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Abstr act—Particle-production processesin the Coulomb field of nuclei at high energies have been considered,
and the el ectromagnetic properties of hadrons (mesons and hyperons) have been investigated in these processes.
The results of previous investigations have been summarized, and new data from the SELEX (Fermilab) and
SPHINX (Ingtitute for High Energy Physics, Protvino) facilities have been discussed. © 2000 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

Thisreview article, which isan extended report pre-
sented by the author at the 21st Workshop on Funda-
mental Problems in High-Energy Physics and Field
Theory [Institute for High Energy Physics (IHEP), Pro-
tvino, Russia, June 1998] and at some scientific semi-
narsin Russiaand in the United States, deals with high-
energy coherent processes of particle production in the
Coulomb field of nuclei,

h+Z —a+Z7Z (1)

Specifically, we consider the interaction of an incident
particle h with avirtual photon of the Coulomb field of
anucleus (seediagram in Fig. 1). Thisvirtua photonis
characterized by a nonzero square ¢f of the 4-momen-
tum [square of the 4-momentum transfer in reaction
(D)]. It will be shown below that, at very high energies,
the minimal value of the 4-momentum transfer squared,

Qi = [(M2 — M?)/2E, ]2, isvery closeto zero—that is,
a virtual photon becomes a nearly real one [here, M;,
and M, are the masses of the corresponding particlesin
reaction (1), while E, is the energy of the primary par-
ticlg]. Thus, an investigation of processes in the Cou-

lomb field of a hucleus makes it possible to analyze the
interaction of an incident particle with a*“photon target.”

For thefirst time, processes in the Coulomb field of
nuclel (they are also known as Primakoff reactions)
were considered independently by Primakoff [1] and
by Pomeranchuk and Shmushkevich [2]. They are of
great interest since they open the possibility for investi-
gating rare radiative hadron decays a — hy under con-
ditions where a heavy background from a — hrt,
™ — 2y hadron decays with one lost photon hinders
the application of direct method for studying the above
radiative processes. In the following, it will be shown
that the cross section for reaction (1) hasthe form

Ocou = Ogl (@ —= hy), (2)

where the coefficient g, is reliably calculable by QED
methods and where I (a — hy) isthe partia width with
respect to the relevant radiative decay. It followsthat, by
measuring the absolute value of the cross section for the
Coulomb production process (1), we can determine the
radiative width I'(a — hy) even in those cases where a
direct determination of this quantity isimpossible.

Processes in the Coulomb field of nuclei also offer
the possibilities for inquiries into photoproduction
reactions or Compton scattering on unstable primary
particles (such as pions, kaons, and Z hyperons). In par-
ticular, such processes may be of considerableinterest in
seeking exotic hadrons [3-5]—for example, multiquark
states with hidden strangeness, asisillustrated by thedia-
gramin Fig. 2: according to the vector-dominance model,
the photon is coupled rather strongly to the @ meson,
whose wave function has the form |- |s5 Gltherefore,
the diagram in Fig. 2 represents a natural mechanism for
embedding an sS pair in a nascent hadron—that is, for
producing particles with hidden strangeness.

2. DIRECT METHODS FOR STUDYING
RADIATIVE DECAYS AND THEIR LIMITATIONS

Let us now consider radiative hadron decays. Radi-
ative decays, as well as other €lectromagnetic hadronic
processes featuring hadrons, are of great interest for

Z

Fig. 1. Diagram describing the processh+ Z — a+ Z (1)
inthe Coulomb field of anucleus (here, yisavirtua photon
of the Coulomb field of a nucleus.
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Fig. 2. Diagram describing the mechanism that can be
responsiblefor the production of exotic baryonswith hidden
strangeness in the Coulomb field of anucleus.

studying the internal structure of these particles. Such
processes, which are governed by the interaction of real
and virtual photons with electric charges of quark
fields, make it possible to obtain unique information
about the quark content of hadrons and about their phe-
nomenological parameters like magnetic and transition
moments, form factors, and polarizabilities. A theoreti-
cal analysis is simpler for electromagnetic processes
than for purely hadronic processes, which are mediated
by strong interactions; therefore, the former can be
studied in greater detail. They are expected to play an
important role as a testing ground for models describ-
ing the structure of hadrons (quark models, chiral mod-
els, and bag and string models). Although the present-
day accuracy of theoretical calculations for radiative
decaysisnot very high (thisis due primarily to compli-
cations that arise in going over from a quark-level con-
sideration to a description of hadrons), there are
grounds to believe that considerable advances will be
made here upon a further development of lattice QCD
calculations. It should be noted, however, that we have
been awaiting this progress for too long a time. Yet,
there is a hope that detailed experimental information
about radiative decays may be of paramount impor-
tance for pursuing further theinvestigation of large-dis-
tance hadronic phenomena and for solving the funda-
mental problem of confinement.

Let usfirst consider direct methods for detecting the
radiative decays of hadrons. In experiments of this
type, the particle a being studied is formed in well-sep-
arated hadronic reactions or in electromagnetic pro-
cesses (photoproduction or resonance production in
ete collisions). Inorder toisolatereliably rareradiative
decays, such as

a—h+y, 3)

“)

it is necessary, as arule, to detect al secondaries (both
charged and neutral ones), to identify them, and to
reconstruct the effective masses of the states being
studied. The main problem in experiments aimed at
directly detecting rare radiative decays of the type (3)

a—h +h,+vy,

or (4) is associated with the need for suppressing a
background from much more intense strong-interac-
tion-induced hadronic decays with lost photons,

a—s hl+h2+n0,

L~y+(y)

a— h+71’.
L»v+(v)

[Here and below, (y) stands for a lost photon.] Such
decays can mimic radiative processes of the types (3)
and (4). In order to perform successfully an investiga-
tion of radiative decays, dedicated experimental set-
tings are required that are characterized by a high sen-
sitivity and which satisfy some specific conditions
enabling a considerable reduction of the background
from lost photons. These conditions are as follows:

(i) For the processes under study, the effective
masses, M(h;h,y) or M(hy), must be reconstructed with
the highest possible resolution and aminimal combina-
torial background. This condition is especially impor-
tant if the total width of ahadron isrelatively small. In
this case, a high mass resolution can reduce substan-
tially the background from processes with lost photons
because the latter do not give rise to a narrow peak at
M,: for background processes, the mass peak is
smeared in width and is shifted toward smaller mass
values.

(i) The production of sought hadrons must be stud-
ied in reactions with well-fitted kinematics that permits
measuring the emission angle for the hadron a indepen-
dently of the reconstruction of its decay products. This
makes it possible to obtain additional kinematical con-
ditions for isolating single photons from radiative
decays and for reducing background from lost photons.
For example, we can require that the sum of transverse
momenta with respect to the direction at which the par-
ticleaisemitted and which isdetermined from reaction
kinematics be equal to zero, or we can apply other kine-
matical selectionsthat will be considered below.

(iii) In order to suppress the background from lost
photons, a specia veto system that consists of counters
with a low detection threshold for photons and which
covers amaximally wide acceptance must be incorpo-
rated in the facility employed.

Often, al these requirements prove to be incompat-
ible, or they reduce very strongly the sensitivity of the
experiments being discussed. We will illustrate prob-
lems associated with a direct detection of radiative
decays by discussing experiments aimed at searchesfor
the rare decay

W— T+ T +Y @)

under the conditions of background from the main
mode of w decay, w — TrTTTC. Searches for the radi-
ative decay (7) were performed at the LEPTON-F [6]
and ASTERIX [7] facilities (see Table 1).

&)

(6)
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Table 1. Searches for the radiative decay v — 1"y [under conditions where the background is due to the main decay

mode w —» O,

T — y(y) with one lost photon]

Experiment

Process under study

Result: upper limit on Br
[w— m'ry] &t a95% C.L.

LEPTON-F (IHEP)
(6]

TTp — [Tr'Ty]n
— n
Lo mmry
Investigation of the mass spectrum of the Tty system from the

reaction Trp — [TT'TTY]N; the use of the effective veto system
to reduce the background from lost photons

(pTf =325 GeV)

4x1073

ASTERIX
(CERN, LEAR) [7]

pp — TTCICTTY
— e

— W
Independent reconstruction of thedirection of omega-meson emissionin

the production reaction and in the decay process; subtraction of the back-
ground from lost photons by using the results of akinematical analysis

Annihilation of stopped antiprotons
p; kinematical fitting of events

4x10°8

Summary result

3x 1073

The LEPTON-F facility represented a wide-aper-
ture magnetic spectrometer that was equi pped with pro-
portional chambers and which operated in conjunction
with amultichannel y spectrometer featuring lead-glass
Cherenkov counters and a system of gas Cherenkov
detectorsfor identifying charged primaries and second-
aries. Thefacility, which was used to implement awide
program of investigations of radiative meson decays
and of searches for exotic states (see [6, 8-11]), was
exposed to a 32.5-GeV negative-pion beam from the
70-GeV accelerator installed at the Institute for High-
Energy Physics (IHEPR, Protvino).

As a source of omega mesons, experiments that
sought the radiative decay (7) employed the charge-
exchange reaction

T+p—W+N,

®)

which makes it possible to perform radiative-decay
searches under comparatively clean experimental con-
ditions and in processes characterized by a low multi-
plicity and alow combinatorial background. This reac-
tion is, however, disadvantageous in that the direction
of omega-meson emission could not be reconstructed
from the analysis of process (8) aone since the final-
state neutron was not recorded, which gave no way to
reconstruct fully the kinematics of this charge-
exchange transition.

The decay process (7) was isolated by studying the
reaction

T +p— [TTTY] + N, )

Relevant criteria for selecting events with two pions
and one photon in the final state and for suppressing the
background were used in identifying the reaction under
study. The LEPTON-F facility also included a special
veto system that consisted of scintillation counters
interspersed with lead converters and which reduced, at
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thetrigger level, the background of photons missing the
aperture of the y spectrometer. The y spectrometer itself,
inwhich it was required to isolate one and only one pho-
tonfrom reaction (9), served asapart of thisveto system.
The well-known radiative processesn — 1Ty (Under
conditions of background from the decay process
n — ') andn' — 1Ty were used in devel op-
ing criteria for isolating the sought reactions. For this
purpose, an analysis of the effective-mass spectrum
M(rtrrry) was performed for reaction (9).

This spectrum, depicted in Fig. 3, shows four struc-
tures associated with the processes listed immediately
below:

(a) the reaction Ttp — nn, followed by the decay
n — e, ™ — y(y) with one lost photon;

(b) the reaction Ttp — nn, followed by the radia-
tivedecay n — 1U'TLY;

(c) the reaction Ttp — wn, followed by the decay
w — 1Te, I — YY) with one lost photon (possi-
bly with a small admixture of the decay w — 1T'1TY);

(d) the reaction Ttp — n'n, followed by the radia-
tivedecay n' — TUTLY.

The ratio R, = N(Ny,,/NN — 1UTTY), Where
N(Nypur) 1S the number of spurious n — Ty events
from the processn — T, I —> Y(y), While N(n
— TUTTY) isthe number of true events, was monitored
invarying selection criteria. The choice of selection cri-
teria was thought to be optimal if it corresponded to a
minimal value of R, at an insignificant decrease in the
efficiency of the detection of the radiative-decay pro-
cessesn — TUTTY and n' — TUTTY. The choice of
selection criteriawas discussed in detail elsewhere [6].
In particular, it was shown there that the veto system
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Fig. 3. Effective-mass spectrum of the i1y system origi-
nating from reaction (9) (data taken from [6] represent 20%
of full statistics). This spectrum shows peaks from the radi-

ative decaysn — 1ty (2) and n' — 'y (4) and
spurious peaks from decays featuring lost photons, n —
nrr, @ — vy () and @ — i, 10—
Yy @)
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Fig. 4. Effective-mass spectrum of the Tt 1Ty system origi-
nating from reaction (9) in the mass region of the omega-
meson peak (data taken from [6] represent full statistics).
The arrow indicates the mass val ue expected for the omega-

meson peak from the decay w — Tt TTY.

reduced the background from lost photons by a factor
of 10to 20.

Figure 4 shows the total effective-mass spectrum of
the Tt TTY system in the omega-meson massregion. This
spectrum was used in searches for the radiative decay
(7). A Monte Carlo simulation revealed that the spuri-
ous peak from the decay process w —» T, T —>
y(y) with one lost photon must be shifted with respect
to the true omega-meson mass by about 30 MeV and
have a width of 65 MeV. Experimental data comply
well with this prediction.

In order to assess the possible number of events of
the decay process w —» 11Ty (7), the experimental
distribution of M(1trry) was fitted to the sum of a
Gaussian function (describing a spurious peak) and
polynomial background. In this way, the position and
width of the spurious peak and the shape of background
were fixed (the normalization here remained free), and
the number of events of the decay process was esti-
mated for the resonance w peak with preset parameters
(the world-average mass value of M, = 782.6 MeV and
the instrumental width value of ', = 43 MeV as
determined from a Monte Carlo simulation with a cali-
bration based on n'— 7Ty data). This yielded
N(w — 1t1TY) = 30 £ 52 events. The total number of
the decays w — Tt recorded throughout the time
of experiments at LEPTON-F was N(w — 1T T0) =
2.64 x 10*. With allowance for the apparatus efficiency,
the upper limits on the product of the relevant cross sec-
tion and the radiative-decay branching ratio and on the
branching ratio itself are, respectively,

o(mp — wn) X Br(w — mry)<17nb  (10)
and

Br(w — 1Y) (11)
= M(W—= T T Yy)/I (00 —= all channels) <4 x 10~

These results were obtained at a 95% C.L.

In the experiments that were performed at the
ASTERIX facility and which aso sought the radiative
decay w — T1UTUY [7], a different efficient method,
that which is based on the most detailed kinematical fit-
ting of events, was used to suppress the background
from lost photons. In order to implement this method,
it is necessary that the direction of the emission of the
decaying particle be determined independently of the
detection of its decay products.

Asasource of omega mesons, the ASTERIX exper-
iments employed stopped-antiproton annihilationin the
reaction

p+p—w+TT + 1T, 12)
L»T[+T[_y

where the kinematics of omega-meson emission could
be fully reconstructed.
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The ASTERIX facility represented a solenoidal
magnetic spectrometer developing afield of 0.8 T and
housing a hydrogen target surrounded by cylindrical
drift and proportional chambers and endcap detectors
equipped with proportional chambers. Converters in
front of the last chambers (of thickness 0.9 radiation
lengths) were used to record photons. The solid angle
covered by the conversion system amounted to 0.75 x
41, and the total efficiency for detecting photons with
energies in excess of 150 MeV was at a level of 25 to
30%.

Measurements at ASTERIX recorded four-prong
processes induced by the annihilation of antiprotons
stopped in the hydrogen target. The spectrum of the
missing-mass squared (MM?) was plotted for these
events on the basis of akinematical analysis of charged
particles. The four-prong events were separated into
four classes:

p+p— TR (4C fit), (13a)

— W R (1C fit), (13b)
— mwrrmny (1C fit), (13¢)
— T (MM?) (no fitting). (13d)

Here, data on photon conversion were not taken into
account at the first step of data processing.

Thetotal number of recorded four-prong events was
1.885 x 10°. Of these, 3.74 x 10° events sati sfied condi-
tion (13a) with a probability in excess of 1%, while
6.98 x 10° events satisfied condition (13b) or (13c) with
the same probability. Events (13b) and (13c) were
poorly separated because of an insufficient precisionin
measuring MM2,

Events used for a further analysis were those of
reactions (13b) and (13c) with one converted photon.
The angle between the missing momentum (as deter-
mined on the basis of information about charged parti-
cles) and the direction of converted-photon emission
was measured for such events. Figure 5 shows the
experimental cos9* distribution of events that was
weighted with photon-detection efficiency. For events
of reaction (13b), which features a neutral pion in the
final state, it is expected that this distribution has arect-
angular shape, and the experimental data confirm this
on the whole. A peak in the region of large angles
(cosd* < —0.9) is due to background events (misinter-
pretation of tracks, residues of eventswhere the number
of neutral pionsis not less than two, etc.). Let us con-
sider events for which cosd* > 0.5 (see the inset in
Fig. 5); there, we can see astatistically significant peak
near the value of cosd* = 1. This peak is due to events
of reaction (13c) featuring single photons. Therefore,
theregion cos9* > 0.9 will further be used in searches
for radiative meson decays.

Figure 6a shows the mass spectrum M(TtrTy) for
events from the region cos9* > 0.9 in Fig. 5. For each
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Fig. 5. cos9* distribution of the number N of 1t 1Ty combi-
nationsfor events of reactions (13b) and (13c) with one con-
verted photon (9 * isthe angle between the missing momen-
tum as determined from data on charged particles and the
direction of converted-photon emission). The inset displays
this distribution for cos8* > 0.5, where we can see a statis-
tically significant peak near the point cos9* =1. The back-

ground from events featuring lost photons [T — y(y)] is
determined in the region 0.5 < cosd* < 0.9.

event, the effective mass was determined from data on
charged particles and from the missing momentum
(which was associated with the photon). For this rea-
son, the effective mass was independent of cosd*.
Since this spectrum featured a heavy combinatorial
background (four Tty combinations per event) and
since, in addition, the conversion system had alow effi-
ciency and could not therefore be used to suppress sub-
stantially the background from lost photons, the invari-
ant-mass spectrum in Fig. 6a is formed primarily by
background events. With the aid of this spectrum, it was
next to impossible to study radiative decays. From data
in Fig. 5, it follows that events from the region 0.5 <
cos9* < 0.9 can be used to subtract the background
from lost photonsin theregion cosd* > 0.9. Theresult-
ing mass spectrum obtained upon background subtrac-
tionisdisplayed in Fig. 6b.

From this figure, we can see that the peak in the
omega-meson mass region has now disappeared and
that n and n' peaks correspond to the world-average
mass values—that is, they are due to the radiative
decays n — 1ty and n' — T1UTTY, Which are
known to have large branching fractions. Data on the
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Fig. 6. (a) Effective-mass spectrum of the rtrry system for
events from Fig. 5in the region cos9* > 0.9 (“w” and “n”

peaks are due to the decays w — 't and n —»

irer with one lost photon); (b) asin Fig. 6a, but upon the
subtraction of the background that is associated with events
featuring lost photons and which was determined in the
region 0.5 < cos9* < 0.9 (with a correct normalization). In

these figures, N is the number of Tt 1Ty combinations.

spectrum M(TTTTY) in Fig. 6b can now be used to set an
upper limit on the branching fraction for the decay
w — TUTTY. A fit to the spectrum reveaed that 155 +
306 events (lessthan 767 eventsat a95% C.L.) occur in
the region specified by omega-meson parameters. In
all, 214500 events of the decay process w — 1T T
were recorded throughout the experimenta time. On
this basis, the relevant branching ratio was constrained
from aboveat a95% C.L. as

Br(w — 1 my) (14)
= (0 —= T TTY)/T (W — all channels) = 4 x 10,

The corresponding upper limit is very close to that in
(11), which was abtained from the measurements[6] at
the LEPTON-F facility. The weighted upper limit (at a
95% C.L.) according to the data from the LEPTON-F
and ASTERIX experimentsis as follows:

15)

Theresults of the experiments discussed aboveindicate
that, in the case where the main source of background
in searchesfor radiative decays of thetype (3) or (4) are
processes (5) and (6) with lost photons, the sensitivity
of direct methods for radiative-decay searches can
hardly be made higher than a value severa times as
gresat as the upper limitsin (11) and (14). For example,
the region of possible direct searches for radiative
decays of the type a — b,b,y is constrained by the
condition

Br(w — 1Y) <3x 10,

Br(a—= b,b,y) = 107 x Br(a —= b;b,1°). (16)

If, however, there is no background from reactions of
types (5) and (6), the sensitivity of direct methods for
radiative-decay searches can be substantialy
improved. Thisisillustrated by the results obtained at
the GAMS and LEPTON facilities (see Table 2 [9, 11—
13] and Figs. 7-9). But for rare radiative decays of the
type a — hy, which are accompanied by the back-
ground from processes with lost photons, data on radi-
ative widths can be deduced from an analysis of pro-
cesses occurring in the Coulomb field of nuclei, aswas
discussed in the Introduction. We will consider these
processes in greater detail in the next section (see aso
[1, 2, 14-16]).

3. PARTICLE-PRODUCTION PROCESSES
IN THE COULOMB FIELD OF NUCLEI

Figure 10 displays a generic diagram describing the
production of the system of particles, X, with an effec-
tive mass My, in the interaction of primary particles h
with virtual photons of the Coulomb field of a (Z, A)
nucleus,

h+Z — X+2 a7

Let us consider the kinematics of the coherent pro-
cess (17). In this reaction, the sguare of the 4-momen-
tum transfer is given by

t = (Py—P,)° = Po+P—29,P,
= M4+ M2 = 2E4E;, + 2Py p,COSY,

where P, is the 4-momentum of the system X; py and
Ex are its 3-momentum and energy, respectively; 9 is
the angle between the vectors py and py,; and My isthe
effective mass of the system X. At high energies, we

have px = p,— 0, where g = (M — M7 )/2p, isthelon-
gitudinal momentum of the recoil nucleusin the coher-
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Fig. 7. Effective-mass spectrum of the T’y system origi- 0.2 0.4 0.6 0.8
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Fig. 8. Effective-mass spectrum of the @ysystem originating
from the reaction T p — [@yin, @ — K*K~ (according
to LEPTON-F data [9]). The spectrum shows a peak from
the radiative decay D/f{(1285) — @y The dashed curve
represent the efficiency of @ydetection (right scale).
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Fig. 9. Effective-mass spectra of the Uty system originat-
ing from the reaction 1t p — [ yIn (according to LEP-
TON-G data [13]). The spectra show peaks corresponding
to theradiativedecays(a) n — ptuyand (b) n' — pp-
y. Histograms depicted by lines of different thicknesses cor-
respond to different selection criteria.
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Table 2. Discovery of some rare radiative decays of light mesons under favorable background conditions

Experiment

Process under study

Result

GAMS-2000 (IHEP) [12]

rp — [TOrPy]n ( p =38GeV)
— on

L— mrdy

Briw — 1] = (7.2 + 2.6) x 10°

Detection of 40 + 12 events of the decay w — 1010y
w — 1Oy have been recorded (Fig. 7)
LEPTON-F (IHEP) [9, 11] | 1rp —= [K*KY]n(p, = 32.5GeV)

— [@\n

L. K*K- Br[D/f,(1285) — @y = (0.9+ 0.2+ 0.4) x 103
Detection of 19 + 5 events of the decay
D/f,(1285) — @y D/f;(1285) — @yhave been recorded
(Fig. 8)

LEPTON-G (IHEP) [13] Tp — [Wuyln

—(, )N Brin — p'puy] =(34+04) x 10

L u*’u—y BI’[I’]' — u*u‘y] = (89 * 2.4) x 107

Detection of About 600 events of the decay
n— uuy n — p*uyand 33 + 7 events of the decay
n' — Py n' — YKy have been recorded (Fig. 9)

Measurement of the electromagnetic form

factors for these mesons

ent process. We then arrive at
1 1
En = Pr| 1+ 5(My/ Pr)’ = 5(M/ )’ .
1 1
Ex = px|:l+ E(Mx/ px)z_é(Mx/ px)ﬂ
1 2
= ph(l—QH/ph)[l"' E(Mx/ Pn)

1
+ (M po) () Pr) —5(Mx/ P) ],
whence it follows that

2E4E, = M%+ M{ + 2pypy,

+ L (ME+ M- 2MiM?),
4py

}X (M)

ZF Aq%)

Fig. 10. Diagram representing the production of the hadron
system X (with mass My) on virtual photons of the Coulomb
field of anucleus.
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where we discarded terms of order (M,/p,)* and higher
order termsin the mass-to-momentum ratio. The square
of the momentum transfer is then given by

2

o = ~t = S5 (Mi—M2)” + 2ppy(1 - cosD)
4py
1 2 2,2 2 _ 2 2
= —(MX=Mp) +(pxd)" = Omin + PT,
4pj,
where p? = (pd)? is the square of the transverse

momentum of the system X.

Thus, it has been shown that the minimal value of
the square of the 4-momentum transfer (it corresponds
tod =0)is

1 2 1 2
Ooin = —(MX=M)" = —S(M%=M7)".  (18a)
4p, 4E,

The square of the total 4-momentum transfer is

2

A" = Gmin + PT- (18b)
At high primary energies E;,, the minimal value of

the momentum transfer squared, qﬁ“n ,isvery small, so

that the momentum transfer squared is determined by
the sguare of the transverse momentum of the nascent

hadronic system, p?. Here, the longitudina momen-
tum transfer is also very low.
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The Coulomb production reaction (17) is character-
ized by the cross section

[d_c} _aZ
> - az
dq Coul n

O'(Vh — X) q qmm|FZ(qZ)|2
My —M;

wherea(yh —= X) isthe cross section for X photoproduc-

tion onthetarget h, qﬁﬂn istheminimal vaue of the square

of the momentum transfer in reaction (17) [see equation
(183a)], and o = 1/137 isthe fine-structure constant.

Expression (19) has a very simple physica mean-
ing. It was indicated in the Introduction that, in Cou-
lomb particle production at very high energies, virtual
photons of the Coulomb field of anucleus are character-
ized by very small vauesof ¢?; therefore, they aretreated
asreal onesin the upper vertex of thediagramin Fig. 10:
to ahigh accuracy, the contribution of the upper vertex is
parametrized by the cross section a(yh — X) for pho-
toproduction on a primary hadron. The square of the
photon propagator is taken into account in calculating
the cross section for the Coulomb process. The contribu-
tion of the lower vertex is described in terms of the
charge of the nucleus and its electromagnetic form fac-
tor, and this leads to the factor aZ?|F,(¢?)f? in the Cou-
lomb cross section. The remaining kinematical factorsin
(19) arisein calculating the cross section.

If aresonance state a decaying through aa — bc
channel isformed in the Coulomb production reaction,
the cross section o(yh — a) is described by the Breit—
Wigner resonance formulafor effective mass My = M of
the resonance system (see, for example, [17]); that is,

2J,+1
(23, +1)(2S+ )k 2| "

(19)

o(yh — a)gy = (20)

where K = (M? - Mh )/2M is the momentum in the rest

frame of the nascent state, while the factor 2S+ 1 is
equal to two for the photonic target.

In the nonrelativistic approximation, the last factor
in (20) as determined with allowance for the total reso-
nance width I" and the partial widths of the initial and
final states hasthe form

|2 1F(a—>hy)r(a—>bc)
4 (M=M,)*+(r/2)7°

The corresponding relativistic expression that takes
into account corrections for the dynamical resonance
width is given by

21)

|ag

|<"‘F<|2
M2l (@ — hy)I'(a — bc)g(M?) gy (M?)
(M*=M2)* + MZr°g’(MY)

(22)
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where g(M?), g,(M?), and g(M?) are correction factors
including the dynamical resonance width and depend-
ing on resonance quantum numbers. At the resonance
value of M = M,, we have

9(M2) = gpe(M3) = (M) = L.

It can easily be verified that, in the nonrelativistic
approximation, which isvalid only for sufficiently nar-
row resonances and which corresponds to M? — Mj <
M2, sothat M2~ M2 = 2(M — M_)M,, all the dynamical
correction factors reduce to unity, and the relativistic
expression (22) goes over to the nonrelativistic one as

given by (21). If the decay a — bc is dominant, we
can make use of the approximation

9(M?) = gu(M?).

The conventional parametrization of the dynamical fac-
tors gp,.(M?) have the form

(23)

(24)

21+1 2

OpO 2o
CpoH p+ p2

where | isthe orbital angular momentum for the decay
processa — bc, while p and p, are the momentaof the
particle b in the X rest frame at the mass values of M
and M, respectively.

Goc(M?) = (25)

Thus, the cross section for resonance photoproduc-
tion on aprimary particle his eventually given by

o(yh — M — bC)gw

23, +1
[ZJh T 1} x4t

(M*—Mp)°
 F(@a—= hy)l'(a— bc)
r
! r/2
(M —M,)*+(F/2)
:6(M—M\a)ffor r-o )
— 2J,+1 M*M
_< [2\]3"' l] x8rt 2 az 2
" (M*—Mp)
o [(@— hy)l'(a— bc)
r
L1 Mg (MHg, (MIT

T(M? = M2) + M2 g2 (M?)

5 (nonrel. appr.),

(26)

(rel. appr.).

=3(M*~M32) for T ~ 0, g, =0y — 1.

That the replacement of the resonance expressions
by a delta function is legitimate can easily be demon-
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strated. It is known, for example, from [18], that we
have the limiting relation

1

(X) = T[l ( )2 m_ o B(X)1
whence it follows that
1 r/2
(M —M,)*+ (F/2)°
_1 (r/2y"
T+ [(M=M,)(F/2)™°
=1 _m 5(x) = 5(M—M,),

T + (mx)? e
wherem=(I/2)"' andx=M - M,
Similarly, we have
1 M.rg(MHgpM?)
(M2 =MD + M2l (M)

1 M,

T[(MZ_ Mi)Z + M§r2

E—

_1 (M0)™

T+ [(M*=M2)(M,M)

_1m

_ 8(X) = 3(M*=M
R s 0 = ¥ 3,

wherem= (M) andx=M2— M [sinceg,(M?) —
6y(M2) = 1 and gpe(M?) —> gpe(M3) = 1for I —~ 0]

By using relation (26), we can obtain the transverse-
momentum distribution for the Coulomb resonance-
production reactionh + Z — a + Z (1) in the approx-
imation of asmall resonance width (I, — 0). Thecal-
culations were performed in the relativistic approxima-
tion (the nonrelativistic approximation obviously
yields the same result). From relations (19) and (26), it
follows that the cross section for the Coulomb process

h+Z—a+Z

L ~b+c
has the form
d’o

i ) = i)
—| = M
[dqz o / dg*dM® e

_[2d,t+1 ol (@ — hy)I'(a — bc)
= [ZJh T 1} X8z r

2
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M M,
(M?=Mp)°
Xl' Magy(M )gbc(M )r

(M? = M2)% + M2 gz (M?)

2,2
=d(M"—My) forl - 0

_[2Jat1 oM (a—=
= |55 8

xId 2q len|FZ( )|
(27)

hy)I'(a — bc)
I

2
Xq _gmm|Fz( )| _Vla__
(M3 Mh)

Thus, we conclude that, in the approximation of a
small width of the resonance state a that is formed in
the Coulomb production reaction (1) and which decays
through the channel a — bc, the momentum-transfer-
squared distribution of eventsis given by

do 2J,+
— = 8o Z [ }F a— h
|:dq2 :|Coul 2Jh ( y)
(28)
Mz min
X Br(a—= bo)——— 0 q IF2(q )|
(Ma_Mh)

In the same approximation, the total cross section
for the Coulomb process (1) has the form

2),+1
oh+Z—a+2)cy = 8n0(22[ 2 }

23, +1

qmax 2

M3
a J-q qm|n|FZ( )| dq
(Mz-Mp)*2 o

(29)
xT(@a— hy)

(30)

The quantity qzmax bounds the region where Coulomb
processes are dominant. In estimating the integral | =

2 2_ 2.
JZE:%WB(QZ)FO'QZ with respect to momentum

transfers, the nuclear form factor is parametrized in the
form

FA(q°) = exp(-q*/b?). 31)
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The parameter b? is given by b? = 6/[1°[] the root-mean-
sguare radius of the nucleus being 212 = 0.94A13 x
10 cm (see [19]). By taking al the above into
account, we obtain

qmax 2

I - J' q len

qmin

IF(cP)| o

qmax 2

= [ qq'“'“exp( 2"/ b)de”

2
Amin

(32)

2
Omax 2

_ ¢4
-]
Qmin

Introducing the variable x = ¢?/a’? (a2 = b%*/2) and

assuming that x,,, < 1 and X.;, << X.,,., W€ can obtain

qm'”exp(—q /a%)do’.

2 s/a

Xmax = Omax

= [eXIO(—X) _

X

20

Xmm
_ 2 2
Xmin = qmm/a

2 3

X
—(1+xmm)anx X+ a0

33 (33)

4 Xmax
< d
Taxao. "

In particular, the relevant numerical values for the lead
nucleus are [M*[V? = 5.56 x 107'* cm, b? = 0.0078 GeV?,
and & = 0.0039 GeV?2. We can evaluate theintegral | for

various options of qﬁw. We have

D:]max

Xml n

exp( Xmax) exp( Xmln)

min max

| = INCFE20-1.87 for Qg = 5% 10° GeV?, (34)
Eqmm

| = 5“2&%5_124 for Oaax = 1% 107° GeV2. (35)
Eqmm

Without allowance for the form factor, the result is

2
| = InJme_g,
Omin
At sufficiently high primary energies E, [such that

IN(0fn/ An) IS iN excess of five or six], the distinc-
tions between these estimates are rather modest.
Figure 11 shows schematically the behavior of the
differential cross section [do/dg?]c,, for the Coulomb
particle-production process (1). The Coulomb cross
section is seen to increase fast with decreasing *. By
using expression (28), it can easily be shown that differ-

(36)
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[dO/dg*] coy» Tel. units

2 _max
B [dcr/dq ]Coul
i
|
|
10°F i
i
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I
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|
I
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I
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I
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4min : '/'
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10° 1 104 1072
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Fig. 11. Schematic behavior of the differential cross section
[do/dg?] oy for the Coulomb particle-production process

(1) as afunction of q2 (q2min is the minimal value of the

square of the momentum transfer; qg = 2q2mm is the posi-
tion of the cross-section maximum; the width of the Cou-
lomb maximum is estimated as A =~ 6q§1in = 3q§). The

dash-dotted curve represents the background from the
strong-interaction-induced coherent process.

ential cross section [do/df]c,, atains a maximum at
qg = 2q,2nin (qg varies with the primary energy E, in
inverse proportion to its square) and that, at this point,
we have [do/dq’] oy O Grn O Ef. With increasing
primary energy, the cross section at the point of maxi-
mum growsin proportion to Eﬁ , Whereas the maximum
itself shifts to the region of small ¢?. Its width is esti-
mated as A = 607, O E;°. Thus, we conclude that the
total cross section for the Coulomb process is O¢,, =
[do/dq’]cey A O Ef E;?—that is, it is independent of

primary energy in the first approximation. On the basis
of equations (33)—(36), we can estimate this cross sec-

tion more accurately. The result is 0c, O INCay, O

InE;,, whence we see that, in fact, it grows logarithmi-
cally with energy.
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Table 3. Basic properties of processesin the Coulomb field of nuclei and of strong-interaction-induced coherent reactions

Basic properties of Coulomb processes

Basic properties of strong-interaction-induced coherent reactions

w-pole exchange

Pomeron exchange (diffraction)

(8) ocou L INEy;

(b) The distribution [do/dg?] oy iS

concentrated in the region of small ¢?
(the cross section achievesamaximum

2 22

Mz;— M, ] .
T } (thatis,

relevant g2 are very small at high ener-
gies);

(c) Thewidth of the distribution is
[do7de]ou & = BCmin;

(d) Ocoul U Zz;

(e) Inthe Gottfried—Jackson frame, the
helicity isA = +1 (quasireal photon);
that is, the t-channel helicity isA = +1

A= zqam:{

(8 Ogrong ~ Eﬁl ; a high energies, thiscon-

tribution dies out;

(b) [do/doP] grong depends on the quantum
numbers of the nascent meson; in some
cases, the cross section decreases at small

P2 do/de? 0 (6% — gnin):

(c) Ostrong 0 A%,

At very high energies, the coherent back-
ground of this type usually does not play
asignificant role in the region

? < (34) x 1073

(8) Ogrong depends only slightly on ener-
gy (Pomeron exchange);

(b) [dO'/ dqz]strong diffr O eXp[_(qz -
o2, )bl; b = (8-10)A23 Gev2

(C) 0-strong diffr U A2/3;

(d) Thet-channel helicity isA = 0.

The diffractive coherent background
complicates strongly the investigation
of the Coulomb processes of particle
production

Diffractive processes play adecisive
roleif they are allowed by the following
selection rules in quantum numbers:

(1) Havors do not change in going over
hto a.

(2 h(IP) —=a[I"; I+ 1), (I+2°]—
thisis a selection rule in quantum num-
bers for diffractive processes (Gribov—

Morrison rule)

Thus, the radiative width with respect to the decay
a — hy can be determined by measuring the absolute
value of the cross section for the Coulomb production
process, o(h + Z —» a+ Z)q,, because, according to

(2), (29), and (30), we have

oh+Z — a+ 2, = 0yl (@a— hy),
where g, isaknown quantity that can be calculated pre-

cisely.

The above estimates of o, were obtained in the
approximation where the width of the resonance a is
assumed to be small. Of course, more accurate calcula-
tions based on the rel ativistic formulafor the resonance

a can aso be performed. By way of

catethat, in the production of a,(1320)~ mesons by 600-
GeV 11 mesons, the Coulomb cross section g, found
on the basis of the relativistic Breit-Wigner formula
(26) is 10% below the g, value obtained in the narrow-

resonance approximation:

00[a5(1320) ], gw = 0.900[a5(1320) ]arow wictn- (37)
Thus, we see that the more precise estimates can prove

important.

It isworth discussing one more circumstance of par-
amount importance, which can complicate substan-
tially the investigation of coherent particle-production
processes in the Coulomb field of nuclei. The point is

that strong-interaction processes can al so lead to coher-

do
dg’

ance  amplitudes.
example, we indi-

ent reactions on nuclei. In general, we therefore have

io|2
|AC0uI + Astronge | ’ (38)

where A, is the Coulomb amplitude, Ay, IS the
amplitude of the coherent process caused by strong
interactions, and ¢ is the relative phase of these two

In order to separate the contributions of Coulomb
coherent processes and strong-interaction-induced
coherent processes, it is useful to give a brief summary
of their basic properties (see Table 3).

From an analysis of information presented in this

table, we can conclude that, for Coulomb processes,

particles.

PHYSICS OF ATOMIC NUCLEI

two situations associated with the background from
coherent strong-interaction-induced processes can be
realized, depending of the quantum numbers of nascent
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(i) A coherent diffractive background is forbidden
by selection rules in quantum numbers, and the back-
ground caused by strong interactions may be due to
Reggeon exchanges (as a rule, omega-meson
exchanges). In this case, the strong-interaction-induced
coherent background dies out at high primary energies,
and quite favorable conditions are realized for isolating
Coulomb processes. Moreover, the above-type back-
ground decreases sometimes at low momentum trans-
fersin proportion to ¢?.

(i) A coherent diffractive background plays a deci-
siverole, in which case it becomes much more difficult
to separate Coulomb processes. This can be done only
in the case of high statistics and in the region of very
low ¢f (lessthan 10~ GeV?).

Below, these two cases will be illustrated by exper-
imental data.

To summarize a general consideration of particle-
production processes in the Coulomb field of nucle, it
isworthwhile to make the following comments:

(a) Coulomb reactions open unique possibilities for
studying rare radiative hadron decays of thetypea —~
hy in cases where these decays cannot be separated by
direct methods because of heavy backgrounds from
a— hr’, ™ — y(y) decays with lost photons or
where relevant widths are too small to be measured
directly, asisthe case for the decay ° — Ay.

(b) Coulomb reactions also make it possibleto study
photoproduction and Compton scattering processes on
unstable particles, such as pions, kaons, and hyperons.
This opens new for performing ways exatic-hadron
searches, for measuring the electromagnetic features of
unstable particles (for example, polarizability), and for
studying some other phenomena.

(c) In order to carry out al these investigations, it
necessary to isolate reliably particle-production pro-
cesses in the Coulomb field of nuclei (in particular, to
separate them from the coherent background due to
strong interactions) and to measure the absolute values
of the cross sectionsfor the processes being studied. All
this requires precision measurements at high energies
and at very low momentum transfers, but such mea-
surements present areal challenge. This is reason why
only a few experiments have been performed over the
nearly 50 yearsthat have elapsed since thefirst theoret-
ical study of Primakoff on the subject [1]. The results of
basic investigations of Coulomb production that were
performed until recently to a comparatively high preci-
sion and furnished interesting information about the
radiative decays of hadrons and about their electromag-
netic properties are summarized in Table 4 [16, 20-31].
Here, we do not consider data obtained in photon
beams for the radiative widths with respect to the
decays * — yyand n — vy, nor do we survey
experiments in hadron beams at moderate energies,
where the strong-interaction-induced background
could not be suppressed with the required accuracy.
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In 1998, some new data on the processes of Cou-
lomb particle production were obtained in the SELEX
experiment that was performed by alarge international
collaboration and which employed 600-GeV beams of
primary T mesons and =~ hyperons. The first results
from that experiment will be discussed in the sections
of this article that follow.

4. INVESTIGATION OF PARTICLE-PRODUCTION
PROCESSES IN THE COULOMB FIELD
OF NUCLEI IN THE SELEX EXPERIMENT

4.1. SELEX Facility

Intheyears 1996 and 1997, alargeinternational col-
laboration that included scientists from the United
States, Russia, Germany, Brazil, Israel, Italy, and other
countries performed experiments at the SELEX facility
that was constructed at Fermilab (Batavia, USA) and
which operated in a 600-GeV beam from the Tevatron
accelerator. This beam consisted primarily of - hyper-
ons and Tt mesons in equa shares and included a very
small admixture of other particles (=, K-, etc.). The
SELEX facility [32, 33] comprised a three-stage mag-
netic spectrometer equipped with proportional and drift
chambers, avertex detector with microstrip silicon sta-
tions, additional microstrip detectors in the beam
region, three photon spectrometers featuring lead-glass
counters, a hadronic calorimeter (for neutron detec-
tion), a Cherenkov multiparticle spectrometer of the
RICH type, and transition-radiation detectors for iden-
tifying charged particles. The data-acquisition system
of the apparatus made it possible to record large flows
of information and to develop fast trigger signals of a
high level for an additional filtration of events.

Basically, the research program of experiments at
the SELEX facility was aimed at studying strange—
charmed baryons. However, investigations of particle-
production in the Coulomb field of nuclei and in some
diffractive reactions, searches for exotic hadrons that
involve charmed or strange quarks or both of them,
measurements of electromagnetic form factors for par-
ticles, and some other studies were performed there
concurrently with the implementation of the basic pro-
gram. Vast statistics of events recorded in experiments
at the SELEX facility (more than 10° events) are being
processed at present. A few first results of these inves-
tigations on particle-production processes in the Cou-
lomb field of nuclei [34-37] are considered in the
present survey.

The scope of investigation of Coulomb production
processes at the SELEX facility was limited by the fact
that these investigations were performed simulta-
neously with those of the basic program of studiesin
charm physics. In particular, experiments with a lead
target, which are of paramount importance for inquiries
into Coulomb processes, could be conducted for avery
short time. For some processes, including the Coulomb
production of >*(1385), the detection efficiency was
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Table 4. Compendium of data on the Coulomb processes of hadron production

Experiment Process under study Result r';effj;
E272 (Fermilab) | 70+ (Z, A) —= p(770) + (Z, A) (P, = 156; 260 GeV) F[p(770) — = Try] = 71+ 7 keV [20]
Le 170
T+ (Z, A) —= p(770)" + (Z, A) (p_. =202 GeV) M[p(770)* —» Tt*y] = 59.8 + 4.0 keV [16]
L. mr0
— a,(1320)* + (Z, A May(1320)" — 1t*y] = 295 + 60 keV [21]
Lo e, KIK*
— 3,(1260)* + (Z, A May(1260)* — 1i*y] = 640 + 246 keV [22]
Lo 3n
— by(1235)* + (Z, A I[by(1235)" — 1t*y] = 236 + 60 keV [23]
L. o1t
K=+ (Z, A) —~ K*(890) + (Z, A) (p, - = 156 GeV) [[K*(890)” —= K] = 62+ 12 keV/ [24]
Lo Ko
Fermilab K{ +(Z, A) —= K*(896)° + (Z, A) (p,o =60-200 GeV) [[K*(896)° —= K%] = 116.5 % 9.9 keV [25]
Lo k2
- K*(1430)° + (Z, A) F[K*(1430)° — = K%] < 84 keV at 290% C.L. [26]
Lo k2
CERN T +(Z, A) —= p(770) +(Z, A) (p,_ = 200 GeV) M[p(770) —= Try] =81+ 4+ 4 keV [27]
L 0
SIGMA (IHEP) TC+(Z,A) — [10y] + (Z, A) (p_ = 40 GeV) B,=(-7.1+2.8+18) x 10 cm? [28]
Compton yTtscattering; measurement of the magnetic and electric | Oy + Br= (L4 + 3.1+ 25) x 10 cm?
polarizabilities of the pion (B, and o, respectively)
@A e+ @A ot e i el =
CERN A+ (Z, A) —> 30+ (Z, A) ((pATE 15 GeV) M0 — Ayl = 7.6'75 keV [30]
Fermilab A+(Z A) —= 30+ (Z, A) (PAL= 200 GeV) 20 > Ay =862 0.6+ 0.8 keV [31]

14"
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Table 5. Dataon the Coulomb production of the a,(1320)~ meson in the reaction T + Z — a,(1320)™ + Z, a,(1320) —

p®rr — T for three targets (carbon, copper, and lead)

Target nucleus

C Cu Pb
Number of events of the coherent reaction (39) 2760523 1997972 549092
Gy, Mb/GeV [see (41)] 27.2 626 4870
Measured number of events under the resonance peak
in Figs. 12c, 13, and 14 that corresponds to the decays 1587 + 480 5170 + 590 2945 + 400
ay(1320) — PO — T
€(subtr.) Monte Carlo 0.70 0.63 0.49
(Le), event/(mb/nucleus) 881558 149302 17831
May(1320)" — 1], keV 304 + 137 253+ 49 211+ 43

Note: The averaged value isT[ay(1320)” — 1Ty] = 233 + 31(stat.) + 47(syst.) keV.

severely reduced by the trigger conditions of the exper-
iment. Despite these limitations, new results on the
radiative decays of some hadrons were obtained in the
SELEX experiment. We discuss these results bel ow.

4.2. Investigation of the Coherent Reaction
T+ (ZA) — [Tttt ] + (Z, A)

The first results on particle production in the Cou-
lomb field of nuclel were obtained in studying the
coherent three-pion-production reaction

m— (A — [TTt] + (£, A) (39)

on carbon, copper, and lead nuclei that was induced by
600-GeV primary 1T~ mesons. Events selected with the
aid of the so-called exclusive trigger that required the
presence of three particlesin thefina state were used to
isolate reaction (39). Obvious kinematical selection cri-
teria—such asthe requirement that the sought eventsbe
guasielastic (that is, the sum of the momentaof all three
secondaries could deviate from the primary pion
momentum by no more than 17.5 GeV); the identifica-
tion of a primary 1T meson by means of a transition-
radiation beam detector; and the isolation of the inter-
action vertex in the region of a carbon, a copper, or a
lead target—were invoked in processing these events.
Table 5 displays the statistics of events of reaction (39)
that were selected according to relevant criteria.

The details of a further data processing will be
described by considering the example of the coherent
reaction on a copper nucleus,

T + Cu — [1rTUTT] + Cu, 40)
For the 31t system, Fig. 12a shows the squared-trans-

verse-momentum (p?) distribution of events of reac-
tion (40). Thisdistribution can befitted to two exponen-
tials, one with the slope parameter of b, = 179.4 +
0.6 GeV—2, which is peculiar to diffractive processes on
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a copper nucleus, and the other with a slope parameter
b, = 1500 GeV—2, which isin accord with the estimates
for the Coulomb production reaction (with allowance

for the resolution in pﬁ). In order to isolate the Cou-

lomb production of the 31t state, it is necessary to sub-
tract the diffractive background. Two regions of the

transverse momentum squared—the region p? <

0.001 GeV? (region 1), where Coulomb production
processes contribute significantly, and the region

0.002 GeV? < pf < 0.0035 GeV? (region 2), which is

dominated by diffractive processes—are used for this
purpose.

It can be seen from Fig. 12b that, in either region,
the effective-mass spectrum of the 311 system seems to
be due to the diffractive production of a, mesons (J° =
1*). If, however, the diffractive background is sub-
tracted (below, thiswill be considered in greater detail),
the resulting mass spectrum M(31) will clearly show a
peak at M = 1304 £ 5 MeV, which has awidth of ' =
121 + 20 MeV and which is associated with the Cou-
lomb production of a,(1320)- mesons (Fig. 12c). It
should be noted that the diffractive production of the
a,(1320)~ meson, which has a spin—parity of J° =2+, is
forbidden by the selection rule in quantum numbers for
diffractive processes (Gribov—Morrison rule, according
to which aprimary T meson with a spin—parity of J° =
0~ can diffractively produce ¥ = 0-, 17, 27, etc., states).
The Coulomb production of the a,(1320)~ meson was
confirmed by data from a dedicated processing that
involved partitioning the transverse-momentum region 1

(p% < 0.001 GeV?) into five equal subregions, with a

diffractive-background subtraction being performed
independently in each. What was thus obtained for the

p? dependence of a,(1320)~ production complies well
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Fig. 12. SELEX dataon thereaction T + Cu — [1rTr7t"] + Cu at En_ =600 GeV: (a) p$ distribution of events of thisreaction

(histogram) and diffractive coherent peak due to Pomeron exchange (solid curve) [region 1 (p$ < 0.001 GeV?) and region 2

(0.002 Geve< p$ < 0.0035 GeV2) shown in the figure are used, respectively, to isolate the Coulomb process and to subtract the

diffractive background; see main body of the text]; (b) effective-mass spectrum of the 31t system from this reaction for (light sym-
bols) region 1 and (heavy symbols) region 2; and (c) effective-mass spectrum of the 31t system as obtained upon performing the
subtraction M(311); — aM(311), with the normalization factor a chosen in such away that the numbers of diffraction eventsin regions

1 and 2 coincide [this spectrum clearly demonstrates the Coulomb production of the a,(1320)~ meson).
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Fig. 13. Effective-mass spectrum of thethree-pion systemorig-

inating from the Coulomb reaction T + C — [Tt + C
(the diffractive background has been subtracted). This spec-
trum clearly shows the Coulomb production of the

a,(1320)” meson.

with estimates for the Coulomb process (with allow-

ancefor the experimental resolutionin p? ). Similar data
were obtained for the coherent reaction (39) on carbon
and lead nuclei, in which cases the Coulomb production
of a,(1320)- mesonswas a so recorded [see Figs. 13 and
14, which display only the mass spectra M(3m) as
obtained upon the subtraction of the diffractive back-
ground—these spectraare similar to those in Fig. 12¢].

In order to determine the width with respect to the
radiative decay a,(1320)- — 7Ty, it is necessary to
measure the absolute value of the cross section for the
Coulomb production of this meson,

0.001 GeV?
_[ [do (TT + Z —= a,(1320)" + 2)/dof*] coudd?,

qi\in
and to compare it with the theoretical expression (29),
which can be recast into the form

0.001 GeV?
I [do(TT + Z —» a,(1320)™ + 2)/dq’] coydq”

2
Amin

(41)

= 0o [a,(1320) — TTVY].
For the coherent production of an a, meson at a primary
pion energy of 600 GeV, the minimal value of the

. 2
square of the momentum transfer is o, = (M3, -
MZ)2E,J> = 2 x 10-° GeV2. In order to determine the

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.1 2000

17

N/(24 MeV)

x 10?2
10

Fig. 14. Asin Fig. 13, but for the Coulomb reaction 1T +
Pb — [rrTrTtY] + Pb.

quantity g,, we make use of the expression for the
Coulomb production cross section [see equation (27)
prior to going over to the small-width approximation
I — 0. For the production of a,(1320)~ mesons, this
expression can be represented as

d’c
dg’dM?

= 8naz*(2J, + 1)

2
M., o -

(M?-mZ° o

x [ay(1320) — T11Y]

42)
M. . g.(M%)g,(M?
><|Fz(q2)|21 a, 2,9y/(M7)gon(M°)
T(M? = M2)? + M2 T2 g2 (M)
= R(M, q°)[a,(1320)" — Y]
with the dynamical factors
3 2
k 2k
M3 = OKO Ko
9,(M") koD 12 + %
(43)
2 DpDS 2p;
M3 = dEd =0
gpl‘[( ) [bOD p2 + pg

Here, kand p aretheyand p momentain the c.m. frame
of the tyand prtsystems with mass M; k, and p, are the

analogous momenta at the resonance point M = M, ;
and g(M3 ) =Go M3 ) = g, (M2) = 1. We make use of
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the approximation g, (M?) = g,(M?), since the process
a,(1320) — p11 represents the main channel of a,
decay [Br(a, —= pm) = 0.70].

In the momentum-transfer region g < 0.001 GeV?,
the effect of the nuclear form factors F,(¢f) is very

small. The corresponding corrections amount to 3% for
copper nuclei and to 5% for lead nuclei. The values of

o, for the three nuclei under discussion (C, Cu, Pb)
were determined by means of a humerical integration

with respect to g? (from qiin to 0.001 GeV?) and with
respect to M over the mass region under study (M <
2 GeV). Theresulting values are presented in Table 5.

In order to obtain the absol ute val ue of the cross sec-
tion for the Coulomb production of an a,(1320)~ meson
according to (41),

0.001 GeV?
I [do (1T + Z —= @,(1320) + Z)/d0?] couda?

Qiin
0.001 GeV?
= [ [do(rr+Z—~2,(1320) + 2)/d P looud PT »
0

the following steps of analysis must beimpl emented.V

These steps include (i) a determination of the mea-
sured number of events at the resonance peak of the
a,(1320)~ meson, N'(a,), in Figs. 12c, 13, and 14 [afit
of the experimental distribution of events with respect
to the mass M to the relativistic formula (42) is used to
do this; the corresponding values of N'(a,) are dis-
played in Table 5 for three mass spectral; (ii) adetermi-
nation of the efficiency associated with the subtraction
of the diffractive background and with the p? -resolu-
tion-induced reduction of the number of events in the

p? interval under study [this efficiency, e(subtr.) is
found from a Monte Carlo simulation and is then used
to determine the true number of events as N(a,) =
N'(a,)/e(subtr.)]; and (iii) the absolute normalization of
relevant cross sections.

Let us consider steps (ii) and (iii) in some detail.
Figure 15 depicts schematically the p$ distribution of

events of reaction (39) and introduces the required
notation.

