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Abstract—The angular distributions of secondary pions, protons, and deuterons originating from π–Pb inter-
actions at an incident-pion momentum of 5 GeV/c was determined in a new run of measurements relying on
track reconstruction. While showing a decrease over a large angular interval with increasing emission angle, the
yield of cumulative particles of each species was found to be anomalously large near the backward direction.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In hadron–nucleus collisions, the yield of cumula-
tive particles as a function of the laboratory emission
angle θ was originally measured in [1, 2]. While slowly
decreasing with increasing θ on a broad angular scale,
this yield was found to be irregular at the largest values
of θ and, in particular, to be enhanced near θ = 180°.
Moreover, the observation of dips near 170° in the θ
distributions of secondary protons, deuterons, pions,
and tritons from deuteron–nucleus collisions at
8.9 GeV/c was claimed in [1]. Later on, this result was
disproved by the same group in [3], but, from the data
presented there for the yields of secondary 500-MeV/c
protons emitted in collisions of primary 8.9-GeV/c pro-
tons with Pb nuclei, it follows that there are some irreg-
ularities in the behavior of the relevant cross sections in
the angular range 150°–180°; in particular, an enhance-
ment was observed near 180°.

Still later, our group performed measurements of the
angular distributions of cumulative particles originat-
ing from the reactions

induced by 4.5- and 7.5-GeV/c protons and by 1.5-,
3.0-, and 5.0-GeV/c pions [4]. Irregularities in the
range of laboratory emission angles between 170° and
180° were observed under various conditions—in par-
ticular, at a projectile-proton momentum of 4.5 GeV/c
and at a projectile-pion momentum of 5.0 GeV/c, in
which cases the angular distributions of secondaries
showed 2°-wide dips at θ = 172°, the position of the
dips being independent of the type and energy of
detected secondaries.

That the dip at θ = 172° was unusually narrow and
that other large-θ irregularities, including some evi-
dence for the presence of a maximum in the angular

p π–( ) A C Pb,( ) h p d π, ,( ) X+ +
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range 160°–170°, were established at the limit of the
statistical accuracy of the measurements prompted us
to conduct the above experiment anew. For projectiles,
we chose 5-GeV/c negative pions in order to reproduce
experimental conditions under which the dip at θ =
172° showed up previously [4] in the most spectacular
way. In addition, the angular interval scanned in detail
was extended here to become 161°–178°. In the new
experiment, special attention was given to the geomet-
ric reconstruction of the tracks of projectiles and of
ejectiles traveling in the backward direction and to the
on-line monitoring of the local efficiency of the track-
ing system.

2. DESCRIPTION OF THE DETECTOR

The layout of the apparatus is illustrated in Fig. 1a.
Beam particles were detected by counters S1, S2, and
S3. Pulses generated by the scintillation counters S1
and S2 and corrected for geometric effects by a dedi-
cated compensating circuit of the counters provided a
zero point for time-of-flight measurements. For inci-
dent particles that should trigger the detector, the beam
spot was effectively restricted by the self-quenched
streamer counter S3 of transverse area 36 × 36 mm2.
Triggering by beam particles that failed to interact in a
target T was prohibited by the downstream counter S4,
which operated in anticoincidence with S1 and S2. The
track of a beam particle upstream of the target was
reconstructed by using signals from two-coordinate
wire chambers WC1–WC7, which had a fiducial area
of 200 × 200 mm2 each and a wire pitch of 2 mm and
which operated in the limited-streamer mode. We
employed a lead target T of thickness d = 1 g/cm2 ori-
ented orthogonal to the beam axis. Secondaries emitted
in the backward hemisphere traversed the wire cham-
bers WC5–WC7 and were recorded by a nonmagnetic
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Fig. 1. Layout of the detector. The notation used in this figure is explained in the main body of the text.
hadron spectrometer (NHS) [5] formed by a system of
counters (referred to as Z counters) measuring the had-
ron time of flight and ionization losses in a thick scin-
tillator. The configuration of Z counters in the plane
orthogonal to the beam axis is shown in Fig. 1b.

The beam was focused in the region of the Z
counters rather than on the target, whereby spurious
actuations by beam-halo particles hitting the Z counters
were suppressed; this also increased effectively the
beam spot on the target. That the beam spot on the tar-
get was relatively large (about 5 cm in diameter)
resulted in the averaging of local fluctuations of coordi-
nate-chamber efficiencies, since secondaries with a
given value of θ traversed different areas of the wire
chambers. The dead time of the data-acquisition system
was negligibly small because of a relatively low inten-
sity of the incident beam (105 particles per second). The
defocusing of the beam also contributed to reducing the
dead time of the wire chambers to some 1%. For a
beam-position monitor P, we used a two-coordinate
wire chamber that operated in the proportional mode.

In order to detect hadrons traveling backward
toward the counters Z1–Z4 of the nonmagnetic spec-
trometer, the wire chambers WC5–WC7 were dis-
placed from the beam axis, as is shown in Fig. 1a. That
the counters subtended overlapping areas of the emis-
sion angle allowed us to monitor the efficiencies of the
wire chambers and to estimate the systematic experi-
mental errors arising from the inefficiencies of the wire
chambers and Z counters. The detector was triggered
by coincident actuations of the beam counters S1–S3
and of at least one Z counter. Backward-going second-
aries were identified by the time of flight between the
target and the hit Z counter and by the energy deposi-
tion in the 20-cm-thick scintillator of the counter, and
their emission angles were reconstructed in the wire
chambers with a mean precision of 0.3°. Secondaries
traveling at small angles in the forward hemisphere
were detected by the downstream wire chambers WC8–
WC10 in coincidence with the backward-going sec-
ondaries detected by the upstream chambers WC5–
WC7. These downstream chambers also allowed us to
identify the tracks of extra beam particles that had not
interacted in the target.

3. DATA PROCESSING

For a physical analysis, we selected those events that
featured a beam particle and a backward-going second-
ary that satisfied the following conditions: the former
was detected in at least eight of the 14 wire planes of the
chambers WC1–WC7 and hit the target, while the latter
was detected in at least four planes of the chambers
WC5–WC7 and actuated a Z counter. Events that fea-
tured extra beam tracks—there were about 10% such
events—were rejected. (The only beam track in an event
was reconstructed with the aid of seven two-coordinate
chambers WC1–WC7.) Likewise, an event was dropped
if at least one of the points where the (single) beam par-
ticle intersected a wire-chamber plane fell beyond four
standard deviations from the fitted track.

The position of a collision vertex was determined as
the intersection of a fitted beam track and the thin tar-
get. By using the coordinates of a hit in the wire cham-
bers WC5–WC7 beyond the beam track, the tangent of
the angle between the radius vector from the collision
vertex in the target to the point of the hit in question and
the beam-track direction could be estimated in each
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 2      2000



        

OBSERVATION OF AN ANOMALY IN THE ANGULAR DISTRIBUTION 147

                                      
projection. If two hits in different wire planes corre-
sponded to compatible tangent values in the same pro-
jection (compatible angles indicating that the hit points
form a straight line with the projected collision vertex),
these hits were thought to be due to a backward-going
secondary. If such candidates for a backward-going
particle were found in the orthogonal planes of wires
and if the track reconstructed on the basis of the above
hits intersected an actuated Z counter, the correspond-
ing event was included in a further analysis.

The above procedure for an interaction-point deter-
mination followed by a reconstruction of the track of a
backward-going secondary proved to be more viable
than the alternative strategy of reconstructing a beam-
particle track and the track of a backward-going sec-
ondary and then matching these tracks with a common
vertex required to lie within the target. The point is that,
in practice, the latter procedure was extremely time-
consuming because, in that case, it was necessary to
sample a large number of true and spurious tracks
reconstructed on the basis of hits in two of the three
wire planes for each projection, the situation being
impaired by fluctuations in the coordinate chambers. In
contrast to this, a determination of the collision vertex
in the adopted approach immediately singled out a rel-
atively narrow corridor between the collision vertex
and an actuated Z counter, and it was this corridor
where we considered the hits of a backward-going sec-
ondary in the planes of the chambers WC 5–WC 7. For
approximately 10% of all backward-going secondaries,
the reconstruction of the tracks was more difficult
because some or all hits of the two nearby tracks of
backward-going particles coalesced with the result that
one of the projections of such tracks could not be sepa-
rated from that of the beam track. (In particular, this is
true for secondaries hitting the counters Z1, Z2, and
Z3—see Fig. 1b.) Despite this overlap of track projec-
tions, a primary track could still be reliably recon-
structed with the aid of upstream wire chambers WC1–
WC4, in which case its fitted projection in the counters
WC5–WC7 was used as that of the secondary track.
This approximation, however, might distort the angular
distribution of secondaries. In our analysis, we there-
fore rejected tracks that intersected those areas of the Z
counters that could coincide with a beam track in each
projection (these areas are illustrated in Fig. 1b).
Thereby, the acceptance to backward-going hadrons
was slightly reduced, but their angular distribution
remained unaffected.

For a backward-going secondary, the track fitted in
the way described above was then used to determine the
point where this secondary hit a Z counter [owing to an
accurate determination of the collision vertex—by four
to seven wire planes in each projection (see above)—
such a reconstruction of the intersection point in space
was more accurate than that which could be performed
by using only the hits of backward-going particles].
The position of this intersection point was required for
rejecting those secondaries that had hit the edge region
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 2      2000
of the Z counter, where they could be misidentified
because of pulse-height distortions caused by a nonuni-
form collection of scintillation light. The 2-cm-wide
border areas and the corner areas of the counters were
disregarded in our analysis (see Fig. 1b).

The adopted experimental procedure involved spe-
cific systematic uncertainties that varied with emission
angle. In particular, our tracking system could not dis-
tinguish between interactions occurring in the target
and in ambient air if a secondary had been emitted at an
angle close to 180°. The longitudinal position of the
collision vertex was estimated with the uncertainty

,

where k ≈ 3 is a numerical factor dependent on the
arrangement of the tracking planes with respect to the
target, dx = 0.6 mm is the precision to which coordinates
were measured in the wire chambers, θ is the angle of

secondary-particle emission, and the 
value per degree of freedom for the reconstruction of a
backward track was required to be less than four in our
analysis. Because of the uncertainty in the position of
the interaction vertex, collisions in the ambient air were
partly accepted in addition to collisions in the target
proper. By way of example, we indicate that the uncer-
tainty in question is 4 cm for θ = 175° and 1 cm for θ =
160°. Since the target thickness effectively increases by
0.0052 g/cm2 in the former case and by 0.0014 g/cm2 in
the latter case, the systematic uncertainty arising from
this effect is within 1%. There is yet another systematic
uncertainty, that which springs from multiple scattering
of secondaries in the lead target. For secondary pions,
protons, and deuterons with energies in the ranges cov-
ered by our experiment, it proved to be within 0.3%.

It should also be noted that our data were corrected
for the geometric inefficiency of the apparatus.

4. RESULTS OF THE MEASUREMENTS

In order to test the geometric efficiency of the detec-
tor, the distributions in the azimuthal angle of back-
ward-going secondaries, ϕ, were individually investi-
gated in different θ intervals subtended by Z counters,
but no ϕ dependence of the yield of secondaries was
revealed in this way within our statistical accuracy.

Actually measured in our experiments were the
angular distributions of cumulative protons, deuterons,
and pions that were emitted from collisions of 5-GeV/c
negative pions with Pb nuclei and which had kinetic
energies in the ranges 60–240, 14–320, and 45–
350 MeV, respectively. As in [4], the yield of protons
was separately studied in three subranges of proton
energy: 60–80, 80–110, and 110–240 MeV.

The measured θ distributions of cumulative protons,
deuterons, and pions are illustrated in Fig. 2, where dif-
ferent symbols correspond to different Z counters used

dz
kdx

θtan
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Fig. 2. Angular distributions of various cumulative hadrons from the interactions of 5-GeV/c π– mesons with Pb nuclei: (a, b, d, f)
data for protons with energies of 60–240, 60–80, 80–110, and 110–240 MeV/c, respectively; (c) data for deuterons with energies of
14–320 MeV/c; and (e) data for charged pions with energies of 45–350 MeV/c. The normalization is arbitrary. Experimental results
obtained with different Z counters are represented by different symbols.
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to analyze secondary hadrons. That the θ ranges sub-
tended by different Z counters partly overlap provided
an independent estimate of the systematic uncertainty.
On the whole, the data are self-consistent, but we can
see that, for a given Z counter, the measurement tends
to underestimate the yield of cumulative particles in the
boundary regions of θ. In view of this, data points that
correspond the lowest and highest values of θ for each
Z counter and which show large statistical errors were
disregarded in averaging the θ distributions over all rel-
evant Z counters. That independent estimates of the
yield for a given value of θ are compatible within sta-
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 2      2000
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Fig. 3. As in Fig. 2, but on the basis of data averaged over overlapping  Z counters (closed circles). Open circles show the results
from [4] for the corresponding particle species and energy ranges. The normalization is arbitrary. Straight lines represent fits to the
exponential form (1).
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tistical errors suggests that, in the measurements being
discussed, the systematic uncertainties do not exceed
statistical ones.

The θ distributions averaged over overlapping Z
counters are shown in Figs. 3a, 3c, and 3e for secondary
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protons, deuterons, and pions, respectively. The θ dis-
tributions of protons in the aforementioned three sub-
intervals of proton energies are illustrated in Figs. 3b,
3d, and 3f. Qualitatively, all θ distributions in Fig. 3 fol-
low the same pattern; in particular, each of these shows
an increase toward θ = 180°. Fitting these distributions
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to the exponential form

(1)

we obtain the values of the slope parameter b that are
listed in the table.

On a broader angular scale, the yield of cumulative
particles decreases with increasing θ. For cumulative
protons, the yield as a function of θ and of the kinetic
energy T is given by [6]

where T0 is the slope parameter of the proton energy
spectrum and β is the parameter of the angular distribu-
tion, its numerical value being close to 0.5. According
to the extrapolation of this parametrization to the angu-
lar range 161°–178°, which is studied here, the yield of
cumulative protons should be virtually constant there.
This prediction is at odds with the results of our mea-
surements: from the table, we can see that the parame-
ter b in (1) is always positive far beyond the experimen-
tal uncertainties—that is, the yield definitely increases
toward the largest values of θ.

For the fits of the θ distributions to the form (1)—
the results are represented by solid curves in Fig. 3—
the χ2 values per degree of freedom are quoted in the
last column of the table. It can be seen that, although
χ2/NDF ≤ 2, the approximation in question is not quite
satisfactory: Fig. 3 shows evidence for some local
irregularities in the θ distributions of cumulative had-
rons. For the sake of comparison, data from [4] are also
shown in Fig. 3. We can see that the angular distribu-
tions obtained in [4] are not fully consistent with the
present data. In particular, we no longer observe the
narrow dip at θ = 172° reported in [4]. (In the present
study, the region of the dip was probed by a specially
deployed Z counter subtending the θ range 169°–175°
(see Fig. 2a). Likewise, there is no agreement between
the results of the two measurements in the region θ ≤
171°, although the existence of a local maximum near
170° is supported by the new data as well. The discrep-
ancy between the two measurements becomes nonex-
istent if we assume that the systematic uncertainties in
[4], where no special attention was given to them, actu-
ally exceeded two quoted statistical errors.

N Ae
bθ

,=

f A
T
T0
----- 1 β θcos–( )– ,exp=

Fits of θ distributions for various cumulative hadrons (see
Fig. 3) to the exponential form (1)

Hadron (energy 
range in MeV) b, 10–2 χ2/NDF

Proton (60–240) 1.207 ± 0.046 1.99
Deuteron (14–320) 1.204 ± 0.064 1.03
Pion (45–350) 1.034 ± 0.057 2.55
Proton (60–80) 0.475 ± 0.074 1.95
Proton (80–110) 1.569 ± 0.082 1.56
Proton (110–240) 1.810 ± 0.081 1.27
5. DISCUSSION OF THE RESULTS

We have demonstrated that, over the range of labo-
ratory angles θ between 160° and 180°, the yield of
cumulative hadrons increases anomalously with
increasing θ. We have already discussed this phenome-
non in [4]. We still adhere to the arguments adduced
there. Let us try to clarify them in the context of similar
effects in various collisions. It is natural to invoke, first
of all, data on elastic backward scattering of hadrons on
light nuclei, since cumulative particles traveling in the
backward hemisphere in the laboratory frame and hav-
ing the maximum possible momentum value for a given
cumulative number may result from quasielastic scat-
tering on few-nucleon clusters inside the nucleus. It is
encouraging to learn that the cross section for elastic
scattering does indeed increase toward the scattering
angle of 180°.

Likewise, the cross sections for elastic ion–ion col-
lisions at tens of MeV per nucleon show various irreg-
ularities in the region of backward scattering. In the
review article [7], where these irregularities are com-
piled and analyzed from various points of view, the
enhancement at θ = 180° is tentatively attributed to the
exchange of a constituent subsystem between the col-
liding ions. A constituent nucleon is exchanged in
backward pd scattering. The cross section for backward
π+p  pπ+ scattering proceeding via baryon exchange
is also enhanced at θ = 180°. We can hypothesize that an
analogous effect in the inelastic pion–nucleus scattering
studied here is due to the exchange of a multiparticle sys-
tem. That the collisions under investigation are inelastic
renders the enhancement at θ = 180° less pronounced,
but the effect remains very distinct.
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Abstract—The cross sections for the production of 7Be, 22Na, 24Na, 28Mg, 38S, 38Cl, and 39Cl nuclei from
112Sn, 118Sn, 120Sn, and 124Sn targets irradiated with 0.6-, 1.0-, and 8.1-GeV protons were measured by the
method of induced activity. In analyzing resulting data, it was established that the above nuclei are produced in
the fragmentation process and that the reaction cross section is a power-law function of the mass and charge
numbers of fragmentation products. A strong dependence of the reaction cross section on the nucleonic com-
position of the targets and of the products is observed. The measured cross sections, together with data available
in the literature, are discussed within various assumptions. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Since the discovery of the fragmentation process, a
great number of articles on the subject have been pub-
lished [1]. Despite this, there is yet no unified theoreti-
cal framework that would describe a vast body of
experimental data, explaining not only the mechanism
of fragment production but also some fine effects asso-
ciated with the nucleonic composition of target nuclei
and of fragments. The last problem has also attracted
much attention [2–5]. New theoretical approaches and
various models developed in the last decade [6–8] have
given impetus to new complicated experiments aimed
at recording fragments over a full solid angle of 4π [9–
11]. Those experiments usually used targets of natural
composition. Some of them studied the prompt thermal
breakup of nuclei into light and medium-mass (3 ≤ Z ≤
20) fragments that was induced by energetic protons.
Others pursued dynamical effects like the compression
and the rotation of nuclear matter that are caused by the
effect of high-energy heavy ions and which eventually
result in nuclear decay. In addition to investigations
relying on a direct detection of fragments, experiments
are still being performed that record radioactive prod-
ucts of nuclear reactions induced by high-energy parti-
cles [12, 13]. The objective of the present study is to
determine experimentally the cross sections for the pro-
duction of light nuclei as functions of proton-beam
energy. These measurements, performed by the method
of induced activity, are aimed at deducing information
about the mechanism of their production and at investi-

1) Joint Institute for Nuclear Research, Dubna, Moscow oblast,
141980 Russia.

2) Nuclear Physics Institute, Academy of Sciences of Czech Repub-
lic, CZ-250 68 e , Czech Republic.

* e-mail: anahit@nusun2.jinr.dubna.su
Ř ž
1063-7788/00/6302- $20.00 © 20151
gating fine effects pertinent to fragments of separated
tin isotopes.

2. EXPERIMENTAL PROCEDURE
AND EXPERIMENTAL RESULTS

The target used consisted of four metal foils con-
taining tin isotopes 112Sn, 118Sn, 120Sn, and 124Sn
enriched to 92.6, 98.7, 99.6, and 95.9%, respectively.
The foil thicknesses listed in the same order were 390,
61, 70, and 72.7 mg/cm2. The target was irradiated at
the phasotron of the Laboratory of Nuclear Problems
and at the synchrophasotron of the Laboratory of High-
Energy Physics (JINR, Dubna). Two runs of duration
27 and 5 min were performed in a 660-MeV proton
beam from the phasotron, the beam intensities being
1.36 × 1016 and 1.19 × 1016 protons per hour, respec-
tively. In the experiments at the synchrophasotron, we
also conducted two runs in which the target was
exposed to a 1.0-GeV proton beam for 1 h and to a
8.1-GeV proton beam for 0.6 h. In that case, the beam
intensities were 4.97 × 1012 and 2.27 × 1013 protons per
hour, respectively. The beam was monitored by using
the reaction 27Al(p, 3pn)24Na, whose cross sections are
known at the energy values used (10.7, 10.1, and
8.1 mb). The activities induced in the targets were mea-
sured with Ge(Li) and HpGe detectors upon a lapse of
some time after the exposures. In order to separate
long-lived reaction products, the measurements were
repeated regularly within a year. In the measurements,
the distances between the source and the detector were
chosen to be 160, 26, 15, and 8 cm in order to ensure
that the source was pointlike and that electronics oper-
ated under conditions of an optimum load. A prelimi-
nary treatment of measured γ spectra was performed
with the aid of special software. We were able to sepa-
000 MAIK “Nauka/Interperiodica”



 

152

        

DANAGULYAN 

 

et al

 

.

                                                                                              
Table 1.  Cross sections σ (mb) for the production of light nuclei from tin isotopes irradiated with 0.66-, 1.0-, and 8.1-GeV
protons

Product nucleus Cross-sec-
tion type

112Sn 118Sn

0.66 GeV 8.1 GeV Calc. [18] 0.66 GeV 1.0 GeV 8.1 GeV Calc. [18]

7Be I 2.10 ± 0.20 23.50 ± 2.00 111.03 0.92 ± 0.10 – 20.90 ± 2.00 82.80
22Na C 0.16 ± 0.02 6.60 ± 1.20 13.25 0.20 ± 0.02 – 3.80 ± 0.40 10.40
24Na C 0.12 ± 0.02 4.00 ± 0.20 5.16 0.09 ± 0.01 0.50 ± 0.05 5.10 ± 0.04 5.8
28Mg C – 0.58 ± 0.14 0.09 – – 0.98 ± 0.15 0.14
38S C – – – – – 0.22 ± 0.08 –
38Cl I – – 0.35 – – 0.80 ± 0.10 0.6
39Cl C – – 0.09 – – 0.53 ± 0.05 0.14

Product nucleus Cross-section 
type

120Sn 124Sn

8.1 GeV Calc. [18] 0.66 GeV 8.1 GeV Calc. [18]

7Be I 16.50 ± 1.00 74.16 0.54 ± 0.06 13.00 ± 2.00 65.14
22Na C 2.40 ± 0.30 9.2 0.20 ± 0.03 2.50 ± 0.25 7.60
24Na C 5.10 ± 0.20 6.0 0.09 ± 0.01 5.30 ± 0.20 6.65
28Mg C 1.06 ± 0.12 0.20 – 1.34 ± 0.10 0.51
38S C 0.17 ± 0.07 – – 0.40 ± 0.15 –
38Cl I 1.36 ± 0.15 0.91 – 1.35 ± 0.15 0.76
39Cl C 0.63 ± 0.10 0.3 – 0.85 ± 0.20 0.42
rate light product nuclei and to determine the cross sec-
tions for their production by using characteristic γ lines
and by taking into account the half-lives of these nuclei.
The resulting cross-section values are displayed in
Table 1, along with the types of the cross sections for
product nuclei (I and C label, respectively, the indepen-
dent and cumulative cross sections). The quoted errors
in the cross sections are purely statistical.

3. DISCUSSION OF THE EXPERIMENTAL 
RESULTS

The cross sections for the production of seven resid-
ual nuclei from all targets studied here are given in
Table 1 for various energies of the proton beam. We can
see that, with increasing energy of the incident particle,
the cross sections for 7Be, 22Na, and 24Na production
grow substantially (by more than one order of magni-
tude), which is peculiar to the fragmentation mecha-
nism [1]. We did not record 28Mg, 38S, 38Cl, and 39Cl
isotopes at proton energies of 0.66 and 1.0 GeV; there-
fore, it was impossible to estimate the energy depen-
dence for these isotopes. At 8.1 GeV, short-lived iso-
topes 38Cl and 39Cl from the 112Sn target were not
recorded because, for this target, the γ spectrum was
measured only upon a lapse of a few hours after the
exposure (to avoid the overload of the detector). The γ
lines of 38S were not observed in the γ spectrum of the
irradiated 112Sn target because of a small production
cross section (a nucleus with a high neutron excess).
For a 118Sn target, Fig. 1 shows the cross sections versus
the fragment mass numbers. The curve represents a fit

to the form σ(Af) = a , the fitted parameters being
a = 1334 and τ = 2.10 ± 0.06. The dependence on the
charge number was fitted to the similar form σ(Zf) ~

. In [8, 14, 15], the power-law dependence of the
cross section for fragment production on Zf and Af was
associated with the “liquid–gas” phase transition
occurring as soon as hot nuclear matter formed in the
target nucleus irradiated with high-energy particles
attains a critical temperature. A mechanism of produc-
tion of medium-mass fragments due to the condensa-
tion of strongly heated nucleon gas was proposed in
[14, 15], where the analysis was based on the theory of
condensation near the critical point [16]. By analogy
with a Van der Waals gas, the production cross section
of fragments is a power-law function of their masses Af
and charges Zf; that is,

where the exponent τ lies between 2 and 3 and where
σ(Af) [or σ(Zf)] are the total isobaric (or isotopic) cross
sections. In the present experiment, we performed mea-
surements only for those radioactive isotopes whose
contributions of the total cross sections are small. Nev-
ertheless, a power-law dependence was observed for
radioactive fragments, with a τ value being close to that
obtained in other studies (for example, in [17]) where

Af
τ–

Zf
2.47–

σ Af( ) Af
τ–
,∼
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fragments produced under the effect of protons with
energies of 2.7–7.5 GeV were recorded directly by
means of the ∆E–E1–E2 procedure. It is interesting to
note that, here, we obtained different values of τ, from
1.55 to 2.1 for different tin targets. Therefore, we can
assume that, at a proton energy of 8.1 GeV, the frag-
ments being studied were produced, with a nonnegligi-
ble probability, in the multifragmentation process as
well (prompt nuclear breakup).

The cross sections for fragment production from all
targets irradiated in our experiment with 8.1-GeV pro-
tons were calculated on the basis of the model proposed
by Bondorf, Botvina, et al. [18]. The results are listed
in Table 1. From a comparison of the calculated and
experimental cross-section values, we can see that there
is satisfactory agreement for the medium-mass frag-
ments 24Na and 38Cl and that the values calculated for
the light fragment 7Be exceed the experimental values
by a factor of 5. On the contrary, the values calculated
for the neutron-rich nuclei 28Mg and 39Cl are a few
times as small as the experimental values. It seems that
excessively high values were taken in [18] for the exci-
tation energies (E*) of the intermediate nucleus pro-
duced upon the completion of the cascade; as a result,
the number of light fragments was overestimated. In
addition, no account was taken there of some fine
details associated with the isotopic effect. Despite all
this, the calculations demonstrate a correct tendency
toward a decrease in the cross sections for 7Be and 22Na
and toward an increase in them for the rest of the nuclei
in passing from 112Sn to 124Sn.

By using our data and data available from the litera-
ture, we will now consider the cross sections for the
production of the fragments being studied as functions
of the target mass number At. This dependence is
known to change strongly with the initial-proton
energy [1] and to remain constant in the fragmentation
region (Ep > 8–10 GeV). Therefore, we employed the
data obtained at proton energies above 8 GeV [19–22].
The cross sections σ for the production of the neutron-
rich fragments 24Na and 28Mg versus At are shown in
Fig. 3 along with the third projection of the target isos-
pin, T3t/At (the ratio 3T3t/At is plotted there to make the
presentation clearer). We can see that the displayed
dependences are similar in shape, which suggests a cor-
relation between the cross sections and the ratio T3t/At,
so that there are grounds to assume that σ depends on
the target isospin Tt. A similar fine structure is observed
for the fragment nuclei 7Be and 22Na. For neutron-rich
residual nuclei, there is also a general tendency toward
an increase in the cross sections with increasing At (see
Fig. 2). For the neutron-deficit nucleus 7Be and for
22Na, where the number of neutrons is equal to the
number of protons (T3t = 0), the cross section decreases
as we go over from the target nucleus 112Sn to the target
nucleus 124Sn (see Table 1).

In addition, Fig. 2 shows the photoyield for 24Na as
a function of At. These data, obtained in measurements
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 2      2000
where the endpoint energy of the bremsstrahlung spec-
trum was Eγmax = 4.5 GeV [23, 24], also show a struc-
ture somewhat different, however, from that discussed
immediately above. It seems that this dissimilarity is
due to the absence of data for some targets. The above

403020100
Af

10

20

30
σ, mb

Fig. 1. Cross sections versus the mass number of the frag-
ments for the 118Sn target. The curve represents a fit to the

form σ(Af) = a , where the fitted parameter values are

a = 1334 and τ = 2.1.

Af
τ–

2001601208040
10–2

10–1

100

101

σ, mb

10–2

10–1

σq, mb

At

T3t/At

Fig. 2. Cross sections for the production of the neutron-rich
fragments (d, n) 24Na and (j, h) 28Mg versus the mass
number At of the targets (closed symbols represent the data
from [19–21], while open symbols show our data). Open
circles for 24Na show data on the photonuclear reactions
from [23, 24] (right scale). The solid curve depicts 3T3t/At
as a function of At. 
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suggests that the isotopic effect is independent of the
type of the initial particle.

In order to study the mechanism of fragment pro-
duction, we considered the dependence of the cross
sections for their production on the sum of the frag-
ment-separation energy and the effective Coulomb bar-
rier, Qf + Bf. In this study, the fragment-separation
energy was determined by two methods: (i) by using
the experimental values of Qgg = M(Af, Zf) + M(Ares,
Zres) – M(At, Zt), where the masses of the fragments, of
the residual nuclei, and of the targets were taken from
[25], and (ii) by using the expression Qld = Mld(Af, Zf) +
Mld(Ares , Zres) – Mld(At, Zt) from the liquid-drop model.

Fig. 3. Cross section for 28Mg production versus (‡) Qgg +
Bf and (b) Qld + Bf: (closed symbols) experimental data
from [19–21] and (open symbols) our data. The curve rep-
resents a fit to the form σ = aexp[–(Qf + Bf)/T].

6040200
10–1

100

101

Qld + Bf , MeV

6040200
Qgg + Bf, MeV

10–1

100

101 (a)

(b)

σ, mb
 In the latter case, the binding energy is calculated by
the formula [5]

where εis = 15.68(1 – 1.184A–1/3), εiv = –112.4(1 –
1.184A1/3), and T3 = (N – Z)/2; the effective Coulomb
barrier is Bf = 0.55ZfZrese2/(Rf + Rres), R = r0 A1/3; and
r0 = 1.44 × 10–13 cm.

By using data from the literature for the fragments
7Be, 22Na, 24Na, and 28Mg in the target-mass region
between 48 and 197, we have studied the dependence
of the cross sections on Qf + Bf for Ep > 8 GeV. Figure 3
shows the cross section as a function of (a) Qgg + Bf and
(b) Qld + Bf for 28Mg. It can be seen that the dependence
of the cross section on Qld + Bf is nearly exponential.
Similar dependences are observed for 7Be, 22Na, and
24Na isotopes (for 7Be, the parameter a is taken in the

form ), but the scatter of experimental points is
greater here than for 28Mg. By fitting experimental data
to the form σ = aexp[–(Qf + Bf)/T], we were able to
evaluate the parameters a and T. The results are pre-
sented in Table 2 (the parameter T is related to the tem-
perature of the system decaying into fragments). From
the table, we can see that none of the T values falls
below 20 MeV; that is, these values exceed the
expected temperatures of the system formed upon the
completion of the cascade caused by target irradiation
with protons of energies not lower than 8 GeV. It should
be noted that the values of T obtained in proton–
nucleus ([26], Ep = 1 GeV) and photonuclear ([27],
Eγmax = 4.5 GeV) reactions leading to 7Be production
are thought to be high by the authors of [26, 27]. As can
be seen from Table 2, better agreement with experimen-
tal data for the 7Be, 22Na, and 24Na fragments is
obtained when the separation energy is calculated
within the liquid-drop model. This means that the cross
sections are not sensitive to fluctuations of the separa-
tion energy that are due to shell effects in the nuclear
binding energy. In Fig. 3, we can see the scatter of data,
which reflects the dependence of the reaction cross sec-
tions on the nucleonic composition of the target and of
the fragments (see also Table 1). In an attempt at taking
into account the effect of isospins [5] on the reaction
probability, we added a term of the T3fT3t type to the

Ebind εisA εivT3
2
A

1–
0.71Z

2
A

1/3–
,–+=

At
a

Table 2.  Values of the parameters a and T

Product nucleus
Qld + Bf Qgg + Bf

a T, MeV χ2/NDF a T, MeV χ2/NDF

7Be 0.93 ± 0.05 20.90 ± 3.03 61.13/13 0.69 ± 0.03 59.83 ± 15.40 81.80/14
22Na 14.14 ± 6.53 19.98 ± 4.79 58.45/12 3.25 ± 0.53 86.88 ± 33.30 72.69/12
24Na 15.65 ± 1.25 25.24 ± 1.58 74.60/16 9.64 ± 0.66 40.42 ± 3.46 144.10/15
28Mg 3.17 ± 0.39 21.54 ± 1.41 99.13/11 3.48 ± 0.28 19.30 ± 0.80 165.50/16
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exponential form of σ, but this led to unsatisfactory
results.
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Abstract—A new way of representing data on the fragmentation of nuclei is suggested. The self-similar behav-
ior of these processes, that is dictated by their kinematics, is demonstrated. The convenience of working in
accelerated nuclei is emphasized, particularly for the determination of the binding energy of a wide class of
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1. INTRODUCTION

Recently, fairly large samples of experimental data on
the interactions of light nuclei (d, 3He, 4He) with protons
have been accumulated under the full solid angle condi-
tions of the JINR LHE 1-m bubble chamber. Various frag-
mentation reactions, including both mesonless and pion
containing channels, have been reliably identified [1].

It is now possible to compare the characteristics of
the reactions at different energies and with different
fragment masses. One of the classical data representa-
tion, the Chew–Low plot [2], has usually been used for
2  3 processes and for multiparticle processes. The
authors of this work, entitled “Unstable Particles as
Targets in Scattering Experiments,” used a plot of the
type M2 versus |t| to analyze the ππ and nn scatterings.

However, in the case of nuclear collisions, the
masses of the produced fragments A' may considerably
differ from that of the initial nucleus A. The comparison
of the reactions in terms of the Chew–Low plots
become inappropriate, at least for the great differences
in the four-momentum transfers, which lead to a “dis-
persion” of events containing different fragments. This
can be seen in Fig. 1, where the Chew–Low plot for two
reaction channels of 4Hep collisions at 2.15A GeV/c,
containing 3H and 2H fragments, is shown.

2. A NEW WAY OF FRAGMENTATION-DATA 
REPRESENTATION

Without affecting the generality of the proposed
way of the fragmentation data representation, let us
examine the simple case of the proton–nucleus interac-
tion: p + A  A' + X.

The use of the relative four-velocity squared bAA',
introduced by Baldin [3],

(1)bAA'
PA

MA

-------
PA'

MA'
--------– 

 
2

pA 0=

– 2
EA'

MA'
-------- 1– 

  ,= =
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instead of |t |, is the basic difference between the Chew–
Low plot and the proposed way. Here and from now on,
P stands for the four-momentum.

This variable seems to be the most suitable for the
processes in relativistic nuclear physics and is widely
used.

The second difference lies in the normalization of the
missing mass squared MM2 to the studied fragment A'.

In the notation of the diagram (Fig. 2), M can be
interpreted as a product of the interaction of the incom-
ing proton with an off-mass-shell part of the nucleus A,
denoted R (recoil).

The treatments followed from here are more conve-
nient in the A-nucleus rest frame, though all the quanti-
ties used are invariant. In accordance with the above
mentioned, we introduce indices: A—for the initial
nucleus; A'—for its fragment (spectator); R—for the

43210
4

6

8

–t, (GeV/c)2

4Hep → 3Hpp

10

12

14

.

4Hep → ddp

M2, (GeV/c2)2

Fig. 1. The Chew–Low plot of the reaction 4Hep at
2.15A GeV/c with deuteron and tritium fragments.
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rest of the initial nucleus; p—for the incoming proton
(projectile).

Then, assuming pA' = –pR and all the off-mass-shell-
ness being on MR, one can write

(2)

In this case, the square of the total energy in the
upper vertex of the diagram Fig. 2 or, similarly, the
missing mass squared MM2 without the fragment A' can
be expressed as

(3)

The expression in the squared brackets is the total cms
energy squared for the collision of the incoming parti-
cle (proton) with a part of the nucleus A excluding the
fragment A' (i.e., with off-mass-shell R).

From here follows the way to use the quantity S ',
expressed in the recoiled on-mass-shell “R” rest frame
as

for normalization purposes.
From (2) and (3) comes

(4)

or

(5)

which is the same.
Experimental data are proposed to present MM2/S'

versus bAA' in the form of a plot.
From (4) one can easily get an expression for the

contour line of the plot:

(6)

for which the lower bound is given by

where MX is the sum of masses in the upper vertex of
the diagram in Fig. 2.
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As an example, in Fig. 3 the full contour line for the
4Hep  3Hpp at 2.15A GeV/c is shown.

We demonstrate the use of the introduced represen-
tation on the fragmentation process, characterized by
small values of bAA' ! 1 [4]. Examples of the contour
lines in the fragmentation region for the discussed reac-
tion are displayed in Fig. 4 at several incoming proton
momenta from 2 to 500 GeV/c. In addition to the con-
tours, the figure also shows the central lines, corre-
sponding to the two first terms of equation (6).

In this region, one can see the characteristic behav-
ior of the limiting curve width. The width Γ is defined
as the distance between the lower and upper branches
of the graph at a given value of bAA'. From expression
(6), for the width at small bAA', we get

Γ
4MA' pp bAA' bAA'

2 4⁄+
S'

---------------------------------------------------------.=

p

A

R

X

A'

Fig. 2. Schematical representation of the fragmentation pro-
cess. 
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Fig. 3. The contours of the MM2/S ' versus bAA' plots for the

reaction 4Hep  3Hpp at 2.15A GeV/c.
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The ratio of the widths at two energies for a given type
of reaction (fixed A and A') does not depend on bAA' and
with increasing energy tends to 1.

This can be explicitly seen in Fig. 5, where the ratio
of the widths at a given incoming momentum, on the
x axis, to that at a doubled one is shown. In this way, the
self-similar behavior of the fragmentation process has
been demonstrated.

We would like to emphasize an additional feature of
the plot, suitable for supplementary use. At bAA' = 0, the
branches of the contour lines meet at

(7)

where e is the binding energy of the fragment A' in the
parent nucleus A.

For the special case of quasi NN scattering, this
expression, with an accuracy of 10–4, turns out to be 

which allows us to determine the binding energy of dif-
ferent fragments, including the unstable ones.

The proposed method is predestined for accelerated
nuclei and high-precision spectrometers because reli-
able fragment identification and high precision
momentum measurements in the region of small value
bAA' [5] are inevitable.
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Fig. 4. Limiting contours for the 4Hep  3Hpp in the
fragmentation region at different incoming proton
momenta.
3. EXPERIMENTAL RESULTS

During the years by the use of the JINR 1-m HBC,
exposed to beams of relativistic nuclei, great samples of
experimental data have been collected for the interac-
tion of light nuclei (d, 3He, 4He) with photons [1].
These data will be used in the following analysis.

Figures 6a and 6b display the 4Hep  3Hpp reac-
tion data and the contour lines at two values of proton
momenta (2.15 and 3.4A GeV/c). The “middle” line
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The ratio of the widths at a given momentum to that
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corresponds to A'-fragment production at 90° to the
A-nucleus rest frame, i.e., p0 · pA' = 0.

The given experimental points, as can be seen, are
mainly inside the corresponding contour lines. The
points outside are connected with the errors of mea-
surement. The events with a triton fragment are pre-
dominantly concentrated in the area of small bAA'
(<0.04), as has been predicted by [4]. For example, in
Fig. 6a, only two events have bAA' > 0.04 out of 2.808.

A similar situation can also be seen for the
3Hep  dpp reaction at 4.5A GeV/c, for which the
plot is shown in Fig. 7.

0.040.030.020.010
bAA'

0.6

0.8

1.0

1.2

1.4
MM2/S'

Fig. 7. The same plot as previously (Fig. 6) for the
3Hep  dpp reaction at 4.5A GeV/c.
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processes at 1.67A GeV/c.
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The natural lower limit for the proposed plot con-

tour is given by the threshold value of the ratio .
This can be demonstrated in the examples of dp 
ppn and dp  pppπ– reactions at 1.67A GeV/c in
Figs. 8a and 8b. Here, the lower horizontal bounds of
the contours correspond, respectively, to the sum of
masses of two nucleons and to that of the two nucleons
and a pion. The dashed line in Fig. 8b corresponds to
the boundary of ∆ production (1.24 GeV/c2) in the
upper vertex of the diagram in Fig. 2. In the dp 
pppπ– reaction, the density of the experimental values
above the dashed line argues for the predominance of
the pion production mechanism via ∆ isobar and its
consecutive decay.

Because the studied reactions are of quasinucleon
type, we try to use the expression

(8)

proposed in [6], to determine the fragment binding
energy e in the parent nucleus. As an example, the plot
of the 4Hep  3Hepn reaction at small bAA' is exam-
ined. Figure 9a shows these data in the region of bAA' <
5 × 10–4.

Projecting the experimental data onto the y axis
(Fig. 9b) and fitting the Gaussian to the obtained
MM2/S' distribution, one estimates the mean value
〈MM2/S'〉  = –0.9780 ± 0.0013.

Hence, using expression (8), we obtain for the bind-
ing energy of 3He in 4He e = 20.6 ± 1.3 MeV/c2, being
in good agreement with the value et = 20.57 MeV/c2,
evaluated from the known masses of 4He, 3He, and n.
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M

 

p

 -------,–                                                      

Fig. 9. (a) The plot for the 4Hep  3Hepn reaction at
2.15A GeV/c in the bAA' < 5 × 10–4 region, the upper scale
on the x axis is for the fragment momentum per nucleon in
the parent nucleus rest frame; (b) MM2/S' distribution for
bAA' < 2 × 10–4 (3He momenta with respect to the 4He rest
frame below 13A MeV/c).
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Using the exact expression

(9)

one obtains e = 20.7 ± 1.3 MeV/c2.
In addition to the bAA' scale (Fig. 9a), the momentum

scale with respect to the A-nucleus rest frame is also
present, from which it can be seen that, due to small
values of the fragment momenta, the proposed method
of binding energy determination cannot be applied to
the fragmentation of the nuclei at rest (target). To work
in the beams of accelerated nuclei with precise mea-
surements of the fast fragments’ momenta in the region
of bAA'  0 seems to be inevitable.

4. CONCLUSION

A new way of fragmentation data representation is
introduced. With its aid, the self-similar behavior of the
light-nucleus-fragmentation processes at small bAA' is
shown.

Different aspects of the proposed plot application to
the light-nucleus-fragmentation reactions have been
shown. It can be seen, as is expected, that the fragmen-
tation mainly occurs at small values of the relative four-
momentum squared bAA'. The plot occupancy at differ-
ent energies lies within the computed contours, and, in
this way, it supports the reaction self-similar behavior
at small bAA', i.e., in the fragmentation region.

MM2

S'
------------ 1 2e

Mp Ep+( )
S'

------------------------–
e

2

S'
----,+=
The use of this data representation for the pion con-
taining fragmentation reactions allows us to reveal the
mechanisms of the quasinucleon interactions. The
determination of the fragment nucleus binding energy
in the parent nucleus has been demonstrated on the
example of the 4Hep  3Hepn reaction.

The advantage of working in the beams of acceler-
ated nuclei with the use of wide-aperture spectrometers
has been shown, which also reduces the distortions at
the study of fragmentation processes.
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Abstract—The cross section for 238Pu fission induced by neutrons with energies between 1 keV and about
5 MeV is described within the statistical model. It is shown that the stepwise structure observed above the fis-
sion threshold (at incident-neutron energies of E > 1 MeV) is due to the step in the level density of the fissile
239Pu nucleus at deformations corresponding to the inner fission barrier. In turn, the step in the level density of
the odd nucleus 239Pu is associated with the excitation of internal single- and three-quasiparticle states. The
level density is described with allowance for collective, pairing, and shell effects. © 2000 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Manifestations of pairing effects in the fission pro-
cess is understood rather fully. Pairing effects in even–
even fissile nuclei were revealed in the angular anisot-
ropy of fission fragments rather long ago. A stepwise

structure in the parameter  determining the angular
anisotropy of fission fragments was interpreted as a
consequence of the threshold excitation of few-quasi-
particle states at saddle-point deformations of fissile
nuclei [1]. A manifestation of the stepwise structure
that arises in the level density because of pairing at
equilibrium deformations was discovered by studying
statistical spectra in the radiative decays of even–even
rare-earth nuclei [2–4]. One more manifestation of
pairing in even–even nuclei was found in the cross sec-
tion for the neutron-induced fission of 235U nuclei. A
simulation of the excitation of few-quasiparticle states
in the level density of the fissile nucleus 236U made it
possible to describe the threshold structure observed in
the cross section for 235U fission induced by neutrons
with an energy of about 1 MeV [5–7]. Irregularities of
the same origin can also be observed in the cross sec-
tion for the neutron-induced fission of nuclei where the
parities of constituent neutrons and protons differ from
those in the cases considered above [8]. By way of
example, we indicate that, for even–even Cm target
nuclei, resonance-like irregularities were found at
above-barrier neutron energies. However, an analysis
of the cross sections for the fission of Cm isotopes is
complicated considerably by systematic distinctions
between experimental data of different authors, to say
nothing about the paucity of the entire body of such
data. In the present article, the analysis of cross sections
will therefore be restricted to the case of the 238Pu
nucleus, whose fission has been studied in sufficient
detail. The measured cross section for 238Pu fission

K0
2

1063-7788/00/6302- $20.00 © 20161
induced by neutrons whose initial kinetic energies
exceed substantially the fission threshold (E ≥ 1 MeV)
shows a stepwise structure of width about 1 MeV. This
structure can be reproduced both within the statistical
theory of nuclear reactions and within the model of a
two-humped fission barrier. We assume that a decisive
role is played here by the density of internal quasiparti-
cle states of the fissile even–odd nucleus 239Pu,
although the level density in the residual nucleus 238Pu
is also of importance. Previously, it was analyzed in
studying the cross section for the reaction 239Pu(n, 2n)
[9]. The threshold structure that was observed in the
cross section for the reaction 239Pu(n, 2n) was inter-
preted as the result of a threshold excitation of two-qua-
siparticle states in the residual even–even nucleus
238Pu. In describing the fission reaction 235U(n, f), a key
role is played by the level density in the fissile nucleus
236U at deformations corresponding to the outer saddle
point of the two-humped fission barrier. The structure
of the fission barrier in 236U is such that the inner barrier
is substantially lower than the outer one. But in the case
of the reaction 238Pu(n, f), the inner fission barrier is
higher; therefore, the level density corresponding to
saddle-point deformations plays a dominant role there.
In all probability, the aforementioned structure in the
cross section for 238Pu fission induced by neutrons is
one of the few manifestations of pairing in odd nuclei.
In the following, we will briefly discuss relevant exper-
imental data and the model used to describe them. The
result of the calculations based on this model and regu-
larities revealed in the behavior of the level density will
also be considered.

2. STATISTICAL MODEL

The level density in a fissile nucleus and the param-
eters of the fission barrier are key elements of the sta-
000 MAIK “Nauka/Interperiodica”
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tistical theory of the neutron-induced fission of actinide
nuclei. An important point is that the level-density
parameters are related to the parameters of fission bar-
rier [10]. A consistent description of the measured cross
section for 238Pu fission in the interval between deep-

10010–110–2 En, MeV
0

1

2

σf, b

543210

1

2

σf, b

En, MeV

Fig. 1. Cross sections for the neutron-induced fission of
238Pu. The solid curve corresponds to the approximation
used for the level density in the fissile nucleus 239Pu and in
the residual nucleus 238Pu. The dashed and the dash-dotted
curve illustrate the dependence of the fission cross section
on the density of single-quasiparticle levels in the 239Pu
nucleus (δ3 = 1.05 and 1.45 MeV, respectively). Points rep-
resent experimental data from (s) [11], (,) [12], (e) [13],
(h) [14], and (m) [15].

Fig. 2. As in Fig. 1, but on a linear energy scale.
subbarrier excitation energies and the excitation ener-
gies of the compound nucleus 239Pu that correspond to
the first plateau would give sufficient ground to believe
that the expression used for the level density and the
parametrization chosen for the fission barrier are quite
reliable.

The cross section for 238Pu fission has been investi-
gated experimentally in sufficient detail. Data from
[11] on the cross section for the 238Pu fission induced by
neutrons with energies less than 100 keV correspond to
the deep-subbarrier region of excitation energies. Data
from [12] cover the interval of incident-neutron ener-
gies from 0.1 eV to about 10 MeV. Unfortunately, data
from those two studies are somewhat different in the
energy interval where they overlap. The energy depen-
dences of the cross section that follow from these data
are different, the results from [11] falling systemati-
cally short of those from [12] (see Figs. 1 and 2). Data
obtained in [13] and rescaled to the up-to-date values of
reference cross sections comply with those from [11] at
neutron energies less than 100 keV. For neutron ener-
gies in excess of 1 MeV, data from [12] agree with
those from [13, 14] within the errors of those experi-
ments. A stepwise structure at incident-neutron ener-
gies above 1 MeV is the most spectacular feature of the
cross sections measured in [11–13]; a similar structure
was also observed in recent measurements of Fursov et
al. [15]. Another characteristic feature of the experi-
mental cross sections for neutron-induced fission is
their sharp dropout for neutron energies in excess of
2.5 MeV. Taking the above into account, we can con-
clude that the basic features of the energy dependence of
the cross section for 238Pu fission induced by neutrons
have been revealed quite reliably. In Figs. 1 and 2, rele-
vant experimental data are presented, respectively, on a
logarithmic and on a linear scale of the neutron energy.

Of the aforementioned features of the observed
cross sections for the neutron-induced fission of 238Pu,
either can be reproduced within the statistical theory of
nuclear reactions. The cross section for fission induced
by neutrons of energy E is given by

(1)

For the input channel (ljJπ), the neutron penetrabilities

(E) were calculated by the coupled-channel method.
In this calculation, we took into account the direct exci-
tation of the first four levels in the rotational band of the
ground state [16], J = I0 + j (I0 is the target-nucleus spin,
and j = l + s, l and s being, respectively, the neutron

orbital angular momentum and spin). The factor 
takes into account the Porter–Thomas fluctuations of
the neutron, fission, and radiative widths. For the com-

σnf E( ) πÂ
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pound nucleus with excitation energy U = E + B (B is
the neutron binding energy), a spin J, and a parity π, the

fission probability  is given by

(2)

The quantities (U), (U), and (U) are the pen-
etrabilities of the fission, neutron, and radiative chan-
nels of compound-nucleus decay. At excitation ener-
gies higher than the fission threshold, fission and neu-
tron emission appear to be the main competing decay
channel. We will assume that the stepwise structure in
the observed cross section for the fission process
238Pu(n, f) is associated with the properties of the level
density in the even–odd fissile nucleus 239Pu and in the
even–even residual nucleus 238Pu. At incident-neutron
energies below Ed ~ 1.14 MeV, in which case only col-
lective levels of 238Pu that occur within the pairing gap
are excited in inelastic neutron scattering on a target
nucleus, the fission cross section was calculated with
allowance for Porter–Thomas fluctuations of the neu-
tron and fission widths. For the fission widths, the
effective number of degrees of freedom that is needed

for calculating the factor  was determined at defor-

mations associated with the inner hump as  =

/ , where  is the maximal penetrability
corresponding to the JKπ collective state (K is the pro-
jection of the spin J onto the symmetry axis of the
nucleus) at the outer barrier. At neutron energies greater
than Ed, in which case the continuum levels of 238Pu are
excited in inelastic scattering, the correction for width
fluctuations was taken into account within the approxi-
mation introduced by Tepel et al. [17].

2.1. Fission Penetrability and Spectrum
of Transition States

Let us consider the model of a two-hump fission
barrier. Under the assumption of a successive two-step
propagation through the inner and outer humps of the

fission barrier, its penetrability  can be represented
in the form [18, 19]

(3)

Equation (3) represents a rough estimate, but it can be
used to analyze the cross section for 238Pu fission
induced by neutrons with energies E in excess of 1 keV,
in which case resonances that are due to the two-
humped structure of the fission barrier do not manifest
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themselves any longer in the observed cross section. In
view of the high fissility of the 239Pu nucleus, the disre-
gard of photon and neutron emission in the second well
in deriving equation (3) is legitimate for subbarrier neu-
tron energies and for lower energies as well. We also
note that the maximal neutron energy at which interme-
diate resonances manifest themselves in the observed
cross section for the fission process 238Pu(n, f) as an
anomalously large value of the fission width is
284.5 eV [16].

The fission penetrability (U) is determined by

the spectrum of discrete transition states, , and by
the level density ρfi(ε, Jπ) in the inner and outer humps
(i = A and B, respectively) of the fissile nucleus. Specif-
ically, we have

(4)

where the first term corresponds to the contribution of

low-lying collective states , the second represents
the contribution of continuum levels at saddle-point
deformations, and ε is the internal-excitation energy of
the fissile nucleus with a spin J and a parity π. The pen-

etrabilities ( , U) were calculated with the aid
of the Hill–Wheeler relation [20]. The first term on the
right-hand side of equation (4)—it is associated with
discrete transition states (Bohr fission channel)—and
the total level density ρfi(ε, Jπ) in the fissile nucleus are
dependent on the symmetry of the nuclear shape at sad-
dle-point deformations. According to the calculations
by the shell-correction method that were performed by
Howard and Moller [22], a nonaxial configuration cor-
responds to higher inner hump of the fissile nucleus
239Pu. The same calculations reveal that the fissile
nucleus 239Pu retains an axisymmetric configuration at
the outer barrier, but it becomes soft with respect to
mass-asymmetric deformations. A strong interplay of
the fission-barrier height calculated by the shell-correc-
tion method and the saddle-point deformation is an
important circumstance. The heights of the inner and
outer barriers, Efi; their curvatures; and the parameters
of the level density for the deformations of the inner
and outer humps are parameters of the problem investi-
gated here.

Below, we demonstrate that single-quasiparticle
neutron states of the even–odd fissile nucleus 239Pu that
occur below the threshold for the excitation of three-
quasiparticle states determine the energy dependence
of the calculated cross section for 238Pu fission induced
by neutrons with energies less than some 1.5 MeV.
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Three-quasiparticle states are excited at higher neutron

energies. For each single-quasiparticle state , we
constructed a rotational band, with a rotational param-
eter being dependent on the nuclear deformation at the
saddle point. The resulting diagrams of levels represent
the spectra of discrete transition states for axisymmet-
ric saddle-point configurations. For the single-quasi-
particle states predicted by Bolsterli et al. [23], discrete
transition states were constructed for excitation ener-
gies up to 100 keV (see Table 1). At higher energies, the
continuum of excitations was described by simulating
level densities. The dependence of the discrete spectra
of transition states, as well as the dependence of the
density of transition states, on the symmetry of the
inner and outer saddle-point configurations of the fis-
sile nucleus 239Pu will be taken into account in the fol-
lowing way. We will assume that, at the inner saddle
point, (2J + 1) states correspond to each state with a
spin J [21]. Positive- and negative-parity bands, Kπ =
1/2±, 3/2±, 5/2±, …, at the outer saddle point are
assumed to be degenerate because of mass-asymmetric
deformations. Having determined the spectra of transi-
tions states in this way (see Table 1), we can then
address the problem of assessing the fission-barrier
parameters.

2.2. Neutron Channel

For neutron scattering, the penetrability factor is
given by

(5)

where the first term on the right-hand side corresponds
to the excitation of collective levels Eq' occurring within
the pairing gap (Eq' < Ed), while ρ(U – E', I'π) is the level
density in the residual nucleus. In the calculations of
the n + 238Pu system, we used the deformed optical
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Table 1.  Bandheads in the spectra of transition states of the
fissile nucleus 239Pu 

Kπ , MeV Kπ , MeV

Inner hump Outer hump

1/2+ 0.0 1/2+ 0.0
5/2+ 0.08 1/2– 0.0
1/2– 0.05 3/2+ 0.08
3/2– 0.01 3/2– 0.08

5/2+ 0.01
5/2– 0.01

E
K

π E
K

π

potential from [16]. The quadrupole- and hexadeca-
pole-deformation parameters, β2 and β4, respectively,
which affect the behavior of the reaction cross section
at neutron energies below 1 MeV, were determined
from a fit to the experimental value of the s-neutron
strength function S0. In the output channel of inelastic

scattering, the neutron penetrabilities  were calcu-
lated with the aid of the deformed potential from [16]
as well, but the coupling of the levels of the residual
nucleus 238Pu was disregarded in this case.

2.3. Level Density

In the model of a two-humped fission barrier, the
competition between the neutron-fission and neutron-
emission processes is determined primarily by the level
densities of the fissile nucleus for the inner and outer
saddle points and by the level density of the residual
nucleus at equilibrium deformations. The contribution
to the level density ρ(U, Jπ) from quasiparticle and col-
lective states can be represented in a factorized form
[24]. We will rely on the phenomenological model that
was proposed in [25] and which takes consistently into
account shell and collective effects, as well as pairing
interactions of the correlation type. The corresponding
expression for the level density has the form

(6)

where ρqp(U, Jπ) is the density of the quasiparticle lev-
els, while Krot(U, J) and Kvib(U) are factors describing,
respectively, the rotational and the vibrational enhance-
ment of the level density. Equation (6) is valid in the
adiabatic approximation, in which case the contribu-
tions of internal and of collective states to the total level
density can be factorized.

The actinide nucleus 238Pu at equilibrium deforma-
tions and the actinide nucleus 239Pu at deformations of
the inner saddle point are axisymmetric. In this case,
the coefficient of the rotational enhancement of the
level density can be represented as

(7)

(8)

where σ⊥  and σ|| are parameters of the angular distribu-
tion, while t is a thermodynamic temperature. At high
excitation energies U > Ucr, in which case pairing is
destroyed, the moment of inertia F⊥  (orthogonal to the
symmetry axis of the nucleus) was set to the moment

inertia of the rigid body ,

(9)

where r0 = 1.24 fm, m0 is the nucleon mass, and e is the
quadrupole-deformation parameter. At zero value of
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Table 2.  Parameters of the level density for the fissile nucleus 239Pu and for the residual nucleus 238Pu

δW, MeV ∆, MeV e F0/"2, MeV

Inner hump 2.5 ∆0 + δ 0.6 100
Outer hump 0.6 ∆0 + δ 0.8 200
Neutron channel –2.439 ∆0 0.24 73

Note: The value of δ = 0.06 MeV was determined from a fit to the cross section for the fission process in the plateau region.
the thermodynamic temperature t, the moment of iner-
tia F⊥  was set to the experimental value F0; at interme-
diate temperatures, the values of F⊥  were calculated by
means of a linear interpolation [25].

The mass asymmetry at the deformations of the
outer saddle point doubles the rotational-enhancement
factor Krot(U, J) given by (7). For deformations, the
rotational enhancement factor can be represented as

(10)

The density of quasiparticle levels, ρqp(U, Jπ), is given by

(11)

where ωqp(U) is the density of the internal quasiparticle
states.

The shell dependence of the level-density parameter
a(U) is determined by the relation [25]

(12)

Here, Ucr = 0.47acr∆2 – m∆, where m = 0, 1, 2 for even–
even, odd, and odd–odd nuclei, respectively; f(x) = 1 –
exp(–0.064x) is a dimensionless function determining
the damping of the shell effect on the level density with
increasing excitation energy;  and acr are the values of
the parameter a(U) at, respectively, high excitation
energies and the critical value of the excitation energy
U = Ucr; and the condensation energy is given by Econd =
0.152acr∆2 – m∆, ∆ being a correlation function that is

equal to 12/  for ground-state deformations. The
shell correction δW, the correlation function ∆, the qua-
drupole deformation e, and the moment inertia at zero
temperature (F0/"2), which appear, as parameters, in
the level density for the inner and outer saddle points
and for equilibrium deformations, are presented in
Table 2. The values of the shell corrections at the inner

and outer humps, δ , were borrowed from [26].
The shell correction in the ground state has the form
δW = Mexpt – MMS, where MMS is the liquid-drop nuclear
mass calculated with the Myers–Swiatecki parameters
[27], while Mexpt is the experimental value of the
nuclear mass. The values of  and acr in the level-den-
sity parameter a(U) were determined from a fit to the
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observed density of neutron resonances. We assume
that the value of the parameter a(U) at high excitation
energies ( ) is independent of nuclear deformation tak-
ing, in particular, the same value at saddle-point and
equilibrium deformations. It should be noted that the
shell correction proved to be negative at equilibrium
deformations [27] and positive at saddle deformations
[26]; as a result, the values used for the parameter a(U)
at low excitation energies are also quite different.

Let us now consider the basic element of our
model—the density of internal quasiparticle states,
ωqp(U). In the Boltzmann gas model, it is determined as
the sum of the partial densities of n-quasiparticle states,
ωnqp(U). We have

(13)

where g = 6acr/π2 is the density of single-particle states
at the Fermi surface, while n is the number of the qua-
siparticles. The partial densities of n-quasiparticle
states, ωnqp(U), depend greatly on the thresholds for the
excitation of n-quasiparticle configurations, Un, with
n = 1, 3, … for A-odd nuclei and n = 2, 4, … for even–
even nuclei. In [28], Un was estimated as

(14)

where ncr = 12/π2(ln2)gtcr, with the critical temperature
tcr being tcr = 0.571∆. This estimate of Un takes into
account the energy dependence of the correlation func-
tion ∆(U) and the correction to the excitation energy for
the effect of the Pauli exclusion principle. The above
estimate also depends substantially on the value of the

shell correction. The angular-distribution parameter 
can be represented as

(15)

where 〈m2〉 = 0.24A2/3 is the mean square of the projec-
tion of the angular momentum of single-particle states
onto the symmetry axis. From equation (8), it follows

that, at saddle-point deformations, we have  ≈ ;

ã

ωqp U( ) ωnqp U( )
n

∑ gn U Un–( )n 1–

n 2⁄( )!( )2 n 1–( )!
------------------------------------------,

n

∑= =

Un

=  
Econd 3.23n ncr⁄ 1.57n2 ncr

2⁄–( ), n 0.446ncr<
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2⁄+( ), n 0.446ncr,≥
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obviously, the parameter , which determines the
angular distribution of fission fragments, is much less
sensitive to the energy dependence of the density of
few-quasiparticle states, ωnqp(U), than the fission cross
section.

2.3.1. Level density in 239Pu

In an odd nucleus, the effect of an unpaired particle
on pairing can be taken into account, in the first approx-
imation, via a shift of excitation energy. For the fissile
nucleus 239Pu, the level density can be calculated with
the aid of equations (6)–(15) if we define the effective
excitation energy as 8 = U + ∆, where ∆ is the correla-
tion function for saddle-point deformations (see
Table 2). At low excitation energies, the level density
depends strongly on the number of excited quasiparti-
cles. In the case of the even–odd nucleus 239Pu, the par-
tial contributions of n-quasiparticle states, ωnqp(U), to
the total level density ωqp(U) generates a stepwise
structure at energies below the threshold for the excita-
tion of three-quasiparticle states. This is because the
excitation of few-quasiparticle states weakens pairing;
in the case of actinides, only the excitation of states fea-
turing a minimal number of quasiparticles leads to the
emergence of a structure in the level density. If this
minimal number of excited quasiparticles is n = 1, the
density of internal excited states, ω(U), is proportional
to g—that is, ω(U) does not depend explicitly on exci-
tation energy in the Boltzmann gas model. The density
of single-quasiparticle states determines a stepwise
dependence of the cross section for the fission process
induced by incident neutrons with energies near E3 =
U3 + EfA – B ~ 1.5 MeV, where B is the neutron binding
energy, while EfA is the height of the higher inner hump
of the fission barrier. The energy E3 corresponds to the
threshold for the excitation of three-quasiparticle states
at deformations of the inner fission barrier; the internal
density of these states is ω3(U) ~ g3U2. The excitation
of three-quasiparticle states can result in a further
growth of the fission cross section. By fitting the fission
cross section, we can obtain an empirical estimate for

the density of internal few-quasiparticle states:  ~

3ω1 and  ~ 2ω3. It should be borne in mind that this
estimate of the level density at low excitation energies
depends on the parameters of the fission barrier; how-
ever, the resulting empirical coefficients are rather
large. In all probability, the approximation of the level
density in a realistic nucleus within the Boltzmann gas
model reproduces the level density at low excitation
energies only qualitatively. At higher energies, the
parameter of the density of single-particle states must
be normalized to the level density in the model featur-
ing an indefinite number of quasiparticles [25].

In the following, we will approximate the level den-
sity in a somewhat differ manner.

K0
2

ω1

ω3
Instead of using the equations for the Boltzmann gas
model to simulate the density of internal excitations,
we will reproduce the stepwise structure of the level
density at low excitation energies by means of the
empirical parameters introduced in the constant-tem-
perature model [26]. The level density in an axisym-
metric nucleus,

(16)

can be calculated equations by means of equations (6)–
(15). At the same time, this level density can be esti-
mated on the basis of the constant-temperature model
by using the relation

(17)

where U0 ≈ –m∆, with m being 0, 1, and 2 for even, odd,
and odd–odd nuclei, respectively. The nuclear temper-
ature Tf and the shift of the excitation energy U0 are
determined by requiring that, at the excitation energy of
Uc = 2.4 MeV, the constant-temperature model be
matched smoothly with the superfluid-nucleus model
featuring an indefinite number of quasiparticles [25].
At higher excitation energies, the continuous spectrum
of transition states is described on the basis of the
model proposed in [25]. Further, we take into account
the effect of nonaxial and mass asymmetries (see
above). In the case of an even–odd nucleus, the level
density ρ(U) at excitation energies less than the thresh-
old for the excitation of three-quasiparticle states
depends only slightly on the excitation energy since the
density of the internal single-quasiparticle states is con-
stant (ω1 ~ g). For U < U3, the level density can be cal-
culated as

(18)

By using equation (18), we can reproduce the measured
cross section. We assume that the fission cross section
is determined primarily by the parameters of the inner
fission barrier. In the even–odd fissile 239Pu nucleus,
single- and three-quasiparticle states determine the
energy dependence of the fission cross section at inci-
dent-neutron energies not greater than 2.5 MeV (see
Figs. 1 and 2). For excitation energies that are higher
than the threshold for the excitation of three-quasipar-
ticle states, but which are lower than the threshold for
the excitation of five-quasiparticle states, the level den-
sity was somewhat increased in relation to the estimate
on the basis of the constant-temperature model:

(19)

Here, the parameter δ5 = 0.145 MeV was determined
from a fit to the fission cross section at energies not less
than 2.5 MeV. For the fissile nucleus 239Pu, the level

ρ U( ) K rot U J,( )Kvib U J,( )
ωqp U( )

2πσ||

------------------,=

ρ U( ) T f
1– U U0–( ) T f⁄( ),exp=

ρ U( ) T f
1– 1 2 U 0.5U3–( ) )+(=

× U3 ∆f U0– δ3–+( ) T f⁄( )exp

≈ T f
1– ∆f U0–( ) T f⁄( ).exp

ρ U( ) T f
1– U U0– δ5+( ) T f⁄( ).exp=
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density at the inner hump of the fission barrier is shown
in Fig. 3, nonaxial deformations being taken into
account in these results. The level density calculated on
the basis of equations (18) and (19) is contrasted
against the results of the level-density approximations
within the constant-temperature model [equation (17)]
and within the renormalized Boltzmann gas model. The
arrows on the horizontal axis in Fig. 3 indicate the
thresholds for the excitation of an odd number of qua-
siparticles at deformations of the inner hump of the fis-
sion barrier.

2.3.2. Level density in 238Pu

For even–even nuclei, the partial contributions
ωnqp(U) of the n-quasiparticle states to the total density
of states, ωqp(U), lead to the emergence of a stepwise
structure only for n = 2 and 4 configurations (see
Fig. 4). The arrows on the horizontal axis in Fig. 4 cor-
respond to the thresholds for the excitation of n-quasi-
particle configurations with an even number of quasi-
particles at equilibrium deformations. The density of
internal states in the residual nucleus 238Pu, ω2(U), can
be represented in the form ω2(U) = g2(U – U2), which
modifies the approximation of the Boltzmann gas
model. Below the threshold for the excitation of four-
quasiparticle configurations, ω2(U) is modified by
using the Woods–Saxon form:

(20)

This estimate of the density of two-quasiparticle con-
figurations, ω2(U), was obtained in interpreting the
near-threshold stepwise structure in the cross section
for the reaction 239Pu(n, 2n) [10].

Here, we will calculate the level density by analogy
with the determination of the level density in 239Pu (see
above). At excitation energies that are higher than the
pairing gap, but which are lower than the threshold for
the excitation of four-quasiparticle configurations, the
level density is determined as

(21)

where δ4 ~ 0.5(U4 – U2). The density of the internal two-
quasiparticle internal states in the even–even nucleus
238Pu affects the calculated cross section for 238Pu fis-
sion induced by incident neutrons with energies above
1.2 MeV. The parameter values of δ4 = 0.25 MeV and
δa = δs = 0.1 MeV were obtained from a fit to the fission
cross section. The level density calculated by means of
equations (18) and (19) is compared with that obtained
within the constant-temperature model [equation (17)]
and within the Boltzmann gas model. The present esti-
mate and the estimate within the Boltzmann gas model
are very close at high excitation energies; they begin to
deviate at energies less than 5 MeV.

ω2 U( ) g2 U4 U2– 0.35–( )= ×

  ×  (1  +   exp U 2 U – 0.1+ ( ) 0.1 ⁄( ) ) 
–1 .

ρ U( ) ρ U4 δ4–( ) 1 U2 U– δa+( ) δs⁄exp+( ),⁄=
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Only collective levels are taken into account at exci-
tation energies below the threshold U2 for neutron-pair
dissociation [29]. At excitation energies that are higher
than the threshold for four-quasiparticle states, U4, but
which are lower than the energy Uc = 3.6 MeV at which
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Fig. 3. 

 

Density of the levels of the fissile nucleus 

 

239

 

Pu

 

within the inner hump of the fission barrier: (solid curve)
results corresponding to the approximation used here for the
level density, (dashed curve) results within the constant-
temperature model, and (points) results corresponding to
the approximation of the density of quasiparticle states
within the Boltzmann gas model.
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matching is performed, a continuous level density is
calculated within the constant-temperature model at the
parameter values of U0 = –0.0002 MeV and T =
0.38454 MeV, which make it possible to describe the
increasing sum of low-lying levels. For higher excita-
tion energies, we used the phenomenological model
from [25]. For the 238Pu nucleus, the level-density
parameter was obtained by using the systematics from
[30] for actinides from Th to Cf.

2.4. Calculation of the Fission Cross Section
within the Statistical Model

In Fig. 1, deep-subthreshold data on the fission cross
section that were obtained in [11] with a spectrometer
relying on information about the moderation time in
lead are compared with the data from [12–15], where
electrostatic accelerators were used. The dashed and
dash-dotted curves in Figs. 1 and 2 demonstrate the
sensitivity of the calculated cross section to the level
density in the fissile nucleus 239Pu for internal-excita-
tion energies U < U3. As a matter of fact, the dashed and
dash-dotted curves were calculated for the parameter
values of, respectively, δ3 = 1.05 and 1.45 MeV in equa-
tion (18), while the solid curve was obtained with the
parameter value of δ3 = 1.25 MeV. It should be noted
that the computed fission cross section depends only
slightly on the density of single-quasiparticle states for
incident-neutron energies below 1 MeV as well. At the
same time, the fission cross section depends rather
strongly on the barrier parameters (see Table 3); this
makes it possible to estimate their computational
uncertainties at δEfA = 0.05 MeV, δEfB = 0.1 MeV, and
δ"ωB = 0.03 MeV, the uncertainty in the curvature of the
inner fission barrier being rather great (δ"ωA > 0.4 MeV).
Our estimates of the level-density and fission-barrier
parameters are in accord with experimental data on the
cross section for neutron-induced fission (see Figs. 1
and 2). At incident-neutron energies in excess of
2.5 MeV, the fission cross section can be reproduced by
enhancing the correlation function for the deformed
nucleus as ∆f = ∆0 + δ (see Fig. 2). The enhancement δ
depends on the relationship between the values that the
level-density parameter a(U) takes at the saddle-point
and at the equilibrium deformation; in turn, this rela-
tionship is governed by the relationship between the
shell corrections that is used in the calculations

(δ  – δWn). It can be hoped that the value that was
obtained here for the parameter δ = ∆f – ∆0 corresponds
to the total difference of pairing and shell properties
between the equilibrium and strongly deformed states.

