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The kinetic theory of regular acceleration of cosmic rays in supernova remnants is used to
investigate the expected chemical composition of the rays. It is shown that the shapes of the
calculated profiles of the chemical elements making up the cosmic rays are consistent

with experiment wherever the results of measurements are available. The acceleration process is
accompanied by relative enrichment of the cosmic rays with heavy elements. If the

analogous property of the mechanism underlying the injection of superthermal particles into the
acceleration regime is taken into account, such enrichment supports the formation of the
required composition of cosmic rays in the energy range up #6-10°eV. © 1999 American
Institute of Physicg.S1063-776099)00109-3

1. INTRODUCTION In this paper we compare calculations of the expected
spectra of various cosmic ray components carried out using

The chemical composition of cosmic rays carries directhe nonlinear kinetic theory of cosmic ray acceleration in

information about their sources, the medium from whichsupernova remnants with existing experimental data, our ob-

they originate, and the mechanism of their acceleration. Thgective being to determine the extent to which the chemical

massive quantity of experimental data accumulated to dateomposition of cosmic rays accelerated in supernova rem-

suggests that cosmic rays originate in a medium of normahants satisfy the experimental requirements.

chemical composition typical of the interstellar medi(sre,

e.g., Ref. 1. This consideration provides further argument to

the effect that the bulk of the cosmic rays are produced b)?' THEORY

shock waves from flares of supernovae, which constitute & The mechanical energfy, released in a supernova ex-

natural class of galactic objects capable of providing the enp|osjon in the initial stage of evolution is represented by the
ergy input required for cosmic rays in the interstellarkinetic energy of the expanding shell of ejected matter. The
medium: motion of the ejected shell generates a powerful shock wave
On the other hand, there are systematic differences in thgy the surrounding interstellar medium, the radius of the
compositions of cosmic rays and the interstellar mediumyave R increasing at the rat¥/;=dR,/dt. The diffusive
The main difference is that the relative content of nuclei Ofpropagation of high_energy Charged partic|es in the collision-
elements heavier than helium in cosmic rays is higher than ifess dissipative medium enables them to cross the shock
the interstellar medium, and the disparity between them infront many times before they finally drift into the region
creases as the mass number of the elem@imsreases. This  behind the shock wave. Every pair of consecutive crossings
fact is usually attributed to a necessary property of the cosof the shock front is accompanied by an increase in the par-
mic ray acceleration mechanism, that heavier elements atgcle’s energy, wherein lies the essential physical nature of
accelerated more efficiently than lighter elements. the regular acceleration procé§s!? In the linear approxi-
Detailed measurements of the composition of cosmignation this process generates a power-law cosmic ray mo-
rays are currently being carried out over a wide range ofnentum spectrum at a planar shock front. Owing to the high
energies, and major efforts are underway to extend this ranggcceleration efficiency of acceleration and the hardness of
to the kink region in the cosmic ray spectrum!3010*eV  the spectrum, the accelerated cosmic rays constitute an im-
(Refs. 2 and B Today it can be said that the demands im-portant dynamical factor. The structure of the shock wave
posed on cosmic ray sources require not only that they mainmodified by the reciprocal influence of cosmic rays on the
tain the necessary acceleration efficiency, but also that themedium contains—in addition to the usual thermal front—a
generate the observed composition of these rays. Detailesimooth extended zone known as the prefront. The modifica-
studies of the cosmic ray acceleration process in supernou#n of the shock wave, in turn, is reflected in the shape of
remnants, based on the nonlinear kinetic theory of accelerahe cosmic ray spectrum to the extent that it is not a pure
tion (the theoretical foundations of regular acceleration argpower-law function of momentum in this case. The self-
presented in two surve§9, have shown that the accelera- consistent cosmic ray spectrum can be determined by solving
tion process is characterized by the necessary efficiency: aphe dynamical equations describing their transport and accel-
proximately half the energy released in explosion is transeration, along with the dynamics of the medifgag with
ferred to accelerated cosmic rays. allowance for the reciprocal influence of the rays on the me-
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dium; this consideration is the foundation of the kinetic prefront. The quantity;,; has the significance of the mini-
theory of cosmic ray acceleration in supernova remnants asum velocity necessary for particles to be able to cross the
developed in previous studfes in application to the case in  shock front and hence enter into the acceleration process.
which only protons—the principal species of ions in the in-Beginning with the velocit, , the character of the spec-
terstellar medium—are assumed to be accelerated. trum of particles is governed by the buildup of energy due to

In the kinetic approach the acceleration of cosmic raysheir quasi-cyclic crossing of the shock front, i.e., by regular
by a supernova remnant shock wave is described assumirg.celeration.

spherical symmetry by the diffusive transport equation for  Note that the total modification of the shock wave to the

the cosmic ray distribution functiofy(r,p,t):*>** point where the thermal front completely vanistfeis im-
of Vw. of possible in the presence of an expanding shock wave of finite
RV (kpV )~ Wer Vit ——p—2+Qp, (1)  dimensions;®*® owing to the influence of geometrical
Jt P factors®

wherer, t, andp are the radial coordinate, the elapsed time  Inasmuch as the accelerated particles in the shock tran-
from the supernova remnant explosion, and the particle mosition region are powerful energizers of Alfvevaves;"#*
mentum, respectivelyk, is the cosmic ray diffusion coeffi- the diffusion of cosmic rays is assumed to be of the Bohm
cient, the subscrip designates the nuclear species charactype, corresponding to the diffusion coefficient
terized by the mass numbéatomio A, w, (w.=w for r
<Ry, andw.=w+c, for r>Ry) is the velocity of the scat-
tering centers, the role of which is taken by Alfveravesw ~ Where pg=pc/QeB and v are the particle gyroradius and
is the velocity of the medium, and, is the velocity of the  velocity, B is the magnetic field; is the speed of lighe and
Alfvén waves generated by accelerated cosmic rays. In the are the proton charge and mass, &ds the ion charge
preshock region; >R, the Alfven waves propagate away number. In the perturbation region the diffusion coefficient is
from the shock front relative to the medium; in the postshockka= kaopo/p, Wherep is the density of the medium, and the
region they are assumed to be isotropic with respect to theubscript O refers to the unperturbed interstellar medium. The
direction of propagatiorisee, e.g., Ref. 15 factor pg/p is included, in effect, to account for the postu-
Cosmic rays originate at the thermal front, at which thelated increase in the level of turbulence in the perturbed me-
gas heats up, whereupon a small fraction of the highesdium and to prevent the development of prefront
energy particles is capable of crossing the thermal front reinstability >~2° which makes it difficult to solve the stated
peatedly and thus becoming involved in the acceleration proproblem numerically.
cess. The injection of particles into the acceleration regime is  In the initial period of acceleration the ion charge num-

Kpa= KB:pBV/g! (5)

described by the source ber Q is equal to its equilibrium value in the interstellar
A medium,Q,. With the passage of time the charge of the ions
Que NinjU1 5(r =Ry 8(p—pA) @) increases as a result of their ionization due to collisions,
A 4r( p{?,j)2 s) 0P Pini)» which causes the charge number to attain a value equal to the

A , charge number of the nucleds For simplicity we assume
whereu=Vs—w, Niy is the number of gas particles drawn .+ the charge numbed increases in the energy interval
into the acceleration process from unit volume intersecting A n2— 1 Amc directly as the logarithm of the energy
the thermal front, anda{?”- is the momentum of these par- ¢ Qo t0 Z. ’ ’
ticles. The thermal shock front, situatedratRg, is treated The medium(gas is described by the gasdynamic equa-
as a discontinuity. The subscript (2) corresponds to the tions
point r=R,+0 (r=Rs—0) directly ahead ofbehing the
thermal front. ap

Unfortunately, a systematic theory of collisionless shock 5t +V(pw)=0, ©)
transfer in a gagor, in our terminology, a thermal fronivith
the capability of reliably predicting the rate of particle injec- IW
tion into the acceleration regime is still lacking. Conse- P gr TP(WVIW==V(Pc+Py), @)
guently, the rate of injection of protons as the principal spe-

cies of ions in the cosmic plasma is specified by the 9P

dimensionless parametét’:6-° Tt TWV)PT yg(VW)Pg= (1= 7g)CaVPe,  (8)
7=Niy /Ny, (3)  wherep, vy, andPg are the dgnsity, adiabatic exponent, and
pressure of the gas, respectively,

which characterizes the number of injected prothips, and

by the parametex>1, which characterizes their velocity: A7rc 2 P p*f A
Pe=—— f dp——=———= 9)
V= ACe. @ 3 = o P (Amoy

Here c, is the sound velocity in the postshock regid, is the cosmic ray pressure, in which the summation is carried
=Ny is the density of protons ahead of the thermal front,out over all species of nuclei under consideratiegs1 for

Ny is the density of protons in the interstellar medium, andr >Ry, anda,=0 for r<R. The reciprocal dynamical in-
o, is the compression ratio of matter within the limits of the fluence of cosmic rays on the medium is taken into account
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by the term—VP.. According to Eq.(7), the pressure gra- two constituent parts: a thin shéthe piston moving with a
dient of the cosmic rays directly influences the velocity pro-certain velocityV,, and a free expanding part, which is de-
file of the mediumw(r). The influence of the cosmic rays is scribed by the distributioril1). The piston consists of the
particularly strong in the preshock region>Rg, where hindered part of the distributiofill) with initial velocities
their pressure varies considerably within a relatively smallv>R,/t:

space scale (IG—-10 ?)R, (Ref. 8, resulting in significant .

modification of the shock transition, i.e., the formation of a Mp=477t3 dvvzpej(v,t), (12)
prefront. Rpit

_ The influence of the cosmic ray pressure is also substafghere R, is the radius of the piston. The dynamics of the
tial in the postshock regiom<Rs, even though it does not piston s satisfactorily described by the thin-shell

produce the same radical changes therein, because its gra%lbproximatiorf’,o whereby the motion of the piston obeys the
ent is much weaker. equatior

In addition, the cosmic ray pressure enters into .
and induces considerable additional heating of the gas in the d(MpVp)
regionr >R;. The role of cosmic rays is intermediate in this dt
case: They strongly energize Alfwavaves in the regiom
>Ry, whose subsequent dissipation has the effect of heating ~Py(r
the gas’? In the case of a high acoustic Mach numibéc =R,+0)— Po(Ry+0)]. (13)
=V /ceu>\M,, where M,=V,/cg, is the Alfven Mach , ,
number, and the subscript O refers to the unperturbed me-"€ cosmic ray pressur.(r=R,—0) is created by par-
dium, the dissipation of Alfe waves has a strong influence t!cles that have penetrated. the piston. Th.e boundary condi-
on the structure of the modified shock wave. It severely ”m_tpn on the surface of th_e piston characterizes the balance of
its the growth of the compression ratio= p,/p, of the mat- diffusion fluxes of cosmic rays across the boundemyR,,
ter at the leveb~ Mi’s, whereas ignoring this effect implies af a

=47R3[Po(r=R,—0)

o~M¥* (Refs. 7 and 8 Since the Alfv@ Mach number is K==~ ¢a Al r=Ry+0, (14
high in the active period of evolution of the shock wave,
M,~M>1, when the bulk of the cosmic rays are producedwhere
:Eles i(;rsgression ratio far exceeds the classical limit 4 in ba= KAl FA(T=Ry—0,p,0) — FA(r =Ry +0,p,01/1,,
For a stationary, homogeneous medium, which is thdp=0R; is the thickness of the piston, and the valde
only case treated below, Eqfd) and(6)—(8) are solved sub- =0.1 is used in the calculations. _
ject to the initial ¢=0) and boundaryr(=%) conditions In the region behind the pistom €£R;) the cosmic ray
distribution function is described by the approximate equa-
We note that the conditiofi,(r =,p,t) =0 implies neglect
. SO fa V, dfpa S
of the role of background cosmic rays, which is justified —~=_—Fp——_—¢,, (15)
st R, dp V

because injection and subsequent entrainment of superther-

mal gas particles in the acceleration regime dominates preyhich follows from Eq.(1) with allowance for the fact that,
accelerated background cosmic rays, owing to the low denowing to the large diffusion coefficient, the spatial distribu-
sity of the latter. tion of the cosmic rays in the volumé=47R%/3 is almost

In the very earliest period of expansion of the explosion-homogeneous.
ejected shell its matter is described by a self-similar distri-  The penetration of cosmic rays through the piston is not
bution in terms of the velocities=r/t (see Refs. 26-28 3 significant factor from the standpoint of the evolution of

Ft3, vy, the shock wave or the acceleration of the rays themséftes.
Pej= Ft3(viv) K vav,, (11 In the_ early stage pf fr_ee expansion th_ls process is inconse-
quential and the diffusion coefficiemt, is therefore small,
where owing to the high densityp,. In the Sedov intermediate

10(k—5)E, |2 srt]age,d\./vhenf tr;]e m_ajority of th(lal posmic rays are.ghenr(]aratefd,
= y VS || the radius of the piston is small in comparison with that o
47k [10k—5)E, ] V7| 3(k=3)My the shock wave R,<Rs). Consequently, in this stage of
M,; is the mass of the shell, and the paramétéas a value evolution of the supernova remnant as well, the penetration
typically in the interval between 7 and 12. of cosmic rays into the region<R, does not exert a major
The internal pressure in the shell matter is negligible.influence on the shock wave dynamics or the acceleration of
Interaction with the environment modifies the density distri-the rays.
bution and produces a backward shock wave inside the The investigation of the real distributiqgdl) of ejected
ejected matter; this wave, in turn, heats the gas to very higmatter is important in the initial stage of evolution of the
temperaturegsee, e.g., Ref. 291n this paper we take the supernova remnant, when the mass of matter swept from the
backward shock wave into account and use an approximatgurrounding medium is much smaller than the mass of
description of the ejected matter dynamics, representing it bgjected matteM; (Ref. 9. During this period the velocity of

1 [3(k—3)Mg]*?
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FIG. 1. Differential densities of protons and alpha particles behind

the front of a longitudinal shock wave with Mach numbér,

=7.1 and Alfven Mach numbeM ,=4.6 as a function of particle

) . velocity. The histogram is the result of numerical simulatidthe
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the piston V,, is much higher than the averagé,, 10 protonst Allowance for their acceleration cannot signifi-

= /—ZEsn/Mej so that the shock velocity is higher, and the cantly influence the shock structure and dynamics. Conse-
acceleration of the cosmic rays is more rapid than in théluently, the spectra of these elements can be calculated in
frequently used simplified case where, in contrast with the linear approximation. This means that the number of ac-
the entire shell matter is assumed to expand with the velocitgelerated particles of an element with mass numbeis -
Voo directly proportional to the number of particles involved in

: . A . . . .

We disregard the influence of radiation cooling of the@ccelerationNiy, which, in turn, is expressed in terms of the
perturbed medium. This process becomes important in th#lection parameter
later stage of evolution of the supernova remrianthen the _ NA/N (16
acceleration of cosmic rays is rendered inefficient by the low ~ 7A~ Nini’ NAL

Ve'OC‘tY of the shogk wave. __ whereNy;=0pNa, and N, is the density of the element
This problem is exactly solvable only by numerical \ ih mass numbera in the interstellar medium. Conse-

methods. A description of the fundamentals of a newly deq, ently the number of accelerated nuclei with mass number

veloped and imple_rgented numerical algorithm can be foundy js nroportional to the parameten,. In other words, unlike
in previous paper$,® along with a detailed discussion of the 1o acceleration efficiency, the resultant composition of cos-

physical results obtained via the algorithm for the case irn},;. rays is in fact sensitive to the injection rate or, more

which only protons—as the principal species of ions in they e jsely. to its dependence on the particle species.
interstellar medium—are taken into account.

_ , _ . Numerical simulatioff and experimentaf results show
Thle results Olf 2 nl;merlcéaglgglmulayon oflcollls;onless,that the thermalization of the gas at the shock front produces
quasi-longitudinal shock wav >, experimental results ob- 2 approximately identical velocity distribution for all ion
tained in interplanetary spacé® and the results of a re-

, GRFT species. This fact is demonstrated in Fig. 1, which shows the
cently developed analytical thedfy’” show that superther- itorenial spectra(derivative of the number density with

mal particles can be efficiently injected into the acceleratior}espect to the velocityy) n=dN/dv of protons and

regime at a_rate exceed|ng\=/%10 : o L a-particles at the shock front, plotted from the results of
Calculations have showrnthat the indicated injection ,merical simulation of a longitudinal shock wave with

. e _4
rate makes thoe acceleration very efficient: Everyatl0 Mach numberM=7.1 (Ref. 33. This result is consistent
more than 20% of the explosion enerfy, is transferred 0 ity the notion that the conversion of energy of directional

cosmic ray protons. An increase in the injection rate Causes,otion of the gas impinging on the shock front is a conse-

the cosmic ray acceleration efficiency to Increase. However, ,ence of elastic scattering of gas particles by inhomogene-
this functional dependence is not very strong; increasing iiog of the magnetic field frozen into the medium.

by two orders of magnitude produces at most a threefold ¢ w6 jniection mechanism selected particles by their ve-
increase in the cosmic ray energy content. It is safe to Sacities, the momenta of injected protops,; and heavier

that the actual value of is not too critical from the energy elementsp®. would be related by the equation
standpoint. th

The situation changes dramatically when it becomes Dﬁprinj, (17)
necessary to investigate the expected chemical composition
of accelerated cosmic rays. In the interstellar medium thavhere the fraction of particles of different species involved
nuclei of all elements constitute small impurities in relationin acceleration would be the samg,= 7.
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However, calculations and experiment both indicate that A 16m%(e,+ AmAE)p
the acceleration process involves a much smaller fraction of N¢ (€)=
particles of the thermal distribution than are purely capable
kinematically of moving out of the postshock region, cross-Here ,=e—Amc is the kinetic energy of a particle with
ing the shock front, and thus entering into the acceleratiormass numbeA ande is its total energy, which is related to
process. This means that within the shock transition zonghe momentum by the usual equatier Jp%c?+ (AmA)2.
there are more significant factors affecting the particles andhe spectrunN’c*(ek) varies in the course of evolution, par-
enabling particles of insufficient velocity to cross the shockticularly in its early stages, including the free expansion
front. The basis of these factors is the interaction of particlestage and the initial Sedov stage, when the amplitude of the
with the electromagnetic field. Particles are therefore sespectrum increases as an ever-greater number of particles
lected according to their rigidities: The acceleration procesenters into the acceleration process, and the maximum par-
involves particles whose hardne&s<p/Q (Q is the ion ticle energyenay, at which an abrupt exponential cutoff of
charge numbgrexceeds a certain critical valig,;. Conse- the spectrunNﬁ(ek) takes place, increases as well. In the
quently, the velocity of injected heavier elememﬁj later stages of evolution, when the Mach number of the
=Vin;/Q is lower than the proton velocity;,;. Since the shock wave decreases M ~4 as a result of its slowing
power-law spectrum of the accelerated particles matches ugown, the acceleration of cosmic rays becomes relatively
with the much steeper thermal spectrum at the p@fﬁ}lt the inefficient, and the spectrumé(ek) remains essentially un-
fraction of injected particles can be expected to be an inchanged. Consequently, the term “resultant” refers to the
creasing function of the dimensionless paramét&; this  spectrum calculated from Ed19) for the indicated later
function can be formally represented as stage of evolution.

7a= 7€ (A/Q), (18
where the factore;;(x)=1 is a monotonically increasing 3 RESULTS OF CALCULATIONS AND DISCUSSION

function of its argumerx=1. The same is true if the number A large portion of the volume of the Galaxy is occupied

oiinjected particles is converted to the injection momentumyy he so-called hot phase and warm phase of the interstellar

Pinj=APinj, Which we have used in the calculations as amedjunt with densities of hydrogen atoms, temperatures,
matter of convenience. This assertion is evident, in particuzpq magnetic fieldsNy=0.003cm 3, To=10°K, B,

lar, from Fig. 1, which shows$with a certain indeterminacy =3 4G andNy=0.3cni 3, To=10"K By=5 uG, respec-
due to the increased statistical error of the calculations as thﬁ/ely. We therefore confine our discussion to the evolution
velocity increasesthat the actual injected proton velocity is ¢ supernova remnants in the two types of interstellar me-
Vinj=6Cs,, because, beginning with the velocity=6cs,, dium.

the proton spectrum obeys a power law;v 7, whose ex- The evolution of supernova remnants in a homogeneous
ponent is close to the universal valug=(oert2)/(0er  interstellar medium is characteristic of type la supernovae,
—1)=25, whereoe=0(1-1/M,)=2.95 is the effective o which the modification of the surrounding interstellar
compression ratioVl,; = 4.6 is the Alfver Mach number, and  edium by the stellar wind is insignificafitin the calcula-

c_r=3.78 is the compression ratio corresponding to the acous;ons we use typical parameters of type la supernovae: ex-
tic Mach numbeM ¢ =7.1. On the other hand, in accordance plosion energyE,= 10° erg, mass of the ejected shall,,

S Jl) drr2fa(r,p,t). (19

with the role of hardness, the velocity of injecteeparticles  _ 1.4M, andk=7.

is approximately half the proton velocity,=3cs. But According to calculationé the charge number of ions
then, if viy=6¢Cs, is assumed for particles of both species, iy the hot interstellar medium increases smoothly frQ
the a-particle enrichment factor igj(2)=2. =1 for hydrogen(H) to Q,=8 for iron (Fe). In a warm

!t should also be noted, as is evident from Fig. 1, that thgnterstellar medium the ion charge is assumed taQge: 1
profile of the self-consistent spectrum of thermal particlesq, 511 elements.

differs significantly from the Maxwellian formnecy? The densityNo=N,a, of elements heavier than hydro-
X exp(=vivy) vinj, even at velocities well below the thresh- gen in the interstellar medium is assumed to be proportional
old valuev>viy;. to the relative(to hydrogen abundance, of the element in

Since, as was mentioned, the dynamical role of elementg,e |ocal region of the Galaxy.
heavier than hydrogen is of minor significance, it follows  The numerical solution of the problem of the evolution
that the efﬂmency .of cosmic ray acceleration, the salient feagf the shock wave generated by the explosion-ejected shell
tures of the modification of the shock wave, and the evolusets the stage for calculating the resultant cosmic ray spec-
tion of the latter do not differ markedly from the case wheny,m created by itNA(e), i.e., the differentialwith respect
only the acceleration of protons is taken into account. In thgg the kinetic energy,) number of accelerated rays. Pro-
present discussion, therefore, we shall not consider these aSeeding from the knowledge that supernova remnants are the
pects of the problem in detail, referring the reader instead t‘brimary source of cosmic ray&t least up to energies,
previous .papgr%‘.g-The ensuing discussion will be con- _1q14_1¢5eV), we can determine the differential intensity
cerned primarily with the properties of the resultant energysf cosmic rays in the Galaxy with allowance for their escape

spectrum of cosmic rays produced by the shock wave duringOr the finiteness of their residence time in the Gajaxy
the entire period of its activrom the standpoint of cosmic

ray production evolution: In(e) = Te(R)VNL(€y). (20
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Here 7, is the average residence time of cosmic ray particlesvhich is determined by the value of the potentgialRef. 41).
in the Galaxy, which is a function of their hardnd36e,). In this case the cosmic ray intensity observed on Earth is
The profile of the cosmic ray spectrum at the souNﬁ,ek), expressed in terms of their intensity outside the heliosphere
and the profile of their average spectrum in the Galaxyby the relation
Jﬁ(ek), differ, because the residence time of cosmic rays in
the Galaxyr, depends significantly on their enerfyr, more
precisely, their hardnekss

The functional dependencg(R) determined on the ba-
sis of the measured ratio of the primafgenerated at the
source and secondaryresulting from the interaction of pri-
mary cosmic rays with nuclei of the interstellar medjum
components of the cosmic rays can be written in the form

7% (Rg+R) ¥, (21)

whereRy=5 GV andu=0.3-0.7(Ref. 1.