Everywhere, the true number of events in a given
p? interval and its apparent value biased because of

p? resolution are denoted by N; and N;, respectively.
We have

1 Recall that, according to (18b), we have ¢? = p% + qrznin = p? .

LANDSBERG

0.001—dN—
N, = J’ — dp? = Ny cou + Ny girrs
o LdpT ]
0.001_le-
N, = I — dpf = Nicow + Nigm.  (44)
o Ldp7 .
0.0035 N’
N, = I {—z}dpi = Nacou + N2 gitrrs
002 LAPT

where N; ., is the measured number of Coulomb

events in the ith p$ interval, while N; 4, iSthe mea-

sured number of diffractive eventsin thisinterval. The
interference of the Coulomb and diffraction amplitudes
is ignored in this analysis: this interference is small
because the former amplitudeisreal, whereas the | atter
is nearly a pure imaginary quantity. The limits of inte-

grationin p> areindicated in GeV2.

The procedure for background subtraction
employed aweight factor a determined by the parame-
ters of momentum regions being considered and by the
slope by, Of the coherent-diffraction cone in such a

way as to ensure fulfillment of the condition Ny g, —

aN, 4« = 0. We then have
N = Nll_aNIZ = (NIlCouI_aN'ZCouI)
(45)
+ (N3 gittr —@N2irrr) = Nicou —@Nzcou-
\ﬂ—J
20

In order to find the true number of Coulomb events
inregion 1, itisnecessary to determine the efficiency of
the background-subtraction procedure, €(subtr.) (this
efficiency also takes into account the smearing of

events because afinite resolution in p$ ). We then have

N - NiCouI _aNéCOU|
1Coul g(subtr.)

The efficiency &(subtr.) was determined via a Monte
Carlo simulation, whose results are illustrated in
Fig. 16. Here, we use the same notation asin Fig. 15,
but the measured numbers of events, N and N, are
replaced by the numbers of Monte Carlo—generated
events, m and m'. From data in Fig. 16, the quantity
g(subtr.) isthen determined as

(46)

1 1
My cout =AM coul

g(subtr.) = 47)

ml Coul

For all three target-nucleus species being considered,
the resulting values of g(subtr.) are also presented in
Table 5.

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.1 2000
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dN/dp}

0.003
0.004

0.001
0.002

7, GeV?

Fig. 15. Schematic p% distribution of events of reaction

(39) and basic notation for the procedure of a diffractive-
background subtraction (see main body of the text).

In order to determine the absolute values of the
cross sections for the Coulomb reactions

T +2Z —a,(1320) + Z,
(43)

L o —
anormalization was performed by using the cross sec-
tions for the diffractive production of the 3t system in
an M(3m) region lying closely to the mass of the
a,(1320)~ meson. Here, E272 data on the cross sections
for the diffractive production of the 31t system at an
incident-pion energy of 200 GeV [38] were used for an
absolute normalization. Calculations within the sm-
plest Reggeon model that were performed with allow-
ance for Pomeron exchange reveal ed that the cross sec-
tions for diffractive processes occurring at 200 and
600 GeV may differ only slightly in magnitude. Even-
tually, we obtain

Ma,(1320)" — 1 Y]
N,[2,(1320) Jcou
oi(Le)Br[ay(1320) —» p°r]e(subtr.)’

where (Lg) is the integrated luminosity of the experi-
ment.

For the various target-nucl eus species, the measured
radiative widths are presented in Table 1 and Fig. 17.

(49)
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Fig. 16. Results of a Monte Carlo simulation for the Cou-
lomb production of mesonsin reaction (40) and notation for
the procedure for determining g(subtr.) (47).

The averaged value of this width according to the data
for the three target-nucleus speciesis

MNay(1320) — 1y]
= 233+ 31(stat.) £ 47(syst.) keV.

(50)

Thisisapreliminary result [34], which is character-
ized by a comparatively large systematic error stem-
ming primarily from the normalization procedure used.
In a further analysis of data from the SELEX experi-
ments, an attempt will be made to determine indepen-
dently the cross sections for the diffractive processes at
600 MeV and to reduce substantially the systematic
error.

The value in (50), which was obtained experimen-
tally for the radiative width of the a,(1320)- meson can
be compared with the theoretical estimates from [39,
40], which are quoted in Table 6. At present, theoretical
calculations of radiative decays are insufficiently accu-
rate, but there is till the hope that the situation will be
improved with a further development of lattice QCD.
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Fig. 17. SELEX results for the radiative width
May(1320)~ — 1rY] of the ay(1320)" meson along with
previous results (see PDG [17] and Table 4). Both statistical

and systematic errors are presented for the total SELEX
result.

4.3. Data on the Coherent Reactions
™+ (ZA — [T +(Z A
and1t + (Z, A) — [TT'TT"TUN] + (Z, A)

Experiments at the SELEX facility also studied

coherent reactions resulting in the production of three

charged pions and involving additional photons in the
fina state (M — yy, N — yYy):
- -0

T+ (Z,A)— [T +(Z A), 51)

Ly
— [w] +(Z, A),
(52)
L
. b,(1235) +(Z, A),
(53)
L»wn_
— [nm]+(Z, A),
(54)
L
- a,(1320) +(Z, A),
\—>r]'r[_ (55)
T +(Z,A) —[tn] +(Z A),
vy (56)
[ f,(1285)TC] + (Z, A),
(57)
L'
—[n't] +(Z, A).
(58)
L. TN

LANDSBERG

Relevant data were also deduced from an analysis of
events selected with the aid of the exclusive trigger.
However, events with two photons recorded in the y
spectrometers of the apparatus were singled out in afur-
ther analysis. In addition, the quasielasticity condition
was modified: it was required that the sum of the ener-
gies of the charged secondaries and two photons not dif-
fer from the primary energy by more than 50 GeV.

The results illustrating the isolation of reactions
(51)—(58) are presented in Figs. 18-20.

The squared-transverse-momentum distributions of
the 41tand 31tn systems were investigated for reactions
(53) and (55). The spectra for these systems showed
very distinct peaks due to the Coulomb production of
b,(1235)~ and a,(1320)~ mesons (see Figs. 19 and 20).
In the case of reactions (53) and (55), the background
from strong-interaction-induced coherent processes is
due to omega-meson exchanges since the diffractive
production of these mesons is forbidden by selection
rules in the quantum numbers J° or in G parity. In view
of this, the coherent background from strong interac-
tions dies out fast with increasing energy. At 600 GeV,
it is rather modest, and the Coulomb processes of
meson production can be separated much more easily
thanin reaction (39), where we had to deal with aheavy
diffractive background. The quality of data obtained for
the Coulomb production of a,(1320) and b,(1235)
mesons and accumulated statistics are higher than in
the E272 experiment, which was performed at a lower
energy [21, 23]. Presently, the data from SELEX are
being further processed with the aim of performing an
absolute normalization of the cross sections for the
Coulomb reactions (53) and (55). These cross sections
will be used to determine the radiative width
IMay(1320)" — 1ry]) and I'[by(1235)- — 1UY]). This
determination would be of great interest, since the
results of the E272 experiment deviate strongly from
theoretical predictions (see the note under Table 6).

5. RADIATIVE DECAY S OF HYPERON
RESONANCES AND INVESTIGATION
OF HYPERON REACTIONS IN THE COULOMB
FIELD OF NUCLEI

A detailed survey of data on hyperon decays was
presented in [41]. In this section, we will briefly con-
sider “[10]g,3) —= *[8lsues + Y radiative transitions for
baryons belonging to the lowest SU(3) decouplet and
the lowest U(3) octet of baryons and present the first
results obtained by studying the Coulomb production
of hyperons in experiments at the SELEX facility. Let
us consider some implications of SU(3) symmetry for
radiative decays of hyperons. Here, it is convenient to
make use of the U-spin classification of particles, since
the U-spin multiplets correspond to particles with iden-
tical electric charges, the U spin of the photon being
equal to zero. Therefore, B* — By radiative baryon
decays are allowed within SU(3) symmetry only if B*

PHYSICS OF ATOMIC NUCLEI  Vol. 63

No.1 2000
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Fig. 18. Effective-mass spectrum of the T'rt 1 system originating from reaction (51) [this spectrum shows manifestations of reac-
tions (52) and (54) involving w and n mesons]; (b) effective-mass spectrum of the Tt 1t n system originating from reaction (56) (this
spectrum shows manifestations of reactions (57) and (58) featuring f;(1285) and ' mesons). All spectraare presented for interac-

tionsin a copper target, and N represents the number of et

and B have identical U-spin values. Decays that do not
meet this regquirement are suppressed because they can-
not occur without SU(3) violation.

Figure 21 displays the diagrams of the octet and of
the decouplet for the ground baryon states belonging to
the lowest SU(6) supermultiplet of baryons, [56, 0" _ (.
Also shown is the system of U-spin multiplets in which
these baryons are grouped. It should be borne in mind

Table 6. Theoretical predictions for [a,(1320)~ — 11Y]

or Tt 1T combinations.

that, in the baryon octet, there are two neutral baryons, A
and Z°, that are not pure U-spin states. The U-spin mul-
tiplets contain their orthogonal superpositions
1
juo0= S[/3=T- AT (59)
(asuperposition representing the U singlet with zero U
spin) and

References May(1320)" — Y], keV Comments
Babcock, Rosner [39] 348 Theresult is based on the vector-dominance model and on the
width I'[a, — p1i
Ishida, Y amada, Oda[40]* 235 The result is based on the covariant oscillator quark model

* Themodel presented in [40] satisfactorily describes available experimental data, with the exception of those on thedecay b,(1235) — 1Ty.
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Fig. 19. SELEX data for the coherent reaction 1T +
ZA — [0T]+(Z A a En_ =600 GeV [summary data

for all three targets (C, Cu, Pb)]: (a) p$ distribution of

events of reaction (52) (thisdistribution is dominated by the
Coulomb production process; the background from the
strong-interaction-induced coherent reaction due to omega-
meson exchange is small; the arrow indicates the region
used to isolate the Coulomb process) and (b) effective-mass

spectrum of the wrT system for the Coulomb region p% <

0.003 GeV/? [the Coulomb production process b, (1235) ——
w1t isclearly seen in this spectrum].

PHYSICS OF ATOMIC NUCLEI

M(nm), GeV

Fig. 20. SELEX data for the coherent reaction 1T +
(Z A —=[n]+(Z At E _ =600 GeV [summary data

for all three targets (C, Cu, Pb)]: (a) p% distribution of

events of reaction (54) (thisdistribution is dominated by the
Coulomb production process; the background from the
strong-interaction-induced coherent reaction due to omega-
meson exchange is small; the arrow indicates the region
used to isolate the Coulomb process) and (b) effective-mass

spectrum of the nrr system for the Coulomb region p$ <
0.003 GeV? [the Coulomb production process (1320 —
ntt isclearly seen in this spectrum].
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ju0= 310 J3IAT (60)

(a superposition belonging to the U triplet and corre-
spondingto U =1 and U, = 0).

It can be seen from Fig. 21 that, among radiative
baryon decays of the *[10]g,5, — *[8lsui) + Y type,
the allowed processes are

@ (U=12) —(U=12)+y
A" —p+y,

= EEDL—>Z++Y,
(b) (U=1)—(U=1)+y

o—>n+y

Eb—> Eo+y

HePHS

%ED) . %[|z°m+ SN +y.

At the same time, transitions violating the U spin are
forbidden within SU(3) symmetry:

F—>=5"+y
(U=3/2) =~(U=12)+y=
[EL ~=="+y.

Radiative transitions of the type B*(J° = 3/2*) —
B(J° = 1/2*) + vy, which were considered above, are
accompanied by theflip of the spin of one of the quarks
and by the emission of a magnetic dipole (M1) or an
electric quadrupole (E2) photon. Magnetic dipole tran-
sitions are dominant, the contribution of E2 amplitudes
being very small [42—44]. The probability of aB* —
By radiative decay (radiative width) is determined by
the transition magnetic moment u(B*B) and is given
by [44]

(B — By) = (61)

* (B

kinematical

squared amplnude factor

In the approximation of SU(3) symmetry, the transi-
tion magnetic moments for *[10]gy;3, — [8lsu) + Y
decays can be estimated as [45] (see also [41, 44])

WA p) = p@a’n) = —uElrs’)

_=%0m0y _ oo—xocoy _ 2 w0, (022)
= —u(E""2% = 2u(E""2% FHETN,
WETD) = E"E) =0 (62b)

L et usnow consider radiative decaysthat are forbid-
den within SU(3) symmetry by the conservation of the
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Fig. 21. Diagram of the SU(3) octet and the SU(3) decoupl et
of baryons and structure of the U-spin baryon multiplets.
Thefollowing notation isused here: Sisthe strangeness, m; =

I3 isthe third component of theisospin, m, =Y=B+ S Bis
the baryon charge, and ms; = U5 isthethird component of the
isospin. The octet of baryons includes the states |uyC= |U =

00= é[[3|z O-AQ and u,0= U = 1, U3 = 00=

2110 J3IAD.

U spin and discuss the mechanism of SU(3) violationin
these processes [42—44] by comparing the transitions

$(1385) — =" +v, (63)

=01530)° — =% +vy (64)
(allowed processes) and

31385) — I +y, (65)

=01530) — =" +y (66)

(processes forbidden by U-spin conservation).

Physically, the fact that processes (65) and (66) are
forbidden by the above selection rule can be explained
as follows. Let us first consider the decay processes
(63) and (64). As was discussed above, these are mag-
netic dipole (M2) transitions proceeding via the flip of
the spin of one of the quarks. For the Z*(1385)* and
=%*(1530)° hyperons, which consist of quarks of differ-
ent charges and magnetic moments (JuusCand |ussl), the
photon magnetic field acting on the u and s quarks
involved rotates them in opposite directions and may
cause the flip of the spin of one of the quarks with
respect to the total spin of the two others, whereby
V(3)-alowed radiative decays (63) and (64) will
indeed occur. At the same time, X*(1385)- and
=*(1530)" hyperons are constituted by quarks of iden-
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tical charges (Jddsland |dssD). The magnetic field
rotates their magnetic moments and spins in the same
direction. If py = Mg [exact SU(3) symmetry], the s
guark (d-quark) spin is not flipped with respect to the
total d-quark (s-quark) spin, so that the radiative decays
(65) and (66) proveto beforbidden. If SU(3) symmetry
is violated because of the mass difference between the
s and d quarks, their magnetic moments also become
different (g = —0.972y and pg = —0.613py, see [17]).
Therefore, spin-rotation angles in the photon magnetic
field aredifferent for these quarks, so that spin-flip radi-
ation transitions may occur. Thus, we can see that,
because of broken SU(3) symmetry, the decay pro-
cesses (65) and (66) are not strictly forbidden. How-
ever, the corresponding branching ratio (radiative
width) are suppressed in relation to those for the
allowed decays (63) and (64).

In [43, 44], the following estimates were obtained
for this mechanism of SU(3) violation:

PE) = ‘ _
u[Z{1385) =] 67
_ |u[zE(1385)‘2‘] %1 Hsﬁ - 0,015,
H[A(1232)" p]
PE = ‘u[ =M1s30) =]
u[=01530)°="] .

%L “SDZ = 0.015.

|u[ ((1530)" —‘]I
M[A(1232)"p] |

Measurements of the radiative widths with respect to
decays (65) and (63) will make it possible to obtain
very clean data on the properties of the SU(3) symme-
try of strong interactions and on the degree of itsviola
tion. Theoretical predictions for these radiative widths
within various versions of quark models (for an over-
view, see [41]) and those that emerged from new cal cu-
lations based on chira QCD models [46-48] show a
wide scatter. These predictions vary between 1 and
10 keV for the width with respect to the SU(3)-forbid-
den decay (65), but they constitute 100-300 keV for the
(3)-allowed decay (63). In view of this, an experi-
mental determination of the above widths from the
investigation of the Coulomb reactions

> +Z— 3{1385) + Z,

(69)
L. ATU
' +27 — 5[1385)" + Z.
(70)
L AT

is of great interest. The first preliminary data on the
process (69) were obtained from experiments at the
SELEX facility. Reaction (70) is still being studied.
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Unfortunately, the experiments that studied the
Coulomb production of Z*(1385) hyperons had to be
conducted concurrently with those that were performed
within the main experimental program (see above);
therefore, the scope of those measurements was
severely limited. They could be carried out only with a
lead target, because only downstream of that target was
the decay gap available for recording the transition
N\ — prrinreactions (69) and (70). The length of the
decay gap was only 50 cm, which corresponded to a
1.4% mean probability of A decay within this gap. The
duration of the dedicated exposure of the lead target in
a2~ beam did not exceed afew days.

The reaction

> +Pb— [ATT]+Pb
\_> pT[_

was studied to isolate the Coulomb process (69) on a
lead target.

Events of reaction (71) were recorded with the aid
of an exclusive trigger and were selected via a further
kinematical analysis of events involving three charged
particle in the fina state, the positive particle being
identified with the aid of a RICH SELEX detector as a
proton. Moreover, it was required that a primary parti-
cle be identified as 2~ hyperon in the transition-radia-
tion beam detector, that the primary interaction occur in
the lead-target region, and that a secondary proton and
one of the negative pions satisfy the condition of isola-
tion of A — prt with the decay vertex occurring
within the decay gap. Three charged secondaries were
required to satisfy the quasielagticity condition (the sum
of their momenta was dlowed to deviate from the pri-
mary momentum by no more than 15.5 GeV).

The squared-transverse-momentum distribution of
events where the ATt system is produced in reaction
(71) shows a peak that is characterized by a slope
parameter b not less than 800 GeV-2 and which sug-
gests asignificant contribution of the Coulomb produc-

tion mechanism. As before, the region 0 < p> < 0.001
GeV? was used to isolate the Coulomb process.

For this region, Fig. 22 shows the effective-mass
spectrum M(AT) for reaction (71). This spectrum
exhibitsadistinct peak at M = 1.322 GeV, which corre-
sponds to the decays of = hyperons of the primary
beam in the lead-target region. Events of the decay
=~ — A1t were used to calibrate the apparatus and to
determine its transverse-momentum and mass resolu-
tions. After that, an analysis was performed for the
region M(ATT) > 1.35 GeV, which wasfitted in terms of
an expression of the type (27) for Coulomb particle
production with allowance for the possible contribution
of the resonance peak that is due to the decay
>*(1385)" — ATT.

(71)

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.1 2000
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On this basis, the number of events under the peak
was determined to be

N[Z[{1385) — ATT] = 26+ 20,
—
or, more precisely,
N(=D) = N[Z{1385) — ATT] <66
\_> prt
(at a95% C.L.).

These data were used to set an upper limit on the
cross section for the Coulomb production of Z*(1385)-
hyperons in reaction (69). With the aid of (2) and (29),
the result can be represented as

o M [2(1385) — =7y]
_ NEE)
(Le) (Br((Z0F — ATO) x Br(A — p1T))’

where g, isatheoretical factor [see equations (2), (29),
and (30)], and L is the luminosity of a given experi-
ment—as before, it was determined from a normaliza-
tion to the cross section for the diffractive process T +
Pb — [31]" + Pb by using E272 data from [38] and
by taking into account the ratio of /it = 1.0 in a

beam.?) The efficiency is € = (A decay) x g(p5 <
0.001 GeV?) x g(additional selections) =0.014 x 0.68 x
0.93 = 0.0089.

Eventually, the radiative width with respect to the
U(3)-forbidden decay (65) can be constrained from
above as

(72)

(73)

r=4{1385) — =7y]
<7 GeV (ata9%C.L.).

Here, we have taken into account a systematic
uncertainty of 15%, which is associated primarily with
the procedure of absolute normalization. It is reason-
able to compare this result with theoretical predictions
lying between 2 and 10 keV (see compendium of these
predictions in [48]) and with the experimental bound
M(Z* — 2y)<24keV obtainedin[49] ata95% C.L.

Data have also been obtained for the coherent reac-
tion =~ + Pb — [A1T] + Pb in the region M(ATT) >
1.35 GeV. These datayield

o[Z +Pb— [ATT] + Pb]cou
= 4.0+ 0.5 mb/(Pb nucleus),

O'[Z_ +Pb— [/\T[_] + Pb] coh. strong
= 20.0 £ 0.6 mb/(Pb nucleus).

(74)

(75)

2The lumi nosity L also includes the efficiency of the trigger used;
that is, it is an effective luminosity.
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Fig. 22. Effective-mass spectrum of the AT system origi-
nating from thereaction 2~ + Pb — [A1T] + Pb (71) inthe

region p2 < 0.001 GeV2. The pesk at M = 1.322 GeV cor-

responds to the decay =~ —— ATT in the hyperon beam
within the lead target. This peak is used for the calibration
of the apparatus. The curve represents an estimated upper

limit on the Coulomb production of the Z*(1385)™ hyperon.
The number of eventsunder the *(1385)~ peak is26 £ 20 (at
a 95% C.L., this corresponds to N[Z*(1385)” —— ATT] <
66 events).

The ratio of these cross sectionsis0.20 + 0.03.

6. DIFFRACTIVE AND ELECTROMAGNETIC
MECHANISMS OF BARYON PRODUCTION
IN COHERENT HADRON REACTIONS
ON NUCLEI AND SEARCHES
FOR EXOTIC HADRONS

Coherent processes on nuclei open new possibilities
for seeking exotic hadrons and, in particular, pen-
taguark baryons with hidden strangeness. The possible
role of the Coulomb mechanism for these processes
was discussed in the Introduction (see also [3-5]). At
the same time, it was repeatedly indicated in the litera-
ture (see the review articles [50, 51] and references
therein) that, at high energies, reactions of diffractive
particle production are very promising for seeking this
new type of hadronic matter. This is due to the multi-
gluon structure of Pomeron exchange and to some phe-
nomenological features of diffractive reactions. Owing
to the fact that single-particle and multiparticle objects
are absorbed differently in nuclei (see, for example,
[50-52]), coherent processes provide a very efficient
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tool for isolating resonances against the multiparticle
nonresonance background.

Investigations of some diffractive processes in a
70-GeV proton beam from the IHEP accelerator are
being presently performed at the SPHINX facility,
which represents a wide-aperture spectrometer
equipped with proportional and drift chambers and
with scintillator hodoscopes. The apparatus aso
includes a multichannel y spectrometer with shower
Cherenkov counters made of lead glass. Charged sec-
ondaries are identified ain RICH-type Cherenkov spec-
trometer, the rings of Cherenkov light being recorded in
a photomatrix of small phototubes, and in two multi-
channel gasthreshold Cherenkov counters. The structure
of the SPHINX facility and the procedures for measure-
ments, for data analysis, and for the isolation of diffrac-
tive processes were described e sewhere [53-57].

Experiments at the SPHINX facility were aimed at
separating coherent processes that proceed on carbon
nuclei and which are characterized by alarge dope of the
diffraction conein the transverse-momentum-square dis-
tribution of events [dN/dp> = const % exp(-bp?),
where b ~ 10A*3 > 50 GeV-2 for the carbon nucleus]. A

lenient or a stringent cut on p> (p> < 0.075-0.1 GeV?2

or p> < 0.02 GeV?, respectively) was imposed.

In the former case, the noncoherent background in
the mass spectrum of the system being studied may
amount to 30—40% of all events.

Inthelatter case, the noncoherent background in the
mass spectrum is within 8-10%, but the number of
coherent events is somewhat reduced.

The most interesting results were obtained in study-
ing the coherent reactions [53, 55-57]

p+C — [£(1385)°K*] + C,

o (76)
Tt
0,,+

Let usconsider in greater detail the dataon reaction (77).
Figure 23 shows the total effective-mass spectrum
M(Z°K*) isolated for this coherent reaction by the

lenient cut on the transverse momenta ( p$ <0.1GeV?).

This spectrum was obtained by analyzing data both
from old exposures at the SPHINX facility and from a
new exposure that was performed with a partly
upgraded apparatus, which made it possible to separate
more efficiently processes featuring A and X° hyperons
[56, 57]. The total spectrum in question shows a struc-
tureat M ~ 1800 MeV and adistinct peak X(2000) with
the parameters

M = 1996+ 7 MeV,

(78)
[ =99+21 MeV.
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Fig. 23. SuUmmary effective-mass spectrum of the °K* sys-
tem originating from the reaction p + C —» [£K*] +C
77 ( p% < 0.1 GeV?) as obtained in the first exposure with

the SPHINX facility [55] and in the exposure with a par-
tially upgraded facility [56].

It should be emphasized that data from old expo-
sures comply well with data from the new exposure,
although SPHINX was modified quite significantly as
the result of its upgrade [56]. Aswas shown in [55], the
X(2000) state decays predominantly through channels
involving the emission of strange particles and appears
to be a serious candidate for a exotic baryon with hid-
den strangeness.

Theresults from the new exposure [56] made it pos-
sible to study the effect of the more stringent trans-
verse-momentum cut on the mass spectrum M(Z°K*) in
greater detail. As was shown previoudly, the use of the
more stringent p$ cut affects the parameters of the
X(2000) peak only slightly. This peak is highly distinct
even without any cutson p$ . Quite surprisingly, it was

found that p? cuts have a profound effect on the near-
threshold structure at M ~ 1800 MeV. As can be seen

from Fig. 24, this structure is observed only for p5 <

0.01-0.02 GeV?, whereit shows up clearly and has the
parameters

M = 1812+ 7 MeV,

(79)
[ = 56+16 MeV.

Such unusual properties of the X(1810) state have
yet to be understood conclusively; it seems that a fur-
PHYSICS OF ATOMIC NUCLEI  Vol. 63
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ther study on the basis of vaster data sets and under var-
ious experimental conditionsis required.

Data suggesting the production of an unusual
baryon structure at very low transverse momenta ( p$ <

0.02 GeV?) were also obtained for the coherent reaction
(76), where the mass spectrum M(Z(1385)°K*) shows a
narrow state X(2050) — X(1385)°K*, which decays
predominantly, in just the same way as X(2000) does,
via the emission of strange particles and which also
appears to be candidate for an exotic baryon with hid-
den strangeness [55]. It should be noted, however, that
evidence for the existence of X(2050) has been
obtained so far only in the old exposures of the
SPHINX facility. New data on reaction (76) from
experiments at the upgraded apparatus are now being
processed.

It was indicated above that, because of a significant
coupling between photons and ¢ mesons (vector-meson
dominance), Coulomb particle production may provide
a natural mechanism for the excitation of hadronic
states featuring an additional quark—antiquark ssS pair
(that is, of cryptoexotic hadrons with hidden strange-
ness). Moreover, baryons with isospins T = 1/2 and 3/2
can be generated in Coulomb processes induced by pri-
mary protons; at the same time, only T = 1/2 baryons
are formed in diffractive processes. Thus, conditions
for the observation of some exotic states may be espe-
cially favorable in Coulomb processes. In view of this,
the hypothesis was put forth that the X(1810) and
X(2050) states, which are separated only by the strin-

gent transverse-momentum cut (p% <0.02 GeV?), are

produced in Coulomb excitation processes [5] rather
than in diffractive reactions. Of course, measurements
with acarbon target, which hasamodest value of Z, can-
not provide the best conditions for the isolation of Cou-
lomb reactions. Nonetheless, calculations presented
below reveal that the explanation of data from the
SPHINX experiment in thesetermsis quite feasible.

In order to estimate the expected cross section for
the Coulomb production of X(1810)* baryons in the
coherent reaction,

p+C —X(1810)" + C, (80)
we make use of the expressions describing the cross
sections for the Coulomb processes (29) and (30). The
resulting estimate in the region p$ <0.01 GeV?is

o[p+C — X(1810)" + Clcou = (2Jx+1)
81
xI"[X(1810)" — py] x 1.2 x 10" cm?/(C nuc e(us))
> [ X(1810)" — py] x 2.4 x 10" cm®/(C nucleus),

where Jy = 1/2 is the spin of the X(1810) baryon and

where the width '[X(1810)* — py] is measured in
MeV (for more details, see[5]).
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Fig. 24. Investigation of the X(1810) structure in the effec-
tive-mass spectrum of the S°K* system originating from the
reaction p+ C — [2%K*] + C (77): (a) effective-mass

spectrum for p% < 0.01 GeV? and (b) p? dependence for
the formation of the X(1810)* structure.

In the region of low pi, the experimental value of
the total cross section for the Coulomb process (80) is

o[p+C —= X(1810)" + C] 2 o1 cev?

x Br[X(1810)" — =°K] (82)

= (2.1+0.4) x 10~>'em®/(C nucleus).

Since Br[X(I = 1/2)* —= ¥K*] = %Br[X(I =12y —
(ZK)*], we have, even if X(1810) — >K decays are
dominant,
a[p+C— X(1810)" +C] . 2
[p ( ) ]pT 001 GeV 83)
>(6.3+1.3)x 10" cm?/(C nucleus),
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whenceit followsthat, if the radiative width of X(1810)
isabout 0.1-0.3 MeV, the cross-section estimate in (81)
isin reasonable agreement with the experimental result
displayed in (82). The above radiative width with
respect to the decay X(1810)* — py seemsquitefeasi-
ble. For the sake of comparison, we note that the radia-
tive width of the A* isobar is (A" — py) = 0.7 MeV.
The radiative width is determined by the decay ampli-
tude A and by the kinematical factor; that is, I' =

IARPZ' "%, where P, is the photon energy in the rest
frame of the decaying baryon and | isthe orbital angular
momentum. The kinematical factor for the X(1810)
state can exceed that for A+ (because of the larger mass)
by more than an order of magnitude. At the same time,
it should be recalled that, for states with hidden
strangeness, the radiative-transition amplitude due to

the process (qqqss) —= (qdq) + @i, — (qga) +
y(VDM) can be sizable. Thus, SPHINX dataon the new
state X(1810) are compatible with the assumption that
the production of this hadron is due to the Coulomb
mechanism. A similar conclusion can be drawn for the
possible state X(2050).

It is interesting to compare these data with the
results obtained by directly studying the photoproduc-
tion reaction y+ N — Y + K, which are still rather
scanty. Nonetheless, it can be stated that X(1810) has
not been observed so far in photoproduction reactions,
although thereis possibly apeak shifted toward greater
values of mass by 2040 MeV [58]. There is some evi-
dence for a possible manifestation of X(2050) in photo-
production reactions [59]. Of course, new detailed
investigations of hyperon and kaon photoproduction
arerequired here; these are expected to be performedin
the near future at the CEBAF accelerator (see [59]).

7. SEARCHES FOR THE COULOMB
PRODUCTION OF THE A(1232)* ISOBAR
IN EXPERIMENTS AT THE SPHINX FACILITY

We attempted to obtain additional information
about the possihility of isolating the Coulomb produc-
tion of baryonsin pC interactions at the SPHINX facil-
ity by performing a search for A(1232)* production in
the coherent reaction

p+C— A(1232)" + C.
L pr?

Since the isospin of the A(1232)* isobar is T = 3/2,
reaction (84) cannot proceed diffractively, but it is
allowed for the Coulomb mechanism.

By estimating the expected cross section for the

Coulomb production of A(1232)* in reaction (84) with
the aid of relations (29) and (30), we obtain

(84)

o[p+C—=A(1232)" + C]cou = 130 pb/(C nucleus).
(85)
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Since there is only one charged particle in the final
state of reaction (84) and since the trigger condition in
the measurements with the SPHINX facility required
three charged particlesin the final state, thefirst step of
data analysis consisted in selecting events of the type
p+N— p+ e +e +y+ N. These events were then
used to identify the reaction

p+N —[pr’] +N,

Y (86)

+ -
ee

which involves the conversion of one of the photons
from the decay ° — yyinto an electron—positron pair
in atarget material. The second photon was recorded in
the y spectrometer of the apparatus.

Experimental data and criteria for selecting events
of reaction (84) were discussed in detail elsewhere [5].
For this reason, we present here only the eventual
results of these investigations.

Figure 25a shows the effective-mass spectrum
M(pr?) for all events of the type (86)—that is, without

any cut on p% . As might have been expected, this spec-

trum is dominated by the contribution of diffractive
processes, so that we cannot see here the production of
the A(1232)* isobar with isospin T = 3/2.

In order to isolate the Coulomb production of the
pr® system in events of reaction (86), we imposed the

cut p5 <0.01 GeV and subtracted the diffractive back-
ground, which was determined by considering our data

in the range 0.02 GeV2 < p? < 0.03 GeV? (here, we

introduced a correction factor that takes into account
the slope of the diffraction peak). In order to suppress
the diffractive background further, we introduced a
selection in terms of the ’-meson emission angle in the
Gottfried—Jackson frame (|cos0,] < 0.7).

The eventua effective-mass spectrum M(pr) as
obtained upon applying all the above procedures for
selecting the Coulomb process is depicted in Fig. 25b.
This spectrum shows distinctly the Coulomb produc-
tion of the A(1232)* isobar. Estimates of the cross sec-
tion for the process being studied are in reasonable
agreement with the theoretical results presented in (85).
An accurate experimental determination of this cross
section is hindered by uncertainties in taking into
account the probability of conversion of one of the pho-
tons and the efficiency of all selections used.

In summary, the present analysis of the SPHINX
data does indeed make it possible to separate the Cou-
lomb production of A(1232)* isobars in coherent pC
interactions induced by 70-GeV protons.
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Fig. 25. Investigation of the formation of the A(1232)* iso-

bar in reaction (86): () effective-mass spectrum of the pr®
system for al events and (b) effective-mass spectrum of the

pre system for events selected by applying the cut p$ <

0.01 GeV2. The latter spectrum obtained upon adiffractive-
background subtraction and plotted for events passing selec-
tion in the neutral-pion emission angle in the Gottfried—
Jackson frame shows a peak with parameters M = 1232 +
10 MeV and I = 119 + 20 MeV, which corresponds to the

Coulomb production of the A(1232)™ isobar.

8. CONCLUSION

The latest results on particle production in the Cou-
lomb field of nuclei, as discussed in this review article,
have revealed that these el ectromagnetic processes fur-
nish important information about the properties of had-
rons and open new possibilities for exotic-state
searches. The first results from the SELEX facility,
which have been presented in Sections 4 and 5 are still
of apreliminary character. The processing of datafrom
this experiment is presently under way. Only the first
stage of measurements has been performed at the
SPHINX facility. By now, the apparatus has been com-
pletely upgraded, and its potential for separating vari-
ous processes has been considerably improved; concur-
rently, the luminosity of the apparatus and the data-
acquisition rate have been considerably increased. New
measurements at this setup are being continued, and
many new results are expected to appear in the next few
years.
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Abstract—Arguments have been presented that suggest that available experimental data on the structure func-
tionsfor the processes ep —» eX and e*'e” — p(p )X do not confirm the so-called reciprocity relation, which
was obtained in the leading-logarithm approximation of perturbation theory. It has also been shown that the
asymptotic relationship between the above processes that was obtained on the basis of more general consider-
ations is compatible with existing data. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

A vast body of experimental data on the deep-
inelastic scattering ep — eX and on the inclusive
annihilation e'e — p(p)X has been accumulated at
present. A great number of studies (see, for example,
[1]) were devoted to substantiating the importance of
analyzing these processes for obtaining deeper insight
into fundamental phenomena like confinement and for
testing various models (such as QCD, bag model, and
string model) and basic principles of quantum field the-
ory (locality, causdlity, etc.).

Investigation of the analytic properties and of the
asymptotic behavior of the cross sections (structure
functions) for deep-inelastic scattering is of great
importance in this connection. Some relations between
the above processes have been obtained along these
lines. Among these, the most prominent ones are, first,
the relation implementing an analytic continuation
from the deep-inelastic-scattering channel to the inclu-
sive-annihilation channel (crossing symmetry) and fol-
lowing from basic principles of quantum field theory
[2-5] and, second, the reciprocity relation [6, 7], which
was derived in the leading-logarithm approximation for
many models, including QCD [8, 9]. There have been
many fewer studies devoted to the subject in recent
years than in the early 1980s, and they have been, as a
rule, purely theoretical analyses not giving proper
attention to experimental data (see, however, [10]).

The present article deals not only with theoretical
aspects of the problem; it also attempts at establishing
relationship between the results obtained and experi-
mental data. We employ data presented by the collabo-

rationsARGUS (/Q? = 9.8 GeV) [11], TASSO (/Q° =

* e-mail: petrov@mx.ihep.su
** e-mail: ryutin@@thl.ihep.su
*** a-mail: asp9801@mx.ihep.su

14, 22,34 GeV) [12], TPC [13], HRS (/Q° = 29 GeV)
[14], TOPAZ (JQ? = 58 GeV) [15], OPAL [16], and

DELPHI (J/Q? = 91.2 GeV) [17] for inclusive annihi-
lation and by the collaborations NMC [18], BCDMS
[19], ZEUS [20], H1 [21], EMC [22], E665 [23], and
SLAC [24] for deep-inelastic scattering; we also
invoked the MRS parametrization [25] for relevant
structure functions. Our thorough analysis reveaed
that, in fact, some of previous predictions are not con-
firmed by experimental data. At the same time, new
relations between cross sections for deep-inelastic scat-
tering and cross sectionsfor inclusive annihilation have
been obtained and contrasted against experimental
data.

2. RELATIONSHIP BETWEEN DEEP-INELASTIC
SCATTERING AND INCLUSIVE ANNIHILATION

2.1. Analytic Continuation

The relation that implements an analytic continua-
tion from the deep-inelastic-scattering channel to the
inclusive-approximation channel was considered in
many studies, which employed different approaches to
the problem. In this connection, we only note some arti-
clesthat treated the crossing-symmetry problem.

The earliest approach relied on an expansion of the
chronological product of currents near the light cone

and assumed that the structure functions F; and F; are
independent of Q? = |g?| (g? is the photon virtuality).
The latter implies scaling at sufficiently high Q% Ana
Iytic properties resulting from perturbation theory are

illustrated in Fig. 1. It was shown in [4] that there exist
two possibilities:

(i) F;(X) admits an analytic continuation into F; (X).
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Fig. 1. Region of analyticity in w according to perturbation
theory with allowance for anomal ous thresholds (w = —q2/(s—
q°), where sis the invariant mass of undetected hadrons in
both processes, and x = w for w > 0).

(if) Nontrivia scaling is fulfilled for any process
separately, and there is no relation of the analytic-con-
tinuation type.

In the first case, we have crossing symmetry in the
form of the relation

F(x) = —ReF(x) +p(x), D
where p(X) is expressed in terms of the spectral func-
tion F(x) in the annihilation region (x > 1) (see Fig. 1).
There are two types of analytic continuation that are
determined by the presence or by the absence of a cut

along thereal axis. Trivial crossing symmetry [2] isful-
filled under the condition p = 0, in which case we have

)

Another type of crossing symmetry is determined by
the same relation (1) with p # 0. For this case, it was
indicated in [4] that, even if F(x) does not have acut for
X > 1—that is, ImF(x) = O—the function p(X) is not
bound to be zero. Hence, a somewhat different relation
may hold:

F(x) = =F(x), x>1.

F(X) = =F(¥)+p(x), x>1. ©)
At the sametime, we cannot rule out the possibility that
the processes being discussed have nothing to do with

an analytic continuation of thistype [case (ii)].

The second approach seems more correct in the
sense that, by and large, it relies on the causality prin-
ciple and the spectral property, not invoking the expan-
sion of chronological products near the light cone. This
approach was used in [3]—it consists in determining
structure functions from the amplitude of nonforward
Compton scattering—that is, from that for t # 0. By
selecting important diagrams that contribute to the
structure functions for deep-inelastic scattering and
inclusive annihilation at t = 0 and comparing relevant
analytic expressions, we arrive at arelation of so-called
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generalized crossing symmetry. This relation has the
form

Wa(s, q°) = —ReW,(s, q°) —e(s+ M*—q)

x B(s—-%)8(q° - a)a(q’, 4’ s, 0),

where g(g?, g, s, t) isthe triple-spectral function of the
Compton amplitude for t # O with respect to 2, g2, and
s(g?=q?att=0). For thisamplitude, we havetherela-
tion

(4)

9(a’,a% s 1) = 9(q% s t). (5)

For deep-inelastic scattering, the structure functions are
introduced in a conventional way [2, 5, 6]: Fu(X, g7 =
VWL (X, g7) = XW(X, g°), where x = Q%/2pg and v = pg/M,
p and M being the proton momentum and mass, respec-
tively; it is also assumed that the Callan—Gross relation
Fo(X, 0?) = 2xF4(x, ¢?) [26] holds. The structure func-
tionsfor annihilation are introduced in asimilar way. In
the region of annihilation, the variable z=1/x < 1 is
often used instead of x. We note that, in the approach

being discussed, each of the structure functions W and
W is expressed in terms of the single structure function
g; that is, we can say that thereisasingle analytic func-
tion whose boundary values appear to be equal to the
structure functions in question. We then obtain a rela-
tion between the structure functions without the
assumption of scaling—that is, without any assumption
on their behavior versus Q2. Thismeansthat relation (4)
must hold for any Q2.

In[27], the question of whether there existsaunified
function of two complex variables with boundary val-
ues egua to the structure functions for deep-inelastic
scattering and inclusive annihilation was discussed in a
different context. Specifically, that article addressed the
question of what implications this will have if the
amplitudes of the processes satisfy rather genera
assumptions on their behavior for g> — + at fixed s;
in addition, arelation similar to the so-called reciproc-
ity relation (see below) was obtained there in the form

2
jim WCALS)
o - = W(Q", S)

For the case being considered and s being fixed, rela
tion (6) can be recast into the form

limMX8) = 4
x - 1W(X, S)

An advantage of the last relation over crossing symme-
try isthat either structure function istaken in its physi-
cal domain. Owing to this, relations (6) and (7) admit a
direct experimental test with some qualifications (see
below). Thereis also an advantage over the reciprocity
relation, which was obtained within perturbation
theory.

1. (6)

(7)
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Fig. 2. Physical regions in terms of the variables q2 and u,
where u = x for deep-inelastic scattering and u = zfor inclu-
sive annl hilation. Dashed curves correspond to s = const. At
s= M we obtal nthelineu = 1. The dotted line corresponds
to g = 4M2,
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2.2. Reciprocity Relation

A connection between deep-inelastic scattering and
inclusive annihilation in their physical domains (see
Fig. 2) wasfirst established by Gribov and Lipatov [6],
who relied on a summation of ladder diagrams in per-
turbation theory (leading-logarithm approximation) for
the vector and the pseudoscalar theory of interaction.
This connection, which was also comprehensively dis-
cussed in [7], is manifested in the reciprocity relation

WEﬂ- 2[] _

5 0= XW(x,0),

(8)

where W and W are the structure functions that were

defined above and which are obtained from the ampli-
tude for the Compton scattering of a virtual photon on

F2, X3F_2
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Fig. 3. Experimental points and interpolation curves at «/52 =9.8GeV versusx (x = Q2/2pq for deep-inelastic scattering and x =
2pq/Q2 for inclusive annihilation). In Fig. 3a, the solid and dashed curves represent the structure functions F, (the corresponding

experimental data are shown by open circles) and F, (the corresponding experimental data are shown by closed circles), respec-
tively. In Fig. 3b, the solid and dashed curves represent the structure functions F, (the corresponding experimental data are shown

by open circles) and x3 F5 (the corresponding experimental data are shown by closed circles), respectively, which appear in the rec-
iprocity relation (13). Figure 3c showsthe difference A = x3F, — F, as calculated within QCD (solid curve) and as obtained from a

E
data analysis (dashed curve). Figure 3d displays the ratio >@F—2 , which isto be compared with unity.
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Fig. 4. Asin Fig. 3, but the experimental data were taken at Jaz =14 GeV.

a spinor particle. It was also indicated that, in the case
of scattering on a virtual particle, relation (8) is appli-
cable in the region Q> — o, corrections to it being
o(M?/Q?) quantities. Within QCD, a similar relation
was abtainedin [8, 9].

Since the appearance of the study by Gribov and
Lipatov [6], the reciprocity relation has been the sub-
ject of much controversy [28-34]. The mgjority of the
authors who discussed this issue relied on an analysis
of various diagrams of perturbation theory. By way of
example, we indicate that, in [28], it was shown that
relation (8) is violated in the limit x — O because of
digtinctions between the mechanisms governing deep-
inelastic-scattering and inclusive-annihilation reactions.
Argumentswere presented in [29] that are based on con-
sidering some ladder diagrams and which suggest that
the reciprocity relations are valid only in the vicinity of
the point X ~ 1, provided that W(x) ~ (1 —x)" for x — 1.
It is worth noting that, in [33, 34], there were no higher
logarithmic corrections of perturbation theory.

The effect of taking into account nonleading loga-
rithmswas analyzed in the review articles of Curci et al.
[30] and Floratos et al. [32]. The impact of nonpertur-
bative phenomena on the reciprocity relation was con-
sidered in [33]. According to those three studies, rela-
tion (8) can be invalid everywhere. Therefore, al the
results being discussed call for an experimental verifi-
cation.

3. ANALY SIS OF EXPERIMENTAL DATA
3.1. Sructure Functions and Cross Sections

For the sake of convenience, we represent the reci-
procity relation in terms of quantities measurable
directly. Specifically, we expressrelation (8) in terms of

the functions F, and F,. These functions are directly
related to differential cross sections for deep-inelastic-

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.1 2000
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Fig. 5. Asin Fig. 3, but the experimental data were taken at «/52 =22 GeV.

scattering and inclusive-annihilation processes. From
the experimental study reported in [18], it isknown that

do(x, Q% E) _ 4ma’Fa(x Q°)
dde2 Q* X
)
XI:ﬂ. y__ %]. ZmD y+Q/E D

Q? 2(1+ R(x Q) O

where a is the fine-structure constant, E is the labora-
tory energy of theincident lepton (U or €), misitsmass,
y =V/E, and R = ¢, /07 is aratio measuring the degree
of violation of the Callan—Grossrelation [35]. By using
equation (9), the function F, can be expressed in terms
of an experimentally measurable quantity. For the case
of annihilation, a similar formula can be obtained from

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.1 2000

the expression presented in [2] for the relevant cross sec-
tion. Specifically, we have

B ee L ptx
Fa(z q%) = [B—lg—hdc dz }(3_29;2)22 (10)
= ::ZL\TV(z, o),
R = gﬁ (11)
O, = Oy(€'e — p'p) = 4“—0;2, (12)

where g, is the cross section for the process efe —»
hadrons, while z = 1/x = 2pg/|q[>. Relation (8) can then
be represented in the form
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27N idogef“‘”x
3-B|Boy, dz

= 2’Fa(z, o).

The function 3 is retained in this expression in order
that other measurabl e quantities could be reduced to the
form (13), although this function is usually set to unity.

Prior to proceeding to analyze experimental results,
it should be recalled that data on inclusive annihilation
exist only for severa discrete vaues of Q2 this is
because the energy of colliding beamsis fixed, so that
we had to borrow such data from experiments at differ-
ent accelerators. Moreover, it is often difficult to find
identical values of Q? for deep-inelastic scattering and
inclusive annihilation; in view of this, we employ aver-
aged values below.

In order to achieve a clearer presentation and to
reveal various trends, we will make use of interpolation
functions. For the structure function F,(x, Q?), we

Fa(x ) = 13

choose the parametrization of Martin, Roberts, and
Stirling [25]. For the annihilation process, we take the
popular parametrization

Fa(z, ) = NA(1-2)°(1+c2Y, (14)

wherethe parametersN, a, b, ¢, and d, which depend on
?, are extracted from experimental data by means of a
numerical analysis.

3.2. Violation of the Reciprocity Relation

Let us proceed to analyze experimental data. Fig-

ures 3a—9a show the structure functions F, and F, for
deep-inelastic-scattering and inclusive-annihilation
processes, while Figs. 3b—9b illustrate functions that
characterize the reciprocity relation and which must be
directly compared [see equation (13)]. The same fig-
ures display interpolation curves. For the sake of com-

parison, the difference A, = x3F, —F, of the corre-

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.1 2000
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Fig. 7. Asin Fig. 3, but the experimental data were taken at A/az =34 GeV.
sponding interpolation curvesis presented in Figs. 3c—
9c along with the correction of the next-to-leading log- - PO D_4CF|:D 5_x+ __6__D| nx (16)
arithmic approximation of perturbative QCD for the L 1-
nonsinglet part of the structure functions. This correc-
tion can easily be calculated with the aid of the evolu- 4
tion equation +%%+3x——DIn +41 IannIl—xl}

Qz 0
0Q’
where Fys = F, s, Fons (the kernel Kyg is defined in

asimilar way), whilethe notation on theright-hand side
isspelled out as

5Fns(X Q ) = Kys(x ag) O Fys(X, Q ), (15)

1090909 = [YrEH.

The correction to the kernel Kyg of equation (15) is
given by (see[32])

AKys, 2(X) = Kys 2(X) _XRNS,ZE%(E

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.1 2000

2
+ bOCF[—esll*_’)(( Inx+7(1 +x) —2T[26(1—x)} E;

where Cr = 4/3 and by = 23/3. Figures 3d-9d display
the ratio of the functions appearing in the reciprocity

relation. In addition, we note that data at Jaz values
less than 10 GeV can be found in [10].

Figure 3 displays data at Jaz = 9.8 GeV. It should
be emphasi zed that the uncertaintiesin the case of anni-
hilation exceed considerably those in the case of deep-
inelastic scattering; therefore, we have no specific con-
firmation of the reciprocity relation. Moreover, the
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Fig. 8. Asin Fig. 3, but the experimental data were taken at «/52 =58 GeV.

interpolation curve shows atendency to ascend at large
X (see Fig. 3d). The same can be said about Figs. 4, 5,
7, and 8, where the violation of this relation is more
obvious. In addition, the QCD correctionis closeto the
interpolation curve for the above difference only in the
bounded region of x. Figure 6, where we can aso
clearly see discrepancies between the predictions and
experimental data, is more informative in what is con-
cerned with uncertainties and with the number of
points. For deep-inelastic scattering, Fig. 8 shows only

the interpolation curve corresponding to Jaz =58GeV.
We know, however, that the dependence of F, on Q? is
rather weak; therefore, we do not expect that the uncer-
tainties will be very large, at least at low x. Of great

interest are recent data from LEP at Jaz =91.2 GeV
(see Fig. 9). They give sufficient ground to state that
relation (8) does not hold for al x.

The authors of some studies (see, for example, [34])
attempted to clarify the reasons behind the violation of
this relation and to obtain simultaneously an improved
relation. In particular, it was shown in [34] that,
because of the distinction between the mechanisms
governing deep-inel astic-scattering and inclusive-anni-
hilation reactions (in the case of deep-inelastic scatter-
ing, the process proceeds entirely in a bounded
domain—in a so-called bag—whereas, in the case of
annihilation, this bag originates from the parton jet),
the right-hand side of relation (13) (that is, the interpo-
lated valuesin Figs. 3d—9d) must be divided by afactor
of 2 to 4. In this connection, it was concluded that the
functions measured in actual experiments may differ
from those appearing in the original reciprocity relation.
This statement seems reasonable, but no substantial
improvements are obtained in the region of small X upon
introducing the above correction coefficient in the exper-
imental data. As to the region of x close to unity, some
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kind of agreement can be observed at Jaz =91.2GeV,
but no definitive conclusion can be drawn on this basis.

Thus, the experimental data discussed here indicate
that the reciprocity relation does not hold at all values of
x and that thereisahopethat thisrelation holdsfor x —»
1, provided that a correction factor of about 2 to 4 has
been introduced, but this approach is not quite correct.

In the next section, it will be shown how relation (8)
can be modified on the basis of the general principles of
quantum field theory and how this modified version can
be tested experimentally.

4. ANALY SIS OF THE MODIFIED RELATION

Aswasindicated above, arelation that has the form
(6) or (7) and which holds at a fixed s value was
obtained in [27]. Here, it is necessary to specify quan-
tities that we eventually compare. For this purpose, we
will make use of the parton model. From equation (9)
and the representation
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N¢
T2s ST Q)+ (@) (19

i=1

Comparing the last expresson with the analogous
expression for the fragmentation function in the parton
model [36, 37] (N, = 3),
N¢
= 2= 2 =h =h
22F,=7F, = ch €,[Dq(2) + Dq(2)],

i=1

(19)
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and using the asymptotic relation in the form (6) or (7),
we can see that, at fixed s, we can use the constraint

X(s Q)F2(s Q) _ ;.
3Fy(s. Q7) ’

that is, we can compare the functions F,/x and x2F, /3
for 0<x < 1. Itisthe constraint in (20) that we propose
to test experimentally.

The main difficulty in experimentally testing rela-
tion (20) isthat, in the existing array of datafor various
Q? and ¥, it is necessary to single out points where s
takes a specific fixed value (curves s = const in Fig. 2).
This requirement reduces drastically the number of
appropriate points. Nonetheless, the available data set
proved sufficient for performing some tests with aid of
interpolation curves. In this case, the data were
subjected to the following simple selection criteria
s—M? = Q¥1/x — 1) = const for deep-inelastic scatter-

lim

(20)
Qe

ing and s—M? = Q?(1 — 2) = const for inclusive annihi-
lation.

The resultsthat we obtained areillustrated in Fig. 10,
which showsthat relation (20) is consistent with data at
sufficiently large values of Q2. Only the last point in
Fig. 10a is markedly above the expected value; how-
ever, Q2 isnot sufficiently large here—if, instead of this
point, we use the corresponding value from the interpo-
lation curve, theresult will belower by afactor of about
1.5, which is quite understandable on the basis of sim-
ple considerations on the decrease at infinity. From our
results, we can draw the conclusion that experimental
data are compatible with the modified reciprocity rela-
tion. Thismay serve asafurther check upon basic prin-
ciples of quantum field theory.

5. CONCLUSIONS

To summarize the results of this study, we would
like to note the following.

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.1 2000
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(i) The reciprocity relation derived in the leading-
logarithm approximation of perturbation theory is at

odds with experimental data for Jaz <912 GeV. As

to its fulfillment for 4/Q° = 91.2 GeV with allowance
for the correction factor of about 2 to 4, thisis no more
than a phenomenological estimate, which is valid only
under some assumptions.

(ii) By testing a modified constraint deduced from
the basic principles of quantum field theory, it has been
found that this constraint can be realized at sufficiently
large Q2. In order to prove this conclusively, it is neces-
sary to analyze datain thisregion to a higher precision.
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Abstract—A construction of an effective nonrenormalizable superpotential has been discussed within the
approach of afour-dimensional heterotic superstring with free fermions on the world sheet. On the basisof N =
2 superconformal theory, useful selection rules that take into account all global symmetries have been obtained
within the formalism of covariant vertices and the ghost-picture-changing operation. The results have been
applied to the model featuring the effective observable gauge group U(5) x U(3)y, which includes the non-Abe-
lian horizontal group and which describes (3 + 1) generation. The full superpotential of the model up to sixth
order inclusive has been obtained, and its coupling constants have been calculated. The quark—epton mass
spectrum of the model has been discussed with allowance for contributions from nonrenormalizable terms. ©

2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Within the fundamental ideathat al known interac-
tions of elementary particles, including gravitational
interaction, have a common origin, superstring mod-
els—and in particular, a heterotic string [1, 2]—are
generally recognized candidates for an adequate under-
lying theory capable of describing physical reality. In
recent years, there have been considerable advancesin
the nonperturbative approach to string theory. Nonethe-
less, the work along these lines is far from being com-
pleted, and perturbative methods and estimates remain
apowerful tool for creating and studying string models.
Constructing the effective low-energy (inrelation to the
Planck scale) action induced by a string is the most
important step in this approach.