3. CONCLUSION

A simple simulation of few-quasiparticle effects in
the density of internal states of the fissile nucleus 239Pu
and of the residual nucleus 238Pu makes it possible to
reproduce the above-threshold stepwise structure in the

W f
A B( )
                                                                                         

observed cross section for the fission process 238Pu(n,
f). This irregularity is due primarily to the excitation of
three-quasiparticle states in the fissile nucleus 239Pu.
Estimates obtained for the fission thresholds and for the
excitation of three-quasiparticle states comply with the
measured cross section for fission both above and
below the fission threshold. Similar above-threshold
structures have been observed in the cross sections for
the neutron-induced fission of other even–even isotopes
of uranium, plutonium, and curium. The proposed
method for simulating the density of internal states at
equilibrium and saddle-point deformations can be used
to analyze those irregularities. Both stepwise (in the
case of uranium and plutonium nuclei) and quasireso-
nance (in the case of curium nuclei) above-threshold
structures in the fission cross sections can be inter-
preted within this approach. An inevitable complication
of a simulation of the level density in relation to that
within the back-shifted Fermi gas model, which is still
widely used, seems justified, but the resulting descrip-
tion remains rather rough. In any case, this is a further
step toward consistently simulating the energy depen-
dence of the fission cross section and extracting the val-
ues of the level-density and fission-barrier parameters.
The estimates that were obtained in this study for the
level density in odd and even nuclei can be useful in
microscopically simulating the level density at low
excitations.
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Abstract—Within the three-body α2N and 2αN models of the 6Li and 9Be nuclei, respectively, the spectro-
scopic factors and the momentum distributions of nucleons are computed for the cases where residual nuclei
can be formed both in the ground and in excited states. The impact of model parameters on the values of one-
nucleon features is discussed. The results of the calculations performed in the present study are compared with
available experimental data. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One-nucleon characteristics like spectroscopic fac-
tors S, reduced widths θ2, partial widths Γ, and momen-
tum distributions of nucleons play an important role in
studying nuclear reactions where one nucleon is
attached to or detached from a target nucleus. These
include direct nuclear reactions of nucleon stripping or
pickup, elastic or inelastic nucleon scattering on nuclei,
and resonance processes where the excitation of high-
lying levels of a compound nucleus is followed by their
decay through the nucleon channel. Available experi-
mental data that could be used to determine the above
features involve significant ambiguities; moreover,
these data, obtained in different experiments and under
different conditions, have not yet been systematized. In
view of this, model calculations of one-nucleon fea-
tures are required for developing the theory of the
above-type nuclear processes further and for planning
target-oriented experiments.

In recent years, the dynamical α2N and 2αN models
of, respectively, A = 6 and 9 nuclei have been widely
used to calculate the features of various nuclear pro-
cesses [1–3]. It turned out that the α2N model repro-
duces well all static characteristics of the 6Li nucleus
(with the exception of its relatively small quadrupole
moment) and describes successfully two-body photo-
disintegration in the τt channel [4], photo- and electro-
disintegration in the αd channel [5, 6], and elastic and
inelastic hadron scattering [7]. Within the same model,
the electromagnetic form factors and the spectroscopic
S factor for deuteron and triton separation are faithfully
reproduced, provided that antisymmetrization has been
performed [8].

* e-mail: zhus@ietp.alma-ata.su
1063-7788/00/6302- $20.00 © 20170
Similar calculations of the features of A = 9 nuclei
were successfully performed on the basis of the three-
body 2αN model [2, 3, 9]. Of particular interest in this
case is the possibility of studying the role of αα  inter-
action. It is well known that the constituent-nucleon
structure of alpha particles can be taken into account in
terms of the wave functions of relative motion in two
ways. In the first model version, the Fermi statistics of
nucleons is simulated by using the l-dependent Ali–
Bodmer potential, which features repulsion at small
distances. In the second model version, the deep αα
potential of attraction due to Buck [10] is employed for
the same purpose. The latter has a Gaussian form and
involves states forbidden by the Pauli exclusion princi-
ple. The quality of fits to phase shifts shows virtually no
changes in going over from one model to the other [3].
On the whole, a description of the energy spectra and of
some other characteristics of the 9Be nucleus is some-
what better in the model employing a narrow l-depen-
dent potential with the Ali–Bodmer repulsion than in
the model relying on a deep attractive potential involv-
ing forbidden states [3, 9].

The nucleon channels of the decay of the aforemen-
tioned nuclei were also studied within three-body mod-
els. Of particular interest in this connection is the 9Be
nucleus because, for the 8Be nucleus, which is formed
following the neutron emission from 9Be, there exist
wave functions established reliably within the potential
αα  cluster model [13]. In the case of proton separation
from the ground-state 6Li nucleus, we consider the
cases where a 5He nucleus is produced either in the
ground state or in a highly excited state. In the first case,
the calculation relies on the wave function of the
ground-state 5He nucleus treated as that which has the
α + n configuration. In the second case, the wave func-
tion is set to that in the potential d + t cluster model.
000 MAIK “Nauka/Interperiodica”
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A somewhat different method for calculating the S
factors in the channel 6Li  5Li + n was used by
Ryzhikh et al. [14], who expanded the wave function of
the multicluster dynamical model in terms of wave
functions of the multiparticle shell model (abbreviated
as MSM in the table). That approach permits fully tak-
ing advantage of the well-developed mathematical for-
malism of the shell model, but it leads to very cumber-
some calculations because a great number of wave-
function components appear in shell-model expan-
sions. The method that we will follow here admits a
straightforward extension of its computational scheme
to the cases where both ground and excited nuclear
states may appear in initial and final states. As to the
method of shell-model expansions, its implementation
presents serious difficulties for transitions featuring
excited nuclear states and for nuclei from the middle of
the 1p shell, including the 9Be nucleus, whose ground-
state wave function does not involve a dominant S wave
component, which is present in the case of the 6Li
nucleus. In the wave function of the ground-state 9Be
nucleus, there are three components characterized by a
nonzero orbital angular momentum each [2], whence it
follows that its shell-model expansion will feature a
great number of components.

In contrast to shell-model functions, wave functions
calculated within three-body cluster models for the
5çÂ + p and 8ÇÂ + n channels and represented as super-
positions of Gaussian forms show a correct asymptotic
behavior, a circumstance that is of importance in calcu-
lating momentum distributions. That currently avail-
able experimental values of spectroscopic factors as
determined on the basis of different data sets show wide
variations, especially for the 9Be nucleus, adds impor-
tance to a theoretical calculation of these factors, which
was first performed within the three-body model.

Some of the results presented here were obtained in
[11, 12, 15]. Here, however, we give a full account of
the mathematical formalism of the theory and, what is
the most important of all, calculate anew the momen-
tum distributions of nucleons. The point is that, for the
target nucleus 6Li, there are now reliable experimental
data on the momentum distributions of protons from
the (e, ep) reaction leading to 5He formation both in the
ground state and in excited states [16]. In [11, 12], the
momentum distributions in question were computed in
the plane-wave approximation. The results obtained in
this way comply with experimental data up to momen-
tum values of a few tens of MeV/c, exceeding them at
higher momenta. These discrepancies are due to the
effect of distortions in the final state. In order to take
correctly into account these distortions, it is necessary
to know the p5çÂ and n8ÇÂ interaction potentials.
Because of the instability of the A = 5 and A = 8 nuclei,
these potentials cannot be found, however, from phase-
shift analyses, which are usually used in such cases. For
this reason, we take into account the above distortions
within the strong-absorption method, introducing, for
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 2      2000
this purpose, cutoff radii R0 in the integrals that are cal-
culated for momentum distributions in the plane-wave
approximation. Previously, this method for taking into
account distortions was successfully used to compute
the features of quasielastic cluster knockout in reac-
tions of the (p, pd) type [17].

2. SPECTROSCOPIC FACTORS
AND MOMENTUM DISTRIBUTIONS
OF PROTONS IN THE 6Li NUCLEUS

For the ground state of the 6Li nucleus, we used the
αnp wave function obtained by using a potential featur-
ing even–odd splitting of phase shifts for αn interac-
tion, VαN [2, 18], and the soft-core Reid potential VNN
for nucleon–nucleon interaction [19]. In the wave func-
tion of the ground-state 6Li nucleus, we take into
account only two dominant configurations, that where
λ = l = L = 0 and S = 1 (S wave) and that where λ =2,
l = 0, L = 2, and S = 1 (D wave). The 6Li wave function
can then be represented in the form

(1)

where

(2)

(3)

Ψi f,
λ l( ) ΨS
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Spectroscopic factors for neutron separation from the 9Be
nucleus in the transitions leading to the formation of the
ground and the first excited state of the 8Be nucleus

Model, experiment
State of the 8Be nucleus

Jπ = 0+ Jπ = 2+

2αN:

version (I) 0.36 0.28

version (II) 0.20 0.24

version (III) 0.30 0.24

MSM [27]:

version (I) [28] 0.58 0.73

version (II) [29] 0.37 0.71

version (III) [30] 0.58 –

Experiment:

(pd) Ep = 50 MeV [31] 0.55 0.36

(dt) Ed = 18 MeV [32] 0.23 0.20
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According to Kukulin et al. [1], the S wave makes a
dominant contribution to the ground state of the 6Li
nucleus (a contribution that exceeds 90%), whereas the
D wave appears to be a small correction ranging
between 3 and 7%, its specific value being dependent
on the choice of interaction potential.

In experiments at NIKHEF [16], the spectroscopic
factors and the momentum distributions of protons
were determined quite accurately both for transitions to
the ground state of the 5He nucleus and for transitions
to its highly excited states. For the ground state of the
6Li nucleus, we have calculated the proton features for
the formation of the Jπ = 3/2–, T = 1/2 ground state of
the 5He nucleus and for the formation of its excited
state at Ö = 16.75 MeV with spin–parity Jπ = 3/2+ and
isospin T = 1/2. Within the shell model, the former
arises upon the separation of a valence 1p nucleon from
the (1s)4(1p)2 ground state of the 6Li nucleus, while the
latter results from the separation of an s nucleon enter-
ing into the composition of the α-cluster core. In our
model, the  resonance in the αn system at En =

1.15 MeV (Ec.m. = 0.9 MeV) was associated with the
ground state of the 5He nucleus. This resonance was
computed in an attractive αn interaction potential hav-
ing a Gaussian form and involving a state forbidden in
the s wave and even–odd splitting of levels [18].

Of particular interest is proton separation from a 6Li
nucleus in the reaction resulting in the excitation of a
highly excited state of the 5He nucleus. In our model,
this state is considered as a near-threshold L = 0, S = 3/2
resonance of dt scattering at Ed = 0.07 MeV. This level
determines the cross section for the reaction t(d, n)α,
which plays the main role in thermonuclear fusion, and

P
3/2–

n p n p

α α

x, λ

y, l x' y'

n p

α t p

d d

p

t

(a) (b)

(c)

Fig. 1. (a) Jacobi coordinates x and y for the 6Li nucleus in
the α2N model; (b) Jacobi coordinates x ' and y' used in cal-
culating the proton spectroscopic factors for the transition to
the ground state of the 5He nucleus; and (c) diagram repre-
senting the transformation of the Jacobi coordinates in the
6Li nucleus for the transition to the first excited state of the
5He nucleus.
the properties of the mesic molecule dtµ [20]. In order
to calculate the wave function of this state, we
employed the attractive potential from [21], which
involves forbidden states and which faithfully repro-
duces the low-energy l = 0, 1, 2 quartet phase shifts in
the dτ system. Only the Coulomb component of the dτ
potential was changed for the dt system being consid-
ered. In [22], it was assumed that the above “thermonu-
clear” resonance may have a three-body structure of the
(3H + n + p) type. We have calculated the nucleon fea-
tures by using the wave functions of this model.

In order to obtain the proton features, we took the
overlap of the 6Li wave function (2) and the 5He wave
function in the αn model [18]. As before, the latter was
expanded in the Gaussian basis as

(4)

In order to deduce spectroscopic features, it is nec-
essary to go over to a new set of Jacobi coordinates x
and y in the wave function of the ground-state 6Li
nucleus (see Fig. 1a). This transition can be accom-
plished with the aid of the matrix

(5)

where a11 = –4/5, a12 = –1, a21 = 3/5, and a22 = –1/2. The
radial component of the wave function (4) then takes
the form

(6)

where 

µij = αi  + βj , νij = αi  + βj ,
ρij = 2αia11a12 + 2βja21a22.

In order to eliminate the crossed term in the expo-
nent, we make one more coordinate transformation:

(7)

The eventual form of the coordinate transforma-
tion is

(8)
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where aijn = –ρij/2µijn and µijn = µij + γn.

The transformation coefficients in (6) can be
expressed in terms of the elements of the matrix Q as

(9)

where [λ] = 2λ +1.

The Jπ = 3/2+ excited state is slightly above the dt
threshold [23]. This state is of paramount importance
for the thermonuclear-fusion reaction d + t  n + α.
The cross section for this reaction is enhanced by both
initial- and final-state resonances. It is assumed that the
(3/2)+ resonance is due to a weak coupling between the
d + t and n + α channels via a tensor interaction. In the
d + t channel, the (3/2)+ level has a spin of S1 = 3/2 and
an orbital angular momentum of L1 = 0; in the n + α
channel, the spin of the resonance is S2 = 1/2, while its
orbital angular momentum is L2 = 2. It is interesting to
note that, in single-channel calculations, no L2 reso-
nance arises in the n + α system [18]. A calculation
within the algebraic version of the resonating-group
method [24] revealed that the resonance in question
appears only upon taking into account the coupling of
the n + α and d + t channels. Nonetheless, the estimates
presented in [24] demonstrate that the (3/2)+ resonance
is formed owing primarily to the d + t channel: the
wave-function amplitude in this channel is three orders
of magnitude greater than that in the n + α channel. In
order to calculate the wave function of the (3/2)+ state,
we therefore used a dt potential that involves forbidden
states and which was obtained from the dτ potential
from [21] by changing only the Coulomb term. This
potential makes it possible to reproduce fairly well low-
energy dτ phase shifts and the cross section for radia-
tive-capture reaction d + 3çÂ  5Li + γ [21].

In calculating the spectroscopic features for the
transition to the aforementioned excited state of the 5He
nucleus, we also employ an expansion in a Gaussian
basis:

(10)

For the d, t, and α-particle clusters, we use here wave
functions that are represented as sums of Gaussian
forms and which faithfully reproduce root-mean-
square radii and binding energies [25]. In order to com-
pute the spectroscopic factor, the relevant coordinates
are transformed according to the scheme presented in
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Fig. 1b. The resulting p5çÂ wave function of the
ground-state 6Li nucleus has the form

(11)

where Wijn = νij – /4  and z1 = λ – λ1 + l – l1 + 1 – j1.

The proton spectroscopic factor was computed by
the formula

(12)
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where z2 = (λ1 + l1 + j1 + 3)/2 and z3 = 2λ – λ1 –  + 2l –

l1 –  – j1 –  + 3.

The momentum distribution is given by
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Fig. 2. Momentum distributions of protons in the ground-
state 6Li nucleus for the transition to (a) the ground and (b)
a highly excited state of the 5He nucleus: (solid curves)
plane-wave results (R0 = 0), (dashed curves) results
obtained with allowance for distortions (R0 = 2.5 fm), and
(dash-dotted curve) results of the calculation within the tnp
model. Experimental data were borrowed from [16].
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a node in the momentum-representation wave function
(see Fig. 2b). Thus, it seems that the authors of the tnp
model [22] erroneously associated the forbidden-state
wave function featuring no internal excitation quanta
with the highly excited Jπ = 3/2+ state of the 5çÂ
nucleus.

The results that we obtained for the momentum dis-
tribution of protons in the 6Li ground state by using
three-body wave functions are displayed, along with
experimental data [16], in Fig. 2a for the transitions to
the ground state of the 5He nucleus and in Fig. 2b for
the transitions to the aforementioned highly excited
state of this nuclear species. As might have been
expected, the plane-wave calculation (solid curves)
faithfully reproduces the shape of the experimental
curve at comparatively low momentum values of 70–
80 MeV/c. A discrepancy at higher momenta, which
correspond to small distances, highlights the impor-
tance of distortion effects (and above all, of particle
absorption) in the interior of the nucleus being consid-
ered. In order to take correctly into account these
effects, it is necessary to know the interaction potential
in the p5çÂ channel. Since 5He nuclei cannot be used
for a target because of their instability, a conventional
method of potential reconstruction on the basis of
phase shifts is inapplicable here; therefore, we invoked
a different method for taking distortions into account,
that which relies on the strong-absorption model,
where the interior of a nucleus is singled out by intro-
ducing cutoff radii R0 in integrals that determine
momentum distributions. Physically, this procedure
takes into account particle absorption in the interior of
a nucleus; previously, this recipe for treating distortions
proved viable in the calculation of the quasielastic
knockout of clusters [17]. Numerically, the cutoff
radius, which appears to be a parameter here, is close to
the channel radius.

In Fig. 2, dashed curves represent the results that we
obtained by calculating, with allowance for distortions,
the momentum distributions of protons in the ground-
state 6Li nucleus for the transition to the Jπ = 3/2–

ground state of 5He (Fig. 2a) and for the transition to its
Jπ = 3/2+ excited state (Fig. 2b). We can see that, for
either channel, the agreement between theoretical and
experimental results is much better at R0 = 2.5 fm than
at R0 = 0—that is, the effects of absorption in the inte-
rior of the nucleus are adequately reproduced by intro-
ducing a cutoff radius. The shape of the momentum dis-
tributions in Fig. 2b provides an additional argument
against the use of the wave function that the tnp model
produces for the above highly excited state of 5He
(dash-dotted curve) and which was presented in [22].

3. SPECTROSCOPIC FACTORS
AND MOMENTUM DISTRIBUTIONS

OF NEUTRONS IN THE 9Be NUCLEUS

In calculating the nucleon features of the 9Be
nucleus, we used three versions of the 2αN model with
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 2      2000
the following pair interaction potentials Vαα and VαN [2,
3]: (i) a potential VαN featuring even–odd splitting of
phase shifts and a deep potential Vαα having the Buck
form and involving forbidden states, (ii) the Sack–
Biedenharn–Breit (SBB) potential VαN [26] and the
Buck potential Vαα, and (iii) the same potential VαN as
in version (i) and the Ali–Bodmer potential Vαα.

In the three-body model, the wave function of the
Jπ = 3/2– ground state of the 9Be nucleus features three-
dominant components with approximately identical
weights [2]:

(14)

Here, r and R are coordinates that describe, respec-
tively, the relative motion of two alpha particles and the
relative motion of the neutron and the center of mass of
two alpha particles in the 9Be nucleus; λ and l are the
corresponding orbital angular momenta; and L is the
total orbital angular momentum of the nucleus. The
wave-function components from (14) can be repre-
sented as

(15)

(16)

(17)

The neutron features of the 9Be nucleus can be cal-
culated quite straightforwardly because additional
coordinate transformations, similar to those that are
necessary for the 6Li nucleus, are not required in this
case. We will take the wave function of the 9Be nucleus
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in the form (14). In order to obtain the neutron features,
we evaluated the overlap integrals of the wave function
of the 9Be nucleus with the wave functions of the 8Be
nucleus in the ground and the first excited state. The
wave functions of the 8Be nucleus were calculated on
the basis of the two-body αα  model proposed in [13].
In this calculation, we made use of the Woods–Saxon
potential. The wave function of the 8Be nucleus was
represented in the form

(18)

and the radial component Rl(x) was determined by
expanding it in a Gaussian basis as

(19)

The values found for Cn and αn by means of a varia-
tional procedure are presented in [13]. In calculating
the nucleon features, we considered not only the 8Be
wave function within the αα  model but also shell-
model wave functions, whose radial components

Ψ
Be

8 x( ) ϕα1
ϕα2

Rl x( )Ylm x( ),=

Rl x( ) CnNnxl αnx2–( ).exp
n 1=

N

∑=

3002001000

0.2

0.4

0.6

0.8

pm, MeV/c

(b)

(a)

0

0.4

0.8

1.2

1.6
ρ(pm) × 10–7, (MeV/c)–3

Fig. 3. Momentum distributions of neutrons in the ground-
state 9Be nucleus for the transition to (a) the ground and (b)
an excited state of the 8Be nucleus: (solid curves) plane-
wave results (R0 = 0) and (dashed curves) results obtained
with allowance for distortions (R0 = 2.5 fm). The wave func-
tions of the 9Be nucleus were computed within version (iii)
of the three-body model (in this version, the Ali–Bodmer
potential is used to simulate αα  interaction).
appear to be R4S and R4D for, respectively, the ground
and the first excited state of the 8Be nucleus.

In the 8ÇÂ + n channel, the wave function of relative
motion in the 9Be nucleus has the form

(20)

The neutron spectroscopic factor is defined by the con-
ventional expression

(21)

For the transition to the ground state of the 8Be
nucleus, the overlap integral in (20) is determined by the
contribution of the first component in the wave function
of the 9Be nucleus [see equations (14) and (15)]:

(22)

For the transition to the first excited state of the 8Be
nucleus, this overlap integral receives contributions
from the remaining two components, those for which
λ = 2 [equations (14), (16), and (17)].

For all cases considered here, we have also calcu-
lated the momentum distribution of neutrons, which
appears to be the Fourier transform of the wave func-
tion of relative motion:

(23)

Upon substituting the wave function (22) of relative
motion in the 9Be nucleus and performing integration
with respect to the relevant coordinate, we find that, for
the transition to the ground state, the distribution in
question is given by

(24)

For the transition to the 2+ excited state of the 8Be
nucleus, the corresponding expressions are somewhat
more cumbersome, but they are derived in a similar
way.

The results of our calculations are displayed in the
table and in Fig. 3. Of particular interest is the relation-
ship between the spectroscopic-factor values for the
transitions to the ground and the first excited state of the
8Be nucleus. In accord with a major part of experimen-
tal data, the calculations that employ the parity-split αN
potential to determine the spectrum of the 9Be nucleus
lead to neutron spectroscopic factors that are slightly
greater for the transition to the ground state than for the
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transition to the first excited state [versions (i) and (iii)].
A different situation arises in version (ii), where the
calculation relies on the SBB potential: in this case, the
spectroscopic factor for the transition to the excited
state is 1.2 times as great as that for the transition to the
ground state. This distinction is still greater when the
wave functions obtained on the basis of the multiparti-
cle shell model [27] are used for both nuclei.

The relationship between the spectroscopic factors
for the transitions to the ground and the first excited
state of the 8Be nucleus is determined exclusively by
the form of the αN potential used in the three-body
model; it undergoes no changes upon going over to the
shell-model wave functions for the daughter nucleus
[11]. As can be seen from the table, the spectroscopic
factors for transitions from the ground state of the 9Be
nucleus are only weakly sensitive to the form of the αα
interaction potential.

The above procedure for computing one-nucleon
features within the three-body cluster model can be
extended easily to the case where excited states of the
9Be nucleus are involved. We have calculated the spec-
troscopic factor for the transition from the 9Be (1/2)+,
1/2 level at E = 2.78 MeV to the ground state of the 8Be
nucleus. We have performed our calculations for two
versions. In the first, we have employed the parity-split
αN potential and the Buck αα  potential. In the second,
we have taken the same αN potential and the Ali–Bod-
mer αα  potential. In contrast to the purely attractive
Buck potential, which is independent of the orbital
angular momentum l, the Ali–Bodmer potential
involves repulsion at small distances. In the first and in
the second version, we have obtained Sn = 0.65 and
0.54, respectively, the latter result being fully in accord
with the experimental value of Sn = 0.48 ± 0.06.

Thus, we have demonstrated that the one-nucleon
characteristics of the 9Be nucleus can be obtained
within the three-body potential 2αN model. The spec-
troscopic factors and the parameters of the momentum
distributions of neutrons in the ground-state 9Be
nucleus for the transitions to the ground and the first
excited state of 8Be have been analyzed for stability to
the choice of models for the nuclei in question. Here,
we revealed the highest sensitivity to the form of the αn
potential. The spectroscopic factors computed within
the three-body model proved to be much less than their
shell-model counterparts. The relationship between the
spectroscopic factors for the transitions to the ground
and the first excited state of 8Be changes markedly
when we go over from the cluster model to the shell
model [28–30], the values within the former being con-
sistent with experimental data [31, 32].

In Fig. 3, the momentum distributions of neutrons in
the ground state of the 9Be nucleus are presented for the
transitions to (Fig. 3a) the ground and (Fig. 3b) the first
excited state of the 8Be nucleus. As a matter of fact, we
computed these momentum distributions with all
known model wave functions of the 9Be nucleus (see
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 2      2000
[11]), but, because of the absence of relevant experi-
mental data, we present here only the results obtained
within version (iii), which relies on the Ali–Bodmer αα
potential featuring repulsion at small distances. As was
established in [3, 9], it is this model version that pro-
vides the best description of the static features of the
9Be nucleus. As can be seen from Fig. 3, the introduc-
tion of the cutoff radius equal to R0 = 2.5 fm changes
substantially the shape of momentum distributions,
suppressing the high-momentum section of the spec-
trum from a momentum of 50 MeV/Ò.

4. CONCLUSION

Within the three-body models of the 6Li and 9Be
nuclei, we have calculated the one-nucleon spectro-
scopic factors and momentum distributions for transi-
tions to the ground and excited states of residual nuclei.
It has been shown that, for proton separation from a 6Li
nucleus in the reaction resulting in the formation of a
5He nucleus in the ground state, the three-body model
of the 6Li nucleus makes it possible to reproduce the
experimental spectroscopic-factor value extracted from
electron data coming from NIKHEF. We would like to
note that a fit to this experimental value can also be
obtained on the basis of the multiparticle shell model.
As to the (3/2)+ excited state of the 5He nucleus, the
three-body model faithfully reproduces the experimen-
tal value of the spectroscopic factor for the transition to
this level as well.

By and large, the spectroscopic factors that we have
calculated for the 6Li nucleus are in satisfactory agree-
ment with experimental data. If, however, the wave
function in the three-body tnp model is used for the
above excited state of the 5He nucleus, the calculated
values of the proton spectroscopic factor (S = 0.03) fall
considerably short of the experimental value. Both the
spectroscopic factors and the momentum distributions
as calculated on the basis of the three-body tnp model
deviate strongly from the corresponding experimental
results, invalidating the wave function that was pre-
sented in [22] for the above excited state and which is
based on this model.

For the case of the 9Be nucleus, we have demon-
strated that, in its ground state, the calculated spectro-
scopic factors and the parameters of the momentum
distributions of neutrons for the transitions to the
ground and the first excited state of the 8Be nucleus are
sensitive to the choice of model for the nuclei in ques-
tion, the dependence of the above features on the form
of the αn potential being especially sharp. It has been
shown that, in contrast to what is obtained in the multi-
particle shell model, the calculations within the poten-
tial cluster model lead to a correct relationship between
the spectroscopic factors for the transitions to the
ground and the first excited state of the 8Be nucleus.
Thus, it seems that, of the spectroscopic factors consid-
ered here within the shell model, those for neutron sep-
aration from the ground state of the 9Be nucleus in the
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reactions leading to the formation of the ground and the
first excited state of the 8Be nucleus exhaust the cases
in which the multiparticle shell model yields incorrect
results.

It has also been revealed that the momentum distri-
butions computed here within the three-body model
can be fitted to experimental data only upon taking into
account final-state distortions. This can be done by
introducing a cutoff radius, which simulates the absorp-
tion of proton waves in the interior of the nucleus being
considered.
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Abstract—It is shown that the continuous spectrum of the 6He nucleus immediately above the threshold for its
breakup into an alpha particle and two neutrons has some features that are not peculiar to the continuous spec-
trum of binary systems. This spectrum has an infinite degeneracy multiplicity; hence, there exist an infinite
number of decay channels even if we fix the angular momentum and the parity of a channel. In states charac-
terized by a fixed value of the grand orbital, the potential energy of the 6He nucleus decreases with increasing
hyperradius in inverse proportion to its cube. This circumstance is reflected in the behavior of the S-matrix ele-
ments for 3  3 scattering at low above-threshold energies. Because of the effect of the Pauli exclusion prin-
ciple, the grand orbital generally ceases to be an appropriate quantum number for classifying decay channels,
and the resulting conventional situation requires invoking superpositions of states corresponding to different
values of the grand orbital. Within the method of three-cluster hyperharmonics and the approximation of an
asymptotic potential, we calculate the eigenphases of the scattering matrix and reveal regularities in the behav-
ior of these phases as functions of energy. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In [1] and later in [2], it was shown that the method
of three-cluster hyperspherical functions provides an
adequate approximation for describing the 6He bound
state that is dominated by the hyperharmonic character-
ized by the grand-orbital value of K = 2 and which fea-
tures no more than a 5% admixture of the K = 0 hyper-
harmonic. In [2], the character of the asymptotic behav-
ior of the hyperharmonics is discussed, and arguments
are adduced that explain why hyperspherical functions
are useful in studying the continuous spectrum of three-
cluster systems as well.

In [1], the method of hyperharmonics was used in
coordinate space, and the effect of the Pauli exclusion
principle was simulated by a nucleon–nucleon repul-
sive potential introduced in an ad hoc manner. In [2],
the wave equation was considered in the representation
of a three-body harmonic oscillator. This simplified
substantially both the procedure for removing forbid-
den states and the analysis of the asymptotic behavior
of the wave function at large intercluster distances.

Later on, it turned out, however, that actual calcula-
tions of the continuous spectrum of three-cluster sys-
tems by the method of K harmonics require a dedicated
analysis of some problems arising in such calculations.
First, we have to deal with basis states allowed by the
Pauli exclusion principle that represent linear superpo-
sitions of different hyperharmonics or hyperharmonics
that are characterized by the same value of the grand
orbital, but which differ by the values of additional

* e-mail: gfilippov@gluk.ape.org
1) Department of Physics, Taras Shevchenko Kiev University, ul.

Glushkova 6, Kiev, 252022 Ukraine.
1063-7788/00/6302- $20.00 © 20179
quantum numbers. There was no such question when
hyperharmonics in the space of dimension 3(A – 1)
were used to describe A-nucleon systems. Second, the
complexity of the structure of allowed states results in
that not only the matrix elements of the potential-
energy operator, which couple orthogonal allowed
states differing in grand-orbital content and in number
of oscillator quanta, but also matrix elements of the
kinetic-energy operator, which decrease slowly at infin-
ity, take nonzero values. In calculating the S-matrix ele-
ments for relevant scattering processes, the grand-
orbital content of the basis functions of various chan-
nels through which a three-cluster nucleus may decay
must therefore be rearranged with allowance for slowly
decreasing nondiagonal matrix elements of the kinetic-
energy operator. Finally, there is a third point requiring
a dedicated consideration. The continuous spectrum of
three-cluster systems is degenerate. Since infinitely
many decay channels open up immediately above the
threshold for three-body breakup, the multiplicity of
this degeneracy is infinite. For practical reasons, we
have to restrict our consideration, however, to a finite
number of degenerate states, but it is then necessary to
establish the dependence of scattering data, which are
determined by the S matrix, on the number of the chan-
nels used. All the above requires a thorough investiga-
tion of the problem of continuous spectra of three clus-
ter systems.

This article is organized as follows. In Section 2, we
describe a method for constructing states allowed by
the Pauli exclusion principle and list, for the 6He
nucleus in the 0+ state, those branches of allowed basis
states that are characterized by the minimum possible
values of the grand orbital. If the grand orbital K is not
000 MAIK “Nauka/Interperiodica”
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greater than 4 (Ka = 4), there are three such branches. In
Section 3, we consider the generating matrix elements
of the Hamiltonian of the system, their projections onto
states characterized by specific values of the quantum
numbers, and a calculation of the Hamiltonian matrix
elements between allowed states. In Sections 4 and 5,
we investigate the asymptotic behavior of the matrix
elements of the potential at large values of the hyperra-
dial quantum number and derive equations for the coef-
ficients in the expansions of the eigenstates of the sys-
tem in terms of the allowed basis states in the approxi-
mation of an asymptotic potential. We also consider
there some questions associated with multichannel
scattering. In Section 6, we describe our numerical cal-
culations and discuss the results that they produce.

2. CONSTRUCTING ALLOWED STATES

In constructing the stationary states of 6He, we will
make use of the harmonic-oscillator basis obtained as a
Slater determinant formed by generating orbitals of the
six-nucleon system [3]. States characterized by fixed
quantum numbers arise from an expansion of this deter-
minant in powers of the generator parameters of the
generating orbitals. We restrict ourselves to a basis cor-
responding to zero value of the total orbital angular
momentum. This restriction simplifies calculations, but
it is of no crucial importance in the approach used here.
Basis functions corresponding to other values of the
orbital angular momentum (say, those for 2+ states) can
also be constructed within the developed scheme, but
the projection algorithm in this case becomes some-
what more involved.

With each nucleon of the system, we associate the
Bloch–Brink orbital [4]

(1)

where φi is the space orbital for one nucleon, R(i) is the
vector generator parameter, ξi(σ, τ) is the nucleon spin–
isospin component of the nucleon wave function, and r
is the nucleon radius vector in configuration space. We
set the oscillator radius to r0 = 1. For the 6He nucleus,
we must take into account the following spin–isospin
states:

The vector generator parameters for the orbitals in (1)
are independent variables of entire analytic functions
defined in the linear Fock–Bargmann space [5].

We are interested in the motion of nucleons in their
c.m. frame; therefore, it is expedient to go over from the
nucleon radius vectors to the c.m. vector and the Jacobi

ϕ i R i( ) r σ τ, , ,( ) 1

π3/4
--------=

× r2

2
----– 2r R i( )

R i( )
2

2
--------–⋅+ 

 exp ξ i σ τ,( ) φiξ i σ τ,( ),=

ξ1 p↑ , ξ2 p↓ , ξ3 n↑,= = =

ξ4 n↓, ξ5 n↑, ξ6 n↓.= = =
vectors determining the arrangement of nucleons with
respect to one another. The 6He nucleus involves a sub-
system, an alpha cluster, whose breakup energy is con-
siderably higher than the energy of 6He breakup into an
alpha particle and two neutrons. Taking into account
this circumstance, we introduce, instead of the radius
vectors of the first four nucleons, the radius vector of
the center of mass of the alpha cluster and three vectors
associated with the polarization of the alpha cluster, e1,
e2, and e3. The generator vectors in the Fock–Bargmann
space transform in a similar way. In the approximation
of an unpolarized alpha cluster, the generator parame-
ters that are responsible for the excitation of this cluster
are set to zero. Thus, the motion of the nucleons form-
ing the alpha cluster can be described by a single gen-
erator parameter, and either remaining neutrons must
be consider as separate cluster:

(2)

The normalized generator Jacobi vectors character-
izing the relative positions of the clusters and the radius
vector of the center of mass of the system are expressed
in terms of the cluster radius vectors as

In the following, the vectors a and b defined in this way
will be referred to as those that form the main Jacobi
tree. Similarly, the vectors p, q, and Rc.m. in configura-
tion space are defined in terms of the vectors rα, r5, and
r6. There are two more ways to define generator Jacobi
vectors; in those cases, one of these vectors is aligned
with the vector connecting the alpha cluster and one of
the two neutron clusters. The corresponding Jacobi tree
is related to the main tree by the orthogonal transforma-
tion

(3)

Since the set of the nucleons forming the 6He
nucleus is a system of identical particles that may occur
in various spatial and spin–isospin states, its total wave
function must be antisymmetrized in all pairs of the
particles. Hence, the generating function for the basis
of allowed antisymmetric states is introduced as the
Slater determinant

(4)

where (j) = (rj, σj, τj) are the coordinates of the jth
nucleon. The determinant in (4) is proportional to the

R i( ) Rα , i 1 4, , R 5( ) R1, R 6( ) R2.= = = =
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3
------- Rα
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Φ ri σi τ i, ,{ }( ) det ϕ i j( ){ } ,=
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expression that is obtained by applying the antisymme-
trization operator to the function

(5)

multiplied by a spin–isospin factor. The expression in
(5) involves the alpha-particle wave function Φα0. In
the approximation being considered, this wave function
has the form

In expression (5), the part that describes the relative
motion of the clusters, that is,

(6)

represents the kernel of the integral transformation
from the eigenfunctions of the three-particle harmonic
oscillator in the c.m. frame, (p, q), to the basis

functions (a, b) defined in the Fock–Barg-
mann space. If the configuration-space basis functions
taken without their spin–isospin components are gi-
ven by
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the same functions in Fock–Bargmann space can be
written as

So far, it has not been clear whether the Fock–Barg-
mann representation is advantageous in relation to the
conventional coordinate representation. Upon applying
the antisymmetrization operator, however, the picture is
clarified—the basis functions in Fock–Bargmann space
prove to be much simpler that the basis functions in
coordinate space. We can see that, in the former, the
antisymmetrization reduces to a linear transformation
of the two Jacobi vectors a and b, while, in the latter, it
is performed via an orthogonal transformation relating
the five vectors p, q, e1, e2, and e3. It follows that, upon
an arbitrary permutation of the particles, the function

(a, b) remains a function of two vector argu-

ments, while the function (p, q) becomes a
function of five vector variables.

In Fock–Bargmann space, basis states allowed by
the Pauli exclusion principle can be obtained easily
from an analysis of the overlap integral of two generat-

ing determinants Φ and ,

(7)

that is, the integral of the product of the two determi-
nants with respect to all single-particle variables. The
second determinant  differs from the first one only in
that its generator parameters are tilde-labeled; hence,
they take the form  and  in the c.m. frame. The tilde-
labeled generator parameters of the second determinant
are introduced in order that the matrix elements com-
puted preliminarily for various operators between Φ
and  could be used, at a later stage, to determine the
matrix elements of the same operators between basis
functions characterized by specific values of the quan-
tum numbers.
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It is well known [3] that the overlap integral of the

two determinants Φ and  represents a determinant
having a simple quasidiagonal structure. By eliminat-
ing, from (7), the factor that describes the motion of the
center of mass, we can reduce the overlap integral to the
sum of four exponential terms:

(8)

(9)

Expression (9), which includes complete sets of
states allowed by the Pauli exclusion principle vanishes
if we set

This is because neither of the two neutron clusters can
occur in those states that are occupied by the neutrons
of the alpha cluster. From any state f(a, b) expressed in
terms of the vector Jacobi variables, we can go over to
an allowed state by applying the antisymmetrization
operator to the former, where this operator annihilates,
in general, the contribution of the forbidden state. Spe-
cifically, we have

(10)

The choice of Jπ determines the total angular
momentum and the parity of the nuclear state. In our
case, J = 0, while the parity is positive. For L = 0 states,
the orbital angular momentum l1 of the vector a must be
equal to the orbital angular momentum l2 of the vector
b. In addition, we find that, for the singlet state of the
two neutron clusters and the main Jacobi tree, the quan-
tity l = l1 = l2 can take only even positive integral val-
ues. In the case being considered, the grand orbital is
also even. It is obvious that, for case where the grand
orbital does not exceed a specific value Ka, the number
of independent states of an arbitrary degree of homoge-
neity in the hyperradius is equal to the number of basis
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functions with the corresponding quantum numbers. If
L = 0 and if l1 = l2 = l and K are even, we have

(11)

If the principal quantum number 2ν + K is fixed,
only one state forbidden by the Pauli exclusion princi-
ple can be constructed from these states. It appears to
be an eigenfunction of the antisymmetrization operator,
the corresponding eigenvalue being equal to zero. Of
all allowed states, it is reasonable to consider, above all,
states that are characterized by the lowest values of the
grand orbital because, in the equation of motion, a kine-
matical repulsive potential that increases with increas-
ing grand-orbital value corresponds to basis functions.
In the following, we will set Ka = 4. As a result, we
obtain three branches of allowed states.

In the approximation of orthogonal conditions, the
branches of allowed states can be constructed in the fol-
lowing way. By setting the grand orbital to its limiting
value Ka in the present approach, we first find the low-
est allowed states. We then multiply them by ρ2ν and
normalize.

For the principal quantum number 2n = 2ν + K,
there exist many 0+ allowed singlet states. Of these, we
consider only those three for which the grand-orbital
values are minimal. Each of these will be associated
with one of the three branches (or, what is the same,
with one of the three scattering channels) in such a way
that the grand-orbital content of the branch remains
unchanged with increasing number ν of hyperradial
quanta.

The orthonormalized states  of the three chan-
nels (s = 1, 2, 3) are expressed in terms of the basis
functions (11) as
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Further, we will use the generic representation

(12)

where summation is performed over even K and where
the coefficients for the main Jacobi tree are equal to
zero at odd l. For the upper limit of summation in (12),
we have K (1) = 2 and up to Ka(2, 3) = 4.

It immediately follows from (12) that the first
expression is the only branch for Ka = 2 whose lowest
state appears to be a linear combination of the vectors
a and b raised to the second power:

(13)

In Fock–Bargmann space, this homogeneous combina-
tion of second order in a and b is the translation-invari-
ant shell-model wave function of the 6He ground state.

The allowed states (12) can also be represented in
terms of the vectors of the another Jacobi tree. These
states involve, with nonzero coefficients, basis func-
tions associated with odd l values. Under the orthogo-
nal change of variables, one set of basis functions trans-
forms into another set as the result of the orthogonal

transformation  that does not change the grand-
orbital value [6].

This transformation can be represented as

(14)

A transition to other Jacobi trees is necessary in calcu-
lating the matrix elements of the potential-energy oper-
ator for nucleon–nucleon interaction.

3. MATRIX ELEMENTS OF THE HAMILTONIAN 
BETWEEN ALLOWED STATES

We will determine the structure of allowed states by
using the overlap integral of the generating functions
with the identity operator. In order to investigate the
dynamics of the relative motion of the clusters, we must
find the matrix elements of the Hamiltonian between
the chosen allowed states. For this, we first calculate the
overlap integrals of the generating functions and the
kinetic- and potential-energy operators and then project
them onto the allowed states associated with the
branches being considered.

The kinetic-energy operator can be associated with
its transform in Fock–Bargmann space. When this
transform is applied to the overlap integral featuring
unity, we obtain overlap integrals involving the kinetic-

Ψn
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energy operator. By way of example, we indicate that,
for the single-particle functions, we have

(15)

where mn is the nucleon mass. Upon going over to the
Jacobi vectors for the system considered as a discrete
unit, it is easy to write the kinetic-energy operator for
the cluster degrees of freedom in the Fock–Bargmann
representation. This yields

(16)

The matrix elements of the operator  between the
basis functions have the form

Let us write the full matrix element of the kinetic-
energy operator for  and n states of the corresponding
branches  and s at L = 0. We have

(17)

The kinetic-energy matrix in the representation of
states of the single channel has a tridiagonal form. Only
the elements appearing on its principal diagonal and on
the two neighboring diagonals are nonzero. Apart from
this, there exist matrix elements relating the states of
the first and the second channel:
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Because the problem involves many channels, the
Hamiltonian matrix consists of submatrices. In the cal-
culations, the dimensions of these submatrices are cho-
sen in such a way that the principal quantum number
takes the same value in all channels.

The nucleon–nucleon interaction is simulated by the
Minnesota potential [7], which has the form of the sum
of three Gaussian functions with coefficients that depend
on the spin and isospin of the interacting particles:

The potential energy of the system formed by an
alpha particle and two neutrons was reckoned from the
energy that this system has when all three clusters con-
stituting it are separated by infinitely large distances.
Here, we are interested only in the interactions of neu-
tron clusters with each other and with the alpha-particle
cluster. The overlap integral of the direct interaction of
two nucleons was calculated as the integral of the prod-
uct of the nucleon potential and two generating func-
tions that differ only by the notation for the generator
parameters. We performed a permutation of the coordi-
nates of the interacting nucleons in one of the generat-
ing functions in order to take into account exchange
interaction. As the final result of this stage of the calcu-
lation, we obtained the generating matrix element of

U ri r j,( ) V2S 1 2T 1+,+ p( )
ri r j–( )2

µ p( )2
---------------------–

 
 
 

.exp
p 1=

3

∑=
the potential-energy operator in the form

(18)

In this expression, each term corresponds to a spe-
cific interaction in the system. The first and the second
term are associated with, respectively, the direct and the
exchange interaction of the neutron clusters. The third
and the fourth term correspond to, respectively, the
direct and the exchange neutron–alpha interaction.
These terms are calculated by using the vectors of an
auxiliary Jacobi tree.

The parameters B and D in the generating matrix
elements for various w and the factors A in front of
them are given by
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× ãw aw B p w,( )b̃w bw⋅ D p w,( ) b̃w
2

bw
2+( )+ +⋅( ),exp

aw bw,( ) a b,( ), w 1 2;,= =

aw bw,( ) a' b',( ), w 3 4;,= =

z p( ) 1
2r0

2

µ p( )2
--------------+

 
 
 

1–

.=
(19)

At the next stage, we project the generating matrix
elements (18) onto basis states characterized by spe-

cific values of the angular quantum numbers. Specifi-
cally, we have

where
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We now represent the full matrix element of the
cluster-interaction operator between the allowed states
under consideration as

The coefficients of the basis functions are determined
by the Jacobi tree on which the calculation of the gen-
erating matrix element was performed.

By numerically evaluating the matrix elements of
the Hamiltonian and by solving the set of algebraic
equations that is obtained from the wave equation in the
approximation chosen here, we arrive at the eigenfunc-
tions

for various channels. They are expressed in terms of the
allowed basis states and eigenvectors of the Hamilto-
nian matrix.

4. ASYMPTOTIC BEHAVIOR
OF EXPANSION COEFFICIENTS

It is well known that, in the K-matrix representation,
the asymptotic form of the expressions that the alge-
braic version of the resonating-group method

(AVRGM) yields for the coefficients  in the expan-
sion of the continuous-state wave function in the har-
monic-oscillator basis appears to be a linear superposi-
tion of a regular and a singular solution to the wave
equation in those regions of coordinate space where the
potential can be disregarded or where the potential
reduces to the Coulomb potential. Here, it is necessary
to determine the coefficients in the above linear super-
position or the K-matrix elements associated with
them.

In the minimal approximation of the method of
hyperharmonics, where only the basis functions of the
first channel are taken into account, the coefficients

 in the expansion of continuous-state wave func-
tions in the basis of allowed states have simple asymp-
totic forms that are determined by the set of AVRGM
equations in the limit of large n. The coefficients of the
basis functions in allowed states then cease to depend
on n and can be expressed in terms of the K-matrix ele-
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s̃ñ w( )βKl

sn w( )
l 0=

min K 2 K̃ 2⁄,⁄( )

∑
K̃( ) 0=

Ka s̃( )

∑
K( ) 0=

Ka s( )

∑
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ments. Therefore, we further write . Via the matrix

elements of the kinetic-energy operator , each of the

asymptotic equations relates only three coefficients— ,

, and . If x = n + 3/2 = ν + K/2 + 3/2 @ 1, the
expansion

(20)

in inverse powers of x holds for the nondiagonal matrix

elements of the operator . In the limit x @ 1, there is
also a nonzero diagonal matrix element [8] of that part
of the potential-energy operator which decreases
slowly with increasing hyperradius. At very large val-
ues of n, we can also disregard that diagonal element.

Assuming that the coefficients  become, in this

case, continuous functions of the hyperradius r = 2
of configuration space, we can then go over from the
algebraic equations

to the differential Bessel equation

(21)

The index value of  = 416/29 for the asymptotic
equation of the minimal approximation reflects the fact
that the allowed states of the first branch appear to be a
superposition of hyperharmonics with the different
grand-orbital values of K = 0 and 2.

Thus, we conclude that, in the minimal one-channel
approximation, the asymptotic form of the coefficients

 appears to be a linear combination of cylindrical
functions; that is,

(22)

Actual calculations reveal that, because of a small
decrease of the diagonal matrix element of the poten-
tial-energy operator [in proportion to 1/(4n + 6)3/2], a
limiting transition to Bessel equations at the energy of
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a continuum state about a few MeV is possible for n >
103. This value increases with decreasing energy. The
resulting technical difficulties do not create serious
problems and can be sidestepped easily. We note that
the above algebraic equations can be treated as three-
term recursion relations. By specifying, at large n, a
regular (Bessel function) or a singular (Neumann func-
tion) basis solution in the absence of a potential and
using the above recursion relations, we can straightfor-
wardly go over to small n and construct each of the
basis solutions with allowance for the effect of a slowly
decreasing potential. As a result, the problem reduces
to a set of a moderately small number of equations with
asymptotic conditions in the form of a linear combina-
tion of the rearranged regular and the rearranged singu-
lar solution, and it is the coefficients in this combina-
tion that are quantities to be determined. Let us explain
the character of the above rearrangement in some
detail.

We begin by indicating that, in the approximation of
three channels and in the limit of very large n, in which
case we disregard the matrix elements of the potential-
energy operator, three separate sets of equations cannot
be obtained even by using hyperspherical quantum
numbers for a basis of allowed states. The sets of equa-
tions remain coupled via the matrix elements of the
kinetic-energy operator; this is because, despite the
orthogonality of the basis functions of different chan-
nels, they do not contain, by virtue of the Pauli exclu-
sion principle, components characterized by the same
value of the grand orbital. In order to remove this cou-
pling, it is necessary to apply an additional orthogonal
transformation to the initially chosen basis states of
various channels. The matrix elements of this orthogo-
nal transformation are determined upon going to the
asymptotic form of the relevant equations.

For our choice of three branches of allowed states,
the matrix elements of the kinetic-energy operator
relate the first and the second channel. For n @ 1, in

which case the coefficients  are almost continuous

functions of the variable r = , the set of alge-
braic equations reduces to a set of three differential

equations for the coefficients C(s)(r) = . The matrix
form of this set of equations is

(23)
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By using a simple transformation of the linear equa-
tions for the first two channels, we can go over to
uncoupled Bessel equations with the indices

(26)

which are eigenvalues of the matrix  and which
determine the asymptotic behavior of the rearranged
solutions:

(27)

The angle φ = 0.504 rad plays the role of the parameter
in the orthogonal transformation from the original solu-
tions to the rearranged ones.

In the case of small values of n, it is necessary to
take into account both the diagonal matrix elements of
the potential-energy operator and the nondiagonal
matrix elements, which couple different channels. If,
for example, the asymptotic basis solution in one of the
channels can be represented by a Bessel function, the
recursion relations that follow from the AVRGM equa-
tions therefore generate, in going over to small values
of n, nonzero components of this basis solution in other
channels that are coupled to the original channel via the
matrix elements of the potential. In this way, a regular
basis solution is spread over all coupled channels. The
same happens to other regular and singular asymptotic
basis solutions that are then used to determine the
asymptotic behavior of the expansion coefficients at
comparatively small values of n.

It should be emphasized that the problem in ques-
tion is associated with the long-range character of the
three-cluster potential and with the structure of allowed
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states, which leads to the matrix elements of the kinetic
and potential energies. This resembles the problem that
arises in studying the polarizability of Coulomb sys-
tems.

In order to construct the wave functions of the con-
tinuous spectrum and to reproduce scattering data, we
first determine the K-matrix elements by expressing the
asymptotic forms of the rearranged eigenfunctions of
the three channels in terms of these matrix elements:

(28)

Here, the index s' indicates which regular solution of
the three possible ones forms a continuum state. Recall
that we consider a problem featuring three open chan-
nels. In order to find the K matrix, it is therefore neces-
sary to have three independent solutions [9] to the set of
algebraic equations of the resonating-group method or
the method of orthogonal conditions. After that, we go
over to the S matrix [9]

(29)

and calculate its eigenphases δk according to the rela-
tion

(30)

These phases provide a full characterization of data on
3  3 scattering in each of the three channels.

5. APPROXIMATION OF AN ASYMPTOTIC 
POTENTIAL

The mean value of the hyperradius of the ground-
state 6He nucleus exceeds the range of nuclear forces;
therefore, the approximation of an asymptotic potential
is valid, in which case the exact values of the matrix
elements of the potential-energy operator are replaced
by their asymptotic values. In each channel, there then
remain only the diagonal matrix elements and only
those of nondiagonal ones that couple states that belong
to different channels, but which are characterized by
the same value of the principal quantum number (see
[8]).

By way of example, we consider the asymptotic
behavior of the matrix elements of the potential-energy
operator. Let us first evaluate an auxiliary integral of the
operator of the potential energy of nucleon–nucleon
interaction and the normalized hyperspherical harmon-
ics,
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Ŝ 1 iK̂–( ) 1 iK̂+( ) 1–
=

S jk δjk 2iδk–( ).exp=

Kl1l2 V0 αq2–( )exp K̃ l1l2〈 〉 ρ ∞→

≈ V0MKK̃

l2; l1 1
Γ l2 3 2⁄+( )
----------------------------α

l2 3/2+

r
2l2 3+

---------------,

MKK̃

l2;  l 1 N
 

K
l 1 l 2 

N
 

K

 
˜

 l 1 l 2 
P

 
m
l 2 1 2 ⁄ + l 1 1 2 ⁄ + , 

1( )
 

P
 

m
 

˜
 l 2 1 2 ⁄ + l 1 1 2 ⁄ + , 

1( ),=
                                                     
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 2      2000
and make use of the fact that, in coordinate space, the
hyperradial oscillator basis functions RνK(r) possess the
remarkable general property [10]

The value of rn =  with n = ν + K/2 corresponds
to the classical turning point in the oscillator potential
r2/2. For the asymptotic matrix elements of the poten-
tial-energy operator between the allowed states, we
eventually obtain

(31)

The matrix elements in (31) couple states that belong to
different channels, but which are characterized by the
same value of the principal quantum number n—that is,
states that have the same degree of homogeneity in the
hyperradius ρ in Fock–Bargmann space.

Of course, expressions (31) approximate the matrix
elements of the potential-energy operator only in the
case of n @ 1. Since the 6He nucleus has a rather
extended structure, we will use, however, the approxi-
mation in (31) for the entire set of allowed states. Our
preliminary estimates reveal that this does not lead to
significant errors; at the same time, the scheme for
reproducing scattering data is significantly simplified
within this framework. In addition, the parameters of
the asymptotic potential at nonzero l that correspond to
the interior of the nucleus were corrected by introduc-
ing a factor of 1.76 in order to reproduce the observed
values of the energy and the root-mean-square radius of
the 6He ground state.

6. RESULTS OF THE CALCULATIONS
AND THEIR DISCUSSION

6.1. One-Channel Approximation

It was indicated above that, in the one-channel
approximation implemented within the model used
here, the 6He nucleus has a 0+ bound state at 0.96 MeV,
its root-mean-square radius being 2.48 fm. In the same
approximation, Fig. 1a shows the phase shift for 3 
3 elastic scattering as a function of energy E. We will
now indicate some special features in the behavior of
this phase shift.

First, its derivative with respect to energy grows
indefinitely at the threshold point, as it must [11],
because, in the three-cluster system, the potential
energy generated by attractive nucleon–nucleon forces

RνK r( )r3
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decreases in inverse proportion to the hyperradius
cubed. In the vicinity of the threshold, the phase shift is
therefore proportional to the square root of energy (see
[12]), the proportionality factor being 0.26. In numeri-
cal calculations, precautions must be taken, however, to
reproduce faithfully the energy dependence of the
phase shift in the region of low energies. The point is
that the lower the energy, the larger the distances at
which the slowly decreasing potential begins to affect
the asymptotic behavior of the wave function.

Second, the phase shift grows from zero energy and
attains a maximum value of 0.55 rad at E = 3.6 MeV
(see Fig. 1b). In this region, the derivative of the phase
shift with respect to energy decreases monotonically,
which rules out the existence of a resonance.

Of practical interest is in fact the region of compar-
atively low energies from zero to 10 MeV; nonetheless,
we performed our calculations at higher energies as
well in order to verify the extent to which general
requirements are satisfied. Taking into account
Levinson’s theorem [13] and considering that only one
bound state (0+) exists in our system, we can assume
that, as the energy grows indefinitely, the limiting value
of the phase shift must be –π. In fact, the phase shift
continues to decrease slowly upon reaching the value of
–π. This phenomenon is explained by the effect of the
Pauli exclusion principle on the structure of the wave
functions of the 0+ allowed basis states. These wave
functions vanish when the neutron clusters occur in the
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Fig. 1. Phase shift δ in the approximation of the minimal
grand orbital (a) at low energies and (b) at higher energies.
orbits of the 1s shell of the alpha-particle cluster. In the
system in question, there arises an effective repulsion at
small values of the hyperradius. For this reason, the
matrix elements of the operator of the kinetic energy of
a three-cluster system differ from the matrix elements
of the same operator for the free motion of three clus-
ters, where no account is taken of the effect of the Pauli
exclusion principle and where the phase shift for 3 
3 scattering vanishes identically if the matrix elements
of the potential-energy operator are disregarded. The
elimination of states that are forbidden by the Pauli
exclusion principle is equivalent to the emergence of an
effective repulsion in the system at small values of the
hyperradius. As follows from our calculations, the
effect of this repulsion on the phase shifts is similar to
that of a hard core of small radius. As a result, there
arises a nonzero phase shift even if the AVRGM equa-
tions do not feature matrix elements of the potential-
energy operator. This phase shift is negative and
depends linearly on energy. But when the potential is
taken into account, the phase shift falls below the
expected limiting value of –π at large energies owing to
the impact of the effective repulsion. In the absence of
the repulsion caused by the Pauli exclusion principle,
the difference of the phase shift and the value of –π at
large values of the energy E would be equal to C∞E–1/2,
where C∞ = 6.4 MeV1/2.

6.2. Three-Channel Approximation

In the three-channel approximation, the continuous
spectrum is triply degenerate—that is, at any specific
energy of the continuous spectrum, there exist three
solutions that differ by the number of the channel fea-
turing both a converging and a diverging wave, only
diverging waves being present in the remaining two
channels. In order to obtain clear and compact informa-
tion, we will make use of the S matrix in the represen-
tation of its eigenvectors, where only unimodular diag-
onal elements are nonzero; therefore, it is sufficient to
know in that case only the energy dependences of the
three phase shifts. These dependences are illustrated in
Fig. 2. Indicated immediately below are their basic fea-
tures.

In the vicinity of zero energy value, only two phase
shifts vary in direct proportion to the square root of
energy (Fig. 2‡), the proportionality factors being
0.147 and 0.314 here. At the origin, the third phase has
a zero derivative, and its values are negative. In this
eigenchannel, the potential energy decreases in inverse
proportion to the fifth power of the hyperradius, and it
is this circumstance that explains the behavior of the
third phase shift of the channel at zero energy.

At an energy value of E = 6.4 MeV, there is a quasi-
intersection of two phase shifts (Fig. 2b). It reflects the
general property of the eigenvalues of a unitary S
matrix reduced to a diagonal form.
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Although the system has only one bound state, all
three phase shifts sink to the value of –π with increas-
ing energy. In the region of energies at which our calcu-
lations were performed, two phase shifts fall below this
value, whereas the third one only approaches it. The
continuum-state energy at which the channel phase
shift is equal to –π must be much greater than the
potential energy in this channel. Therefore, the lesser
the difference between the phase shift and the value of
–π, the greater is the actual potential energy.
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Fig. 2. Eigenphases δ1, δ2, and δ3 of the S matrix in the
three-channel approximation (a) at low energies and (b) at
higher energies.
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Fig. 3. Scattering cross sections: (σ1) cross section in the
approximation of a minimal grand orbital and (σ2) total
cross section in the three-channel approximation.
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In just the same way as the cross section for binary
processes, the cross section for 3  3 scattering is
expressed in terms of S-matrix elements. Here, it is nec-
essary to consider that transitions from the input chan-
nel featuring a converging wave into other channels
may occur and that these transitions are accompanied
by changes in the grand-orbital value. As a result, the
total cross section for 3  3 scattering is now equal
to the sum of three cross sections (see Fig. 3). In the
energy region below 10 MeV, where the main contribu-
tion comes from two terms, this sum considerably
exceeds the cross section in the one-channel approxi-
mation. This circumstance is important for obtaining an
accurate estimate of the probability of nonradiative
neutron capture by an alpha particle, a quantity that is
of importance for astrophysics. A detailed calculation
of the probability of this nonradiative neutron capture,
as well as a calculation of the probability of electro-
magnetic transitions from the continuous spectrum to
the ground state of 6He, is also possible within the
approach considered here, and we hope to present the
results of such calculations in our forthcoming publica-
tion.

7. CONCLUSION

A basis of harmonic-oscillator states has been con-
structed from those linear combinations of hyperspher-
ical functions that are allowed by the Pauli exclusion
principle. This basis has been used to study the contin-
uous spectrum of the 6He nuclear system above the
threshold for its three-body breakup. In the approxima-
tion of three 0+ channels with minimal grand-orbital
values, the behavior of the eigenphases of the S matrix
for 3  3 scattering highlights the important role of
long-range potential components, which form the
energy dependences of these phases in the region
extending from the threshold to 5 MeV. If noncentral
forces are disregarded, these phase shifts show no evi-
dence for the existence of 0+ resonances in the 6He
nuclear system. The effect of forbidden states on the
energy dependences of the phases shifts becomes
noticeable with increasing energy when the phase shifts
fall below the value of –π.

A priori, we cannot rule out the importance of such
three-body-breakup channels, for which the conver-
gence of the method of hyperspherical functions is poor
and which can substantially affect resonance widths.
This problem is beyond the scope of the present article,
but we hope to discuss it elsewhere.
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Abstract—The relation between signature splitting in the spectra of rotational bands of odd nuclei and the
structure of wave functions of these states is investigated. Rotational bands are considered both in axisymmet-
ric nuclei and in nuclei that do not possess axial symmetry. A simple formula is obtained that makes it possible
to extract the amplitude of the Ω = 1/2 wave-function component from experimental data on energy spectra.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Both phenomenological and microscopic methods
for studying the structure of deformed nuclei are based
on the concept of mean field that is not spherically sym-
metric, but which can possess, for example, axial sym-
metry. Since the mean field is not spherically symmet-
ric, many phenomena associated with the structure of
deformed nuclei are analyzed in terms of a coordinate
frame that is rigidly bound with the mean field [1, 2]. In
the case of deformed nuclei, the mean field does not
possess the symmetry of the total Hamiltonian; there-
fore, the symmetry of the intrinsic wave function is
lower than the symmetry of the total wave function.
This is because dynamical variables associated with the
corresponding symmetry transformations are separated
upon going over to the intrinsic coordinate frame. Upon
this transition, some discrete symmetries survive, how-
ever, and we arrive at two-component intrinsic wave
functions characterized by constructive or destructive
interference, depending on the parity of the angular
momentum. By way of example, we indicate that, in the
case of axially deformed odd nuclei, states having pos-
itive and negative projections of the angular momentum
of an odd particle onto the axial-symmetry axis (Ω) are
degenerate in energy, so that both components are
present in the wave function [1].

Of course, a fixed value of Ω corresponds to an ide-
alized case. Interaction mixes components having dif-
ferent Ω values. Because of Coriolis forces, it looks as
if the system moves along the Ω axis. Thus, we can see
that, in the case being considered, we are dealing with
a dynamical system that can be described by the one-
dimensional Schrödinger equation in a potential having
two symmetric minima. It is well known (see, for
example, [3]) that, in the case of a potential featuring
two symmetric minima, states having a positive and a
negative parity with respect to the reversal of the coor-
dinate sign are split in energy, the magnitude of this
splitting being determined by the wave-function value
1063-7788/00/6302- $20.00 © 20191
at the barrier separating the two minima. Manifesta-
tions of such phenomena include a nonmonotonic
angular-momentum dependence of the energy of states
belonging to rotational bands of even nuclei [4]. As was
shown in [5, 6], a change in the orientation of the angu-
lar momentum of an odd particle with respect to the
angular momentum associated with a collective rota-
tion can be considered as a motion that is governed by
a potential featuring two symmetrically situated min-
ima and which occurs along the coordinate appearing
to be the projection of the angular momentum of an odd
particle onto the symmetry axis. In this case, so-called
favored and unfavored states are, respectively, symmet-
ric and antisymmetric with respect to the reversal of the
sign of Ω.

Since there are very accurate data on a nonmono-
tonic behavior of the energy of states belonging to the
rotational bands of even nuclei, it would be useful to
establish a relationship between the signature splitting
of levels belonging to rotational bands, which appears
to be quantitative measure of the above nonmonotonic
behavior, and the amplitude of the Ω = 1/2 component.
Having such a relation at our disposal, we can then
deduce information about the wave functions of rota-
tional states from the energy spectra. Specifically, a
particle-plus-rotor model featuring an isolated j level is
considered for the cases where the even–even core
either possesses axial symmetry or is nonaxial.

2. AXISYMMETRIC CORE

In the case of an axisymmetric even–even core, the
wave function of an odd-nucleus state characterized by
an angular momentum I and its projection M can be
represented as

(1)

where  is a Wigner function, while ψjΩ is the wave

ΨIM CIj Ω( )DMΩ
I ψ jΩ,

Ω
∑=

DMΩ
I
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function of an odd particle. The amplitudes CIj(Ω) pos-
sess the following symmetry property:

(2)

Thus, the amplitudes CIj(Ω) are symmetric or antisym-
metric functions of Ω, depending on the sign of (–1)I – j

(signature). However, we can formally consider two
solutions to the Schrödinger equation for each value of
the angular momentum I: of these, one is symmetric
under the reversal of the sign of Ω , while the other is
antisymmetric. One solution is physical, and the other
is unphysical. That the use of the two solutions for each
value of I is convenient can be seen from the following
considerations. Instead of studying the energy differ-
ence between the physical states that are characterized
by the angular momenta I + 1 and I and which are dis-
tinguished in signature, we will consider the energy
splitting of two states—a symmetric and an antisym-
metric one—for each value of I. The magnitude of
splitting is a smooth function of the angular momen-
tum. The energies of unphysical states corresponding to
forbidden combinations of the angular momentum I
and parity with respect to the reversal of the sign of Ω
can be obtained by means of an interpolation between
the experimental values of the energies of the states
having the angular momenta I + 1 and I – 1 and the
same parity under the reflection Ω  –Ω as that of the
unphysical state having the angular momentum I. This
is possible because the energies of states corresponding
to a specific parity with respect to the reversal of the
sign of Ω represent a smooth function of I.

In order to derive the sought relation, we consider
the Schrödinger equation for the symmetric and anti-

symmetric wave functions [ (Ω) and (Ω),
respectively]. We have

(3)

(4)

Let us multiply equation (3) by (Ω) and equation

(4) by (Ω) and subtract the second of the resulting
expressions from the first one. This is the first step in a
conventional procedure used in textbooks on quantum
mechanics to prove that states corresponding to differ-
ent eigenvalues are orthogonal. In contrast to what is
done next in this procedure, we will sum here the
resulting difference only over the positive values of Ω .
This yields

(5)
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=  2 I 1/2 H I 1/2–, ,〈 〉
CIj

+( ) 1/2( )CIj
–( ) 1/2( )

CIj
+( ) Ω( )CIj

–( ) Ω( )Ω 1/2=
j∑

-----------------------------------------------------------.–
As was mentioned above, the energy difference (  –

) can be determined on the basis of experimental
data. In our case, the matrix element 〈I, 1/2 |H|I, –1/2〉  is
given by

(6)

Let us now consider the sum in the denominator on
the right-hand side of equation (5):

(7)

In the case of weak Coriolis interaction, in which case
only one value of Ω appears in the wave function with
a large weight, the sum is equal to 1/2 by virtue of the
normalization condition. When the Coriolis interaction
is strong, which corresponds to a strong alignment of
the angular momentum of an odd particle, the sum in
(7) takes the minimum possible value. In order to assess
it, we make use of the wave functions of a one-dimen-
sional harmonic oscillator and calculate the overlap
integral of the ground-state wave function [even func-

tion appearing to be an analog of (Ω)] and the
wave function of the one-phonon state [odd function

appearing to be an analog of (Ω)] over the region of
positive values of the coordinate Ω (the corresponding
sum over all positive and negative values of Ω vanishes
because of orthogonality). This sum is equal to

0.5  ≈ 0.40. Thus, the sum in (7) is bounded from
above by the value of 0.50 and from below by the value
of 0.40. We therefore set it to 0.45 ± 0.05 and use this
value in extracting the amplitude of the Ω = 1/2 compo-
nent from experimental data.

That the amplitude of an unphysical state appears in
[5] presents one more problem. If the signature splitting
in energy is small—that is, the alignment of the single-
particle angular momentum along the collective-rota-
tion axis is weak, and the corresponding amplitudes

 (Ω = 1/2) are small—the physical and unphysical
amplitudes are close to each other at positive Ω and
have nearly equal absolute values and opposite signs at
negative Ω. In the case of strong alignment, a smooth
dependence of the amplitudes on the angular momen-
tum I gives every reason to believe that the unphysical
amplitude at an angular-momentum value of I is
approximately equal to the arithmetic mean of the
physical amplitudes at angular-momentum values of
I + 1 and I – 1, these amplitudes having identical pari-
ties under the reversal of the sign of Ω . For the case of
sufficiently strong Coriolis interaction—and this is pre-
cisely the case of our prime interest—we eventually
find that, as parameters, equation (5) will involve only
the amplitudes of physical states, experimental data,

EI
–( )

EI
+( )

"
2

27
--------– I 1/2+( ) j 1/2+( ).

CIj
+( ) Ω( )CIj

–( ) Ω( ).
Ω 1/2=

j

∑

CIj
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CIj
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2/π
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PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 2      2000



RELATION BETWEEN SIGNATURE SPLITTING IN ROTATIONAL BANDS 193
and a quantity that is specified numerically to a fairly
high precision.

3. NONAXISYMMETRIC CORE

In the case of a core not possessing axial symmetry,
the wave function can be represented as

(8)

For physical states, we have

(9)

In just the same way as above, we consider two solu-
tions to the Schrödinger equation for each value of the
angular momentum I that are characterized by the

amplitudes (K, Ω) possessing the symmetry prop-
erty

(10)

Since the matrix elements of the Hamiltonian satisfy
the relation

(11)

and since the Hamiltonian is a Hermitian operator, the
two wave functions corresponding to the symmetric
and antisymmetric solutions are eigenfunctions of the
Hamiltonian.

As in the preceding section, we can obtain the rela-
tion

(12)

We must now perform summation in relation (12)
over K and Ω by using, as above, half of all points in
the (K, Ω) plane. However, this can be done in two
different ways. Two independent modes of motion in
the (K, Ω) plane can be approximately separated into
that which is associated with a variation of the angle
between the single-particle and collective angular
momenta and that which is associated with a varia-
tion of the orientation of the axis of collective rota-
tion. The first mode is softer in the case of strong
Coriolis interaction, a principle subject of our con-
cern. In the harmonic approximation, the ratio of the
corresponding frequencies is 1 : 3 at γ = 30° [6]. With
decreasing γ, this distinction between the frequencies
becomes ever more pronounced. The hardest mode is
associated with a variation of the difference (K – Ω),
which is equal precisely to the projection of the angu-
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lar momentum on the quantization axis. Thus, this
mode corresponds to oscillations of the direction of
collective rotation. This type of motion, the hardest
one, can be described in the harmonic approximation.
Thus, the motion in the (K, Ω) plane occurs within a
narrow valley that is stretched in the direction nearly
parallel to the (K + Ω) axis. Therefore, we can
approximately factorize the dependence of the ampli-
tudes on (K – Ω) and, say, (K + Ω). Accordingly, we
have

(13)

where w(K – Ω) is a normalized Gaussian function. The
quantity (K – Ω) takes the values of 0, ±2, ±4, …. It is
now clear that, in order to obtain the sought relation, we
must perform summation in (12) over all values of (K –
Ω) and over positive values of (K + Ω). For the sake of
brevity, we introduce the notation x = K + Ω and y = K –
Ω . The possible values of x are ±1, ±3, …. Performing
summation in (12) over all values of y and over positive
values of x, we obtain

(14)

In connection with the presence of unphysical ampli-
tudes in (14), we can adduce the same arguments as in
Section 2 to arrive at the relation that involves only
physical quantities. The Hamiltonian matrix elements
in (14) are known. They depend only on one parameter
(γ) and appear to be smooth functions of y. Relation
(14) can be used to extract information about the ampli-

tudes (x = 1, y = 0).

