coincides with the third-type point of
homogeneous system is tetracritical in nature. Thus, w
the order parameters of the system are characterized
number of components that is larger than, or equal to, t
the presence of impurities has no effect on the characteris
of their critical behavior and the multicritical behavior
tetracritical.

The phase diagrams for the Hamiltonian~1! of a homo-
geneous system in the mean-field approximation~i.e., with-
out fluctuations! are well known~see, e.g., Ref. 3!. For in-
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FIG. 2. Possible phase-diagram types. The solid lines c
respond to curves representing first-order phase transiti
while the dashed lines correspond to curves represen
second-order phase transitions.
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stance, whenu3
2,u1u2 holds the tetracritical point is

realized, with the result that there cam be a mixed phase
fÞ0 andcÞ0. In the opposite case,u3

2>u1u2 , the phase
diagram has a bicritical point and there is no mixed pha
However, as shown in Refs. 3 and 5, allowance for fluct
tions may dramatically change the phase diagram in the c
cal region. To establish whether this is the case, we m
study the phase portrait of the system on the basis of
solution of the system of equations (r 5r 15r 2)

r
]ui

]r
5b i~uj !, ~11!

which specifies the phase trajectories in the space of the
ticesui . As r→0, depending on the bare values of the v
tices,ui0 , either the phase trajectories leave the stability
gion of the Hamiltonian~1! and a first-order phase transitio
takes place, or they end up at a stable fixed point from the
of the points considered above with a definite symmetry
the system. In their motion the phase trajectories may c
regions in which the vertices meet the condition for tetra-
bicriticality. As a result, in the critical region on the pha
diagrams corresponding to the mean-field theory there
pear segments of curves representing first-order phase
sitions.

Determining the regions for the values of the verticesui

of the replica Hamiltonian~5! of a disordered systems i
which the system is stable is complicated by the need
examine the limitk→0. However, allowing for the fact tha
the impurity verticesu40, u50, and u60 are proportional to
c(12c), wherec is the concentration of the impurity atom
and limiting ourselves to weakly disordered systems, we
sume that the former stability conditions (u10.0, u20.0,
andu30.2(u10u20)

1/2) and the conditions for tetracritical o
bicritical behavior are met, just as they are for a homo
neous system. The only additional condition imposed on
impurity verticesu40, u50, andu60 is that they be negative,
requirement that follows from the fact that the correspond
correlators in~4! are positive. In view of this, when we con
struct the phase portrait and the possible phase diagram
weakly disordered systems and allow for fluctuations in
multicritical region in the solution of Eqs.~11! with the
b-functions of~6! summed by the Pade´–Borel method, it is
sufficient to follow the changes in the values ofu1 , u2 , and
u3 and assume that they depend on the verticesu4 , u5 , and
u6 parametrically.

Because the presence of impurities in systems with
order parameters substantially limits the possible types
stable fixed points, the number of possible types of ph
diagrams changes dramatically in relation to that numbe
homogeneous systems. What is important in such chang
that for disordered systems there can be no phase diag
th
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with a bicritical point. For disordered systems with intera
ing fields whose vertices have bare values that meet the
criticality condition u30

2 >u10u20, critical fluctuations and
fluctuations of the local critical temperature destroy the s
bility of bicritical behavior and decouple the order param
eters. As a result, the phase diagrams with bicritical beha
outside the critical region contain segments of curves rep
senting first-order phase transitions, with the correspond
diagram being the one in Fig. 2a. The numerical solution
Eq. ~11! shows that for all bare values of the vertices,ui0 ,
lying in the bicritical region there can be no phase trajec
ries that take these segments to a stable fixed tetracri
point. As a result, the phase diagram predicted by Laptev
Skryabin13 and depicted in Fig. 2b is not realized. But if th
bare values of the system’s vertices satisfy the tetracritica
condition, the only possible diagrams are those depicted
Figs. 2c and 2d. Thus, of all the phase diagrams discusse
Refs. 3 and 5 and realized in homogeneous systems with
order parameters, only three types of phase diagram, th
depicted in Figs. 2a, c, and d, are realized in disordered
tems.

In conclusion we would like to express the hope that
differences in the multicritical behavior of homogeneous a
disordered systems with competing order parameters es
lished here will find their reflection in the design and ana
sis of experiments on the multicritical behavior of the cor
sponding systems.

This study was made possible by a Grant from the R
sian Fund for Fundamental Research~Grant No. 97-02-
16124!.
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Regularity criteria for linear chains
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The structural analysis of linear chains of arbitrary fixed shape is discussed in the context of a
spectral approach. The shape of the chain is characterized by a set of scalar and
pseudoscalar invariants, which remain constant under translations and rotations. The statistical
properties of the set of invariants are compared with the analogous characteristics for a
freely linked chain. The proposed criteria have the self-averaging property for relatively short
(;100–300 links! chains and can be used to discern possible latent periodicities and
symmetries in a system. As examples, two applications of the theory are considered: the structural
analysis of chains generated by random walks on a cubic lattice and protein Ca backbones.
© 1999 American Institute of Physics.@S1063-7761~99!01908-3#
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1. INTRODUCTION

The conformations of long polymer molecules are ch
acterized in a first approximation by the positions of t
fixed atoms in repeating molecular groups.1–3 The molecular
backbone delineated in this way corresponds to a cer
three-dimensional chain. For a whole series of polym
molecule—an extensive class of proteins at the head of
list—aggregation into a three-dimensional structure un
specified physical conditions in solution is a strictly defin
process~to within relatively insignificant thermal vibrations!.
The specificity of the aggregation of proteins imparts spe
ficity to molecular identification and the selection of chem
cal reactions involving a particular protein. Existing da
bases house x-ray structural data on approximately 7
protein structures. It is speculated that their number will
ceed 12 000 in another two years.4

The physical analysis of fixed molecular backbones p
sents major difficulties because the structures in question
multaneously exhibit attributes of both ordered and rand
structures. Therefore, for example, the protein backbones~or
Ca backbones when identified by the position of the dist
guished carbon atom! are usually classified in internal term
on the basis of a mutual comparison of the structures5–7

Such global characteristics as the radius of gyration or
ratio of the principal axes of the inertia ellipsoid1,8 are too
crude and do not mirror the internal chirality of the mo
ecules. On the other hand, typical proteins are comparati
short in length (;1002400 links! and do not have a clearl
defined self-similarity. For protein backbones, therefore,
scaling functions of various characteristics also fail to refl
detailed aggregation features~cf. Refs. 9 and 10!.

The introduction of a quantitative measure of regular
for three-dimensional configurations of linear chains has
important information-bearing aspect, in that any given m
3311063-7761/99/89(8)/8/$15.00
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sure of complexity capable of reflecting the specificity
molecular interactions or evolutionary features can be link
to the specificity of aggregation.11–14The direct extension of
classical information theory15 to this case produces a ‘‘com
binatorial explosion.’’ Suppose, for example, that a link o
linear chain is described by the polar angles 0<w<2p and
0<u<p ~Ref. 1!. If the space (w,u) is partitioned into
M segments,n-link fragments can then assumeMn distinct
conformations. Consequently, even for a coarse partition
quadrants (M56) the possible analysis is already limited
three-link fragments, because the numberMn of distinct
combinations must not exceed the total lengthL (;100
2400 for proteins!. On the other hand, the adopted regular
criteria must reflect not only the local characteristics, b
also the global characteristics of the chain structure. Fina
they must possess the self-averaging property for poss
shorter chains to enable the analysis of individual structu
with L;1002400.

In this paper we show that fairly simple criteria suitab
for practical applications can be obtained by the spectral
proach. A similar approach has been used previously to a
lyze symbolic sequences and genomic sequences of DN16

This approach yields effective criteria for the assessmen
global regularity17 and can be used to discern latent perio
icities in a system18 or to analyze the character o
correlations.19 It will be shown below that despite the differ
ence in the statements of the problem, many of the c
results16–19can be extended to the case of three-dimensio
linear chains.

The paper is organized as follows. A general statem
of the problem is set forth in Sec. 2, and a system of inva
ants characterizing the shape of the linear chains is c
structed. Such invariants provide an effective means for
cerning possible latent periodicities and symmetry in
system~Sec. 3!. The statistical characteristics of the syste
© 1999 American Institute of Physics
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of scalar and pseudoscalar invariants introduced in Sec. 2
investigated in Sec. 4 for random, freely linked chains.
series of distinct regularity criteria can be introduced
means of comparison with the characteristics for rando
freely linked chains~Sec. 5!. In Sec. 6 the general theory
illustrated in specific examples of chains generated by r
dom walks on a cubic lattice and the Ca backbones of pro-
tein structures. Finally, Sec. 7 closes with remarks on p
sible generalizations of the results.

2. SPECTRAL REPRESENTATION AND SYSTEM OF
INVARIANTS FOR A LINEAR CHAIN

Let the Cartesian coordinates of the nodes of a chain~or
fixed atoms in the polymer molecule! be given: $rm%, m
51, . . . ,L. Since the shape of a fixed chain configurati
remains constant in the presence of translations and rota
of the system as a whole, the shape-related internal struc
characteristics of the chain must be described in terms
system of invariants that do not change in the presenc
translations and rotations. In principle, any system of inva
ants can be used to describe shape, provided only tha
number of independent invariants is sufficiently large~com-
parable with the number of internal degrees of freedomL
26) and permits the shape to be characterized in detail.
system of invariants introduced in this section has the a
tional advantage that standard methods of spectral ana
are applicable.20 It will be shown below that such a system
invariants admits a reasonably complete statistical anal
and gives suitable quantitative criteria of the regularity o
chain.

We introduce the vector Fourier harmonics

r~qn!5~L21!21/2(
m51

L21

Drm exp~2 iqnm!,

qn52pn/~L21!, n50,1, . . . ,L22, ~2.1!

Drm5rm112rm . ~2.2!

Forming all possible scalar and mixed products from h
monicsr(qn) with differentqn , we obtain a system of scala
and pseudoscalar invariants that remain constant in tran
tions and rotations.

For such a system of invariants to characterize the in
nal regularity of a chain, one other condition must be i
posed on the system. We demonstrate the sense of the
dition in a specific example. We distinguish bonds from 1
Dm and perform parallel translation of the chain fragme
between 1 andDm from beginning to end. The vector Fou
rier harmonics for a chain with these fragments,rtr(qn), and
for the initial chain,rin(qn), are interrelated by the equatio

rtr~qn!5exp~2 iqnDm!rin~qn!. ~2.3!

Since the internal regularity of both chains is identical,
follows from Eq.~2.3! that the sum of the wave vectors fo
the harmonicsr(qn) in the scalar and mixed products mu
be equal to 2pk, wherek is an integer. Finally, for the sys
tem of invariants we obtain
re
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I ~qn1
, . . . ,qnr

!5Inv$ra1
~qn1

! . . . rar
~qnr

!%,

qn1
1 . . . 1qnr

50 mod 2p. ~2.4!

In Eq. ~2.4! the Greek-letter subscript forra(qn) corre-
sponds to projection in cartesian coordinates,aP$x,y,z%.
We assume that all possible convolutions are elimina
from different componentsra(qn) by means of Kronecker
deltasdab and Levi Civita symbols«abg . Convolutions with
an odd number«abg give pseudoscalar invariants th
change sign in mirror reflections, and convolutions with
even number of symbols«abg give scalar invariants that do
not change in reflections.

Making use of the fact that the real-valuedness ofDrm

leads to the relation

r~qn!5r* ~2p2qn! ~2.5!

~the asterisk everywhere signifies the complex conjuga!,
we obtain the elementary scalar and pseudoscalar invari

F~qn!5r~qn!•r* ~qn!, ~2.6!

H~qn!5 i @r~qn!3r* ~qn!#•r~0!. ~2.7!

From now on we shall refer to the invariantsF(qn) as struc-
ture factors. An exact sum rule can be obtained directly fr
the definition~2.1!:

(
qn1

1 . . . 1qnr
50 mod 2p

ra1
~qn1

! . . . rar
~qnr

!

5~L21!(r 22)/2(
m51

L21

Dr m,a1
. . . Dr m,ar

. ~2.8!

It follows at once from Eq.~2.8! that all pseudoscalars hav
zero mean spectral density, because the convolution of
of the symbols«abg with the right-hand side yields zero. Fo
the structure factorsF(qn) the harmonic withqn50 is pro-
portional to the square of the span~distance between the
ends! of the chain, and the average value of harmonics w
qnÞ0 is

F̄5
1

L22 (
n51

L22

F~qn!

5
1

L22 (
m51

L21

~rm112rm!22
~rL2r1!2

~L21!~L22!
. ~2.9!

Since the bond lengths in the chain are usually appro
mately equal,Drm

2 'const, a given average spectral heightF̄
corresponds to a fixed span.

Based on the Wiener–Khinchin relation, the structu
factorsF(qn) can be set in correspondence with the corre
tion function

K~m0!5
1

L21 (
n50

L22

F~qn!exp~2 iqnm0!,

m050, . . . ,L22. ~2.10!

The correlation functionK(m0) can also be written in the
form
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K~m0!5
1

L21 (
m51

L21

Drm
c
•Drm1m0

c , ~2.11!

where Drm
c denotes cyclically continued differences in th

coordinates:

Drm
c 5H Drm , 1<m<L21,

Drm2L11 , L<m<2L22. ~2.12!

The definition~2.10!, in turn, also produces various su
rules, the most important of which is16

(
m051

L22

~K~m0!2K̄ !25
1

L21 (
n51

L22

~F~qn!2F̄ !2, ~2.13!

whereK̄ is the average value ofK(m0) with m0Þ0 @cf. Eq.
~2.9!#.

Condition ~2.5! and definitions~2.6! and ~2.10! impart
symmetry to the corresponding spectra:

F~qn!5F~2p2qn!, K~m0!5K~L212m0!. ~2.14!

Consequently, forF(qn) andK(m0) the spectra can be lim
ited to their left halves only, 1<n<N and 1<m0<N, where

N5@~L21!/2#. ~2.15!

In this expression the brackets signify the integral part o
number.

Analogous relations are readily obtained for the pseu
scalarsH(qn) and other higher invariants as well.

3. STRUCTURE FACTORS, LATENT PERIODICITIES, AND
LATENT SYMMETRIES

We first inquire how physical information about stru
ture can be acquired directly from the spectra of the c
structed sets of invariants. The common application of
Fourier transform to discern latent periodicities agains
background of random contributions is well known.20 Thus,
we consider a chain composed of repeatingl-link fragments.
The vector harmonicsr(qn) then have the form

r~qn!5b~qn!1exp~2 i lq n!b~qn!1 . . .

1exp~2 i ~M21!lqn!b~qn!, ~3.1!

where Ml 5L21, and the Fourier transform forb(qn) is
obtained only by summation over the iteration length:

b~qn!5~L21!21/2(
m51

l

~rm112rm!exp~2 iqnm!,

qn52pn/~L21!, n50, . . . ,L22. ~3.2!

The corresponding scalar structure factors are

F~qn!5b~qn!•b* ~qn!
sin2~Mlqn/2!

sin2~ lqn/2!
, ~3.3!

and their spectrum consists of equally spaced peaks atlqn

52pk, k50, . . . ,l 21. Quasi-random variations of th
length l can induce splitting of peaks and the suppression
peaks withk>2. In general, therefore, latent periodicitie
can be discerned either by estimating the statistical sig
a

-

-
e
a

f

-

cance for the sum of the equidistant harmonics or from
individual peaks, or by a combination of these two criteria18

It is significant that the spatial Fourier harmonics d
close latent symmetries as well as latent periodicities.
demonstrate this statement in the example of the elemen
repeatedM th-order symmetry corresponding to the gro
CM ~Refs. 21 and 22! (M -star configurations!. The vector
Fourier harmonics for this case have the form

r~qn!5b~qn!1exp~2 i lq n!R̂b~qn!1 . . .

1exp~2 i ~M21!lqn!R̂M21b~qn!. ~3.4!

Hereb(qn) are again given by Eq.~3.2!, Ml 5L21, and the

333 rotation matrixR̂ satisfies the condition

~3.5!

where Î is the unit matrix. The matrixR̂ describes rotation

about a certain axisn through the anglew, R̂2 describes
rotation through 2w, etc. Condition ~3.5! then gives w
52p/M .

Let n be directed along thez axis of a Cartesian coordi
nate system. Introducing the combinations

b65bx6 iby . ~3.6!

we can show that

R̂ bz5bz , R̂ b65exp~62p i /M !b6 . ~3.7!

Bearing in mind that

b5bx1by1bz5
1

2
~12 i !b11

1

2
~11 i !b21bz , ~3.8!

and taking Eqs.~3.4!, ~3.7!, and~3.8! into account, forF(qn)
we obtain a series of equally spaced peaks atlqn52pk, k
50, . . . ,l 21, corresponding tobz , a series atlqn52pk
12p/M , k50, . . . ,l 21, corresponding tob1 , and a series
at lqn52pk22p/M , k51, . . . ,l 21, corresponding tob2 .
Since we have (L21)/l 5M and qn52pn/(L21),
M th-order rotational symmetry corresponds to peak harm
ics labeledn5Mk, Mk61 ~herek is an integer!. If bz50
holds, only split peaks withn5Mk61 are left. Analogous
relations are easily derived for other symmetry subgro
with the identification of appropriate irreducibl
representations.21,22

If the repeating elements correspond, for example,
spiral structures, right- and left-handed helixes can be dis
guished by the analysis of pseudoscalars. We also note th
system of pseudoscalars associated with the topological c
acteristics of the backbone of the chain may prove to
more useful in a number of applications.23

4. STATISTICAL CHARACTERISTICS FOR RANDOM,
FREELY LINKED CHAINS

Since the transformation~2.1! is reversible, it can be
regarded as a more suitable representation of the chain
figuration. Comparing different structural characteristics
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fixed chain configurations with the average characteris
for a random, freely linked chain, we can obtain seve
quantitative regularity criteria for a chain having an arbitra
shape. In this section we discuss a general theory for ana
ing the statistical characteristics of random chains.

For simplicity we shall assume below that all bonds a
equal and have unit length,Drm[nm ~wherenm is the unit
vector!. The random analog for a chain with an arbitra
fixed shape is a random, freely linked chain with the sa
number of links and the same spanurL2r1u @see Eq.~2.9!#.
The statistical distributions for invariants of such a chain c
be obtained by means of the characteristic function~cf. Refs.
1, 24, and 25!

Z5
1

V E dnE dn1 . . . E dnL21d~n11 . . . 1nL212Rn!

3expS i (
n50

L22

u~qn!•r~qn!D . ~4.1!

In the integration with thed-function the quantityR is as-
sumed to be fixed, the harmonicsr(qn) are given by Eq.
~2.1! with Drm5nm , and it is convenient to impose on th
auxiliary vector variablesu(qn) a condition analogous to
~2.5!:

u~qn!5u* ~2p2qn!. ~4.2!

The normalization factorV is equal to

V5E dnE dn1 . . . E dnL21d~n11 . . . 1nL212Rn!.

~4.3!

Different averages can be obtained by differentiatingZ:

^ra1
~qn1

!ra2
~qn2

! . . . &

5
] . . . Z

i ]ua1
~qn1

!i ]ua2
~qn2

! . . . U
$u(qn)50%

~4.4!

~angle brackets everywhere signify averaging over the
semble of realizations!.

Rewriting the exponential in~4.1! in the form

expS i (
n50

L22

u~qn!•r~qn!D 5expS ig0•nR1 i (
m51

L21

nm•gmD ,

~4.5!

where

gm5~L21!21/2(
n51

L22

u~qn!exp~2 iqnm!, ~4.6!

g05u~0!/~L21!1/2, ~4.7!

we see at once that also formÞ0

^nm1 ,a1
nm2 ,a2

. . . &5
] . . . Z

i ]gm1 ,a1
i ]gm2 ,a2

. . . U
$gm50%

.

~4.8!
s
l

z-

e

e

n

n-

Invoking the integral Fourier transform for th
d-function in ~4.1!, we can reduce the expression forZ to a
triple integral:

Z5
1

V E d3g
sin~ ug2g0uR!

ug2g0uR )
m51

L21
sin~ ug1gmu!

ug1gmu
. ~4.9!

From Eqs.~4.1!–~4.9!, in particular, we obtain

^r~qn!r* ~qn!&5^F~qn!&5F̄, ~4.10!

whereF̄ is the spectral average defined by Eq.~2.9!. Equa-
tion ~4.10! reflects an important quasi-ergodic property: A
eraging over the ensemble of random realizations is equ
lent to averaging over the spectrum. In particular,
averages for pseudoscalars are equal to zero~see Sec. 2!.

For L@1, by analogy with Ref. 16, we can obtain a
asymptotic cumulant expansion forZ using the exact sum
rule ~2.8!. In the principal approximation with respect t
;L21 we obtain

Z'
sin~ uu0uR/~L21!1/2!

uu0uR/~L21!1/2
expS 2

F̄

3 (
n51

N

u~qn!•u* ~qn!D .

~4.11!

Condition~4.2! has been taken into account here, so that
summation in~4.11! is restricted to half the spectrum@see
Eq. ~2.15!#.

In Fig. 1 the exact expression~4.9! is compared with the
approximation~4.11! for the case when all the variable
u(qn) are equal to zero with the exception of one pair
complex conjugate variables for an arbitrarily selected va
of qn . The total number of links isL215100. It is evident
from Fig. 1 that the exact expression almost coincides w
the approximate expression in the rangeZ>1026. Conse-
quently, the majority of practical applications can be limit
to the approximation~4.11!. For largeuu(qn)u, however, the
asymptotic forms differ, and forZ<10215 the discrepancy
between the asymptotic forms is roughly an order of mag
tude.

5. REGULARITY CRITERIA FOR LINEAR CHAINS

We now look at some specific inferences drawn from
general expression~4.11!. The characteristic functionZ is
known to be associated with the multicomponent probabi
distribution function by the Fourier transform.24,25 In the en-

FIG. 1. Comparison of the exact expression~4.9! ~solid curve! with the
approximate expression~4.11! ~dashed curve! for a chain havingL21
5100 links and a fixed spanR.
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suing discussion we are interested only in the amplitude
tribution for harmonics withqnÞ0. In the principal approxi-
mation with respect to ;L21 the corresponding
multicomponent probability density function can be writt
in the form

p~F1 , . . . ,FN!5p~F1! . . . p~FN!, ~5.1!

where the density function for the individual structure fa
tors, p(Fn), is given by the equation

p~F !dF5
1

2
f 2 exp~2 f !d f , ~5.2!

f n[3F~qn!/F̄. ~5.3!

The probability that the amplitude of an individual structu
factor Fn will not be greater thanF is equal to

P~Fn<F !5E
0

F

p~F8!dF8512S 11 f 1
f 2

2 Dexp~2 f !,

~5.4!

and, accordingly, the probability of exceedingF supplements
~5.4!:

P~Fn.F !512P~Fn<F !. ~5.5!

The probabilityP(Fn.F) dictates the fraction of structur
factors in the half-spectrum,N(F)/N, with heights greater
than the specified quantityF. Consequently, the proximity to
a random distribution can be estimated by comparing
dependence ofN(F)/N on F for specific half-spectra with
the dependence~5.5! for the random analogs. The statistic
significance of deviations from the dependence~5.5! can be
estimated by means of the Kolmogorov–Smirnov test.24

Equations~5.2! and ~5.4! correspond to the probability
distribution for the sum of three independent random va
ables with an identical Rayleigh distribution.24 It is readily
perceived that this result is a direct consequence of defini
~2.6!, because the scalar productr(qn)r* (qn) includes a
sum over three components in Cartesian coordinates.

The statistical significance of the individual high pea
can be estimated by comparing them with the spikes in r
dom half-spectra.26 This problem has important bearing o
the search for latent periodicities and symmetries in confi
rations of a general form~Sec. 3!. The probability that the
amplitudes of all structure factors in the half-spectrum w
not exceedF is equal to

P~Fn<F; N!5@P~Fn<F !#N, ~5.6!

whereP(Fn<F) is given by Eq.~5.4!, and the probability
that the amplitude of at least one of theN structure factors
will exceedF is complementary to~5.6!:

P~Fn.F: N!512@P~Fn<F !#N. ~5.7!

The threshold values of the relative amplitudes~5.3! for dif-
ferent numbersN as determined by the conditionsP(Fn

.F; N)50.1 and 0.05 are given in Table I.
The global regularity of the chain configuration is co

veniently evaluated by means of the spectral entropy~see the
detailed discussion in Ref. 16!:
s-

-

e

i-

n

n-

-

l

S52 (
n51

L22 S F~qn!

F̄
D lnS F~qn!

F̄
D . ~5.8!

Since the heights of the structure factors in the random h
spectra are distributed with relative uniformity, the quant
S for random configurations with a specified span of t
chain ~or with specifiedF̄) attains a maximum~to within
relatively small random deviations!. Averaging ~5.8! by
means of the distribution function~5.1!, we obtain

^S& random52@ ln~1/3!1G8~4!/G~4!#~L22!

.20.1575 . . . ~L22!, ~5.9!

whereG andG8 are the gamma function and its derivativ
Analytical estimation for random deviationŝ(DS)2& random

requires exceeding the limits of the approximation~5.1! and
taking into account correlations between structure fact
with different wave numbers. In the next section we obtai
numerical estimate for̂(DS)2& randomon the basis of numeri-
cal simulation results. Assuming that the deviations fro
^S& random are Gaussian, from these data we can readily e
mate the statistical significance of the deviation (^S& random

2S)/@2^(DS)2& random#
1/2 for the spectral entropyS corre-

sponding to an arbitrary fixed configuration. Another use
quantity in applications isDSrel5(^S& random2S)/u^S& randomu,
whereu^S&u is the absolute value of the average entropy
random configurations.17 For random deviations it satsifie
DSrel}(L22)21/2 and is small for long random chains wit
L@1, whereas for regular deviations we have^(S& random

2S)}(L22). The ratioDSrel can therefore be used to com
pare the total degree of regularity for chains with differe
numbers of links. The spectral entropy~5.8! also reflects cer-
tain information characteristics associated with the giv
chain configuration.

6. APPLICATIONS OF THE RESULTS

6.1. Chains generated by random walks on a cubic lattice

We illustrate applications of the results in two concre
examples. For the first we consider chains generated b
random walk on a cubic lattice. Figure 2 shows the ha
spectra for a specific random realization withL215200

TABLE I. Criteria for singular harmonics at various thresholds of sign
cance in a half-spectrum ofN harmonics.

f thr f thr

N P50.1 P50.05

50 10.33 11.20
100 11.17 12.02
150 11.65 12.50
200 11.99 12.84
250 12.25 13.10
300 12.47 13.31
350 12.65 13.49
400 12.80 13.64
450 12.94 13.78
500 13.06 13.90
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chains. For the structure factors we use the dimension
ratios ~5.3!, and for the correlation functions~2.10! we use
the variables

k~m0!5~K~m0!2K̄ !/@2^~DK !2&#1/2, ~6.1!

^~DK !2&5F̄2/3~L21!. ~6.2!

Here K̄ is the average value ofK(m0) with m0Þ0, and we
have used the sum rule~2.13! and the distribution~5.2! to

FIG. 2. Half-spectra for the correlation functions@in the variables~6.1!# and
structure factors@in variables~5.3!# for a chain ofL215200 links obtained
from a random walk on a cubic lattice, as functions off for the fraction of
structure factorsN( f )/N exceeding a given levelf. The dashed curve cor
responds to Eq.~5.5!.
ss

calculate the mean square deviation for random configu
tions ^(DK)2&. For random configurations the ratiosk(m0)
with differentm0 can be regarded approximately as indepe
dent Gaussian variables. The lower part of Fig. 2 show
graph of the fraction of structure factorsN( f )/N exceeding a
given valuef as a function off. The dashed curve corre
sponds to Eq.~5.5!. For the spectral entropy~5.8! we obtain
S/(L22)520.155 in accordance with the prediction~5.9!.

Figure 3 shows the spectral entropy~5.8! and the mean
square deviations obtained by averaging over 200 rand
realizations withL215100, 150, . . . , 400 asfunctions of
(L22). For the average entropy and the mean square de
tions we obtain

^S&5~20.156760.0003!~L22!, ~6.3!

^~DS!2&5~0.09260.015!~L22!, ~6.4!

respectively, in good agreement with~5.9!, ^S& random

'20.1575(L22).

6.2. Structural characteristics for protein C a backbones

Our second example is an analysis of the structural ch
acteristics of protein Ca backbones~with respect to the po-
sition of a fixed carbon atom!. We recall that the aggregatio
of the three-dimensional protein structure~or tertiary struc-
ture! evolves from so-called secondary structu
elements.1,3,27,28Secondary structure elements are univer
and comprise either fragments of right-handeda-helixes
with a periodp'3.6 ~in link-count units! or approximately
plane fragments ofb elements joined by connective frag
ments, which make up a separate group of elements.

Figure 4 shows data for representatives of two of
four principal structure classes of protein molecules.27,28 For
the molecular backbones we use a diagram representati29

in which a elements correspond to ribbon helixes,b ele-
ments correspond to ribbons with arrows, and connec
elements correspond to fragments resembling pieces of w
The half-spectra for the correlation functions and struct
factors are given in the variables~6.1! or ~5.3!. The alpha-
numeric notation is consistent with the code used to label
given structure in the Brookhaven data base.4

Since both structures containa-helixes, it is evident
from Fig. 4 that they correspond to peaks in the spectra
the structure factors with periodsp5(L21)/n'3.6, which
correspond to latent periodicities. Structure 256BA has
approximate second-order symmetry, which quickly gen
-
e-
FIG. 3. Spectral entropy~5.8! and mean square de
viations obtained by averaging over 200 random r
alizations for each value ofL, as functions ofL22.



e

337JETP 89 (2), August 1999 V. V. Lobzin and V. R. Chechetkin
FIG. 4. Diagram representations of structures29 and
half-spectra for the normalized correlation functionsk
and for the structure factorsf for cytochrome b562
~structure 256BA! and triose phosphate isomeras
~7TIMA !.
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ates a second peak atn52 with amplitudef 517.9~cf. Table
I in Sec. 5!. Structure 7TIMA, in turn, has an approxima
eighth-order rotational symmetry, which generates charac
istic split peaks: n57, f 512.3; n58, f 522.9; n59,
f 517.6.

The individual high peaks in the spectra for the struct
factors do not always correspond exclusively to latent p
odicities and symmetries. Some of the peaks with sm
wave numbersqn can reflect a specific long-range order a
sociated with the compaction of protein structures,1,27,28 be-
r-

e
i-
ll
-

cause their aggregation ties in with the imposition of a nu
ber of steric and energy constraints and has a coopera
character.