Since string Grand Unified Theories include super-
gravity, it is necessary to take into account effects
caused by nonrenormalizable terms. To illustrate this,
we note that, in string models, quark and lepton mass
matrices receive contributions not only from Yukawa
trilinear interactions but also from nonrenormalizable
higher order interactions. In order to estimate these
contributions, it is necessary to be able to calculate the
full superpotential of the model. This reduces to evalu-
ating amplitudes within atopologica expansion on the
basis of (super)conformal field theory. String theories
constructed in terms of freefermionson theworld sheet
[3, 4] admit an exact calculation of amplitudes [5],
whereby the predictive power of the relevant modelsis
considerably enhanced. Moreover, it follows from the
nonrenormalizability theorem [6] that, in such super-
string model s, the tree superpotential is not subjected to

D Department of Physics, Siegen University, D-57068 Siegen, Ger-
many.

renormalization and that it does not receive contribu-
tionsin all orders of perturbation theory.

The requirement that the model possess spacetime
supersymmetry implies the existence of at least (2, 0)
supersymmetry on the string world sheet [7]. Some
useful selection rules could be obtained [8] from ampli-
tudes corresponding to the superpotential by thor-
oughly analyzing them within N = 2 superconformal
theory with allowance for all global symmetries.

The present articleis organized as follows.

In Section 2, we give abrief account of the covariant
formalism for (super)strings, construct vertex operators
and string scattering amplitudes associated with them,
and describe the ghost-changing-picture operation [9].

In Section 3, we discuss specia features of proce-
dures for constructing realistic string Grand Unified
Theoriesin four dimensionsand present our own model
formulated within the approach of free fermions. In the
model describing (3 + 1) generation, we make use of
the breakdown of gauge group G x G to adiagonal sub-
group including non-Abelian horizontal symmetry.

In Section 4, we briefly describe the technique of
vertex operators in four-dimensional models that is
based on N = 2 superconformal theory and introduce
conventions and terms used in the ensuing exposition.

In Section 5, we discuss renormalizable terms of the
superpotential and calculate the full trilinear superpo-
tential of our model.

In Section 6, we investigate nonrenormalizable
four-, five-, and six-point terms; obtain useful selection
rulesfor string amplitudes; and apply the resultsto our
model. There, we also determine the full superpotential
of the model up to the sixth order inclusive.

In Section 7, we discuss the quark—{epton mass
spectrum of the model with allowance for the contribu-

1063-7788/00/6301-0120$20.00 © 2000 MAIK “Nauka/ Interperiodica’
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tions from nonrenormalizable terms. We also consider
amechanism suppressing the U(1) anomaly.

The Appendix contains operator-product expan-
sions used in this study.

2. VERTEX OPERATORS AND AMPLITUDES
IN SUPERSTRING THEORY

A superstring is described by a string field (coordi-
nate) X, and its superpartner, a fermion field g,. The
action functional on a two-dimensional string world
sheet describes well-known two-dimensional super-
gravity [10]. If we choose the so-called superconformal
gauge appearing to be an extension of the well-known
conformal gauge,

h*® = "N, Xo = Val, (1)

where ho® isatwo-dimensiona metric, n°® isaflat met-
ric, and X, is atwo-dimensional gravitino, the fields ¢
and ¢ decouple by virtue of super-Weyl invariance.
Upon going over to two-dimensional Euclidean space
(complex plane),

t = +iT,

z = exp(t+io), (2

we obtain the action functional for free fields in the
form

SE = ziTJdZdZ(azxpaqu - LIJuaqup - qjuaiju)’ (3)

z DIDXe‘SE.

Now, an expansion into left- and right-handed fields
becomes an expansion into analytic and antianalytic
fields on atwo-dimensional Euclidean surface; that is,

Y*isananalyticfield, while §* isan antianalytic field.
The stress-energy tensor of the supermultiplet (X, Q)
is
1 2 1
Tg = =5(9,X")" + 5W"0,W,. “)
Here, it is assumed that the operator products involved
are normally ordered. The superpartner of (4) (super-
current),
T, = % "9, X 5
F _Ew 2\ )
is the generator of local supersymmetric transforma-
tions.

The points at 0 and « correspond to in- and out-
states. The lines of constant time are mapped into cir-
clesonthezplane. Theshiftintime, t — t + a, repre-
sents a dilatation, and we must associate the generator
of dilatation with the Hamiltonian of original string
theory.
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The propagators of analytic fields (Green's func-
tions in the two-dimensional case) are given by

D(p(zl) Xv(zz) 0= - uv |n(21 - 22) )

[, )W, (z)0= —e

2,-2,

(6)

The stress—energy tensor determines an infinitesi-
mal conformal transformation viathe generator

T, = f%e(z)T(z).

A priori, the integral in (7) is taken over the constant-
time surface |z = const, but we can deform the contour
since the integrand is an analytic function.

Withtheaid of expressionssimilar to (6) and (4), we
can calculate the commutator of the generator in (7)
with some local field operator. Here, we are interested
only in the vacuum expectation values of commutators.
Recall that a path integral with a weight of exp(-S)
specifies an operator product, chronologically ordering
operators (in the case being considered, the ordering
occurs in radius). For one-time commutators, we then
have

(7

0T, e2)]0= % IDXe_S.fdz'T(z')(p(z‘). 8)

This means that expressions for commutators—recall
that these expressions specify the transformation prop-
erties of the fields involved—are encoded in the con-
ventional formula of the operator-product expansion.

The expansions of operator products containing the
stress-energy tensor T and primary fields [that is, oper-
ators transformed under reparametrizations as tensors

z
%g ©2)] are of
particular interest for conformal theory. As a matter of
fact, the operator of a free boson field like X, has no
definite conformal dimension, since such afield has a
logarithmic branch point [see (6)]. Among operators
having definite conformal dimensions, we can indicate
the operator 0,X (dim = 1), the exponential operator
ekX@ (dim = k%/2), and afermion field Y (dim = 1/2).

The operator-product expansionsfor Tg(2) and Te(2)
forman N =1, (1, 0) superconformal algebra:

3c/4

4

of conformal dimension h: @(z) —

Te(W) Ts(2) D(

1
Te(2) + \N__ZazTB(Z)l

3/2 1
)ZTF + W— ZaZTF(Z)l

Te(W)Te(2) D( )
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c/4
(w-2)

TiWTH@ O + 221,

3

Here, € = (2/3)c = 6, ¢ being the central charge of the
Virasoro agebra (conformal anomaly).

The two-dimensional metric h®® and the gravitino
X transform nontrivially under reparametrizations and
supersymmetry transformations. Therefore, the fixing
of gauge according to (1) leads to nontrivial Jacobians
for these transformations. According to the standard
technique due to Faddeev and Popov, these determi-
nants can be expressed in terms of path integrals of
exponential functions of the action functionals for
ghost—antighost systems. A ghost (c or y) has quantum
numbers of the gauge parameter (it transforms accord-
ing to the representation that is dual to the adjoint rep-
resentation), while an antighost (b or ) transforms
according to the adjoint representation of the gauge
algebra, either obeying statistics opposite to the statis-
tics of gauge generators. It follows that, in our case, the
additional contribution to the generating functional in
the superconformal gauge is given by

[DbDCDBDY

1 2 (10)
x exp[—Fszdz(bZZDZC + 3,0y + c.c.)]

The fields ¢ and b (y and ) anticommute (commute)
and have conformal dimensions of —1 and +2 (—1/2 and
+3/2), respectively.

Recasting expression (10) into aform that is appro-
priate for a curved space, we can evaluate the relevant
stress—energy tensors Ty, and T, or reconstruct them
from the requirement that the operator products with
ghost fields have a correct structure. Further, an analy-
sis of the operator-product expansions for T,(z) X
Thd(z) and T (7)) % Tg(z,) makes it possible to calcu-
late the contributions of our antighost—ghost systems
with the conformal dimensionsj and (1 —j) to the cen-
tral charge of the Virasoro algebra [see the first equa-
tionin (9)]. Theresult is

c = +(1-3K), (11)

where k = 2j — 1 and aminus sign corresponds to com-
muting ghosts. Eventually, we have the following con-
tributions:

cx = D, ¢, =-26, ¢, = D2, ¢ = +11. (12)

This corresponds to the absence of a conformal anom-
aly in spacetime of dimensionality D = 26 for abosonic
string and in spacetime of dimensionality D = 10 for a
superstring.

For the ghost systems being considered, the anoma-
lous current of the ghost number (that which is con-
served on aflat world sheet) can be defined as

1= b, =By, 0,d, = (U8)kJhR?,

VOLKOV et al.

where k = 3 and 2, respectively, while R? istheintrin-
sic curvature of the world sheet that is specified by the
metric hyg. Further, we can associate a boson field with
each current, requiring that all operator-product expan-
sions of the theory remain unchanged, for example,

0= o= 0, Ty = +5(0.00.0 +30%),
B2)0@E)0= In(z-2).

This stress—energy tensor corresponds to the theory of
a free boson field with an incorrect sign of the kinetic
term and with anonzero (—3) vacuum charge at infinity:
[0]e"¢|00= 1. In this theory, the conformal dimension
of exponential operators is given by dim(:e*®:) =
(1/2)a(a — 3), and ghosts can be identified with expo-
nentials:

b, ~ :e?:,

(13)

dim=2; c#~:eb:, (14)
Finally, it can be shown that the exponentials of free
boson fields are anticommuting operators.

A similar procedure for -y ghosts (bosonization of

bosons) is more complicated, but it is very useful. We
have

dim = —1.

J, = —0,c,

©_ 1 o2
T, = 2(6Zc62c 205¢) (15)

= L3

- Z(Jz‘]z 2az‘]z)
(The boson c should not be confused with the anticom-
muting ghost ¢2) We use opposite signs for the kinetic
terms in performing a bosonization of the b—c and -y
systems, because the operator-product expansions
JboJ®0 gnd JBYJPY feature anomal ous terms of oppo-
site signs. For the systems with tensor (15), the confor-
mal dimension of exponential operatorsis given by
(16)

2
dim(e®®) = —%a(a w9 =-%-a

k=2
However, the process of bosonization has not yet
been completed at this stage because

(i) the contribution of thetensor in (15) to the central
chargeisc, =10 3K?|,_, = +13 and not 11 (the correct
sign of the kinetic term was operative here);

(i) dim(e*®) = =3/2 and dim(e) = +1/2, but dim(B) =
+3/2 and dim(y) = —1/2 (opposite signs);

(iii) the exponentials are anticommuting operators,
while the ghosts 8 and y commute.

All these problems are solved by introducing the
system of fermions & and n with conformal dimensions
of 0 and 1 and with the stress—energy tensor

TEY = 9 & xn). (17)

This system has acentral charge of —2; thus, thisispre-
cisely the value that must be added to the charge of ¢
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fields in order to obtain 11. Eventualy, the combina-
tions

BOo,Ee*Oe “"Xa,x, yOne“Oe X,

k(z)Xx(z)U = —[&(z)c(z)U = In(z,—-2,)
have correct dimensions and correct operator products.

We note that the system with stress—energy tensor
(15) and k = 2 corresponds to a free massless boson
field ¢ with a vacuum charge of +2 at infinity. Thus,
only the correlation functions for operators with atotal
charge of —2 are nonzero for this system. The boson
field c will play akey rolein calculating string scatter-
ing amplitudes.

A scattering amplitude must be a sum of path inte-
grals for two-dimensional quantum field theory with
insertions of vertex operators in Riemann surfaces of
relevant genus (string world sheets). By avertex opera-
tor for a given physical state, we mean the set of two-
dimensional conformal fields representing the state
guantum numbers with respect to all symmetries of the
model.

For the state with a set A of quantum numbers and a
momentum K¥, the integrated vertex operator hastheform

VA(K) = IdZZJFIWA(Z, z)e(i/Z)KXe(i/Z)K)?.

(18)

(19)

Integration is necessary here since the vertex can be
placed at any point on the world sheet. For the operator
V(K) to be invariant under reparametrizations, it is
necessary that the operator Wj(z, z)e"’?**e/?*X pe
aprimary field of dimension (1, 1).

As soon as the gauge is fixed according to (1), the
string action functional develops ghost corrections. A
sphere corresponds to a tree amplitude, and an N-point
amplitude can be represented as

AN, Ky A Ky)

= g(N_Z)IDXDLIJD(p,meDcDBDy
(20)

xexp{ - Su(Xw Wy @) + S €, B VI [] Va (K),

where g is the triple constant of string interaction, while
thefidds @, describe theinterna degrees of freedom of a
string (they can manifest themselvesin noncritical dimen-
sions). The same amplitude can be represented in other
equivaent formsiif the bosonization procedure is used.

We can now write an N-point amplitude in the form
of an amplitude of free theory in two-dimensional flat
space. We have

AN, Ko Ay Ky = g2

ﬁ 2 ﬁ (i72)K. X (i72)K. X 2D
XI dz e "W\(z;, Z)e .
I
i=1 ji=1
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We note that expression (21) is not yet well defined
because the fixing of gauge according to (1) did not
remove completely reparametrization invariance. The
residual symmetry group is the open three-parameter
group of linear fractional transformations with com-
plex coefficients [.(2, C)],

az+b
— 7 d (22)

wheread — bc = 1.

A natural means to avoid this problem is to divide
expression (21) by the SL(2, C) group volume. By using
infinitesimal transformations of the 9.(2, C) transfor-
mations (22) in the form

3z = A4+ Aoz + N\, 2,

we can find the Jacobian of the transition from any
three complex z to three complex parameters A;. We
have

9(z, z;, z)
(A1, A Ay)

We can now remove integration with respect to group
parameters and fix arbitrarily the values of three z. The
standard choiceisz —» 0,z =1, and z = 0.

For a boson string, the form of vertex operators is
completely determined by the conditions requiring that
the conformal dimension be correct and that the quan-
tum numbers of a given state exist with respect to all
symmetries of the model.

For superstrings (the critical dimension is D = 10),
the situation is more complicated. In this case, the ghost
degrees of freedom—in particular, ¢ ghosts [see (16)],
bosonized bosonic ghosts—become operative; in addi-
tion; the spectrum of the theory contains spacetime fer-
mionic states with quite a nontrivial construction of
vertex operators.

It is well known that, in superstrings, spacetime
bosonic states correspond to the Neveu—-Schwarz sector
with antiperiodic boundary conditions for fermionic
fields on the world sheet [H(T, 0 + 21) = —H(T, 0)],
whereas spacetime fermionic states correspond to the
Ramond sector with periodic boundary conditions
[WH(T, 0 +210) = Y¥(T, O)].

Making the change of variable z= e" = exp(t + i0)
(2) and performing this conformal transformation for
the tensor Wy of dimension 1/2, we obtain

2
= la-z|’lz-al1z-a @3

172
B 0@ = God vl
= "y [zwW)] = V2,

It followsthat, upon one circumvention around astring,
w — W + 2iTt, we obtain the factor of €™ = -1 on the
right-hand side of (24). Hence, periodic (Ramond)
fields are two-valued on the z plane. Thus, the analytic
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function YH(2) has a square-root branch point at z, (the
point to which the asymptotic state of the string is
mapped). The vertex operator generating Ramond
states (so-called spin operators) must be operators that
lead to this structure of ramification.

In order to construct the required operator, we
replace fermions on the world sheet, Y, by fermion
pairs and bosonize them:

—]Z(quiquz) _ lIJ1J_ri2 Deii(plz’ etc.

v

(We notethat, interms of thefields ' *12, thefermionic
action functional takestheform [d’zy! +20,p' -2 +c.c.,

which is similar to that of the ghost action functional.)
If we now construct the (spin) operator

(9, 10)

SB:

(k1) =(12)

we will obtain aramification for *(2). Here, the index
3 determines the choice of the signs + for all (five for
D = 10) exponentials. Thus, we have 2° = 32 compo-

nents of the spin operator, but 32 = 16 + 16 is the
dimension of the spinor representation of the SO(10)
group. Moreover, the coefficients in the exponentias
determine the weights of the vectors of the spinor rep-
resentation, ag = (£1/2, £1/2, ..., £1/2), and we can
construct the SO(2N) generators in the bosonized form.

However, the operator $;(2) has the dimension of
|agl*/2 = N/8; in the case of superstrings, D = 10, and we
obtain 5/8, but the vertex operator must have the dimen-
sion equal to unity.

The problem can be solved by taking into account
superconformal ghost degrees of freedom. Indeed, the
transformation of supersymmetry for the string coordi-
nate has the form &X* = ie#, and the ghost y has quan-
tum numbers of the parameter €. Thus, we see that, if
the Ramond vertex operator generates a ramification
for the field Y, the ghosts y and 3 must also have a
square-root branch point. As aresult, the spin field for
commuting spinor fields, €-/2¢@  with a conformal
dimension of 3/8 [see equation (16)] must be added to
the spinor operator S;. Thus, the first version of the
covariant fermion vertex is

(25)

(2i/2) iag®
e %= e

; (26)

V{1 06729952 €@, (27)
This is, however, insufficient for describing fermion

scattering, because V(f_l,z) has a fermion ghost charge
of —1/2, so that only afour-fermion amplitude can can-
cel out the ghost background charge of +2. Therefore,
we need the second version of the fermion vertex,
V{(,12) » With a positive ghost charge.

In the Becchi—Rouet—Stora—Tyutin (BRST) formu-
lation, physical states are constructed as those that are

VOLKOV et al.

invariant under the BRST transformation:

Qurstiphys(E 0, Qigsr = 0.

Owing to the last condition, states of the form |null(=
Qgrsr|WUsatisfy the first condition; however, such
states have zero norm. Thus, attention should be given
only to operators with a nontrivial BRST cohomology,
and we can choose states that are characteristic repre-
sentatives of cohomology classes.

In the case of superstrings, we have

92 5 1o (X, y; B, y) —beac]

Qgrst = fﬁD

(28)
1w L 2nH
+2yL|J aXu+4y b%

where Tg(X, Y; B, y) isthe full strength tensor for all the
abovefields. Asamatter of fact, the only operators that
commute with Qggsr (those that correspond to BRST
invariant states) and which have a positive ghost charge
can be written as [Qgrst, V]. All Of these are null vec-
tors (spurions), with the exception of

V;)hys = [QBRST’ Evphys] . (29)

This comes as no surprise since & is not a part of the
irreducible algebra of the fermionic ghosts 3 and y; this
is because a representation of the irreducible current
algebra includes bosons ¢ and fermions n and 90¢€, but
not & themselves [see equations (18)].

It followsthat, by setting V.., = V(f_uz) ,weobtaina
second version of the fermion vertex operator with a
ghost number of 1/2 [9] (this version is referred to as
+1/2 picture):

O i
Vi OEE [0, + 3K X W)W, S
(30)
+ }e(alz)cn bs, Eﬁin-
2 0

The second term in (30) does not contribute to the
expectation value because of ghost-charge nonconser-
vation, and the entire contribution comes from the com-
ponent jgrsr ~ (1/2)(€€X)PHOX, ~ (1/2)yTe [see equa
tion (5)]. Since e€*(z)¢(z) ~ 1/(z; — ), we can recast
relation (29) into the form

Vo1 = €TV, (31)

As amatter of fact, there are an infinite number of
pictures (thisisso for bosonic vertex operatorsaswell).
Thisis because the -y system of commuting ghostsis
described by the first-order action functional (10). For
a free -y system, there exist an infinite number of
equivalent linearly independent vacua (pictures) featur-
Vol. 63 No. 1
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ing different ghost charges, and there are no transitions
between these vacua [9].

The relation in (29) or (31) describes the picture-
changing operation that leads to a change in the ghost
charge by unity.

3. GRAND UNIFICATION MODELS
ON THE BASIS OF A FOUR-DIMENSIONAL
HETEROTIC STRING

In order that a heterotic string defined in ten-dimen-
sional space could describe a real world, six dimen-
sions must be unobservable—for example, they may be
compactified into a six-dimensional object of Planck
scale. More generally, we can consider a four-dimen-
sional heterotic string equipped with an intrinsic con-

formal model .l .., that contributes to the central

charges of the left-hand and right-hand Virasoro alge-
bras,c, =15—-4 x 3/2 =9and cy =26 — 4 = 22, respec-
tively, whereby the cancellation of conformal anoma
liesis ensured.

Thus, we can see that, in the formulation of a four-
dimensional heterotic string with free fermions on the
world sheet [3, 4], there are, in addition to two trans-

verse bosonic coordinates X, and X, and their left-
handed superpartners ), 44 right-handed and 18 |eft-
handed real fermions in the intrinsic sector (each real
fermion contributes ¢; = 1/2 to the corresponding cen-
tral charge). Hence, amodel can be specified by a set of
admissible boundary conditions that correspond to a
circumvention around a closed string for al fermions:
f — —exp(ima(f))f, a(f) O [-1, 1]. The value of a =
1 corresponds to the periodic (R) boundary condition,
whilethe value of a =0 corresponds to the antiperiodic
(NS) boundary condition; if fermions can be paired and
transformed into acomplex fermion, rational valuesare
admissible for a. In the light-cone gauge, each set of
fermionic boundary conditions is described by a (20, ;
44g)-dimensiona a vector, the fact that thefield ), has
two degrees of freedom being taken into account here.

There dways existsadiagonal basisin which the set
= of admissible fermionic boundary conditions is
described by a set of basisa vectors b; and their combi-

nations . m, b (m=0,1, ..., N) referred to as sec-

tors. The Integers N; specify the additive group of basis
vectors, Z(b,). Here, the set of basisvectors must satisfy
the well-known conditionsthat follow from the require-
ment of modular invariance of the generating func-
tiona [3, 4].

It would be useful to obtain afour-dimensional con-
struction by performing a fermionization of extra
bosonic coordinates of a heterotic string of critical
dimension. This implies that real boson and fermion
fields are identified as 0@ ~ X;X; .. ;- With allowance for
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all the above, the supercurrent in (5) for a fermionic
heterotic string can be represented as

Te OWPaX, + faxX'x" (32)

where fj, are the structure constants of a semisimple
Liegroup G of dimension 3(10—4) = 18. For the model
to possess N = 1 spacetime supersymmetry, it is neces-
sary that this group be G = U(2)° [11]. In this case, the
fermions on the world sheet, ¥, are broken down into
the triplets (x;, v, w), i= 1, ..., 6, with admissible
boundary conditions of thetype (1, 1, 1), (1, 0, 0) or (0,
0, 0), (0, 1, 1), depending on the conditions for the fer-
mions P* (R or NS).

The number of quasirealistic string Grand Unified
Theories that describe correctly the observable sector
of the Standard Model (SM) is not so great. They are
well known and are based on the following gauge
groups [12-14]: the SM group; the Pati—Salam group
V@)° x UQ2), x V(2)g; theflip gauge group U(5) x
U(1); and the SO(10) group, which includes the flip
group. Attempts have also been made to construct
string Grand Unified Theories on the basis of the SU(5)
x U(1) and SO(10) groups at level 2 of the current alge-
braand at level 3 with three effective generations [16].
A different method for constructing astring Grand Uni-
fied Theory on the basis of gauge groups of the type
G x G was proposed in [17].

We deem it interesting to study a string Grand Uni-
fied Theory including a rank-16 gauge group of the
form G x G O Eg x Eg, where the group G contains, as
subgroups, not only the SM group but also a non-Abe-
lian horizontal group like SU(3), or SU3)y % U(1).
Such a subgroup describes three observable fermion
generations in a natural way, explaining their nature
[SU@3)y triplets], and leads to interesting low-energy
physics compatible with up-to-date experimental data
[18]. In addition, we note that, when the gauge group is
broken down in this construction to a diagonal sub-
group, there arise higher representations that are pecu-
liar to level 2 and which are necessary for a further
chain of gauge-symmetry breaking.

The model discussed in the present article is con-
structed in terms of six basis vectors [17]. These vec-

tors (see Table 1) generate the additive group Z5 x Z, x
Z,. Here, the boundary conditions for 20 |eft-handed

fermions (U, X, y, w) and 12 right-handed fermions (¢ )
are given in the real notation. The remaining 32 right-
handed fermions are represented as (8 + 8) complex
quantities W and ®. As a matter of fact, the |eft-handed
fermions also admit pairing for the above choice of
basis. We will make use of this circumstance, number-
ing them from 1 to 10.

In the model being considered, the rank-22 affine
current algebra of level 1 is generated originaly in the

right-handed sector: SO(2)} , 5 x SO(6), x [U(5) x
U(3)y]> The corresponding gauge superfields arise in
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Table 1. Basisof boundary conditions for two-dimensional fermions

Vector P12 XiYi¥k YiXjox WXk $1,.10 Wi .8 Dy .8

by 11 111111 111111 111111 112 18 18

b, 11 111111 000000 000000 or? (2)8 0?

by 11 111100 000011 000000 0*18 08 18
b,=S 11 110000 001100 000011 02 0? 08

bs 11 001100 000000 110011 112 (1/4)° —(3/4)3 | —(1/4)° (3/4)°
bg 11 110000 000011 001100 120%18 18 0?

the 0 and S= b, sectors. What is enclosed in brackets
can be considered as the result of a breakdown of the
fundamental string group E; x Eg, whereas the remain-
ing part can be treated as a hidden group originating
from compactification.

A full list of model massless states at the Plank
scale, together with all quantum numbers (excitation of
left-handed fermions, representations, and hyper-
charges according to gauge groups), isgivenin Table 2.
In particular, it presents all fermionic states of the sec-
tors with positive (left-hand) helicity (third column).
Their superpartners arise in the sectors with the S= b,
component changed by unity. The first two columns
quote the excitations of left-handed X, y, and w fermi-
ons for scalar superpartners, in terms of which we will
define all vertex operators (see Section 4). Thefirst col-
umn contains the number of arow (for the sake of con-
venience), the symbol corresponding to a given set of
superfields, and (everywhere, with the exception of the
first row) the numbers of two fermions x with nonzero
U(1)g charges (+1/2). Row no. 1 (®) describes vector-
like supermultiplets (there are superfields in antirepre-
sentations as well), which can be Higgs fields. In terms
of quantities used in Section 4, these fields are
described by NS-type vertex operators, for which the
number of a fermion x with a nonzero charge (+1) is
indicated in the second column. All theremaining fields
are described by R-type vertex operators, for which
excitations of the fermionsy and w are indicated in the
second column. The symbol £, stands for the charge of
*1/2 corresponding to the kth fermion. The lower signs
in the fifth and sixth rows corresponds to sectors whose
components are indicated in parentheses. The helicity

according to the hidden group SO(Z)i 23 X S0(6), is
indicated as +,, +,, +5, and £, (fourth column).

The sector of model no. 2 (W fields) describes 3+ 1
generations [triplet and singlet according to the hori-
zontal group SU(3)y] including the right-handed neu-
trino.

In the model being considered, the origina gauge
group (U(5) x U3))' x (U(5) x U3))" can be broken
down, via the Higgs mechanism, to the diagonal sub-
group: G x G — G. As aresult, the effective level of
the current algebraincreasesto 2, and there arise higher

representations of the group G2, In this construction,
it is reasonable to consider both the flip and the nonflip
embedding of the matter fields W (no. 2) in the SU(5)
group [19]. By way of example, we indicate that, in
[19], the consistency of the evolution of coupling con-
stants [20] is discussed within various versions of uni-
fication with allowance for various possible correc-
tions, including those from massive string states [21].
In the flip version, the electromagnetic charge can be
constructed as

Qem = Q'-Q' = (T5—Ts)

2,51 2 = 25
+2(Ys — = Ts+2
5(Y5 Ys) = Ts 5Y5,

where T = diag(1/15, 1/15, 1/15, 2/5, —3/5).

It is interesting to note that the model being dis-
cussed can be constructed in terms of different basis
vectors with a different additive group. For example,
the spectrum of the model is completely reproduced by
the basis vectors from Table 3 with additive group Z, x
Zgx 2y x Ly X2, x 2, [22].

4. GLOBAL U(1)s SYMMETRIES
IN A STRING AMPLITUDE

The possibility of obtaining arealistic description of
the fermion masses and mixing anglesis a decisive cri-
terion for choosing a string-unification model. Within
our approach, it istherefore necessary to write down all
renormalizable and appropriate nonrenormalizable
contributions to the superpotential W and to study their
implications for the fermion mass matrix for various
ways of horizontal-symmetry breaking.

In superstring models, an acceptable superpotential
is determined both by gauge invariance and by a two-
dimensional superconformal model on the world sheet.
This imposes additional severe constraints on the
superpotential. In particular, each term in the superpo-
tential must correspond to a nonzero correlation of ver-
tex operators on the world sheet.

Conformal invariance makesit possible to construct
vertex operators in different pictures corresponding to
different ghost numbers. A canonical vertex operator
for spacetime boson (fermion) isconstructed in—1 (-1/2)
Vol. 63 No. 1
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Table 2. Quantum numbers of massless states of the model considered in this article
No., X | .0 |[by by bg by bs bs|| SOng | UG | U | UG | U | ¥5 | V5 | Vs | V5
1 2 NS 5 3 1 -1 -1 0 0
2 1 1 5 3 0 0 -1 -1
6 02012(6)0 5 1 5 1 -1 0 -1 0
) 6 1 3 1 3 0 1 0 1
10 5 1 1 3 -1 0 0 1
10 1 3 5 1 0 1 -1 0
2 tgts 010000 1 3 1 1 > 3 0 0
_ 3 1
+.+ —= —=
3ty 5 3 1 1 5 5 0 0
1 3
+,+ = =
3ty 10 1 1 1 5 5 0 0
- 5 3
W —374 030000 1 1 1 1 5 5 0 0
_ 3 3
6, 10 34 5 1 1 1 5 5 0 0
1 1
34 10 3 1 1 5 5 0 0
— 3 1
3 +7+8 001130 —1i2 1 1 1 3 0 —z 0 —é
_ 1 3
+,%g 001170 —1%, 1 3 1 1 0 5 0 5
~H - = 1 1
g —7Fg 021130 +1%, 1 3 1 3 0 5 0 -
_ 3 3
2,10 | —Fg 021170 +1t, 1 1 1 1 0 - 0 5
o _ = 3 1
4 F5Fs 111011 ¥ Es 1 1 1 3 0 5 0 5
— _ = 1 3
Fs ¥y 111051 T+, 1 3 1 1 0 5 0 5
~H _ — — 1 1
[0 F5xy 131011 t, 1, 1 3 1 3 0 5 0 5
_ 3 3
- = 5 1 5 3
+ -t = = = ¥
5 Fito || 01(3)102(6)1 1¥3 1 33)| 1 1 14 14 14 2
_ - 1 3 5 3
+,t - ¥ = -
+4 9 1%3 5(5) 1 1 1 i4 +4 i4 +4
~ - 5 3 5 3
+,— —* +2 32 +2 +2
0] 479 01(3)1041 1%3 1 1 1 3(3) 7 2 2 7
- 5 3 1 3
+,+ +.* - *- = +=
6,10 2t 1¥3 1 1 55)| 1 2 *2 2 *2
5 3 5 3
+,% + = = ¥ =
2,10 4%s5 1200351 1=4 1 1 1 1 14 14 2 2
- _ 5 3 5 3
+ + = = = =
02,6 3F5 11(3)015(3) 1 1%, 1 1 1 1 14 14 i4 14
_ 5 3 5 3
+,+ + = F= = F-
6,10 7% 00102(6)0 Fyta 1 1 1 1 14 i i4 2
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Table 3. Different set of basis vectors for the model considered in this article

Vector P12 XiYi¥k YiXjox WXk $1,.10 Wi .8 D8
by 11 111111 111111 111111 112 18 18

b, 11 111111 000000 000000 ov? 15133 0?

by 11 110011 000000 001100 0%14 125 1/63 -1/2°1/6°
b,=S 11 110000 001100 000011 02 0? 08

bs 11 000000 110000 001111 16021207 1503 0°18
bg 11 110000 000011 001100 160412 08 18

pattern. The conformal fields that represent the ghost
charge g can be written as €% with conformal dimen-
sion (-1/2¢* - q, 0).

A modular-invariant theory featuring N = 1 space-
time supersymmetry also contains a hidden global N =
2 superconformal symmetry of the world sheet [7], the
latter distinguishing three components of the N = 1

supercurrent, T¢, Tr, and Tg, having the charges of
+1, -1, and O with respect to the U,(1) group. The con-
served current J of the N = 2 world-sheet algebra can
play akey rolein constructing a realistic phenomenol-

ogy. In terms of operator products, the N = 2 algebra
has the form

C +_20J +2T+6J

TeW)Te(2) O

_ 3 _ 2 wW—2Z !
(WT+ 2)” (w-2) A 33)
IWTED) D=, IW)IR) o Ci 22)2.

Thus, all vertex operators have a definite U(1)
charge. In our description of a four-dimensiona het-
erotic superstring with free fermions, J(2) is given by

J(@ = 10,(Hy12+ Hyzs + Hys), (34)

where H,;; stands for the bosonized components of the
supersymmetry generator (which corresponds to the
basis vector Swith the Ramond conditions for fermions
X) [8].

For the bosonic and fermionic components of the
chiral superfields, the general expressionsfor the vertex
operator are given, respectively, by

—c _iaH iBH ivH : . =
V?_]_)(Z) — eceIO( XlzelB X34e|y XseGe(l/Z)KXe(I/Z)KX (35)

and by

f _ /2 i(0-12)H
Va2 = €7 °§e X

_ . - (36)
% eI(B—JJZ)HXmeI(v—UZ)HXssGe(i/z)Kxe(i/z)Kx

wherea, 3,y=0, £1/2, +1. The conformal fieldsfor the
left-handed fermions X (excitations of the basis vector
S = b, generating supersymmetry) are written explic-
itly, whereas G contains the remaining left- and right-
handed conformal fields. In relation to (26), there

emerged additional factors because, in four dimen-
sions, Y* isnow broken down into (4 + 6) fermions (six
enter into the intrinsic conformal model) and because
the spacetime spinor §, then has a conformal dimen-
sion of (1/4, 0).

For bosonic (fermionic) vertex operators in the
canonical —1 (-1/2) picture, the Uy(1) chargeisa + 3 +
y=1(a+B+y-3/2=-1/2). This condition and the
requirement that a vertex operator have a correct con-
formal dimension of (1, 1) (a>+ R?+y*<1)leadtoa
unique solution in the form of permutations

(1,0,0) (NS) and (1/2, 1/2,0) (R). 37)

These are a, (3, and y charges for a canonical bosonic
vertex.

Since we consider supersymmetric theories, we can
make use of a canonical bosonic vertex (—1 picture),
which determines the remaining vertices in different
pictures [see, for example, equation (36)]. We define a
vertex as an R (NS) vertex if it contains (does not con-
tain) H,; fields (for fermions x) with charges a, 3, and
y= il/é in a canonical boson picture. This means that,
for the NS sector, the left-hand component is equal to
zero and that all the remaining sectorsare R sectors (for
massless states).

Owing to spacetime symmetry, only N-point func-
tions with two fermionic vertices are necessary for
reconstructing the superpotential. The tree string
amplitude has the form

(N-2)

- _9
An = (2_’_[)(N—3)

(38)

N-3

XI |_| dzzi w{(—UZ)V;(—]JZ)Vg(—l)v?l(o) s V’til(o)D

i=1

The choice of pictureis determined by the requirement
that the total ghost charge be —2.

It goes without saying that, for anonzero amplitude,
thetotal charge must be equal to zero (upon performing
the picture-changing operation) not only for U(1) glo-
bal symmetry but also for any global left-hand Ug(1);
symmetry. In particular, the requirement of conserva
tion of three left-hand U(1), 5 , R symmetries leads to
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useful selection rules for nonzero amplitudes (see
below).

5. RENORMALIZED THREE-POINT
AMPLITUDES

Prior to performing calculations, we would like to
formulate some selection rules that follow from the
conservation of U(1), g . According to expression (38)
for the renormalized case (three-point amplitude), we
have two canonical fermionic vertices and one canoni-
cal bosonic vertex. From (36), it follows that, upon
going over from one bosonic vertex to afermionic ver-
tex, each of the a, 3, and y charges decreases by 1/2. At
the same time, we know the admissible values of the
charges in the canonical bosonic vertex [see (37)]. In
this way, we obtain the following possible combina-
tions of charges for the canonical bosonic vertices:

(NS)3 R2 x (NS) R3
al1]o]lolw[w]olw|w|o
Blo|1|o|w|wv2|lo|w2] 0|12
y/iolo|1]o|o|1]|o0 | w21

The R x (NS)? caseis forbidden. In order to reaize
this fact, we transform two vertices (R and NS) from
the bosonic into the fermionic ones (36) and sum their
charges. Here, two of thethree charges proveto be half-
integers, and the remaining canonical bosonic NS ver-
tex cannot compensate them, nor can the bosonic NS
verticesin the zero picture do this. In general, thisargu-
ment applies to all operators of the form R x (NS)X.
Therefore, such operators are forbidden in the superpo-
tential.

We now proceed to calculate the renormalized
superpotential of our model. By way of example, we
take the R? x (NS) contribution to the three-point fer-
mion—fermion-boson function. We have

Wi W O

(51) " (53)’

where the 1 and 2 fields belong to the R sector, while
the 3fieldisfromthe NS sector. Thea, 3, and y charges
correspond to the positions 2, 6, and 10 (see b, in Table
1). In the bosonic sector, the left-handed Ramond fer-

mionsin ‘P(llv 3 and W2 occupy positions 3, 4, 6, and

(5.1)
10. In the field CD(35’ 3) from the NS sector, there is an

excitation no. 2 of afermion on the world sheet. Non-
zero U(1)g charges of these three vertex operators are
Bi=v,=B,=Y,=VY2anda; = 1. For the corresponding
vertices, we therefore have

+ (iKX=

— —i/2)H i12)K, X
Vi = €95,e7 55516 G, ", (39)
—i2)H, ——— (i/2)K,X=< i12)K,X
Vé(_l/z) - e_C/ZS]e(I ) 2232460 VK> Gze(l YKz 1 (40)
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¢ iH, (iKX=

i112)K,X
ee ‘e Gge( s

Ve = , @41)

where 5 = A (H, is the boson that corresponds

to the left-handed complex kth fermion). The right-

handed operator G; = ieiWi J'(j) corresponds to
gauge degrees of freedom.

We can see that the correlation of these vertex oper-
ators is nonzero. Thus, we can easily obtain the super-
potential W, (Higgs matter) with the corresponding

coefficient g./2 . We have
W, = gJ/2[ ¥, 3)@(5, 1)63(5, 3t W, 1)@(5, 3)&)(5, 3)
+ qJ(lO, 3)qJ(E, 3)&’(1’5, 3t qJ(lO, 3)qJ(10, 1)&3(5, é)]- (42)

From the above form of theYukawa coupling, it follows
that two (chiral) generations must be light (in relation
to the M, scale).

The SU(3),, anomalies of the matter fields (Table 2,
second row) are canceled in anatural way by the chiral

horizontal superfields forming the sets ®{1 v 1. vy and

®(n: 1 vy, where N = 1 and 3 (with both SO(2) helici-
ties, see Table 2, nos. 3 and 4, respectively). The super-
potential W, includes the following R?> x (NS) terms
and two R® terms:

W, = g./2{ [P 113 P31 1yP@s 19
+D,11,1)P g 31,3 P 313
+ ‘D(l, 31, é)q)(l, 31, é)cD(l, 3,1,3)
+ LIJ(1, 31, 1)""’(1, 31, 3)CD(1,§; 1,3)

+Wa119W 1313 Pas13)] (43)

+H[ D531 1)+ 1, DB 111

+ D153 P+ 1L 3)P+,—)(1,1;5,1)

+ conjugate representations]
~1 ~2 n ~2 ~3 ~H
+ 00 Y@ 110 + 04, )0y Pep) } -

From (43), it follows that some horizontal fields in
sectors 3 and 4 remain massless in the tree approximar
tion and that the horizonta fields are sterile—that is,
they interact with ordinary chiral matter only through
the U(1), and SU(3), gauge bosons. Thus, this sterile
matter is of interest from the viewpoint of experimental
searches at accelerators and in astrophysics.

The (NS)* contributions of the Higgs fields to the
renormalized superpotential are given by

W; = gﬁ{ Di5,1;1,3PE 1.5 1)P11:53
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+D5,11,3P1 313 PE 311 (44
+Pa,3510P5 1.5 1) P53 11

+D,351)P 1313 P15 3

+ conjugate rebreﬁentati ons}

Thus, the sum W, + W, + W, represents the total renor-
malizable superpotential, which includes al nonzero
three-point expectation values (of the F type) of the
vertex operators for the corresponding two-dimen-
sional conformal model.

6. NONRENORMALIZABLE FOUR-, FIVE-,
AND SIX-POINT CONTRIBUTIONS
TO THE SUPERPOTENTIAL
From equation (38), it followsthat vertices, from the
fourth one, must be written in a noncanonica form (in
the zero picture). The formulaimplementing atransition
from one picture (q) to another (q + 1) hastheform [8]

Vye1(2) = limew) Te(W)V(2). (45)

However, the sum of U(1), charges for the first three
verticesin (38) iszero, and the U(1), charge of acanon-
ical (-1 picture) bosonic vertex is +1. Therefore, the
effective contribution [in the sense of its subsequent use
in equation (38)] to expression (45) comes only from

T;l. For the complex case, this contribution is given by

—iHy

T e"™(1-i)e"e"™

_ i
_zﬁg

— (46)
+(1+i)e e

ra+i)eMe  + (1i)e e ]
We assume that, for complex fermions on the world
o (%) 1
sheet, Xni,rn+1 = 72
and H, are analogous bosonizations for y, and w,. We
write explicitly the exponentials for X and denote by
the spin fields for y (w). In the case of complex fermi-
ons, we have 2. = e*/2HK (or k'). In our model, the
complex triplets (X, Vi . @) correspond to complex
fermionswith numbers (2, 5, 8), (6, 3,9), and (10, 4, 7).
The general expression for T¢*, which is also appli-

cable in the case of noncomplexifiable fermions, has
the form

Kn£iXns )= € " and that Hy,

) —iH —iH —-iH
Te = e 1,+e "igy+e g,

where

(47)

i .
Ton = = (YmWm T 1Y,0,).
[z(y YnWn)
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Gauge invariance admits a large number of contri-
butions to four-, five-, and six-point terms (see com-
ments to W, and Ws). It is important that, by virtue of
the global symmetries of the left-hand superstring sec-
tor, some of these terms vanish.

Let usfirst consider four-point contributions to the
superpotential. Here, all nonzero four-point operators
belong to the class of R* amplitudes [8]. Indeed, opera-
tors of the (NS)" vanish because, by virtue of (38), they
are proportional t0 [, 1 +1(24) - Ty m +2(Z)U = 0
(here, m = 1, 3, 5). Further, we note that, if thereis at
least one NS operator among four vertex operators, we
can rewriteit in the zero picture; that is,

Vb(NS) —

(iI2)KX =
40 = Tmm+1€

Gre (48)
For its correlation with 1, ,, ; to be nonzero, it is nec-
essary that it involve four spin fields X originating from
one complex triple (X«, ¥, @) corresponding to (m,
m+ 1) pairing. Spin fields Z enter into R vertex opera-
tors (two in each), but they belong to different triples.
Hence, the remaining three operators are insufficient
for the correlation with 1., ,,; from the fourth NS
operator to be nonzero [8].

Let us now consider the only remaining four-point
case, that of R*. We begin this consideration by analyz-

ing U(1)§ congtraints. It is well known that, for the
first and second verticesin (38), each canonical charge
decreasesby 1/2 (atotal changeis—1) and that the third
canonical vertex remains unchanged; for the remaining
canonical bosonic vertices, one of the three charges
decreases by unity (owing to the quantity T;l, which
consists of three parts, each carrying a charge of —1).

The following few comments, which below will
reduce the sampling of admissible arrangements of
charges, arein order here.

(i) It isimportant that, if one of the chargesa, 3, and
yisequa to zero in the canonical vertex VEl , thischarge

(i12)KX

for the vertex Vg inthe zero pictureisalso equal to zero,

because the only nontrivial operator product in (45) for

the term being discussed is ef(w)e<(2) ~ (W—2) — 0.
(if) In an NS operator, which originaly has one

charge of +1 inthe canonical picture, all chargesvanish
upon going over to the zero picture (48).

(iii) By virtue of the above two circumstances, we
need not consider the arrangement of charges where
one of therows (a, 3, or y) consists only of unities and
zeros with the number of zeros greater than two. In
order to demonstrate this, we note that, in this case, we
can take two R operators (as was indicated above, this
istheir minimal admissible number) in the —1/2 canon-
ical fermionic picture with the result that there isthen a
charge of —1 instead of two zeros. If there is a third
zero, the corresponding operator is taken in the -1
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canonical bosonic picture, it can be seen that, because
the remaining vertex operators appear in the zero pic-
ture, it isimpossible to compensate the above charge of
—1[seeitem (ii)]. It followsthat the combinations being
discussed are forbidden by the charge-conservation
law.

(iv) For more delicate reasons, arrangements featur-
ing a row where there are two zeros and where the
remaining numbers are unities also disappear. We will
now prove this. By choosing, injust the sameway asin
item (iii), the —1/2 patternsfor two operators with zeros
and by going over to the—1 picture for one more vertex
operator (with unity), a nonzero correlation function
will be obtained for three conformal fields correspond-
ing to the charge being considered (a, 3, or y). How-
ever, the full correlation function is proportional to
[T ms )"~ 0 owing to the presence of the product
of theremaining (n— 3) vertex operatorsin the zero pic-
ture. This vanishing is due to the fact that the operator
product of the T fieldsis aways nonsingular.

(v) On the basis of items (iii) and (iv), we can state
that amplitudes of the R? x (NS)" type disappear.
Indeed, two charges of 1/2 must be paired in each of the
R operatorsin order that the charges beintegral. Hence,
the third charge row features two zeros, the remaining
numbers being unities and zeros.

(vi) Charge combinations including charge rows of
the (1/2, 1/2, 1, ..., 1 or 0) type (or of the type formed
by any permutations of these numbers) are not allowed.
Let us demonstrate this explicitly. By choosing the
(-v2,-12,-1,0, ..., 0) picture arrangement and using
the statements proven in items (i) and (ii), we find that
the total charge corresponding to the row being consid-
ered is +1, which is inconsistent with the requirement
of charge conservation. It follows, among other things,
that terms of the R? x (NS)" type are forbidden, which
generalizes the conclusions drawn in [8] for such
amplitudes.

In view of the above, there is the only admissible
combination of charges for R* (for canonical bosonic
vertices), that which is presented in the first part of
Table 4. (Needless to say, all permutations of four ver-
tices and the permutations of the a, 3, and y charges are
also admissible.) Other combinationswith total charges
of (0, 2, 2)), (1, 3/2, 3/2), and (1/2, 3/2, 2) (and their

permutations) are forbidden by U(1); conservation.
We can now consider the fourth-order superpoten-
tial. It is necessary to calculate the correlation function
[V 112V 312 Va1 Vo) (10 the R case, it is necessary
to go over from the —1 picture to the zero picture for the
vertex operator Vp. With the aid of (45), it can be

shown that the operator obtained in the zero picture
from the vertex operator

¢ _(il2H, (i/2)H i —  (i/2)KX
Vg(_l) - ce(l ) ke(| ) 'ZiZﬁe('lz)KxGRe('/z)Kx
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has the form
i (=il2)H, _(i/2)H,
V2o = —]e e
R(0) 2,\/2

x(SE[(1xi)e"

(i12)H,

Dz
e M (LEe  +(LFDe D)

R 1%i i
+(1Fi)e 49)

% e(ilz)Kx(—BRe(ilz)KX.
Thus, the R operator in the zero picture appearsto bea
superposition of four vertex operators.

In the model being considered, 50 R* terms are
allowed by gauge invariance. Of these, only nine corre-
spond to the total-charge combination (2, 1, 1). The
remaining terms correspond to the combination (0, 2,
2); therefore, they vanish. By way of example, we con-
sider one of the admissible terms. The vertex operators
involve

(1,3 1, 1), 0% Pt k
at 3

—i/2)Hg

0y, 10

3 ( o
(+1=9)(1,3,1, 1)y s D&% 5527 o, 55

¢ _(i/2)H, (i/2)H
Ce(l ) Ze(l ) 102222 (b’ _1),

(_l! _4) no. 6

Iﬁ%‘—’( i12)Hg (|/2)Hl(j

(+3! +4)no. 6 4 Z327

—iHg (|/2)H6 (—|/2)H10

x[(1—|)e +(1+i)e

1+ 2327

—iH,

X [(1+i)e +(1-i)e 7] D(b, 0).

Here, we have omitted the factor " Gre

The correlation of the product of the underlined terms
with thefirst three verticesis nonzero. Here, we present
the calculationsin greater detail. We have

2

A, = T

(i12)K,X

“/éfd zeft partd
(50)

X [651626364D< |_| e(iIZ)K'xe(iIZ)K'X>
i

where

_ —3/4_—12_—3l4_-3/4_-1/2__3/4
Oeft partl] = Zyp 213 214 Zp3 Ly Zy
2@

and where the right part is given by
[G1G,G3G,40
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iw?

= [1{e" e @ " @)

5 Wi

= |_| (Z4)7
k<l

Here, C'** ensures gauge invariance. From conformal

61y

|—| C1234
i .
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2
invariance, we obtain the constraint %Z' W) =101;

from gauge invariance, it follows that | W! =00
wherei=1,...,22and/=1, ..., N. Thus, we can find
that 5, S WiW =-.

For some representatives of gauge multiplets, we

now write down, in tabular form, the weight (charge)
W' vectors for the vertices being considered.

UQ)? S0(6) Ues) U@®) U@) U@®)
wl 0’ 03 1/4° 1/4 1/4 5/4 0’ 0’
w2 12 0 -1/2 0’ -1/8 3/8 3/8 -5/8 3/85 | —1/83
w3 —-1/2 0 0 —1/2 12 12 1/83 -3/83 —1/8° 3/83
wH 0 0 1/2 12 =12 =12 | -1/45 —1/43 —1/4° | -1/43

From equations (50) and (51), it follows that the ampli-
tude A, features the factor
|212|—3/2|213| -1 |—3/2 |—3/2 |—1|234| -3/2 .

|Zua| (229 |24
If wefix the gauge by setting z, =, z,=2 2z, =1, and
z, = 0 and take into account the Faddeev—Popov
minideterminant (23), we can arrive at the integral

l, = J’dzzlzl'llz—ll_yz

2

_ 128
Tt

e 1 [(2k=1)!
= 8”k201+4k[ 2R }

Further, we must make use of the amplitude at zero
momentum and take into account the dimensional fac-
tor (2 ./811/gMp,). For the remaining terms, the calcula-
tions are analogous.

Thus, we conclude that, in the model being consid-
ered, the full nonzero nonrenormalizable four-point
superpotential W, = R* includes the following nine
terms (see also the tablesin [22]):

29l
W, = gl,
JTiMg

- ~H N R
x { LIJ(]" 31 1)¢’(+1’ )1 3; 1, 1)01(—1, —4) 03(+3, +4)

r(5/4) = 27.50.

+ [Epl(—l, +9(1,3; 1,1) (Apl(—l, -)(1,3;1,1)
+ (Apa(—l, +39(1,1; 3,1) (Ap3(—1, -)(1,1; 31 ] é)'2(+1, - 62(+1, +,)
+ Epl(—l, -(1,3;1,2) (AP3(—1, +9(1,1; 1,3)
(52)

~ H A H
X [¢2(+1, wx1Par, w31y

~H ~H
+Wai w1y Vae, s 13)

+ 0-1(*'1, _4)01(_1v —4) 0-3(—3, +4) O-3(+3, +,)
~ A “H h
+(p1(—1, +)(1,3; 1, 1)(p3(—1, —)(1,1; 1, é)[ws(% —)(1,3;1,3) W4(+1, +5)
~ H ~ H
+ L|J3(+1‘ +)(1,3; 1,9 L|J4(+1’ )

~H ~H
+ CD1(+1, -2 1; 1, é)q)3(+1, +9(L,3; 1, é)] } .

Let us now consider the five-point contribution to
the superpotential. We aready know that R x (NS)*,
(NS)’, R* x (NS)?, and R? x (NS)? operators vanish (see
Sections 5 and 6).

Thus, nonzero contributions to the five-order super-
potential come from R* x (NS) and R® operators.

Let us first consider R* x (NS) operators. Only the

combination of U(1)¥ charges of canonical bosonic

vertices that is presented in the second part of Table 4
(plus permutations of rows and columns) isadmissible;
otherwise, we would either obtain haf-integer total
charges or arrive at the cases described at the beginning
of this section.

In our model, full gaugeinvariance admits 51 differ-
ent terms of the R* x (NS) type; however, only 43 of
these survive an analysis according to N = 2 intrinsic
superconformal theory.