4. CONCLUSION

We have considered signature splitting in the spectra
of rotational bands of odd nuclei. It has been shown that
this splitting is determined by the amplitude of the
aligned wave-function component. Thus, experimental
information about the spectra of rotational bands can be
used to estimate these amplitudes.
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Abstract—On the basis of the supermultiplet potential model for the interaction of extremely light clusters
(formalism of Young diagrams), it is explained why the d + t system does not feature a (1/2)+ (L = 0) level allied
to (3/2)+ (L = 0) thermonuclear resonance. By using known data on the quasielastic knockout of nucleons from
the inner 1s shell of light nuclei, a systematics of near-threshold states in the t + d + d, t + t + d, and t + t + t
systems is constructed in terms of excited Young diagrams like {f} = {322}. The emergence of similar states in
going over from the d + d and t + t systems (which feature no such states) to the α + d + d, α + t + d, and α + t
+ t systems (where they appear owing to the binding effect of the alpha particle) is discussed. The three-cluster
states being considered may be important not only for nuclear physics proper but also for nuclear astrophysics.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that the (3/2)+ (L = 0) narrow near-
threshold level in the d + t system underlies the physics
of thermonuclear reactions [1]. This brings about the
natural question of why there is no the allied (1/2)+ (L =
0) level.

In the present study, we attempt to clarify this prob-
lem by using the general—and rather simple—formal-
ism of the supermultiplet potential model [2], which is
capable of providing a good simultaneous description
(or predictions in cases where there is no relevant data)
of the cross sections for d + p, d + d, d + t, and t + p elas-
tic scattering (that is, for the elastic scattering of
extremely light clusters); for scattering processes
where the deuteron spin and isospin are flipped (say, in
the reaction d + t  ds + t); and for photonuclear reac-
tions like 3He + γ  d + p, d + t  5He + γ, and
4He + γ  t + p [2].

In contrast to the simplest potential approaches, the
model in question takes into account the interference of
channels associated with different Young diagrams. To
illustrate this, we indicate that, when the d + d system
is in the state where its total spin is S = 0—this corre-
sponds to even values of the orbital angular momentum
L of relative motion—the amplitudes associated with
the spatial Young diagrams {f} = {22} and {f} = {4},
which correspond to totally different potentials of deu-
teron interaction (a deep and a shallow one) interfere in
scattering (continuum) states. In other words, a conven-
tional potential description of dd scattering in the S = 0
channel is impossible. It is the interference of ampli-
tudes characterized by different Young diagrams that
makes it possible to understand the reason behind the

1) Brest State University, Brest, Belarus.
1063-7788/00/6302- $20.00 © 20195
absence of the (1/2)+ thermonuclear level in the d + t
system.

Another merit of the model used is that the formal-
ism of Young diagrams provides a consistent mathe-
matical formulation of orthogonality (nonorthogonal-
ity) of various cluster channels to one another. By way
of example, we indicate that, in the t + t system, odd-L
states are characterized by the Young diagram {f} =
{33} and are orthogonal to the αnn channel, where the
energy release is high, whereas even-L states corre-
spond to {f} = {42}, whence it follows that a transition
into the αnn channel is allowed for such states (for
selection rules in nuclear reactions according to Young
diagrams, see [3, 4]). Similarly, the t + d system char-
acterized by the Young diagram {f} = {32} is orthogo-
nal to the α + n cluster channel—that is, the decay pro-
cess td  αn is suppressed. It follows that the afore-
mentioned (3/2)+ resonance, which corresponds to
{f} = {3/2} symmetry [2, 5] is narrow, appearing to be
a long-lived state. Such properties are of importance
both for thermonuclear reactions and for nucleosynthe-
sis [6].

Despite numerous theoretical investigations of sys-
tems featuring two or three extremely light clusters [7–
11], the question of whether there exist similar states of
the cluster type in systems of three clusters (d + d + d,
t + d + d, t + t + d, and t + t + t) has not yet received a
systematic study. But it is just the systematic study that
provides a general pattern and makes it possible to
determine nuclear excitation energies at which we can
expect the emergence of near-threshold levels of a spe-
cific cluster origin. In constructing the systematics of
such states, we rely on symmetry considerations
expressed in terms of excited Young diagrams and on
experimental information about the quasielastic knock-
out of nucleons from the inner 1s shell of light nuclei.
000 MAIK “Nauka/Interperiodica”
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This scheme differs crucially from that in the Wigner–
Baz’ theory of threshold states [12], first, by the micro-
scopic many-body description of the system (in terms
of symmetry properties) and, second, by the fact that, in
the present case, the set of states belonging to a specific
supermultiplet is generally distributed over a rather
wide region of high nuclear excitations. Owing to this,
the efficiency of the scheme becomes higher because a
determination of the positions of some states belonging
to the supermultiplet makes it possible to predict reli-
ably the position of those states that occur in the energy
region near the threshold for the three-body breakup of
the corresponding compound nucleus. For example,
highly excited levels of the 8Li nucleus that have per-
mutation symmetry specified by the Young diagram
{f} = {332}, negative parity, a low orbital angular
momentum of L = 1, and a spin of S = 2 characterize the
t + t + d system; that is, a dominant virtual decay through
this channel is allowed by the Young diagram {f}. These
levels are of interest just because their position near the
threshold for one of the values of J (J = L + S) is com-
bined with the fact that the real decay 8Li*  7Li + n,
which is accompanied by a significant energy release,
is forbidden.

In this example, the deuteron binds the t + t pair,
{f} = {33}, for which there are no resonances, and cre-
ates a resonance in the three-cluster system undergoing
thermonuclear decay. The triton in the t + d + d system
({f} = {322}), the alpha particle in the α + d + d system
({f} = {422}), and the alpha particle in the α + t + t sys-
tem ({f} = {433}) system play a similar role. A theoret-
ical merit of the proposed approach is that we can make
use of the well-known results obtained in calculating
the set of levels within the multiparticle shell model
[13] for s4pn configurations. Experimental prospects are
associated with the belief that such states can be excited
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Fig. 1. Phase shifts for d + h scattering in the S = 3/2, L = 0
channel: (solid curve) results of the calculation from [2] for
the {f} = 32} channel, (open circles) RGM phase shifts from
[10], and (closed triangles) results of the phase-shift analy-
sis from [14].
intensively in cluster-transfer reactions like (3He, p),
(6Li, α), and (7Li, α) at energies that admit the occur-
rence of a direct process with a high probability
(approximately 20 MeV for 3He beams and 50–
60 MeV for Li nuclei). Strange though it may seem, the
entire body of such data obtained thus far is scanty.

For all three-cluster levels discussed here, it is
important to know the degree to which the quantum
number {f} is good, a quantity on the basis of which we
can conclude whether a given resonance is sufficiently
narrow and well-defined. According to the shell-model
calculations from [13], this degree is not high (70–
80%), but it is obviously reduced by a strong impact of
the shell effect associated with spin–orbit interaction.
In loose cluster systems, this effect is suppressed to a
considerable extent. By way of example, we indicate
that, according to experimental data, the width of the
(3/2)+ level in the t + d system is close to the resonance
width in the potential model and that the forbidden
decay into the α + n channel has virtually no effect on
this width. We will return to the question of accuracy of
Young diagrams {f} in the section devoted to cluster-
transfer reactions.

2. COMPARISON OF THE ORIGINS
OF THE (3/2)+ AND (1/2)+ STATES

IN THE t + d SYSTEM

For the t + d and h + d (h ≡ 3He) systems, the admis-
sible types of symmetry (signature) are {f} = {41} and
{f} = {32}, irrespective of L parity because the particles
involved are not identical. The Young diagram {f} =
{41} corresponds to the total spin of S = 1/2, whereas
{f} = {32} admits both S = 1/2 and S = 3/2 [2, 5]. Thus,
the value of S = 3/2 is associated exclusively with the
signature {f} = {32}. At the same time, amplitudes
characterized by the Young diagrams {41} and {32}
interfere in the S = 1/2 scattering channels. We see that,
although the effect of the total spin S on the character
of t + d interaction is indirect—this effect is exerted
through the signature {f}—it is quite significant.

According to our model [2], each signature {f} gen-
erates an individual td potential, these potentials being
strongly different for different {f}.

Thus, we conclude that, by origin, the (3/2)+ (L = 0,
S = 3/2) thermonuclear level represents a potential-
scattering resonance that corresponds to the Young dia-

gram {f} = {32}. Indeed, the potential (R) repro-
duces faithfully all S = 3/2 phase shifts for h + d scat-
tering over a broad energy interval [2] (for nonidentical
particles, this potential has slightly different forms for
even and odd values of L). The general pattern of the
region where the h + d system develops the resonance
of our prime interest is shown in Fig. 1. We can see that
the potential model describes fairly well both the gen-
eral behavior of the phase shift and the resonance
proper (its position and width). The wave function of
the h + d system at the resonance has, in just the same

V L
32{ }
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 2      2000



SUPERMULTIPLET SYMMETRY AND NEAR-THRESHOLD LEVELS 197
way as the S = 2 state of the d + d system at low ener-
gies does [2], a nodal character associated with the fact
that the lowest admissible shell configuration corre-
sponds to s3p2. In constructing the projections onto the
h + d channel, two oscillator quanta are concentrated,
in this case, in the wave function of relative motion in

the h + d system [4] {in the potential (R), there is
a forbidden nodeless S-wave bound state occurring at
E = –5 MeV [2] and corresponding to the configuration
s5}. Thus, the effect of antisymmetrization arises even
if we restrict our consideration to the classification of
permutation-symmetry types according to Young dia-
grams without explicitly invoking the operator of full
antisymmetrization in the system {this is characteristic
of the resonating-group method (RGM) [15], rendering
the procedure very cumbersome and hindering the con-
struction of a simple general pattern}.

It goes without saying that, for the 3/2+ resonance,
the thermonuclear forbidden channel t + d  α + n is
of prime interest [7, 8], but it does not affect the general
conclusions about the nature of this resonance, because
the degree of suppression is 10–1 for this channel [8].

Going over to the (1/2)+ resonance, we will make
use of an efficient formalism for clarifying the reason
why there is no such resonance in t + d scattering
despite the fact that the important {f} = {32} compo-
nent of the wave function in the L = 0, S = 1/2 channel
resonates. Since the scattering amplitudes correspond-
ing to the signatures {f1} = {32} and {f2} = {41} inter-
fere in the S = 1/2 case for the t + d system, the S matrix
and the phase shifts can be taken in the conventional
form from [2]; that is,

(1)

(2)

If the channel of spin–isospin flip into a singlet state,
d + t  ds + t, were open, the resulting nonunitarity
of elastic scattering in the case of S = 1/2 would be
determined by the inelasticity factor [2]

(3)

In our case, where this channel is closed, we have
ηL, 1/2 = 1 (unitarization of the elastic channel). Thus,
we arrive at

(4)

In the polarization experiment reported in [14], the
phase shifts δL, 1/2(E) and δL, 3/2(E), which correspond to
the values of S = 1/2 and 3/2, respectively, can be sepa-
rated (these data can be supplemented with the numer-
ical results obtained in [10] on the basis of the RGM).
Knowing the S = 3/2 phase shifts and relying on the
supermultiplet formalism, we can determine the phase

shift (E) as a function of energy. In this way, we
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can reconstruct the aforementioned potential (R).
On the basis of the phase shift δL, 1/2(E) determined
experimentally, we then reconstruct the supermultiplet

phase (E) by using equation (2) and the already

known phase shift (E). This enables us to recon-

struct the potential (R) [2], for which there exists
a forbidden S-wave state with a large binding energy of
16 MeV (the lowest shell configuration compatible
with the symmetry {f} = {41} and L = 0 corresponds to
the s3p2 + s42s—not to the s5—configuration of the for-
bidden state).

Figure 2 shows the reconstructed S-wave phase shift

(E) in the region of low energies; we can see that
this phase shift decreases rather fast from the value of
180° at zero energy [this behavior of the phase shift is

V L
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Fig. 2. Phase shifts for d + h scattering in the {f} = {41}, L =
0 channel: (solid curve) results of the calculation from [2]

on the basis of the potential  and (open circles) pure

phase shift  as calculated on the basis of the RGM
phase shift from [10] by using equation (2).
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Fig. 3. Phase shifts for d + h scattering in the S = 1/2, L = 0
channel: (solid curve) results of the calculation by equation
(2), (open circles) RGM phase shifts from [10], and (closed
triangles) experimental phase shifts from [14].
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in accord with the position of the aforementioned for-
bidden level in the potential V{41}(R)]. We can conclude
that the pragmatic use of the RGM data for the phase
shifts δ0, 3/2 and δ0, 1/2 on the basis of equation (2) leads
to a noticeably different result, which cannot be tested
directly in experiments.

Despite the fact that the term  in the total phase

shift δ0, 1/2(E) =  +  resonates (as is seen in

Fig. 1), this total phase shift cannot correspond to a res-

onance behavior when the phase shift (E)
decreases in the way described above. It should be
noted that a wide interval of energies was considered in
[2] and that some fine details—such as the behavior of
the phase shift δ0, 1/2(E) at low energies—were success-
fully reproduced there.

The above example, where the resonance disappears
when we go over, within the supermultiplet potential
model, from the one-channel problem (S = 3/2, {f} = {32})
to the two-channel problem (S = 1/2, {f1} = {32} and
{f2} = {41}), may be of general interest in discussing the
methodological problems of quantum mechanics (see the
monograph quoted in [16]). Conceptually, this approach
has never been invoked in applying the RGM scheme, but
it can be implemented easily by using the RMG equations
projected on a definite total Young diagram [17].

The effect of the decay t + d  α + n in the S +
1/2, L = 0, {f} = {41} channel induces the emergence
of the imaginary part of the S-wave phase shift for d +
t scattering in this channel and leads to the broadening
of the relevant resonance, should it appear.

Let us now consider the d + d and t + t cluster pairs.
For the d + d system with symmetry {f} = {22}, the
reconstructed dd potential [2] is overly shallow for the
formation of a physical S-wave bound state or a reso-
nance, although there is a forbidden S-wave state in this
potential (in the d + d system, the {f} = 4 symmetry cor-
responds to the ground state of the 4He nucleus).

If there exists a resonance in the t + d system ({f} =
{32}), there then arises the question of why there is no
such resonance in the t + t system ({f} = {33}). Need-
less to say, it would occur for an S-wave state, but the
{f} = {33} symmetry is compatible only with the L-odd
waves; proceeding further, we indicate that, even at L =
1, the strength of the potential is insufficient for the for-
mation of a bound state or of a resonance (although
there is a noticeable growth of the P-wave phase shift
at Ec.m. ~ 3 MeV) [2, 18]. As to the {f} = {42} symmetry
for the t + t system, it leads to a tightly bound physical
S-wave state in the corresponding potential, the ground
state of the 6He nucleus (the relevant spectroscopic fac-
tor is  . 0.5 [18]). Similarly, the {f} = {41} sym-
metry for the t + d system considered above leads to a
tightly bound physical doublet state in the potential
V{41}(R), the (3/2)– ground state of the 5He nucleus and
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tt
the closest (1/2)– level. These well-known states are not
considered here.

3. LOOSELY BOUND STATES
AND RESONANCES IN SYSTEMS FEATURING 

THREE CLUSTERS OF THE d AND t TYPES

In this section, we discuss the possible existence of
near-threshold three-cluster states that are character-
ized by excited Young diagrams of the type {f} = {332}
and which are orthogonal to channels involving α par-
ticles. In principle, they could exist as narrow reso-
nances whose decay through the above alpha-particle
channels, which is accompanied by a large energy
release, is forbidden. In this case, data on photonuclear
reactions and on reactions of quasielastic nucleon
knockout would be very useful, but such data have not
yet been invoked in solving problems of this type.

As the simplest example of three-cluster states in a
continuum near the three-body threshold, we will con-
sider the high-energy part (group B) of the giant dipole
resonance (GDR) in the 6Li and 7Li nuclei,
|s3p3{321}L = 1; S = 1; T = 1〉  and |s3p4{331}L = 0, 2;
S = 1/2; T = 1/2, 3/2〉  (the conventions used here are
described in detail elsewhere [19, 20]). Of these states,
the lowest (in the group B, we consider here only that
part which is the closest one to the threshold) lie above
the thresholds for the three-cluster decays 6Li*  t(h) +
d + p(n) and 7Li*  t(h) + t + p(n), which play an
important role in processes occurring in stars, by,
respectively, 2–4 and 6–8 MeV [19] (see also data on
photomesonic reactions [20]). For such states, the
above type of decay according to the rows of the Young
diagram is superallowed, whence it follows that, even
at energies above the threshold value of E . 3 MeV,
these states correspond to rather wide maxima of the
cross section. We are interested, however, in states like
|s3p3{321}L = 1; S = 2; T = 0〉  and |s3p4{331}L = 0, 2;
S = 3/2; T = 1/2〉  that lie much lower and for which
alpha decays are not forbidden in isospin. Taking into
account the energy difference between the |s4p3{421}L =
1; S = 1/2; T = 3/2〉  and |s4p3{421}L = 1; S = 3/2; T =
1/2〉  levels, which is, on average, 3.5 MeV [13], and the
analogous difference between the |s4p4{431}L = 1; S =
0; T = 1〉  and |s4p4{431}L = 1; S = 1; T = 0〉 levels, about
4 MeV, we arrive at the conclusion that the |s3p3{321}L =
1; S = 2; Jπ = 3–; T = 0〉  and |s3p4{331}L = 0; S = 3/2;
Jπ = 3/2+; T = 1/2〉  states lie in the region of the t + d +
p three-body threshold and above the t + t + p threshold,
respectively. In the 6Li nucleus, {f} = {321}, the analo-
gous L = 1, S = 2, T = 0, Jπ = 2– and 1– levels also lie
above the threshold.

There arises the natural question of how the energy
of the system (we reckon here this energy from the
threshold for the above three-body decay) changes
upon going over from the t + d + p ({f} = {321}) system
to the t + d + d ({f} = {322}) system or from the t + t +
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 2      2000
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p ({f} = {331}) system to the t + t + d ({f} = {332}) sys-
tem and further to the t + t + t ({f} = {333}) system.
Here—in just the same way as in the theory of photo-
nuclear reactions—systematic data obtained (as far
back as the 1970s) for the nucleon binding energies in
the 1s and 1p shells from an investigation into
quasielastic-knockout processes of the (p, 2p) and (e,
e'p) types at high energies (a few hundred MeV) [21]
play an important role. It is well known that, as the p
shell is filled, the proton binding energy in the 1s state
grows according to the law

(5)

In particular, we have (10B) . 31 MeV for the 10B
nucleus. Here, it is important to note that, with increas-
ing n, the type of the symmetry of the configuration pn

changes substantially (for example, {f} = {3} for the
7Li nucleus, {f} = {41} for the 9Be nucleus, etc.), and
so do the binding energies of valence nucleons; at the
same time, equation (5) retains a linear character, and
the binding energy of the 1s nucleon is independent of
the above features of the wave function of the configu-
ration pn. Therefore, the statement that equation (5) is
valid not only for the ground state but also for excited
states (in particular, for those whose symmetry {f} is
rearranged) remains in force for a fixed nucleus as well,
provided that the consideration is restricted to the con-
figuration pn with a fixed value of n. This is the reason
why our derivation of the estimate for 10B employs the
same value of 31 MeV for the lowest state with symme-
try {f} = {433} |s4p6{433}33P2〉 (E* = 11.6 MeV) as

well [13]; that is, the proton binding energy (10B)
between some 30 and 31 MeV is associated with the
transition |s4p6{433}33P2〉  |s3p6{333}44P5/2〉 . Since
this state of the 10B nucleus occurs 5 MeV above the
threshold for proton emission, the 9Be state in which we
are interested, |s3p6{333}44P5/2〉, corresponds to the
excitation energy E*({333}) between 35 and 36 MeV,
which is only 1 to 2 MeV in excess of the threshold for
the decay process 9Be  h + t + t. The last value is
appropriate (since T = 3/2) for the analogous state of
the 9Li nucleus as well, a state of our direct interest,
which decays via the process 9Li  t + t + t. Thus, the
t + t + t system can have near-threshold bound or reso-
nance Jπ = 5/2+, 3/2+, 1/2+ states |s3p6{333}44PJ〉 . Need-
less to say, this system, featuring a very weak two-body
resonance, calls for a more detailed quantitative inves-
tigation aimed at clarifying the question of whether
there is here a clear-cut three-body resonance.

In principle, the three-cluster method of resonating
groups in the conventional form (which is unfortu-
nately cumbersome) is applicable here, because the
maximal possible spin of S = 3/2 and the maximal pos-
sible isospin T = 3/2 in the system are compatible only
with one orbital Young diagram {f} = {333} (in a more
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general case, it would be necessary to project the RGM
equations onto the given symmetry {f} [17]). However,
we can also use a simpler approach, that which relies on
using the known tt potential for the {f} = {33} symme-
try (odd orbital angular momenta of relative motion)
[2]—or even the first term of its separable expansion
[23]—and on solving the Faddeev equations for the
case of pair potentials involving forbidden states [24].

Going over to the t + t + d system with orbital sym-
metry {f} = {332}, we consider here, as above, the low-
est states of the 9Be nucleus with signature {f} =
{432}—namely, the |s4p5{432}24PJ〉  multiplet whose
levels have the quantum numbers Jπ = 1/2–, 3/2–, and
5/2– and occur at, respectively, E* = 9.8. 10.6, and
11.5 MeV [13]. A transition to the 
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Li nucleus. Thus, the probabil-
ity for the 
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 + t + d system with {f} = {332} symmetry
to occur in the region around the threshold for the three-
cluster breakup of the 8Li nucleus seems noticeably
higher than that for the above-discussed t + t + t system
with {f} = {333} symmetry. We would like to empha-
size here that the former case requires a more detailed
theoretical study. It should be recalled that the potential
of dt interaction for the {f} = {32} symmetry is well
known (see above).

In order to analyze the t + d + d system, {f} = {332},
we will consider the lowest level with {f} = {422} sym-
metry in the 8Be nucleus: this is the |s4p4{422}15P4〉
level at E* = 19.5 MeV [13]. It occurs 2.2 MeV above
the threshold for the decay 8Be  7Li + p [22]. It
should also be borne in mind that, when the 7Li
|s3p4{322}26D9/2〉  hole state in which we are interested
is formed as the result of 1s-nucleon knockout from the
above excited state of the 8Be nucleus, it turns out that

(8Be*) is between some 27 and 28 MeV [21].
Thus, the excitation energy E*({322}) between 29 and
30 MeV, which is approximately 3 MeV above the
threshold for the three-cluster decay 7Li  t + d + d

E1s
bind

E1s
bind
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(  = 26.3 MeV [22]), corresponds to the 7Li lowest
state with {f} = {322} symmetry in question. This situ-
ation is also of interest for a theoretical analysis, but is
not so important as that for the t + t + d system, a case of
the greatest interest for a quantitative theoretical investiga-
tion.

Obviously, the d + d + d system is not realized as a
bound state; it lies high in a continuum.

4. NEAR-THRESHOLD STATES
OF THREE-CLUSTER SYSTEMS FEATURING 

ONE ALPHA PARTICLE

It was indicated above that, if the d + d ({f} = {22})
or the t + t ({f} = {33}) system is not bound, the addi-
tion of a triton, a deuteron, or an alpha particle as the
third cluster in processes of star burning will play the
role of a stabilizer (binding center) that facilitates the
formation of near-threshold α + d + d ({f} = {422}),
α + t + d ({f} = 432}), and α + t + t ({f} = {433}) states
with physically important forbidden decays through the
7Li + p, 8Be + n, and 8Be + 2n channels characterized
by specific energy releases. In this case, however, the
Coulomb barrier increases substantially, but it does not
exceed the analogous barrier for the Bethe carbon cycle
α + α  8Be(0+), 8Be(0+) + α  12C( ) [25].

For this case, basic theoretical information is con-
tained in the calculations presented in [13]; a particu-
larly important point here is that the near-threshold
three-cluster nuclear states of our prime interest can be
directly studied in experiments implementing cluster
transfer in processes like 6Li(3He, p)8Be* and 7Li(7Li,
α)10Be* at incident-particle energies lying in the range
from about 30 to 50 MeV. In order to obtain, in this
way, a reliable systematic pattern of three-cluster states
characterized by three-row Young diagrams, the bound-
aries of the energy region studied in the spectra of emit-
ted particles must be offset by at least ±5 MeV from the
three-cluster threshold. However, such systematic mea-
surements have not been performed so far—there are
only separate fragments of required data [26–31]. By
way of example, we indicate that, in the review article
of Abramovich et al. [26], threshold states are dis-
cussed exclusively in connection with Wigner–Baz’
theory [12] without considering the shell structure of
excited nuclear states and cluster spectroscopic factors
Sx, symmetries, and other features associated with this
structure. Some primary experimental data are con-
tained in [27–29], but orbital-angular-momentum
transfers are not indicated there; nor do those studies
establish, within the method of distorted waves, the Sx
values of clusters captured by a nucleus.

We will illustrate the above by considering the
example of the s4p4 levels of the 8Be nucleus character-
ized by the Young diagram {f} = {422} (the threshold
for the decay 8Be  α + d + d is En = 23.8 MeV). Of
these, the simplest is the |s4p4{422}11S〉 state, but it

En*

02
+

occurs at E* = 32.3 MeV (that is, rather high) [13]. We
are interested in the lower lying S-wave state 15S having
a spin value of S = 2 (Jπ = 2+, T = 0) and occurring at
energy E* . 20.6 MeV [13]. Comparing the {422}11S
and {422}15S states, which are separated by so wide an
energy interval, we can once again evaluate the well-
known predictive power of the multiparticle shell
model, which has not been used so far in such prob-
lems. The 15S state being considered must be excited,
with a large spectroscopic factor of Sd . 1, in deuteron
transfer to a 6Li nucleus in processes like (3He, p) (the
orbital-angular-momentum transfer is Ld = 0) and must
be weakly excited in processes like 7Li(d, n)8Be* and
9Be(d, t)8Be*. This follows from selection rules accord-
ing to Young diagrams [3] and from the calculations
performed in [13] for the cluster spectroscopic factors
on the basis of the shell theory of nucleon clustering [4,
32]. Experimental data corresponding to the above cri-
teria are required not only for the 15S state but also for
15DJ levels having the quantum numbers of Jπ = 0+ (E .
26.8 MeV), Jπ = 1+ (E* . 26.2 MeV), and Jπ = 2+ (E* .
24.4 MeV; this level lies 0.6 MeV above the threshold
for the breakup process 8Be  α + d + d), Jπ = 3+

(E* . 22.1 MeV), and Jπ = 4+ (E* . 19.5 MeV), which
also correspond to the {f} = {422} symmetry. A value
of Ld = 2 is peculiar to all levels of the 15DJ multiplet.

Of all levels observed experimentally, the 8Be state
at E* = 19.9 MeV is associated best with the 15S2 level.
This state is excited intensively in the deuteron-cluster-
transfer reactions 6Li(6Li, α)8Be* and 6Li(3He, p)8Be*
[27] (where, however, the value of Ld = 0 was not deter-
mined); it was also observed in the reaction 6Li(α,
d)8Be* [28], where this state is excited much more
weakly, possibly because of a large binding energy of
the alpha particle. At the same time, there is no infor-
mation, quite expectably, about a noticeable excitation
of this state in the reaction 7Li(d, n)8Be* [22].

At still higher excitations, the level at an energy of
22.8 MeV is well manifested in the reaction 6Li(6Li,
α)8Be* [27]. This level can correspond to the afore-
mentioned 15D3 state, although neither the value of Ld =
2 nor the value of the spectroscopic factor Sd was estab-
lished in [27]. It is surprising that the experiment did
not revel other levels of the {422}15DJ multiplet.

A level at E* = 25.2 MeV [29], which can be asso-
ciated, in a natural way, with the aforementioned 15D2
state, is clearly manifested in the resonance near-
threshold reaction 6Li + d  α + α. Unfortunately, an
experimental verification of the values of Ld and Sd was
not performed in [29] either.

Let us now consider states corresponding to the s4p5

configuration with {f} = {432} symmetry, in which
case the threshold energy E* for the breakup process
9Be  α + t + d is 19.2 MeV. Here, a leading role is
played by the 22PJ multiplet featuring the Jπ = (1/2)–

level at E* = 17.8 MeV and the Jπ = (3/2)– level at E* =
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18.2 MeV, the 22DJ multiplet featuring the Jπ = (5/2)–

level at E* = 19.5 MeV and the Jπ = (3/2)– level at E* =
21.6 MeV, the 22FJ multiplet featuring the Jπ = (7/2)–

level at E* = 22.4 MeV and the Jπ = (5/2)– level at E* =
23.5 MeV, the 24FJ multiplet featuring the Jπ = (7/2)–

level at E* = 17.4 MeV, and the 24DJ multiplet featuring
the Jπ = (1/2)– level at E* = 15.5 MeV (see [13]).

From the existing experimental observations of
highly excited states of the 9Be nucleus, the results pre-
sented in [27], where it was established that, in the reac-
tions 6Li(7Li, α)9Be and 7Li(6Li, α)9Be, the 9Be levels
at E* = 17.8 (22P1/2) and 21 MeV (the latter can corre-
spond to the aforementioned 22D3/2 state at E* =
21.6 MeV) are the most readily excited states (the most
intense groups in the spectra). These levels are
observed in the reactions 7Li(α, d)9Be and 6Li(α, p)9Be
[25], but the probability of their excitation is five to six
times smaller, as might have been expected because of
a large binding energy in the virtual-decay channels
α  d + d and α  t + p, than in reactions induced
by lithium ions.

A noticeable excitation of levels at the lower ener-
gies of E* = 15.2 and 11.8 MeV was observed in [27].
The former can be identified with the three-cluster Jπ =
(1/2)– {432}22P state at E* = 15.5 MeV, which was pre-
dicted in [13], while the latter can be associated with at
least three states: Jπ = (3/2)– {432}24P state at E* =
10.6 MeV, Jπ = (5/2)– {432}24P state at E* = 11.5 MeV,
and Jπ = (7/2)– {432}24D state at E* = 11.4 MeV.

Eventually, levels corresponding to the s4p6 config-
uration are peculiar to the 10B and 10Be nuclei and the
{f} = {433} symmetry: these are the Jπ = 1+ 11P state at
E* = 18.0 MeV for the 10B nucleus, the Jπ = 0+ 33P state
at E* = 14.6 MeV for the 10Be nucleus, and the Jπ = 2+

33P state at E* = 10.1 MeV and the Jπ = 1+ 33P state at
E* = 11.3 MeV for the 10Be nucleus. Of some interest
are also the Jπ = 4+ (E* = 17.1 MeV), Jπ = 3+ (E* =
17.8 MeV), and Jπ = 2+ (E* = 20.9 MeV) levels of the
33FJ multiplet [13]. The reaction 7Li(7Li, α)10Be is one
of the most appropriate ones for the formation of the
corresponding three-cluster systems. It turned out,
however [27] that, in this reaction, the states of the 10Be
nucleus at excitation energies in the range 10–15 MeV
either are not manifested or are excited along with
lower states [27]. A strong excitation of the near-thresh-
old levels at E* = 17.9 MeV (this level is excited 30
times more intensely than the ground state of the 10Be
nucleus) and 18.8 MeV was observed in the above reac-
tion. The level at 17.9 MeV seems to correspond to the
aforementioned {433}33F3 state, while the level at
18.8 MeV can be identified with Jπ = 3+ state at E* =
19.5 MeV, where the {433} symmetry, albeit nondom-
inant, plays a substantial role [13] (the threshold energy

 for the decay 10Be*  α + t + t is 19.7 MeV [21]).
The estimate presented in [30] for the relative values of
En*
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the spectroscopic factors for the stripping mechanism
in the reaction 7Li(7Li, α)10Be is in excellent agreement
with experimental results. There are also relevant
experimental data on the reaction 7Li(α, p)10Be [30,
31], but these are less clear (see above).

Thus, experiments confirm the theoretical predic-
tion that, in light nuclei like 8Be, 9Be, and 10Be, there
exist near-threshold three-cluster states in which the
alpha-particle cluster plays a stabilizing role. It is worth
noting that the majority of experimentally established
near-threshold states can be associated with three-clus-
ter systems characterized by large contributions of the
relevant components of the wave functions obtained
within the multiparticle shell model. This confirms the
value of the supermultiplet scheme used: the states
being discussed are seen against the background of lev-
els having a different origin. Of course, the above three-
cluster states call for a quantitative theoretical investi-
gation, which can be performed by using the combined
shell–cluster approach [33], the RGM (where there is
experience of studying the 3α system [34]), the Fad-
deev equations for three-cluster systems [24], and the
stochastic variational method [35, 36] as applied to
three-cluster systems [37]. Simplifications of the pair t
matrix like those of unitary-pole-approximation type
[38] can also be useful for loose systems.

Unfortunately, the number of experiments that stud-
ied three-cluster systems of the α + d + t type is scanty.
Because of this, definite theoretical states predicted
long ago cannot be reliably associated, at present, with
each highly excited state found experimentally. In par-
ticular, a further investigation of the aforementioned
reactions with 6Li, 7Li, etc., nuclei is of special interest.
It is necessary to measure the angular distributions of
the products of these reactions in order to determine the
orbital-angular-momentum transfers and the corre-
sponding spectroscopic factors. Such a systematic
investigation will also make it possible to resolve the
question of the accuracy of the quantum number {f} for
near-threshold three-cluster states. Recall that this
accuracy is expected to be 80–90% (see above).

5. CONCLUSION

The problem of the near-threshold states of two- and
three-cluster systems has been systematically surveyed.
In considering these states, we have exhaustively used
the classification of states according to Young orbital
schemes (this automatically solves the problem of the
orthogonality of wave functions describing different
cluster partitions), data on quasielastic-nucleon-knock-
out reactions, and previous calculations of the diagrams
of energy levels in light nuclei on the basis of the mul-
tiparticle shell model (so far, very informative results of
these calculations have found virtually no use for the
present purposes). We have arrived at the conclusion
that the thermonuclear S = 3/2, L = 0 level in the t + d
system is the only near-threshold level in extremely
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light two-cluster systems and have clarified the reasons
behind the absence of the S = 1/2, L = 0 level, a natural
counterpart of the latter. But for light three-cluster sys-
tems, which are of great topical interest for nuclear
astrophysics, the total number of near-threshold states
that can be involved in reactions accompanied by a sig-
nificant energy release appears to be rather large. A sys-
tem like t + t + d is inaccessible to a direct laboratory
investigation, but the cases in which an alpha particle
plays the role of one of the clusters can be thoroughly
studied in direct nuclear reactions of cluster transfer
such as (h, p), (6Li, α), and (7Li, α). An attractive feature
of such reactions is their universality, since they are
efficient both below and above the threshold for three-
cluster decay. There are only fragmentary data on this
point, which is of great importance not only for nuclear
physics proper but also for nuclear astrophysics. In this
connection, it would be advisable to conduct coordi-
nated experiments of the required type in Almaty, Kiev,
and Moscow, where appropriate accelerators are avail-
able.

As to a theoretical development, a natural approach
would be to invoke the Faddeev equations for three-
cluster systems [24], in which case use is made of pair
potentials involving forbidden states [2, 18]. Here, sim-
ple estimates can be obtained within the approximation
of separable potentials [38, 39], which oscillate [40]
owing to the presence of forbidden states. The stochas-
tic variational method developed in [35–37] is more
involved, but it is of a microscopic character; moreover,
this method takes explicitly into account antisymmetri-
zation in nucleons.

In recent years, much attention has been given to
systems featuring a few alpha particles (more than
three). Such systems have very high moments of inertia
[11]. This gives grounds for speculations about various
chain configurations and so on, but a consistent analy-
sis of such possibilities has yet to be performed.
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Abstract—Relativistic expressions for the operators of current electric moments caused by electromagnetic
spin–orbit interaction are obtained. Formulas for the matrix elements of the current electric moments of nuclei
are derived. The contributions of the current electric moments to the quadrupole moment of the deuteron and
to its root-mean-square radius are calculated with allowance for relativistic effects. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

It well known that the electromagnetic spin–orbit
interaction of intranuclear nucleons, which is propor-
tional to the electric-field strength E, generates electro-
magnetic corrections to the electric moments of nuclei.
These corrections are taken into account in the theory
of the deuteron [1–5], as well as in the theory of other
nuclei [4, 5]. Spin–orbit interaction results from the
motion of the magnetic moments of particles, which
causes a nonzero charge density. The effect of the spin–
orbit interaction on the charge-density distribution in
some nuclei was investigated in [6, 7]. Variations in the
charge density lead to the emergence of electric
moments, which were called current electric moments
(CEM) in [4, 5, 8–10]. It was shown in [4, 5] that the
contribution of the current electric quadrupole
moments (CEQM) to the total quadrupole moments of
some nuclei cannot be neglected. The expressions for
the current electric dipole moment and for corrections
to the root-mean-square charge radius that are associ-
ated with electrostatic contact interaction of a current
origin were found in [10].

In [1–3], relativistic corrections to the quadrupole
moment of the deuteron and to its root-mean-square
radius were calculated within the conventional impulse
approximation. The application of this approach
involves rather cumbersome calculations; moreover,
this does not lead to the relatively simple equations that
were obtained in [4, 5, 10] and which are convenient for
evaluating the CEQM of other nuclei. The calculations
in [4, 5, 10] relied on the Foldy–Wouthuysen represen-
tation, where the relations between relevant operators
are identical to the relations between the corresponding
classical quantities and where the static moments are
equal to the expectation values of the corresponding
operators.

In all articles quoted above, the static moments of a
current origin were calculated in the nonrelativistic
approximation. Here, we derive relativistic expressions
for the corresponding moments.
1063-7788/00/6302- $20.00 © 20204
Throughout this article, we use the system of units
where " = c = 1.

2. OPERATORS OF CURRENT ELECTRIC 
MOMENTS

In classical theory, a moving particle whose mag-
netic moment in its rest frame is m develops an electric
dipole moment d in the laboratory frame. This dipole
moment is given by (see [11])

(1)

The relativistic expression for the energy of intranu-
clear-nucleon interaction (or for the energy of electron
interaction in an atom) with an external nonuniform
electrostatic field is obtained from a power-series
expansion of the field potential φ. We have

(2)

where R is the radius vector of the center of inertia of
the nucleus (atom), and r is the nucleon radius vector
with respect to the center of inertia. The quantity d is
given by equation (1), and summation is performed
over the dummy indices. The nuclear moments are
determined as the sums of the quantities Qij and τ cor-
responding to different nucleons (the dipole moments
of the nuclei are equal to zero). We denote by τt the sum
of the quantities τ (of both charge and current origins)
over all nucleons. The root-mean-square radius of the
nucleus is then given by

where Ze is the charge of nucleus.
Let us consider CEM operators in quantum theory.

In the Foldy–Wouthuysen representation, these opera-
tors can be constructed on the basis of the relativistic
expression for the energy of spin–orbit interaction by

d v m×[ ] .=

W di
∂φ R( )

∂Xi

--------------- 1
6
---Qij

∂2φ R( )
∂Xi∂X j

------------------ 1
6
---τ∂2φ R( )

∂Xi
2

------------------,+ +=

Qij 3dix j 3d jxi 2δijd r, τ⋅–+ 2d r,⋅= =

r τ t Ze⁄ ,=
000 MAIK “Nauka/Interperiodica”
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expanding the electric-field strength E in powers of r/R
[10] in just the same way as in (2).

In constructing the CEM operators, we can make
use of the relations for the operator of spin–orbit inter-
action that were obtained in [12–14]. For Dirac parti-
cles featuring no anomalous magnetic moment
(AMM), the operator of spin–orbit interaction has the
form [12]

(3)

where v, e, and p are the velocity, kinetic-energy, and
kinetic-momentum operators, respectively; p = –i∇  is
the momentum operator; A is the vector potential of the
external field; and m is the particle mass.

Since the operator W must be a Hermitian operator,
the product of noncommuting operators in expressions
of the type (3) must be replaced by the anticommutators
{…, …}+.

For relativistic particles with an AMM, the operator
of spin–orbit interaction has the form [14]

where µ0 = e/2m, µ' = µ – µ0, and µ are, respectively, the
Dirac, the anomalous, and the total magnetic moments.
Since the weak-field approximation was used in [14],
terms that are quadratic in the field were not taken into
account in the above expression.

Recall that the spin–orbit interaction and CEM
appear only in the case of a moving particle; therefore,
the interaction operator must be proportional to the
velocity operator v, which is equal to the commutator of
the Hamiltonian and the operator r:

(4)

The refined expression for the energy of the spin–orbit
interaction has the form

(5)

In equation (5), we have considered that v and s can
be noncommuting operators. To the required precision,
the velocity operator v can be found by using equation
(4) and the expression obtained in [14] for the Hamilto-
nian. This yields

Upon the substitution of this expression into equa-
tion (5), the first term, which is linear in E, is fully in

W
e E v s×[ ]⋅( )

2 e m+( )
----------------------------------,=

e
m

1 v2–
------------------ p2 m2+ , p p eA,–= = =

W
1
2
---

µ0m
e m+
------------- µ'+ 

  1
e
--- s p×[ ] E⋅( ),

 
 
 

+

,=

v ṙ i * r,[ ] .= =

W
1
4
---

µ0m
e m+
------------- µ'+ 

  s v×[ ] E v s×[ ] E⋅–⋅( ),
 
 
 

+

.=

v
1
2
--- 1

e
--- p eA–( ),

 
 
 

+

1
2
---

µ0m
e m+
------------- µ'+ 

  1
e
--- s E×[ ],

 
 
 

+

.–=
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accord with the relations obtained in [12, 13] for the
energy of the spin–orbit interaction. It is worth noting
that the analysis in [13] relied on the nonrelativistic
approximation (e ≈ m) with allowance for relativistic
corrections. The second term, which is quadratic in E
and which is much smaller then the first term, can be
recast, after a simplification of the product of Pauli
matrices, into the form

For Dirac particles (µ' = 0), the terms in the Hamil-
tonian that are quadratic in E are determined by the
relation

which was obtained in [12] and which is somewhat dif-
ferent in form from the preceding expression. Although
the quantities W ' and W '' are on the same order of mag-
nitude, only in the nonrelativistic limit do they coincide
for Dirac particles. In this limit, the expression for W '
is simplified to become

In the Hamiltonian obtained in [13] for particles fea-
turing an AMM, the term proportional to E2 is given by

(6)

The quantities W ' and W ''' differ by the factor in
front of E2, but they are also on the same order of mag-
nitude. The difference between W ', on one hand, and
W '' and W ''', on the other hand, is explained by the fact
that equation (5) does not take into account all relativ-
istic corrections to the electric moments of nuclei and
atoms. In addition to those that can be found by means
of equations (5) and (6), there are the corrections that
are due to the presence of terms in the Hamiltonian that
are proportional to higher powers of the potentials and
field strengths. However, the corrections determined by
CEM are leading ones since we have |W ' | ~ |W '' | ~
|W ''' | ! |W |.

Expanding, as in [10], the vector strength of the
static electric field in power series in xi and retaining
only zero-order and linear terms,

we obtain, by means of a procedure similar to that rely-
ing on (2), the operator relation for W. With the aid of
it, we find that the sought CEM operators can be repre-
sented as

W'
µ0m

e m+
------------- µ'+ 

 
21
e
--- E2,

 
 
 

+

.=

W'' e2E2

8e
3

-----------
e2 E v⋅( )2

8e
3

-----------------------,–=

W'
1

2m
------- µ0

2 4µ0µ' 4µ'2+ +( )E2.=

W'''
1

2m
------- µ0

2 µ0µ' µ'2+ +( )E2.=

Ei r( ) ∂φ R( )
∂Xi

---------------– x j
∂2φ R( )
∂Xi∂X j

------------------,–=

d
1
4
--- ω v s×[ ] s v×[ ]–( ),{ } +,=
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(7)

where d and 4ij are, respectively, the operator of the
current electric dipole moment and the operator of
CEQM, while the operator τ characterizes the electro-
static contact interaction of current origin. The relations
in (7) provide a relativistic generalization of the equa-
tions obtained in [4, 5, 10].

3. TRANSFORMATION OF THE CEQM 
OPERATOR

Following [4, 5, 10], we can express the CEQM in
terms of the operator l = ([r × v] – [v × r])/2. Here, we
employ a transformation method that is more rigorous
than that in the articles quoted immediately above and
which does not invoke the current-density operator j.
By using the expression for the total time derivative,

and the fact that the expectation value of the time deriv-
ative of a Hermitian operator in a stationary state is

zero, {ω, xixkσl}+  = 0, we obtain

It follows that the CEQM Qij = 〈4ij〉  is also equal to
the expectation value of the operator

(8)

4ij
3
8
--- ω eiklxi eiklx j+( ) v k σl,{ } +,{ } +,{ } +=

–
1
4
---δij ω s r v×[ ] v r×[ ]–( ),{ } +,{ } +,

τ 1
4
--- ω s r v×[ ] v r×[ ]–( ),{ } +,{ } +,=

ω
µ0m

e m+
------------- µ',+=

d
dt
----- ω xixkσl,{ } +

1
2
--- ω xkσl v i,{ } +,{ } +〈 〉=

+
1
2
--- ω xiσl v k,{ } +,{ } +〈 〉

+
1
2
--- ω xixk,  σ ̇ l { } + ,{ } + 〈 〉 ω ˙ x i x k σ l ,{ } + 〈 〉 ,+

d
dt
----- --

e jkl ω, xi v k σl,{ } +,{ } +{ } +〈 〉

=  e jkleikm ω σl λm,{ } +,{ } +〈 〉

– e jkl ω xixk σ̇l,{ } +,{ } +〈 〉 2e jkl ω̇ xixkσl,{ } +〈 〉 .–

4ij' Dij
1( ) Dij

2( ) Dij
3( ),+ +=

Dij
1( ) 3

8
--- ω [ σi λ j,{ } + σ j λ i,{ } ++ -,





–=

–
2
3
---δij s l l s⋅+⋅( ) ]





+

,

Dij
2( ) 3

8
--- ω e jklxi eiklx j+( )xk σ̇l,{ } +,{ } +,–=
 

that is, 

 

Q

 

ij

 

 = 

 

〈 〉

 

. In going over to the nonrelativistic

approximation, we can neglect the operator . As a
result, we arrive at the well-known expression for the

operator  (see [4, 5]). In this approximation, the

operator 

 

 

 

is not always small because the tensor
interaction between nucleons, which determines the

operator , may be sufficiently large. It was shown in
[4, 5], however, that, upon summation of the contribu-
tions from various nucleons, this operator is commen-

surate with the operator 

 

 

 

only for a small number
of extremely light odd–odd nuclei.

For the majority of nuclei, we can set 

 

l

 

 = 

 

l

 

/m (l is the
angular-momentum operator), which renders equation
(8) convenient for calculating CEQMs [4, 5]. When rel-
ativistic corrections are taken into account, however,
the calculation of the terms featuring time derivatives
by evaluating the commutators of the corresponding
operators and the Hamiltonian by means of equation
(8) becomes rather cumbersome. In this case, it is more
convenient to use equation (7).

4. SPIN–ORBIT CORRECTIONS
TO CEM OPERATOR

Dominant corrections to the velocity operator come
from the spin–orbit interaction of nucleons.1) Taking
the operator of spin–orbit interaction in the form [15]

and using equation (4), we find that the velocity opera-
tor can be represented as

Electromagnetic corrections to the velocity operator
can be neglected. In this case, relations (7) for the CEM
operators become

(9)

1)We means here strong interaction, which must be distinguished
from electromagnetic spin–orbit interaction resulting in the emer-
gence of CEMs.

Dij
3( ) 3

4
--- ω̇ e jklxi eiklx j+( )xkσl,{ } +,–=

4ij'

Dij
3( )

4ij'

Dij
2( )

ṡ

Dij
1( )

WLS
1
2
--- f r( ) s r p×[ ]⋅( )–=

v p
e
---

1
2
--- f r( ) r s×[ ] .+=

d
1
2
--- ω s p×[ ]

m
------------------ f r( )r+ 

 ,
 
 
 

+

,–=

4ij
3

4m
------- ω e jklxi eiklx j+( ) pkσl,{ } +,{ } +=

–
1
m
----δij ω s l⋅,{ } + ω 3xix j δijr

2–( ) f r( ),{ } +,–
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It follows from equations (9) that, with respect to
dominant terms, spin–orbit corrections to the CEM
operator are of order

where W is the total interaction operator. In accordance
with this estimate, spin–orbit corrections are usually of
order of v/c, appearing to be dominant relativistic cor-
rections to CEMs. If terms that are retained in taking
into account relativistic corrections have the order of
smallness not higher than v/c, we obtain ω ≈ µ0/2 + µ'.
In this case, the calculation of the matrix elements of
the CEM operators yields2)

(10)

The calculation of the matrix elements of the
CEQM operator on the basis of equations (8) leads to
the same results. If the CEQM of nuclei is determined
by one nucleon, it is characterized by the quantity
〈 jj; j ± 1/2|4zz |jj; j ± 1/2〉 . From (10), it follows that

(11)

2)All the relations presented above are valid for any spin-1/2 parti-
cle species, including electrons in atoms. In what follows, we
consider only nuclei and employ a conventional notation for the
nucleon mass (M), for the total angular momentum of the nucleon
(j), and for the projection of the total angular momentum (m).

τ ω s l⋅
m

--------- r2 f r( )–,
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 
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2
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---– κ 2 j 1– 2M r2 f r( )〈 〉–( ),=
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1
2
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1
2
---+ +

=  κ 2 j 3 2M r2 f r( )〈 〉+ +( ), κ– ω M.⁄=
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1
2
--- 4zz jj; j– 1

2
---–

=  κ 2 j 1–( ) 1–
M
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2
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The spin–orbit corrections to the CEMs of multinu-
cleon nuclei can be found by the method that is identi-
cal to that which was used to determine the additional
magnetic moment of nucleons (see [15]). Since the
function f(r) decreases fast toward the center of the
nucleus, the factor r2 can be replaced, upon averaging,
by R2, where R is the radius of the nucleus; that is,
〈r2f(r)〉  = R2〈 f(r)〉 . The quantity 〈 f(r)〉  can be expressed
in terms of the spin–orbit splitting ∆E of the j = l ± 1/2
levels as [15]

5. EVALUATION OF THE DEUTERON CEM

Relativistic corrections to the quadrupole moment
and the root-mean-square radius of the deuteron that
are associated with the electromagnetic spin–orbit
interaction were calculated in [2–5]. These corrections
to the quadrupole moment determine the deuteron
CEQM. We will calculate the CEQM and the corre-
sponding corrections to the root-mean-square charge
radius of the deuteron, taking into account the contribu-
tion to the velocity operator from strong spin–orbit
interaction.

In [4, 5], the deuteron CEQM was calculated by
means of an equation that is similar to (8) (without tak-
ing into account relativistic corrections). However, this
method of calculation seems less efficient than that
which is based on equation (7). Although relations (7)
and (8) are equivalent, the procedure relying on equa-

tion (8) involves a determination of the operator  via
evaluating the commutator of the Hamiltonian and the
operator s with the result that the calculation on the
basis of (8) becomes more cumbersome and less pre-
cise. Here, we use relation (7) to determine the deu-
teron CEMs. In the calculations, it is necessary to take
into account the motion of the proton and of the neutron
and to consider that their masses are approximately
equal. For the case of the deuteron, we can neglect v2/c2

corrections to the CEMs and set ω ≈ (µ0 + 2µ')/2M in
equations (7). At the same time, we must take into
account corrections to the velocity operator that are
associated with the spin–orbit (so) interaction, the qua-
dratic spin–orbit (so2) interaction, and the interaction
quadratic in the angular momentum (L2). They are pro-
portional to the corresponding corrections to the cur-
rent operator and are determined by equation (4). In the
above approximation, the proton- and neutron-velocity
operators are given by

=  κ j 2 j 1–( )
j 1+

---------------------- 1
M
j

----- r2 f r( )〈 〉+ 
  .

f r( )〈 〉 ∆E
l 1 2⁄+
-----------------.=

ṡ

v1
p
M
----- ∆v1, v2+ p

M
-----– ∆v2.+= =
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The operators ∆v1 and ∆v2 are determined by the com-
mutators of the corresponding terms in the Hamiltonian
and the operator r.

We will first find the CEMs, neglecting the contribu-
tions of the operators ∆v1 and ∆v2. In this case, the
CEM operators are given by

where κp = ωp/M and κn = ωn/M.
Introducing the standard notation u = rRs(r) and w =

rRd(r) for the deuteron wave functions, we express the
CEM as

(12)

where PD = dr. Performing integration by parts as

we can reduce the expression for Q0 to the form

(13)

Relation (13) and expression (12) for τ0 are fully in
accord with the results presented in [2], because the
coefficients κp and κn are related to the form factors
used in the present article by the equation κp + κn =

(2  – )/4M2. Relativistic corrections to the CEM
operators were disregarded in [1–5].

For the parameters Q0 and τ0, the calculations by
equations (12) yield the following results in the case of
the Paris [16] and Bonn [17] potentials, respectively:

In the former case, the above results agree with
those obtained by Kohno [2], who also used the Paris
potential. In [5], the quadrupole moment was calcu-
lated by a formula similar to (8), and the absolute value
of the result obtained for it is greater by a factor of
about 2. It seem that this is because small distances play

4ij
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4
--- κ p κn+( )–=

× 3 S p×[ ] i x j,{ } + 3 S p×[ ] j xi,{ } + 4δijL S⋅+ +( ),

τ κ p κn+( )L S,⋅=

Q0 4zz〈 〉 3 2
5

---------- κ p κn+( )= =

× rw
u
r
--- 

  '
r

3
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------ κ p κn+( )PD,+d

0

∞

∫
τ0 τ〈 〉 3 κ p κn+( )PD,–= =

w2

0

∞∫

w2 rd

0

∞

∫ 2 rww' r,d

0

∞

∫–=

Q0
3 2

5
---------- κ p κn+( ) r2w

u
r
--- 

  ' 1

2
-------w'

r
-----– r.d

0

∞

∫=

GM
S GE

S

Q0 1.81 10 3–  fm2, τ0×– 1.46 10 3–×  fm2,–= =

Q0 1.74 10 3–  fm2, τ0×– 1.08 10 3–×  fm2.–= =
a more important role for the CEQM than for charge
quadrupole moment. For such distances, the one-pion-
exchange potential used in [5] for nucleon interaction
has insufficient accuracy. It is therefore preferable to
employ equations (12), which does not involve interac-
tion potentials.

6. RELATIVISTIC CORRECTIONS
TO THE DEUTERON CEM

Relativistic corrections to the deuteron CEM stem
from the corrections to the velocity operator that are
calculated on the basis of equation (4). In the potential
of nucleon–nucleon interaction, the operator of spin–
orbit interaction, Wso = Vso(r)L · S; the operator of qua-

dratic spin–orbit interaction, Wso2 = Vso2(r) [(s1 · L)(s2 ·

L) + (s2 · L)(s1 · L)]; and the operator of interaction
quadratic in the angular momentum, WL2 = VL2(r)L2, do
not commute with the operator r. Frequently, use is
made of the operator WLS2 = VLS2(r)(L · S)2, which can
be expressed in terms of the above operators with the
aid of the well-known relation

The aforementioned corrections to the velocity
operator are relatively small, because the operators Wso,
Wso2, and WL2 characterize interaction at small dis-
tances, which is rather weak for the deuteron (see [3]).

The calculation of the relativistic corrections to the
deuteron CEM yields

(14)

Their numerical values calculated with the wave
functions for the Paris and Bonn potentials are, respec-
tively,3) 

3)Since high accuracy of calculations is not required in this case,
the quantities Vso(r), Vso2(r), and VL2(r) were determined with the
aid of the Argonne potential [3].

1
2
---

L S⋅( )2 1
2
---L2 1

2
---L S⋅–=

+
1
4
--- s1 L⋅( ) s2 L⋅( ) s2 L⋅( ) s1 L⋅( )+[ ] .

Qcorr ωp ωn+( )=

× 2 2
5

----------Vso r( ) 9 2
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9 2
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  u
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1
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9
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------V L2 r( )+ + 

  w wr2dr,

τcorr ωp ωn+( )=

× Vso r( )u2 Vso r( ) 9
2
---Vso2 r( )– 3V L2 r( )– 

  w2+ r2 r.d

0

∞

∫

Qcorr 1 10 5–   fm2, τcorr×– 2.2 10 4–   fm2,×= =
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It follows that the deuteron CEMs found with allow-
ance for the relativistic corrections (Q = Q0 + Qcorr and
τ = τ0 + τcorr) are

for the Paris and Bonn potentials, respectively. Thus,
the above relativistic corrections are sizable only for
the quantity τ, which characterizes the contact interac-
tion of a current origin. This quantity determines the
corresponding correction to the root-mean-square
radius  of the deuteron. The smallness of the correc-
tions to the quadrupole moment stems from the cancel-
lation of the contributions from the spin–orbit interac-
tion, the quadratic spin–orbit interaction, and the inter-
action quadratic in the angular momentum.

7. CONCLUSION
Relativistic expressions have been obtained for the

operators of the CEMs of nuclei. Current electric qua-
drupole moments and corrections to root-mean-square
charge radii that are due to contact electrostatic interac-
tion of a current origin have been considered for nuclei.
The matrix elements of nuclear CEMs have also been
obtained with allowance for corrections originating
from the strong spin–orbit interaction of nucleons.
These corrections can be deduced from the spin–orbit
splitting of energy levels.

The calculation of the deuteron CEMs is of greatest
physical interest. Expressions derived for this case
without taking into account relativistic corrections
comply with the results obtained in [1, 2] within the
impulse approximation. The inclusion of relativistic
corrections to the CEMs from the spin–orbit interac-
tion, the quadratic spin–orbit interaction, and the inter-
action quadratic in the angular momentum affects
noticeably only the quantity τ.

The resulting values of the deuteron CEMs are
within one percent of the total (charge and current) val-
ues of these quantities. For other nuclei, the CEM con-

Qcorr 6 10 6–   fm2, τcorr×– 2.2 10 4–   fm2.×= =

Q 1.8 10 3–   fm2, τ×– 1.2 10 3–   fm2,×–= =

Q 1.7 10 3–   fm2, τ×– 0.9 10 3–   fm2×–= =

r
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tribution can be considerably greater [4, 5]. Construct-
ing the relativistic theory of CEMs is of paramount
importance for developing methods that make it possi-
ble to calculate the moments of nuclei within the
Foldy–Wouthuysen representation (not the basis of the
impulse approximation). In this representation, relativ-
istic corrections can be taken into account quite
straightforwardly, which is of great importance, for
example, in calculating the magnetic moments of
nuclei. It is planned to consider this problem in the
future.
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Abstract—On the basis of the continuity equation, the concept of a complex potential, and the exciton model
of nuclear reactions, an expression was derived that establishes the relation between three time characteristics
associated with different reaction stages. It is shown that an empirical systematics relating the coherence widths
to the temperature of compound nuclei is a high-temperature limit of this expression, which determines empir-
ical coefficients in terms of quantities similar to volume absorption integrals per nucleon that appear in optical-
model calculations. The possibility of estimating the energy dependence of these quantities on the basis of
experimental data on the total widths of neutron resonances, measured mean lifetimes of compound nuclei, and
data on coherence widths is discussed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known [1, 2] that the values of the coherence
width Γc that are extracted by means of an autocorrela-
tion analysis of the experimental excitation functions for
the effective cross sections for various nuclear reactions
are closely approximated by the expression

(1)

where A is the mass number of a compound nucleus
formed by the projectile particle with a mass number
Ap and the target nucleus with a mass number At, while U
is the excitation energy of the compound nucleus (both
U and Γc are given in MeV). The approximation in (1)
is in accord with experimental data not only in the exci-
tation-energy range U ≈ 17–21 MeV and for light pro-
jectile particles, where it was initially tested, but also
for higher energies and for heavy ions [3, 4] in pro-
cesses where a considerable contribution comes from
the mechanism of compound-nucleus formation.

Whereas the role of the temperature factor T ~
(U/A)1/2 was emphasized as far back as [1], the physical
meaning of the numerical coefficients in formula (1) is
less obvious. Under the assumption that the decays in
question are exponential, we have Γc = "/τc, where τc is
the mean lifetime of the compound nucleus. It therefore
seems natural to perform an analysis of relation (1)
along with a consideration of the time evolution of
compound nuclear systems. An attempt at this is made
here on the basis of a simple sketchy model.

2. DESCRIPTION OF THE MODEL

In the collision process, the wave function Ψ of a set

of particles that is governed by a Hamiltonian  satis-
fies the time-dependent Schrödinger equation, which
can be recast into the continuity equation

(2)

Γ c 14 4.69 A U⁄( )1/2–[ ] ,exp≈

Ĥ

∂ρ ∂t⁄ 2Im Ψ*ĤΨ( ) ",⁄=
1063-7788/00/6302- $20.00 © 20210
where ρ = Ψ*Ψ is the probability density.

The concept of a complex optical potential makes it
possible to reduce a many-body problem to a one-body
problem. We consider a broad wave packet in the input
channel (short pulse of particles bombarding the target

nucleus) and denote by  the optical-model Hamilto-
nian. One-particle states of the continuous spectrum
within a sphere of radius Ra will then satisfy the equa-
tion

(3)

where 

is the probability of the formation of a compound sys-
tem through an a channel, while

is the flux of the probability current density ja in the a
channel through the surface of a spherical volume va of

radius Ra for the Hamiltonian , which determines
the divergence of the probability current density as

The imaginary part Wa(r) ≡ Im  of the complex
potential takes effectively into account the coupling of
the particle in the input channel to the internal degrees
of freedom of the target nucleus. The quantity (t)

Ĥ0

dPRa
t( ) dt ΦRa0 t( )– 2Wa t( )PRa

t( ) "⁄ ,+≅⁄

PRa
t( ) ρa r t,( ) rd

0

Ra

∫
0

2π

∫
0

π
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ΦRa0 t( ) div ja r t,( ) v ad

v a

∫=

Ĥ0

div ja 2Im Ψa*Re Ĥ0Ψa( ) "⁄ .–=

Ĥ0

Wa
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entering into equation (3) is related to this imaginary
part by the equation

where the upper limit of integration, Ra, corresponds to
the “radius of absorption” of the incident beam; it is
defined is such a way that the potential Wa(r) is negligi-
bly small for r > Ra. In what follows, we assume, for the

sake of simplicity, that (t) = , where 
is a time-independent constant. This is justified only in
the case where Wa(r) = const for r < Ra or in the case
where ρa(r, t) = ρ1a(r)ρ2a(t). In a time-independent
problem, which may arise, for example, when experi-
mental conditions fix the energy of the system at some
real value E, we have the relation

(4)

which determines the cross section for compound-
nucleus formation within the optical model.

In contrast to the optical-model Hamiltonian ,

the total Hamiltonian  of the system must be Hermi-
tian and must include a term caused by the residual

interaction  between particle a and the constituent
nucleons of the target nucleus. On one hand, this resid-
ual interaction drives the evolution of the single-parti-
cle input state of the compound system to the com-
pound nucleus c, where the excitation energy is distrib-
uted between a large number of degrees of freedom; on
the other hand, it causes the decay of the compound
nucleus through open channels.

After a fairly large amount of time has elapsed since
the passage of a short pulse of projectiles, the wave
function ΨÒ in the interior region represents a superpo-
sition of stationary states of the resonance type in the
beam-energy interval ∆E [5]. We assume that this
energy averaging over a large number of resonances
will result in a time dependence similar to that in the
case of an isolated resonance. A comprehensive analy-
sis of the problem revealed [6] that this time depen-
dence is expected at least for an energy region where
the following conditions are satisfied:

Here, Γ and D are the mean resonance widths and spac-
ing, and n is the number of open channels. An analysis
of effects caused by deviations from the exponential
character of compound-nucleus decays is beyond the
scope of this study; it can be a subject of a separate pub-
lication.

On the basis of the above assumption and equation
(2), we can write the relation

(5)

Wa t( ) Wa r( )ρa r t,( ) rd ρa r t,( ) r,d

0

Ra

∫
0

2π

∫
0

π

∫⁄
0

Ra

∫
0

2π

∫
0

π

∫=

Wa W〈 〉 Ra
W〈 〉 Ra

ΦRa0 2 W〈 〉 Ra
PRa

"⁄ const t( ),= =

Ĥ0

Ĥ

H'ˆ

∆E @ Γ  @ D, but Γ  ! nD 2π⁄ .

dPc dt⁄ Φc Γ ct "⁄–( ).exp–=
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Here, Pc = dvc, where integration is performed

over the volume of the compound nucleus, Γc = "/τc is
the effective width determining the mean lifetime τc of
the compound nucleus with respect to decays through
open channels, and Φc is the time-independent part of
the probability flux Φc(t) from the volume vc (this

quantity is generated by the real Hamiltonian ). The
probability flux is given by

(6)

where summation is performed over all open decay
channels i.

At time instants preceding that at which particles
from the short pulse of the incident beam achieve the
spatial region occupied by the target nucleus, the flux in
equation (3) must be directed toward the interior of this
region. Since it is assumed that the same residual inter-
action causes the decay of the already existent com-
pound nucleus through open channels, on one hand,
and distributes each one-particle state in its interior
over a large number of compound states, on the other
hand, we will simulate this flux by the expression

(7)

Provided that the restrictions hold, equation (3) can
therefore be recast into the form

(8)

or into the form

(9)

where Γa = "/τa = –2 .

For the initial conditions (0) = 0 and

[d (t)/dt]t = 0 =  > 0, the solution to equation (9) is

(10)

This expression describes the time evolution of the
compound nuclear system formed through the channel a.

The concept that a nuclear reaction proceeds
through the formation of a relatively long-lived com-
pound nucleus also implies that the intermediate com-
pound system arising at the first stage of the reaction in
question is characterized by a small relaxation time;
that is,

(11)

ρcv c∫
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τa ! τc.
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It follows that expression (10) for  peaks at the time
instant

(12)

From (10) and (11), it follows that, for times t much
greater than tmax, the probability (t) for the system to
occur within a spatially limited region without under-
going transitions to open channels depends exponen-
tially on time, the mean lifetime being τc. Owing to this,
tmax can be identified with the time teq required for sta-
tistical equilibration in the compound nuclear system.
In the time-independent formalism, the width of the
“internal” mixing Γ↓ = "/teq of one-particle configura-

tions by the residual interaction  corresponds to the
latter time. As a result, we arrive at the relation

(13)

3. NUMERICAL CALCULATIONS

In order to estimate Γ↓, the mean widths with
respect to intranuclear transitions at a known number
n = p + h of quasiparticles (particles and holes) near
equilibrium, in which case  = (2gU)1/2, where g is the
density of single-particle levels at the Fermi surface,
can be borrowed from the exciton model [7]: 

(14)

For the density of available final states, we take the
expression

(15)

which is used, for example, in the STAPRE code [8].
For the quantity obtained by averaging the square of

the matrix element of the residual interaction over
allowed transitions, we employed the phenomenologi-
cal expression

(16)

(K is an empirical normalization factor), which is
extensively used in the calculations of precompound
processes.

From (14), we then obtain the estimate

(17)

where T = (U/a)1/2 is the thermodynamic temperature of
the compound nucleus in the Fermi gas model, a =
π2g/6 being the level-density parameter. In the Fermi
gas model, which, on average, describes well the
nuclear-level density at excitation energies U in excess
of the nucleon binding energy, we have g = A/13; for the
constant K, an analysis of experimental emission spec-
tra of various particles originating from nuclear reac-
tions yields K ≅  400 ± 50 MeV3 [7, 8]. Considering that,

PRa

tmax " Γa Γ c⁄( ) Γa Γ c–( ).⁄ln=

PRa

H'ˆ

Γ c Γa Γa Γ c–( ) Γ↓⁄–[ ] .exp=

n

Γ↓ Γn n→≅ 2π M 2〈 〉 ωf n( ).=

ωf n( ) g2U 2gU( )1/2 1–[ ] 2⁄ ,=

M 2〈 〉 K A3U( )⁄=

Γ↓ 3 1/2– π2Kg3 1 1 n⁄–( ) A3⁄[ ]T≅ ηT ,=
at sufficiently high excitation energies,  @ 1 and using
expression (17), we then obtain

(18)

Neglecting the ratio Γc/Γa, which is much less than
unity, we find that expression (13) then becomes coin-
cident with the empirical approximation (1) in func-
tional form and, in the case of Γa = 14 MeV, in absolute
value.

However, expressions (13) and (17), which relate
different widths that determine the formation and decay
of compound nuclei in collisions, are more general than
empirical dependence (1); in particular, they permit
analyzing data with allowance for the energy depen-
dence of Γa = –2 , which is implied by the above
empirical dependence.

For example,  for the imaginary part of the
optical potential can be estimated for various target
nuclei in the excitation-energy region of compound
nuclei formed by incident neutrons whose energies are
close to the neutron binding energy (U ≈ Bn), where
there are detailed data on the neutron-resonance param-
eters [9]. After corresponding averaging, this yields

(19)

where Γ are the total widths of individual resonances
falling within the energy range of averaging, and "/Γ
stands for their lifetimes. Therefore, no additional infor-
mation is required for estimating  for each

individual nucleus on the basis of relations (13)–(19).
It should be noted that such estimations are usually

performed on the basis of expression (4), which holds
in the time-independent optical model; they are imple-
mented by using the relation between the quantity
obtained by averaging, over resonances, the effective
cross section for the escape of particles from the beam
and the neutron strength functions as determined from
the ratios 〈Γ n〉/D, where Γn is the mean partial widths
with respect to resonance decay via neutron emission,
while D is the mean spacing between resonances with
a given spin–parity.

An alternative method for estimation consists in
extrapolating, to zero kinetic energy, the results that can
be obtained from an analysis of measured differential
effective cross sections for low-energy elastic scatter-
ing within the spherical optical model. The results of
the calculations reveal the highest sensitivity to the vol-
ume absorption integral per nucleon, an averaged char-
acteristic of the imaginary part of the potential,

(20)

n

η const 1.04 0.13 and±≅ ≅

Γ↓ T U A,( ) 3 U A⁄( )1/2.≅ ≅

W〈 〉 Ra

W〈 〉 Rn

Γ c Bn( ) 1 Γ⁄〈 〉 1– ,=

W Bn( )〈 〉 Rn

Jw 4π At Ap( ) 1– W r( )r2 r.d

0

∞

∫–=
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Thus, it can easily be seen that relation (13) provides an
alternative method for estimating the energy depen-
dence of the averaged contribution of the imaginary
potential to the particle–nucleus interaction. This may
be of some interest because the results presented by dif-
ferent authors on the form of the energy dependence of
Jw and on its absolute values differ widely. By way of
example, we indicate that, for neutrons with energies in
the range 0 < En ≤ 40 MeV, a determination of Jwn for
the same nuclei from experimental data [10] may lead
either to a linear increase in this quantity with energy,
or to its linear decrease, or to a nonlinear increase
toward a constant value, or to its almost complete
invariability with energies; in the limit En ≅  0, the
results show a scatter within an order of magnitude.

For several nuclear species, Jwn(En ≅  0) values
obtained from data presented in [11–16] for the param-
eters of phenomenological optical potentials are dis-
played in Table 1, along with the values of

(21)

The errors in the latter quantities—they are lso quoted
in this table—were obtained from an analysis of exper-
imental data from [9] on the averaged lifetimes τc of
neutron resonances, which was performed on the basis
of relations (13)–(19). The calculations employed the
typical values of K = 420 MeV3 and r0 = 1.25 fm for,
respectively, the constant that specifies, according to
(16), the quantity obtained by averaging the square of
the matrix element of the residual interaction over
allowed transitions and the radial parameter specifying

the radius Rn = r0  of the region where the imaginary
potential is operative.