The cosmic ray spectrum observed on Eakthe,) dif-
fers from the average spectrum in the Galaﬁyek) because
of the modulating effect of the solar wind, which lowers the
cosmic ray intensityl(€,) in the low-energy region relative
to Jf(ek). This effect can be described quantitatively on the
assumption that each particle reaching Earth’s orbit loses,
the average, an amount of energy

Ae=Zegp,

2
0

e2+2eAet+Ae’—€

62_6

Jale) = (22

5| IS (et Ae),
0

in which e=¢,+ ¢; is the total energy of the particle, and
€o0=Amc is its rest energy.

In Fig. 2 the expected terrestrial cosmic ray spectra from
supernova remnantd,(e€y), calculated for a number of ele-
ments, are compared with existing experimental data. The
calculations correspond to a moderate injection rate
=10 “*7,. It is important to note that the uncertainty of the
supernova parameters and the residence time of cosmic rays
in the Galaxy prevents the expected cosmic ray intensity
from being calculated with the required accuracy, even for
protons. Consequently, the normalization of the theoretical
spectrum of the proton component of the cosmic rays is cho-
c)%en ir_w such a way as to achieve the best agreement with

experiment.

The injection ratesy, or, equivalently, the factors

einj(A/Qo), are chosen in such a way that, given the same
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normalization as for protons, the amplitude of the spectracterized by the maximum energsm.., Which is only
Ja(ey) of all other elements will agree with experiment at slightly higher than the maximum proton energy.

the energye,~10'°A eV. The spectrum of all particles The following consideration is of utmost importance. At
a low injection rate the spectrum of cosmic rays accelerated
JE(EK)ZE Ja(€) in supernova remnants is closeNg 6k—2 in the relativistic

range. Increasing the injection rate enhances the modification
is calculated by summing the element spectra shown in Fig?f the shock wave and the hardness .Of t_he resultant cosmic
> ay spectrum. The case represented in Fig. 2 corresponds to

. . moderate injection. Agreement with experiment is achieved
In the regione, <A GeV, where the modulation of - . .
the regione, =A GeV, where the modulation of cos for u=0.73 in the hot phase and far=0.86 in the warm

mic rays by the solar wind becomes important, the calculate hase of the interstellar medium, both of these values lyin
spectra are made to agree with experiment by choosing tH2 ' ying

parameter =600 MV, which governs the energy losses by outside the experimentally established interps+ 0.3-0.7

cosmic ray particlede=Ze¢ when they penetrate Earth’s g?;.erbc.:ommqéhrzr stoer(cj:tsr’ ;:]Gihg]ne%r};epre'?;gts'ri'ssz?ri\rﬂg:fé-
orbit from the interstellar medium. Smic ray spectru Is required. Thi |

The main conclusion that can be drawn from Fig. 2 isti(.)n could be resolved .by the prea_ccelgration of.closmic rays.
that the existing experimental data on the contents of variougInce the preacc_eleratlon mechanism is less efficient thar_1 for
elements in the composition of cosmic rays are consistent, ihegular acceleranp(as we must assume to be true, otherywse
terms of the profile of the spectrum, with the predictions Ofregular acceleration could not be regarded as the primary

the theory of their acceleration in supernova remnants in th rotcles\; gﬁnreratlngrt'ghle s;:t)ectrurrn Otf f%smlrc)r’ay_ﬁlvi'” ?f_t -
energy range, < 10'°eV. It is important to note that calcu- ect low-energy particies 1o a greater cegree. s f1ac

lations corresponding to different phases of the intersteIIaPIIeS a certain increase in the amplitude of the cosmic ray

medium exhibit equally good agreement with experimen spectrum, the amount of the increase being a decreasing

Consequently, the implementation of the necessary procél-JnCtIon of the cosmic ray energy, so that softening of the

dure for averaging the resuitant cosmic ray spectrum witfg“EE BRI (R BRSO e o
allowance for the allocation of supernova remnants betwee y

the phases of the interstellar mediyfar which data are all . eir repeated intc_—:‘raction with the whole ensemble of ex_i;t—
but nonexistent cannot influence the conclusion as to the'nY shock waves in the Qalaxy. Inasmuch as the pr(_)bablllty
degree of agreement between theory and experiment. of repeatedly encountering a shock front is proportional to

the number of shock waves, cosmic ray particles most often

The spectrum of protons as the main component of cos-

mic rays in the given energy range warrants special attentior%r.neralCt with weak shocks, which can make their resultant

The experimental cosmic ray fluxes shown in Fig. 2 haveSpef:rumrES?O;t:rbome in mind. however. that this is not a
been obtained in different experimeAtén analysis of the . . ' ' .
%l_mple problem, even if one proceeds from energy consider-

entire set of existing measurement data reveals good agree.. ) .
ment with a power-law proton spectrudfe,) e ” with a ations alone. The transformation of the cosmic ray spectrum
k= Tk N.(€)*e 2 in the range 1DeV=e=<10'eV into the spec-

. _ : =105
single exponenty=2.75 over the entlre rangg.<10"eV. trum N(e)= e~ %! without any change in the amplitude at

On the other hand, an analysis of data from individual ex—,[he maximum energy,...=10° GeV requires the expendi-

periments |eads to a significantly different conclusion, that}ure of higher energies than that contained in the initial cos-
the proton spectrum has a kink and becomes considerab%. g 9
ic ray spectrum.

softer ate,~ 1 TeV (Ref. 42. There is no simple explanation To illustrate the enrichment of cosmic rays with heavy

for this situation from the theoretical point of view, because, o o : d
. . elements, which is maintained by regular acceleration, in

for example, prominent features are not observed in the hﬁi- .
. . o . ig. 3 the calculated enrichment factor
lium spectrum at these energies. Additional experiments
planned for the very near future will doubtless shed light on
this dilemma.

The energy limit of cosmic rays accelerated in supernova B . . .
remnants is dictated by geometrical factors and for the pos?—r;[;::g Iegaetgfv%p\er_eg GeVIA is compared with the experi-
tulated Bohm diffusion coefficient of cosmic rags can be '

estimated from the expressfdn

e(ex/A)=[1a(ex/A) (e /A)(NAINY)] (24)

Ia(ex/A)=AJa(€) (25
~1/6

E 1/2 M .
_ 4 sn €j
éma=5X 10 Z(lﬁlerg) (1.4M®

NH 1/3 BO
3x10 %cm 3 3uG

is the differential (with respect to the kinetic energy per
nucleon cosmic ray intensity. The calculations have been
carried out for three different values of the injection rate
ev, (23 :107° (low rate; 3x10°* (moderate rate 1023 (high
rate.
which is in good agreement with the results of calculations in It is evident from Fig. 3 that for a low injection rate,
Fig. 2. We note that Eq(23) is directly applicable to the when cosmic rays are accelerated by the unmodified shock
spectra of separate elemedig €,). As for the spectrum of wave, enrichment does not take place during acceleration:
all particlesJs (), it is evident from Fig. 2 that it is char- e<1 holds for all elements witlh>1. An increase in the

X
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Ek/A =3 GeV/A

FIG. 3. Cosmic ray enrichment factor at energy A

=3 GeV/A as a function of the mass number. The ex-
perimental values are taken from Ref. 43. The elements
denoted by circles, squares, circles with crosses, and
filled circles correspond to condensation temperatures
T.<400K, T.=400-875K, T,=875-1250K, and
T.>1250K, respectively. The solid curves correspond
to an injection ratep=10"%, the light dashed curves to
7=3x10"4, the dot—dash curves tp=10"2, and the
bold dashed curves t§=3x10"* with an enrichment
factor e =A/Qq. For every pair of like curves, the
lower one corresponds to the hot interstellar medium,
and the upper to the warm phase of the interstellar me-
dium.

10

injection rate has the effect of increasing the enrichment facactive (in terms of the efficiency with which cosmic rays are
tor, which is always greater in the warm interstellar mediumgeneratefl phase of evolution of supernova remnants, i.e.,
than in the hot phase. the beginning of the adiabatic stage. The exponents of the
At a higher injection rate, when modification of the spectrum are therefore related to the shock parameters in this
shock wave by the reciprocal influence of cosmic rays bephase—the compression ratio of matter at the thermal front
comes significant, the enrichment of cosmic rays with heavyr, and the total compression ratis—by the equatiorf®*
elements becomes more and more important. In other words,
this property of regular acceleration has a purely nonlinear ~ Yn=(0s™ 2)l(0s—1), (27)
character. Its basis is the fact that heavier nuclei have a
greater diffusion length= x/ux= (e, /A)(A/Q) at equal en- =15+ (35-059)/(20 - 05— 1). 28)
ergy per nucleor, /A, because we always ha@<A. Here  Sinceo,<4 ando=4 always hold, we have a softer spec-
u is the velocity of the medium relative to the shock front. In trum in the nonrelativistic rangey,>2) than in the relativ-
the presence of a modified shock the particles “sense” théstic range ¢, <2).
velocity drop within the limits of the shock transitiodu The spectrum of heavier elemeNS(p,) is formed un-
=u(l)—u; (u, is the velocity of the medium immediately der the conditions of the shock transition, whose structure is
behind the shock fromtwhich is an increasing function f  determined by the modification of protons. It has a kink at
For the same energy per nucleon, therefore, heavy elemeniise momentump,=Qmc, which corresponds to the same
have a harder spectrum, thus accounting for their higher relédnardness as exhibited by protons with momenpsnmc:
tive content in the range of relativistic energies.

To estimate numerically the degree of enrichment of N_iAnj Pa o <om
cosmic rays with heavy elements produced in the accelera- pi’;j pi’;j ' P= G
tion process, we write the spectrum of accelerated protons in N@fx NA o - (29
the simplified form _/'A”J(Q_TC) Pa ) . p=Qmc
Pinj \ Pin; Qmc

Ninj( i )_Vn' p<mc,

?nj Enj Invoking relationg26)—(29), we can readily estimate the

N (26) enrichment factor in the relativistic energy range:

Ninj<mc>_7n( p >_7r —me

Pinj \ Pinj mc . p=me I A Np A\ "4 A\

. . o e=17 N |~ &nil 7 Q : (30)
which explicitly reveals that nonrelativistic protons are ac- H

celerated in part of the shock transition—the thermal front—y js evident from this expression that the enrichment factor
and therefore have a softer spectrum X 2) than relativis- 5 the product of three factors:

tic particles, for whichy,<2. The values of the parameters
Pinj» Ninj» ¥n,» andy, in Eqg. (26) must refer to the most €= €inj€esacc:
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The first factore;,; is associated with the injection character- acceleration efficiency and the particle injection rate into the
istics. The second acceleration regime on the hardness of the particles.

We note that the necessary value of the enrichment fac-
tor e can be attained exclusively by virtue of the acceleration

. . . B . _3 .
is attributable to the dependence of the residence time difOPErties as long as an injection rate higher thanl0 ~is

. . —4
cosmic rays in the Galaxy on the particle species. It is alwaySonsidered. As was mentioned, however, evensferl0
less than unity, resulting in the depletion of heavy elementdh€ calculated cosmic ray spectrum is somewhat harder than

from the cosmic rays. Since the approximate relatin required. With a substantial increase in the injection rate the

=A/2 holds for all nuclei heavier than protons, the factor general increase in the hardness of the spectrum in the rela-
tivistic energy range of the cosmic ray spectrum is accompa-

Ces&=2 M (32 nied by the emergence of a bump at energies immediately
adjacent to the limite,,,, (Ref. 45, in contradiction with
experiment. It is most probable, therefore, that the injection
Tate lies in the rangg=10"%-10"2, where the properties of
the injection and acceleration of cosmic rays are capable of

Eacc= (AIQ) "~ 7, (33) reproduqing the observed functional dependes(cs). N

It is important to note that the observed composition of
which depends significantly on the degree of shock maodifithe cosmic rays, as is evident from Fig. 3, is not reducible to
cation by the reciprocal influence of accelerated cosmic raysa smooth dependenes<A“. Significant anomalies are asso-
At a low injection rate the shock is only slightly modified ciated with carbon and oxygen nuclei, whose content in cos-
(o0s=0=4), so that the cosmic ray spectrum has a singlanic rays is substantially higher than that of adjacent ele-
power-law profile with exponeny,=vy,=2, and it follows ments. As mentioned in Ref. 46, this characteristic can be
from Eg. (33) that this profile precludes enrichmefg,.,. attributed to the contribution of type Ib supernovae. Wolf—
=1e<l). Rayet stars are presupernovae in this setting; they are char-

For moderate injection 4=3x10%) the degree of acterized by a strong wind, which delivers into the surround-
modification becomes significant: During the period of mosting medium ~10M of matter, in whose composition
active generation of cosmic rays the shock is characterizedarbon and oxygen are the predominant elements. Conse-
by the parameterss=3.4 ando=6.7 for the warm inter- quently, cosmic rays generated by shock waves from the
stellar medium, witho,=3.6 ando=4.6 for the hot me- explosion of Wolf—-Rayet stars are highly enriched with
dium. As a result, the difference in the exponents of thethese elements in comparison with their content in the nor-
spectra in the relativistic and nonrelativistic rangesyjs  mal interstellar medium.

—y=0.5 for the warm interstellar medium ang,— y=0.2 The monotonic behavior of the dependemr¢d) is also
for the hot medium. violated by the content of refractory elements in the cosmic

At a high injection rate §=10"2) the shock modifica- ray compositionsee Fig. 3. The main portion of these ele-
tion is even higher: in the active peried=3.1,0=7.1, and ments exists in the interstellar medium as dust. Conse-
vn—v,=0.7 for the warm interstellar medium, witb-;  quently, the mechanism of injection into the regular accel-
=3.3, 0=4.8, andy,— v,=0.4 for the hot medium. eration regime can differ substantially from the usual case of

It is evident from Fig. 3, therefore, that for moderate andelements that move through the interstellar medium as soli-
high injection rates the factar,..increases with the atomic tary atoms. It is highly probable that the injection of these
numberA, its value rising considerably for alh>1 as the elements takes place in two stad@n the first stage, accel-
injection ratey increases. On the other hand, even at a higheration involves actual grains considerably harder than soli-
injection rate and for a warm interstellar medium, where thetary ions. Upon reaching a certain critical energy, collisions
factor e, IS @ maximum, the acceleration process does nobreak up the grains into solitary ions, which are drawn di-
support the required degree of enrichment of cosmic raysectly into the acceleration process. An analysis sibimt
with heavy elements. As mentioned above, there is everthis phenomenon can account for the observed content of
reason to identify this discrepancy between theory and exhigh-melting elements in the cosmic ray composition.
periment with the heavy-element enrichment of cosmic rays It is clear from the foregoing discussion that supernova
during particle injection into the acceleration regime, i.e.,remnants(source ) are capable of forming the spectrum of
with the factore;,(A/Q)>1. cosmic rays in the range up &g,,,~10eV. Itis legitimate,

If we use the results in Fig. 1 as guidelines, we cantherefore, to inquire how, in its general features at least, the
conclude that the injection process is characterized by thepectrum of cosmic rays is formed at high energies.
enrichment factoe;,; =A/Qq. Although little is known about source I, which is re-

Figure 3 shows curves corresponding to an injection ratsponsible for the formation of the cosmic ray spectrum in the
7=3x10"* with the factore;,; = A/Qq taken into account. range above the kinke(= 10%eV), it is useful to consider
Clearly, the experimental values fall into the region betweerits required properties. Above all, it is logical to inquire
the two curves for different types of interstellar medium. whether the spectrum is generically related to source I, which
This fact implies that the regular acceleration of cosmic raydorms the cosmic ray spectrum at<10eV. Indeed, a
in supernova remnants supports the observed dependenceaaintinuous cosmic ray spectrum formed without any break in
cosmic ray generation ofd, owing to the dependence of the summation of the spectra generated by the two sources can

€es= (AIZ)™# (31)

is the same for all elements.
The enrichment of cosmic rays with heavy elements dur
ing acceleration is characterized by the factor
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be obtained only when several conditions are met. The maxi- @A)
mum energyenax in the source | spectrum must coincide 100
with the minimum cosmic ray energy in the source Il spec- .

trum, and the amplitudes of both spectra at the pejpi,
must be identical. Inasmuch as the observed cosmic ray spec-
trum has one singularity, a kink in the spectrumegt=3
X10%eV, it is desirable that the conditiorey,~3
x10%eV be satisfied. If we assume that the two cosmic ray
sources are independent, it seems highly improbable that the
stated conditions will be satisfied. A more justifiable notion
is the assumption that sources | and Il are generically related,
the second one serving as a preacceleration mech&hism, 1010 10 10
which entrains the highest-energy cosmic ray particles gen- €. eV
erated by the first source. The matching of the cosmic ray
spectra is not a problem in this case. Estimates show that tHdG. 4. Average aFomic number of cosmic rays as a function of the kine_tic

. . . energy. The experimental values are taken from Ref. 3, and the calculations
preacceleration of cosmic rays can take place when they g, esoond to the dot—dash curve in Fig. 3.
teract with the shock wave in the wind of young pulsHrs.

If a pure power-law spectrum is formed during preaccel-
eration, it is most naturally assumed that the total cosmic rapf the loss factor and the modulating factor on the hardness
spectrum can be reproduced by extending the spectrum &f the particles. Both factors increase the hardness of the
cosmic rays from supernovae in the form of a power lawspectrum in the rangg.<=Z GeV. This is why(A) increases
Ja(e) =€, >, beginning with the poing,= €, atwhichthe as the energy is increased &g~10'eV, at which both
local exponent of the spectrum formed in supernova remfactors become relatively insignificant for iron nuclei.
nants y=—dInJa/dIn € is equal to 3.1. It is readily con- The behavior of A) in the rangee, = 10"°-10°eV, in-
firmed that the cosmic ray spectrum constructed in this wagreasing from(A)~10 to(A)~20, is entirely attributable to
in the ranges,>10%eV has a considerably lower amplitude the dependence of the maximum cosmic ray energy on the
than the observed spectrum. To achieve agreement with exuclear chargee,Z. The results of numerous indirect
periment, it is necessary that the maximum energy of cosmigieasurementsshown in Fig. 4, are fully consistent with the
rays accelerated in supernova remnants be approximatepredictions of the theory.
four times the energy corresponding to the calculated level ~In the energy range 16-10'°eV features can appear as
shown in Fig. 2. To visualize this relation, we have calcu-a result of the contribution of local supernova remnahes,
lated the cosmic ray spectrum for the hot phase of the inteithe ones closest to the solar sysjéfSince the experimen-
stellar medium with a magnetic fieBl,=12u.G and an in- tal evidence obtained in this regard indicates a critical ratio,
jection ratep=5x10*. The cosmic ray spectrum extended it could be helpful to examine this possibility theoretically.
into the high-energy region by the above-indicated techniquéccordingly, we write the average spectrudifferential
is also shown in Fig. 2. It is evident from the figure that thenumber density with respect to the kinetic engrgf/cosmic
calculations reproduce the measured cosmic ray spectrufidys in the Galaxy in the form
well both before and after the kink. The required magnetic e(y—2 —y
. . (Y—=2) [ e
field Bo~10uG can be achieved for type Ib and type I n§=7(—02) ,
supernovae, the acceleration of cosmic rays taking place in a (mc)= \m
medium significantly modified by the presupernova wifid. wheree,~1 eV/cn? is the energy density of cosmic rays in

Even though the procedure for plotting the cosmic raythe Galaxy, andy=2.75.
spectrum in the range,=10'°eV does not have a reliable Owing to the hardness of the spectrum of cosmic rays
physical foundation, it is useful in that it predicts not only accelerated in supernova remnants, their energy content is
the profile of the spectrum of cosmic rays, but also theirconcentrated mainly in the relativistic part of the spectrum.
composition in the indicated energy range. The cosmic rayheir density therefore obeys the approximate equation
composition is in fact particularly sensitive to the specific SE

; : sn €k
matching of the cosmic ray spectra from the two sources. ne= > <_

Figure 4 shows the results of calculations of the average V(MmE)In(emax/mc?) | mc®
atomic number of cosmic rays in which SEg,/V is the energy density of cosmic rays in the

supernova remnants,is the fraction of the explosion energy
<A>=2 Ja( ek)A/ 2 Ja(€r) (34)  transferred into the acceleration process in the cosmic rays,
andV=47-rR§/3 is the volume occupied by relativistic cos-
as a function of the kinetic energy,. The summation in Eq. mic rays. In the active period of evolution of supernova rem-
(34) is carried out over the elements shown in Fig. 2. nants, At< 10 yr, when the bulk of the cosmic rays are gen-

It is evident from Fig. 4 that the quanti§p) increases erated, they are all concentrated in the volume occupied by
rapidly in the rangee,<102eV up to (A)=10 and then the shock wave, implying the®.=Rs, whereR; is the ra-
remains constant up te,~10eV. The rise of(A) in the  dius of the shock wave. In later phases of evolution, after the
range e, <10%eV is mainly attributable to the dependence shock wave has weakened and ceases to accelerate cosmic

1 asd ud s W sl aad o
12

(39

-2
: (36)
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rays efficiently, the radiusk, of the volume occupied by ing cosmic ray cloud. It is therefore justified to assume that
them increases with time more rapidly than the shock radiug reality the cloud becomes highly asymmetric in the later
Rs; this so-called runaway phenomenon first begins at thestages, so that its radius in the galactic pldeis much
highest energies and then extends to lower energies as tlsenaller than the radiug, in the perpendicular direction. We
shock wave weakens therefore conclude that in the expansion stages of the cloud
The contribution of a solitary supernova remnant with aof cosmic rays, when their energy density is still appreciable,
hard cosmic ray spectrurt86) superposed on the substan- e;=eg, the radius of the cloudR, in the direction perpen-
tially softer galactic spectrur85) is most noticeable in the dicular to the galactic plane can be much greater than 1 kps.
vicinity of the maximum energiese,~ €nax- It is readily  Here, at least for energieg~ €.y, the average cosmic ray
confirmed that the critical radiuR;=R, , which is deter- spectrum in the Galaxylf(ek) forms in such a way that
mined from the conditiormc(emax):nf‘(emax), is given by the  cosmic rays produced by a solitary supernova remnant ini-
expression tially penetrate the region of the galactic halo and only then

3SE e\ 72113 intermingle in the Galaxy with cosmic rays from other su-
R, = sn ﬁx) } (37)  pernova remnants. The physical cause of this scenario is the
4rrec(y—2)IN(€ma/mMc’) | mc? cosmic ray pressure. Since the investigated phases of evolu-

Substitutingy=2.75, E;= 10°*erg, ands= 0.3 into this ex-  tion of the cosmic ray cloud correspond to the conditén
pression, we obtainR,~1kps for an energyen., =€c. their pressure gradient is capable of generating in the
=10° mc?. This means that at a definite time in the evolutioninterstellar medium a perturbation that expands predomi-
(expansiom of a typ|ca| supernova remnant located at a dis-nantly in the direction of regions having the lowest density
tanced<R, =1 kps from the observer it creates an exces®f interstellar matter, i.e., in the direction of the galactic halo.
density of cosmic rays with energieg~10**eV, such that One cannot rule out the possibility of some of the cosmic
An.= nf_ rays breaking through into intergalactic space and inevitably

We now estimate the probability that an observer situ-scaping the Galaxy. The remaining cosmic rays become en-
ated in the galactic disk will “see” this excess of the cosmic tangled in the magnetic field and contribute to the observed
ray intensity. Inasmuch as supernovae in the Galaxy occup§verage cosmic ray spectrum in the Galaxy. Inasmuch as this
a cylindrical region of radiusR~10kps and heighth  €ffect extends into the main high-energy part of the cosmic
~100 ps, the probability that an individual supernova will beray spectrum, it can soften the observed spectrum, thereby
situated at a distancd>R, is 1—q, where q=R2/R?  offering a possible reconciliation of this discrepancy between
=10 2. The probability that alN, coexisting supernovae, the required and observed energy dependence of the resi-
whose growth is characterized by the conditiBp(e,,)  dence time of cosmic rays in the Galaxy.