The nonzero nonrenormalizable five-point R* x
(NS) superpotential has the form (see also the tables
from [22])

242915, ~ - -
W = A/_gz 2 D551, 1,9[Pao 3 1,y Pro 1 11

Pl

tWasayWe 1yt WYesyPany
~ ~ ~H ~H
+ (pl(l, 3;1, 1)(92(1, 51, 1)] [Lpl(l, 11 3)qJ3(1, 3;1,3)
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Table 4. Admissible charge combinationsin the four- and five-point terms of the superpotential
4 Total 4 Total 5 Total
R charge R x (NS) charge R charge
a O |V2|1v2| 0 1 v2 | vy2 | v2 |12 | 1 3 v2 | v2 | v2|vy2| 0 2
B |LVv2| O 0 | V2 1 v2 | 12| 0 0 0 1 v2 | v2|vy2| 0 | 12 2
y |V2|v2|v2| 12 2 0 O |[Vv2 |12 O 1 0 0 0 | V2| 12 1

+ a)T(l, 1; 1, é)q)g(l, 3,1,1) + &)2(1, 31, é)&)T(ly 1L l)]
+ c’1\35(3, 1;1, é)[qJ(lO, 31 l)q"(é, 3;1,1)
+ 691(1, 31 1)€Pz(1, 51,1)] [ng(l, 31 1)@2(1‘ 3:1,3)
+ 69:(1, 31 é)cDg(l, 3:1,3]
+ 636(1, 3,5, 1)€P3(1, 11, 3)(AP4(1, 1;51) (53)
x [qJ?(lv 11, 3)¢:(1, 313 T a)T(l, 113%P203 11
+ @y 51 5Pl 1 10]
+ aJ6(1, 3;5, 1)(Aps(1, 1;1,3) EP4(1, 1;51)
X [qJ?(l, 31 1)LP2(1, 313 T d’?(l, 31,9 Paw3 1.3
+ &35(5, L, S)QJ(S, 11 1)&3?(1, 1.1,30103
+ &35(?3, L1, é)qJ(é, L1, 1)qJ<10, 111

~H ~H ~H A H
X[Wig 1 19War 1)+ Py 113 P 1 13] 1

wherethe parameter |5 takes different valuesfor the dif-
ferent terms. Here, we have not indicated explicitly the
field quantum numbers according to hidden gauge
groups. Therefore, several terms are in fact encoded in
each term from (53), but these can easily be recovered
by using the table of states.

By way of illustration, we present the results of the
calculations for the last term explicitly. We have

— (<i/2)H, -
Viren DE°Se 7553, (54)
for (5,1, 1, 1),
Vi reun D P 5e 58, (55)
for (10, 1, 1, 1),,,, and
VE e Dee™™ (56)

for (5, 11 é)Higgs'

The remaining two boson fields must be written in
the noncanonical zero picture. We first write them in
the canonical form and then go over to the zero picture.
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For the (+,, —) (1,1, 1, 3),, ., field, the required
expression in the canonical picture has the form

—C (|/2)H2 (|/2)H10

Ve D€ Sish

Upon going over to the zero picture, we arrive at
( i12)H, (|/2)H10

V3R(0)D
(Sl +i)e™+(1-e "}z (57)
e @ e ™ -1 -e ™).

For the (-, +5) (1, 1, 1, 3),, 4 field, the canonical form
is similar to that in the preceding case, and it is suffi-
cient to change only the sign of Z. Eventualy, this
yields

(-i/2)H, (|/2)H10

V4R(0)D
x{Z[(1-i)e >+ (1+i)e "]} 25 (58)
e e @™+ (L +e M)

Further, it is necessary to calculate the correlation of
the product of all five vertex operators presented imme-
diately above. The expression

(i |/2)H4 (i/2)H4 |H4 |H4
(1+i)¥e (2)¢ (4)
) (= /2)H4 (/2)H4 H4 H,
+(1-n " e (2)e” (3)e' @) (50,
_ 2IZI;/4Z 31 Z14223—213224
(213224214 Z23)

appears to be the most nontrivial factor in these calcu-
lations. The full left-hand part of the amplitude being
considered has the form

1_-3/4_~3/4_~1/2_~3/4_~3/4_~1/2
21215213 Ziy Zis Zog Zog Zps 60)
1 -2 12
X Z34Z35 Zss (214203 — Z13204) -
Upon taking into account the right-hand part, we obtain
|—3/2 |-3/2

2i|z| i |Z44 _3/2| Zye - 2o [ 224

| -1[#aa%3 — Z13%04[] 61)

X |22 [2ss| 225 207w U
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Table 5. Admissible charge combinations in the six-point terms of the superpotential

R cﬁgﬁgle R® cﬁgge R*x (NS) cﬁgﬁgle R*x (NS)* cﬁgﬁgle
22335l R llElolo] = Lo s = [ o)
o33 [o]ol312] = [22)olo[3]8] = 8|0 l2]3lso] = [213le]o]o]o]
yOO%%OOl00%%%%20%%000100%%001

In order to simplify the calculations, we go over to the
limit zg — oo. If we permute the verticesas (1 = 5,
2 == 4) and fix the time-ordered gauge as z, —» o,
z,=1, and z = 0, the parenthetical term assumes the
value of —1. Upon taking into account the Jacobian in
(23), we eventually arrive at the integra

ls = de222d223| z) _3/2| z e
x |2,— 1 *?|z,— 1% = 15 = (27.50)".

Let us consider R terms. Obviously, there is only

one admissible combination of U(1)§z charges of
canonical bosonic vertex operators (and their permuta-
tions) that is presented in the third part of Table 4 (in
any other case, we would obtain half-integer total
charges). In particular, it follows that R* terms must
include ssimultaneously R vertices of all three possible
types [three permutations of (1/2, 1/2, 0)]. For the
model considered here, this means that the superfield
0, (from sector no. 6) must participate in R’ interac-
tions, because thisisthe only field with Ramond fermi-
ons of the world sheet with numbers 6 and 2 (fermions
X)- We were unable to find such gauge-invariant terms.

In conclusion, we consider nonrenormalizable six-
point contributions to the superpotential. From the dis-
cussions in Section 5 and at the beginning of this sec-
tion, it follows that only six-point amplitudes of the RS,
R3 x (NS), and R* x (NS)? types are allowed. For these
cases, the admissible arrangements of U(1)g charges
are presented in Table 5.

In the present model, the R% terms of the superpo-
tential play an important role in constructing the mass
matrix of the matter field. Table 6 displays the full list
of R® terms that make nonzero contributions in calcu-
lating relevant amplitudesin N = 2 superconformal the-
ory. [There are also three trivial terms that correspond
to the first part of Table 5 and which are obtained by
multiplying the last two singlet R® combinations from
the superpotential W,—see equation (43).] In front of
each of these terms, we must of course take into
account a dimensional coefficient of the form

049 0
3/ i)
My

where the integral | must be calculated

individually for each term according to superconformal
theory. By way of example, we indicate that, for three
rows of the penultimate (sixth) part of Table 6, we have

7 0 /
lg = J'dzzld222d223[(23—1)23][|21| 212z -1 ¥

32

-1
x|z, = 24 P2, 1| ¥z, — 24 **|24**] "= 20800  200.
For thefirgt, third, and sixth rows of thefifth part of this
table, we obtained arough estimate of 1, = 1400 % 400.

7. FERMION MASS MATRIX

If we restrict our consideration to the renormalized
superpotential, an analysis of the mass matrices of mat-
ter fields shows that two generations remain massless,
but that the remaining two generations have degenerate
masses. However, mass degeneracy can be avoided by
taking into account the last term W;, which is character-
ized by alarge vacuum expectation value of the three-
field condensate. In particular, the masses of the b and
b' quarks are different.

With alowance for the contributions from the five-
point and six-point terms (Ws and W, respectively), the
fermion mass matrices are given by

<¢)1,2,3 > - HL23 <¢1,2,3 > - gL2s
4 : 4 '

(5:3); (5:3); (62)

Here and below, the superscripts 1, 2, 3 represent the
horizontal generation indices.

The mass matrices for (e, d) and u (in the flip case)
are, respectively,

5 on o p2 h®  H+HiQ
0ot h? n? WD
4 —3 0
oon o Y WSRO
EHHHé H?+H: H+H: h, 0
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Table 6. Six-point R® termsin the superpotential that satisfy the requirements of full gaugeinvariance and all intrinsic global

symmetries

¥,(1,3,1,1)

wi'(1, 3,13

W,(5,3,1,1)

(5, 1,1, 1)1 43

w1, 3,1, 1142

®(1,1,1,3)4 5

Wi(1,1,1,1)

Wi'(L,1,1,3)

We(5,1,1,1)

(p2(51 11 11 l)+1, +3

Wl (L1, 1 0 a0

?:(1,1,1,3) 4 5

¥,(1,31,1)

Wy'(1,3,1, 1)

W,(5,3,1,1)

(p2(51 1! 1! 1)+1, +3

H _
L'I"|3 (11 31 1! 3)+1, +2

0(1,1,1,3)4 3

¥,(1,3141

wi'(1,3,1,3) 4 3

W,(5,3,1,1)

(p2(51 1! 1! 1)+1, +3

®3' (1, 3,1, 3).143

01 1,1,3) 3

W,(5,3,1,1)

o=
W3 (1,3,1,3),

Y410, 1,1,1)

01,1, 1,3) 1,43

W', 1,13 .

@(5,1,1, )41, 5

¥,1,11,1

@' (1,1,1,3), 5

We(5,1,1,1)

(p2(51 1! 1! 1)+1, +3

H _
(Dl (11 1! 11 3)—1, +3

(1 1,1,3) 3

We(5,1,1,1)

wi'(1,3,1,3),

We(10,3, 1, 1)

(Pg,(l, 1! 1! 3)—1, +3

Wi'(L,1,1,3) 4

(pZ(Bv 1! 1! 1)+1, -3

We(5,1,1,1)

Wi(1,1,1,3).

We(10, 3,1, 1)

@3(1,1,1,3) 4,43

WL, 3,13 4

@(5,1,1,1)s1 5

W,(5,3,1,1)

Wi'(1,1,1,3)

Y5(10, 1,1, 1)

(p3(11 11 11 3)—1Y +3

Wi'(1, 3,1, 3)s1 4

(pZ(Bi lv 11 1)+1, -3

We(5,1,1,1)

@5 (1, 3,1, 1), 3

We(10,3, 1, 1)

(p3(11 11 11 3)—1, +3

@' (1,1,1,3)_ 45

@(5,1,1,1)41 5

W,(5,3,1,1)

@' (1,3,1,1), 3

Y410, 1,1, 1)

%(11 1! 1! 3)—1Y +3

(11,1, 3) 43

(pZ(B! 11 11 1)+1, -3

We(5,1,1,1)

®;'(1,1,1,3), 5

We(10, 3,1, 1)

(pS(lv 1! 1! 3)—1, +3

@5 (1,3,1, 1)y 45

(pZ(Bv 11 11 l)+1, -3

Wy(5,3,1,1)

®;'(1,1,1,3), 5

Y4(10,1,1, 1)

(Pg,(l, 1! 1! 3)—1, +3

®5(1, 3,1, 4 13

(pZ(B! 1! 11 1)+1, -3

We(5,1,1,1)

o (1,1,1, 1)

We(10, 3, 1, 1)

(Pg,(l, 1! 1! 3)—1, +3

q:;i (15 él 11 é)+l, +3

(pZ(Bv 1! 1! 1)+1, -3

W,(5,3,1,1)

@) (1,1,1,1)4 4

Y510, 1,1, 1)

(1,1, 1,3) 1,43

®5(1,3,1,3),1 43

@(5,1,1,1)s1, 5

W,(5,3,1,1)

@3 (1,3,1,3)4 5

Y410, 1,1, 1)

(p3(11 11 1! 3)—1, +3

H
®, (11,114 43

(pZ(Bi 11 11 1)+l, -3

W,(10, 1, 1, 1)

H
W, (1,11, 1), 5

W4(10, 1,1, 1)

(5, 1,1, 1) 43

Wwi'(1,1,1,3 .

®(1,1,1,3)4 5

We(5,1,1,1)

o5 (1,3,1,3)4 5

We(10, 3,1, 1)

@3(1,1,1,3) 1,43

@y (L 1,1, 1) 4s

(pZ(sr 1! 1! 1)+1, -3

We(10, 3,1, 1)

wi'(1,3,1,3),

We(10,3, 1, 1)

(p2(51 11 11 1)+1| +3

O
W, (1,3,1,1) 4 4

¢ 1,1, 3) 4 3

We(10, 3,1, 1)

W' (1, 3,1, 1)

We(10, 3,1, 1)

(p2(51 11 17 1)+1, +3

Wi (1,3,1,3),1 4

@(1,1,1,3)4

W,(10, 1, 1, 1)

wi'(1,1,1,3) 5

Wy(10, 1, 1, 1)

(p2(51 1! 1! 1)+1, +3

H
Wy (L L1 Dy s2

(1, 1,1,3) 13

W;(10, 1,1, 1)

H _
@, (1,1,1,3) 3

Y410, 1,1, 1)

(P2(5. 11 1! 1)+1, +3

O (1,1,1,3) 43

01 1,1,3) 5

Wy(1,1,1,1)

W' (L, 1,1, 1)

We(5,1,1,1)

(p2(51 11 1! 1)+1, +3

H
WY (1,113 4

¢x(1,1,1,3)4 3

We(10,3,1,1)

®5'(1,3,1,3) 4

We(10,3, 1, 1)

([)2(51 1! 1! 1)+1, +3

H — —
¢3 (1! 31 11 3)+1, +3

(1 1,1,3)4 3

W,(1,1,1, 1)

(pZ(Bv 1! 1! 1)+1, -3

@ (1,1,1,1)., 5

01(1,1,1,1) 4 4

®(5 1,1, 1), 43

03(1, 11 1)+3, +4

Wy(1,1,1,1)

P41, 1,5, 1)s1, 5

@, (1,1,1,1) 3

01(11 11 11 1)—1,—4

®(1,1,5,1)4q 43

03(1,1,1,1),3 44
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and
g H R+HE A +HE N
E—HS+H§1 HZ A+ HE héé
O H°+HS —A'+HZ  HE KO
0 1 2 3 0

where the quantities H, Hs, and h, , ; carrying the gen-
eration superscripts represent the contributions to the
fermion mass matrix from the renormalizable five- and
six-point terms of the superpotential. We have

Hs = A'®ss1,1,90, Hs = A'gs 15 50,
Hs = ABDs(é,l; 1,3)%
ij — All
hl = A Bp2(5, 1,1, 1)% BpS(l, 1, 1,3)%

i A
h2 = A BpS(l, 1,1, 3)% sz(é, 1,1, 1)%
hy = ABPZ(S, 1,1, 1)% ups(l, 1,1, é)q’
where
i _ H ~Hj
A = D"Pl(l,l; 1,3)@5")3(1,@; 1,3)@

~ H ~H i
+ b, (111 é)Q} [P, (1,31, 1)@

AHIi ~H
+ P31 3. 1,3 [(Pa 1,1, 1,108,

~HI

~ HJ
DP2 ,3;1, 1)@ Dps ,3;1, 3)@
AH ~H j
+ [¢3 ,3;1, é)@ E(D3 ,3;1, :?:)Qv
_ .~ H ~H
A= Dpl(l,l; 1,3)@54"4(1,1; 1,1)@

~H ~ H
+ ml ,1;1, é)Q) BDl 1,1;1, é)@-

We again omitted the quantum numbers corresponding
to hidden gauge groups. These quantum numbers can
be recovered easily by using the table of states of the
model. We use here a condensed notation for the prod-
uct of superfields. In particular, each product of the

form Wy Wi or ®f @ withk# | standsfor two terms
with opposite hidden quantum numbers. The contribu-
tionsto the mass matrices come from all R® terms of the
superpotential from Table 6, with the exception of the
last two and threetrivial onesnot indicated in thistable.

The result for the nonflip case is obtained by means
of the substitutionu =—d, e.

Al =

We can try to use some of the horizontal fields lPiH,
CDiH, and @ (see the spectrum of the model) to violate

partly the horizontal symmetry U(3)y, x U(3)}; at the
scale of Grand Unification, preserving N = 1 spacetime
supersymmetry. In this case, the contribution of non-
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renormalizable five- and six-point terms can be impor-
tant for constructing arealistic fermion mass matrix. It
is worth noting that the form of ansatz for the mass
matrix will depend on the way in which the original

gauge symmetry U (3);, x U(3),; isbroken at the scale
GUT"

Below, we present an example in which horizontal
symmetry is broken at a high-energy scale of about
Mgum but N = 1 supersymmetry is preserved. In this
example, we will consider the possibility of large
expectation values of about Mgt only for the follow-

ing scalar fields: Wi, ,, ®,,, @, ¢, andal o.

In order to preserve supersymmetry, we must ensure
fulfillment of all equalities D} = F; = 0, including all
broken groups, and take into account all vacuum expec-

tation values of the scalar fields @}, ,, Wi, 4, @, @,
0,, 0,, and 0, (the vacuum expectation value of thefield
0, isadmissible only in the nonflip version of the model
because, otherwise, this field would carry an electro-
magnetic charge).

Fromthelist of states of the model, we can draw the
conclusion that, in this model, the hidden group U(1),
isanomalous: trU(1), = 12. Thismeansthat, in the one-
loop approximation of the string, there exists the
Fayet—Iliopoulos D term, which is determined by the
vacuum expectation value of the dilaton,

£ = tru(1), géUTMlzq
16 19217

In principle, thisterm can violate supersymmetry at
a high-energy scale and destabilize the vacuum [23].
This can be avoided if the potential has a D-flat direc-
tion with respect to U(1), charged fields that have vac-
uum expectation values violating the anomal ous group
(and possibly some other groups), compensating the D
term, and restoring supersymmetry. In order that super-
symmetry not be violated through the corresponding D
terms, such fields must have appropriate charges with
respect to the remaining groups.

Let us write explicitly the equations D;, = 0 for the
example being considered. In doing this, we will
assume that the vacuum expectation values for the
U (3)y," triplets have the form (0, 0, V) and that those
for the SU(4),,,, quadruplets have the form (0, 0, 0, V).
We redefine |d>iH|2 * |<TJiH|2 — O, & LIJiH|2 *

|\TJiH|2 — Y. Y;; etc., where the overbars label fields
with “bottom” quantum numbers from the table of
states. Obvioudly, all new variables must obey the ine-

qualities 0 < f, and —f, < f; <f,. Thus, we have

(i) D)

W, -0, + @1 =0,
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NONRENORMALIZABLE SUPERPOTENTIAL IN FOUR-DIMENSIONAL STRING MODELS

(ii) D3y,
W -+ @ =0,
(ii, iv) Dy, + DYy,

(_p1+(_p3+62+63:01 0-1:01

(v) Dy, - Dy,
W, +W,+3W,+ 20, - 20, — @, + @3 = 0,
(vi) Dy,
—2W, +6Y, + 6W, + 20, — 6,
—6D,— 3¢ + s+ 36,-30, = 0,

(vii) Dy
lTJl + lTJz + l'TJ4 =0,
(viii) DI
D1+ D+ Py+ @+ @3—05 =0,
(xi) D35(e
_01_62_03 = O,
(x) D}
W W+ W, D+ By + D,
—@— @+ 0, = -2¢.
It should be noted from the outset that the variables
@, ¢;, and g, appear only in the last equation, which
involves the anomalous term &. Therefore, this set of
equations admits a solution in which only ¢,, @,, and o,

take nonzero values. However, the superpotential [see
expression (52) for W,] features ahazardousterm of the

type (¢> + @2)o~, which will then lead to the break-

down of supersymmetry (the condition F; = 0W/0®; =0
is not satisfied). Hence, we must set o, = 0 and, for

example, @, =@;=¢& = géUTM; /256TP. Inthiscase, the
horizontal group is broken down as U(3)F —~
VU (2)5 x U(l)y, and we also have the violation

U(l)?, — U(1). In the hidden group, only the anom-
alous subgroup U(1), is broken.

In the nonflip version, we can consider nonzero g, =
0, as well, in which case the condition ¢, =0, =0
removesthe possibility of supersymmetry breaking due
to the last two termsin the superpotential W, (43). This
is accompanied by the breakdown of the hidden non-
Abelian group SU(4);¢ —= SU(3)"4; of seven Abelian
gauge groups, only two remain unbroken in the model
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being considered: these are U (1)2id and thelinear com-

bination Y' ~ 15Y2® —3(YL + Yi) - 10(Y4 + Y3).
From the form of the G -dependent contribution to

the superpotential W, (43), it follows that the fourth-

generation field W(1,1.1,1) (the fourth neutrino in the
nonflip case) acquires a considerable mass. Owing to
the first term in expression (52) for W,, the right-

handed neutrinos from the superfield @(1, 31,1y aso
develop large masses. A detailed consideration of the
neutrino mass matrix will be given elsewhere.

APPENDIX
Useful Operator-Product Expansions
We have

e(P+ Q)C(ZZ)

pq
7y

eqc(zl) epc(zz) 0
for ghost fields,
C,
Su(z) Splzp) O=F

Zip
for spinfields in four dimensions,

f(z) f(2) Dzilz L 0@ @) 0E Lo,

J2 z

0.(2)0,(z) D——+ ...
Zy;

for real fermions (Ising model), and
ei(ot + B)H(ZZ)
Zio

o a
— ik
—||zjk

i<k

e™Mz)eM(z) O

e

J
for exponentials.
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Abstract—In the Yukawa model with two different mass scales, the renormalization group equation is used to
obtain relations between scattering amplitudes at low energies. By considering fermion—fermion scattering as
an example, abasic one-loop renormalization group relation is derived which givesthe possihility to reduce the
problem to the scattering of light particlesin the “external field” substituting a heavy virtual state. Applications
of theresultsto problems of searchesfor new physics beyond the Standard Model are discussed. © 2000 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

An important problem of current high-energy phys-
icsis searching for deviation from the Standard M odel
(SM) of elementary particles which may appear due to
heavy virtual states entering the extended models and
having masses much greater than the W-boson mass my,
[1]. One of the approaches for the description of such
phenomena is the construction of the effective
Lagrangians that arise owing to the decoupling of
heavy particles. In principle, it is possible to write down
a lot of different effective Lagrangians describing
effects of new physics beyond the SM. In[2], the effec-
tive Lagrangians generated at a tree level in a general
renormalizable gauge theory have been derived. These
objects by construction contain a great number of arbi-
trary parameters responsible for specific processes. But
it iswell known that arenormalizable theory includes a
small number of independent constants due to relations
between them. The renormalizability of the theory
resultsin the renormalization group (RG) egquations for
scattering amplitudes[3]. In[4], it has been proven that
RG equation can be used to obtain a set of relations
between the parameters of the effective Lagrangians.
Two main observations were used. First, it has been
shown that a heavy virtual state may be considered as
an external field scattering SM light particles. Second,
the renormalization of the vertices, describing scatter-
ing on the external field, can be determined by the 3 and
y functions calculated with light particles, only. Hence,
the relations mentioned above follow. As an example,
the SM with the heavy Higgs scalar has been investi-
gated. In the decoupling region, the RG equations for
scattering amplitudes have been reduced to the onesfor
vertices describing the scattering of light particles on
the external field substituting the corresponding virtual
heavy field. In [4], the only scalar field of the theory

* This article was submitted by the authorsin English.
** e-mail: skalozub@ff.dsu.dp.ua

was taken asthe heavy particle, and no mixing between
the heavy and the light fields at the one-loop level has
been considered. Here, we are going to investigate the
Yukawa model with a heavy scalar field x and a light
scaar field ¢. The purposes of our investigation are
twofold: to derive the one-loop RG relation for the
four-fermion scattering amplitude in the decoupling
region and to find out the possibility of reducing this
relation in the equation for the vertex describing the
scattering of light particles on the external field when
the mixing between heavy and light virtual states takes
place. In [4], the specific algebraic identities originated
from the RG equation for scattering amplitude have
been derived. When the explicit couplings in effective
Lagrangians are unknown and represented by arbitrary
parameters, one may treat the identities asthe equations
dependent on the parameters and appropriate 3 and y
functions. If due to a symmetry the number of 3 and y
functions is less than the number of RG relations, one
can obtain a nontrivial system of equations for the
parameters mentioned. This was shown for the gauge
couplings [4]. In the present paper, we derive RG rela-
tions for the effective Lagrangian parameters in the
model including one-loop mixing of heavy and light
fields.

2. RENORMALIZATION GROUP RELATION
FOR THE AMPLITUDE

The Lagrangian of the model reads
_1 2 Mmoo 4,1 2 N
—EX " +p¢"X" + T(10,¥,— M =G40 — G, X)W,

where s isthe Dirac spinor field. The S-matrix element
for the four-fermion scattering at the one-loop leve is

1063-7788/00/6301-0139$20.00 © 2000 MAIK “Nauka/ Interperiodica’
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Fig. 1. Tree-level contribution to the four-fermion ampli-
tude.

given by

2 dp, & 4
S= 2}(2 y “(21'[)4(2“)

X(py+ ... + PYN[Sipr + Spoxl s

z G‘PlG(pz
P @ =0, X
1 1

=, () =1
(5—m, s-m, ®*7s—m,U

XP(P)[1+ 27 (P2 = P = P)TW((P)P(Pa))W(P3),

where s = (p; + p,)?, S pr IS the contribution from the
one-particle reducible diagrams shownin Figs. 1 and 2,
and S, is the contribution from the box diagram. The
one-loop polarization operator of scalar fields I,

and the one-loop vertex function I are usually defined
through the Green’s functions

(2)
Sipr =

x 0 6@1‘92 +

d 1
Dyo(s) = —22 + ———1_.(5)
(Pl‘Pz S— m(pl S— mq)1 ‘Pl‘Pz S (pz

Gogu(P. @) = = G Dgo(d)Sy(P) ()
[

x[1+T(p, @)]Sy(-p-0),

where S, is the spinor propagator in the momentum
representatlon The renormalized fields, masses, and
charges are defined as follows:

= Z;l/zwo’ Dq) O 1/2D¢0
0x D DXo
O~ O
Og, 0 _.AG
0% 0= 720 0 @
DGX u DGXO O
M*=M:—8M? m =me=dm’, A*=Ai-3A"

Using the dimensional regularization (the dimen-
sion of the momentum spaceis D = 4 — €) and the MS

GULOV, SKALOZUB

: ¢,x< >’;X . X ,"¢x
q)’X, - Q -

Fig. 2. One-loop level contribution to the one-particle
reducible four-fermion amplitude.

renormalization scheme [5], one can compute the
renormalization constants

1
Z, = 1-——(G; +G)),

16n2
3M* = —(G; + G)M?,
8n2 ¢
1
Z1/2 = 1-
81’e
] 2 2
2 N —6M
. Gy 267 2 0
o I 1o
m” —6M 2
E_ZGchx 2 2 Gx E
dm’ = —[(G; +6A)m*—6G2M* - pA?,
4n2 ¢ ¢
SN* = —[(Gz+62)/\2—662M2—pm2],
are [ X
- 3 2 2 1/2,T
71 = [1——(6 +G )}(z )
¢ i 2

From equation (5), we obtain the appropriate 3 and y
functions [5] at the one-loop level:

_ 4G,
Bs = G
m’—6M> 2[]
T[ZB'L)G¢+3G¢G 4—7\——_————G¢GD
5 = 95
X dlnk
1 ks 2, N —6M?
= —16T[25‘SGX+3GXG¢ +4—— =G, Gig (6
dinm’ om’ —6M? /\ZD
= = + 6\ —pD—
Ym dink 4,-[2%3 m? meD
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_ dinA? _ 1 2 MZD mZD
Ya dink T[ZBEX%L_G_ZD“LGE_‘)/?D
_ diny _
Y7 dink 32T[2(G¢+GX)

Then, the S-matrix element can be expressed in terms
of the renormalized quantities (4). The contribution
from the one-particle reducible diagrams becomes

(Pl‘Pz 1
q)lz(sz(pl ‘le]s m + _m(p
&;@) %wpou+2ﬂsz P — pa]
x Y(p) B(Pa)W(Ps),

fin

where the functions M,

for Mg, and T Wlthout the terms proportional to 1/¢.

Since the quantity S, is finite, the renormalization
procedure leaves it without changes. Introducing the
RG operator at the one-loop level [6]

o, and '™ are the expressions

_d _ 0 m _ 0
dink aln|<+(°JD ~ dlnk
0 0 0 0 ®
+ 3~ - - 5
%B(paecp ymalnm2 y/\aln/\z ylpa'nllJ

we find that the following relation holds for the S-
matrix element:

§1PR + @(1)§1

D(Sipr + Soox) =

€))

Here, S and the S{P, are the contributions to the

Spr at the tree level and at the one-loop level, respec-
tively:

2 2
o _ 4G, G, U

pr = O— + —2=0W x Py, (10)
5—m~ s—-A"[J
0Sir _ DY x Pyl G
[-I—G + G, B—+ —r
aan 4t ( )[s- F s—A0
2 2 2 2 2
+G¢[p/\ —6AM +(32¢(6M -9)] (11
(s—m’)

, 2G,G(6M°~9) _ G,[pm’ —6EA” +GX(6M -910
(s—m’)(s—A? (s= A2’ D

The first term in equation (11) originates from the
one-loop correction to the fermion-scalar vertex. The
remaining terms are connected with the polarization
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operator of scalars. The third term describes the one-
loop mixing between the scalar fields. It is compen-
sated in the RG relation (9) by the mass-dependent
terms in the [ functions produced by the nondiagonal
elements in Z,, Equation (9) is the consequence of the
renormallzablTlty of the model. It insures the leading
logarithm terms of the one-loop S-matrix element to
reproduce the appropriate tree-level structure. In con-
trast to the familiar treatment, we are not going to
improve scattering amplitudes by solving equation (9).
We will use it as an algebraic identity implemented in
the renormalizable theory. Naturally, if one knows the
explicit couplings expressed in terms of the basic set of
parameters of the model, this RG relation is trivialy
fulfilled. But the situation changes when the couplings
are represented by unknown arbitrary parameters, as
occurs in the effective Lagrangian approach [1, 2]. In
this case, the RG relations are the algebraic equations
dependent on these parameters and appropriate 3 and y
functions. In the presence of asymmetry, the number of
3 and y functions is less than the number of RG rela
tions. So, one hasanontrivial system of equationsrelat-
ing the parameters of effective Lagrangians. Such a
scenario isrealized for the gauge coupling, as has been
demonstrated in [4]. Although the considered simple
model has no gauge couplings and no relation between
the effective Lagrangian parameters occurs, we are able
to demonstrate the general procedure of deriving the
RG relations for effective Lagrangians parameters in
the theory with one-loop mixing. This point is essential
for dealing with the effective Lagrangians describing
deviations from the SM. At energies s < A2, the heavy
scalar field x is decoupled. So, the four-fermion scatter-
ing amplitude consists of the contribution of the model
with no heavy field x plus terms of order s/A%. The
expansion of the heavy scalar propagator,

1 1 S [T

et Ol
in equation (10) resultsin the effective contact four-fer-
mion interaction

(12)

a =

Lot = —aPY x Py, , (13)

and the tree-level contribution to the amplitude
becomes

0G
?R— a+055§#wxmw (14)

In the decoupling region, the lowest order effects of
the heavy scalar are described by the parameter a, only.
The method of constructing the RG equation in terms
of the low-energy quantities Gy, A, m, M, and a was
proposed in [6]. As has been demonstrated in [6], the
redefinition of the parameters of the model allows one
to remove al the heavy-particle loop contributions to
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equation (11). Let usdefine anew set of fields, charges,
and masses (I, Gy, Gy, A, f, and M,

~ 5 2]
_3_§L|nlf_2[t
A0

G2 = GZEIH
[0}
¢ 0 1617

~ 5 0]
3len}f—2D,
AO

><G)I\)
I
9
-
|

3
n

(15)

One can rewrite the differential operator (8) in terms of
these new low-energy parameters as

_ 0 cw_ 0 -9
@_aan+@ - |I’1K+ZB¢aéq)
@ (16)
S N S
"ainme "aina® toingy’

where [3 and y functions are obtained from the one-
loop relations (6) and (15):

(17

~ 1 ~2
-1z
Yo = o

Hence, oneimmediately noticesthat 3 and y functions
contain only the light-particle loop contributions, and
al the heavy-particle loop terms are completely
removed from them. The S-matrix element expressed in

GULOV, SKALOZUB

terms of new parameters satisfies the following RG
relation:

ISiPR | & (WO
g)b(slPR-'_Soox) = +9% "Sier = 0, (18)
dlnk
~(0) [l éqz) ~ DSZDD:.., ~ o~
SlPR = B—~—G+OB.,_4DDIJLIJXLIJLIJ1 (19)
(5—m AT
6~S(11F2R - lTJlIJXlTJlIJE_ é$
dlnk A Os—-m’
Go[— 6AME + Go(6M°—8)] | ~ =2
+ 2 2 +aGy (20)
(s—m)
~ 2~ “’2_ |:| ZD]
_2G4E(BM"=5) , oS
s—m N\ T

where a = G)Z( JA? is the redefined effective four-fer-
mion coupling. As one can see, equation (20) includes
all the terms of equation (11) except for the heavy-par-
ticle loop contributions. It depends on the low-energy

quantities {J, Gy, a, A, M, and M. The first and sec-
ond terms in equation (20) are just the one-loop ampli-
tude cal culated within the model with no heavy particles.
The third and fourth terms describe the light-particle
loop correction to the effective four-fermion coupling
and the mixing of heavy and light virtual fields.

3. ELIMINATION OF ONE-LOOP SCALAR
FIELD MIXING

Due to the mixing term, it isimpossible to split the
RG relation (18) for the S-matrix element into those for
vertices. Hence, we are not able to consider equation
(18) in the framework of the scattering of light particles
on an external field induced by the heavy virtual scalar,
as has been done in [4]. But thisis an important step in
deriving the RG relation for effective Lagrangian
parameters. Fortunately, there is a simple procedure
allowing one to avoid the mixing in equation (20). The
way isto diagonalize the leading logarithm terms of the

scalar polarization operator in the redefinition of ¢, X,
Gq) f and GX .
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contain no terms connected with mixing between light
and heavy scalars. Thus, the fourth term in equation
(20) is removed, and the RG relation for the S-matrix
element becomes

_0SPR, CWx0
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At a =0, equation (23) is just the RG identity for
the scattering amplitude calculated in the absence of
the heavy particles. The terms of order a describe the
RG relation for the effective low-energy four-fermion
interaction in the decoupling region. The last one can
be reduced in the RG relation for the vertex describing
the scattering of the light particle (fermion) on the

external field ./ substituti ng the virtual heavy scalar:
~p 5 .
DSEDD) = 25600+ (GG = o, @s)

where

g}(l) =B‘§——V 0 _9 0 _v 0
¢aé¢ “dlna "MyinmE ' Yalng’

1, ~2 @7
Vo = -6 = ——(3G; + 0O(a)).
y a 8T[2( s +0O(a))

Equations (23)—27) arethe main result of our inves-
tigation. One can derive them with only the knowledge
about the effective Lagrangian (13) and the Lagrangian
of the model with no heavy particles. One also has to
ignore all the heavy-particle loop contributions to the
RG relation and the one-loop mixing between the
heavy and light fields. Equations (23)—(27) depend on
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the effective low-energy parameters only. But as the
difference between the origina set of parameters and
the low-energy oneisof one-loop order, one may freely
substitute them in equations (23)—26).

4. DISCUSSION

Let us discuss the results obtained. The RG relation
for the four-fermion scattering amplitude is derived in
the decoupling region s < A2. It was shown that one can
redefine the parameters and the fields of the model in
order to remove al the heavy-particle loop contribu-
tionsto the RG relation. Then, the RG relation becomes
dependent on the low-energy physics parameters, only.
As the RG operator coefficients and the difference
between the original parameters and the redefined ones
are of the one-loop order, one can replace one set of
parameters by another at the lowest level. Thus, we
extend the result of [4] to the case when mixing terms
are present. The additional transformation of fields and
chargesallows oneto diagonalize the leading logarithm
terms of the scalar polarization operator and to avoid
the contributions to the RG relation originated from the
one-loop mixing between the heavy and light field.
Since the difference between the diagonalized fields
and charges and the original onesis of one-loop order,
one may simply omit one-loop mixing termsin the RG
relation at the lower level. Then, it is possible to reduce
the RG relation for the S-matrix element to the one for
the vertex describing the scattering of light particles on
the external field induced by the heavy virtual particle.
Infact, thisresult isindependent of the specific features
of the considered model, as was shown in [4].

The RG relations of the considered type may be
used in searching for the dependences between the
parameters of effective Lagrangians describing physics
beyond the SM. For example, let a symmetry require
the same charge structure for some effective

Lagrangians. Then, the number of unknown B and y
functions is less than the number of RG relations, and
it is possible to derive nontrivial solutions for the
parameters. The present results allow one to omit the
one-loop mixing diagrams in construction of the RG
relations for the tree-level effective Lagrangians.
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Abstract—The cross sections for the photofission of plutonium isotopes 2*8Pu, 24°Pu, and 2*?Pu in the energy
range 5-10 MeV have been measured by using abeam of bremsstrahlung photons from the microtron installed
at the Ingtitute of Physics and Power Engineering (Obninsk). The energy regions below the fission barrier and
above 6 MeV have been scanned with pitches of 0.05 and 0.1 MeV, respectively. In deriving the absolute cross
section for 233Pu photofission, 2*%U photofission has been employed as a reference reaction. In measurements
involving 2*°Pu and 24?Pu nuclei, the neptunium isotope 2*’Np, which is characterized by amore regular depen-
dence of the photofission cross section on excitation energy than 233U, has been chosen for the first time as a
reference nucleus. The measured cross sections as functions of energy show resonance structuresin the vicinity
of the fission threshold that are consistent with those previously observed in the energy dependences of fissili-
ties for corresponding direct reactions. The partial-wave cross sections for the J'K = 170, 171, and 2*0 photo-
fission channels have been determined as functions of energy. At energies below some 5.5 MeV, thetotal cross
section for photofission of each plutonium isotope being studied receives a significant contribution from qua-
drupole interaction. Within the one-dimensional model of a two-humped fission barrier, the parameters of the
barriers for 238Pu, 24°Pu, and 2**Pu have been extracted from data and have then been compared with estimates

based on previous measurements. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The structure of thefission barrier in agiven nucleus
is investigated through fission reactions induced by
nuclear projectiles (such as neutrons, deuterons, and
tritons) and by incident photons. From the viewpoint of
data analysis, an important advantage of the photon
probe is that the photon—nucleus cross section
decreases fast with increasing angular momentum, so
that the angular-momentum transfer to the nucleus is
largely restricted to | = 1 and 2; as a result, the cross
section picks negligibly small contributions from mul-
tipoles higher than E2 and M1. For thisreason, the reac-
tion of photofission is particularly effective for probing
even—even nuclei of zero spin. Assoon asthetotal cross
section of photofission and the angular distributions of
fragments have been measured in the threshold region,
we can derive the partial-wave cross sections for the
J'K =170, 171, and 2*0 reaction channels as functions
of excitation energy (here, J* denotes the spin—parity of
the fragmenting nucleus, and K is the spin projection
onto theline along which fragmentsfly apart and which
coincides with the axis of the nucleus).

This article reports on an investigation of the photo-
fission of three even—even isotopes of plutonium: 23Pu,
240py, and 2#?Pu. The angular distributions of fragments
W(0O) originating from the photofission of these nuclel
were measured previously [1] in abeam of bremsstrahl-
ung photons generated by the microtron installed at the
Institute of Physics Problems. The estimates of the total
cross sections from [1] were based on data of previous

experiments that aimed largely at measuring angular
distributions. That there have been no precision dataon
the total cross sections for the photofission of %3Py,
240py, and 2*?Pu nuclei in the near-threshold region E =
5-7 MeV has prompted us to measure these cross sec-
tionsin a dedicated experiment. The reported measure-
ment also covers the energy region between the thresh-
old and the giant dipole resonance, E = 7-10 MeV,
where the data for 2*°Pu and 24’Pu are totally lacking
and where the cross section for 23¥Pu has been mea
sured only for E>7.5MeV (up to 11 MeV inthiscase)
[2]. The present measurements, carried out in abeam of
bremsstrahlung photons, rely on the reference method,
which was described in detail elsewhere [3, 4]. The
cross section for 2*¥Pu photofission was measured here
with respect to that for 2**U [3], a nucleus that was
employed asareferenceonein all of our previous mea-
surements. In our measurements for 24°Pu and 2*?Pu iso-
topes, the reference was taken to be, for the first time,
2¥Np, anucleusthat is characterized by a more regular
behavior of the photofission cross section in the thresh-
old region than 23U.

The cross sections for the photofission of three
even—even isotopes of plutonium as measured in this
study for energies near the fission threshold are then
analyzed for partial-wave content by using our earlier
data from [1] on the angular distributions of fragments
in the same reactions. This analysis relies on experi-
ence gained in studying 23*U [5] and updates our earlier
partial-wave analysis of the cross sections for the

1063-7788/00/6301-0031$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Table 1. Thicknesses of fissile targets (t) and distances from them to the tungsten section of the braking target (L)

s o e Asembly number | 1o BoopeLr | {{of e eterence Lmm
238py 238y 1 0.06 0.61 35

2 0.06 0.57 42

240py—23'Np 1 0.49 0.75 84
2 0.56 0.73 91

242py 23TNp 1 0.64 0.77 70
2 0.60 0.79 77

BTNp-238Y 1 0.76 2.00 98

Table2. Admixtures of extraneous fissile nuclei in the samples of the isotopes under investigation and reference isotopes

Irradiated Admixture content, %
sampl e 235U 239Pu 240PU 241Pu 242Pu 244Pu
238py - 0.4 1 - 0.3 -
240py - 0.04 - 1.2 0.004 -
242py - 0.00005 0.0002 0.08 - 0.00002
ZTNp 0.01 0.001 - - - -
238y 0.003 - - - _ _

photofission of 23Pu, 2%°Pu, and 2*?Pu nuclei [6]. In par-
ticular, we were able to revea the dependence of the
reaction parameters on the number of neutrons in a
nucleus undergoing fission from a higher excited state.

2. EXPERIMENTAL RESULTS

Actually measured wastheratio R of theyieldsfrom
the photofission of the nucleus being investigated, Y,
and of the reference nucleus, Y,,

R(Emax) = Y(Emax)/YO(Emax)1 (1)

as afunction of the endpoint energy of bremsstrahlung
photons, E,,.. For the photofission of the nucleus being
investigated, the yield of the reaction is expressed in
terms of its cross section o;(E) as

E

max

Y(Ema) = C(Ema) J’ 01(E)N(E, Ema)dE, (2

where N(E, E,,,,) stands for the energy spectrum of
bremsstrahlung photons and C(E,,,,,) isanormalization
factor that takesinto account the total number of irradi-
ated nuclei and the total flux of incident photons. The
yield of the reference reaction, Y,(E,..), iS similarly

expressed in terms of its own cross section 0? (B).

The photon beam used was generated by an electron
beam from the microtron of the Institute of Physicsand
Power Engineering and was moderated in abraking tar-
get made of 1-mm-thick tungsten and 12-mm-thick alu-

minum. Over the energy region 4.9 < E,_,, < 6.1 MeV,
theratio R(E,,,,) for each nucleus under study was mea-
sured with a pitch of 0.05 MeV. Higher values of E,
(upto 9 MeV for 2*Pu and up to 9.4 MeV for 2*°Pu and
242py) were scanned with a cruder pitch of 0.1 MeV.
Additionally, theratio R(E,,,,) for 2**Pu was sampled in
the interval 9.4-10.0 MeV with a till cruder pitch of
0.2 MeV.

The apparatus was very similar to those described in
[3-5]. A layer of the isotope being investigated and a
layer of the reference isotope (in oxide forms) were
placed back to back in a container that was rigidly
attached to the braking target. For each isotope of pluto-
nium, we used two containers. An additional container
housed the layers of 2*’Np and 23*U: this was needed for
calibrating the cross section for the photofission of 23’Np,
which was used for the first time as a reference nucleus.
For each two-isotope assembly, Table 1 quotes the thick-
nesses of active layers, t, and the distance between the
assembly and the tungsten part of the braking target, L.

The irradiated areas of the active layers were
restricted by diaphragms with circular holes of diame-
ter 10 mm. Fission fragments were detected by mica
counters positioned at a distance of 1.5 mm from the
active layers.

The 240Pu_237Np 242Pu_237Np and 237Np_238U
assemblies were irradiated simultaneously. The two
238py—238 assemblies were irradiated separately from
the others, since much thinner layers of 2*8Pu (see Table 1)
dictated a much longer exposure to the photon beam.
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The admixtures of extraneous nuclei in the irradi-
ated samples of afissile materia arelisted in Table 2.

Since the cross sections for the photofission of dif-
ferent plutonium isotopes are on the same order of
magnitude, the systematic shifts due to the admixtures
of extraneous isotopes prove to be much less than sta-
tistical uncertainties. Therefore, the measured cross
sections are not corrected for the isotope composition
of the plutonium samples.

For the three isotopes of plutonium, the measured
ratios R as functions of E,,, are plotted in Fig. 1 (in
numerical form, they are also tabulated in [7]). Shown
by error bars are the experimental uncertainties that
have been described in detail elsewhere [5]. For each of
the even—even plutonium isotopes, the photofission
reaction must be discriminated against the background
of spontaneous fission, which was estimated to a preci-
sion of some 1%. Its relative contribution to the signal
does not exceed 3 to 4% for energies above 6 MeV, but
it increases toward lower energies, reaching 92-95% at
the lower boundary of the interval studied here. The
measured cross sections were corrected for the angular
acceptance of the apparatus by using data from [1] on
the angular distribution of photofission fragments. For
each plutonium isotope, the photofission cross section
was estimated with an overall systematic uncertainty of
nearly 15%, which arises, in particular, from the uncer-
tainty inthe ratio of the total numbers of nuclei investi-
gated here and reference nuclel in the assembly. This
ratio was measured to within 3% by irradiating the
same assembly with 2.7-MeV neutrons (see also [5]).

For each plutonium isotope, theyield of thereaction
was then derived as Y(E a) = R(Ema) Yo(Emad [SE€
equation (1)], where R(E,,,,) is the measured value of
the ratio and Yy(E,..) istheyield of the reference reac-
tion; the latter was estimated by integrating the refer-
ence cross section over the bremsstrahlung spectrum
[8] according to (2). The uncertainty in the reference
cross section was neglected. In the reported measure-
ments for the isotope 2*¥Pu, asin our previous measure-
ments for other nuclel [3-5, 9, 10], 2°8U was employed
as a reference nucleus; the cross section for its photo-
fission was estimated in [3]. That the cross section for
photofission of 28U shows a resonance structure in the
vicinity of the fission threshold—this structure is usu-
ally associated with vibrational states in the second
well of the potential barrier—poses serious problems
for the relative measurements using this even—even
nucleus for a reference. In our measurements for the
isotopes 24°Pu and ?4’Pu, we therefore chose 2*’Np as a
reference nucleus: in relation to 23U, this A-odd
nucleus shows a larger density of internally excited
states and, as a consequence, a more regular depen-
dence of the cross section on excitation energy. That the
angular distribution of fragments from 2’Np photofis-
sion is isotropic effectively reduces the uncertainty
arising from the limited angular acceptance of the
apparatus. Using 2*’Np photofission asareferencereac-
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tion was proposed in [4], where the cross section for its
photofission was measured in detail. It is these results
that were employed here for the reference cross section
below 7 MeV. At higher energies, werelied on the cross
section for 2’Np photofission from measurements with
abeam of monochromatic photons [11].

For each plutonium isotope studied here, the photo-
fission cross section as a function of excitation energy,
0;(E), was extracted from the measured yield AY(E,,,)
by applying the method of minimization of directed
divergences [12] for solving the integral equation (2).
The o; (E) values obtained in thisway areillustrated in
Fig. 2 (in numerical form, they were tabulated in [7]).
The uncertainty in the cross section, as shown by error
barsin Fig. 2, was estimated by randomizing the yield
AY(E,,,,) in accordance with its uncertainty and by ana-
lyzing the resulting dispersion of the solutions to equa-
tion (2). The uncertainty in Y(E,,,,) was estimated by
propagating the measurement error intheratio R(E,,,,.,).

Also illustrated in Fig. 2 are the results of previous
measurements of the cross sections for photofission of
theisotopes 23¥Pu [2], 2*°Pu [13], and 24?Pu [14], aswell
as our earlier estimates [1] thereof, which were based
on a measurement of W(O, E,,,). Note that all these
measurements, like that which isreported in the present
article, were performed with bremsstrahlung photons.
Our preliminary estimates [1] are seen to be largely
confirmed by the thorough and systematic measure-
ments reported in this article, but there are nevertheless
some distinctions.

Measured simultaneously wasthe ratio of theyields
from 2’Np and 2**U photofission (see above). That the
ZINp-?%U and 2°Pu—?3"Np assemblies were arranged
at asmall distance allowed us to measure, in addition,
theratio of theyieldsfrom 2*°Pu and 2*¥U photofissions,
but the layers of 4°Pu and 23U were not, strictly speak-
ing, in a back-to-back configuration. Thereby, we
obtained an independent estimate of the absolute yield
Y(E,..) and, finally, of the cross section o;(E) for the
photofission of theisotope >*°Pu, thistime using 23U as
areference nucleus. Good agreement between the two
estimates of o;(E) for the isotope *°Pu, which are
based on different reference nuclei, demonstrates the
self-consistency of the adopted approach. (Likewise,
the two independent measurements of the cross section
for 232Th photofission, with either 228U or 2’Np as aref-
erence nucleus, yield compatible results.)

The accuracy of the reported measurements allowed
us to probe the resonance structure of the cross section
in the near-threshold region. On the whole, the cross
sections for the photofission of the isotopes 2*Pu,
20py, and ?*’Pu are characterized by similar magni-
tudes and E dependences, but the positions of the reso-
nancesin the energy region E< 7 MeV arenot identical
for the three nuclear species.

Throughout the energy region 7-10 MeV, the cross
sections for the photofission of all three plutonium iso-
topes proved to be regular. For the 23®Pu isotope, our
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Fig. 1. Photofission-yield ratio R as a function of the end-
point energy of bremsstrahlung photons, E,.,,.., for (a) 2**Pu

and 238U, (b) 2*%Pu and 23'Np, and (c) 2*?Pu and %'Np
nuclel.

estimate of the cross section exceeds the previous esti-
mate from [2] by some 10-15% throughout the energy
region 7.5-10.0 MeV, which is common to the two
measurements. For the 2*°Pu and 2*?Pu isotopes, our
estimates of o;(E) match well with the resultsfrom [13]
and [14], respectively, at E = 10 MeV, but they begin to
deviate from those at higher energies. Comparing the
cross sectionsfor the photofission of the even—eveniso-
topes 238Pu, 24°Pu, 24?Pu, and 2**Pu (the last was studied
in [15]) among themselves, we see that an increase in
the atomic number A by two units effectively reduces
o;(E) by some 20-30%. Such an A dependence of o;(E)
suggests that, for an excited nucleus, the probability to
relax through neutron emission increases with A.
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Fig. 2. Total cross sections for 238pu, 240py, and 2*2pu
photofission as functions of excitation energy: (2% present
data and (e) data from [2, 13, 14] for %3Py, 2*°Pu, and
242py, respectively. Solid curves represent cross-section
estimates from [1].

The reported measurements of the cross sectionsfor
the photofission of three even—even isotopes of pluto-
nium on the basis of a single procedure (reference
method) are very similar to the earlier measurements
for the nuclei 22'Pa[9], 2*?Th [10], 2**U [5], and >*’Np
[4]. They complement and refine the previous results
from [2, 13, 14].

The angular distribution of photofission fragments
can be represented as

W(6) = a+bsin’0 + csin’26, 3)

where 0 is the angle between the photon-beam direc-

tion and the line along which the fragments fly apart.
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Accordingly, the cross section can be written as 6;(E) =
0,(E) + o,(E) + o4E), where the components corre-
spond to the three termsin (3). By invoking the experi-
mental results from [1] on the angular distributions of
fragments, we were able to determine the energy
dependences of the cross-section components 0, Oy,
and o, from the plutonium isotopes under study.

As in [5], where such a decomposition was per-
formed for 234U photofission, the component o, is esti-
mated rather roughly. By using the equations that are
quoted in [5] and which relate the components o, Oy,

and o, to the partial-wave cross sections o7 (E) corre-

sponding to definite values of the total angular momen-
tum (J) and of its projection onto the direction of frag-
ment emission (K), we determined the partial-wave

cross sections 07 (E), o1 (E), and o7 (E) (only arough
estimate was obtained in the last case) as functions of
excitation energy. These results are depicted in Figs. 3,
4, and 5 for 2%Puy, 2*Pu, and %*?Pu, respectively.

The quoted uncertainties in the partial-wave cross
sectionsreflect the experimental errorsin thetotal yield
Y(E,..) and in the parameters a, b, and ¢ of the angular
distribution of fragments [see equation (3)]. At excita-
tion energies below 5.5 MeV, the total cross section for
photofission of each even—even plutonium isotope fea-
tures a significant quadrupole component.

It is physically meaningful to compare the reso-
nance structures of the cross sections for the photofis-
sion of agiven nucleus and for its direct fission in reac-
tions like (t, pf). Direct fission reactions are character-
ized by a broad spectrum of angular-momentum
transfers; therefore, they may involve alarge number of
fission channdls, including the J*= 2+ and 1~ channels,
which are excited in the photofission of the even—even
nuclei [16]. The comparison is donein terms of the fis-
sility P;(E) that, for the reaction of photofission, iscom-
puted as a ratio of the cross sections for photofission
and for photoabsorption:

P{(E) = 04(E)/0¢(E). “)

The photoabsorption cross section o (E) was
parametrized as a superposition of two Lorentzian
forms:

=
(E2—E)’+ET?

(&)

Itsdipole contribution o, (E), assumed to take the same
value for al three even—even isotopes of plutonium,
was set to that for the 23°Pu isotope as parametrized in
the same form (5) and as calculated with the parameter
valuesof o, =325mb, ', =2.48 MeV, E, = 10.28 MeV,
0, =384mb, I', = 425 MeV, and E, = 13.73 MeV,
which were derived in [11].

Data on the quadrupol e contribution to the photoab-
soprtion cross section, 0y (E), are scarce. Therefore,
PHYSICS OF ATOMIC NUCLEI

Vol. 63 No. 1

2000

1L 2%0 170
10 -
o 10°
Lt
6\10—1 1
102 l {
10—3 1 L e 1 1 1

E, MeV

Fig. 3. Results of the analysis of the cross-section compo-
nentsfor 23¥Pu versus excitation energy: (#) rough estimate
of the cross section for quadrupole photofission, (O0) cross
section for photofission through the J'K = 170 channel, and
(m) cross section for photofission through the J'K = 171
channel. Solid curves represent fits of the cross-section
components to forms predicted theoretically.
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Fig. 5. Asin Fig. 3, but for 24?Pu.

estimates of o,(E) are usually based on electrodynam-
ics calculations for the ratio of the cross sections for
electric-dipole and electric-quadrupole photoabsorp-
tion: o.,/0., = 25-30. We note, however, that, accord-
ing to some measurements (for an overview, see [17,
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pf)240Pu [20], and (c) 2*2Pu (y, ) and 24OPut, pf)2*2Pu [20].

18]), the cross sections for quadrupol e photoabsorption
feature giant isoscalar quadrupole resonances a E =
(60—65)A"13 MeV, where A is the atomic number of the
nucleus. The analysis performed in [19] for this giant
resonance in terms of an additional Lorentzian yielded
the optimal parameter valuesof 6, =2.8mb, M, =6.8 MeV,
and E; =9.9 MeV.