Figure 5 shows the fraction of the number of structu
factorsN( f )/N exceeding a given valuef as a function off
for structure 7TIMA~left graph!. To separate the influence o
latent periodicities and symmetries in this structure, we h
discarded all high structure factors withf >10.0 ~it follows
from Table I that such factors are in excess of typical rand
spikes!, and for all other structure factors we have reeva
FIG. 5. Dependence onf of the fraction of structure
factors N( f )/N exceeding a givenf for triose phos-
phate isomerase~7TIMA !. The right graph is plotted
after the rejection of harmonics withf >10 and subse-
quent reevaluation of the average spectral values~see
text!. The dashed curves correspond to Eq.~5.5!.
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ated the spectral average. The resulting dependence is
described reasonably well by Eq.~5.5! ~right graph in Fig.
5!. Of course the agreement improves for more irregu
structures. An analysis of structures lacking distinct symm
tries and relatively low values ofDSrel ~see below! shows
that for such structures the functional relation~5.5! is satis-
fied quite well even without the preliminary extraction
regularity effects.

Because of the high degree of regularity of the structu
in Fig. 4, the corresponding values ofDSrel5(^S& random

2S)/u^S& randomu are also large: 5.470~256BA! and 1.996
~7TIMA !. Clearly, the values ofDSrel decreases as the ord
of symmetry and the complexity of the structure increase

The formation of a tertiary protein structure from se
ondary structure elements corresponds to a characteristic
crease of the correlation functions at distancesm0;10220
~see Fig. 4!. The same behavior is observed on the part of
correlations of other structural and physicochemical cha
teristics along the protein chain.30,31

7. CONCLUSION

It follows from the results of the study that the spect
approach provides a simple and effective means for inve
gating quantitatively the structural characteristics of line
chains having an arbitrary specified shape. The method
be used to discern possible latent periodicities and sym
tries in a system, and beginning with relatively short chai
L>100, it is already possible to estimate the total regula
of a chain in terms of the spectral entropy~5.8!. Data as-
sembled in existing data bases from x-ray structural exa
nations for polymer chains are simply incorporated into
scheme.

In the study we have used a freely linked chain as
initial random model. In the next approximation this mod
must take into account excluded volume effects.1–3 Unfortu-
nately, these effects are difficult to treat analytically, a
lengthy numerical computations are involved. It is sign
cant, however, that after the effects associated with la
periodicities and symmetries have been separated, the s
tics ~5.2!–~5.5! approximately describes the influence of t
irregular structural background in real structures~see Fig. 5!.

The formal unification of the digital representation
data and the proximity of the statistics for random analo
makes the method suitable for the investigation of poss
correlations and the influence of physicochemical charac
istics on the structure of the backbones of polymer m
ecules, whereupon the role of various factors in the aggre
tion of three-dimensional structures can be assessed in d

Both small-scale and large-scale structural characte
tics are taken into account in the spectral approach, and
identification of long-range order effects is entirely natura

Even for an elementary set of invariants such as
structure factors~2.6! the total number of independent invar
ants (L21)/2 is found to be commensurate with the to
number of degrees of freedom 3L26. They can therefore be
used to identify essentially any fixed structure~to within the
cyclic permutation of fragments!. Sets of invariants for
chains of unequal length can be compared by the stan
padding-with-zeros technique.20
ow
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In summary, the method admits the sufficiently comple
investigation of chains having an arbitrary fixed shape.
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data on protein structures.
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Screening of the static electric field in periodic Si–SiO 2 quantum wells: Effect
on the electroinduced quadratic nonlinear-optical response

V. V. Savkin* )

M. V. Lomonosov Moscow State University, 119899 Moscow, Russia
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The screening of a static electric field in periodic quantum wells is investigated theoretically. It
is shown that the dependences of the potential on the quantum well number and the
electric field from the applied voltage are oscillatory. The experimentally observed oscillatory
dependences of the electroinduced quadratic nonlinear-optical response of periodic
Si–SiO2 quantum wells are explained assuming a specific morphology of the silicon layers.
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1. INTRODUCTION

Many effects occurring in solid-state microstructures
due to the presence of a static electric field. Semicondu
heterostructures~for example, metal–oxide–semiconduct
structures! are of great interest. The distribution of the sta
field in such structures was first found in Ref. 1. Low
dimensional systems~for example, periodic quantum well
and superlattices!, whose unique physical properties are r
lated to quantum-well effects,2 are structures of this class
Periodic quantum wells and superlattices consist of alter
ing thin ~thickness;10 Å) layers of different substance
~for example, Si–SiO2 , GaAs–AlGaAs, InGaAs–AlAs,
ZnSe–ZnCdSe, and so on!. Spatial confinement of electro
motion strongly influences the linear–optical and t
nonlinear-optical properties of such systems, for exam
second harmonic generation.3 If the system of interest is in
an external field, the nonlinear-optical effects depe
strongly on the magnitude of the external perturbation and
the spatial properties of the systems under study.4

Experiments studying the azimuthal anisotropic dep
dences of the second harmonic and the influence of a s
electric field on the SHG in periodic quantum wells ha
been described in Refs. 5 and 6. Periodic Si–SiO2 quantum
wells were prepared as follows. Silicon and silicon dioxi
layers were alternately deposited on a 0.1-mm-thick silic
substrate in a manner so that 40 periods were obtained in
structure. The thicknesses of the layers and the paramete
the radiation used in the experiment are presented in Fig
The result of the experiments described in Ref. 5 were
azimuthal anisotropic dependences of the second-harm
intensity in transmission geometry for parallel polarization
the pump and second-harmonic waves. These depende
were found to be completely anisotropic and to possess t
fold symmetry.

In the experiments described in Ref. 6 the seco
harmonic intensity at the maximum of the azimuthal cur
was measured as a function of the constant voltage applie
the periodic quantum wells in the same geometry and w
the same polarization of the pump and second-harmo
waves. Oscillatory dependences of the intensity of the e
3391063-7761/99/89(8)/5/$15.00
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troinduced second harmonic on the voltage applied to
periodic quantum wells were obtained in these experime
~see Fig. 2!. Thus far, no models explaining the nonmon
tonic nonlinear-optical response in the systems studied h
been proposed.

In the present paper we report the results of a theoret
study of the dependence of the quadratic optical respons
periodic quantum wells in an external static electric field.
the calculations, attention is focused mainly on the analy
of the screening of the static electric field in a system
periodic, two-dimensional quantum wells and the morph
ogy of the silicon layers of the structure. It is shown that t
nonmonotonic dependence of the electroinduced second
monic on the voltage applied to the structure is due to
essentially quantum screening of the electrostatic field in
periodic quantum wells. To find the nonlinear-optical r
sponse of the structure it is necessary to know, first,
nonlinear properties of the structure and, second, the di
bution of the static electric field in periodic Si–SiO2 quan-
tum wells. Accordingly, we shall divide this problem int
two parts. In Part 1 we shall consider the distribution of t
static field in the structure~the electrostatic part!, and in Part
2 we shall solve the nonlinear-optical problem~the non-
linear-optical part!. In the electrostatic part of the problem
attention will be focused mainly on calculations of th
screening of the field in a system of periodic quantum we
and in a single quantum well, while in the nonlinear-optic
part of the problem attention will be focused mainly on t
symmetry properties of the dipole nonlinear susceptibi
tensorx i jkl

(3),D of the silicon layers of the periodic Si–SiO2

quantum wells.

2. ELECTROSTATIC PROBLEM

In the electrostatic part of this work we shall calcula
the screening of the external static electric field in perio
Si–SiO2 quantum wells. The field distribution in the struc
ture as a whole will be found first~disregarding the detailed
screening in each individual layer!, after which the local field
in a single quantum well will be calculated.
© 1999 American Institute of Physics
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FIG. 1. The geometry of an experiment for studying th
influence of a static electric field on optical secon
harmonic generation in periodic Si–SiO2 quantum
wells and the morphology of the silicon layers. Inse
Different layers of the structure: flat and terrace-typ
For these layers one component of the dipole nonlin
susceptibility tensor (xxxxz), which contributes to the
second-harmonic generation from the terrace-type l
ers (xxxxzÞ0) and which does not contribute from th
flat layers (xxxxz50), is indicated.
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The electrostatic problem can be solved by assum
that the electric current in the structure is zero. The perio
Si–SiO2 quantum wells are treated as a collection of ind
pendent two-dimensional quantum wells~it is assumed tha
the electron wave functions do not overlap!, but infinitesimal
tunneling is assumed to exist. This makes it possible to
troduce a single chemical potential for all quantum wells a
thereby make thermodynamic equilibrium possible in
system. It is also assumed that the Fermi level of the sys
in the first silicon layer~closest to the substrate! lies at the

FIG. 2. Second-harmonic intensity as a function of the voltage applie
the periodic Si–SiO2 quantum wells for samples with the following param
eters: a —d1511 Å, d2530 Å and b —d1511 Å, d2550 Å; dots —
experimental data, solid curve — theoretical calculation (d1 and d2 —
thicknesses of the silicon and silicon oxide layers, respectively!. The arrows
indicate the voltage range corresponding to filling of the first quantum s
band.
g
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center of the band gap. When an external electrostatic fie
applied, screening of this field by the intrinsic charge carri
~holes in the valence band and electrons in the conduc
band! occurs in the structure of the periodic quantum we
It is assumed that there are no dopant charges in the per
quantum wells. Electric neutrality of the system is ensu
by the presence of charge on the outer electrodes and by
fact that the signs of the electron and hole charges are
ferent. Further, assuming that the structure consists of
interacting charged layers and thatd1!d2 ~whered1 is the
thickness of the silicon layer, andd2 is the thickness of the
silicon oxide layer!, it becomes possible to switch from th
continuousz coordinate~the z axis is directed perpendicula
to the layers of the structure; see Fig. 1! to a discrete coor-
dinateN — the quantum-well number. For definiteness, t
potentialw(N) and the fieldE(N) are assumed to be the
values at the center of theNth quantum well.

In Part 1 of the calculation of the screening of the ele
trostatic field in the structure, the distributionw(N) of the
potential of the screened external field is found as a func
of the quantum-well number. A computational method to t
Thomas–Fermi method,7 specifically, its discrete analog fo
the two-dimensional case, is used to solve this problem.

To solve the electrostatic part of the problem, we fou
the dependence of the charge-carrier density on the ele
static potential in the two-dimensional layer at finite tem
perature. The formula was obtained assuming that only
first subband in the potential well is filled. The calculatio
was performed similarly to the calculation performed in R
8 for the three-dimensional case. The final expression for
dependence is

n~w,T!52
mkTe

p\2
lnS 11expFew1m

kT G D
1

mkTe

p\2
lnS 11expF2~ew2m1D!

kT G D , ~1!

to

-
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FIG. 3. Screening of the electric field in periodic quantum wells: a — potentialw as a function of the quantum-well numberN (d1511 Å andd2550 Å; d1

andd2 — thicknesses of, respectively, the silicon and silicon oxide layers! for three differenr values of the applied voltageV1.V2.V3 ~the alternating sign
of the derivative of the potential in the initial wells for different voltagesV1 , V2 , and V3 explains the appearance of the oscillatory dependence of
nonlinear-optical response! and b — intensity of the screened electrostatic field as a function of the coordinate of a single quantum well~the well width is 11
Å ; the external field is 1!: dashed line — non-self-consistent calculation, solid line — self-consistent calculation~Hartree approximation!.
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wherew is the electric potential,T is the absolute tempera
ture, D is the band gap,m is the chemical potential, andm
ande.0 are, respectively, the electron mass and charge~as-
sumed to be the same for the electron and the hole!. In this
formula the first term corresponds to the electron dens
and the second term corresponds to the hole density.
zero point of the potential is measured with respect to
first quantum level of the conduction band, so that the b
gapD appeared only in the second term.

Assuming that the current flowing through the structu
is zero, we make use of the Poisson electrostatic equa
Dw524pr. Switching to a description of the screened fie
as a function of the discrete variableN, we represent the
three-dimensional charge densityr as follows:

r~r !5 (
N51

40

d@z2~d11d2!N!n~w~N!#,

wheren@w(N)# is the two-dimensional charge density dete
mined from Eq.~1!. If the Poisson equation is integrate
once as a function ofz from the center of the (N21)st
quantum well to the center of theNth quantum well, then an
equation relating the electric fieldE(N) with the electron
density n(N)5n(w(N)) and therefore with the potentia
w(N) according to Eq.~1! is obtained:

2E~N!1E~N21!522p@n~N!1n~N21!#/«1 , ~2!

where«1 is the static permittivity of silicon. Taking accoun
of the dielectric layer in the model will not change the for
of the equation, since in this layer there are no free char
and therefore the electric field is constant. As a second e
tion we shall employ the formula for finite increments th
expresses the potential difference in neighboring wells
terms of the mean field with allowance for the different sta
permittivities of silicon and the silicon oxide:

2w~N!1w~N21!5
1

2 S d11d2

«2

«1
D @E~N!1E~N21!#,

~3!

where«2 is the static permittivity of silicon oxide. The equa
tions ~1!, ~2!, and ~3! written out above with the boundar
y,
he
e
d
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-
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conditionsw(0)50 andw(40)5U0 form a system of equa
tions whose solution determines the dependence of the
tential w(N) on the quantum-well number.

The behavior of the solutions of the system of equatio
can be analyzed qualitatively by solving certain particu
cases analytically.

First, in the casen(w,T)50 and T50 ~the case of a
homogeneous insulator! this system possesses a trivial sol
tion — the electrostatic potential is proportional to th
quantum-well number. Second, ifD50 andT50 ~the case
of metallic layers at zero temperature!, the system of equa
tions becomes linear. A search for a solution in the fo
w(N)5AaN ~whereA anda are constants that depend on t
properties of the structure and the boundary conditio!
gives

w~N!5C1aN1C2a2N. ~4!

In the expression~4!

a5F12Ad11d2«2 /«1

«1a0
GF11Ad11d2«2 /«1

«1a0
G21

,

wherea05\2/me2 is the Bohr radius, and the constantsC1

andC2 are determined from the boundary conditions. Hen
it is evident that ford11d2«2 /«1,«1a0 the solution is a
monotonic function, while ford11d2«2 /«1.«1a0 the solu-
tion assumes an oscillatory form.

Depending on the parameters of the samples, the mo
tonic or oscillatory behavior of the potential as a functi
of the quantum-well number also occurs whenTÞ0 and
DÞ0.

Numerical solutions were obtained for periodic Si–SiO2

quantum wells. Figure 3a shows the dependence of the
tential on the quantum-well number for three differe
boundary conditionsV1 , V2 , andV3 ~for a sample withd1

511 Å andd2550 Å). The curves presented make it po
sible to trace the appearance of the oscillatory dependenc
the electric field in the structure on the applied voltage. F
ure 3a shows that as the voltage on the structure incre
monotonically (V1.V2.V3), the derivative of the potentia
in all quantum wells, except the last few, is sign-alternat
~the potential either decreases or increases!. This signifies the
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presence of an oscillatory dependence of the applied vol
on the electrostatic field in the structure. This field det
mines the intensity of the electroinduced second-harmo
intensity.

The second part of the electrostatic problem is the c
culation of the screening of the electrostatic field in a sin
quantum well. The need to study this problem arises beca
in the last few quantum wells of the structure, where
potentials are large compared with the initial wells, t
screening in the quantum wells can strongly influence
electroinduced nonlinear-optical response. The local po
tial distribution in each quantum well has been studied in
Hartree approximation.9 It was assumed here that each qua
tum well is a two-dimensional potential well with infinitel
high walls, because for the parameters of the quantum w
employed in the experiment the Born parameterB is

B5U0ml2/\2;102@1,

wherel is the width andU0 is the depth of the potential well
The calculation was performed with only the first quantu
level filled. The electron density in the first subband,
which the second level is still unoccupied, was obtain
from the expression for the two-dimensional density
states. This quantity then determines the voltage rang
applicability of our calculations. The following expressio
was obtained as the Hartree equation~taking into account
two terms in the perturbation theory series!:

dC5 (
m51

2

^C1uV̂uc2m&C2m /~E12E2m!, ~5!

where the perturbation operator

V̂5eFEzz24penE
2 l /2

l /2

C1~z8!dC~z8!uz82zudz8G , ~6!

n is the electron or hole density in the first quantum lev
and Ez is the external field. The functionC2m is the wave
function of electrons located in the level with number 2m,
andE2m is the energy of this level.

The equation~5! is an integral equation with a degene
ate kernel, and therefore it possesses an analytic solu
Multiplying the left- and right-hand sides of Eq.~5! by the
corresponding expressions and integrating the equation
obtained, we obtain an algebraic system of equations, s
ing which gives the final answer. The unknown quantity
this equation is the correctiondC to the electron wave func
tion. FindingdC from Eq. ~5!, we can determine the coor
dinate dependence of the potential in the quantum well:

F~z8!524penE
2 l /2

l /2

C1~z!dC~z!uz2z8udz. ~7!

The final result is not presented here because the for
las are too complicated. The dependence of the scree
electrostatic field on the coordinate for the quantum w
with l 511 Å and only the first quantum level being filled
presented in Fig. 3b.

Accordingly, we have calculated the screening of t
electrostatic field in periodic Si–SiO2 quantum wells. In the
calculation of the screening of the field, it was shown fi
ge
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that an oscillatory dependence of the field in the structure
the constant voltage applied to the periodic Si–SiO2 quan-
tum wells arises.

3. NONLINEAR–OPTICAL PROBLEM

The screening of the static electric field can strong
influence the nonlinear-optical properties of the structur
specifically, the generation of an electroinduced second
monic. Since in centrosymmetric systems the generation
the second optical harmonic is forbidden in the dipole a
proximation, this effect will be described by the dipole cub
and quadrupole quadratic nonlinear susceptibilities:

Pi
2v~r !5x i jkl

(3),DEj
v~r !Ek

v~r !El
0~r !

1x i jkl
(2),QEj

v~r !]Ek
v~r !/]xl , ~8!

where x i jkl
(3),D and x i jkl

(2),Q are, respectively, the dipole an
quadrupole nonlinear susceptibility tensors of the mediu
Ev is the pump field, andE0 is the external static electric
field. If it is assumed that the silicon layers of the structu
which are the source of the second-harmonic generation
flat (`/m symmetry; the allowed components are written o
below!, then for the indicated geometry of the experime
~Fig. 1! such layers will not be the source of the seco
harmonic, since these components of the susceptibility
sors are zero. Therefore it can be inferred that the silic
layers are not flat. In Ref. 5 it is indicated that there ex
anisotropic dependences of the second-harmonic intensi
periodic quantum wells. This signifies the absence of sy
metry for layers in a plane perpendicular to thez axis ~Fig.
1!. For this reason, to solve the nonlinear-optical part of
problem the morphology of the silicon layers of the structu
is assumed to be as follows. Because the correct cut of
silicon substrate deviates from the exact^001& face, the inner
silicon layers of the periodic quantum wells will possess
specific structure, reminiscent of terraces~in what follows,
inner layers are layers close to the silicon substrate and o
layers are layers close to the interface with air!. The height of
a single step of the terraces equals the lattice constant o
crystal structure. However, when subsequent layers are
posited, this specific structure of the layers is lost, and
outer layers of the periodic quantum wells will be flat~see
Fig. 1!. The contribution of the inner layers to secon
harmonic generation is due to the fact that these lay
~terrace-type structure! of the periodic quantum wells pos
sess the specific symmetry 2/m. For the outer layers~flat and
`/m symmetry! the x i jkl

(3),D tensor possesses 15 independ
nonzero components with the indicesi, j , k, and l: xxxx,
xxyy5xyxy, xxzz5xzxz, xyyx, xzzx, yxxy, yxyx5yyxx, yyyy,
yyzz5yzyz, yzzy, zxxz, zxzx5zzxx, zyyz, zyzy5zzyy, zzzz. For
the inner layers with 2/m symmetry these and the followin
components of the tensorx i jkl

(3),D are different from zero:xxxz,
xxzx5xzxx, xyyz, xyzy5xzyy, xzzz, yxyz5yyxz, yxzy5yzxy,
yyzx5yzyx, zxxx, zxyy5zyxy, zxzz5zzxz, zyyx, zzzx~28 inde-
pendent nonzero components in all!. Next, by virtue of the
geometry of the experiment~see Fig. 1: the constant field i
directed along thez axis, and the pump and second-harmon
waves possess onlyx and y components! only the compo-
nents xxxxz

(3),D , xxyyz
(3),D , xyxyz

(3),D5xyyxz
(3),D contribute to second-
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harmonic generation in the dipole approximation for lay
with terrace-type structure, while for layers with a flat stru
ture none of the components written out above contribu
To observe anisotropic dependences of the second harm5

it is sufficient that for layers with terrace-type structure t
angle between the normal to the substrate and the norm
the exact̂ 001& face be of the order of a tenth of a degree.
detailed analysis of the effect of the magnitude of this an
on second-harmonic generation and on the existence of
isotropic dependences of the second harmonic can be fo
in Refs. 10 and 11. The number of layers with terrace-ty
structure is not important for us, since this number will ul
mately influence only the intensity of the second harmon
which for us is a free parameter. However, it is important
note that the terrace-type layers contributing to seco
harmonic generation should emphasize the oscillatory be
ior of the derivative of the potential as a function of th
applied voltage~see Fig. 3!, as is observed in the inner laye
of the structure. In the calculations it was assumed that
20 inner layers of the periodic quantum wells poss
terrace-type structure~they contribute to second-harmon
generation!, and the outer 20 layers have a flat structure~they
do not contribute to second-harmonic generation!.

In calculating the propagation factors~Green’s func-
tions, which are solutions to Maxwell’s equations for
source in the form of a flat current screen!, the reflections of
the pump and second-harmonic waves only from the s
strate and vacuum were taken into account, and for perio
Si–SiO2 quantum wells an effective-medium model wi
permittivity «51.5 was used.

A comparison with the experimental data can be ma
using the dependences obtained above for the screenin
the field in periodic Si–SiO2 quantum wells and the assum
tions made about the nonlinear-optical properties of the
dium.

4. RESULTS AND DISCUSSION

As a result, theoretical curves~solid curves in Fig. 2! of
the second-harmonic intensity versus the voltage applie
the periodic Si–SiO2 quantum wells were obtained. The th
oretical curves were extended by 15% along the horizo
axis. The arrows in the figures show the range where
calculations are applicable. Thus it can be concluded tha
the range of applicability of our model the theoretical calc
lation agrees qualitatively well with the experimental da
The discrepancy between the theoretical calculations and
perimental data at voltages less than 1 V is probably du
the approximations used to calculate screening of the s
field, specifically, the assumptions that only the first subb
is filled and that there is no electric current through the str
ture. The nonmonotonic nonlinear-optical response is ma
due to the characteristic features of the screening of the e
tric field in the structure. The appearance of a potential tha
an oscillatory function of the quantum-well number is due
the essentially quantum mechanical~Thomas–Fermi! de-
scription of the interaction of the silicon layers in the stru
ture that excludes self-action.

It can be shown that the structure under study does
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possess symmetry relative to the sign of the applied volta
In the calculations it was implicitly assumed that tunneli
of charge carriers is forbidden in the system of perio
Si–SiO2 quantum wells at the right-hand end of the structu
~where there is no substrate!, which terminates with an oxide
layer. At the same time, tunneling is allowed on the left-ha
side~where a substrate is present!, and the substrate and th
periodic quantum wells possess a common Fermi level.
this reason, a jump is present in the chemical potentialm on
the right-hand side of the system, between the last ox
layer and the electrode. Therefore the system is insensitiv
a change in sign of the voltage. In any case, the oscillat
part of the derivative of the potential is located in the inn
layers of the structure, i.e., the layers close to the substr

In summary, we have calculated the screening of
static electric field in periodic Si–SiO2 quantum wells. A
characteristic feature of the screening of the static field i
system of two-dimensional quantum wells and the existe
of a specific 2/m symmetry of the inner silicon layers of th
structure are responsible for the nonmonotonic depende
of the second-harmonic intensity on the voltage applied
the periodic quantum wells.

I wish to thank A. N. Rubtsov for an invaluable contr
bution to this work. I also thank O. A. Aktsipetrov, A. A
Nikulin, and A. A. Fedyanin for valuable remarks. This wo
was supported by INTAS-93@Grant No. 370~ext!#, the Rus-
sian Fund for Fundamental Research~project 97-02-17919,
97-02-17923, DFG 98-02-04092!, programs supporting the
leading science schools~Project 96-15-96420!, the Federal
Integrated Program ‘‘Educational–Scientific Center for Fu
damental Optics and Spectroscopy,’’ the programs ‘‘Phys
of Solid-State Nanostructures’’ and ‘‘Fundamental Metro
ogy’’ of the Ministry of Science and Technology of the Ru
sian Federation, and the program of the Russian Ministry
Education ‘‘Universities of Russia’’ and the Soros Educ
tional Program ‘‘Soros Students.’’

* !E-mail: volodya@astral.ilc.msu.su

1C. G. B. Garrett and W. H. Brattain, Phys. Rev.99, 376 ~1955!.
2A. I. Ekimov, F. Hache, M. C. Schanne-Kleinet al., J. Opt. Soc. Am. B
10, 100 ~1993!.

3O. A. Aktsipetrov, A. I. Ekimov, and A. A. Nikulin, JETP Lett.55, 435
~1992!.

4M. M. Fejer, S. J. B. Yoo, B. L. Byeret al., Phys. Rev. Lett.62, 1041
~1989!.

5O. A. Aktsipetrov, V. N. Golovkina, A. I. Zayatset al., Dokl. Ross. Akad.
Nauk 340, 171 ~1995! @Phys. Dokl.40, 12 ~1995!#.

6O. A. Aktsipetrov, P. V. Elyutin, A. A. Fedyaninet al., Surf. Sci.325, 343
~1995!.

7L. D. Landau and E. M. Lifshitz,Quantum Mechanics~Pergamon Press
New York! @Russian original, Nauka, Moscow, 1989, p. 312#.

8L. D. Landau and E. M. Lifshitz,Statistical Physics~Pergamon Press
New York! @Russian original, Nauka, Moscow, 1995, Part 1, p. 194#.

9A. S. Davydov,Quantum Mechanics, 2nd edition~Pergamon Press, Ox
ford, 1976! @Russian original, Nauka, Moscow, 1973, p. 347#.

10H. M. van Driel, Appl. Phys. A: Solids Surf.59, 545 ~1994!.
11G. Lupke, D. J. Bottomley, and H. M. van Driel, Phys. Rev. B47, 10389

~1993!.

Translated by M. E. Alferieff
Edited by S. J. Amoretty



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 89, NUMBER 2 AUGUST 1999
Effect of plasmon–phonon excitations on the coefficient of reflection from the surface
of hexagonal silicon carbide
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The coefficientR(n) of reflection from the surface of 6H–SiC single crystals is studied in the
case in which the long-wavelength optical vibrations of the lattice are coupled with the
electron plasma. It is shown for the first time that the anisotropy of the properties of electrons
and phonons in 6H–SiC gives rise to special features in the spectrum of the coupled
vibrations and the transparency regions. It is found, in particular, that if the axis of the crystal
lies in the polarization plane of the incident radiation (0,u,90°), for 30 cm21<np'

,320 cm21 the spectrum ofR(n) acquires three regions of transparency and opacity, and for
np'>320 cm21 four such regions, which are absent in an isotropic medium. The width
of these regions is found to depend on the electron concentration in the conduction band and on
the angleu. © 1999 American Institute of Physics.@S1063-7761~99!02108-3#
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The reflection of electromagnetic waves from a sup
conducting surface is widely used in science and technol
to manufacture various optical devices and to study the
tures of the energy and crystal structure of matter.1 Gurevich
and Tarkhanyan2 found that for a uniaxial semiconductor th
reflection spectrum has regions of transparency and opa
and that the number of these regions depends on the ele
concentration and the orientation of the optical axisC with
respect to the surface of the crystal. Other researchers~see
Ref. 3! used IR-reflection spectroscopy to do a compreh
sive study of isotropic structures in the event of formation
coupled plasmon–phonon excitations.

Single crystals of hexagonal silicon carbide~6H–SiC!
belong to the space groupC6V

4 (P63mc) and, in contrast to
ZnO, its plasmon subsystem is highly anisotropic.4 The ex-
perimental spectra of reflection from the surface of 6H–S
with a high electron concentration were first obtained by Il
et al.5 The method of modified faulted total internal refle
tion was used in Ref. 6 in the region of excitation of surfa
plasmon–phonon polaritons to obtain a reflection surface
heavily doped 6H–SiC. The effect of the anisotropy of t
crystal lattice and effective electron masses and the dam
coefficients for phonons (g f) and plasmons (gp) on the co-
efficient of reflection from the surface of 6H–SiC sing
crystals in the IR part of the spectrum was studied in Ref
and 8. However, the literature contains no data on the ef
of the anisotropy of the plasmon–phonon subsystem in 6
SiC on the reflection coefficient for the ordinary and extra
dinary waves.

In the present paper we will study the frequency dep
dence of the coefficientR(n) of reflection from the surface
of heavily doped single crystals of hexagonal silicon carb
~the 6H polytype! when there is a connection between lon
wavelength optical vibrations and plasma vibrationsnp of
the free carriers for different orientations of the optical a
C of the crystal with respect to the crystal surfacexy.
3441063-7761/99/89(8)/5/$15.00
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The experimental IR-reflection spectra in the 2
to 1400 cm21 frequency range were measured with
SPECORD M-80 spectrometer and an attachment for refl
tion with a standard mirror. The reflection spectra were
corded by a polarizer with a degree of polarization equa
0.98. All measurements were done at room temperature.
53530.5 mm hexagonal singe crystals of 6H–SiC used
the experiments had a natural surface etched in hydroflu
acid for 15 minutes. The electron concentration in the c
duction band were determined by measuring the trans
ency of the sample atE'C with l50.628mm. The data
were found to be in good agreement with the results of m
surements of the Hall effect for these samples.

If we allow for damping, the frequency dependence
the dielectric constant,«~n!, in the plasmon–phonon interac
tion region can be written as4

«',i~n!5«`',i1
«`',i~nL',i

2 2nT',i
2 !

nT',i
2 2n21 ing f',i

2
«`',inp',i

2

n~n1 ingp',i!
, ~1!

where «`',i are the components of the dielectric consta
tensor perpendicular to theC axis of the crystal and paralle
to that axis in the limitn→`, andnT',i and nL',i are the
frequencies of the transverse and longitudinal optical vib
tions of the lattice polarized perpendicular to the axis a
along the axis. Calculations of the coefficient of reflecti
from the flat surface of a ‘‘semi-infinite’’ uniaxial pola
semiconductor in the IR region of the spectrum were do
with the absorption coefficient~damping! ignored, by the
formulas given in Ref. 1:

R~n!5U12n~n!