The quoted errors include both the contribution
associated with the resonance widths and the contribu-
tion from the uncertainty in the normalization of the
square of the matrix element of the residual interaction.

The results presented in Table 1 demonstrate that,
by and large, the integral characteristics of the imagi-
nary potential that are determined by expression (21)
are in accord with those that are determined by expres-
sion (20). It should be noted that our results agree with
data of authors who quote values smaller than those of
other authors. Considering that the estimates obtained
by different authors for the absolute values of the inte-
grals Jwn(En ≅  0) and for their energy dependences differ
considerably (for example, these results for the 208Pb
nucleus show a scatter between 14 and 70 MeV fm3

[10]), we state that the method proposed here for deter-
mining the absorption integrals Jw can provide indepen-
dent estimates of reasonable accuracy.

For 77 nuclei in the mass-number range At = 27–
238, the quantities Jwn(Γ↓) as obtained from experimen-
tal data on the neutron-resonances parameters [9] by
using expressions (13)–(19) and (21) are shown in the
figure as functions of the fragmentation width Γ↓ deter-
mined by according to (17). It can be seen from the fig-

Jwn τc Bn( )[ ] 4πr0
3 W Bn( )〈 〉 Rn

3.⁄–=

At
1/3
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ure that, with increasing Γ↓, the quantity Jwn(Γ↓) exhib-
its a tendency toward saturation and can be represented,
on average, in the form

(22)

The corresponding approximated curve is also shown
in the figure, the fitted parameter values being

(23)

According to (21), this yields

(24)

Jwn Γ↓( ) Jwn ∞( ) 1 Γ↓
2 γ2⁄–( )exp–[ ] .≈

Jwn ∞( ) 56.6 1.5 MeV fm3,±=

γ 0.537 0.017 MeV.±=

Γ ∞( ) 2 W ∞( )〈 〉 R– 13.8 0.4 MeV.±= =

Table 1.  Absorption integrals per nucleon, Jwn[τc(Bn)], as
calculated from data on the mean lifetimes of neutron reso-
nances along with the corresponding Jwn(En ≅  0) values taken
from other studies, where they were obtained from a spheri-
cal-optical-model analysis of data on the energy dependence
of the differential cross sections for neutron scattering

Target AX Jwn[τc(Bn)], MeV fm3 Jwn(En ≅  0), MeV fm3

32S 71 ± 8 82 [11]
51V 51 ± 6 53 [12] 
52Cr 50 ± 5 46 [13]
56Fe 60 ± 8 46 [13]
93Nb 55 ± 7 52 [14]
115In 52 ± 7 53 [15]
208Pb 14.6 ± 1.8 13.5 [13]
209Bi 27 ± 3 31 [12]
238U 30 ± 4 43.5 [16]

3210

20

40

60

80

100
Jwa, MeV fm3

Γ↓, MeV

Absorption volume integrals per nucleon, Jwa, as calculated
on the basis of equations (13) and (21) by using experimen-
tal data from [1, 6, 9, 17–23] on the mean lifetimes of com-
pound nuclei and on coherence widths versus the averaged
width Γ↓  (14) of intranuclear transitions. Points represent
experimental data for (°) neutron resonances and ( ) nuclear
reactions induced by charged particles. The curve shows the
results of fitting these data to the form (22).
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Table 2.  Absorption integrals per nucleon, Jwn , as determined from an analysis of fluctuations of the effective cross sections
(Γc) or from the results of direct measurements of the mean delay times (τc) in reactions that are induced by various charged
particles and which proceed through the formation of compound nuclei AX at a mean excitation energy 〈U〉

AX 〈U〉 , MeV Γ↓, MeV Input data Jwn ,
MeV fm3 

AX 〈U〉 , MeV Γ↓, MeV Input data Jwn ,
MeV fm3

16O 20 2.94 Γc [1] 50 ± 5 113Sb 15 1.05 τc [6] 58 ± 5
27Al 19 2.28 Γc [17] 49 ± 5 117Sb 25.9 1.37 τc [21] 74 ± 7
28Si 21.5 2.41 Γc [18] 60 ± 8 200Pb 65 1.71 τc [22] 59 ± 4
28Si 35 3.16 Γc [19] 63 ± 9 234U 7.7 0.52 τc [23] 35 ± 3
52Cr 15 1.50 Γc [20] 49 ± 6 234U 10 0.60 τc [23] 37 ± 3
57Co 17 1.54 Γc [1] 53 ± 6 235U 8.7 0.56 τc [23] 35 ± 4
107In 14.6 1.06 τc [6] 61 ± 6 235U 9.6 0.59 τc [23] 35 ± 4
108Cd 17 1.14 Γc [1] 58 ± 7
In all probability, the scatter of the Jwn(Γ↓) for individ-
ual nuclei around the smooth curve corresponding to
(22) is due to the averaging of resonances over an insuf-
ficiently wide interval (Γ↓ ≈ 1 MeV for lighter nuclei)
and to structural features associated with magic and
near-magic nuclei.

Since relation (18) holds for Γ↓ ≥ 1 MeV, we can
conclude that the empirical systematics (1), which
relates coherence widths to the temperature of com-
pound nuclei, represents the high-temperature limit of
equation (13), which was obtained above and which
determines the corresponding empirical factors in
terms of quantities like the volume absorption integrals
per nucleon, which appear in optical-model calcula-
tions.

By way of illustration, some Jwa values for various
particles a (p, 3He, α, 16O) that bombarded various tar-
get nuclei from aluminum to thorium with the result
that compound nuclei with excitation energies from
about 8 to about 65 MeV were formed are also dis-
played in the figure. These values of Jwa, which are also
presented in Table 2, were obtained from formulas (13)
and (21) by iteratively calculating Γa with the aid of
data from [1, 6, 17–23] on coherence widths Γc or mean
lifetimes τc measured for compound nuclei by the dark-
field method or method of K vacancies. It can be seen
that these results are in good agreement with data on
neutron resonances in the region Γ↓ ≈ 0.5–1 MeV and,
in accordance with the approximation in (22), show no
systematic deviations from a constant at large Γ↓ values
up to Γ↓ ≈ 3.5 MeV.

We note that relation (13) possesses one more fea-
ture of importance. At first glance, a value that it pre-
dicts for the mean lifetime of a compound nucleus that
is characterized by an excitation energy U and a mass
number A must depend noticeably on the set of the
mass numbers Ap and At in the input channel. Neverthe-
less, both the empirical systematics (1) and all what
was said above in connection with the discussion of
data presented in the figure indicate that there is no such
regular dependence or that it is relatively weak. This
suggests that the temperature of the nascent compound
nucleus affects crucially the values of the absorption
integrals Jwa (21); at the same time, distinctions associ-
ated with angular-momentum distributions do not play
any significant role. That there is no pronounced angu-
lar-momentum dependence of the Jwa values extracted
from the measured mean lifetimes τc or from the mea-
sured coherence widths Γc is probably due to the fact
that these data are sensitive primarily to the most long-
lived components of the spin distribution, so that the
resulting Γc value appears to be much closer to the min-
imal width Γmin than to the mean width 〈Γ〉  of the
excited compound-nucleus states, which appears in the
calculations of effective cross sections.

4. CONCLUSION

On the basis of a simple sketchy model, the numer-
ical coefficients in the empirical systematics of experi-
mental data from [1, 2] on the coherence widths Γc and
mean lifetimes τc of compound nuclei have been related
to the quantity obtained by averaging the imaginary
part of the optical potential over the nuclear volume,
〈W〉R and to the mean width Γ↓ with respect to intranu-
clear transitions near the state of statistical equilibrium.

It has been shown that, for compound systems with
excitation energies above the neutron binding energy
Bn, the results obtained from an analysis of the spectra
of preequilibrium particle emission in nuclear reactions
[7, 8] are agreement, within errors (about 15%), with
the equality Γ↓ ≅  T, where T is the thermodynamic tem-
perature of the compound nucleus.

For 77 nuclei with mass numbers 28 ≤ A ≤ 239, the
lifetimes τc(Bn) averaged over allowed resonances have
been evaluated on the basis of experimental data on the
parameters of neutron resonances [9]. Within the pro-
posed model, this made it possible to calculate

 values and Jwn(Bn) values, which are pro-

portional to them [see equation (21)]. A comparison has
revealed that the latter are associated with the absorp-

W Bn( )〈 〉 Rn
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tion integrals per nucleon, which are extensively cited
in the literature and which are obtained from an optical-
model analysis of the differential cross sections for
elastic scattering. Because the accuracy of such an
analysis is rather poor, in particular, at low energies of
incident particles, the proposed model description of
data obtained in time measurements and in a correla-
tion analysis of fluctuations in the energy dependence
of the effective cross sections for various channels of
nuclear reactions can be used as an independent
method for estimating the integral characteristics of the
imaginary part of the optical potential.

The extracted Jwn(Bn) values represented as func-
tions of the width Γ↓ increase, on average, in the range
0.4 ≤ Γ↓ ≤ 1.5 MeV with increasing Γ↓, reaching satu-
ration near Γ↓ ≈ 1 MeV.

An approximation of these data by the two-parame-
ter dependence (22) yields the following saturation
value for Γ↓ ≥ 1 MeV:

–2〈W(∞)〉R = 13.8 ± 0.4 MeV.

Since this result agrees with the corresponding numer-
ical coefficient in the empirical systematics of the
coherence widths (1), we can consider this systematics
as the high-temperature limit of the more general rela-
tion (13) derived in this study. The systematics in (1) is
based on an analysis of fluctuations in the energy
dependence of the effective cross sections for nuclear
reactions induced by charged particles—in particular,
by heavy ions—and covers the range 1 ≤ Γ↓ ≤ 3 MeV.

In our consideration, we have also included rather
scanty data from direct measurements of the mean life-
times of compound nuclei by the dark-field method and
method of K vacancies.

These results, obtained for reactions induced by
protons and 3çÂ, 4He, and 16O ions, cover the range
0.5 ≤ Γ↓ ≤ 1.7 MeV, where their behavior proved simi-
lar to the behavior of data for resonance neutrons and,
within the errors, are in satisfactory agreement with
them, as well as with data obtained from a correlation
analysis and with the approximation in (22).

In summary, the proposed model of the time evolu-
tion of compound nuclear systems provides a system-
atization of a rather wide variety of experimental data
and establishes the relation between the following three
time characteristics of nuclear reactions proceeding
through the formation of a compound nucleus: the time
that determines the rate of absorption of the incident
beam of particles a at the first stage of the reaction, τa =
–"/(2 ); the time over which the internal mixing
of nucleon configurations in the compound nucleus
occurs, τ↓ = "/Γ↓; and the lifetime τc = "/Γc with
respect to emission from the compound nucleus.

Satisfactory agreement of the present model calcu-
lations with various experimental data is evidence for

W〈 〉 Ra
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correctness of physical principles underlying the
model.
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Abstract—The cluster-reduction method is used to solve numerically the differential equations for the s-wave
Yakubovsky components characterizing the nnpp system in the S = 2 spin state. Elastic deuteron–deuteron scat-
tering is analyzed for the case where nucleon–nucleon interaction is simulated by the MT I–III potentials. Effec-
tive equations describing the relative motion of clusters is derived. The scattering length and phase shifts for
low-energy deuteron–deuteron scattering are calculated. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

This article reports a continuation of the investiga-
tion of the four-nucleon nnpp system by the method of
cluster reduction of the equations for Yakubovsky com-
ponents [1]. The Yakubovsky equations have some
advantages over standard approaches to studying the
continuous spectrum of the nnpp system [2–9]. In par-
ticular, the Yakubovsky equations describe correctly
the asymptotic behavior of the wave function in two-
and three-particle scattering channels. The differential
form of these equations [10] makes it possible to
include Coulomb interaction in consideration quite
straightforwardly. Unfortunately, the differential for-
malism yields cumbersome sets of three-dimensional
integro-differential equations even in the simplest case
of the s-wave approximation. Only with the aid of
supercomputers is it possible to construct directly
numerical solutions to such sets of equations. The clus-
ter-reduction method [11] is used here to solve the dif-
ferential equations for the Yakubovsky components
describing the nnpp system. Within this method, the
solution to the original set of equations is sought in the
form of an expansion in the basis formed by the eigen-
functions of the Hamiltonians of three-nucleon sub-
systems. By constructing projections onto the conju-
gate basis, we can derive a set of equations for func-
tions describing the relative motion of the clusters. The
resulting set of equations can be solved numerically by
means of a simpler procedure that is implementable
with a conventional computer.

In the present study, we consider deuteron–deuteron
scattering in the S = 2 spin state of the nnpp system. We
perform our calculations within the s-wave approxima-
tion, simulating nucleon–nucleon interaction on the
basis of the MT I–III potential model [12] modified as
in [13]. In a similar formulation of the problem, scatter-
ing in the S = 0 state of the nnpp system was considered
in [1].
1063-7788/00/6302- $20.00 © 20216
2. BASIC RELATIONS

We consider the four-nucleon system consisting of
two neutrons and two protons. The pair interaction
potentials represent the sums of the short-range and
Coulomb components. In order to describe the system
in configuration space, we employ the relative coordi-
nates X = {xi, yi, zi}, where the subscript i = 1 and 2 cor-
responds to the 3 + 1 and 2 + 2 partitions of the system,
respectively. The relative coordinates are expressed in
terms of the particle radius vectors rk (k = 1, 2, 3, 4) as

The wave function Ψ of the system is a spinor in the
space * = *T ⊗ *S, where *S (*T) is a linear space
where we specify possible spin (isospin) states of the
system. In the isospin formalism, all particles of the
system are treated as identical objects. For the system
under consideration, the modified differential equa-
tions for the Yakubovsky components U1 and U2 are
given by

(1)

where H0 is the kinetic-energy operator; V is the poten-
tial of pair nuclear interaction; the Coulomb potential
VCoul is included in the unperturbed Hamiltonian; P+ are
the operators of cyclic permutations in the four-particle

x1 r2 r1, y1– r1 r2+( ) 2 r3,–⁄= =

z1 r1 r2 r3+ +( ) 3 r4,–⁄=

x2 r2 r1, y2– r4 r3,–= =

z2 r1 r2+( ) 2 r3 r4+( ) 2.⁄–⁄=

H0 V E– VCoul+ +( )U1 V P4
+ P4

–+( )U1+

=  V P1
+ P+–( )U1 P1

+ P4
++( )U2+[ ] ,–

H0 V E– VCoul+ +( )U2 V P+P+( )U2+

=  V P+ P1
+–( )P+U1[ ] ,–
000 MAIK “Nauka/Interperiodica”
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system; and  are the operators of cyclic permuta-
tions in the possible three-particle systems, the sub-
script k labeling the particle not involved in a specific
permutation. The Yakubovsky components U1 and U2

are spinors from * and correspond to the 3 + 1 and 2 +
2 partitions of the system, respectively. The coordinate
parts of the components Ui depend on the relative coor-
dinates {xi, yi, zi}, i = 1, 2.

2.1. Spin–Isospin Analysis

Since the MT I–III potential does not involve spin–
isospin and tensor components, the total spin and the
total orbital angular momentum of the system are con-
served. Bases in the subspaces *S (*T) are associated
with two possible partitions that determine a scheme
for the addition of the angular momenta of the sub-
systems into the total angular momentum. The basis
elements in the subspace *S are given by

for two schemes of addition of the angular momenta.
The basis functions in the subspace *T are constructed
in a similar way and are denoted by |η(k)〉 . The basis ele-
ments of the space * then have the form

(2)

The corresponding sets of the quantum numbers e(k) are
given by

The components of the spinor Uk can be expanded in
bases (2) as

(3)

A conventional procedure for constructing projections
onto the basis elements leads to the set of equations for
coordinate functions. Since there is no interaction in the
singlet–isosinglet and triplet–isotriplet states of the
nucleon pair, the elements of the spin–isospin basis that
correspond to these states are excluded from expansion
(3). Thereafter, the spin–isospin bases include only two

elements , where k takes the values of 1 or 2 and
where the superscript i, also taking the values of 1 or 2,
labels basis elements that correspond to the different
schemes of addition of the particle spins and isospins.
The elements of the spin–isospin basis and the corre-
sponding states of the nnpp system are listed in Tables 1
and 2. Further, we obtain representations for the parti-
cle-permutation operators from equations (1) in terms

Pk
±

χ 1( )| 〉 1 2 1 2⁄,⁄( )s12 1 2⁄,( )s123( )S Sz,| 〉 ,=

χ 2( )| 〉 1 2⁄ 1 2⁄,( )s12 1 2⁄ 1 2⁄,( )s34( )S Sz,| 〉=

e k( )| 〉 χ k( )| 〉 η k( )| 〉 .=

e 1( ) s12 s123 S Sz, , ,( ) t12 t123 T Tz, , ,( ),=

e 2( ) s12 s34 S Sz, , ,( ) t12 t34 T Tz, , ,( ).=

Uk X( ) 8e
k xk yk zk, ,( ) e k( )| 〉 .

e

∑=

ek
i( )

of basis (2). Here, we display only the final results of
the calculations. The nuclear interaction depends only
on the total spin of a nucleon pair; therefore, the opera-
tor V has the diagonal form

where Vt is the triplet potential component. In the basis
in the question, the matrices of the particle-permutation
operators can be represented as

The Coulomb potential is given by

Here,  is the operator of the projection of the isospin
of the ith particle, while Vji(|xij |) = n/|xji |, where i, j = 1,
2, 3, 4 and i > j; xji = rj – ri; and n = e2m/"2, m being the
nucleon mass. The matrices of the Coulomb interaction

V diag V t V t,{ } ,=

1 P4
± 1 1 2⁄– 0

0 1 2⁄– 
 
 

,=

2 P+P+ 2 1 0

0 0 
 
 

,=

1 P1
+ 1 1 12⁄– 0

0 1 2⁄ 
 
 

,=

1 P+ 1 1 P1
+ 1 ,–=

1 P4
+ 2 1 P4

+ 1 ,=

1 P1
+ 2 1 P1

+ 1 .=

VCoul Vij xij( )
1 2τ i

z+( ) 1 2τ j
z+( )

4
--------------------------------------------.

i j>
∑=

τ i
z

Table 1.  Components of the spin–isospin basis that are as-
sociated with the 3 + 1 partition and corresponding spin–
isospin states of the system

Basis components S12 T12 S123 T123 S T

1 0 3/2 1/2 2 0

1 0 3/2 1/2 2 1

e1
1( )

e2
1( )

Table 2.  Components of the spin–isospin basis that are as-
sociated with the 2 + 2 partition and corresponding spin–
isospin states of the system

Basis components S12 T12 S34 T34 S T

1 0 1 0 2 0

1 0 1 1 2 1

e1
2( )

e2
2( )
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between the spin–isospin basis elements (2) are gi-
ven by

where k = 1 or 2 and

2.2. s-Wave Approximation

A further analysis will be performed in the s-wave
approximation; that is, we set all orbital angular
momenta of the system and of each subsystem to zero.
For the S = 2 spin state, the set of equations (1) reduces

to a set of three equations for the components , i =

1, 2, and . In diagonalizing the matrix of the Cou-
lomb interaction in equations (1) for the components
corresponding to 3 + 1 partition, it is convenient to go
over to a new spin–isospin basis of the 3 + 1 type via
the orthogonal transformation

where the matrix of the orthogonal transformation A
has the form

The matrix of the Coulomb interaction transforms as

where

Eventually, the set of equations for the coordinate parts
of s-wave Yakubovsky components can be written as

k VCoul k W1
n

x23
--------- n

x13
---------+ 

  W2
n

x14
--------- n

x24
---------+ 

  ,+=

W1
1 4⁄ 1 4⁄
1 4⁄ 1 4⁄ 

 
 

,=

W2
1 4⁄ 1 4⁄–

1 4⁄– 1 4⁄ 
 
 

.=

8i
1

81
2

ei
1( )' Aije j

1( ), i
j 1=

2

∑ 1 2,,= =

A
1

2
------- 1 1

1– 1 
 
 

.=

1 VCoul 1〈 〉 w11 0

0 w11 
 
 

,=

w11
1
2
--- n

x12
--------- n

x23
---------+ 

  , w11
1
2
--- n

x14
--------- n

x24
---------+ 

  .= =

h0
1 V1 x( ) ε–+( )81

x y z, ,( ) V1 x( )+

× v
xy

x1y1
----------B18

1
x1 y1 z1, ,( )d

1–

1

∫ 0181
x y z, ,( )+
(4)

Here, x, y, and z are the absolute values of the Jacobi
coordinates; Vk(x) = diag{v t(x), v t(x)}, where v t(x) =

(m/"2)Vt(x), ε = (m/"2)E, 0k = VCoul|k〉du, k = 1

or 2; and B1 = 〈1|  + |1〉 , D = 〈1|  – P+|1〉 , B2 =

〈2|P+P+|2〉 , C1 = 〈1|  + |2〉 , and C2 = 〈2|(P+ –

)P+|1〉  are numerical matrices representing the per-
mutation operators from equations (1) in the spin–isos-
pin bases (2). Explicitly, these matrices are given by

For the operators  appearing in equations (4), we
have

For xi, yi, and zi, i = 1, 2, 3, 4, in the integral terms of
equations (4), the transformation of the relative coordi-
nates by the particle-permutation operators appearing
in (1) yields

=  
1
2
---V1 x( ) u v

xyz
x2y2z2
---------------D81

x2 y2 z2, ,( )




d

1–

1

∫d

1–

1

∫–

+
xyz

x3y3z3
---------------C18

2
x3 y3 z3, ,( )





,

h0
2 V2 x( ) ε–+( )82

x y z, ,( )

+ V2B28
2

x y z, ,( ) 0282
x y z, ,( )+

=  
1
2
---V2 x( ) v

xyz
x4y4z4
---------------C28

1
x4 y4 z4, ,( ).d

1–

1

∫–

1
2
--- k〈 |

1–

1∫
P4

+ P1
– P1

+

P1
+ P4

+

P1
+

B1
1 2⁄– 0

0 1 2⁄– 
 
 

,=

D 0 1 2⁄
1 2⁄ 0 

 
 

,=

C1
1 2⁄–

1 2⁄ 
 
 

,=

B2 1, C2 1 2⁄ 1 2⁄–,( ).= =

h0
k

h0
1 ∂x

2 3
4
---∂y

2 2
3
---∂z

2+ + 
  ,–=

h0
2 ∂x

2 ∂y
2 1

2
---∂z

2+ + 
  .–=

x1
x2

4
----- y2 xyv–+

1/2

,=
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The equations obtained above must be supplemented
with the boundary conditions corresponding to deu-
teron–deuteron scattering at the energies below the
threshold for three-cluster disintegration of the system.
The corresponding boundary-value problem is solved
by the cluster-reduction method [11]. In doing this, we
expand the sought solution to the original equations in
the bases formed by the eigenfunctions of the Faddeev
operator for the three-body subsystems with zero
boundary conditions at the origin and at the boundary
of the rectangular region specified by the parameters Rx
and Ry , which determine the dimensions of the asymp-
totic region in the coordinates x and y, respectively. A
detailed description of the cluster-reduction method is
given elsewhere [11].

3. EFFECTIVE EQUATIONS
By constructing projections onto the bases that are

generated by the Hamiltonians of the subsystems, we
find that the Yakubovsky components satisfy the
reduced equations

y1
3x
4

------ 
 

2 y2

4
----

3
4
---xyv+ +

1/2

,=

x2 x1, x3 x1, x4 y,= = =

y2

y1

3
---- 

 
2

z2 2
3
---y1zu+ +

1/2

,=

z2

8y1

9
-------- 

 
2 z2

9
----

16
27
------y1zu–+

1/2

,=

y3

2y1

3
-------- 

 
2

z2 4
3
---y1zu+ +

1/2

,=

z3

2y1

3
-------- 

 
2 z2

4
----

2
3
---y1zu–+

1/2

,=

y4
x
2
--- 

 
2

z2 xzv–+
1/2

, z4
2
3
--- x2 z2 2xzv+ +[ ]1/2

.==

∂2

∂z2
------- Ei

1( )+ 
  Fi

1( ) z( ) 3 x yφ̃i
1( )

x y,( )v t x( )d

0

Ry

∫d

0

Rx

∫
j

∑–=

× u v
xyz

x2y2z2
---------------φj

2( ) x2 y2,( )F j
2( ) z2( )





d

1–

1

∫d

1–

1

∫

+
xyz

x3y3z3
---------------φj

3( ) x3 y3,( )F j
3( ) z3( )





,

∂2

∂z2
------- Ei

2( )+ 
  Fi

2( ) z( ) 12 x yφ̃i
2( )

x y,( )d

0

Ry

∫d

0

Rx

∫
j

∑–

× v 1
Coul x y z, ,( )φj

2( ) x y,( )F j
2( ) z( )
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Here,

where ed is the deuteron binding energy;

=  3 x yφ̃i
2( )

x y,( )v t x( )d

0

Ry

∫d

0

Rx

∫
j

∑–

× u v
xyz

x2y2z2
---------------φj

1( ) x2 y2,( )F j
1( ) z2( )





d

1–

1

∫d

1–

1

∫

+
xyz

x3y3z3
---------------φj

3( ) x3 y3,( )F j
3( ) z3( )





,

∂2

∂z2
------- Ei

3( )+ 
  Fi

3( ) z( ) 16 x yφ̃i
3( )

x y,( )d

0

Ry

∫d

0

Rx

∫
j

∑–

× v 2
Coul x y z, ,( )φj

3( ) x y,( )F j
3( ) z( )

=  8 u v φ̃i
3( )

x y,( )v t x( )d

1–

1

∫d

1–

1

∫
j

∑

× u
xyz

x4y4z4
--------------- φj

1( ) x4 y4,( )F j
1( ) z4( ) φj

2( ) x4 y4,( )F j
2( ) z4( )+{ } .d

1–

1

∫

Ei
k( ) 3

2
--- p2 2ed ei

k( )–( )+[ ] , k 1 2,,= =

Ei
3( ) p2 2ed ei

3( )–( ),+=

v 1
Coul n

1
z
--- for z

x
2
--- y

3
---+>

1
xy
----- 2

3
---1

z
--- z2 3

4
---x

1
2
---y– 

 
2

– 
  2

3
4
---x

1
2
---y z–+ 

 + 
 

for
1
2
---x

1
3
---y– z

1
2
---x

1
3
---y+< <

2
x
--- for x

2
3
---y, z

1
2
---x

1
3
---y–<>

3
y
--- for x

2
3
---y, z

1
2
---x

1
3
---y– ,<<

=

v 2
Coul n

1
z
--- for z

x y+
2

------------>

1
xy
----- 1

z
--- x y–

2
----------- 

 
2

x y z–+ + 
 – 

 

for x y–
2

----------- z
x y+

2
------------< <

2
x
--- for x y, z x y–

2
-----------<>

2
y
--- for x y, z x y–

2
----------- .<<

=
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The asymptotic behavior of the functions (z), k = 1,
2, 3 and i = 1, 2, …, for z  ∞ is given by

(5)

where F0(η, pz) and G0(η, pz) are the regular and irreg-
ular Coulomb functions, respectively, and η = n/p. The
amplitude a(p) is related to the phase shift 2S + 1δ (S = 2)
for dd scattering by the equation

The scattering length 5Add is defined as the limit of the

function –  when the energy tends to zero:

(6)

At p = 0, the asymptotic form of the function (z) for
z  ∞ is

(7)

where F( ) = I1(2 )/ , K( ) = 2 K1(2 ), and
 = 2nz, I1 and K1 being modified Bessel functions of

the first order. The basis functions (x, y) are the
solutions to the boundary-value problems

(8)

Fi
k( )

Fi
k( ) z( ) 0, k∼ 1 2, i, 1 2 …,, ,= =

F1
3( ) z( ) F0 η pz,( )∼ a p( )G0 η pz,( ),+

Fi
3( ) z( ) 0, i∼ 2 3 …,, ,=

a p( ) δ5( ).tan=

δ5( )tan

pC0
2 η( )

------------------

A5
dd

δ5( )tan

pC0
2 η( )

------------------
p 0→
lim ,–=

C0
2 η( ) 2πη

2πη( )exp 1–
---------------------------------.=

F1
3( )

F1
3( ) z( ) zF z̃( ) A5

ddK z̃( ),+∼

z̃ z̃ z̃ z̃ z̃ z̃
z̃

φi
k( )

h0xy
1( ) v t x( ) ei

1( )–+( )φi
1( ) x y,( ) v 0

Coul x y,( )φi
1( ) x y,( )+

=  
1
2
---v t x( ) u

xy
x1y1
----------φi

1( ) x y,( ),d

1–

1

∫

φi
1( ) x 0,( ) φi

1( ) 0 y,( )=

=  φi
1( ) Rx y,( ) φi

1( ) x Ry,( )= 0,=

h0xy
1( ) v t x( ) ei

2( )–+( )φi
2( ) x y,( )

=  
1
2
---v t x( ) u

xy
x1y1
----------φi

2( ) x y,( ),d

1–

1

∫

φi
2( ) x 0,( ) φi

2( ) 0 y,( )=

=  φi
2( ) Rx y,( ) φi

2( ) x Ry,( ) 0,= =

h0xy
2( ) v t x( ) ei

3( )–+( )φi
3( ) x y,( ) v t x( )φi

3( ) y x,( ),–=
where,

The functions (x, y) are the solutions to the corre-
sponding conjugate equations with boundary condi-

tions similar to (8) [14, 15]. The functions (x, y) and

(x, y) are normalized by the condition

The expansion of solutions to equations (4) in the bases
determined above has the form

(9)

4. RESULTS OF THE CALCULATIONS

The effective equations derived in the preceding

section for the functions (z) describing relative
motion were solved numerically by using a finite-dif-
ference approximation on an equidistant grid in the rel-
ative coordinate z. The basis functions required for this
were obtained by numerically solving equations (8).
The functions were determined within the rectangular
region of dimensions Rx = 20 fm and Ry = 17 fm. We
denote by Rz the radius in z at which the asymptotic
boundary conditions (5) and (7) are imposed and by Nz

the number of nodes in this coordinate. In our calcula-
tions, we set Rz = 20 fm and Nz = 25. The self-consis-
tency of the calculation was tested by varying the
parameters involved in this calculation. The error in
numerically solving equations (4) was determined pre-
dominantly by the error in calculating the basis func-

tions. The requirement that the functions  and 
be biorthogonal was used as a criterion of accuracy of

φi
3( ) x 0,( ) φi

3( ) 0 y,( )=

=  φi
3( ) Rx y,( ) φi
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our calculations. The basis functions satisfy the esti-
mate

We calculated the deuteron–deuteron scattering length
and the corresponding low-energy s-wave phase shifts.
According to (5), the scattering length 5Add can either
be calculated as the limit in (6) or be determined
directly by using the asymptotic representation (7) at
zero energy. Within the errors of the calculations, the
two methods yield the same value of 5Add = 7.5 fm. For
comparison, we note that our value of the scattering
length 5Add is somewhat less than the value obtained in
[1] for the real part of the singlet deuteron–deuteron
scattering length [Re(1Add) = 10.2 fm]. The number N of
the basis functions that must be taken into account in
the expansion in (9) to ensure the convergence of the
results is an important parameter. Figure 1 illustrates
the convergence of the calculated deuteron–deuteron
scattering length 5Add for various N values. As can be
seen from Fig. 1, N does not exceed the value of Nmax =
15. The closed channel that involves rearrangement and
which is described by the 3 + 1 components affects con-
siderably the solution to set of equations (4). The scat-
tering length calculated without allowing for the 3 + 1
components in equations (4) is small in magnitude and
negative (–0.1 fm). The solid curve in Fig. 2 represents
the calculated s-wave phase shift 5δ as a function of the
momentum p of the relative motion of the scattered
deuterons. The points in Fig. 2 correspond to the results
obtained in [8, 16], on the basis of an R-matrix analysis
of experimental data. We note that calculations within
the resonating-group method were also performed in
[8] and the result proved to be in agreement with those

φ̃i
k φj

k〈 | 〉 δij– 5 10 4– , k×≤ 1 2.,=
i j≤
limmax

1612840
4

6

8

10

12

5Add, fm

N

Fig. 1. Deuteron–deuteron scattering length 5Add versus the
number N of terms retained in the expansion in (9).
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of the R-matrix analysis. The fact that, at energies in
excess of 0.5 MeV, the value that we obtained for the
s-wave phase shift differs from the results presented in
[8, 16] can be explained by the presence of the low-
lying d-wave 2+ resonance state in the system [8]. The
effect of this resonance is disregarded in the s-wave
model used here. At low energies, where the contribu-
tion of higher partial waves is small, our results are in
good agreement with those obtained from the R-matrix
analysis [16] and from the calculation within the reso-
nating-group method [8].
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Abstract—The cluster-reduction method is used to solve the differential Faddeev equations for S = 1/2, T = 0
and S = 3/2, T = 0 spin–isospin states of the Λnp system in the s-wave approximation. The NN interaction is
simulated on the basis of the MT I–III potential model, and the ΛN potential is set to VΛN = VNN/2. This simple

option makes it possible to reproduce faithfully the binding energy of the hypertriton . The doublet and qua-
druplet Λd scattering lengths and the low-energy phase shifts are calculated. It is shown that the effective-range
approximation is applicable to the cases of doublet and quadruplet scattering. © 2000 MAIK “Nauka/Interpe-
riodica”.
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1. INTRODUCTION

For a long time, Faddeev equations [1, 2] have been
used successfully to explore systems consisting of three
identical particles—in particular, three-nucleon sys-
tems (3H, 3He) [3–5]. Of great interest to nuclear phys-
ics are, however, three-body systems involving two
identical particles and a particle different from them.
The ΛNN system, which has a bound state (the hyper-

triton ), belongs to this class. In the case where the
system under consideration involves nonidentical parti-
cles, the set of relevant equations includes a greater
number of coupled Faddeev equations, so that the prob-
lem of constructing numerical solutions for such sys-
tems is more complicated. Only in recent years have
attempts therefore been made to analyze the ΛNN sys-
tem on the basis of the Faddeev equations with realistic
NN and YN potentials [6–8]. Unfortunately, only the
bound state was considered in [6, 7], and doublet Λ-
hyperon scattering on a deuteron was explored in [8]
only in the zero-energy limit. The doublet scattering
length for the Λnp system was calculated in [9], where
the NN and ΛN interactions were simulated by model
separable potentials and the procedure used was based
on integral equations for the relevant amplitudes.

In the present study, the Λnp system is treated on the
basis of the Faddeev equations in configuration space.
A numerical solution to these equations is constructed
by the cluster-reduction method. In [10–13], the clus-
ter-reduction method was used to study three- and four-
nucleon systems. The s-wave NN interaction was simu-
lated by the MT I–III potential [14] modified as in [15].
The choice of potential model for the ΛN interaction
requires some comments. The effect of variations in the
parameters of the ΛN potential on the calculated bind-
ing energy of the Λnp system was analyzed in [8],
where it was found that the binding energy of the sys-

H3
Λ

1063-7788/00/6302- $20.00 © 20223
tem is tightly related to the value of the singlet ΛN scat-
tering length. Provided that this scattering length is
fixed, variations in the potential parameters affect only

slightly the calculated binding energy of . Taking
this into consideration, we employ here the model ΛN
potential VΛN = VNN/2 because, for the singlet ΛN scat-
tering length, it leads to a value that is close to that
required for correctly reproducing the binding energy
of the Λnp system.

This article is organized as follows. In Section 2, we
formulate the problem and present the differential Fad-
deev equation for two s-wave spin–isospin states, S =
1/2, T = 0 and S = 3/2, T = 0. The cluster-reduction
method for solving equations from Section 2 is briefly
described in Section 3. In Section 4, we summarize the
results of the calculations for the hypertriton binding
energy and for the parameters of low-energy Λd scat-
tering. The wave function constructed in our calcula-

tions for the  nucleus is used to evaluate the root-
mean-square radius and to determine the region where
the hyperon is localized in the nucleus with the highest
probability. The resulting hyperon-distribution density
and squared modulus of the wave function of the sys-
tem are plotted in the figures. For the doublet (S = 1/2)
and quadruplet (S = 3/2) spin states, the scattering
lengths and phase shifts are calculated at energies
below the deuteron-breakup threshold. We present
curves for the phase shifts δ(p) and for the function
pcot(δ(p)). The graphs for the calculated parameters of
low-energy ΛN scattering (singlet and triplet scattering
lengths and effective ranges) are presented to illustrate
the applicability of the ΛN potential used here.

H3
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H3
Λ
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2. DIFFERENTIAL FADDEEV EQUATIONS
IN THE s-WAVE APPROXIMATION

The differential Faddeev equations for the three-
body system involving two identical particles (for the
sake of definiteness, they are assigned the numbers of 1
and 2) have the form

(1)

where the components U and W of the total wave func-
tion Ψ describe the pairs of particles {12} and {13},
respectively, the corresponding kinetic-energy opera-

tors being  and ; Pik stands for the operator of
permutation in a pair of particles {ik}; and Vik is the
interaction potential within the pair of particles {ik}.
Each of the above component is a function of the corre-
sponding relative coordinates, which are expressed in
terms of the particle radius vectors rk, k = 1, 2, 3. The
component U depends on the relative coordinates

(2)

while the component W depends on

(3)

where m is the mass of each of the particles 1 and 2,
while m3 is the mass of particle 3. The total wave func-
tion of the system can be represented as

Ψ = U + (I – P12)W.

It should be noted here that, in studying the Λnp sys-
tem on the basis of equations (1), we do not consider
Λ–Σ conversion. The s-wave NN interaction is repre-
sented here by the MT I–III potential [14] modified as
in [15], and the ΛN potential is taken in the form VΛN =
VNN/2. Since the NN potential does not involve spin–
orbit and tensor interactions, the total spin and the total
orbital angular momentum of the system are conserved.
Here, we consider S = 1/2, T = 0 and S = 3/2, T = 0
spin–isospin states of the system. The bound state of
the Λnp system corresponds to the quantum number
values of S = 1/2, T = 0. In this case, the Faddeev equa-
tions for the s-wave states form a set of three equations
for the coordinate components of the spinors U and W:

H0
u V12 E–+( )U V12 W P12W–( ),–=

H0
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(4)

In the case of S = 3/2, T = 0, we have a set of two equa-
tions:

(5)

Here,

and

are the s-wave projections of the kinetic-energy opera-

tors  and , respectively; x = |x| and y = |y|; m and
m3 are, respectively, the nucleon and Λ-hyperon

masses; and ( ) and ( ) are the singlet
(triplet) components of the NN and ΛN potentials,
respectively. The coordinates x, y, x1, y1, x2, and y2 are
related by the transformations
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where a =  ≈ 0.728, b =  ≈ 0.543, and

c =  ≈ 0.456. The sets of equations (4) and (5)

must be supplemented with the asymptotic boundary
conditions corresponding to the bound state and to the
Λd scattering at energies below the deuteron-breakup
threshold, respectively. For the bound state, these are
zero boundary conditions for x, y  0 and for x, y 
∞. The asymptotic boundary conditions for scattering
are given by

(6)

where φ(x) is the deuteron wave function; the function
χp(y) = sin(py)/p describes the asymptotically free
motion of the deuteron and the hyperon; and

p2 = E – εd, εd being the deuteron binding

energy. The scattering length is calculated as the limit
of the function a(p) at zero energy. The phase shift
2S + 1δ0 is related to the function a(p) by the equation

3. SOLVING EQUATIONS (4) AND (5)

The set of Faddeev equations (4) and (5) will be
solved by the cluster-reduction method. This method,
which was proposed in [10–13] and which was used
previously to calculate the bound states and low-energy
scattering in three- and four-nucleon systems, relies on
expansions of solutions to the original equations in the
bases formed by the eigenfunctions of the Hamilto-
nians of the possible two-body subsystems. That such
expansions can be constructed follows from the asymp-
totic boundary conditions corresponding to two-cluster
scattering at energies below the threshold for the decay
of a bound cluster [2]. The procedure for constructing
projections leads to a set of equations for the functions
that describe the relative motion of clusters. Concur-
rently, the dimensionality of the equations to be solved
is reduced. For the problem being considered, this
means that the original two-dimensional equations go
over to a set of one-dimensional equations. We seek

x1 bx( )2 y2 2bxyv–+( )1/2
,=

y1 ax( )2 1
4
---y2 axyv++ 

 
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m
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W 0 0,( )T , y       ∞,∼

1
4
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--------------------

δ2S 1+
0( )tan

p
---------------------------- a p( ).–=

solutions to equations (4) and (5) in the form of the
expansions

(7)

where the superscript a specifies the spin–isospin vari-
ables of the system. The functions (x) and (x), l =
1, …, Nl, are sought, in the class functions satisfying

zero boundary conditions (0) = (Rx) = 0 and (0) =

(Rx) = 0, as the solutions to the eigenvalue problems
for the Hamiltonians of the subsystems,

(8)

and form orthonormalized sets of functions. The proce-
dure for constructing projections reduces the sets of
two-dimensional integro-differential equations (4) and
(5) to sets of one-dimensional equations for the func-
tions (y) and (y) describing the relative motion of
the clusters. By taking the projection of (6), we find
that, for y  ∞, the functions (y) and (y) satisfy
the asymptotic boundary conditions

4. RESULTS OF THE CALCULATIONS

The set of differential equations for the functions
(y) and (y) describing the relative motion of the

clusters was solved numerically by using a finite-differ-
ence approximation on an equidistant grid. The cutoff
radius Ry specifying the asymptotic region in the vari-
able y and the number of nodes on the grid, Ny, were the
grid parameters. The basis functions (8) were calcu-
lated at Rx = Ry. At a relative error set to 0.5%, the con-
vergence of the results of the calculations was achieved
at the parameter values of Rx = Ry = 40 fm and Ny = 70.
The number Nl of terms that must be retained in the
expansions in (7) is a factor that has the strongest
impact on the efficiency of the method used here. It has
been found that, at a relative-error level of 0.5%, the
results of the calculations for the scattering lengths,
phase shifts, and binding energies are stabilized at Nl =
16 both for doublet (S = 1/2) and for quadruplet (S =
3/2) spin states of the system. For the sake of compari-
son, we note that, for the three-nucleon system, the val-

U x y a, ,( ) φl
a x( ) f l

a y( ),
l 0=

Nl

∑=

W x y a, ,( ) ψl
a x( )gl

a y( ),
l 0=

Nl

∑=

φl
a ψl

a

φl
a φl

a ψl
a

ψl
a

∂x
2 v a x( )+–( )φl

a x( ) εl
a u, φl

a x( ),=

m m3+
2m3

-----------------– ∂x
2 v a x( )+ 

  ψl
a x( ) εa w, ψl

a x( ),=

f l
a gl

a

f l
a gl

a

f l
a y( ) δl0 χ p y( ) a p( ) py( )cos–[ ] ,∼

gl
a y( ) 0.∼

f l
a gl

a



226 FILIKHIN, YAKOVLEV
Table 1.  Hypertriton binding energy  and doublet and quadruplet scattering lengths 2AΛd and  4AΛd , respectively

References NN potential ΛN potential , MeV  2AΛd , fm  4AΛd , fm

This study MT I–III –2.37 15.3 4.9

[7] Bonn Nijmegen –2.37 – –

[8] G3 E1r –2.37 15.7 –

GS1 Y5rb –2.374 15.3 –

[9] –2.439 13.29 –

E H
3
Λ( )

E H
3
Λ( )
ues of Nl from [11] were 15 and 5 for the corresponding
spin states.

The calculated values of the hypertriton binding
energy are displayed in Table 1, along with the calcu-
lated values of the Λd scattering lengths 2AΛd and 4AΛd

in the doublet and quadruplet spin states, respectively.

The experimental value of the  binding energy is
−2.35 ± 0.05 MeV [16]. Thus, our result is seen to be in
good agreement both with the results obtained in [7, 8]
and with the above experimental value.

Figure 1 shows the hyperon-density distribution
ρΛ(r) in the nucleus, the normalization condition being

r2ρΛ(r)dr = 1. For the sake of comparison, the

nucleon density in the triton nucleus 3H as calculated in
a similar way with the MT I–III NN potential is also
shown in Fig. 1. For the root-mean-square radius of the
hypertriton, we obtained the value of 〈r2〉1/2 = 5.69 fm.

The most probable configuration of the particles of
the system being considered is determined by the posi-
tion of a local maximum of the squared modulus of the
wave function of the system, |Ψ(x, y, v)|2. The quantity
|Ψ(x, y, v)|2 peaks at the point specified by the values of
x = 0.86 fm, y = 0.61 fm, and v = 0. Figures 2 and 3
illustrate the most probable position of the Λ hyperon

H3
Λ

0

∞∫

6420
r, fm

0.2

0.4

0.6
ρ(r), fm–3

3H

3
ΛH

Fig. 1. Λ-particle-distribution density ρΛ(r) (solid curve) in

the hypertriton nucleus  and nucleon-distribution den-

sity ρN(r) (dashed curve) in the triton nucleus 3H.

H
3
Λ

in the nucleus. Figure 2 shows the squared modulus
|Ψ(x, y, v)|2 of the wave function of the Λnp system at
the fixed value of x = 0.86 fm. Along the axes, we plot-

ted the projections yv and y  of the vector y
directed from the center of mass of the nucleon pair to
the hyperon rather than the variables y and v. Figure 3
displays the function |Ψ(x, y, v = 0)|2. From Figs. 2 and
3, we can see that, according to the direct determination
of the point at which the function |Ψ(x, y, v)|2 peaks, the
most probable position of the hyperon is on the straight
line that passes through the center of mass of the np pair
and which is orthogonal to the relative vector x.

The total wave function Ψ(x, y, v) of the  hyper-
nucleus as obtained in our calculation was used to esti-
mate the degree of deuteron clustering in the bound
system Λnp by considering the parameter

where Ψd is the wave function of the system as calcu-
lated with the component U(x, y) represented as U(x, y) =
φd(x)f1(y); this corresponds to taking into account only
the first term in the expansion in (7). The parameter Pd

measures the degree of deuteron clustering in the 
nucleus. We obtained the value of Pd = 0.988, which
indicates that the clustering of the bound state of the
Λnp system is considerable. An evaluation of this
parameter in [7] yielded Pd = 0.987.

In addition to the Λd scattering lengths, we have
also calculated the phase shifts at energies of relative
motion that are below the deuteron-breakup threshold.
Figure 4 shows the doublet and quadruplet phase shifts
(2δ0 and 4δ0, respectively) as functions of energy. The
results of our study indicate that to a high precision, the

function p  can be represented in the form of
the effective-range expansion

where the parameter values of 2r = 3.78 fm and 4r =

2.45 fm. Figure 5 shows the functions p  for

1 v 2–

H3
Λ

Pd

Ψd Ψ,〈 〉
Ψ Ψ,〈 〉

--------------------,=

H3
Λ

δ2S 1+( )cot

p δ2S 1+
0( )cot 1

A2S 1+
Λd

------------------
r2S 1+

2
------------ p2,+–=

δ2S 1+
0( )cot
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Fig. 2. Squared modulus |Ψ(x, y, v)|2 of the wave function of the Λnp system. The distance between nucleons is fixed at the value

of x = 0.26 fm; the projections yv and  are plotted along the axes.y 1 v
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S = 1/2 and S = 3/2. In order to compare the ΛN poten-
tial used in this study with well-known potentials, we
have calculated the singlet and triplet ΛN scattering
lengths and the effective ranges. The results of the cal-
culations are presented in Table 2.

5. CONCLUSION

By using model NN and ΛN potentials, we solved
numerically the differential Faddeev equations for the
Λnp system in the s-wave approximation. The resulting

value of the binding energy of the  hypernucleus is
in good agreement with the values obtained in [7, 8],
where the Faddeev equations were solved with realistic
potentials (moreover, Λ–Σ conversion was taken into
account in [7]). A detailed comparison of the Λ-
hyperon-distribution densities in the hypertriton
nucleus indicates that our results for the wave function
are consistent with those from [7].

The  binding energy was calculated in [8] by
using various hyperon–nucleon potentials. From an
analysis of the results obtained there, it was deduced in
[8] that an accurate determination of the singlet ΛN
scattering length is necessary for correctly reproducing
the binding energy of the hypertriton for a given ΛN
potential. Our calculations support this conclusion.

The low-energy parameters of Λ-hyperon scattering
on a deuteron in the doublet and quadruplet spin states
have been calculated here. The results for doublet Λd
scattering differ considerably from the results for cor-
responding Nd scattering. In particular, a conventional
effective-range expansion proves to be valid for doublet
Λd scattering at low energies.

H3
Λ

H3
Λ

Table 2.  Parameters of low-energy ΛN scattering that are
calculated by using various ΛN potentials

References as, fm rs, fm at, fm rt, fm

This study –1.90 4.8 –6.85 2.9

Nijmegen [7] –2.45 – –1.51 –

[9] –1.80 2.8 –1.60 3.3

E1r [8] –1.86 3.68 –1.55 3.85

Y5rb [8] –2.27 3.13 –1.05 3.87
We are going to apply the cluster-reduction method
to the differential equations for Yakubovsky compo-
nents describing the four-body ΛNNN system. For such
equations, we expect an even more considerable reduc-
tion of computational difficulties within the cluster-
reduction method.
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Abstract—We show that cross sections for nuclear fragmentation and Coulomb dissociation depend essentially
on the correlation between halo neutrons, and thus the experimental data for the given processes may serve as
a source of information on this correlation. The recently obtained data on the Coulomb dissociation of 6He,
when combined with the data on the proton elastic scattering, have allowed us to conclude that the motion of
the halo neutrons in 6He is significantly correlated, the size of the dineutron cluster, in particular, being 2.0 ±
0.5 fm. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The correlation of halo neutrons presents one of the
intriguing questions in the physics of exotic nuclei.
There were several attempts [1–8] to obtain informa-
tion on this correlation, in particular, from the investi-
gation of nuclear fragmentation and Coulomb dissoci-
ation of the nuclei under study. The idea of the often
used approach consisted in the following. It was sup-
posed that the mentioned processes might be described
within the frames of the “sudden approximation.”
According to this approximation, the reaction mecha-
nism does not distort significantly the momenta of the
emitted neutrons and fragments, so that these measured
momenta can be considered the same as those that the
neutrons and fragments had in the exotic nucleus before
the nuclear breakup took place. Thus, comparing the
widths of the measured momentum distributions, or
studying directly the correlation between the measured
momenta, we intended to obtain information on the
correlation between the halo neutrons. However, as
became evident later, the reaction mechanism may dra-
matically influence the observed momenta of the neu-
trons and the fragments. For this reason, this approach
turns out to be not meaningful (see [9, 10]) and cannot
be applied for studying nucleon correlations. The
results of investigations [1–8], where the correlation of
halo neutrons was studied, are contradictory. At
present, from the mentioned works, it is difficult to
make definite conclusions concerning this correlation.

Recently, we discussed that the correlation between
the halo neutrons may be, in principle, studied using
intermediate energy proton elastic scattering [11].
Here, we discuss another approach for studying this
correlation. We show that the differential cross sections
for the nuclear fragmentation and the Coulomb dissoci-
ation as functions of the square of the sum of the
momenta for the core fragment and the emitted halo
neutrons are rather sensitive to the correlation between

* This article was submitted by the author in English.
1063-7788/00/6302- $20.00 © 20229
the halo neutrons. Therefore, a study of the processes of
nuclear fragmentation and Coulomb dissociation may
be used to get information on the correlation between
the halo neutrons. Note that this approach does not
employ the doubtful “sudden approximation,” which
cannot be applied in fact for quantitative description of
nuclear fragmentation and Coulomb dissociation.

As is known, when a fast beam of nuclei interacts
with a target, the breakup of nuclei occurs due to
nuclear fragmentation, induced by strong interaction,
and due to Coulomb dissociation, induced by electro-
magnetic interaction. In the present paper, we consider
nuclear fragmentation of exotic nuclei on a proton tar-
get and Coulomb dissociation of exotic nuclei on a
nuclear target with high charge number Zt. We neglect
a contribution of the Coulomb dissociation in the first
case and a contribution of the nuclear fragmentation in
the second case. We consider the above processes at
intermediate energy and small momentum transfers for
two-neutron halo nuclei, such as 6He and 11Li. We sup-
pose that these nuclei consist of a compact inert core and
two halo neutrons and that due to interaction with the tar-
get they disintegrate to the core and the halo neutrons.

2. NUCLEAR FRAGMENTATION

In agreement with the Glauber theory [12], the scat-
tering amplitude of the discussed processes may be
written as

(1)

(2)

(3)

Here, q is the momentum transfer from the target to the
halo nucleus; k is the magnitude of the wave vector k of
the projectile; b is the impact parameter (b ⊥  k); s1, s2,

F fi q( ) f F̂ q( ) i〈 〉 ,=

F̂ q( ) ik 2π⁄ iq b⋅( )Γ̂ b( )exp d2b,∫=

Γ̂ b( ) Γ tn1 b s1–( ) Γ tn2 b s2–( )+=

+ Γ tc b sc–( ) ∆Γ b s1 s2 sc, , ,( ).–
000 MAIK “Nauka/Interperiodica”



 

230

        

ALKHAZOV

                                                                                                            
and sc are the transverse coordinates of the halo neu-
trons and of the core; Γtn1(b – s1), Γtn2(b – s2), and
Γtc(b – sc) are the profile functions for interaction of the
halo neutrons and the core with the target; and the term
∆Γ(b, s1, s2, sc) describes rescattering of the halo neu-
trons and the core on the target. The contribution of the
last term in case of scattering of exotic nuclei is rela-
tively small, and it will not be considered here. Substi-
tuting (3) into (2), and neglecting the term ∆Γ(b, s1, s2,
sc), we obtain

(4)

Here, ftn(q) and ftc(q) are the amplitudes of scattering of
the free neutrons and free core on the target, and r1, r2, and
rc are the position vectors of the two neutrons and the core
relative to the center of mass (c.m.) of the whole nucleus.
Supposing that the halo nucleus has no bound excited
states, to obtain the differential cross section dσ/d2q for
the disintegration of the nucleus to the core and the halo
nucleons, we have to sum up k–2|Ffi(q)|2 over all final states
except f = i. Making use of closure, we obtain

(5)

To calculate dσ/d2q, we have to take into account in (4)
the contributions of scattering from the halo nucleons
and from the core. However, as was discussed in [13],
in the case of nuclear fragmentation at small momen-
tum transfers, the contribution from scattering on halo
nucleons dominates. Let us consider this contribution.
Substituting (4) into (5) and assuming that the target is
a proton, we obtain

(6)

Introducing the halo form factor Sh(q) as

(7)

and the correlation function C(q), defined in [14] as

(8)

we finally obtain

(9)

We see that the resulting differential cross section
depends directly on the correlation function C(q), which
describes the correlation between the halo nucleons.

In the absence of correlations between the halo
nucleons, the correlation function C(q) is equal to zero,

F̂ q( ) f tn q( ) iq r1⋅( ) iq r2⋅( )exp+exp[ ]=

+ f tc q( ) iq rc⋅( ).exp

dσ d2q⁄ k 2– F fi
2

f i≠
∑=

=  k 2– i F̂ q( )F̂* q( ) i〈 〉 i F̂ q( ) i〈 〉 2
–{ } .

dσ d2⁄ q k 2– f pn q( ) 2=

× 2 2 i iq r1 r2–( )⋅[ ]exp i〈 〉+{

– 4 i iq r1⋅( )exp i〈 〉 2 } .

Sh q( ) i iq r1⋅( )exp i〈 〉=

C q( ) i iq r1 r2–( )⋅[ ]exp i〈 〉=

– i iq r1⋅( )exp i〈 〉 i iq– r2⋅( )exp i〈 〉 ,

dσ d2⁄ q 2k 2– f pn q( ) 2 1 Sh
2 q( )– C q( )+{ } .=
and the expression for dσ/d2q becomes

(10)

If we consider the extreme case of strong correlation
when r1 = r2, we obtain

(11)

(12)

On the other hand, for the extreme case of anticorrela-
tion when r1 = –r2, we obtain

(13)

(14)

Of course, the extreme cases of the correlations consid-
ered above are not realistic. However, they show how
much the effects from correlations may be in principle
in the cross section dσ/d2q.

Let us consider a more realistic case of correlations
when the halo neutrons are bound into a dineutron clus-
ter of size Rdn ≡ 〈(r1 – r2)2/4〉1/2. Introducing a form fac-
tor of the dineutron cluster

(15)

we can write the correlation function C(q) as

(16)

In the figure, we compare the cross sections dσ/d2q,
calculated using (10) and (9) and (16) for the case of

p11Li scattering at 1 GeV assuming Rh ≡ 〈 〉1/2 = 8 fm
and Rdn = 3 fm, the cluster and halo form factors being
parametrized by Gaussian functions. It is seen that the
correlation between the halo neutrons may significantly
influence the absolute value and the shape of the cross
section for the nuclear fragmentation. Of course, in the
calculation of the cross section dσ/d2q with the purpose
to get information on the correlation between the halo
nucleons from the data on the nuclear fragmentation, one
has to consider all scattering terms in (5). In this connec-
tion, we have to note that the contribution to the cross sec-
tion dσ/d2q from scattering on the core, though being rel-
atively small, may not be neglected, and taking this term
into account makes the whole picture more complicated.

3. COULOMB DISSOCIATION
Now, let us consider the Coulomb dissociation.

Retaining in (3) only the term Γtc(b – sc), and perform-
ing a similar consideration, for the cross section of the
Coulomb dissociation, we obtain

(17)

Here (q) is the Coulomb amplitude of elastic scat-
tering of the free core on the target

(18)

dσ d2⁄ q 2k 2– f pn q( ) 2 1 Sh
2 q( )–{ } .=

C q( ) 1 Sh
2 q( ),–=

dσ d2⁄ q 4k 2– f pn q( ) 2 1 Sh
2 q( )–{ } .=

C q( ) Sh 2q( ) Sh q( )[ ]2,–=

dσ d2⁄ q 2k 2– f pn q( ) 2 1 2Sh
2 q( )– Sh 2q( )+{ } .=

Sdn q( ) i iq r1 r2–( ) 2⁄⋅[ ]exp i〈 〉 ,=

C q( ) Sdn 2q( ) Sh
2 q( ).–=

r1
2

dσ d2⁄ q k 2– f tc
Coul q( ) 2

1 Sc
2 q( )–{ } .=

f tc
Coul

f tc
Coul q( ) 2

4n2q 4– St
2 q( )[Sc' q( )]2,=
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n is the Sommerfeld parameter n = ZtZcα/β, Zc is the
charge number of the core, α is the fine structure con-
stant, β = v/c, v is the relative velocity of the exotic
nucleus and the target, St(q) is the charge form factor of
the target, (q) is the charge form factor of the free
core, and Sc(q) is the form factor corresponding to the
distribution of the core c.m. radius rc.

At small momentum transfers q, the form factor
Sc(q) may be approximated by

(19)

where  ≡ 〈 〉 . Inserting (19) into equation (17), for
the cross section dσ/d2q at small momentum transfers
we have

(20)

At small momentum transfers, the form factors St(q)

and (q) are close to one, so that some uncertainty in
these form factors is of little importance. Thus, we see
that the only unknown parameter that determines the
magnitude of the cross section for the Coulomb disso-
ciation of an exotic nucleus at small momentum trans-

fers is the value of . On the other hand,

(21)

(22)

where Ac in the number of nucleons in the core, and η
is the correlation factor

(23)

Therefore, studying the process of Coulomb dissocia-
tion of exotic nuclei at small momentum transfers, one
can derive information on the correlation factor η
which characterizes the degree of correlation between
the halo neutrons. Of course, the total cross section for
the Coulomb dissociation is also sensitive to the corre-
lation between the halo neutrons. However, it is at small
momentum transfers that the process of Coulomb dis-
sociation dominates over that of nuclear fragmentation,
and thus it can be easily separated out.

We have to note that since the energy conservation
and nuclear binding are neglected in the Glauber
approach, cross section (17) for the Coulomb dissocia-
tion diverges in the forward direction. We also remind
the reader that, strictly speaking, only the transverse
momentum transfer is considered in the Glauber the-
ory. It is well known that the accuracy of the Glauber
formulas obtained is significantly improved by replac-
ing the transverse momentum transfer q⊥  by the total
one including the longitudinal component q||. The value
of q|| may be estimated at small transverse momentum
transfers as q|| = ω/γv [15, 16], where ω is the trans-
ferred energy, and γ is the Lorents factor γ = (1 – β2)–1/2.

Sc'

Sc q( ) 1 q2R̃c
2

6⁄ ,–≈

R̃c
2

rc
2

dσ d2⁄ q k 2– f tc
Coul q( ) 2

q2R̃c
2

3⁄ .≈

Sc'

R̃c

rc r1 r2+( )– Ac,⁄=

R̃c
2

2Rh
2 1 η+{ } Ac

2⁄ ,=

η r1 r2⋅〈 〉 Rh
2, 1 η 1.< <–⁄=
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The procedure of taking the longitudinal momentum
into account solves the divergency problem. However,
even in this case, equation (17) overestimates the cross
section for the Coulomb dissociation at very small
transverse momentum transfers q⊥  ≤  = nω/γv (see,
for example, [15, 16]). To avoid this problem, when
comparing the calculated cross section (17) to the
experimental one, with the aim of deducing the value of

, the region of q ≤  may be excluded from the
analysis. Note that for sufficiently high energy of the
experiment and low excitation energies, this region is
rather narrow. We see that the discussed method of

obtaining information on the radius  is based on the
analysis of the absolute values of the measured cross

sections. An alternative way of deducing  from the
data for the Coulomb dissociation may be, in principle,
based on the analysis of the shape of the spectrum of

the excitation energies, since the value of  is propor-
tional to the inverse value of the “mean excitation
energy” (see [17]).

4. SPATIAL STRUCTURE OF 6He

Recently, Aumann et al. [18] have investigated Cou-
lomb dissociation of 6He nuclei at the projectile energy

of 240 MeV/u. The value of  was extracted from the
experimentally obtained total dipole strength making
use of the energy-weighted and non-energy-weighted
cluster sum rules. The cross section for the Coulomb
dissociation was calculated in the quasiclassical

q⊥*

R̃c q⊥*

R̃c

R̃c

R̃c
2

R̃c

1.51.00.50

1

2

dσ/d2q, mb fm2

q, fm–1

1

2

The fragmentation cross sections dσ/d2q as a function of the
transverse momentum q for the case of p11Li scattering at
1 GeV. Curve 1 corresponds to the assumed halo radius of
8 fm for uncorrelated motion of the halo neutrons (C(q) =
0). Curve 2 corresponds to the halo radius of 8 fm, the two
neutrons being bound in a dineutron cluster of 3-fm radius.
The calculations are performed using (9) and (16).
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approximation under the assumption that the contribu-
tion of excitations with multipolarities higher than L =

1 may be neglected. The deduced value is  = 1.12 ±
0.13 fm. This value, in combination with the results of
the study of p6He elastic scattering at intermediate
energy [19], allows us to get valuable information on
the spatial structure of the 6He nucleus and, in particu-
lar, on the correlation of the halo neutrons.

We first note that using the overall core size Rc =

1.88 ± 0.12 fm [19] and the value of  mentioned

above, we can determine the core internal size  =

(  – )1/2 = 1.51 ± 0.18 fm. We see that the core
internal size of 6He is consistent with that of a free α-
particle, the latter being Rα = 1.49(1) fm, which corre-
sponds to the charge radius of 1.67 fm, after taking the
form factors of a proton and a neutron into account.

Then, using the value of the halo size Rh = 2.97 ±
0.26 fm [19] and the value of  as above, we deter-

mine the correlation factor η = (Ac /Rh)2/2 – 1 = 0.14 ±
0.33. This result is compatible with uncorrelated
motion of the halo neutrons around the c.m. of the 6He
nucleus. It should be kept in mind, however, that, even
if one imagines the situation when the halo neutrons
move around the core independently, nevertheless, due
to the c.m. constraint, the correlation factor η will be
nonzero. Thus, assuming that 〈rn1, c · rn2, c〉  = 0, where
rn1, c = r1 – rc and rn2, c = r2 – rc, we find η = –0.38.
Therefore, the deduced value of η = 0.14 ± 0.33 should
be interpreted, in fact, as evidence for a quite significant
positive (attractive) correlation between the halo neu-
trons. To make judgments about the dynamical correla-
tions between the halo neutrons, it is also helpful to
introduce a correlation factor  defined as

(24)

For 6He, we find  = 0.50 ± 0.26.

Another insight into the correlated structure of 6He
may be provided if we deduce the size Rdn of the
dineutron cluster or, otherwise, the halo size in its own

c.m. system. We find Rdn = [  – /4](1/2) = 1.95 ±
0.50 fm. The deduced value of Rdn may be compared
with theoretical predictions. For example, according to
[20], Rdn = 2.3–2.5 fm.

5. CONCLUSION

We have shown that the differential cross section
dσ/d2q for the nuclear fragmentation on a hydrogen tar-
get at small momentum transfers q is sensitive to the
correlation function C(q) describing the halo neutron–
neutron correlation. A very efficient means of getting
information on the correlation between the halo neu-

R̃c

R̃c

Rc*

Rc
2 R̃c

2

R̃c

R̃c

η̃

η̃ rn1 c, rn2 c,⋅〈 〉 rn1 c,
2〈 〉 .⁄=

η̃

Rh
2 Ac

2
R̃c

2

trons happens to be the Coulomb dissociation on a
high-Z target at small momentum transfers. Combining
the results of investigations of the Coulomb dissocia-
tion of 6He [18] and of the p6He elastic scattering at
intermediate energy [19], we have obtained unambigu-
ous quantitative information on the correlated structure
of the 6He nucleus in its ground state. It is important
that the information obtained here is free from distor-
tion effects of final-state interaction, in contrast to some
previous approaches that we discussed before.

The quantities deduced are as follows. The 6He core

internal size is  = 1.51 ± 0.18 fm; the dynamical n–

n correlation factor is  = 0.50 ± 0.26; the size of the
dineutron cluster is Rdn = 1.95 ± 0.50 fm. To reduce the
uncertainties in these quantities, it would be helpful to
measure cross sections for p6He elastic scattering at higher
momentum transfers and also to perform a more careful
analysis of the data for the Coulomb dissociation of 6He.

REFERENCES
1. I. Tanihata, T. Kobayashi, T. Suzuki, et al., Phys. Lett. B

287, 307 (1992).
2. H. Esbensen, D. Kurath, and T. S. H. Lee, Phys. Lett. B

287, 289 (1992).
3. T. Kobayashi, Nucl. Phys. A 553, 465c (1993).
4. D. Sackett, K. Ieki, A. Galonsky, et al., Phys. Rev. C 48,

118 (1993).
5. S. Shimoura, T. Nakamura, M. Ishihara, et al., Phys.

Lett. B 348, 29 (1995).
6. K. Ieki, A. Galonsky, D. Sackett, et al., Phys. Rev. C 54,

1589 (1996).
7. T. Kobayashi, K. Yoshida, A. Ozava, et al., Nucl. Phys.

A 616, 223c (1997).
8. G. M. Ter-Akopian, A. M. Rodin, A. S. Fomichev, et al.,

Phys. Lett. B 426, 251 (1998).
9. I. Tanihata, Prog. Part. Nucl. Phys. 35, 505 (1995).

10. I. Tanihata, J. Phys. G 22, 157 (1996).
11. G. D. Alkhazov, Yad. Fiz. 62, 765 (1999) [Phys. At.

Nucl. 62, 715 (1999)].
12. R. J. Glauber, in Lectures in Theoretical Physics, Ed. by

W. E. Brittin (Interscience, New York, 1959), Vol. 1, p. 315.
13. G. D. Alkhazov, Pis’ma Zh. Éksp. Teor. Fiz.  67, 296

(1998).
14. O. Kofoed-Hansen and C. Wilkin, Ann. Phys. (N.Y.) 63,

309 (1971).
15. K. Soutome, S. Yamaji, and M. Sano, Prog. Theor. Phys.

87, 599 (1992).
16. K. Soutome, S. Yamaji, and M. Sano, Prog. Theor. Phys.

88, 703 (1992).
17. S. Funada, Prog. Theor. Phys. 93, 373 (1995).
18. T. Aumann, D. Aleksandrov, L. Axelsson, et al., Preprint

No. GST-99-01, GSI (Darmstadt, 1999).
19. G. D. Alkhazov, M. N. Andronenko, A. V. Dobrovolsky,

et al., Phys. Rev. Lett. 78, 2313 (1997).
20. M. V. Zhykov, B. V. Danilin, D. V. Fedorov, et al., Phys.

Rep. 231, 151 (1993).

Rc*

η̃

PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 2      2000



  

Physics of Atomic Nuclei, Vol. 63, No. 2, 2000, pp. 233–239. From Yadernaya Fizika, Vol. 63, No. 2, 2000, pp. 290–296.
Original English Text Copyright © 2000 by Belotsky, Golubkov, Khlopov, Konoplich, Sakharov.

        

ELEMENTARY PARTICLES AND FIELDS
Theory

                          
Anti-helium Flux As a Signature
for Antimatter Globular Clusters in Our Galaxy*

K. M. Belotsky1), Yu. A. Golubkov2), M. Yu. Khlopov3), R. V. Konoplich4), and A. S. Sakharov4)

Moscow State Engineering Physics Institute (Technical University), Kashirskoe sh. 31, Moscow, 115409 Russia
Received August 7; in final form April 6, 1999

Abstract—The Alpha Magnetic Spectrometer experiment is shown to be sensitive to test the hypothesis on the
existence of antimatter globular cluster in our Galaxy. The hypothesis follows from the analysis of possible tests
for the mechanisms of baryosynthesis and uses antimatter domains in the matter-dominated Universe as the
probe for the physics underlying the origin of matter. The interval of masses for the antimatter in our Galaxy is
fixed from below by the condition of antimatter domain survival in the matter-dominated Universe and from
above by the observed gamma-ray flux. For this interval, the expected fluxes of anti-helium-3 and anti-helium-
4 are calculated with account for their interaction with the matter in the Galaxy. © 2000 MAIK “Nauka/Inter-
periodica”.
1. ANTIMATTER IN BARYON-ASYMMETRIC 
UNIVERSE

The modern Big Bang theory is based on inflation-
ary models with baryosynthesis and nonbaryonic dark
matter. The physical basis for all three phenomena lies
outside the experimentally proven theory of elementary
particles. This basis follows from the extensions of the
Standard Model. Particle theory considers such exten-
sions as aesthetically appealing such as Grand Unifica-
tion, as necessary to remove internal inconsistencies in
the Standard Model with the use of supersymmetry and
axion or simply as theoretically possible ideas of neu-
trino mass or lepton and baryon number violation. Most
of these theoretical ideas cannot be tested directly, and
particle theory considers cosmological relevance as the
important component of their indirect test. In the
absence of direct methods of study, one should analyze
the set of indirect effects, which specify the models of
particles and cosmology. The expected progress in the
measurement of cosmic-ray fluxes and gamma-ray
background and in the search for cosmic antinuclei
makes cosmic-ray experiments the important source of
information on the possible cosmological effects of
particle theory. The first step in this direction may be
done on the basis of the Alpha Magnetic Spectrometer
(AMS) Shuttle experiment.

The specifics of the AMS Shuttle experimental pro-
gram puts a stringent restriction on the possible choice
of cosmic signatures for the new physics. At this stage,

* This article was submitted by the authors in English.
1) Institute of Applied Mathematics and Center for CosmoParticle

Physics “Cosmion,” Russia.
2) Moscow State University, Institute of Nuclear Physics and “Cos-

mion,” Russia.
3) Moscow State Engineering Physics Institute and Institute of

Applied Mathematics and “Cosmion,” Russia.
4) Moscow State Engineering Physics Institute and “Cosmion.”
1063-7788/00/6302- $20.00 © 20233
it cannot be related to positrons, gamma rays, or multi-
GeV antiprotons. It makes us reduce the analysis to the
antinuclear signal as the profound signature of new
physics and cosmology, related to the existence of anti-
matter in the Universe.