The direct reactions were chosen as 2*’Np(°*He,
df)>3%Pu for 2¥Pu, 23¥Pu(t, pf)**°Pu for 24°Pu, and
240py(t, pf)?*42Pu for 24?Pu [20]. For each even—even plu-
tonium isotope, the fissilities for the photofission and
direct reactions are compared in Fig. 6 as functions of
excitation energy. For the 23Pu and 2*°Pu isotopes in
particular, the resonance patterns of the fissilities under
comparison are seen to be largely similar (Figs. 6a and

SOLDATOV et al.

6b, respectively). The agreement for *2Pu is somewhat
poorer (Fig. 6¢).

3. THEORETICAL ANALY SIS OF DATA

In analyzing the measured cross sections for 23Pu,
240py, and ?4’Pu photofission, the penetrabilities of the
fission barriers were computed theoretically only for
excitation energies below the binding energy of a con-
stituent neutron. In this energy region, the excitation of
a nucleus can be relaxed either through fission or
through photon emission. Accordingly, the photofission
cross section oy(E) and photoabsorption cross sections
o, are related by equation

o¢«(E) = Z ZGCJ

NS

.]K

(6)
T K+T

where T]* and T} are, respectively, the total and the
radiative penetrability of the barrier for the channel
characterized by the quantum numbers JK. Only two
channels, those that have J'K = 1-0 and 1-1 and which
make a dominant contribution to the total cross section
for photofission, are analyzed here.

The radiative penetrability was estimated as

«_ 2mr)(E
T = Thail) ™

D”(E)

where I} is the average radiative-decay width, while

D”" is the mean spacing between the energy levelsin
the well. Under the assumption that dipole transitions
are dominant, the radiative width can be expressed as

E

_ R oooE
ry = p(E)_!)-SVp(E g,)de,, ®)

where the factor R was fixed by normalizing the total
radiative-decay width to the measured value of the radi-
ative width for excitation energies close to the neutron
binding energy. The level density p(E) was estimated
within the superfluid-nucleus model taking phenome-
nologically into account collective and shell effects
[21]. The neutron binding energy, the mean radiative
width, and the mean spacing between neutron reso-
nances were set to the values quoted in [22], and the
level density was parametrized according to [23].

The probability for an excited nucleus to decay
through fission was calculated on the basis of the one-
dimensional model of the fission process. The penetra-
bility of the fission barrier was determined by numeri-
cally solving the Schroédinger equation. We assumed a
two-humped fission barrier that consists of three
smoothly matched parabolic sections and which
depends on six parameters, E,, fiw,, Eg, Aiwg, Ey, and
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Table 3. Parameters (in MeV) of the two-humped fission barriers as extracted from data on photofission
K Ea hooa = ho, = hoog
Thisstudy | [26] | Thisstudy |[26]| Thisstudy [[26]| Thisstudy |[26]| Thisstudy | [26] | Thisstudy |[26]
238py,
10 7.0 6.95 1.35 13 3.45 - 1.0 - 6.1 5.9 0.6 0.8
11 6.9 6.8 1.35 13 3.6 - 0.9 - 6.3 6.25 0.63 0.8
24(]|:)u
10 7.0 7.35 1.35 14 3.45 - 1.0 - 6.1 55 0.6 0.6
11 6.9 7.2 1.35 14 3.6 - 0.9 - 6.3 5.85 0.63 0.6
242py (This study)
10 7.0 1.35 3.00 0.8 6.1 0.6
11 6.9 1.35 3.6 0.9 6.3 0.67

hwy; (the subscripts A, B, and 11 refer to the parameters
of the lower hump, of the upper hump, and of the sec-
ond well, respectively). Theinteraction that couplesthe
vibrational fission mode to states of nonfission origin
and which leads to the fragmentation of purely fission
resonances in the second well was taken into account
by adding an imaginary component to the potential for
the second well. The probability for absorption in the
second well was assumed to be linear in energy and was
parametrized as

W(E) = wx (E-E;—A,-Ap) + W, )

where A, and A, are the energy gaps in the spectra of
internal excitations for the neutron and proton sub-
systems, respectively, while w and W, are parameters
whose values were determined directly from a data
analysis. In our calculations, the energy gaps A, and A,
for 238pPu, 2%0Py, and 2*2Pu were set to the values of 0.49
and 0.61, 0.43 and 0.61, and 0.50 and 0.61 MeV,
respectively, which were derived in [24]. The above
assumptions and approximations|lead to a second-order
differential equation, which was solved by using the
numerical algorithm developed in [25]. The penetrabil-
ity of the fission barrier isfinally obtained in the form

Tg
Tao+Tg’

where T isthe direct barrier penetrability, A isthe flux
fraction absorbed in the second well, and T, and T are
the penetrabilities of the corresponding humps of the
two-humped barrier.

The predictions obtained in thisway were then com-
pared with the actually measured cross sections for
238py, 240Py, and 2**Pu photofission. The fission-barrier
parameters E,, i, Eg, Ay, By, and Ay and the
quantitiesw and W,, which govern the E dependence of
absorption in the second well [see equation (9)] can be
varied in fitting the data. Figures 3, 4, and 5 show the
results of our dataanalysis of the dipole components of
the cross sections for the photofission of 23Pu, 24°Pu,

T; =Tp+A (10)
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and 2*?Pu, respectively. The corresponding fitted values
of the above parameters are listed in Tables 3 and 4. At
these parameter values, we were able to reproduce the
distinctly observed structure between 5.6 and 5.7 MeV.
Weinterpret this structure as a superposition of two res-
onanceswith dightly different positionsin the JK = 1-0
and 171 channels. For each plutonium isotope under
study, thetotal cross section for photofission at energies
below 5.5 MeV could be adequately reproduced upon
supplementing the dipole contributions with the qua-
drupole contribution taken here in the experimentally

estimated form o(E) D o%°.

Also quoted in Table 3 are the parameters of the
two-humped barrier for 233Pu and 2*°Pu as derived in
[26] by analyzing the combined data on the (d, pf),
(*He, df), and (y, ) reactions over a relatively narrow
range of excitation energies. Here, we used only dataon
photofission, but we performed our analysis in the
much broader excitation-energy interval from 4.7 to
7.0 MeV. Our estimates for the widths of the two bar-
rier humps are seen to be largely consistent with those
in[26] (for each plutonium isotope and for either dipole
channel, the widths of the humps A and B prove to be
closeto 1.3 and 0.6 MeV, respectively). However, the
hump heights as estimated here are not always consis-
tent with those from [26]: for 2*8Pu, they comply well,

Table 4. Fitted values of the absorption parameters w and
W (in MeV)

JK
| sotope 10 11
w W w Wo
238py 0.08 0.088 0.1 0.11
240py 0.08 0.083 0.1 0.104
242py 0.1 0.111 0.13 0.14
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Fig. 7. Measured cross sections for the photofission of

238py, 240py, and 2*2py versus excitation energy (points)
aong with the sum of the estimated partial-wave cross sec-

tionsfor 'K = 170, 171, and 20 channels (solid curves) and
the sum of the estimated partial-wave cross sections for 'K =
170 and 171 channels (dotted curves). The partial-wave
cross sectionsfor J'K = 170 and 171 werefitted to predicted

forms, wheress that for 'K = 2*0 was interpolated on the
basis of experimental values. The arrow indicates the neu-
tron binding energy.

but for 24°Pu, the disagreement reaches some 500 keV.
That the two derivations of barrier parameters some-
times diverge may be dueto the use of the different the-
oretical schemes and assumptions. It should also be
noted that extra systematic shifts in the analysis may
have resulted from combining the heterogeneous data
of different experimentsin [26].

We proceed to supplement the partial-wave cross
sections for the J'K = 170 and 1-1 dipole channels in
their fitted formswith that for the J'K = 2*+0 quadrupole
channel in the directly measured (and then interpo-
lated) form. For each of the 233Pu, 24°Pu, and ?*’Pu iso-
topes, Fig. 7 demonstrates that the sum of the three par-
tial-wave cross sections (solid curve) adequately repro-
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duces the total cross section measured for photofission
(data points), whereas only the two dipole components
(dotted curve) fail to saturate the total cross section in
the subthreshold region.

4. CONCLUSION

The cross sections for 23¥Pu, 24°Pu, and >*>Pu photo-
fission have been measured with afine pitch in excita-
tion energy by using photofission of either 233U or 2*’Np
as a reference. The neptunium isotope 2*’Np, which
shows amore regular E dependence of the photofission
cross section than 228U, has been employed as a refer-
ence nucleus for the first time. The independent mea-
surements with the different reference nuclel have
yielded compatible results. By invoking our previous
measurements of the angular distributions of frag-
ments, we have been able to extract, from the measured
cross section, the partial-wave cross sections for the
JK = 1-0 and 1-1 dipole channels and to estimate the
cross section for the J'K = 2+0 quadrupole channel. The
data on partial-wave cross sections for the dipole chan-
nels have been analyzed in the one-dimensional model
of atwo-humped barrier with allowance for theinterac-
tion of vibrational states in the second well with states
of nonfission origin, and the parameters of the fission
barrier have been derived. On the whole, the measured
cross sections for 238Pu, 24°Pu, and 2*?Pu photofissionin
the subthreshold region have been adequately
described within the af orementioned model.
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Abstract—Basis functions of a new type—specifically, exponential—trigonometric functions depending on all
six interparticle distances—have been proposed for the Coulomb four-body problem. A method has been devel -
oped for computing nine-dimensional integrals determining the matrix elements of the Hamiltonian for afour-
body system and featuring these functions. The efficiency of the approach that relies on the proposed basis func-
tions has been tested by calculating the e*'eTe*er, p*up U™, e u*e, and p*epte” molecules. © 2000 MAIK

“ Nauka/Interperiodica” .

Over the last decade, basis functions depending
exponentially on al interparticle distances have been
widely used in quantum-mechanical calculations of
Coulomb three-body systems. Such basis functions
allow for correlations in particle motion and make it
possible to perform computations by taking fully into
account the kinetic energy of the system without resort
to the adiabatic approximation (where the effect of the
operator of the kinetic energy of heavy particles on the
wave function of light particlesis neglected). In such a
basis, the ground-state energies of three-particle atomic
and mesic molecular systems can be estimated to ahigh
precision. However, this basis loses its efficiency when
we go over to adiabatic molecular systems, where cou-
pled particles (nuclei) are a few thousand times more
massive than the coupling ones (electrons) [1]. Thisis
because exponential functions, which change mono-
tonically, cannot approximate adequately the oscillat-
ing part of the wave function, which has a sharp maxi-
mum in the vicinity of the equilibrium interatomic dis-
tance and which transforms into a delta function in the
limit of infinitely heavy nuclei.

To sidestep this flaw, it was proposed in [2] to
replace exponential basis functions by exponential—
trigonometric functions of interparticle distances. In
just the same way asthe former, the latter secureasim-
ple and rapid analytic computation of al the required
integrals in the perimetric coordinates of three-body
systems. In treating three-body molecular systemswith
well-distinct particle masses, asingle exponential—trig-
onometric function appeared to be sufficient to replace
some tens of ordinary exponential functions.

A transition to abroad basi s of exponential—-trigono-
metric functionsin [3] made it possible to calculate the
ground-state energies for typical adiabatic systems
(isotopic modifications of the molecular hydrogen ion)
up to the tenth decimal place. This accuracy corre-
sponds to that of precision computations [4—6] within

an adiabatic basis by the method of artificial scattering
channels [7]. For example, 300 exponential—trigono-
metric basis functions were used in [3] to calculate the
variational values of the ground-state energy for the

H,, HD* and D, molecules. The results,

-0.5971390631, —0.5987887942, and —0.5978979684,
respectively, in Hartree atomic units, comply well with
the values of —0.5971390631 [4], —0.5987887943 [5],
and —0.5978979686 [6], which were calculated in the
adiabatic basis.

Later on, the exponential—trigonometric basis func-
tions proposed in [2, 3] were used to improve the accu-
racy of variational calculations for a number of three-
body mesic molecular systems [8].

Until recently, exponential basis functions were
applied only to three-body systems because there were
no procedures for calculating the Hamiltonian matrix
elements for systems featuring more than three parti-
cles. In [9], a method was proposed for a variational
computation of four-body Coulomb systems in the
basis of exponential functions dependent on all six
interparticle distances:

o2 O
0= EXPB‘Z &l - (1

0 & O
This method is based on the analytic algorithm [10]
reducing the computation of nine-dimensiona four-
body integrals (with nonseparable variables of integra-
tion) to a computation of a dilogarithmic function [11]
and its derivatives. An effective procedure allowing for
variations of the branches of multifunctions was devel-
oped in [9], variations that arise in computing four-
body integrals featuring arbitrary values of the expo-
nential parameters a,. Concurrently, the results from
[12] that are based on the Hellmann—Feynman theorem
for the auxiliary Schrédinger equation and which
reduce substantially the number of the nine-dimen-
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Ground-state energy E, ., mean values of the inverse interparticle distances, and parameters of the exponential—trigonometric

variational wave function for the four-body Coulomb systemswith particle massesmand M (Ej¢ Stands for the most accurate

energy values known at present)

. System

Quantities
g'ee’e PP Weu'e pep'e

m/M 1 0.1126095 0.00483633 0.000544617
Ever —0.514957 -198.206 -1.11320 -1.122378
Eprec —0.516002 [14] ~199.626 [14] ~1.14100[16] -1.16402 [15]
/4,0 0.3695 148.7 0.8592 0.8688
/1450 0.2240 104.1 0.6604 0.6736
[1/1 5,0 0.2240 93.59 0.5500 0.5563
O, 0.160209 79.6286 0.170868 0.177518
O3 0.149632 113.3199 0.562708 0.562203
Oy 0.514090 2245581 0.692597 0.695909
0o 0.405251 137.0178 1.349148 1.358794
Oy 0.022991 —35.4691 -0.209043 -0.211919
Oy 0.075871 37.3005 0.481728 0.487454
Bio 0.015133 —7.6626 —0.024687 -0.028472
Bis -0.081245 75.9794 1.022433 1.080718
Bia 0.073363 —29.9707 0.011286 0.007994
Bas -0.052736 13.5675 —0.0624432 —0.055856
Bos 0.011487 -1.18311 -0.010328 -0.010781
B —0.005591 11.5900 -0.013141 -0.010987
y 3.063754 -3.093388 2.940814 2.907504

Note: All values are presented here in atomic units.

sional integrals needed to derive the Hamiltonian
matrix elementsfor afour-body system were used there.
Thismadeit possible to express these matrix el ementsin
terms of seven basic integrals (six integrals of Coulomb
particle interaction and a normalization integral).

Application of the exponential basisfunctions (1) to
computing the positronium molecule e‘eete [9],
which represents an extreme case of nonadiabatic sys-
tem, and to some four-particle mesic molecules [13]
has confirmed the efficiency of this approach to the
Coulomb four-body problem.

In just the same way as in the three-body problem,
however, the convergence of the variational expansion
in terms of exponential basis functions of the type (1)
becomes slower with increasing heavy-to-light parti-
cle-massratio.

In this connection, the application of an exponen-
tial-trigonometric basis instead of an exponential one
seems reasonable in the four-body Coulomb problem.
A solution to this problem is presented here.

We construct the wave function of afour-body Cou-
lomb system as an expansion in terms of exponential—
trigonometric functions of the form

4 4
O O . 0

g = exp[-)—ZO(jkrjkElSﬂD Bl jx + YO (2
U S O —* 0
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Each of the basis functions ) (2) involves twelve non-
linear parameters (a;, and [3,) and one linear parameter
(tany) and can be considered as alinear combination of
two exponential functions of thetype (1), with the com-
plex exponents ay, = oy = i By

In order to generalize the algorithm for an analytic
calculation of four-body integrals to the case of com-
plex exponential parameters, it was necessary to take
into account in detail the variations in the branches of
multifunctions in response to an arbitrary motion of a
point in the twelve-dimensional space of the parame-
ters a; and 3. Mathematically, this problem is much
more involved than that in the case of the six-dimen-
siona space of real exponential parameters a,.. Here, we
will not describe the procedure that we used to solveiit.

In order to demonstrate the potential of the method
that employs exponential-trigonometric basis functions
in dealing with four-body Coulomb systems, we per-
formed calculations for the ground states of the efee'e,
prUpU, e uten, and prepte systems (where e, e,
p*, and - stand for an electron, a positron, a proton,
and a negative muon, respectively) by using a single
coordinate basis function that has the form (2) and
which is symmetrized with respect to permutations of
identical particles:

W = (1+Pg)(1+Py)y. ©)
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Here, positively and negatively charged particles are
labeled with the subscripts 1, 3 and 2, 4, respectively.

In the case of the positronium molecule, we per-
formed an additional symmetrization of the wave func-
tion with respect to a permutation that correspondsto a
simultaneous reversal of all particle-charge signs:

W = (1+PpPg)(1+Pyg)(1+ Pyl (4)
Twelve nonlinear parameters (a;, and B;,) of the trial
wave function W were carefully optimized by means of
the gradient-descent method, while the linear parame-
ter tany was found from arelevant quadratic equation.

The results of our calculations are presented in the
table, which also quotes the most precise energy values
from [14-16] obtained thus far for the systems under
consideration.

A comparison with the results of variational calcu-
lations based on the exponential functions (1) shows
that a single symmetrized exponential—-trigonometric
function W replaces seven symmetrized exponential
functions in computing the positronium molecule, nine
such functions in computing the p*up*u~ molecule,
and a few tens of them in computing the adiabatic
molecular systems p*e e and ptepe.

Owing to a doubled number of nonlinear parame-
ters, the compact exponential—trigonometric function
Y enables us to take into account in detail correlations
in the motion of particles. The trigonometric factor of
this function is responsible for the improved descrip-
tion of the wave-function behavior versus the distance
between heavy particles.

It isinteresting to compare the efficiency of an expo-
nential—trigonometric basisin the four-body case under
consideration with that in the three-body case [2]. The
relative error in computing the ground-state energy for
thefour-body systemse*ee'e, p*up*u-, pre e, and
p*ep'e with a single symmetrized exponential—trigo-
nometric basis function was estimated at 0.2, 0.71, 2.4,
and 3.6%, respectively. For the three-body systemse'e”
e, p'upt, pre’, and ptep*, a single symmetrized
exponential—trigonometric basis function reproduces
the ground-state energy with relative errors of, respec-
tively, 0.17,0.41, 2.7, and 3.9% [2]. Thus, the exponen-

ZOTEV, REBANE

tial—trigonometric basis is equally efficient for four-
body and for three-body problems.

In summary, ahigh precision peculiar to the compu-
tation of three-body Coulomb systems within a vast
exponential—trigonometric basis [3] can be achieved in
computing four-body systems as well. Since the codes
for computing four-body integral s are much more com-
plicated than those for three-body integrals, the amount
of calculationswill bethreeto four orders of magnitude
greater in the former case; therefore, this will require
the use of supercomputers.
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Abstract—The pairing gap in semi-infinite nuclear matter has been calculated microscopically by solving the
gap equation for anonlocal interaction with the aid of the method proposed by V.A. Khodel, A.V. Khodel, and
JW. Clark [Nucl. Phys. A 598, 390 (1996)] for the case of infinite nuclear matter. The calculation employsthe
effective pairing interaction obtained previously for semi-infinite geometry on the basis of the separable 3 x 3
representation of the Paris nucleon—nucleon potential. The gap found in thisway changes sharply in the surface
region, where it has a pronounced maximum. The dependence of the surface effect on the chemical potential of
nuclear matter has been investigated. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The present article reports on a continuation of stud-
ies that were described in [1-3] and which were
devoted to developing amethod for directly solving the
equation for a pairing gap in semi-infinite nuclear mat-
ter without recourse to the local approximation. This
method, based on the concept of effective pairing inter-
action, was constructed for a separable nucleon—
nucleon potential. In order to implement it, the full Hil-
bert space of the problem is broken down into two sub-
spaces. In the first, model, subspace S,, we derive an
equation for the gap A in terms of an effective interac-

tion OVEH . In the second, complementary, subspace S,

the effective interaction V'%; is determined in terms of
the vacuum nucleon—nucleon potential V. In the equa-

tion for V% , pairing effects can be disregarded, which
substantially simplifies the situation, validating the
two-step approach to solving the problem of pairing via
the introduction of an effective interaction.

The implementation of the method is considerably
facilitated for a separable form of the nucleon—nucleon
potential. By using the mixed coordinate-momentum
representation, the problem of determining the effec-
tive interaction is reduced to numerically solving the
set of several one-dimensional integral equations. In
[2], the effective interaction in the 'S, channel was
explicitly obtained for the separable 3 x 3 form [4, 5] of
the Paris nucleon—nucleon potential [6]. It was defined
in such away that the model subspace S, contained all
negative-energy single-particle states. In this model
subspace, the eguation for the gap represents a set of
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threeintegral equationsin coordinate space, the kernels
of these equations being expressed in terms of func-
tions u and v that obey the Bogolyubov equations with
anonlocal gap A. In that case, the Bogolyubov equa-
tions are integro-differential ones, so that the resulting
problem presents a real challenge. A method for solv-
ing such equations was developed in [3], but it proved
rather cumbersome. It is well known that a conven-
tiona iterative procedure for solving the gap equation
in nuclear systemsis characterized by avery slow con-
vergence;, as a result a few thousand iterations are
required for obtaining an accurate result. Sinceit isnec-
essary to solve integro-differential Bogolyubov equa-
tions at each step of the iterative process, a direct
method of iterations consumes an enormous amount of
machine time.

In order to simplify the problem of determining the

ap A, we make use here of the method proposed by
V.A. Khodel, A.V. Khodel, and JW. Clark (KKC) [7]
for solving the gap equation in the case of a nonlocal
interaction. Originally, this method was developed for
infinite nuclear matter, but it is applicable to any case
where the gap A is much less than the Fermi energy €.
The main computationa difficulties within the conven-
tional iterative process stem from the fact that the inte-
gral gap equation isessentially nonlinear, so that alarge
number of iterations are required to solve it. Here, the
convergence of an iterated series greatly depends on the
choice of a zero-order iteration. In the KKC method,
the problem of nonlinearity is sidestepped by consider-
ing that a nonlinear character of the equation is impor-
tant for the gap magnitude, but not for its momentum
dependence. As a matter of fact, the momentum depen-
dence is determined by integrals over vast regions of
momentum space, the region near the Fermi surface,
where the nonlinearity in question is sizable, contribut-
ing insignificantly to those integrals. If the parameter
AJeg is small, the functional form of the momentum
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dependence of the gap does not change with its magni-
tude. For the gap A(k), the authors of [ 7] used the ansatz
AK) = Apx(K), where the first factor is a constant A =
A(kg), while the second factor is a gap-shape function
normalized by the condition X (kz) = 1. Upon the substi-
tution of this ansatz, the original nonlinear integral
equation reducesto a set of two equations. Of these, the
first, that which determines the gap-shape function
X(K), is a nonhomogeneous integral eguation whose
kernel is virtually independent of Ag, a circumstance
that smplifies significantly the problem of finding its
solution. If the function x(k) is known, the equation for
the gap amplitude A becomes a nonlinear algebraic
equation, which can be solved be conventional meth-
ods.

In the zero-order approximation of the KKC
method, the gap-shape function x©(k) is calculated at
Ap = 0. After that, the gap amplitude in the zero-order

approximation, AD, can easily be found for a given
form of the momentum dependence. In the next
approximation, the quantity A(FO) is substituted in the
equation for the function x"(k), which in turn deter-

mines AY. The entire procedure is then repeated as

many times as is required for achieving convergence.
Conceptually, the KKC method does not introduce
additional approximations in relation to the conven-
tiona method relying on direct iterations of the gap
equation; it only rearranges the conventional iterative
scheme improving the convergence. As arule, even the
zero-order approximation of the KKC method yields a
fairly accurate result [7, 8]. Concurrently, arbitrariness
in choosing the zero-order iterative approximation
A(K) is removed in this method.

The KKC method can be extended to the case of
nonzero temperatures (T # 0) [7, 8]. Asaresult, it turns
out that the gap-shape function is virtually independent
of T. Thisis because, at low temperatures, which are of
prime interest in the problem being considered (the
critical temperature T, = 0.57A; < &), paticles are
redistributed only in a narrow interval of width T < T,
near the Fermi surface, but this has virtually no effect
on the gap-shape function. In other words, the depen-
dence of A onkand T can be factorized, to a high accu-

racy, as

Ak, T) = Ae(T)x (k). ey

In semi-infinite nuclear matter, there arises an addi-
tional coordinate dependence of all quantities. How-
ever, al physical validations of relation of the type (1)
with a gap-shape function that depends on the coordi-
nates and momenta, but which is independent of T, and
with a gap amplitude Ax(T) dependent only on T are
preserved. This gap amplitude can be determined from
the asymptotic value within nuclear matter, a value that
obviously coincideswith that for infinite nuclear matter
and which can be determined quite straightforwardly.
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In order to determine the gap-shape function, we can
make use of the gap equation for T — T, in thislimit,
the equation in question becomes linear, and its kernel
isdetermined by the properties of the normal system. In
the present study, we apply this method to semi-infinite
nuclear matter because, in that case, it is much ssimpler
than the direct iterative method.

2. KKC METHOD FOR SEMI-INFINITE
NUCLEAR MATTER

In a symboalic form, the gap equation at a nonzero
temperature can be written as [9, 10]

A(T) = VEAN(T)A(T), 2)

where V%, is the effective pairing interaction in the

model subspace S, while A; is the superfluid two-par-
ticle propagator defined in this subspace.

Accordingto[7, 8], the temperature and momentum
dependences of the gap operator A(k, T) in homoge-
neous nuclear matter can be factorized in the form (1),
where the gap-shape function x (k) can be considered to
be independent of T up to the critical temperature T. If
the temperature T iscloseto T, the gap A isnegligible,

whereas the propagator Ag(T) in equation (2) tends to

the two-particle propagator Ay(T) for the norma sys-
tem. Thus, equation (2) taken at T = T, reduces to a
homogeneous linear integral equation, which can be
treated as an equation for X (k). Its solution correspond-
ing to the eigenvalue of A = 1 isthe required gap-shape
function.

We will now use the KKC method to calculate the
gap operator in semi-infinite nuclear matter nonhomo-
geneous along the x axis. As in [2], its boundary is
taken for the x = 0 plane, nuclear matter itself is
assumed to occupy the region x < 0, and the Woods—
Saxon potential U(x) having the depth of U, = 50 MeV
and the diffuseness parameter of d = 0.65 fm isused for
a mean fidd. We assume that the temperature depen-
dence can be factored out of the coordinate and momen-
tum dependencesin aform similar to (1):

A(Xq, Xo, KE; T) = A(T)X (X, Xo, K2). 3)

Here, k stands for a two-dimensional momentum in
the plane s orthogonal to the x axis. We will use the
effective pairing interaction that was calculated in [2] for
the Paris potential [6] taken in the separable form [4, 5]

3
Vk k) =3 Nai(k)g; k),
ihj=1
where k and k' are the relative momenta prior to and
after scattering, respectively. Asin [2], the original nor-
malization of the form factors from [4, 5] was changed
in such away as to ensure fulfillment of the conditions

)
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g,(0) = 1. For this choice of the nucleon—nucleon poten-
tial, the effective interaction also assumes a separable
form [2]. Specifically, we have

Ve (Xa, Xor Xar X4 ké, klmz)
, " (%)
= ZAij(X’ X)gi(ka, X)9;(Kg, X),
ij
where X = (X, + %)/2, X' = (X5 + X )/2, X = X| — %o, X = X3 —
X, and gi(ké, X) is determined by the inverse Fourier
transformation of the form factor g(k% + k>) with

respect to the variable k,. Obvioudly, the gap-shape
function can also be represented as

X %o kE) =5 Xi(X)@i(KE, ). (©)

Substituting relations (3)—(6) into (2) at T = T, we
find that the components x; satisfy the equations

Xi(X) = %Idxldxz/\n(xa X31) o
X Bn(X, X3 T Xm(X2),

where

dk
BM&xgn=IZDw@wH@m)

(2m)’

X X X
X gn(KE ) AKa * 5, Xa =5 Xo+ S0 (8)
X,
2 b
In order to calculate the propagator Ay(T), we will

make use of the Matsubaratemperature technique [11].
For T > 0, it is necessary to evaluate the sum

Ao(rg, o ra g T)

ké; Td

XZ_ D

C))

T - +0-

- _Tz(g(rla r3 G G2 ra T)eZnT

Here, {,,= 2n+ 1)1i T, while§(r;, ry, {,,; T) arethetem-
perature Green's functions, for which we employ the
pole expansion

PA(r)9x(r")

1
T

G(r,r, ¢, T) = z
A

where U isthe chemical potential, €, stands for the sin-
gle-particle energies of the system without allowance
for pairing, and ¢,(r) are the corresponding single-par-
ticle eigenfunctions. In the case of semi-infinite geom-
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Fig. 1. Contour of integration in (14).

etry, theindex A represents the set of quantum numbers
{n,Kkp}; that is,
ik 5
or(r) = ya(x)e ", (1D)

where y,(X) is a function that is obtained as a solution
to the one-dimensional Schrodinger equation with a
potential U(x) and which corresponds to the energy €,

related to €, by the equation €, = €, + k/2m.
Substituting (10) into (9), we obtain

Ag(r, o rgra T) = ZA)\)\'(T)
n (12)

x 0 (r ) Oy (ra)r(r) o (ra),
where

(T (13)

- _ e
An(D) TZR%—a+meg—q+m

T-+0

Following the Luttinger—Ward method [11], we
replace the sum in [13] by the integral

An(T)

e’

:_LI (14)
2 (7 g, + )+ £ —p) (€ +1)

T-+0

along the contour I (see Fig. 1) circumventing the
poles of the function

f(Q) = U +1) (15)
in the ¢ plane.

The contour I' can be transformed into I, and the
integral in (14) can easily be calculated. The result can
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be represented as
1—Ny(T) = Nx(T)

An(T) = e, +&,—2)

: (16)

where
N, (T) = 1/(e® T+ 1).
In amore detailed notation, we have
Ao(Xa, X, Xa, Xai K3 T)

_ 1— Ny (K3 T) =N, (K3, T)
nlznz €y, + €, + Ko/m—2p

(17)

(13)

X Yo, (X0) Y, (X3) Yn, (X2) Vi (Xa)-
Substituting (18) into (8), we obtain
de
(2m

Bi(X, X' T) = —ZI

(19)
| N (k ’ I) an( o ) l (k X)g (kD X)
nln2 il NN, !

sl+sz+kD/m 2u

where

O (K X) = [O0E, X)Yo, 5K+ 5040, B = 5. (20)

We note that, in [2], the effective interaction V'
was defined for a model subspace such that the propa-
gator A; includes al negative-energy single-particle
states. For this reason, summation over the indices n,

and n, and integration with respect to k is constrained
by the condition

g, +k3/2m<0. 1)

The above formulas determine the kernels of the set
of equations (7) for the components of the gap-shape

function X(x,, %,, k> ). A solution to this set of equations

must be substituted into (3), together with the factor
A(T), which can be found for X —= —oo (see above)
and which therefore coincides with the gap value in
nuclear matter at the Fermi surface.

3. KKC METHOD FOR INFINITE NUCLEAR
IN THE CASE OF A SEPARABLE
NUCLEON-NUCLEON POTENTIAL

In the present study, the equations presented in the
preceding section will be solved for semi-infinite
nuclear matter. Prior to doing this, however, wewill test
here the accuracy to which relation (1) holdsin infinite
nuclear matter (that is, the accuracy of the zero-order
approximation of the KKC method) for the specific

BALDO et al.

form that we use for nucleon—nucleon interaction—the
separable form [4, 5] of the Paris potential. Initially,
this potential wasused in [12, 13] to study superfluidity
in neutron matter and in nuclear matter within Brueck-
ner theory. Here, we present some results of these cal-
culationsin aform that is convenient for analyzing the
temperature dependence of the gap-shape function. For
the separable potentia (4), the momentum dependence
of the gap A is determined by the coefficients C; in the
sum

Ak T) = 5 C(Ma(K). (22)

As a matter of fact, it is necessary to demonstrate
that the ratios of the coefficients C; are independent of
T. Theseratios are displayed in Tables 1 and 2 for neu-
tron matter and nuclear matter, respectively, at several
Fermi momentum (ki) values for which the gap A is
sufficiently large.

From these tables, it can be seen that, although the
coefficients C; themselves change noticeably with tem-
perature, the ratios C,/C, and C,/C, are independent of
T to within 2 to 3% up to the critical temperature T..

Let us now investigate the convergence of the KKC
method for an infinite system in the case of a separable
potential. It should be noted that the calculations pre-
sented below differ somewhat from those in [12, 13]
because, here—in just the same way asin [2]—we use
the simplified version of Brueckner theory, setting the
effective nucleon mass m* to the nucleon massin avac-
uum and fixing the depth of the mean field at U, =
50 MeV.

Let us present basic relations of the KKC method
for the potential (4). We will first consider the case of
T = 0. The Bardeen—Cooper—Schrieffer (BCS) equation
for the gap has the form

A9 = [V(K, k)A(k)dT (23)

where dt = dPk/(2m)? and E, = /&7 + A’(K) with &, =
€ — &r. Aswasindicated above, basic mathematical dif-
ficulties encountered in solving equation (23) are asso-
ciated with asingular behavior of itskernel for A —
0. Within the KKC method, this kernel is transformed
in such away asto simplify itssingular part to the high-
est possible degree. Thisis achieved by isolating a sep-
arable term in the potential V, which is represented
accordingly as[7, §]

V(k, k') = Veo(k) (k) + W(k, k"), (24)
where
Ve = V(Kg kg), (25)
o(k) = V(K kg)/Ve. (26)
PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.1 2000
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Table 1. 1S, pairing in neutron matter: calculated temperature dependence of the coefficients C; in (22) for various values of

the Fermi momentum kg

T C, C, Cs C,/IC, Cs/C,
ke =0.60 fm
0.00 1.736 0.552 -4.82 %1073 0.318 —2.78x 1073
0.75 1.598 0.507 —4.43x 1073 0.318 —2.77%x 1073
1.20 0.751 0.238 —2.06 x 1073 0.317 —2.75% 1073
1.25 0.484 0.153 -1.33x 1072 0.316 —2.75x 1072
1.35 (=T, 1.06 x 1072 3.39x 10 —2.99 x 1078 0.320 —2.83x 1072
ke =0.84 fm™
0.00 1.933 1.356 -8.43x1073 0.701 -4.36 x 1073
1.00 1.678 1.172 —7.28x 1072 0.699 —4.34x107°
1.25 1.313 0.915 -5.67 x 1073 0.697 -4.32 %1073
1.50 0.413 0.284 -1.76 x 1073 0.689 —4.27 %1073
1.60 (=T, 1.44x 1073 9.88x 10 —6.42 %107 0.688 —4.47 x 1073
ke=1.10 fm™
0.00 1.226 1.827 -1.68 x 102 1.491 -1.37x 1072
0.75 1.021 1.522 -1.39 x 1072 1.490 -1.36 x 1072
1.00 0.568 0.841 —7.64x1073 1.480 -1.35x 1072
1.15 2.22x10°3 3.27x1073 —2.96 x 10 1.469 -1.33x 1072
1.25(=Ty) 1.08 x 1076 157 x 1078 -1.43x 108 1.459 -1.33x 107

Note: All values of the coefficients and temperature are presented in MeV units.

By virtue of the definition in (24), we have W(kg, k) =
WK, kr) = 0.

The representation of A(k) inthe form (1) leadsto a
set of coupled equations[12, 13] for the gap amplitude
and the gap-shape function. Specifically, we have

1= v, o) —2K) 27)
J 288 + DX (K)
X() = 0k) ~ [W(k, k) XK gr. 28)

2,8k + DEX7(K)
By using the potential (4) and relation (26), we
arrive at

(k) = Y 9gi(K), (29)
where |
@ = > Mg (Ka)IVe (30)
with |
Ve = 3 Njaika)g;(ke). (31
ij
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Further, we have

W(k, k') (32)

Y V@i (K)g; (k)
ij

where
Yii = Aij—Ve@ Q. (33)

The gap-shape function can be sought in the form

X(K) =5 xi6i(K). (34)
Equations (27) and (28) then become

1= —VFZ(RBinja (35)
i

Xi = (ﬁ—zyijBnXh (36)
il

where
_ 9i(K)g;(K)
= —I 2E|i dt (37)
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Table 2. 1S, pairing in nuclear matter: cal culated temperature dependence of the coefficients C; in (22) for various values of

the Fermi momentum kg

BALDO et al.

T C, C, C; C,/ICy Cy/C,
ke =0.80 fm™
0.00 2.008 0.831 —6.20 x 1072 0.414 -3.09 x 1072
0.75 1.906 0.786 -5.88 x 1072 0.413 -3.09x 1072
1.20 1.327 0.542 —4.07 x 1072 0.409 -3.07x 1072
1.30 1.045 0.425 -3.20x 1072 0.407 —-3.07 x 1072
1.40 0.572 0.231 -1.75%x 1072 0.406 —-3.06 x 102
1.45 0.128 5.21 x 1072 -3.93x 1073 0.405 -3.06 x 102
1.50 (=T, 3.85x 1073 1.56 x 103 -1.18x 10 0.405 -3.07x 1072
ke =0.90 fm™
0.00 1.587 0.869 —6.98 x 1072 0.547 —4.40 x 1072
0.80 1.327 0.724 —5.83x 1072 0.546 —4.39x 1072
1.20 1.07 x 1072 5.76 x 103 —4.68 x 1074 0.539 —4.38x 1072
1.25 2.03x 10 1.09 x 1074 -8.94x 1076 0.538 —4.39x 1072
1.30 (=T 3.65x 1076 1.96 x 1076 -1.61x 107 0.536 —4.41 x 1072
ke =1.08 fm™
0.00 0.791 0.729 —6.02 x 102 0.921 —7.60 x 1072
0.40 0.684 0.630 -5.20 x 102 0.920 ~7.59 x 1072
0.50 0.533 0.491 —-4.05x 1072 0.919 —7.59 x 1072
0.60 1.87x 1073 1.72x 1073 —1.42x 104 0.919 —7.58 x 1072
0.65 (=T 1.74x 1073 1.59 x 103 -1.31x10* 0.914 —7.56 x 1072

Note: All values of the coefficients and temperature are presented in MeV units.

with

2. a2 2 f
Ec = [&+AD X|9|(k)g-

The KKC equations are more convenient than the
original BCS eguation in that the kernel of the integral
equation (28) features no singularity for Ay — 0
because the residual interaction W vanishes at the
Fermi surface. For the separable forces considered

here, this corresponds to the identity Z Yij gi(kﬁ) =0;

by virtue of it, the singular part of the contribution of
theintegral in (37) tothesumin (36) vanishes. It should
berecalled that, for equationswith nonsingular kernels,
iterative procedures work well, ensuring a compara
tively fast convergence. As to the singular equation
(27), it isin fact an algebraic equation, which can be
solved by standard methods (for example, by Newton’'s
method) not requiring the use of an iterative process. In
the zero-order approximation of the KKC method, we
can set Ar = 0 in the denominator on the right-hand side
of (28) [for a separable version, in the denominator on
the right-hand side of (37)]. The set of equations (36)
then reduces to a set of linear equations for the func-

tions x\” because, in this approximation, the coeffi-
cients

2 2
= (U0, )

feature no unknown quantities. It was shown in [7, 8]
that even the gap-shape function of the zero-order
approximation, x (k) [it is obtained by substituting the

resulting coefficients xi(o) into the sum in (36)],

describes the momentum dependence A(p) quite accu-
rately. In the next approximation, the substitution of

xi(o) into the denominator on the right-hand side of (37)

determines the matrix Bi(jl)(AF), which depends on A

parametrically. The substitution B{’(Ay) and x into

(35) leads to an equation for A;. Itssolution AL repre-
sents the gap amplitude in the zero-order approxima-
tion of the KKC method. At the next iteration step, the
matrix B{”(AY) is substituted into (36), whereby the

gap-shape function X" is determined in the next

approximation; after that, the process is reiterated.

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.1 2000
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Table 3. Illustration of convergence within the KKC method at T = 0: coefficients x; in equation (34) versus the number N of

iteration
N A, MeV X1 X2 X3
M =-16 MeV
0 0.98508579 0.51496182 1.7332633 —8.3303282 x 10~*
1 0.97535836 0.51247844 1.7354232 —9.0958849 x 10~4
2 0.97551858 0.51252118 1.7353864 —9.0834607 x 10~4
3 0.97551858 0.51252047 1.7353870 —9.0836649 x 10~4
4 0.97551858 0.51252047 1.7353870 —9.0836649 x 10~4
n=-8MeV
0 0.19878907 0.30019636 2.6898012 —1.8056271 x 1072
1 0.19863648 0.30006468 2.6899770 —1.8068021 x 1072
2 0.19863648 0.30006487 2.6899768 —1.8068005 x 1072
3 0.19863648 0.30006487 2.6899768 —1.8068005 x 1072
n=-2MeV
0 0.011648583 0.083704097 4,1089851 —5.6122312 x 1072
1 0.011648583 0.083703371 4,1089871 —5.6122463 x 1072
2 0.011648583 0.083703371 4.,1089871 —5.6122463 x 1072

A fast convergence of the KKC interaction scheme for
separable forces is illustrated in Table 3, where solu-
tions to the KKC equations are displayed versus the
number of iterations, N, for several values of the chem-
ical potential .

It can be seen from Table 3 that even the zero-order
iteration of the KKC method ensures a precision at a
level of afew percent and that, upon the second or the
third iteration, eight decimal places prove to be stable.
It should be noted that the smallness of Ar (at small U]
improves here the convergence of the iteration process,
in contrast to what usually occurs in applying a direct
method of iterations, where such a smallness generates

-
~.
~.

Fig. 2. Gap-shape function x®(k) in homogeneous nuclear
matter at the chemical-potential values of p = (solid curve)
—16, (long dashes) -8, (short dashes) —2, and (dotted curve)
3 MeV. The dash-dotted curve represents the function
X(K)/10 at p =9.2 MeV.
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serious problems. Owing to this, the use of the KKC
method is especialy appealing for T # 0, because the
gap amplitude Ar tendsto zero as T approaches T.

The gap-shape functions of the zero-order approxi-
mation, X ©(k), aredisplayed in Fig. 2 for several values
of u (or kg). These functions were obtained by substi-

tuting the coefficients xi(o) (rowsin Table 3 that corre-
spond to N = 0) into thesumin (34). It wasindicated in
[7, 8] that these functions determined at different p val-
ues have many featuresin common—in particular, they
vanish at close values of k = ky(kz), which determine

approximately the critical Fermi momentum ki corre-

sponding to disappearance of superfluidity in nuclear
matter [7, 8]. Thisis confirmed by datain Fig. 3, which
shows Ar as a function of . The critical value |, at
which Ap vanishes is about 9.2 MeV, which corre-

sponds to the Fermi momentum of ki = 1.69 fm.

Ap, MeV Ap % 10°, MeV
K 42.0
0.8 |
0.4 10
0 | | | 0
-15  -10 -5 0 5

U, MeV

Fig. 3. Gap-operator amplitude Ar in homogeneous nuclear
matter as afunction of p.
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Table 4. Illustration of convergence within the KKC method for T # 0 (1 =-16 MeV): coefficients x; in equation (34) versus

the number N of iteration

T, MeV N Ap, MeV X1 X2 X3 % 1074

0 0 0.985085 0.514961 1.73326 —8.33032
1 0.975358 0.512478 1.73542 —9.09588

2 0.975518 0.512521 1.73538 —9.08346

3 0.975518 0.512520 1.73538 —9.08366

0.100 0 0.982225 0.513799 1.73418 —8.48253
1 0.975357 0.512491 1.73541 —9.09220

2 0.975470 0.512521 1.73538 —9.08346

0.200 0 0.973900 0.513798 1.73418 —8.48265
1 0.966927 0.512528 1.73537 —9.07982

2 0.967046 0.512559 1.73535 —9.07095

0.300 0 0.923231 0.513805 1.73418 —-8.48160
1 0.916257 0.512746 7.73518 —9.00720

2 0.916389 0.512775 1.73516 —8.99854

0.400 0 0.794579 0.513872 1.73412 —8.47207
1 0.788421 0.513239 1.73475 —8.84127

2 0.788558 0.513261 1.73473 —8.83438

0.500 0 0.517052 0.514033 1.73399 —8.44951
1 0.514330 0.514038 1.73404 —8.56942

2 0.514400 0.514044 1.73404 —-8.56732

0.520 0 0.423078 0.514427 1.73368 —8.39659
1 0.419142 0.514230 1.73387 —8.50364

2 0.419249 0.514237 1.73387 -8.50113

0.540 0 0.286995 0.514502 1.73362 —8.38632
1 0.284619 0.514439 1.73369 —8.43175

2 0.284686 0.514443 1.73368 —8.43071

0.550 0 0.178203 0.514540 1.73359 —8.38096
1 0.177372 0.514549 1.73359 —8.39412

2 0.177395 0.514550 1.73359 —8.39389

0.552 0 0.147605 0.514595 1.73355 —8.37362
1 0.146167 0.514571 1.73357 —8.38672

2 0.146208 0.514572 1.73357 —8.38639

0.554 0 0.107134 0.514603 1.73354 —8.37248
1 0.106174 0.514593 1.73355 —8.37903

2 0.106202 0.514593 1.73355 —8.37888

0.556 (=T,) 0 3.24171 x 1072 0.514611 1.73353 —-8.37134
1 3.26736 x 1072 0.514615 1.73353 —-8.37129

2 3.26660 x 1072 0.514615 1.73353 —8.37130

A transition to nonzero temperatures is rather
straightforward. All the relations presented in this sec-
tion remain in force, with the exception of expression

(37) for By, where there arises atemperature-dependent
factor; that is,
_ (K9 (K,
By(T) = [ T tanhEQT%jT. (39)

Table 4 illustrates the convergence of the KKC pro-
cedure for nonzero temperatures. It can be seen that the
rate at which the iterations converge is close to that at
T = 0. To avoid encumbering the table, the result that is
obtained upon the third iteration and which is virtually
coincident with the result of the second iteration is pre-
sented only for T = 0. Thelast of thetemperatureslisted
inthe table isvirtually coincident with the critical tem-
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peraturefor u=-16 MeV (T, = 0.5562 MeV). It should
be emphasized that a conventional iterative procedure
for solving the BCS equation for A(T) near T, requires
afew thousand iterations and that a determination of T,
to a satisfactory precision is very difficult within this
method. In the present study, T, is determined by
directly solving equation (37) with the quantity B;(T)
specified by expression (39) at A = 0 [recall that, at a
nonzero temperature, this expression features no singu-
larity at the Fermi surface since the temperature-depen-
dent factor in (39) vanishes there]. The critical tempera-
turefoundinthisway isT,=0.1127 MeV a p =-8 MeV
and T, = 0.0065 MeV at p = -2 MeV. By using the val-
ues of Ag(T = 0) from Table 3, it can easily be shown
that, for al three values of the chemical potential  that
are considered here, theratio T/AR(T = 0) isvery close
to the BCS value of 0.57. This is in accord with the
results obtained in [7, 8] for nonseparable potentials.

4. RESULTS OF THE CALCULATION
FOR SEMI-INFINITE NUCLEAR MATTER

Let us now return to the problem of semi-infinite
nuclear matter. Equation (7) can be considered asapar-
ticular case of amore general set of homogeneous inte-
gra equations

Xi(X) = A(T)ZJ’dX'K”(X, X5 T)X;(X), - (40)
j

where K;;(X, X'; T) stands for the kernels of these equa-
tions at an arbitrary temperature T, while A(T) is the
corresponding eigenvalue. The critical temperature can
be determined from the condition that the minimal
eigenvalue A(T,) isequal to unity. This method, which
relies on solving equations (40) for many valuesof T, is
possiblein principle, but it is very cumbersome. In the
case being considered, where pairing takes place in
infinite nuclear matter, the value of T, for semi-infinite
nuclear matter isidentical to that for infinite matter. A
much simpler way therefore consistsin determining the
critical temperature T, for infinite matter and inusing T,
in equation (7) as a known parameter. In particular, we
have already seen that, at the value of | =—-8 MeV con-
sidered here, T, = 0.1127 MeV.

Given immediately below is a brief account of the
computational scheme used hereto solvethe set of inte-
gra equations (7). ThekernelsK; (X, X') of these equa-
tions are determined by the convolution of the coeffi-
cients A\, (X, X,) in the expansion (5) of the effective

interaction V% with the analogous coefficients

B (X;, X; To in the expansion of the propagator
AT = T,). The former were calculated in [2] for the
chemical-potential value of 4 = -8 MeV, which was
chosen in such a way as to approximate more closely
the situation in actual nuclei. As a matter of fact, the
calculation was performed only for the interval -8 fm <
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X < 8 fm, because the calculation of A, (X, X) for
greater |X| valuesistrivial. On one hand, it was shown
in [2] that, in the region X, X' < —4 fm, the quantities
Nj(X, X)) are virtually coincident with the correspond-
ing coefficients in the effective interaction calculated
for infinite nuclear matter. For X, X' > 4 fm, the interac-

tion V"%, tendsfast to the free T matrix continued ana-
lytically to the region of negative energies and taken at
two-particle energy of E =2p. On the other hand, it was
also shownin[2] that, at afixed value of X, = (X+ X')/2,

the effective interaction V"% (X, X') decreases fast with
increasing t = X — X', so that the integrals involving
Nj(X, X)) can be cut off at [t| > 4 fm. Taking all the
above into account, we conclude that theinterval (-8 fm,
8 fm) is quite sufficient for obtaining al values of the
effective interaction necessary for ensuing calculations.
As to equation (7) for the gap-shape function, a much
vaster region of X, {X} = (-L;,, L), with a minimal
value of L;, = 40 fm (the value of L., = 8 fm is suffi-
ciently large), isrequired for solving it. The reason why
it is necessary to extend this region is associated with
the smallness of A (Ar = 1 MeV), which leads to a
large correlation length (§ ~ v/Ag = 10 fm). In order
that effects of the left boundary condition not distort
substantially the asymptotic behavior of the gap-shape
function within nuclear matter, the distance between
the left boundary and the point being considered (for
example X = —10 fm) must not be less than the correla-
tion length. The minimal value of L,, = 40 fm was deter-
mined empirically. For X, X' < -8 fm, the calculation

employed the effective interaction Vg (t) that was

found for infinite nuclear matter and which is depen-
dent only on the differencet = X — X

The propagators B|O o represent anew element in the

problem being considered. They can be calculated by
formulas (17)—(19), where the wave functions y,(x) are
solutions to the one-dimensional Schrodinger equation
with the Woods-Saxon potential U(x). Here, we are
obviously dealing with a continuous spectrum; there-
fore, summation over n, and n, in equation (18) actu-
ally means integration with respect to the one-dimen-
sional momenta p, and p, (for details, see [2]). Recal
that the model subspace S, includes only negative-
energy single-particle states; therefore, the regions of
integration in (18) with respect to p,, p,, and g, do not
contain high momenta, so that the evaluation of therel-
evant integrals does not involve considerable difficul-
ties.

That the X space is vast generates considerabl e dif-
ficulties in directly solving equation (6) in coordinate
space (this method was used in [2] to solve the analo-

gous equation for V"% ). The point is that constructing

a solution by this method requires inverting a 3N x 3N
matrix, where N is the number of nodes in the interva
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A(X), MeV
3T U=-16 MeV
2F

Fig. 4. Zero moment Ay(X) of the gap operator (dashed
curves) and function Ag(X) (solid curves) for two values of
the chemical potential .

VP (X) x 1073, MeV fm?
O —

-0.8

Fig. 5. Effective interaction °V2ff (X) at p = (solid curve)
-16 and (dashed curve) -8 MeV.

(—Lin, Ley)- A minimal step in X necessary for achieving
reasonable accuracy is h = 0.1 fm, in which case we
obtain a 2000 x 2000 matrix. The inversion of such
matricesis not always stable.

It is much more convenient to expand the gap-shape
functioninaFourier seriesintheinterval (-L,,, L.,). We
have

Xi(X) = 3 X fa(X), (41)

BALDO et al.

where f(x) stands for sin2m(X - X /L) and
COS(ZT[n(X - Xc)/l—)’ L= Lin + Lex and Xc = (Lex - Lm)/2
The kernels Kj;(X, X') are expanded in double Fourier
series. As aresult, we obtain a set of homogeneous lin-

ear equations for the Fourier coefficients X,
3

N
X'=3 Y KX

j=1in=1

(42)

with a matrix K{" of moderately large dimensions.

Here, we have used the interval { X} = (40 fm, 10 fm)
(X =-=15fm), in which case a precision better than 1%
could be achieved with N = 101 functions. Once the

coefficients X have been determined, the gap-shape

function x(X, X, ké) can be found by formula (6). In
order to obtain the full gap at zero temperature, A(CX, X,
ké ; T=0), itisnecessary to multiply X by the constant
Ar = 0.200 MeV, which was found in the cal cul ation for
infinite nuclear matter.

In order to represent the results in clearer form, we

will evaluate the zeroth moment of the function x(X, x,
s) in the relative coordinate:

Xo(X) =IdsIdtx(X+t/2, X—t/2,9) = in(X).(43)

In accordance with [2], we have used here the normal-
ization condition g(k> = 0) = 1. Let us also consider the
function

Xe(X) = 3 xi(X)ai(K* = ke(X)), (44)

where ki(X) = /2m(p—U(X)) is the local Fermi
momentum [Kx(X) = 0 for u — U(X) < 0]. The corre-
sponding moments of the gap operator are Ay(X) =
DpXo(X) and Ap(X) = ApXe(X). The last function is of
paramount importance for the interpretation of the
results. It determines approximately the matrix ele-
ments of A for single-particle states occurring near the
Fermi surface. For semi-infinite matter, this approxi-
mation was analyzed in [2, 14]. We note that this ver-
sion of the local approximation is usualy used to
describe pairing in finite nuclei [15]. Its accuracy for
neutron stars was investigated in [16]. It should be
emphasized that, here, this approximation is invoked
only to obtain aclearer representation of the resultsthat
were computed without using it.