11n~n!
U2

, ~2!

wheren is the refractive index, which is known to be relate
to the dielectric constant by the formulan(n)5A«(n). The
refractive index of 6H–SiC has frequency intervals in whi
n(n) is purely imaginary. In these intervals the crystal is n
© 1999 American Institute of Physics
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transparent at the given wavelength~total reflection,R(n)
51). The frequencies corresponding to the singularities
this equation can be found from the condition«(n)50.

When the electric field vectorE is perpendicular or par
allel to the plane determined by the wave vectorK and the
optical axisC of the crystal, transverse and longitudina
transverse waves with refractive indicesn' andni , respec-
tively, propagate in 6H–SiC single crystals.

For E'C, u50 and 90°~case 1!, the ordinary wave is
transverse,u is the angle between the crystal axis and
direction of propagation of the electromagnetic wave, a
the x and y axes are on the surface of the sample. For
transverse wave the refractive index is

n'~n!5A«'~n!. ~3!

Note that the refractive index of the transverse wave
independent of the direction of propagation. The vectorE in
the transverse wave is directed along they axis. If we ignore
the damping of plasmon and phonon vibrations, we can
termine the frequencies of the zeros of the coefficient
reflection of the transverse wave and the so-called cut
frequencies ~the frequencies of longitudinal plasmon
phonon excitations!, VL6 (u50) or nL6 (u590°), by Eqs.
~1!–~3! with R(n)50 andn'

2 50, respectively:

n01,25
1

A2a`'

$a0'nL'
2 6@~a0'nL'

2 1np'
2 !2

24a`'nT'
2 np'

2 #1/2%1/2, ~4!

wherea0'5121/«0' , with «0' the value of dc dielectric
constant tensor of the lattice, anda`'5121/«`' ; and

VL65
1

&
$nL'

2 1np'
2 6@~nL'

2 1np'
2 !2

24nT'
2 np'

2 #1/2%1/2 at u50. ~5!

An expression fornL6 can be obtained if in Eqs.~3! and,
respectively,~5! we replace' by i everywhere. Atn'5`
we have resonance,nR5nT' . The incident wave undergoe
total reflection in two frequency ranges:

n,VL2 , nT',n,VL1 at u50,

n,nL2 , nTi,n,nL1 at u590°, ~6!

and between these ranges the crystal is transparent to
given wave. The coefficientR(n) rapidly decreases from
unity to zero and then again increases as the freque
grows.

The anisotropy in 6H–SiC~according to Ref. 9, for 6H–
SiC np'52.682npi) leads to new nontrivial features in th
reflection spectra. Thus, forEiC, 0,u,90° ~case 2!, an
extraordinary wave propagates in 6H–SiC. The extrao
nary wave is a mixed wave, i.e., neither purely transverse
purely longitudinal, and the group and phase velocities
not parallel and largely depend on the direction of propa
tion of the wave. The reflection coefficient is determined
Eq. ~2!, as it is in case 1. However, as shown by Gurev
and Tarkhanyan,2 the refractive index of the longitudinal–
transverse wave depends on the connection between the
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tromagnetic field and the phonon and plasmon subsystem
the uniaxial semiconductor and that with the angleu:

ni
25

a

n2~b1c!
,

a5~n22VL1
2 !~n22VL2

2 !~n22nL1
2 !~n22nL2

2 !,

b5~n22VL1
2 !~n22VL2

2 !~n22nTi
2 !

sin2 u

«`i
,

c5~n22nL1
2 !~n22nL2

2 !~n22nT'
2 !

cos2 u

«`'

. ~7!

When the extraordinary wave propagates along the c
tal axis (u50 andni

25«') or perpendicular to that axis (u
590° andni

25« i), it splits into a longitudinal and a trans
verse wave. The refractive index coincides with~3! for the
transverse wave with its wave vector directed along the a
and in the caseu590° differs only in that' is replaced byi.
For other directions 0,u,90° in the crystal there exists
longitudinal–transverse wave, which in contrast to such
wave in the isotropic case has new regions of transpare
and opacity. The reason is that for 0,u,90° the connection
between electromagnetic, plasma, and optical vibrati
gives rise to coupled plasmon–phonon excitations, which
absent in the case mentioned earlier. The number and
main of existence of these excitations depend on the elec
concentration in the conduction band and on the relative
sition of the frequenciesnT',i , nL',i , nL6 , andVL6 ~see
Ref. 10!.

Figure 1 depicts the frequency dependence of the exp
mental and calculated coefficients of reflection from the 6
SiC surface atE'C andu50. The circles~s! and triangles
~n! indicate the experimental reflection spectra of undope~
n05531015cm23, sample SN-1! and heavily doped (n0

5131019cm23, sample SL-4! silicon carbide~the 6H poly-
type!. The calculated spectra of IR radiation reflection,R(n)
~curves1, 3, and 4! were obtained by Eqs.~1!–~3! in the
range from zero to 1400 cm21 for np'515, 550, and
1000 cm21 in the absence of damping in the phonon a
plasmon subsystems. The zeros of the reflection coeffic

FIG. 1. The frequency dependence of the coefficientR(n) of reflection of
IR radiation from 6H-SiC single crystals atE'C and u50. Experimental
results: s—sample SN-1, n—sample SL-4. Results of calculations
18—np515 cm21, gp518 cm21, and g f53 cm21; 2—np5740 cm21, gp

5830 cm21, andg f512 cm21.
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for the transverse wave can be found by formula~4! and are,
respectively, atn0150.86 ~curve 1!, 442 ~curve 2!, and
655 cm21 ~curve 3! for the low-frequency minimum and
n025998, 1076, and 1322 cm21 for the high-frequency mini-
mum. The position of the high-frequency minimum can
determined more precisely compared to that of the lo
frequency minimum, since the fact that damping is neglec
begins to have an effect earlier at lower frequencies of
radiation. The curves18 and2 were calculated by equation
that allow for the contribution of damping in the phonon a
plasmon subsystems of 6H–SiC single crystals.4,7 A com-
parison of the calculated spectra with the experimental sp
tra atE'C andu50 made it possible to determinenp , gp ,
and g f ~see the caption to Fig. 1!. Figure 1 shows that the
small values of the plasmon (gp) and the phonon (g f) damp-
ing in the 0–800 and 990– 1400 cm21 frequency ranges hav
almost no effect on the spectrum ofR(n) ~curves18 and1!.
The results of calculations disagree with the experime
points in the 800– 940 cm21 frequency range. An analysi
shows that the discrepancy between the calculated
reflection spectra and the experimental data onR(n) in the
800– 940 cm21 frequency range is due to the appearance o
thin (,0.05mm) faulted layer. In this range, as shown
Ref. 11, IR radiation interacts very actively with the surfa
layer and the ‘‘depth’’ of this interaction dis at most 1mm.
The small discrepancy inR(n) for sample SN-1 in the
900– 1000 cm21 frequency range is due to the effect on t
reflection coefficient of vibrations in the plasmon subsyste
The analysis of the reflection spectrum for heavily dop
6H–SiC becomes much more complicated when we acco
for plasmon and phonon damping. The value ofgp in 6H–
SiC is comparable to the plasma frequency and can eve
larger. The spectra were compared by the method of l
squares while the square deviation~averaged over all the
points! of the calculated reflection coefficient from the e
perimental reflection coefficient was being recorded. F
sample SL-4, the plasmon damping coefficient was obtai
by analyzing the variance in the reflection spectra and
found to be 830 cm21. Figure 1 shows~n and curve2! that
the reflection spectrum changes significantly in the entire
spectrum accessible to measurements. A computer ex
ment shows that as the damping coefficient for the plasm
subsystem increases the broad band of the reflection co
cient narrows in such a way that the high-frequency edge
the band smooths out and shifts to the low-frequency reg
For gp'>np''nT' , the reflection band in the spectra
R(n) is separated from the metallic reflection region
gp50. The spectrum ofR(n) becomes a narrow band with
sharp peak in the region of ‘‘residual rays’’ at the frequen
nT' , with the reflection coefficient for 6H–SiC in this ban
amounting to 0.98. The fact that there is damping in
phonon subsystem reduces the reflection coefficient nea
residual-ray peak. For sample SL-4, the optical phon
damping coefficient was accounted for by the method
scribed in Ref. 7. Withg f512 cm21, satisfactory agreemen
between the calculated spectrum~curve 2! and the experi-
mental spectrum~n! was achieved atRmax(n)50.82. The
method employed earlier4 for ZnO was used to determine, t
within the value of the effective mass,7,12 the mobility and
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conductivity of 6H–SiC samples SL-4, which were found
be m527 cm2 V21 s21 and s5250 Ohm21 cm21, respec-
tively. These data onm ands agree with the values obtaine
for 6H–SiC by other researchers.12,13

Figure 2 depicts the regions of transparency and opa
~dashed areas I and II! at u50 and 90° for single crystals o
6H–SiC with different degrees of doping. The electron co
centration in silicon carbide was varied from 1015 to
1020cm23. An increase in the concentration of free char
carriers in this range for 6H–SiC enlarges the low- and hi
frequency opacity regions, respectively, from zero toVL2

→nT' ~I! and fromnT' to VL1 ~II !. Here the frequencyn0

shifts by 680 cm21 for the low-frequency region and b
490 cm21 for the high-frequency region. At electron conce
trationsn0.531019cm23 single crystals of 6H–SiC, as Fig
2 clearly shows, are opaque almost throughout the IR sp
trum. The two black dots represent the experimental val
of the width of an opacity region for sample SN-1 (VL1

2nT'5173.1 cm21). The results of calculations are in goo
agreement with the experimental results.

The shape of the spectrum ofR(n) depends onn0(np).
The anisotropy of the effective electron masses and of
crystal lattice in 6H–SiC atEiC for 0,u,90° leads to an
increase in the IR-reflection spectra of the number of tra
parency and opacity regions and to a dependence of
number on the electron concentration in the conduction ba
For np',30 cm21 there are two transparency regions a
two opacity regions. As the electron concentration is
creased (30 cm21<np',320 cm21) another pair of opacity
and transparency regions begin to manifest themselves
to the fact that resonance and cut-off frequencies appea
the first transparency region~from the low-frequency side!.

Figure 3 depicts the spectra ofR(n) for nitrogen-doped
silicon carbide~the 6H polytype! at EiC for u530° ~curve
1! and u560° ~curve 2!. The calculation of the frequenc
dependence of the reflection coefficient was done by form
~2! with allowance for~7! and the use of the data on samp
SL-2 with n051.431018cm23. The cut-off and resonanc
frequencies for SL-2 are listed in Tables I and II. Asu in-
creases, the resonance frequencynR1 of the longitudinal–
transverse wave increases from 134.9 cm21 at u530° to
200.6 cm21 at u560°. The zeros of the reflection coefficien
were calculated on a computer while solving Eq.~4!. At

FIG. 2. Transparency and opacity regions in 6H–SiC forE'C andu50:
curve 1—VL2 , line 2—nT'5797 cm21, and curve3—VL1 ; E'C and
u590°: curve1—nL2 , line 2—nTi5788 cm21, and curve3—nL1 . The
two black dots represent the experimental values of the width of an opa
region for sample SN-1,u50.
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u530° we have Rmin(n50) at the frequenciesn01

586 cm21, n025236 cm21, and n0351012 cm21 ~curve 1!,
which change their values asu increases to 60° and becom
n01589 cm21, n025230 cm21, and n0351003 cm21 ~curve
2!. Three opacity regions in the IR-reflection spectra ma
fest themselves in the ranges 0 –nL2 , nR1–VL2 , and
nR2–nL1 , respectively. The width of the transparency r
gions depends on the direction in which the electromagn
wave propagates, i.e., the angleu, due to the angular depen
dence of the resonance frequencies at constant cut-off
quencies. For 6H–SiC,«`' /«`i,mi* /m'

* ~herem'
* andmi*

are the components of the electron effective mass tensor
pendicular to the crystal axis and parallel to the axis!, with
the result that the width of the transparency regions increa
with the angleu between the crystal axis and the wave ve
tor. The region3 for sample SN-2 begins at the frequen
nR15134.9 cm21 for u530° and 200.6 cm21 for u560° and
ends at the frequencyVL25226.8 cm21.

Figure 4 depicts the calculated IR-reflection spectra
heavily doped 6H–SiC with the use of the parameters
sample SL-4 withnp'5740 cm21 at u530° ~Fig. 4a! and
60° ~Fig. 4b!. For np'>320 cm21, another opacity and
transparency region appears in the reflection spectra of
SiC in the second transparency region~from the high-
frequency side!. Thus, the maximum number of opacity r
gions in the IR-reflection spectra for 6H–SiC is four (i 51
24); these regions are separated by transparency reg
The high-frequency ends of the first three transparency
gions from the low-frequency side (ni→`, R(n)51) coin-
cide with the resonance frequencies of the longitudin
transverse wave~7! (n5nR1,2,3), which can be found by
solving the bicubic equation

TABLE I. Dependence of the cut-off frequency of the longitudina
transverse wave onnp in 6H–SiC.

Frequency SN-1 SL-2 SL-4 SL-8

np' , cm21 15 100 280 740 1000 1950
nL2 , cm21 3.0 30.5 85.2 222.3 296.7 527.4
VL2 , cm21 8.2 82 226.8 538.7 645.5 761.7
nL1 , cm21 964.1 964.4 966.0 977.9 990.2 1086.3
VL1 , cm21 970.1 971.8 983.9 1094.8 1234.7 2040.

FIG. 3. Spectra ofR(n) in 6H–SiC ~sample SL-2! at EiC for np'

5280 cm21. Curve1 corresponds tou530° and curve2 to u560°.
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~n22VL1
2 !~n22VL2

2 !~n22nTi
2 !

sin2 u

«`i

1~n22nL1
2 !~n22nL2

2 !~n22nT'
2 !

cos2 u

«`'

50. ~8!

The frequenciesnR1 and nR3 correspond to low-frequency
and high-frequency coupled longitudinal–transve
plasmon–phonon excitations and depend on the elec
concentration in the conduction band and on the angleu. The
frequencynR2 varies fromnT' asu→0 to nTi asu→90°.

The above results suggest that in 6H–SiC there is deg
eracy of the transparency and opacity regions from two
gions whenu50 or 90° to four regions when 0,u,90°.
Figure 4 shows that the reflection spectrum for sample S
has four cutoffs at the frequencies of the longitudin
plasmon–phonon excitations and three resonances at
frequencies of longitudinal–transverse plasmon–pho
excitations ~Tables I & II !. The zeros of the reflection
coefficient were calculated numerically and are, respectiv
n015225 cm21, n025551 cm21, n035984 cm21, and
n0451143 cm21 at u530° ~Fig. 4a!, and n015231 cm21,
n025543 cm21, n035998 cm21, and n0451113 cm21 at
u560° ~Fig. 4b!.

Figure 5 depicts the transparency and opacity regions
the heavily doped sample SL-4 of silicon carbide. For
given np the cut-off frequenciesVL6 andnL6 are constants
that do not depend onu, i.e., the opacity regions 1 and
remain practically unchanged. As for the opacity regions
and 4 ~and the transparency regions between them!, they

FIG. 4. Spectra ofR(n) in heavily doped 6H–SiC~sample SL-4! at EiC:
a—u530°, and b—u560°.

TABLE II. Dependence of the resonance frequency of the longitudin
transverse wave onnp andu in 6H–SiC.

SL-2 SL-4

u, ° nR1 , cm21 nR2 , cm21 nR1 , cm21 nR2 , cm21 nR3 , cm21

10 92.6 796.7 240.3 796.7 980.6
30 134.9 794.8 345.0 794.8 1002.3
60 200.6 790.3 489.5 790.3 1060.9
85 226.0 788.1 537.4 788.1 1093.7
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narrow ~and the transparency regions broaden! as u in-
creases, since their beginning coincides with the resona
frequency, which depends onu. As u increases, the secon
opacity region increases in size fromunT'2nL1u
5180.9 cm21 as u→0 to unTi2nL1u5189.9 cm21 as
u→90°.

The degeneracy of the transparency and opacity reg
in doped single crystals of 6H–SiC has yet to be observe
experiments. The difficulty here is the large plasmon dam
ing (gp.gT) in the samples. However, a computer expe
ment showed that as the damping in the plasmon subsy
gets weaker (gp,0.5nT), the degeneracy of the transparen
and opacity regions can be experimentally detec
in heavily doped single crystals of 6H–SiC (n0.2
31018cm23). In Ref. 9 the method of modified faulted tot
internal reflection was used for the first time with 6H–SiC
obtain the experimental spectrum of surface plasmo
phonon polaritons of a new type existing in the third opac
region ~Fig. 5!.

Thus, we have studied the coefficients of reflection fro
the surface of a 6H–SiC single crystal with different degre
of doping. In the presence of a connection between lo
wavelength optical vibrations and the electron plasma,

FIG. 5. Transparency and opacity regions in heavily doped 6H–SiC~sample
SL-4!.
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splitting of the transparency regions was detected for the
time in heavily doped 6H–SiC (EiC, 0,u,90°). For
30 cm21<np',320 cm21 three minima appear in the reflec
tion spectra, and fornp'>320 cm21 there are four minima
and the same number of transparency and opacity reg
~Figs. 3 and 4!, which is due to the appearance of ne
coupled plasmon–phonon excitations in anisotropic silic
carbide~the 6H polytype!. Figure 5 depicts two new, i.e., no
previously studied, opacity regions~3 and 4! in 6H–SiC with
n051019cm23, with the first being in the intervalnL2,n
,VL2 and caused by the presence of free electrons, and
second being in the intervalnL1,n,VL1 and caused by
the screening of the field of the electromagnetic waves by
optical vibrations of the crystal lattice~it lies above the re-
gion of ‘‘residual rays’’!. An increase in the electron concen
tration in the conduction band in 6H–SiC causes broaden
of the opacity regions and to a narrowing of the transpare
regions. When we haveEiC andu50 or 90°, the reflection
spectra contain only two transparency and opacity regio
which agrees with the isotropic caseE'C.
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We propose at –J– I model with direct ferromagnetic exchangeI to explain the superconductivity
of copper oxides and the ruthenate Sr2RuO4 on the basis of the analysis of the electronic
structure of these substances. We analyze the possiblep- andd-type superconducting solutions.
Solutions of thes type with singlet pairings are impossible in the strong-electron-
correlations regime, andp-type solutions correspond to triplet superconductivity and is formed
near the ferromagnetic instability threshold in ruthenates. The solution with thedx22y2

symmetry near the antiferromagnetic instability threshold corresponds to copper oxides. We also
discuss the reason for the high values of the superconducting transition temperature (Tc

;100 K) in copper oxides and the low values (Tc;1 K) in ruthenates. ©1999 American
Institute of Physics.@S1063-7761~99!02208-8#
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1. INTRODUCTION

Even in the earliest research on superconductivity
Sr2RuO4 ~Ref. 1! attempts were made to compare the resu
with those for copper oxides, the reason being that Sr2RuO4

and La2CuO4 have similar structures. At the same time, t
values of the superconducting transition temperatureTc dif-
fer dramatically:Tc;1 K for ruthenates andTc;100 K for
cuprates. Latter it was found that magnetic and superc
ducting properties differ, too. While in cuprates superco
ductivity occurs against the background of strong antifer
magnetic fluctuations, ruthenates are close to
ferromagnetic instability threshold.2 The Cooper pairs in the
superconducting state in Sr2RuO4 are of thep type,3 in con-
trast to thed-type pairing in cuprates. For Sr2RuO4, solu-
tions of thep type were obtained by Mazin and Singh4 as a
result of band-structure calculations. The literature on sup
conductivity in the strong-electron-correlation regime with
the Hubbard andt –J models is vast, and this is reflected
Refs. 5 and 6.

In the present paper we propose at –J– I model that
takes into account the antiferromagnetic (J) and ferromag-
netic (I ) exchange interactions simultaneously. Three p
sible types of superconducting state are studied by
model: single states of thes andd types and triple states o
the p type. In addition to the ordinary self-consistency equ
tions for the gap and the chemical potential, in the stro
electron-correlation regime there is an additional se
consistency condition~constraint! that excludes two-particle
states~‘‘doubles’’! at a single site. Solutions of thes type to
not meet this condition, but solutions of thedx22y2 and p-
types do. The coupling constant ofd-type solutions is deter
mined primarily by antiferromagnetic exchange interactio
3491063-7761/99/89(8)/9/$15.00
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while the coupling constant ofp-type solutions is determined
primarily by ferromagnetic exchange interaction. The spec
features of the momentum-dependence of the gap in
equations forTc lead toTc;100 K for d-type pairings and to
Tc;1 K for p-type pairings, with the coupling constants b
ing equal.

2. THE t – J – I-MODEL HAMILTONIAN

The Hamiltonian of thet –J– I model can be written

H5(
fs

~«2m!Xf
ss2t(

fds
Xf

s0Xf1d
0s

1J(
fd

K f,f1d
(2) 2I(

fd
K f,f1d

(1) , ~1!

K fm
(6)5Sf–Sm6

1

4
nf nm , Xf

↑↑1Xf
↓↓1Xf

0051. ~2!

The Hamiltonian~1! is given on a lattice ofN sites~f andm
are the lattice sites! with periodic boundary conditions an
with z nearest neighbors, andd is the vector connecting the
nearest neighbors. The Hamiltonian describes a system oNe

electrons in the subspace of local statesu0& ~holes or vacant
lattice sites! and us& ~one-electron states with a spin proje
tion s5↑ or s5↓), so that 0<Ne<N. In this basis the
states and the transitions between them are described b
Hubbard X-operatorsXf

pq5up&^qu acting on the statesu0&
and us& ~doubles are excluded automatically!, andSf andnf
are the operators of the spin and number of particles at sif.
The signs in~1! are chosen so that all the parameters,t, J,
and I , are positive. The energye of the one-electron leve
will be assumed to be zero.
© 1999 American Institute of Physics
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As in the t –J model, the antiferromagnetic exchange
an indirect cation–anion superexchange. The ferromagn
exchangeI has the form common to this model and is ge
erated by direct overlap of cationd-orbitals of neighboring
sites. In cuprates, where the electronic states near the F
level are formed primarily by thedx22y2–p–s bond, direct
overlap can be ignored,J@I . A characteristic feature of the
electronic structure of Sr2RuO4 is that near the Fermi surfac
the states are formed by the (t2g–p) –p bond. In this case
there is indirect 180-degree cation–anion–cation interac
J and direct overlap oft2g-orbitals of neighboring cations
~Fig. 1!. According to Goodenough,7 for Ru41 the antiferro-
magnetic exchange is small, so that the model withI .J
corresponds to Sr2RuO4. The importance of strong electro
correlations for cuprates is well know, and for ruthenates
need to allow for such correlations stems from the large
fective mass of the electrons belonging to theg-band formed
by dxy-orbitals, m'12me , a fact corroborated by exper
ments involving quantum oscillations.8 According to Rise-
man et al.,9 it is the g-band that forms the superconductin
state. The otherd-orbitals of ruthenium form the holea-band
and the electronb-band, which in our model act as a rese
voir for electrons. According to the band calculations
Singh,10 the number of electrons in theg-band,ng , is 1.28.
After the g-band splits into two Hubbard subbands due
strong electron correlations, the lower subband beco
completely filled by one electron per atom, while the upp
subband is partially filled by ‘‘additional’’ electrons~i.e.,
doubles! with a concentrationn250.28 ~Fig. 2!. In view of
the hole–double symmetry, it is convenient to go over to
hole representation: the upper Hubbard subband with a
centrationn2 of DOUBLES is equivalent to the lower sub
band with the same concentration of holes,n05n2 , or the
electron concentrationn512n0 .

The Hamiltonian~1! describes states in the lower Hu

FIG. 1. The (dxy–p) –p bond in Sr2RuO4.

FIG. 2. Band structure of Sr2RuO4 in the limit of free electrons (U50) and
in the strong correlation regime (U@t).
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bard band and makes it possible to study two very differ
scenarios of the system’s behavior.

1. If J.I , as is the case for cuprates, then atn51 (n0

50) the ground state has long-range antiferromagnetic (AF)
order. As is known, theAF state is destroyed at low hol
concentrations, (n0)AF;0.05. In the region wheren0

.(n0)AF , superconductivity may emerge due to antiferr
magnetic (J) exchange interactions.

2. If I .J, which is the case for Sr2RuO4, then atn51
the ground insulator state is ferromagnetic (F). In the pres-
ence of holes there is competition between the saturateF
state and the normal~nonmagnetic! N state, whose chemica
potential is lower. As a result of this competition, for ele
tron concentrationsn,nF , which is equivalent to hole con
centrationsn0.(n0)F , the system passes to theN state, and
in this region superconductivity may form due to ferroma
netic (I ) exchange interactions.

It is convenient to normalize the Hamiltonian~1! to the
halfwidth of the initial electron band,w5zt. If we introduce
the Fourier transforms of the Hubbard operators,

Xks5
1

AN
(

f
eik–fXf

0s , Xq
ss85

1

AN
(

f
eiq–fXf

ss8 , ~3!

where the vectorsk andq belong to the first Brillouin zone,
we arrive at the model Hamiltonian in the form

H

zt
[h5hkin1hint , ~4!

where

hkin5(
ks

~vk2m̃ !Xks
† Xks ,

vk52
1

z (
d

eik–d52gk , ~5!

hint5
1

2 (
qs

gq$g~Xq
ss̄X2q

s̄s 2Xq
ssX2q

s̄s̄ !

2l~Xq
ss̄X2q

s̄s 1Xq
ssX2q

s̄s̄ !%, ~6!

with s̄52s, g5J/t, l5I /t, andm/zt5m̃ the dimension-
less chemical potential. The Hamiltonianhkin @Eq. ~4!# de-
scribes the kinetic energy of the electrons and atU5` is the
Hamiltonian of the Hubbard model.

3. EQUATIONS OF MOTION

Using the algebra ofX-operators, we arrive at the equa
tion of motion for a quasi-Fermi operator (\51):

iẊks5@Kks ,h#5~vk2m!Xks1Lks ,

Lks5Lks
(kin)1Lks

(int) , ~7!

Lks
(kin)5

1

AN
(

p
vp~Xk2p

s̄s Xps̄2Xk2p
s̄s̄ Xps!, ~8!
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Lks
(int)5

1

AN
(

p
vk2p$~l2g!Xk2p

s̄s Xps̄

1gXk2p
s̄s̄ Xps1lXk2p

ss Xps%, ~9!

where the nonlinear operatorLks describes the correlation
of electrons with spin projections in the opposite directio
and in the same direction.

We introduce the irreducible operator~see Ref. 11!

L̄ks5Lks2
^$Lks ,Xks

† %&

^$Xks ,Xks
† %&

Xks2
^$Lks ,X2ks̄%&

^$X2ks̄
† ,X2ks̄%&

X2ks̄
† ,

~10!

which has the property of being ‘‘mean-orthogonal

^$L̄ks ,Xks
† %&5^$L̄ks ,X2ks̄%&50. Then Eq.~7! becomes

iẊks5S vk2m̃1
Cks

12ns̄
DXks1

Dks

12ns
X2ks̄

† 1L̄ks ,

~11!

whereXks5^$Lks ,Xks
† %& andDks5^$Lks ,X2ks̄%&.

The generalized Hartree–Fock approximation, or
mean-field approximation, corresponds to the linear par
Eq. ~11!, i.e., we ignore the irreducible operatorL̄ks . It is in
this approximation that we will study the possibility of s
perconductivity manifesting itself. In Eq.~11!, Cks /(1
2ns̄) describes the renormalization of the spectrum, a
Dks is the possible superconducting gap. Spectrum ren
malization can be calculated in general form, but it is su
cient to limit ourselves to an approximation of the Hubbar
type:

jks5vk2m̃1
Cks

12ns̄
'~12ns̄!vk2gns̄2lns2m̃.

In the nonmagnetic ground state,n↑5n↓2n/2, the depen-
dence on the spin projection disappears and the mod
spectrum can be written

jk5c~n!~vk2m!,

m5
~g1l!n/21m̃

c~n!
, c~n!512

n

2
, ~12!

wherem is the effective chemical potential.
The expression for the gapDks has the form

Dks5
1

N (
p

vp~^X2psXps̄&2^X2ps̄Xps&!

1
1

N (
p

vk2p$~l2g!^X2psXps̄&

1g^X2ps̄Xps&%. ~13!

We introduce the anomalous means

Bp5^X2p↓Xp↑&. ~14!

Then, using the symmetry propertyvp5v2p , we find that
s

e
f

d
r-
-
I

d

D2k↓52Dk↑5Dk

5
1

N (
p

@2vp2g~vk1p1vk2p!1lvk1p#Bp .

~15!

The first term on the right-hand side of Eq.~15! reflects the
presence of kinematic electron correlations and originate
the kinetic term in the Hamiltonian~this is known as kine-
matic pairing12!, and the other terms are the consequence
exchange interactions.1!

Using Eq. ~11! ~with the irreducible operatorL̄ks dis-
carded! and the relationships~12! and ~15!, we arrive in the
mean-field approximation at the following system of equ
tions:

iẊk↑5jkXk↑5
Dk

c~n!
X2k↓

† ,

iẊ2k↓
† 52jkX2k↓

† 2
Dk*

c~n!
Xk↑ . ~16!

4. MEANS AND SELF-CONSISTENCY EQUATIONS

Using the system of equations~16!, we arrive at a sys-
tem of equations for the two-time retarded anticommut
Green’s functions11 and its solution:

^^Xk↑uXk↑
† &&E5c~n!

E1jk

E22Ek
2 ,

^^X2k↓
† uXk↑

† &&E52
Dk*

E22Ek
2 , ~17!

where

Ek
25jk

21
uDku2

c2~n!
. ~18!

The spectral theorem11 yields the following expressions fo
the means:

nk5^Xk↑
† Xk↑&5^Xk↓

† Xk↓&

5
c~n!

2 S 12
jk

Ek
tanh

Ek

2t D[c~n! f k , ~19!

Bk* 5^Xk↑
† X2k↓

† &5
Dk*

2Ek
tanh

Ek

2t
, ~20!

whereEk.0, andt5kBT/zt is the dimensionless tempera
ture.

In the superconducting phase we have three s
consistency equations.

1. An equation that links the electron concentrationn
with the effective chemical potentialm:

n5
1

N (
ks

nks5
2c~n!