=R, , will exist beyond the distanag= 1 kps is given by the We note that the strong dependence of the volume occu-
expression pied by cosmic ray particles on their energy in the later
N stages of evolution should not significantly influence the
P=(1=q)%r~exp(—Ns). conclusions drawn above. It is essential only that the total

The number of supernovaé,,= vT is dictated by the fre- number of cosmic rays produced in the active period of evo-
quencyv~1/30yr ! of supernova flares in the Galaxy and lution of supernova remnants be described by the postulated
their lifetime T. The growth of the cloud of cosmic rays in energy dependendé.= e, >, along with the assumption that
the stageR.> R, is determined by their diffusion coefficient, the cosmic ray energy not subsequently undergo any appre-
because in this stage the region occupied by cosmic raysjable change. The fact that the expected spectrum of cosmic
R.~\kT, expands as a consequence of their diffusiverays produced in supernova remnants is somewhat harder
propagation. In this stage the cosmic ray diffusion coefficienthan the spectrunt86) merely reinforces the dynamical role

« is a function not only of the energy, but also of time; Of cosmic rays having the highest energigs- €ma, and is
increases with time, tending to the galactic average, becaus@nducive to actualization of this scenario.

the level of turbulence generated by cosmic ray particles de- If for the critical radius of the cosmic ray cloud in the
creases as a result of the decrease in their energy densig@lactic plane we take what we consider to be the minimum
Consequently, the determination of the increas€ neduces ~estimateR;~100 ps, the corresponding probability of an ob-
to the solution of the nonlinear problem of self-consistentserver in the Galaxy “seeing” the effect from a local super-
expansion of the cosmic ray cloud. Owing to the complexitynova remnant®~10"2 is still not negligible and can in-

of this problem, it is advisable to consider the minimumcrease significantly if the maximum energy of cosmic rays
estimateT=R_/c. It is seen at once to yiel®~1/e. This accelerated in supernova remnaafs, is higher than the
means that with a probabilit=1—P close to unity the Ppostulated value f8eV.

solar system must be situated in a cloud of cosmic rays pro-

duced by a local supernova, creating at least a twofold excess

of the intensity of cosmic rays with energiesl0"*eV above  , concLUSION

the galactic average. Since the observed cosmic ray spectrum

does not exhibit any distinct hardening at these energies, itis The foregoing analysis shows that cosmic rays acceler-
logical to infer that the estimate of the probabil@yderived ated in supernova remnants satisfactorily reproduce the ob-
above is far too high. The only one of the stated assumptionserved profile of the energy spectrum of all the elements for
that can actually be violated is the sphericity of the expandwhich direct measurements have been made.
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The theory is also capable of reproducing the observed=-10'*eV is not negligible, so that the recording of this phe-
dependencéncreasg of the relative contents of elements in nomenon can yield direct information about the maximum
the composition of cosmic rays(A), for a fixed energy per energy of cosmic rays produced in supernova remnants.
nucleon as a function of the atomic numi#eri.e., the cor- The foregoing remark attests to the exceptional impor-
rect amplitude ratio of the spectra of various elements inance of new and reliable measurements of the spectrum of
their composition. Here the increase@(A) is partially at-  cosmic ray components in the range*4010°eV, as the
tributable to the property of the nonlinear process of regularesults can be used to formulate a more justifiable conclusion
acceleration, as a result of which it more efficiently acceler-as to the adequacy of the theory of regular acceleration and
ates particles having a larger rath/Q of the mass and to ascertain the maximum energy of cosmic rays produced in
charge numbers. The quantitative reproduction of the depersupernova remnants.

dencee(A) requires that the injection mechanism also have ) _
the property of enriching with heavy elements; <A, a In closing, the authors are pleased to express their thanks
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A new approach is proposed for the interpolation of experimental data when a theoretical model
is unavailable. The method is based on the minimization of a modified likelihood function
incorporating a generalized smoothness test of the theoretical curve. The conditions for
applicability of the method are a sufficiently accurate estimate of the statistical errors of

the experimental datéassuming that the results fit a Gaussian distribution in accordance with the
resulting rms deviationsand smoothness of the theoretical curve. A FORTRAN 77

program for the interpolation of experimental data has been written to implement the proposed
algorithm. The computing time and roundoff error are determined as functions of the

number of experimental points. @999 American Institute of Physid$§1063-776(199)00209-1

1. INTRODUCTION

T. 1)

L=é [F(x)—yil?
The interpolation of experimental data poses one of the i=1
mqst Important problem; n experlmental physics. In the My, contrast with the standard approach, there are still no
jority of cases a theoretical mod@dossibly more than one . o
’ . s model parameters by which to minimize the functionBe-
is available for the accumulated data, permitting known

. o low, we must somehow formulate a smoothness test. To do
methods to be used for optimal estimation of the model pa- L :
, We propose minimizing the functional

rameters(the most popular methods are least squares and’
maximum likelihood; see, e.g., Refs. 1 angl There are = )
. - . . . . — !
times, however, when it is impossible to use a theoretical !s= f,x[f (x)]°dx. 2
model for data interpolation, but the theoretical curve de-
scribing the experimental data is positively known to beTo unify the smoothness test and achieve agreement with the
smooth. Either polynomials or polynomial splines are cus-experimental data, we modify the likelihood function as fol-
tomarily used in such cases. The objective of the preserbws:
study is to develop a generalized algorithm for the interpo-  _
lation and smoothing of experimental data when statistical L=L+wlg, (3

errors are present at all measured points and a theoretical . - _— . .
. . . wherew is a positive weighting factor. This technique of
model does not exist. A recent paper on this subjeets

forth the basic notion of choosing a linear combination Off:onsolldatmg the likelihood function and the smoothness test

cubic B splines with a uniform computational grid as the into a single objective function has in fact been dséd

smoothing function and of inferring the statistical behaviorzglcvt')?]%_é?gef;?‘tgetmr do-];rzrer:ros()trllil:gs ﬁﬁpgg;nint:év\?:\:gr bgo
of the deviations of the experimental points from the theo_basis is given to exolain wh P ol n.omial s. Iiﬁes best él i
retical curve by decreasing the number of spline nddgs 9 P y poly P P

until satisfactory agreement is achieved between theory an%rommate _the experlmental data_. Nor in Ref. 4 are any rec-
: 2 , . ommendations given for choosing the coordinates of the
experiment by theyx“ test. In this paper a generalized

smoothness test is proposed for the approximation of expensipllne hodes or the weighting facter (the purely math-

ematical problem is discussed in the bhdk the proposed
mental data, whereby the degree of smoothness of the curvq : S L o
: . : . . . algorithm the weighting factor is increased uitiattains the
is varied until satisfactory agreement is achieved between . .
. valueLo=n—2. This value is in fact equal to the average
theory and experiment. P . :
value of y< in fitting the experimental values to a theoretical
curve withn degrees of freedom, subject to the condition
that the overall level and slope are free paramgiilough
2. CHOOSING AN APPROXIMATING EUNCTION a somewhat different level can also be)set
It is obvious that outside the range of experimental
Let it be required to find a smooth functidi{x) that  pointsx over which the required function varies, there are no
passes through experimental valuey; with errorso; (as-  restrictions on the value of the function and, hence, no rea-
sumed to have a Gaussian distribujiat pointsx;. The son for any deviation from a straight line; we can therefore
standard approach to such problems is to minimize the logaassume that the required function has the minimum possible
rithmic likelihood function(or x?) value[ f"(x)]?:

1063-7761/99/89(9)/9/$15.00 404 © 1999 American Institute of Physics
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f"(x)=0 for x<x; or x>X,. (4) f(X)=SPp1(X;Xi X +1) T S 1P2(X; X 1 X+ 1)
We attempt to find a solution by methods of the variational +Dig1(X; X X+ 1) T D+ 19206,%; ,X11)
calculus® Following the standard variational calculus ap-
: ; - XiSXS<Xi+1, (10)
proach, we introduce a small arbitrary functiéfi(x) and
determine the variatioh.: where
_ (X—X5)2(2X+ X,— 3%;)
oL= 22 ( ) yl 5f( ) pl(xvxlaxz): (X2_X1)3 ’
(G, Xp) = (X—%2)2(X—Xy)
f_x Z —2—5f< )8(x=x)) |d (5) ) = T a?
2
where _ _ (X—X%1)%(38Xy—2X—X;)
P2(X;X1,X2) (X2_X1)3 )
500 [O for x#0, J"" Sx)dx=1 )
"l for x=0 - (X=X1)“(X=X3)
’ —o XXy, Xp)= ——————— 11
QZ( 1 2) (X2_X1)2 ( )
and . . . .
Indeed, any third-degree polynomial can be written as a lin-

S Y S ear combination of polynomialg;,p»,q;,9,. On the other
al S=2f_m F(x) of (x)dx=2f_ f(x)6f(x)dx. (6)  hand, the indicated standard polynomials have readily veri-
fiable properties:
Here we have made use of the fact that
P1(X2;X1,X2) = P1(X1;X1,X2) = P1(X2:X1,X2) =0,
f"(x)—0, f"(x)—0 as x— *oo, (7)

_ P2(X1;X1,X2) = Pa(X1:X1,X2) = Po(X2;X1,X2) =0,

The variation of the functiondl must now be set equal to

zero: 01(X13X1,X2) = A1(X2;X1,X2) = A1(X2;X1,X2) =0,
~ f(x ) Vi O2(X1;X1,X2) = Oa(X2X1,X2) = Up(X1;X1,X2) =0,
5L=2f sf(x)dx f””(x)+2 — T S(x— X)) | =
a ®) P1(X1;X1,X2) = Pa(X2;Xq,X2) =01 (X1;X71,X2)
=05(Xp;X1,Xp) =1, 12
Since the functionsf(x) is arbitrary, Eq(8) is valid only if A2(X2i%1. %) (12
so that they can be used in the fofd0) for the parametri-
f(x)—y; zation of an arbitrary cubic spline of deficiency 2. This kind

f (x)+2 2 O(x=x;)=0. © of parametrization is particularly well-suited to splines in a

_ o ' ' multidimensional spacéwhich the present author has used,
This equation implies that in the intervals between the exe g, in Ref. 6. The second derivatives to the right and to the

perimental pointsq; andx;. ; the derivativef™(x) is iden- |eft of x; are expressed in terms of the coefficieBtandD; :
tically zero, which is one definition of an arbitrary third-

degree polynomial, and one or more of the leading (% —0)= 2(Di-1+2D)) 6(S-1—9)

derivatives can have discontinuities at the experimental mea- : Xi—Xi_1 (Xi—Xi_1)%"

surement points. This fact uniquely determines the type of

approximating functiorf(x): a cubic spline of deficiency 1, (% +0)= 2(Dj41+2Dy) 6(S5.+1—S) 13
2, or 3(in the classification of splines in Ref. 4 the deficiency : Xi+1— X (Xis1— %)%

of a spline is the number of leading derivatives that have
discontinuities at the nodes of the splin€he coordinates of
the spline nodes are also uniquely determined: They are t
coordinates of the experimental points

Consequently, for cubic splines of deficiency(the most
Hgemmon type the following conditions for continuity of the
second derivative must be satisfied for the coefficiéhts

We now consider the case of splines of deficiency 3.  g2f 2(Dj_1+2D;j) 6(S5-1—95)
This solution obviously represents a broken line passing a2 =Ci= X—% 1 (X=X _1)2
through the experimental valugs. The functionall is X=X
equal to zero in this case. The solution is mathematically 2(D;11+2D;)) 6(S:1—S)

(14)

possible, but is of no practical interest, as only the cases of
deficiencies 1 and 2 will be discussed below.

We choose a spline parametrization in terms of the valThe set of coefficients; ,C; could be used for the determi-
ues of the splines; and the values of the derivative of the nation of splines of deficiency 1, whereupon the coefficients
spline D; at the nodesx;. The value of the spline at an D; (and the condition for continuity of the first derivatjve
intermediate point is then could be written

2 .
Xi+17 X (Xi+1—Xi)
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df S.1—S  Xip1—Xi B splines that covers the entire grid of spline nodes it is
x|l TPty —x g (2Ci+Cisn) possible to represent any spline on this grid by a linear com-
X=X; AR bination of B splines.
S-S, —_— Any cubic spline on a grik,,...,X, can be represented
= — (2Ci+Ci_1). (15 by a linear combination oB splines:
Xi—Xi—1 6 )
n+
For breV|_ty, from now on we denote the distances between ¢ y)— E BiBi(x (18)
consecutive nodes by
Ri=Xir1—X. (16)  where

Bi(x)=0 for x=x;_, Or X=X,

3. MINIMIZATION OF THE MEAN-SQUARE SMOOTHNESS
PARAMETER /g Bi(Xi—2)=B{(Xj_,) =B (X_2)=0,

Looking at the problem of minimizing the objective Bi(Xi12) =B/ (Xi+2)=B/(Xi42)=0.
function (3) for splines of deficiency 2, we note thiatdoes
not depend on the paramet@r. In the first stage, therefore,
we can minimize the functioh with respect toD; (in fact
minimize | g). Invoking the expression for a spline in terms
of S andD;, we readily obtain an equation fog:

n—1

The technical details of implementing this algorithm can
be found in Ref. 7.

If all the parameter@; are free, the second derivative of
the spline defined in Eq18) can have an arbitrary value at
the extreme nodes. On the other hand, to minintizend

3 ensure continuity of the second derivative, we must use
ls= E h —[Di11-DiP+ 5 3 splines for whichf”(x,)=f"(x,)=0. These conditions are
' easily satisfied by the proper choice of coefficiegtsand

Bn+1, Which is equivalent to modifying thB splines near
X[hi(Di+1+ D) +2(S—S+1)]%. (17 the extreme nodes, so that

If we write the system of equations specifying the con-  B{(x;)=B(x,)=0.
dition of the minimum ofl 5 with respect tdD,, we find that
it is equivalent to the condition of continuity of the second
derivative at all intermediate nodes and vanishing of the sec-
ond derivative at the extreme nodes. We find that a cubic ~
spline of deficiency 2 “shuns” the additional degree of free- f(x)=§l BiBi(x), (19)
dom and reverts to a spline of deficiency 1 for the minimi-
zation ofI. In the ensuing discussion, therefore, we shallwhereg; can take any values.
not mention this characteristic of the spline every time, bear-  In this notation the likelihood function is written in the
ing in mind that only cubic splines of deficiency 1 are con-form
sidered. For a spline of deficiency 1 the functigmattains a non n Ny
minimum for C,;=C,=0. This result is well known and is L=2> > A;BB—22 P+ =, (20)
used to draw a spline through points with given value§;of =1j=1 =1 =10
(Ref. 4. We have thus exhausted the possibilities of mini-yhere
mizing the “smoothness parametel’s separately and must N
now minimize the entire functioh with respect to the re- A= E
mainingn free parameters. =
Consi_dering that one of our pr_actical goals is to be_ able If we define the matris8 and the vectol’ by the equa-
to approximate large arrayat least in the dozensf experi- tions
mental points, we have no choice but to complicate the in-
vestigation by using large matrices. One of the most effec- B =§-(x-), Y=Yy, /giz, (22)
tive techniques for obtaining almost diagonal matrices and,
hence, significantly abating the effects of roundoff errors is
to represent the spline by a linear combinatiorBa$plines. 2
This technique has been employed to great advantage in pre- L=BTA,6’—2PTB+E =5, P=BY, (23
vious work? =17

Our required splines are now written as follows on the inter-
val (Xq,Xp):

Bi(xi0)Bj(xy)

B
-7 , _ Z Yk (k) (21)

we can rewrite the expressmns forand P in the form

where the superscrift denotes transposition.
4. REPRESENTATION OF A SPLINE BY A LINEAR

COMBINATION OF B-SPLINES 5. ALGORITHM FOR CHOOSING THE WEIGHTING FACTOR

A B spline is a special type of cubic splified distin- The modified likelihood function can now be written as
guishing attribute ofB splines is that they are identically 2
zero everywhere except in a few consecutive intervals be- [=8TAB— 2PTB+E 2 L +wB'RB, (24)

tween nodes of the given spline. By constructing a system of
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whereR is a symmetric matrix, where

Xn " " " 1 1 " Xi

Rij=| B{(X)B](x)dx. (25) Q=2 —5, Xo=— 2 —3,

X1 i=1 0j Qp =1 0;
The algorithm for simultaneously reducing two symmetric 10y, x0)2
matrices to diagonal form by a linear transformation is well Yo=— 2 —'2 Z
known®® Following this algorithm, we can obtain both like- Ao i=1 0 -
lihood functions in the forn{see Ref. 7 for details 10 (=% (Vi Yo)

1 I
a= X (34

n
~ ay i=1 o
L=2"z—2E"z 2 Lz L=L+w-z"Az, 2 '
iI=10j Once the weighting factow and the corresponding co-
26) efficients B8; have been chosen, the complete set of coeffi-

A cientsS; andD; can be obtained from the equations

ij = N\iGij -

The system of linear equations for finding the minimuniof

can be separated into independent equations S=B'p, Di:jZ1 IBJ-EJ.’(xi). (35
1 4L - - "
——=z—E+w\z=0, (27) When the spline degenerates into a straight line, the ex-
2 9z pressions folS; andD; are simplified:
which have the solutions S=Yo+a;(xi—Xy), D;=ay. (36)
Ei :
zi= oW’ i=1,..n. (28 6. ESTIMATION OF STATISTICAL ERROR
I
We substitute the resulting solution into the equation for N estimating the statistical error, we shall assume that
L and obtain. as a function ofw: the experimental measurements at different points are statis-
tically independent. In principle, correlations can be taken
" y 2(14+2\,w) into account in the linear approximation if the covariance
iz 2~ izl —(1“\ w)z (29 matrix is known for the experimental data.
=100 =

At an arbitrary pointxe (x;,Xj+1), according to Eq.

In the limit w—O0, obviously, the spline must pass (10), the following equation can be written for the variance
through the experimental points, and we must haveO, of the spline:

R 0200 = P2 ~(S)2)+ P, )~ (S 1))
DA = (30 +G2(D2)— (D)) + G2((D?, )~ (D 1)?)
+2p1P2((SS+1) —(S){(Si+1))

This identity, incidentally, can be used to test the validity of

the equations in application to the implementation of the +20:,0,({(DiD; 1) —(Di}Dj 1))
algorithm in computer programs.
Bearing the latter consideration in mind, we can reduce 2P0 ((SDi) = (S){Di)) + 2P102((SDi+1)
the equation fol. to the form —(S)(Di+1))+201P2((Di S 1) ~(Di){(S+ 1))
i (Eiw)? (31) +202P2((Di+1S+1) = (Di+1(Si+1), (37
4 (1+aw)2

where for brevity the standard polynomials from E@kl)

Each term in this sum increases monotonicallyam- ~ are denoted by
creases, so that is also a monotonically increasing function Pe=P(X X Xic1)s  Ok= (XX Xi11), k=1,2.

of w. The equation . : .
9 For x<x, the spline goes over to the straight lihex) =S,

L=Ly=n-2 (32 +D;(x—X4), so that
can be solved fow by any numerical method such as, for Z(X)|x<x1_(<s Y—(S)?) + (x—x1)?((D2)—(D4)?)
example, the bisection algorithfn.