Similar calculations were aso performed for the
chemical-potential value of p =-16 MeV, which is self-
consistent for semi-infinite nuclear matter and which
obviously coincides with the chemical potential of infi-
nite matter. In this case, T, = 0.556 MeV and Ap =

0.975 MeV.
The functions Ay(X) and Ag(X) aredepicted in Fig. 4

for the two values of . It can be seen that al curves
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have pronounced surface maxima. In order to assessthe
extent to which the existence of these maximais dueto
a large effective pairing interaction in the surface
region [2] (seeFig. 5), we considered amodel situation
where the propagator is calculated for semi-infinite
matter, while effective interaction is determined for
infinite matter. The functions Ag(X) computed for the
realistic and model situationsare displayed in Fig. 6 for
the two values of the chemical potential p. It can be
seen that the enhancement of the effectiveinteractionis
responsible for one-half of the surface effectinAat u =
—8 MeV and only for one-quarter of it at L = —16 MeV.

In order to render the analysis of the p dependence
of the surface effect more convenient, the gap-shape
functionisdisplayed in Fig. 7 for thetwo values of L in
guestion. It can be seen that the surface effect in A is
more pronounced at i = —8 MeV. Indeed, the ratio of
the surface-maximum height to the asymptotic valuein
the interior of nuclear matter isabout 1.8 in this case; at
the same time, this ratio is about 1.5 at 4 = —16 MeV.
Moreover, the position of the maximum is closer to the
surface (X=0) at p =-8MeV than at u =16 MeV.

It should be noted that the surface effect for A
proved to be weakened considerably in relation to the
effective interaction itself. This is because of a strong
coupling between the volume and the surface, an effect
that is peculiar to the gap equation owing to alarge pair
correlation length, much larger than the surface-layer
thickness. This coupling isrealized in any purely quan-
tum calculation, but it can belost in part if someversion
of the local approximation is used. The coupling in
guestion suppresses somewhat the surface maximum in
A and weakens the L dependence of the surface effect.

The W dependence of the gap is determined by sev-
eral factors. First of al, the effective pairing interaction
depends on |, as can be seen from Fig. 5. The asymp-

totic value of |°V2ff| for X> Qisgreater for the smaller

value of |u|. Thisis due to a direct dependence of V'
on the two-particle energy E = 2 [2]. An inverse pat-
tern is observed for negative X and in the vicinity of the

point X = 0, where |°V§ff takes a smaller value for the
smaler value of |ul—this is associated with the
momentum dependence of the form factors g(k?),

which are taken at k2 = k2(X) = 2m(p — U(X)). As a

result, the changein V"% near the surfaceisgreater for

smaller |u|, and this is the circumstance that enhances
the surface effect in A with decreasing |u|. However,
there exists an effect that contributes oppositely, ren-
dering the p dependence of the height of the surface
maximum in A less pronounced. We mean here that
with decreasing ||, Ar decreases, which results in the
growth of the correlation length. This in turn leads to
the weakening of the surface effect as such and of its 4
dependence.
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Ap(X), MeV
1.5-

H=—16 MeV

1.0

0.5

X, fm

Fig. 6. Function Ag(X) as calculated with the effective inter-
action in (solid curves) semi-infinite and (dashed curves)
infinite matter.

Xr(X)

1.5

1.0

0.5

Fig. 7. Gap-shape function X(X) at 1 = (solid curve) —16
and (dashed curve) -8 MeV.

The inclusion of the energy dependence of pairing
can prove important in considering the nucleon-stabil-
ity boundary (drip line), at which the chemical potential
M vanishes. An analysis of the situation that arises at
small p will be performed in a separate study.

5. CONCLUDING REMARKS

The present article completes a series of studies
devoted to a microscopic analysis of pairing in the 'S,
channel in semi-infinite nuclear matter. The approach
developed in these studies relies on considering the
equations of the theory directly in the coordinate space
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without recourse to any version of the local approxima-
tion. In the present study, we have solved the gap equa-
tion for the model subspace containing only negative-
energy single-particle states. In doing this, we have
employed the effective pairing interaction that was cal-
culated previoudly in [1, 2] and which takes into
account correlations in the complementary subspace
incorporating positive-energy single-particle states.
Since this effective interaction is nonlocal, it induces a
nonlocal gap A; as a result, the corresponding Bogo-
lyubov equations are integro-differential ones. A
method for solving such equations in the case of semi-
infinite geometry was developed in [3], but it proved
rather cumbersome. Therefore, a direct iterative
method for solving the gap eguation has been aban-
doned here as uneconomic—this method, which
requires solving such integro-differential equations at
each iterative step, consumes an enormous amount of
machine time—in favor of the KKC method devel oped
recently in[7, 8] for solving the gap equation ininfinite
nuclear matter and infinite neutron matter. We have
confirmed the efficiency of the KKC method for infinite
nuclear matter in the case of separable nucleon—
nucleon forces that we use. For semi-infinite nuclear
matter, we have restricted our consideration to the zero-
order approximation in the temperature version of this
method, in which case the gap A dependent on temper-
ature, coordinates, and momenta can be represented as
the product of the factor Ax(T) dependent only on the
temperature and the gap-shape function x(X;, %, K
that is independent of temperature, but which depends
on coordinates and momenta. The gap-shape function x
has been found by solving the gap equation linearized
near the critical temperature T = T, so that the resulting
kernel of this equation is determined by the properties
of the normal system. The factor Ax(T), which coin-
cides with the corresponding quantity in infinite
nuclear matter, can be found straightforwardly. The gap
operator at zero temperature is determined as the prod-
uct of the function X(x;, X,, ko) and the factor Ax(T = 0).
This method for solving the gap equation in the case of
a semi-infinite system is much simpler than a direct
iterative method.

Our calculations have been performed for two val-
ues of the chemical potential, p = —16 and -8 MeV. Of
these, the first corresponds to the actual value of the
chemical potential of semi-infinite nuclear matter—
needless to say, it coincides with that for infinite mat-
ter—while the second was chosen in such a way that
the calculations could reproduce more closely the situ-
ation in finite nuclei. The gap magnitude at the Fermi
boundary, Ax(T = 0), depends on [ for two reasons. The
first stems from a direct dependence of the effective

pairing interaction V'; on the energy E = 2. The sec-
ond is associated with the momentum dependence of

the form factors g;(k?), which are taken at k*> = kﬁ X) =
2m(u — U(X)). As the result of the concerted effect of

BALDO et al.

these two factors, the surface effect is enhanced both in
the effective pairing interaction and in the gap A with
decreasing || Because of a strong coupling between
the volume and the surface, aphenomenon that isinher-
ent in the gap equation, the surface effect is much less
pronounced in Ag(X) than in the effective interaction.
However, this effect and its dependence on the chemical
potential 1 are important even in the case of A. This
dependenceisexpected to beimportant in calculating the
drip line, near which the chemical potential tendsto zero.
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Abstract—The s-wave differential equations for the Yakubovsky components characterizing the nnpp system
have been solved by the method of cluster reduction. Two-cluster scattering at energies bel ow the three-particle
threshold in the singlet and triplet spin states has been considered. The MT I-111 potential model has been used
to simulate nucleon—nucleon interaction, and the Coulomb interaction between the protons has been taken into
account. The singlet and tripl et scattering lengths have been cal cul ated for proton interaction with the triton (3H)
and for neutron interaction with the 3He nucleus, and the deuteron—deuteron scattering length has also been
determined. Thelow-energy behavior of the phase shifts and inelasticity factorsin the corresponding scattering
channels has been investigated. The features of the 0* resonance in the “He nucleus have been determined.

© 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The resonating-group method (RGM) is tradition-
ally used to study theoretically the continuum states of
the nnpp system. Various RGM versions were
employed in [1-6]. The development of the formalism
based on the Faddeev—Yakubovsky equations [7, 8]
provided atool for studying scattering in the nnpp sys-
tem more consistently. However, the integral form of
these equations is not quite appropriate in dealing with
systems featuring Coulomb interaction. For thisreason,
the Coulomb interaction of protons was disregarded in
[9-13], where scattering in four-nucleon systems was
investigated on the basis integral equations—in partic-
ular, on the basis of the Yakubovsky integral equations
[9-12]. Coulomb interaction is easily incorporated in
the genera formalism of the Faddeev—Yakubovsky
equations within their differential formulation [14-16],
but this leads to cumbersome sets of three-dimensional
integro-differential equations even in the simplest case
of the s-wave approximation. Only by using supercom-
puters is it possible to solve such sets directly. In the
present study, the method of cluster reduction [17-19]
is used to solve the differential equations for the Fad-
deev components characterizing the nnpp system. With
the aid of this method, reduced equations can be solved
by employing computers with quite a moderate volume
of memory.

This article reports on a continuation of studies that
were devoted to the application of equations for
Yakubovsky components to four-nucleon systems and
which were initiated by the present authorsin [18-20],
where scattering in the n®He system and bound statesin

* e-mail: yakovlev@snoopy.phys.spbu.ru

the*He nuclear system, aswell as scattering in thefour-
nucleon system, have been considered without taking
into account the Coulomb interaction between the pro-
tonsinvolved. Here, we analyze scattering in the singlet
(S=0) andtriplet (S= 1) spin states of the nnpp system.
We employ the s-wave approximation. For nucleon—
nucleon interaction, we take the MT I-lIl potential
model [20] modified as in [21]. In addition, we allow
for the Coulomb interaction between the protons.

The ensuing exposition is organized as follows. In
Section 2, we describe equations for the Yakubovsky
components corresponding to the system of identica
fermions. We perform a spin-isospin analysis of these
equations, consider the s-wave approximation, and for-
mulate boundary-value problems that correspond to
elastic scattering and rearrangement in the case of two-
cluster scattering in the nnpp system. In Section 3, we
explain the crucia points of the procedure that imple-
ments the cluster reduction of the equation and derive
effective equations that describe the relative motion of
relevant clusters. In Section 4, we discuss the results
obtained by numerically solving these effective equa-
tions and present the calculated values of the singlet
and triplet scattering lengths for proton interaction with
the triton (* *A,,) and for neutron interaction with the
SHenucleus (>*'A,,), aswell asthe calculated val ue of
the spin-singlet deuteron—deuteron scattering length
Ay Values obtained in thisway for the n®He system are
then compared with experimental data. Further, we
investigate the low-energy behavior of the singlet and
triplet phase shifts and inelasticity parameters for all
possible scattering channels in the nnpp system. The
singlet phase shift for proton-neutron scattering is used

1063-7788/00/6301-0055%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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to calculate the features of the O* resonance in the “He
nucleus.

2. DIFFERENTIAL EQUATIONS
FOR THE YAKUBOVSKY COMPONENTS
CORRESPONDING TO THE nnpp SYSTEM

Let us consider a four-particle system consisting of
two protons and two neutrons. Here, a pair interaction
potential appears to be the sum of a short-range and a
Coulomb component. In order to describethe systemin
configuration space, we make use of the Jacobi coordi-
nates X ={x;,V,, z},1 =1, 2, wherethe different values
of the subscript i correspond to different partitions of
the system (i = 1 for partition chains of the 3 + 1 type
and i = 2 for partition chains of the 2 + 2 type). The
Jacobi coordinates are expressed in terms of the particle
radius vectorsr, (k=1, 2, 3, 4) as

Xp = 0p=rg, Yy = (rp+r3)/2-ry,

Zy = (ry+r,4r3)/3=ry Xp = ry—ry,

Yo = My=Tg Zp = (ry+r,)/2—(rg+r,)/2.

The wave function W of the system is a spinor in the
7 = H; O Hs space, where Hg (#;) is alinear space
where spin (isospin) states of the system are specified.
In the isospin formalism, the particles in question are
assumed to be identical. In the present case, the
Yakubovsky components U, and U, satisfy the modi-
fied differential equations [15]

Coul

(Ho+V—E+V U, +V(P, + P)U,

= —V[(P; —=P")U,+ (P +P,)U,],
(Ho+V—E+V®™U,+V((FP'PHU,
= —V[(P"=P;)P"U,],

where H, is the kinetic-energy operator; V is a pair
nuclear nucleon—nucleon potential; VC' is the poten-
tial of the Coulomb interaction between the protons;
and P;; isthe operator of permutation of three particles,

with k being the subscript that indicates the particle not
involved in this permutation. The Yakubovsky compo-
nents U, and U, are spinorsin €.

(1)

2.1. Spin-lsospin Analysis

For the potential of nucleon—nucleon interaction, we
will make use of the MT I-11l1 model. Since this poten-
tial involves no spin—orbit and tensor components, the
total spin moment and thetotal orbital angular momen-
tum are conserved separately. Bases in the subspaces
s and #; are consistent with the two possible chains
of partitions, and this actually fixes the scheme of addi-
tion of the subsystem angular momenta in the total
angular momentum.

FILIKHIN, YAKOVLEV

In the subspace #, the basis elements for the two
schemes of addition of the angular momenta are gi-
ven by

xP0= [(((1/2, 1/2)sp,, 1/2)8,,3)S SO

x?0= ((1/2,1/2)s,(1/2, 1/2)s,,)S, S0

The basis elements in the subspace #; are constructed

inasimilar way and are denoted by [nWThebasisele-
ments of the space #¢ have the form

e“0= x®on®o @
The corresponding quantum-number sets ¥ can be
represented as

eV = (S12: S123: S S) (tyos t1oa T, T,

e(2) = (5121 S341 S: Sz) (t12! t34! T! TZ)

The expansion of theYakubovsky components U, inthe
above bases has the form

UW(X) = Uelxio Vio 201" ®

By substituting expansions (3) into equations (1)
and projecting these equations onto the basis elements,
we arrive at a set of equations for coordinate functions.
Let us separate the spin-isospin variables in equations
(2) for the S= 1 spin state of the system (for the case of
S=0, the spin-isospin analysis can be performed in a
similar way). Since there is no interaction in the sin-
glet—singlet and triplet—triplet states of a nucleon pair,
the elements of the spin—-isospin basis that correspond
to these states must be eliminated from the expansionin
(3). As aresult, the spin-isospin bases will consist of

eight dlements e\’ , k= 1, 2, ..., 8, where the super-
script values of i = 1, 2 are used as before to label basis
elements that correspond to different rules of composi-
tion of particle spins (isospins). For thetriplet state, the
elements of the spin—isospin basis and the correspond-
ing quantum numbers are displayed in Tables 1 and 2.
(For the singlet case, these quantities are compiled in
Tables 3 and 4). Further, we must find the representa-
tion of the operators from equations (1) in the basis
given by (2). Presented below are the results of this cal-
culation. Nuclear interaction depends only on the pair
spin; therefore, the operator V has a diagonal matrix
representation of the form

V = diag{ V', V', V°, V° V', V', V° V%,

where V® and V! are, respectively, the singlet and triplet
components of the nucleon—nucleon potential. The rep-
resentations of the permutation operators are specified
PHYSICS OF ATOMIC NUCLEI  Vol. 63
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Table 1. Elements of the spin-isospin basis for 3 + 1 parti-
tions and corresponding states of the nnpp system (total spin

of S=1)

el grzra]sérs]ts Sz | Tz | Sizs | Tz S T
eV 1 0 | w2 | w2 | 1 0
eV 1 0 |32 | w2 | 1 0
eV 0 1 | w2 | v2 | 1 0
eV 0 1 | w2 |32 1 2
et 1 | 0o | w2 | w2 1 1
eV 1 0 |32 | w2 | 1 1
et 0 1 |12 | 12| 1 1
el? 0 1 | 12 |32 1 1

Table 2. Elements of the spin—isospin basis for 2 + 2 parti-
tions and corresponding states of the nnpp system (total spin

of S=1)

Basis
elements

Si2

T12

Sy

T3y

—

o

1
1
0
0
1

=

O O +» kB O O

=

kP O R P B O B

[N

N = = =)

N e e

P P N O O O

Table 3. Elements of the spin—-isospin basis for 3 + 1 parti-
tions and corresponding states of the nnpp system (total spin

of S=0)

el Eféﬁts Sz | Tz | Sizs | Tazs S T
eV 0 1 | 12| w2 o0 0
eV 0 1 | w2 |32 o0 2
eV 1 o | 2| 12| o 0
eV 0 1 | w2 | 1v2| o 1
elM 0 1 | 12| 32| o 1
et 1 o |2 | 12| 0 1
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[1|P, |20
1 3
-— 20 0 0 0
4./3 4
1
-—— 00 O 0 0 0
J6
J3 1
2 200 0 0 0
1
0 035 0 0 0 0
0o oo-L L _3 .3
26 2./3 2./6 4
1 1
0 00— — 0 0
2/3 /6
0 0o0.3 43 1 1
2/6 4 2/6 43
1 1
0 00 O 0 — —
2/3 /6
[1|P; [20
1 3
— <20 0 0 0 0
4,/3 4
1
— 00 O 0 0 0
NG
J3 1
“3 30 0 0 0 0
1
0 05 0 0 0 0
0 0 1 1 3 .3
2/6 2./3 2/6 4
1 1
0 00 — — 0 0
23 /6
0 003 3 1 1
2J6 4  2./6 43
1 1
0 00 —_ =
2/3 /6

(o o o o

O0OOO000OOOdooDoOoOOoOoooooogooodg

O o 1 0
0-2-1000 0 0 00O
e :
50 0000 0 0 0f
Ho 0000 0 0 0
00 0000 0 0 0O
2PPO=5 0 0000 0 0 00
U 1 20
00 0000 0-—=-=0
0 J3 .60
Ho 0000 0 0 08
g 1 2 O
00 000-——== 0 00
0 J3 /6 O

The upper block of each of the above matrices cor-
responds to the S=1, T = 0, 2 states of the system,
while the lower block correspondstothe S=1, T=1
State.

The Coulomb potential of the problem is given by
_ ZV (1+ 271, )(l+2T )

j>i

CouI

where 1 isthe operator projecting theisospin of theith
particle onto the z axis, while\/ji = n/|xji | Here,i,j =1,
2,3, 4, x; =r;—r;; and nis the reduced proton charge
given by n = (em)/A2, with m being the nucleon mass.
In the spin-isospin basis (2), the representation matri-
ces for the Coulomb interaction can be written as

w; 0O 0 Owy,; O O O
Ow; 0O 0 Owy; 0O O
0 0 wipwy 0 0 wywsg,

o o |

00 O wywy 0O 0 wy Wy
lelo 0O Ow; O O O
DOwnO 0O Ow,; O O
EO 0 Wi Wy, O 0 Wy Wy,
g0 O wgywy 0 0 wy Wy

W, = 1/2

|
o o |

\TV1=1/2

|
=
=
o
o o

X
I
OJOOOOOooOoOoOoood
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W= W, + Wy,
where
Wy = (Vo tV3)/2, Wy = (Via+Vy)/2,
Wy = 2V 1,/ 3+ (Vi3+V,3)/6,
Wyy = 2Vg/ 3+ (Vi34 V,3)/6,
Wy = (Vi + Va3 +Vy3)/3,

Wy = (Vag+ Vi +Vy)/3,
Way = J2(Viy— (Vs + Vi5)/2)/3,
Way = N2(Vay= (Vi +V2)/2)/3

for components of the 3 + 1 type and as

w; O 0 Owy,; 0O 0 O
Ow; O 0 Owy; O O
0 O wpwy 0 0 wy Wy

[ o

N0 0 wywy 0O 0 wywy
HQwy 0 0 0wy 0 0 0
0w, 0 0 0wy 00
EO 0 wg;wy;, O 0 wy O
U

O
I

0O O wgwyg 0O 0O 0 wy

W2:1/2

=
=
o
o o
|

|

=
o
o
o o

HEI
2 o o

=]
®
o
E
|
5

X
OO00O00O00O000000004ac
|
S o o o
o o o
=
© ¢
=
© o §
o
|
=
5
4
&

o
=
=
o
o o o
oo

where
Wi = ((Via+Vp3)/2), Wiy = (Vi +Vp)/2,
Waz = 2V1/ 3+ (Vi3 + Vys)/6,
Wa3 = 2Va0/ 3+ (Vi + V)76,
Wag = —/3(Viz+ Vp3)/ 6, Wag = /3(Vyy+ V,)/6,
Wi = —/2(Vip— (Viz + Va3)/2)/3,
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Table 4. Elements of the spin-isospin basis for 2 + 2 parti-
tions and corresponding states of the nnpp system (total spin
of S=0)

Basis

elements S.I.Z T12 534 T34 S T
eV 0 1 0 1 0 0
eV 0 1 0 1 0 2
eV 1 0 1 0 0 0
eV 0 1 0 1 0 1
et 0 1 0 0 0 1
et 1 0 1 1 0 1

Wy = 2(Vgy—(Via + V2)/2)/3,
Wy = (Vi + Vi3 +Vy)/3,
Wy = (Vag+ Vi +Vyp)/3,

Wy, = A3V1,/3, Wy = A/3V4/3,
Wz = Vip, Wz = Vg,
Wy, = 2V 3,/ 6, Wa = 2Va/ /6,

Wyg = (V13+V23)/A/é1 Wyg = (V14+V24)/«/6

for components of the 2 + 2 type.

In order to single out the individual channels of
nHe and p®H scattering, we go over to anew spin-isos-
pin basis for 3 + 1 components. Thisis done by means
of the orthogonal transformation

1,2, ...,8, (4)

8
a _ M
e’ = ZA”ej I

j=1
where the transformation matrix A has the form

H10001 0
001000 1
500100 0
500010 0
01000-1 0
H01000 -1 0
500100 0-10
000010 0 0 -10

Under this transformation, the representation matrices
for the operators P; undergo no changes; that is, we

o O+ O O
O O Fr O OO
o
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have
AQ|P;[1A™" = O|P; |10

The Coulomb matrix WA then reduces to the form

Hw, 0 0 .
E 0 w,; O 0 E
EO 0 Wi Wy E
Wt = O 0 0 wy Wy 0
0 W 0
[l 1n 1l
IR
H _33_34D
O 0 0 Wy Wy [0
where

Wy = (Vp+ V)72, Wy = (Vi +Vy)/2,

W3 = 2V 1/ 3+ (Vi3 +Vy3)/6,
Wy = (Vo + Vo3 +Vy5)/3,

Wy = (Vg + Vi +Vyp)/3,
Wy = N2(Vip—(Vig+Vy)/2)/3,

Wy = A2(Vay—(Via + Vpy)/2)/3.

Thus, we can see that, on the left-hand sides of equa-
tions (1), the matrices of the operator representations
are decomposed into blocksthat describe the individual
channels of n®He and p*H scattering. These channels are
coupled through the right-hand sides of equations (1).

2.2. sWWave Approximation

Our further consideration will be restricted to the
s-wave approximation—that is, we assume that all
angular momenta of the system in question and of its
subsystems are equal to zero. Inthe case of S=1, equa-
tions (1) take the form of a set of 16 equations for the
components Ou,k k=1,2i=1,2,...,8).[Inthecase
of S=0, we have a set of 12 equations for the compo-

nents ouik (k=1,2i=1,2,...,6).] Wethen combine
the above components into the vectors AU O R™ and
w20 R™ (n, =8, n, = 6) and represent the set of swave
equations for these vectors as

(hg + V100 —£)AL'(x, ¥, 2)

FILIKHIN, YAKOVLEV

1

-1

1 1
1 U xyz 1
= -V, (X) fdu[dv Dou (X5, Y1 2)
2 1
S ana .
XXyz Clo'u (X3, Y3, Z3) [(ho +Vo(X) — E)OU Xy, 2
3Y3Z3

+ V(%) Bzou%x, Y, 2) + VU, v, 2)

Xyz

= ——Vz(x) Idv Czou (Xa Yar Za),

where € = hsz, V, = — @(Méﬂ and V™' are the

s-wave projections of the Coulomb matrices WX. By B,
(k=1, 2), C, and D, we denote numerical matrices
generated by the representations of the permutation
operators in the spin-isospin bases (2) and (4) from
equations (1); that is,
= [P, + Py10)
D = 0P, —P']a0
= 2|P'P']20
C, = [Py + P4[20)

C, = R2|P"-P; )10

For the singlet and triplet spin states of the nnpp sys-

tem, thematrices B, (k=1, 2), C, V™', and D are pre-

sented in the Appendix. The operators hg are given by

hy = -3+ 0]+ 273

hy = -3 +0;+ 3070

The operators V,(x) are diagonal, and their matrices
have the form

Vi =diag{ V), V(¥), V'(¥), V3, V%), VI()},

where V5(x) and Vi(x) are, respectively, the singlet and
triplet components of the nucleon—nucleon potential.

The coordinates x, y;, and z (1 = 1, 2, 3, 4) in the
integral terms of equations (5) are computed by the for-
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mulas

) DB_XDZ yz 3 2
yl |:D4 0 + Z + 4vai| ’
Xp = Xpy X3 = Xg, X4 =Y,
B [y_lﬂz 2. 2 172
y2 - |:D3 0 tZ + 3ylzui|
_ @leZ 22 16 12
2 = [m?m * 5‘2—73’12“} !

12
Y= [%g+zz—xzv} y 2y = g[x2+zz+2xzv]y2.

2.3. Boundary-Value Problems
The set of equations (5) is supplemented with

asymptotic boundary conditions. We denote by Oufk) (x,
y,2,k=12andi=1, 2, ..., N(wehave N =8 for the
triplet spin state and N = 6 for the singlet spin state), the
vector column formed by the coordinate parts of the
s-wave Yakubovsky components. At x =0, y = 0, and
z=0, zero boundary conditions are imposed on the

functions Oui(k)(x, Y, 2). Let us consider asymptotic

boundary conditions for low-energy triplet p*H scatter-
ing. Only the elastic scattering channel is open at ener-
gies below the threshold for the reaction 3H(p, n)°He.
For the open channel, the asymptotic behavior of the
relevant Yakubovsky components in the limit z—» oo
isgiven by

U'(x, ,2) 0(0, 0,0, 0, DX, Y)(X,(2)
+1an(3,)Go(n, P)), 0)',

OlLZ(x, y, z) 0O,

where ®,(x, y) stands for the Faddeev components of
the wave functions of the ground-state *H nucleus. The
function Xx,(2) describes the initial, asymptotically free
state of the system, X,(2) = Fq(Nn, p2), Fo(n, p2) being the
regular Coulomb function. The corresponding singular
function is denoted by Gy(n, p2). In these functions, the
parameter n isgiven by n = (3/4)n/p. At energies of rel-
ative motion in the system that are higher than the
threshold for the reaction *H(p, n)He, the asymptotic

(6)
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expression for the component U(x, y, ) can be repre-
sented in the form

WX, Y, 2) O(Pyay(py) exp(i p,2), 0, D(x, Y)(Xp(2)
+a(p)(Go(n, P2 +iFe(N, P2)), 0)",

where ®,(x, y) are the Faddeev components of thewave
function of the ground-state *He nucleus. The relative
momenta p and p, in the c.m. frame are determined
from the relation

(7)

E = 2p%/3+¢ = 2p-/3+¢,,

where g, and g, are the binding energies of thetriton and
the ®He nucleus, respectively. The diagonal elements of
the Smatrix are parametrized in the conventional form
Si1 = 3N exp(2i35y,), where3n , istheinelasticity factor.
The amplitude a(p) is related to the matrix element S;;
by the equation a(p) = (S;; —1)/2i. The scattering length
%A is calculated as the zero-energy limit of the func-

tion —tan(d,) /pCé, where CS = 2ry/[exp(2mn) — 1].

For triplet neutron scattering on a *He nucleus, the
asymptotic boundary conditions in the limit z — o
must take into account two open channels; that is,

U(%, Y, 2) D(Pr(X, Y) (X1p,(2) + &P eXP(i P12)), O,
®(x, Y)ay(p)(Go(n, p2) +iFy(n, p2),0)", (©)
Ouz(x, y, z) 0O,

where S,, = 3nexp(2i38,), a(p) = (S, — 1)/2i, and
X1p,(2) = sin(p,2)/p,. The scattering length Ay, for neu-
tron interaction with a 3He nucleus is calculated as the
limit Ay, =—lim a(py).

p, -0

Singlet-scattering states in the nnpp system corre-
spond to the continuous spectrum of the*He nucleus. In
the case of singlet scattering, the possible channels
include, in addition to the p*H and n®He channels, the
channel of deuteron—deuteron scattering. This corre-
spondsto anonzero asymptotic value of the component
U2(x, Y, 2) in the limit z— co. The asymptotic behav-
ior of the component AU(x, y, 2) issimilar to that given
by equations (6)—8). By way of example, we indicate
that, for singlet deuteron—deuteron scattering, the
asymptotic expressions for the components in question
can be represented as

U (x, v, 2) O(Pray(py) exp(ip:2), 0,
D%, ¥)@x(P2) (GoN2 P22) +iFo(N2 P22)), 0)',

ouz(x, yi Z) D(Ov 0! (Dd(X, y)(Xd(pZ) + a( p)(GO(n ds pZ)
+iFo(Ne P2))),0,0,0,0,0)".
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Here, X¢(p2 = Fo(Ng, P2); Ng = N/p; N, = (3/4)n/p,; and
the relative momenta p, p;, and p, are determined from
the relations

E = p’/2+2e, = 2p./3+¢, = 2p/3+¢,

where g, is the deuteron binding energy. By ®4(X, Y),
we denote that Faddeev component of the wave func-
tion which corresponds to a state of two noninteracting
deuterons. The deuteron—deuteron scattering length Ay

iscalculated as Ay =

3. CLUSTER REDUCTION

A general scheme for implementing the reduction of
equations for the Yakubovsky components is described
elsewhere[18, 19]. Here, we only recall the basis points
of this procedure as applied to the s-wave equations (5).
Solutions to these equations can be represented in the
form

UWxy.d = Y @lx )R, ©
=0

where the basis functions (p,' (%, y) are solutions to the

Faddeev equations for the 3 + 1 and 2 + 2 partitions;
thatis,

[l 3
gai— §+V1(X)Em(x y)

1
X
+ V(%) jdvﬁ B0 (X Y1)
-1

' 1 I 1 (10)
(Xv y)(ﬂ (X, y) = 81(p| (X1 Y),

{=05 =02 + V,0} @F(%, ) + Vo) B,@r (Y, X)

= £0(%, ),

~ Coul
+V,

~ |
where Vlc > is the truncated Coulomb matrix obtained
from W! by setting its right lower block to zero. A set

of functions that is biorthogonal to { (p,k} is determined

by conjugate Faddeev equations [23, 24]. In the case
being considered, these equations have the form
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O 3
00:- 4a§+v1(x)uu. (x.Y)

1

X
+ IdV ;(‘1%1 B1Va(X) Wi (X1, V)

U7 Wi Y) = el y), (11)

(=05 -0, + V(0 Wi (x Y)

BV WY, ) = W% y).
Upon the substitution of expansions (9) into equations
(5) and projecting the result onto the elements of the

basis{ Y|}, we eventually find that the functions F,(2)
satisfy the equations

o Si-Er el -y Wi e
0

120

XyzZ

222<Luk|v (9 fau jdvTDqﬁ(xz, YFi(2)

-1 -1

XyzZ
X3Y3Z3

+

Cqu(x3, Ys) I:|2 (z3) %1
(12)

0
o5 -E eI + Y WiV

120

Czcﬁ (X4 Ya) Fi (24)>

- _%Z<wk|vz(x)1dv
| >

where [l..]...00denotes integration with respect to the
variablesx and y.

The number of equationsin the set that we obtained
depends on the number of terms that are taken into
account in expansions (9) (needlessto say, afinite num-
ber of such terms must be retained in solving the above
equations numerically).

Table 5. Singlet and triplet scattering lengths for the nnpp system

References YA, fm AL, fm A4, fm Ay, fm SA,, fm
Our study —22.6 75-4.2i 10.2-0.2i 4.6 3.0+0i
[4] —21.46 7.25-3.92i - - -
[25] 42 6.05—0.72i . 5.2 4.25 + 0.005i
PHYSICS OF ATOMIC NUCLEI Vol. 63 No.1 2000
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Table 6. Calculated triplet scattering lengthsin the nnpp sys-
tem versus the number N of terms retained in expansions (9)

N %Ay, fm SA, fm
1 3.82 2.56
5 4.20 2.86
10 450 2.95
15 455 2.98
20 4.56 3.00
25 4.55 —

4. RESULTS OF THE CALCULATIONS

Thefirst step in solving equations (12) must consist
in constructing relevant bases. This problem is solved
by using equations (10) and (11) with zero boundary
conditions at the boundaries of the regions Q! =

{x, yINX*+314y* < p**1 and Q2= {x, yx O [0,

R; "],y O [0, R;"?]}, respectively. The functions are
numbered in such a way that the eigenvalues corre-
sponding to them form an increasing sequence.

A numerical solution to equations (12) for the func-
tions describing relative motion is constructed by using
a finite-difference approximation on a homogeneous
mesh in the relative coordinate z. We denote by R, the
radius in z where we impose the asymptotic boundary
conditions (6)—(8) and by N, the number of mesh nodes
in the coordinate z. In our calculations, we take into
account afinite number of termsin expansions (9). We
denote this number by N. The parameters of the calcu-
lations were chosen as pC+ D = R2+2 =17fm, R, = 17
fm, N, = 23, and N = 40 for the spin-singlet state of the
system and as pG* 9 =21 fm, R?*2 =20fm, R, = 21
fm, N, = 30, and N = 20 for the spin-triplet state. Table
5 displays the calculated singlet and triplet scattering
length in the nnpp system for the p*H, n*He, and dd
channels. It can be seen that our results are quite close
to the RGM results from [4]. Belyaev and Pupyshev
[25] used an integral form of the equations of motion
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and specified nucleon—nucleon interaction in a separa-
ble form.

The efficiency of the cluster-reduction method is
determined primarily by the number N of terms that
must be taken into account in expansions (9) in order
that the results of the calculations for observables, such
as scattering lengths and phase shifts, be convergent.
From the above values of the parameters used in the
calculations, it can be seen that, for the different spin
states of the system, different numbers of terms must be
retained in expansions (9). Obvioudly, the higher the
degree of 3 + 1 clustering in the system being consid-
ered (or thedegree of 2 + 2 clustering in the dd system),
the smaller the value of N. The data quoted in Table 6
illustrate the convergence of the results of the calcula
tions for the triplet scattering length in the p*H and
n3He systems versus N. It can be seen that the contribu-
tion of the first term (N = 1) in expansion (9) saturates
85% of the result. The convergence for singlet scatter-
ing in the dd system has a similar character. The situa-
tion istotally different for the spin-singlet states of the
p°H and n®He systems: the cal cul ations employing only
the first term in expansion (9) lead to scattering length
values that differ from A and A, not only in magni-
tude but also in sign.

Let us now contrast the results of our calculations
for the singlet and triplet scattering of neutrons on *He
nucle against available experimental data. Specifically,
we compare theoretical and experimental values of rel-
evant scattering lengths (see Table 7, which aso quotes
the coherent scattering length, whaose theoretical values
are calculated by the formula A, = *A/4 + 3PA,./4).

The imaginary part of the singlet scattering length
for neutron interaction with a *He nucleus was pre-
cisely determined in terms of the cross section for ther-
mal-neutron capture by the 3He nucleus [26]. The
imaginary part of the triplet scattering length was also
determined precisely by using data on the cross section
for radiative capture [26]. Experiments give no way to
determine unambiguously the real parts of the singlet
and triplet scattering lengths. The analysis of experi-
mental data that was performed in [11] yielded the

Table 7. Real and imaginary parts of the scattering lengths in the n®He system

YA, fm Anh, fm Acon, fm
Experimental data Re 6.53 + 0.32[29] 35704 [11] 4.29 + 0.04[28]
6.6 [11]
Im —4.4448 + 0.0009 [26] (1.7 £ 0.08) x 108 [27] —1.1112 + 0.0003 [11]
Results of our calculations Re 7.5 3.0 4.1
Im -4.2 0.0 -1.1
[4] Re 7.25 - -
Im -3.92 - -
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Fig. 1. Phase shiftsfor singlet scattering in the nnpp system.

vaue of Re('A) = 6.6°,5 fm. The close value of

Re(*A) = 6.53 + 0.3 fm was obtained in the later study
of Alfimenkov et al. [29]. As can be seen from Table 7,
our results comply well with those experimental values
that are thought to be the most reliable ones (the imag-
inary parts of the singlet and triplet scattering lengths
and the real part of the coherent scattering length [28]).

Let us now consider phase shifts and inelasticity
factors. The results of our calculations are presented in
Figs. 1 and 2 for the spin-singlet state of the nnpp sys-
tem and in Fig. 3 for its spin-triplet state. The energy is
reckoned from the threshold of pH scattering in the
c.m. frame. In Fig. 1, the phase shift for singlet p*H
scattering shows a distinct resonance behavior between
the thresholds for “He breakup through the p*H and
n®He channels. Available experimental data [30, 31]
indicate that, in this energy region, the *He nucleus has
a 0* resonance state. Thus, our calculations reproduce
basic physical conditions under which the nnpp system
has an above-threshold resonance state. The resonance
energy, E,, isdetermined asthe value at which the func-
tion dd/dE attains amaximum. The resonance width, I',

is calculated by the formula ™ = 2(do/dE) |- ¢ . The

results of these calculations are displayed in Table 8.
They comply well with the results of the RGM calcula-
tions of Vasilevsky et al. [4], who used the Nasagawa—
Nagata potential, and with the experimental value from
[30]. The phase shift for proton scattering on a He
nucleus shows a threshold anomaly at the proton
energy of E = 0.76 MeV, which corresponds to the
opening of the second scattering channel. The deriva-
tive of the phase shift has a discontinuity at this point.
This is the well-known Baz' effect [4]. The third scat-
tering channel, *H(p, d)d, isweakly coupled to theinput
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0.6

04

0.2

E, MeV

Fig. 2. Inelasticity factors for singlet scattering in the nnpp
system.

channel (for dd scattering, the inelasticity factor is
close to unity), and its effect on the phase shifts for p°H
and n®He scatterings is negligibly small. The triplet
phase shifts for n®He and p*H scatterings are shown in
Fig. 3. It can be seen that these channels are coupled to
each other only dightly aswell. Theinelasticity factors
in triplet scattering are close to unity. By and large, our
results comply quadlitatively with the dependences
obtained in [1-6] for the singlet and triplet phase shifts
and inelagticity factors.

35, deg

-20

—40

-60 +

E, MeV
Fig. 3. Phase shiftsfor triplet scattering in the nnpp system.
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Table 8. Features of the 0* resonancein the*He nucleus (the
energy is reckoned from the threshold for “He breakup % 1/4 0 -=-3/4
through the pH channel) 00 -12 0 0
References E,, MeV I, MeVv E_3/4 0 14
Our study 0.15 03 B, = E -1/2
[4] 0.12 0.26 . v4a 0 =34 0
[27] 0.3+0.05 0.27+0.05 U 0 0 -2 0 0
E 34 0 14 O
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00000000
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APPENDIX
g, =5000000008
Here, we present numerical matrices implementing 2
. . gooooooood
the representation for the operators of particle permuta- 0 0
tions for the swave equations (5) determining the 000000001g
Yakubovsky components. For the S= 1 spin state of the % 00000000 %
system, the numerical matrices B,, D, and C, are gi- 0000001000
ven by
50 0 12 U2 v12 26 U4 -1242) 5
Ho o o 0 -J26 -U6 O o H
5 0 0 -Ve -J/212 -v4 -1.2-112 J2112 F
p=pg 0 0 J26 -¥3 0 0 -J2%6 -U6 §
g 112 J216 U4 -1/(242) 0O 0 U2 1/(2J2) g
E—ﬁ/fs -6 0 0 0 0 0 0 E
E ~14 -1/J2 —122 J2112 0O 0 -1/6 -J2112 E
0O o 0 -J2/6 -1/6 0 0 J21/6 -1u3 O
H1/(2/6) 000 0 -1/(43)0 0 ¢
H-1(243)00 0 0 -U(2/6)0 0 ¢
4 -32/6 000 314 0 0 0 g
O _ 0
c,=g 0 0012 0 0 0-VJ/6p
g 1/(2./6) 00 0 0 1(4J3) 0 0 E
B—u(zﬁ,) 000 O 1@2J/6)0 0 E
% -3/2,/6 000 -/34 0 0 0 g
O 0 0012 0 0 O01J60O
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E—Z/ﬂi -1/J/3 0 0 -2//6-1/J/3 0 0 B
Ho o o o o o o o0 H

0 o 0 0O 0 © 0 0 o0 O

C = E 0 0 0O 0 O 0O 0 © E
-0 o 0 0O 0 0 o o o U
0 O

g 0 0 -1.J32./6 0 0 1.3-2/./6 g

0 o 0 0O 0 O 0 0 0 0
E—lwé 2.6 0 0 U.J3-2//6 0 0 E

The representation matrices for the Coulomb potential, where

VM k=1, 2, can bewritten as

@_lm, n,_ og @ _ £2Dj+r_1_ , 0

0 0 Wy = S +-+V Wi, =
ow? o 0 0 0 0 0 00O ¥ o8y PO T T ek y “T2 O
0 W O
JOw’ 0 00 0 0 00
@ _1m_n @0 ., _ 0
Jo o wawl o 0o 0 0 n 44 —65(+y+4v2 o Wi =V,
VlcouI:E 0 0 wi w ?) 0 0 O EL
_(1
Ho o 0o owy o 0 0f W22 lm,no @ _ 1m ng
7 337 =
Jo o 0o o0 ow)o of 2tk yH Jebk yd
Ho o 0o 0 o o wfadd
O @ (U 3 n
0O 0 0 0 0 0 Wy W[ w = %%‘(_)_E
where
W _2n . @ o _1m Qg @/x for x>2
W3 —‘)‘(+V2 /3, Wy —§B‘(+ZV2D v§1’=n /

Sl/y for x<2y,

W = J2m g W = y®

“~ 3k "o

W - 2 ] 1 X,y
+ = = for z>=+<
Wg) Vi(il) V4(11)/3, W(414) = ‘(Vél) + 2V‘(11)), Z

3
1rplge 8, 1fo, 508, , 1, M
\Tvéi’:“—g(vé”—vf)), wd = v xy[Bz% X~ 2Y00*t 2ot Y~ Am
W _ 1.1 1.1
O 0 Vi =N for [ZX—Zy| <z<ZIx+3Z
Ewﬁ) 0 000 0 0 0Ff = 2XT3Y| S2sX T3y
E 0 Wﬁ) O 0 0 O o0 o E )2( for x>:—§y, 7< %x_%y‘
E 0 0 w@w?d 0o 0 wd o E 3 ) 11
0 2 (2 (2) 0 y for x<zy, z< éx—é)",
VZCOU| — |:| 0 0 W34 W44 0 O W47 0 D y
Ho 0 o0 o w2 0 0 o0 o
Jo o0 0 ow?o o L for x>2y
O 2 (2 @) [l v = n z 3
|:| 0 0 W37 W47 0 O W77 0 |:| 6 §1- for X< §y
Ho o 0o 0 0o 0o o w?H 2y 2"
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x+y

1
z for 2>y Hu4 0 -34 126 008
1oimxeyf, 50 -12 0 -12/300F
xydzDz 07 V=23 c, = S-34 0 U4 -32/600(
v@ = n{ for ‘x—y<Z<X;y Hva 0 -34-12/600F
2 Jo -12 0 v2/3000
)—Z(for x>y, z< l‘.;_l/‘ 0-34 0 14 32/6 000
sfor X<y, z< x_;y‘ E 1 0O 01 O OB
0 o 1 0 O 1 o0
1l 0
For the spin-singlet state of the system, we further c.-o0 0 0 1 0 0 1pg
present explicit expressions for the operators V(x) and 2 E_Z/ J6 —1/./3 0 21./6 1/./3 OE
for the numerical matricesB,, C,, and D (k=1, 2). The 0 0
. . ; 0 0O 0 O 0 O
operators V,(x) are diagonal, and their matrices have O O
the form o o 0O 0 O 0 00O
V) = diagt Vo0, V3. Vea. Vo, Vi, The representation matrices for the Coulomb potential,
k(X)_ |Eg{ (X)v (X)v (X)! (X)! (X)! (X)} COU' k 1 2 can beWI’It'[enaS
The 6 x 6 numerical matrices By, D, and C, k=1, 2, 0 @ 0
are then given by gwn Wi 0 0 0 0 g
: : AwPw? o 0o o F
glis 0 %4 0 0 04 i _ 50 0wd o 0 08
OO0 -2 0 0 0 0 f Vit = g o o D
B -pB34 0 U4 0 O og 5000‘7\'11\7\'120%
L=
00 0 0 V4 0 -340 0o o o wiwy 00
O 0 O 0
oo 0 0 0 -2 0g 0o 0 0 0 0 wyD
0 0 0O -314 0 14 Where
2n 1
01000 00[ Wi = Serve/3 we = gfeavh
Ho10000F Y
1 1 1 1
Bzzgomooo% w§2>=?§_v;>g wld) = v,
gooo-1000
0 0
EO 000 0 OE w = § W03 g = (V(1)+2V(1))’
0000O0O
) wl = «/é VO Wy gl - O
o ue J26 0 V12 -J2/12 -347 oW Wiz O Wi 0
[l 1l
J_2/6 -6 0 26 -u3 0 B gwi w 0wy 0 0 g
_Ja2 w2 o -us w2 vl yeu 00 0 wd 0 0 wdp
Sod
Dw2 -J2m2 -y4 U6 212 0 C Hw@w? 0o w? 0o o0
JJjot6  -u3 0 -J26 -6 0 U 30 0 0 0w o0
0 0
O -4 12J2) U4 12 -1/(242) 0 O 90 ow? 0 0 w?0
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where
@_lm,.n, o0 o ._ J2m o n @0
Wy = 35( 2 Wiz T 65(+ 2v 2 N
2 1 n 2 2 2
g = é§+ a5 Wl = vf
@ _1lm, w? = 1m_ng
44 23( 14 A/EB( yo
W2 = ﬁ:m_nm
24 6 B( yD
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Abstract—The cluster-reduction method has been used to solve numerically the differential equations for the
s-wave Yakubovsky components in the nppp system. Proton scattering on a *He nucleus has been considered
for energies below the three-body threshold in the singlet and triplet spin states of the system. Nucleon—nucleon
interaction has been simulated by the MT 1111 potential, and the Coulomb interaction between the protons has
been taken into account. Effective equations that describe the relative motion of clusters have been derived. The
low-energy behavior of phase shifts has been analyzed. The values of 'A = 8.2 fm and 3A = 7.7 fm have been
obtained for, respectively, the singlet and triplet scattering lengths. The calculated phase shifts agree well with
experimental data. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

TheYakubovsky equations [1] have long since been
used to analyze scattering in four-nucleon systems [2—
5]. The majority of authors employed the integral form
of these equations and, for this reason, disregarded the
Coulomb interaction of protons. Only for the nnnp sys-
tem, which features no Coulomb interaction, could the-
oretical results obtained in [2-5] therefore be directly
compared with experimental data. It is obvious that a
consistent analysis of systems like nnpp and nppp is
impossible without taking into account Coulomb inter-
action. The differential form of the Faddeev—
Yakubovsky equations [6] admits a rather straightfor-
ward inclusion of the Coulomb interaction in the gen-
eral scheme of analysis. For example, the characteris-
tics of low-energy scattering in the nnpp system were
calculated in [7] on the basis of the differential equa-
tions for the Yakubovsky components. This was done
by the cluster-reduction method proposed in [8]. In the
present study, we apply this method to the problem of
low-energy scattering in the nppp system.

We note that, even in the simplest case of the swave
approximation, the inclusion of Coulomb interactionin
the equations for the Yakubovsky components leads to
cumbersome sets of integro-differential equations.
Such sets can be solved directly only with a supercom-
puter. The approach based on the cluster reduction of
these equations makes it possible to construct numeri-
cal solutionsto reduced equations by means of conven-
tional computer facilities. The method essentially con-
sistsin expanding the sought solution of the original set
of equations in the basis formed by the components of
the eigenfunctions of the Hamiltonians of the three-
body subsystems. Upon such an expansion, the original
set of equations is diagonalized partly, which reduces

* e-mail: yakovlev@snoopy.phys.spbu.ru

considerably the machine time required for solving it.
Here, we analyze scattering in the singlet (S= 0) and
triplet (S= 1) spin states of the p’He system in the s-
wave approximation. The nucleon—nucleon interac-
tion is described by the MT I-11 potentials [9] mod-
ified asin[10].

The ensuing exposition is organized as follows. In
Section 2, we present the equations for the Yakubovsky
components describing the system of identical fermi-
ons and the results of a spin-isospin analysis of these
equations, consider the s-wave approximation, and for-
mulate the boundary-value problems corresponding to
elastic two-cluster scattering in the nppp system. The
explanation of the cluster-reduction procedure for the
equations from Section 2 and effective equations
describing the relative motion of clusters can be found
in Section 3. Numerical solutions of these effective
equations are described in Section 4. There, we display
the low-energy behavior of the singlet and triplet phase
shifts, which were obtained by numerically solving the
effective equations for the functions describing the rel-
ative motion of the clusters. In addition, we compare
the resulting theoretical values of the phase shifts with
experimental data and analyze the convergence of our
numerical agorithm. We aso present the calculated
scattering lengths for proton interaction with the *He
nucleusin the singlet and triplet states.

2. DIFFERENTIAL EQUATIONS
FOR THE YAKUBOVSKY COMPONENTS
IN THE nppp SYSTEM

In order to describe the nppp system in configura-
tion space, we use modified differential equations for
the Yakubovsky components where the Coulomb inter-

1063-7788/00/6301-0069%$20.00 © 2000 MAIK “Nauka/Interperiodica’



70

Table1. Components of the spin—isospin bases for the 3 + 1
type of clustering and corresponding states of the nppp system

Bgisecnq[g]- S | Tz | Sz | T S T
etV 0 1 | 12| 12| 0 1
et 1 0 | 2| ¥2| 0 1
et 0 1| w2 | w2 1 1
et 1 0 | w2 | v2| 1 1

action Ve jsincluded in the unperturbed Hamiltonian
[11]. We have

(Ho+ V' +V —E)U, + V(P + P)U,
= —V[(P1=P")U,+ (P +P,)U,],
(Ho+ V™ +V-—E)U, + V(PP U,

= -V[(P"=P)P'U,],

(1)

where H, is the kinetic-energy operator, V is the pair
potential of nuclear interaction, P* stands for the oper-

ators of the cyclic permutation of four particles, and P;

stands for the operators of the cyclic permutation of
three particles (the subscript i indicates aparticlethat is
not involved in a given permutation). The components
U; are spinors in the linear spin-isospin space of the
system, where the subscript values of i = 1 and 2 spec-
ify components corresponding tothe 3+ 1 and 2 + 2
types of clustering, respectively. The coordinate depen-
dence of the componentsis described by using relative
Jacobi coordinates. For i = 1 and 2, these coordinates
are determined in terms of the particle radius vectors
I as

Xy = Fy—

ry, Y= (ry+rp)/2-ry

Zy = (ry+r,+r3)/3=r,, X, = ry—ry,
Yo = Tg—=Tg Zp = (ry+r,)/2—(rz+r,)/2.

For nucleon—nucleon interaction, wetakethe M T |—
Il potential [9], which has only a central component.
The four-body system nppp is obtained from the nnnp
system by means of amirror-symmetry transformation.
Since these systems are identical within theisospin for-
malism, the spin-isospin analysis of the equations for
the Yakubovsky components that was performed in the
first reference from [8] is applicable to the nppp system
as well. However, the Coulomb potential is added here
to the nuclear-interaction potential. For this reason, the
representations of the Coulomb interaction operatorsin
the spin-isospin bases must be derived for the above

FILIKHIN, YAKOVLEV

two types of clustering. The Coulomb potential is spec-
ified as

(l+2T)(l+2T)

Coul _

ZV
j>i
where T/ is the isospin-projection operator for the ith
particle, while V;; = n/lx;| with x; = r; —r; and n =
me?*/#2, m being the nucleon mass.

Omitting intermediate manipulations, which can be
foundin[8], we go over to the differential equationsfor
the swave Yakubovsky components. There are four

equations for the components Oul‘ k=12andi=1, 2,
in the case where S= 1 and three equationsfor the com-

ponents OlLll i=1,2,and Ouf in the case where S=0.
Specifically, we have
(ho + V1 (x) —€)U (X, Y, 2)
1

+V,(X) Idv%lelﬁul(xl, Yo z2) + WA (X, y, 2)
-1

0 xyz

1 1
= 2V, [dufdv DU (X, ¥z, 22)
AL :[ :[ %X— 2 Y2 2

Xyz
X3Y3Z3

+

U
C, U (Xa, Ya, Z
1U (X3, Y3 3)% ?)

(h5 + Vo) —€)U(x, Y, 2)
+V,(X) Bz%z(x Y, 2) + WU (%, y, 2)

XyZz

X4Y4Z4

= ——Vz(x) Idv CAU (X, Y Z2)-

Here, € = (WA?)E; V, = (m/hz)[lk|V|kEis the representa-
tion of the nuclear interaction in the spin—sospin bases,

W, =W, + Wy, wherethefirst termis dependent on the
intracluster coordinates x and y, while the second term
is dependent on these coordinates and additionally on
the intercluster coordinate z is the representation

matrix of the Coulomb interaction; and B, = O|P; +
P |I0D =0|P; —P|10B, = 2|P*P*ROC, = O|P; +

P, [20)and C, = R2|P* — P; |10are numerical matrices
that are generated by the spin—isospin representations
of the permutation operators appearing in equations
(). For the singlet and triplet spin states of the nppp
system, these matrices are presented explicitly in the
Appendix. For two possible schemes of coupling of
spin and isospin moments, Tables 1 and 2 establish the
correspondence between their components and nontriv-
PHYSICS OF ATOMIC NUCLEI  Vol. 63
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SOLVING THE DIFFERENTIAL YAKUBOVSKY EQUATIONS

ial quantum numbers of the system and subsystems.
The operators h§ are given by

hy =~ + 20+ 2077

g = -2+ 0;+ 201

The coordinates x;, y;, and z, where | = 1, 2, 3, 4,
which appear in the integral terms of equations (2), are
obtained by transforming the relative coordinates x, v,
and zwith the aid of the corresponding particle-permu-
tation operators. These coordinates are given by

2 12

X, = [XZWZ—XW} ,

2 1/2
X 3
o= [ L 2o ]

Xo = Xiy X3 = Xg, X3 =Y,
B D/lDz ). 2 12
_ [§3Y1D2 2 16 12

Z = [D—Q—D §_§?ylzui| ,

_ E?y1|:|2 2 1/2
Z3 = [D—D + Z—é)ﬁzu} :
112
vz [BH+ 7]
12
z, = g[x2+22+2xzv] .