N (
k

f k , f k5
1

2 S 12
jk

Ek
D , ~21!

where f k is the distribution function~19! at T50.
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2. The constraint condition, or the sum rule for anom
lous means~the exclusion of doubles as a consequence of
algebra ofX-operators!:

1

N (
k

Bk5
1

N (
k

Bk* 50. ~22!

3. The equation for the energy gapDk ~see below!,
which has meaning only if condition~22! is met.

But first we must examine the possible nonsuperc
ducting states.

N state.We begin with the normal~nonmagnetic! phase,
or theN state (Dk[0). The distribution functionf k becomes
the Fermi stepf k

05u(m2vk) and Eq.~21! becomes

n

22n
5

1

N (
k

u~m2vk!5E
21

m

r~v!dv[g~m!, ~23!

wherer(v)5r(2v) is the density of states correspondin
to the dispersion law forvk . The system energy~per lattice
site! is

e05
1

N (
ks

vkS 12
n

2D f k
02

1

4
~g1l!n2

5~22n!E
21

m

vr~v!dv2
1

4
~g1l!n2. ~24!

F state. In the model withU5` (J50), long-range
ferromagnetic (F) order sets in in the region of high conce
trations,n.nF(l). This critical concentration can easily b
found by comparing the energies of the saturated ferrom
netic state@eF(n,l)# and the normal state@e0(n,l)#. The
energy of theF state~per lattice site! is

eF~n,l!5v~mF!2
1

2
ln2,

n5g~mF!5E
21

mF
r~v!dv, v~mF!5E

21

mF
v r~v!dv,

~25!

wheremF is the chemical potential in theF state, andn is
the electron concentration. By comparing the energies of
N andF states we can findnF(l). For instance, for a squar
lattice, nF'0.91 atl50.3, and the domain of existence
the groundF state grows asl increases: atl51 we have
nF'0.6. A similar situation occurs in the three-dimension
case.

AF state. When J@I and n→1, the system exhibits
long-range antiferromagnetic (AF) order. As noted in Sec. 2
the AF state is destroyed at low hole concentrations,n0

;0.05 ~see Refs. 5 and 6!. We do not discuss this state i
detail in this paper.

5. SYMMETRY PROPERTIES OF ANOMALOUS MEANS AND
SOLUTIONS FOR THE GAP

We analyze the structure and symmetry properties of
anomalous averagesBk and the gapDk . We represent the
anomalous averagesBp[^X2p↓Xp↑& as
-
e

-

g-

e

l

e

Bk5Bk
(s)1Bk

(a) , Bk
(s)5

1

2
~Bk1B2k!5B2k

(s) ,

Bk
(a)5

1

2
~Bk2B2k!52B2k

(a) , ~26!

i.e., as the sum of the symmetric (s) and antisymmetric (a)
parts. We immediately note that the sum rule~22! for the
antisymmetric partBk

(a) is satisfied automatically. Perform
ing an inverse Fourier transformation, we obtain an expr
sion for the symmetric part:

~Bk
(s)!* 5

1

2
^Xk↑

† X2k↓
† 1X2k↑

† Xk↓
† &

5
1

&
(

r
eik–r

1

N (
f

^Zf,f1r
† &, ~27!

Zfm
† 5

1

&
~Xf

↑0Xm
↓01Xm

↑0Xf
↓0!5Zmf

† , ~28!

whereZfm
† is the operator of creation of a singlet pair at

arbitrary pair of sitesf andm. Thus, the symmetric part of a
anomalous mean corresponds to singlet pairings.

Similarly, for the antisymmetric part we have

~Bk
(s)!* 5

1

2
^Xk↑

† X2k↓
† 2X2k↑

† Xk↓
† &

5
1

&
(

r
eik–r

1

N (
f

^Tf,f1r
† &, ~29!

Tfm
† 5

1

&
~Xf

↑0Xm
↓02Xm

↑0Xf
↓0!52Tmf

† , ~30!

whereTfm
† is the operator of creation of a triplet pair wit

Sz50 at an arbitrary pair of sitesf and m. Thus, the anti-
symmetric part of an anomalous mean corresponds to tri
pairings.

Let us examine two alternative lattices: a square latt
(d52) and a simple cubic lattice (d53). For these lattices
we have

gk5
1

d (
j

d

coskj , vk52gk ~31!

~the lattice constanta51). We introduce two functions,

Cj5
1

N (
p

cospjBp
(s) , Sj5

1

N (
p

sinpjBp
(a) . ~32!

Since

gk6p5
1

d (
j

d

~coskj cospj7sinkj sinpj !,

the gap~15! can be written
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Dk5Dk
(s)1Dk

(a) , Dk
(s)52D01

2g2l

d (
j

coskjCj ,

D05
1

N (
p

vpBp
(s) , Dk

(a)5l
1

d (
j

sinkjSj ~33!

and contains a symmetric (s) part in the momenta and a
antisymmetric (a) part. The expression~18! for the spectrum
Ek also containsuDku2 with mixed symmetry. From the gen
eral physical requirement imposed on the spectrum,Ek
5E2k , it follows that uDku25uD2ku2, which leads either to
the class of symmetric solutionsDk

(s)5D2k
(s) ~singlet pairings!

or to the class of antisymmetric solutionsDk
(a)52D2k

(a) ~trip-
let pairings!.

Actually, there can be several solutions within one cla
with each solution corresponding to a linear combination
cosines~for symmetric solutions! or sines~for antisymmetric
solutions!. In the general case we number the solutions
the labell , denote the gap of thel th type byDkl , and the
spectrum~18! with such a gap byEkl . The expression for
the anomalous means becomes

Bkl5
Dkl

2Ekl
tanh

Ekl

2t
, Ekl5Ajp

21
uDkl u2

c2~n!
. ~34!

Denoting the corresponding linear combination of trigon
metric functions byc l(k) and the dimensionless couplin
constant of the interaction that forms a gap of thel th type by
a l , we arrive at the following types of solution.

Symmetric solutions of the s type (singlet pairing,
l 50:

Dk05~21avk!D0 , D05
1

N (
p

vpBp
(s) ,

c0~k!5vk , a52g2l. ~35!

The constraint condition~22! for the anomalous meansBk0

with the gapDk0 is not met, which implies that there can b
no solutions of thes type. Note that many equations for th
gap of thes type have already been proposed~see, e.g., Ref.
5!, but the constraint condition was not taken into accou

Antisymmetric solutions of thep type (l 51) and sym-
metric solutions of thed type (l 52) can be written in a
unique form:

Dkl5a lc l~k!D l , D l5
1

N (
p

c l~p!Bpl . ~36!

Combining~34! and ~36!, we arrive at the gap equation

1

a l
5

1

N (
p

c l
2~p!

2Epl
tanh

Epl

2t
. ~37!

The solutions of this equation are meaningful only if the s
rule ~22! holds, and atT50 this sum rule can be written

1

N (
p

c l~p!

Epl
50. ~38!

In explicit form, we have the following types of solution
1. Antisymmetric solutions of the p-type (triplet pai

ings), l 51:
,
f

y

-

.

cp~k!5
1

d (
j

sinkj , ap5l. ~39!

2. Symmetric solutions of the d-type (singlet pairing,
l 52:

cd~k!5
coskx2cosky

2
, ad[a52g2l ~40!

for the square lattice. Forp-type solutions the sum rule i
satisfied automatically, while ford-type solutions the valid-
ity of ~40! follows from the symmetry properties.

In conclusion of this section we examine the symme
properties of the solutions from a general position. The s
tem Hamiltonian~1! is written in terms of the exchange op
erators~2!. The operatorK fm

(2) has an eigenvalue equal to21
when it acts on a singlet pair and a zero eigenvalue whe
acts on a triplet pair. Antiferromagnetic exchange (J.0 and
J/t5g.0) ensures attraction between the electrons in a
glet pair and ‘‘ignores’’ triplet pairs. For this reason
J-exchange takes no part in the formation ofp-type triplet
superconductivity. This fact is reflected by the presence
the expression~15! for the gap of the momentum-symmetr
contribution g(gk1p1gk2p), which yields only symmetric
solutions corresponding to singlet pairings. On contrast
J-exchange, ferromagnetic direct exchange (I .0 and I /t
5l.0) acts on any pairs: the operatorK fm

(1) has an eigen-
value equal to11/2 when it acts on a triplet pair and a
eigenvalue equal to21/2 when it acts on a singlet pair. Wit
allowance for the sign in the Hamiltonian,I -exchange leads
to attraction between the electrons in a triplet pair and
only term responsible for the formation ofp-type triplet su-
perconductivity. On the other hand, since in the singlet s
of a pair this type of exchange leads to repulsion, comp
tion between the exchange interactions emerges in this c
and this is reflected by the coupling constanta52g2l.

Our equations for the gap andTc in the mean-field ap-
proximation coincide in structure with similar equations o
tained by the diagrammatic technique forX-operators in the
t –J model5,6 when Cooper instability of the normal phase
examined.

6. COMPARISON OF p- AND d-TYPE SOLUTIONS

We write the spectrumEkl in the form (l 5p,d)

Ekl5c~n!A~vk2m!21c l
2~k!Dl

2, Dl
25

a l
2uD l u2

c4~n!
. ~41!

Then from~37! we obtain in explicit form the equations fo
the effective gapDl as a function of concentration~chemical
potential! and the dimensionless temperaturet,

2c~n!

a l
5

1

N (
p

c l
2~p!

A~vp2m!21c l
2~p!Dl

2

3tanh
c~n!A~vp2m!21c l

2~p!Dl
2

2t
, ~42!

and an equation for the transition temperaturetc
( l ) (Dl

2→0 as
t→tc

( l )),
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2c~n!

a l
5

1

N (
p

c l
2~p!

uvp2mu
tanh

c~n!uvp2mu
2tc

( l ) . ~43!

When stating the problem, we can use these equat
with l 5d to describe cuprates, which at a certain concen
tion of holes ~or electrons! pass from theAF state to the
superconducting (SC) state with singlet pairing of thed
type, and atl 5p they should describe superconductivi
with triplet pairings of thep type in Sr2RuO4, which is above
the ferromagnetic stability threshold. Although the dime
sionless coupling constantsad5a andap5l may differ in
value, when they are equal, the values of the transition t
peraturestc

(d) andtc
(p) depend significantly on the propertie

of the functionscd
2(k) @Eq. ~40!# andcp

2(k) @Eq. ~39!#.

6.1. Results of calculations

The equations for the effective gap@Eqs. ~42!# at t50
and for the transition temperature@Eqs. ~43!# were solved
numerically by summing over the momentap in the first
Brillouin zone of a square lattice~it contained 106 values of
p and about 100 values ofm in the interval from21 to
11). We used the relationship that links the electron c
centrationn with the effective chemical potentialm in the
normal phase@Eq. ~23!#, i.e.,

n5
2g~m!

11g~m!
, g~m!5E

21

m

r~v! dv, ~44!

wherer~v! is the density of states. For a square lattice
have

r~v!5
2

p2 K~A12v2!'
1

p
2S 1

2
2

1

p D lnuvu,

E
21

11

r~v!dv51, ~45!

whereK is the complete elliptic integral of the first kind. Th
results of calculatingTc5zttc , which is considered a func
tion of the hole concentration, are depicted in Figs. 3 an
for typical values of the coupling constantsl and a. The
fitting in the curves was to the experimental data
Sr2RuO4. At low concentrations of doubles in the upp

FIG. 3. Concentration dependence of the transition temperatureTc in
Sr2RuO4 with triplet pairing of thep type;l5I /t, with I the ferromagnetic
exchange.
ns
-

-

-

-

e

4

Hubbard subband,n250.28~this is equivalent to holes in the
lower Hubbard subband!, the dispersion law is describe
fairly well by the quadratic expression«(k)52ztc(n)vk
'«(0)1p2/2m* , where 1/m* 5(4/3)ta2/\2 for n2;1/3.
Plugging in the values of the effective massm* 512me and
of the atomic separationa51.93 Å, we find thatt;0.1 eV
and zt;0.4 eV. Within our theory, the maximum value o
tc(n0) corresponds ton0;1/3 and the effective chemica
potentialm50. Note that in this sense ruthenates are ‘‘se
doped,’’ since the concentrationn25n050.28 is close to the
optimal concentration with respect to the maximum inTc . In
cuprates the value ofTc depends on the degree of doping
which the hole concentrationn0 corresponds. What is indica
tive is the fact that even if all the parameters are equal~in-
cluding a5l), the transition temperatures differ substa
tially: Tc

(d)@Tc
(p) . Let us analyze the reason for th

difference.

6.2. Gap anisotropy

The functionscp
2(k) andcd

2(k) describe the anisotropy
of the superconducting gap inp- andd-type pairings, respec
tively. Figure 5a depicts the Brillouin zone of a square latt
and the constant-energy surfacevk50 ~the squareABCD).
If the constant-energy surface corresponds to the chem
potentialm50, the states inside it in the nonsuperconduct
phase atT50 are filled, which is denoted by hatching. No
that for free electrons such filling corresponds to the conc
trationn51, for the saturateF staten51/2, and for the case
of strongly correlated electronsn52/3, in accordance with
~44! and ~45!. The behavior of the functionscp

2(k) and
cd

2(k) at vk50 is depicted in Figs. 5b and 5c. The ga
‘‘collapses’’ ~vanishes! not only at isolated points of the
constant-energy surface (d type! but also on its fragments
BC andDA (p type!. Reasoning in a similar manner, we ca
study gap anisotropy for an arbitrary constant-energy s
face.

6.3. Mean values of p - and d -type functions on constant-
energy surfaces

We now replace summation over momenta with integ
tion over constant-energy surfaces corresponding to the

FIG. 4. Concentration dependence of the transition temperatureTc in copper
oxides with singlet pairing of thed type;a52g2l andg5J/t, with J the
antiferromagnetic exchange (J.I ).
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of dispersion forvk . Let vk5v by the equation of the
constant-energy surface (21<vk<11). Then for the func-
tion Ak , which can be expressed explicitly in terms of t
dispersion law forvk , i.e., Ak5A(vk), we have

1

N (
k

A~vk!5E
21

11

r~v!A~v!dv, ~46!

r~v!5
1

N (
k

d~v2vk!5
1

~2p!d R
(sv)

dsv

u¹kvku

5
d

dv S 1

~2p!d E
vv

ddkD . ~47!

Here r~v! is the density of states corresponding to the d
persion law for vk , sv is the surface area of th
(d21)-dimensional constant-energy surface, andvv is the

FIG. 5. Gap anisotropy on the constant-energy surfacevk50 ~the square
ABCD): ~a! the Brillouin zone of a square lattice and the filled states w
the chemical potentialm5vk50; ~b! anisotropy of thep type; and~c!
anisotropy of thed type ~in both cases the behavior of the functions alo
the linesAB, CD, BC, andDA is the same!.
-

d-dimensional volume of thek-space encompassed by th
constant-energy surfacev ~the volume occupied by the un
cell is ad51). In the two-dimensional case~the square lat-
tice! considered here,

vk52
coskx1cosky

2
, u¹kvku5

Asin2 kx1sin2 ky

2
,

~48!

and the density of states~45! has a logarithmic singularity
Unfortunately, the functionsc l

2(k) present in the theory can
not be expressed explicitly in terms ofvk , and for this rea-
son we introduce the mean values of these functions over
constant-energy surfacevk5v:

^c l
2~k!&vk5v[c l

2~v!5
1

~2p!2 R
(sv)

c l
2~k!

u¹kvku
dsv . ~49!

Note that direct summation of the functionsc l
2(k) over the

Brillouin zone yields the obvious and same result 1/d
51/4, so that these functions must satisfy the integral c
dition

1

N (
k

c l
2~k!5E

21

11

c l
2~v!dv5

1

4
. ~50!

We analyze the properties of these functions. The in
grand for ap-type function in~49!,

cp
2~k!

u¹kvku
5u¹kvku1

sinkx sinky

Asin2 kx1sin2 ky

, ~51!

has no singularity, with the result that

cp
2~v!5

1

~2p!2 R
(sv)

u¹kvkudsv

5
2

p2 ~E~A12v2!2v2K~A12v2!!, ~52!

whereE is the complete elliptic integral of the second kin
Here we used the symmetry properties, in view of which
second term in~51! yields zero when it is integrated. Th
function~52! is smooth and is approximated very well by th
expression

cp
2~v!5

2

p2 ~12uvun!, n5
p2

162p2 '1.61. ~53!

The integrand for ad-type function in~49!,

cd
2~k!

u¹kvku
5

1

2

~coskx2cosky!2

Asin2 kx1sin2 ky

, ~54!

has singularities of the same type as the density of st
~45!. Calculations yield

cd
2~v!5~12v2!r~v!22cp

2~v!. ~55!

For the sake of comparison, we depict the functionscp
2(v)

andcd
2(v) in Fig. 6, with each normalized to 1/4 by~50!.



-
ith
t
of

at
an
.e

y

he

g

-

all

st
ity
e

c-

am-

CS

on-
-

an-

y
ith
,

ate
e
-

are

re
ng
ua-

ity,
he
in

356 JETP 89 (2), August 1999 Kuz’min et al.
6.4. Transition temperature

Let us now turn to Eqs.~43! for the transition tempera
ture. We replace summation over the Brillouin zone w
integration over constant-energy surfaces. It is convenien
divide the integral into two parts: over a narrow layer
width 2d near the chemical potentialm, and over the remain
part of the zone. The value ofd can always be chosen so th
the argument of the hyperbolic tangent is larger than 2.0
the tangent is, to a high accuracy, equal to unity, i
c(n)d/2tc>2. Thus, we have the integrals

I ~m,tc
( l )!'E

21

11 dvc l
2~v!

uv2mu
tanh

c~n!uv2mu
2tc

( l )

5E
m2d

m1d dvc l
2~v!

uv2mu
tanh

c~n!uv2mu
2tc

( l )

1E
21

m2d dvc l
2~v!

uv2mu
1E

m1d

11 dvc l
2~v!

uv2mu

[I S
( l )1I B

( l ) , ~56!

which are divided into an integral over the thin lawyer (S)
and an integral over the part of the zone outside the la
(B).

Triplet pairings of the p type.Sincecp
2(v) is a smooth

and slowly varying function, the integral over the layer in t
logarithmic approximation is

I S
(p)52cp

2~m!ln
1.14c~n!d

tc
(p) , ~57!

where 2g/p51.14, with g the Euler constant. Calculatin
the integralI B

(p) , we can write the solution of Eq.~43!:

tc
(p)'1.14c~n!d expH 2

c~n!/l2I B
(p)/2

cp
2~m! J

51.14c~n!d expH 2
c~n!

~l1lB!cp
2~m!J ~58!

with d*2tc
(p)/c(n). In the second part of~58! we have in-

troduced the notation

FIG. 6. Density of electronic states in a square lattice,r~v!, and the mean
value ofp- andd-type functions on constant-energy surfacesv.
to

d
.,

er

c~n!

l
2

I B
(p)

2
[

c~n!

l1lB
, lB5l2

I B
(p)

2c~n!2lI B
(p) , ~59!

where the functionlB describes the effect of ‘‘band en
hancement’’ of the parameterl. Sincecp

2(m)<0.2, the ex-
ponential factor proves to be small, which leads to sm
values oftc

(p) for triplet superconductivity.
Singlet pairings of the d type.From Eq.~55! and Fig. 6

it follows that cd
2(v) changes rapidly in the vicinity of

v50. Hence in this region the integral over the layer mu
be calculated with allowance for the logarithmic singular
in r~v! as v→0. Below we estimate the integral over th
layer by replacing the density of statesr~v! with its mean
value r~v,d! in the interval @v2d,v1d#. Then cd

2(v)
→^cd

2(v,d)& and, as in the previous case, we find that

tc
(d)'1.14c~n!d expH 2

c~n!

~a1aB!^cd
2~m,d!&J , ~60!

with d*2tc
(d)/c(n). Here we have also introduced the fun

tion aB according to the definition

c~n!

a
2

I B
(d)

2
[

c~n!

a1aB
, aB5a2

I B
(d)

2c~n!2aI B
(d) ; ~61!

aB describes the effect of band enhancement of the par
etera.

Representing the solutions in the form~58! or ~60! is
convenient when we wish to do a comparison with the B
theory, in whichTc}exp$21/N(«F) V%, whereN(«F) is the
density of states at the Fermi level, andV is the effective
attraction. The dimensionless parameterN(«F)V is similar to
the expressions (a1aB)^cd

2(m,d)& and (l1lB)cp
2(m)

used in our theory. In contrast to the case of triplet superc
ductivity, the function̂ cd

2(m,d)& in the exponent of the ex
ponential function is large compared tocp

2(m) in the vicinity
of m50, which ensures, other things being equal, subst
tially larger values oftc

(d) .

7. CONCLUSION

The proposedt –J– I model makes it possible to stud
the superconductivity of strongly correlated electrons w
different symmetries (s, p, or d) of the order parameters
facilitates comparison of the high-Tc superconductivity of
copper oxides and the superconductivity of the ruthen
Sr2RuO4 with low Tc within a unified approach. The abov
comparison answers the question of why there is highTc

superconductivity (Tc;100 K) in layered copper oxides. In
light of our results, the features that copper oxides exhibit
as follows: in two-dimensional CuO2 layers, owing to the
(dx22y2–p) –s bond and strong electron correlations, the
form quasiparticles with particle-to-particle hops occurri
against the background of strong antiferromagnetic fluct
tions. These fluctuations lead todx22y2-type pairing, with the
gap anisotropy being such that the Van Hove singular
which increases the ordinary logarithmic contribution in t
equations forTc and the order parameter, manifests itself
full.
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A comparative study of the longitudinalrxx and transverserxy resistivities and magnetic
susceptibilityxac of La0.8Sr0.2MnO3 single crystals and ceramic samples has been conducted in a
wide range of temperaturesT51.7– 370 K and magnetic fields,H50 – 13.6 T. It turned out
that the relationrxy;rxx , which is expected to hold in the case of carrier scattering by magnetic
fluctuations, applies to the single crystals. In polycrystals, an additionalH-dependent
contribution to the resistivity tentatively attributed to plane~near grain boundaries! and bulk
‘‘defects’’ of the magnetic sublattice has been detected. The scattering of carriers by these defects
does not make a notable contribution to the anomalous Hall effect and magnetic susceptibility
xac. As a result, the curve ofrxy versusrxx seems to be steeper than a linear
dependence. Under the assumption that the materials under investigation are metals with constant
carrier concentrations, the conductivitys51/rxx due to the critical magnetic scattering
calculated in the molecular field approximation reproduces the main features of experimental
data, namely, the drop in the amplitude and shift of the resistivity peak near the Curie
point with increasing magnetic fieldH and also a relatively slow change in the derivativeds/dH
with increasing temperature in the regionT<TC . The large hole concentration of about two
per unit cell derived from Hall measurements indicates that carriers of opposite signs can coexist in
these materials. ©1999 American Institute of Physics.@S1063-7761~99!02308-2#
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1. INTRODUCTION

The negative magnetoresistance detected in perovs
containing manganese, like La12xSrxMnO3, over a wide
range of doping levelsx in both ferromagnetic metals an
ferromagnetic insulators is related in one way or anothe
changes in the long-range or short-range magnetic order
cause it was observed only in the ferromagnetic region o
temperatures slightly higher than the Curie pointTC , where
ferromagnetic fluctuations are notable. The most comm
interpretation of this effect is associated with delocalizat
of charge carriers, which is assumed to take place ei
when magnetic moments are ordered belowTC or under ap-
plied magnetic field.1–8 The relatively high resistivityr near
TC ~5–30 mV•cm for samples withx>0.2) and its deriva-
tive with respect to temperature (dr/dT,0), at T.TC

which is typical of semiconductors, provide evidence in
vor of this interpretation.1,4,5,7 The parameter characterizin
the region of a metal–insulator transition~MIT !, namely,
Mott’s minimal conductivity

sM'0.03~e2/\!n1/3 ~1!

is approximately 0.1 (mV•cm)21 for the carrier concentra
tion n;331021cm23 ~0.2 hole per unit cell!. According to
this estimate, compounds of this class with doping lev
3581063-7761/99/89(8)/8/$15.00
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x.xc ~here the critical doping levelxc'0.15 for
La12xSrxMnO3 or La12xBaxMnO3) should be insulators
aboveTC and metals at low temperatures, so the concep
MIT induced by magnetic disorder seems quite feasible.

There are, however, several observations that can ha
be interpreted in terms of this MIT model. In many cas
where the conductivity is smaller than or on the order ofsM

estimated above, it nonetheless exhibits a clearly meta
behavior. This concerns both the regionT>TC , where one
often observesdr/dT.0 ~Ref. 2! and the region of low
temperatures, wheres,sM , but the conductivity remains
constant asT→0 ~Refs. 4 and 5!. Further, the conductivity
growth induced by magnetic fieldH is interpreted by the
MIT model in terms of decrease~closing! of the gap or
pseudogapDE. It is plausible that atT<TC the valueDE
should drop as a linear function ofH: DE'DE02aHH
~Ref. 9!, so that the carrier concentration and conductiv
should follow the function

n}s}exp@~aHH2DE0!/T# for DE.0,

n}s;const for DE50,

where aH is a constant independent of both the field a
temperature. The conductivity should increase rapidly~expo-
nentially! with H in the range of relatively low fields and
© 1999 American Institute of Physics
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saturate at higher magnetic fields, whereasds/dH should
rapidly ~approximately following the function exp@DE/T#) in-
crease withT. These predictions of thes(H) behavior con-
spicuously contradict experimental data, because the con
tivity grows with H linearly at T<TC without any sign of
saturation, andds/dH is a relatively slow function of
temperature.3,8,10According to the model, the carrier conce
tration n should depend strongly~exponentially! on the field
intensity and temperature. The carrier concentrations
Nd0.5Sr0.5MnO3 ~Ref. 4! and Pr0.5Sr0.5MnO3 ~Ref. 5! derived
from measurements of the Hall constant,nH51/(RHe), at
T,TC are, however, almost constant with both the field a
temperature.

Another feasible model describing properties of the
materials is based on the assumption that at all tempera
~both above and belowTC) and doping levelsx.xc the con-
ductivity is of metallic nature, the carrier concentration
independent of the magnetic field and temperature, and
effect of negative magnetoresistance is fully determined
the drop in the amplitude of scattering by magnetic impu
ties under magnetic field. This model, however, should
count for large values ofr at T>TC . If we set the free path
in the conventional Drude formula to the Fermi lengthlF ,
we obtain the conductivitys'0.6(e2/&\)n1/3, which yields
an estimate of the carrier concentrationn;1023– 0.1 hole
per unit cell. This value is considerably smaller than bo
the concentration derived from Hall measuremen
nH50.5– 1.0 hole per unit cell,4,5,11 and the estimatenH

50.2 derived from simple chemical considerations. Th
the model of metallic conductivity in these materials and
many other systems with strong electronic correlations a
runs into difficulties.

Another feature of materials of this type is the notab
difference between ther(T,H) functions for single crystals
and polycrystalline samples in the region of lo
temperatures, which was graphically demonstrated2 for
La2/3Sr1/3MnO3. This difference was attributed to the scatte
ing in regions near grain boundaries in polycrystals. In
range of low magnetic fields,H,0.5 T, the measuremen
data forr(T,H) were interpreted in terms of spin polaro
tunneling through grain boundaries, but no mechanism
magnetoresistance has been suggested for the range of
ger magnetic fields.2

This very simplified description of the state of the pro
lem demonstrates that our understanding of the transpo
these materials is far from clear. Neither the nature of c
ductivity in the vicinity of TC and at higher temperature
~whether the material is a metal or an insulator!, or the cause
of such a sharp increase in the conductivity induced by m
netic field has been clarified.

In this paper we report the results of a detailed compa
tive study of the magnetoresistance and Hall effect as fu
tions of the temperature and magnetic field in single crys
and polycrystalline samples with the nominal composit
La0.8Sr0.2MnO3. Earlier publications reporting on sample
with similar chemical compositions, La2/3Sr1/3MnO3 did not
contain, unfortunately, measurements of the Hall effect
magentoresistance near the Curie point. Previously the
effect was investigated largely in epitaxial films of vario
c-
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compositions,4,5 but their defect structure from the viewpoin
of resistivity versus magnetic field and temperature is int
mediate between single crystals and ceramic samples,
their properties are closer to those of ceramics. In one re
paper11 measurements of the Hall effect in La12xSrxMnO3

single crystals were reported. Measurements of these m
netic materials yield more information because of t
anomalous Hall effect, which occurs as a result of asymm
ric carrier scattering due to magnetic disorder~magnetic im-
purities or defects in the spin lattice!. Since the scattering o
this type affects both the longitudinalrxx and transverserxy

components of the resistivity tensor, their field and tempe
ture dependences yield interesting data concerning
mechanism of negative magnetoresistance in these mate

2. EXPERIMENTAL

La0.8Sr0.2MnO3 single crystals were grown using th
floating-zone technique with radiative heating without
crucible.6 Polycrystalline samples of this material we
manufactured by the conventional technique of ceramic s
thesis from starting materials La2O3, SrCO3, and Mn2O3.
The weighted quantities of the starting materials we
ground and annealed in several stages in a temperature i
val 850– 1100 °C. The annealing time on the last stage
70 h. The powders manufactured by this method were co
pressed and annealed for 20 h at 1300 °C. The close va
of TC and r at T.TC measured in our single crystals an
ceramics indicate that their stoichiometric compositions
close.

The resistivityrxx5r and susceptibilityxac were mea-
sured using samples with sizes of 13136 mm, the Hall
effect parametersrxy and r were measured in square plan
samples with sizes of 1.531.5 mm and thicknesses of 12
mm ~ceramics! and 80 mm ~single crystals! with contacts
fabricated by ultrasonic soldering of indium and set sy
metrically at the corners. Measurements ofrxx andrxy were
conducted using the four-terminal technique at a direct c
rent of 1 mA. In measurements of single crystals, the~110!
axis was aligned with the current density and directed p
pendicular to the magnetic field. In order to minimize erro
the current and magnetic field directions in Hall measu
ments were altered, and the current and voltage cont
were interchanged. The resistivity of long samples was m
sured in the field rangeH50 – 13.6 T as the temperature wa
varied between 1.7 and 370 K, whereas the parameter
plane samples (rxy andr! were measured at fixed temper
tures from 4.2 to 360 K switched with a step of 20 K b
scanning the magnetic field. Sincerxy!rxx , the typical Hall
voltage was on the order of 10 nV against the background
an asymmetrical signal with an amplitude on the order of
mV; therefore, the uncertainty inrxy was 10–30%. The sus
ceptibility xac was measured by the conventional two-c
technique in an ac field on the order of 1024 T oscillating at
a frequency of 1 kHz and aligned with the dc magnetic fie
H50 – 0.1 T.
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FIG. 1. Calculated of magnetizationM as a func-
tion of temperature based on measurement data
susceptibilityxac in ~a! single crystals and~b! poly-
crystalline samples of La0.8Sr0.2MnO3. Curves1–6
correspond to magnetic field ranging between 0 a
0.1 T. The insets showxac near the Curie point.
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3. RESULTS AND DISCUSSION

Figure 1 shows magnetizationsM (H,T) of single-
crystal and ceramic samples derived from measuremen
the susceptibilityxac(H,T) under magnetic fields of up to
0.1 T. The magnetization almost saturates in the field ra
H>0.06 T. AtH50.1 T the ceramic sample displays a pe
in the susceptibility atT5TC , which is typical of ferromag-
nets, whereas in the single crystal the feature nearTC has a
smaller amplitude.