It can happen that remains smaller thah, even when +2(Xx=X1)((S1D1) = (S1)(D1)). (39

the weighting factor is increased to infinity. This condition Analogously, forx>x,
must be checked before starting the iteration cycle. The 5 2 5
maximum possible value df is obtained when the experi- T?(X)|xox, = ((SH) = (S)?) + (X=X 2((D ) —(Dp)?)
mental data are interpolated by a straight line, with

P Y & STl F2(X %) (($De) ~(SH(De)). (39

L (Yi—Yo)®—ai(xi—Xo)® The exact calculation of the necessary correlation functions
maxL =L = E (33 y

criz ' corresponding to the proposed algorithm poses a difficult
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FIG. 1. Interpolation of points on a sine wave;&1). The solid curve  FIG. 2. Interpolation of points on a sine waeery small errors The solid
corresponds to the “exact” theory, the dotted curve bordered by an errocurve corresponds to the “exact” theory, the dotted curve bordered by an
strip corresponds to the proposed approximation algorithm, and the dasheatror strip corresponds to the proposed approximation algorithm, and the
curve corresponds to interpolation Bysplines® dashed curve corresponds to interpolationBogplines®

task. However, the statistical error can be adequately esty gpjines used for the approximation are chosen according to

mated in the approximation of a fixed weighting fac®r e authors’ recommendations by the following algorithm:
These correlation functions can be calculated during fitting D) 1 op=2.

of the experimental data and can be stored in an auxiliary file 2) For a given number d8 splines! ,,;, approximate the
to be retrieved whenever needed for estimating the StatiStiC@xperimental quantities and calcul@\tép
curve-fitting error at an arbitrary point. If the factorw is 3) If Xz>nD:n_|0pt (the number of effective degrees
assumed to be fixed, the relations f§r and D; become ot freedom holds, increment once the number Bfsplines

linear iny;, and the correlation functions are expressed in(|Othr 1—14p) and go to step 2

terms of matrix transformations used to diagonalize qua- |, this figure the dotted line bordered by an error strip
dratic forms(see Ref. 7 for details represents the results obtained by our proposed algorithm.
To obtain quantitative criteria for assessing the quality of
approximation, we make use of the fact that the exact theo-
retical curve is known here. We introduce two characteristics
of the deviation of the approximating cunfg¢x) from the
To implement the above-described algorithm, a FITABtrue theoretical curvé e, (x): the maximum deviation of
program has been written in FORTRAN 77 for the approxi-the absolute value
mation of experimental data, along with corresponding

7. TESTING THE OPERATION OF THE ALGORITHM IN
EXAMPLES

VALSPL and ERRSPL programs for calculating the value of ~ Af = max |f(X) — feyacfX)] (42
a spline and estimating the statistical error. X1<X<Xp

We now examine a few simple applications of the algo-
rithm. and the rms deviation
7.1. Sine wave with large experimental errors « 12

_ n 2

We choose ten points situated around a sine wave of unit Afms= [ X — X1 J; [FX)— fexacf¥)]7dXp . (43)
amplitude: !

xj=i—1 (y;y=sinx;, i=1,2,..,10. (40 The results of approximation by the two compared algo-

The points are dispersed relative to the sine wave accordinrg';thms’ shown in Fig. 1, are characterized by the parameters

to a Gaussian law by means of an appropriate pseudorandog}noothing algorithm Sf Sf
number generator: Ref. 3 1%’8 0.79
This paper 1.09 0.57
aw__1 exp{_w wy et . _ »
dyi  2mo, 207 | ;Ir']hteh izrgg:zed algorithm has noticeably better characteristics

The solid curve in Fig. 1 represents the sine wgwesinx
(exact theory, and the ten points with error bars are obtained

for oy=1. : , .
The dashed curve represents results obtained by Anikegy?" Si"e Wave with very small experimental errors
et al3 (using the CSPLS1 programOwing to the consider- We now decrease the “experimental” errors by a factor

able latitude in choosing the CSPLS1 access parameters, it five (o;=0.2) and repeat the operatidhig. 2). It is evi-
necessary to fix certain principles for the selection of theseent that the curvature of the interpolating curve has in-
parameters. We assume that the limits of approximatioB by creased automatically, despite the invariance of the number
splines areXyin=x; andX,a=x, and that the numbey,,; of ~ of spline nodes. The approximation characteristics for this
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Afabs ) Afrms
a b }
_- + é + + FIG. 3. Average values of the maximum_abs(a) and
b % 1 rms Af,.s (b) deviations of the approximating curve
1 R + i % from the exact “theoretical” curvega sine wavg for
051 two interpolation algorithms: one usirig) splines @)
é $ from Ref. 3 and the algorithm proposed in this paper
X . ©
o $
Q 9
] A Il L 1 1
0 0.5 10 o 0 0.5 10 o
case are as follows: Smoothing algorithm  Afgps  Afyms  Afaps  Afrms
o=1 g=0.2
Smoothing algorithm 5f aps ofims  Ref.3 1.02 0.61 0.27 0.15
Ref. 3 0.35 0.18 This paper 0.99 0.45 0.15 0.10
This paper 0.28 0.12

Again, for large errors, when the nonuniformity of the ap-
Even though our above-defined “quality of approxima- proximated quantity is less than or of the same order as the

tion” parameters indicate that the proposed algorithm forexperimental errors, the given algorithm chooses a straight or

this example provides a closer approximation to the truealmost-straight line for approximation, and for errors much

curve, it is still impossible to draw any conclusion on the smaller than the nonuniformity the approximation comes

basis of one statistical sample. Figure 3 shows the quality oflose to the theoretical curve.

approximation as a function of the errors at each experimen- As in the preceding example, the quality of approxima-

tal point. For each value of the experimental error we haveion in the proposed algorithm is generally not much better

approximated several sets of experimental points obtained an for interpolation byB splines(Fig. 6).

means of a pseudorandom number generator, and the graph

shows the value ofAf,,s or Af;ns averaged over several 74 Gaussian peak against a flat background

samples. . . o
P Finally, we consider a more popular distribution for

high-energy physics—a Gaussian peak against a flat back-

7.3. Broken line ground:
We now perform an analogous operation with a broken i—1 )
line: Xi=9——, i=12,..,n,
: n—1
Xizi—l, <yi>=0.3-|xi—5|, i=1,2,..,10. (44) <Yi>=1+0-05<i+eXF[—2(Xi—5)2]- (45)

We carry out two series of fittings in precisely the same way,  Figure 7 shows the results of fitting such data for
once witho;=1 (Fig. 4) and once withr;=0.2(Fig. 5. The =60 andg;=0.2. In this case the quality of approximation
approximation characteristics for these cases are as followggy the two algorithms has been evaluated as follows:

FIG. 4. Interpolation of points on a straight lifkarge errorsg;=1). The FIG. 5. Interpolation of points on a straight lifeery small errors,o;

solid curve corresponds to the “exact” theory, the dotted curve bordered by=0.2). The solid curve corresponds to the “exact” theory, the dotted curve
an error strip corresponds to the proposed approximation algorithm, and thieordered by an error strip corresponds to the proposed approximation algo-
dashed curve corresponds to interpolationBbgplines® rithm, and the dashed curve corresponds to interpolatioB kplines®
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Afbs Bfrms
r a b +
{ FIG. 6. Average values of the maximuif ., (a) and
+ + {’ rms Af,s (b) deviations of the approximating curve
i i from the exact “theoretical” curvéa broken ling for
1 + 0.5 two interpolation algorithms: one usirg) splines @)
+ + + from Ref. 3 and the algorithm proposed in this paper
0).
SRR gt ©)
L é o *°
- ]
i n i | . 1 1
0 0.5 10 o 0 0.5 10 o
Smoothing algorithm ofaps ofims  cases involving a highly irregular function it will most likely
Re.f. 3 0.24 0.085 pe necessary either to generalize the smoothness tests to an
This paper 0.38 0.13

integral of the square of a higher derivative or to develop a
The proposed algorithm falls well behind the method of in-fundamentally different algorithm.

terpolation byB splines both in terms of such formal esti-

mates and from the standpoint of visual evaluation of thes. INFLUENCE OF ROUNDOFF ERRORS AND ESTIMATION
quality of interpolation: in the vicinity of the peak the algo- OF THE COMPUTATION TIME

rithm tries to “stretch” the smoothing function into a
straight line. This effect can be toned down by decreasing thﬁqe
objective value of the likelihood function.—0.7(n—2)
[this operation corresponds to a value of the argunugnt

It is obvious that despite measures undertaken to allay
influence of roundoff errors in working with large matri-
ces, the cumulative roundoff error associated with matrices

—L,/(n—2)=0.7 in the FITAB prograrh Figure 8 shows having a certain number of dimensions will still severely

) . " distort the result. To investigate this effect, we have written a
the interpolation result under the stated conditions. Here th9ersion of the FITAB program containing a description of all
quality of approximation in terms of absolute deviation isvariables with a smooth point of the form real16. We

already higher for the proposed method than for interpOIati‘:’Qienote the approximation obtained from this version of the

by B splines: program byf(x). We then adopt the following measure of
Smoothing algorithm S abe St e the error of the solution:

Re_f. 3 0.24 0.085 Afp= max |f(x)—fa(x)|. (46)
This paper 0.18 0.13 X1 <X<X

The characteristics of the approximation quality as a functiorFigure 10 shows a graph of the error of the solutiohy, as
of o for this theoretical model are shown in Fig. 9. On thea function of the number of experimental poiritghich is
average the proposed algorithm exhibits better characterigqual to the number of dimensions of the matrices used for
tics. intermediate calculationsThe last example in the preceding
Even though the deficiency of the algorithm in approxi- section(Gaussian peak against a flat backgrouisdused as
mating data over a large interval containing large, almost-flaé test problem. Generally speaking, the dependence of the
segments and segments with marked irregularities is some&omputational error on the number of points is not necessar-
what corrected by means of the argumeptof the FITAB  ily smooth, and the error depends on the specific positions of
program, this is not an adequately effective measure. Fahe points, on the level, (in the given situatioh.o=n—2),

fx) f0

FIG. 7. Interpolation of points describing a Gaussian peak against a smoothlG. 8. Interpolation of points describing a Gaussian peak against a smooth
background. backgroundqg, =L,/(n—2)=0.7.
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1.0 FIG. 9. Average values of the maximutaf 46 ()
1 0.3 and rmsAf,,.s (b) deviations of the approximating
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% ground+ Gaussian pegkor two interpolation algo-
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and on the computer modédr, more precisely, on the form The indicated Alpha Server 4100 has a sufficiently high
in which the numbers and roundoff rules are representedspeed. The same FITAB program runs 13 times slower on
The computational error has been investigated on an Alphthe Silicon Graphics Challenge-L servélock frequency
Server 410Qwith a clock frequency of 400 MHzrunning 150 MHz, IRIX 6.5 operating system, and MIPSpro v.7.2.1
under the Digital UNIX v4.0B(Rev. 564 operating system compilen, 30 times slower on the VAX Station 360Qpen-
with a Digital FORTRAN 77 compiler. It is evident that the VMS v5.5 operating system and VAX FORTRAN v5.5-98
accumulation of roundoff errors is not very pronounced, incompilep, and 42 times slower on an IBM PC 486 DX/4
contrast with the simpler parametrization of the spline with(clock frequency 100 MHz and Microsoft FORTRAN Visual
respect to the coefficients at the nodes, where roundoff erroMd/orkbench version 1.00 compiler under the Windows 95
have made it impossible to run calculations with matrices obperating systejn The comparison has been made for
no higher than about 10—20 dimensions. =20. The given coefficients permit Fig. 11 to be used to
In regard to the computing tim@ig. 11), of course, the estimate computing times on other computer systems.
dependence on the number of points is smooth. However, not
a!l the matrix ope_ratlon_s in the algorithm are execut_ed a3, CONCLUSION
direct cycles. The iterative method of successive rotations is
used to reduce symmetric matrices to diagonal form. This We have proposed an algorithm for the approximation of
operation greatly complicates the dependence of the compugxperimental data when sufficiently accurate statistical error
ing time on the number of points. If the curve in Fig. 11 is estimates are assumed to be available, but a theoretical

fitted by a fifth-degree polynomial, we obtain model is not. The method is based on the minimization of a
2 3 modified likelihood function, which incorporates a general-
n—3.2 n n : . . .
- T _ ized test of smoothness. The choice of a cubic polynomial
tcpd Ms] + + . > . :
21 45.8  19.37 spline of deficiency 1 with nodes at the coordinates of the
n\4 n \s experimental points as the interpolation function has been
+(F5 +(ﬁﬁ) ) (47  justified by investigations using methods of variational cal-
: : culus. Internal parametrization of the spline in the form of a
linear combination oB splines has been chosen as a means
AfE
10°F
°
10712 10°F
4
° 210°F
10—13_ PY g [} 3
° Ewo'y
®e g 2
.. [ ] 3 10°F
10740 *® 5
O10F
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FIG. 10. Maximum deviatiom\f,,, of interpolation functions obtained by

calculations using real 8 and reak 16 numbers as functions of the number FIG. 11. Computing time of the FITAB program as a function of the num-
of pointsn. ber of pointsn (Alpha Server 4100
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of significantly diminishing the influence of roundoff errors fluence of roundoff errors on the computational accuracy has
in operations involving large-dimensional matrices. been investigated, and the computing time has been mea-
We have presented several practical examples of intersured for this implementation of the algorithm has been mea-
polation with simultaneous comparisons of the quality of in-sured over a wide range of numbers: 5— 300.
terpolation by means of an algorithm proposed in Ref. 3.
Major differences should not be encountered here, because
cubic splines are used in both cases. However, a significante-mail: bukin@inp.nsk.su
difference between the two algorithms is found in the num-
ber and positions of the spline nodes.
The proposed algorithm has the drawback that the inter-
polation curve tends to “stretch out into a straight line” to *D. J. HudsonLectures on Elementary Statistics and ProbabillBERN
the extent allowed by statistical errors of the experimental,RePort 63-29, CERN, Genevases. _
data(a similar effect is encountered in all smoothing algo- L. JanossyTheory and Practice of the Evaluation of Measureme@tar-
.a a ’ 3 g g endon Press, Oxfor(l965.
rithms). The problem here is attributable to the formulation 3v. B. Anikeev, A. V. Popov, and V. P. Zhigunov, Nucl. Instrum. Methods
of the smoothness test as an integral of the square of thePhys. Res. /372 482(1996. S _
second derivative of the interpolation function. If reduction S. B. Stechkin and Yu. N. SubbotiSplines in Computational Mathemat-
. . . L ) . ics [in Russiar, Nauka, Moscow(1976.
of thl_s effec_t is desired, it will be necessary to gen_erallze thes| m. Gelfand and S. V. FominCalculus of Variations Prentice-Hall,
algorithm with a smoothness test in the form of an integral of Englewood Cliffs, N.J(1963.
the square of a higher derivative, which, of course, will lead jﬁ- % E:SU'T('F‘ a?g NF S- GFPZt":\la, Cgosmggt- PRhys._ %OIrTWr:}tTfRS{ 28:;\119914)-
: . . . . _A.D. uKin, a reprin 0. -93IN Russiarn Institute o uclear
to sp]mes of hlgher than third degree. In. this case the inter Physics, Novosibirsk1998.
p_0|at|0n curve will be drawn to polynomials of higher than eg."a. kom and T. M. Korn,Mathematical Handbook for Scientists and
first degree(e.g., a parabojato the extent allowed by ex-  Engineers2nd ed., McGraw-Hill, New York1967.
perimental errors. °A. G. Kurosh, Lectures in General AlgebraPergamon, Oxford1965
An interpolation program in FORTRAN 77 has been [Russian orig., Fizmatgiz, Moscolt963]

written in accordance with the proposed algorithm. The in-Translated by James S. Wood
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Measurements used in quantum teleportation are examined from the standpoint of the general
theory of quantum-mechanical measurements. It is shown that in order to find a teleported

state, it is sufficient to know only the resolution of the identity opergpositive operator-valued
measurg generated by the respective instruméhe quantum operation determining the

change in the state of the system as a result of the measupjeiméimé state space of the system,
rather than the instrument itself. A protocol for quantum teleportation of the state of a

system with a nondegenerate continuous spectrum based on a measurement which corresponds to
a certain nonorthogonal resolution of the identity operator is proposedl999) American

Institute of Physicg.S1063-776099)00309-1

1. INTRODUCTION of particle 3 so that its state would coincide wiph. We

) ) ) . note that useA does not obtain any information on the tele-
One of the main results of quantum information theory 'Sported state.

the possibility of teleportating an unknown quantum state by |, the quantum teleportation algorithm presented it is

means of a classical and a distributed quantum commUNIC&qqentia| to utilize the fact that after performance of the mea-
tion channel, whose roles are played by a speC|a_IIy Se_leCte&Jrement, the system as a wheidl three particlesis in a
nonlocal (entangled sta?el for example, an Elns_teln— fully defined statg;,5, Which is determined by the measure-
Podolsky—RoseEPR pair.” The quantum teleportauon of ment result; the algorithm in Ref. 1 uses a so-called Bell
an unknown state from usex to distant use is accom- measurement, which corresponds to a certain self-conjugate

plished in the followmg.ma_nnér.UserA has a staig, of operator with a nondegenerate spectrum in four-dimensional
quantum system 1, which is unknown to him and is to be

. : space, and the sta is easily written out in an explicit
teleported to useB (for example, a particle of spin 1/2; a oprm LS y P
o variable(i.e., the wave function of a one-dimensional non-

state space, was also given in Ref. [h addition, there are lativisti inl icl h i infini
two other particles also of spin 1{8ystems 2 and)3n the re at|V|s_t|c Spiniess paf“" €, whose state space 1S 1n Inite-
dimensional was described in Ref. 2. A realistic algorithm

spin-entangled EPR stafes, which is such that usek has for teleporting a single-mode electromagnetic field was sub-

access to particle 2 and udgrhas access to particle 3. User .
o . sequently proposed on the basis of that apprdalthwas
A performs a certain joint measurement, on system 1 in : . .
essentially assumed that in the case of an observable with a

the statép,, which is unknown to him, and particle 2 from continuous spectrum, the system passes after a measurement
the EPR pair. As a result of the measurement, the complete P ' y P

system consisting of particles 1, 2, and 3 passes from thmto the state described by the “eigenvector” belonging to

state p1®pys 10 @ New statepl,s, which depends on the tef\1e eigenvalue” of the corresponding self-conjugate opera-

tor obtained as a result of that measurement.
resultz of the measurement performed. It turns out that there . .
However, the properly posed question of the state into

are measurements,, s a result of which the stafe} of which a system passes after a measurement is far more com-
particle 3 from the EPR pair at usBr(which is obtained by licated f())/r a coFr)ninuous variable than in the case of a dis
taking the trace of the state space of particles 1 and 2, i'egrete spectruntsee, for example, Ref)4The problem here
P3=Triap19) IS related to the input staje, of particle 1 by is not 'L?st that in th1e case of 2 c,ontin.u.ous s pectrum there are
a certain unitary transformation, which does not depend OI'P] ; J flv defined eigenvectors in th Hilbprt tat f
p1 and is determined only by the resalbf the measurement O properly defined eigenvectors € ert state space o
) the system. Let us consider, for example, a certain self-
m,, performed: . ; .
conjugate operato with a continuous spectrum. Let the
ps=U,p; (1) point_z belong to this spectrum and let the _syste_m be in a
certain state before the measurement. How intelligent then
(here and below, we assume that the isomorphous state the question of which statg, is the system in after a
spaces of particles 1 and 3 are identicl classical com- measurement which gives the resuk=z? The problem
munication channel is needed for ugeto communicate the stems from the fact that, according to the statistical interpre-
measurement resuft to userB. This result tellsB which  tation of quantum mechanics, the very concept of a “state”
unitary transformatiom;l he must perform on the statg can be applied only to a certain ensemble of identical sys-

1063-7761/99/89(9)/8/$15.00 413 © 1999 American Institute of Physics
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tems and not to a single system. In the case under consideset K(.77) of all the positive operators ivZ with a trace
ation this would appear to mean that the subensemble @dqual to 1(i.e., density matrices; the operatérin .77 is
systems selected after the measurement by the conditiafhlled positive, if (v|A|v)=0 for any ve.7). The set
r=z must be considered. However, in the case of a continuk (%) is a subset of the spa@ (.77) of all operators with a
ous spectrum the probability of obtaining any specific valu€finite trace in.7Z. In this case the mathematical object which
of z is equal to zero, since a point has a measure of zergompletely characterizes any specific measuring procedure
Thus, it is simply impossible to single out a subensemble ofyith the set of resultsZ, to which the systenB can be
systems which give the result=z, since the probability of subjected, is the instruméntor operation, according to the
obtaining coinciding results in any two measurements equalgerminology in Ref. 5 T. The latter is equivalent to the map-
zero. Therefore, the question of the meaningpgfis not  ping A—T(A) of the setl” of all the subset&\C 2 which
entirely trivial. In order to answer it, we need some factsare measurable with respect to the measizén the set of
from the general theory of quantum-mechanical measurenon-trace-increasing, completely  positive  operators
ments (see, for example, Refs. 4).6The basic postulates P(B,(.77)) which mapB,(.7%7) into itself and satisfy the fol-
and some results of that theory are presented in Sec. 2. IBwing two conditions:

Sec. 3 this general theory is used to study the special class of 1) T(A)=3;T(4)), if A=U;A; and A;NA= for
measurements which are of interest for quantum teleportg~j (additivity);
tion. In Sec. 4 the protocol described in Ref. 2 for teleporting  2) Tr{T(2)p}=Trp for any peB,(%) (normaliza-
a continuous variable is examined from the standpoint of thejon).
results obtained in the preceding section. A protocol for tele-  We recall that the linear mapping from B(.7%%) into
porting states of a model system with a continuous spectruniiself is called completely positive, iFf(L)>0 for any
which utilizes a measurement that corresponds to a certain>0 from B,(.77), i.e., it converts positive operators from
nonorthogonal resolution of the identity operator, is pro-B,(.7%) into positive operators and has the additional prop-
posed in Sec. 5. Finally, the main results obtained in thiserty that if. 77, is another Hilbert space, the mapping
work are briefly described in the last section.

FRI:B( 7 .74)—Bi(H®.7),

2. QUANTUM-MECHANICAL MEASUREMENTS which is assigned in elements of the typésWye B,(. 7

. . ... ®.y) by aformula of the type
For a quantum-mechanical state with a finite- o) by yp

dimensional state spac# (in which the spectrum of any FRI(We W) =FW)W,
operator is purely discreta canonicalvon Neumanhmea- and is continued by linearity into the entire spa@g(. 7

sulrfemer_n ofta certalrgagbsclatrr\]/etﬁle, Wh'Ch Torrge\sponr(]js to th(%.%/o), wherel is the identity operator iB(.7;), is also
selfi-conjugate operatah wi € eigenvalues,;, where positive for any.7Z,. The meaning of the instrumefit is

i=1..n, causes the system, which is initially described b p
the density matrixp, %/o pass into the statgj (the von ymat for any measurable SUbM”.z’ Ael_“,_t_he statep, O.f
. . e subensemble of systems which are initially placed in the
Neumann—Lders reduction postulat), statep e K(.%) and are mapped during numerous repetitions
E;pE; of the measuring procedure by the condition that the mea-
p_)pj:Tl’{Ejp}’ () surement result=z be in A is (for brevity we writeT(A)p
instead of T(A)](p))

if the measurement gives the resiit. Here E; is the or-

i i ioen- (A T(A
e ey o et s = = T ] =K, FA)=TC
i y op-PAT Tr{B(A)}  THT(A)p}
erator (6)
and the probability of obtaining the resul:ze A following
; Ei=1, (3 the performance of a measurement is
wherel is the identity operator in%, and the spectral rep- Prol{ze A)=THT(A)p}=Tr{p(A)}. @
resentation of the operaté is Here and below, we use a tilde to denote “unnormalized
density matrices” (positive operators with a traces1),
A= 2 \jE;. (4) which are obtained after applying the operator corresponding
] to the instrument under consideratidifA) to the original
The probability of obtaining thgth result equals density matrixp. In cases where no misunderstanding can

arise, we shall henceforth apply the term “density matrix” to

Prol ) =Tr{pE} =Tr{E;pE;}. © these operators for the sake of brevity.