The set of equations (2) is supplemented with

asymptotic boundary conditions. We denote by 0u:‘(x,
y,2,k=1,2andi=1,2,...,n(n=2for thetriplet spin
state; for the singlet spin state, n=2and 1 at k=1 and
2, respectively), the column vector of the coordinate
parts of the s-wave Yakubovsky components. We

impose the boundary condition OIL:‘(O, 0, 0) = 0. When
elastic scattering is the only open channel, the asymp-

totic boundary conditions for low-energy s-wave p’He
scattering for z— oo are written as

WH(x, Y, 2)
O®y(x, Y)[Xp(2) + tan("3)Go(n, P)], 3)
WUA(x, y, Z) OO
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Table 2. Components of the spin—isospin bases for the 2 + 2
type of clustering and corresponding states of the nppp system

con?pﬁsents S| T | Suo| Ta S T
el o 1] 0| 1] 0] 1
el o | 1| 1|0 ]| 1] 1
ey 1 o]0 1|11

for the singlet spin state and as

WH(x, Y, 2)
O®,(%, Y)[Xp(2) + tan(’8)Go(n, P)],
WU%(x,y, z) 0(0,0)"

)

for the triplet spin state. Here, ®(x, y) stands for the
coordinate parts of the Faddeev component of the wave
function of the ground-state *He nucleus; the function
Xp(2 = Fo(n, p2) [Fo(n, p2) isthe regular Coulomb func-
tion, itsirregular counterpart being Gy(n, pz)] describes
the asymptotically free state of our system; and n =
(3/4)n/p is the Coulomb parameter.

3. CLUSTER REDUCTION

In the case under consideration, the general scheme
[8] for reducing the equations for the Yakubovsky com-
ponents is as follows. The components U’ are repre-
sented as the expansions

Uy = yAxNRE@. =12 ©
=0

wherethe basisfunctions (g' are solutionsto thefollow-

ing s-wave Faddeev equations for the subsystems cor-
responding to clusteringof the3+ 1 (i=1)and 2 +2
(i =2) types:

0 3 0
005 =305+ Va(x) + Wy(x, y) O (x, )
0 0

1

X
+V,(x) jdv;ﬁ B.0 (X0 Y1) = £161H(X, Y),
-1

{=05 =02+ V,(x) + Wy(x, ¥)} 6{(x, )

+V,(X)Bo@ (¥, X) = £500(X, y)-
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Fig. 1. Phase shift ! for singlet swave p*He scattering as
calculated in (solid curve) this study and (dashed curve)
[17]. Experimental dataweretaken from (opencircles) [14],
(triangles) [15], and (solid circles) [16].

The set of functions { (pl } biorthogonal to the set { qJ: }
involves the eigenfunctions of the equations [12, 13]

0 3 O
G0 = 30+ V4(3) + Wy(x, ) B (%, Y)
0 0

1

+ _Ildv%Blvl(xl)wﬂ(xl, y1) = &% y),

{=05 =02+ V,(x) + Wo(x, )} WZ(x, Y)

BV (WY X) = 07 (% Y),
which are conjugate to equations (6).

Substituting expansions (5) into equations (2) and
taking projections onto the elements of the conjugate

basis{ Y| }, we find that the functions F| (2) describing

the relative motion of the clusters satisfy the set of inte-
gro-differential equations

O - _
207+ -ECF(D) + 3 WiIWiFL)
0 3 1 S

1 1

- —i W Y) V() [dufav

-1 -1

0 xyz
2Y22>

D

Xyz
X3Y3Z3

X @(Xa, Vo) Fie(2) + C1 k(X Y3) Fi(2s) % )
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(-3, -EYF(2)+ T WIWIGTFL) =

k=0

Co@(Xar Ya) Fi(a) ),

o 1
2 Xyz

’ kZ < o) |V2(X)J'dv X4YaZ4

=0 1
where the symbol [I..|...00denotes integration with
respect to the variables x and y. The number of equa
tions in the above set is determined by the number of
terms that are retained in expansions (5). In numeri-
cally solving these equations, we have to take into
account a finite number of such terms. The boundary

conditions for the functions F: (2) are obtained by tak-
ing the projections of formulas (3) and (4).

4. RESULTS OF THE CALCULATIONS

Equations (7) for the functions of relative mation
will be solved numerically by a finite-difference tech-
nique on an equidistant grid in the rel ative coordinate z
In this coordinate, we denote by R, the radius at which
we impose the asymptotic boundary conditions (3) and
(4), by N, the number of grid nodes in the coordinate z,
and by N the number of terms retained in expansions
(5). The value of N determines the efficiency of the
cluster-reduction method. The values of R, = 20 fm,
N, =25, and N = 14 ensure a precision not poorer than
1% in the calculations for the singlet and triplet spin
states.

L et us now discuss the results of four-body calcula
tions. In Figs. 1 and 2, the calculated s-wave phase
shifts for singlet and triplet p’He scattering are con-
trasted against relevant experimental data. The results
are presented as functions of the laboratory energy
measured from the threshold of p*He scattering. The
scattering phase shifts calculated here agree well with
experimental data from [14-16]. The dashed curves
represent the results obtained in [17] on the basis of
available experimental data analyzed by using a modi-
fied effective-range expansion.

A problem that deserves a dedicated consideration
is that of the number N of terms that must retained in
expansion (5) for the results to be convergent. The cal-
culated singlet phase shift for p*He scattering is pre-
sented in Table 3 versus N for some energy values. It
can be seen that even the first term (N = 1) in expan-
sions (5) saturates no less than 85% of the result. This
suggests a high degree of clustering in the system. It
should also be noted that the rate of convergence in N
depends on energy. Asthe energy approaches the three-
body threshold E =5.63 MeV, agreater number of basis
functions must be taken into account, because the p*He
system becomes looser. In general, four to fourteen
terms from expansions (5) are required for ensuring a
precision of about 1%. The properties of convergence
for triplet p’He scattering are similar.
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Fig. 2. Asin Fig. 1, but for triplet scattering.

Itiswell known that, for charged-particle scattering,
in which case there is long-range Coulomb interaction
in addition to the short-range nuclear potential, the
effective-range expansion is valid for the function

*S(E) = Cin)poot(*"5(p)) + Snh(n),

where h(n) = -Inn + ReP( + ni), Y2 being a
digammafunction. The evaluated phase shifts?S* 15 are
used to calculate the function 2S*'K(E). In Fig. 3, the
squares and triangles represent the results for singlet
and triplet scatterings, respectively. The functions
28+1K(E) can be expanded in aconvergent power series
in the variable E. To illustrate this circumstance, the

Table 3. Calculated singlet phase shift for p*He scattering at
some values of ¢.m. energy versus the number N of termsre-
tained in expansions (5)

Ecm.,
MeV 0.25 15 3 5
N
1 —-4.4 -30.1 -44.1 —52.4
2 -3.6 —26.5 —43.5 -535
4 -39 -28.1 —45.3 -56.9
6 -4.1 —27.9 —45.0 -62.1
8 -4.0 —27.6 —-45.0 -62.3
10 -39 —27.4 —44.9 —-62.4
12 -39 —27.8 —45.5 -63.4
14 -39 —27.8 —45.6 -63.7
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Fig. 3. Functions (squares) 'K(E) and (triangles) *K(E) cal-
culated for swave p°He scattering. Curves represent the
approximations of these functions by polynomials of eighth
degree.

approximations of the functions 25+ 'K(E) by polyno-
mials of eighth degree are represented by curves in
Fig. 3. For this case, the expansion coefficients are
guoted in Table 4. A similar parametrization of the
functions 25+ 'K(E) was previously used in [17]. We
note that the energy-independent term in the expansion
of the functions S*'K(E) represents the inverse scatter-
ing length defined as the limit of the function

tan(25+18)/pC; for p — 0. The triplet and singlet

scattering lengths for p*He interaction were found to be
7.7 and 8.2 fm, respectively. The calculated singlet and
triplet scattering lengths for p’He interaction are pre-
sented in Table 5 along with the results of Belyaev and

Table 4. Coefficientsin the polynomials approximating the
functions 25* K (E)

Power S=0 S=1
0 -0.120367 —-0.123628
1 —0.087201 —0.051790
2 0.080153 0.074081
3 —0.031458 —0.053538
4 0.005295 0.025249
5 0.000485 —0.007413
6 —0.000348 0.001291
7 0.521684 x 107 0.000122
8 —0.267058 x 107 0.474590 x 1078
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Table5. Singlet and triplet scattering lengths in the p®He 2n
system Wi = SHves wl = vy
References A, fm 3A, fm  Ogw o &
This study 8.2 7.7 Wy = g o 5
[18] 8.1 5.2 00 Wy O
W = 20020, = v vl
Pupyshev [18], who used integral equations and took 3 3 ’
the nucleon—-nucleon potential in a separable form. —
e nucleon—nucleon potential in a separable fol W, = W, + W,
ACKNOWLEDGMENTS U g
| . | w, = OWE 0 0
Thiswork was supported by the Russian Foundation 2= 0 20
for Basic Research (project no. 98-02-18190). 00 wp O
@ _n ) @ _Nn @)
Wiy = =+2v5, Wy, = -+2Vv.57,
APPENDIX Ty 2 Y 2

Here, we present the numerical matrices represent-  where
ing the particle-permutation operators that appear in
equations (2) for the swave Yakubovsky components a _
in the triplet and singlet states of the nppp system. For Vo' =
the triplet spin state of the system (S= 1), the matrices
B, D,and C,, k=1, 2, are given by

nD2/x for x>2y
E;l/y for x<2y,

v =
Y=
H U U U
B,=0 Y4347 =007 (1 for z>%4Y
0-3/4 1/4 O o100 z 2 3
ARige B8 100, ,08,, 1
o= 3-112 va g S i Ao A (s [N A kA
0 14 -1/120
1 1 1 .1
n< for Ex—éy<<2<zx+§
0 0
C]_ - %—1/(4’\/:_3) /\/:_3/4 Er )g( for X>§y, z< %X—%y‘
0 34 -1(443) 0
3 for x<g z< 1x—ly‘
0 0 Ly 3 ST
c.=0 0 -1.30
27 [ 0 B 2
D—l/«/é 0 [ & for x>§y
v =n
The nuclear interaction is controlled only by the pair E?l for X< Zy1
spin; therefore, the operator V has the diagonal form [Py 3
V = diag{V°, V'}, (2 for 2>XY

where V® and V! are, respectively, the singlet and triplet
components of the potential. 1o imx—yrf N

. . . xyD_zD] 2 O +X+y_ZDE|
For the triplet state, the representation matrices for
the Coulomb interaction can be written as

N vP = n< for Z(_;_X <z<5-2t¥
Wl = W1+Wl1
2 .
< > <|X=Y
0 0 ~ for x>y, z 5 ‘
wy = g 08 2
00 wy g 5 for x<y, z< x;y‘_

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.1 2000



SOLVING THE DIFFERENTIAL YAKUBOVSKY EQUATIONS

Further, we present the corresponding operators V,(X)
and the matrices B, D, and C,, k = 1, 2 for the singlet
spin state (S = 0) of the nppp system. The operators
V,(X) have the diagonal form

Vi(x) = diag{ V¥(x), V'(x)}.
The matricesB,, D, and C,, k=1, 2, are given by

U 4
B, =0 1/4 _3/4D B, = -1,
0-3/4 1/4 O

0 0
D= 12 3/4 8

0-1/4 —1/4 O
0 0
_ w2/ 0 _ 0 [
c, =4 C, =
0 o “2g-21/600
0-3/2.6 0

The matrices representing the Coulomb interaction
can be written as

O O a_ O
W= OWd 00 @ _0OWi 0 [
1 O o O 1 [l (1) [}
00 wy 0O 00 Wy O
OWZ - W2+W2,
n
Wz = )_(,
W, = 2V(22)
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Abstract—A model has been developed for describing the cross section for the reactiony, , p — A" in
the energy region of nucleon-resonance excitation, and relevant cal culations have been performed. The model
takes into account the contribution of al reliably established resonances with masses less than 2 GeV and the
contributions of nonresonance mechanismsin the approximation of Born diagrams. On the basis of data on the
amplitudes of pion—nucleon interactions, a method has been evolved for phenomenologically describing the
coupling of initial and final states with open inelastic channels. Calculations performed in this study represent
afirst step in developing a method for determining the electromagnetic form factors for nucleon resonancesin
exclusive reactions of pion-pair production on a nucleon by real and virtual photons. © 2000 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Presently, a vast experimental program aimed at
studying the structure of nucleon resonancesin various
exclusive channels of interactions induced by real and
virtual photons is being performed at the electron
accelerator of the TINAF research center (USA) [1]. In
this program, much attention is being given to studying
pion-pair production on a proton by rea and virtual
photons[2, 3]. These experimentswill makeit possible
to extract form factors for high-lying nucleon reso-
nances (M- > 1.6 GeV), whose branching fractions for
decays into final-state pion pairs are significant. Inves-
tigation of pion-pair production on aproton by photons
is a promising method of searches for resonances that
are predicted by quark models [4, 5], but which have
not yet been discovered experimentally (so-called
missing resonances).

A dominant contribution of nonresonance pro-
cesses, in excess of 70%, isadistinctive feature of pion-
pair-production reactions on a proton at the photon
point. As a result, traditional methods—a partial-wave
expansion followed by a parametrization of partial
waves [6, 7]—are insufficiently efficient for extracting
nucleon-resonance form factors N*. It follows that, in
reactions like yp — 1t'1rp, such form factors can be
extracted only within model approaches that relate

D |stituto Nazionale di Fisica Nucleare, Sezione di Genova, Ge-
nova, Italy.

2 Department of Physics, Moscow State University, Vorob'evy
Gory, Moscow, 119899 Russia.

3) Universita di Genova, via Dodecaneso 33, 1-16146 Genova, Italy.

them to measured cross sections and which make it
possible to determine nucleon-resonance form factors
by fitting experimental data.

An appropriate model was developed in [8, 9],

where the reaction yp —» 11T p was described as a set
of two processes,

yp— A", (1)

YP — PP, (2)

and where the concept of phase space was used. It was
shown in [9] that effects of initial- and final-state inter-
actions (ISl and FSI, respectively) play an important
role in describing reaction (1). Only for c.m. emission
angles smaller than 30° can calculations that disregard
ISl and FSI effects reproduce data from [10] on the
angular distributions of pions from reaction (1). At
larger emission angles, the calculated cross sections
exceed the measured values by afactor of 2to 3; inthe
case of pion emission into the backward hemisphere,
the discrepancy is still greater.

In[9], ISl and FSI effects were taken into account
within the approach proposed in [11]. In this approach,
ISl and FSI are considered asthe absorption of particles
in theinitial and final states. There, the absorption fac-
tor isrelated to the amplitudes of the elastic-scattering
processes A —= 1A and pp — pp (FSI and 1S,
respectively). Owing to the photon—ho-meson transi-
tion, the absorption in the photon—proton initial state
actually reduces to rho-meson absorption by the pro-
ton. The absorption factors in the input and output

1063-7788/00/6301-0076%20.00 © 2000 MAIK “Nauka/Interperiodica’
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channels were determined in [9] by using their expo-
nential parametrizations that were chosen phenomeno-
logically and which involved the following free param-
eters: (i) the constants of coupling to inelastic channels
in the initial and fina states, C,, and C,,, and (ii) the
diffraction-cone slopes A, and A, in the elastic-scat-
tering processes A — A and pp — pp. These
parameters were chosen by fitting experimental dataon
the cross sections for the reaction yp — 1TA*. The
values of C,, and C,,, that were determined in this way
proved to be strongly dependent on W, varying from
zero to unity as W changed from 1.5 to 1.7 GeV.
Although the calculations presented in [9] reproduced
satisfactorily data from [10] on the angular distribu-
tions of pions from reaction (1), the method used there
cannot ensure an accurate description of physica
mechanisms that govern the processes of absorption in
the initial and final states. The procedure that relies on
afit to data alone may lead to significant and uncontrol-
lable uncertainties in extracting the nucleon-resonance
form factors.

Nonresonance processes for W > 1.6 GeV, in which
case many open inelastic channels can compete,
present one of the most challenging problemsin study-
ing the structure of high-lying nucleon resonances in
electromagnetic interactions. The current status of
strong-interaction theory gives no way to describe con-
sistently the entire body of such processes on the basis
of first principles. Thus, nonresonance amplitudes can
be determined only within phenomenological
approaches that relate them to the measured amplitudes
of strong-interaction-induced processes. The present
study relies on the approach proposed in [11] for
obtaining corrections that arise in nonresonance ampli-
tudes for reaction (1) because of absorptive effects in
the initial and final states. It was indicated above that,
in thisapproach, the correction factors are related to the
amplitudes of the elastic-scattering processes A —
mAand pp —= pp.

Here, we develop a method for describing the
amplitudes for the reactions TA— 1tAand pp —» pp
on the basis of experimental data on pion—nucleon
interactions. Within the approach proposed in [11], the
absorption factors are determined in the initial and final
states of reaction (1). The differential cross sectionsfor
reaction (1) are computed, and the results are compared
with data from [10].

2. DESCRIPTION OF THE CROSS SECTIONS
FOR REACTION yp — TTA*™

A detailed account of the model for describing the
cross sections for the reaction yp — TTA™ isgivenin
[9]. For this reason, we describe here only briefly the
model and the method for taking into account 1Sl and FSI
effectsin calculating the cross sections for reaction (1).

The amplitude of reaction (1) is represented by the
set of diagramsin Fig. 1, which correspond to the con-
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Fig. 1. Basic mechanisms of the reaction yp — TTA*™.
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tribution of the excitation of nucleon resonances in the
schannel (Fig. 1a) and to the contributions of nonreso-
nance Born terms (Figs. 1b—1€). The contribution of
resonance terms (Fig. 1a) is taken into account in the
Breit-Wigner approximation [9]. In doing this, the
results obtained from an analysis [12] of data on pion—
nucleon interactions are used to determine the ampli-
tudes of the strong-interaction-induced decays of
nucleon resonances. The electromagnetic amplitudes
for the excitation nucleon resonances are related to the
helicity amplitudes A, Asp, and C,,, which were
determined from data on pion-photoproduction reac-
tions and which are presented in [13].

Born terms (Figs. 1b-1d) are described in the
approximation of effective Lagrangians [14]. In order
to take correctly into account interactions with virtual
pions and to reproduce faithfully the t dependences of
the Born amplitudes, the form factors for the electro-
magnetic and for the TPA vertex are introduced in the
diagrams in Figs. 1b-1e. For processes featuring pion
exchange in the t channel, we invoke experimental data
from [15] on the electromagnetic form factor for the pion
and the results of an analysis of hucleon—nucleon scatter-
ing for the TpA form factor [16]. The TpA form factor
calculated according to [16] suppresses the contribution
of the deltarisobar-exchange diagram (Fig. 1€). The ver-
tex functionsfor the contact term (Fig. 1b) are recovered
on the basis of regquirements of gauge invariance.

3. ABSORPTIVE EFFECTS IN THE INITIAL
AND FINAL STATES
OF THE REACTION yp — TTA*™*

A method for describing 1Sl and FSI effects was
proposed in [11]. In this approach, the coupling of ini-
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Fig. 2. Mechanisms of the elastic-scattering processes
TIA— TtA and pp — pp: (&) resonance mechanisms
and (b) background

tial and final states of areaction featuring open inelastic
channelsis described as the absorption of incident par-
ticles prior to occurrence of the reaction and as a partial
absorption of nascent reaction products. The approach
in question is based on the assumption that the reaction
being studied proceeds through a sequence of 1Ss, the
reaction proper, and FSI. The absorption factors in the
initial and final states depend on the spin J of a given
channel. Therefore, the amplitude T of reaction (1) is
expanded in states characterized by a definite value of
the total channel spin; after that, each partial-wave
amplitude T’ is appropriately corrected.

By using the approach proposed in [11], it can be
shown that ISl and FSI effects modify the amplitude of
reaction (1) in the channel characterized by the total
spinj, @ : Ap[T|AA Clas follows:

70 AT o = (00 AglS]: A0 5
x O M|TIA AT AISIAN D™

Here, [t : Ap|S/|1T: A Lis the Smatrix element for the
elastic-scattering process A — TIA with the delta-
isobar helicity equal to A, both in theinitial and in the
final state, while A A, |S/ A s the Smatrix element
for the elastic-scattering process pp — pp with the
rho-meson helicitiesin theinitial and final states equal,
respectively, to the incident-photon helicity A, and the
proton helicity A,. The S and T-matrix elements are
related by the conventional equation

S=1+2iT. )

The number of terms retained in the expansion in |
is determined by the magnitudes of the correcting fac-

tors [t: A|S|m: As0and DA ISIAA T it will be

ANGHINOLFI et al.

shown below that, to a high precision, we can restrict
our analysisto j < 5/2. There are no experimental data
on the amplitudes for the elastic-scattering processes
A — 1tAand pp — pp; therefore, we can only cal-
culate these amplitudes within some model approaches.
In the present study, we propose an approach for deter-
mining them on the basis of experimental data on pion—
nucleon interactions.

4. AMPLITUDES
FOR THE ELASTIC-SCATTERING PROCESSES
A — TMAAND pp — pp

The elastic-scattering processes A — 1A and
pp — pp are described in terms of the set of nucleon-
resonance excitations in the s channel and a nonreso-
nance background (see Fig. 2). The amplitude of the
resonance processes (Fig. 2a) is parametrized in the
Breit-Wigner form

<T[: )\A()\p)\p)|T£s|)\A : ”()‘pAp»

_ 5 Ok, 1020 0T
N WZ—M,Z\‘*HFN*(W)MN* '

where Ag| TleAn : T(A A,)Ls the amplitude of the res-
onance decay N* — 1tpp) for the resonance helicity
of Ag=-Ar(A,—Ap); Wisthec.m. energy of the products
of nucleon-resonance decay; and My and I \«(W) are
the nucleon-resonance mass and width, respectively. In
order to describe consistently the off-mass-shell behav-
jor of the nucleon resonance N*, we introduce the W
dependence of the total decay width. The amplitudes

RelTlaAs TAA,)and the partial widths ' o » )
with respect to the decays N* —~ 11App) into afinal
state characterized by a helicity Ax(A,, A,) are related
by the equation

Ag|Thes P : A

:JT@ STy % 24/2TM /2] + 1 "
8m(2j + L)W m
W

where Py, is the absolute value of the pion (rho-
meson) 3-momentum in the c.m. frame. The bracketed
factor in (6) is explained in [9]. The factor in front of
the bracketed expression represents a transformation
factor relating the matrix elements used in the calcula-
tions from [9] to the relevant T-matrix elements. This
factor was determined from the condition requiring that

|S£%| be equal to unity at the resonance point, provided

that only one nucleon resonance N* contributes and
that only the elastic-scattering channel isopen. In order
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to determine the partial nucleon-resonance decay
widths JT(LS)(N* — T1A) and

JT(LS)(N* — pp) in the representation of LS cou-
pling, we used the results of an anaysis of data on
pion—nucleon interactions [12] as recast into the helic-

ity representation (,/I",, and /FMP). The W depen-
dence of thewidths ,/I", and Can, areintroduced in

just the sameway asin [9]. Thetotal decay width of the
nucleon resonance N* is the sum of the partial decay
widths over all possible channels; that is,

My = 3T
i

The W dependence of the decay width with respect to
each partial channel, FiN*(W), was calculated under the

assumption that the effects of the centrifugal-barrier
penetrability have a dominant impact on the W evolu-
tion of the widths. According to the parametrization
adopted in [12], the W dependence of the nucleon-res-
onance width with respect to decay through the ith par-
tial channel is given by

)

MN* IDc(p, M) BIz(Pc(p, M) R) (8)
W Pr(o.m BY (Prgp, mR)

MW =T; (W=My.)

where I'; (W = M) is the nucleon-resonance width

with respect to decay through the ith channel at theres-
onance point W= My; Pg,,  and Pg(, , are the pion
(rho-meson) momentaat a current value of Wand at the
resonance point, respectively; and B, are the penetrabil -
ity factors[17]. Summation in (5) is performed over al
nucleon resonances that contribute to states with defi-
nite values of thetotal channel spinj and which are pre-
sented in the table.

Our estimates reveal that, in the energy region of
nucleon-resonance excitation, the contribution of j >
5/2 states to corrections to Born amplitudes does not
exceed 10%. Inview of this, we disregarded the absorp-
tion in theinitial and final states of reaction (1) for j >
5/2 stetes.

In order to describe the nonresonance components
of the amplitudes for the elastic-scattering processes
A — 1A and pp — pp, we made use of data from
[18] on the nonresonance component of the s-wave
TN — 1IN amplitude T,. The nonresonance TN —
TN amplitudes for nonzero orbital angular momenta
were calculated as

Theckgr = TsBr(PpmR)- )

The nonresonance amplitudes for the elastic-scattering
processes TA —» TtAand pp — pp were determined
from the nonresonance amplitudes for TN — 71N scat-
tering under the assumption of SU(3) flavor symmetry.

p(m
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Nucleon resonances taken into account in cal cul ating the am-
plitudes 3t : M| Tleg |0 : OB B Ao | Theg [AA

Nucleon resonances N* included

Total channel spinj in the calculation

1/2 S11(1535) S31(1620) S11(1650)
P11(1440) P11(1710) P31(1910)
3/2 P13(1720) P33(1600) P33(1920)
D13(1520) D13(1700) D33(1700)
5/2 D15(1675)

F15(1680) F35(1905)

From a comparison of the calculated resonance and
nonresonance contributions to the amplitudes for elas-
tic tAand pp scatterings, it can clearly be seen that res-
onance processes are dominant over the entire energy
region of nucleon-resonance excitation (W< 2 GeV). It
obviously follows that, in constructing an effective
description of coupling between initial and final states
featuring open inglastic channels, we must take into
account s-channel mechanisms.

In calculating the amplitude for the el astic-scatter-
ing process pp — pp, we alowed for effects of afinite
rho-meson width. The pp — pp amplitude
A Ao [T[AACwas determined as the convolution of the
amplitude calculated at a specific rho-meson mass m,,
(R oA [ TIAA Lk, With the mass distribution of the rho

meson, w(m,); that is,
— 2 2
DA LTIAA D= J’D\p)\plTl)\p)\pqmpw(mp)dmp. (10)
In turn, the rho-meson mass distribution w(m,) was
chosen in the form of the Breit—Wigner distribution
1 MI

w(m,) = = ;
P T[(m’ZJ_MZ)Z_'_ M2r2

(1)

whereM and I" are the rho-meson mass and width [13],
respectively, and where the normalization factor is cho-
sen in such away that the distribution in (11) isnormal -
ized to unity.

5. DISCUSSION OF THE RESULTS

Within the approach described above, we have cal-
culated the cross sectionsfor the reaction yp — TTA™.
InFig. 3, the results of these calculations are contrasted
against experimental datafrom [10]. In the calculation,
we included the same nucleon resonances asin [9]. In
accordance with [16], the cutoff parameter A for the
TPA form factor was chosen to be 0.75 GeV.

Two solid curves in Fig. 3 correspond to the results
of the calculations performed for different values cho-
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Fig. 3. Differential cross sections calculated for thereaction

yp — 1A' at (solid curves) the maximal values of the
partial nucleon-resonance widths with respect to decays
through the tA and pp channels and the minimal values of
the anal ogous widths with respect to all other channels and
(dashed curves) the minimal values of the partial nucleon-
resonance widths with respect to decays through the tAand
pp channelsand themaximal val ues of the analogouswidths
with respect to al other channels. Points represent experi-
mental datafrom [10].

sen for the partial widths with respect to nucleon-reso-
nance decays within the uncertainties of the analysis
reported in [12]. The cross section for the reaction
yp — TTA™ and the absorptive effects in the initial
and final states receive contributions from many
nucleon resonances. For the nucleon resonances, it is
next to impossible to choose partial-decay-width values
that would correspond to the corridor between the max-
imal and minimal values of the cross section for reac-
tion (1). For this reason, we performed the calculation
for two options: (i) for the maximal partial widths with
respect nucleon-resonance decays through the 1A and
pp channels and the minima partial widths with
respect to al other channels and (ii) for the minimal
partial widths with respect nucleon-resonance decays
through the 1tA and pp channels and the maximal par-
tial widthswith respect to al other channels. Either cal-
culation givestheideaof errorsthat the calcul ated cross
sections may have because of uncertaintiesin datafrom
[12] on the partial decay widths of nucleon resonances.
Fromthe datain Fig. 3, it can be seen that the scatter of
the results of the calculations is much less than the
uncertainties in experimental data from [10]. Thus, we
can state that the proposed model produces results that
are stable to variations in the input parameters.
Thedatain Fig. 3 show that, by and large, theresults
of the calculations reproduce faithfully experimental
valuesfrom [10]. At angleslarger than 100° and W val-

ANGHINOLFI et al.

ues in excess of 1.8 GeV, the calculated differential
cross sectionsare smaller than 1.5 pb/sr. Because of the
uncertainties in the experimental datafrom [10], it was
possible to establish only upper limits on the differen-
tial cross sections in this kinematical region (1 pb/sr).
Such small values of the differential cross sections are
due to absorption in the initial and fina states of the
reaction ypo — TTA™. The caculations taking no
account of 1S] and FS| effects|ead to differential-cross-
section values within a few pb/sr in this kinematical
region. Thus, the inclusion of channel-coupling effects
is of key importance in describing reaction (1) for W
valuesin excess of 1.7 GeV. At the same time, our cal-
culations demonstrate that, for W < 1.6 GeV, the
absorption in theinitial and final statesis small, which
is in accord with the estimates of 1Sl and FSI effects
from[19, 20]. In the region of moderately small values
of W, the calculated cross sections for reaction (1)
reproduce faithfully the datafrom [10] at W= 1.51 GeV,
but they fall systematically short of the cross-section
values measured at W= 1.57 and 1.62 GeV. Because of
the approximations used to describe the amplitudes for
the el astic-scattering processes TA — 1tAand pp —»
pp and because of the absence of experimental data on
relevant amplitudes, any hypotheses on the reasons
behind these discrepancies would be mere speculation.
In order to obtain areliable description of ISl and FS
effectsin the reaction yp — TTA™, it is necessary that
the amplitudes cal cul ated for the el astic-scattering pro-
cesses A — TIA and pp — pp within different
approaches that employ available data on the ampli-
tudes of pion—nucleon interactions be consistent. A
promising approach would be to reconstruct the tAand
pp amplitudes for these reactions on the basis of the
results that an analysis of the entire body of data on
mesorn-nucleon interactions could produce, provided
that this anaysis is performed with allowance for
requirements of S-matrix unitarity used along the same
linesasin[21].

6. CONCLUSION

An approach has been developed for describing ISI
and FS| for the reaction yp — TTA* on the basis of
experimental data on pion—nucleon scattering ampli-
tudes. The angular distributions of pions from reaction
(1) have been calculated with allowance for absorption
intheinitial and final statesthat was determined within
the method proposed here. The results comply well
with experimental datafrom[10]. Thisgivesgroundsto
hope that the dominant nonresonance processesin reac-
tion (1) have been treated adequately. It isworth noting
that the proposed approach features no free parameters
to be determined from data on reaction (1). All theinput
parameters have been determined from an analysis of a
vast body of data on TiN interactions. At present, the
problem of describing nonresonance processes in pion
production by photons at W > 1.6 GeV is one of the
most important unresolved problems in studying the
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structure of high-lying nucleon resonances in electro-
magnetic processes. The approach developed in this
study provides a phenomenological description of non-
resonance processes induced by photons in the energy
region of nucleon-resonance excitation.
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Abstract—Thereaction y%(QX)p — py p has been studied at large Q* and W2/Q? and low momentum trans-

fers to the nucleon, Ké —that is, in the region where the Pomeron exchange mechanism is operative. At suffi-

ciently large Q?, the Pomeron interacts with quarks occurring at small distances, whereby the hard component
of the Pomeron is separated, so that the process is governed by the Pomeron of perturbative QCD (BFKL

Pomeron). Our calculationsindicate that, in vector-meson electroproduction at low Ké , the perturbative regime

cannot set in fast because, for Q? < 100 GeV? and, accordingly, for W/Q? < 107, comparatively large distances
of pyq > 0.2 fm areimportant. © 2000 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

A direct verification of perturbative QCD predic-
tions is an important problem in itself. At currently
available energies, there are two lines of investigation
that make it possible to observe a transition from the
physics of soft processes to the physics of hard pro-
cesses. These are an investigation of hadron form factors
[1, 2] and an investigation of the hard Pomeron [3, 4].

In performing a quantitative analysis of hard pro-
cesses, it is of paramount importance to answer the
guestion of where the regime of perturbative QCD
commences. The problem was discussed comprehen-
sively in studying form factors [5-7]. Chernyak and
Zhitnitsky [5] considered a possible scheme for pertur-
batively calculating form factors at comparatively low
Q’. At the same time, Isgur and Llevelyn-Smith argued
[6] that the perturbative regime is reached at very high
Q?, those on the order of 50 GeV? or even higher. Their
arguments were confirmed by the calculations per-
formed in [7]. In [7, 8], the charge form factor for the
pion and the el ectromagnetic transition form factorsfor
YYH(Q) — TP, yy(Q*) —= n, and yy*(Q*) —= N’
were calculated in the interval 0 < Q? <25 GeV2. The
region of low Q*> madeit possibleto reconstruct the soft
wave functions of pseudoscalar mesons and of the pho-
ton, while the region of high Q* was represented by the
convolution of the block of hard one-gluon exchange
and the soft wave functions. The calculation presented
in [8] demonstrated that perturbative-gluon-exchange
diagrams, which yield contributions of order a,
become dominant only at Q*= 50 GeV?; at lower
momentum transfers, the nonperturbative contribution
of the triangle diagram (direct convolution of the wave
functions) is significant.

Here, we study the diffractive electroproduction of p°
mesons by transversely polarized photons, y%(Q»)p —

p% p. This process is driven by the BFKL Pomeron

exchange. Indeed, this proceeds as follows at high Q2
a virtual photon y*(Q?) produces a quark—antiquark
pair at asmall distance (see Fig. 1), which is converted
into a p® meson, emitting t-channel gluons; since these
gluons also have, owing to small interquark distances,
small impact parameters, there arises the t-channel
exchange of a perturbative BFKL Pomeron.

Thus, it is the quark loop that separates small dis-
tances at high Q*. The quark loop is determined by two
wave (or vertex) functions, that of the photon and that
of the p® meson. In terms of the light-cone variables,
the photon wave function was reconstructed in [8] on
the basis of experimental dataon they —= 1 transition
form factor. The photon wave function is determined by
two processes. the direct production of a quark—anti-
quark pair—thisresultsin the pointlikey — qQ tran-
sition vertex at large qq invariant masses My, (the
wave function corresponding to the direct production of
a quark—antiquark pair by a photon was discussed in
detail elsewhere [9])—and the interaction of low-
energy quarks. The latter process enhances the relative
contribution of small M, and, hence, of large inter-
quark distances of about 0.5-1 fm (vector-dominance
effect).

The low-energy component of the rho-meson wave
function is close to the quark wave function of the pion,
because either particle belongs to the same g nonet.
Moreover, vector dominance dictates that the low-
energy component of the rho meson be similar to that
of the photon. In our calculations, we assume that the

1063-7788/00/6301-0082%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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rho-meson and pion wave functions coincide in the
region of low-energy qQ excitations (specifically, for
Mgq <3 GeV);, the low-energy pion wave function was
determined in [7] from data on the pion form factor.
The high-energy component of the p-meson wave
function requires a dedicated discussion. The point is
that, despite the similarity of the problems, it cannot be
found by using the same procedure as that which was
followed in [7, 8] in dealing with the meson form fac-
tors. In[7], aconsideration of the pion form factor was
based on isolating the strong-interaction contribution
with allowancefor correctionslinear in a.. For thispur-
pose, the pion wave function was broken down into a
soft and a hard component, WS and W™, respectively, in

such away that WSislarge for M, = (m? + k2 )/x(1 +

X) < Mé (here, k; and x are the light-cone quark vari-
ables, while mis the quark mass) and that W™ is domi-

nant for Mg, > Mg; the parameter M,, which repre-
sents the boundary between the soft and hard regions,
is about a few GeV. Specifically, the simplest way of
partitioning the wave function in terms of a Heaviside
step function was chosen in [ 7] to implement the above
procedure: W, = WB(M® - Myq) + WHO(My, — MO). In
this case, the hard component WH is the convolution of

the soft wave function WS with the kernel V*° deter-
mined by one-gluon exchange:

wH = v=Ogws, (1

When WH is defined in this way, the expansion of the
form factor in power seriesin terms of ag has the form

F = F®+2F"+0(a), Q)

where F=S isthe soft form factor, while F$ isthe O(al,)
contribution determined by the one-gluon-exchange
diagram. In this case, we take into account all O(ay)
contributions in the first two terms on the right-hand
side of (2) by including the Sudakov form factor in the
guark—photon vertex and by renormalizing the quark
mass.

It is more difficult to allow for all O(ay) contribu-
tionsin the reaction y*(Q*)p — p°p, which involves a
few hadrons and a Pomeron. Here, it is necessary to
take into account O(a) corrections not only to the p°-
meson wave function, but also to the vertices of quark
interaction with t-channel gluons and to include next-
to-leading corrections (NLC) in the QCD Pomeron
eigenfunctions, but this seemsimpossible at present. At
the same time, it is hazardous take into account all
O(ay terms only in the rho-meson wave function,
because thisis not a consistent procedure. In this situa-
tion, we deem it reasonable to rely on phenomenologi-
cal information about the V — qQ vertex. It isworth

noting that, phenomenologicaly, the V — qQ vertex
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iswell known up to Méq ~ 3 GeV2. At extremely large

masses (in the asymptotic region), the contribution cor-
responding to the leading-twist wave function is domi-
nant. For the transverse p° meson, however, this contri-
bution can be neglected amost always for numerical
reasons—it is proportional to the very small current
mass of the light quark. In the intermediate region, we
apply the idea of quark—hadron duality for this process

[10] and assume that, at large M7, the V —» qg tran-

sition form factor behaves, according to the law of gen-

eralized vector dominance, as
Gy(M2g) OMga. 3)

In order to test the stability of our main conclusions
with respect to the above assumptions in the region of

high qq excitations, we study other versions, those
where Gy (M¢,) decreases faster at large My .

For processes characterized by a low momentum
transfer to the nucleon, k—and we discuss here pre-
cisely such processes—the use of the leading-twist rho-
meson wave function leads to an infrared divergencein
the integral associated with the quark block [11]. The
low-energy rho-meson wave function constructed by
analogy with the pion wave function [7] does not gen-
erate such a divergence, making afinite contribution to
the cross section from large distances between hadrons.

This article is organized as follows. We present the
expression for the y* — V vertex associated with
Pomeron exchange in Section 2 and the expression for
the total amplitude with allowance for the exchange of
a BFKL Pomeron in Section 3. We consider two ver-
sions: (i) in the process of t-channel evolution, a hard
BFKL Pomeron transforms into a soft Pomeron, which
interacts with the target nucleon; (ii) a BFKL Pomeron
does not have time to transform into the system of soft
gluons. Our calculations reveal that the two versions
lead to very close Q and W (total invariant energy of the
VYp system) dependences of the cross section. The
results of these calculations are displayed in Section 4.

The main objective of this study is to assess the Q?
scale above which a virtual photon selects small dis-
tances. Therefore, we performed two versions of the

calculation for the reaction y%(Q)p — pop: (a) that
within the standard procedure featuring no additional
selection of small distances and (2) that where thereis
an additional selection of small distances by a Heavi-
side step function. In the phase space of the quark loop,
only the contribution of small distances (p,q < 0.2 fm)
is retained in the latter version. The cross-section val-
ues calculated within the two versions differ signifi-
cantly in the region Q* ~ 5-20 GeV?, but they approach
each other for Q?in excess of 100 GeV2. This means
that perturbative QCD becomes applicable in Pomeron
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Fig. 1. Diagrams that determine the process y*(Q*)p — pOp.

exchanges at approximately the same Q? values as in
form-factor processes.

2. PHOTON-POMERON-MESON VERTEX

At high W, the process y*(Q*)p — Vp (where V =
p, w, @) isdetermined by two diagramsin Figs. 1a and
1b. In Fig. 1a, two Reggeized gluons interact with a
guark; there is a similar diagram where two gluons
interact with an antiquark. In Fig. 1b, one gluon inter-
acts with the quark, while the other interacts with the
antiquark. The conventions for the momenta are illus-
trated in the figure.

The kinematics corresponding to the process is the
following (the virtual photon has a high momentum
along the z axis):

2
d = (Ao U ) = (1, + %, 0, d, 4)

The value of @’ is assumed to be large, but g, > Q.
Thetarget proton is at rest; that is,

pn = (Mg, 0, 0), (5)

in which case, we have W2 = 2myg, + my — Q2.

We consider the process at |ow momentum transfers
to the nucleon, [K3| < my, . From the conditions (p + K)? =
m;, and (q - K)? = 5, where i is the vector-meson
mass, it then follows that

K = (Ko K, Ky)

KoK+ ©)

2
K 20, 2m] (0, ., 0);

Pmy’

thatis, k> = —KZD . Let us consider the upper block of the

diagram in Fig. 1la. The quark loop of this diagram is
calculated by using the spectral-integration technique;

the corresponding cuts of the diagram are shown in
Fig. 2a. The amplitude of the quark block in Fig. 2ais

dMgq dD,(p; Ky, Kp) Mg
Ay = [—UG, (M) ——— 12—
qq I T V( qq qu_qZ_iO TT

doy(p'; ki, k) dMg, doy(p; Ky k) (D)

Mge —(q—K)*=i0 T Mg —(q-K)*—i0

x Gy (M) g’ (-1)S,

2 (] '2 1 "2
where p? = Mg, p? = My, and p*? = M, are the

sguares of the energiesin the corresponding intermedi-
ate states. The spin-dependent factor is

S = try, (ki + m)A(ky + m)

x A(ke + m)yy (= k2 + m)], ®)

=L110-
n = 55101,

where n is the vertex function for the quark and the
Reggeized gluon [12], while the subscripts 1 and v
refer to, respectively, photon and vector-meson polar-
izations.

The phase spaces are given by

1 d’k d’k,

dod,(p: K, k,) = =
2(Pi ko k2) 2(21)°2kyq (210)*2ky

(2’

1 dx,dx,
(4m)? XX,

x&'(p—ky—ky) = 3(L—X; —%,)

2
m
X A%y 107K B(Ky + Kp0) SV - - —XZDS
1 2

., W l d3k||
Ao, (p"; ki, k;) = 5———(2m)°
(2m)°2ky
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X 8" ki —ky) = L5~ x; —x)

X
0 ny 2 [
x d’ky (K + kg + kzm)éa\ﬂq; +k - _n_]i_D _E:(Z—D%
0 o 72Q
1 dK
dq)]_(p k11 k2) = 2————1———(21-[)4
(2m)*2ki
(P —ky—ky) = TI(1-x, —x)
X
m'z m2 |
x g2 Kio®(Kyg + kg + K D)éa\/qu + K D %D XZDE
D Xl 2 D

Integration with respect to k, is removed owing to

thepole(Mqq + Q> -2qk,—i0)"!, which isreplaced by
the corresponding half-residue; the delta functions in

equations (9) remove the remaining integrations. As a
result, we obtain

o k2D

V(qu)
P 4TJX(1 X)I(Zn)

qu"'Q

y 1 Gy(M qq) 2( ~1)§

"2 . 2
Mgq + Q°—20,k,—i0 Mg —

(10)

1

- [ e G M &M i
0x(l—x) (41)° M2y + Q° M 2 20,

S,

where

m’ + (Ko + xKp)°

X(1-X) ’ (11

2 _ m2+k;D "2 _
M2 = M+ (Ko + xip)°

a - x(1-X) ;
The quark loop (upper block) in Fig. 1b is consid-

ered in asimilar way. The triple spectral representation
(see Fig. 2b) leads to the spectral integral

dM2. » Ao, (p; Ky, kz)dM
q =I nquv(qu

M

X = Xp.

Méq—q —-i0 T
dd,(p"; Ky k) dMg, dy(p' Ky ky)  (12)
Moo —(q—k)?=i0 " MZ—(q-K)*=i0
x Gy(M) 0’ (-1)S,,
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M2 M2 M2 M3 M2 M?
A 7] M g 4

Fig. 2. Quark loop for the process y*(Q%) —= Vinthe case
of gluon interaction with (a) aquark and (b) aquark and an
antiquark. The dashed lines show |oop cuts corresponding to
the spectral integralsin equations (7) and (12).

where
S, = tr[y, (ki + m)A(ks + m) 03
X Y, (— k2 + m)A(—kz + m)].

The phase spaces are determined in the same way as
above; that is,

1 dxdx,
dd,(p; ky ko) = —==—=—=8(1 % —X
2(P; Ky, k) = (412 Xo%o ( 17 %)
2
mlD Moo
x d’k,d kzg5(klm+kzm)5g\ﬂqq T x, O

do,(p"; ki, ky) = nd—),(lé(l—x'l—xz)olzk'1D

X1
(14)
0 o m'2 M2 0
X (K Koy + ko) SFMgq *+ K& ——= =5
X1 X
U U
dx;,
A (p'; Ky, Ky) = T—=28(1— X, — X,) dKy,
2
U 2 2 []
1 L} l2 m m
% 8K+ 0+ Ko SMgq + KE — — — =5
O "0

Integration performed in just the same way as in
deriving expression (10) yields

1

= [ Idzkzm G,(Mgp) GuMag) ig’
aqq ~ 2 2,42 2 I
0X2(:|_—X) (4m) Mg+ Q Mg 2 _U-\Z/ 29, (15)
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where
2 o MKy ee (koo + (1-x)ko)®
9“9 x(1-x)’ a4 X(1-x) (’16)
o M+ (Kpn+k=xkp)®
qu = X(1=x) , XE X

We calculate § and S; for the case of transverse
polarizationinthe (x, y) plane; for this reason, we make
the substitution

Oy — —Oap KiuKjy —= Kigkip, @b = 1,2. (17)

The resulting expressionsfor S and S; are

_ (1%
= _g»— =~/
3 X (18)
X 8 p[M’ + (1= 2X(1 — X)) Kar, + Xy ko),

S = 85,,[M° + (1—-2x(1-X))

(19)
x (Ko + (K Tkop) — X(kp Tkop)) ]

3. y5(@)p — ppp AMPLITUDE

L et us now address quark loop diagrams featuring a
BFKL Pomeron.

A. First, we consider the version where the BFKL
Pomeron transforms into a soft Pomeron, which inter-
acts with the target nucleon. Following [3, 4, 13], we
represent the contribution of the diagram in Fig. lain
the form

1
BFKL

Ag (Y*p —Vp) = 4|6abjﬁ

d’k, d?k
I(Z)(Z)

> y(kZD)qJV((k2EI+XKD) %)

x(m2+(1—2x(1—x))kiu+x2kzm [kp)

2 D (V)

\VAV) W

I >0 J‘dzpldzpz
) (v? +1/4) EQ + v

(Pl
p1p2

1/2+iv
O ,. _g?
_[iz} g%ge o,
P2 U

where p; and p, are the gluon coordinates in the
impact-parameter space and where we have introduced

x eik E(P1—Pz)eiKﬂ tp,

ANISOVICH et al.

the photon and vector-meson wave functions

2 y(qu)
W, (kyn) = qu n QZ’
. @
Wy((ko+ x0)?) = 2Ma)

'2
IJ-V
with quq being given by (11). The energy dependence
is determined by the function
wo(v) = 22Cape' (D) _['(L2+iv)p
D‘(l) r2+iv)t
where C, = N, = 3, and ' (2) isagamma function.
For the diagram in Fig. 1b, we arrive at
1

: dx
(VP —=Vp) = ~4iBy[ ==
-(I:xz(l—x)2

(22)

BFKL

Aqa

dkdek
J’(2)(2)

x (m’ + (1—2x(1—x))<k§D+ k Ckpp— xkp (Kyp)
2 m d*"v (23)
J. \VAV) W J.d
(v +1/4) EQ +UVD
1 1/2 +iv
—[g}

y(kZD)LPV((kZD +K —XKp) )

1/2+iv

(p:— Pz)z}
plpz
~ —BKi

112 +iv
1 0
P2 d

The momentum transfer to the Pomeron, Ké , isnot
high; therefore, small distances are not permanently
selected aong the Pomeron ladder: the distance
between the t-channel gluons in the impact-parameter
space gradualy increases as we move from the
y*(@) — V block to the nucleon. For a sufficiently
developed comb (that is, at large W), the distances
between gluons reach ordinary hadron values, in which
case we are dealing with a soft Pomeron. Accordingly,
the Pomeron—nucleon vertex for the soft Pomeron has

the standard form—we defined it as gFpy(K3). TO @
high accuracy, the nucleon form factor can be approxi-
mated as Fogy(K2 ) = € 27 With B = 2.5 Gev-2,

It can easily beseen that the total amplitude satisfies
the condition

x eik [(91—Pz)ei“m th,

BFKL

(y*p— Vp) = Ay “"(y*p — Vp) o
+ AL H(y* p—= Vp) + 2A% “H(v* p— Vp).
PHY SICS OF ATOMIC NUCLEI \Vol. 63 No. 1 2000
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2
Gy(M_2)

2
GVEMﬁ)

(b)

12

2 6 10 14 2 6 10 14
2 2
Mq?’ GeV

Fig. 3. (a) Vertex G( ng) obtained from an analysis of they — 1°, , ' transition form factors [8] and used here to calculate

the reaction y’D‘(Qz)p — p% p. (b) Rho-meson vertex function used in the calculations; the wave functions of the 115) and 1381

qq nonets (pseudoscalar and vector mesons, respectively) areidentical in theregion of low qq excitations M q< 3GeV (the pseu-

doscalar-meson vertex function was determined in [7]). Three versions of the behavior of Gy/( qu ) for qu >9 GeV? have been

considered: (I) a decrease of GV(ng) in proportion to l/Méq (solid curve), (I1) the exponential decrease GV(Méq) ~

exp(—qu /Mg) with MS =05 GeVv? (dotted curve), and (I11) Gy = O (dashed curve).

Making use of it and taking into account all cancella
tions, we arrive at

1

AP (y*p —Vp) = _8|6ab‘[ﬁ

XI 2 d2kzwy(kgm)wv((k25 +k - XKD)Z)
(2m)°(2m) s)

X (MF + (1= 2x(1 = X)) (Ko + k Tk — x5 k)
[jn(V)

2dvv? O W2
J’(V +1/4) ‘’ +HVD

Id pld P2

12 +iv

‘ (P1=p2)°

ik dpy—py) IKDEp2|: P1— Pz } gzée_
plp2

Introducing the variables

2
Bk
x e o

k'=(kyn+k —xKp),
we obtain

k=k,q, (26)

1
. dx
—>Vp) = _8|6ab -
{x (1-x)

d»(\/)
_|’ d’p,d’p,

ABFKL(V* D

2dvv? O w?
I(v +1/4)°Q° +uvD
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1/2+iv
x e ixpOp, IXKD[[pl Pz)|:(p1 p2)2i| 27)

p1p2
J.d K d k (k'z)‘P (k) K Cp1 =) ik Py —p2)
(2m*(2m)*
x (2 + (1 - 2x(1 - X))k’ [k)g%ge >
In terms of the auxiliary variables
+
R = 91292’ P = pi—pa (28)

the amplitude can finally be represented as

AL (y* p e V) = —8id, [ X
b{xz(l—x)2

[

(v)

D 2
2dvv? W J,d pldR

I(v +1/4)°Q° +uvD

2 12 +iv
p i|

9 eiKD R —(1/2—x)p)

29
(R + p/2)%(R —p/2)° &)

y d’k d’k
I(Zn)z(zn)z
x (m” + (1-2x(1-x))k' [k)g°ge

W, (kAW (ke P

BKD
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Fig. 4. (a) Cross section o( yE Qp — p% p) in version | A for various Q> versus W (experimental data on the cross section for
the photoproduction process yp — p°p from [14] are shown as guidelines). (b) Cross section o( y’é Qp — p% p) at various

Q? versus W or versions (solid curves) [1A and (dotted curves) I11A. (c and d) Cross section o( yE Q@p — p% p) for various W
versus Q% in versions IA and 11A (I11A), respectively.

The last integral can be recast into a form that is more 1

2
—Bkg

convenient for anumerical integration; that is, x ( 211)292@6 (m*d,(p*) P, (p°)
! ) 2y (D)) 12
+2(1-2x(1-x))D 0] ,
ABFKL(y*p Vp) = _8i5abI _ dx . ( ( )Py (PP, (P7))
X (1=x) where
5 (v)
2dVV2 0 W2 2 2 @
X K O dpd°R _
'([(V2+1/4)2[Q2+p.\2,D .[ P ®(p?) -J'dkkLP(kZ)Jo(kp),
0
31
o ) 12viv (30) T S
x @ 0 (R~ (12=9p) P . oM(p?) = J’dkk W(k*)J,(kp).
(R+p/2)X R —pl2) J
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103

_
=

H
<

103

do(y5(Q%p — pYp)/dk?, nb/GeV?

10"

107!

1073 0
ot 10?10?10t 10! 102 10° 10*
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Fig. 5. Cross section do(y7 (Qp — p% p)/dKZD for various Q% and Ké versus the total energy Win version IA.

B. Inthe second version of the calcul ation, we assume

that the gluon ladder of the BFKL Pomeron is rather 1 2=t 1 v2-v o g i+ pyd
short; therefore, the BFKL Pomeronisnot convertedinto | =2 |2 Eexp%ncu > %
asoft Pomeron. Inthis case, the v (QP)p —» pop tran- ' ? (33)
sition amplitude has the form 0 0 2(p'12+p'22)D 5
Sy X EBXPB"—:;EZ—D——D— 5(p1—p2)3T
ABFKL(y*p_> Vp) = _8i6abj-2—2 g 0 O
OX(l—X) 0 , ')ZD:J
2 Pt P:
® 2 0 w2 W x HTexp———
XI deV . 2W 0 J-dzpdzR 0 600 M
+
o (V7 + U4y TR+ i with [M20being 0.8 fm?. This choice of the nucleon
_ 2 1U2+iv wave function corresponds to a decrease of the
x & E[R—(l/Z—X)p)|: g) . (32) Nucleon—Pomeron vertex in proportion to an exponen-
(R+p/2)(R-p/2) tial exp(-Bk?) with B = 2 GeV2.
1

X

2~ 2 2 2
An(v, > ®
(2n)2g ANV, ko) (M Pu(P) Py (P7) 4. RESULTS OF THE CALCULATIONS

(0, 2y 4 (1), 2 The vertex function that couples the Pomeron to the
T2(1-2x(1=-x)) Py (p7) Py (P7)), virtual photon — vector meson block is determined

where by the vertex functions G,(Mz;) and Gy(Mg,). The

2 vertex function G,(M¢, ) was evaluated in [8]; here, we
AV, k) = Idzp'ldzp'2 (01; Pzz) make use of the results of thzose calculations. Figure 3a
P1 P, displays the function G, (Mg ). It can be seen that, for
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Fig. 6. Cross section do( v} (@p— p% p)/d Ké for various Q* and W versus the momentum transfer Ké to the nucleonin ver-

sion |A.