The observed behavior ofr(T,H) is in fair agreement
with earlier measurements2,12 of samples with similar com-
positions. The value ofr nearTC in ceramics is a factor o
1.5 higher than in single crystals, and about half of this d
of

e

-

ference can be attributed to the ceramic porosity, since
absolute value of resistivity at high temperatures is only 3
higher than in single crystals. The curves ofr versus mag-
netic field and temperature for ceramics and single crys
nearTC are also very similar.

The differences inr(T,H) in the low-temperature region
are considerably larger~Fig. 2!. At T,50 K the ceramic re-
sistivity can be described by a polynomialr5r02a1T
1a3T3, where the parametersa1 andr0 strongly depend on
H. The resistivity of single crystals in this temperature inte
val can be described by a similar formula~see also Fig. 6!,
but the parametersr0 , a1 , anda3 are more than an order o
magnitude lower and nearly independent of the magn
the
-

FIG. 2. Resistivity of ~a! single crystals and~b!
polycrystalline samples of La0.8Sr0.2MnO3 versus
temperature. The numbers near the curves show
magnetic fieldH in tesla. The insets show the con
ductivity 1/r as a function of magnetic field, the
numbers show the temperature in kelvins.
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FIG. 3. Transverse resistivityrxy versus magnetic
field H for ~a! single crystals and~b! polycrystalline
samples of La0.8Sr0.2MnO3 at different tempera-
tures:~1! 4.2 K, ~2! 60 K; ~3! 160 K; ~4! 200 K; ~5!
260 K; ~6! 300 K; ~7! 340 K; (18) 4.2 K; (28) 120
K; (38) 200 K; (48) 260 K; (58) 320 K.
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field. In the region of intermediate temperatures 50,T
,150 K the resistivity of single crystals~Fig. 6! and ceram-
ics is closer to functions liker5a2T2. At T,150 K the
conductivitys51/r of ceramics rapidly grows in the rang
of low magnetic fieldsH<0.5 T, in the range of higher field
it grows almost linearly with the field, and atT>150 K the
dependence is linear throughout the studied field range~Fig.
2!. A remarkable feature of the conductivitys(H) of single
crystals and ceramics is thatds/dH is almost constant ove
the entire region of the ferromagnetic state,T,TC ~constant
magnetoresistance!, although the conductivitys varies con-
siderably in this region.

Figure 3 showsrxy(H) at several temperatures. AtT
fairly close toTC , the dominant contribution is due to th
anomalous Hall effect of the electronic nature, whereas
normal Hall effect due to holes makes a notable contribut
only at low temperatures. In ceramics the normal contri
tion at low temperatures is a factor of approximately 1
larger than in single crystals, which can also be attributed
the porosity of ceramic samples. The value ofRH is rela-
tively low, an order of magnitude lower than that expected
the carrier concentration of 0.2 hole per unit cell. The am
tude of the anomalous Hall effect in ceramics is a factor
almost 1.5 lower than in single crystals~with allowance for
porosity, by a factor of 2!, and its changes with the magnet
field and temperature are very similar~Fig. 3!.

The total Hall signal is given by the formula13

rxy5RH~T!B1m0RA~T!M ~B,T!, ~2!

whereRH and RA are the normal and anomalous Hall co
stants,M is the magnetization. In the limit of strong mag
netic field, when the magnetizationM (B,T) saturates atMS ,
we haverxy5RH(T)B1m0RA(T)MS . The linear extrapola-
tion of rxy(B,T) curves from the region of strong magnet
field allows one to separate the two contributions. The H
carrier concentration,nH51/(RHe), and RA were deter-
mined in earlier studies.4 As a matter of fact, this techniqu
e
n
-

to

t
-
f

ll

can be used only in the region of sufficiently low tempe
tures. The anomalous Hall constantRA is determined by the
same parameters~spin correlators! as the resistivityr ~Refs.
13–18!. In the case of scattering by spin fluctuations,RA

}r ~Ref. 14!, even though there are more exotic mode
which predict the dependenceRA}r2 ~Ref. 18!. For ‘‘con-
ventional’’ ferromagnets,r, just asRA , is almost constant
with B @see Eq.~2!# and the linear extrapolation procedure
quite legitimate. Nonetheless, ifr andRA are determined by
the same scattering processes whose amplitudes are
tions of field, thenRA is also a function ofB, i.e, RA

}r(B), so that Eq.~2! can be rewritten as

rxy5RH~T!B1cHr~T,B!M ~T,B!,

where cH is a constant. Thus,rxy is a nonmonotonic and
fairly complex function of the magnetic fieldB, so the con-
ventional procedure for separation of the normal and ano
lous contributions to the Hall effect can be used only in t
temperature range wherer can be treated as a field
independent parameter. In the case of a single crystals, th
the range of low temperatures where the resistivityr is small
and the anomalous contribution torxy is negligible.

In order to proceed further, we assume thatRH is inde-
pendent ofT, as in the case of a conventional metal. Aft
subtracting the normal contribution (RH50.2•1029 m3/C),
in the limit of strong magnetic field, where the demagnetiz
tion factor and difference betweenB andH can be ignored
~sincem0MS'0.6 T for La0.8Sr0.2MnO3, this corresponds to
H>1 T), we obtain

rA5rxy2RHH;r~T,H !M ~T,H !. ~3!

In order to check out this formula, we calculated t
magnetization in the molecular field approximation using
relation m5B2((m1h)/t), where B2(x) is the Brillouin
function for spin j 52, m5M /MS, t5T/TC, h5H/Hmol ,
and the molecular fieldHmol5kBTC /(2mB)'200 T ~Ref.
13!. Figure 4 shows the anomalous contributionrA and prod-
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FIG. 4. ~a! Anomalous contribution to the trans
verse resistivity,rxy2RHH, versus magnetic field
and ~b! resistivity r times magnetizationm calcu-
lated in the molecular field approximation for th
La0.8Sr0.2MnO3 single crystal at different tempera
tures:~1! 160 K; ~2! 200 K; ~3! 240 K; ~4! 280 K;
~5! 300 K; ~6! 320 K; ~7! 340 K; ~8! 360 K.
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uct rm as functions of magnetic fieldH, data forrxy andr
were obtained from the same sample. There is fairly go
agreement between the curves describing these two pa
eters, although some details of these curves~such as peak
positions! are notably different. Note that in the region
strong magnetic fieldsrm is almost a linear function ofH,
which is determined by the field dependence of both re
tivity r and magnetizationm. For this reason, the procedu
of linear extrapolation from the range of high magnetic fie
cannot be used for separating the normal and anoma
components of the Hall effect at least atT>180 K (0.6TC),
so the apparent increase in the Hall constantRH when the
temperature approachesTC ~Ref. 4! may be caused by th
strong field dependence of the anomalous Hall constantRA

5rA /M . In order to check out Eq.~3!, we plottedrA /m
against r2r0 using measurements forH>1 T and
T5160– 360 K, whererA is markedly different from zero
~Fig. 5!. For simplicity, we set the residual resistivityr0 due
to scattering by nonmagnetic impurities to 0.11 mV•cm,
which equals the experimental value ofr at T54.2 K and
H513.6 T. The processing of these data by the form
rA /m5rk yields k50.9560.05. Thus, the agreement b
tween the measurement data for the single crystals and
~3! is fairly good.

The curves ofrxy(H,T) for single crystals and ceramic
are similar~Fig. 3!, whereas the curves ofr(H,T) are dif-
ferent in the region of low temperatures~Fig. 2!. Only near
the Curie point, atT5(0.9– 1.15)TC , the curves ofrA /m
andr are correlated, whereas at lower temperatures the
no such correlation. This means that ‘‘additional’’ scatteri
mechanisms, which do not occur in single crystals, cont
ute little to the anomalous Hall effect. The cause of t
difference is not quite clear since, even if additional scat
ers are concentrated in thin layers near grain boundaries,
should contribute to both the resistivity and Hall effect.

The only mechanism capable of accounting for ther(T)
curve like that observed in the single-crystal sample near
d
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Curie point~Fig. 2! in a metallic ferromagnet is critical sca
tering of charge carriers by spin fluctuations.13,19–21Critical
scattering of a high intensity and the effect of negative m
netoresistance were observed in experiments more than t
years ago in systems like Eu12xGdxS with relatively low
carrier concentrations of 1018– 1021cm23 ~Ref. 21!. The criti-
cal scattering cross sectionS can be estimated by th
formula20

dS/dV}x~q!/x0 , ~4!

FIG. 5. Ratio between the anomalous contributionrA to the Hall effect and
calculated magnetizationm as a function of resistivityr2r0 ~see text! for a
La0.8Sr0.2MnO3 single crystal in the temperature range 160 to 360 K. T
open symbols show measurements atT,TC5300 K, the filled symbols
show measurements atT>TC .
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FIG. 6. ~a! Measurements of (r2r0)/T2 for a
La0.8Sr0.2MnO3 single crystal and~b! calculations of
xz/t versus reduced temperaturet5T/TC ~see text!.
The insets show measurements of conductivity 1r
and 1/(tx). Curves 1–7 correspond to magnetic
fields 0, 2, 4, 6, 8, 10, and 12 T, respectively.
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whereq is the scattering vector,V is the solid angle,x0 is
the paramagnetic susceptibility,x(q) is the generalized sus
ceptibility expressed at smallq by the formula20

x~q!;@1/x~H,T!1~qR!2#21,

x(H,T)5dm/dH is the magnetic susceptibility, andR is the
phenomenological parameter on the order of several in
atomic distances. In order to calculater, Eq. ~4! should be
integrated overq with weight factor q2. Since x0}TC/T
51/t, we write the result in the form20,21

r/r`5tx~H,T!z~y!,

z~y!52@y2 ln~11y!#/y2,

y54~kFR!2x~H,T!, ~5!

kF52p/lF is the Fermi wave vector, andr` is the resistiv-
ity in the high-temperature limit, which corresponds to t
paramagnetic scattering. When parametery is small, which
corresponds to temperatures not too close toTC ~small x!
and large wavelengthslF , the function z(y) is close to
unity, so that

r/r`5tx~H,T!. ~6!

This is a rapidly growing function which has a narrow pe
near TC and which tends to a constant in the hig
temperature limit. At smalllF typical of conventional metals
like iron, the effect ofz(y) is flattening of the peak nearTC;
therefore the resistivityr monotonically increases in the tem
perature intervalT,TC and is constant in the rang
T.TC.

At finite y the shape of functionr(T,H) is determined
by unknown parameterskF andR. However, the experimen
tal curves ofr(T,H) can be compared with calculations b
Eq. ~5! with sufficient accuracy using approximation~6!
since in the regiony<0.5 the function 1/z(y) can be ap-
r-

proximated by the linear function 11(8/3)y with an error of
several percent, so the conductivity is described by the eq
tion

s

s`
5

1

tx~H,T!
1

8

3

~kFR!2

t
. ~7!

Sincet is a relatively slow function near the Curie poin
a decrease inlF simply translates along the abscissa axis
curve of 1/@ tx(H,T)#, which is described by a linear func
tion }ut21u near the Curie point and whose slope on the l
is twice as large.

In calculatingr(H,T) one can use either experiment
data for x(H,T) or cross sectionsdS(H,T)/dV derived
from measurements of small-angle neutron scattering. S
data are available for La2/3Ca1/3MnO3 ~Ref. 3! and really
show that these three characteristics vary concurrently n
TC. Here we use only the susceptibilitiesx(H,T) calculated
in the molecular field approximation. Calculation
of 1/@ tx(H,T)# and measurements ofs(H,T) at
T5(0.75– 1.25)TC andH50 – 13.6 T are plotted in Fig. 6. A
rather good qualitative agreement between the behavio
r(H,T) and 1/@ tx(H,t)# is clearly seen. In the rang
T,TC the calculated function 1/@ tx(H,T)# reproduces two
basic features ofs(H,T), namely, its linear decrease ne
TC and the shift of the curve proportional toH. In the region
T.TC the calculations also reproduce a drop in the slope
the s(H,T) curve and a slow nonlinear increase ins with
H, but there is no quantitative agreement between calcula
and experimental curves. Note that the calculation does
use any fitting parameters, and the only parameter in
susceptibility calculations is spinj 52.

Since the molecular field approximation takes into a
count only the long-range magnetic order, it fails to descr
the magnetizationM and susceptibilityx ~spin waves! at low
temperatures, and the predicted critical indices are incorr
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M}(12t)a, 1/x}(t21)b, a51/2, andb51. More realis-
tic critical indicesa50.4 andb54/3 ~Ref. 3!, in particular,
lead to a smaller slope of 1/x at T.TC , which is in better
agreement with experimental data ons(T). On the other
hand, x has no singularity atT5TC even in high-quality
samples. The peak in the susceptibility atT5TC ~Fig. 1! is
sharper in ceramic samples than in single crystals, in ag
ment with the behavior ofr in these samples~Fig. 2!.

It follows from Eq. ~5! that the feature in the resistivit
and the negative magnetoresistance, should almost vani
kFR;1. At R55 – 10 Å the carrier concentration at whic
magnetoresistance can be observed should be smaller
3•1019– 3•1020cm23 or 0.05–0.5 hole per unit cell fo
La0.8Sr0.2MnO3. Although this estimate has a poor accura
one can, probably, encounter such a situation when the m
netoresistance, diminishes with the doping level.

In order to compare experimental curves ofr(T,H) with
the calculated curves from Eq.~5! over a wider temperature
range, we plotted (r2r0)/T2 andxz/t versus temperature in
Fig. 6 using the fitting parameterkFR50.2. In the interval
0.5<t<1.25 the calculations ofxz/t adequately reproduc
the decrease in the resistivity with the increasing magn
field, but the shift of the peak due to temperature is a fac
of 1.5 slower than on experimental curves. In the ran
t,0.5 the molecular field approximation does not app
therefore, we cannot clearly identify the cause of the re
tivity behaviorr}t3 at t,0.1 andr}t2 at 0.1<t<0.5 ~Fig.
6!—whether it is due to scattering by localized magne
moments~spin waves! or some other processes.

In ceramic samples, the peak inr(T) nearTC ~Fig. 2! is
markedly lower than a similar peak in single crystals. Sin
the anomalous Hall effect in ceramics is also two times
small, the resistivity can be expressed in this case in the f
of the sum of two components. The first is about half t
total resistivity, is controlled by the critical scattering, a
has a noticeable magnitude only nearTC . The second, addi
tional componentradd is related in some way to distortions i
the crystal and/or magnetic lattice near grain boundaries
can be described by the formula

radd5r1~T!M1r2H. ~8!

The first term on the right, linear in the magnetizationM , is
naturally associated with scattering processes in reg
close to grain boundaries, where the magnetization
change its direction on a length of several lattice consta
whereas the second is due to deviations from the magn
order in a much larger volume of the sample. As the te
perature approachesTC , the magnetization drops and b
comes an almost linear function of the field~Fig. 1!, which
corresponds to the drop in the nonlinear conductivity co
ponent ~Fig. 2!. The ‘‘bulk’’ component r2H in Eq. ~8!,
however, does not contribute to the anomalous Hall eff
nor is it detected in measurements of parameters determ
by processes in the bulk, such as magnetization.2 On the
other hand, specific heat measurements of ceramic sam
(0,x,0.3) demonstrate a considerable magnetic contri
tion in the low-temperature region approximately prop
tional to T ~Refs. 22 and 23!. This behavior, which is more
typical of spin glasses than conventional ferromagnets, in
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cates that there can be additional magnetic excitations, w
can also lead to magnetic scattering of charge carriers.

The Hall concentration of carriers of about two holes p
unit cell seems grossly exaggerated. There should there
be a mechanism that leads to a smaller Hall constant, suc
coexistence of two types of carriers of opposite signs. Pr
ably, the reversal of the thermo-emf experimentally detec
in such compounds provides evidence in favor of t
assumption.24 This effect should be conspicuous if the co
centrations of carriers of opposite signs~or kF) are notably
different. Near the Curie point, the conductivitys is propor-
tional to kF

2 , so the thermo-emfS5(Shsh2Sese)/(sh

1se), where the subscriptse and h label electrons and
holes, should have a feature with the shape of a peak bec
the shapes ofsh andse versus temperature are notably d
ferent in this temperature range. Similar features nearTC

may turn up on curves of the Hall constant.
Note that the critical scattering model applie

apparently, only to materials like La12xSrxMnO3 or
La12xBaxMnO3, which ~for x>xc) do not demonstrate ef
fects that could lead to a notable restructuring of the elect
spectrum and thereby cause a metal–insulator transit
Such effects can induce structural or electronic~charge pat-
terning! phase transitions, or a ferromagnetic transition
cases when it leads to a considerable change in the unit
volume. These are, probably, the cases when the magn
field causes ‘‘giant’’ changes in the conductivity of seve
orders of magnitude.25–29

Thus, we have shown that, in La0.8Sr0.2MnO3 single
crystals, the main cause of scattering of charge carri
alongside the effect of negative magnetoresistance, is a
ciated with magnetic critical scattering, whereas interact
with defects of other types is relatively weak and noticea
only at low temperatures. The calculations performed in
molecular field approximation adequately reproduce ba
features of the conductivitys and Hall effect as functions o
temperatureT and magnetic fieldH, in particular, the ap-
proximately linear increasing ofs with H, and the weak
temperature dependence ofs at T<TC ~a constant magne
toresistance!. In the region where the critical scatterin
dominates, there is a linear dependence between the lon
dinal r and anomalous transverserA resistivities. In ceramic
samples, there is, in addition to the critical scattering, a c
tribution to the resistivity which is controlled by both th
magnetizationM and applied magnetic fieldH. This compo-
nent caused by scattering near grain boundaries and w
them contributes little to the anomalous Hall effect, whi
leads to an apparent violation of the relationrA;r. Our
analysis indicates that La0.8Sr0.2MnO3 is a metal with a low
carrier concentration in the entire range of temperatures.
incredibly high carrier concentration of about two holes p
unit cell indicates that there should be carries of the oppo
sign in these materials.

We acknowledge helpful discussions of our results w
Yu. N. Skryabin, M. V. Sadovskii, and E´ . Z. Valiev. This
work was supported by the Russian Fund for Fundame
Research~Project 97-02-17315!, MNTTs ~Project 636!, and
the Program of State Support for Leading Scientific Scho
of Russian Federation~Project 96-15-96515!.



et

N.
ika

365JETP 89 (2), August 1999 Kar’kin et al.
* !e-mail: karkin@orar.e-burg.su

1H. L. Ju, C. Know, Qi Liet al., Appl. Phys. Lett.65, 2108~1994!.
2H. Y. Hwang, S.-W. Cheong, N. P. Ong, and B. Batlog, Phys. Rev. L
77, 2041~1996!.

3J. M. De Teresa, M. R. Ibarra, P. A. Algarabelet al., Nature386, 256
~1997!.

4P. Wagner, D. Mazilu, L. Trappenierset al., Phys. Rev. B55, R14721
~1997!.

5P. Wagner, I. Gordon, A. Vantommeet al., Europhys. Lett.41, 49 ~1998!.
6A. M. Balbashov, S. G. Karabashev, Y. M. Mukovskii, and S.
Zver’kov, J. Cryst. Growth167, 365 ~1996!.

7G. J. Snyder, M. R. Beasley, and T. H. Geballe, Appl. Phys. Lett.69, 4254
~1996!.

8A. J. Millis, B. I. Shraiman, and R. Mueller, Phys. Rev. Lett.77, 175
~1996!.

9N. G. Bebenin and V. V. Ustiniv, J. Phys.: Condens. Matter10, 6301
~1998!.

10J. P. Mitchel, D. N. Argiriou, C. D. Porteret al., Phys. Rev. B54, 6172
~1996!.

11A. Asamitsu and Y. Tokura, Phys. Rev. B58, 47 ~1998!.
12V. E. Arkhipov, V. P. Dyakina, S. G. Karabashevet al., Fiz. Met. Met-

alloved.84, 632 ~1997!.
13S. V. Vonsovskii,Magnetism@in Russian#, Nauka, Moscow~1971!.
14Yu. Kagan and L. A. Maksimov, Fiz. Tverd. Tela7, 536 ~1965! @sic#.
15J. Kondo, Prog. Theor. Phys.27, 772 ~1962!.
16J. Kondo, Prog. Theor. Phys.28, 846 ~1963!.
t.

17E. A. Stern, Phys. Rev. Lett.15, 62 ~1963!.
18L. Berger, Phys. Rev. B2, 4559~1970!.
19P. G. De Gennes and J. Friedel, Phys. Chem. Solids4, 71 ~1958!.
20Yu. A. Izyumov and R. P. Ozerov,Magnetic Neutronography@in Rus-

sian#, Nauka, Moscow~1966!.
21S. Methfessel and D. Mattis,Magnetic Semiconductors, Springer, Heidel-

berg ~1968!.
22B. F. Woodfield, M. L. Wilson, and J. M. Byers, Phys. Rev. Lett.78, 3201

~1997!.
23A. N. Petrov, V. A. Cherepanov, and E. A. Filonova, submitted to Fiz

Tverdogo Tela.
24M. A. Senaris-Rodriguez and J. B. Goodenough, J. Solid State Chem.118,

323 ~1995!.
25A. Asamitsu, Y. Moritomo, and Y. Tokura, Phys. Rev. B53, R2952

~1996!.
26M. McCormack, S. Jin, T. H. Tiefelet al., Appl. Phys. Lett.64, 3045

~1994!.
27A. Asamitsu, Y. Morimoto, Y. Tomlokaet al., Lett. Nature373, 407

~1995!.
28S. J. L. Billinge, R. G. DiFrancesco, G. H. Kweiet al., Phys. Rev. Lett.

77, 715 ~1996!.
29V. Caignaert, A. Maignan, and B. Raeau, Solid State Commun.95, 357

~1995!.

Translation was provided by the Russian Editorial office.
Edited by S.J. Amoretty



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 89, NUMBER 2 AUGUST 1999
Effect of ordering of mobile oxygen on spectra of two-magnon and electronic Raman
scattering of light in YBa 2Cu3O61x crystals with different doping levels
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The effect of ordering of mobile chain-site oxygen in YBa2Cu3O61x crystals at different doping
levelsx on the kinetics of the intensity change of the two-magnon line and the extended
structureless electronic continuum in optical Raman spectra and on the superconducting transition
temperatureTc , has been studied in detail. An increase in the chain-site oxygen contentx
leads to a higher contribution of free carriers to the electronic continuum in Raman spectra. The
kinetics of the electronic continuum becomes slower withx, whereas the relaxation rate of
the two-magnon scattering is a nonmonotonic function of the stoichiometric index. Computer
simulations of the relaxation of nonequilibrium states using the Monte Carlo technique
qualitatively describe the kinetics observed in experiments. Our results lead us to a conclusion
about local inhomogeneities in the electronic and spin systems in CuO2 planes with
scales of several lattice constants. ©1999 American Institute of Physics.
@S1063-7761~99!02408-7#
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1. INTRODUCTION

It is well known that physical properties of th
YBa2Cu3O61x single crystal, which is a metal-oxide com
pound, are determined by the contentx of mobile oxygen in
chains. It has been established that not only the oxygen
tent x but also the degree of its ordering plays an import
role. This has been verified in numerous experiments us
the technique of short-time annealing of superconduc
YBa2Cu3O61x crystals with intermediatex at a temperature
T'150 °C~Ref. 1!. At this temperature, the oxygen mobilit
in chains is so high that positions of oxygen atoms are alm
fully disordered. This procedure of YBa2Cu3O61x sample
processing at temperatures no higher thanT<200 °C does
not deplete them of oxygen, which has been checked ou
numerous testing experiments.2 After the annealing, sample
are rapidly quenched in liquid nitrogen, and then the rel
ation of the disordered state of chain oxygen is measure
the room temperature. Thus changes in the supercondu
transition temperatureTc ~Refs. 2 and 3!, structural lattice
parameters,4 optical properties,5 and spectra of two-magno
and electronic Raman scattering of light6 have been investi-
gated. These experiments have unambiguously confirmed
decisive effect of mobile oxygen ordering on physical pro
erties of the YBa2Cu3O61x compound, especially on its su
perconductivity.

Direct measurements of the relaxation kinetics of Ram
3661063-7761/99/89(8)/11/$15.00
n-
t
g
g

st

in

-
at

ing

he
-

n

spectra and optically induced conductivity of YBa2Cu3O6.4

after the annealing, however, were only conducted in
earlier work.7 It turned out that different physical quantitie
have different relaxation rates, and they can be tentativ
separated into two groups: slow and fast parameters. S
parameters as the intensities of the two-magnon scatte
extended electronic continuum, and the charge-transfer b
in optical conductivity relax rapidly to their equilibrium val
ues within several tens of minutes. The superconduc
transition temperatureTc and low-frequency optical conduc
tivity relax in several hours. Full relaxation of various phys
cal parameters to their initial equilibrium values requir
several days.

In the reported work, we have studied the kinetics
Raman spectra changes associated with oxygen orderin
chain planes of YBa2Cu3O61x samples which haveTc

518– 74 K with the oxygen content ranging betweenx
'0.4 and 0.7, respectively. The main purpose of our stu
was a detailed investigation in YBa2Cu3O6.4 crystals of the
‘‘fast’’ kinetics of the intensities of the two-magnon scatte
ing and electronic continuum bands in samples with differ
stoichiometric values.

In order to describe the kinetics observed in experime
and account for the differences among characteristic re
ation times, we have conducted computer simulations of
fusion of mobile oxygen by the Monte Carlo technique
the base of the model of pair interactions suggested earlie8,9
© 1999 American Institute of Physics
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For the quantitative description of oxygen ordering in chai
we have introduced two order parameters describing corr
tion between a real structure and idealized OI and OII str
tures at a given time moment over a correlation lengthr .
This paper presents a detailed description of the model
calculations of order parameters of systems relaxing fr
disordered states as functions of time till the moment wh
they achieve their equilibrium values. Our computer simu
tions indicate that different correlation lengths correspond
different relaxation times, which allows us to ascribe t
differences between relaxation rates of various physical
rameters observed in experiments to differences betw
characteristic lengths that determine spatial scales o
which these parameters change. The decisive factor for
idly relaxing quantities is local ordering of oxygen, where
other parameters are affected by formation of longer oxy
chains.

Thus, the kinetic investigation of various physical qua
tities yield information about characteristic spatial scales
their changes. An extraordinary and remarkable trait of e
tronic Raman scattering spectra in all cuprate high-Tc super-
conducting~HTSC! crystals is the presence of a structurele
continuum, whose origin has not been elucidated so far
this connection, we have studied the kinetics of Raman s
tering spectra in the process of chain oxygen ordering
crystals with different oxygen contents, which has allow
us, in particular, to clarify the origin of the extended stru
tureless electronic continuum in YBa2Cu3O61x spectra.

2. EXPERIMENT

2.1. Samples

YBa2Cu3O61x single crystals used in our experimen
were fabricated from the melt of the mixture of Y2O3,
BaCuO3, and CuO oxides.1,2 The technological cycle in-
cluded the annealing of samples at a temperature of;520 °C
for several days in the O2–N2 atmosphere with a partial oxy
gen pressure corresponding to the required stoichiome
This time was sufficient to achieve a predetermined equi
rium oxygen stoichiometry throughout the crystal volum
with the oxygen contentx controlled to within 0.01~Ref. 1!.

We studied in our experiments YBa2Cu3O61x twin crys-
tals with relatively low temperatures of the superconduct
transition ranging between 18 and 74 K with oxygen co
tentsx between 0.4 and 0.7, respectively. The sample s
were 13130.2 mm, they had fairly narrow superconductin
transition widths,DTc&1 K, and mirror surfaces. The sma
widths of the superconducting transitions and the dedica
measurements of Raman spectra with a high spacial res
tion (&1.5mm) from different surface areas, supported t
assumption of the high homogeneity of the oxygen conten
our samples.

In order to obtain a high degree of oxygen disorder
tested crystal was placed in a specially designed, vacu
tight, thin-wall copper container with a small inside volum
and annealed in a furnace at a temperature;150 °C for
15–20 min. After that the container with the sample w
quickly ~in less than 0.1 s! immersed in liquid nitrogen. The
container was then warmed to room temperature, the sam
,
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was extracted and either used in Raman measurements a
room temperature or quickly placed in a low-temperatu
cryostat for measurements ofTc . The typical time of the
sample exposure to the room temperature before the
measurement was between two and five minutes. The
that the sample was insulated by the vacuum-tight conta
when its temperature changed abruptly was important
protection of its surface, which is especially important f
optical measurements.

2.2. Experimental techniques

Raman scattering spectra were recorded by a Dilor X
500 triple grating monochromator equipped with a mu
channel light detector. Samples were excited by the Ar1 la-
ser line withl54880 Å, and the power density in the las
spot wasP,4 W/cm2. In kinetic studies, Raman spectr
were recorded in real time with a time step of 20–60 s in
pseudo-back-scattering configuration from a fixed section
theab-plane on the crystal surface at room temperature. T
laser light intensity during the recording was controlled to
accuracy within 1%.

In measurements of the superconducting transition te
perature, the dynamic magnetic susceptibility of crystals w
measured as a function of temperature.Tc was fixed at the
middle level of the magnetic screening signal.

The good reproducibility of Raman spectra and me
sured Tc in multiple cycles of thermal processing of on
sample indicates that the total oxygen content in the sam
remained constant during short-time annealings at temp
tures less than 200 °C~Ref. 2!.