The generally accepted motivation for a baryon-
asymmetric Universe is the observed absence of the
macroscopic amounts of antimatter up to the scales of
clusters of galaxies. According to the Big Bang theory,
a baryon-symmetric homogeneous mixture of matter
and antimatter cannot survive after local annihilation,
taking place at the first millisecond of cosmological
evolution. Spatial separation of matter and antimatter
can provide their survival in the baryon-symmetric
Universe, but should satisfy severe constraints on the
effects of annihilation at the border of domains. The
most recent analysis finds that the size of domains
should be only a few times smaller than the modern
cosmological horizon to escape the contradictions to
the observed gamma-ray background [1]. In a baryon-
asymmetric universe, the Big Bang theory predicts the
exponentially small fraction of primordial antimatter
and virtually excludes the existence of primordial anti-
nuclei. The secondary antiprotons may appear as a
result of cosmic-ray interaction, with the matter. In
such interaction, it is impossible to produce any size-
able amount of secondary antinuclei. Thus, nonexpo-
nential small amounts of antiprotons in the Universe, in
the period from 10–3 to 1016 s, and antinuclei in the
modern Universe are the profound signature for new
phenomena, related to the cosmological consequences
of particle theory.

The inhomogeneity of baryon-excess generation
and antibaryon-excess generation as the reflection of
this inhomogeneity represents one of the most impor-
tant examples of such consequences. It has turned out
[2–4] that virtually all the existing mechanisms of
000 MAIK “Nauka/Interperiodica”
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baryogenesis can lead to the generation of antibaryon
excess in some places, when the baryon excess, aver-
aged over the whole space, is positive. So domains of
antimatter in a baryon-asymmetric universe provide a
probe for the physical mechanism of the matter gener-
ation.

Sakharov’s original scenario of baryosynthesis [5]
has found physical grounds in GUT models. It assumes
CP-violating effects in out-of-equilibrium B-noncon-
serving processes, which generate baryon excess pro-
portional to the CP-violating phase. If the sign and
magnitude of this phase varies in space, the same out-
of-equilibrium B-nonconserving processes, leading to
baryon asymmetry, result in B < 0 in the regions where
the phase is negative. The same argument is appropriate
for the models of baryosynthesis based on electroweak-
baryon-charge nonconservation at high temperatures,
as well as on its combination with lepton-number-vio-
lation processes, related to the physics of the Majorana
mass of a neutrino. In all these approaches to baryogen-
esis, independent of the physical nature of B noncon-
servation, the inhomogeneity of baryon excess and gen-
eration of antibaryon excess is determined by the spa-
tial dependence of the CP-violating phase.

Spatial dependence of this phase is predicted in
models of spontaneous CP violation, modified to
escape the supermassive domain wall problem (see [2,
3] and references therein).

In this type of models, the CP-violating phase
acquires discrete values φ+ = φ0 + φsp and φ– = φ0 – φsp
where φ0 and φsp are, respectively, a constant and spon-
taneously broken CP phase, and antibaryon domains
appear in the regions with φ– < 0, provided that φsp > φ0.

In models where the CP-violating phase is associ-
ated with the amplitude of an invisible axion field, the
spatially variable phase φvr changes continuously from
–π to +π. The amplitude of the axion field plays the role
of φvr in the period starting from Peccei–Quinn symme-
try breaking phase transition until the axion mass is
switched on at T ≈ 1 GeV. The net phase changes con-
tinuously, and, if baryosynthesis takes place in the con-
sidered period, axion-induced baryosynthesis implies
continuous spatial variation of the baryon excess given
by [6]:

(1)

Here, A is the baryon excess induced by the constant
CP-violating phase, which provides the global baryon
asymmetry of the Universe, and b is the measure of
axion-induced asymmetry. If b > A, antibaryon excess
is generated along the direction θ = 3π/2, the stronger
will be the inequality b > A, and the larger interval of θ
around the layer θ = 3π/2 provides generation of anti-
baryon excess [6]. In the case b – A = δ ! A, the anti-
baryon excess is proportional to δ2 and the relative vol-
ume occupied by it is proportional to δ.

The axion-induced antibaryon excess forms the
Brownian structure looking like an infinite ribbon

b x( ) A b θ x( ).sin+=
along the infinite axion string (see [7]). The minimal
width of the ribbon is of the order of horizon in the

period of baryosynthesis and is equal to mPl/ . At T <
TBS, this size experiences red shift and is equal to

(2)

This structure is smoothed by the annihilation at the
border of matter and antimatter domains. When the
antibaryon diffusion scale exceeds lh(T), the infinite
structure decays into separated domains. The distribu-
tion with respect to domain sizes turns out to be
strongly model dependent and will be presented in our
successive paper.

The size and amount of antimatter in domains, gen-
erated as a result of local baryon-nonconserving out-of-
equilibrium processes, is related to the parameters of
models of CP violation and/or invisible axion (see [2,
4]). SUSY GUT motivated mechanisms of baryon
asymmetry imply flatness of superpotential relative to
the existence of squark condensate. Such a condensate,
being formed with B > 0, induces baryon asymmetry,
after squarks decay into quarks and gluinos. The mech-
anism does not fix the value and sign of B in the con-
densate, opening the possibilities for inhomogeneous
baryon charge distribution and antibaryon domains [4].
The size and amount of antimatter in such domains are
determined by the initial distribution of squark conden-
sate.

Thus, antimatter domains in a baryon-asymmetric
universe are related to virtually all the mechanisms of
baryosynthesis and serve as the probe for the mecha-
nisms of CP violation and primordial baryon-charge
inhomogeneity. The size of domains depends on the
parameters of these mechanisms.

With the account of all possible mechanisms for
inhomogeneous baryosynthesis, predicted on the basis
of various, and generally independent, extensions of
the Standard Model, the general analysis of possible
domain distributions is rather complicated. Fortunately,
the test for the possibility of the existence of antistars in
our Galaxy, offered in [6], turns out to be virtually
model independent and, as we show here, may be
accessible to cosmic-ray experiments, to AMS experi-
ment, in particular.

2. ANTIMATTER GLOBULAR CLUSTER
IN OUR GALAXY

Assume a distribution of antimatter domains which
satisfies the constraints on antimatter annihilation in the
early Universe. Domains surviving after such annihila-
tion should have a mass exceeding

(3)

where ρb is the mean cosmological baryon density. The
mass fraction of such domains relative to total baryon

TBS
2

lh T( )
mPl

TBST
------------.≈

Mmin b A⁄( )ρbla
3,≈
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mass is strongly model dependent. Note that, since the
diffusion to the border of antimatter domain is deter-
mined on the RD stage by the radiation friction, the sur-
viving scale fixes the size of the surviving domain. On
the other hand, the constraints on the effects of annihi-
lation put the upper limit on the mass of annihilated
antimatter.

The modern antimatter-domain distribution should
be cut at the masses given due to annihilation of smaller
domains, and it is the general feature of any model of
antibaryosynthesis in a baryon-asymmetric universe.
The specific form of the domain distribution is model
dependent. At scales smaller than (3), the spectrum
should satisfy the constraints on the relative amount of
annihilating antimatter. Provided that these constraints
are satisfied, one may consider the conditions for anti-
matter object formation. One should take into account
that the estimation of the annihilation scale after
recombination gives, for this scale, the value close to
the Jeans mass in the neutral baryon gas after recombi-
nation. So, the development of gravitational instability
may take place in antimatter domains resulting in the
formation of astronomical objects of antimatter.

Formation of an antimatter object has the time scale
of the order of tf ≈ (πGρ)–1/2. The object is formed pro-
vided that this time scale is smaller than the time scale
of its collision with the matter clouds. The latter is the
smallest in the beginning of the object formation, when
the clouds forming objects have a large size.

Note that the isolated domain cannot form an astro-
nomical object smaller than a globular cluster [6]. The
isolated antistar cannot be formed in surrounding mat-
ter since its formation implies the development of ther-
mal instability, during which cold clouds are pressed by
hot gas. Pressure of the hot matter gas on the antimatter
cloud is accompanied by the annihilation of antimatter.
Thus, antistars can be formed in the antimatter sur-
roundings only, which may take place when such sur-
roundings have at least the scale of a globular cluster.

One should expect to find antimatter objects among
the oldest population of the Galaxy [6]. It should be in
the halo, since, owing to strong annihilation of antimatter
and matter gas, the formation of secondary antimatter
objects in the disc component of our Galaxy is impossi-
ble. So, in the estimation of antimatter effects, we can
use the data on the spherical component of our Galaxy as
well as the analogy with the properties of the old popu-
lation stars in globular clusters and elliptical galaxies.

In the spherical component of our Galaxy, the anti-
matter globular cluster should move at high velocity
(which follows from the velocity dispersion in halo
(v ≈ 150 km/s) through the matter gas with very low
number density (n ≈ 3 × 10–4 cm–3). Owing to small
number density of the antimatter gas, effects of annihi-
lation with the matter gas within the antimatter globular
cluster are small. These effects, however, deserve spe-
cial analysis for a future search for antimatter cluster as
the gamma source.
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 2      2000
The integral effects of an antimatter cluster may be
estimated by the analysis of antimatter pollution of the
Galaxy by the globular cluster of antistars.

There are two main sources of such pollution: the
antistellar wind (the mass flow from antistars) and the
antimatter supernova explosions. The first source pro-
vides the stationary inflow of antimatter particles with
the velocity 107–108 to the Galaxy. From the analogy
with the elliptical galaxies, for which one has the mass
loss 10–12M( per solar mass per year, one can estimate
the stationary admixture of antimatter gas in the Galaxy
and the contribution of its annihilation into the gamma-
ray background. The estimation strongly depends on
the distribution of magnetic fields in the Galaxy, trap-
ping charged antiparticles. Crude estimation of the
gamma flux from the annihilation of this antimatter flux
is compatible with the observed gamma background for
the total mass of antimatter cluster less than 105M(.
This estimation puts an upper limit on the total mass
fraction of antimatter clusters in our Galaxy. Their inte-
gral effect should not contradict the observed gamma-
ray background.

The uncertainty in the distribution of magnetic
fields causes even more problems in the reliable estima-
tion of the expected flux of antinuclei in cosmic rays. It
also is accomplished by the uncertainty in the mecha-
nism of cosmic-ray acceleration. The relative contribu-
tion of disc and halo particles into the cosmic-ray spec-
trum is also unknown.

To have some feeling of the expected effect, we may
assume that the mechanisms of acceleration of matter
and antimatter cosmic rays are similar and that the con-
tribution of antinuclei into the cosmic-ray fluxes is pro-
portional to the mass ratio of globular cluster and Gal-
axy. Putting together the lower limit on the mass of the
antimatter globular cluster from the condition of sur-
vival of antimatter domain and the upper limit on this
mass following from the observed gamma-ray back-
ground, one obtains [6] the expected flux of antihelium
nuclei in the cosmic rays with the energy exceeding
0.5 GeV/nucleon to be 10–8–10–6 of helium nuclei
observed in the cosmic rays.

Such estimation assumes that annihilation does not
influence the antinucleus composition of cosmic rays,
which may take place if the cosmic-ray antinuclei are
initially relativistic. If the process of acceleration takes
place outside the antimatter globular cluster, one
should take into account the Coulomb effects in the
annihilation cross section of nonrelativistic antinuclei,
which may lead to suppression of their expected flux.

On the other hand, antinuclear annihilation invokes
a new factor in the problem of their acceleration, which
is evidently absent in the case of cosmic ray nuclei.
This factor may play a very important role in the
account of antimatter supernovae as the possible source
of cosmic-ray antinuclei. From the analogy with ellip-
tical galaxies, one may expect [6] that, in the antimatter
globular cluster, supernovae of the I type (SNI) should
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explode with a frequency of about 2 × 10–13/M( per
year. On the basis of theoretical models and observa-
tional data on SNI (see [8]), one expects in such explo-
sions the expansion of a shell with a mass of about
1.4M( and velocity distribution up to 2 × 109 cm/s. The
internal layers with the velocity v < 8 × 108 cm/s con-
tain anti-iron 56Fe and the outer layers with higher
velocity contain lighter elements such as anti-calcium
or anti-silicon. Another important property of superno-
vae of the I type is the absence of hydrogen lines in
their spectra. Theoretically, this is explained as the
absence of a hydrogen mantle in the presupernova. In
the case of antimatter supernova, it may lead to strong
enhancement of antinuclei relative to antiprotons in the
cosmic-ray effect. Note that a similar effect is sup-
pressed in the nuclear component of cosmic rays, since
supernovae of the II type are also related to the matter
cosmic ray origin in our Galaxy, in which massive
hydrogen mantles (with the mass up to a few solar
masses) are accelerated.

In contrast with the ordinary supernova, the expand-
ing antimatter shell is not decelerated owing to the
acquirition of the interstellar matter gas and is not
stopped by its pressure, but is annihilated with it [6]. As
a result of annihilation with hydrogen, of which the
matter gas is dominantly composed, semirelativistic
antinucleus fragments are produced. The reliable anal-
ysis of such a cascade of antinucleus annihilation may
be based on the theoretical models and experimental
data on antiproton nucleus interaction. This program is
now under way. The important qualitative result is the
possible nontrivial contribution into the fluxes of cos-
mic-ray antinuclei with Z ≤ 14 and the enhancement of
antihelium flux. With the account of this argument, the
estimation of anti-helium flux from its direct propor-
tionality to the mass of antimatter globular cluster
seems to give the lower limit for the expected flux.

Here, we study another important qualitative effect
in the expected antinuclear composition of cosmic rays.
Cosmic-ray annihilation in the galactic disc results in
the significant fraction of anti-helium-3, so that anti-
helium-3 to anti-helium-4 ratio turns out to be the sig-
nature of the antimatter globular cluster.

3. EQUATIONS FOR DIFFERENTIAL FLUXES

Considering the  nuclei travelling through the
Galactic disk, we have to take into account two pro-
cesses:

(i) the destruction of a nucleus in the inelastic inter-
actions with the protons of the galactic media;

(ii) the energy losses whilst traveling through the
Galaxy.

For the  nuclei, we need to take into account

also the possibility of the -nucleus production due
to the reaction

He4

He3

He3
(iii)  + p   + all.
The energy losses occur due to four kinds of pro-

cesses:
(a) the energy losses on ionization and excitation of

the hydrogen atoms in the disk matter;
(b) the bremsstrahlung radiation on the galactic

hydrogen atoms;
(c) the inverse Compton scattering on the relic pho-

tons; and
(d) the synchrotron radiation in the galactic mag-

netic fields.
The processes (b)–(d) are proportional to (me/MHe)2

and can be neglected at not very high energies of the He
nuclei. The energy losses due to ionization and excita-
tion of the hydrogen atoms per one collision are being
described by the expression [9]:

(4)

where I is the ionization potential of the hydrogen
atom, I ≈ 15 eV; Z = 1 and z = 2 are the electric charges
of the hydrogen and helium nuclei, respectively; β =
v/c is the dimensionless velocity; and α = 1/137 is the
fine structure constant.

The rates of the energy losses and of the 
nucleus destruction are

(5)

where nH is the particle density of H atoms in the Galac-
tic disc.

The source of  nuclei can be written in the form

(6)

∂W(E4; E3)/∂E3 describes the probability of producing

 in the inelastic collision  + p   + all,
with the normalization condition

If we introduce the differential flux

and the energy per nucleon (E  E/A), with A = 4
being the atomic weight of the anti-helium nucleus, we
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finally obtain a system of the integro-differential equa-

tions describing the behavior of  and  nuclei in
the Galaxy:

(7)

4. THE ANNIHILATION CROSS SECTIONS
Because the cross section for the coherent interac-

tion of the nucleon with the nuclei is not larger than 10–
15% of the inelastic cross section (see, e.g., [10]), we
can neglect such processes and set

(8)

where σann(N He) is the cross section for the annihila-

tion of  at its collision with the nucleon and σinel(N
He) is the inelastic cross section.

Total and elastic cross sections for the pp, pn, ,
, and  (d is the deuteron) can be found in [11].

For total cross sections at laboratory momentum Plab >
50 GeV/c, we used the parametrization following from
the Regge phenomenology [11]:

(9)

where

Xab = ,

Xpp = 22.0 ± 0.6,

Xpn = 22.6 ± 0.6,

Ypp = 56.1 ± 4.4,

 = 98.2 ± 9.5, (10)

Ypn = 55.0 ± 4.1,

 = 92.7 ± 8.6,

η = 0.46 ± 0.3,

e = 0.079 ± 0.003.
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At 0.1 < Plab < 50 GeV/c, we used plots from [11]
for the total and elastic cross sections.

Very scarce experimental data on total and elastic
cross sections for p4He can be found in [12, 13] and for

4He in [10, 14, 15]. Using these data, we found the A
dependence of the cross sections in the form

(11)

We also used the above 
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5. RESULTS OF THE CALCULATIONS
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We suggested that a relative contribution to 
does not depend on energy and used the above value.

For simplicity, we suggested that the probability
dW(E4; E3)/dE3 in (6) could be approximated by the δ
function:

He3

1010.1

10–4

10–2

100

102

J0(Ekin) × 106, cm–2 s–1 sr–1 (GeV/nucleon)–1

Ekin, GeV/nucleon

Fig. 2. Calculated fluxes of  (dashed curve), 4He (dot-

ted curve), and  (dash-dotted curve). The solid curve

presents initial flux for 4He nuclei. The confinement time has
been chosen equal to 107 yr.

He4
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3

1010.1
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Ekin, GeV/nucleon
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M = Mmin

M = Mmax

Fig. 3. Ratios of fluxes /4He (dashed curve) and /4He
(dash-dotted curve). The two upper curves correspond to the
case of maximal possible mass of antimatter globular cluster
Mmax = 105M( and the two lower curves to the case of the

minimal possible mass of such clusters Mmin = 103M(. The
results of calculations are compared with the expected sen-
sitivity of AMS experiment [17] (solid curve).

He4 He3
with W3 from (12).

The initial fluxes for 4He and  we choose in the
form

(13)

As the confinement time for He nuclei in the galac-
tic disc, where the hydrogen number density is nH ≈
1 atom/cm3, we choose the typical time scale Tconf =
107 yr. We also accounted for the very low density of
the matter in the Galactic halo.

Results of our calculations are shown in Fig. 2. The
solid curve shows initial He flux, and the dashed and

dash-dotted curves represent final fluxes of  and

, respectively.
The first two equations in (7) can be applied to the

4He nuclei, if by σann one can understand the inelastic
interaction cross section of the 4He nucleus with the
proton.

For comparison, we also plotted the final flux of the
4He by the dotted line, suggesting that the initial flux is

the same as for . 

In Fig. 3, we plotted the ratios of fluxes /4He

and /4He for two masses of the anticluster of the
upper curve for Mmax = 105M( and two lower curves for
Mmin = 103M(. These results are compared with the
expected sensitivity of the AMS experiment to anti-
helium flux. One finds the AMS experiment accessible
to a complete test of the hypothesis on the existence of
an antimatter globular cluster in our Galaxy.

6. DISCUSSION

The important result of the present work is that we
found the substantial contribution of anti-helium-3 into
the expected antinuclear flux. Even in the case of neg-
ligible anti-helium-3 flux originated in the halo, its con-
tribution into the antinucleus flux in the galactic disc
should be comparable with the one of anti-helium-4.

The estimations of [6], on which our calculations are
based, assumed stationary inflow of antimatter in the
cosmic rays. In case supernovae play the dominant role
in the cosmic-ray origin, the inflow is defined by their
frequency. One may find from [6] that the interval of pos-
sible masses of antimatter cluster 3 × 103–105M( gives
the time scale of antimatter inflow 1.6 × 109–5 × 107 yr,
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which exceeds the generally estimated lifetime of cos-
mic rays in the Galaxy. The succession of antinucleus
annihilations may result, in this case, in the dominant
contribution of anti-helium and, in particular, anti-
helium-3 into the expected antinuclear flux. It makes
the anti-helium signature sufficiently reliable even in
this case.

Thus, with all the reservations mentioned above on
the basis of the hypothesis on antimatter globular clus-
ter in our Galaxy, one may predict at the level of the
expected 600 antiprotons up to ten anti-helium events
in the AMS Shuttle experiment. Their detection would
be an exciting indication favoring this hypothesis. Even
the upper limit on anti-helium flux will lead to an
important constraint on the fundamental parameters of
particle theory and cosmology to be discussed in our
successive publications.

Note that the important source of background for
antinuclear events in AMS Shuttle experiment may be
cosmic antiproton interaction with the matter of the
shuttle. Such interaction should give a significant back-
directed flux of helium-4, imitating anti-helium events
in the AMS detector. To have a feeling of this effect, we
may use the results of the numerical simulations by
Lozhkin and Kramarovsky, who estimated the second-
ary nuclei multiplicities in the antiproton–iron interac-
tions.

According to these estimations, which can be quali-
tatively correct at least for not very heavy nuclei, the
helium-3 to helium-4 ratio in such interactions does not
exceed 1 : 8. Moreover, contrary to the case of antinu-
clei, back-directed nuclear flux contains a significant
admixture of metastable isotopes, tritium, in particular.
According to Lozhkin–Kramarovsky calculations, the
tritium-to-helium-4 ratio reaches, in this case, 1 : 3.5,
which may be important for the removal of background
events from the experimental data. Another interesting
feature of the multiplicity distributions of secondary
nuclei is that, being peaked at z = 2, it exceeds the level
of 5% for z ≤ 6 and then falls down to (1–2)% for higher
z, giving negligible output for z > 18.
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Abstract—The possibility of producing ultrarelativistic positronium beams with a Lorentz factor of γ ~ 106 by
means of laser-photon conversion on high-energy electron beams (Ee > 0.5 GeV) is considered. © 2000 MAIK
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1. INTRODUCTION

The production of relativistic positronium beams is
of considerable interest for testing basic principles of
QED [1] and of the relativistic theory of bound states
[2]. In particular, the production of intense beams of
parapositronium atoms (that is, the e+e– state with
quantum numbers 1S0) and of P-wave positronium
atoms (l = 1) with large Lorentz factors γ can contribute
to improving considerably the precision to which their
lifetimes are measured. Efforts along these lines are
motivated by the improved accuracy of theoretical pre-
dictions [3]. In the region of ultrarelativistic values of
γ ~ 106, the length of formation (that is, the distance
that an e+e– pair travels from the instant of its genera-
tion to the instant of the formation of a stationary bound
state) of a positronium atom in the n = 1 state, n being
the principal quantum number, reaches macroscopic
values on the order of a few centimeters [4]. This makes
it possible to test directly the law according to which
the probability for the formation of an e+e– stationary
state decreases exponentially with increasing distance
from the generation point (either in a vacuum or in a
medium).

Various methods of producing relativistic positron-
ium beams have been proposed in recent years. First of
all, this is the method that relies on the mechanism of
positronium generation in π0-meson decay at proton
synchrotrons and which has already been tested exper-
imentally [5].

Relativistic positronia can be produced in the inter-
actions of high-energy photons and electrons with mat-
ter (see [6] and [7], respectively). Calculations of
positronium yields from relativistic-ion collisions were
performed in [8].

In the present study, we consider the generation of
ultrarelativistic positronium beams (γ . 106) via laser-
photon conversion on a fast electron beam (Ee > 0.5 TeV).
In practice, this possibility can be implemented upon

1) Nayanova Samara Municipal University, Samara, Russia.
* e-mail: saleev@ssu.samara.ru
1063-7788/00/6302- $20.00 © 0240
commissioning new-generation linear accelerators
(linac) capable of producing Ee ≈ 1 TeV electrons.

The idea of the method is analogous to that pro-
posed in [9] to implement γe and γγ collisions at linear
e+e– colliders. A high-intensity beam of laser photons
(about 1020 photons per pulse)—we assume, for the
sake of definiteness, that their energy is ω = 1 eV—
undergoes backward scattering on a beam of high-
energy electrons from a linear accelerator, transforming
into a hard-photon beam, the conversion coefficient
being close to unity. At a laser power in a pulse of about
10 J and a laser-pulse-repetition frequency multiple to
the frequency of linac operation (f = 10–100 Hz), there
are so many photons in a pulse per electron that it
would transfer its energy to one of the incident photons
with a probability close to unity.

It is clear that, under these conditions, the ratio of
the cross section for positronium production in the pro-
cess γ + e  Ps + e (Ps stands for a positronium atom
in the 3S1 or the 1S0 state) to the cross section for the
Compton scattering process γ + e  γ + e,

(1)

determines the number of product positronia per electron
of the primary beam. Like converted photons, the posit-
ronia will travel within a narrow cone along the electron-
beam direction and have a hard energy spectrum.

2. PROCESS γ + e  Ps + e

Within the nonrelativistic approximation, where the
positronium atom is treated as the system formed by an
electron and a positron having zero relative momentum
and zero binding energy, the projection operator
describing the production of an e+e– system in various
spin states with principal quantum number n = 1 has the
form [10]

(2)

_
σ γ e Ps e++( )
σ γ e γ e+ +( )
------------------------------------------------,=

P̂ S3
1( ) Ψ 0( )

2m
------------ ε̂ p̂ 2 m+⁄( ),=
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(3)

where  = εµ(p)γµ, εµ(p) being the orthopositronium
polarization 4-vector (p is the positronium 4-momen-

tum); m is the electron mass; and Ψ(0) =  is
the wave function of the positronium ground state at the
origin.

In the leading order in the coupling constant α =
e2/4π, positronium production in the process γ + e 
Ps + e is described by the Feynman diagrams in Fig. 1
(1–6 for parapositronium and 1–4, 7, and 8 for orthop-
ositronium).

The amplitudes corresponding to diagrams (1)–(8)
in Fig. 1 are given by

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

Under the conditions Ee @ m @ ω ~ 1 eV, the Man-
delstam variables for the process γ + e  Ps + e can
be written as

(12)

(13)

(14)

where k = (ω, 0, 0, –ω) is the laser-photon 4-momen-
tum; q1 = (Ee, 0, 0, Ee) is the primary-electron 4-mo-

P̂ S1
0( ) Ψ 0( )

2m
------------γ5 p̂ 2 m+⁄( ),=

ε̂

m3α3 8π⁄

M1 e3U q2( )γµP̂γµ q̂1 k̂ m+ +( )ε̂ k( )=

× U q1( ) q1 k+( )2 m2–( ) p 2 q2–⁄( )2,⁄

M2 e3U q2( )γµP̂ε̂ k( ) p̂ 2 k̂– m+⁄( )γµ=

× U q1( ) p 2 k–⁄( )2 m2–( ) q2 p 2⁄+( )2,⁄

M3 e3U q2( )ε̂ k( ) q̂2 k̂– m+( )γµP̂γµ=

× U q1( ) q2 k–( )2 m2–( ) q1 p 2⁄–( )2,⁄

M4 e3U q2( )γµ p̂– 2 k̂ m+ +⁄( )ε̂ k( )P̂γµ=

× U q1( ) p 2 k–⁄( )2 m2–( ) q1 p 2⁄–( )2,⁄

M5 e3U q2( )γµU q1( )tr P̂ε̂ k( ) k̂– p̂ 2 m+⁄+( )[=

× γµ ] q1 q2–( )2 p 2 k–⁄( )2 m2–( ),⁄

M6 e3U q2( )γµU q1( )tr P̂γµ p̂ 2 k̂ m+ +⁄–( )[=

× ε̂ k( ) ] q1 q2–( )2 p 2 k–⁄( )2 m2–( ),⁄

M7 e3U q2( )γµ q̂1 k̂ m+ +( )ε̂ k( )U q1( )=

× tr γµP̂[ ] p2 q1 k+( )2 m2–( ),⁄

M8 e3U q2( )ε̂ k( )γµ p̂– q̂1 m+ +( )U q1( )=

× tr γµP̂[ ] p2 p q1–( )2 m2–( ).⁄

s q1 k+( )2
 . m2 4ωEe,+=

t k p–( )2
 . 4m2 2Eeω 1 θcos+( ),–=

u q1 p–( )2
 . 5m2 2EeE 1 θcos–( ),–=
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mentum, Ee being the primary-electron energy; q2 is the
scattered-electron 4-momentum; and p = (E, 0, Esinθ,
Ecosθ) is the positronium 4-momentum, E and θ being,
respectively, the positronium energy and the angle
between the primary-electron and the positronium
momentum. For this angle, we have

(15)

The differential cross section for the process in question
with respect to the variable y = E/Ee . (4m2 – t)/(s – m2)
is expressed in terms of the squared modulus of the
amplitude as

(16)

The total cross section σ(γ + e  Ps + e) is obtained
from (16) by means of integration with respect to y
between the limits

(17)

θ . 1
4ωEe 4m2+

2EEe

-----------------------------.–cos

dσ
dy
------ γ e Ps e++( ) M 2

16π s m2–( )
-----------------------------.=

ymax
min

1

s m2–
-------------- 2m2 s m2+( ) s 3m2–( )

2s
-------------------------------------------+=

± s m2–( )
2s

------------------- s 9m2–( ) s m2–( ) .

1

2

3

5

4

6

7

8

Fig. 1. Feynman diagrams for the process γ + e  Ps + e.
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3. RESULTS OF THE CALCULATIONS

We note that, on one hand, the minimum value of
the invariant s is smin = 9m2, whence it follows that the
threshold energy for the electrons in the scattering pro-
cess γ + e  Ps + e is

(18)

At the laser-photon energy of ω . 1 eV, this yields
Ee, min = 522 GeV. On the other hand, the value of s =
4.2 MeV2 corresponds to the energy of Ee = 1 TeV at
ω = 1 eV. Figure 2 shows the calculated cross sections
for orthopositronium and parapositronium production
(curves 1 and 2, respectively) as functions of the invari-
ant s. The cross section for orthopositronium produc-
tion peaks at s = 3.2 MeV2 (which corresponds to Ee =
735 GeV); we then have σ(γ + e  3S1 + e) ≈ 237 pb
and σ(γ + e  1S0 + e) ≈ 325 pb.

With increasing s, the cross section for orthopositro-
nium production decreases, while the cross section for
parapositronium production grows logarithmically.
The latter is due to the contributions of diagrams 4 and
5 in Fig. 1. At Ee = 1 TeV (s ≈ 4.2 MeV2), we have
σ(γ + e  3S1 + e) ≈ 218 pb and σ(γ + e  1S0 + e) ≈
494 pb.

The above values and the curves in Fig. 2 corre-
spond to the cross sections for the production of n = 1
S-wave states. The total positronium-production cross
section summed over all levels is obtained by multiply-

ing (7) by ζ(3) =  . 1.202.

Ee min,
smin m2–

4ω
--------------------

2m2

ω
---------.= =

1

n3
-----

n 1=
∞∑

103

102

σ(γ + e → Ps + e), pb

2

1

2 4 6 8 10
s, MeV2

Fig. 2. Cross section σ(γ + e  Ps + e) as a function of s
at a laser-photon energy of ω = 1 eV. Here and in the caption
under Fig. 3, Ps stands for either (curve 1) orthopositronium
or (curve 2) parapositronium.
The values of the ratio _ (1) are listed in the table
for various values of s. By way of example, we indicate
that, at Ee = 1 TeV and n = 2 × 1011 electrons per accel-
erator burst (this corresponds to the project of the
VLEPP e+e– linear collider), we obtain some 1200 para-
positronia and some 500 orthopositronia per pulse. At
the accelerator frequency of f = 100 Hz, this yields 1.2 ×
105 and 0.5 × 105 positronia per second, respectively.
This is one order of magnitude greater than the flux of
positronia in the recombination process e+ + e– 
Ps + γ at e+e– storage rings [11]. A rough estimate of the
P-wave-positronium yield (which is about 10–4 less
than that for the S-wave-positronium yield) is 100 at/sec.
It seems that so great a yield of ultrarelativistic (γ ~ 106)
P-wave positronia is sufficient for a precise (and
unique) measurement of their decay widths.

Figure 3 shows positronium spectra at s = 3.2 MeV2

that are normalized to unity. The positronia are pro-
duced within the kinematical region 0.375 ≤ y ≤
0.869—that is, with ultrarelativistic Lorentz factors in
the range 0.27 × 106 ≤ γ ≤ 0.64 × 106. The parapositro-
nium spectrum shows two distinct peaks near the kine-
matical boundaries. The mean value of y = E/Ee at s =
3.2 MeV2 is 〈y〉  ≈ 0.54 for parapositronium and 〈y〉  ≈
0.63 for orthopositronium.

A positronium beam produced by means of laser-
photon conversion on fast electrons is expected to be

dN/dy (γ + e → Ps + e)

8

6

4

2

0
0.3 0.5 0.7 0.9 y

2

1

Fig. 3. Positronium spectrum dN/dy (y = E/Ee) for the pro-
cess γ + e  Ps + e. The notation for the curves is identi-
cal to that in Fig. 2.

Values of the ratio _ = σ(γ + e  Ps + e)/σ(γ + e  γ + e)

s, MeV2 3S1
1S0

3.2 2.35 × 10–9 3.23 × 10–9

4.2 2.61 × 10–9 5.88 × 10–9
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free from hadron admixtures since the energy threshold
for the production of even one pion pair has a formida-
ble value of Emin ≈ 2 × 104 TeV in relation to the laser-
photon energy of ω ≈ 1 eV.
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Abstract—A formalism for describing semileptonic decays of pseudoscalar mesons is developed on the basis
of the instant form of relativistic Hamiltonian dynamics. By way of example, this formalism is applied to the
decay process K–  π0 + µ– + . Relevant calculations are performed with wave functions that correspond
to various models of constituent-quark interactions in mesons. Free parameters that appear in these models are
determined from a fit to the root-mean-square radii of the kaons and pions. The results of the calculations agree
well with experimental data. © 2000 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Describing the properties of mesons on the basis of
constituent-quark models is an important line of inves-
tigations in elementary-particle physics. Interest in
such issues is provoked, first, by a vast body of avail-
able experimental information about mesons [1], which
permits fixing model parameters involved and making
quantitative predictions; second, by the experiments
that are being now conducted at JLab [2], where much
attention is being given to studying the properties of
mesons; and, third, by the inability of the present-day
theory to reproduce, on the basis of QCD first princi-
ples, the majority of the meson properties, which are
determined primarily by large- and intermediate-dis-
tance physics not described by perturbation theory. The
existing approaches that treat mesons on the basis of
constituent-quark models differ both by underlying
principles and, to a considerable extent, by results [3–
24]. Therefore, searches for new formulations of the
constituent-quark model are of great topical interest.

In studying the properties of mesons, an important
role is played by weak decays, which furnish rich infor-
mation about quark interaction in mesons. In particular,
many important parameters of the Standard Model,
such as the elements of the Cabibbo–Kobayashi–
Maskawa matrix, can be extracted from data on semi-
leptonic decays [21]. A constituent-quark-model calcu-
lation of the decays of mesons featuring heavy quarks
makes it possible to determine the coefficients in the
expansion of transition form factors in inverse powers
of the heavy-quark mass. It is well known that these
coefficients appear in heavy-quark effective theory as
well and that, at present, they cannot be computed on
the basis of QCD first principles [14].

1) Institute of Nuclear Physics, Moscow State University, Voro-
b’evy gory, Moscow, 119899 Russia.
1063-7788/00/6302- $20.00 © 20244
Special features of quark systems stem from the rel-
ativistic nature of quarks. This concerns primarily sys-
tems formed by light quarks; however, relativistic
effects can be pronounced even in systems featuring
heavy quarks. Among relativistic formulations of the
constituent-quark model, the following are the most
popular ones: (i) quasipotential approach [11, 14],
(ii) dispersion method [15], (iii) methods of relativistic
Hamiltonian dynamics (see, for example, [3, 5, 13, 17–
24] and references therein), and (iv) methods that are
closely related to the preceding group and which for-
mulate a constituent-quark model in the infinite-
momentum frame [4, 6].

In the present study, a formalism for describing
semileptonic decays of pseudoscalar mesons is devel-
oped on the basis of the instant form of relativistic
Hamiltonian dynamics [17, 18, 22]. This formalism is
then applied to describing semileptonic kaon decays.

This article is organized as follows. In Section 2, we
give a brief account of the formalism of relativistic
Hamiltonian dynamics. In Section 3, a general proce-
dure for parametrizing the matrix elements of local
operators is used to obtain an expression for the matrix
element of the weak current for the semileptonic-decay
process and to derive an integral representation for the
corresponding form factors. In the impulse approxima-
tion, the form factors for the semileptonic-decay pro-
cess are expressed in terms of the relativistic wave
functions of quarks in mesons and so-called free two-
particle form factors. In Section 4, the latter are calcu-
lated by the methods of relativistic kinematics. In Sec-
tion 5, the advantages of the developed formalism are
demonstrated by applying it to the decay K–  π0 + µ– +

. The calculations are performed with wave func-
tions based on essentially different models of constitu-
ent-quark interaction in mesons. The results that we
obtained without recourse to any fitting procedure—all

νµ
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free parameters of the problem are independently fixed
in evaluating the root-mean-square parameters of the
pion and of the kaon within the same models [18]—
comply well with experimental data.

2. FUNDAMENTALS OF RELATIVISTIC 
HAMILTONIAN DYNAMICS

In treating constituent-quark systems within a rela-
tivistic theory, there exist two essentially different
approaches.

The first of these relies on field-theoretical methods.
Based on the principles of QCD, it is justifiably deemed
to be the most consistent approach to solving the prob-
lem in question. The limitation of conventional pertur-
bative QCD is that it provides reliable computational
recipes only in dealing with hard processes, but the cal-
culation of the features of hadrons requires considering
soft processes, where perturbative QCD fails.

Within field theory proper, there exist various methods
for sidestepping this problem. These include the popular
method of QCD sum rules [25], approaches relying on the
Bethe–Salpeter equation [8, 9, 26], quasipotential
approaches [27, 28] (their application to quark systems is
discussed in [11, 14]), and the dispersion-relation approach.

The second method in the theory of composite sys-
tems—it is the method that we will use here—is based
on a direct realization of the algebra of the Poincaré
group on the set of dynamical variables of the compos-
ite system being considered. This approach is referred
to as the theory of direct interaction or relativistic
Hamiltonian dynamics.

Fundamentally, relativistic Hamiltonian dynamics
differs from quantum fields theories in that the former
describes a composite system in terms of a finite number
of degrees of freedom. In order to render a description
within relativistic Hamiltonian dynamics covariant, a sin-
gle-valued unitary representation of the non-homoge-
neous SL(2, C) group, which appears to be a universal
cover of the Poincaré group, is constructed in the Hilbert
space of states of the composite system featuring a finite
number of degrees of freedom. It is worth noting from the
outset that establishing connections between relativistic
Hamiltonian dynamics and field theory is a challenging
problem that has yet to be solved conclusively [23, 30].

Presently, light-front dynamics [3, 5, 10, 13, 19, 21,
23, 24] is the most popular form of relativistic Hamil-
tonian dynamics. In its traditional formulation, this
form of dynamics possesses, along with a number of
merits, a serious flaw—it is not invariant under rota-
tions. One of the consequences of this is that the form
factors of composite systems cannot be determined
unambiguously [16]. In this connection, there appeared
studies that rely on alternative forms of dynamics—for
example, a pointlike one [20, 31].

In the present study, we make use of the instant form
of relativistic Hamiltonian dynamics in the formulation
developed in [12, 17, 18, 22].
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The fundamentals of relativistic Hamiltonian
dynamics are considered in detail elsewhere [32–35].

We will briefly describe the way in which the wave
function is introduced in relativistic Hamiltonian
dynamics. By analogy with nonrelativistic quantum
mechanics, the wave function of a composite system in
relativistic Hamiltonian dynamics is defined as an
eigenfunction of a complete set of commuting opera-
tors of dynamical variables [33]. However, a novel fea-
ture of the relativistic approach in relation to the non-
relativistic one is that, in the former, dynamical vari-
ables satisfy algebraic relations of the Poincaré group
[33]. In the instant form of dynamics, the above com-
plete set is chosen to be

(1)

Here,  =  +  is the operator of the square of the
mass of the system of particles being considered, where

 is the analogous operator for the same system of par-

ticles with interaction switched off, and  is the interac-

tion operator;  is the operator of the square of the total

angular momentum;  is the operator of its third compo-

nent; and  is the operator of the total 3-momentum. The
last three operators coincide with the corresponding oper-
ators for the system of noninteracting particles.

In order to calculate the wave function, it is neces-
sary to choose a basis in the Hilbert space of the states
of the system. Of all possible bases, we will consider
below only two. Since relativistic Hamiltonian dynam-
ics is specified in terms of a finite number of degrees of
freedom, the Hilbert space of the states of the system of
interacting particles represents a direct product of sin-
gle-particle Hilbert spaces. For example, the Hilbert
space of the states of a meson appears to be the direct
product of two spaces corresponding to a quark q and
an antiquark :  ≡ *q ⊗  . Thus, we can see
that, in relativistic Hamiltonian dynamics, a meson-
state vector appears to be a superposition of only two-
particle states; hence, a basis in  can be chosen, for
example, as follows:

(2)

Here, p1 and p2 are the quark and antiquark 3-momenta,
while m1 and m2 are the corresponding spin projections
onto the z axis.

In the following, we will use an alternative represen-
tation where the basis is chosen in such a way that cen-
ter-of-mass motion is singled out explicitly:

(3)

M̂I
2
, Ĵ

2
, Ĵ3, P̂.

M̂I
2

M̂0
2

Û

M̂0
2

Û

Ĵ
2

Ĵ3

P̂

q *qq *q

*qq

p1 m1; p2 m2,,| 〉 p1 m1,| 〉 p2 m2,| 〉 ,⊗=

p m p' m',,〈 〉 2 p0δ p p'–( )δmm' .=

P s J l S mJ, , , , ,| 〉 .
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Here, Pµ = (p1 + p2)µ with  = s,  being the invariant
mass of the two-particle system in question; l is the
orbital angular momentum in the c.m. frame; S is the
total spin in the c.m. frame [S2 = (S1 + S2)2 = S(S + 1)];
J is the total angular momentum; and mJ is the third
projection of the total angular momentum.

The basis in (3) is related to the basis in (2) via the
Clebsch–Gordan expansion of the Poincaré group. A
more detailed description of the relevant procedure can
be found in [36]. Here, we only present the eventual
result, which has the form

(4)

The Clebsch–Gordan coefficient appearing in (4) is
given by

(5)

where Mq and  are, respectively, the quark and the

antiquark mass; (ϑ, ϕ) are spherical harmonies;

and Dj are rotation matrices, which are necessary for
the composition of particle spins in a Lorentz invariant
way. For a spin of one-half, the required rotation matrix
has the form

(6)

From the group-theory point of view, the vectors in
(3) form a basis of that irreducible representation of the
SL(2, C) group which describes the system of two non-
interacting particles that is characterized by a fixed
invariant mass and a fixed total angular momentum. In
this representation, a vector is determined by eigenval-
ues of the complete set of commuting operators con-
structed from the generators of the Poincaré group for
the system of noninteracting particles:

(7)

Pµ
2 s

P s J l S mJ, , , , ,| 〉
p1d

2 p10
----------

p2d
2 p20
---------- p1 m1; p2 m2, ,| 〉∫

m1m2

∑=

× p1 m1; p2 m2 P s J l S mJ, , , , ,, ,〈 〉 .

p1 m1; p2 m2 P s J l S mJ, , , , ,, ,〈 〉

=  2s s2 2s Mq
2 Mq

2+( )– Mq
2 Mq

2–( )2
+[ ]

1/2–

× 2P0δ P p1– p2–( ) m1 D1/2 p1P( ) m̃1

m̃1m̃2

∑

× m2 D1/2 p2P( ) m̃2 1 2 1 2⁄ m̃1m̃2 SmS⁄
mlmS

∑
× Ylml

ϑ ϕ,( ) SlmSml JmJ〈 〉 ,

Mq

Ylml

D1/2 p1 p2,( ) ω 2⁄( )cos 2i k j⋅( ) ω 2⁄( ),sin–=

ji jk,[ ] iεikl jl, k
p1 p2×[ ]
p1 p2×[ ]

------------------------,= =

ω 2
p1 p2×[ ]

p10 M1+( ) p20 M2+( ) p1 p2⋅( )–
------------------------------------------------------------------------------.arctan=

M̂0
2

P̂
2

Ĵ
2

Ĵ3 P̂., , ,=
The orbital-angular-momentum and the total-spin oper-
ator taken separately are not generators of the SL(2, C)
group; therefore, they do not enter into the complete
commuting set in (7). At a fixed value of the total angu-
lar momentum J, the total spin S and the orbital angular
momentum l are not fixed in general; that is, the quan-
tities S and l singled out in the c.m. frame play the role
of degeneracy parameters. These quantities can be
defined in an invariant way [36]. In describing scalar
and pseudoscalar mesons, there is no degeneracy in
these variables (l = 0 and S = 0), so that they are imma-
terial here.

The representation that corresponds to the set of
operators in (7) and which describes the system of two
noninteracting particles differs from the representation
that is determined by the set of operators in (1) and
which describes the set of interacting particles; how-

ever, the operators , , and  enter both into (1) and
into (7).

The calculation of the wave function of two nonin-
teracting particles amounts to diagonalizing the set of
operators in (1). If the basis in (3) is used for this, then
three operators that enter both in (1) and in (7) will
appear to be diagonal. Thus, the problem of calculating
the wave function in basis (3) can be reduced to diago-

nalizing the operator .
In all versions of relativistic Hamiltonian dynamics,

the eigenvalue problem for the operator  is formu-
lated in terms of the nonrelativistic Schrödinger equa-
tion [33]. It follows that, apart from the normalization
factor, the nonrelativistic meson wave function calcu-
lated within some model featuring a phenomenological
potential can be chosen for a wave function within rel-
ativistic Hamiltonian dynamics.

The wave function for pseudoscalar mesons in the
instant form of dynamics has the form

(8)

In the following, we will consider only pseudoscalar
mesons; that is, we set J = l = S = mJ = 0.

The wave function of internal motion is given by

(9)

and is normalized by the condition

(10)

Ĵ
2

Ĵ3 P̂

M̂I
2

M̂I
2

P' s' J' l' S' mJ' |pc, , , , ,〈 〉

=  NCδ P' pc–( )δJ J'δmJmJ' δll'δSS'ϕc k( ),

k
s2 2s Mq

2 Mq
2+( )– Mq

2 Mq
2–( )2

+[ ]
1/2

2 s
-------------------------------------------------------------------------------------,=

NC 2 pc0
NCG

4k
---------, NCG

2P0( )2

8k s
----------------.= =

ϕc k s( )( ) s 1 Mq
2 Mq

2–( )2
s2⁄–[ ]u k( )k=

u2 k( )k2 kd∫ 1.=
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As was discussed above, any model wave function can
be taken for u(k).

The relativistic wave function in the form (9) coin-
cides with the wave function constructed in [37] by
means of a minimal relativization. The wave function
obtained within the scheme of a minimal relativization
differs from the corresponding nonrelativistic wave
function by a normalization factor whose explicit form
is obtained from the normalization condition featuring
the relativistic density of states. This can clearly be
demonstrated by setting Mq =  = M in (9), in which
case the transition to the relativistic density of states

reduces to the substitution k2dk  k2dk/2 .
Thus, we can see that, within relativistic Hamilto-

nian dynamics, the conditions of relativistic invariance
that are expressed in the form of algebraic relations of
the Poincaré group can be made consistent with poten-
tial approaches to describing composite systems.

In calculating the electroweak properties of mesons,
we use the following model wave functions:

(i) the harmonic-oscillator wave function (see, for
example, [5])

(11)

(ii) the wave function that was presented in [13] and
which involves negative power-law exponents,

(12)

(iii) the wave function featuring linear confinement
and a Coulomb behavior at small distances [38],

(13)

where a and b are the parameters of, respectively, the
linear and Coulomb components of the potential, while
Mr is the reduced mass of the two-particle system.

3. FORM FACTORS FOR SEMILEPTONIC 
DECAYS OF PSEUDOSCALAR MESONS

In the following, we consider weak decays of the
types

The invariant amplitudes for these processes can be
represented as (see, for example, [39])

(14)

where 〈l–νl | |0〉  and 〈pc|Jµ| 〉  are, respectively, lep-

tonic and hadronic components of the amplitudes; 

Mq

k2 M2+( )

u k( ) NHO k2 2b2⁄–( );exp=

u k( ) NPL k2 b2 1+⁄( ) n–
, n 2 3;,= =

u r( ) NT αr3/2– βr–( ),exp=

α 2
3
--- 2Mra, β Mrb,= =

K π0 l ν l,+ +

B D l ν l, D K l ν l.+ + + +

W
GF

2
------- pc Jµ pc'' l–ν l jl

µ 0 ,=

jl
µ pc''

pc''

and pc are the momenta of the initial and final mesons;
and GF is the Fermi constant of weak interaction.

For the matrix element of the transition current in
terms of the form factors, the conditions of relativistic
covariance yield the conventional expression

(15)

where  = (pc – )µ,  = (pc + )µ, and t = (pc –

)2.

Let us expand the matrix element (15) in the basis
given by (3). Since the relations J = l = S = 0 hold for
pseudoscalar mesons, we will henceforth suppress the
corresponding symbols in the basis vectors. Taking into
account (8), we obtain

(16)

=

where ϕc' and ϕc are the wave functions of, respectively,
the initial and the final meson.

In the integrand on the left-hand side of (16), we
will now consider the matrix element of the weak-cur-
rent operator. The current operator describes a weak
transition of the system consisting of two interacting
quarks and depends on interaction. Under the Poincaré
group, it transforms according to the representation
determined by the set of operators in (1). Recall that, in
the instant form of dynamics, the generators of Lorentz
transformations depend on interaction [33]. In view of
this, the conditions of Lorentz covariance impose
severe constraints on the current operator. In particular,
the condition of Lorentz covariance is violated by the
representation of the current operator as the sum of sin-
gle-particle (quark) currents; that is, the popular
impulse approximation [31] employing the current in
the form

(17)

where  are single-particle operators and I1, 2 are
identical operators acting in the corresponding single-
particle spaces, is incompatible with Lorentz covari-
ance. As a matter of fact, the current-operator represen-
tation in the form (17) amounts to replacing the current
operator of the system of two interacting particles by
that for two free particles, the latter being denoted in
(17) by J(0)µ.

The noncovariance of the approximation specified
by (17) is clarified by the following argument. The
operators Jµ and J(0)µ transform according to different
representations of the Poincaré group [those that are
determined by the operators in (1) and (7), respec-

pc Jµ pc'' P–
µF– t( ) P+

µF+ t( ),+=

P–
µ pc'' P+

µ pc''
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NCNC'
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NCG
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NCG'
----------ϕc k s( )( )∫

× pc s Jµ pc'' s', , ϕc' k s'( )( )

P–
µF– t( ) P+

µF+ t( ),+

Jµ
 . j1

µ I2 j2
µ I1⊗+⊗ J 0( )µ,=

j1 2,
µ
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tively]. Since the Lorentz transformation operator in
the instant form of relativistic Hamiltonian dynamics
depends on the interaction operator, which mixes the
variables of the first and second particles, we can state
that, upon the application of the Lorenz transformation
in representation (1) to (17), two-particle currents must
appear in the new reference frame, in addition to single-
particle currents.

The problem of rendering the conditions of covari-
ance of the current matrix elements consistent with
approximations of the type (17), an important problem
in relativistic Hamiltonian dynamics indeed, is dis-
cussed in many studies (for an overview, see [34]; for a
more recent discussion, see, for example, the study of
Lev [31]). It should be noted that other relativistic for-
mulations of the constituent-quark model run into a
similar problem [40].

In the present study, we follow the procedure
adopted in [12, 17, 18, 22]; that is, we begin by deter-
mining, on that basis of the Lorentz covariance condi-
tions, the most general form of the current-operator
matrix element in (16) and then formulate the impulse
approximation in terms of form factors that parametrize
the current matrix element.

In order to establish the most general form of the
above matrix element, we generalize the method for
parametrizing the matrix elements of local operators
that was developed in [41].

For the current-operator matrix element on the left-
hand side of (16), we will use a representation similar
to that for the current matrix element in (15). The dif-
ference of the current matrix elements in (15) and in
(16) consists in that the basis of representation (1) and
the basis of representation (7) are used in (15) and (16),
respectively. It is worth noting that, in (15), both the
basis vectors and the operator itself transform accord-
ing to the same representation of the Poincaré group. It
is this feature that makes it possible to construct the
covariant part of representation (15)—that is, the 4-
vectors on the right-hand side of (15)—from variables
entering into the vectors. On the contrary, the operator
and vectors in (16) transform according to different
representations of the Poincaré group [those that are
specified by (1) and (7), respectively]; therefore, the
covariant part of the matrix element cannot be con-
structed here from variables entering into the vectors.

The current-operator matrix element on the left-
hand side of (16) will be sought in a form that is dic-
tated by the covariant properties of the current operator
as a 4-vector. Specifically, we set

(18)

where aµ(s, t, s') and bµ(s, t, s') are some 4-vectors
whose explicit form will be indicated later, while

NC

NCG
---------

NC'

NCG'
--------- pc s Jµ pc'' s', ,

=  aµ s t s', ,( )G1 s t s', ,( ) bµ s t s', ,( )G2 s t s', ,( ),+
G1(s, t, s') and G2(s, t, s') are invariant functions (form
factors). A feature that distinguishes the parametriza-
tion in (18) from the parametrization in (15) is that, in
the former, both the form factors and the 4-vectors
depend on additional variables, the invariant masses of
the initial and of the final state.

With the aid of (18), we further recast equation (16)
into the form

(19)

The explicit expressions for the vectors aµ and bµ in
(19) can be found in the following way. Relation (19)
represents an equality of two 4-vectors that is bound to
hold for any wave function of internal motion. It should
be emphasized that, in varying the wave function of
internal motion—that is, in going over from one model
of quark interaction in a meson to another—the vectors

 and  remain unchanged, because they are
expressed in terms of the meson 4-momentum [see
equation (15)], which is independent of the internal
motion of the constituent quarks. Only the form factors
F–(t) and F+(t) change under the above variations. Thus,
we conclude that, for any wave function describing the
internal motion of the quarks, the 4-vector on the right-
hand side of equation (19) appears to be a linear com-

bination of the 4-vectors  and ; that is, it lies in
the hyperplane spanned by these two vectors.

At the same time, the dependence of the 4-vectors aµ
and bµ on the variables of integration implies that, in the
case of an arbitrary choice of the wave function, the 4-
vector on the left-hand side of (19) is generally arbi-
trary as well; that is, it is not bound to lie in the hyper-

plane spanned by the 4-vectors  and .

Thus, we conclude that, for the equality in (19) to
hold for any wave function of internal motion, it is suf-
ficient that the 4-vectors aµ and bµ be constant (inde-
pendent of the integration variables s and s') and be lin-

ear combinations of the 4-vectors  and . Taking

into account this and the fact that the 4-vectors  and

 are linearly independent, we obtain two scalar
equalities that can be represented as

(20)

The form factors G+(s, t, s') and G–(s, t, s') are linear
combinations of the form factors G1(s, t, s') and G2(s, t, s')
from (18).

The equality in (20) was obtained from the require-
ment of gauge covariance; it expresses the form factors
for semileptonic decays of pseudoscalar mesons in

s s'ϕc k s( )( ) aµ s t s', ,( )G1 s t s', ,( )[dd∫
+ bµ s t s', ,( )G2 s t s', ,( ) ]ϕc' k s'( )( )

=  P–
µF– t( ) P+

µF+ t( ).+

P–
µ P+

µ

P–
µ P+

µ

P–
µ P+

µ

P–
µ P+

µ

P–
µ

P+
µ

F± t( ) sd s'ϕc k s( )( )G± s t s', ,( )ϕc' k s'( )( ).d∫=
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terms of the wave functions (8) in relativistic Hamilto-
nian dynamics and the form factors G±(s, t, s') parame-
trizing the weak-current-operator matrix elements in
the basis given by (3).

Let us now formulate the impulse approximation
according to (17), but now in terms of the form factors
G±(s, t, s'). As was indicated above, the representation
(17) of the weak-current operator implies physically
that the current operator that describes a weak transi-
tion of the system featuring two interacting quarks is
replaced by the so-called free-current operator that
describes a transition in the system of two noninteract-
ing quarks. In our formulation, this approximation
means that, in expression (20), the form factors G±(s, t, s'),
which parametrize the current-operator matrix element
in the case where the interaction, is present are replaced
by form factors that parametrize the matrix element of
the free-current operator J(0)µ in basis (3). In the follow-
ing, the latter will be referred to as free two-particle
form factors. The next section will be devoted to calcu-
lating these quantities by the methods of relativistic
kinematics.

Let us now discuss the problem of unambiguity in
calculating the form factors for composite systems
within our approach to relativistic Hamiltonian dynam-
ics. Since sectors featuring a fixed numbers of particles
are considered in relativistic Hamiltonian dynamics,
different options for current matrix elements or differ-
ent options for reference frames can lead to different
solutions for the sought form factors [42, 43, 23]. In
this connection, it was proposed in [43] to introduce
explicitly the dependence of current matrix elements on
some spacelike 4-vector λµ determining the surface on
which initial conditions are specified for the vectors of
states of the composite system in question. The form
factor for this vector describes nonphysical contribu-
tions to the matrix element that arise because of the use
of only those sectors that feature a fixed number of par-
ticles. This form factor is referred to as a nonphysical
one [23].

It should be noted that expression (15), which was
used previously for the weak current, is derived from
the conditions of relativistic covariance exclusively and
is independent of λµ—that is, it has nothing to do with
any model concepts of the internal structure of mesons.

The criterion proposed in (43) for choosing a solu-
tion for form factors in relativistic Hamiltonian dynam-
ics prescribes that matrix elements that are independent
of the nonphysical form factor be taken for calculating
form factors. For semileptonic meson decays, this pro-
cedure was implemented in [23].

The λµ dependence of the matrix element (15) of the
meson current according to [43] can be considered
within our formalism as well. In this case, the right-
hand side of (19) will involve, as an additional term, the
vector λµ multiplied by the nonphysical form factor. At
the same time, all form factors will generally depend on
some additional scalar composed of the 4-vectors λµ,
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, and . Thus, we can see that, upon a variation of
the wave function in a way similar to that used to derive
equation (20), we obtain the right-hand side in the form
of a vector that appears to be a linear combination of the

independent 4-vectors λµ, , and . If we addition-
ally require fulfillment of the equality in (19) for any
wave functions describing the internal motion of the
quarks in a meson, the vectors on the left-hand side will
prove to be constant (independent of the variables of
integration) and have the form of linear combinations
of the same three 4-vectors. In view of the indepen-
dence of these 4-vectors, integral representations simi-
lar to (20) are obtained for all form factors. It follows
that the result will not then depend on the choice of the
4-vector λµ.

We further emphasize that, for physical form fac-
tors, it is convenient to use the relativistic impulse
approximation that is formulated in terms of the form
factors G±(s, t, s') and which was discussed above. In
this approximation, the dependence of physical form
factors on the additional scalar drops out, since the free
two-particle form factors do not feature this scalar.

4. FREE FORM FACTORS FOR SEMILEPTONIC 
DECAYS OF PSEUDOSCALAR MESONS

In the conventional impulse approximation, the cur-
rent operator for the system of two interacting particles
is replaced, according to (17), by the current operator
for the corresponding system of free particles. Bearing
this in mind, we will consider the system of two free
quarks. For this system, the matrix element of the weak
transition current can be written in the basis (2) of the
individual quark momenta and spins. In the impulse
approximation, this matrix element has the form

(21)

where it has been considered that only one quark of the
system undergoes a weak transition (see Fig. 1). In
(21), the right-hand side, which involves a single-parti-
cle current, can be expressed in terms of single-particle
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Fig. 1. Diagram for the semileptonic decay of a pseudosca-
lar meson.
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form factors for the quarks. In the standard Dirac
parametrization, the relevant expression has the form

(22)

p m jµ p' m',,

=  um p( ) F1Pµ F2qµ F3γ
µ+ +[
where um'(p') and um(p) are Dirac bispinors, while Fi =
Fi(t) with t = q2 = (p – p')2 are Dirac form factors. It the
following, it is, however, more convenient to use the
matrix element of the single-particle current from (21)
in a different parametrization, that from [41],

+ F4γ
5γµ F5γ

5qµ F6γ
5Pµ ]um' p'( ),+ +
(23)
p m jµ p' m',, m D1/2 p' p,( ) m''

m''

∑=

× m'' f 1Pµ f 3qµ f 2Pµ f 4qµ+( ) pΓ p'( )[ ] f 5Γ
µ p'( ) f 6Rµ+ + + + m' .
           
Here, Γµ(p') is the quark-spin 4-vector, Rµ = eµνλρ ×
pν Γρ(p'), and  is the spin-rotation matrix [41].

The form factors appearing in (22) and (23) can be
related easily to one another. Here, we present only those
relations that we will need in the following. We have

(24)

Let us now express the matrix element of the current of
the system of two free particles in terms of free two-
particle form factors. It is the objective of this section
to calculate these form factors. The corresponding tran-
sition current can be written in the basis given by (3).
For the matrix element of the current in this basis, we
can make use of the general parametrization procedure
from [41]. As a result, we obtain

(25)

where Qµ = (P – P')µ,  = (P + P')µ, and (s, t, s')
are free two-particle form factors for semileptonic decays.
For these form factors, we will obtain explicit expressions,
which will be further substituted for G±(s, t, s') into the
representation (20) of the form factors for semileptonic
decays.

The representation in (25) is similar to that in (15),
differing from it only in that the invariant functions in
(25) depend on additional invariant variables s and s'.

The matrix elements in the bases given by (2) and (3)
are related via the Clebsch–Gordan expansion as [17, 36]
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M3 M2+( )2 t–
--------------------------------------------------------------------------------------------------,=

f 6 t( )
4M2F3 t( )

M3
2 M3 M2+( )2 t–

-----------------------------------------------.–=

P s J 0( )µ P' s',,

=  QµG–
0( ) s t s', ,( ) P̃

µ
G+

0( ) s t s', ,( ),+

P̃
µ

G±
0( )

P s J 0( )µ P' s',,
(26)

where 〈p1, m1; p2, m2|P, 〉  stands for the Clebsch–
Gordan coefficients of the Poincaré group, which are
given by (5).

Substituting (5), (21), (23), and (25) into (26) and
performing integration in the resulting expression in

the reference frame where P' = ( , 0, 0, 0) and P =
(P0, 0, 0, P), we find that the free two-particle form fac-

tors (s, t, s') can be represented as

(27)

=  
p1d

2 p10
----------

p2d
2 p20
----------

p1'd

2 p10'
----------

p2'd

2 p20'
---------- P s p1 m1; p2 m2,,,∫

× p1 m1; p2 m2 J 0( )µ p1' m1' ; p2' m2',,, ,

× p1' m1' ; p2' m2' |P' s',,,〈 〉 ,

s

P0'

G±
0( )

G+
0( ) s t s', ,( )  =  g s t s ' , ,( ) – f 3 t ( )λ s t s ' , ,( ) s s '– t – ( )[{

– 2 f 1 t( )s' t s s' t–+( )    η 1 –  s s '– t – ( )[
+ η2 s s'– t+( ) ] ] α f 6 t( )M2ξ s t s', ,( )s't α } ,sin+cos

G–
0( ) s t s', ,( ) g s t s', ,( ) f 1 t( ) s s' t–+( )2 s s'–( )[[{=

+ 2s'η1 s 3s' t–+( ) 2s'η2 3s s' t–+( ) ]–

– f 3 t( )λ s t s', ,( ) s s' t–+( ) ] αcos

– f 6 t( )M2ξ s t s', ,( )s' s s'–( ) α } ,sin

g s t s', ,( )

=  
s s s' t–+( )Θ s t s', ,( )

4 s' λ s t s', ,( )[ ]3/2 λ s' M1
2 M2

2, ,( )λ s M1
2 M3

2, ,( )
----------------------------------------------------------------------------------------------------------------,

η1 M3
2 M1

2, η2– M2
2 M1

2, η3– M2
2 M3

2,–= = =

Θ s t s', ,( ) θ s s1–( ) θ s s2–( ),–=

λ a b c, ,( ) a2 b2 c2 2 ab bc ac+ +( ),–+ +=

ξ s t s', ,( ) M1
2λ s t s', ,( )– ss't– sη2 s s'– t–( )–{=

– sη2
2 s'η1

2– s'η1 s s'– t+( ) η1η2 s s' t–+( ) } 1/2,+ +
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where θ is a Heaviside step function; Mi, i = 1, 2, 3, are
the quark masses in the process displayed in Fig. 1

(  =  and  = ); s1 and s2 are variables that
determine the kinematically admissible range of s and
s' and which are given by

p1
2 M1

2 p2
2 M3

2

s1 2, s' t
1

2M2
2

---------- s' η2+( ) t η3+( )–+=
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and α = ω1 + ω2 + ω3, ωi being the spin-rotation param-
eters from the Clebsch–Gordan expansion relating the
bases in (2) and (3) according to (4) and (5) [see also
the parametrization in (23)]. Explicitly, these parame-
ters are given by

−+
1

2M2
2

---------- λ s' M1
2 M2

2, ,( )λ t M3
2 M2

2, ,( );
ωtan 1
ξ s t s', ,( )

M3 s s' t– 2 ss'+ +( ) ss' s s'+( )   η 2 s –   –  η 1 s '+
---------------------------------------------------------------------------------------------------------------------------------------,=

ωtan 2
ξ s t s', ,( )

M3 s s' t– 2 ss'+ +( ) s s t– ss'+( ) η2 s + η1 s'+ +
--------------------------------------------------------------------------------------------------------------------------------------,=

ωtan 3
ξ s t s', ,( )

M3s' M2 s t–( ) s' M3 M2+( )2 t–[ ] η2 M2 M3+( )+ + +
-------------------------------------------------------------------------------------------------------------------------------------.=
In the impulse approximation formulated in terms of
the form factors, we replace the form factors G±(s, t, s')
by free two-particle form factors (27). Within this
framework, the form factors for semileptonic decays
can eventually be written as

(28)

As to meson electromagnetic form factors and
meson decay constants for leptonic transitions, the
expressions for these quantities in the impulse approx-
imation are obtained in quite a similar way (see [18]
and [22], respectively). It is interesting to note that, in
the latter case, the method used here to construct matrix
elements leads to the same expressions for the con-
stants of leptonic meson decays as those that are
obtained within light-front dynamics.

5. RESULTS OF THE CALCULATIONS
Expressions (20) and (28), which we obtained for

the form factors in question, can be used to calculate
semileptonic decays of any pseudoscalar mesons. By
way of illustration, we will consider the semileptonic
decay K–  π0 + µ– + . For this decay, the form fac-
tors F±(t) (15) were computed by formula (28). For the

free two-particle form factors , we used expres-
sions (27) with M1 = M3 and M2 set to the u-quark mass
mu and s-quark mass ms, respectively. In our calcula-
tions, we relied on the approximation of pointlike
quarks. In this approximation, the quark form factors in
(22) and (24) take the values of

(29)

The calculations were performed with the wave func-
tions (11), (12), and (13). The quark masses mu = md
and ms, along with the wave-function parameters b [in
(11) and (12)] and a [in (13)], are quantities to be fixed.

F± t( )   = s s ' ϕ c k s ( )( ) G ± 
0

 
( ) s t s ' , ,( )ϕ c ' k s ' ( )( ) . dd  ∫

νµ

G±
0( )

F1 t( ) F2 t( ) 0, F3 t( ) 1.= = =
The constituent-quark masses were set to the values of
mu = md = 0.25 GeV and ms = 0.35, which are used most
often in relativistic calculations. The wave-function
parameters were determined by fitting the root-mean-
square radii of the pion and the kaon, whose electro-
magnetic properties were computed in [18]. The values
obtained in this way for the parameters of the wave
functions (11)–(13) are quoted in the table. In the cal-
culations on the basis of the model specified by equa-
tion (13), the parameter b was fixed at 0.7867, which
corresponds to the value of αs = 0.59 at a scale of light
meson masses. Thus, our calculation of the semilep-
tonic decay of the kaon involves no free parameters. In
order to perform a comparison with the results pro-
duced by other approaches and with experimental data,
we have computed the quantities F+(0), λ+, and λ0,
which appear in the expansions of the form factors for
semileptonic decays at low momentum transfers:

(30)

In accordance with [1], the pion and kaon masses were
chosen to be mπ = 139.5679 ± 0.0007 MeV and
MK = 493.646 ± 0.009 MeV.

As can be seen from the table, the calculation with
each of the wave functions reproduces rather closely
the experimental values of λ+ (λ+ = 0.033 ± 0.008 [1],
λ+ = 0.029 ± 0.024 [45]). The value of λ0 = 0.004 ±
0.007, which is presented in [1], was deduced by aver-
aging the results of several experiments. In this connec-

F+ t( ) F+ 0( ) 1
λ+

mπ
2

------t …+ +
 
 
 

,=

F0 t( ) F0 0( ) 1
λ0

mπ
2

------t …+ +
 
 
 

,=

F0 t( ) F+ t( ) t

MK
2 mπ

2–
--------------------F– t( ).–=
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Values of F+(0), λ+, and λ0, which determine the slopes of the form factors (30) at low momentum transfers

Model
b, a

F+(0) λ+ λ0
Pion Kaon

(11) 0.207 0.225 0.93 0.028 0.082

(12) at n = 2 0.274 0.339 0.94 0.026 0.073

(12) at n = 3 0.388 0.480 0.93 0.026 0.074

(13) 0.0183 0.0318 0.93 0.031 0.075

Experiment 0.033 ± 0.008 [1] 0.004 ± 0.007 [1]

0.029 ± 0.024 [45] 0.062 ± 0.024 [45]

Note: The wave-function parameters were obtained by fitting the root-mean-square radii of the pion and the kaon from the electromagnetic
calculations presented in [18]. The quark masses were set to mu = md = 0.25 GeV and ms = 0.35 GeV. In the model specified by
equation (13), we used the value of b = 0.7867. The parameter b in the wave functions (11) and (12) and the parameter a in the wave
function (13) are measured in GeV and GeV2 units, respectively.
                   
tion, it was indicated in [45] that it is not quite clear
whether this averaging of λ0 is correct, because differ-
ent experiments yield markedly different results. In
particular, a new value of λ0 (λ0 = 0.062 ± 0.024) was
obtained experimentally in [45]. We emphasize that our
calculations of λ0 result in good agreement with the
experimental value from [45], irrespectively of which
function of the three listed above was used in these cal-
culations. Thus, we have reproduced available experi-
mental data on weak kaon decay. Many studies (see, for
example, [10]) devoted to calculating semileptonic
decays quote the F+(0) value appearing in (30). The
F+(0) values calculated in the present study (see table)
are very close to those obtained within light-front
dynamics [10].

6420

0.4

0.8

1.2

F+(Q2)Q2

2

4

3

1

Q2, (GeV/c)2

Fig. 2. Values calculated for F+(Q2)Q2, Q2 = –t, versus Q2 by
using the (1) wave function (11), (2) wave function (12)
with n = 2, (3) wave function (12) with n = 3, and (4) wave
function (13) with b = 0.7867. The quark masses were set to
the values of mu = md = 0.25 GeV and ms = 0.35 GeV. The
wave-function parameters are quoted in the table.
                                   

The results that we obtained here comply well with
the electromagnetic features of the pion and of the kaon
[18]. The parameter values quoted in the table provide
a good description of the electromagnetic form factors
for the pion and the kaon at all values of momentum
transfers.

That our results depend only slightly on the choice
of model at low momentum transfers is worthy of spe-
cial note.

In order to assess the model dependence of our cal-
culations, we computed the form factors 

 

F

 

±

 

(

 

t

 

)

 

 at high
momentum transfers. The results are displayed in Figs. 2
and 3. It can be seen that the model dependence in ques-
tion becomes pronounced at high momentum transfers.
This circumstance is also in accord with the results pre-

                                                     

6420
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Fig. 3. As in Fig. 2, but for F–(Q2)Q2.
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sented in [18], where the electromagnetic properties of
the pion and the kaon were calculated and where a sig-
nificant model dependence of electromagnetic form
factors was obtained at large t.