Let us now consider the most general situation, where It is easy to verify that for a fixed formula(7) gener-
the set of all possible measurement results forms a certaiates an affine mapping of the convex Bgt7) of the states
measurable spac& with a measure, which will be denoted p of the systenSt into the set of probabilistic measureg,,
below bydz, and the quantum systeBiis described by the in Z: each statg e K(.7) is mapped to a measuys, in <
Hilbert space7 (which is infinite-dimensional in the general so that for each seA eI its measureu,(A) is exactly
case, i.e., its states obey a one-to-one correspondence to therob@ze A). As we know® the set of all such mappings
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p— , from K(.7) into vp, Obeys a one-to-one correspon- System after a mgasu_remeéﬁl. In the general case, the same
dence with the family of Hermitian operatotd (A), A rgsolutlon of the identity operatdd (A) can be generated by
eT, acting in the Hilbert space” that satisfy the following ~ different instrumentd, #T5.

properties: It then turns odt that in the case ofZ=R (the real
1') M(2)=0, M(Z)=I (normalization; straight ling, for any fixedp we have the following integral
2') M(A)=0 (positivenesg representation fop(A)=T(A)p:
3') M(A)=2;M(4)), if A=UjA; andA;NA= for

i # | (additivity); i.e., with resolutions of the identity operator P(A)=T(A)p= LpzTr{pM(dz)}, (11

in Z with values in the set of positive operatorsii. In this
case the measuye, of the setA is defined by the expression wherep, is a function of the space of measurement resglts
A)=Prokze A)=Tr{oM(A)Y. 8 in the space of density matric&q.77), and T{pM(d2)} is
#olA) bzeA)=TripM(A)} ® the “density” of the measure., (8) in Z, i.e.,
In other words,M(A) defines a positive operator-valued

measure. A special case of such measures is created by spec- p,(A)=Protize A)=Tr{pM(A)} = f Tr{pM(d2)},
tral orthogonal resolutions of the identity operator corre- A

sponding to families of spectral projectors of self-conjugate (12
operators in7 for which the following equality holds:
M(A)M(A,)=0, if A;NA,=0. MP(A)=L%(Z% du,(z)=Tr{pM(d2)}. (13

Measurements described by such a resolution of the identit¥he functionp
z

operator are naturaI.Iy called orthogpnal. . “the state of the system after a measurement which gave the

) Thus, if we are interested only in t_he probability of ob- resultz.” This does not contradict the statistical interpreta-
ta'lnlng a partlgular result and I_eave.aS|de the far more oMy o quantum mechanics, since, in realipy, only serves
plicated question of .the state in which 'the system is after %s a convenient auxiliary instrument, which permits calcula-
measuremen'_[, _then |r_13_tead of the_ family of operal(s) tion of the final state of the system after a measurement. The
e P(By(#)) it is sufficient to confine ourselves to a treat- physical interpretation of formuldll) is perfectly clear,

ment of the positive resolutions of the identity operator; : P [ :
- . . since T{pM(dz)} is the probability of obtaining a result in

M(4)e Br(17/)h whmE abr_(la_ rele;teg to one anoth;rAln SUch ane vicinity dz of the pointz in a measurement. A represen-

manner that the probability of obtaining a res UPON  tation of the typg1l) is important for us, because in the case

tEe perfo:TmSan(.:e. of”a meagfgrgrger}t for &Im%/ mputbsebamél of teleportation the state of the system after a measurement is
the systersS originally specified by formuld7) can be cal- corrected using a certain unitary transformatlap, which

culated using the operatd#(A) from formula(8). Compar- depends on the result obtained In this case the suben-

ing formulas(7) and (8) to one another, we can easily Se€ gopje of systems mapped by the conditionA after the
that they are consistent if and only if unitary correction can clearly be described by the density

thus defined can already be interpreted as

M(A)=[T(A)]*I, (9)  matrix
where the asterisk denotes a conjugate mapping from the _ . ]
spaceB(.7%) into itself, andl e B(.7) is the identity operator Pua= AUZPZUZ Tr{pM(d2)}; (14

in .77 [we recall that the linear space of all the constrained . ' o
operatorsB(.7) in .7 is isomorphous to the space conjugatetherefore, the introduction of the functign is a natural step

to B;(.7%%). The corresponding isomorphism is generated byn an attempt to extend the algorithm for teleporting a state
the bilinear mapping of a finite-dimensional quantum system described in Ref. 1

to the case of a continuous variable.
B(.7)XB.(#)—C:aeB(%),beB(%)—Tr{a-b}eC,

whereC is the set of complex numbdrs
In the case of a canonical measurement of the observablg \ieASUREMENTS USED IN QUANTUM TELEPORTATION
A (i.e., a discrete spectryndescribed by formula&)—(4) in
the finite-dimensional spac#, the spaceZ coincides with Let us now consider the measurements which are used in
the finite set of eigenvalues;, i=1..n, of the operatoA, guantum teleportation algorithms from the standpoint of the
the setl” consists of all the subsets @f, and the operators general quantum-mechanical theory presented above. Let a
T({\;}) andM({\;}) for the single-point setf\;} have the ~measurement corresponding to the instrumegpt be per-
form formed on particles 1 and 2. Then, with respect to the entire
system, including particle 3, this measurement corresponds
TN DPp=EjpEj, MUNH=E;. (10 tg the instrumergljt'lP123(A)=T12(A)®I3, where |5 is thep
The family of operatorsT (A) clearly gives a far more identity operator irB,(.773). It therefore follows that after a
complete description of the measurement process than dogsnt measurement performed on the first and second sys-
the corresponding resolution of the identity operatbfA), tems, the subensemble of systems mapped by the condition
since the former not only permits calculation of the statisticsze A, whereAC 2 andA € I" (we have still not concretized
of measurement results, but also specifies the state of ththe space of result€), is described by the density matrix
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) T A)p measurement outcomes was considered. In that case the
p123A_m! (15 change in the state of the system caused by a measurement is

described by an instrument of the type
and the probability that falls in A is Try , f{ T1,5A)p}. The

reduced density matrix describing the state of system 3 has P—APA (20
the form whereA; is a certain positive operator, amek1,2... labels
. Tr AT A)p} the various measurement outcomes, i.e., pointsinHow-
P3A= —Trlza{lea(A)P} (16) ever, the teleported state was expressed in terms of the op-

eratorsA;, which completely assign the instrument itself.

Here we have a special case of the following more gen- e are interested in the possibility of representiig,
eral situation. Let there be a composite syst8mwhich  in the form

consists of two system& andB and is in the stat@,g (in
the case of teleportation the role of the sysi&ns played by
particles 1 and 2 considered together, and the role of the
systemB is played by particle B Next, let a measurement be i
performed on the syster using the instrumerit ., and let Wherép,ge K(.7g), and the measuréu,, (z) describes
us find the statef , of the systenB after the measurement the probability density of the measurement result falling in
(here and in the following the prime sign indicates that thethe vicinity of the pointz, i.e., satisfies the condition

state under consideration is the state of the particular system

immediately after the measuremgnthe instrumentT 5g, TrBT)I,B,A:f d"’“PAB(Z)' (22
which describes the change in the state of the entire system, A

is Ta®lg, and, therefore,

T),B,A: prZ,BdeAB(Z)v (21)

Formally, such a representation can easily be found if the
Tra{Tag(A)pag} measurew,,, . is absolutely continuous relative to the input

pB,A:TrAB{TAB(A)pAB}' 17 measuredz in 2, and the matrix elements of the operator

Ma(A) acting on a certain orthonormalized bakis,») of
Let us now examine the numerator in this formula, which wene systema can be represented in the form

denote bypg ,=Tra{Tas(A)pas} in accordance with the

conventions adopted aboughen the probability that the _f

measurement resuttbelongs toA is Trgpp ,). Letug be an (emaAlMA(A)|@na) = AdZan(Z), (23
arbitrary operator fromB(.77). We calculate the trace

Tra{ugpg) (for brevity we omit the subscripk everywherg ~ Where Fp,(2) are certain complex-valued functions ia
[for example, if the measuremelt corresponds to the si-

Tre{uspp} = Tre{usTra{Ta®lspas}} multaneous measurement of the complete system of com-
muting observables with a continuous spectrum, since in that
=Trg{Tra{l a®Ug- Ta®|I g - . .
el Tralla® Ve Ta®lapasi} case Z,=L%(Z), and Z itself is the product of the spectra
=Trap{la®@Ug- TaA®lgpap} of the operators appearing in this system, so thgt(z)

=oma(2)* aa(2)]. In fact, in this case
=Trasl[(Ta®lg)*1a®Ug]- pag} m "

=Trap{[(TAlA) ®15Us] past Po.a=Tia{(MA(8)®15): Pac}

=Trag{[Ma®Ug]- pas} :% (emaAMA(A)|[@na)Prme

=Tragi[(Ma®1g)- (1a®Ug)]- pagt

=Trap{[(1a®Ug) - (Ma®Ig)]- pas} _E dZan(Z PnmB= jAdZ % an(Z)an,B}

=Trg{Tra{[(I1a®Ug) - (Ma®1g)]- pas}}

=Tra{UgTra{(Ma® 1) - pag}}- (18 J dzpze. @9
Therefore, where the operatop,,g in .7 is obtained frompug by

P a=TrA{Tas(A) past = TrA{(MA(A)®15) - pas)- " tgl:énfnZh;r;;jps:La;rgnrat%Aelement” with respect to the vec-

Thus, in order to find the state of the syst@mafter a mea- Prme={PnalPaBl¢mA), (25

surement performed on the systémit is sufficient to know nd
only the resolution of the identity operator .ii¥, generated
by T, in &, rather than the instrumeiit, itself. _
We note that the machinery of quantum operators was pz,B:% Fin(2)pame - (26)
probably first applied to teleportation in Ref. 9, where the
simple case of “ideal” teleportation with a discrete space ofTherefore,
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~ ~ dXdP
TrB{pB,A}:fAdeAB(Z):JAdZTrB{pz,B}- (27 EjdXd P):|(DXP><(DXP om (33
Thus, by multiplying and dividing the integrand in the last _ ifm dxfw dx’ elPx—x")
integral in Eq.(24) by H(z) =Tr{p, g} >0 we obtain formula 27 ) o —o
21), wh
(21), where X |x+ X 13 2)(x" + X 1[(x":2|dXdP, (34)
PzB  PzB 29) where

P2 T{prel H(2)’ .
|<Dxp>=f dxeéPX|x+X;1)[x;2). (35)
so that T{p,s}=1, anddupap(z)=H(2)dz, i.e., H(2) is —o
the Radon—Nicodim derivative afy,, (z) with respect 1o \ye note that the stai@5) is formally a common eigenvector
dz. We shall not dwell on substantiating the correctness ofor the pair of commuting observable§ — X, and P;+ P,
the rearrangement of the summation of the infinite series anghe coordinate difference and the total momentuwhich

integration in(24) and other such operations, since in thefgrm a complete set of commuting operators in the state
concrete cases considered in the remainder of this paper th@ace of the two particles:

integral representation of tyg@4) follows from the concrete
form of the operator$1(A). (X1=X) | Pxp) =X[Pxp), (P1+P2)|Pxp)=P|Dxp).

Therefore, teleportation witlp,5 of the form (30) and the
measurement33) coincides exactly with the algorithm in
4. TELEPORTATION USING AN ORTHOGONAL Ref. 2. In the present case the space of measurement results
MEASUREMENT Z is the set of the ordered pairX(P) of the points (o
< X<, —o<P<x), which form theR? plane. The latter
As an illustration of the general scheme described aboves the direct product of the two copies of the real straight line

we first consider the teleportation of an unknown quantumr, and Ry, which correspond to the “coordinateX and
state|¢) of a one-dimensional nonrelativistic spinless par-the “momentum” P: 2= RyXRp.

ticle in the coordinate representation. In order to avoid the  The exact meaning of formulé33) is that the matrix
complications associated with consideration of the symmetrglements of the positive operatBfA), as applied to the set
relative to interchange of the particles, we assume that al\ can be calculated from the formula

three particles are different. It is sufficient to consider the

case where the input state of particle 1 is pure: <<D|E12(A)|llf>=f d;(dp % dxfw dx’ gPX )
A o — o0 — o0

p1=py= (¥ 1], It/f;1>=f:d><t/f(><)lx;1>- XXEXX)P XXX, (36

(290  which is analogous to formulé23).

Simple calculations show that the teleported density ma-
The entangled state of particles 2 and 3 is chosen in the forgix in channel 3 takes the form

of an EPR statéwith an infinite norm dxdp
5§,A:Trl,z{(P1®P23)E12(A)}:LPXP?, (37)

p23=| P23 (¥2d s |¢23>:f dx|x;2)[x;3), (30)
‘°° where
which can be represented as the limit of the normalized state  pyp=|¥xp;3)(¥xp;3|, Yxp(X)=e*y(x+X). (39

o o Since
[Wog)= f_ f_ dxdy¥ (x,y)[x;2)]y:3), (31) -
Tra{pxp}= fﬁﬁ dx|(x+X)|?=1, (39
where W (x,y)— 6(x—y) [in the momentum representation - ) o )
W oa(P1,P2) — (P + Py)]. Formally, the statg30) is an ei-  't1S clear that the probability density of obtaining values in

genvector of the coordinate difference operator of the secont'® Vicinity of the point ¥, P) in the interval @X,dP) in a
and third particles: X,— Xs)| i) =0. measurement is 1#/2and does not depend ¢i;1), so that

Let us consider a joint measurement of one of the parlhe measurement does not provide any information on the
ticles in the EPR pair and of the system in the unknown statd€/€ported state. The total probability of obtaining a pair
Such a measurement can be defined by the following resoldX;P) at allis infinite because of the unnormalized nature of

tion of the identity operator: the state(30). _
It follows from formulas(37) and (38) that by applying
P the unitary transformation
Ex(dXdP) =1, 32 _
f—wf—w i ) %2 Uxp: (x)—€ePCy(x=X), (40
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which depends only on the result of the measurement pewhere(s4,e,)— d(e1+e,—¢g). Such a state is obtained
formed on particles 1 and 2, to particle 3, we obtain a statéollowing parametric energy down-conversion, if the pump
coinciding with the input state of particle 1 in channel 3, i.e.,frequency equals,. Formally, the EPR state can also be
we accomplish the teleportation of the state of system 1. Wehosen in the formy(e,,e,)— 8(e1—¢€5); however, it is
note that in this example the unitary correctigvhich does then not very clear how such a state could be realized ex-
not depend orp;) of the state of the third particle to; is  perimentally.

possible for any input statp; and any measurement out- Let us now consider the joint measuremiht,(dQdT)
come, i.e., for any pairX,P). However, generally speaking, of particles 1 and 2, which can be represented in the form of
it is reasonable to also consider teleportation algorithms nonorthogonal resolution of the identity operator:

which permit the teleportation not of all the possible states of

particle 1, but only of a certain subgét(.7,), for example, M1AdQdT)

the states belonging to a certain subspacg_.77; (Ref. 9 1/ ro _

(an example is considered in the next seqgtidn addition, = ;(f deE'“’T|Q+w;1>|Q—w;2>>

the requirement that the necessary unitary corredtigrex-

ists for any measurement outcome is likewise not obligatory.

In fact, the entire space of possible measurement outcomes X
Z can always be divided into two nonintersecting subsets
Z,and Z,, ie., (44)

2=2,NZ,=F, Z=2,U2,,

in the following manner: an arbitrary poiate Z belongs to
the setZ, if and only if the unitary transformatiold, with . .
the propérties needgd exists. A syufficient conditiozn for tele- X[Q=0;2)(Q+ 0" 1(0Q - ’;2|d0dT. (45)
portation is then a nonzero measuge,(<,) for all  HereQ andT vary in the intervalsR/,=(0;+%) and Ry
peK'(7). The teleportation algorithm has the following =(—o:+x), respectively, so that the space of all possible
form: an ensemble of systems representing the input ptate measurement results i§ =R, X Ry. The quantitied) and
is subjected to a joint measurement, with particle 2. If a ¢ have the meaning of the half-sum and the half-difference
resultze Z, is obtained, the respective copy of system 3 isof the energie$we do not distinguish between frequency and
discarded. Ifze Z,, system 3 is subjected to the unitary energy of two particles, for example, the photons in a bi-
correctionU, . Then the subensemble of particles 3 thus disphoton. Such a measurement, which, in a certain sense, is
carded and corrected is in the same input spate intermediate between measures of the frequency and the time
parameter for two-particle states, can, in principle, be per-

5. TELEPORTATION USING A NONORTHOGONAL fgrmed experimentally for two-particle states using paramet-
MEASUREMENT ric energy upfc_onversmH. o
It is not difficult to show thatM 1,(dQdT) is, in fact, a
Let us now consider the example of the teleportation ofresolution of the identity operator:
an unknown state using a measurement described by a non-
orthogonal resolution of the identity operator. We consider aJoc ” M1(dQdT)
model quantum system, whose Hamiltonian has a purelyo J -« 12
continuous degenerate spectrum coinciding with the interval 0 0
(0,+ ) (one example is a free nonrelativistic one-dimen- — ijwdﬂfc dTJ de de'el(@ T
sional spinless particle, whose attainable states are confined ™ Jo —o -Q -0
by the condition that their resolution contains plane waves
tr)z;veling in one arbitrarily chosen directﬂ)nThus, we as- X[+ 0102 -0;2)(Q+ 0" 10 - ;2]
sume that an arbitrary pure state of system 1 is assigned by a % Q Q
wave function defined on the positive semiaxis: :Zfo dQ fﬁgdelew’ Slo—w')

Q o,
f dw’e""T<Q+w’;1|(Q—w’;2|>deT
-Q

1 (0 ro _ )
=—f dodw’ €@~ ® )T|Q+w;1>
TJ)-al-0

|¢/;1)=f:¢(E)|E;1>dE, (EIE")=6(E—E'). (4] X[+ 0;1)[ Q- 0;2)(0+ 0 1[(0-w';:2)

The EPR state can be chosen in the energy representation in, =f dwlf dws|wq;1) | ws;2) w1 1{ws;2| =115,
for example, the form 0 0

&0 wherew;=0+w andw,=0 — w.
| 230 = f dele;2)|eo—e;3). (42) It can easily be shown that the teleported density matrix
0 now has the form
Such an EPR pair can be regarded as the limit of the normal-

ized state P3a=TrA(p1®p2aIM 1 A)}= LPQT

|‘I’23>:f:of:od%dsziﬂ(sl-82)|81i1>|82?2>a (43

dQdT

’
T

pat=¥at:3¥a1;3|, (46)
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where (for brevity we write| ;) instead of o 1;3)):

|Yari3)=lvs)=| dee 120 cote)T

go—min{e(,20}
X p(2Q—ep+e)|e;3). (47)

The probability of obtaining values in the interva)(Q
+dQ;T, T+dT) in measurements equals

TH{Paaar =Tri23(p1® P2 M 1(dQdT)}
_deTJ%

_ 2
- | (2 —eg+e)|“de.

g0~ min{so ,2&)}

(48)

We note that the corresponding probability density does not
depend onT. SinceT varies in an infinite range, the total
probability turns out to be infinite, as in the preceding sec-

tion. Formally, this is due to the fact that the st&d@) has an

infinite norm. However, this does not lead to any difficulties,
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satisfied automatically, since(2>¢ey>E,,0- Thus,[eg,eq
+Ein]CZ4. Combining cases la and 1lb, we obtain
=[Emax:€0t Eminl-

It is seen from Eqs(49) and(50) that in cases 1a and 1b
system 3 goes over to a state which is identical to the state of
system 1 before the measurement, if, immediately after the
measurement, it is subjected to the unitary transformations

Y(e), if e>eq,
We)—p(e)=1{ We+ye®T, if 0<e<2Q, (51
Y(e—2Q0), if 20<e<egg,
and
W(e), if £>20,
P(e)—P(e)=1 Yle+y)e®T, if y<e<2Q, (52
Y(e—2Q0), if 0<e<y,

since knowledge of the relative probabilities of the occur-respectively. Let us now consider the situation in whigh
rence of the various events is fully sufficient for obtaining <E,,,. In this case measurements which gave a resllt 2

physically intelligible results.

<egg, are sure to be unsuitable for teleportation, since the

We now assume that we know that the carrier of therange of variation of the argument af in (49) does not
function ¢ of system 1 is concentrated in a certain intervalcover the carrier ofs. However, if a measurement gives a

[Emin Emaxl, i-€., #(E)=0 at E>E,, and E<E,,,,. The
probability density(48) then begins to depend of}. For
example, it vanishes at(2> E .+ &g, Since in this casé is

result 2)>¢q, then, just as in case 1b, teleportation is pos-
sible [using the unitary transformation(50)], if
[Emins EmaxlCl v, 2Q1], i.e., if the conditionsy<E, (i.e.,

identically equal to zero over the entire integration interval.2() <g,+E,,,) and E,,<2() are satisfied simultaneously

The appearance of the carrier #fin the integration interval

(now this inequality imposes another additional condition,

in (47) is clearly a condition for the realization of exact tele- and it is not satisfied automaticallyin order that a certain
portation. In this case the probability density for obtaining arange of values of(), in which the conditions 2<e,

particular value ofQ} does not depend opy;1), since the

+ Emin andE 5, <20) are satisfied simultaneously, would ex-

integral in(48) is identically equal to unity by virtue of the ist, the inequality E ., <Eminteo OF, stated differently,

normalization of{;1).

£0>Emax—Emin  Must be satisfied. Once againZ;

It is convenient to perform the further analysis separately=[ E ...eo+Emin]- Thus, in the proposed scheme teleporta-

for the cases of o> Eaxandeg<E .. Let us first consider
the case of¢>E,. If @ measurement gives a resulf)2

<gq (case 1p the state of system 3 will have the form

|h3){ 3|, where

|w3>=f%dse“‘s””aﬂ(e—y)ls;3>, y=g9—20.
Y
(49)

tion is possible if and only if the width of the spectrum of the
EPR pair(42) exceeds the spectral width of the carrierjof

We note that the question of the teleportation of a broad-
band one-photon wave packet was first considered in Refs.
10 and 11. In addition, the algorithm for teleporting a single-
mode electromagnetic field using a squeezed Stass re-
cently generalized to the case of a broad-band input ate,
whose spectral density was assumed to be concentrated in

The argument ofy in the integrand varies in the range from the vicinity of the half-frequency of the pump field generat-

0 to 2Q). Hence it follows that teleportation of the statas
possible only if its carrier Eqin, Emax]C[0,2Q0], i.e., if
Emax<2Q. Thus,[Eqaxe0lCZ4 (we omit the trivial direct

ing the squeezed state. Unlike the algorithm described above,
the scheme in Ref. 12 is based on orthogonal measurements.
From the physical standpoint the nonorthogonal measure-

multiplier Ry in £, since nothing depends on the value of ment(44) naturally appears when the states of the system are

T).
If a measurement gives a resulf)2-¢, (case 1h the
state of system 3 will have the forfw;)( 3|, where

|¢f3>=fsodse"‘”mwwy>|s;3>, y=20—¢,.
0
(50

Now the argument of/ in the integrand varies in the range

from v to 2Q), and teleportation of the staig is possible
only if its carrier[ Emins EmadCl 7y, 2Q0], i.e., if y<Egin, Of,
stated differently, 22 <ey+ E,, (the conditionE,,;,<2() is

considered in the energy representation: just as in the origi-
nally proposed teleportation scheme, which was described in
the coordinate representatibm, simultaneous measurement
of the coordinate and the momentum is employed. It is natu-
ral to presume that a similar procedure can be implemented
using a measurement of the energy and its conjugate, i.e., the
time. However, because no self-conjugate operator corre-
sponds to the observed time in quantum mechanics, the mea-
surement obtained is nonorthogortah EPR pair in which

the states of the particles are energy-entangled, rather than
coordinate-entangled, is, of course, used in this)case



420 JETP 89 (3), September 1999 S. N. Molotkov and S. S. Nazin

We note that the teleportation of a quantum state deftquantum operation describing the change in the state of the
scribed by dynamic variablex (p) was investigated in Ref. system as a result of the measuremémtthe state space of
3 (the unknown state in Ref. 3 corresponds to a single-modée system, so that there is actually no need to completely
photon statgfor the case of a nonideal EPR pé&rsqueezed specify the instrument which gives the most complete de-
statg. The nonideality of the EPR correlations leads to ascription of the effects of the measurement procedure on the
decrease in teleportation fidelity. As can be seen from theuantum system. A protocol for the quantum teleportation of
example based on an orthogonal measurement, unconditionalstate of a system with a nondegenerate continuous spec-
exact teleportation (fidelitg1) can be achieved with a sin- trum based on nonorthogonal measurements has been pro-
gular EPR state. Unconditional teleportation refers here to @osed. In this protocol, as in all the other known protocols
situation in which any measurement outcome leads to exaethich ensure exact teleportation, an ideal EPR pair with sin-
teleportation. In the case of a nonorthogonal measurememular correlations, which corresponds to an unnormalized
considered above, unconditional exact teleportation is imposwave function, must be usétdThe question of the possibil-
sible even for a singular EPR pair: for some measuremerity of the exact teleportation of a continuous quantum vari-
outcomes there is no unitary transformation whose applicaable using physically realize¢hormalized states remains
tion to the teleported state would transform it into an exacbpen. Thus, there is still no known algorithm for the exact
copy of the input state; such outcomes must be discardedeleportation of a continuous variable for nonsingular EPR
Exact teleportation occurs for the remaining measuremergtates.