2.3. Experimental results

Figure 1 shows optical Raman spectra of YBa2Cu3O61x

crystals with various oxygen contents. The plots cont
high-frequency sections of Raman spectra in thex8y8 polar-
ization, where the two-magnon Raman scattering band
usually observed in dielectric phases of HTSC materials.10,11

We have also detected the two-magnon band in our exp
ments with superconducting samples with the mobile oxyg
content of up tox'0.7 and the critical temperatureTc

<75 K. The superconducting transition atT,Tc has little
effect on short-range antiferromagnetic correlations
YBa2Cu3O61x . Further doping of YBa2Cu3O61x to x>0.7

FIG. 1. Optical Raman spectra of YBa2Cu3O61x crystals in thex8y8 polar-
ization recorded at room temperature at different values ofx.
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destroys antiferromagnetic correlations, which is obser
experimentally, first, as softening and then almost comp
elimination of the two-magnon scattering line, i.e., superc
ductivity and antiferromagnetism coexist far beyond t
insulator–superconductor transition in YBa2Cu3O61x .

Immediately after quenching the samples annealed
150 °C for 15 to 20 min in liquid nitrogen, we observed
drop in the superconducting transition temperatureTc ,
whose rate increased with decreasing oxygen contentx in the
test sample. The measured critical temperatureTc largely
recovers to its equilibrium value in a sample held at ro
temperature for about 10 h. Moreover, the intensities of
two-magnon scattering,I 2ML , and extended continuum,I EC,
in Raman spectra recorded at room temperature increas
ter quenching, and the growth in the continuum intens
increases more rapidly than the intensity of the two-mag
scattering. These two parameters change most rapidly du
the first 30–100 min at room temperature. Full recovery
all physical parameters to their initial~equilibrium! values
takes several days.

We represented our experimental results in the form

f̂~A~ t !![ lnU A~ t !2A~ t`!

A~ t0!2A~ t`!
U, ~1!

whereA(t`) is the equilibrium value of the measured phy
cal quantity, andA(t0) is the value measured immediate
after the annealing. In this representation, if the param
relaxes to its equilibrium value following a simple expone
tial law with a time constantt, where A(t)2A(t`)
5@A(t0)2A(t`)#exp(2t/t), the function f̂(A) is linear.
The electronic continuum intensityI EC was defined
as the mean intensity in the frequency interv
v'400– 800 cm21, and that of the two-magnon scatterin
I 2ML , was determined by subtracting the continuum intens
from the peak amplitude.

Figure 2 shows relative changes inTc of the annealed
YBa2Cu3O61x samples as a function of the relaxation time
the room temperature expressed in terms off̂(Tc) @Eq. ~1!#.
Immediately after quenching, the critical temperature of
sample withx'0.4 dropped from 18 to 2.9 K, and in th
sample withx'0.5 it dropped from 52.5 to 47.4 K. Th
superconducting transition temperature is a slowly chang
parameter. Characteristic relaxation timest for Tc derived
from experimental data~straight lines in Fig. 2! range be-
tween 400 and 600 min. In the intervals of time longer th
those plotted in Fig. 2~greater than 900 min!, the relaxation
rate of the critical temperature to its equilibrium value
lower.

Measurements of the electronic continuum intensityI EC

as a function of exposure time at room temperature after
annealing and quenching of YBa2Cu3O61x crystals with
various oxygen content are plotted in the similar form in F
3. It is clear that in the initial, relatively fast stage of rela
ation, these measurements can be fairly accurately app
mated by exponential functions~straight lines in Fig. 3! with
time constants of several tens of minutes. Note that the
laxation time grows notably with the oxygen content. Aft
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the initial stage, the relaxation process at longer times
much slower.

While the kinetics of the electronic continuum intensi
I EC becomes slower at higher concentrations of chain o
gen, the two-magnon scattering intensity demonstrate
more complex, nonmonotonic dependence on the stoichi
etry. Figure 4a, which shows the experimental curves of
two-magnon scattering intensity versus time in the form
f̂(I 2ML) @Eq. ~1!#, clearly demonstrates that their relaxation
equilibrium values is faster than in the case of the electro
continuum~Fig. 3!. The relaxation rate of this process grad
ally changes from larger to smaller values so that the ini
sections of theI 2ML(t) curves cannot be described by sing
exponential functions. Nonetheless, model calculations p
ted in Fig. 4b are in reasonable agreement with the exp
mental data. The next section describes in detail the mo
used in our computer simulations and their results.

3. NUMERICAL CALCULATIONS

3.1. Model description

As was demonstrated by Morriset al.,12 the oxygen mo-
bility is higher in the plane of CuOx chains (x,1), and at

FIG. 2. Superconducting transition temperatureTc transformed using func-

tion f̂ (Tc) @Eq. ~1!# versus time for YBa2Cu3O61x samples withx'0.4 and
0.5. The straight lines are approximations of the initial sections of exp
mental curves by simple exponential functions of time.

FIG. 3. Intensity of electronic continuum in Raman spectra versus t

expressed in terms of functionf̂ (I EC) @Eq. ~1!# measured in YBa2Cu3O61x

samples withx'0.4, 0.5, and 0.7. The straight lines are approximations
the initial sections of experimental curves by simple exponential functi
of time.
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FIG. 4. ~a! Intensities of two-magnon Raman sca
tering as functions of time after the annealing an
quenching of YBa2Cu3O61x crystals transformed

using function f̂ (I 2ML) @Eq. ~1!# for samples with
x'0.4, 0.5, and 0.7. The curve forx'0.5 is shifted
by 20.25 along the ordinate axis, the curve forx
'0.7 is shifted by20.5. ~b! Calculations of the

order parameterf̂ (a) @Eq. ~3!# calculated using a
cluster with dimensions of 333 lattice constants
(( r 51

3 a1
r ) for samples with various oxygen conten

x50.4, 0.5, and 0.7. The curves forx50.5 and 0.7
are also shifted along the ordinate axis by20.25
and20.5, respectively.
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The
room temperature oxygen atoms diffuse largely in this pla
In modeling the oxygen diffusion, we used a square lattice
possible oxygen positions O1 and O5 with a lattice cons
a5a8/&, wherea8 is the lattice constant of YBa2Cu3O61x

crystals in the CuOx plane. Figure 5 shows the CuOx plane.
All possible oxygen sites form a lattice with the consta
a8/& turned through an angle of 45° with respect to thea
and b crystal axes. Oxygen sites labeled as O1 and O5
arranged in the chess-board pattern.

We take into consideration only oxygen transitions
eight nearest sites. These transitions can be classified
three groups. Transitions of the first group, NN~nearest
neighbors! are transitions to the four neighboring sit
through distancea ~hencefortha5a8/&). Transitions of the
second and third type, NNN and NNNCu~next NN!, are
diagonal transitions through distance&a, and the difference
between them is in the positions of copper sites.

In calculating the probabilities of hops and describi
the diffusion-induced oxygen ordering we have used
ASYNNNI ~asymmetric next-nearest neighbors Isin!
model, which was suggested for describing this syst
previously.8,9 In this model, the full system energy is calc
lated as a function of oxygen configuration by summing
energies of pair interactions. Three constants,V1 , V2 , and
V3 , of pair interactions are considered~Fig. 5!: V1 is the
energy of repulsion between two neighboring oxygens at
tice sites O1 and O5;V2 is the energy of attraction betwee
two oxygens located at like lattice sites at a distance&a and
separated by a copper atom~intrachain attraction!; V3 is the
energy of repulsion between two atoms at like lattice site
a distance&a ~interchain repulsion!. In our calculations we
have assumedV2520.3478V1 and V350.1594V1 , where
V15367 meV ~Refs. 8 and 9!. The full system energy is
expressed as a sum of all energies of interactions betw
neighboring oxygen atoms:

E5V1(
NN

ninj1V2 (
NNNCu

ninj1V3 (
NNN

ninj , ~2!

whereni andnj are occupancies of oxygen sites:n50 if a
site is vacant andn51 if a site is occupied. In order to
calculate the probability of a transition to a neighboring v
cant site, one should find the energy changeDE when a
probing atom is transferred to the vacant site. IfDE,0 ~i.e.,
the transition of the probing atom to the vacant site lead
a drop in the total energy!, we assume that the absolute tra
e.
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sition probabilityPDE,05exp(2Q/T), whereQ'1 eV is the
energy barrier height. Otherwise (DE.0), we havePDE.0

5exp@2(DE1Q)/T#. If the neighboring site is occupied,P
50. Note that exp(2Q/T) is a common factor and simply
determines the time scale of the process. Therefore, with
loss of generality, at a constant temperature we can seQ
50 in the calculations. The probability of remaining at th
same site was equated to unity in our calculations. The s
of probabilities of all possible transitions~with P.0) was
normalized in such a way that the sum of relative probab
ties p was equal to unity,(p51. The probabilitiesp calcu-
lated for each oxygen atom are input parameters for the g
erator of random numbers which determines further
behavior of the atom: whether it goes to a vacant site
remains at the same site, with the probability of each even
proportional top.

In calculating oxygen diffusion, we used a 1283128
square lattice with cyclic boundary conditions. The Mon
Carlo technique is based on sequential repetition of calc
tion steps. On each step, we considered each oxygen a
and calculated relative probabilities of its behavior. In acc
dance with the output of the random number generator,
atom either remains at its site or moves to a vacant ne
boring site. The order of atoms processed at each ste
random and changes from step to step. After each step o
Monte Carlo process, the configuration of atoms was fix
for the calculation on the next step. Usually our calculatio
included 5000 steps. Note that the unit time in this proces
one Monte Carlo step, which corresponds in the real world
several minutes at room temperature, given the definition
relative probabilities described above.

FIG. 5. Configuration of oxygen~O1 and O5! and copper~Cu! atoms in the
chain plane of YBa2Cu3O61x crystals and parameters of pair interactionV1,
V2, andV3 between nearest neighbors used in computer simulations.
vectorsa andb are aligned with the axes of the crystal lattice.
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FIG. 6. Calculated positions of oxygen atoms
the CuOx plane of YBa2Cu3O61x crystals after
5000 Monte Carlo steps at differentx. The full
circles show atoms at O5 sites, the open circ
show atoms at O1 sites.
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3.2. Order parameters

In studying ordering of oxygen atoms in the square l
tice determined by pair interaction between them, we a
lyzed the initial configuration of atoms corresponding
their random distribution. The system evolution at the ro
temperatureT50.07V1 (T'300 K) was then analyzed ove
5000 Monte Carlo steps. During this time interval, the s
tem transfers to a state which can be assumed to be at
librium whenT5300 K.

Visually, the oxygen configuration after 5000 Mon
Carlo steps is fairly ordered~Fig. 6! and corresponds to th
orthorhombic OI structure at the oxygen contentx51 ~all
O1 sites are occupied and O5 sites are vacant, or vice ve!.
At x50.5 the resulting structure is similar to OII, when sit
of one sort, for example, O5, are vacant, and other sites,
are half occupied. In this case, oxygen atoms form fa
long chains alternating with chains of vacancies. At oxyg
concentrations different fromx50.5 andx51, the pattern
does not decompose into OI and OII phases of large si
but forms as a configuration with a uniform density of ox
gen atoms in an intermediate phase. Note that if the ma
for numerical calculations is sufficiently large, 1283128,
formation of twin regions~with oxygen distributions at O1
and O5 sites reversed! with dimensions of about 50a can be
detected~Fig. 6!. The twins are fairly stable and can pers
without changes in their patterns up to 25000 Monte Ca
steps.

If it is not sufficient to visualize ordering of the atom
-
a-

-
ui-

a

1,
y
n

s,

ix

t
o

pattern obtained in our calculations, a numerical characte
tic ~order parameter! should be introduced for studying th
kinetics of this process and its effect on various physi
parameters such asTc . Different groups of researchers use
different physical quantities as order parameters. So, Pou
et al.9 for example, calculated the total system energy a
function of time, which was defined as a sum of all pa
interactions@Eq. ~2!#. In the process of relaxation, the syste
energy drops. McCormacket al.13 defined twelve sorts of
elementary clusters with oxygen atoms at their centers.
pending on the cluster sort, it was assumed to inject into
cuprate plane a certain chargehi . The valueshi for each
cluster sort were determined on the basis of ba
calculations14 for ordered structures. The authors then calc
lated the fraction of clusters of each sort in the structure
determined the average charge densityh over the lattice.
ConsideringTc to be proportional to the average charge de
sity in the cuprate plane, they obtained on the qualitat
level Tc as a function of the oxygen concentration. That pu
lication lists only the values calculated by averaging ov
large numbers of steps for the equilibrium state at room te
perature, but does not characterize kinetic properties of
ordering process. The resulting curve ofTc versusx has a
shape similar to the experimental curve;15 in particular, it has
the notorious feature atx'0.5. Note, however, that both th
total system energy and charge densities are parameter
eraged over the entire cuprate plane. For this reason,
utilization as order parameters in analyzing various phys
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processes associated with ordering of the oxygen distribu
in YBa2Cu3O61x crystals is limited because these paramet
take into account formation of an ordered structure only
directly.

Cederet al.16 calculated the numbers of copper atom
without neighboring oxygens and of those with one or t
oxygens at neighboring lattice sites. This scheme is base
a simple chemical mechanism of charge transfer~see for de-
tails Ref. 17! and cannot yieldTc as a function ofx. These
authors, however, investigated the kinetics of the numbe
copper atoms without neighboring oxygen atoms and
tected two time constants of about 100 and 2000 Mo
Carlo steps.

Poulsenet al.18 calculated numbers of oxygens belon
ing to OI and OII clusters. The minimal structures, whi
were dubbed clusters, had dimensions of 434 and 838,
respectively. They then assumed that oxygen atoms bel
ing to OII clusters providedTc560 K, and atoms belonging
to OI clusters yieldedTc590 K, so that the resultingTc was
calculated as a weighted average over all oxygen atoms.
calculations for room-temperature equilibrium configuratio
at different oxygen concentrationsx were in good agreemen
with experimental data. Unfortunately, this technique can
be applied to weakly order structures which contain f
clusters of the dimensions given above. Consequently,
method cannot be used in studies of the ordering kinetic
oxygen configurations, when the initial state is highly dis
dered.

In this paper, we suggest using as an order parame
factor of structural correlations in a system which is fr
from all drawbacks listed above. For each structure we
culated on each step parametersa1 anda28 corresponding to
the correlation between the oxygen atom environment
that expected in phases OI and OII, respectively. The ca
lation was performed as follows. In calculating an order p
rameter over a distance scaler , occupations of all O1 and O5
sites on the boundary of the square of width 2r centered at
the probe oxygen site were analyzed. The scales were t
to be integer numbersr 51,2,3,̄ ,6, where the unit length is
the lattice constanta ~the separation between nearest O1 a
O5 sites!. If the occupancy at the square boundary was eq
to that expected for the ideal structure~irrespective of
whether it was vacant or occupied!, the site was equipped
with number 1, and if the occupancy was different, the s
was ascribed21. These alternating numbers were added
all sites on the square boundary and the sum divided by
number of sites under investigation. The resulting correla
between the actual structure and configurations OI and O
distancer was calculated for all atoms in the lattice an
averaged over these atoms.

Thus, one can calculate for any distribution of oxyge
in the lattice, i.e., on any step of the Monte Carlo calculat
and at all concentrationsx, two order parametersa1 anda28 ,
which characterize the correlation between a specific st
ture and phases OI or OII. Atx51 for the ideal OI structure
a151, and atx50.5 for the ideal OII configurationa1

50.5. In real calculations, after a sufficient number of ite
tion steps~5000 Monte Carlo steps! a1&x. If the order pa-
rametera150, it corresponds to full disorder in the distribu
n
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tion of oxygen atoms, irrespective of the concentrationx. In
the case of random distribution of oxygen atomsa2851/2
2x/2. At x51 we have for the ideal OI structurea2850.5,
and atx50.5 we have for the OII structurea2851. In real
calculations, the values of the order parameter are slig
smaller. In order to bring the order parameter to zero in
case of random distribution, we introduced the order para
eter defined asa25a2821/21x/2. The order parameters de
fined in this section are universal and suitable for charac
izing both ordered and disordered structures.

3.3. Final order parameters

In the reported work, we have analyzed the order para
eters a1 and a2 calculated for correlation distancesr
51,2,3,...,6 at oxygen concentrationsx50.1,0.2,0.3,...,1 and
at temperatureT50.07V1 ~approximately 300 K!. We have
also investigated variations in the ordering kinetics cau
by widening the set of allowed transitions. Three sets
allowed transitions were used in the model:~1! oxygen at-
oms can transfer only to four nearest neighboring sites o
distancea ~O1–O5 or O5–O1!; ~2! the same transitions plu
two transitions to sites at distance&a without a jump over a
copper atom~O1–O1 or O5–O5!; ~3! all eight possible tran-
sitions. Our analysis has demonstrated that introduction
additional transitions leads to a faster system relaxation
shortens the time constant, but does not fundament
change the result. All the results discussed in the follow
sections have been obtained using the second set of allo
transitions.

In this section, we will discuss only the final values
order parameters~after 5000 Monte Carlo steps!, which are
assumed to be equilibrium values for the specific tempe
ture, without analyzing their evolution on the 5000 Mon
Carlo steps. Figure 7 plots equilibrium values of the ord
parametersa1 anda2 at room temperature for different cor
relation lengthsr 51,2,3,...,6. The parametera1 gradually
increases withx and is close to unity atx51, whereasa2 has
a peak atx50.5. The order parameter decreases with
creasing correlation lengthr , which indicates that the order
ing is not ideal~in an ideal structure, the order paramet
does not depend onr ). Note that the order parameter calc
lated atr 51 is markedly different from all others, becaus
the model takes into account only interactions between n
est neighbors in calculating the energy~constantsV1 , V2 ,
andV3). If the temperature in the calculations is increas
the degree of correlation with the OI structure~parameter
a1) changes little, whereas the degree of correlation with
OII configuration~parametera2) changes noticeably, in par
ticular, the peak atx'0.5 flattens rapidly.

Of great interest is the behavior of the suma11a2 as a
function of the oxygen concentrationx. Figure 8 shows the
order parametera1 calculated atr 51, 2, and 3 plus the orde
parametera2 at r 52, 4, and 6, respectively. In other word
these sums have been calculated at equal lattice constan
OI and OII sublattices~the unit cell size in the OII phase i
twice as large as in the OI phase!. This sum of the order
parameters shows an unexpectedly good correlation with
critical temperatureTc of YBa2Cu3O61x samples annealed a
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FIG. 7. Order parameters~a! a1 and ~b! a2 after
5000 Monte Carlo steps as functions of oxyge
concentrationx for different correlation lengthsr ;
T50.07V1'300 K.
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room temperature, plotted against the oxygen concentra
The curve has the characteristic feature in the shape of a
section in the regionx50.5– 0.7, just as the critical tempera
ture curve,15 moreover, the ratio between the order parame
sums at x50.5 and x51 is about 2/3 (Tc

x50.5/Tc
x51.0

560 K/90 K52/3).
The results listed above clearly indicate that structu

order parametersa1 anda2 are directly related to the supe
conducting properties of YBa2Cu3O61x crystals, so there is
good reason to utilize them in studying the effect of t
kinetics of oxygen ordering on the physical properties
these crystals. The increase inTc caused by aging of an
annealed sample is associated with the specific orderin
atoms and vacancies~phase OII!, which takes place at the
room temperature but is absent at higher temperatures.

3.4. Ordering kinetics

This section describes investigations of kinetics of ox
gen ordering based on the model discussed in the prev
sections. The initial distribution is a lattice with random
located atoms. The concentration of oxygen atoms co
sponds to the stoichiometric indexx varied between 0.1 and
1 with a step of 0.1.

In the initial time interval within 100 Monte Carlo step
regions of small dimensions (R'10a) are formed in such a
way that the atoms inside them are all at equivalent crys
lographic sites, either O1 or O5~twins!. Atomic transitions
inside twins form site O1 to site O5, on the contrary, hav
very low probability. In the process of further relaxation t
the 5000th Monte Carlo step, twin boundaries move spo
neously, as a result, the twins grow, and it is possible
obtain in a lattice with dimensions of 1283128 after 5000
steps either a single twin occupying almost the entire a
and having an almost ideal structure~with less than ten de
fects! or two twins with almost ideal internal structures a
occupying approximately equal areas~Fig. 6!. As a result of
numerous computer simulations with 5000 Monte Ca
steps atx51, we found that the probabilities of these tw
realizations are approximately equal. There is every rea
to assume that both these configurations are stable~up to
n.
at
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25000 Monte Carlo steps!. In order to study the evolution o
twins over longer times, one should take a larger matrix
calculations.

In our study attention was focused on the initial stage
the relaxation at timest,100 Monte Carlo steps. Introduc
tion of order parameters, which depend on the correlat
length, has allowed us to trace the emergence of both
short-range order~at r 51 the ordering of nearest neighbor!
and ordering over longer ranges~up to r 56). On each step
six order parametersa1

r were calculated. At the initial mo-
ment, all order parameters at allr and oxygen concentration
x are zero, which corresponds to a random distribution. A
5000 Monte Carlo steps, the order parameters approacx,
and their values diminish with the correlation lengthr ~Fig.
7!. Note that chance plays an important role in the probl
under discussion. The differences between the order par
eters calculated at initial steps of the Monte Carlo proces
two independent simulations are comparable to the order
rameter itself. Note also that the order parameters calcul
in one simulation are somewhat ‘‘noisy’’~the noise ampli-
tude may be as high as 10%!. This circumstance makes
impossible to compare order parameters obtained in sin
computer simulations. In our analysis, we have used the
rameters obtained by averaging over 100 simulations
functions of time.

FIG. 8. Sum of calculated equilibrium order parametersa1
r 1a2

2r versus
oxygen concentrationx for correlation lengthsr 51, 2, and 3.



o
at

ib
d
e
a

m
ow
e

en
w
r

ial
ic
t fi
in

b
te
g
i
th

h
y

-
e
e

s,

t

i
nc

er
ob-
-

he
the
ths
to

at

d

ll

s

nge
t
ated
r
‘in-
er
een
s’’

the

rob-
dis-
li-
ted

ter-

lax-

on-

:

th

373JETP 89 (2), August 1999 Maksimov et al.
It is interesting to represent the resulting functions
time in the form similar to that selected for experimental d
@Eq. ~1!#:

f̂ ~a~ t !![ lnUa~ t !2a~ t`!

a~ t`!
U, ~3!

wherea(t) is the order parameter versus time. The equil
rium valuesa(t`) were determined at the time correspon
ing to the 5000th Monte Carlo step, and the initial valu
a(t0) were set to zero in our calculations. The transform
tion of the order parameters described by Eq.~3! allowed us
to separate an exponential component and easily deter
the time constant of the relaxation process. Figure 9 sh
calculations of the order parametera1 expressed using th
function f̂ (a1) for different correlation lengths atx50.4.
One can see that the kinetics is slow forr .3, whereas for
shorter correlation lengths there are two notably differ
stages: the faster initial stage and considerably slo
changes at longer times. The explanation of this behavio
small r is that only local ordering takes place at the init
stage, and many small twins with sizes of several latt
constants are generated. This process occurs on the firs
to ten Monte Carlo steps and leads to short-range order
The stage of the slower relaxation at smallr is characterized
by motion of twin boundaries, when smaller twins are a
sorbed by larger ones. The slowly changing order parame
for large correlation lengths describe formation of long-ran
order. This ordering requires more time, which manifests
measurements of physical quantities that are functions of
average carrier concentration in the cuprate plane, suc
Tc ~Fig. 2!, dc conductivity, and the low-frequenc
(;5000 cm21) band in spectra of optical conductivity.7,19 As
for the fast relaxing intensityI 2ML of the two-magnon scat
tering ~Fig. 4a!, the kinetics observed in experiments corr
lates with curves in Fig. 4b, which show sums of the ord
parametersa1 calculated for small correlation length
( r 51

3 a1
r (t), and transformed using functionf̂ (a) @Eq. ~3!#.

One can clearly see that there is reasonable agreemen
tween the experimental data and calculations.

The distinguishing feature of our calculated curves
that they cannot be approximated by simple analytical fu

FIG. 9. Calculated order parametera1 in the YBa2Cu3O6.4 crystal as a
function of the number of Monte Carlo steps expressed in terms of

function f̂ (a1) @Eq. ~3!# for different correlation lengths.
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tions like an exponential function whose argument is a pow
function, as was done in processing experimental data
tained by Vealet al.2 The absence of a simple kinetic func
tion describing relaxation is an additional indication of t
complexity of the relaxation process, which generates at
initial stage a structure with a short-range order over leng
of several lattice constants, and at longer times it leads
formation of long chains and twins of large sizes.

Note also the correlations between functionsa1
r (t) with

different r . Analyzing the order parameters versus time
different concentrationsx and correlation lengthsr , we
found that the functionsa1

r .1(t) can be expressed with goo
accuracy~within 1%! in terms ofa1

r 51(t):

a1
r .1~ t !'A1

r 51~ t !, ~4!

where

A1
r 51~ t !5Q~ t2D!I Sa1

r 51S t2D

tS
D . ~5!

Here the step functionQ reflects the presence of a sma
delay of several steps, during whicha1

r .1'0 ~D is a fitting
parameter!. The further behavior ofa1

r .1(t) closely follows
the function a1

r 51(t), but with different scales applied to
both coordinate axes using multiplicatorsI S andtS . It turned
out that the parameterD can be approximated for all value
of x by the expression

D'
r 21

2
. ~6!

This dependence derives from the fact that only short-ra
interactions~with nearest neighbors! are taken into accoun
by the model. Thus, correlation between two sites separ
by distancer turns up only afterr /2 steps of the compute
simulation. This can be interpreted as propagation of an ‘
formation wave’’ with the velocity of one lattice constant p
one calculation step for each site. Mutual influence betw
two sites sets in only when the fronts of two such ‘‘wave
intersect.

The second fitting parameter in scaling function~5! is
the relative intensity of correlations on the initial stepI S .
The intensities of such correlations are approximated by
expressions

I S'xr 21. ~7!

The emergence of such expressions indicates that the p
abilities of correlations between sites separated by the
tancer .1 should be calculated by multiplying the probabi
ties of correlations between neighboring atoms loca
between the two lattice sites.

The most interesting parameter, which cannot be in
preted in simple terms, is the third fitting parametertS . It
describes the ratio between the characteristic times of re
ation ~ordering! for atoms separated by distancer and the
relaxation time for the nearest neighbors. For all oxygen c
centrationsx>0.5, the functiontS(r ) is the same to within
the uncertainty of thetS calculation and slightly superlinear
tS(r )51 at r 51, and tS'12 at r 56. At x,0.5 the relax-
ation time is considerably longer.

e
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The distance-dependence oftS is a measure of the
strength of connections in the system, which character
the velocity of ordering propagation to longer distances.
higher oxygen concentrationsx.0.5, the contribution of re-
pulsive pair interactionsV1 and V3 is considerable and in
creases withx. At x50.5, there is only one configuration o
atoms when all interactions in the system are determined
V2 ~the ideal OII phase!. This configuration corresponds t
the minimal energy per atom. Asx becomes smaller, the
number of such configurations increases. Atx,0.5 configu-
rations obtained after 5000 Monte Carlo steps consist of
lated chains~including copper atoms! randomly aligned with
respect to the lattice~no large twin clusters have been d
tected! and separated from one another by distances lon
than 2a, i.e., they do not interact with one another~Fig. 6!.
In this case, there is ordering only along the chains, wh
leads to a considerably lower order parameter; hence, it ta
much longer time to create long-range order in the syst
Thus, we have come to the conclusion that the system ki
ics changes radically atx50.5, because strong repulsive i
teractions are effectively ‘‘switched-off’’ atx,0.5 owing to
the ‘‘low density’’ of the system. Another interesting concl
sion from our calculations is that the relationship betweentS

and correlation length is not affected byx for x.0.5; i.e.,
the system ‘‘stiffness’’ does not increase with the oxyg
concentration, hence the number of repulsive interaction
constant.

The only component that is required to complete o
description of the system kinetics is comparative analysis
the order parametera1 evolution atr 51 for different oxy-
gen concentrationsx. Unfortunately, the order parameter k
netics atr 51 is very fast, and changes in the parame
saturate after several initial steps. Therefore, in plotting
kinetic curves forr 51 we used the functionsa1

r .1(t) for
r .1 transformed in accordance with Eqs.~4! and ~5! using
the fitting parametersI S , D, and tS . This has allowed us to
plot more points for the curve ofa1 versus time atr 51 and
check out the formula fitted to all calculated points~if the
points lie on the same curve after the coordinate transfor
tion!. Figure 10 shows curves of the order parametera1

r 51 at
differentx refined using the procedure described above. I

FIG. 10. Calculations of order parametera1
r 51 versus time for different

oxygen concentrationsx. The number of points was increased by scali
order parameters calculated for different correlation lengths@Eqs. ~4! and
~5!#.
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clear that there is a universal complex kinetic functiona1(t),
which is plotted over the entire time interval forx51.0. At
smaller oxygen concentrations, the curves of the order
rameter versus time are described by the universal func
until the order parameter approachesx, after which satura-
tion takes place.

Thus, it follows from our calculations that relaxation o
order parameters for different correlation lengths can be
termined at the initial stage up to 100 steps using the univ
sal functions with the help of a shift in time and variation
scales on both coordinate axes.

4. DISCUSSION OF EXPERIMENTAL RESULTS

In order to understand the difference between the evo
tion patterns of the two-magnon scattering and electro
continuum, we should clearly identify the origin of thes
signals and scattering mechanisms in both cases. E
quantity measured in experiments has a characteristic c
dinate scale of its changes, which is determined by phys
processes involved. When the configuration of oxygen ato
differs from the equilibrium pattern, this brings abo
changes in various physical parameters. These change
each specific physical quantity are determined by a co
sponding correlation function which relates the instantane
and equilibrium configurations. This leads, in turn, to t
dependence between the relaxation kinetics of a spe
physical quantity and the evolution of the correlation fun
tion a r(t), whose space scaler corresponds to the spac
scale of changes in the physical quantity. Our calculatio
demonstrate that the relaxation rate of the order parametea r

depends on its correlation length and decreases asr grows.
Thus, comparison between our calculations and kinetic fu
tions measured in experiments allows us to estimate qua
tively characteristic space scales of changes in various ph
cal quantities.