In summary, an approach to describing semileptonic
decays of pseudoscalar mesons has been developed
within the instant form of relativistic Hamiltonian
dynamics. The advantages of the formalism have been
demonstrated by considering semileptonic kaon decay,
where we arrived at good agreement with experimental
data. The results of our calculations for semileptonic
kaon decay are consistent with the results of the calcu-
lations performed in [18] for the electromagnetic prop-
erties of the pion and the kaon. In particular, the param-
eter values obtained by fitting the root-mean-square
radii of the pion and the kaon ensure accurate results for
the semileptonic decay under study as well.
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Abstract—By investigating the space of parameters of the minimal supersymmetric extension of the Standard
Model, it is shown that an observation of at least one supersymmetric particle in high-energy experiments would
increase considerably the importance of highly sensitive low-energy experiments aimed at detecting cold-dark-
matter particles assumed to be neutralinos, the lightest supersymmetric particles, which are stable. On the other
hand, nonobservation of direct signals from dark matter in such experiments can have a pronounced effect on
the strategy of high-energy searches for the light charged Higgs boson. © 2000 MAIK “Nauka/Interperiodica”.
It was indicated in [1, 2] that, owing to the concept
unifying all interactions on the basis of supersymmetry
(SUSY), low-energy experiments aimed at detecting
cold-dark-matter particles appear to be an important
supplement to collider experiments devoted to searches
for SUSY particles at ultrahigh energies. It is well
known [3] that R-parity conservation in supersymmet-
ric models implies the existence of the lightest super-
symmetric particle (LSP), which is stable. The neu-
tralino, should it appear to be the LSP, provides a natu-
ral (and currently the most popular) solution to the
problem of dark matter in the Universe.

Precision low-energy experiments are of impor-
tance in their own right and, sometimes—for example,
in the case of proton decay—prove to be a unique
source of fundamental experimental data. Searches for
dark matter may also furnish information that can
hardly be extracted from collider experiments.

In this study, we provide a specific example of how
additional information from the high-energy domain
(for instance, a determination of the mass of at least one
SUSY particle) can increase the importance of highly
sensitive low-energy experiments aimed at detecting
cold-dark-matter particles. At the same time, “zero”
signal from dark-matter detectors could, in certain situ-
ations, rule out the possibility of discovering light
Higgs bosons at modern colliders.

If the masses of some superpartners are determined
from high-energy experiments, it will imply that there
exists a lower bound on the rate of counting of relic
LSPs in direct-detection studies. The level of this
bound will presumably be reached by dark-matter
detectors in the near future [4–7]. This additional infor-
mation would at least constrain the range of possible
LSP mass values because all sfermions and gauginos
must be heavier than the LSP. For this reason, the

* e-mail: bedny@nu.jinr.ru
1063-7788/00/6302- $20.00 © 20254
region of possible values that the parameters of the
minimal supersymmetric extension of the Standard
Model (MSSM) can take would be restricted. In some
cases, this is accompanied by the emergence of a lower
bound on the event counting rate in cold-dark-matter
detectors. The most spectacular effect is expected for
the case where the squark mass and the mass of the
charged Higgs boson are known.

The basic issue is that of assessing the extent to
which investigation of supersymmetric particles at high
energies can affect the strategies and prospects of
searches for direct signals from dark matter. These
searches are usually conducted by recording recoil
nuclei resulting from the elastic scattering of relic non-
relativistic particles of dark matter in a highly sensitive
detector.

For this purpose, the MSSM parameter space was
explored at an electroweak scale of about 100 GeV. In
doing this, no account was taken of theoretical con-
straints that follow from unification of gauge and
Yukawa coupling constants, scalar-particle masses, and
so on. On the other hand, the following conditions were
imposed in studying the constraints on the MSSM
parameter space in the way indicated above. The calcu-
lated spectrum of supersymmetric particles must be
consistent with nonobservation of such particles in the
collider experiments. The relic density of neutralinos
must agree with the known age of the Universe, and the
probabilities of some rare processes must be compati-
ble with available data. Such a phenomenological
approach makes it possible to reveal only the most gen-
eral regularities, but it is the search of such regularities
that forms the subject of the present consideration. Spe-
cific realizations of the MSSM (such as supergravity)
possess a higher predictive power, involve a smaller
number of parameters, and exhibit special forms of
interplay of model features at the electroweak scale, but
000 MAIK “Nauka/Interperiodica”
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each of these realization is expected to show general
regularities as well.

At the electroweak scale, the MSSM parameter
space involves the neutralino, chargino, sfermion
(squark and slepton), and Higgs boson mass matrices.
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The explicit expressions for these matrices are given
below.

In the notation corresponding to the third genera-
tion, the squark and slepton mass matrices are given
by [8]
Mt̃
2 MQ̃

2 mt
2 mZ

2 1
2
--- eusW

2– 
  2βcos+ + mt At µ βcot–( )

mt At µ βcot–( ) MŨ
2 mt

2 mZ
2 eusW

2 2βcos+ + 
 
 
 
 

,=

M
b̃

2 MQ̃
2 mb

2 mZ
2 1

2
--- edsW

2+ 
  2βcos–+ mb Ab µ βtan–( )

mb Ab µ βtan–( ) MD̃
2 mb

2 mZ
2 edsW

2 2βcos+ + 
 
 
 
 

,=

M ν̃
2 ML̃

2 1
2
---mZ

2 2β,cos+=

M τ̃
2 ML̃

2 mτ
2 mZ

2 1
2
--- sW

2– 
  2βcos–+ mτ Aτ µ βtan–( )

mτ Aτ µ βtan–( ) MẼ
2 mτ

2 mZ
2 sW

2 2βcos–+ 
 
 
 
 

,=
where mZ is the Z-boson mass; mt(b) is the mass of the
conventional top (bottom) quark; mτ is the τ-lepton

mass; eu = 2/3; ed = –1/3;  ≡ sin2θW; and tanβ ≡

〈 〉/〈 〉 , 〈 〉  being nonzero vacuum expectation
values of the neutral Higgs fields. The eigenstates of
these matrices correspond to sfermions with masses
fixed at , , and .

The chargino mass matrix, which appears in the
interaction Lagrangian, has the form (mW is the W-
boson mass)

The eigenvalues of this matrix denoted by 
describe the physical states of the charginos with defi-
nite masses.

In the interaction basis – – – , the mass
matrix for the neutral Majorana fermions (neutralinos)
has the form

sW
2

H2
0 H1

0 Hi
0

mt̃1 2,
m

b̃1 2,
mτ̃1 2,

X
M2 2mW βsin

2mW βcos µ 
 
 
 

.=

χ̃1 2,
+

B̃ W̃
3

H̃1
0

H̃2
0

Y

M1 0 mZcβsW– mZsβsW

0 M2 mZcβcW mZsβcW–

mZcβsW– mZcβcW 0 µ–

mZsβsW mZsβcW– µ– 0 
 
 
 
 
 
 

,=
where sβ = sinβ, cβ = cosβ, etc. The four eigenstates of
this matrix describe the four physical states of the neu-
tralino. As was mentioned above, the lightest of these,
LSP, is stable.

With allowance for radiative corrections, the mass
matrix for the CP-even Higgs bosons is given by [9]

where ω =  and

H
H11 H12
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Here,  = cos2β,  = sin2β, and g( , ) = 2 –

ln . The eigenvalues of the matrix H repre-

sent the masses of the CP-even Higgs bosons:

The mass of the charged Higgs boson is

where ∆ch is the contribution of radiative corrections [9].
Thus, the parameters of the gaugino mass matrix,

M1, M2, tanβ, and µ; the mass of the CP-odd (or axial)
Higgs boson, MA; the parameters of the mass matrices
for the first- and second-generation squarks and slep-

tons, , , , , and ; the parameters of the
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mass matrix for the third-generation sfermions ,

, , , and ; and the trilinear coupling con-

stants for the third generation, At, Ab, and Aτ, appear to
be free parameters of the model. This parameter set
makes it possible to calculate the masses of all SUSY
particles at the electroweak scale. Here, the parameter
values were varied in the ranges

–1000 < M1 < 1000 GeV,

–2000 < M2 < 2000 GeV,

1 < tanβ < 50,

–2000 < µ < 2000 GeV,

60 < MA < 1000 GeV,

10 <  < 1000 000 GeV2,

10 <  < 1000000 GeV2,

10 <  < 1000 000 GeV2,

10 <  < 1000000 GeV2,

–2000 < At < 2000 GeV.

Without considerable loss of generality, the remaining

sfermion mass parameters , , , ,

, and  were set to , , , and ,

respectively; the trilinear parameters Ab and Aτ were set
to zero. The main argument behind the above choice of
region for the parameters involved was that their values
seemed natural (in the case being considered, this
implied that the mass values in SUSY models must not
be considerably greater than 1 TeV). In addition, the
regions forbidden by available constraints on the
masses of the sparticles and of the Higgs bosons should
be avoided from the outset.

Procedures for directly detecting of the relic cold-
dark-matter particles rely on recording, by a highly sen-
sitive detector, recoil nuclei originating from the scat-
tering of dark-matter particles on detector nuclei. The
number of such events per unit time depends on the
velocity distribution of relic neutralinos and on their
density in the vicinity of the Earth. It also depends on
the cross section for the elastic scattering of these par-
ticles on the nuclei of a detector material; this cross sec-
tion in turn depends on a specific realization of a super-
symmetric model and on its parameters [1, 3]. In our
calculations, we employed standard formulas that can
be found, for example, in [10]. Since the present analy-
sis is aimed at an investigation of the most general
properties of relevant domains in the parameter space
and at searches for those domains where the event
counting rate reaches extreme values, it is sufficient to
use, for this purpose, the total event counting rate R (an
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integral characteristic of the procedure), the quantity
defined as an average over the spectrum of recoil nuclei
and over some other parameters. For a typical dark-
matter detector, we consider here a detector based on
73Ge nuclei.

For our analysis to be realistic, we must consider
that, if dark matter in the Universe is dominated by neu-
tralinos, the density of relic neutralinos must satisfy
known cosmological constraints associated with the
age of the Universe and with the character of its evolu-
tion. It is generally believed [11] that the contribution

of any particle species χ must obey the condition Ωχ  <
1, where the relic-density parameter Ωχ = ρχ/ρcr is the
ratio of the relic mass density of neutralinos, ρχ, to the

critical density ρcr = 1.88 × 10–29  g cm–3, and h0 is the
Hubble constant normalized in a special way. On the
other hand, the contribution to the relic density from
neutralinos must not be overly small; otherwise, they
could not play the role of dark-matter particles. It is rea-

sonable to consider the range 0.025 < Ωχ  < 1 [12].

The quantity Ωχ  was calculated by the standard
approximate formula from [13, 14] with allowance for
all possible channels of neutralino annihilation. In the
MSSM, the neutralinos appear to be various linear
combinations of the gauginos and higgsinos; therefore,
there are various annihilation channels—for example,
those that feature Z0-boson or Higgs boson exchange in
the s channel, as well as those that feature the t-channel
exchange of a scalar particle like a selectron in [15]. By
taking all the above into account, the region admissible
for model-parameter values can be considerably
reduced [13, 16, 17].

The precision measurement of the branching ratio
for the decay mode b  sγ by the CLEO collabora-
tion [10, 18], 1.0 × 10–4 < Br(b  sγ) < 4.2 × 10–4,
imposes an additional constraint on the region of
admissible model-parameter values. Within the
MSSM, this process is governed by quark-flavor-
changing neutral currents which receive contributions

from the H±–t, – , and –  loop diagrams, as well
as from the Standard Model W–t loop diagram.

Lower limits on the masses of supersymmetric par-
ticles can be derived from nonobservation of these par-
ticles at the CERN and Fermilab high-energy colliders.
In our analysis, we assumed that the masses of both
charginos, the masses of the neutralinos other than the
LSP, the masses of the sneutrino, the masses of the
selectrons, the masses of the first- and second-genera-
tion squarks, the mass of the lightest top squark, the
masses of all neutral Higgs bosons, and the mass of the
charged Higgs boson are constrained from below as

 ≥ 91 GeV;  ≥ 52, 84, 127 GeV;  ≥

66 GeV;  ≥ 60 GeV;  ≥ 200 GeV;  ≥ 85 GeV;

h0
2
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h0
2
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 ≥ 62.5 GeV; and  ≥ 62.5 GeV. These con-

straints reduce further the region of admissible model-
parameter values.

With allowance for all the above accelerator and
cosmological constraints, we scanned the parameter
space of the model under study. In doing this, we took,
at random, a point in the above regions of the parameter
space and calculated, at this point, the mass spectrum of
the supersymmetric particles (including the LSP mass
M), the relic density, and other observables. If all the
necessary conditions were satisfied—that is, the point
fell within the allowed region—the expected event
counting rate R in a germanium detector for a direct
detection of LSPs was computed; otherwise, the point
in question was discarded. Since this testing procedure
was repeated about 108 times, it was possible to deter-
mine the allowed regions for the expected event count-
ing rate R and the relic-neutralino mass M. It turned out
that, in the parameter space, a single point that obeys all
the above conditions and constraints corresponds to
each allowed point within the closed curves. Within an
error controllable in principle (which we do not discuss
here), we can state that all these points form a region of
R and M values allowed by the entire body of experi-
mental data. These regions, which result from the con-
certed action of all the above constraints, are shown in
Figs. 1 and 2.

In either figure, the shaded region bounded by the
thick solid curve was obtained as the result of scanning
the parameter space without introducing additional
assumptions about the mass values of the supersym-
metric particles. It should be emphasized that the event
counting rate is bounded from below. With increasing
LSP mass, the corresponding bound decreases from
about 10–4 events per day in 1 kg of germanium at M ~
7 GeV to 10–7 events/kg/day at the maximum LSP mass
of about 800 GeV.

In Fig. 1, we can see four contours within the shaded
domain that bound allowed regions corresponding to
different additional restrictions. The dotted curve
encloses the allowed region in the R–M plane for the
case where the lightest chargino mass lies in the range
100 <  < 140 GeV. It can be seen that the constraint

R > 5 × 10–6 event/kg/day is a straightforward conse-
quence of the existence of an upper bound on the LSP
mass (M  < 140 GeV). A very similar constraint (R >
10−5 events/kg/day) is obtained if the mass of the selec-
tron (sneutrino) is in the range 150 <  < 200 GeV.
This is shown by the solid (dashed) curve. The region
bounded by the remaining (solid) curve in Fig. 1
extends from 10–3 event/kg/day upward along the axis;
this region corresponds to the assumption that the mass
of the lightest squark in the first and second generations
lies in the range 190 <  < 230 GeV. The above
increase in the lower bound on R comes as no surprise
because the existence of at least one light squark in the

m
H

0 m
H

±

m
χ1

+

m ν̃( ) ẽ,

mq̃
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particle spectrum renders scalar interaction mediated
by this squark quite sizable. For the top-squark mass in
the range 150 <  < 200 GeV, the lower bound on R

decreases slightly.

The curves in Fig. 2 that are associated with the light
Higgs bosons are of the greatest physical interest. The
three curves in this figure correspond to the masses of
the charged Higgs boson in the ranges 290 GeV <  <

310 GeV (dashed curve), 190 GeV <  < 210 GeV

(dotted curve), and 140 <  < 160 GeV (solid curve).

In the last case, where it was also assumed that all fer-
mions are sufficiently heavy (500 GeV < ), the

lower limit on the event counting rate was at a level
10−2 event/kg/day for almost all admissible values of
the LSP mass. This value of R is thought to become
attainable in the near future for dark-matter detectors
like HDMS [4] and GENIUS [7]. As the mass of the
charged Higgs boson increases from 150 to 200 GeV
and further, the lower bound on R decreases to the value
of about 10–3 event/kg/day and further to about
10−4 event/kg/day at  = 300 GeV. So high a value of

mt̃1
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m
H

±

m
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Fig. 1. Regions (within contours) of admissible values of the
total event counting rate R (in number of events per day in
1 kg of a 73Ge detector) and the LSP mass M (in GeV). The
curves within the shaded region correspond to hypothetical
fixed values of the sfermion masses (see main body of the
text): (curve 1) sneutrino mass of  = 175 GeV, (curve 2)

selectron mass of  = 175 GeV, (curve 3) chargino mass of

 = 140 GeV, and (curve 4) squark mass of  = 210 GeV.

m ν̃( )

mẽ

m
χ1

+ mq̃

the lower bound on R for the case of light charged
Higgs bosons is also naturally explained: a small value
of  implies that the masses of all other neutral

Higgs bosons are relatively small. Hence, the strength
of the scalar interaction that is mediated by CP-even
neutral Higgs bosons and which is dominant in the case
of 73Ge cannot be less than some definite value.

From Fig. 2, it can seen that, if the mass of the
charged Higgs boson is sufficiently small (about
200 GeV), precision dark-matter detectors must record
signals from a direct interaction of dark-matter parti-
cles in a detector.

This observation seems to provide an additional
incentive to searches for the charged Higgs bosons at
high-energy accelerators because, should they be dis-
covered (and they must be sufficiently light), the impor-
tance of searches for dark-matter particles by means of
their direct detection will increase considerably.
Thereby, high-energy experiments aimed at searches
for light Higgs bosons, together with low-energy exper-
iments devoted to searches for dark matter, become
especially important for testing supersymmetric mod-
els.

On the other hand, nonobservation of dark matter
with highly precise detectors like GENIUS would
imply that, if we are going to remain within the MSSM,
all Higgs bosons are rather heavy. In this case, charged
Higgs bosons can hardly be observed at present-day
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Fig. 2. As in Fig. 1, but for fixed values of the mass  of

the charged Higgs boson. Curves 1, 2, and 3 correspond to
 = 150, 200, and 300 GeV, respectively.
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accelerators because their energies are not sufficient for
this.

In conclusion, it should be emphasized that it will be
necessary to revise some current concepts, including
those on the abundance of relic neutralinos, on the char-
acter of their interaction with matter, and on the princi-
ples of detection, if the results of searches for light
Higgs bosons at accelerators and the results of direct
searches for signals from dark matter in low-energy
experiments prove positive and negative, respectively.

The present study highlights the importance of com-
bining the above two types of current experiments in
the searches for new physical phenomena.
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Abstract—A calculation of transverse muon polarization in the  decay due to the electromagnetic interac-
tion in a final state in one-loop approach is presented. Average transverse muon polarization is found to be (2.4 ±
0.1) × 10–3 in the Dalitz plot region. © 2000 MAIK “Nauka/Interperiodica”.

Km3
0

Kµ3
0

One of the few observables that offer good prospects
for detecting CP violation beyond the Standard Model
(SM) is the transverse muon polarization (PT) in the
kaon decays K0  π–µ+ν, K+  π0µ+ν, and K+ 
µ+νγ. In the Standard Model, CP violation originates
from the complex Kobayashi–Maskawa matrix in the
quark sector [1, 2], whereas, in the lepton sector, there
is no mixing and therefore no CP violation. The trans-
verse muon polarization in these kaon decays vanishes
in the SM because only one diagram at the tree level
induces these decays and there are no interference
effects, i.e., no CP violation. A nonzero PT must arise
from new CP-violation sources beyond the SM. Non-
standard effects for PT in the Kµ3 decays were examined
in [3, 4]. It was demonstrated that effective scalar and
pseudoscalar interactions can induce a nonzero value of
PT at the level of 10–3. While the final-state electromag-

netic interactions (FSI) induce small  of the order
of 10–6 in the decay K+  π0µ+ν, one needs to distin-
guish the real CP-violation effect from the FSI in the

decays K0  π–µ+ν and K+  µ+νγ, where  is
predicted to be as large as 10–3. Note that in the decay

K+  π0µ+ν,  is zero in the one-loop approxima-
tion.

One way to obtain the T-violation polarization in the

 decays is a measurement of the difference between
the muon polarization in

K0  π–µ+ν (1)

and

  (2)

PT
em

PT
em

PT
em

Kµ3
0

K
0 π+µ–ν .
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For these two modes, the FSI induce the same 
(both signs and absolute values), whereas CP violation
gives rise to the transverse muon polarization with the
same absolute value but opposite signs. However, mea-
surement of the polarization of the µ– in the decay

   is very difficult because of a nuclear
capture of stopped µ– and its depolarization in any

material. Therefore, a precise calculation of the 
induced by the FSI is needed for extraction of the T-odd
polarization in K0  π–µ+ν.

The calculations of  in the  decay per-
formed in [5, 6] did not include the pion electromag-
netic form factor and form factors of the weak vertex.

The value of  obtained in [6] depends on the ultra-
violet cutoff parameter. These form factors were taken
into account [7], and an additional form factor was
introduced whose value cannot be extracted from the

experiment. The value of  obtained in [7] is differ-
ent from the polarization of [5] by a factor of minus

two. A calculation of  using the covariant proce-

dure which ignored the form factors of the  decay
was performed in [8]. The result of [8] agrees with [7],

but differs from  of [5] by the same factor of minus
two.

The polarization  in the decays KL  l±νl

was obtained in [9] through the usual nonrelativistic
procedure of calculation of Coulomb corrections to
decay amplitudes using the Fermi–Watson theorem.

Thus, it would be important to perform new calcula-

tions of the  using updated form factors of the 
decay. In our calculations, we followed the approach of [7].
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The transverse muon polarization  in the 
decay arises from the interference of the Born diagram
of Fig. 1a and the one-loop diagram of Fig. 1b. The

polarization  is proportional to the imaginary part
of the diagram shown in Fig. 1b. The amplitude of the
decay K0  π–µ+ν can be expressed as

(3)

where

In our calculations, we use the current PDG values of
λ+, ξ(0), Vus, and GF [10]:

(4)

where GF is the Fermi coupling constant, and Vus is the
individual matrix element of the Kobayashi–Maskawa

mixing matrix. For the amplitude of the decay  

, we have the expression

(5)

where

In the calculation of transverse muon polarization
induced by the FSI, we assume that CP holds.

In the K0 rest frame, the partial width of the decay is
written as

(6)
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The square of the matrix element of the  decay can
be written as

(7)

Here, u is a unit vector along the direction of the
muon spin in its rest frame,

(8)

ei (i = L, N, T) are unit vectors along the longitudinal,
normal, and transverse components of the muon polar-
ization,

(9)

and, also,

(10)

The Dalitz plot density of  can be written as

(11)

where

Kµ3
0

M
2 ρ0 y z,( ) 1 PLeL PNeN PTeT+ +( ) u⋅+[ ] .=

y
2Eµ

mK

---------, z
2Eπ

mK

---------;= =

eL

pµ

pµ
--------,=

eN

pµ pπ pµ×[ ]×
pµ pπ pµ×[ ]×
-------------------------------------,=

eT

pπ pµ×
pπ pµ×
--------------------;=

Pi y z,( )
ρi y z,( )
ρ0 y z,( )
----------------- i L N T, ,=( ).=

Kµ3
0

ρ0 y z,( ) 8GF
2 Vus

2 f +
K

0π–

t( )
2
Φ,=

Φ 2 pµ pK( ) pν pK( ) mK
2

pµ pν( )– 2Reχ+mµ
2 pν pK( )+=

(a)

(b)

K0

K0

ν

ν

pγ

pν

pµ

pµ

kµ

kπ π–

γ

µ+
pπ

π–

kγ
µ+

pK

Fig. 1. Diagrams of the  decay: (a) Born approximation

and (b) one-loop correction.

Kµ3
0
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(12)

(13)

The transverse muon polarization is proportional to the
imaginary part of the parameter ξ,

(14)

where

(15)

Thus, if Im(ξ) is induced by the FSI (assuming CP
invariance holds), we have

(16)

If a weak CP violation occurs and if the FSI in 
decay is negligible, we have

(17)

The requirement of unitarity of the S-matrix is used
for determination of the imaginary part of the diagram

shown in Fig. 1b. In addition, the amplitudes of the 
decays are supposed to be CP invariant, and the form
factors in expressions (3) and (5) are real.

The imaginary part of the diagram of Fig. 1b is as
follows:

for K0  π–µ+ν decay,

+ mµ
2 χ+

2 pµ pν( )
mK

4

2
------- y 2Reχ+rl+( ) 2 y– z–( )[=

– 1 χ+
2
rl–( ) 1 z– r rl–+( ) ] ,

χ+
1
2
--- ξ 0( ) 1–( ), rl mµ

2 mK
2 , r⁄ mπ

2 mK
2 .⁄= = =

PT mµmKIm ξ( ) pπ pµ× Φ,⁄=

pπ pµ× pπ
2 pµ

2
EµEπ pπpµ( )–( )2

– .=

Imχ+ Imχ–.=

Kµ3
0

Imχ+ Im– χ–.=

Kµ3
0

Average values of transverse muon polarization  and

Im(ξem) in  decay [column A: expressions (3) and (21)

were used for (t) and Fπ , respectively; column B:

(t) = 1 and Fπ  = 1]

Quantity
Method of calculation

A B

Im(ξem) 0.011 0.012

2.44 × 10–3 2.45 × 10–3

Br( ) 28.12% 23.51%

PT
em

Kµ3
0

f +
K

0π–

kγ
2( )

f +
K

0π–

kγ
2( )

PT
em

Kµ3
0

(18)

for   π+µ–  decay,

(19)

where

(20)

(21)

The momenta kπ, kµ, and kγ are defined in Fig. 1b, and

 is the pion electromagnetic form factor:

(22)

The experimental value is [11]

(23)

One can rewrite the expression (22) in the form

(24)

where

(25)

The procedure of integration of (18) and (19) is sim-
ilar to that used in [7], so that the terms containing
infrared divergences do not contribute to the transverse
muon polarization. We obtain the following expression
for Im(ξem):

(26)

Here
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(28)

(29)

(30)

(31)

Figure 2 shows the Dalitz plot of the density ρ0(y, z)
obtained using (11) with the parameters (4). The con-

tour plot of  is given in Fig. 3. It ranges from 1 ×
10–3 to 6 × 10–3 and has a high value at low pion energy.

The values of  and Im(ξem), averaged over the

Dalitz plot, and the branching ratio (Br) of the 
decay are shown in the table (column A). The calcu-
lated branching ratio is in good agreement with the
experimental value of (27.0 ± 0.4)% [10]. As seen from
the table, correctly taking into account the form factors

hardly affects the average values of  and Im(ξem)
because the form factors only slightly depend on t'. As

a result, our values of  and Im(ξem), presented in the
table, are very close to those obtained in the assumption

of  = 1 and  = 1 (column B).

A variation of λ+, ξ(0), and  in the intervals lim-
ited by two experimental errors did not show any sig-

nificant deviation of  from the value in the table. In

these limits,  = (2.4 ± 0.1) × 10–3. This, therefore,
allows us to clearly separate the T-violating muon

Λ1
2 mπ

2 λ+,⁄=

b1 b pνl( ) 2 pν p( ) pµ p( ) p2⁄ mµ
2+ +[ ]=

– 1 2χ χ2mµ
2

p2
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-------------- pπ
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--------------,–=
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–[ ] p2.⁄=
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Fig. 2. Dalitz plot of ρ0(y, z) for .Kµ3
0

z = 2Eπ/mK
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polarization, if it exists at the level of 10–3, from the

background  in the case of the decay K0  π–µ+ν,
when the experimental accuracy in the measurement of
PT reaches a level of 1 × 10–3. Note that the calculated

value of  is well below the experimental limit of
5.6 × 10–3 (σ) reached in [12].
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Abstract—The pionic decay of a possible dibaryon, d'  πNN, is studied in the model assuming the produc-
tion of 3P0 quark–antiquark pairs and in other models of effective quark–pion coupling. The vertex constants
and the form factors for pion–baryon and pion–dibaryon couplings are calculated. The effect of the internal pion
structure on decay widths is investigated. It is shown that the quark structure of the nucleon–nucleon wave func-
tion in the overlap region plays an important role in dibaryon decays, and known models of nucleon–nucleon
interaction are analyzed with allowance for this circumstance. The decay width of a dibaryon is estimated as a
function of its effective mass in nuclear matter. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Double-charge-exchange reactions of the (Z, A) +
π+  (Z + 2, A) + π– type have been considered for
some years in the literature as a promising tool for
studying short-range nucleon–nucleon correlations in
nuclei (see, for example, the review article of Kamin-
skiœ [1] and references therein). Of particular interest is
a resonance-like behavior that the relevant cross sec-
tions displayed at energies of Tπ ≈ 50 MeV for all A ≥
12 nuclei studied thus far [2]. In [2–4], these results
were interpreted as a possible manifestation of a narrow
dibaryon resonance commonly known as d' (alternative
interpretations are also possible [1]). An investigation
of angular distributions revealed that, in all probability,
this resonance decays via the emission of an S-wave
pion and a pair of S-wave protons. This decay mode is
compatible with the quantum numbers JP = 0–, T = 0 of
the dibaryon, which was previously considered within
the quark-bag model. The πNN channel is the only
allowed mode of d' decays. This explains partly the
small resonance width of  ≈ 0.5 MeV. However, the

dibaryon mass of  ≈ 2065 MeV proved overly small
to be matched with the results of six-quark calculations
based on qq interaction fitted to the baryon spectrum. In
various versions of the nonrelativistic quark model, the
d' mass lies in the range 2.3–2.5 GeV [6, 7].

We deem that the observed deficit of the d' mass
may be due to a conventional modification of hadron
properties in nuclear matter. For example, the shift
(reduction) of the ∆-isobar mass by 30–40 MeV is well
known [8]. Quantitative estimates of this shift can be
obtained by considering the virtual decay ∆  π + N
and the propagation of the interacting pion–nucleon

Γd'

Md'

1) Institute for Nuclear Research, Russian Academy of Sciences,
pr. Shestidesyatiletiya Oktyabrya 7a, Moscow, 117312 Russia.
1063-7788/00/6302- $20.00 © 20264
system in nuclear matter [9]. A similar mechanism can
be realized for d' as well, in which case the correspond-
ing virtual decay is d'  πNN. Since the d' mass 
is close to the πNN threshold (2.02 GeV), even small
variations in this mass can cause substantial changes in
the decay width (near-threshold effect of the three-body
phase space). It follows that, if a dibaryon is formed
beyond nuclear matter, even a small distinction
between its vacuum mass and the mass  that is
observed in experiments with nuclei may result in so
great a broadening of the resonance that it would be dif-
ficult to isolate it against a background. This is sup-
ported by recent data of the CHAOS collaboration [10],
who studied the (π+, π–) reaction on 4He, and by the
results of an investigation of the production of π+π– pairs
in proton–proton collisions at the CELSIUS accelerator
[11] (see also data presented in [12] for d' photoproduc-
tion on a deuteron). Although the cross sections for dou-
ble-charge-exchange reactions showed a distinct reso-
nance behavior for all A ≥ 12 target nuclei studied thus
far, the existence of a resonance peak has not yet been
confirmed, with sufficient statistical significance, in pro-
cesses occurring on light systems like p + p, d, or 4He. It
is quite possible that the distinctions between these data
from those for heavier nuclei are due to resonance broad-
ening beyond nuclear matter. In this connection, theoret-
ical estimates of the branching fraction for the decay
d'  π + N + N and a determination of the decay width

 of the dibaryon as a function of its mass  may
prove useful in resolving the question of whether the
dibaryon d' exists in nuclei and beyond them.

The first estimates showed that the width 
depends substantially on the off-mass-shell behavior of
the amplitude of nucleon–nucleon scattering (that is, on
the nucleon–nucleon interaction at small distances) and
on the form of the effective Hamiltonian of quark–pion

Md'

Md'

Γd' Md'

Γd'
000 MAIK “Nauka/Interperiodica”
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coupling. The latter requires some clarifications. Since the
d' mass is close to the πNN threshold, the behavior of the
transition matrix element is of importance in the limit
where the emitted-pion momentum k tends to zero. In the
nonrelativistic quark model, a consideration of the pseudo-
scalar and the pseudovector version of quark–pion cou-
pling in the lowest order of an expansion in v/c leads to
qualitatively different results when k  0 (that is, to zero
and a nonzero limit for the former and the latter version,
respectively). At the same time, a relativistic calculation
proper [16] (and even the inclusion of only first-order cor-
rections in v/c [13]) reveals that the above matrix element
for the case of pseudoscalar coupling does not vanish in
the limit k  0, its limiting value being determined, in
just the same way as for pseudovector coupling, by off-
mass-shell effects. In our opinion, it is useful to take into
account other off-mass-shell effects as well—for example,
those that are associated with the internal (q ) structure of
the pion. In the nonrelativistic quark model, the pion is
usually treated as a Goldstone particle having no internal
structure. It is well known, however, that, in many cases—
for example, in considering the electromagnetic form fac-
tor for the pion and pionic-decay widths of mesons [17]
and baryons [18]—it is impossible to dispense with taking
into account the internal structure of the pion.

In the present study, we consider the problem of πd'
coupling and calculate the decay width of a hypotheti-
cal d' dibaryon as a function of its mass  within the
model relying on the mechanism of the production of
quark–antiquark pairs (PQAP) in the 3P0 spin–orbit
state. This model was successfully invoked in describ-
ing the pionic decays of light hadrons [17, 20] on the
basis of the relativistic Isgur–Paton quark model [21],
where vacuum quark–antiquark pairs are produced via
the rupture of color-flux tubes. It is important to note
that, in the limit of zero pion radius, the PQAP model
is equivalent to the assumption of effective pseudovec-
tor quark–pion coupling. It follows that, by varying the
pion radius bπ, we obtain, within this approach, the
results for the pseudovector-coupling case as well.
Owing to this, the phenomenological coupling constant
of the PQAP model can be normalized to the value of
the pion–nucleon pseudovector-coupling constant fπNN.

2. EFFECTIVE QUARK–PION COUPLING

As a starting point, we will make use of the ansatz
of the PQAP model (see, for example, [20] and refer-
ences therein)—that is, the amplitude for the produc-
tion of a quark–antiquark pair via the rupture of the
color-flux tube in the form

(1)

q

Md'

tqq γ dpq pqδ pq pq+( )CαβFαβZ pq pq,( )d∫
α β,
∑–=

× 1m1 m 00–( )χαβ
m =1

m– pq pq–( )bα
+ pq( )dβ

+ pq( ),
m

∑
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where α = {sα, fα, cα} (  = { , , }) is a complete
set of the projections of the quark (antiquark) spin, fla-

vor, and color;  =  and  =  are,

respectively, the color and the flavor component of the

wave function of the product q  pair;  =

 is the spin component of this wave func-

tion; and (pq – ) is a vector spherical harmonic.
Expression (1) corresponds to the production of a q
pair in the 3P0 spin–orbit state with vacuum quantum
numbers JP = 0+ and IC = 0+, the production amplitude
being proportional to the relative momentum in the
pair, pq – , and to the phenomenological constant γ.
This hypothesis is justified in the pointlike-pion limit,
where the amplitude in the form (1) leads to conven-
tional pseudovector coupling, provided that the
requirement of Galilean invariance is taken addition-
ally into account [18]. The function Z(pq, ) is non-
zero only in the region bounded by the surface of the
color tube (usually, this is a cigarlike or a spherical
region) and determines the (relative) intensity of the
production of q  pairs in this region. The calculations
from [17, 20] revealed, however, that the shape of the
region is immaterial for a successful description of
pionic decays, because the hadron wave functions
effectively bound the region where the q  pairs are
produced. Therefore, this function can be replaced by a
constant, Z(pq, ) = 1, in which case our treatment is
equivalent to the use of the conventional nonrelativistic
version of the PQAP model [18, 19].

The amplitudes of the transition resulting in pion
emission (pion–baryon and pion–dibaryon vertices) are
defined as the matrix elements

(2)

which involve hadron wave functions in the form of the
simplest quark configurations |N〉 = |s3(b3)[3]X(ST =
1/2 1/2)〉 and |πλ〉 = |s2(bπ)[2]X(ST = 01, Tz = λ)〉  and the
dibaryon wave function

(3)

of the translation-invariant shell model. The space com-
ponents of these configurations,

β sβ f β cβ

Cαβ
1

3
-------δcα cβ

Fαβ
1

3
-------δ f α f β

q χαβ
m

1

2
------- σm{ } sα sβ

=1
m– pq

q

pq

pq

q

q

pq

M3 πλ N tqq B〈 〉 , M6 πλ NN tqq d'〈 〉 ,= =

d'| 〉 s5 p b6( ) 51[ ] X 321[ ]CSLST 110 JP 0–==| 〉=

ψN r1 r2,( ) s3 b3( ) 3[ ] X| 〉≡

∼ 2 1– b3
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etc., depend only on the relative coordinates of the

quarks involved, rn = (r1 + r2 + … + rn) – rn + 1 (n =

1, 2, …, 5) and rπ = r6 –  (the numbering of quarks
in pion–hadron vertices is illustrated in Fig. 1).

Expressions (2) for pion–hadron vertices can be rep-
resented in the form of matrix elements of the operator
of effective quark–pion coupling by defining this oper-
ator via the relation

(4)

which employs, as is usually done, the identity operator

whereby one of the quarks (q') of the initial hadron (it
simultaneously appears to be one of the quarks, q'', of
the final pion–hadron state—see Fig. 1) is formally
included in our consideration along with the q  pair.
By using the identity of quarks and by performing per-
mutations of quark indices, along with redefining them
(for details, see [18]), we arrive at the required operator
of quark–pion coupling. In the coordinate representa-
tion for the relative coordinate of the sixth quark, r5 (in
the following, we suppress everywhere the index 5), it
has the form

(5)

In order to ensure Galilean invariance, the factor ωπ/mq

was introduced here in front of the gradient term, as is

usually done. The nonlocal factor  in (5) is propor-

1
n
---

r
7

Hλ πλ tqqIq'q'' 0〈 〉 ,=

Iq'q'' dpq' pq''δ pq' pq''–( )bγ pq'( )bγ
+ pq''( ),d∫

γ
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q
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6( ) r r',( ) v τ λ–

6( )e
i
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Ô
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×
ωπ

2mq

--------- 2
i
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5
6
---k+ 

  1
ωπ

12mq

------------+ 
  k+ .

Ô
6( )

tional to the pion wave function:

(6)

In (6), we have changed the conventional normalization

of ψπ via the substitution ψπ  (4π )–3/4ψπ =

(4π )–3/2exp[–(4 )–1(r – r')2] and, simultaneously,
renormalized the phenomenological constant of q -

pair production in (1) as γ  v = (4π )3/4γ. It can be
seen easily that, in the pointlike-pion limit, bπ  0,
the nonlocal factor in (6) goes over to the contact term
proportional to a delta function, ψπ  δ(r – r'); along
with this, expression (5) reduces to the operator of local
quark–pion coupling. Comparing the result that we
obtained with the standard form of a v/c expansion of
the pseudovector-coupling operator (see, for example,
[22]), we can see that, in the lowest order in v/c, the two
expressions coincide. Assuming that the factor v is
independent of bπ, we find that, in this approximation,
it can be expressed in terms of the constant fπqq of effec-
tive quark–pion pseudovector coupling as

(7)

The latter in turn is related to the pion–nucleon cou-
pling constant fπNN by the standard equation of the

quark model: fπqq = fπNN. Thus, the phenomenological

parameter γ in (1) can be treated as a running coupling

constant, which is proportional to  for bπ  0.

3. BARYON VERTICES

The efficiency of this approach was tested by con-
sidering the baryon sector for B  πN transitions.
With respect to standard hadron phenomenology, the
present approach is advantageous in that it features a
smaller number of free parameters (fπqq, bπ, and b3) and
in that the vertex form factors are now related to the
internal structure of hadrons. By using the simplest
configurations s3[3]X, s2p[21]X, and sp2[3]X and the
radius value of b3 = 0.6 fm, which is common to all
baryons and which is peculiar to the nonrelativistic
quark model, we have calculated the vertex constants
and form factors for the B = N, ∆, N*(1535), and
N**(1440) baryons. For the pion radius, there are pres-
ently rather accurate data from the relativistic quark
model [17, 20] (bπ ≈ 0.26 fm); in our simplified
approach (based on the nonrelativistic quark model),
however, we varied the parameter bπ in the wider inter-
val 0 ≤ bπ ≤ b3 in order to investigate, within this model,
the general dependence of the pionic-decay widths of
baryons, ΓπNB, on bπ.

Ô
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Fig. 1. Diagram describing pion production from a vacuum
q  pair.q
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Let us now represent the vertex amplitude in the fac-
torized form

(8)

where mi (mf) and ti (tf) are the third projections of,
respectively, the spin and the isospin of the initial
baryon (final nucleon); fπNB is the vertex constant; and
FπNB(k2) is the vertex form factor satisfying the normal-
ization condition FπNB(0) = 1. The operator of quark–

pion coupling for the three-quark system, , differs

only slightly from . Its explicit form can be estab-
lished by making the substitution r5  r2 and by
replacing the factors 5/6 and 1/12 by 2/2 and 1/6,
respectively, in expression (5). The last factor on the
right-hand side of (8) is a kinematical factor, whose val-
ues are given in Table 1. As a matter of fact, the product
fπNB  determines the vertex amplitudes for point-

like structureless hadrons, and we obtain it by going
over, in (5), to the limit where bπ  0 and b3  0
under the condition bπ/b3 = const. In addition to the stan-
dard normalization factors from (7), the expression for

 involves only the spin–isospin matrix elements

of operators like σ(N)τ(N) and S(N∆)T (N∆) for B  N
transitions and the dimensionless parameters k/mπ,
ωπ/mπ, and (mqb3)–1. Because of the last of these, a tran-
sition to the limit b3  0 in the matrix element (8) is
nontrivial because, in the case of N* and N**, the factor
(mqb3)–1 is not compensated, so that the entire expres-
sions diverges. This means that a transition to a point-
like baryon must be accompanied by an indefinite
increase in the quark mass at a fixed value of the prod-
uct (mqb3) (mqb3 = const ≈ 1). The last condition is

equivalent to the use of running mass mq ~  in the
limit b3  0 [this is analogous to employing the run-
ning constant γ in (1) in the limit bπ  0].

Table 2 lists the values of the vertex constants and of
the pionic-decay widths of baryons, ΓπNB. The latter
were calculated on the basis of the transition matrix ele-
ments by the standard formula

(9)

where EN(k) =  and ωπ(k) = . The
expressions for the form factors FπNB are given in the

N b3( )m f t f 3Hλ
3( ) B b3( )miti〈 〉

=  f πNBFπNB k2( )KπNB
3( ) k; λ m f t f miti, ,( ),

Hλ
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3( )
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∑
miti

∑

MN
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Appendix. In presenting our results, we make use of the
following notation:

(10)

As can be seen from Table 2, the decay widths ΓπNB
calculated for N*(1535) and N**(1440) depend
strongly on the ratio of the pion and baryon radii, bπ/b3,
the value of bπ/b3 ≈ 0.5 being, in all probability, optimal
for the purpose of describing the widths of the two res-
onances. We note that, if the pion dimension of bπ =
(0.5–1)b3 is disregarded, even a correct order of magni-
tude cannot be reproduced for the width of the Roper
resonance N**(1440).

At the same time, it should be emphasized that the
simplified approach used here (Born approximation for
transition amplitudes in the lowest order in v/c) can
provide only rough (order-of-magnitude) estimates of
decay widths. More accurate estimates could be
obtained either by using well-known methods for the
unitarization of the Born amplitude or by calculating
self-energy contributions and corrections to vertex
functions within procedures for approximately solving
the Schwinger–Dyson equation (see, for example, the
recent study of Kondratyuk and Scholten [23] and ref-
erences therein). More rigorous estimates of those
types will be given elsewhere. Nonetheless, we note
that even estimates in the Born approximation may
prove very informative, as is demonstrated by the above
example of the Roper resonance.

4. DIBARYON VERTICES

In deriving estimates for the pionic width of the
dibaryon d', we follow the same scheme as that used in
the case of baryons. A significant feature that distin-
guishes the case of d' is that, here, the decay process
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Table 1.  B  π + N vertices for structureless baryons
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Table 2.  Coupling constants fπNB and baryon widths ΓπNB with respect to decays through the πN channel

B
fπNB/fπqq ΓπNB , MeV

bπ/b3 = 0 bπ/b3 ≠ 0 bπ/b3 = 0 bπ/b3 = 0.5 bπ/b3 = 1 Experiment

N – – – –

∆ 69 68.7 68 115

N* 58.5 26.2 8.1 (0.35–0.55)
a)

N** 4.3 25.3 118 (0.6–0.7)
a)

a)  = 100–250 MeV,  = 250–450 MeV.

b) .
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4
+ +=
produces a two-nucleon system in a scattering state (in
the 1S0 wave). Near the threshold, the S-wave phase
shifts for nucleon–nucleon scattering are large, which
implies that they must be taken into account in calculat-
ing the decay width. Here, we make use of the circum-
stance that the initial state (3) has a characteristic had-
ronic dimension of b6 ≈ b3 ≤ 1 fm, whence it follows
that, in the final state, only the region of small nucleon–
nucleon distances will contribute substantially to the
transition amplitude. In order to single out the contribu-
tion of small distances, we project the wave function of
nucleon–nucleon scattering onto six-quark configura-
tions, the most important ones in the region rNN ≤ 1 fm.
For this purpose, expression (2) for the transition
amplitude will be written in terms of the complete set

of intermediate states |n, f 〉 , I = |n, f 〉〈 n, f |, |n, f 〉
being precisely the six-quark configurations in question
(n is the number of oscillator excitation quanta, while f

n f,∑
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s
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s
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p
s
s
s
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Fig. 2. Modes of the (‡) deexcitation and (b) excitation of
the s5p quark configuration that are associated with the
emission of an S-wave pion.
is a symbolic notation for Young diagrams [fX], [fCT]
used to classify states). Specifically, we have

(11)

It is clear that, upon the emission of S-wave pions, the

single-particle operator of quark–pion coupling, ,
initiates transitions only into configurations that differ
from (3) either by the s  p excitation or by the p 
s excitation of one of the quarks (see Fig. 2), the contri-
bution of possible radial excitations [higher values of n
in (11)] decreasing fast with increasing principal quan-
tum number n because of orthogonality of states in the
overlap integral 〈NN|n, f 〉 . In view of this, we take into
account only the contribution of 2s excitations—an
analysis reveals that they play an important role in the
nucleon–nucleon system at small distances—and con-
sider the following six-quark configurations in the final
state:

(12)

In the configuration s4p2[42]X, we take into account all
Young diagrams that are contained in the inner product
[23]C  [42]T ([fCT] = [42], [321], [23], [313], and [214])
because each of these satisfies the Pauli exclusion prin-

M6 NN n f,〈 〉 n f, 6Hλ
6( ) d' .

n f,
∑=

Hλ
6( )

d0| 〉 s6 b6( ) 6[ ] X 23[ ]CT LST 001 JP 0+==| 〉 ,=

d2| 〉

=  s4 p2 s52s–( ) b6( ) 6[ ] X 23[ ]CT LST 001 JP 0+==| 〉 ,

d f| 〉 s4 p2 b6( ) 42[ ] X f CT[ ] LST 001 JP 0+==| 〉 .=

°
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Table 3.  Pion–dibaryon coupling constants  and coefficients  for projections onto states belonging to the nucle-

on–nucleon channel

dj {f}
/fπqq

bπ/b6 = 0 bπ/b6 ≠ 0

d0 {[6]X, [23]CT}

d2 {[6]X, [23]CT}

df {[42]X, [42]CT} 0 0

df {[42]X, [321]CT}

df {[42]X, [23]CT}

df {[42]X, [313]CT}

df {[42]X, [214]CT} 0

f πd jd' U f{ }
NN
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ciple, in contrast to the configurations |d0〉  and |d2〉 ,
which possess the trivial coordinate symmetry [6]X and
which are compatible with only one Young diagram,
[23]CT.

The computational scheme developed in the preced-
ing section is applicable within the limited basis of final
states that is given by (12). We begin by determining
the coupling constants , , and  and the

form factors (k2), (k2), and (k2) for the
transitions from the initial state (3) to the six-quark
configurations (12):

(13)

The kinematical factors  defined, as in the baryon
case, via a transition to the limit where b6  0 and
bπ  0 at constant bπ/b6 take the same value for all
dibaryon states dj = d0, d2, df. Specifically, we have

(14)

The resulting values of the coupling constants  are

quoted in Table 3, along with the algebraic factors 

f πd0d' f πd2d' f πd f d'
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6( ) d' b6( )〈 〉

=  f πd jd'Fπd jd' k2( )Kπd jd'
6( ) k; λ t f,( ).

Kπd jd'
6( )

Kπd jd'
6( ) k; λ t f,( ) 1

mqb6
-----------

ωπ

mπ
------

δt f , λ–

2π( )3/2 2ωπ( )1/2
-------------------------------------.=

f πd jd'

U f{ }
NN
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determining, in CST space, the projections of the con-
figurations |n, f 〉  onto the NN channel (for details, see
[14]). Analytic expressions for the vertex form factors

(k2) are presented in the Appendix.

The developed technique makes it possible to obtain
an analytic approximation for the total transition ampli-
tude (11) in the plane-wave approximation for the final
nucleon–nucleon state. Substituting the plane-wave
final state |NN(b3)q, tf 〉pw into (11) and performing a
summation over configurations (12) in the intermediate
state, we obtain

(15)
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where all functions dependent on q, including the func-
tion

(16)

are projections of the coordinate components of config-
urations (12) onto plane waves in the NN channel. All
calculations of overlap integrals and transition matrix
elements in the basis of quark configurations can be
performed easily [14] by using the technique of frac-
tional-parentage coefficients (see, for example, [25]).
The first term in the braced expression from (15) corre-
sponds to the transition d'  d0 resulting in the deex-
citation of configuration (3) (deexcitation mode), while
the remaining part of this expression represents contri-
butions from the transitions d'  d2, df involving the
orbital or radial excitations of this configuration (exci-
tation mode).

Substituting the values of the coefficients 
from Table 3 into (15), we can see that, because of the
destructive interference of the contributions of the d2
and df configurations, the contributions of the excitation
mode to the transition amplitude is a few times as small
as the contribution of the deexcitation mode. In the fol-
lowing, this circumstance will be used in studying the
dependence of the decay width of the dibaryon d' on the
strength of nucleon–nucleon interaction at small dis-
tances.

5. INCLUSION OF NUCLEON–NUCLEON 
INTERACTION

The total width with respect to the decay d' 
πNN is obtained by integrating the square of the Born
amplitude (11) over the entire phase space and by sum-
ming the result over the projections of the isospin tf:

(17)

In contrast to equation (15), which features plane
waves, the wave function |NN(b3)q, tf 〉  in (17) takes
fully into account nucleon–nucleon interaction [the
eigenstate Ψ(–) corresponds to the asymptotic boundary
condition in the form of the plane wave |NN(b3)q, tf 〉pw
for t  ∞]. As a result, expression (17) can be used to
test various models of nucleon–nucleon interaction at
small distances. We have performed our calculations
for two alternative models of nucleon–nucleon interac-
tion: the one-boson-exchange (OBE) potential, which
implies short-range repulsion, and the Moscow poten-
tial, which implies attraction at small distances and for-
bidden states in the discrete spectrum. Here, some brief
comments on these qualitatively different approaches

ΦNN q2( ) 10
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× NN b3( )q t f d j b6( ) t f,,〈 〉 d j t f 6Hλ
6( ) d',

d j

∑
2

.
t f

∑

to nucleon–nucleon interaction at small distances are in
order.

In the first approach (see, for example, [26]), only
hadronic degrees of freedom are taken into account in
deriving the effective nucleon–nucleon potential; as a
result, it proves rather close, at small distances, to well-
known phenomenological potentials featuring a repul-
sive core. The second approach relies on the micro-
scopic (quark) picture of nucleon overlap, as analyzed
previously in [24, 25, 27, 28]. An analysis revealed that
the characteristic behavior of the phase shifts for
nucleon–nucleon scattering at intermediate energies in
the lowest partial waves (constant negative slope of the
energy dependence of the S- and P-wave phase shifts)
admits two different interpretations. By way of exam-
ple, we will consider this point in detail for S waves.

(i) Suppose that the s6 and s4p2 quark configurations
interfere destructively in the region of nucleon overlap.
In this case, the wave function dies out at distances
rNN ≤ b3 (in just the same way as in the OBE model fea-
turing a repulsive core). For the wave function to die
out completely, it is necessary that the two configura-
tions have close weights in the region of overlap [24].

(ii) Suppose that the weight of the s4p2 configuration
is greater than the weight of the s6 configuration. Owing
to this, the wave function in the nucleon–nucleon chan-
nel develops a node at a distance of rNN ≈ b3. The above
dominance of the s4p2[42]X configuration is possible in
principle (an opposite standpoint is advocated in [29],
however), provided that the influence of exchange
forces in the six-quark system is equivalent to effective
attraction in states characterized by the nontrivial
Young diagram [42]X and to repulsion in the symmetric
[6]X state (see [27]). That the node of the radial wave
function stably occurs at rNN ≈ 0.6 fm over a wide
energy interval plays the same role for nucleon–
nucleon scattering as a repulsive core of radius rc ≈
0.6 fm [30].

In comparing the contributions of the s5p[51]X and
s3p3[32]X configurations to the nucleon–nucleon wave
function at small distances, a similar pattern was
revealed in the P waves as well.

In accordance with this analysis, a phenomenologi-
cal model of the Moscow potential, where the node
character of the wave function in the S and P waves was
proposed and where the condition of orthogonality of
the wave function in the nucleon–nucleon channel to
the symmetric configurations (of the six-quark-bag
type) s6[6]XL = 0 and s5p[51]XL = 1 was used, was pro-
posed in [30–32]. The last version of the Moscow
potential from [32] describes nucleon–nucleon scatter-
ing to the same degree of accuracy as the high-precision
potential versions featuring a core (Argonne and
Nijmegen potentials). Thus, the two models of
nucleon–nucleon interaction (OBE potential and Mos-
cow potential) lead to similar phase shifts, but they pro-
duce scattering amplitudes differing by their off-mass-
shell properties.
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The above off-mass-shell distinctions, which stem
from the use of the different dynamical models of
nucleon–nucleon interaction at small distances, mani-
fest themselves most vividly in the decay of a hypothet-

ical baryon d'. The total decay width  as a function

of the dibaryon mass  is displayed in Fig. 3 for two
alternative models of nucleon–nucleon interaction: the
OBE potential in the separable approximation [33] and
the Moscow potential from [32] with two different val-
ues of the quark radius of the pion, bπ = 0 and 0.5b3 (for
the sake of simplicity, we use here identical quark radii
of the baryons and dibaryons, b3 = b6 = 0.6 fm). At bπ =
0, we arrive at results corresponding to effective
pseudovector quark–pion coupling; for the sake of
comparison, we also present results obtained for the
case of pseudoscalar coupling. In Fig. 3, the mass 
is varied in the interval from the πNN threshold
(2.02 GeV) to the value of 2.3 GeV, which was
obtained in the calculations presented in [6, 7] and
which is peculiar to the nonrelativistic quark model.
Over this interval, the decay width calculated on the
basis of the OBE interaction is several times as great as
that corresponding to the Moscow potential. This
means that, in either case, final-state nucleon–nucleon
interaction does not violate the destructive interference
of the amplitudes for transitions into the excited config-
urations s4p2[42]X and (s4p2 – s52s)[6]X that was indi-
cated at the end of the preceding section, where it was
established on the basis of plane-wave calculations. As
a result, the conclusion that the probability of a transi-
tion into the symmetric s6[6]X state (six-quark bag)
exceeds considerably the probability of a transition into
a full superposition of excited states, which corre-
sponds to a nodal wave function in the nucleon–
nucleon channel, remains in force even upon taking the
interaction into account. By definition, the wave func-
tion in the Moscow potential is orthogonal to the s6[6]X

configuration; hence, the total width of d' must be
anomalously narrow in this model in relation to the
results generated by the OBE potential. If the dimen-
sions of the pion are assumed to be finite (bπ = 0.5b3),
the orthogonality condition is somewhat relaxed, but
this only leads to a decrease in the decay width in both
models (Fig. 3, curves 2).

The experimental values of  and  (Fig. 3,
point) are compatible with the dashed curves calculated
within the Moscow potential model; at the same time,
the OBE results (solid curves) yield a d' width greater
than that by a factor of about 4 in this mass region. With
increasing d' mass, this difference becomes greater,
achieving an order of magnitude at  ≈ 2.3 GeV. For

 ≥ 2.3 GeV, the value of  in the OBE model may
exceed 100 MeV.

Γd'
tot

Md'

Md'

Γd' Md'

Md'

Md' Γd'
tot
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6. CONCLUSION

On the basis of our results, we may conclude that the
experimental dibaryon-width value of  ≈ 0.5 MeV is
quite compatible with the assumption of the quark ori-
gin of the resonance, provided that the mass 
observed in experiments with nuclear targets is sub-
stantially smaller than values in the range 2.3–2.5 GeV,
which are peculiar to the quark model. It is quite possi-
ble that the observed value of  ≈ 2.065 GeV, which
differs significantly from theoretical estimates based on
the quark model, stems from a modification of the
properties of a dibaryon in nuclear matter. At the same
time, we note that, if the quark dibaryon d' being con-
sidered had a vacuum mass (that is, the mass outside
nuclei) in the interval 2.3–2.5 GeV, its width with
respect to decay through the πNN channel could be
greater than 100 MeV (as follows from the data in
Fig. 3, this estimate depends greatly on the choice of
model for nucleon–nucleon interaction at small dis-
tances). This would complicate the isolation of a reso-
nance peak against the background from other pion-
production processes leading, for example, to the exci-
tation of baryon resonances in the same mass region.

In this connection, we deem it desirable to estimate
theoretically the shift of the d' mass in nuclear matter.
The model of quark–pion, pion–baryon, and pion–
dibaryon couplings that was developed here may prove
very useful in deriving such estimates. It is also neces-
sary to conduct experiments aimed at studying d' for-
mation outside nuclei (for example, in electro- and pho-
toproduction on deuterons and in proton–proton colli-
sions), because a comparatively narrow resonance peak
(  ≈ 10 MeV) peculiar, in particular, to models like

Γd'

Md'

Md'

Γd'

2300220021002000
0

40

80

Γd ', MeV

Md ', MeV

PS
2
1

1

2

Fig. 3. Total decay width of the dibaryon d' as a function of
its mass for the nucleon–nucleon interaction simulated by
(solid curves) the OBE potential [33] or (dashed curves) the
Moscow potential [32]: (curves 1) results of the calculation
at bπ = 0 and (curves 2) results of the calculation at bπ =
0.3 fm. The results obtained in [14] for the case of pseudo-
vector (PS) coupling are represented by the dotted curve.
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those where nucleon–nucleon interactions are simu-
lated by the Moscow potential can manifest itself even
outside a nuclear medium.
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APPENDIX

The vertex form factors for B  π + N transitions
are given by

The vertex form factors for the transitions d'  π +
dj are

† Deceased.
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Abstract—Within a nonrelativistic quark model featuring a QCD-motivated Buchmüller–Tye potential, the
mass spectra for the families of doubly heavy baryons are calculated by assuming the quark–diquark structure
of the baryon wave functions and by taking into account spin-dependent splitting. Physically motivated evi-
dence that, in the case where heavy quarks have identical flavors, quasistationary excited states may be formed
in the heavy-diquark subsystem is analyzed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The first observation of the  meson by CDF col-
laboration at FNAL [1] opened a new era in the physics
of hadrons that contain heavy quarks. On one hand, the

 meson is the last of the heavy quarkonia ( ) and
heavy mesons featuring open charm that have become
accessible to observation. On the other hand, this is the
first long-lived hadron containing two heavy quarks. In

this sense, the  meson appears to be at the beginning
of some families that also include the doubly heavy
baryons Ξcc, Ξbc, and Ξbb (for the classification of had-
rons on the basis of the quark model, see the Review of
Particle Properties in [2]). The experimental observa-

tion of the  meson was preceded by thorough inquir-
ies into its spectroscopy and into the mechanisms of its
decay and production (for an overview, see [3]). In just
the same way, an observation of doubly heavy baryons
requires detailed and reliable knowledge of their prop-
erties. The first theoretical steps toward obtaining rele-
vant predictions were made (i) in (4), where the life-

times of the  and  baryons were estimated
within the operator-product expansion in the inverse
heavy-quark mass; (ii) in the series of articles listed in
[5], which were devoted to studying the differential and
total cross sections for ΞQQ' production in various inter-
actions within the fragmentation model, within the
intrinsic-charm model [6] (for Ξcc hadroproduction),

and within a perturbative QCD calculation to O( )
terms inclusive that takes into account not only frag-
mentation, which is dominant at high transverse
momenta (pT @ M), but also the prefragmentation
regime; and (iii) in the series of studies quoted in [7],
which were aimed at estimating the masses of some

Bc
+
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+
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+ Ξcc

++

α s
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low-lying states of doubly heavy baryons and the
masses of Ξcc excitations [8].

In the present study, we analyze basic spectroscopic
features of the families of doubly heavy baryons ΞQQ' =
(QQ'q), where q = u, d, and ΩQQ' = (QQ's).

Qualitatively, the formation of bound states in the
(QQ'q) system is governed by the existence of two dis-
tance scales that are specified by the dimension of the
doubly heavy diquark QQ', rQQ', in the color-antitriplet
state and by the confinement scale for the light quark q,
ΛQCD. For these two scales, we have the inequalities

Under these conditions, the compact diquark QQ'
appears to be merely a static source of a color QCD
field for the light quark, provided that we use the
approximation of a diquark local field. In view of this,
we can use some reliable results obtained within mod-
els of heavy mesons featuring one heavy quark [in
which case there is merely a static local source in the
antitriplet representation of the SU(3)c group]: this may
be, for example, potential models [9] or heavy-quark
effective theory [10], where the expansion is performed
in terms of the inverse heavy-quark mass. Here, we
invoke the nonrelativistic quark model based on the
Buchmüller–Tye potential [11]. Theoretically, we can
speak of the rough approximation for a light quark

(  ! ΛQCD)—which is therefore relativistic—in
the system featuring a finite number of degrees of free-
dom and an instantaneous interaction V(r). This is
because the confinement phenomenon implies the
dressing of a light quark with a sea (an infinite number
of gluons and quark pairs) and nonperturbative effects
beyond the potential approach, the correlation times of
these effects, τQCD, being about 1/ΛQCD. Phenomeno-

logically, however, the use of the constituent mass 
of about ΛQCD as a basic parameter that governs the
interaction with QCD condensates makes it possible to
tune the nonrelativistic potential model to a high preci-

rQQ'ΛQCD ! 1, ΛQCD ! mQ.

mq
QCD

mq
NP
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sion (δM ≈ 30–40 MeV) on the basis of available exper-
imental data. Owing to this, the approach being dis-
cussed becomes a reliable tool for predicting the
masses of hadrons containing heavy and light quarks.

As to the diquark QQ', it is, by and large, similar to
the heavy quarkonium , but there are some signif-
icant distinctions. The most important ones are the fol-
lowing:

(i) The (QQ'  system features an open color.

(ii) For quarks of the same flavor, Q = Q', it is nec-
essary to take into account the Pauli exclusion principle
for identical fermions.

It can be seen easily that, because of the second fea-
ture, the total-quark-spin values of S = 0 and 1 are for-
bidden for, respectively, symmetric P-even and anti-
symmetric P-odd diquark space wave functions Ψd(r)
(the corresponding values of the orbital angular
momentum for these two cases are, respectively, Ld =
2n and Ld = 2n + 1, n = 0, 1, 2, …). At the same time, a
nonzero color charge of the system (first feature) gen-
erates two problems.

First, the hypothesis of confinement in the form of a
confining potential (an indefinite growth of energy with
increasing size of the system) is generally inapplicable
to interactions within such an object. Physically, it is
rather difficult, however, to imagine a situation where a
color object of large dimensions (r > 1/ΛQCD) possess-
ing a bounded self-interaction energy interacts with
another color source within a color-singlet [with
respect to SU(3)c] state in such a way that it is confined
within a hadron of dimension r ~ 1/ΛQCD. Moreover, the
hadronic-string framework, which proved highly reli-
able, leads to the following picture: for baryons, the
string tension in a diquark with an external leg is only
one-half as great as that in the quark–antiquark pair of
the  meson; since the energy of a diquark also grows
in direct proportion to its dimension, there occurs an
effect similar to quark confinement. In addition, quark
coupling can be viewed as that which is realized via an
effective single exchange of a color object in the octet
representation of SU(3)c (it is common practice to take
the sum of scalar and vector exchanges), so that the
potentials in the singlet ( ) and antitriplet (qq') states
again differ only by the color factor of 1/2; this means
the presence of a confining potential (a linearly grow-
ing term) in QCD-motivated models for the heavy
diquark (QQ' . In the present study, the nonrelativistic

model based on the Buchmüller–Tye potential is used
for the diquark as well.

Second, the total spin S of the quarks and their total
orbital angular momentum L are conserved individu-
ally in the color-singlet state of the  system,
because the contributions of the QCD operators gov-
erning transitions between levels that are specified by
these quantum numbers are suppressed. Indeed, it can

QQ'

)
3c

qq'

qq'

)
3c

QQ'
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be shown [12] that, within a multipole QCD expansion,
the amplitudes of chromomagnetic and chromoelectric
dipole transitions are suppressed, the suppression fac-
tor being in inverse proportion of the heavy-quark
mass; this is, however, not the whole story, since of cru-
cial importance are the following two circumstances:
the above transitions can proceed only via the emission
of a color-singlet object—that is, at least two gluons are
emitted (an extra order in 1/mQ)—and it is necessary to
take into account the actual phase space in the physical
spectrum of massive hadrons, in which case the situa-
tion is naturally different from that for massless gluons.
As to the probability of a hybrid-state admixture—for
example, an admixture featuring an octet ( ) sub-
system and an extra gluon (that is, the Fock state

| g〉)—it is suppressed owing to the small dimen-

sions of the system and to the nonrelativistic motion of
the quarks (for details, see [13]). In the color-antitriplet
state, the emission of a soft nonperturbative gluon via a
transition between diquark levels determined by the
spin Sd and orbital angular momentum Ld is not forbid-
den, provided that there are no other prohibitions or
small parameters of suppression. If the quarks forming
a diquark are of the same flavor, the Pauli exclusion
principle results in that transitions may occur only
between levels that either differ both by the spin (∆Sd =
1) and by the orbital angular momentum (∆Ld = 2n + 1),
or belong to the same series of radial excitations, or are
characterized by the orbital angular momentum differ-
ence of ∆Ld = 2n. In the second case, the transition
amplitudes are suppressed in proportion to the ratio of
the diquark recoil momentum to the diquark mass; in
the first case, the transition operator changing both the
spin of the diquark and its orbital angular momentum
has an additional order of smallness either because of
an extra factor 1/mQ or because of the small dimension
of the diquark. In view of this, we can state that there
must exist quasistationary states determined by the
quantum numbers Sd and Ld. In a diquark formed by
quarks of different flavors (bc), the operators of QCD
dipole transitions resulting in a single emission of a soft
gluon are not forbidden, so that the lifetimes of the lev-
els can be commensurate with the times of bound-state
formation or with inverse level spacings. In that case,
we cannot therefore be positive about the existence of a
set of diquark excitations characterized by specific val-
ues of the spin and the orbital angular momentum.1) 

Thus, the presence of two physical scales is used
here to factorize the wave function in the problem that
involves a heavy diquark and a light constituent quark
and which is treated within the nonrelativistic quark
model. In this way, the problem of calculating the mass

1)In other words, the presence of the gluon sea in the baryon 

results in unsuppressed ∆Sd = 1 or ∆Ld = 1 transitions of the
|bc〉   |bcg〉  type between different excited states of the
diquark.

QQ'

QQ
8c

'

Ξbc
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spectrum and the characteristics of bound states in the
doubly heavy baryon reduces to two standard problems
of searches for stationary energy levels in a two-body
system. After that, we take into account relativistic
quark-spin-dependent corrections in each of the two
subsystems under study. The threshold energy for
decay into a heavy baryon and a heavy meson is a nat-
ural boundary of the region where the stable states of
doubly heavy baryons exist. It was shown in [14] that
the presence of such a threshold in various systems can
be associated with the existence of a universal feature
of confinement in QCD, a limiting interquark distance
that cannot be increased without violating the stability
of the quark–gluon field (that is, the generation of
quark–antiquark pairs from the sea begins as soon as
the interquark distance exceeds this value). In other
words, a hadronic string of length greater than the crit-
ical one decays, with a probability close to unity, into
strings of smaller dimensions. Within the potential
approach, this effect can be taken into account by
restricting a consideration of diquark excited states to
the region where the diquark dimensions are less than
the critical distance, rQQ' < rconf ≈ 1.4–1.5 fm. Moreover,
the pair-interaction model segregating the diquark
structure is reliable only for diquark dimensions
smaller than the distance to the light quark, rQQ' < rl.

A feature peculiar to the quark–diquark interpreta-
tion of a doubly heavy baryon is that the higher excita-
tions of the diquark that are characterized by different
quantum-number values can be mixed owing to the
interaction with a light quark, so that we can hardly
associate such excitations with specific values of the
quantum numbers. Below, the mechanism and charac-
ter of this effect will be described in detail.

The ensuing exposition is organized as follows. In
Section 2, we give an account of a general procedure
that makes it possible to calculate the mass spectrum of
doubly heavy baryons and which admits the inclusion
of quark-spin-dependent corrections to the QCD-moti-
vated potential. We present the results of relevant
numerical calculations in Section 3 and briefly discuss
our conclusions in Section 4.

2. NONRELATIVISTIC POTENTIAL MODEL

As was indicated in the Introduction, the problem of
calculating the mass spectrum of baryons featuring two
heavy quarks is reduced here to a consecutive calcula-
tion of diquark energy levels and the energy levels of
the system formed by a pointlike diquark with the pre-
determined parameters and a light constituent quark
interacting with this diquark. In each stage of the calcu-
lation, we apply a two-step procedure: in accordance
with the effective theory where the QCD interaction is
expanded in terms of the inverse quark mass, the non-
relativistic Schrödinger equation with a QCD-moti-
vated model potential is solved for a first approxima-
tion, whereas quark-spin-dependent corrections are
introduced as a perturbation at the second step.
2.1. Potential

For a model potential, we make use of that which is
due to Buchmüller and Tye. This potential takes into
account Coulomb-like corrections in the region of
small distances, so that the effective constant of octet-
color-state exchange between the quarks is approxi-
mated by the QCD running coupling constant in the
two-loop approximation; at large distances, a linear
growth of the interaction energy is ensured, which leads
to confinement. These two regimes appear to be
extreme cases of the effective model Gell-Mann–Low
beta function, which is presented explicitly. In the anti-
triplet state, we take into account the factor of 1/2 aris-
ing from the color structure of the quark–quark bound
state. In the interaction of the diquark with a light con-
stituent quark, this factor is equal to unity.

As was shown in [15], the nonperturbative constitu-
ent correction to the nonrelativistic-quark mass coin-
cides with the additive constant subtracted from the
Coulomb-like potential. Having determined the heavy-
quark masses from a fit of the model to the actual spec-
trum of charmonium and bottomonium,

(1)

(so that the mass of the heavy-quarkonium level was
calculated, for example, as M( ) = 2mc + E, where E
is the energy of the corresponding time-independent
solution to the Schrödinger equation with a model
potential V), we set the mass of the meson featuring one
heavy quark to M( ) = mQ + mq + E, where the last
term is now given by E = 〈T〉 + 〈V – δV〉. Here, the addi-
tive correction to the potential was introduced because
the constituent mass is determined as a part of the inter-
action energy, so that δV= mq, where a value of
0.385 GeV is used for mq according to our fit to the
heavy-meson masses.

For various systems, Table 1 quotes the energies of
levels as obtained on the basis of the Schrödinger equa-
tion with the Buchmüller–Tye potential. Some features
of the corresponding wave functions are given in Table 2.