outcomes.
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A theory of atomic interaction with a superstrong laser field has been developed. The specific
feature of the suggested theory is that its small parameter is the interaction between the

atom and the solenoidal part of the external field, whereas its interaction with the potential part
is accurately taken into account. It follows from the reported investigation that, in

calculating the interaction of atoms with superstrong fields, one must abandon calculations of
multipole moments of transitions between unperturbed atomic levels, and calculate

instead the atomic response, which comprises multipole moments of all orders and depends on
the instantaneous field magnitude. The results are compared with calculations based on

the perturbation theory in terms of the interaction Hamiltonian. 1899 American Institute of
Physics[S1063-776099)00409-9

1. INTRODUCTION to that of the intratomic field, the response amplitude satu-
rates and then drops with the external wave intensity. This
In recent years a lot of researchers’ attention has beeaxplains the multiplicity of harmonic generation, i.e., the fact
attracted to interaction of isolated atoms and molecules, anthat amplitudes of high-order harmonics in the atomic re-
dense media as welbuch as pressurized gases, plasmas, angponse become comparable.
liquids) with ultrashort laser pulses of high intensity. The The basic equations of the suggested theory are given in
response of a medium to a laser field of high intensity isSec. 2. Then the specific features of atomic interaction with
highly nonlinear. This leads to generation of high harmonicssuperstrong laser fields are discussed. Section 4 describes
Raman components, or a quasicontinuum, i.e., the processlativistic corrections to the Hamiltonian of atomic interac-
leads to generation of waves of different frequenéi@The  tion with a superstrong laser field. Section 5 derives an op-
difference from quasi-stationary processes generating mukrator equation for the current density and analyzes the effect
tiple frequencies is that the spectrum of the generated waves gradient forces.
varies as a laser pulse propagates through a medium. The
existing theories of an atom’s interaction with a superstron@®. EQUATION DESCRIBING ATOMIC INTERACTION WITH A
laser field(the theoretical approaches were reviewed in detaiBUPERSTRONG LASER FIELD
in Ref. 4 are usually based on treating the interatomic po- 1 eneral case
tential as a small parameter of the perturbation theory, since L . ) . )
the Hamiltonian of interaction with the external field ceases ~ Schralinger's equation for an atom interacting with a
to be a small parameter. Numerical and analytic calculationsiransverse electromagnetic field in the nonrelativistic ap-
have allowed the researchers to explain the basic features Bfoximation has the form
effects observed in experiments. J
This paper describes a theory of atomic interaction with i —=H4, (1)
a superstrong laser field, which has two distinctive features.
First, the small parameter is the atomic interaction with thevhere
solenoidal part of the external field, and the interaction with e
the potential part is described in an exact form. Second, the H= —( p—-A
. o : 2 c
reported investigation has led to a conclusion that one must
abandon calculations of multipole moments of electronic  There are two basic approaches to the problem of atomic
transitions between unperturbed states of an atom in studyingteraction with electromagnetic field. When the field
its interaction with laser fields, and calculate instead thestrength in the incident electromagnetic wave is much
atomic response at a certain frequency with due account gfmaller than the intratomic field strength, the perturbation
multipole moments of all orders up to infinity as a function theory is widely used. The basic assumption in this case is
of the instantaneous laser field magnitude. It follows fromthat the free-atom Hamiltonian
the calculations that the atomic response at the frequency of 2
thenth harmonic of the laser field in this case is proportional Ho=ﬁ +Uy 3
to the corresponding power of the field only in the weak-field
limit. When the external field strength becomes comparablés much larger than the interaction Hamiltonian

2
+U,. 2
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Hie — = (p A+ A )+ —p A2 4 PRALERVIRYES
=~ 5me P’ P+ o2AN 4 1 —==VHeV™ "o,
and a solution of Eq(l) is sought in the form of an expan- Y . .
sion in powers of the external field. | == =VHV "1+ VHin(A2)V ™o, .. ®
In a strong external field, the intratomic potentid) in _ o
Eq. (2) is treated as a perturbation. Let us focus attention on the zero-order approximation

Both of these approximations have their specific appli-Of EQ- (8). Expand the wave functiofo(r,t) in terms of the
cation domains. In the problem under discussion, howeveigenfunctions of both the discrete spectrum and the con-
one can find another small parameter which is independedttuum generated by the intratomic Hamiltonigig:
of the ratio between the strengths of the external and intr-
atomic fields, so this approach allows one to track changes in ~ %o(r,t)= >, a,(t)un(r)+ f dkay(t)uk(r).
an atom'’s reaction to external field when the latter increases "
from very weak to superstrong. This parameter is the ratidy substituting this expansion in E@), we obtain
between the potential and solenoidal parts of the externa

eA-r ) . (exp{—ie‘A.r
o fic

s a
field. it L i
mZI (ex+ T

a.
To separate the potential part of the vector potentialdt mi
A(r,t), we use the identity 9
gradA-r)=rxcurl A+ (rV)A+A. Note that the sum in Eq9) also includes integration over
the continuum states, which is not reflected in the formula
Hence for simplicity.
_ Let us investigate evolution of the wave function of
AN D=A(r D+ A1), ®) atomic electrons under an intense monochromatic laser pulse
where of the form
Aj=gradA-r), A,=HXr—(rV)A. A(r,t)=Aq(p,t)sin(wt— x2), (10
Thus, with due account of E¢5), the wave equatioft) can wherep is the transverse coordinate in the beam cross sec-
be rewritten as tion. In interpreting the equations to follow, it is more con-
venient to use the electric field amplitud® of the laser
oY . € . € pulse instead of the vector potentidl,. Recall, therefore,
'ﬁﬁ—exﬁ{l %x(r,t)}H(Az)eXF{—l %x(r,w}w, that when
©) dA,
where It <wl|Aq,
x(r)=A(rt)-r. one can set
Equation(6) has the form eAq-r eEq-r
» = "he 7 The
1h — = i -1
i at V(Ho+ Hind A2))V ™4, @) Thus, a power-series expansion of the exponential function
in Eq. (9) wheneE,- r<fw yields the standard perturbation
where expansion in powers of the field strength. However, if one
e uses the generating functions for the Bessel equation
V=ex;{| %X(r,t)}. o
SIN(p SiN6) =22, Jpn.1(p)sin((2n+1)6),
Note that n=0
o, 1 e \? . -
VHoV " =5 P~ cA1] +Uo, coq u sin a)=JO(M)+2n§=‘,l Jon(p)cog2n6), (12)

e’ one can derive from Eq9) an explicit expression for the

2mc (A?=AD). atomic response at theh harmonic frequency that includes
all powers of the field strength. FeE,-r<#w, the largest
It follows directly from Eq.(5) that atA>a, i.e., when the term in the expansion of the Bessel function is the first,
laser wavelengthx is much larger than the amplitudeof  which is proportional to the corresponding power of the field
electron oscillations in the external field, strength. The Bessel function, however, decreases with in-
A=A, creasjng argument, i.e., field amplitud(_a. _Therefore, the
atomic response at the frequency of an incident wave har-
We can therefore seek a solution of Eg). using an iterative monic is a nonmonotonic function of the field amplitude if
method: the inequality given above does not hold. The atomic re-

e
VHi(Ax)V 1= — m:(p'Az"‘Az' p)+
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sponse increases initially and then decreases, starting witheerse size is of order of the wavelength even at the lens focal
specific field amplitude that depends on the ordere of theoint. Consequently, the matrix elements in Ef2) have
harmonic. This fact alone indicates a substantial differencéhe form[J,(ax)]y; .

between Eq(9) and the various versions of the conventional

perturbation theory, which are based on a power-series ex-

pansion in terms of the incident wave amplitude. 2.3. Resonant case

Suppose that one of the field harmonics is resonant with
an atomic transition, i.e.,

2.2. Perturbation theory N~ o+ Aw
QW= Wio kO -

Let us analyze in more dgtaﬂ the interaction betvyeenm this case, we obtain from E¢L2)
atoms and superstrong laser fields. As noted above, in the

conventional perturbation theory an atomic response at the 1 2o B
nth harmonic frequency is proportional to the corresponding ()~ wio+Awy—Now 2| [m—O (=)™
power of the field amplitude, and the polarizability is propor-
tional to the i+ 1)th power of the dipole moment. The ap- ><(Jno_m(aX))k|w|(Jm(aX))|0+(—1)”0
proach suggested in this paper treats an atomic response as a .
function of matrix elements calculated on the basis of the
Bessel function. Let us analyze the impact of this modifica- sz:l (Ing+m(@X))ia@1(Im(@X))io
tion of the mathematical model on the description of physical
effects. -
Let us start with the simplest case. Assume that the atom + mzzl (m(@X))ig@1(Ing+ m(aX))iof - (14

was in its ground state before the arrival of the laser pulse ) ) )
[a,(t=0)=,0], and the changes in the populations of ex-On the ot_her hant_j, using the power-series expansion .of the
cited states during the pulse duration are negligible in coméXxponential function in accordance with the conventional

parison with that of the ground state. perturbation theory, we obtain

In this case, we obtain from E¢Q) 1 No
al ()~ ——— |a“0mZO (—1)ro-m

da, Wy~ Now 7

d—:—i(wn+Awn)an—2iZ (Z [ J, cog 2k 6)
t m k=1

(15

(X"07 ™)@ (X™) 0
2"0(ng—m)!m!
+iJ2k+1Sin(2k+ 1)0]) a)m(\]o(,u))mo

nm

The comparison between Eg€l4) and (15 demon-
strates that the difference between the results obtained using
_ these two approaches is caused by the different forms of the
—2i> (Jo(M))nmwm<kzl [J2k cog2k6) matrix elements in the expressions for the level population
" - amplitudes. Let us demonstrate that E{sl) and (15) pre-
dict different physical effects.

[

—iJopsq SIN(2K+ 1)9]) — 4

m0

X2

m

= 3. FEATURES OF INTERACTION BETWEEN AN ATOM AND
S [3,cOL2K0) +id s 1 SIN(2K+ 1)9]) A SUPERSTRONG LASER FIELD
k=1

nm

3.1. Harmonic oscillator

X @m ,Z‘l [J2iCO2k) = 1J 111 SIN(2k+1) 6] of a system interacting with a laser pulse. The matrix ele-

ments of transitions between the levels of the harmonic os-
(120 cillator are well known:

®© . . . . .
) The linear harmonic oscillator is a natural first example
mO0

where §= wt— «z, and the Stark shift of thath level is [ nh
(X)n,n—l_ meo- (16)
Awﬁ% (Jo(m)) nm@m(Jo( ) mn— @n - (13 Let us assume first that the laser pulse carrier frequency co-

incides with that of the transitions in the harmonic oscillator,
Assuming that the incident wave has a linear polarizatior-€., @~ wq. Using the expressions for the wave functions of
aligned with thex-axis, we haves=eAyx/Ac in Egs.(9) and  the harmonic oscillator, one can easily obtain
(12). In the optical range, the wavelength is much greater B 2 B2 B2
than sizes of atomic shella,>a;,, so we can set=0 in (Jl(ax))w:Eex;{ - T) IO(Z —I1<Z)
calculating matrix elements and neglect the dependence of
A, on the transverse coordinates, since the laser beam trangherel ,(z) is the modified Bessel function,

N )
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7 e, eEyap whereag is the Bohr radius. Expressid20) has the follow-
B= = 7o A= — (18 ing asymptotic behavior:
Substituting Eqs(16) and(17) into (14) and(15), we obtain 12 Y (BDN(n+1)(n+3), p<1,
(In(ax))o1=— 3] | n/B? >1
al BZ ﬁz B2> \/2 B 1 B 21
@—ex _T |OZ_|1T . (19) ( )

' _ _ Comparing these with the matrix elements calculated on the
The parametep in Eq. (19) is the ratio between the force of pasis of expansion terms of the exponential function propor-
the external field driving the electrof.=eEy, and the tional to thenth power of the field strength, we have
anxn) 1
21

force due to the intratomic potential:
2\*B
2! s 3) 2
Thus, ratio(19) equals unity for a field of a moderate inten-
sity (8<1). This ratio, however, decreases with the externalt is clear that the matrix elements calculated by the two
field amp“tude, i'e_' the perturbation theory Overestimategifferent methods coincide in the low-field limit. In the su-

the population of excited atomic states due to interactiorPerstrong field, however, there is a significant difference be-
with a superstrong laser field. tween the results. For example, in the low-field limit the ratio

(Jn)21/(31) 21 is a power-law function of the field amplitude
(<B"" 1), whereas in the high-field limit this ratio no longer

3.2. Forbidden transitions depends on the field amplitude, and the matrix elements de-
crease with increasing field strength.

n

Fa=|Ug/dX|~=hwolay. (n+1)(n+3). (22)

Let the external field be resonant with the~@ transi-
tion of the harmonic oscillator, i.eow~3wy. The dipole
matrix element for this transition is identically zerog)§o
=0. On the other hand, using the harmonic oscillator wave  The suggested approach leads to fundamentally different
functions, we obtain results concerning ionization of atoms by superstrong laser

5 5 5 5 fields. This conclusion can be drawn from general consider-
_ B B B\ (B ations. The matrix elements of thephoton transition be-
(Jl(ax))30_ﬁ ex Y Iy lo :

3.4. lonization in a superstrong laser field

1+ — — . .
32 4 tween the bound atomic states and continuum for otake

B 4
. . the general form
Thus, this example clearly demonstrates that dipole- 9

forbidden transitions in atoms and molecules interact with e
resonant superstrong laser fields, angatl the populations r

of the corresponding higher levels are comparable to those OCB iiv d trate that thev d idlv with
levels connected to the ground state via dipole-allowed tran- ne can easlly demonstrate that they decrease rapidly wi
sitions. increasing kinetic energy of ionized electrond,

=#%2k?/2m. On the other hand, owing to the fast oscillating
character of the Bessel functions, matrix elements involving
these functions do not decrease with when aay>1:

ikr

x"e~ "2 coshdV.

3.3. Hydrogen atom

k
o Now let us consid_er the hydrogen atom as a more real- f e rJn(ar cosf)e "2 cosadef |cosd)| 1
istic quantum mechanical model. Let thth harmonic of the r 2mar r
driving field be in the resonance with the transition=(1,|
. m(2n+1) r
=0,m=0)«<(n=2,1=1,m=0). It follows from symmetry xexdil kr—ar cos§— ———= | — —|dV.
considerations that the harmonic number must be odd, i.e., 4 8o

(2k+1)w=w,;. Nonetheless, in order not to complicate the The latter equation clearly shows that these matrix elements
formulas, we will use the labeh. Using the atomic wave have maxima if the conditioh~ a is satisfied. This condi-

functions of hydrogen, we easily obtain tion and energy conservatioB,=E,+ nf o, determine the
1 (24 energy distribution of ionized electrons. Thus, for a laser
(Jn(ax))21:_(_) g" beam of a nonuniform cross section, a set of harmonics will
v2\3 be generated, and the highest harmonic number is deter-

mined by the field intensity on the beam axis.

3(1+ny1+ %) +n(1+B?)(n+1+ %)
X .
(1+ 32)5’2(1+ Vi1+p8%)" 3.5. Generation of even harmonics
(20 Up to this point, we have not taken into consideration
For a given transition, the paramefgrwhose physical sense the coordinate dependence of the vector potential in the cal-
is the same as in the previous sections, is given by culations of matrix elements, i.e., we have assumed that
Ag(r,t)=Ay(rg,t), whererg is the location of the atomic
_ eAy 2ag nucleus. In this case, the selection rules for the matrix ele-

" hc 3 ments in the basis of functionk,(ax) andx" are identical
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owing to their identical symmetry properties. However, it JB 1

will be demonstrated in what follows that the coordinate de- - =~ zcurl curlA—e¥ *aW. (260
pendence of the vector potential becomes an important factor

in the focused laser beams. In the general case, the matrirtroducing the notation

elements take the form

P=p— gA, U=egp

e(X—Xq)
(Jn(T(Ao(ro)H(r—ro)V)Ao|r=ro+___)

and expressing the wave function in the form

& mdc
7 ex —ITt

><exp(inf<z)) . (23
kI W(rt)=

Even taking account of just the first-order term changes the
symmetry properties of the Bessel functions; as a result, thee easily transform Eq263 to
selection rules are modified. In the limit of high-intensity
fields, matrix elementé23) will be different frqm the matrix Lih i—U>§=CO'~ P (iﬁi— U +2m02) n=co-PE.
elements calculated using the expansion in powers of the dt K ot
field amplitude, even if the coordinate dependence of the (27
field envelope is taken into account. This shows up mos}:
clearly in the relationship between the intensities of even and

rom the second equation {&7), we obtain

odd harmonics in the field generated by the atom. g\ 71
n= 2mc2—u+iﬁE co-Pé
4. RELATIVISTIC CORRECTIONS TO HAMILTONIAN OF 1 §°°: 9 1 n
= ih— =———— -PE. 2
INTERACTION WITH SUPERSTRONG LASER FIELD 2mZ—U & st 2m@—ul ¢ 3 (28

4.1. Relativistic corrections .
When U,E<mc?, one can take into account only the two

In superstrong laser fields with intensities much greate,est-order terms on the right-hand side of E28). As a
than that of the intratomic field, relativistic effects become oq it the wave equation for an electron in an electromag-

important, so we now dwell in more detail on calculations Ofnetic field with the vector and scalar potentid¢r,t) and
relat|V|st|_c correptlons to. Har_nﬂtoma(?). o(r,t) has the form
The interaction Hamiltonian of an atom and electromag-

netic field can be expressed in the second-quantization rep- dys 1 e \? eft
resentation as "5t =\ 2m | P A TY g Y
2
H=f V[ a-(cp—eA)V +eeV +mZB¥]dV hc |e9A e
T amE=u2 |t YU PT A
1
+f 2mwc’B%+ 8—(curIA)2—cB-gradgo av, +ﬁ2C2 _ [ (elc)(dAlat)+VU +i@
& 2 (2m&Z—U)2 2c
_ _ 29 2 A
wherea and B are Dirac matrices. In the second-quantization X o curl —(chz_ U)? ry 7
representation, the wave functiodqr,t) and¥ *(r,t), the
vector potential of external electromagnetic figdlr,t), and 1 e
the generalized momentuB(r,t) canonically conjugate to tho |V = p= A (29
1

the vector potential satisfy the commutation relations

[W(r 0, % (' )] =[F (1,0, % (1" ,)]_=0, where
2
[W(rt), W (r' )] =or—r'), _ P
[Aa(ryt)vAB(rrat)]*:[Ba(rvt)aBﬁ(rlvt)]fzov )
. 1 1 U
A, (r,t),Bs(r’ 1) ]_=ihd,z6(r—r"), 25 S P = i
[Aa(r,1),Bp(r’,t)] B0 ) (25 = m(l (chz_u) ) H=curlA (30
which lead to the Dirac wave equation and well known equa-
tions for the electromagnetic field: The continuity equation
A 4 e ap
ih—=ca-|p— —A|¥+ep¥+BmAY, (264 4 divd=0
at c ot
IA follows directly from th tiof29), where the cur-
o _ 20 y from the wave equatiaf29), where the cur
ot 4mcB-cgrade, (260 rent density operator has the form
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e . . e? . 4.3. Mass corrections

=—(V - V) ———yTA G .

2m, (Vo™ g=y7 Vi) m,C vAY The second feature of the Hamiltonian in E29) is that
he?c? it takes into account the effect of external-field potential

- [E, ¢t o). (31)  ¢e(r,t) (through relativistic corrections to the masslote

(2mc®-U) that in deriving Eq.(29), we took into account the time de-

The general scheme described in Sec. 2 can also be apéndence of the scalar potential
plied to Eg.(29). The interaction Hamiltoniat;,(A,) in U(r,t)=Ugy(r) +eqqr,t),

this case has the form . . .
so a gradient gauge transformation of the wave function
2

__ & & e e
Hin(Az) = ch(p‘A2+A2‘p)+ chzAz \If(r,t)z\lf’(r,t)exp{i%A(r,t)w ,

transforms the scalar and vector potentials in E29) in

This operator takes into account the effects of the nonlocgtccordance with the well-known relations
nature of inte_raction due to the nonpoten_tial parts of field — A’(r t)=A,(r,1), @i(rt)y=—eE-r~U,. (33
A,, changes in the electron mass, and spin effects.

+H reI(AZ) + Hspin(AZ)-

Substituting Eq(33) into (30), we see that relativistic mass
corrections are important when the ponderomotive potential

U, approachesnc?.
4.2. lonization stabilization

The Hamiltonian in wave equatig9) is different from 5. GRADIENT FORCES

the conventional Hamiltonian that takes into account qua-

dratic relativistic correctionéFirst of all, the corrections due In the previous sections, we have used the quantum me-
to the spin-orbit and contact interactions take into account afin@nical approach based on calculation of wave functions. In
interaction not only with the static field of the nucleus, butMany cases, however, it is more convenient to utilize the
also with the transverse electromagnetic field. In order t?Perator approach, because the form of the resulting equa-
clarify the resulting differences, recall that we wrote downtions is more similar to the classical equations. We have
the single-electron Hamiltoniaf®4) in the interest of brev- already derived the equation for the charge density. Using
ity. In the case of an atom, summation over all charged!@miltonian(24) and commutation relation&5), it is not
should be performed on the right-hand side of &4). If the d_|f_f|c_ult to obtz_iln an equation for the current d_en5|ty. If rela-
atom is driven by an external electromagnetic wave, the vedivistic corrections are neglected, the expression for the cur-
tor and scalar potentials incorporate the intratomic field, ex/€Nt density operator can be written in the form

ternal field, and the field generated by the atomic electrons: ihe . . e? . e .
RN , — S (VU = V)= —yt AY=j— — g A,
=AoTActA, ¢=@ot et o .

If we neglect motion of the nucleus in the external field, theThe equations fod have the form

intratomic potential can be treated as stafiky;=0, ¢q al, e i e

=¢(r)]. The external field can be deemed transverséy; — mo/ V9e™ — g[la'Ha]—+ mEeP
(divA.=0,¢.,=0). In this case, the Hamiltonian of contact
interaction due to the fourth term on the right-hand side of

2
e e
Eq. (29 atU<mc has the form + ﬁ;[‘] CurlA]w”L(ﬁ;) AgV s(Aap)

H.= eh’ di 1(9A+V eh’ A © V(A 34

c“gm2c2Vic ot TV )T gmeci S o T me Ve(Aadp), (34)
eh? we?h2z Te?h? where o, 8=X,y,z, and the convention of summation over

~ a2 WE= 5= 8 = 55| ¥1% (32 repeated indices is adopted in E84). The commutator of

and the HamiltoniarH, of intratomic interaction takes the
Similarly, the spin-orbit Hamiltonian acquires, in addition to form

the term due to the electron motion in the atomic potential, a i i3

term caused by their motion in the external wave field. [iaHal-=——pV U+ —5V.(Ap)
It is noteworthy, however, that under conditions of a 4

high ionization degree, a fundamental role is played by the ie43

modified Hamiltonian(32) of contact interaction. The contri-
bution of this Hamiltonian, which is proportional to the wave
function modulus squared, demonstrates that a decrease 8ubstitution of Eq(35) in (34) yields an equation similar to
the electron density leads to a higher energy of the atonthe classical one, with the exception of gradient terms. After
interacting with electromagnetic field. This can be one of thantegration over a volume much larger that the amplitude of
causes of the ionization stabilizatifn. electron oscillations, some gradient terms cancel out.