Before proceeding to the experimental data, note that
two-magnon light scattering in quasi-two-dimensional an
ferromagnets, as we know, is due to generation of a pai
magnons by an incident photon, and its intensity has a p
at energies corresponding to generation of magnons at
boundary of the magnetic Brillouin zone.20 The two-magnon
Raman scattering of light is therefore most sensitive to sh
wave antiferromagnetic correlations in the CuO2 planes. De-
spite large quantum fluctuations ats51/2 ~Ref. 10!, the
standard theory of two-magnon scattering can describe q
titatively the line broadening in high-temperature superc
ducting crystals through phenomenological introduction
phonon damping.21 This model leads to a conclusion that th
loss of the long-range magnetic order has little effect on
two-magnon scattering, because it depends mostly on g
eration of a pair of two short-wave magnons. Thus, one
assume that the two-magnon Raman scattering of light
curs in a small region with dimensions of about 334 lattice
constants, which leads to a spin flip of two neighboring
oms and a change in their exchange energy due to interac
with nearest neighbors. From this viewpoint, it is clear w
the relaxation time of the two-magnon scattering is so sh
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As follows from studies of the two-magnon Raman sc
tering ~Fig. 1! and neutron scattering,6,22 spin correlations in
cuprate planes are also observed in superconducting cry
with index x'0.4– 0.7. This means that short-range antif
romagnetic correlations ‘‘persist’’ in the superconducti
state; i.e., antiferromagnetism and superconductivity coe
in YBa2Cu3O61x crystals. It is not clear at this time whethe
this coexistence is possible in an ideal, homogeneous,
dimensional electron system or whether it is possible du
decomposition of the CuO2 plane into microscopic domain
with higher and lower conductivities~‘‘metallic’’ and ‘‘di-
electric’’! and dimensions of several lattice constants. T
decomposition can be brought about, for example, by ei
strong electronic correlations in the cuprate plane, wh
leads to localization of current carriers within a microsco
region,23 or disorder in YBa2Cu3O61x crystals. If this de-
composition really takes place, the two-magnon scatte
can occur in the ‘‘dielectric’’ microscopic domains, and th
coexistence of superconductivity and antiferromagnet
finds a natural explanation.

It follows from our investigation of ordering of mobile
oxygen atoms that the local disorder in the chain oxyg
has its effect on the CuO2 planes. In fact, the fast kinetics o
the two-magnon scattering, which occurs in cuprate plan
indicates that the change in the short-range order of mo
chain oxygens due to the annealing affects the short-ra
order in the electron and spin systems of CuO2 planes with-
out a notable change in the free carrier density. This
process proceeds concurrently with a slower ordering of o
gen chains, which supplies holes to the CuO2 plane and
manifests in the slow relaxation ofTc . This provides evi-
dence in favor of the microscopically inhomogeneous mo
of the CuO2 plane. Moreover, at 0,x,1 the composition of
YBa2Cu3O61x is nonstoichiometric, and there is disorder
the system of chain oxygen both before and after order
and this means that the cuprate plane isa fortiori locally
inhomogeneous.

Before discussing the extended electronic continuu
note that it has been detected in Raman spectra of both
perconducting and dielectric HTSC crystals in the form o
flat, almost featureless background extending to energie
about 1 eV. By the present time, no unambiguous interp
tation of it nature has been suggested, although a lot of th
ries have been put forth in attempts to explain its origin. W
can stipulate with a degree of certainty that this continuum
due to CuO2 planes because its basic properties, such as
spectral shape, dependence on the doping level, and tem
ture dependence are very similar in different HTSC mat
als. This is also supported by the fact that the electro
continuum has not been detected inzz Raman spectra, whe
the polarizations of both incident and scattered light are p
pendicular to the cuprate plane. Moreover, it has been es
lished in numerous studies of features in HTSC Raman s
tra related to the presence of the gap in electronic spectra
the low-energy section of Raman spectra is modified be
the superconducting transition temperature; namely, the
tensity of the electronic continuum reduces and a p
emerges at a frequency approximately corresponding to
superconducting gap width 2D ~Refs. 24–26!, which con-
-
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firms, undoubtedly, that free carriers contribute to the el
tronic continuum in the Raman spectra.

However, in superconducting YBa2Cu3O61x crystals the
electronic continuum intensity is a rather flat function of t
doping level.26 This fact suggests that, in addition to th
Raman light scattering by free carriers,27,28 light scattering
by localized states should also be taken into account.7,26 The
fast kinetics of the electronic continuum intensity observ
in YBa2Cu3O6.4 ~Fig. 3! indicates that most of the continuum
is due to states of local nature atx'0.4. These localized
states can be of either magnetic or defect nature.7 At any
rate, the electronic continuum intensity cannot be uniqu
related to the average concentration of carriers in the cup
plane. On the other hand, the increase in the relaxation t
with the oxygen content in the YBa2Cu3O61x crystals ob-
served in experiments~Fig. 3! indicates that the characteris
tic dimension of these states increases withx. Thus, we con-
clude, therefore, that the electronic continuum in opti
Raman spectra has a complex nature, and both localized
extended~free! electronic states contribute to this continuum
moreover, the role of the latter states essentially increase
the doping level approaches the optimal value
YBa2Cu3O61x .

5. CONCLUSIONS

In conclusion, we focus the reader’s attention on the f
that the kinetic characteristics of the relaxation of the sup
conducting transition temperature, intensities of the featu
less continuum and two-magnon scattering bands in the
man spectra can be consistently described in terms of
order parameters which were introduced in this paper
which characterize the process of chain oxygen ordering
YBa2Cu3O61x crystals with different doping levels.

The differences between the relaxation times of differ
physical quantities also find their natural interpretation
the basis of the relatively simple description of the dis
dered state in terms of the correlation parameters as fu
tions of correlation lengths.

Thus, as a result of experiments and computer simu
tions reported in this publication, we have established t
the characteristic times of the critical temperature relaxat
to the equilibrium value of the superconducting transiti
temperatureTc in crystals with different oxygen contents a
relatively long, which is determined by the slow formation
long ordered oxygen chains. In contrast, the intensity of
two-magnon Raman scattering, which is of local nature,
demonstrated a fast relaxation kinetics, because in this
only changes in the close neighborhood of an oxygen a
are essential. As to the extended featureless continuum
Raman spectra of YBa2Cu3O61x crystals, it has a complex
nature and is determined by light scattering by localiz
states and by free carriers. As the content of chain oxyge
YBa2Cu3O61x increases, the contribution of scattering b
free carriers to the continuum intensifies.

An important point is that experimental detection of d
ferent relaxation timesper seindicates that breaking of loca
ordering in oxygen chains in YBa2Cu3O61x leads to local
inhomogeneities in the electron and spin systems of Cu2
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planes on the microscopic scale of several lattice consta
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A rigorous quantum-mechanical description is given of coherent generation in a resonant-
tunneling diode for the simple model of a double-barrier structure. Exact analytical solutions of
the Schro¨dinger equation are found for electrons in the presence of a weak electromagnetic
field. The active and reactive polarization currents are calculated over a wide frequency interval
and are reduced to a simple and easy-to-visualize form. These expressions satisfy the
Kramers–Kronig relations and general criteria of the theory of radiation and other formal
requirements. An analysis of the threshold conditions of generation is given. In particular, it is
shown that generation is possible at microwave frequencies exceeding the inverse lifetime
of an electron in the quantum well. Thus, the ‘‘quasiclassical’’ idea of the existence of a limiting
frequency, associated with the finite lifetime, turns out to be inapplicable for a resonant-
tunneling diode, which occupies an intermediate position between lasers and Gunn diodes.
© 1999 American Institute of Physics.@S1063-7761~99!02508-1#
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1. INTRODUCTION

Resonant tunneling and the negative differential cond
tivity effect in nanostructures are brought about by pur
quantum phenomena of spatial quantization giving rise
resonant energy levels.1 In what follows we have in mind the
simplest nanostructure—a quantum well, which is frequen
called a resonant-tunneling diode.

As is well known, negative differential conductivity a
fords the possibility of generating an electromagnetic field
number of workers~see Refs. 2 and 3! have demonstrated
generation in a resonant-tunneling diode up to 712 GHz.

The question was raised and discussed long ago~see,
e.g., Ref. 3! as to whether there exists a fundamental limi
tion on the generation frequency in a resonant-tunneling
ode analogous to the limitations on Gunn diodes and tun
ing diodes.4,5

At present, there is no consensus in regard to this qu
tion. This is due, in particular, to the absence of a gener
accepted theoretical model of coherent generation in
resonant-tunneling diode. Most treatments of the theory
generation in resonant-tunneling diodes utilize numer
methods.3,6–11They have established a number of importa
generalizations regarding coherent generation~in the present
work we are interested only in the coherent approximatio!,
but contain many contradictory results, the reasons for wh
are hard to determine~see the discussion in Refs. 3 and 1!.

Comparatively little work have been devoted to an a
lytical approach.12–15 Almost all of the treatments known t
us employ semi-phenomenological methods, in which
stead of strictly solving the Schro¨dinger equation additiona
approaches are employed~see, e.g., Ref. 12!.

According to one widely held point of view~see Ref. 3!,
the generation frequency is bounded by the inverse of
characteristic lifetime of an electron in the quantum welltg

21

(tg5\/G, whereG is the width of the resonant level!. This
3771063-7761/99/89(8)/7/$15.00
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argument is valid for ‘‘classical’’ generators~e.g., tunneling
and Gunn diodes,4,5 in which resonant levels are absent!.

Generators based on resonant-tunneling diodes occ
an intermediate place between ‘‘classical’’ generators a
lasers. They are based on a ‘‘quasiresonant’’ interaction
tween electrons and the electric field. Bear in mind that
diative transitions go between states near one resonant
~and not between two levels, as in a laser!. It can be expected
that if the frequency of the fieldv is small in comparison
with the width of the resonant levelG, then the ‘‘quasiclas-
sical’’ description is applicable. In the opposite limit th
quantum-mechanical approach is necessary.

The aim of the present work is to give a rigorou
quantum-mechanical description of the simplest analytica
solvable model of coherent generation in resonant-tunne
diodes. As is well known, this allows a deeper understand
of the physics of the problem. An exact solution of th
Schrödinger equation is found for the partial wave functio
corresponding to the quasi-energies of the electron in
electromagnetic field. The active~in phase with the field!
polarization currentJc and the reactive polarization curren
Js are calculated over a wide frequency interval in the sm
signal approximation. Using the small parametersv/«R and
G/«R , which are natural for the resonant-tunneling dio
problem («R is the energy of the resonant level!, expressions
for Jc and Js are reduced without loss of generality to
simple and easy-to-visualize form as a result of cancela
of a number of divergent terms. The resulting expressions
the currents satisfy the Kramers–Kronig relations, gene
principles of the theory of radiation, and other formal r
quirements. They differ substantially from previously o
tained results, especially for high frequencies. It is shown
particular that generation is possible at microwave frequ
cies v@G if the energy of the electrons~equivalent to the
constant voltage on the resonant-tunneling diode! is chosen
outside the region of maximum negative conductivity, i.
© 1999 American Institute of Physics
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the quasiclassical idea of a limiting frequency associa
with the width of the level~see Ref. 3! is apparently inappli-
cable for resonant-tunneling diodes. In addition, the optim
conditions at generation threshold are found as function
the structure parameters.

2. DESCRIPTION OF THE MODEL AND WAVE FUNCTIONS
OF THE RESONANT-TUNNELING DIODE TO FIRST
ORDER IN THE FIELD

We examine a model of coherent generation in
resonant-tunneling diode.12,15,16For simplicity we consider a
one-dimensional quantum well withd-function barriers at the
pointsx50 andx5a ~see Fig. 1!. A stationary electron flux
is incident on the quantum well from the left (x52`), pro-
portional toq2 with energy« approximately equal to«R . A
variable electric fieldE(t) with potentialV(x,t) operates in
the region of the quantum well:

V~x,t !5n~x!cos~vt1w!,

n~x!5 H n0xu~x2a!,
n0a,

x,a
x.aJ , n052

eE

2
. ~1!

The wave functionc(x,t) obeys the Schro¨dinger equation

i
]c

]t
52

]2c

]x2 1@ad~x!1ad~x2a!#c1V~x,t !c, ~2!

where we have set\51 and 2m51. We seek the steady
state solution of Eq.~3! in the form7,17

c~x,t !5e2 i«t@c0~x!1e2 ivtc11~x!1eivtc21~x!#. ~3!

The partial functionsc0(x),cn(x) describe electrons with
quasi-energies« and«1nv (n561), respectively.

The variable field gives rise to polarization currents:

Jc~x,t !5Jc~x!cos~vt1w!,

Js~x,t !5Js~x!cos~vt1w!.

The current in phase with the field,Jc , and the reactive
currentJs can be expressed in terms of the functionscn(x):

Jc~x,t !5J11
c ~x!1J21

c ~x!,

FIG. 1. Double-barrier structure with resonant level«R . Other notation
explained in text.
d

l
of

a

Jn
c~x!52 ie@~c0* cn81c08cn* !1c.c.#,

Js~x,t !5J11
s ~x!2J21

s ~x!,

Jn
s~x!5e@~c0* cn82c08cn* !1c.c.#. ~4!

The zero-approximation functionc0(x) in the region 0,x
,a satisfies the equation

«c0~x!1c09~x!50, c09[
d2c0

dx2 ~5!

and boundary conditions~see Ref. 17!

c0~0!~12b!1
c08~0!

ip
5q,

c0~a!~12b!2
c08~a!

ip
50, b5

a

ip
, p25«. ~6!

The boundary conditions~6! describe the electron flux from
the left, proportional toq2 and their reflection and escap
into the regionx.a.

The corresponding equations forcn(x) have the form

pn
2cn1cn95n~x!c0~x!,

pn
25p21nv. ~7!

The boundary conditions forcn are essentially analogous t
the boundary conditions~6! with q50.

The solutions of Eqs.~5!, ~7! in the region 0,x,a have
the form

c0~x!5A exp~ ipx!1B exp~2 ipx!

[g0 cos~px!1 id0 sin~px!,

D0A5q~22b!exp~22ipa!, D0b5qb, ~8!

D05
4

G
@ i ~«2«R!2G#, G5

4p3

a2a
, ~9!

cn~x!5c̃n~x!2
n0x

vn
c0~x!2

2n0

vn
2 c08~x!,

c̃n5An exp~ ipnx!1Bn exp~2 ipnx!

[gn cos~pnx!1 idn sin~pnx!, ~10!

DnAn52qn exp~22ipna!1bn@ q̃n2qn exp~22ipna!#,

DnBn52q̃n1bn~ q̃n2qn!, ~11!

Dn5
4

G
@ i ~«2v2«R!2G#,

qn5
2n0ip

vn
2 F ~A2B!~12bn!1~A1B!

3S 11
vn

2

4ppn~p1pn!2D G , ~12!
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q̃n5
2n0ip

vn
2 F @A2B exp~22ipa!#~12bn!

2@A1B exp~22ipa!#S 11
vn

2

4ppn~p1pn!2D G
3exp@2i ~p2pn!a#, 3n5

a

ipn
, vn52nv,

gn5An1Bn , dn5An2Bn . ~13!

The quantitiesdn andgn are key. The polarization cur
rents~4! are expressed in terms of them. Employing relatio
~11! and ~13!, we obtain expressions fordn andgn

Dndn5bn~ q̃n2qn!1~bn22!@ q̃n2qn exp~22ipna!#,
~14!

Dngn52@ q̃n1qn exp~22ipna!#

1bnqn@12exp~22ipna!#. ~15!

Formulas~8!–~15! give an exact solution of the problem
After substituting them into Eqs.~4!, we obtain exact expres
sions for the currentsJc(x) andJs(x). Unfortunately, these
expressions are so lengthy and opaque that they are pr
cally useless for analysis.

However, the possibility exists of converting them~with-
out loss of generality! into simple and physically comprehen
sible expressions by using the small parameterv/«R , which
is natural for the resonant-tunneling diode problem. Inde
the smallness of the frequencyv in comparison with the
energy«R ~and also with the energy difference to the neig
boring level! is an intrinsic property of a generator based
resonant-tunneling diode based generators.

In order to carry out this transformation, we representgn

anddn as sums of two terms

gn5gn
~1!1gn

~2! , dn5dn
~1!1dn

~2! . ~16!

In the termsgn
(1) and dn

(1) we setp5pn in the exponential
factors, andgn

(2) anddn
(2) are just the corresponding corre

tion terms. Exact cancellation of a number of terms ta
place in the termsgn

(1) anddn
(1) , so that as a result we obtai

gn
~1!5

2n0ip

vn
2 d0 , dn

~1!5
2n0ip

vn
2 g0 . ~17!

Note that the termsgn
(1) and dn

(1) diverge asv→0. The re-
sidual terms remain finite in the low-frequency limit and a
equal to

Dngn
~2!52

4n0ip

vn
2 @ZnbnA1Zn* B exp~22ipna!~22bn!#,

Zn5exp@ i ~p2pn!a#21, ~18!
s

cti-

d,

-

s

dn
~2!5~bn21!gn

~2! . ~19!

In expressions~18! and ~19! we have discarded small term
proportional tov/«R andG/«R . To simplify the expressions
we consider the most interesting case of a quantum well w
‘‘strong barriers,’’ whereG!«R . It is precisely in this limit
that important properties of the quantum well are realize

Taking the smallness of the parametersv/«R andG/«R

into account, expression~18! reduces to

Dngn
~2!5

n0a2aA

p2 , ~20!

from which it follows that the quantity remains finite in th
limit v→0. Finite also is the functioncn(x), in particular

cn~0!5cn~a!5gn
~2! . ~21!

Hence it is not hard to show that the implemented weak-fi
approximation is valid ifeEa!G.

3. POLARIZATION CURRENTS

First let us find the active component of the curre
Jc(x). Substituting expression~10! into Eqs.~4!, we obtain

Jn
c~x!52 ie@~c0* c̃n81c08c̃n* !2c.c.#22pn0ed~vn!uc0u2.

~22!

In Eq. ~22! we have retained terms even invn , since the odd
terms cancel in the total currentJc(x). We also drop the las
term, nonzero only forv50, since it is cancelled out by th
corresponding contribution from the first term. Neglecti
small corrections of orderv/«R , we can reduce expressio
~22! to the form

Jn
c~x!5epcos@~p2pn!x#@Kn1c.c.#

2 iep@Fn2c.c.#sin@~p2pn!x#, ~23!

Kn5d0* gn1g0* dn , Fn5d0* dn1g0* gn . ~24!

The terms arising fromgn
(1) and dn

(1) that diverge asv→0
are purely imaginary. Therefore, they do not contribute
@Kn1c.c.#; in @Fn2c.c.# they drop out because the parity
even with respect tovn . The remaining terms are propo
tional to the combination

1

Dn
1

1

Dn*
5

2G2

2@~«2«R1nv!21G2#
. ~25!

Thus, the currentJc , which describes amplification~absorp-
tion! of the field, is proportional to the decay of the electro
as follows from the general theory of radiation. The fin
expressions for the currentJc(x) and the reduced currentJc

~see Ref. 17! have the form
Jc~x!52
eEaQG2~«2«R!

4@~«2«R1v!21G2#@~«2«R2v!21G2#@~«2«R!21G2# H cosS v

2p
xD @~«2«R!21G21v2#2sinS v

2p
xD S 4vp

a D J ,

~26!

Jc5
1

a E0

a

Jc~x!dx52
e2EaQG2~«2«R!

4@~«2«R1v!21G2#@~«2«R2v!21G2#
, Q5q2p. ~27!
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It is clear from Eq.~27! that for «.«R the currentJc is
negative, which corresponds to amplification over the en
frequency range. In the low-frequency limitv!G the cur-
rent Jc is expressed in terms of the constant-current diff
ential conductivity:

Jc52
e2EadG2

4~d21G2!
5

e2Ea

4

]

]«
J0~«!, ~28!

J0~«!5
QG2

2~d21G2!
, d[«2«R . ~29!

In the low-frequency limit expression~27! goes over to
the quasiclassical expression and essentially coincides
the results obtained in Refs. 12 and 15; however, for fin
frequencies there are important differences from the res
of Ref. 12.

Let us analyze the frequency dependence of the cur
Jc(v,d), whose character depends critically on the ra
d/G. For d,G the currentJc is maximum at zero frequenc
~see Fig. 2!, and at large frequenciesv@G it falls off rapidly
as 1/v4:

J̃c52
4Jc

e2EaQ
'2

dG2

v4 , v@G. ~30!

If, on the other hand, we haved.G, then the currentJc

becomes maximum at the frequency~see Fig. 2!

vm
2 5d22G2 ~31!

and equal to

J̃c~vm!521/4d. ~32!

The new maximumJc corresponds to quasiresona
transitions between the states« and«R since forv@G equal-
ity ~31! gives the condition of a ‘‘quasiresonance’’v5«
2«R .

Let us now examine the dependence of the currentJc on
d. It is not hard to show that the currentJc reaches its maxi-
mum if d5dm :

FIG. 2. Dependence of the active polarization currentJc on the frequency
v/G for d/G51/) andd/G55.
e

-

ith
e
lts

nt

dm
2 52

1

3
~G22v2!1

2

3
~G41v41v2G2!1/2. ~33!

In the low-frequency limit we obtain the well-know
result

dm
2 .G2/3, ~34!

at which the low-frequency negative differential conductiv
reaches its maximum value.

This, in fact, is the bias voltage that is usually chosen
experimental and theoretical work. In this case,d,G and,
according to relations~30!, the currentJc falls off rapidly
with frequency. Hence it follows that amplification is esse
tially bounded by the ‘‘limiting’’ frequencyv'G.

However, if we chosed.G in accordance with the con
ditions of a quasiresonant transition~31!, then, according to
Eq. ~32!, Jc falls off much slower with frequency:

J̃c521/4v. ~35!

Thus, if we choosed25v21G2 and far from the region of
maximum negative differential conductivity, then generati
at frequencies significantly greater than the ‘‘limiting fr
quency’’ G is possible. Physically, this is because of ‘‘qu
siresonant’’ radiative electron transitions from the quasile
«5«R1v to the resonant level«R . We indicated the possi
bility of such behavior ofJc(v) in Ref. 11 on the basis o
a numerical solution of equations analogous to Eqs.~5!
and ~7!.

Expression~27! for the currentJc can also be obtained in
another way. First of all, note that the power delivered by
electrons to the field per period is equal to

Pc5aE
0

2p/v

Jc~ t !E~ t !dt

52
e2E2a2QG2d

4@~d1v!21G2#@~d2v!21G2#
. ~36!

On the other hand, it is possible to find the power fro
the balance of the number of electrons escaping the quan
well with energies«6v:

PT5v@~T11~a!2T21~a!!1~T11~0!2T21~0!!#, ~37!

whereTn(x) is the electron flux from the quantum well at th
pointsx50 andx5a with energies«6v.

Using these solutions forcn , we can show thatPT ex-
actly coincides withPc over the entire frequency interval~in
contrast to the situation in Ref. 12, where it coincides only
the limit v→0).

The currentJc can be expressed in another form

Jc5
e2Ea

4

J0~«1v!2J0~«2v!

2v
, ~38!

whereJ0(«) is given by formula~29!.
It is quite probable that, in view of its simplicity an

symmetry, formula~38! is also valid in more complicated
models of a resonant-tunneling diode.
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It is interesting that expression~38! has the same form a
the expression for the high-frequency current in a super
tice, obtained in Ref. 18. The latter describes the curr
arising due to resonant electron transitions between reso
levels in two neighboring quantum wells in the presence o
constant electric field. The current is caused by processe
momentum scattering on impurities, and also by energy
laxation from an excited level. The calculation employs t
method of the quantum kinetic equation without account
boundary effects.

Although in the present work we are considering
boundary-value problem of the Schro¨dinger equation with
open boundary conditions for one quantum well in the
herent approximation, the fact of the coincidence of the f
mulas is instructive and is an indication of the generality
expression~38!.

Let us now calculate the reactive component of the c
rent. Substituting expression~10! in Eqs.~4! and discarding
terms even invn , we find

Js
n~x!5ep$ i @Kn2c.c.#cos@~p2pn!x#

1@Fn1c.c.#sin@~p2pn!x#%, ~39!

whereKn andFn are given by formulas~24! and~16!–~20!.
It can be shown that the terms originating fromgn

(1) anddn
(1)

again drop out, and the remaining terms are proportiona
the combination

1

Dn
2

1

Dn*
5

2 iG~«2«R1nv!

2@~«2«R1nv!21G2#
, ~40!

i.e., the reactive currentJs is determined by the ‘‘detuning’’
of «2«R1nv, as it should be according to the theory
radiation.

Gathering results, we obtain for the reactive current

Js5
1

a E0

a

Js~x!dx

5
e2EaQGd~d22v223G2!v

4~d21G2!@~d2v!21G2#@~d1v!21G2#
. ~41!

In the low-frequency limit the currentJs exhibits an induc-
tive character in agreement with Refs. 3, 12, and 19 ifd2

,3G2:

J̃s5
4Js

e2EaQ
5

Gdv~d223G2!

~d21G2!3 . ~42!

For d2.3G2 a change of sign occurs~see Ref. 10!. If we
choosed in accordance with the condition of a quasireson
transition, then the currentJs preserves its inductive charac
ter over the entire frequency interval.

Expression~41! for the currentJs differs substantially
from the corresponding expression in Ref. 12, in particula
the limit v→0.

It is not hard to show that the currentsJs(v) andJc(v)
satisfy Kramers–Kronig relations:

Js~v!5
1

p E
2`

` dv8

v82v
Jc~v8!. ~43!
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This proves the consistency of the expressions forJs andJc

and argues in favor of their validity over the entire frequen
interval.

4. THRESHOLD CONDITIONS OF GENERATION
IN A RESONANT-TUNNELING DIODE

For the purpose of illustration, let us consider a simp
model where the equations for the field have the form~see
Ref. 16!

]E

]t
1

E

2t0
52

2p

x
Jc ,

]w

]t
E1

~v22V2!E

2v
52

2p

x
Js , ~44!

where t0 is the time characterizing losses in the resona
~circuit! with eigenfrequencyV andx is the dielectric con-
stant. KnowingJc(vd) and Js(vd), it is also possible to
analyze solutions for other circuits.

In the stationary case, after substitutingJc and Js from
formulas~27! and ~41!, we obtain equations forQth , d, and
v at the threshold of generation:

1

t0
5

Q̃thdG2

@~d2v!21G2#@~d1v!21G2#
, Q̃th5

pe2aQth

x
,

~45!

v22V2

2v
52

Q̃thGdv@d22v223G2#

2~d21G2!@~d1v!21G2#@~d2v!21G2#
.

~46!

Using relations~45!, we eliminateQ̃th from Eq. ~46!:

v22V252
v2~d22v223G2!S

d21G2 , S5
1

Gt0
, ~47!

whereS is the analog of the stabilization parameter in las
theory.20

We have obtained a biquadratic equation forv2, which
has the following solution:

v25
1

2 Fd21G2

S
1d223G2G

6A1

4 Fd21G2

S
1d223G2G2

2
~d21G2!V2

S
. ~48!

In the limit S!1 the generation frequency differs on
slightly from V:

v22V252
SV2~d22V223G2!

d21G2 . ~49!

In this case, substitutingv.V into the threshold condition
we obtain

1

t0
5

Q̃thdG2

@~d2V!21G2#@~d1V!21G2#
. ~50!

The optimal conditions of generation~i.e., maximum gain! at
the frequencyV can be found employing the analysis give
in Sec. 3. It follows from such an analysis that the val
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d5G/) is optimal at low frequenciesV!G. At high fre-
quencies, whenV@G holds, one should choose the biasd
.V.

In the reverse limiting caseS@1 it is not hard to obtain
from formula ~48!, dropping corrections;1/S,

v25d223G2, d2.3G2, ~51!

i.e., the frequency is determined by the energy differenc«
2«R in quasiresonant transitions. In the interval 0,S,`
the frequency is equal to the weighted mean value betw
V and d, in analogy with laser theory.20 The difference is
that in a resonant-tunneling diode the role of an energy
ference is played byd5«2«R .

All this supports our conclusion that a generator ba
on a resonant-tunneling diode is a quantum generator
radiative transitions near one resonant level.

If d2,3G2 holds, then the constraint

S,Sc5
d21G2

~V1AV213G22d2!2
~52!

is imposed on the parameterS. For the generation frequenc
at S5Sc we have

v25V~V1AV213G22d2!. ~53!

5. CONCLUSION

In the Introduction we noted that a significant number
theoretical work has already been devoted to the calcula
of polarization currents in the coherent approximation. It
convenient to divide them into work based on a numeri
solution of the Schro¨dinger equation7–11 or equations for the
Wigner function6 ~the first group! and analytical work~the
second group!. The results for the active component of th
currentJc are qualitatively similar in the frequency region u
to v'G: a weak dependence on the frequency in the inte
0!v!G followed by a falloff ~in absolute value! at v
;G. In the regionv.G either a change in sign of the cu
rent Jc or a rapid falloff of the negative current is predicte
Note that in these treatments the bias voltage~or energy of
the escaping electrons! was chosen to lie in the region o
maximum negative differential conductivity.

The situation with the reactive currentJs is much less
clear ~see, e.g., the detailed discussion in Refs. 3 and!.
Neither the frequency dependence, nor the dependenced,
nor the sign of the reactive currentJs agrees. It is hard to
determine the reason for this disagreement, especiall
treatments of the first group. Therefore, let us compare
results with treatments from the second group~analytical
studies!.

The most detailed and similar in their statement of
problem are Refs. 12~Liu! and 3~Liu and Sollner! ~see the
references in these two papers to previous work!. But the
approach used by Liu12 to solve the problem differs strongl
from ours. Liu12 does not find an explicit solution of th
Schrödinger equation in the region of the quantum well. H
writes the wave function at the collector boundary of t
well (x5a) in the form
en

f-

d
th

f
n

s
l

al

in
ur

e

c tr5$t0 exp~ ipx!1t11 exp~ ip11x2 ivt !

1t21 exp~ ip21x1 ivt !%exp~2 i«t !U, ~54!

U5expF in0q

v
sin~vt !G . ~55!

Here t0 ,t61 are the amplitudes of the transit of an electr
across the quantum well for zero and nonzero field~first
order in the variable field!, respectively. The amplitudes ar
found by summing the transmitted and reflected waves~the
Fabry–Perot model!. The potential of the interaction with th
field ~1! is taken to be constant over the small intervals in
which the quantum well is partitioned. It is also assumed t
emission occurs in the center of the well. Other approxim
tions are also made, in particular, with respect to the con
bution of the matrix elements. Thus, Liu12 uses a number o
approximations although his approach is quite general~e.g.,
in the form of the barriers, etc.!.

As was mentioned in Sec. 3, the expressions forJc and
Js obtained by Liu12 differ substantially from formulas~27!
and ~39!. In particular, ford5v Liu12 hasJc}21/v3 and
Jc}21/v ~see Ref. 35!, i.e., according to Liu12 generation at
high frequencies is practically impossible. The polarizati
currents Js differ strongly. In particular, expression~41!
changes sign with growth ofd or v in contrast to the analo
gous current in Ref. 12.