It turned out that, to a high accuracy, the binding
energy and the wave function of the light quark are vir-
tually independent on heavy-quark flavors, since the
large diquark mass makes but a small contribution to
the reduced mass of the system and leads, in this case,
to insignificant corrections in the Schrödinger equation.
For states under the threshold for the decay of a doubly
heavy baryon into a heavy baryon and a heavy meson,
the calculated energies of levels of the light constituent
quark are

Here, the energy of a level was determined as the sum
of the constituent mass and the energy eigenvalue asso-
ciated with the relevant solution to the time-indepen-
dent Schrödinger equation. Heavy-quark effective the-

mc 1.486 GeV, mb 4.88 GeV= =

cc

Qq

E 1s( ) 0.38 GeV,=

E 2s( ) 1.09 GeV, E 2 p( ) 0.83 GeV.= =
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Table 1.  Spectrum of the QQ'-diquark levels without allowing for spin splittings: masses and root-mean-square radii

Diquark level M, GeV 〈r2〉1/2, fm Diquark level M, GeV 〈r2〉1/2, fm

bb

1S 9.74 0.33 2P 9.95 0.54

2S 10.02 0.69 3P 10.15 0.86

3S 10.22 1.06 4P 10.31 1.14

4S 10.37 1.26 5P 10.45 1.39

5S 10.50 1.50 6P 10.58 1.61

3D 10.08 0.72 4D 10.25 1.01

5D 10.39 1.28 6D 10.53 1.51

4F 10.19 0.87 5F 10.34 1.15

6F 10.47 1.40 5G 10.28 1.01

6G 10.42 1.28 6M 10.37 1.15

bc

1S 6.48 0.48 3P 6.93 1.16

2S 6.79 0.95 4P 7.13 1.51

3S 7.01 1.33 3D 6.85 0.96

2P 6.69 0.74 4D 7.05 1.35

4F 6.97 1.16 5F 7.16 1.52

5G 7.09 1.34 6H 7.19 1.50

cc

1S 3.16 0.58 3P 3.66 1.36

2S 3.50 1.12 4P 3.90 1.86

3S 3.76 1.58 3D 3.56 1.13

2P 3.39 0.88 4D 3.80 1.59
ory employs the scale  = E(1s), whence we conclude
that our estimate complies well with the results pro-
duced by different approaches. This confirms once
again the reliability of phenomenological predictions.
For the corresponding radial wave functions and their
derivatives at the origin, we have

The analogous features of the bound state formed by a
c quark and a bb diquark are

for the energies and

for the wave functions.

Λ

R1S 0( ) 0.527 GeV3/2,=

R2S 0( ) 0.278 GeV3/2, R2P' 0( ) 0.127 GeV5/2.= =

E 1s( ) 1.42 GeV,=

E 2s( ) 1.99 GeV, E 2 p( ) 1.84 GeV= =

R1S 0( ) 1.41 GeV3/2,=

R2S 0( ) 1.07 GeV3/2, R2P' 0( ) 0.511 GeV5/2= =
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For the coupling of the constituent strange quark,
we add a current mass of ms ≈ 100–150 MeV.

2.2. Spin-Dependent Corrections

Following [16], we introduce spin-dependent cor-
rections that are responsible for the splitting of nL lev-
els both in the diquark and in the system formed by a
light constituent quark and a diquark (here, n = nr + L +
1 is the principal quantum number, nr and L being,
respectively, the number of a radial excitation and the
orbital angular momentum). For a heavy diquark
formed by identical quarks, we have

(2)

VSD
d( ) r( ) 1

2
---

Ld Sd⋅
2mQ

2
---------------- 

  dV r( )
rdr

--------------–
8
3
---α s

1

r3
----+ 

 =

+
2
3
---α s

1

mQ
2

-------
Ld Sd⋅

r3
---------------- 4

3
---α s

1

3mQ
2

----------SQ1 SQ2 4πδ r( )[ ]⋅+

–
1
3
---α s

1

mQ
2

------- 1

4Ld
2 3–

------------------ 6 Ld Sd⋅( )2 3 Ld Sd⋅( ) 2Ld
2Sd

2–+[ ] 1

r3
----,
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where Ld is the orbital angular momentum in the
diquark system and Sd is the total spin of the quarks
constituting the diquark. Upon taking into account the
interaction with the light constituent quark, we obtain
(S = Sd + Sl)

(3)

where the first term is associated with the relativistic
correction to effective scalar exchange, whereas the
remaining terms are generated by corrections to effective
one-gluon exchange characterized by the constant αs.

The effective parameter αs can be evaluated in the
following way. In the s-wave heavy quarkonium
( ), the splitting is given by

(4)

VSD
l( ) r( ) 1

4
---

L Sd⋅
2mQ

2
-------------

2L Sl⋅
2ml

2
----------------+ 

  dV r( )
rdr

--------------–
8
3
---α s

1

r3
----+ 

 =

+
1
3
---α s

1
mQml

-------------
L Sd 2L Sl⋅+⋅( )

r3
-----------------------------------------

+
4
3
---αs

1
3mQml

---------------- Sd Ld+( ) Sl 4πδ r( )[ ]⋅

–
1
3
---α s

1
mQml

-------------  
1

4
 
L

 2 
3–

------------------ 6 L S ⋅( ) 
2

 3 L S ⋅( ) 2 L 
2 S 

2
 –+ [

– 6 L Sd⋅( )2 3 L Sd⋅( )– 2L2Sd
2 ] 1

r3
----,+

Q1Q2

∆M ns( ) 8
9
---α s

1
m1m2
------------- RnS 0( ) 2,=

                  

Table 2.  Features of the radial wave function of the QQ' di-

quark: Rd(ns)(0) (GeV3/2) and  (GeV5/2)

nL Rd(ns)(0) nL

bb

1S 1.346 2P 0.479

2S 1.027 3P 0.539

3S 0.782 4P 0.585

4S 0.681 5P 0.343

bc

1S 0.726 2P 0.202

2S 0.601 3P 0.240

3S 0.561 4P

cc

1S 0.530 2P 0.128

2S 0.452 3P 0.158

Rd np( )
' 0( )

Rd np( )
' 0( )
where RnS(0) is the radial wave function of the quarko-
nium at the origin. From the experimental value of

(5)

and from the value of R1S(0) as determined on the basis
of our model, we can find the parameter αs(Ψ).

By using the one-loop expression for the QCD run-
ning coupling constant,

 

(6)

 

where 

 

b

 

 = 11 – 2

 

n

 

f

 

/3

 

 with 

 

n

 

f

 

 = 3 for 

 

p

 

2

 

 < 

 

, we will
further take into account the dependence of this param-
eter on the reduced mass of the system (

 

µ

 

). From the
phenomenology of potential models, it is well known
that the mean kinetic energy of quark motion in a bound
state is virtually independent of quark flavors and is
given by

 

(7)

 

and

 

(8)

 

for the antitriplet and singlet couplings, respectively.
Substituting the definition of nonrelativistic kinetic
energy,

 

(9)

 

into (6), we arrive at

 

(10)

 

From (4) and (5), we can obtain the numerical value of

 

Λ

 

QCD

 

 

 

≈

 

 113

 

 MeV.
For identical quarks in a diquark, the scheme for cal-

culating 

 

LS

 

-coupling corrections that is well known
from the physics of heavy quarkonium is applicable;
for the interaction with a light quark, we make use of
the 

 
jj

 
-coupling scheme (here, 

 
L

 
 

 
· 

 
S

 

l

 
 is diagonal for

given  J  
l

 ,  J  
l

  =  L   +  S  
l

  and  J   =  J  
l

  +  , where  J  is the total

spin of the baryon and 

 

 = 

 

S

 

d

 

 + 

 

L

 

d

 

 is the total angular
momentum of the diquark).

In order to estimate various contributions and the
mixing of states, we can make use of the basis transfor-
mations (in the following, we set 

 

S

 

 = 

 

S

 

l

 

 + 

 

)

 

(11)

∆M 1S cc,( ) 117 2 MeV±=

α s p2( ) 4π
b p2 ΛQCD

2⁄( )ln
-----------------------------------,=

mc
2

Td〈 〉 0.2 GeV,≈

Tl〈 〉 0.4 GeV≈

T〈 〉 p2〈 〉 2µ,⁄=

α s p2( ) 4π
b 2 T〈 〉 µ ΛQCD

2⁄( )ln
----------------------------------------------.=

J

J

J

J ; Jl| 〉 1–( )
J Sl L J+ + +( )

S

∑=

× 2S 1+( ) 2Jl 1+( ) J Sl S

L J Jl
 
 
 
 
 

J ; S| 〉 ,
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(12)

Thus, we have given a detailed account of the proce-
dure for calculating the mass spectrum of doubly heavy
baryons. The results that we obtained on the basis of
this procedure are presented in the next section.

3. NUMERICAL RESULTS

In this section, we display the mass spectra calcu-
lated with allowance for the quark-spin-dependent
splitting of levels. As was explained in the Introduction,
doubly heavy baryons formed by identical heavy
quarks admit quite a reliable interpretation in terms of
the total angular momentum and the orbital angular
momentum of diquark excitations. For the bc diquark,
we present only the results for the spin splitting of the
1S ground state since, for higher excitations of this
diquark, the allowed emission of a soft gluon disturbs
the above classification of levels.

It is obvious that, within the quark–diquark model
of bound states of doubly heavy baryons, the most reli-
able results are obtained for the system featuring the
quarks of the largest mass—that is, for Ξbb.

3.1. Ξbb Baryons

The quantum numbers of the levels will be denoted
here by ndLdnlLl; that is, each level is specified in terms
of four quantum numbers: the principal quantum num-
ber in the diquark, nd; the orbital angular momentum in
the diquark, Ld; the principal quantum number of light-
quark excitation, nl; and the orbital angular momentum
of the light quark, Ll . According to our calculations, the
splitting ∆(J) of the 1S2p level is given by

States that are characterized by the total spin of J = 3/2
(or 1/2) may have different Jl values, whence it follows
that, in the calculations by perturbation theory con-
structed on the basis of pure states in the total angular
momentum of the light constituent quark, such states
acquire nonzero mixing. For J = 3/2, the mixing matrix
has the form

It can be seen that, in practice, the mixing can be disre-
garded here and that the shifts of the levels are given by

J ; Jl| 〉 1–( )
J Sl L J+ + +( )

Jd

∑=

× 2Jd 1+( ) 2Jl 1+( ) J L Jd

Sl J Jl
 
 
 
 
 

J ; Jd| 〉 .

∆ 5/2( ) 10.3 MeV.=

3.0– 0.5–

0.5– 11.4 
 
 

 MeV.
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For J = 1/2, the mixing matrix appears to be

Its eigenvectors are

while the corresponding eigenvalues are given by

For the 2S2p level, the splitting is

For J = 3/2, the mixing matrix has the form

so that we have

For J = 1/2, the mixing matrix appears to be

Its eigenvectors are given by

The corresponding eigenvalues are

From the above, it can be seen immediately that the dis-
tinction between the wave functions that is due to vari-
ations in the mass of the diquark subsystem is indeed
immaterial.

The splitting of diquark levels, , takes the fol-
lowing values:

for 3D1s,

λ1' 3.0 MeV, λ1– 11.4 MeV.= =

5.7– 17.8–

17.8– 14.9– 
 
 

 MeV.

1S2 p
1'
2
---- 

  0.790 Jl
3
2
---== 0.613 Jl

1
2
---=– ,

1S2 p
1
2
--- 

  0.613 Jl
3
2
---== 0.790 Jl

1
2
---=+ ,

λ2' 8.1 MeV, λ2 28.7 MeV.–= =

∆ 5/2( ) 10.3 MeV.=

3.6– 0.5–

0.5– 12.4 
 
 

 MeV,

λ1' 3.6 MeV, λ1– 12.4 MeV.= =

6.1– 17.6–

17.6– 13.5– 
 
 

 MeV.

1S2 p
1'
2
---- 

  0.776 Jl
3
2
---== 0.631 Jl

1
2
---=– ,

1S2 p
1
2
--- 

  0.631 Jl
3
2
---== 0.776 Jl

1
2
---=+ .

λ2' 8.2 MeV, λ2 27.8 MeV.–= =

∆
Jd( )

∆ 3( ) 0.06 MeV,–=

∆ 2( ) 0.2 MeV,=
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for 4D1s,

for 5D1s,

for 5G1s,

for 6G1s,

It can be seen that, for the excitations of a diquark
whose dimensions are smaller than the distance to the
light quark—that is, for a diquark state characterized by
a moderately small value of the principal quantum
number—the above corrections are insignificant in
relation to the uncertainties of the method (δM ≈ 30–
40 MeV).
For the hyperfine spin–spin splitting in the quark–
diquark system, we have

where Rl(0) is the radial wave function of the light con-
stituent quark at the origin. For the analogous shift of
the diquark level, the result is

∆ 1( ) 0.2 MeV;–=

∆ 3( ) 2.6 MeV,–=

∆ 2( ) 0.8 MeV,–=

∆ 1( ) 4.6 MeV;–=

∆ 3( ) 2.6 MeV,=

∆ 2( ) 0.9 MeV,–=

∆ 1( ) 4.7 MeV;–=

∆ 5( ) 0.3 MeV,–=

∆ 4( ) 0.3 MeV,=

∆ 3( ) 1.1 MeV,=

∆ 2( ) 1.7 MeV,=

∆ 1( ) 2.0 MeV;=

∆ 5( ) 3.2 MeV,=

∆ 4( ) 0.5 MeV,–=

∆ 3( ) 4.4 MeV,–=

∆ 2( ) 7.9 MeV,–=

∆ 1( ) 10.5 MeV.–=

∆h.f
l( ) 2

9
--- J J 1+( ) J J 1+( )– 3

4
---–=

× α s 2µT( ) 1
mcml

------------ Rl 0( ) 2,

∆h.f
d( ) 1

9
---α s 2µT( ) 1

mc
2

------ Rd 0( ) 2.=
The mass spectrum of the  and  baryons is
presented in Fig. 1 and in Table 3, where we quoted our
results only for S, P, and D levels.

As can be seen from Fig. 1, the most reliable predic-
tions were obtained for the masses of the 1S1s (JP =
3/2+, 1/2+), 2P1s (JP = 3/2–, 1/2–), and 3D1s (JP = 7/2+,
…, 1/2+) baryons. We note that the 2P1s level is meta-
stable because, for a transition to the ground state to
occur, both the orbital angular momentum and the total
spin of the heavy quarks in the diquark must undergo
changes. As an analog of such a transition, we can indi-
cate the transition between the ortho- and parahydrogen
states in an H2 molecule in the nonuniform external
field that is generated by the magnetic moments of
other molecules. For the 2P1s  1S1s transition, the
role of such an external field is played by the nonuni-
form chromomagnetic field of the light quark. The cor-
responding perturbation has the form

where f(rl) is a dimensionless nonperturbative function
that depends on the coordinate of the light quark with
respect to the diquark. It is obvious that the perturbation
δV also changes the orbital angular momentum of the
light quark. It mixes states having identical values of JP.
If the splitting is not small (for example, that for 2P1s–
1S2p, where ∆E ~ ΛQCD), the mixing is suppressed:

Since the 1S2p admixture in the 2P1s state is small, the
2P1s levels are quasistationary; that is, the hadronic
transitions that occur from them to the ground state and
which are accompanied by pion emission are sup-
pressed (there is also additional suppression associated
with the smallness of the phase space). In view of this,
the spectra of Ξbbπ pairs are expected to display anom-
alously narrow resonances associated with the decays
of such JP = 3/2–, 1/2– quasistationary states. A direct
experimental observation of the above-type levels
would suggest the existence of diquark excitations and
would furnish information about the character of the
dependence f(rl)—that is, about the origin of the nonho-
mogeneous chromomagnetic field in the nonperturba-
tive region.

It is obvious that the JP = 7/2+, 5/2+ 3D1s states—
within a QCD multipole expansion, these states deex-
cite into the ground-state level via a quadrupole gluon
emission (E2 hadronization process gq  q'π)—are
also quasistationary ones.

Ξbb
– Ξbb

0

δV
1

mQ

------- S1 H1 S2 H2 S1 S2+( ) H〈 〉⋅–⋅+⋅[ ]∼

=  
1

2mQ

---------- — rd⋅( ) S1 S2–( ) H⋅

∼ 1
mQ

-------
rl rd⋅
mqrl

5
------------- S1 S2–( ) Jl f rl( ),⋅

δV ∆E⁄ 1
mQmq

--------------
rd

rl
4

---- 1
∆E
------- ! 1.∼
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Fig. 1. Spectrum of the  and  baryons featuring two b quarks with allowance for the quark-spin-dependent splitting of low-

lying excitations (masses are presented in GeV).

Ξbb
– Ξbb

0

                    
As to higher excitations, we can indicate by way of
example that the energies of the 3P1s states are close to
the energies of the JP = 3/2–, 1/2– 1S2p levels; there-
fore, the contributions of the operators changing the
diquark orbital angular momentum and spin can lead to
a substantial mixing (with the amplitude ∆Vnn'/∆Enn' ~
1), despite the fact that these contributions are sup-
pressed in direct proportion to the inverse heavy-quark
mass and the small dimension of the diquark. We
believe, however, that this mixing shifts the masses of
the states only slightly. A more important circumstance
is that a significant 1S2p admixture in the 3P1s state
renders it unstable to transitions to the 1S1s ground
state via E1 gluon emission; in the physical spectrum of
hadrons, this leads to decays accompanied, for exam-
ple, by pion emission.2) 

The JP = 5/2– 1S2p level has definite values of the
light-quark and diquark quantum numbers, because
there are no close levels with the same values of JP. How-
ever, its width with respect to the transition to the
ground-state level via pion emission is suppressed by no
factor, so that it is expected to be great (Γ ~ 100 MeV).

We also note that

2)We recall that the ΞQQ' baryons are isodoublets.

3 2– 3 2+⁄ π in the S wave,⁄
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Here, the D-wave transitions are suppressed in propor-
tion to the small ratio of the recoil momenta of the
baryon involved to its mass.

The width of the low-lying JP = 3/2+ state is com-
pletely determined by the radiative electromagnetic M1
transition to the JP = 1/2+ ground state.

3.2. Ξcc Baryons

For the doubly charmed baryon, the above computa-
tional procedure leads to the results listed below.

For the 1S2p state, the splitting is given by

For J = 3/2, mixing is determined by the matrix

3 2– 1 2+⁄ π in the D wave,⁄

1 2– 3 2+⁄ π in the D wave,⁄

1 2– 1 2+⁄ π in the S wave.⁄

∆ 5/2( ) 17.4 MeV.=

4.3 1.7–

1.7–   7.8  
 
 

 
 MeV.
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Table 3.  Mass spectrum of the  and  baryons

(ndLdnlLl), J
P Mass, GeV (ndLdnlLl), J

P Mass, GeV

(1S1s)1/2+ 10.093 (3P1s)1/2– 10.493

(1S1s)3/2+ 10.133 (3D1s)5/2'+ 10.497

(2P1s)1/2– 10.310 (3D1s)7/2+ 10.510

(2P1s)3/2– 10.343 (3P1s)3/2– 10.533

(2S1s)1/2+ 10.373 (1S2p)1/2– 10.541

(2S1s)3/2+ 10.413 (1S2p)3/2– 10.567

(3D1s)5/2+ 10.416 (1S2p)1/2'– 10.578

(3D1s)3/2'+ 10.430 (1S2p)5/2– 10.580

(3D1s)1/2+ 10.463 (1S2p)3/2'– 10.581

(3D1s)3/2+ 10.483 (3S1s)1/2+ 10.563

Ξbb
– Ξbb

0

Its eigenvectors appear to be

The corresponding eigenvalues are

For J = 1/2, the mixing matrix has the form

Its eigenvectors can be written as

while the corresponding eigenvalues are

For the splitting of the 3D diquark level, we have

We must further take into account hyperfine spin–spin
corrections in the quark–diquark system.

For the 1S- and 2S-wave levels of the diquark, the
shifts of the vector states are

1S2 p
3'
2
---- 

  0.986 Jl
3
2
---== 0.164 Jl

1
2
---=+ ,

1S2 p
3
2
--- 

  0.164– Jl
3
2
---== 0.986 Jl

1
2
---=+ .

λ1' 3.6 MeV, λ1 8.5 MeV.= =

3.6– 55.0–

55.0– 73.0– 
 
 

 MeV.

1S2 p
1'
2
---- 

  0.957 Jl
3
2
---== 0.291 Jl

1
2
---=– ,

1S2 p
1
2
--- 

  0.291 Jl
3
2
---== 0.957 Jl

1
2
---=+ ,

λ2' 26.8 MeV, λ2 103.3–  MeV.= =

∆ 3( ) 3.02 MeV,–=

∆ 2( ) 2.19 MeV,=

∆ 1( ) 3.39 MeV.=

∆ 1S( ) 6.3 MeV,=
The mass spectra of  and  baryons are pre-
sented in Fig. 1 and in Table 4.

3.3. Ξbc Baryons

It was indicated in the Introduction that, in all prob-
ability, a heavy diquark formed by quarks of different
flavors is unstable with respect to the emission of soft
gluons; therefore, the Fock state of such a baryon must
have a considerable nonperturbative admixture of con-
figurations that include gluons and a diquark with dif-
ferent values of the spin Sd and the angular orbital
momentum Ld,

the amplitudes H1 and H2 being commensurate with OB.
In the heavy quarkonium, the contributions of analo-
gous operators of color-octet states are suppressed by
the probability of emission from nonrelativistic quarks
in a small volume determined by the dimension of the
singlet quark–antiquark system. In the present case,
however, a soft gluon is constrained only by the con-
ventional confinement scale, so that there is no suppres-
sion.

In this situation, we deem that it would not be quite
correct to calculate the masses of excited Ξbc baryons
according to the above scheme. For this reason, we
quote here only the result for the JP = 1/2+ ground state:

For the vector diquark, we assumed that, in the interac-
tion with the light constituent quark, the spin-depen-
dent splitting is determined by the conventional contact
interaction of the magnetic moments of two pointlike
subsystems. The diagram of baryon levels that takes no

∆ 2S( ) 4.6 MeV.=

Ξcc
++ Ξcc

+

Bbcq| 〉 OB bc
3c

Sd Ld,
q,| 〉 H1 bc

3c

Sd 1 Ld,±
g q, ,| 〉+=

+ H2 bc
3c

Sd Ld 1±,
g q, ,| 〉 …,+

MΞbc' 6.85 GeV, MΞbc
6.82 GeV.= =
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 2      2000



PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 2      2000

SPECTROSCOPY OF DOUBLY HEAVY BARYONS 283

account of the spin-dependent perturbation, which is
suppressed in inverse proportion to the heavy-quark
mass, is shown in Fig. 3.

3.4. Doubly Heavy Baryons Featuring a Strange 
Quark: ΩQQ'

In the leading approximation, we assume that the
wave functions and the excitation energies of the
strange quark are close to the analogous features for

baryons featuring u and d quarks. Apart from the addi-
tive upward shift of the masses by the current mass of
the strange quark, ms ≈ M(Ds) – M(D) ≈ M(Bs) – M(B) ≈
0.1 GeV, the set of levels of the ΩQQ' baryons that disre-
gards the quark-spin-dependent splitting is therefore
expected to reproduce the set of levels of the ΞQQ' bary-
ons.

Further, we assume that the spin–spin splitting of
low-lying states of the ΩQQ' baryons for 2P1s and 3D1s
ndSnls levels is 20–30% smaller than the corresponding

Table 4.  Mass spectrum of the  and  baryons

(ndLdnlLl), J
P Mass, GeV (ndLdnlLl), J

P Mass, GeV

(1S1s)1/2+ 3.478 (3P1s)1/2– 3.972

(1S1s)3/2+ 3.61 (3D1s)3/2'+ 4.007

(2P1s)1/2– 3.702 (1S2p)3/2'– 4.034

(3D1s)5/2+ 3.781 (1S2p)3/2– 4.039

(2S1s)1/2+ 3.812 (1S2p)5/2– 4.047

(3D1s)3/2+ 3.83 (3D1s)5/2'+ 4.05

(2P1s)3/2– 3.834 (1S2p)1/2'– 4.052

(3D1s)1/2+ 3.875 (3S1s)1/2+ 4.072

(1S2p)1/2– 3.927 (3D1s)7/2+ 4.089

(2S1s)3/2+ 3.944 (3P1s)3/2– 4.104

Ξcc
++ Ξcc

+
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ΛcD threshold

Fig. 2. Spectrum of the  and  baryons (masses are presented in GeV).Ξcc
++ Ξcc

+
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6.5

7.0

7.5

8.0

1S2s

3S1s

2S1s

1S1s

2P1s

3P1s
4P1s 1S2p
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Fig. 3. Spectrum of the  and  baryons without allowing for the splitting of higher excitations (masses are presented in GeV).Ξbc
+ Ξbc

0

splitting in the ΞQQ' baryons (factor of mu, d /ms). For the
1S2p level, we can use the computational procedure
described above. By way of example, we indicate that,
in the Ωbb baryons, the matrix that describes the mixing
of states characterized by different values of the total
angular momentum of the light constituent quark can
be closely approximated by a diagonal matrix. This
means that a dominant perturbative term has the form

Therefore, we can assume that the splitting of the 1S2p

level is determined by the factor / ; that is, it is
very small (40% less than in Ξbb).

In the Ωcc baryon, the factor ms/mc is not small,
whence it follows that, for 1S2p, the matrix describing
the mixing of states characterized by different values of
the total angular momentum is nondiagonal; as a result,
the order of the 1S2p spin states in Ωcc can be somewhat
different from that in Ξcc.

The ΩQQ' baryons have a much more interesting fea-
ture. Even with allowance for the mixing of levels char-
acterized by different spins and orbital angular
momenta of the subsystems, the lowest S and P excita-
tions of the diquark are quasistationary with respect to
strong-interaction-induced decays since the emission
of a gluon is accompanied by its hadronization into
kaons (transitions ΩQQ'  ΞQQ' + K) and since single
pion emission is forbidden by the isospin- and strange-
ness-conservation laws; in addition, relevant hadronic
transitions featuring kaons do not occur because of an
insufficient mass splitting between the levels of ΩQQ'
and ΞQQ', whereas decays resulting in the emission of
isosinglet pion pairs are suppressed because of the
small phase space or are merely forbidden. Thus, radi-

1
4
---

2L Sl⋅
2ml

2
---------------- 

  dV r( )
rdr

--------------–
8
3
---α s

1

r3
----+ 

  .

mu d,
2 ms

2

ative electromagnetic transitions to the ground-state
level appear to be dominant modes of the decays of
low-lying excitations of ΩQQ'.

3.5. Ωbbc Baryons

Within the quark–diquark picture, it is possible to
construct the model of baryons featuring three heavy
quarks (bbc). However, our calculations revealed that
the dimensions of the diquark are commensurate with
the root-mean square distance to the charmed quark;
therefore, the model assumption about a compact heavy
diquark may prove, in this case, to be insufficiently
accurate for calculating the masses of the levels. As to
spin-dependent splitting, it is negligibly small for inter-
actions within the diquark (see above). The spin–spin
splitting in the system formed by the vector diquark and
a charmed quark is given by

For the splitting of the 1S2p state, the shifts of the levels
are small, so that the correction of –33 MeV must be
taken into account only for one of the JP = 1/2 levels. In
the 3D1s state, the splitting is determined by spin–spin
interaction. The features of charmed-quark excitations
in the model based on the Buchmüller–Tye potential
were indicated above. Eventually, we arrive at the dia-
gram of levels of the Ωbbc baryons that is represented in
Fig. 4 and in Table 5.

We further note that, because of the small splitting
of levels, the excitations over the ground state of the

 can be mixed in some cases rather strongly (with
large amplitudes, but with small mass shifts)—for
example, this is so in the case of 3P1s–1S2p mixing for
JP = 1/2–, 3/2– and in the case of 2S1s–3D1s mixing for
JP = 1/2+, 3/2+. We believe that the predictions that we

∆ 1s( ) 33 MeV, ∆ 2s( ) 18 MeV.= =

Ωbbc
0
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Fig. 4. Spectrum of the  baryons with allowance for the quark-spin-dependent splitting of low-lying excitations (masses are

presented in GeV).

Ωbbc
0

obtained are quite reliable for JP = 1/2+, 3/2+ 1S1s;
JP = 5/2– 1S2p; and JP = 5/2+, 7/2+ 3D1s states. It is for
these excitations that the multipole expansion makes it
possible to predict reliably the widths with respect to
radiative electromagnetic transitions to the ground
state. As to the widths with respect to transitions involv-
ing mixed states, they are greatly affected by the model-
dependent amplitudes of admixtures. In this connec-
tion, an experimental investigation of electromagnetic

transitions in the family of the  baryons could fur-
nish valuable information about the mechanism of mix-
ing of various levels in baryon systems. It should be
noted that the sum of the contribution of electromag-
netic transitions and the contribution from pion-pair
emission—if the latter is not forbidden by the phase-
space conditions—saturates the total widths of the

Ωbbc
0
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excited levels of . There are reasons to expect that the
total width in question lies in the range Γ ~ 10–100 keV.

Thus, the  system can be characterized by a
large number of narrow quasistationary states.

4. CONCLUSION

A detailed analysis of the spectroscopic features of
baryons involving two heavy quarks has been per-
formed in the approximation of a quark–diquark factor-
ization of the baryon wave functions. This analysis relies
on the nonrelativistic constituent-quark model employ-
ing the Buchmüller–Tye potential. The applicability
range of the above approximations has been outlined.

Quark-spin-dependent relativistic corrections to the
potential have been taken into account in the diquark

Ωbbc
0

Ωbbc
0

Table 5.  Mass spectrum of the  baryons

(ndLdnlLl), J
P Mass, GeV (ndLdnlLl), J

P Mass, GeV

(1S1s)1/2+ 11.12 (3D1s)3/2'+ 11.52

(1S1s)3/2+ 11.18 (3D1s)5/2'+ 11.54

(2P1s)1/2– 11.33 (1S2p)1/2– 11.55

(2P1s)3/2– 11.39 (3D1s)7/2+ 11.56

(2S1s)1/2+ 11.40 (1S2p)3/2'– 11.58

(3D1s)5/2+ 11.42 (1S2p)3/2– 11.58

(3D1s)3/2+ 11.44 (1S2p)1/2'– 11.59

(3D1s)1/2+ 11.46 (1S2p)5/2– 11.59

(2S1s)3/2+ 11.46 (3P1s)3/2– 11.59

(3P1s)1/2– 11.52 (3S1s)1/2+ 11.62

Ωbbc
0
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subsystem and in the system formed by a light quark
and a diquark. As a result, a set of bound excited states
that are quasistable with respect to hadronic transitions
to the ground-state level has been found below the
threshold for the hadronic decay of our system into a
heavy baryon and a heavy meson, each containing one
heavy quark. Physical reasons for this quasistability of
the above levels have been considered in detail. In par-
ticular, the property of quasistability must be peculiar
to baryons featuring two identical quarks, where the
Pauli exclusion principle effect combined with the fact
that the contributions of the operators responsible for
hadronic decays and for the mixing of levels are sup-
pressed in proportion to the inverse heavy-quark mass
and to the small dimension of the diquark. This sup-
pression stems from the need for changing simulta-
neously the spin and the orbital angular momentum of
the compact diquark. In baryonic systems formed by
two heavy quarks and a strange quark, the quasistabil-
ity of low-lying excitations of the diquark is addition-
ally ensured by the fact that transitions accompanied by
single kaon emission are forbidden by the isospin- and
strangeness-conservation laws.

The characteristics of the wave functions can be
used in calculating the cross sections for the production
of doubly heavy baryons in the quark–diquark approx-
imation.
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Abstract—Inclusive K+-meson production in proton–nucleus collisions in the near-threshold and subthreshold
energy regimes is analyzed with respect to the one-step (pN  K+YN, Y = Λ, Σ) and two-step (pN  NNπ,
NN2π; πN  K+Y) incoherent production processes. An appropriate folding model is used that properly takes
into account the struck-target-nucleon-removal energy and the momentum distribution (nucleon spectral func-
tion), novel elementary cross sections for proton–nucleon reaction channel close to threshold, as well as
nuclear-mean-field-potential effects on the one-step and two-step kaon-creation processes. A detailed compar-
ison of the model calculations of the K+ total and differential cross sections for the p + 9Be and p + 12C inter-
actions with the existing experimental data is given, which displays both the relative role of the primary and
secondary production channels at considered incident energies and those features of the cross sections that are
sensitive to the high-momentum and high-removal-energy parts of the nucleon spectral function. It is found
that, contrary to previous studies known in the literature, the pion–nucleon production channels do not neces-
sarily dominate in pA collisions at subthreshold energies and that the relative strength of the proton- and pion-
induced reaction channels for light target nuclei in the subthreshold energy regime is governed by the kinemat-
ics of the experiment under consideration. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Kaon production in proton–nucleus reactions at
incident energies less than threshold energies in a colli-
sion of free nucleons has been extensively studied both
experimentally and theoretically in recent years [1–12].
Since kaons have a long mean free path inside the
nucleus, it is expected to extract from these studies
valuable information about the nuclear structure at
short nucleon–nucleon separations as well as about the
dynamics of the reaction and properties of the produced
particles in the nuclear environment. The first theoreti-
cal investigations of subthreshold kaon production on
nuclei have been mainly performed in the framework of
the respective folding models based both on the direct
mechanism [1, 2, 6, 11, 12] of K+ production (pN 
K+ΛN) and on the two-step mechanism [1, 3–5] associ-
ated with the production of kaons by intermediate pions
(pN1  πNN, πN2  K+Λ) using different parame-
trizations for the elementary kaon-production cross
sections as well as for the internal-nucleon-momentum
distribution. Subthreshold K+ production by protons on
multiquark clusters in nuclei formed from 2, 3 and 4
intranuclear nucleons has been explored in [7]. This
approach is able to reproduce both the energy and A
dependences of the measured [1] total kaon-production
cross sections. However, it suffers from the drawback
that it uses a free parameter, the admixture of the mul-
tiquark clusters in nuclei, to give the absolute normal-

* This article was submitted by the author in English.
1063-7788/00/6302- $20.00 © 20287
ization. In the above folding models, only the nucleon
momentum distribution has been used, and the off-shell
propagation of the struck target nucleon has been
neglected or has been taken into account most crudely,
but it could be significant in the threshold heavy-
meson-production processes, since they are limited by
the phase space. Later [8–10], the full nucleon momen-
tum and binding (removal) energy distribution
(nucleon spectral function) was properly taken into
account in calculating the subthreshold kaon produc-
tion in pC and pPb collisions. It was shown that, within
the spectral-function approach, the measured total [1]
and differential [8] K+-production cross sections are
underestimated significantly at subthreshold incident
energies by calculations assuming only that first-
chance collisions are unaffected [8, 10] by the nuclear
medium or are affected [9] by the repulsive impinging-
proton optical potential. When the two-step kaon-pro-
duction processes with intermediate pions have been
taken into consideration, the results of calculations [8,
9] are in much better agreement with the experimental
data, while the ones from [10] have shown that, without
the in-medium modifications of the invariant energies
available for pion and kaon production due to the cor-
responding optical potentials, it is not possible to repro-
duce the considered experimental data on total [1] and
differential [8] K+ cross sections from pC interactions
at subthreshold energies via the secondary pion-
induced channels. However, in order to gain a deeper
insight into the relative role of the primary and second-
000 MAIK “Nauka/Interperiodica”
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ary reaction channels, it is obviously necessary, as was
pointed out in [10], to carry out a detailed study of sub-
threshold kaon production in pA collisions on the basis
of the spectral function approach that includes consis-
tently the mean-field potential effects both on the one-
step and on two-step kaon-production processes. This
is the main purpose of the present article. In doing this,
it is extremely important to incorporate, in the calcula-
tions, new experimental data points for the total cross
section of the pp  K+Λp reaction in the threshold
region covering the excess energy range up to 7 MeV
from the COSY-11 collaboration at COSY-Jülich [13],
which lie above the current parametrizations [10, 14,
15] employed in the recent studies of the subthreshold
kaon production in proton–nucleus [10] and heavy-ion
[14, 15] reactions, as well as to analyze other experi-
mental data on subthreshold and near-threshold K+ pro-
duction in pA interactions obtained at the ITEP proton
synchrotron [11, 12] together with those presented in
[1, 8].

In the present work, we have performed an analysis
of K+ production from pBe and pC interactions in the
near-threshold and subthreshold energy regimes using
the spectral function approach [10] that has been mod-
ified to take into account the new data points for the
reaction pp  K+Λp close to threshold [13] and to
treat the mean-field potential effects on the primary and
secondary creation processes on equal footing. This
approach is explained in detail in [10]; here, we only
describe the respective modifications.

1. THE MODEL AND INPUTS

1.1. Direct K+-Production Processes

Apart from participation in elastic scattering, an
incident proton can produce a K+ meson directly in the
first inelastic pN collision due to nucleon Fermi motion.
Since we are interested in a few-GeV region (up to
3 GeV), we have taken into account [16] the following
elementary processes characterized by the lowest free
production thresholds:

p + N  K+ + Λ + N, (1)

p + N  K+ + Σ + N. (2)

Following the predictions of the effective chiral
Lagrangian approach by Kaplan and Nelson [17], we
assume that the mass of the produced kaon is not
changed in the nuclear medium (see also [14, 15, 18])
due to an approximate cancellation of attractive scalar
and repulsive vector mean fields;1) i.e., the total energy

1)It should be noted that the actual magnitude of these fields is still
a matter of current debate [19–25], although recent studies [15,
26] indicate that a weakly repulsive kaon potential (~30 MeV at
the normal nuclear matter density) cannot be excluded by the
present data on kaon transverse flow in heavy-ion collisions, mea-
sured by the FOPI collaboration at SIS/GSI.
 of the K+ meson with momentum  is given by

(3)

where mK is the rest mass of a kaon in free space. The

effective masses  of other final hadrons (nucleon
and hyperon) participating in the K+-production pro-
cesses (1) and (2), which have to be incorporated in our
model [10] (see below) instead of their free-space
masses mh to allow for the influence of the nuclear envi-
ronment on the K+ production, are defined by the dis-
persion relation [27–33]

(4)

where  and  are the scalar and vector (timelike
component) self-energies of hadron h and ph denotes its
canonical three-momentum.2)

The use of the relativistic dispersion relation for the
quasiparticle given by the left-hand side of (4) enables
us to keep on dealing with relativistic kinematics as in

the on-mass-shell case. The effective masses 

include the effective scalar mean-field potentials ,
needed for our calculations:

(5)

Equations (4) and (5) allow us to extract these poten-

tials, provided that the scalar and vector fields  and

 are known. In the general case, these fields are den-
sity- and momentum-dependent [27, 31–33]. However,
for the purposes of the present study, as well as for rea-
sons of simplicity, it is sufficient to neglect the explicit

momentum dependence of  and  and to evaluate

the effective fields  using the quantities  and 
within only limited density and momentum range rele-
vant for the observed [1, 8, 11, 12] subthreshold kaon
production in pA interactions. K+ creation due to first-
chance pN collisions [(1) and (2)] occurs mainly inside
the target nucleus [34] and populates, as our calcula-
tions showed, the outgoing nucleon and hyperon in a
limited kinematical range with the mean kinetic ener-
gies &0.1 GeV for the most part of kinematical condi-
tions of the experiments on subthreshold kaon produc-
tion that are analyzed below. Therefore, the potentials

 and  should be estimated at the normal nuclear-
matter density for the above characteristic energy.
Employing the recent parametrization for the nucleon
scalar and vector potentials from [33], obtained within
the self-consistent Dirac–Brueckner approach, we can

2)The spacelike components of the vector self-energies are
neglected here [33].
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readily find that the nucleon effective potential  at
a kinetic energy of 100 MeV for normal matter density

becomes  = –34 MeV. It may be pointed out that

this value of the effective potential  is in good
agreement [10] with the characteristic depth of a poten-
tial well gained in the noninteracting Fermi gas model.

At present, there are a few models for the hyperon
mean-field potentials in nuclear medium [35–37],
which give essentially different predictions for the
actual magnitude of the potentials. By way of example,
we indicate that, in the naive constituent quark model,
the hyperon self-energies are about 2/3 of the nucleon
self-energies. This assumption is widely used in the rel-
ativistic transport models for high-energy nucleus–
nucleus collisions [15, 32, 37–39]. In view of the sub-
stantial uncertainties of the model hyperon self-ener-
gies, as well as since, at subthreshold energies, hyper-
ons from primary pN interactions (1) and (2) are pro-
duced, as was noted above, in a limited kinematical
range, it is natural to use, for the effective potentials

 and  seen by the final low-energy Λ and Σ
hyperons, the values of the corresponding optical
potentials at normal nuclear-matter density, extracted

from the properties of hypernuclei, namely,  =

−30 MeV [37, 40, 41] and  = –26 MeV [41]. The
set of parameters

(6)

will be used throughout our calculations. To examine
the sensitivity of kaon-production cross section for the
one-step processes (1) and (2) to the effective nucleon
and hyperon potentials, we will also ignore these poten-
tials in our calculations, as this has been done in the
previous investigations [8–10] of subthreshold K+ pro-
duction in pA collisions within the spectral function
approach.

Another medium effect that must be taken into
account is the modification of the four-momentum

 = (E0, p0) (  = ) of an incoming proton inside
the target nucleus due to the nuclear optical potential

V0. Let  = ( , ) be the four-momentum of an
incident proton under the influence of this potential,
and let  = (MA, 0) and  = (MA + ∆p2/2MA, ∆p) be,
respectively, the four-momenta of the initial target
nucleus with mass MA and the target nucleus recoiling
(due to the refraction of a beam proton at the nuclear
surface) with momentum ∆p. Energy and momentum
conservation reads

(7)
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This leads to the following expressions for the total

energy  and momentum  of the incident proton
inside the target nucleus:

(8)

(9)

Considering that, on the other hand,

(10)

and assuming, for the sake of numerical simplicity, that
the recoil momentum ∆

 

p

 

 of the target nucleus entering
into equations (8) and (9) is parallel to the beam direc-
tion,

 

(11)

 

we can readily get the following expression for the
quantity 

 

∆

 

p

 

:
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. According to [3, 5, 32, 33, 42], a proton
incoming to a nucleus at a kinetic energy 
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 of about
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 GeV in the interior of the nucleus feels the repul-
sive optical potential of about 

 
V

 
0
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 MeV. We will use

this value of potential  V 
0

  also at higher beam energies
considered in the present work. Then, in the energy
range under consideration, i.e., when the energy 

 

e

 

0

 

 var-
ies within the range of about 1–3 GeV, the “recoil
momentum” 
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, as follows from equation (12),
amounts approximately to 43 MeV/
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.

Further, let 

 

E

 

t

 

 and 
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 be the total energy and momen-
tum of the struck nucleon 

 

N

 

 of the target just before the
collisions (1) and (2). Taking into account the respec-
tive recoil and excitation energies of the residual (

 

A

 

 –
1) system, one has [10, 43]
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where 

 

E

 

 is the removal energy of the struck target
nucleon. It is easily seen that, in this case, the struck tar-
get nucleon is an off-shell one. After specifying the
energies and momenta of all particles involved in the

 

K

 

+

 

-production processes (1) and (2), we can write out
the corresponding laws of energy and momentum con-
servation:
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From (14) and (15), we obtain the squared invariant
energy available in the first-chance pN collision:

(16)

On the other hand, according to the equations (14) and
(15), one gets

(17)

With allowance for (3)–(5), this leads to the following
expression for the in-medium reaction thresholds:

(18)

where  = mK + mY + mN are the threshold energies

in free space and the effective potentials  are given
by (6). Hence, the reduction of the K+ threshold in the
medium will be 64 MeV in the case of the reaction
pN  K+ΛN and 60 MeV for the process pN 
K+ΣN. This will strongly enhance the K+ production via
first-chance pN collisions (see below).

Finally, neglecting the kaon final-state interactions
[10], we can represent the invariant inclusive cross sec-
tion of K+ production on nuclei from the primary proton-
induced reaction channels (1) and (2) as follows [10]:

(19)

where

(20)

(21)

(22)

Here, d ( , )/d  are the in-

medium invariant inclusive cross sections for K+ pro-
duction in reactions (1) and (2); ρ(r) and P(pt, E) are
the density and nucleon spectral function normalized to
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unity; pt and E are the internal momentum and removal
energy of the struck target nucleon just before the col-

lision;  is the inelastic cross section for free pN
interaction; Z and N are the numbers of protons and
neutrons in the target nucleus A = N + Z; W0 = p0/p0 (p0
is the beam momentum); s is the pN center-of-mass
energy squared. The expression for s is given above by
formula (16). To derive equation (19), we assumed that
the K+-meson-production cross sections in pp and pn
interactions are the same [8, 10], and any difference is
disregarded between the proton and the neutron spec-
tral functions [44]. In our approach, the invariant inclu-
sive cross sections for K+ production in the elementary
processes (1) and (2) have been described by the three-
body phase space calculations normalized to the corre-
sponding total cross sections [10]:

(23)

(24)

(25)

(26)

Here,  are the in-medium total

cross sections for K+ production in reactions (1) and

(2);  is the effective mass of the Y hyperon (Λ or Σ).

The in-medium cross sections  are

equivalent [14, 15] to the vacuum cross sections

, where the free thresholds 

are replaced by the effective thresholds  as given
by equation (18). For the free total cross sections

, we have used the parametrization

suggested in [10] that has been corrected for the new
data points for the reaction pp  K+Λp from the
COSY-11 collaboration at COSY-Jülich [13] in the
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Parameters in the approximation of the partial cross sections for the production of K+ mesons in pp collisions

Reaction AY, µb GeV–2 BY, GeV–2 CY, µb GeV–2 sth, GeV2

p + p  K+ + Λ + p 122.943 2.015 2515.56 6.490

p + p  K+ + Σ + N 104.026 1.006 0 6.880
threshold region covering the excess energy range up to
7 MeV, viz.,

(27)

where Θ(x) = (x + |x|)/2|x|, while the constants AY, BY,
CY, and sthr are given in the table. The comparison of the
results of our calculations given by (27) (solid curve)
with the experimental data close to the threshold for the
reaction pp  K+Λp from the installation COSY-11
[13] (full squares), from the facility TOF at COSY [13]
(full circles), as well as from the old bubble-chamber
measurements BNL 62 [45] (open crosses), is shown in
Fig. 1. It is seen that our parametrization (27) complies
quite well with the world set of data for the pp 
K+Λp reaction in the threshold region.

Consider now the integral in (20), which represents
the effective number of nucleons for the reaction
pN  K+YN on nuclei. A simpler expression can be
given [10] for IV[A] in the case of the Gaussian nuclear
density [ρ(r) = (b/π)3/2exp(–br2), with b = 0.240 fm–2

for 9Be and b = 0.248 fm–2 for 12C]:

(28)

Another very important ingredient for the calcula-
tion of the cross sections in proton–nucleus interactions
in the subthreshold energy regime is the nucleon spec-
tral function P(pt, E), which represents the probability
to find, in the nucleus, a nucleon with momentum pt
and removal energy E and contains the overall informa-
tion on the structure of a target nucleus. When we con-
sider the ground-state NN correlations, which are gen-
erated by the short-range and tensor parts of realistic
NN interaction, the spectral function P(pt, E) can be
represented in the form [46–50]

(29)

where P0 includes the ground and one-hole states of the
residual (A – 1) nucleon system and P1 stands for the
contribution of more complex configurations (mainly
1p–2h states) that arise from the 2p–2h excited states
generated in the ground state of the target nucleus by
NN correlations. For K+-production calculations in the

σ
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case of 9Be and 12C target nuclei reported here, we have
employed, for the single-particle (uncorrelated) part
P0(pt, E) of the nucleon spectral function, the expres-
sion [10]

(30)

with  being the harmonic-oscillator spec-
tral function (see, e.g., [51]),

(31)

where the s- and p-shell nucleon momentum distribu-
tions n1s(pt) and n1p(pt) were taken from [52],

(32)

[b0 = 77.5 (GeV/c)–2 for 9Be and b0 = 68.5 (GeV/c)–2 for
12C], and binding energies of |e1s| = 26 MeV and |e1p| =
16 MeV [53, 54] for the s and p shells, respectively, in
the case of 9Be nucleus; |e1s| = 34 MeV and |e1p| =
16 MeV [51] were used for 12C target nucleus. The
parameter S0 in (30) takes into account the depletion of
states below the Fermi sea due to the NN correlations.
According to [46, 47, 50], S0 = 0.8.

P0 pt E,( ) S0P0
MF( ) pt E,( )=

P0
MF( ) pt E,( )

P0
MF( ) pt E,( )

4
A
---n1s pt( )δ E e1s–( )=

+
A 4–

A
------------ 

  n1 p pt( )δ E e1 p–( ),

n1s pt( ) b0 π⁄( )3/2
b0 pt

2–( ),exp=

n1 p pt( )
2
3
--- b0 π⁄( )3/2b0 pt

2 b0 pt
2–( )exp=

Fig. 1. The total cross section for the reaction  pp 
K+Λp as a function of an excess energy (  – ). For

notation see text.
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Let us now focus on the high-momentum and high-
removal-energy part (correlated part) P1(pt, E) of the
nucleon spectral function P(pt, E). As was shown in
[48, 50], the function P1(pt, E) can be expressed as a
convolution integral of the momentum distributions
describing the relative and center-of-mass motions of a
correlated NN pair embedded into the nuclear medium.
An inspection of the convolution formula (53) from
[50] for the spectral function P1(pt, E) leads to the fol-
lowing simple analytic expression for the P1(pt, E) pro-
posed in [47] [formula (7)] (see, also, [10]):

(33)

where

(34)

(35)

(36)

Here, n1(pt) is the correlated part of the internal-
nucleon-momentum distribution; a1 is a proper normal-

ization constant [such that  = n1(pt)];

Ethr = MA – 2 + 2mN – MA is the two-particle breakup
threshold (Ethr is equal to 19 and 25 MeV for 9Be and
12C target nuclei, respectively); and  and 
are the mean-square momenta associated with the low-
and high-momentum parts of the momentum distribu-
tion describing the center-of-mass motion of a corre-
lated NN pair and the momentum distribution describ-
ing the relative motion of this pair, respectively. In our
calculations of the cross sections for K+ production on
9Be and 12C target nuclei, we have used the values of

 = 1.5 fm–2 and  = 7.5 fm–2 [48, 50]. The
many-body momentum distribution n1(pt) for 12C has
been presented in [46, 47]. Taking into account the cor-
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responding normalization of n1(pt) ( (pt)dpt = S1 =

1 – S0 = 0.2), we can parametrize it as [10]

(37)

where  = 0.162 fm–2,  = 2.50 fm–2, and α1 = 2.78.
This momentum distribution has been also employed in
the case of 9Be target nucleus [50]. The expressions
(30) and (33) for the respective spectral functions were
used in our calculations of K+ production in pBe an pC
collisions.

Let us now consider the two-step K+-production
mechanism.

1.2. Two-Step K+-Production Processes

Kinematical considerations show that, in the bom-
barding-energy range of our interest (≤3.0 GeV), the
following two-step production processes may not only
contribute to the K+ production in pA interactions but
even dominate there [1, 3–5, 8–10] at subthreshold
energies. An incident proton can produce, in the first
inelastic collision with an intranuclear nucleon, also a
pion through the elementary reactions

p + N1  N + N + π, (38)

p + N1  N + N + 2π. (39)

We recall that the free threshold energies for these reac-
tions are, respectively, 0.29 and 0.60 GeV. Then, the
intermediate pion, which is assumed to be on-shell,
produces the kaon on a nucleon of the target nucleus via
the elementary subprocesses with the lowest free pro-
duction thresholds (respectively, 0.76 and 0.89 GeV):

π + N2  K+ + Λ, (40)

π + N2  K+ + Σ, (41)

provided that these subprocesses are allowed energeti-
cally. Since the main contribution to the K+ production
at subthreshold incident energies comes from
extremely fast pions moving in the beam direction, the
relevant kinetic energy eN of each nucleon produced in
the reactions (38) and (39), together with a high-energy
pion, can be approximately estimated as eN ≈ 0.1 GeV
[10] at beam energies of our interest. As has been men-
tioned above [see (6)], such low-energy outgoing

nucleons feel the attractive effective potential  =
−34 MeV inside the nucleus that reduces their free
masses in line with formula (5). Thus, it is necessary to

incorporate properly the effective nucleon mass  in
calculations of the K+-production cross section from
the two-step processes (38)–(41). Moreover, in these
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calculations, the same in-medium modification of the
masses of hyperons from secondary πN collisions (40)
and (41) as that for hyperons from primary pN colli-

sions due to the corresponding effective potentials 

and  should also be taken into account [see (5) and
(6)]. Keeping in mind this fact and using the results
given in [10], we can get the following expression for
the K+-production cross section for pA interactions
from the secondary pion-induced reaction channels
(40) and (41), which includes the medium effects under
consideration on the same covariant footing3) as those
employed in calculation of the K+-production cross sec-
tion (19) from primary proton-induced reaction chan-
nels (1) and (2):

(42)

where

(43)

and

(44)

3)It should be noted that, in [10], nuclear-mean-field effects on the
kaon-production cross section from pion-induced reaction chan-
nels have been treated in a noncovariant manner. However, both
treatments—present one and that given in [10], as is shown by our
calculations—the lead to close results.
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(45)

(46)

(47)

(48)

(49)

(50)

Here, dσpp → πX /dpπ (dσpn → πX/dpπ) is the in-medium
inclusive differential cross section for pion production in
pp (pn) collisions through the elementary reactions (38)
and (39); /d  ( /d )

is the in-medium inclusive invariant differential cross
section for K+ production in πp (πn) collisions via the

subprocesses (40) and (41);  is the total cross
section for free πN interaction; pπ and Eπ are the momen-

tum and total energy of a pion; and  is the absolute
threshold momentum for kaon production of the resid-
ual nucleus by an intermediate pion. The total energy

 and momentum  of the initial proton inside the
target nucleus are defined above by formulas (8) and
(9), respectively. The quantities s and µ(p0) are defined
above by equations (16) and (21), respectively.
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In our method, the differential cross sections
dσpp → πX /dpπ and dσpn → πX /dpπ for pion production in
pp and pn collisions have been described by the three-
and four-body phase-space calculations normalized to
the respective total cross sections. According to [10],
one has
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entering into equations (51)–(55), we used the parame-
trization suggested in [55] (see, also, [10]) in which the

threshold energy  for the considered reaction 
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 [(38)
or (39)] has been properly corrected for the effective

mass  of the secondary nucleons.

Taking into account the two-body kinematics of the
elementary processes (40) and (41), we can readily get
the following expression for the Lorentz invariant
inclusive cross sections for these processes:
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The parameter A1 and the total cross section 

of the reaction π+n  K+Λ can be parametrized as [56]

(68)

(69)

where  = mK +  is the in-medium threshold
energy. It is interesting to note that both the above
parametrization (69) for the total cross section

 of reaction π+n  K+Λ and those from [18,

57] lead to similar results for the respective kaon-pro-
duction cross sections in pA collisions at subthreshold
incident energies. For the total cross sections

, we have used the following parametri-

zation suggested in [58] on the basis of the resonance-
model calculations:

(70)

where  = mK +  is the in-medium threshold
energy and the constants dn, bn, cn, and fn are given in
[58]. Within the representation (62), the inclusive
invariant differential cross sections

d /d  and d /d  for

kaon production in πp and πn interactions appearing in
equation (47) can be written in the forms:

(71)
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(73)

According to [10], a simpler expression like formula
(90) from [10] can be given for the invariant differential

cross section  (43). As compared to

equation (90) from [10], it includes the effective
hyperon mass  instead of its free mass mY. For the
purpose of brevity of presentation, we did not give it
here. Results of investigations [10] indicate that the
main contribution to the K+ production in the two-step
reaction channels (38)–(41) both at subthreshold and
above the free NN threshold incident energies comes
from the uncorrelated part P0(pt, E) of the nucleon
spectral function alone. Therefore, we will hereafter

adopt only the  term in the sum (42) to

calculate the K+ yield in pA interactions from the sec-
ondary channels (40) and (41).

To show the validity of the present approach in the
description of the kaon yield in pA collisions from these
channels, it is obviously necessary to be able to repro-
duce, within this approach, the high-momentum parts
of the charged-pion spectra measured at forward labo-
ratory angles for the beam energies between 1 and 2 GeV.
Taking into consideration the pion final-state absorp-
tion, as well as according to equations (19)–(22), we
easily come to the following expression for the invari-
ant inclusive cross section of pion production on nuclei
from the primary proton-induced reaction channels
(38) and (39) (see, also, [16]):

(74)

where

(75)

+ E
K

+

dσ
π0

p K
+Σ0→

s1 p
K

+,( )

dp
K

+

---------------------------------------------------,

E
K

+

dσ
π0

n K
+

X→
s1 p

K
+,( )

dp
K

+

------------------------------------------------- E
K

+

dσ
π0

n K
+Σ–→

s1 p
K

+,( )

dp
K

+

--------------------------------------------------;=

E
K

+

dσ
π–

p K
+

X→
s1 p

K
+,( )

dp
K

+

------------------------------------------------- E
K

+

dσ
π–

p K
+Σ–→

s1 p
K

+,( )

dp
K

+

---------------------------------------------------,=

E
K

+

dσ
π–

n K
+

X→
s1 p

K
+,( )

dp
K

+

------------------------------------------------- 0.=

E
K

+

dσij
sec( ) p0( )

dp
K

+

------------------------

mY
*

E
K

+

dσ00
sec( ) p0( )

dp
K

+

------------------------

Eπ
dσpA πX→

prim( ) p0( )
dpπ

-------------------------------- IV' A[ ] Eπ
dσpN πX→ p0 pπ,( )

dpπ
----------------------------------------- ,=

IV
' A[ ] A ρ r( ) r µ p0( ) ρ r xW0+( ) xd

∞–

0

∫–expd∫=

– µ pπ( ) ρ r xWπ+( ) xd

0

∞

∫ ,



296 PARYEV
(76)

The quantity µ(pπ) entering into equation (75) and the
differential cross sections for pion production in pN
collisions are defined above by the formulas (45) and
(46), (51)–(61), respectively. Since we are interested in
the spectra of emitted pions at forward laboratory
angles, i.e., when Wπ ≈ W0, we can easily obtain, for a
nucleus with the uniform density of nucleons of a
radius R = 1.3A1/3 fm, the following simple form for the
integral (75) [16]:

(77)

where a1 = 3µ(pπ)/2πR2 and a2 = 3µ(p0)/2πR2. The
comparison of the results of our calculations by (74)–
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Fig. 2. Lorentz-invariant negative-pion inclusive cross sec-
tions versus the (lab) momentum at 0° for 1.05- (left) and
2.1-GeV (right) protons interacting with a carbon target.
The experimental data (open triangles) are from [59]. The
curves are our calculation. The solid and dashed curves are
our calculation by (74)–(77) for primary production pro-
cesses (38) and (39) with the total nucleon spectral function

at V0 = 40 MeV,  = –34 MeV and V0 = 0,  = 0,

respectively, The arrows indicate the kinematical limits for
pion production from free nucleons as well as from
nucleon–nucleus interactions.
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N

Ueff
N

(77) for the Lorentz invariant inclusive cross sections
for the π–-meson production at 0° in the interactions of
1.05- and 2.1-GeV protons with 12C nuclei with the
experimental data [59] is given in Fig. 2. The elemen-

tary cross sections  and  in the calculations
were assumed to be, respectively, 30 and 35 mb [10].
One can see that our calculations reproduce quite well
the high-momentum tails of the pion spectra only if we
include the effect of the mean fields (mainly the

nucleon effective potential ) on the one-step pro-
duction processes (38) and (39). Let us now discuss the
results for π+-meson production. In Fig. 3, we present
the results of our calculations by (74)–(77) for the dou-
ble-differential cross sections for π+ production in pC
collisions at different incident energies and outgoing
angles as well as the experimental data [8, 60]. It is seen
that the agreement between the model calculations and
the measurements in the high-momentum parts of the
π+ spectra is quite remarkable, as in the above compar-
ison for the π− spectra, only if we take into account the
in-medium effects on secondary nucleons. Therefore,
we are confident that our approach is realistic enough
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Fig. 3. Measured and calculated positive-pion-production
cross sections in pC collisions at different bombarding ener-
gies and outgoing laboratory angles: (a) 1.05 GeV, 0° [60];
(b) 1.73 GeV, 0° [60]; (c) 1.2 GeV, 40° [8]; and (d) 1.5 GeV,
40° [8]. The curves are results of our model at V0 = 40 MeV,

 = –34 MeV (solid curve) and at V0 = 0,  = 0

(dashed curve).
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to describe K+ production through the reactions
πN  K+Y .

Let us now discuss the results of our calculations for
kaon production in pBe and pC interactions in the
framework of model outlined above.

2. RESULTS AND DISCUSSION

Figure 4 shows the invariant cross sections calcu-
lated by (19) and (42) for the production of K+ mesons
with a momentum of 1.28 GeV/c at the laboratory
angle of 10.5° through the primary pN  K+YN and
secondary πN  K+Y channels and the experimental
data [11] for p + 9Be  K+ + X reactions at the various
bombarding energies. One can see that

(1) our model for primary and secondary kaon-pro-
duction processes, based on the nucleon spectral func-
tion, completely fails to reproduce the experimental
data at subthreshold beam energies (at energies &2.1 GeV
for the kinematical conditions of the experiment [11])
without allowance for the influence of the correspond-
ing effective potentials on the one-step [(1) and (2)] and
two-step [(38)–(41)] production processes;

(2) our calculations of the one-step reaction chan-
nels (1) and (2) with the set of parameters V0 = 40 MeV,

 = –34 MeV,  = –30 MeV, and  = –26 MeV
[see (6)] reproduce quite well the experimental data
[11] in the energy region far below the lowest thresh-
old, but overestimate the data by a factor of 2 at higher
bombarding energies, which indicates that there is no
need for employing the medium effects considered by
us at these energies;

(3) the results of our calculations of the kaon yield
from the two-step reaction channels (38)–(41) with the
same set of parameters for the effective potentials V0,

, , and  as that used above in calculating
the K+ yield from the primary reaction channels (1) and
(2) substantially underestimate the data [11] both at
subthreshold and above-threshold incident energies,
which means the dominance of the one-step K+-produc-
tion mechanism for the considered “hard”-kaon pro-
duction at all beam energies of interest;

(4) the contributions to the K+ production from the
primary reaction channels (1) and (2) with Λ and Σ par-
ticles in the final states are comparable at bombarding
energies e0 * 2.2 GeV, whereas, at lower incident ener-
gies, the primary production process (1) is more impor-
tant than (2);

(5) the primary proton–nucleon production process
(1) misses the experimental data in the far subthreshold

region when the effective potential  that is seen
inside the nucleus by a slow Λ particle grows from the

value of  = –30 MeV, estimated from the study of

the binding and decay of hypernuclei, to  = –20 MeV,
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2.82.42.01.6
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100
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Ed3σ/d3p, nb GeV–2 c3

p + N → K+ + Σ + N

p + N → K+ + Λ + N

Fig. 4. Lorentz invariant cross sections for the production of
K+ mesons with a momentum of 1.28 GeV/c at the labora-
tory angle of 10.5° in p + 9Be reactions as functions of the
laboratory energy of the proton. The experimental data (full
squares) are from [11]. The curves are our calculation. The
dashed curves with one, two, and three dots are calculations
by (19) for primary production processes (1) and (2) with

the total nucleon spectral function at V0 = 0,  = 0,  =

0, and  = 0; V0 = 40 MeV,  = –34 MeV,  =

−30 MeV, and  = –26 MeV; and V0 = 40 MeV,  =

–34 MeV,  = –20 MeV, and  = –26 MeV, respec-

tively. The two-dot-dashed curve represents our calculations
by (19) for primary production process (2) with the total

nucleon spectral function at V0 = 40 MeV,  = –34 MeV,

 = –26 MeV. The solid curve denotes the same as the

dashed curve with two dots, but it is supposed that the total
nucleon spectral function given by equations (29), (30), and
(33) is replaced by its correlated part (33). The short- and
long-dashed curves are calculations by (42) for the second-
ary production process (40) with the use of the uncorrelated
part of the nucleon spectral function in the calculation of
momentum–energy-averaged differential cross sections for

pion and kaon production at V0 = 0,  = 0, and  = 0

and V0 = 40 MeV,  = –34 MeV, and  = –30 MeV,

respectively. The curve with alternating short and long
dashes represents calculations by (42) for the secondary
production processes (40) and (41) with the use of the
uncorrelated part of the nucleon spectral function in the cal-
culation of momentum–energy-averaged differential cross
sections for pion and kaon production at V0 = 40 MeV,

 = –34 MeV,  = –30 MeV, and  = –26 MeV.

The arrows indicate the thresholds for the reactions
pN  K+ΛN and pN  K+ΣN occurring on a free
nucleon.
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which implies the strong sensitivity of “hard”-kaon
yield at “low” beam energies to the lambda potential in
the nuclear matter;

(6) the kaon yield from the one-step K+-production
mechanism is entirely governed by the correlated part
P1(pt, E) of the nucleon spectral function only in the
vicinity of the absolute reaction threshold (at bombard-
ing energies of e0 ≈ 1.65–1.70 GeV), which suggests
the difficulty of extracting information on the high-
momentum and high-removal-energy components
within the target nucleus even from the “hard”-kaon-
production experiment [11].

The results of our calculations by (19) and (42) for
the double-differential cross sections for the production
of “soft” K+ mesons from primary pN  K+YN and
secondary πN  K+Y channels at an angle of 40° in
the interaction of protons with energies of 1.2, 1.5, and
2.5 GeV with 12C nuclei and the experimental data [8]
are displayed in Figs. 5–7. It is seen that

0.80.40
plab, GeV/c

10–8

10–6

10–4

10–2
d2σ/dp dΩ, mb/(GeV/c) sr

Fig. 5. Double-differential cross sections for the production
of K+ mesons at an angle of 40° in the interaction of 1.2-GeV
protons with 12C nuclei as functions of kaon momentum.
The experimental data (open squares) are from [8]. The
curves are our calculation. The dashed curves with one and
two dots are calculations by (19) for the primary production
process (1) with the total nucleon spectral function at V0 =

0,  = 0,  = 0 and V0 = 40 MeV,  = −34 MeV,

 = –30 MeV, respectively. The short-, long-dashed, and

dotted curves are calculations by (42) for the secondary pro-
duction process (40) with the use of the uncorrelated part of
the nucleon spectral function in the calculation of momen-
tum–energy-averaged differential cross sections for pion

and kaon production at V0 = 0,  = 0, and  = 0; V0 =

40 MeV,  = –34 MeV, and  = –30 MeV; and V0 =

40 MeV,  = –34 MeV, and  = 0, respectively. The

thin solid curve is the sum of the dashed curve with two dots
and the dotted curve.
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(1) our model calculations for proton- and pion-
induced reaction channels underpredict significantly
the data at 1.2- and 1.5-GeV incident energies without
taking into account the medium effects on the hadrons
produced in these channels, which is consistent with
our previous findings of Fig. 4;

(2) the inclusion of the in-medium effects under
consideration leads to the substantial enhancement of
the K+ cross sections both from primary and secondary
kaon-production processes at 1.2- and 1.5-GeV beam
energies as well as to a similar magnitude4) for these
K+-creation processes at the indicated bombarding
energies;

(3) the “soft”-kaon yield from the secondary reac-
tion channel (40) with Λ particle in the final state at 1.2-
and 1.5-GeV beam energies is not too sensitive to the

effective potential  that is seen inside the nucleus

by a lambda when this potential grows from  =

−30 MeV to  = 0, and, moreover, the discrepancy
between the calculations with allowance for the influ-
ence of this potential on the production process (40)
and without it is more prominent with the lowering of
the incident energy;

(4) the one-step K+-production mechanism clearly
dominates at 2.5-GeV proton beam energy both with
and without the influence of the mean fields on the one-
step production processes (1) and (2);

(5) the high-momentum tail5) (plab ≥ 0.9 GeV/c) of
the kaon spectrum measured in [8] at a 2.5-GeV inci-
dent energy is much better reproduced by our first-
chance collision model when including the same influ-
ence of the mean fields on the one-step production pro-
cesses (1) and (2) as that employed above (see Fig. 4)
in the analysis of the energy dependence of the “hard”-
kaon production taken in [11], whereas its low-momen-
tum tail (plab ≤ 0.6 GeV/c) is reasonably well described
by the model both with and without this influence;

(6) our overall calculations {the sum of the results
obtained both for the one-step [(1) and (2)] and two-
step [(38)–(41)] reaction channels, thin solid curves in
Figs. 5–7} reasonably reproduce the experimental data
only if we include the effect of the respective effective
potentials on the one-step kaon-production processes (1)
and (2) and on pion production reactions (38) and (39).

It should be pointed out that the two-pion-produc-
tion reactions (39) have been taken into account in the
above calculations only at a 2.5-GeV incident labora-

4)It should be mentioned that the first-chance collision models [8,
10], based on nucleon spectral function as well as on discarding
any self-energies for the produced hadrons, predict a minor role
for the direct K+-production processes (1) and (2) compared to
that for the secondary K+-reaction channels (40) and (41) in sub-
threshold kaon production in pC interactions at these bombarding
energies.

5)It should be noticed that, for kinematical conditions of the experi-
ment [8], the kaons emitted with the laboratory momenta plab ≥
0.9 GeV/c are subthreshold kaons.

Ueff
Λ

Ueff
Λ

Ueff
Λ

PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 2      2000



SUBTHRESHOLD AND NEAR-THRESHOLD K+-MESON PRODUCTION 299
tory kinetic energy, where their contribution to the
inelastic cross sections of free pN interaction is about
40%. It is also worth mentioning that the present model
can simultaneously reproduce the π+ spectra measured
in the same experiment [8] (see Fig. 3).

Figure 8 presents a comparison of the results of our
calculations by (19) and (42) for the Lorentz invariant
inclusive cross sections for the production of K+

mesons at the laboratory angle of 10.5° from the pro-
ton- and pion-induced reaction channels with the
experimental data [12] for p + 9Be  K+ + X reactions
at a 1.7-GeV beam energy. It can be seen that

(1) the model calculations for the primary and sec-
ondary kaon-production processes substantially under-
estimate the subthreshold data points,6) as in the above
cases (cf. Figs. 4–7), without including the in-medium
effects considered by us;

(2) the high-momentum part of the measured kaon
spectrum is fairly well reproduced by the calculations
for the one-step production processes (1) and (2) with
allowance for the same influence of the nuclear mean
fields on these processes as those adopted above in the
analysis of the other experimental data [8, 11] on sub-
threshold kaon production in pBe and pC collisions (see
Figs. 4–7), whereas its low-momentum part is overesti-
mated in the calculations by a factor of about 2 to 3;

6)It should be noted that, for kinematical conditions of the experi-
ment [12], the data points which correspond to the laboratory
kaon momenta plab ≥ 0.8 GeV/c are the subthreshold data points.
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Fig. 6. Double-differential cross sections for the production
of K+ mesons at an angle of 40° in the interaction of 1.5-GeV
protons with the 12C nuclei as functions of kaon momen-
tum. The dashed curves with one and two dots are calcula-
tions by (19) for primary production processes (1) and (2)

with the total nucleon spectral function at V0 = 0,  = 0,

 = 0, and  = 0 and V0 = 40 MeV,  = –34 MeV,

 = –30 MeV, and  = –26 MeV, respectively. The

rest of the notation is identical to that in Fig. 5.
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(3) our calculations of the kaon yield from the two-
step production processes (38)–(41) with the same set

of parameters for the effective potentials V0, , ,

and  as that employed above (see Figs. 5–7) in the
analysis of the corresponding K+ yield from pC interac-
tions significantly underestimate the subthreshold data
points, which indicates the dominance of the one-step
K+-production mechanism at the laboratory kaon
momenta plab > 0.8 GeV/c;

(4) the high-momentum tail of the kaon spectrum
from direct K+-production mechanism is almost com-
pletely determined by the correlated part P1(pt, E) of
the nucleon spectral function only in a very limited
range of kaon momenta (plab ≈ 1.25–1.35 GeV/c),
which makes it difficult to extract this part from the
experimental data [12].