— 5 VeVl Vgt Vg Vo). (39
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The set of equations for the charge and current densitiesxternal field is essentially perfectly described by calcula-
is presented in a more graphic form in the case of the Coutions based on the perturbation theory in terms of the inter-

lomb gauge of the electromagnetic field (&iv0): action Hamiltonian. Nonetheless, the atomic response to an
external field of strength comparable to that of the intratomic

dp € o . . . . .
—— —A-Vp=—divj, field is radically different for several reasons. First, the am-
gt mc plitude of thenth eigenstate of the unperturbed Hamiltonian
Jj, e i e in the superposition state
T m_CA'VJa: - g[la Hal -+ m—CJ/;Va(A,B)

1/ e \? ¢(rut):2 an(t)un(r)_l'j dk ay(t)uk(r),

- —(—) pV A2, (36) n
2\mc

The left-hand sides in Eq36) indicate that the time depen- generated by the external wave is no longer determined by
dences of the charge and current densities are controlled )€ dipole moment of the transition from the ground state

the relations other high-population statePopulations of states connected
) _ to the ground state via dipole-forbidden transitions can be
p(r,t)=p(r—ro(t),t), Jj(r,t)=j(r—ro(t),t), greater than those of states to which dipole transitions are
where allowed. Second, atomic interaction with superstrong laser

fields is highly nonlinear and demonstrates saturation. The
Zo_ = response at the frequency of thiéh harmonic is a power-law

dt mc function of the field strength only if the latter is much less
than that of the intratomic field. This equalizes amplitudes of
different eigenstates in the superposition of different atomic
states, and thereby leads to smaller differences between har-
monic amplitudes in the induced field. #fag>1, i.e., we
|pave a superstrong laser field, the amplitudes of ionized

dr e

Thus, their Fourier transforms

p(r,t)=J dkp(k,t)yexdik-(r—rq(t))]

again contain exponential functions of the vector potentia

S0 we can again use expansidd) in terms of Bessel func- States with energie§,=Eo+n% o no longer depend on the
tions. numbern, but are controlled by the phase relations among

The first gradient term on the right-hand side of E2f) them, withg,~ 7(2n+1)/4. Finally, the gradient forces due

for the current density relates the various components of thE® the atom-field interaction on a distance scale of the order
polarization current density. Consequently, the field gener©f the wavelength are comparable to the atomic forces when
ated by an atom acted upon by an intense linearly polarizer'e external field strength is of the c_>rde_r of the intratomic
wave has elliptical polarization in the general case. The ladi€!d strength. As a result, the polarization response of an
term in this equation yields a gradient force acting on artom in a tightly focused beam is significantly different from

electron in a nonuniform field. It equals the derivative of theltS response to a plane optical wave with the same field
ponderomotive potential strength. This effect provides additional tools for control of

the spectrum of the resulting radiation.
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the field intensity byJ,, (eV)=10""3 (W/cn?), we find that
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This paper examines the multiphoton ionization of the ground state of the hydrogen atom in the
field of a circularly polarized intense electromagnetic wave. To describe the states of
photoelectrons, quasiclassical wave functions are introduced that partially allow for the effect of
an intense electromagnetic wave and that of the Coulomb potential. Expressions are

derived for the angular and energy distributions of photoelectrons with energies much lower than
the ionization potential of an unperturbed atom. It is found that, due to allowance for the
Coulomb potential in the wave function of the final electron states, the transition probability near
the ionization threshold tends to a finite value. In addition, the well-known selection rules

for multiphoton transitions in a circularly polarized electromagnetic field are derived in a natural
way. Finally, the results are compared with those obtained in the Keldysh—Faisal—Reiss
approximation. ©1999 American Institute of PhysidsS1063-776(99)00509-0

1. INTRODUCTION count by perturbation-theory techniques. This leads to a cor-
_ o rect limiting transition to the formula that describes the
The process of multiphoton ionization of atoms by theprobability of ionization of an atom by a constant electric
field of an intense electromagnetic wave has been studiefe|d?® Several other methods were proposed to resolve the
il : 1 Ce T . .
both theoretically™** and experimentally~° (see also the ifficulties in the theory, among which the approach using
books cited in Refs. 20-23 and the review articles cited inyhat is known as the pole approximati®n2and a method
Refs. 24 and 25 Itis only proper to mention th79 pIONeering of allowing for the Coulomb interaction of the photoelectron
work of Keldystt and the papers that followéd! where the  \ith the residual ion by replacing the plane wave in the
main laws governing the multiphoton photoelectric effecty;q oy solution with a Coulomb wave function of the con-

were invest.igated. A common feature_ of Refs. 1-9 is that tr_‘"ﬁnuous spectrum with the appropriate asymptotic behavior
wave function of the photoelectron final state was taken iNre worthy of mentiort®**

the form of the wave function of a free electron in the field of In this paper we will consider the multiphoton ionization

the wave(the Volkov wave functio an approach justified of the hydrogen atom by a circularly polarized electromag-

only for systems bound by short-range forces. The WeII'netic wave. Quasiclassical ideas will be used to construct a

known Keldysh-—Faisal—Reiss approximation, which Ignoresquatsistationary wave function of the photoelectron, which

the effect of the Coulomb potential on the final electron state, . . .
. . . . will allow for both the intense electromagnetic wave and the
gives rise to an error in the coefficient of the formula for the

probability of ionization of a neutral atom by an intense eIec—COUlomb potential. We will find that in expanding this wave

tromagnetic field and to the wrong threshold dependence J hetion with appropriate asymptotic properties analog of

the probability on the photoelectron velocity. The probabilityt e Sommerfeld functioninto a series of partial waves with

of a photoelectron emerging with zero momentum calculateé{"e”'qgf'ned values ,Of the projection of angular momgntum,
in the Keldysh—Faisal-Reiss approximation proves to bdransitions are possible only to states that obey multiphoton

zero® It is known, however, that when a system bound b selection rules for the magnetic quantum number. We will

Coulomb forces breaks up the threshold value of the prob‘f"lso derive expressions for the angular and energy distribu-
ability of the process is always finit&2” Moreover, ignoring tions of the photoelectrons. It will be demonstrated that at the

the Coulomb potential in the case of an atom being ionized€action threshold the ionization probability tends to a con-
by a circularly polarized electromagnetic field makes it im-Stant finite value. We will find the critical value of the
possible to obtain the multiphoton selection rules for theelectromagnetic-field strength at which the height of the
magnetic guantum numbe@Because a Circu|ar|y po|arized main (first) above-barrier peak in the energy distribution of
photon has a projection of angular momentum equal to 1 othe photoelectrons is equal to that of the second above-
—1, the selection rule that asphoton ionization transition barrier peak. The formulas for the ionization probability will
must obey iss=|m;—m;|, wherem; andm; are the projec- be compared with those obtained in the Keldysh—Faisal—
tions of angular momentum of the initial and final states,Reiss approximation. Finally, we will show that allowing
respectively. consistently for the Coulomb potential in the wave functions

The first difficulty was overcome by Perelomov and of the final electron state leads to an exponential increase in
PopoV and Nikishov and Ritu$,who found that under cer- the ionization probability over that predicted by the
tain conditions the Coulomb potential can be taken into acKeldysh—Faisal—Reiss theory.

1063-7761/99/89(9)/7/$15.00 428 © 1999 American Institute of Physics
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z wave function of an electron in the field of the wave is ap-
proximately the Coulomb wave function written in the non-
inertial reference frame:

it e?A%(7)
N\/\/\N\/\ ‘P(r,t)=\I’C(r—a(t),t)eX[{—% deTWCZ],
5

whereA(t) is the vector potential of the applied electromag-
netic field written in the dipole approximatioa,is the speed
of light in vacuum, and? (r,t) is the Coulomb wave func-
tion. Note that the functiort5) is not a state with a well-
FIG. 1. The path of a classical electron in the field of an intense electro-deﬁned angular momenturthe same is true of the exact
magnetic wave. ; .
wave function of an electron in the Coulomb and electro-
magnetic fields In view of the axial symmetry of the sys-
tem, the projection of the orbital angular momentum on the

X

2. QUASICLASSICAL WAVE FUNCTIONS OF AN ELECTRON symmetry axis is conserved.
IN THE FIELD OF A STRONG ELECTROMAGNETIC The expression(5) can be obtained in a more formal
WAVE way. We write the electron Hamiltonian in the Coulomb and

. . electromagnetic fields,
We will construct the approximate electron wave func-

tions describing continuous-spectrum states in the Coulomb e 2

and electromagnetic fields. Strictly speaking, all states in the P- EA(t)) o2

field of a wave belong to the continuous spectrum, so that H=———— —,

here we are dealing with quasistationary states, and the real 2M Irl

part of the average energy of these states is positive. Let ugq represent it in the following manner:

examine the electron states in the near-threshold region with

momentap<#/rg, whererg=%2/Me? is the Bohr radius, H=Hg+ Vin, (6)
with M ande the electron mass and charge, respectively. It

is well known that in the near-threshold energy region thevhere

electron states are quasiclassical. Thus, the main contribution

2
to the electron evolution is provided by a narrow pencil of <|S_ EA(t)) )
Feynman paths that lie near the classical path of the electron. Ho= ¢ ¢ @)
Therefore, it is advisable to study more closely the motion of 0 2M Ir—a(t)|’
a classical electron in the field of the wave. It is known that
o . . 2 2
if in the absence of an electromagnetic field the electron __ ¢ _& ®)
moves along a certain patft), then in a fieldE(t) of fre- M r—a(t)|  |r|”

guencyw and under the conditions that ) ) ) )
Clearly, Eq.(4) is the solution of the classical equations

min|r(t)|>max a(t)|, (1)  of motion that follow from the Hamiltoniax7), so that it is
mainly (7) that determines the classical path of the electron
E 7 in the field of the wave. In this sen$@) is the zeroth-order
T Hamiltonian and(8) must be interpreted as a perturbation.
Allowing for the fact that the electron is quasiclassical, i.e.,
that it is almost certain to be near the classical path, we
eE(t) conclude that when go over to the quantum mechanical de-
a()= 17 (3)  scription the Hamiltonian can still be represented by the sum
(6) of the zeroth-order Hamiltonia(v) and the perturbation
(T is the period of unperturbed motiprthe electron moves (8). Hence for the zeroth-order wave functions we can use
along the quasistationary patfor details see 8§30 of Ref. the solution of the Schrdinger equation with the Hamil-
28): tonian (7):

r'(t)=r(t)—a(t). (4) _ﬁ&\lf(r,t) -
ST

w>

with

HoW (r,t). 9
We see that the effect of a high-frequency wave on the elec-
trons amounts to oscillations appearing in the motion of the We seek the solution of E¢9) with the initial condition
electron along the unperturbed patft) (see Fig. 1L For- W (r,—)=WC(r,— ) in the form

mally this is equivalent to the electron motion in the absence

of an external field but in a noninertial reference frame, with W(r,t)=U(P,H)Wo(r,t), (10)
the new and old coordinates related @. Hence, basing

our reasoning on quasiclassical ideas, we conclude that thehere
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A it eA(r)-P  e?A%(7) _ifp? J“‘ il e
U(P,t)=exp[—gjwdr(— VTRV Air=7\onm Tlo) | _dtexp || sy +loft
(11) t eZAZ(T)
Substituting (10) and (11) in Eq. (9) and performing +J,xdTWc2 D(a(t)), (15
simple transformations, we arrive at an equation for

YE(r,1):

" aVe(r 1) _( P2 g2

. C
at 2M |r|)q’ (r.b).

D(a(t) = [ drdkak’f (e (k)

B xexpli(k—k'")-rlexp{—ik- a(t)}. (16)
This implies thatV<(r,t) is indeed a Coulomb wave func- Clearly, integration over the coordinate space yields a
tion that determines the electron state in the absence of afelta functions(k—k’), and this resolves all problems with

external electromagnetic field. If we take formul) into  integration ovek’. Formula(16) becomes
account, we can easily show that the express{bnand(10)

are identical. d(aft)=(2m)° f dket (K)gi(k)exp—ik- a(t)}.
(17)

3. PROBABILITY OF MULTIPHOTON IONIZATION OF THE We can use the following trick to evaluat&?). Instead
GROUND STATE OF THE HYDROGEN ATOM of the specified bound—free transition, we examine a bound—

Let us study the probability amplitude of a transition bound transition from the ground state to a state belonging to

from the ground state of the unperturbed ato]’rﬁ(r,t), to the discrete spectrum. For the time being we interpret the

the continuous-spectrum statds(r,t). The expression for ¢;(k) in (17) as the Fourier transform of the wave function
this amplitude is of a bound state with quantum numberdr). After evalu-

_ ating the integral by analytically continuing into the do-

[ % main of imaginary values, we can fi(d7). Such a proce-
Aif: - = dt dr‘lff (r,t) . P . R . .

) w dure simplifies the calculations significantly, since in
evaluating(17) it is much simpler to deal with Fourier trans-
forms of bound states than with Fourier transforms of the
continuous-spectrum states. Note that a similar trick was

Mc 2Mc?
_ i used in Refs. 29 and 30, where the amplitude of a bound—
According to(5), (10), and(11), the final electron state free transition was found by analytic continuation that in-

can be expressed in terms of the unperturbed Coulomb Waveved a known bound—bound transition amplitude
. . C . .
function of the continuous spectrum¥’¢(r,t), in two The wave function of the bound state into which the

equivalent ways: system is formally transferred can be written
Wi(r,)=WF(r—aft))

£ 272
x(—eA(t) P eA(t))\PiC(r,t). (12

WE()=Ra(N)Yim(6,¢). (18)
i [ p? t e’A%(7) _ .
Xexp[ - —(—t+ f dT—z) ] , (13)  Next we write the Fourier transforms of the ground state and
f\2M -»  2Mc state(18) (see Ref. 3k
. i p?
\I'f(r,t)=U(P,t)\I’fC(r)exp[———t]. (14) ey L 1
h 2M QDl(k) \/7T_I'|53(k2+1/r§)2’ (19)
We will assume that at times— *oo the field is zero.
Then, using the representati¢t¥) and doing the necessary @i(K)=Fn(K)Yim(6,¢), (20
transformations related to the integration by part&li), we 211l
obtain Fai(K)= — s oot NE)
0’ . 7rg N (k4 1(nrg)9)
Aif=%(m+|0 f_xdt J drvf (r,)WE(r,t), L (K= 1i(nrg)?
) o ) ) X n—I1-1 k2+1/(an)2 ' (21)
wherel is the ionization potential of the ground state of the
atom. where C{(x) is the Gegenbauer function. We will assume
We will now introduce the Fourier transforms of the that the applied electromagnetic field is circularly polarized:
Coulomb wave functions: E(t) = Eg(6, coswt + &, Sinwt), (22
eri(k)= # f dr\If%i(r)exp[—ik- r}. wheree, ande, are the unit vectors of a Cartesian system of

coordinates. We will also assume that the atom is oriented in
Using these and the representati@B) of the final-state such a way that the quantization axis coincides with the di-
wave function, we can transform the ionization amplituderection in which the electromagnetic wave propagates. Thus,
into taking Egs.(17) and(19)—(22) into account, we can write
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_ _(2m)® P F (k) . Gy (2pr)' i
<1>(a(t))——r_rg 0dk —2_(k2+1/rB)2 dQYi.(6,¢) Rp|(r)——(2|+1)!rB 7 ex —%pr

X exp{ —ikag sin 6 cog ¢ — wt)}, =

i
[+1+i4, 2I+2,2%pr),
whereag=eE,/Mw?. It can be demonstrated that the value
of the integral is largely determined by the poles of the inte- 87
Cpi= \/

[
A ing to(21), th | =i k 2+ 92
girand ccordlng_o( ), the poles are ak=i/rg and _ S1—exp—279]) ];[1 n°+ 9%,
=i/nrg. In weak fields, where we have,<r z, the contri- n

butions of the two poles are comparable, while in strong A
fields, @p>rg, the main contribution is provided by the pole 9=—",
that lies closes to the real axiks=i/nrg (due to the expo- Pls

nential factor in the integrandin the latter case we ignore with 6, and ¢, the axial and polar angles of vectpy re-
the small terms of order 4/ with n>1, and take the de- spectively.

nominator >+ 1/r3)? outside the integral sign at the point ~ Thus, allowing for the above formula, we arrive at the

k=i/nrg. The result is desired value of the integrél?):
_ - i\ [ (2m)52 [
Batt)=2me | [T ok wat)= 2pe o]
o |
deQYTm(e,so) xIZO 24 i ' expli ,}Ryi( @)

Xexp{ —ikagsindcog ¢— wt)}.
XYim

a
*
For the sake of comparison we will write the inverse E""t)Ylm(ep"Pp)-

Fourier transform of the wave functidi9): _ ) _ _ )
Using the relationship that exists between spherical

VE(r)= fo dk ksz(k)f dQYm(6,9) functions and associated Legentzjlr:eL :o(l:mc;m;ils,
o —[m)!
x exp{ikr’[ cos6 coss’ Yim( 0, 9) = (= 1) IV 47 (I+|m))!
+sinf#sing’ cogo—¢')]}. X P|"(cos@)explime},

Clearly, the penultimate expresiio*n Is in fact the inverseand formula(15) and performing a simple integration, we
Fourier transform of the functioﬂf? (r') specified at the find the ionization probability amplitude:

point with r'=«q, 6'=x/2, and ¢’ =wt. Thus, allowing .
for (18), we have . (2m)
Air=1 =1~

p’ i
o W'O)“’i(n—rs
|

21+1
X exp i
=0 mz—l 4 p[

_ i T
(b(a(t)):(zw):g@i(n_rB) Rn|(a’0)Y|m(E,wt>, -

5|+2(I+m+|m|)>]

g

e T (1= |mi):
B - :
————P|M(0)P|"(cosh,)exp{ —ime,} R, (ap)
If we continue this expression analytically into the do- (I+[m)t ! ' p)eXH prRpi( o
main of imaginary values af, we arrive at the case where 2 e2E2
ionization proceeds to a state for which the angular momen- X S 2p_ +lg+ 2_02_ mﬁw), (23
tum and its projection are well-definedMore precisely, M Mo

WE(r,t) in (13) and(14) is a state with a well-defined angu- \here it is assumed thaty/r and//prg are much larger
lar momentum and its projectigrBut according to the gen- than unity.

eral principles of scattering theory, for the Coulomb wave | et us examine the above expression more thoroughly.
function in (13) and (14) we must take a wave function The presence of a delta function means that of all the partial
whose asymptotic form contains a plane wave and a conyayes only that in which the magnetic quantum number co-
verging spherical wave. This Coulomb wave function can bencides with the number of photons involved in the process

written in the form of a partial-wave expansiéh: can serve as the final state. This agrees with the selection rule
1 o | for magnetic quantum numbers in dipole multiphoton transi-
VE(r)= 2 E i'exp{—i8 Ry (r) tions (from the ground stajenitiated by circularly polarized
f V2arfip =0 m=-1 P16 Ral radiation?°

Allowing for the property of the zeros of Legendre poly-
X o . ;
Yim(6,0) Yim( 0p, £p), nomials, P|™(0)~cog(I+|m)7/2], we see that the transi-
where tion can end only in states in which+|m|=2N, N
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=1,2,3.... On the other hand, the dipole selection rules fowith ,s>1. This expression simplifies significantly when
the orbital quantum number require that its variation be equall/s<1:
to the number of circularly polarized photons absorbed in the

transition process, i.el.=|m|. Nevertheless, there is no con- 1
tradiction here, since the selection rules in question have ;=1

been established for states with well-defined angular mo-

menta. In our case, because of the perturbation of the finﬂow’ pgrformmg wejl-knovyn trans.formano.ns,_ we find an
states by the electromagnetic wave, the nunibr not a expression for the differential multiphoton ionization prob-

constant of motion. Hence the terms(8) with given| do ability per unit timg(the ionization ratein the form of a sum
not determine the probability amplitude of ionization to aof partial probabilities:

O

1+|—
7

2 1
)Zmexp{’ﬁﬂ}. (27)

state with a well-defined angular momentum equal 7o dw dwe
This explains why the selection rules break dowr(28). 40 .4, a0 (28)
We will assume that ~leol
6 2 22 2
pa0<l (24) d\NS: (27) Ao . e°Eg
|7 dQ — 22670(s1)2 1, 2MA w3
[we will shortly show that this inequality follows from the Peao 2s
condition for the applicability of mode{1)]. For the func- X Tsin 0) a(ps), (29
tions R, (o) in (23) we employ the asymptotic representa-
tion where
Chpi 2pag\'  pag s
R, (arg)~ P ) , —<1. (25) h?
" re(2l+1H & It 9P =1II |1+ 7|, ps=\2Mho(s—sg).
n=1 Psre”

With this in mind we can now show that the main con-
tribution to the ionization amplitude is provided by the term Here and in what follows we assume tha& &,/rg<s and
with the smallest possible value bf psagl/fi<s.

Equations(27) and(28) imply that the angular distribu-

I=[m[=s, (26 tion of the photoelectrons has a narrow peak lying in the
where bys we have denoted the number of photons absorbe@olarization plane of the electromagnetic wades /2. As
by the electron in the transition. Thus, discarding the unimwe move away from the anglé= 7/2, the probability of
portant phase factors, we can write thghoton ionization detecting a photoelectron decreases rapidly and vanishes in

probability amplitude: the limit 6=0. Thus, qualitatively the angular distribution of
5 s photoelectrons follows the same pattern as it does in the
p Pag . Keldysh—Faisal—Reiss approximation
Ai=2 Dyol == +1g|| ——sind :
' ﬂ-s=§[;0] ps‘<2|\/| 0)( h ) Integrating the differential probability over the solid

angle, we find the photoelectron energy distribution:

p? °E§
X5 _+|0+ 2 Sﬁw),
2M 2M wg W= E WS, (30)
[#59 1 & 92 o
Trg
Dps= N 73 2525 Hl 1+ 7 . 2m he? e’E5 \?[ psag)|?
=225t T | ST 2Mhe?) | Ta | 9P
where (31)
lo e’E} Formula(31) shows that near the ionization threshold, where
0= 7 o T OMA w3 the photoelectron momentum tends to zero, the probability of

) o ~ the process remains finite, as it should in reactions with
[So] is the minimum number of the electromagnetic-field charged-particle productioff:?”

photons needed to ionize the atom, athds the angle be-

tween the photoelectron momentum and the direction of . '\ \isg_ (2m)’ b(@)zls‘)] 32)

wave propagation. In deriving these formulas we used Eq. by 0 2(2[sp]+1)! A \rg

(19) and allowed for the fact that the photoelectron momenta 0

are small compared to the Bohr momentymng /A <<1. Let us find the critical value of the electromagnetic-field
For the finite product we have the asymptotic represenstrength at which the heigt=[sy]+ 1 of the first additional

tation peak becomes equal to the height of the main peak

5 o\ st 12 =[sp]. We will assume that the height of the main peak is

I 1+(_ ):i 14 ﬁ ) described by32). Then, using31) and(27), we arrive at the
7=1 7 27 ratio

W[so+1]~£ ﬁ_w [sol —1/2 ezEg o \/E
w7 T, M7 oS "Ntw|

0}
X exp{ -2 arctang + 70
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Now, from the condition thatviso* /Wil =1 we can eas- S - I
ily derive an expression for the critical value of the electro-  f(Sma)=— 250~ Smax~ 5 Vi 7a —o
s . Smax— So 2 i @ (Smax— So)
magnetic field strength:
co h w3 lo [soli2—1/4 o I w| 142 Smax— SO) ) '
~/ — Xp— = \/7—1.
0 e’ o € 2 Viw Smax

For instance, for an ionization potentig=13.6eV and a [So]> Smax—[So]>1.
field frequency w~2.92<x10%s ! we have E{~9.76
x 10" V/cm. For large photoelectron threshold momenta

ps,/2M~T w, the critical field value is of the same order as g4 strength.

in the Keldysh—Faisal—-Reiss theory. Fgg>Eg the photo- It is interesting to compare thephotonionization prob-

electron energy distribution has many peaks, and the distrigpility (31) with the probability of a similar process consid-
bution maximum is shifted to the rlght from the main peakered in the Ke]dysh_Faisa|_Reiss approximaﬁon:

The two formulas(33) and(34) can be used to compare
'the theoretical and experimental dependencé¥okxon the

s=[sg]. Note that far from the ionization threshold,
—[sp]>1, the probability ratio has a more usual form:

2
wstt E2
W

which differs from the quasiclassical paramet&f/w'*".