The amplitudes of the transit of the electron across
quantum wellt61 in Ref. 12 differ dramatically from our
c61(a):

uc61~a!u25ug6u25
~n0a!2G2

16~d21G2!@~d6v!21G2#
, ~56!

ut61u25S Vac

2v D 2 G2@~d6v/2!21G2#

~d21G2!@~d6v!21G2#
. ~57!

It should be emphasized thatut61u2}1/v2→`, v→0,
i.e., it diverges in the low-frequency limit. Finally, note th
the currentsJc andJs in Ref. 12 do not satisfy requirement
~25! and ~40! of the theory of radiation.

In Ref. 13 the polarization currents were found in ge
eral form for any field. Unfortunately, a derivation and an
lytical analysis of the expressions for the currents are co
pletely absent. In addition,Jc and Js do not satisfy
requirements~25! and ~40!. All this hinders a detailed com
parison of our results with the results of Ref. 13. Clos
expressions forJc and Js are not given in the remaining
treatments of the second group that are known to us.

Summing up our analysis of the work known to us a
our comparison of their results with ours, we may conclu
that the expressions for the currentsJc ~27! andJs ~39! are
well-founded and reliable. Indeed, they are based on an e
analytical solution of the boundary-value problem for t
Schrödinger equation and were reduced to simple expr
sions with a known degree of accuracy. These express
satisfy the Kramers–Kronig relations~43! and the require-
ments of the theory of radiation~25!, ~40!, were confirmed
by an independent derivation from the conditions of balan
~37!, are expressed in a universal form~38!, and have the
correct low-frequency classical limit~28!. On the basis of
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Eqs. ~27! and ~35! it may be concluded that the widthG is
not a limiting frequency. Of course, for a detailed descript
of a particular experiment it would be necessary to take i
account the specific details of the structure of the reson
tunneling diode, charge accumulation effects, and other p
nomena.
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A new discrete model of coagulation, which is a discrete analog of the Oort–van de Hulst–
Safronov equation, is derived. It is shown that the familiar version, in contrast with
Smoluchowski’s equation, can be used to calculate the propagation of a coagulation front. The
relationship between compliance to the mass conservation law and the finite nature of the
coagulation front is established, and then estimates of the time of violation of the mass
conservation law are made for several classes of coagulation kernels. One of the
conclusions is that the mass conservation law can be violated in cases where particles of roughly
equal mass cannot coagulate, as occurs, for example, in gravitational coagulation. Estimates
of the time for the appearance of structural instability of the system are made for multiplicative
coagulation kernels. ©1999 American Institute of Physics.@S1063-7761~99!02608-6#
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1. PRELIMINARY REMARKS

Let us consider disperse systems containing parti
having different masses, which undergo collisions that le
to changes in their masses. It is usually assumed that co
lation can be regarded as the fusion of two colliding p
ticles. On the basis of this assumption we write Smo
chowski’s equation:1,2

dci

dt
5

1

2 (
j 51

i 21

Ki 2 j , j ci 2 j cj2ci (
j 51

`

Ki , j cj . ~1!

In its continuous form Eq.~1! is written as3

]c~x,t !

]t
5

1

2E0

x

K~x2y,y!c~x2y,t !c~y,t ! dy

2c~x,t !E
0

`

K~x,y!c~y,t ! dy. ~2!

However, there is another continuous coagulation mo
viz., the Oort–van de Hulst model,4 which was written in a
convenient form by Safronov.5 This model is used in as
tronomy to analyze cosmological objects~the formation of
stars and planets, the evolution of nebulae, galaxies, clo
of cosmic dust, etc.!,4–7 in geophysics,8–12 and in technical
apparatus.9,13

In this paper we derive a new discrete coagulation eq
tion and prove that it is a discrete analog of the Oort–van
Hulst–Safronov coagulation equation~Sec. 3!. Since some
mathematical properties of the two fundamental coagula
models are different, they can be regarded as complemen
one another. New results on the kinetics of coagulation
then be obtained.

As an example of such complementation, we calcul
the coagulation front velocity, which is the rate of displac
ment of the boundary of nonzero values of the distribut
function. Such calculations are possible only with the use
the Oort–van de Hulst–Safronov equation.
3841063-7761/99/89(8)/7/$15.00
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We note further that violation of the mass conservat
law occurs during intense coagulation at the time when
coagulation front escapes to infinity for finite initial dat
This observation allows us to reveal several new classe
coagulation kernels that lead to violation of the mass con
vation law. Estimates of the time for violation of the ma
conservation law in a disperse systems are made for m
plicative coagulation kernels of the formK(x,y)5xaya

(a.1). It is concluded that the conservation of mass can
violated in cases where particles of roughly equal mass c
not coagulate, as occurs, for example, during gravitatio
coagulation.

We note that the term ‘‘violation of the mass conserv
tion law,’’ which is generally accepted in the mathematic
literature on coagulation, does not precisely reflect the ph
cal essence of the phenomenon. In fact, no violation of
mass conservation law occurs~the system is closed every
where!!, and all the mass~or part of it! is assembled in a
single, infinitely large cluster and, thereby, ceases to par
pate in the coagulation kinetics. In percolation theory this
called the percolation transition, in polymerization theory
is called the gel point, in astrophysics it is called collap
etc.

2. DISCRETE MODEL OF COAGULATION

Let us consider a disperse system which has the follo
ing properties:

1! the system is rarefied enough to presume that the
teracting particles do not experience the effects of other p
ticles;

2! the mean collision time~a microscopic time! is sig-
nificantly smaller than the time for variation of the distrib
tion function;

3! there are random forces which stir the disperse sys
so that the motions of the particles between collision a
~including their approach! are statistically independent;
© 1999 American Institute of Physics
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4! the masses~volumes! of all the particles are propor
tional to a certainm0.0.

Let the particles grow as a result of collisions betwe
pairs of particles with the massesim0 and jm0 ~here and
below, to fix ideas we assume thati> j ). Particles with the
massesim0 are calledi-mers, andm0 is the mass of the
smallest particles in the system.

We assume that a collision of ani-mer and aj-mer leads
to splitting of the smallerj-mer into j monomers, which in-
stantaneously attach themselves toi-mers. Thus, as a resu
of one collision event we have (i 11)-mers~the number of
them equalsj ), and thej-mer disappears.

From balance considerations we obtain the kinetic mo

dci~ t !

dt
5ci 21~ t !(

j 51

i 21

Ki 21,j jc j~ t !2ci~ t !(
j 51

i

Ki , j jc j~ t !

2(
j 5 i

`

Ki , j ci~ t !cj~ t !, i>1, ~3!

whereci(t) is the concentration ofi-mers at the timet, Ki , j

( iÞ j ) is, as always, the coagulation kernel, which charac
izes the frequency of the collisions betweeni-mers and
j-mers. The value ofKi ,i is equal to half of the frequency o
collisions between particles with the massi. This is due to
the twofold decrease in the number of these particles in
pairs when they interact.

The first term on the right-hand side of~3! gives the
influx of i-mers into the disperse system due to the collisio
of ( i 21)-mers and monomers which appear as a resul
the splitting of aj-mer. If i 51, this term is set equal to zero
The second term describes the decrease in the numb
i-mers as a result of the fusion of monomers with them. T
multiplier j in the first and second terms shows thatj mono-
mers participate in a single collision event. The third te
describes the decrease in the number ofi-mers as a result o
their splitting.

If we supplement Eq.~3! with the nonnegative initial
dataci(0), we seethat its solutions will also be nonnegativ
In fact, we can write~3! in the integral form

ci~ t !5expH 2E
0

tS (
j 51

i

Ki , j jc j~s!1(
j 5 i

`

Ki , j cj~s!D dsJ
3S ci~0!1E

0

t

expH E
0

sF (
j 51

i

Ki , j jc j~s1!

1(
j 5 i

`

Ki , j cj~s1!Gds1J
3Fci 21~s!(

j 51

i 21

Ki 21,j jc j~s!GdsD . ~4!

If the initial dataci(0) are strictly positive, for a truncate
coagulation kernelKm, j50, (m, j >N0) we easily obtain
positiveness of theci(t) for all i>1, t.0 by assuming tha
we find a timet0 and a numberi 0 such thatci 0

(t0)50, in
contradiction to~4!. If the initial data are not strictly positive
we approximate them by positive initial data and obtain n
n

el

r-

e

s
of

of
e

-

negativeness of the solution by going to the limit. The
arguments are similar to Refs. 14 and 15. Nonnegativen
of the solution for untruncated coagulation kernels can
obtained along with a solution existence theorem by appro
matingKm, j by a sequence of finite kernels, which generat
sequence of nonnegative solutions~4!, and then the transition
to the limit, i.e., to the solution~4!, is made.

Let us verify whether Eq.~3! obeys the mass conserva
tion law

N15
def

(
i 51

`

ic i~ t !5const. ~5!

For this purpose, we multiply~3! by i and sum it over the
range 1< i<`. We then obtain

dN1

dt
5(

i 51

`

(
j 51

i 21

i jK i 21,j ci 21cj

2(
i 51

`

(
j 51

i

i jK i , j cicj2(
i 51

`

(
j 5 i

`

iK i , j cicj .

In the third term we interchanged the order of summat
and summed over( j 51

` ( i 51
j . Then in the second and thir

terms we separate the components withj 5 i and make the
replacementi 5 i 81 j 8, j 5 j 8. We then obtain

dN1

dt
5(

i 51

`

(
j 51

`

~ i 1 j ! jK i 1 j 21,j ci 1 j 21cj

2(
i 51

`

(
j 51

`

~ i 1 j ! jK i 1 j , j ci 1 j cj

2(
i 51

`

i ~ i 11!Ki ,ici
22(

i 51

`

(
j 51

`

jK i 1 j , j ci 1 j cj .

After several replacements of the typei ° i 11, we have
zero, and we thus obtain the mass conservation law.

3. TRANSITION TO THE OORT–VAN DE HULST–SAFRONOV
EQUATION

An important observation is that the transition to t
limit m0→0 in ~3! gives the familiar continuous coagulatio
model

]c~x,t !

]t
52

]

]x Fc~x,t !E
0

x

yK~x,y!c~y,t ! dyG
2E

x

`

K~x,y!c~x,t !c~y,t ! dy. ~6!

In fact, to obtain the continuous form of Eq.~3! we introduce
the distribution functionc(x,t), which describes the distri
bution of the particles of massx at the timet, i.e., c(x,t) dx
is equal to the number of particles with masses in the inte
(x,x1dx) at the timet. The mass of thei-mers equalsim0 ;
therefore,ci(t)5c( im0 ,t)m0 . SinceKi , j5K( im0 , jm0), we
have

Ki , j ci~ t !cj~ t !5K~ im0 , jm0!c~ im0 ,t !c~ jm0 ,t !m0
2 .

Therefore, making the replacementx5 im0 , we obtain
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]c~x,t !

]t
52

1

m0
Fc~x,t ! (

j 51

x/m0

K~x, jm0!c~ jm0 ,t ! jm02c~x

2m0 ,t ! (
j 51

x/m021

K~x2m0 , jm0!c~ jm0 ,t ! jm0Gm0

2c~x,t !(
j 5 i

`

K~x, jm0!c~ jm0 ,t !m0 .

Since these sums are simply Darboux integral sums, we
off to the limit m0→0 and obtain~6!. Equation ~6! was
derived by Oort and van de Hulst using totally differe
methods4 and was written in the form~6! by Safronov.5

Thus, it turns out that Eq.~6! is a continuous form of the new
discrete equation~3!. It is noteworthy that heretofore ther
were no discrete analogs of Eq.~6!. Continuous limiting
equations are usually derived from their discrete analogs
an example we can point to Smoluchowski’s equation, wh
was first obtained in the discrete form~1! ~Refs. 1 and 2! and
whose continuous form~2! was derived by Mu¨ller.3 Another,
more recent example can be found in Ref. 16, where b
Avraham et al. first derived a discrete monomer-monom
model of heterogeneous catalysis and then went over to
limiting equation in a continuous form. We also mentio
Refs. 17–19 in this connection. In addition, we note th
other approaches to the derivation of coagulation models
possible.20

Several arguments, which have something in comm
with our derivation of Eq.~3!, can be found in Ref. 13
~p. 131!, where Vaseninet al.noted the relationship betwee
~6! and the following process:l particles of massx interact
with smaller particles of massm/ l (m,x) during the time
Dt. This relationship was derived by expanding several fu
tions into series and ‘‘truncating’’ these series witho
proper justification@compare with Refs. 8~p. 45! and 9
~p. 154!#.

The Oort–van de Hulst–Safronov equation~6! can be
regarded as a model of continuous growth.5,9 In fact, if we
assume that all particles grow as a result of the attachme
smaller particles, the first integral on the right-hand side
~6! equalsdx/dt and the entire first term is simply the varia
tion of c(x,t) as a result of the addition of particles wit
massesy (y,x). Thus, Eq.~6! without its last term is a
one-dimensional continuity equation with a ‘‘density
c(x,t) and a ‘‘velocity’’ dx/dt. The second term in~6! cor-
responds to the escape of particles of massx as a result of
their ‘‘sedimentation’’ on larger particles. Thus, a partic
retains its ‘‘individuality’’ in collisions with smaller par-
ticles, but loses it in collisions with larger particles. In oth
words, collisions of particles of massx with smaller particles
alter the massx of the particles, and collisions with large
particles alter the number of particles with the massx. This
procedure gives an averaged and smoothed growth rate
all particles of a definite radius.

It is noteworthy that Eq.~6! was applied in Refs. 6 and
to an investigation of the evolution of various cosmologic
objects. A similar approach to coagulational growth invo
ing a small number of identical large droplets descend
go
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through a randomly distributed suspension of smaller dr
lets was used to calculate coagulation processes in a
spheric clouds by Telford,10 who solved the Oort–van de
Hulst–Safronov equation~6! without the second term on th
right-hand side. It was shown numerically and analytically
more recent studies reported in Refs. 11 and 12, respectiv
that the method in Ref. 10@and, therefore, Eq.~6!# gives
results which are similar to the more familiar Smoluchows
kinetic approach. It was also pointed out in Refs. 9 and
that Eq.~6! is also useful for investigating processes in tec
nical apparatus which use two-phase media~in nozzles and
engines!.

4. PROPAGATION OF DISTURBANCES

One significant difference between the coagulation m
els under consideration is the fact that, in contrast with
Oort–van de Hulst–Safronov equation~6!, Smoluchowski’s
equation~2! propagates disturbances with infinite velocit
In order to demonstrate this point, we setK[1 and supple-
ment Eq. ~2! with the finite initial datac0(x)5u(12x),
where the step functionu(x) equals unity atx>0 and zero at
x,0. Our purpose is to show that at any positive time,
matter how small, a distribution function which obey
Eq. ~2! becomes nonzero at all values of the argumentx, no
matter how large.

Using the Laplace transformation, we obtain the follo
ing expression for the Laplace transformF(p,t):

F~p,t !5
4~12e2p!

~21t !@p~21t !1t exp~2p!2t#
.

To find the original function we locate the singular points
F(p,t) on the complex plane of the variablep5a1 ib,
(a,bPR1). Introducing the notation

21t

t
5a.1,

we obtain the system of equations

H aa512e2a cosb,

ab5e2a sinb,

from which we have

a5
1

a
2b cotb, ae1/ab5ebcot b sinb.

Therefore, the singular points are atpn5an1 ibn :

bn52pn1«n , b2n522pn2«n , n>1,

an5a2n5
1

a
2bn cotbn,0, n>1,

«n.0, «n→0, n→`.

We note that

«n;
2pn

ln~2pn/e!1 ln a
, n>1,

bn cotbn5b2n cotb2n;11
2pn

«n
,
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an;
1

a
2 ln a2 ln~2pn!.

Let us ascertain the types of singularities atpn . For this
purpose we find the limit

lim
p→pn

~p2pn!C~p,t !5
4~12e2pn!

~21t !t
lim

p→pn

p2pn

ap1e2p21
.

We examine this limit in greater detail:

lim
p→pn

p2pn

ap1e2p21

5 lim
p→pn

p2pn

a~p2pn!1apn1e2(p2pn)e2pn21

5
1

a2e2pn
Þ0. ~7!
ue

in

fi
e

th
To obtain the second equality we took into account t
apn211e2pn50 and used the expansion ofe2(p2pn) into a
series inp2pn . Therefore, the pointspn are first-order poles
of F(p,t). This allows us to easily determine the residues
epxF(p,t) at these points from Eq.~7! and to write the solu-
tion of Eq. ~2! in the form

c~x,t !5 (
n52`

1`

epnx
4~12e2pn!

~21t !t~a2e2pn!

5
4

~21t !t (
n51

` Fepnx~12e2pn!

a2e2pn

1
ep2nx~12e2p2n!

a2e2p2n
G .

Performing the replacementspn5an12p in1 i«n and
p2n5an22p in2 i«n , we ultimately obtain
c~x,t !5
4

~21t !t (
n51

`

eanxFeibnx~12e2ane2 i«n!

a2e2ane2 i«n
1

e2 ibnx~12e2anei«n!

a2e2anei«n
G5

8

~21t !

3 (
n51

` H ean(x11)
@~21t !ean2t cos«n#cos~bnx!1t sin«n sin~bnx!

~21t !2e2an22t~21t !ean cos«n1t2

2eanx
@~21t !ean2t cos«n#cos~bn~x21!!1t sin«n sin~bn~x21!!

~21t !2e2an22t~21t !ean cos«n1t2 J . ~8!
c

cter-
Thus, even if the initial data are equal to zero atx>1,
the solution instantaneously becomes positive for all val
of x, no matter how large. In fact, if a timet0.0 and an
interval @x1 ,x2#, which are such thatc(x,t0)50 in the in-
terval would be found, the expansion of this zero function
the basis set1!

eanx cos~bnx!,eanx sin~bnx!, n>1, ~9!

would give zero coefficients, in contradiction to~8!.
Therefore, a nonzero initial value propagates with in

nite velocity. This deficiency is similar, for example, to th
behavior of the thermal-conductivity equation and ma
ematically means that Eqs.~1! and ~2! have parabolic prop-
erties.

In contrast with Smoluchowski’s equation, Eq.~6! does
not have such a deficiency. In fact, we can rewrite~6! in the
form

]c~x,t !

]t
1v~x,t !

]c~x,t !

]x

52c~x,t !S E
0

x

y]1K~x,y!c~y,t ! dyD 2xK~x,x!c2~x,t !

2c~x,t !E
x

`

K~x,y!c~y,t ! dy, ~10!
s

-

-

where

v~x,t !5E
0

x

yK~x,y!c~y,t ! dy

and]1K(x,y) denotes the differentiation ofK with respect to
the first argument. Letx(s) be a solution of the characteristi
equationdx/dt5v(x,t). Then, the substitution of

c~x,t !5expH 2E
0

tFK~x~s!,x~s!!c~x~s!,s!x~s!

2E
0

x(s)

y]1K~x~s!,y!c~y,s! dy

2E
x(s)

`

K~x~s!,y!c~y,s!dyGdsJ u~x,t ! ~11!

gives

]u~x,t !

]t
1v~x,t !

]u~x,t !

]x
50. ~12!

From ~11! we see that the functionsc(x,t) and u(x,t) are
equal or not equal to zero at the same points. The chara
istic equation for~10! and ~12! has the form
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dx

dt
5v~x,t !. ~13!

We conclude from the simple equation~12! that if c0(x1)
50, thenc(x1 ,t) becomes positive not earlier thant1 , when
the first characteristic curvex(s) with a nonzero initial value
x0 reachesx1 .

Thus, Eq.~6! imposes a physically reasonable bound
the propagation rate of disturbances and thereby permits
culation of the coagulation front.2! Mathematically, this
means that Eq.~6! has definite hyperbolic properties.

5. VIOLATION OF THE MASS CONSERVATION LAW FOR
K „x ,y …5„xy …a

Using the arguments of the previous section, we c
estimate the coagulation front in several cases. Letc0(x)
50 if x>x0 . Then, the characteristic curve originating fro
x0 divides the plane into two parts so thatc(x,t)50 if the
point (x,t) is to the right of the curve. We call this chara
teristic curve the cutoff characteristic or the coagulat
front. From Eq.~13!, which describes the characteristics, w
see that the coagulation front satisfies the equation

dx

dt
5E

0

x

yK~x,y!c~y,t ! dy5E
0

`

yK~x,y!c~y,t ! dy ~14!

with the initial valuex(0)5x0 .
Therefore, ifK(x,y)5C5const, then

x~ t !5x01CN1t, ~15!

whereN1 is the constant first moment of the solution.
Similarly, it can be shown for an additive coagulatio

kernel @i.e., for K(x,y)5(x1y)] that the expression for the
coagulation front has the form

x~ t !5exp~N1t !$x01N2~0!t%, ~16!

so that the coagulation front moves faster in the case of
ditive coagulation kernels than in the case of constant k
nels, as is perfectly natural.

Let us estimate the coagulation front for the multiplic
tive kernelK(x,y)5xy. From ~14! we see that

x~ t !5x0 expS E
0

t

N2~s! dsD .

For the Smoluchowski equation~2! we obtain unbound-
edness of the second momentN2(t) at the critical time
tcr5@N2(0)#21:

N2~ t !5N2~0!~12N2~0!t !21.

We utilize the relations

E
0

`E
0

x

xkykc~x!c~y!dy dx5
1

2 S E
0

`

xkc~x! dxD 2

,

E
x

`

ykc~y!dy<
1

x E
x

`

yk11c~y! dy.

When they are taken into account, we also obtain unbou
edness of the second moment for the multiplicative ker
K(x,y)5xy in the Oort–van de Hulst–Safronov model:
al-

n

d-
r-

d-
l

N2~0!

12N2~0!t/2
<N2~ t !<

N2~0!

12N2~0!t
.

In this case@N2(0)#21<tcr<2@N2(0)#21.
Thus, it can be seen that the coagulation front escape

infinity when t→tcr .
Let us turn our attention to another effect of the infl

ence of an increase without bound, viz., violation of the m
conservation law at the same critical timetcr . As has been
reported, for the Smoluchowski equation~2! this effect is
caused by the escape of the second momentN2 of the solu-
tion to infinity ~see, for example, Refs. 14 and 21–26!. Thus,
it turns out that the escape of the coagulation front to infin
signifies violation of the mass conservation law. This obs
vation permits establishment of violation of the mass cons
vation law for several other coagulation kernels, which we
not previously open to analysis.

Let us consider the kernelsK(x,y)5xaya (a.1). We
estimate the time for the appearance of structural instab
of the system, at which violation of the mass conservat
law occurs. Solving Eq.~14! with these kernels, we obtain

xa215H 1

x0
a21

2~a21!E
0

t

N11a~s! dsJ 21

. ~17!

Here, as usual,Nk(t) denotes thekth moment of the distri-
bution function. From~17! we see that the coagulation fron
escapes to infinity just as the (a11)th moment of the solu-
tion becomes infinite. Let us estimateN11a(t). For this pur-
pose we integrate~2! with the weightxk:

Nk~ t !

dt
5

1

2E0

`E
0

`

K~x,y!@~x1y!k

2xk2yk#c~x,t !c~y,t ! dx dy. ~18!

We use the following inequality, whose proof can be fou
in the Appendix:

~x1y!g2xg2yg>~2g22!xg/2yg/2, g>2, x,y>0.
~19!

Then, fork5g511a we obtain

dN11a

dt
>~2a21!N(113a)/2

2 >~2a21!N11a
2 ~ t !, t>0.

~20!

It follows from ~20! that the escape of the coagulation fro
to infinity together with the violation of the mass conserv
tion law occur in the system no later than the time

t15@~2a21!N11a~0!#21,

when N11a equals infinity. It also follows from~20! that
N11a andN(113a)/2 go to infinity simultaneously. Applying
the inequality~19! n times and substituting the result int
~18! each time, we obtain

d

dt
N 11(2n21)a

2n21
> S 2

11(2n21)a

2n21 21
21DN 11(2n1121)a

2n

,

n>1, t>0.
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All the integral moments in this hierarchy become infinite
large simultaneously. Allowingn to tend to infinity,

lim
n→`

11~2n1121!a

2n
52a,

we find that violation of the mass conservation law occ
just asN2a goes to infinity. Let us, therefore, estimateN2a .
We substitutek52a into ~18! and use the inequality~19!
again:

dN2a~ t !

dt
>~22a2121!N2a

2 ~ t !, t>0.

Thus,

tcr<@~22a2121!N2a~0!#21, ~21!

where tcr is the critical moment for violation of the mas
conservation law of the system.

We note that a result which is reasonable from the ph
cal standpoint was obtained in~21!: the smaller is the fre-
quency of fusion of large particles~the smaller isa), the
later the mass conservation law is violated. Whena51, the
estimate~21! becomes the familiar expression

tcr5@N2~0!#21

for K(x,y)5xy.

6. VIOLATION OF THE MASS CONSERVATION LAW FOR
OTHER COAGULATION KERNELS

Here we develop the approach from the previous sec
to estimate the time the conservation law is violated for
following coagulation kernels:

K~x,y!5H a~x!b~y!, x>y,

a~y!b~x!, x<y.
~22!

The equation of the characteristic originating from the ma
mum pointx0 , at which the finite initial data are equal t
zero, then takes the form

dx

dt
5a~x!E

0

`

yb~y!c~y,t ! dy,

so that

E
x0

x dx

a~x!
5E

0

tE
0

`

yb~y!c~y,s! dy ds. ~23!

Therefore, if

E
0

` dx

a~x!
,`, ~24!

we can find the finite critical timetcr,`, at which the co-
agulation frontx(t) escapes to infinity, signifying, as wa
shown in the preceding section on a phenomenological le
of rigorousness, the occurrence of violation of the mass c
servation law of the system.

If the functiona(x) is fairly small and does not satisf
the inequality~24!, we can conclude from~23! that the criti-
cal time corresponds to the moment the right-hand side
s

i-

n
e

-

el
n-

of

~23! becomes infinite. For example, forb(x)5xb the critical
time corresponds to the time the (11b)th moment of the
solutionN11b(t) goes to infinity.

An important conclusion drawn from these observatio
is that if the inequality~24! is satisfied, a critical time ap
pears for anyb(x). For example, if

a~x!5x11«, «.0, b~x!5exp~2x!,

then

K~x,x!5x11« exp~2x!→0, x→`.

Nevertheless, the mass conservation law is violated. All
previously known kernels, which allow violation of the ma
conservation law, took their dominant values at equal ar
ments, i.e.,K(x,x)>K(x2y,y) (0<y<x). In this case
K(x,x)→` asx→`. Therefore, the nature of the violatio
of the conservation law is not confined to the intense coa
lation of particles of roughly equal mass. This observation
important in the analysis of, for example, gravitational c
agulation, where particles of equal mass do not coagulat

7. CONCLUSIONS

A new discrete model of coagulation, which is a discre
analog of the previously known continuous Oort–van
Hulst–Safronov equation has been obtained.

If the coagulation kernelK(x,y) grows fairly slowly, the
mass conservation law is valid for all the types of coagu
tion described. A particle dissipation law also holds.
usual, variation of the integrandK(x,y)c(x)c(y) by
K(x,y)c(x)c(y)2F(x,y)c(x1y) leads to allowance for
splitting processes.

It has been shown that Smoluchowski’s equation pro
gates disturbances with infinite velocity. This deficiency
not displayed by the Oort–van de Hulst–Safronov equati
which can, therefore, be used to estimate the velocity of
coagulation front, as we have demonstrated in several ca

Finally, we have established that the coagulation fro
escapes to infinity at the same critical time the violation
the mass conservation law occurs. This observation allow
to calculate the appearance of violation of the mass con
vation law for a number of important classes of kernels.
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V. P. Shutyaev for interest in this work and for some use
discussions.
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APPENDIX

Binomial inequality

Let us prove the binomial inequality~19!, which was
used in Sec. 5:

~x1y!g2xg2yg>~2g22!xg/2yg/2, g>2, x,y>0.

We note at once that it also holds for 0<g<1 and that it
changes sign forg<0 and for 1<g<2.
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We introduce the notationx5ty and assume, with no
loss of generality, thatx>y. We can then write~19! in the
form

r ~g,t !5
def

~11t !g212tg2~2g22!tg/2>0,

g>2, t>1. ~A1!

We note that

r ~g,1![0, r t8~g,1![0, g>2. ~A2!

Differentiating ~A1! twice, we obtain

r tt9 ~g,t !5g~g21!@~11t !g222tg22#

2
1

2
g~g22!~2g2121!t (g24)/2. ~A3!

We thus see thatr tt9 (g,1) is positive forgP@2,̀ ). We shall
show thatr tt9 increases as a function oft if gP@2,̀ ).

We first consider the intervalgP@3,4#. Then, ast in-
creases, the expression in the square brackets in~A3! in-
creases, and the subtrahend on the right-hand side of~A3!
decreases. Therefore, the second derivativer tt9 is positive if
tP@1,̀ ) andgP@3,4#, and thus, by virtue of~A2!, we es-
tablish thatr (g,t)>0 at t>1 for gP@3,4#.

To prove thatr tt9 increases witht if g>4, we consider
the derivative

r ttt- 5g~g21!~g22!@~11t !g232tg23#

2
1

4
g~g22!~g24!~2g2121!t (g26)/2. ~A4!

The expression in square brackets in~A4! increases with
increasingt if g.4, and the subtrahend does not increas
g<6. Therefore, the statement thatr increases witht is also
valid for gP@4,6#.

Similarly, differentiating ~A4! the required number o
times, we find

r ~g,t !>0, gP@3,̀ !, tP@1,̀ !. ~A5!

Now, let us consider the half-intervalgP@2,3), in which
r tt9 decreases as a function oft. We can show, however, tha
it remains positive. It follows from~A3! that a sufficient
condition in this case is the inequality

v~g,t !5
def

~11t !g22t22g/22tg/2>
g22

2~g21!
~2g2121!,

gP@2,3!, tP@1,̀ !. ~A6!

It is clear that~A6! is valid at t51. We can see that th
derivativev t8(g,t) at t>1 is nonnegative by making the re
placementu5t21 (t>1). Thus,
if

v t8~g,t !>0, t>1, gP@2,3!. ~A7!

The inequality~19! follows from ~A5! and ~A7!.

* !E-mail: dubovski@inm.ras.ru
1!More precisely, we are referring to the basis set obtained from~9! by

adding a constant and all the possible products of the elements in~9!,
which, on the basis of the Stone–Weierstrass theorem, generates an
bra that is dense everywhere in each compact from@x0 ,`).

2!We recall that we define the coagulation front as the displacement of
boundary of nonzero values of the distribution function.
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