In Fig. 9, we compare the results of our calculations
by (19) and (42) for the total cross sections for K+ pro-
duction in p12C collisions from primary pN  K+YN
and secondary πN  K+Λ channels with the experi-
mental data [1]. It is clearly seen that

(1) the calculations for primary and secondary kaon-
production channels essentially miss the data in line
with our findings inferred above from the analysis of
the data on differential kaon-production cross sections
when no self-energy effects have been employed and,
moreover, the primary pN and secondary πN channels
are of the same order of magnitude in this case;
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Fig. 7. Double-differential cross sections for the production
of K+ mesons at an angle of 40° in the interaction of 2.5-GeV
protons with 12C nuclei as functions of kaon momentum.
The dotted curve is calculation by (42) for the secondary
production processes (40) and (41) with the use of the
uncorrelated part of the nucleon spectral function in the cal-
culation of momentum–energy-averaged differential cross
sections for pion and kaon production at V0 = 40 MeV,

 = –34 MeV,  = 0, and  = 0. The dashed curves

with one and two dots and the thin solid curve denote the
same as in Fig. 5. The thick solid curve is the sum of the
dash-dotted and dotted curves.
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(2) approximately an equal magnitude7) for these
channels is gained at beam energies below about 1.1 GeV,
when the same influence of the nuclear mean fields on
them as that which allowed us to describe the existing
experimental data [8, 11, 12] on the differential kaon-
production cross sections (cf. Figs. 4–8) has been
included;

7)It should be emphasized that this finding is in disagreement with
the conclusions of the authors of earlier studies [3–5] of the mea-
sured [1] total cross sections for K+ production from pA collisions
in the framework of the simple folding models, who claim the
dominance of the secondary N channel for K+ production in pro-
ton–nucleus reactions at subthreshold energies. This result also
disagrees with the recent studies [9, 10] of the data [1] on total
K+-production cross section from pC interactions within the spec-
tral-function approach without including any self-energy effect
for hadrons created in direct processes (1) and (2), since it has
been claimed in [9, 10] that the two-step kaon-production mecha-
nism with an intermediate pion dominates in the subthreshold
regime as in the folding models [3–5].
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Fig. 8. Lorentz invariant inclusive cross sections for the pro-
duction of K+ mesons at an angle of 10.5° in the interaction
of 1.7-GeV protons with 9Be nuclei as functions of kaon
momentum. The experimental data (full squares) are from
[12]. The curves are our calculation. The dashed curves with
one and two dots are calculations by (19) for primary pro-
duction processes (1) and (2) with the total nucleon spectral

function at V0 = 0,  = 0,  = 0, and  = 0 and V0 =

40 MeV,  = –34 MeV,  = –30 MeV, and  =

−26 MeV, respectively. The dashed curve with three dots
denotes the same as the dashed curve with two dots, but it is
supposed that the total nucleon spectral function given by
equations (29), (30), and (33) is replaced by its correlated part
(33). The short-dashed and dotted curves are calculations by
(42) for the secondary production processes (40) and (41),
with the use of the uncorrelated part of the nucleon spectral
function in the calculation of momentum-energy-averaged
differential cross sections for pion and kaon production at V0 =

0,  = 0,  = 0, and  = 0 and V0 = 40 MeV,  =

−34 MeV,  = 0, and  = 0, respectively. The thick

solid curve is the sum of the dash-dotted and dotted curves.
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(3) our full calculations {the sum of results obtained
both for the one-step [(1) and (2)] and for two-step
[(38)–(40)] reaction channels, thin solid curve in Fig. 9},
which adopted the influence of the respective effective
potentials on these channels, reasonably well reproduce
the measured [1] total K+-production cross sections8) at
proton energies below about 900 MeV, but they slightly
overestimate the data at higher bombarding energies.

Finally, Fig. 10 shows the same comparison as that
presented in Fig. 9, but also includes data points at pro-

8)It is interesting to note that we are able to reproduce reasonably
well these cross sections also within the simple folding model (cf.
[3–5]) for the two-step K+-production mechanism (pN1 
πNN, πN2  K+Λ) which is obtained from the present model
by replacing the total nucleon spectral function by the shell-
model momentum distribution (32), assuming the struck target
nucleon to be on mass shell, and employing only the repulsive
optical potential of about V0 ≈ 50 MeV in the entrance channel in
line with [3, 5, 9].
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e0, GeV
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100

σ, µb

Fig. 9. The total cross sections for K+ production in p + 12C
interactions as functions of the laboratory energy of the pro-
ton. The experimental data (full circles) are from [1]. The
curves are calculation. The dashed curves with one and two
dots are calculations by (19) for primary production pro-
cesses (1) and (2) with the total nucleon spectral function at

V0 = 0,  = 0,  = 0, and  = 0 and V0 = 40 MeV,

 = –34 MeV,  = –30 MeV, and  = –26 MeV,

respectively. The short-, long-dashed, and dotted curves are
calculations by (42) for the secondary production process
(40) with Λ particle in the final state with the use of the
uncorrelated part of the nucleon spectral function at V0 = 0,

 = 0, and  = 0; V0 = 40 MeV,  = –34 MeV, and

 = –30 MeV; and V0 = 40 MeV,  = –34 MeV, and

 = 0, respectively. The thin solid curve is the sum of the

dashed curve with two dots and a dotted curve.

Ueff
N

Ueff
Λ

Ueff
Σ

Ueff
N

Ueff
Λ

Ueff
Σ

Ueff
N

Ueff
Λ

Ueff
N

Ueff
Λ

Ueff
N

Ueff
Λ

PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 2      2000



SUBTHRESHOLD AND NEAR-THRESHOLD K+-MESON PRODUCTION 301
ton energies of 1.5, 1.7, and 2.5 GeV. The data points at
1.5 and 2.5 GeV were taken from [8], where they have
been deduced from the measured double differential
cross section for K+ production at these incident ener-
gies (see Figs. 6, 7). The data point at 1.7 GeV was
taken from [61], where it has been extracted from the
inclusive invariant cross sections for kaon production in
p9Be interactions, given in Fig. 8, assuming an A2/3

scaling to make an extrapolation from 9Be to 12C target
nuclei. It is nicely seen that our overall model calcula-
tions (the sum of results obtained both for primary and
secondary kaon-production processes, thin solid curve
in Fig. 10) including the same mean-field effects as
those that allowed us to describe above the data both on
differential [8, 11, 12] and total [1] kaon-production
cross sections also reproduce fairly well the measured
[8] total K+-production cross sections at proton ener-
gies of 1.5 and 2.5 GeV and overestimate the data point
[61] at 1.7 GeV by a factor of about 3.9)

The similar calculations with no mean-field effects
(thick solid curve in Fig. 10) reasonably describe both
this data point and that at 2.5 GeV, but completely fail
to reproduce the data at lower incident energies, which
counts in favor of the former model calculations. It is

9)Compare to the analogous difference in the low-momentum
region between the measured and calculated kaon-production
cross sections presented in Fig. 8.

2.52.01.51.00.5
10–7

10–5

10–3

10–1

σK+
, mb

e0, GeV

Fig. 10. The total cross sections for K+ production in p + 12C
interactions as functions of the laboratory energy of the pro-
ton. The experimental data are from [1, 8, 61]. The curves
are our calculation. The short-dashed and dotted curves are
calculations by (42) for the two-step production processes
(38)–(41) with the use of the uncorrelated part of the

nucleon spectral function at V0 = 0,  = 0,  = 0, and

 = 0 and V0 = 40 MeV,  = –34 MeV,  = 0, and

 = 0, respectively. The thick solid curve is the sum of

the dash-dotted and short-dashed curves. The rest of the
notation is identical to that in Fig. 9.
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also seen that, at beam energies below about 1.5 GeV,
the contributions from the two-step and one-step kaon-
production processes are comparable in both calcula-
tions.

Taking into account the considered above, one may
conclude that the relative strength of the proton- and
pion-induced reaction channels in light target nuclei in
the subthreshold energy regime is mainly governed by
the kinematics of the experiment on inclusive kaon pro-
duction in pA interactions. Our results also demonstrate
that further measurements of the total (and differential)
cross sections for K+ production on light nuclei in the
proton-energy range 1.0–1.7 GeV are extremely
needed nowadays to test reliably the spectral-function
approach presented in this study, as well as to deeply
elucidate the underlying mechanism of subthreshold
kaon production and the role played by nucleon–
nucleon correlations in this phenomenon.

SUMMARY

In this study, we have calculated the total and differ-
ential cross sections for K+ production in p9Be and p12C
interactions in the near-threshold and subthreshold
energy regimes by considering incoherent primary pro-
ton–nucleon and secondary pion–nucleon production
processes in the framework of an appropriate folding
model, which properly takes into account the struck-
target-nucleon momentum and removal-energy distri-
bution, novel elementary cross sections for proton–
nucleon reaction channel close to threshold, as well as
nuclear mean-field potential effects on the one-step and
two-step kaon-production processes. The detailed com-
parison of the results of our calculations with the exist-
ing experimental data [1, 8, 11, 12] was made. It was
shown that these effects are of importance to explain
consistently both the considered experimental data on
kaon production and the measured [8, 59, 60] charged-
pion spectra at forward angles from p12C interactions at
beam energies between 1.05 and 2.1 GeV. It was also
found that, contrary to previous studies carried out in
the literature, the pion–nucleon-production channels do
not necessarily dominate in pA collisions at subthresh-
old energies and the relative weight of the proton- and
pion-induced reaction channels in light target nuclei in
the subthreshold energy regime is governed by the
kinematics of experiment under consideration; namely,
the one-step K+-production mechanism clearly domi-
nates in the subthreshold “hard”-kaon production in
p9Be [11, 12] and p12C [8] collisions, whereas, in the
subthreshold “soft”-kaon production in p12C reactions
[1, 8], the contributions from the direct and two-step
kaon-production processes are comparable. Our
present results indicate that the kaon yield from the
one-step K+-production mechanism is almost com-
pletely determined by the correlated part of the nucleon
spectral function only in a very limited range of kaon
momenta (for kaon spectra) or bombarding energies
(for energy dependence), which makes it difficult to
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extract it from the data under consideration. Therefore,
further measurements of the differential cross sections
for subthreshold production of “hard” K+ mesons on
light nuclei are needed both to test reliably the spectral-
function approach presented in this work and to eluci-
date deeply the underlying mechanism of subthreshold
kaon production and the role played by nucleon–
nucleon correlations in this phenomenon.
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Abstract—The production of Λ hyperons in π+Ä interactions is studied on the basis of the intranuclear-cascade
model, and the excitation-energy, momentum, angular-momentum, charge, and mass distributions of the
ensemble of product hypernuclei are determined. The decay of excited hypernuclei via particle emission and
fission is considered. It is shown that, for the production of heavy Λ hypernuclei, the optimal momentum of the
incident π+ meson is about 1 GeV/Ò. The cross section of the channel in which heavy-nucleus decay induced
by a π+ meson is accompanied by the emission of a K+ meson is estimated, and it is proposed to use the reaction
(π+, K+f) in measurements of the fission barrier in hypernuclei and of their level density. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Throughout the past years, much attention has been
given to investigations of strangeness in hadrons and
nuclei. The range of these investigations is very broad,
extending from the spectroscopy of hypernuclei to the
formation of strange matter in ultrarelativistic nucleus–
nucleus collisions or in neutron stars [1–6]. Here, the
effect of nuclear matter on the properties of strange par-
ticles is the subject of great topical interest. Since the
lifetime of Λ hypernuclei is large on the scale of char-
acteristic nuclear times, Λ hypernuclei are especially
suitable for the investigation of strangeness in nuclear
matter.

Various incident particles, including photons, pions,
kaons, antiprotons, and heavy ions, can produce Λ
hypernuclei in interactions with nuclear targets.
Whether the product Λ hyperon is captured by a
nucleus with the formation of a Λ hypernucleus
depends crucially on the momentum transfer in an ele-
mentary process. In all elementary processes, with the
exception of K−n  Λπ–, the momentum transfer is
high, so that the product Λ hyperon has a sufficiently
high energy. It can be captured by a nucleus only as the
result of rescattering in a nuclear medium. In the rescat-
tering process, the Λ hypernucleus receives a rather
high excitation energy, momentum, and angular
momentum and loses some nucleons.

The first detailed investigation of the characteristics
of the product ensemble of Λ hypernuclei were per-
formed in [7] for proton–nucleus reactions. A kinetic
approach based on the Boltzmann–Uehling–Uhlenbeck
equation was used there to describe pA interactions and
the rescattering of Λ hyperons produced in them. The
main contribution to the production of hypernuclei
comes from Λ hyperons formed in the collisions of sec-
ondary pions with intranuclear nucleons.

In this study, we will analyze a simpler and physi-
cally clearer case of Λ-hypernucleus production by pri-
1063-7788/00/6302- $20.00 © 20303
mary pions. Our analysis of πA interactions will also be
performed within the kinetic approach relying on the
intranuclear cascade (INC) model.

The ensuing exposition is organized as follows. The
INC modification that was successfully used to study
pion–nucleus [8] and multipion–nucleus ( A annihila-
tion [9], photonuclear reactions [10]) interactions is
described in Section 2. In Section 3, the excitation-
energy, momentum, angular-momentum, charge, and
mass distributions of hot hypernuclei are calculated on
the basis of this model version. In Section 4, particle
emission from excited hypernuclei and the process of
their fission are described within the evaporation–fis-
sion model; as a result, we obtain the eventual momen-
tum, mass, and charge distributions of Λ hypernuclei.
In Section 5, we discuss the results of our analysis and
the prospects of experimental investigations of Λ
hypernuclei with pion beams.

2. DESCRIPTION OF THE COMPUTATIONAL 
METHOD

In this study, the interaction of an incident pion with
a nucleus and the propagation of product particles in
nuclear matter will be described on the basis of the INC
model. The INC model reduces an inelastic πA interac-
tion to a series of successive quasifree collisions of fast
secondaries with intranuclear nucleons. The INC
model is a numerical method for solving the kinetic
equation for a multiparticle distribution function that
describes the transport of cascade particles (pions,
kaons, nucleons, Λ hyperons, etc.) in a nuclear medium
(see [11] and references therein).

The INC model version used here provided a good
description of similar nuclear processes, including
pion–nucleus interactions [8] and multipion–nucleus
interactions ( A annihilation [9] and γA interactions at
energies of 1–5 GeV [10]). A detailed description of the

p

p
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model is given elsewhere [8–10]. For this reason, only
a brief account of its fundamentals will be given here,
but the modification associated with the inclusion of
channels featuring strangeness will be considered in
greater detail.

A Λ hyperon is produced in the collision of an inci-
dent pion and an intranuclear nucleon:

(1)

In the INC model, the target nucleus is a mixture of
degenerate proton and neutron Fermi gases contained
in a potential well. The radial dependence of the poten-
tial well for nucleons is identical to that of the density
distribution in nuclear matter, VN(r) ~ ρN(r). The poten-
tial well for Λ hyperons is taken in the form VΛ(r) =
0.6VN(r) [7], and its depth at the center of the nucleus is
VΛ(0) = –30 MeV.

In this study, we consider the interval of the initial
energies near the threshold for meson production. As
was shown in [12], the Fermi momentum distribution
of intranuclear nucleons, which is used in the INC
model, makes it possible to reproduce faithfully, in this
energy interval, the cross section for η-meson produc-
tion by protons and photons incident on nuclear targets.
This confirms that the approximation used here is valid
for kaon production near the threshold as well.

Near the threshold, the kaon-production cross sec-
tion is a small fraction of the total inelastic cross section
for π+A interaction. In this interval of the initial ener-
gies, a kaon is produced in the first collision between a
pion and an intranuclear nucleon with the probability

(2)

where σKΛ is the cross section for the elementary pro-

cess (1), while  is the total cross section for inelas-
tic π+n interaction. The first π+n collision resulting in
the strangeness-production reaction (1) is always simu-
lated in the Monte Carlo calculation performed here for
the intranuclear cascade, and the weight (2) of this col-
lision is remembered. The use of the method of weights
permits performing an effective Monte Carlo simula-
tion of channels characterized by small cross sections.
In calculating the cross section for the elementary pro-
cess (1), we used the parametrization [7]

(3)

where  = mΛ + mK = 1.613 GeV, and  is the total
invariant energy in GeV. The angular distribution of Λ
and K particles in the c.m. frame was assumed to be iso-
tropic.

The product Λ hyperon can be rescattered within the
nucleus. In calculating the cross section for elastic ΛN

π+ n K+ Λ .+ +

Ws σKΛ σπn
inel,⁄=

σπn
inel

σKΛ mb[ ]
7.665 10 3–× s s0–( )0.1341

s 1.72–( )2
7.826 10 3–×+

------------------------------------------------------------------,=

s0 s
scattering, we used the parametrization [7]

(4)

where  and  (both in MeV) are, respectively, the
total invariant energy and the sum of the Λ and nucleon
masses. The angular distribution in ΛN interaction is
assumed to be identical to that in NN interaction.

In describing the propagation of kaons in nuclear
matter, we took into account the elastic-rescattering
processes

(5)

The values of the elastic-scattering cross sections in the
kaon-momentum region PK < 1 GeV/Ò (and this is pre-
cisely the region of our prime interest), σel(K+p) ~
12 mb and σel(K+n) ~ 12 mb, were taken from the com-
pilation of experimental data that was presented in [13].
For K0 mesons, we used the relations σel(K0p) = σel(K+n)
and σel(K0n) = σel(K+p). We also took into account the
kaon-charge-exchange channels

(6)

The charge-exchange cross section σex(KN) was taken
to be 6 mb [13]. The angular distributions for these
reactions were assumed to be identical to those for the
corresponding channels in πN interactions at the same
c.m. energies.

The cascade stage of the inelastic pion–nucleus
interaction is completed upon the escape of fast cascade
particles from the nucleus and the capture of slow
nucleons and of the Λ hyperon by the nuclear potential.
The excitation energy of the residual nucleus is deter-
mined as the sum of the energies of the excitons that
originate from the INC and which are formed by cap-
tured nucleons occupying nuclear levels above the
Fermi energy and holes left in the Fermi sea by nucle-
ons knocked out of the nucleus. In such an excited
residual nucleus, thermodynamic equilibrium is estab-
lished in a comparatively short time interval. The
resulting compound nucleus is deexcited via the evapo-
ration of nucleons and extremely light nuclei, as well as
via fission. This stage of the inelastic πA interaction is
treated on the basis of the evaporation–fission model.
This unified cascade–evaporation–fission model
describes successfully a wide variety of data on fission
and isotope yields in the interaction of multipion sys-
tems with nuclei [14]. A detailed description of the
evaporation–fission model can be found in [15]. Here,
we only indicate that, in calculating the evaporation and
fission of hypernuclei, the mass of the hypernucleus

 and the fission barrier in it are assumed to be equal

σΛN mb[ ]

=  
114 1– 0.2 s s0–( )+[ ] 6+⁄ , s s0 10+≥

120, s s0 10,+<



s s0

K+N K+N , K0N K0N .

K+n K0 p, K0 p K+n.
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to, respectively, the mass of the conventional nucleus

 and the fission barrier in it.

3. FEATURES OF SECONDARIES AND EXCITED 
Λ HYPERNUCLEI PRODUCED

IN THE INTRANUCLEAR CASCADE

Let us consider the results of the calculations per-
formed on the basis of the model described above. The
cross section for the production of kaons and Λ hyper-
ons on nucleus increases sharply with the incident-pion
momentum  near the threshold for kaon production,

reaches saturation at  ~ 1 GeV/Ò, and changes only

slightly as  increases further (see Fig. 1). Only a

small number of the product Λ hyperons are captured
by the nuclear potential, forming hypernuclei (Fig. 1).
The cross section for the production of hypernuclei
peaks at  ~ 1 GeV/Ò.

The rescattering of Λ hyperons on intranuclear
nucleons plays a crucial role in the production of hyper-
nuclei. This is because Λ hyperons produced in the pri-
mary π+n collision are too fast to be captured by the
nucleus. Only as the result of rescattering are some Λ
hyperons moderated, forming hypernuclei (see Fig. 2).
Figure 2 also illustrates the effect of rescattering on the
spectrum of K+ mesons. The same effects determine the
production of K0 mesons in the charge-exchange pro-
cess (see Fig. 1).

The effects of rescattering depend on the nuclear
size and on the primary energy. It is clear from Fig. 3
that Λ hyperons are strongly moderated in the nuclear
matter of the heavy nuclei with A ~ 150. A further
increase in the nuclear mass affects only slightly the

probability  of Λ-hyperon capture (the capture

probability  is defined as the ratio of the number of
the captured Λ hyperons to total number of product Λ
hyperons). At a fixed mass of the target nucleus, the

probability  decreases with increasing primary
energy (see Fig. 3) because, in this case, more energetic
Λ hyperons are produced, which require a greater num-
ber of rescatterings to be captured by the nucleus.

Mean features of the compound hypernuclei pro-
duced in the interactions of π+ mesons with the 238U
nucleus are shown in Fig. 4 versus energy. The yield of
the hypernuclei, YHN, per inelastic π+U interaction
grows fast with the primary momentum in the sub-
threshold energy interval, reaches a maximal value of
YHN ~ 10–3 at  = 1 GeV/Ò, and decreases as 

increases further. The mean excitation energy of hyper-
nuclei, 〈E*/A〉, also grows fast with the primary
momentum  below the threshold, reaching a value

AN 1+
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of 〈E*/A〉 = 0.49 MeV at  = 1 GeV/Ò; at higher ,

the growth of 〈E*/A〉 becomes slower (see Fig. 4). The
mean longitudinal momentum of hypernuclei, 〈PZ/A〉,
depends only slightly on the primary energy; at  =

P
π+ P

π+

P
π+

1.61.41.21.00.80.6
Pπ+, GeV/Ò

10–3

10–2

10–1

100

101

σ, mb

Λ
K+

K0

HN

Fig. 1. Calculated cross sections for the production of K+

and K0 mesons, Λ hyperons, and hypernuclei (HN) by π+

mesons incident on 238U nuclei as functions of energy:
(points) results of the calculation and (curves) interpolation
between the calculated points.

0.40.30.20.10

100

101

dN/dTΛ, rel. units

10–1

100

101

dN/dTK+, rel. units

TΛ, GeV

0.40.30.20.10
TK+, GeV

Fig. 2. Calculated energy spectra of K+ mesons and Λ
hyperons produced in the interactions of 1-GeV/Ò π+

mesons with 238U nuclei. The solid and dashed histograms
represent the results obtained with and without allowance
for rescattering, respectively.
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Fig. 3. Probability  of Λ-hyperon capture of by a nucleus (left panel) as a function of the primary momentum of the  π+ meson

interacting with a 238U nucleus and (right panel) as a function of the mass number  A of the target nucleus interacting with a 1-GeV/Ò
π+ meson. The notation is identical to that in Fig. 1.

Wcap
Λ

1 GeV/Ò, it takes the value of 〈PZ/A〉  = 2.24 MeV/Ò. The
mean angular momentum of hypernuclei, 〈I〉, shows a
similar energy dependence, its value at  = 1 GeV/Ò

being 〈I〉 = 12.1". The mean mass of the hypernucleus
decreases with increasing . At  = 1 GeV/Ò, two

nucleons are knocked out of the target nucleus during
the development of the INC: 〈A〉  = 235.8 (∆A = 2.2).

Figure 5 displays the E*/A, PZ/A, I, and A distribu-
tions of the ensemble of compound hypernuclei. At the
optimal momentum value of  = 1 GeV/Ò, the vari-

ances of these distributions are rather small: aE*/A =
0.276 MeV,  = 1.013 MeV/Ò, aI = 5.56", and

P
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Fig. 4. Yield YHN (per event of inelastic interaction), mean
excitation energy 〈E*/A〉 , mean longitudinal momentum
〈PZ /A〉 , and mean mass number 〈A〉  of Λ hypernuclei as
functions of the primary momentum of π+ mesons incident
on 238U nuclei. The notation is identical to that in Fig. 1.
aA = 1.21. The product hypernuclei have comparatively
low excitation energies (below 1 MeV per nucleon) and
angular momenta (below 20"). They are rather far from
the critical values at which the properties and decay
features of the excited nuclei change drastically.

Figure 6 presents the dependence of the mean char-
acteristics of the composite hypernuclei on the mass
number A of the target nucleus. It is clear from Fig. 6
that the mean yield of hypernuclei YHN, their excitation
energy 〈E*/A〉 , and their longitudinal 〈PZ/A〉  and angu-
lar 〈I〉  momenta weakly depend on A in the region of
sufficiently heavy nuclei A > 150.

Although the different models were used here and in
[7], it is worthwhile to draw at least a qualitative com-
parison of the basic features of the ensembles of the
compound hypernuclei produced in pion–nucleus and
proton–nucleus collisions at the optimal primary-
energy values of  = 0.87 GeV and Tp = 1.5 GeV.

The inclusive cross section for the production of

hypernuclei in π+U interaction,  ~ 1 mb, is an order

of magnitude larger than that in pU interactions,  ~
0.1 mb. The probability of Λ-hyperon capture with the
formation of a hypernucleus in πU interaction is

 = 14%, which is close to the experimental value
for the pion–nucleus interactions [5] and to the value of

 = 25% calculated for pU interactions [7].

The main difference between πU and pU interac-
tions is that the proton introduces a significantly higher
momentum PZ/A, a significantly higher angular
momentum I, and a significantly higher excitation
energy E*/A in the compound hypernucleus; it also
knocks out a larger number A of nucleons of the target
nucleus. In pU interactions at the primary energy of
Tp = 1.5 GeV, the product hypernuclei have a mean
excitation energy of 〈E*/A〉  = 0.74 MeV, a mean longi-
tudinal momentum of 〈PZ/A〉  = 3.4 MeV/Ò, and a mean
angular momentum of 〈I〉 = 28", the number of knock-

T
π+

σHN
π+

σHN
p

Wcap
πΛ

Wcap
pΛ
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on nucleons being 〈∆A〉  = 5 [7]. These values exceed
the corresponding values for π+U interactions by a fac-
tor of 1.5–3.

To a still greater extent, these distinctions are mani-
fested in the excitation-energy, longitudinal-momen-
tum, angular-momentum, and mass distributions of
compound hypernuclei. In pU interactions, the excita-
tion-energy, longitudinal-momentum, angular-momen-
tum, and mass-number distributions extend to the val-
ues of E*/A . 2 MeV, PZ/A . 8 MeV/Ò, I = 60", and A =
230, respectively, the corresponding variances being
aE*/A = 0.35 MeV,  = 1.4 MeV/Ò, aI = 12", and
aA = 1.75) [7]. The compound nuclei produced in
heavy-ions collisions have similarly high values of the
excitation energy and of the angular momentum. It is
well known that the decays of such nuclei (especially
their fission) are strongly affected by thermal effects
and the effects of high angular momenta. As to the
decays of hot, quickly rotating hypernuclei, these
effects in them have yet to be studied.

4. EVAPORATION AND FISSION OF EXCITED Λ 
HYPERNUCLEI

A hypernucleus that was produced upon the com-
pletion of the INC and which has a definite value of the
excitation energy E*, definite numbers of nucleons and

aPZ A⁄

protons (A and Z, respectively), and definite values of
the momentum P and of the angular momentum I will
emit particles (p, n, d, t, α, 3He, and extremely light
nuclei) and undergo fission. Since the excitation energy
of the hypernucleus can reach a value of E* ~ 200 MeV,
this hypernucleus can emit successively a rather large

Fig. 5. Longitudinal-momentum (PZ /A), excitation-energy (E*/A), angular-momentum (I), and mass-number (A) distributions of Λ
hypernuclei produced in the interaction of 1 GeV/Ò π+ mesons with 238U nuclei. The solid and dashed histograms represent the dis-
tributions of Λ hypernuclei formed upon the completion of the intranuclear and evaporation cascades, respectively.

Fig. 6. Yield YHN (per event of inelastic interaction), mean
excitation energy 〈E*/A〉 , mean longitudinal momentum
〈PZ/A〉 , and mean angular momentum 〈I〉  of Λ hypernuclei
as functions of the mass number A of the target nucleus
interacting with 1-GeV/Ò π+ mesons. The notation is identi-
cal to that in Fig. 1.
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Fig. 7. Yield of hypernuclei with specific numbers of nucleons (A) and protons (Z) upon the completion of the (upper panel) intra-
nuclear and (lower panel) evaporation cascades in the interaction of 1-GeV/Ò π+ mesons with 238U nuclei.
(up to 20) number of nucleons; in each unit of this
chain, the nucleus can undergo fission with some prob-
ability. In the present study, such an evaporation cas-

230210190170 A
10–3

10–2

10–1

100

Pf

Lu W Au Bi U

Fig. 8. Probability Pf for the fission of Λ hypernuclei pro-
duced in the interaction of 1-GeV/Ò π+ mesons with various
nuclei as functions of the target mass number A. The nota-
tion is identical to that in Fig. 1.
cade is described on the basis of the evaporation–fis-
sion model [15], which takes into account angular-
momentum effects and the thermal damping of shell
effects in nuclei. The parameters of this model were
determined by fitting a vast body of experimental data
on the statistical properties of excited nuclei formed in
reactions featuring low-energy particles and heavy
ions.

The deexcitation of a compound hypernucleus
affects primarily the yield of a final hypernucleus with
specific values of A and Z. The initially narrow distribu-
tion of compound nuclei with respect to A and Z
becomes rather broad upon the completion of the evap-
oration cascade (see Fig. 7); this especially concerns
the A distribution, because a heavy nucleus evaporates
predominantly neutrons. In heavy nuclei, fission
strongly competes with particle evaporation; as a result,
the yield of final hypernuclei that escaped fission is
reduced. (To the greatest extent, the fission process
reduces the yield of neutron-deficit isotopes.) For the
interaction of π+ mesons with 238U nuclei, the total fis-
sion probability is Pf = 0.67. This quantity (Pf)
decreases fast with decreasing mass number of the tar-
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get nucleus (Fig. 8); as a result, the effect of fission on
the yield of final hypernuclei is negligible for A < 200.

On one hand, fission complicates the spectroscopic
investigation of heavy hypernuclei because it reduces
their yield. On the other hand, the high probability for
the fission of a heavy hypernucleus provides the possi-
bility of studying (π+, K+f) or (p, K+f) reactions, opening
a truly new line of investigations in the physics of
hypernuclei. By measuring, at a specific angle, the
energy spectrum of all kaons and that of kaons in coin-
cidence with fission fragments, we can deduce, from
the ratio of this spectra, the excitation-energy depen-
dence of the fission probability Pf for the hypernucleus
being investigated. The analysis of the dependence
Pf(E*) will furnish information about the fission barrier
and the level density in heavy hypernuclei in just the
same way as this was done for usual nuclei in studying
reactions like (d, pf) and (t, pf) [16]. Of course, this
method can be used near the kaon-production thresh-
old, where a small number of nucleons are emitted in
the INC and where there therefore exists a tight relation
between the kaon energy and the excitation energy of
the product hypernucleus.1) 

5. CONCLUSION

The primary pion momentum of  = 1 GeV/Ò is

optimal for producing Λ hypernuclei. The integrated
cross section for the production of hypernuclei at the
corresponding energy is σHN ~ 1 mb. The product
hypernuclei have moderately high excitation energies
of 〈E*/A〉  = 0.5 MeV and moderately high angular
momenta of 〈I〉  = 10". In π+ interactions with 238U
nuclei, the probability Pf for the fission of heavy hyper-
nuclei reaches the value of Pf ≈ 0.7. A measurement of
the characteristics of (π+, K+f) reactions near the thresh-
old furnishes information about the fission barrier and
the level density in Λ hypernuclei. High-intensity pion
beams of momentum 1 GeV/Ò from existing (for exam-
ple, GSI in Germany) and future (for example, JNF in
Japan) accelerators open new prospects for an experi-
mental investigation of the production and properties of
Λ hypernuclei. The proposed model and the predictions
made on its basis for the production of Λ hypernuclei in

1)It is worth noting that Krappe and Pashkevich [17] considered
another interesting line of investigation of the fission of hypernu-
clei, that which is based on a measurement of the probability of
Λ-hyperon capture by one of the fission products and which may
provide unique information about the dynamics of the fission pro-
cess.

P
π+
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 2      2000
π+A interactions can be used in planning experiments at
these accelerators.
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Abstract—The two-photon decay mode Bs  γγ is studied within the supersymmetric extension of the Stan-
dard Model. The contributions of one-particle-reducible and one-particle-irreducible diagrams to the decay
amplitude are analyzed in detail. Exact expressions for the CP-even and CP-odd amplitudes are obtained. The
contributions of supersymmetric particles to the partial width with respect the decay mode Bs  γγ are esti-
mated. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of rare decays of the Bs mesons is of
great interest for testing the Standard Model (SM) and
for seeking the effect of new physics (in particular,
manifestations of SUSY) beyond the SM. These decays
are accessible to investigation in current experiments;
another advantage of such studies is that, in contrast to
what occurs in kaon decays, long-distance effects are
insignificant in the decays of the Bs mesons. Rare B-
meson decays within the SM, which are due to the tran-
sitions b  s, d, make it possible to estimate the ele-
ments of the Cabibbo–Kobayashi–Maskawa (CKM)
matrix and to deduce some information about the prop-
erties of the third quark generation in the SM. The
CLEO collaboration was able to observe a rare B-
meson decay [1] and to measure its branching fraction
for both charged and neutral B mesons:

(1)

These values of the branching fractions agree with
the SM predictions taking into account QCD correc-
tions. More precise experiments would show whether it
is necessary to include effects beyond the SM in the
theoretical framework.

The decay process Bs  γγ is similar to the transi-
tion K 0  γγ, which was investigated in [2, 3]. In con-
trast to the latter decay process, however, where large-
distance effects are significant, the former is dominated
by the contribution of small-distance effects. It should
be noted that, here, two final-state photons may be
either in the CP-even state described by the expression
FµνFµν or in the CP-odd state described by the expres-

sion Fµν . This circumstance may open a new possi-
bility for studying CP-violation effects—in particular,
in B-meson physics.

Br B+ K*+γ( ) 5.7 3.0±( ) 10 5– ,×=

Br B0 K*γ( ) 4.0 1.9±( ) 10 5– .×=

F̃µν

  * e-mail: devidze@hepi.edu.ge
** e-mail: jibuti@hepi.edu.ge
1063-7788/00/6302- $20.00 © 20310
The two-photon decays of the B mesons are being
vigorously studied at CERN. The L3 collaboration set
an upper bound on the branching ratio for the decay
mode Bs  γγ [4]:

(2)

Investigation of B-meson physics—and in particu-
lar, of rare decays of the B mesons—will be one of the
main subjects for leading experimental collaborations
at LHC–ATLAS, DESY, KEK, SLAC, and other
research centers. Theoretical studies like those reported
in [5–8] have also given impetus to experimental inves-
tigations of the issue. The low-energy Low theorem
was used in [5] to calculate the amplitude of the process
Bs  γγ. Without invoking this technique, another
group of authors (see [6, 7]) simplified their calcula-
tions by means of the on-mass-shell normalization of
the self-energy operator for the transition b  s. The
importance of the problem served as a motivation for
the most precise computation of the Bs  γγ ampli-
tude in [8], where the corresponding branching fraction
and the weight of the CP-odd component of the final
photon state were found within the SM. To order

1/ , the authors of all the aforementioned studies
obtained the identical analytic expressions for the
amplitude and the same numerical value for the branch-
ing fraction,

(3)

It may turn out that rare processes are sensitive to
new physics beyond the SM—for example, the physics
of the minimal supersymmetric extension of the SM
(MSSM) [9]. Rare decays may give indirect evidence
for supersymmetry prior to a direct observation of
supersymmetric effects at future colliders. Supersym-
metry provides an elegant solution to the theoretical
problems of the SM; in addition, the MSSM predicts
that the masses of the supersymmetric particles (with
the exception of the lightest supersymmetric particle)
range from 100 GeV to a few TeV.

Br Bs γγ( ) 1.48 10 4– .×<

MW
2

Br Bs γγ( ) 3.0 1.0±( ) 10 7– .×=
000 MAIK “Nauka/Interperiodica”
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Here, we study the rare decay Bs  γγ within the
supersymmetric extension of the SM.

2. AMPLITUDE OF THE DECAY
PROCESS Bs  γγ

Having fixed the gauge of the final photons, we can
represent the amplitude of the decay process Bs  γγ
in the form

(4)

where (k1) and (k2) are the final-photon polariza-
tion vectors, while k1 and k2 are the 4-momenta of the
final photons. The quantities A and B in (4) receive con-
tributions from each diagram in Fig. 1. In order to
determine the amplitude in (4), we must first evaluate
the contributions of all these diagrams and then sum the
parts contributing to A and B separately. Here, we aim
at computing the amplitude in (4) as precisely as is pos-
sible. Within the MSSM, there are the following classes
of diagrams contributing to the Bs  γγ amplitude
(the diagrams are classified according to the particle
species propagating in the loop): (i) charged gauge fer-
mions and up-type squarks, (ii) charged Higgs particles
and up-type quarks, (iii) neutral gauge fermions and
down-type squarks, and (iv) gluinos and down-type
squarks. The Lagrangians describing the interactions of
the down-type quarks with the above supersymmetric
particles are given by [9, 10]

(5)

T Bs γγ( )

=  e1
µ k1( )e2

ν k2( ) Agµν iBeµναβk1
αk2

β+[ ] ,

e1
µ

e2
ν

Ld χ̃*ũ
ig
2
----- V j1 1 γ5+( )

mdU j2*

2MW βcos
---------------------------- 1 γ5–( )––=

× CΓab
L daχ̃*ũLb

igmuV j2

2 2MW βsin
------------------------------- 1 γ5–( )CΓab

R daχ̃*ũRb,+

LdHu
ig

2 2MW

-------------------=

× md β 1 γ5–( ) mu β 1 γ5+( )cot+tan[ ]OabdaHub,

L
d χ̃0

ũ

i

2
-------

gmd

2MW βcos
------------------------N j3* 1 γ5–( )





–=

+ eQd N j1
g
θWcos

--------------- 1
2
--- Qd θWsin

2
+ 

  N j2– 1 γ5+( )




× Fab
L daχ̃

0ũLb
i

2
-------

gmd

2MW βcos
------------------------N j3 1 γ5+( )





–
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where g = esinθW; θW is the Weinberg angle; V and U
are the charged-gauge-fermion mixing matrices; C is
the charge-conjugation operator; ΓL and ΓR are the up-
type-squark mixing matrices; tanβ = v2/v1, v1 and v2
being the vacuum expectation values of the Higgs fields
[9, 10]; O is the CKM matrix; N is the neutral-gauge-
fermion mixing matrix [9, 10]; Qd = –1/3; FL and FR are
the down-type-squark mixing matrices; gs is the cou-
pling constant of strong interaction; and λa are the Gell-
Mann matrices.

The gauge of final photons is fixed by the conditions

(6)

Taking into account the momentum-conservation
law and using relations (6), we arrive at the constraints

(7)

where

(8)

From equations (6)–(8), we derive useful kinemati-
cal relations,

– eQd N j1* N j2*
gQd θWsin

2

θWcos
---------------------------– 1 γ5–( )
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Fab
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0ũRb,
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dg̃d̃
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2
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--------------dig̃ad̃Lj–=
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Fig. 1. One-particle-reducible (1–7) and one-particle-irre-
ducible (8–11) diagrams contributing to the amplitude of the

decay process Bs  γγ (X = , , H, , , ,

; Y = , u, , , ).
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(9)

With the aid of (5)–(9), we can explicitly calculate
the contribution of each diagram to the CP-even (A)
and the CP-odd (B) component of the amplitude in (4).
Our calculations were performed in the ’t Hooft–Feyn-
man gauge, and divergent integrals were evaluated by
means of the dimensional-regularization technique. It
should be noted that only one-particle-reducible dia-
grams lead to ~1/e divergences, where e = (4 – n)/2,
with n being the dimensionality of spacetime.

The contributions to the CP-even amplitude A that
come from the one-particle-reducible diagrams featur-
ing charged gauge fermions and up-type left-handed
squarks in the loops are given by

(10)

p1 p2( ) mbms, P p1( )– mbMB,= =

p1k1( ) p1k2( )
mbMB

2
--------------,= =

p2k1( ) p2k2( )
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2
--------------, P p2( ) msMB.–=–= =

A1
1
4
---CQd

2 1
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A3
1
4
---CQd

MB

mb

------- λ l V j1
2 msmb U j2

2

2MW
2 βcos

2
--------------------------–

 
 
 



∑=

× mbMB ml
2– M2 χ̃ j*( )+( )R0 2mlmbR10–[

+ ml ml mb–( )R01 2R00 Rαα ]–+

+ mbV j1U j2 msV j1* U j2*–( )
MBM χ̃ j*( )

2MW βcos
----------------------------

--× R0 M χ̃ j*( ) M χ̃ j*( ) m ũLl( ) p1 k1 p2,–, , ,( )




,

A4
1
4
---CQd

2 1
ms

------ λ l

M χ̃ j*( )

2MW βcos
----------------------------



∑=

× mbV j1U j2 msV j1* U j2*–( )I0 m ũLl( ) M χ̃ j*( ) p1, ,( )




,

                                  

where C = e2g2fB, fB being the B-meson decay constant;

λl = ; Qd, u are the charges of the up-type and
down-type quarks; and MB ≈ mb + ms. The integrals R

(R ≡ , R10, R01, Rαα) depend on the set of the masses
and momenta (m1, m2, m3, q1, q2) (see Appendix).

For the hadronic matrix elements, we use the rela-
tions

(11)

Similar contributions to the CP-odd part of the
amplitude are given by

(12)

A5
1
4
---CQd

2 1
ms

------ λ l

M χ̃ j*( )

2MW βcos
----------------------------–



∑=

× mbV j1U j2  m– sV j1* U j2*( )I0 m ũLl( ) M χ̃ j*( ) p1,,( )

+ mb V j1
2 msmb U j2

2

2MW
2 βcos

2
--------------------------–

 
 
 

I1 m ũLl( ) M χ̃ j*( ) p1,,( )




,

A6
1
2
---CQd

MB

ms

------- λ l V j1
2 msmb U j2

2

2MW
2 βcos

2
--------------------------–

 
 
 

∑–=

× R00 m ũLl( ) m ũLl( ) M χ̃ j*( ) p1 k1 p1,–,,,( ),

A7
1
4
---CQd

MB

ms

------- λ l V j1
2 msmb U j2

2

2MW
2 βcos

2
--------------------------–

 
 
 



∑=

× mbMB ml
2– M2 χ̃ j*( )+( )R0 2mlmbR10–[

+ ml ml mb–( )R01 2R00 Rαα ]–+

– mbV j1U j2 msV j1* U j2*–( )
MBM χ̃ j*( )

2MW βcos
----------------------------

--× R0 M χ̃ j*( ) M χ̃ j*( ) m ũLl( ) p1 k1 p1,–,,,( )




,

Γ ls
L Γ lb

L

R̃0

0 sγµγ5b Bs P( )〈 〉 i f BPµ,–=

0 sγ5b Bs P( )〈 〉 i f BMB,=

0 sγµγνγ5b Bs P( )〈 〉 i f BMBgµν.=

B1 5,
2

MB mb ms–( )
-------------------------------A1 5, , B2 4 6, ,–

2

MB
2

-------A2 4 6, , ,= =

B3 7,
2

MB
2

-------A3 7,–=

× U j2 U j2 U j2* –U j2* M χ̃ j*( )        M χ ˜ j * ( ) –  , ,( ) .
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We note that, upon summation of formulas (10) and
(12), the divergent parts of the integrals (those propor-
tional to 1/e) cancel each other.

Indicated below are the substitutions that must be
made in (10) and (12) in order to derive the contribu-
tions of the other classes of the diagrams. The substitu-
tion rules for the charged gauge fermions and right-
handed up-type squarks propagating in the loop are as
follows:

(13)

The substitution rules for the charged Higgs parti-
cles and up-type quarks propagating in the loop are

(14)

where Oli are the elements of the CKM matrix and the
replacements

(15)

must be made in the integrands.
The substitution rules for the neutral gauge fermions

and left-handed down-type squarks are

(16)

where  are the mixing-matrix elements for the left-
handed down-type squarks, while Nj1, Nj2, and Nj3 are
the mixing-matrix elements for the neutral gauge fer-
mions.

In order to obtain the contributions of the diagrams
involving neutral gauge fermions and right-handed
down-type squarks, we must make the following sub-
stitutions in the expressions for the diagrams involving
neutral gauge fermions and left-handed down-type
squarks:

V j1 0,
U j2

2

βcos
2

--------------
m2 ũRl( )
mbms

------------------
V j2

2

βsin
2

-------------,

m ũLl( ) m ũRl( ), Γ li
L Γ li

R.

V j1 β
m ul( )
2MW

----------------,
U j2

βcos
------------ β,tancot

M χ̃ j*( ) M H( ), Γ li
L Oli,

M ũLl( ) M H( ), M χ̃ j*( ) m ul( )

V j1 2 θWN j1 ---sin

–
1
θWcos

--------------- 1
2
--- Qd θWsin

2
+ 

  N j2 tLj,≡

U j2 N j3, Qu 0, M χ̃ j*( ) M χ̃ j
0( ),–

m ũLl( ) m d̃Ll( ), Γ li
L Fli

L ,

Fli
L

tLj

ms

2MW βcos
----------------------------N j3, tLj*

mb

2MW βcos
----------------------------N j3* ,

ms

2MW βcos
----------------------------N j3*          2– θ W Q d N j 1 *sin 

                                     
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(17)

The contributions of the diagrams featuring gluinos
can be obtained by performing the following substitu-
tions in the diagrams featuring neutral gauge fermions:

(18)

The CP-even part (A) and the CP-odd part (B) of the
Bs  γγ amplitude (4) receive contributions not only
from one-particle-reducible diagrams but also from
one-particle-irreducible diagrams. Each of the contri-
butions from the one-particle-irreducible diagrams is
finite. Let us consider these contributions in more

detail. Within the SM, contributions of order 1/
come from only one one-particle-irreducible diagram,
that which features a W boson in the loop, so that both
photons are emitted by virtual up-type quarks. It was
shown in [2] that the diagram in question that features
light virtual quarks makes a contribution of order

1/ , whereas the analogous diagram featuring heavy

virtual quarks makes a contribution of order 1/ .
The analogous diagrams in the MSSM—they involve
charged gauge fermions in the loop, in which case both
photons are emitted by scalar quarks—make contribu-

tion of order 1/ , provided that the masses of all
supersymmetric particles satisfy the constraint m >
100 GeV. Similar arguments show that the contribution
of the other one-particle-irreducible diagrams in the

MSSM is of order 1/ . Thus, the leading corrections
from one-particle-irreducible diagrams are vanishingly

small, provided that /  > 1.

3. BRANCHING FRACTION
FOR THE DECAY MODE Bs  γγ

 

By using equation (4), we find that the partial width
with respect to the decay mode 

 

Γ

 

(

 

B

 

s

 

 

 

 

 

γγ

 

)

 

 is given by

 

(19)

 

From Fig. 1, it can be seen that the effect of the per-
mutation of final photons must be properly taken into
account in a correct calculation. Under the kinematical
conditions (6)–(8), which are valid in the case being

Qd

θWsin
2

θWcos
----------------N j2* tRj* ,≡–

mb

2MW βcos
----------------------------N j3 tRj,

m d̃Ll( ) m d̃Rl( ), Γ li
L Fli

R.

N j3 0, g
4
3
---gs, tLj 2, χ̃ j

0 g̃,

N j3 0, g
4
3
---gs, tRj 2, χ̃ j

0 g̃.–

MW
2

MW
2

MW
4

MW
4

MW
4

mi
2 MW

2

Γ Bs γγ( ) 1
32πMB

----------------- 4 A 2 1
2
---MB

4 B 2+ .=
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considered, this can be done by doubling the contribu-
tions of all diagrams, with the exception of diagram 11,
which describes the emission of both photons from the
same spacetime point; that is,

(20)

Presented below is the total contribution of the dia-
grams to the amplitude derived under the assumption
that the masses of all supersymmetric particles are
greater than the W-boson mass. The contributions to the
CP-even and CP-odd parts of the amplitude from the
diagrams featuring charged gauge fermions and up-
type squarks are given by

(21)

A A11 2 Ai, B
i 1=

10

∑+ B11 2 Bi.
i 1=

10

∑+= =

A i
2mb

16π2ms

------------------GF f B eQd( )2MB
2=

× λ l

2MW

M χ̃ j*( ) βcos
----------------------------- V j1U j2

ms

mb

------V j1* U j2*– 
  f 1 xl( )



∑

+ V j1
2 msmb U j2

2

2MW
2 βcos

2
--------------------------–

 
 
  MW

2

M2 χ̃ j*( )
------------------- f 2 xl( )





,

B i
2mb

8π2ms

---------------GF f B eQd( )2=

× λ l

2MW

M χ̃ j*( ) βcos
----------------------------- V j1U j2

ms

mb

------V j1* U j2*+ 
  f 1 xl( )



∑

14

10

6

2

45
35

25
15

5 100
300

500
700

900

Br × 107

tanβ

M(H)

Fig. 2. Partial width with respect to the decay mode Bs 
γγ as a function of tanβ and the Higgs boson mass M(H) (in
GeV).
where

(22)

The contributions of the diagrams involving charged
Higgs particles and up-type quarks can be represented
as

(23)

where

(24)

The contributions of the other diagrams can be obtained
from (21)–(24) by using relations (13)–(18).

The contributions of supersymmetric particles to the
partial width with respect to the two-photon mode
Bs  γγ of Bs decay can be evaluated on the basis of
equations (10) and (12)–(24). Numerical estimates
show that the contributions of the diagrams featuring
gauge fermions and gluinos are much smaller than the
SM contributions (BrSM(Bs  γγ) ~ 10–7). The contri-

+ V j1
2 msmb U j2

2

2MW
2 βcos

2
--------------------------+

 
 
  MW

2

M2 χ̃ j*( )
------------------- f 2 xl( )





,

xl

m2 ũLl( )

M2 χ̃ j*( )
-------------------,=

f 1 x( ) 5 12x– 7x2 4x 6x2–( ) xln+ +

2 1 x–( )3
-------------------------------------------------------------------------= ,

f 2 x( )

=  
29 96x– 111x2 44x3– 6x 4 9x– 6x2+( ) xln+ +

6 1 x–( )4
-------------------------------------------------------------------------------------------------------------------.

A i
2mb

16π2ms

------------------GF f B eQd( )2MB
2=

× λ l g1 yl( ) βg2 yl( ) β
msmb

M2 H( )
----------------- 1

yl

----g2 yl( )tan
2

–cot
2

+
 
 
 

,∑

B i
2mb

8π2ms

---------------GF f B eQd( )2=

× λ l g1 yl( ) βg2 yl( ) β
msmb

M2 H( )
----------------- 1

yl

----g2 yl( )tan
2

+cot
2

+
 
 
 

,∑

yl

m2 ul( )
M2 H( )
-----------------,=

g1 y( ) 3y– 8y2 5y3– 6y2 4y–( ) yln+ +

2 1 y–( )3
-------------------------------------------------------------------------------,=

g2 y( )

=  
31y 84y2– 69y3 16y4– 6y y2 6y– 4+( ) yln+ +

12 1 y–( )4
------------------------------------------------------------------------------------------------------------------.
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butions of these particles do not exceed 10–8. This esti-
mate corresponds to maximal mixing in the squark and
gauge-fermion sectors. The gauge-fermions mass
matrices and the angles of mixing of the charged gauge
fermions can be represented in an analytic form [9, 10].
Since the contribution of these particles to the partial
width does not exceed 10–8, the formulas in question
are not presented here. In estimating the maximum pos-
sible contribution of the gauge fermions and gluinos,
we assumed that the masses of the supersymmetric par-
ticles are about 100 GeV and used the following values
of the input parameters: Γ tot(Bs) = 5 × 10–4 eV, fB =
200 MeV, ms = 0.5 GeV, mb = 4.8 GeV, and MB =
5.3 GeV. Figure 2 shows the partial width with respect
to the decay Bs  γγ as a functions of tanβ and the
mass of the Higgs particle.

4. CONCLUSION

We have investigated the rare Bs-meson decay
Bs  γγ within the supersymmetric extension of the
SM. The contributions of the neutral gauge fermions
and gluinos have been found to be much smaller than
the SM contributions. For large values of tanβ (tanβ >
10) and small values of M(H) [M(H) ≈ 100 GeV], super-
symmetric contributions exceed the SM estimate. From
Fig. 2, it can be seen that, in broad ranges of the param-
eters (1 < tanβ < 50, 100 GeV < M(H) < 350 GeV), the
supersymmetric contributions to the partial width are
greater than or comparable with the SM estimate. In the
near future, the most advanced experimental facilities
will provide the possibility of observing rare decays
characterized by partial-widths values of about 10–7

(and the more so by those of 10–6).
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APPENDIX

In evaluating the diagrams in Fig. 1, we have to deal
with integrals of the type

(A.1)

I0; Iα{ } p2 m1
2

m2
2, ,( )

=  
d4q

2π( )4
-------------

1 qα,( )
q p–( )2 m1

2– ie+[ ] q2 m2
2– ie+( )

---------------------------------------------------------------------------------,∫
R0 Rα Rαβ, ,{ } p1

2 p2
2 p1 p2–( )2 m1

2 m2
2 m3

2, , , , ,( )

=  
d4q

2π( )4
------------- 1 qα qαqβ, ,( ) p1 q–( )2 m1

2– ie+[ ]{∫
× p2 q–( )2 m2

2 ie+( )–[ ] q2 m3
2– ie+( ) } –1

.
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The Lorentz structures of the integrals Iα, Rα, and
Rαβ are the following:

(A.2)

Some of these integrals are divergent. Within the
dimensional-regularization technique, the relevant
divergences can be isolated in the form

(A.3)

Here, 1/e' = [1/e – γ + ln4π], where γ is the

Euler–Mascheroni constant (γ = 0.5772157…) and 2e =
4 – n, n being the dimension of spacetime. The integrals

 and  can be approximated as

(A.4)

Iα p2 m1
2 m2

2, ,( ) pα I1 p2 m1
2 m2

2, ,( ),=

Rα p1
2 p2

2 p1 p2–( )2 m1
2 m2

2 m3
2, , , , ,( )

=  p1α R10 p1
2 p2

2 p1 p2–( )2, m1
2 m2

2 m3
2, , , ,( )

+ p2α R01 p1
2 p2

2 p1 p2–( )2, m1
2 m2

2 m3
2, ,, ,( ),

Rαβ p1
2 p2

2 p1 p2–( )2 m1
2 m2

2 m3
2, , , , ,( )

=  gαβR00 p1
2 p2

2 p1 p2–( )2 m1
2 m2

2 m3
2, , , , ,( )

+ p1α p1βR20 p1
2 p2

2 p1 p2–( )2 m1
2 m2

2 m3
2, , , , ,( )

+ p2α p2βR02 p1
2 p2

2 p1 p2–( )2 m1
2 m2

2 m3
2, , , , ,( )

+ p1α p2β + p2α p1β( )R11 p1
2, p2

2, p1 – p2( )2, m1
2, m2

2, m3
2( ).

I0 p2 m1
2 m2

2, ,( ) 1
e'
--- Ĩ0 p2 m1

2 m2
2,,( ),+=

Iα p2 m1
2 m2

2, ,( ) pα I1 p2 m1
2 m2

2, ,( )=

=  pα
1

2e'
------- Ĩ1 p2 m1

2 m2
2, ,( )+

 
 
 

,

R00 p1
2 p2

2 p1 p2–( )2 m1
2 m2

2 m3
2, , , , ,( )

=  1
4e'
------- R̃00 p1

2 p2
2 p1 p2–( )2 m1

2 m2
2 m3

2, , , , ,( ).+

i

4π( )2
-------------

Ĩ0 Ĩ1

Ĩ0 p2 m1
2 m2

2, ,( )

=  
i

4π( )2
-------------

m1
2

µ2
------ k1 x( ) p2

m1
2

------k2 x( ) p4

m1
4

------k3 x( )+ + +ln
 
 
 

,–

Ĩ1 p2 m1
2 m2

2, ,( )

=  
i

4π( )2
------------- 1

2
---

m1
2

µ2
------ l1 x( ) p2

m1
2

------l2 x( ) p4

m1
4

------l3 x( )+ + +ln
 
 
 

,–
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where µ is an arbitrary parameter having dimensions of
mass and

(A.5)

If one of the masses exceeds considerably the
remaining masses, it convenient to approximate the
integrals R0 and Rαβ as

(A.6)

k1 x( ) x 1– x xln–
1 x–

-----------------------------, k2 x( ) x2 1– 2x xln–

2 1 x–( )3
----------------------------------,= =

k3 x( ) x3 9x2 9x– 1– 6x 1 x+( ) xln–+

6 1 x–( )5
-------------------------------------------------------------------------------,=

l1 x( ) 3x2– 4x 1– 2x2 xln+ +

4 1 x–( )2
---------------------------------------------------------,=

l2 x( ) 2x3– 3x2– 6x 1– 6x2 xln+ +

6 1 x–( )4
------------------------------------------------------------------------,=

l3 x( )

=  
3x4– 44x3– 36x2 12x 1– 12 3x2 2x3+( ) xln+ + +

24 1 x–( )6
-------------------------------------------------------------------------------------------------------------------------,

x
m2

2

m1
2

------.=

R0 p1
2 p2

2 p1 p2–( )2 m1
2 m1

2 m2
2, , , , ,( )

=  
i

4π( )2
------------- 1

m1
2

------ e1 x( )
p1

2 p2
2+

m1
2

-----------------e2 x( )
p1 p2–( )2

m1
2

------------------------e3 x( )+ +
 
 
 

,–

R10 p1
2 p2

2 p1 p2–( )2 m1
2 m1

2 m2
2, , , , ,( )

=  
i

4π( )2
------------- 1

m1
2

------ f 1 x( )+
p1

2 2 p2
2+

m1
2

-------------------- f 2 x( )+
p1 p2–( )2

m1
2

------------------------ f 3 x( )
 
 
 

,–

R01 p1
2 p2

2 p1 p2–( )2 m1
2 m1

2 m2
2, , , , ,( )

=  R10 p2
2 p1

2 p1 p2–( )2 m1
2 m1

2 m2
2, , , , ,( ),

R̃00 p1
2 p2

2 p1 p2–( )2 m1
2 m1

2 m2
2, , , , ,( )

=  
i

4π( )2
------------- 1

4
---

m1
2

µ2
------ g1 x( )+ln





–

+
p1

2 p2
2+

m1
2

-----------------g2 x( )
p1 p2–( )2

m1
2

------------------------g3 x( )+




,

R20 p1
2 p2

2 p1 p2–( )2 m1
2 m1

2 m2
2, , , , ,( )

=  
i

4π( )2
------------- 1

m1
2

------ h1 x( )
p1

2 3 p2
2+

m1
2

--------------------h2 x( )+




–

where

(A.7)

+
p1 p2–( )2

m1
2

------------------------h3 x( )




,

R11 p1
2 p2

2 p1 p2–( )2 m1
2 m1

2 m2
2, , , , ,( )

=  
i

4π( )2
------------- 1

m1
2

------ 1
2
---h1 x( )

p1
2 p2

2+

m1
2

-----------------h2 x( )+




–

+
2
3
---

p1 p2–( )2

m1
2

------------------------h3 x( )




,

R02 p1
2 p2

2 p1 p2–( )2 m1
2 m1

2 m2
2, , , , ,( )

=  R20 p2
2 p1

2 p1 p2–( )2 m1
2 m1

2 m2
2, , , , ,( ),

e1 x( ) 1 x– x xln+

1 x–( )2
-----------------------------,=

e2 x( ) 1 4x 5x2– 2x 2 x+( ) xln+ +

4 1 x–( )4
--------------------------------------------------------------------,=

e3 x( ) 1 6x– 3x2 2x3 6x2 xln–+ +

12 1 x–( )4
-------------------------------------------------------------------,=

f 1 x( ) 1 4x– 3x2 2x2 xln–+

4 1 x–( )3
----------------------------------------------------,=

f 2 x( ) 1 9x– 9x2– 17x3 6x2 3 x+( ) xln–+

36 1 x–( )5
---------------------------------------------------------------------------------------,=

f 3 x( ) 1 6x– 18x2 10x3– 3x4– 12x3 xln+ +

36 1 x–( )5
------------------------------------------------------------------------------------------,=

g1 x( ) 1– 4x 3x2– 2x2 xln+ +

8 1 x–( )2
---------------------------------------------------------,=

g2 x( ) 1
2
---e3 x( ),–=

g3 x( ) 2– 9x 18x2– 11x3 6x3 xln–+ +

72 1 x–( )4
------------------------------------------------------------------------------,=

h1 x( ) 4g3 x( ),–=

h2 x( ) 1 8x– 36x2 8x3 37x4– 12x3 4 x+( ) xln+ + +

144 1 x–( )6
------------------------------------------------------------------------------------------------------------,=

h3 x( )

=  
3 20x– 60x2 120x3– 65x4 12x5 60x4 xln–+ + +

240 1 x–( )6
---------------------------------------------------------------------------------------------------------------------,
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At x = 1, expressions (A.5) and (A.7) can be evalu-
ated as their limiting values for x  1.
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Abstract—The ground-state wave function and the energy term of a relativistic electron moving in the field of
two fixed Coulomb centers are calculated analytically by the LCAO method. The resulting analytic formula is
used to calculate the critical internuclear distance at which the energy term crosses the boundary of the lower
continuum. © 2000 MAIK “Nauka/Interperiodica”.
The two-center problem (that is, the problem of
describing an electron moving in the field of two fixed
centers that have charges Z1 and Z2 and which are sep-
arated by a distance R), a classical problem in nonrela-
tivistic quantum mechanics, has applications in the the-
ory of chemical bonding, in the physics of muon pro-
cesses, and in many other realms of science. It was
widely discussed in the literature (see, for example, [1–
3]). The corresponding problem for the Dirac equation
possesses some special features that complicate its
solution:

(i) In the Dirac equation with potential V = –α(Z1/r1 +
Z2/r2) (α = 1/137), the variables can be separated in
none of the systems of orthogonal coordinates.

(ii) For large Z values, collapse into the center
occurs.

(iii) The wave function has many components, all of
them being on the same order of magnitude at Zα ≈ 1.

Interest in the two-center problem was generated by
the study of Gershteœn and Zeldovich [4], who indi-
cated that there is the possibility of testing QED in
experiments studying heavy-ion collisions. It is well
known [5–7] that, for charges of Z ≈ Zcr = 170, the low-
est energy level of the one-center Dirac equation
crosses the boundary of the lower continuum and that a
spontaneous production of positrons begins as soon as
this occurs. Since Z ≈ 170 nuclei do not exist, it was
proposed in [4] to generate such a field in heavy-ion
collisions. To calculate the cross section for positron
production, it is necessary to know the energy of the
(Z1, Z2, e–) quasimolecular state as a function of dis-
tance—that is, an energy term. In this connection, the
energy term and the critical distance (the distance at
which the energy term crosses the boundary of the
lower continuum) were calculated both numerically [8]
and analytically [5, 9]. Müller, Rafelski, and Greiner
[7] and Müller and Greiner [8], who presented the
results of their extensive numerical calculations, solved
the Dirac equation for the two-center Coulomb poten-
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tial by diagonalizing the Dirac Hamiltonian in a two-
center basis. Approximate analytic calculations of the
energy term and of the critical distance are presented in
a series of articles by Popov [5, 9]. However, the
expressions that he obtained permit calculating the
energy term and the critical distance either only numer-
ically or under the conditions that an excess over the
critical charge is small ((Z1 + Z2 – Zcr)/Zcr ! 1) and that
the centers are separated by small distances.

In the present study, we solve the Dirac equation for
the two-center problem by a method similar to the
LCAO method, which is widely used to solve the non-
relativistic two-center problem [2] and which makes it
possible to calculate analytically the energy term for
the hydrogen molecular ion and for the hydrogen mol-
ecule. Similar calculations for the Dirac electron have
not been performed so far. The analytic formula
obtained by applying the LCAO method to the relativ-
istic two-center problem enabled us to calculate the
energy term over a wide range of the total nuclear
charge and a wide range of center-to-center distances.

Below, we use the system of units in which " = c =
me = 1 and denote by R the distance between the nuclei
and by r1 and r2 the distances between the electron and
the nuclei; we also assume that Z1 = Z2 = Z.

The motion of a relativistic electron in the field of
two Coulomb centers is described by the time-indepen-
dent Dirac equation

HΨ = EΨ, (1)

where H = a ⋅ p + β + V is the Dirac Hamiltonian, while
a and β are Dirac matrices.

We will solve equation (1) by the LCAO method,
choosing the wave function in the form

where Ψ1 (Ψ2) is the wave function of the electron
moving in the field of the first (second) center. The
details of the application of the variational principle to
the Dirac equation are discussed in [9–12]. From the
symmetry of the problem (Z1 = Z2), the normalization
conditions 〈Ψ|Ψ〉 = 1 and 〈Ψj|Ψj〉 = 1 (j = 1, 2), and the

Ψ d1Ψ1 d2Ψ2,+=
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fact that the ground state does not have nodes, it follows
that [2]

where S = 〈Ψ1|Ψ2〉  is the overlap integral.
The energy of an electron can be calculated as the

matrix element

E = 〈Ψ|H|Ψ〉, (2)

where 〈Ψ| = [ϕ χ] (|Ψ〉 = ) is a bispinor in the stan-

dard representation.
It was indicated above that, for the functions Ψ1 and

Ψ2, we will take the relativistic wave functions of the
hydrogen-like atom [13] with the effective charge Qα;
that is,

where gj =  (j = 1, 2), and

Substituting these wave functions into (2), we
reduce the expression for the energy term to a form
involving five integrals that can be expressed analyti-
cally in terms of complete and incomplete Euler
gamma functions [Γ(x) and Γ(x, y), respectively] [14].
Specifically, we have

(3)

where the overlap integral S and the integrals I1, I2, I3,
I4, and I5 are given by

d1 d2 1/ 2 1 S+( ),= =

ϕ
χ

ϕ j Ag j
1
0 , χ j iABg j

θcos
eiϕ θsin

,= =

r j
γ 1– e

Qα r j–

A
2Qα( )3/2

4π
---------------------- 1 γ+

2Γ 1 2γ+( )
--------------------------- 2Qα( )γ 1– ,=

B 1 γ–( )/Qα , γ 1 Q2α2– .= =

E
2πA2bR2γ

1 S+
------------------------ Qα I1 I2+( ) ---=

+
aγ

2Qα
----------- I3 I4+( ) 2Zα I2 I5+( )– ,

S 2πA2R2γ 1+ bI4,=

I1
1

a2γ-------2Γ 2γ( ),=

I2
1

a2γ------- 2 a2

3 2γ 1–( )
-----------------------– 

  Γ 2γ a,( )=

+ 1
3
--- a

3 2γ 1–( )
-----------------------+ 

  a2γe a– ,

I3
1

a2γ 1+
-------------4γΓ 2γ( ),=
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Thus, we have obtained the electron energy term as
a function of the distance R, the charge Z, and the test
charge Q. For Qα ! 1 (γ . 1), expression (3) takes the
form

(4)

where

Expression (4) coincides with that which was obtained
within the nonrelativistic LCAO method for the hydro-
gen molecular ion [2].

The charge Q is generally a function of R and Z; that is,

Q = Q(R, Z).

It is known from [2] that

(5)

(6)

Figure 1 shows Q/Z as a function of R for the rela-
tivistic and nonrelativistic Er–Er systems, which have
the charge of Z = 68. These results were obtained by
numerically minimizing expressions (3) and (4) for the
relativistic and nonrelativistic cases, respectively. It can
be seen that, in the limiting cases of R  ∞ and R 
0, the effective charge tends to, respectively, the charge
of the isolated atom and the charge of the combined one.

Figure 2 displays the relativistic and the nonrelativ-
istic energy term for the charge value of Z = 68. We can
see that relativistic corrections become sizable for
small R.

Figure 3 presents the relativistic energy term for the
system Br–Br (Z = 35) as calculated by our formula (3)
(solid curve) and as obtained in [8] (dashed curve).

Evaluating the limit of expression (3) for R  0
and taking into account (5), we obtain (combined atom)

I4
1

a2γ 1+
------------- 4γ 2a2γ

3 2γ 1–( )
-----------------------– 

  Γ 2γ a,( )=

+ 2 2aγ
3 2γ 1–( )
-----------------------+ 

  a2γe a– ,

I5
1

a2γ 1+
------------- a γ–( )Γ 2γ 2a,( )=

+ a γ+( )Γ 2γ( ) 1
2
--- 2a( )2γe 2a–– ,

a 2QαR, b 2/ 1 γ+( ).= =

E Q2α2F1 a( ) QαF2 a( ),+=

F1 a( ) 1
2
--- 1 e a– 1 a a2/3–+( )+

1 e a– 1 a a2/3+ +( )+
--------------------------------------------------,=

F2 a( ) Zα1 2e a– 1 a+( ) 1/a 1/a 1+( )e 2a––++

1 e a– 1 a a2/3+ +( )+
-----------------------------------------------------------------------------------------.–=

Q
R 0→ 2Z ,=

Q
R ∞→ Z .=

E R       0( ) 1 4Z2α2– .=
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Fig. 1. Ratio Q/Z as a function of the center-to-center dis-
tance for the Er–Er system (Z = 68): (dashed curve) results
obtained by minimizing expressions (4) for the nonrelativis-
tic term and (solid curve) results obtained by minimizing
expressions (3) for the relativistic term.
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Fig. 2. Energy term for the case of Z = 68: (dashed curve)
results for the nonrelativistic system and (solid curve)
results for the relativistic system.
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Fig. 3. Energy term for the Br–Br system (Z = 35): (solid
curve) results obtained according to (3) and (dashed curve)
results from [8].
A calculation for the limit R  ∞ with allowance for
(6) yields (isolated atom)

At Z1 + Z2 ~ 170, Popov’s formula for the critical
distance at which the ground-state level crosses the
boundary of the lower continuum—in [5], this formula
was derived by matching the asymptotic expressions at
large distances from the nuclei—can be obtained
directly from (3) under the same assumptions as in [5].
To demonstrate this, we consider that, in this case, γ = ig =

i , a ! 1, and Q = 2Z. From the condition

E(Rcr) = –1,

which corresponds to crossing the lower boundary of
the continuum, we then obtain

or, equivalently,

whence it follows that

where

The above expression can be recast into the form

or, equivalently, into the form

From the last equation, we obtain

(7)

Taking into account the asymptotic relations

and

performing some simple transformations, and using
(7), we find that the critical distance is given by

E R       ∞( ) 1 Z2α2– .=

4Z2α2 1–

1 γ–( ) 4γ 2γ+⋅[ ]a2γ 4γΓ 2γ 1+( ),–=

2Rcr( ) 2γ– 4γ
1 γ2–( )γ γ 1–( ) 4γ 2γ–⋅( )

----------------------------------------------------------------Γ 2γ 1+( )

=  1 e2πi,≡

Rcr
2γ– f γ( )Γ 1 2γ+( ) 1 e2πi,≡=

f γ( ) 41 γ– γ
1 γ2–( )γ γ 1–( ) 4γ 2γ–⋅( )

----------------------------------------------------------------.=

2g Rcr f ig( )( ) Γ 1 2ig+( )arg+arg+ln– 2π,=

g Rcrln π–
1
2
--- f ig( )( ) Γ 1 2ig+( )arg+arg( ).+=

Rcr
π
g
---

1
2g
------ f ig( )( ) Γ 1 2ig+( )arg+arg[ ]+– 

  .exp=

Γ 1 2ig+( )arg 2gΨ 1( ) O g3( ) 2gΨ 1( )≈+=

f ig( )( ) 2.4g,≈arg

Rcr C
π

4Z2α2 1–
----------------------------– 

  ,exp=
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where C is a constant. This formula coincides with that
obtained previously in [9]. A calculation of the critical
distance for the uranium nuclei according to (7) yields
the value of Rcr = 43.4 fm; at the same time, this critical
radius was estimated at 38.4 fm in [15] and at 34.7 fm
in [8]. Upon the introduction of corrections for finite
nuclear sizes, the value of Rcr = 34.3 fm was obtained
in [16].

It should be noted that, at Z = 92, expression (3) is
accurate to within 25%. For Z = 35, Fig. 3 shows that
the computational errors amount to 10%.

In summary, we have derived the analytic formula
(3) for the energy term of a relativistic electron moving
in the field of two fixed Coulomb centers. This formula
is correct over a wide range of the total nuclear charges
and over a wide range of center-to-center distances.
When the total nuclear charge is close to its critical
value (Z1 + Z2 ~ 170), formula (3) reduces to Popov’s
well-known formula [5, 9] for the critical distance
between the nuclei that corresponds to the crossing of
the boundary of the lower continuum, in which case the
generation of electron–positron pairs begins.

Currently, the properties of baryons containing two
heavy quarks (QQq baryons) are widely discussed in
the literature [17, 18]. These baryons are similar to the
(Z1, Z2, e–) system considered here: the Coulomb poten-
tial of interaction between the electron and the nucleus
is replaced by the quark–quark interaction potential (it
includes the Coulomb potential and a confining term).
Hence, the method developed here can be used to solve
the Dirac equation with a two-center quark potential for
the motion of a light quark in the field of two heavy
quarks.
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