MZ, < 2 GeV?, this vertex function decreases with

2

increasing M3, and that, at large MZ, it reduces to

G/(Mzg) =1,
We consider various versions of the p-meson wave
function; they differ from one another only for M7, >

9 GeV?. Figure 3b shows the vertex function G, ( Méq)

used in the calculations; we assume that, for M, <
9 GeV?, the soft wave functions of the vector mesons
belonging to the 1°S,qg nonet are identical to the wave
functions of the 1'S,qQq pseudoscalar mesons (the latter
were determined in [7, 8]). For the high-energy compo-

nent, M éq > 9 GeV?2, we consider three versions;

(1) GU(MZy) ~ Mga,

(I1) Gy(M7,) ~ exp[-aM3, ] with a= 2 GeV2,

(1) Gy(MZ;) = 0.

The amplitude also depends on the coupling con-
stant g2g , whichistreated here as afree parameter. Fig-
ure 4 illustrates the cross section o(yy (Q)p — p% p)
as afunction of W and Q? for version |A; we fixed the

coupling constant g>g at 12.3 by fitting the value of the
photoproduction cross section o(yp — p%0) at W =
30 GeV.

The results of our calculations for the cross section
o(y: (Q)p —= plp) are presented in Fig. 4. On the

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.1 2000



BFKL POMERON

0?=1GeV?

91

0?=5GeV?

10°
103
10!
10,1 O T O O WA 11T Wi J TV I W VT Wi
0% =10 GeV? 0% =20 GeV?
e 10t
=
<
y 107
a
S 100 -
%0
I
10—2 L L L L L Ly
0?% =50 GeV? 0% =100 GeV?
10?
100
1072 L L L i L L e
0t 102 10°  10* o' 102 10° 10*
W, GeV

Fig. 7. Cross section o(y’E‘l(Qz)p — p% p) calculated with allowance for all possible interquark distances (thick and thin solid

curves correspond to versions | A and I 1A, respectively) and cross section o( y’E‘I Qp —= p% p)p <l representing the contribu-
tion of small interquark distances of p < 0.2 fm (thick and thin dotted curves correspond to versions A and |1 A, respectively). The
difference o(y¥(Q*p —> p% p) - o(yE (Q@Pp — p% P)p<r,, issmall (on the order of 10%) only for Q? > 100 GeVZ in the

region W= 10* GeV.

basis of these results, we can draw the following con-
clusions:

(@) Versions IIA and I1IA yield nearly the same
results.

(b) For al versions, the growth of the cross section
with increasing W at constant Q? is described by the
same expression

o(v%(Q*)p —= pop) OW*
with A =0.37.

(c) With increasing Q, the cross section decreases
faster in versions I1A and I11A than in version |A.

(34)

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.1 2000

The differential cross section

do(y5(Q%p — p2p)
dk?

(35)
_1 BFKL /. % 2
= ézb‘A (Ysp— Vp)

isillustrated in Figs. 5 and 6. Figure 5 shows it as a
function of W at variousvalues of Q2. It can be seen that
the W dependences of this cross section have nearly the
same form over abroad interval of K. Figure 6 demon-
strates that its K, dependence weakly changes with Q2.
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O(Y%(QHp —» pYp). nb
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Fig. 8. Calculated cross section o(y¥ (Q%)p —= p% p) for

versions IIA and 11B: solid curves correspond to the case
where a hard Pomeron transforms into a soft Pomeron dur-
ing the t-channel evolution of gluons [equations (30) and
(31)], while dotted curves correspond to the case where a
hard Pomeron does not transform into a soft Pomeron sys-
tem [equations (32) and (33)].

The BFKL Pomeron is defined as a system that is
formed by gluons separated by comparatively small (on
the hadronic scale) distances. In order to clarify the way
in which large @Q* select small interquark (or inter-
gluon) distances, we performed a calculation with a cut
imposed on p in (30). For this purpose, it is convenient
to introduce a Heaviside step function in the relevant
integrand explicitly:

d’p — d’pB(reu —p).- (36)

In our calculations, we set r,,, = 0.2 fm. The results
of this calculation are displayed in Fig. 7; we denote by

o(YE(Q)p — p% P)p<r,, thecrosssection calculated
with the above cut. We see that the selection of small
interquark (or intergluon) distances with increasing Q?
proceeds rather slowly at the initial stage; only for Q% >
100 GeV? do the cross sections calculated with and
without the cut approach each other:

o(y5(Q%)p — pip)

o(Y5(Q%)p — poP)o<r,,

Pomeron exchange is operative at large values of
W?/Q*—the results of our calculations show that the
condition in (37) holds for W?/Q? = 107 (see Fig. 7).

The amplitude for version B is determined by
expressions (32) and (33). Theresults of the calculation
within the two versions virtualy coincide [Fig. 8 dis-

—1<20%. (37)

ANISOVICH et al.

playsthe y5(Q»)p —~ p% p cross section calculated for
versionsA and B].

5. CONCLUSION

At high @*> and W*/@?, the process yf (QY)p —=

p% p proceeds in the following way. The hard photon

produces a quark—antiquark pair at small distances; the
guarks transform into a vector meson, emitting gluons
that also occur at small distances in the impact-param-
eter space and which form the gluon ladder of a hard
perturbative QCD Pomeron (BFKL Pomeron). Theglu-
ons that form the Pomeron undergo evolution in the
impact-parameter space and can transform into a soft
Pomeron, provided that the gluon ladder is sufficiently
long. Bearing in mind this possibility, we have per-
formed two versions of the calculation, that in which
this transformation occurs (A) and that which is free
from it (B), but we have obtained virtually identical
results.

The block featuring the production of a quark—anti-
quark pair depends on the photon and rho-meson wave
functions. The photon wave function is determined
quite reliably by the y*(Q*»)p —= T n, n' transition
form factors for Q* < 20 GeV? [8], but information
about the high-energy part of the rho-meson wave func-
tionislesscertain.

We have calculated the cross section for the reaction
VE(Q)p —= p p by invoking various assumptions
about the behavior of the p — qQ transition vertex at
large Méq: specifically, we relied on the generalized

vector-dominance model, where G, ~ Mg [version
()], as well as on models where G, decreases faster
(versions|l and I11).

The results indicate definitively that, at Q> ~ 5—
50 GeV?, the cross section for the production of atrans-
verse rho meson is governed by a BFKL Pomeron at
not very small (on the hadron scale) interquark dis-
tances of p > 1/4R,,,4, where R4 ~ 0.6-0.8 fm. The
contribution from small distances of p < 1/4R, ,, becomes
dominant only at very large Q* (Q* = 100 GeV?).

An immediate conclusion from this result isthat, in
hadron-electroproduction reactions, the genuine per-
turbative regime has not yet set it at Q*> ~ 5-50 GeV?2.
We do not think that thisis surprising, because the sit-
uation in electroproduction processes is completely
similar to the situation in form-factor physics, where
nonperturbative contributions dominate at Q> ~ 20 GeV?
and where the perturbative regime is fully established
no sooner than Q? becomes greater than 100 GeV? [6—
8]. In addition, we would like to emphasize that o, cor-
rections to the BFKL Pomeron remain sizable up to
similar Q* values of 50-100 GeV? [15].

PHYSICS OF ATOMIC NUCLEI  Vol. 63
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That a noticeable contribution from large p (of
about the hadron size) survives up to Q> ~ 100 GeV?
has an important implication for processes occurring in
the interval Q> ~ 10-50 GeV? because, for such pro-
cesses, this adds importance to the problem of match-
ing the BFKL Pomeron with the contribution of the soft
region. First of all, thismeansthat it is necessary to take
into account the effective mass of the soft gluon on the
order of 800-1000 MeV [16].
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Abstract—At large N, the gauge-invariant Green’sfunction of the heavy—light gQ system satisfiesanonlinear
nonlocal equation, which is studied in detail. Chiral-symmetry breaking reveals itself through the appearance
of scalar confinement at large distances. Equations for partial waves are written explicitly with perturbative
Coulomb interaction taken into account, and the structure of the interaction kernel is studied semiclassically.
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1. INTRODUCTION

Chiral-symmetry breaking (CSB) is known to be
realized spontaneously in QCD, a fact which is sup-
ported by phenomenology and lattice data. On the the-
oretical side, there is a theorem [1] proving CSB in
QCD in thelimit of large-N. QCD.

An important property of CSB is that it disappears
together with confinement at the critical temperature
T., as was seen in numerous lattice studies [2]. As a
consequence, both phenomena should be related in
QCD, and, in particular, specia care should be given to
the gauge-invariant formulation of the problem, since
otherwise confinement can be lost [3].

The simplest gauge-invariant formulation of the
problem was considered recently in the example of the
heavy—ight quark—antiquark system [4, 5]. Here, the
heavy antiquark can be viewed as a static fundamental
source, not influenced by the dynamics of the light
quark.

For the QQ system, when both quarks are heavy
(static), the situation is now understood. Assuming the
presence in the QCD vacuum of the specific field cor-
relation functions [3, 6], one obtains confinement for a
static quark and antiquark, realized in the form of the
string connecting two static quarks.

Itisnot clear beforehand what would happen if one
uses the samefield correlation functions for the system
of light quark and heavy antiquark. Specifically, would
one obtain linear confining interaction for the light
guark, or would there appear another dynamics?

Therefore, the first task of the present paper is to
prove that the light quark in the heavy-light system is
subject to alinear confining potential entering the (non-
local and nonlinear) Dirac equation. The second task is

* This article was submitted by the author in English.

the study of CSB in the example of the heavy—light sys-
tem.

The phenomenon of CSB can reveal itself in the
heavy—light system in several ways. Firstly, the parity
doubling in the spectrum should be lifted; secondly, the
chiral condensate of light quarksis expected to be non-
zero; and finaly, the dynamics of a light quark should
correspond to Lorentz scalar interaction, described by
linear potential at large distances.

Recently the heavy-light system was considered in
this formulation [4, 5], and equations for the quark
Green's function have been written explicitly, having
the form of anonlinear and nonlocal equation of Dirac
type. It was shown in [4, 5] that confining field correla-
tion functions give rise to the mass operator, which in
the limit of large N, is proportional to the quark Green’s
function.

The complexity of the nonlinear equation precluded
so far itsexplicit numerical solution, and theanalysisin
[4, 5] essentialy exploited the approximate relativistic
WKB method. In thisway in [4, 5] the scalar confining
interaction was demonstrated for the light quark at
large distances, displaying CSB.

Another approach to the same equationswas used in
[5], and again a linear scalar potential for the light
quark at large distance was found.

In the present paper, we reconsider the problem of
the CSB in the heavy-light system, trying to improve
the previous analysisin several points.

First of al, we study the nonlinear equationsfor par-
tial waves and define properties of solutions.

Second, we analyze semiclassically the explicit
form of the light-quark interaction, which is generally
nonlocal, at all distances, and it is shown to reduce to
local linear interaction asymptotically at large dis-
tances, in agreement with previous studies [5].
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Third, the perturbative gluon exchange is taken into
account, and the resulting equations for the Green's
function and wave functions are written explicitly. The
analysis made shows that the kernel in this case
acquires in addition to a modified form of the scalar
term also a vector part.

Thisarticleis organized as follows. In Section 2 we
rederive the equations for the heavy-light Green's
functioninthelimit of large N, keeping only thelowest
(Gaussian) field correlation functions. As in [4], the
limit of small vacuum correlation length Ty is used
where possible, enabling oneto writetime-i ndqependent
equations. In Section 3, the spherical spinor expansion
isused, and nonlinear equations are written for the par-
tial waves. The relativistic WKB form of solutions is
discussed in Section 4, whereby also the WKB form of
the kernel is obtained. Modifications due to the inclu-
sion of perturbative gluons are discussed in Section 5.
Discussion of the results, as well as prospects of the
present study, is relegated to Section 6. Three appendi-
ces are devoted to the spherical spinors (Appendix 1),
to the properties of the kernel (Appen-dix 2), and to
modifications of the gauge contours (Appendix 3).

2. EQUATIONS FOR THE GREEN’S FUNCTION

We shal be working with the gauge-invariant
heavy-light qQ Green's function. The Q Green's
function G(j Xy is

Gy(x y) = L5 (x—y)
¢ 2 1)

—(hs)M (h)M

x{e " 08(h)(1+y,) +e " 8(-hy)(1-va)} P,

where h, = x, — y, and the parallel transporter is along

the straight line

X

0 0
d(x,y) = PexpOg[A,dz,0 2
(X y) DDQJ’HZHD 2

and the points x and y should be sitting on theworld line
of Q, which we choose to be the x, axis (x =y = 0).

Therefore the gauge-invariant object, which we
shall cal in this paper, as in [4], the gauge-invariant
light-quark Green's function S(\w, 2), is defined as fol-
lows:

Sw, 2) = tr(Gy(w, 2P(z ) P(X, Y) Py, W), (3)

where Gy(w, 2) is the proper light-quark Green’s func-
tion, and contours C and C' are arbitrary.

There is aclass of gauges where @, @, and @ in
(3) are equal to unity. In [4], the so-called modified
Fock—Schwinger gauge was used, and in[5] amore gen-
eral gauge[7] wasexploited. In these gauges, Sw, z) and
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GyWw, 2) coincide, while the vector potentia is
expressed through F,,, as

dz,(s, X) dzg(s, x)
ds dx, S

A“(X) = IFaB( ) (4)
C

where the contour C is described by z,(x, s) and

Z,(X, 0) = X,

To account for the heavy-quark tragjectory, one
choosesthe class of contours{C} passing from an arbi-
trary point to the x, axis and going to —co along it.

The partition function Z of the light quark in the
Euclidean spacetime,

Z = J’DADwa*expEgJ'w*Awd“x
O
&)
J'4 ledx+|‘|'llJ (6+m)deB;

can be written in terms of the effective quark
Lagrangian

Z= IDWDW+eXp(£Eeff(W+, W) + £,),

. +,3 4 (6)
$o = |ILIJ @+ mWwd'x,
where we have defined
expFy = <eprLIJ Awyd x>
_1 12 4 saooa (7)
=X DAeXpB_ZIF“Vd x+gJ'kIJ Awd XE

Making use of the cluster-expansion theorem, one can
write for £ an infinite series

2
_ g +
S ZIdXIdquanqu(X)

x Wiy, Wy(y) LAY AS(y) O+ ..,

where a, b, ¢, and d are color fundamental indices.

Using the gauge (4) one can express a factor [AAL
through the field correlation function OFFO

(®)

X
6ad 6bc
2

(AP A (y) O = I p(U)dug

C

©)

y
x IFH.B.(v)dvytrc (Fop(u)Fya(v)O

where I g(U) = dug/dx,,. In what follows we keep in (8)
only thefirst term, neglecting all others. The reason for
thisisthat the expansion in powers of A in the correla-
tion function is actualy a power expansion in small
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parameter ( = IEZT;1 = 0.1, where T is gluon correla-
tion length measured on the lattice [8], and the values

—2 —2 1

F" =Ex = EF y[ can be taken from the standard

12

gluon condensate. Moreover, only connected correla-
tion functions enter into &, and for them higher terms
can be suppressed furthermore due to subtraction of
disconnected parts. In agreement with this, quartic
termsin A and higher order terms do not show up in the
effects considered so far; e.g., the Casimir scaling law

for static QQ potentialsis seen on the lattice, whichis
dueto the lowest correlation function (9), and would be
violated by higher correlation functions [3]. Also, the
QCD string profile calculations [9] are in agreement
with the dominance of the Gaussian correlation func-
tion (9). Moreover, higher order correlation functions
have been considered in [4] and shown to give qualita:
tively the same effects as the Gaussian correl ation func-
tion. Therefore, we shall confine ourselves to the form
(8), (9), neglecting all higher termsin (8).

One can now use (8) to produce Dyson—Schwinger
equations for the Green’sfunction S.

The crucia point is the expression of the effective-
mass operator M(x, y), which in general contains al
powers of g" and all possible contractions in (L))"
However, in the limit of large N, the leading term is
obtained by contracting two internal or two external W
and W+ operators, and the result can be written as

Pt = I dxdyWL(x)iM(X, ) Wa(y),
where it was defined

IM(x,y) = VpS(X, Y)Vvav(X7 Y),

x y

Jw(xy) = J’quJ’de(D(u, v) +AB(, v)).

(10)

(11)
(12)

Here, we have used the standard definition [6]
RETe TP FpolV)0= (8,580 = 8,00 -
X D(U—Vv) + A o(U—V),
D ()

1 (14)
= éau{ [(X)\avc - Xoév)\) THV~— )\0] Dl(x)} .

Both D and D, are known from | attice measurements|§].

Insertion of the contracted form (10) in (6) leads to
the nonlocal Dirac equation for S

(=10 —im)S(x, y)

—IIM(X, 2z y)dz = 87(x—-Y),

SIMONOV

which, together with (11), defines Sas a solution of the
nonlinear equatlon Equan ons (11) and (15) have been
first derived in [4]

To proceed with the solution of the nonlinear nonlo-
cal equation (15), we shall use several approximations.

First of al, we neglect the term A in (13) since it
isafull derivative and does not give rise to string for-
mation (arealaw in Wilson loop) [6]. Its contributionin
the framework of equation (15) was discussed in the
appendix of [4].

Second, we shall neglect the contribution of the spa-
tial components of the kernel J s since the latter are
produced by the color- magnetlc components of the
field correlation function, while the string is primarily
made of the color-electric field, and associated with J,,.
This approximation can and will be lifted in the future
study of spin effects associated with the string and
CSB.

Finally, we assume for D(u — v) the Gaussian form,
D(u) = D(O)exp(—u2/4T§), since it allows one to pro-
ceed with analytic calculations. Since correlation func-
tions contribute to the string under the integral, the use
of the Gaussian form instead of a more realistic expo-
nential [8] should not change our results essentialy.
With thisin mind and using for simplicity the modified
Fock—Schwinger gauge [11], one obtains

IM(z, w) = J(z, W)YsS(Z W)Ya, (16)
J(z, W) = Ju(z, W) = J(z, w)e ) /4Ty an
- 20 f(z w)D(0)e * "4 s,
1 1
f(z,w) = Idsfdtexp@% (18)

g

As a next step, the gluon correlation length T,
which isabout 0.2 fm [8], can be exploited in (17) as a
small parameter. To this end, one can make the Fourier
transformation in the fourth components of coordinates
zand v in (15) and (16) with the result

Hp4+ == 1 Bmgs(pm z,w)

+ B[M(Pe,2,Y)S(Pa.y. Wy = iB87(z-w),

(19)

— dp4 ~(py—p)’ Tg
iM(p,, z, W) = 2T Jﬁf J(z, w) 0)

x B(pa 2, W)B,

DAn independent study in [10] resulted in equations similar to (11)
and (15), but where Sin (11) was replaced by the free Green's
function &,. Thus defined My(x, y) = -1y, (X, Y)YyJ,,y does not pro-

duce CSB and may be applicable only f%r heavy mass m.
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where 3 = y,.

The eigenfunctions W,, can be found in a standard
way, now depending on p, as a parameter

29 4o,z p)

+ BIM(p41 Z, W)LIJn(W! p4)dW = 8n(pll)q',n(zv p4)

with the compl eteness and orthogonality conditions

21

Y Wiz pWiw, p) = 8%z-w), (@2
[¥ilz, P Wn(z, pIAZ = By, (23)
The Green’s function is expressed as
_ < iz p)Wa(w, pa)
S(p4! Z, W) - z p4_i8n B (24)

n

Now, one can notice that p, enters only as a spectral
parameter in (19), and it appearsin M (20) multiplied
by T, in the exponent.

Therefore, in the limit Ty —0, the kernel M does
not depend on p,, as is seen from (20), and hence,
W.(z, p,) isasoindependent of p,. Theintegration with

respect to p, can be performed in (20). Thisyields
' _(p4 p4) g

fzn —r. (25)

= Zsuneq(1+ O(P,Ty).

Hence, in the limit p, T, — 0, one can represent M as

M(pg, Z, W) — M(z, w)

26
= T /mD(0)z W f(z, w)BA(zZ, ), (20

wherethe4 x 4 matrix A is
Nz w) =y Wi(2)sgne,Wyw), 27

and we have omitted the p, dependence in W, (z, p,),
assuming the limit p, T, —= 0.

3. PARTIAL WAVE EXPANSION OF (15) AND (16)

One can expand in (21) both solution W,(w) and the
kernel M(z, w) in spherical spinors as it is done for a
relativistic electron wave function in thefield of astatic
source [12]

1 rNaQ
Lpn(r) - FZ n() jM (28)
I |Fn(r)§2JIM D
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97

We use here standard notation [12], I' = 2] — | and

iM _ 1
Q= Gy Yo H=350 (29
accordingly, the 4 x 4 matrix A (and M) can be written

in terms of the box structure

A = %/\11 /\12%
UAy Ay O

(30)

and each of A\ isa2 x 2 matrix,
1
|k ) H M - +§
To obtain equationsfor G,, and F,,, we substitute in (21)
the form (28) and multiply from the left by Q;M(z) and
QT'.M(Z) and perform integration with respect to
dw(z) = dcosb,dd.,.

We list in Appendix 1 some useful formulas mostly
taken from [12], for the convenience of the reader, and
here we quote only the final result

dF,
dr

_$Fv + (Sv _m)Gv

- I@|M11|v'm\:-vev.(w)w2dw 31)

i J’B}|M12|V'E\4,r—VFV|(W)w2dW = 0,

dG,

W _(£v+m)Fv

K
+%c
r \Y

- J'D)|M22|V'E\+Ir—v F,(w)w2dw (32)

+iIE)|M21|v'DVrT/GV.(W)W2dW = 0.

Here, v = njIM, v' = nj'I'M', and
|Myv'O

= [ ME (W) Qi () deor) deow).
For M,;, M,,, and M,,, one should replace | and I' or
both, respectively, by 2j — | and 2j' —I'.

Finally, we guote the explicit expansions for M,

Mi = JIT D(0)z T f(z, w)(-1) " *AL¥ (z, w), (34)

|k_

where
[l * . * D
2WAB (Z, W) = ngnené GuGu AGFy @ (35)
njiM OiF.Gh F.Fu O
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and we defined

G,=G, Q. Gy =Gy (W)Q (W),

Fu=F@ Q@ Fi = Fa(WQph(d),
I'=2j-I.
Equations (31) and (32) together with definitions (35)
and (36) are invariant under transformation [13]
& ~—-€, K~—-K, G,—F, (37)

From (34)—(36), one can notice that under thistransfor-
mation M;, change as

M} ~—— +My,

(36)

M, ~— -M,,. (38)

The invariance under transformations (37) and (38) is
the same as that of a Dirac equation with scalar poten-
tia [see (A.15) and (A.16)].

Using (37), one can rewrite (35) as a sum over only
positive values €,,, denoted asn > 0 (it isproven in [13]
that there are no states with €, = 0 for scalar interac-
tion),

*

ZwAY = (GG, —F,Fyo),
j,I,Mzn>O (39)
/\2 = /\111

2w = (GHFH.—FUG:-),
il Mzn>0 (40)
A= AR

To proceed further, one can expand Al asfollows:

Az, W) = 8B,y + by [ (41)

Hu's

where
ay ;tru/\,k, b, = 2trp(/\,k o), (42)
so that, e.g.,
Wz, w) = J/nT,D(0)z T f(z, w) @)
x (A 8y, + by 6,,) = MP3,, +my (6,
My = MY, My = —M&‘é". (44)
Insertion of the term m(o) in (33) yields
GIM|M | jIMO
. IQ”M(r)m(O)(r w) Q! (W) dex(r ) deo(w)
(45)

= Oumr i+ 1ZIQJ|M(r)QJ|M(W)

x m2(r, w)do(r )dw(w).

SIMONOV

Taking into account (see Appendix 1)

2j + 1
zQ,lM(r)Q,lM( ) = L=P(cosB),  (46)
we have
GIM|Myy/ jIM'D
_ (0) (47)
- 6M M‘Imll (r1 W) P|(COSG,W)dOO,W,
m{Y = J/TT,D(0)z W f(z, w)
1 (48)
xs— Y (GG ~F.F),
Wi, I,M,n>0
or, using (46), one can rewrite (48) as
0) _ 1 2j+1
my = JTT,D(0)z T f(z, W)zzw_ Z e
j,1;n>0 (49)

x %D|(COSGZW) Gn(Z)G: (W) - IDI'(COSBZW) Fn(z) F: (W) %
g g

I'=2j-I.
Inasimilar way, using (A.27), one can express m;; as
follows:

My = J/TTD(0)z Wf(z w)5— stg—

x 0.,P,(c088,,) G1(2) Gy (W) (50)
]

+ L,Py(cos0,) Fo(2)F (W) §
O

where we have used (A.28) in the last term.
Insertionin (33) of thetermm,, - o yields

IMmy, To|jIMO= S [Q"
IM|m L EJ‘ J”Vl(r) (51)
x Myy(r, w) 06" Q) da(r) dax(w).

Setting M = M' as in (45) and performing summation
over M, one has

5 DMims Colitve_
M

2j+1
X I do(r)dow(w)m,(r, w) (L P,(cosb,,,).

Equations (47) and (52), together with (49) and (50),
yield al necessary information about the kernel M, =
M,, in terms of usual Legendre polynomials.

SgnK
(2] + 1) 21

(52)
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Let us now address the nondiagonal term M,
which can be written asin (43)

M = mB3,, +my, (B, (53)
The matrix element entering equations (31) is
IM|M | jI'M'O= (Q LMY, w
OIM[M ) | J- im(N) Mz (r, w) (54)

QY. () doo(r ) doo(w)
with ' =2j —I'=1.
Putting in (54) M' = M and summing over M as
before, one obtainsfrom m ) the sum of the sameform

asthefirst sumin (A.26), wh| ch vanishes, and the only
nonzero contribution comes from m,,

GIM|[My,|j T MD
Z 2j+1
M
dw, dw,, [
= - 4—:Wmmlz [h,P,(cos6,,) (55)
0

ngnK
21 S (In, x L,]P/(cosb,,) E

The vector function m,,(r, w) can now bewrittenin the
form similar to m,,, equation (50),

my, = (<i)/iT,D(0)z Wi(z w)%w
(56)
Y [G@FiW)J;(z W) -Gy (WF @ Tiw, 2)],

j,,n>0

where J is given in (A.30).

4. THE RELATIVISTIC WKB APPROXIMATION

The equations to be solved, (31) and (32), involve
the nonlocal kernels N|M;(r, w)|[vOwhich can be
reduced to the angular integral (47), (52), and (55) of a
function, having a genera structure [cf. equations (49)
and (52)]

M (z, w) = const [z O f(z, WA, (z, W). (57)

We are interested in the behavior of m(z, w) at both
small and large values of z and w. Now, sincethe kernel
N\; consists of an infinite series of solutions (it is actu-
ally a spectral representation of the propagator), one
may expect that solutions G,, and F,, with large n (and
also largej, I) might be important, especialy at large z
and w. To check this, in [4], the relativistic WKB
method [14] was used to create G, and F, for some

chosen scalar local potential \7(r) = or in the frame-
work of the local Dirac equation. It was shown there
PHY SICS OF ATOMIC NUCLEI
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that the resulting /~\(z, w) at large distances behaves as
asmeared o function:

Az, w) 08(1 — cos8,,)3(|z| — |wl). (58)
Insertion of A in (57) produces immediately the scalar
quasilocal linear potential M(r) = or at large distances

with the same string tension o. In this way, the choice
of the potential V isproved aposteriori, at |east at large
distances.

Itisapurpose of the present paper to make the semi-
classical analysis more quantitative and, particularly, to

find the behavior of the kernel M(r, w) at both large and
small distances.

Moreover, it isour purposeto check in the next pub-
lication the stability of the result, using for the lowest
states G,, and F,, the solutions of (31) and (32) calcu-
lated with the kernel A(z w) improved gradually by the
insertion of the lowest states found self-consistently
rather than the WKB approximants, G, and Fy.

We expect that the h|ghest states are given by the

WKB approximants Gn and Fr, reliably, and they are
the lowest states which can be influenced by the local
WKB approximation most of all; also, nonlocality can
distort mostly the lowest states and not at large dis-
tances.

According to [4, 14], the WKB solution V =or can
be written separately in 3 regions:

regionl: 0<r<r,

regionll:r_<r<r,, (59)
regionlll:r>r,,
where
2 2 2
rizgi 8—240K. (60)
20

The WKB solution in region I (most important to find
the kernel A(r, w)) waswrittenin [4] as

G = C, /m“(”)” ing,, 61)
~l &, —mM-=a0r .
Fn = C,sgnK ————————p(r) sing,, (62)
2
p(r) = A/8 ~5 —(m+or)’, (63)
r?
while 6, and 6, are defined as
_ KW[ ]y, , T
0(r) = I%ﬂm%ﬂ +3 (64)
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r - where Q = |p(r)| - k/r, and for kK > 0,
_ KWy , T
0,(r) = J'EP+F%# +2 (65) i - Dé'n" ot
- CE 0T “Tom
1 1 o ' (75)
W) = —=—-Z——— (66) 0 al L KW
2r 2m+or+eg xexpB— %p(r)l ||p||r%jr%ﬁ+or—e[r
iy = L 1 o -
0 amreree, (67) = p()| + . (76)

The semiclassical eigenvalues €, are defined from
the quantization condition [14]

J:%)+%IFV%1|’ = T[Ej+%% n = 0’ 1, ey (68)

which gives approximately

2 _ j+1 1+sgnk | 40KO 1]
Sn—4081+ + 2 OEb e

For large | and n, when sin®;(r) oscillates quickly, one

can find the normalization constant C, from the condi-
tion

(69)

2 _ 20
Cr = I() cinl) = £

Let us now consider region |. Using the standard
matching condition [14], one obtains

& = ClA/m+ or +g,
2./|p(r)|

= C Ci/e—m—or
Fr 2./ p(r)]

It isimportant that behavior of the WK B solutions near
r = 0isgiven correctly by (71) and (72), namely [13]

(70)

07wl O
B—‘ +,—‘dr'|] 71
pD{p rp 2 D

K ex E'rr_‘ +Kw‘dr% (72)
pDJr’ P rpl 0

Ghn=As", Fn=Br", (73)

where k = -1 for éL and Kk = +1 for IEL. The solution
inregion Il can be written as (for Kk < 0)

'Ijn = §n 0= SL
R0 Qe
q° K] (74)
n_ W(r)IK]| +or +5D
xexp%r?[%p(r)l rrasd %ﬁ

Let us now consider the sum in (19) and replace it
by the semiclassical solutions Gn and Fr

A = 2] +1
e 2Xy x 4Tt

j.I,n>0

I:l"‘ ~ % ~ ~ % |:|
X [Gn(X) Gn (y) P; (c0s8) — Fn(X) Fn () P;.(cosB) [

a a

(77)
2j+1 2

i.l,n>0

* { N1(X)N,(y) P; (cosB) sinB,(x) sin6(y)
— No(X)N(y) P;(cosB) sinB,(x) sinB,(y) }

where 8, and 6, are givenin (64) and (65), while N, and
N, are, respectively,

We shall now show that, at x and y such that [x —y| <
X, Y, we are able to calculate the sum (77) analytically.
We shall use the method described in [4], but modify it
to take the dependence on k explicitly, not assuming it
to be small as compared to n, aswas donein [4].

One can writefor y < x

N;x =

SN0, (X)sinB,(y) = %cosjao(r') ’;‘(’:()rr)gdr'
y

(79
~ 2005(8,() + 6,(1)).

The last term in (79) quickly oscillates for excited
states from term to term; therefore, its contribution to
the sum (77) can be neglected.

For large x and y, the term kw/p(r")r' can be neglected
as compared to p(r'), and we obtain approximately

. . 1
sing;(x)sinB;(y) = ECOS[ p(xD (x—-y)1,
(80)
xO0OXEY ox.
2
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One can go over from the summation over n to the inte-
gration with respect to de according to (69)

Z J.eds

n=0

(81)

€min

After that, let us make another change of variablesfrom
€to T, coupled by

K2 2.2 K2 2.2 [ 2
€E=T ;+0x, p(x) = F+cx " —1. (82)

We note that the semiclassicaly allowed region p(x) 2
0 correspondsto T = 1 and (77) assumes the form

NEDY

(2] + 1)oxP,(cosb)

_ 41T X 2XYyT
J
O [ 2 [l
I cos[] /K—2 + 0 x—y[NT?=10  (83)
-1 X O

where

2
a = [x-yl [S+0%X, (84)
X
and K, isaMacdonald function.

One can consider large x, satisfying the condition
K2 /X < 0%¢. Then, the sum over | decouples in
(83), and one has, asin [4],

Z(Zj'+ 1)P,(cos8)

(85)
DZZ (21 + 1)P,(cosB) = 2 x 43(1— cosb),

where the factor 2 comes from two possibilitiesj =1 +
1/2 for each |. Finally, one has, asin [4],

AD = 51 - cosB)K,(oxIx =),

1’y

The accuracy of the & function in (86) or its smearing,
is bounded by the condition

xy. (86)

ABK,m =1, AB=1/0X. (87)

Therefore, for smaller x, the & function in (86) becomes
“softer.” This property may be seen from (83), which
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can be rewritten as
~(0) 20 S 100
A = T[Zy.!ZJdJJO% + Zgbm
. 2 |:|
x Kolx -y A/(—Ji’-lz@- + 02X (88)
0 X 0

_ o Kl(oA/;(A/ Ix—yi* + 62x2)
210y [X — |2 + 6°X°
We aso note that /N\(ﬁ) (86) and (88) is the normalized

smeared & function, namely (note that Ié(l -
cosB)dcosh = 1/2),

J’/\‘fi’(x ydy = 1. (89)

We now consider the kernel m{Y (49) to find it in the

semiclassical (and local) approximation, Y. From (34),
we then obtain

~(0) _ (0)

My = J/TT,D(0)z T f(z, w)Aus (90)

Using the properties of f(z, w), defined in Appendix 2,
one obtains

~(0)

my, =~ omin(|z, |W|)7\(1(i) On

Thisfact, together with the d-function property of 7\(12) ,

tellsthat at large zand w the kernel m ) becomesalin-
ear (almost) local confining interaction.

Taking into account the nonlocality in the angle 6,
eguation (88), one realizes that a small 8 and small
[X —y| one can approximate (88) as

AO O/xy 1
217 (x=y)*+0%xy

92)

Again using (88) and (90), we can now express the
nonlocal kernel m epr|C|tIy in terms of z w, and the

angle 6 between vectors z and w. The integral of m(o)
with the ground-state eigenfunction ¥;,, j = 1/2, 1 = 0,

displays the influence of nonlocality on the resulting
effective potential.

We turn now to the vector part of the kernel m,,
(50), which enters into the equations as a matrix ele-
ment of m,, - &, equation (52).
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One can proceed here asin the case of /\(ﬁ) , hamely
one has the following chain of equalities

Au(Xy) = 2Xy Z

j,I,n>0

DsgnK(J DO
ot U

x EPl(cose)Gm G3(y) — P (cOSO)F,(X)FX(Y) E

(93)

= ————z B:’ l(cose) P l(cose)D
0 —
+ 05C0 = _oL [x-y

(J+ 1/2)
x KX —
0@ lA/ X2 O 4ny

X}tdtKl(lx — VI X+ 0°%) I4(t6)
0 J/ 5+ 07X

2
_ oL B 2], x=ygH
= 4nyK°EUX El+DX D,

where K, and J, are Macdonald and Bessel functions,
respectively. Inserting thisformin (50) and symmetriz-
inginxandy (sincejx —y| < X, y), onefinaly obtains

L X0, Dy o7 2 O TR
My 4T[«/_y2A/1_'[T Bjxy + 94)

Note that in (94) the function K, effectively separates
forward direction, 8 < 1, and therefore at large X, y it
can be understood as a smeared & function, with the
normalization

2
CJ’d"’yKOEny /62+%Ep3(xy)3/2 = 1. (95)

Therefore m,, can be rewritten as

o xEyf(x y)Lé(a)( X).
a(xy)*T,

(96)

Hence, m,, yieldsacorrection O(1/x) since |L | ~ 0/08
and 67! ~ oxy.

Now, we consider the last remaining piece in the
kernel m,,, defined in (55) and (56).

Denating

Ap==— Z [G(2Fn W) J;i(z, w)

Jln>0

-Gy (W)F (23w, 2)]

97)

SIMONOV

and using (A.30) aswell asthe fact that vectors z and w
almost coincide (as can be checked a posteriori), one
can write

Ap = —nAD —i(nxL)AZ @z W), (98
where we have denoted
1
A = 5
2i 4+ 99)
x5 LI (c080,,)(G(AF 5 (W) ~ I WF,(2),
A
1
ARz, w) = S

N (100)
S 3Pi(C0s8,) (Gy@F; (W) - Gy (W) Fy(@)-

j,n>0

As before, we are mostly interested in region |1, which
provides the dominant contribution to the wave func-
tion and to the Green’sfunction (i.e., to the kernel of the
equations, in the approximation where one replaces the
exact Green's function by the WKB one).

Using WKB formulas (59)—(65), one can represent
AP (intheregion [z—w| < z w) as

/\(0)
12 (2, W) (101)

SgnK
ZZW] IZ> 0 p(Z) p(W)

x{ /(g + 02)(s — oW) SiNB,(2) SINB,(W) — (Z~— W)},

where 6, and 6, are defined in (64) and (65).

We neglect as before the quickly oscillating term,
cos(8, + 6,), while, for the difference, one can write,
e.g. forz>w,

2]+1 20

— ‘ ' KO

w

(102)
——{ —+ —} B(z, W) —sgnk 9(z, w),
where 8(z, w) = -0 (w, 2) and 9(z, w) = 3(W, 2),
= _ ’ . KO .
G(Z, W) = J'[p(r) —W}dr , (103)

Sz w) = —IKI[ — J’S—rz}zglKl. (104)
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The summation over n can be done as in (81)—(83);
then, for large zand w and fixed | and K, one obtains

oz w) =% (G2 Fh(w) —Gh (W)Fy(2)
n (105)

= cyT“/Wzsgm(sin%TKl(a)sgn(z—w),
where
a = o./xylx—y,
and

my, = (—i)ﬁTgD(O)%Nf(z, W)y Pi(cose)
2 (106)

2i+1 Ul
’ 6z w5

4m

2sgnK
2j+1

X

30 w) —i[n, % L]
[l

One can estimate that J’q) (z, W)W, (W)zwdw grows at
most as z at large z, hence, m,, does not grow at al.

5. INCLUSION OF PERTURBATIVE GLUON
EXCHANGES

In the preceding sections, gluon fields have been
represented by the correlation function D(x), which
yields the contribution of nonperturbative configura-
tions responsible for confinement. In this section, we
generalize the treatment to include perturbative gluon
fields and, first of all, perturbative gluon exchanges
between light and heavy quark. To this end, we write
the total gluon configuration as asum [15, 16]

A(X) = By(X) +ay(x), (107)

where B, denotes the nonperturbative part used before,
and a,(x) denotes the perturbative part. As in [16], we
can use the 't Hooft identity to integrate in the partition
function independently with respect to By, (x) and a,(x),

Z= %Iexp{—SD(A)+gIL|J+AL|JdX} DADYDY"

= §[PBn®ene[y By (109

xIDaDqJquexp{ gqualpdx—So(B +a)},

where
S = [ 3Fh 1w @+ mu],

and n(B) is an (arbitrary) weight of integration with
respect to By.
Expansion of §,(B + a) in powers of a, providesthe
basis for the perturbative series in the background of
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vacuum nonperturbative fields B,. We shall not pursue
this line in what follows, referring the reader to the
papers [16, 17], where this background perturbation
theory was used, and here we only concentrate on color
Coulomb interaction due to gluon exchanges between
light and heavy quark. Aswas argued in [15], this Cou-
lomb interaction is not modified at small distances by
the nonperturbative background when the system inter-
actsfor alargetime T. In our case, we are interested in
small-distance modifications of interaction, when the
influence of the nonperturbative background on the
perturbative exchanges can be neglected anyhow.

Asin Section 2, we areinterested in the heavy—light
Green’sfunction Gyo where from the heavy antiquark

one can retain only the contribution of the parallel

transporter. Inserting in (5) the remnant of the Q
Green'sfunction, the term ®(B + a) defined in (2), one
can factorize due to (108) averaging over B, and A,
with the final result

Z = IDqJDqJ*exp(gee,ff + Lo+ L,). (109)

Here, £ and &£, are the same as in (8) with substitu-
tion A, — B, and &£, is obtained as follows:

Cexp{ g axi’ (9B W(X) +igfdz,a(z)} ]
= exp{ig’ fdxw*w(x) |GAEXCLYCE

Using the same arguments asin [17, 18], one can write
<. asfollows:

P, = gjdxw%x)lx“)(x)w(x),

where we have defined

(110)

(111)

(-)gC,
WA

Note that we have neglected al interference terms,
mixing B, and a,.

The presence of &£, in (109) does not influence the
derivation of basic equations (11) and (15); the only
difference is that equation (15) assumes the form

(-i0—gA“(x) —im)S(x, y)
—i J’M(x, 29z y)d'z = 3“(x-vy).

Equation (11) does not change, and the kernel J,,, (X,
y) contains as before only nonperturbative contribu-
tions. Note, however, that S(x, y) in M(x, ) in (11) now
contains also perturbative gluon exchanges, and thisis
a new type of interference of perturbative and NP
terms, which appears irrespectively of our neglect of
this interference within the averaging procedure over
B. and a,. In other words, another class of diagramsis
responsible for this interference.

AP(x) = -ig Idz4 (X a,(z)0= 8 L (112)

(113)
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Correspondingly, in the static equations (19), one
should replace

Bm— Bm- C,a4lz|. (114)

Equations for partial waves (31) and (32) are modified

due to the presence of the color Coulomb potential V(r)
in asimple way; since

V(r) = -C,ay/r (115)

islocal and isaLorentz vector, it always appearsin the

combination €, — V(r). Hence, we have, instead of (31)
and (32),

dFV—EFV
dr r (116)
+ (g, = V(r) —m)G, —MuG —iMF = 0,
dGV+5GV
dar r (117)
—(g,=V(r) + M)F, —=MxF +iMxG = 0,
where we have denoted

1. L0 -Egv'(w)
|k|:F|:| IWIMiKIV v'(W)%'WdW. (118)
Here, M, isdefined asin (34), and the matrix /. in (35)
involves the sum over all states, including positive and
negative €. There in Section 3, we have exploited the
symmetry (37). However, equations (116) and (117) are
invariant under another transformation, namely

€ —€,, V(1) ~—-V(r), K— K, G, ~—
(1 19)

Now, the sum over negative €, can be expressed
through the corresponding sum over positive €, with
exchange G, ~— F,, as before, but al'so with the inver-
sion of sign of Coulomb interaction; i.e., Coulomb
attraction for positive €, is replaced by Coulomb repul-
sion for negative g,

In what follows, we shall denote wave functions of
the posmve energy states with repulsive Coulomb with

atilde: Gv and F\,

With the aid of (35), the matrix B/ can then be
written as a sum over only positive €, as follows:

ZWBARY
P (120)
. s zoax w2 ozx O
| 0 - ax s om 0
i Mn0F (F Gh - GuFy) GuGu—F.Fe

Since BA is exactly the combination which enters
into the mass matrix (34), one can list in (120) scalar
and vector (proportional to f3) parts:

M = M,OL+M, [B+AM, (121)

SIMONOV

where AM contains spin-dependent terms, which can
be considered asin Section 3, while M, and M,, are

Ms,v

(122)
=c Y Gy —FuFs £ [5G - F“F’JE}
i, M, u,n>0
where
1[T D(O) f(z w). (123)

From (122), it is clear that the vector part M, isonly
due to the presence of Coulomb interaction and van-
ishes when it can be neglected.

Corrections at large distances due to V(r) can be
treated again by the relativistic WK B, and arough esti-
mate of M, at larger is

MVD—

(124)
Ms or

and, hence, can be neglected at large enough r.

6. CONCLUSION

The purpose of the paper is twofold: first, to write
down explicit one-dimensional equationsfor the partia

waves of the heavy-light qQ system, which takesinto
account effects of confinement and chiral-symmetry
breaking, and, second, to give the WKB analysis of
solutions.

The first task is done in equations (31) and (32) for
partial waves F, and G,, where the kernels are
expressed through the F, and G,, in (49), (50), and (56).
In these equations, all remaining angular integrations
are in terms of Legendre polynomials. Nonlinearity of
equations is essential for the spontaneous chiral-sym-
metry breaking, since both the QCD string and the
chiral condensate occur due to the nonlinear structure;
namely, as shown in [4], the solutions sum up in A;, to
a smeared o function, and the latter “focuses’ the
string, making a linear potential out of the kernel J,.

The same kernel A} gives rise to the nonzero chiral

condensate, so both confinement and CSB appear
simultaneously as a kind of feedback effect.

The numerical calculations clearly demonstrating
these phenomena are now in progress and will be pub-
lished elsewhere.

The second task of the paper isfulfilled in Section 4,
where the WKB method is used to derive expressions
for the kernel A, and m,.. The corresponding formulas
aregivenin (83) (88), (93), (96), (98), and (106).

Theseresults display two ma| nfeatures of thekernel

M, (i) the scalar part M, ~ m |sdom|nat|ng and lin-
early growing at large dlstances, while M, and m,, are
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subleading, and (ii) all parts of the kernel are quasilocal
at large distances, which simplifies considerably
dynamics of the light quark.

We plan to check all these w properties in future
numerical calculations.
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APPENDIX 1
Some Useful Formulas with Spherical Spinors
Orthonormality condition

IQJIM jH'|'M'd0‘) = 6“'6MM'6||'1 (Al)
Qu:llz "
) 0 jIM - J
QJ|M EQE‘“\:A—]JZU Q]|M ClM-py%leM_u' (A2)
The Clebsch-Gordan coefficients C|J:1 L
H3
J 1 _1
u *3 =3

NI~

(A.3)

1

[+ M+ 2
/_2
21+1

1 I—M+1
-5 / 2
2[+1

Relations between Q;,(n) and Q;;\(n), where

+1, | = I+%
I'=2j-1=

H_l j= -1

1 21
(6 h)Qjm(n) = —Q;ju(n), (A.4)
|Q; |2 = 1Q;, |2 = iZa P,,(cosB) (A.5)

jIM '™ 4.,.[ 2n' 2n ’ .
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2n—1-m(2l + 1)(2] + 1)

aon = (_1) ATT

x CloCo" Jnglu, 2n1D

Separation of variables in the centra field. For a
Hamiltonian containing scalar potential U(r) and vec-
tor potential V(r),

H = o p+pBm+ V() + BU(r), (A.6)

_ 09(NQim o _
AfNQumd HF Y

6 px = (e+V-m=-U)o, ¢ = g(NQjwm, (A.8)
olpd = (e+V+m+U)x, X =if(NQ;u. (A9)

Wy = (A7)

Since
d
Gﬂw==—q%ﬁﬂﬂﬁm+gcﬂﬁ%m,(Alm
one obtains by means of (A.4)
—(o Ep)QjIM = (o [p)(o [h)QjI'M
= (pLh+i[pxn] [6)Qjuy
: 1 (A.11)
= _|E2F+FL [bE]bjl‘M,
L =rxp.
But
L 0Qj = Hi+D=1("+ 1)~ 3H . (A12)
Introducing
L %l—|+1, j=1+z
- 0_
K = +% +§D_ O 1
H1 J = I_él
one obtains
— dg_ k+1 0
GHW"“waEF+_rﬂD (A.13)
f k-1
o [y = "M%flr r f—=fL (A.14)
and, finally, equations for g(r) and f(r),
€D+ K(rg) - +m+Vv+U)(rf) = 0, (A15)
%(rf)—%(rf)+(s+V—m—U)(rg) = 0. (A.16)

The above equations (31) and (32) can be obtained if
one takes scalar potential U=M and V =0.
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Some additional formulas are useful. From (A.11)
and (A.12), one has

L 6Q)m = —(1+K)Qju, (A.17)
6 Q= i Q0 I'=2j-1,  (AI8)

o [pQy = il"—KQ“M, (A.19)
L?Qum = 10+ 1)Qy = KK +1)Qju.  (A20)

To derive (46), onefirst must fix m= M — g and sum
up over W

ZQHM(r)QHM(W)
(A.21)

jm+ * . R
= 5 5 B VOV,
m 2
where  and W are unit vectors. Substituting Cljr'::lp
2

from (A.3), one has

z YImYIm

A more complicated structure occursin m;,, namely,

2]+1

(A. 21)— I(coserw) (A.22)

iw, r) = ZQ”M(w)o““QJ.M(r). (A.23)

To do this, one can write
Q) = ciNQjy +CPQjrw + CsL Qs (A24)
multiplying (A.24) by n, one gets (from A.4) ¢, = —1.

Multiplying by p and using
+1
pray, = M g (A25)
oneobtainsc, =ir/k, and multiplying by L, onehasc; =

-1/K.
Now (A.23) can be rewritten as

I = (C1n+c2p)szlM(W)QJIM(r)
uM (A.26)
+col, ZQmQ”M
uM

Thefirst sum in (A.26) vanishes when one uses explicit
values from (A.3), while the last sum was done in

SIMONOV

(A.22); hence,

il 21+1D H_P(coserw)

(A.27)

NK
= — %—T[—Lrﬂ(coserw).

We also note that, if one denotesk = K(j, |) then

K'=k(,I'=2j-1) = —. (A.28)
For M,,, one needs the sum of another form (I' = 2j - I),
3= Y QW) 6, Qi)
uM
ZQJIM(W)(O-(O- [h))upQJIM(r) (A29)
= _an]IM(W)QJIM(r) +i[nx1y].

Substltutlng (A.21) and (A.27), one gets

3a.29 = 28 Dp o)
(A.30)

—i2[n % L P (cosh.).

APPENDIX 2
Properties of the Kernel f(x, y) (18)
Introducing dimensionless variables Z and W,
z

2T,

w

2T,

z= W =
one has
1 1
f(z W) = Ids'[dte_(is_m). (A.31)
It is easy to obtain the expansion at small Z and W
a2 ~ 2 a ~
o Z W, ZxW
f =l-=—-—+
At large 2 and W, the asymptotic expression for f
depends on the direction. For cosB,, =1, |2 > 1 and
|W| > 1, one gets

+0(Z, w).

(A.32)

Jno
max (|2, W)’

=-1,|Z > 1,and W > 1, one has

f(2, W) = (A.33)

for cos6,,

f(z,W) = (A.34)

1.
27wl

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.1 2000



DYNAMICS OF CONFINEMENT AND CHIRAL SYMMETRY

and for cosf,, =0, |24 > 1,and |W| > 1, theresult is

f(z W) = (A.35)

T
A(1Z W)
The approximate expression describing asymptotic
behavior (A.33)—(A.35) within better than 10% accu-

racy and satisfying f(0, 0) = 1is
7 Z W
2T, A
?(z, w)
1+ i/\/ZZ sgn(z DN)E_B_N_)_Z |::|_ + ﬂ}_l
- Jm w’ Jm
Ezsw (A.36)
F —w, ws<z
APPENDIX 3

Equations for a Modified Contour

Since the QCD partition function (5) does not
depend on the choice of the contour in (4), one can
introduce in (5) additional integration with respect to
the space of contours Du(C), where the measureis nor-
malized. Whereas the total £ (8) does not depend on
C, each term of cluster expansion in (8) does, and the
integration Du(C) servesto optimize the contour. In the
case of heavy quarks, one effectively gets the Wilson
loop as expL (see, e.g., in [3]), and the optimization
of contours leads to the surface of minimal areainside
the Wilson loop.

Here, we choose a modified set of contours for &
(8) having in mind to find the sensitivity of our results
to the form of contours. In the case when new contours
yield lower eigenval ues, this new choiceisan optimiza-
tion procedure, discussed above.

Choice of contours: for every pair of pointsx, yin
(8), one defines the contours z,(a, s; X(y)) and z,(B, t;
y(X)), each consisting of two cuts of straight lines; e.qg.,

z,(a, s, x(y)) from (x, x,) to 0 2y X4D and from
[X+y , X= 10 (0, Xy); (B, t; y(X)) from ( ) to
|:| 2 4[| > X4 > Z|.1 > b y y’ y4

Ex—; y, y% and from X+

DTyv y4% to (0, y4)-

The vector potentials can be computed according to
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(4). Theresult is
1
_ Xty X Y
AlX) = TIdO‘ Fi4%x 5 %
. 0 (A.37)
+ |;yi "
ty +
_ Xty Xi*Yi [
AY) = 5 [dBFLB= 5 v
0 (A.38)
|+ i
i4 —‘z—y‘(l—t), YA%
The function J,, in (17) now becomes
Ju(xy) = [A(X)A(Y)0
2
Ox +yr~ rx+
= D(0) exp[ (X, Y,)/ 4T] 55*—2—25 S
. (A.39)
YO XHY X=yO e XHY X=y
4 002 20 '0O02 ' 2™
_X= ym; g—ymg
02 0''0O2 DD
where we have defined
1 1 2
(A .40)

Fo(U) = (do[dpexpE-—t(a 7 p)a
T = —\a+
{ .([ PE 472 0

and f(x, y) is defined in (18).

One can see in (A.39) that the term with f.is

asymptotically O, y°), whereas the first three terms
are O(x|, l)). Therefore, one can find an approximate
form for J,,, Similar to (A.36). One obtains

Julx,y) = D(@exp[ =y
4Tg
(A.41)
5 —
OV, Xy +Clxz—fl
4 4T T 4Tg |
whereC = 1.

For |x| = [y| > Ty and cosB(x, y) = 1, one finds from

(A.41) that

Ys)

Ja(%, Y) DD(O)exp[ (X 44T }ﬁTIXI X 2T,. (A.42)

g
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This asymptotic expression coincides with that of (17),

givi
our

1

ng the confirmation of the contour independence of
basic results.
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