This discrepancy arises because in finding the wave fun

tions (5) and (10) we ignored the interactio(B).

Let us establish the number of phota)s,, at which for
a given field strengthE, the ionization probability(31)
reaches its maximum.

Using the well-known Stirling formula and Eq81) and

(27), we can write
[m(s—sg) h2w®
s K

. @2m)P
W= st 1)
e’E3 \?
S— m) exp[f(s)},

/ [
+a WO_SO), s>[sp].

If we now (formally) assume thas is a continuous pa-
rameter, we can find,,,, by solving the equatiori’ (Syay)
=0. In explicit form this equation is

X

Psag

—+
2sh 1

f(s)=25( In

e’E3 S2 1

In M o3 =In

Smax S0 Smax— So

ar |0
52 2 N fao(SmaeSo) |

We see that this formula determing@splicitly) the function
Smax=Smax{Eo). Unfortunately, there is no way to solve Eq.

X (33

2574

< h3w® e’E3 \?2
KR (2s+1)! V13 |7 2MAe®

\/ lo ezEg Psag|
NS %o 2MAe®| % |

in the limit #/pgrgs<1 we have

Ws B | lo
s =exp m m, s>[sg]-

KFR

(39

C_

Thus, even partial allowance for the Coulomb potential
in the final electron state leads to a sh&mponentig) in-
crease in the transition probability. The exponential differ-
ences of the formula&1) and(35) are due to the long range
of Coulomb forces, which were ignored 85). Note that
when s is large, more precisely, in the limis>s,

+ 7?1y /fiw, the probability ratioW®/W), tends to unity.
This was to be expected, since for fast photoelectrons, whose
energy is much higher than the photoionization potential, the
Born approximation is valid. This means that the effect of
the Coulomb potential on the wave functions of the photo-
electrons can be ignored, which in turn means that we can
use the Keldysh—Faisal—Reiss approximation.

The reader will recall that the main condition for the
applicability of Eqs.(28)—(34) is the quasiclassicality of the
final electron state, i.e., the smallness of the electron momen-
tum in comparison to the Bohr momentum. The results we
have arrive at give a good description of the case of multi-
photon ionization of the atomy>1, where the Keldysh pa-
rameter is given by the formulg?=2MIyw?e’E3, since
here the probability of a photoelectron having a momentum
of order of, or larger than, the Bohr momentum is negligible.

(33) can be solved. For the sake of an example we give thé" the adiabatic casg<1, the important photoelectron mo-

value of s, for the following values of the parameteis;

~13.6eV, w~2x10%s?! [s,]=22, and Ey~15

x 108 V/em. In accordance witli33) we haves,=25.
The maximum value of the probability/>max is given

by the expression
/77( Smax— So)
S

(2)°
max

2(28paxt 1)

fi%w®

S, —
Wmax= | >
0

22

€°kp
X\ Smax— m) eXp{f(Smax)}v

(34)

menta (near the maximum of the energy distributioare
much larger than the Bohr momentdm-3 Hence fory<1,

the formulag28)—(34) can be used only to describe the low-
energy fraction of the photoelectrons. Unfortunately, this
makes it impossible to calculate the total probability of ion-
ization in ultrahigh fields and thus to pass to the limiting case
of ionization of an atom by a constant electric field.

In conclusion we will examine the criteria of applicabil-
ity of (1) and (2) in greater detail. Using the formula that
gives the minimum distance between the nucleus and the
classical electron in the Coulomb probléfh,
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The problem of the quantume-statistical properties of resonance radiation selectively reflected
from unexcited media in the case where the photons are mutually correlated in the incident
radiation flux is posed and solved. Allowance for mutual photon correlation precludes, in
principle, solving the problem by perturbation methods. A quantum analog of the optical theorem
of absorption, which causes an infinite subsequence of Feynman diagrams to vanish, is

pointed out. The frequency-angle distribution of the photons in the reflected flux is predicted.
The Fresnel formulas are reconstructed for the averaged reflection characteristics. The

limits for their applicability in describing the reflection of mutually correlated photons are given.
A suppression effect is predicted for the reflection of radiation from a laser sourc&999®

American Institute of Physic§S1063-776(99)00609-5

1. INTRODUCTION analogy to the effects described in Ref. 12, the inapplicabil-
ity of perturbation theory should be expected in this case.
The resonant interaction of an electromagnetic field withwhy was such a phenomenon not discovered before, what
matter is classified as a strong interaction in the sense thafe its characteristic features, and how do the Fresnel formu-
the optical effects caused by it preclude investigations bytas, which have no nonanalytic features with respect to
perturbative methods. The interest in such phenomena haharge, arise? Answers to these questions are given below.
traditionally been great and has become stronger in recent \We shall examine the resonant reflection of two trans-
years as a result of the research on optical effects in densgrsely polarized photons which belong to a mode being
medid?® and on the interaction of laser radiation with scattered with the wave vectky and the polarization , and
matter’—> One of the manifestations of the resonant interaccan be described by the common wave function
tion of an electromagnetic field with matter is the selective(a;0A0)2|o>/M from a semi-infinite medium. We shall use

reflection of light from an interface between a gas and free&;x (@&,) to denote the creatiofannihilation) operator of a

space. This area of research has its own rich past. In 190, 5t0n in the statek{\). We shall determine the probability
WoodP experlmentally discovered a change from dlffu_se togf finding one of both photons in the reflection modeX).
specular light scattering as the pressure of the reflecting vaye shall study the statistical properties of the reflected field

por was increased, provigling food for thought to researcherg, his elementary example, and we shall investigate the av-
for a good half a centur{® In 1966 Koestetexperimentally eraged characteristics of the field.

discovered the possibility of amplifying resonance radiation

when it is reflected from a medium with population inver-

sion. That work produced a new flood of research, which was

summarized to some extent in a monograph bykBoand  2- PRELIMINARY ANALYSIS
Petrov.? It was still too early to speak about complgte agree- — some qualitative features of the reflection of correlated
ment betV\_/een t_heo_ry and exp_enment. Howgver, Just the_n Shotons can be discovered on the basis of general arguments.
thorough investigation of the influence of stimulated emis-

sion processes on the reflection mechanism demonsttdted We usegp; to denote the eigenfunctions of the Hamiltonian of
P o : ; .~ the scattering medium. We take into account the adiabatic
the inapplicability of the semiclassical theory of radiation

. e ypothesis. Let the medium be in the staig before the
based on an unquantized electromagnetic field. It turned OYlteraction with radiation. The complete wave function of the

that_cop3|derat|on of the quaﬂtum properties. of rad'atlo.n‘radiationJr medium” system can be represented in the form
qualitatively alters the calculation results on a macroscopic

level. This is ultimately caused by the correlation properties V= o f +2 ‘

of photons in the medium and the change in the number of ~PoloT o Pl

photons as a result of the stimulated emission. It is natural to ) o L -
expect that something similar should occur in the reversd © describe the radiation field in the medium it is sufficient
process, i.e., in the scattering of correlated photons unddP Know its density matrix:

conditions allowing their absorption. This means that corre-  p=Tr, W W¥* :p(0)+p(n),

lated photons are not scattered independently in cold media,

even if the interaction of light with each individual atom of P(C)Zfofg , p(n):Z fEx 1)
the medium is considered in the linear approximation. In iz !

1063-7761/99/89(9)/9/$15.00 435 © 1999 American Institute of Physics
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The operation Ty extends to the atomic system, and theand excited states. It is assumed that their sum exceeds the
functionsf; depend on the arguments of the electromagneticadiation widthy, of the excited state of the atom. Next, in
field. The matrixp(®, which corresponds to the coherent the dipole approximation

scattering channel, describes the scattering processes which e

result in thg return of medium atoms to the initjadcluding pi;w(k): _f YE(PPE Y, (p)dp, P=-iV,

the translationalstate. The matrix(™, which corresponds m

to the incoherent scattering channel, describes the other scg{here Ym, denotes the wave functions of the valence elec-
tering processes. The matrixcan be measured directly by trons in the atoms. It is also assumed that each gas atom has
photon-counting methods.It permits the calculation of any one valence electron. The mat#®)(r|1—1) is normalized
averaged characteristics of an electromagnetic wave. L&y that atz— — the trace Tp(®) gives the probability of

A”(r) be the vector potential operatot £ c=1): finding a photon in the reflection modg,(). The following
o summation formula should be used to concret2e
~ kV . s
A= (G €'+ ahe '), m(2jm+1)
& J2kv 2 PLKOPE (k)= — ——y(digd).

m,
whereeﬁv are the polarization unit vectorg=L,L L, is the g

normalization volume, which is assumed to be infinite in theHerej, is the orbital quantum number. Then
final result,V—«, andr is the observation coordinate. The

mean value of the operatd’(r) is found as TrpO(r|1-1)= 8k
Z— —® z
(A"(N)=TrA"(np. 72im+1) o n,QRipt) |?
The summation is carried out over the arguments of the elec- X w—mﬂyr(ekoe{:) m :
tromagnetic field. In this example we demonstrate the con-
venience of the pseudocoordinate representafiom,which )
we are taken by the operator This formula is equivalent to the Fresnel formula written for
rarefied media. For the resonant frequekgy w,, we find
U=expikr), k=2 ki, . 7.2
ki Trpc(r|l—>1)oc( nﬂx37r>
7 —c

In the pseudocoordinate representation the opeﬁa.’tdoses
its dependence on and the matrix Now let the incident electromagnetic field consist of two
- photons which are in the same statg,\;) and are de-
p(r)=UpU scribed by a common wave function. What can we say about
acquires such a dependence. Now we pétl) the electro- the distribution of the photons in the reflection moaex)?
magnetic field density matrix at the pointIts introduction ~ We are interested in reflection at the specular atggéective
is convenient for solving boundary-value problems. In par-Scattering. We omit the diffuse scattering. We turn to the
ticular, if the scattering medium occupies the half-space representatioril) and examine the coherent scattering chan-
>0, to investigate the reflected field it is sufficient to know Nel. We assume that under the conditions of a linear interac-
p(r) at z— —o. If there is a single ph°t0ﬁ‘<+oko|o> in the  tion between the field and individual atoms, the simultaneous
scattering of two photons is mutually independent. A thin
near-boundary layer of the scattering medium of thickness
~k, * takes part in the formation of the scattered field in the
coherent channel. Therefore, perturbation theory can be used.
Taking into account the independent character of the scatter-
ing of the photons, for the probability of the scattering of two
X 8(K, 1) &y |0)(0] &y » (2)  photons from the initial state into a two-photon final state we
have

incident mode, theit for nM37r/7<1 the density matrix
p(© describing the reflected photoR,§) has the form

1
pO(r|1—1)= 2, —4|ck oro(k)|2
8koz

Z— —®© k

where

Yr 4 )

khkoh _ *\ No 1 Trp©(r[2—2)=[Trp®(r|1—1) 29c<n 7(3—) .
cile(ko) = 2 PR (KIP (ko) o - e “y

The calculation ofp(® is, of course, associated with the ap-
pearance of the term(©(r|2—1), which describes the se-
Here we have used the two-level approximation for the atlective scattering of only one of the two photons, while the
oms. In additionrm labels the Zeeman sublevels of their ex- other photon continues to propagate in the original direction
cited stateu labels the sublevels of the unexcited staig, ~ of kq. In the lowest order of perturbation theory this term is
is the frequency of the resonant transition, amgdis the  proportional to 0,x%y,/y)? and at low values of,, it
concentration of scattering atoms in th¢h Zeeman sub- should be decisive and have a modulus excee(BngThis
level. The Doppler effect is assumed to be negligibly small,does not occur in reality. In fact, a photon propagating in the
and y, and y,, are the collisional widths of the unexcited direction of k, must interact with the semi-infinite

’y=’y#+ Ym> }(2277“(, K={k0X1k0y1_kOZ}'
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medium sooner or latter. It either replenishes the channdbe interpreted as the probabilities of the processes per unit
p©(r|2—2) in the higher approximations or, if absorbed, time. A similar interpretation is possible, if expressions of
destroys the original state of the medium and leads to théhe type(6) appear in the final formula. However, if they
replacement of the coherent scattering channel by an incappear in an intermediate stage, an infinite number of terms
herent channel. Thus, it is clear from physical arguments thanust be taken into account in the higher approximations of
this term should not be taken into account. Mathematicallyperturbation theory, which “smear” thé functions. For this
this means that the coherent scattering channel has an infiniteason, it is better to interpret the expressiénas the scat-
subsequence of terms described by Feynman diagrams taring probability of one of the photons under the condition
high approximations, whose sum with the term under discusef absorption of the other photon and to describe this condi-
sion gives zero. We omit the detailed mathematical proof otional probability by a single formula. Th& functions

this physically obvious analog of the absorption theofém. “smeared” by the summation of infinite subsequences no
Thus, the contribution to the coherent scattering channel itonger allow interpretation of the expression sought as a
described only by formulé). Two conclusions follow from  product of the probabilities of independent events. The be-
the analysis performed. First, the study of the statistical prophavior of the photons is mutually dependent. A technical
erties of the scattered radiation cannot be confined to thprocedure, which meets the task, is described below. Accord-
lower orders of perturbation theory even in situations whoseng to the analysis performed, our confinement to the lowest
analysis in terms of “quantum means” allows perturbationapproximation with respect tl)#}(3yr/y in the final formu-
theory. Second, it follows from the analog of the absorptionlas allows confinement to investigations of the incoherent
theorem that the fate of one of the photons has an effect oscattering channel alone.

the fate of the other one. Thus, the scattering of the photons

cannot be represented in the form of mutually independer. I-OPERATOR APPROACH

processes.

. o . It is convenient to use th&-operator approach'? to
The validity of both conclusions is reconfirmed by an P PP

vsis of the incoh t scatteri h L In this ch %alculate the density matrig of a photon subsystem reso-
analysis of tne incoherent scattering channet. In this chann antly interacting with an atomic medium with correct al-

a process involving the a_bsorptlor! of one of the photons_ blfowance for the photon—photon correlators. Let us consider a
the medium and the elastic scattering of the other photon into

the reflection mode#,\) should be considered in the lowest quantum gas, and leg(r,t) be its field operator in the

order of perturbation theory. The probability of such a pro-ge'sinbefrg represe_tnt:?;uon. Being |tntertestgd n ,th(f':' entgrgy
cess is proportional to ensity of a gas or its flux, we construct a Green’s function

which is bilinear with respect to the operators and com-
pletely specifies these characteristics:

GO ) =—i(Tg) P (x')), x={r,t}. (7)

|1_‘ we are interested in fluctuations of the energy flux, the
expression(7) is inadequate. On the other hand, the function

tors of the reflected beam should be proportlonaﬁcnn the e(7) specifies the particle concentration defined by the for-
lowest order of perturbation theory. However, this cannot b - ula

so, because the semiclassical theory of radiation requires
compliance to arsxe? law, according to the Heisenberg— nx)=iG(x,x"), r—r’, t'—t+0.
Kramers equation The way ogt of this predicam_ent IS in- Now, if we study the diffusion, we can easily find any mo-
dicated by the features of the incoherent scattering channe e
: - ; . ent of the distribution:
When the reflection coefficient is small, i.e., when
n, X%y, /y<1, the probability of the reflection of both pho- o JTMG(x X" )dr
tons must be smaller than the probability of the reflection of (rm)= [G(x,x")dr
one of them. This means that the main role in shaping th , . C
Poynting vector is played by the incoherent channel. In thi%%’hus_, the Green'’s functlor_1 plays the role of the distribution
channel the power of the interaction constargan be low- ynctlon of parzi\metersv which are arguments of Fhe_averaged
ered in comparison to the first perturbative term only if thefield operatorsy and 4. Under second quantization the
expansion coefficients are singular and the singularity grow@rguments(the coordinates of the particlesf the wave
in the high approximations. This is also the case in realityfunction ¢(r,t) become arguments of the wave operators
We again arrive at the conclusion that the propagation of the/(r,t). The use of quantum Green'’s functions in the second
photons is mutually dependent, and an infinite subsequendglantization formalism makes it possible to calculate the dis-
of Feynman diagrams must be summed. tribution function(density matrix of the particles as a func-
Let us turn to the expressial). A reasonable meaning tion of their coordinates. The transformation scheme is as
cannot be ascribed to such a product of four Digafunc-  follows:
tions. The standard way to overcome this difficulty is to in- - . ,
terpret the combined p?/ocess under investigationyas wo in-  HHD=#(ND—=IGXX)—n(X). 8)
dependent processes: absorption of one of the photons afidhe quantized electromagnetic field is described by the wave
scattering of the other one. The probability of each of thefunction ®(N,t), where the vectoN=...,Ny, ,... is the set
processes is proportional &. Such expressions can already of the occupation numberBl,, of the individual modes

2
Y
e’n,, nm?’) |8(k— ko) 8(Ko— wpmy) |2 (6)

This obvious result has some important consequences. It fo
lows from it and from the relatiokb) that the Poynting vec-

r—r’, t'—t+0.
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(k,\). We are interested in the density matfixwhich de- the absence of temperature degeneracy of the atoms, which is
pends onN. In analogy to(8), the calculation scheme takes implied, the annihilatior{creation operatorsf)ip (pr) of at-

the form oms in the statei(p) can be assumed to belong to the Bose—
Y . L Einstein field. We omit taking into account the longitudinal
PN, = P(N,H) =i (NN ) —p. component of the electromagnetic field, understanding that

Thus, if we wish to knowp(N,t), we can formally proceed in media of elevated density it reveals itself by complicating
in the following manner. The second-quantized system dethe effects predicted here without eliminating them.

scribed by the function®(N,t) must be quantized once T calculatep(N,t) we use thel™-operator approach,
again. The operatab(N,t) appears as a result. The Green'sWh'Ch automatically separates the coherent and incoherent
function &7 should be constructed in the formalism thus Cre_scatte.nng channels. We construct iheepresentanoq in the
ated. Actually, the formalism we used, which is reminiscentfOIIOWIng manner. Any statg O.f a free second—quantlzgd elec-
of the “third” quantization of fields, is essentially different. tromagnetic field with a definite energy can be described by

The “third” quantization that we used is a formal operation the wave function

and is constructed using a specially selected unitary transfor-

mation of the dynamic equations, which does not deform the ~ ®°(N|&)=]T @(Ny| &), 9
fundamental principles. We again refer to an analogy. The K

quantum mechanics of a single particle can be constructed ihere ¢ is the wave function of the quantum oscillator,
the coordinate representation on the basis of the wave fungvhich depends on the argumeidts . The physical meaning
tion y(r,t), or the second-quantization representation can bef these arguments is not important to us at this point. We
used. The relationship between them is unitary. In theconstruct d" space with the creation vectpf (Refs. 11 and
second-quantization representation the Bose and Fermi field) and stipulate that this vector is a mathematical vacuum.
lead to coinciding results in the case of only one particle g 9((N) be the annihilation operator of an ensemble of

This remark is significant for devising our formalism. The noninteracting photons with the set of occupation numbers
use of a unitary transformation allows us to abandon the terrRI and Ietéﬁ(N))O be the wave function of such a state
] I .

ih'rdt dq;antlzat|on tatr)d t_o caIII thet retEresentatmntE:)n— These wave functions form a complete basis for expanding
structe representation in analogy 1o the many-particie any wave function describing physically permissible states.

space of a statistical function. Thus, from the formal stand—B " the basi 096" (N2 thus introduced and th
point, the construction of thd" representation from the etween the basis vecto#s” (N))r thus introduced and the

second-quantization representation actually imitates thgmcuons(g) there is a unitary transformation, which is ef-

method for constructing the second-quantization represent&eCted by the operatad:***?
tion from the configuration representatihEor this reason,
any discord in thd’ representation would at once indicate éz(i)*)?, b(y=2, DON|OA(N), W =0V,
similar discord in the second-quantization representation. On N
the other hand, all the investigative methods developed for
guantum systems, such as Feynman diagrams, Dyson eqyas
tions, spectral representations, dispersion relations, etc., can
be used in thd™ representation. [9U(N), 9" (N")]=8(N,N"), (10)

Let the second-quantized transverse electromagnetic
field interact quasiresonantly with a gas consisting of atomd is clear that thel” space is isomorphous to the space of
with one valence electron. We write the Safirmjer equa- occupation numbers of the Bose particles. However, the oc-

If it is assumed that the operatclgN) and2(* (N) obey
commutation relations for a Bose—Einstein field

tion of the system in the form cupation numbers in thE space do not exceed unity, since
P no physical state corresponds to the vectdr™(N))")%
i—=HW¥, H=Hy+H’ |2|O:|2|ph+ H, whenn>1. It can be stated that there is one “superparticle,”
ﬂt ’ ) )

for which the basi®l™ (N))? is sufficient for describing its
kinetics, in thel’ space. However, the behavior of one par-

th=k2 Kang &, Ha=2 &i(p)bipbip, ticle can be described with equal success using Bose and
» P Fermi field operators. This means that anticommutation rela-
. € [ n, np .n - tions can be used fol and2(*. The result of the calcula-
H':_aj Y pA(r)¢drdR+H, tions remains unchanged. Other commutation relations are
also permissible for theri?. Hence it is seen that these op-
R elPR_ p? erators have no physical meaning. For simplicity, we shall
lﬂ(f,R):izp iﬁi(f—R)Wbip, eiP)=eit 5 use the commutation relatigii0) for them. In thel repre-

sentation the Schdbinger equation takes the fotf
Here ;(r —R) are the wave functions of electrons in atoms
with an energye;, r andR are the coordinates of the elec- j—L_
tron and the remainder of the atom,is the momentum of ot
the atom, andM is its mass. AlsoH denotes the Hamil- e . . .. . 5
tonian of the interaction of gas atoms with the reservoir. In - EJ O Y pA(r) Yy@drdRdZ| Y+ HY -,

ﬂﬁ% (N)2AT(N)A(N)
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where /’_\
s(N=3 kN, dg=]T dg. ‘\_/
3% kN

The mean value of any photon operaf@rcan be calculated
using the formul&

(K)=TrKp= f K(Z,0p(L¢)Hdgdl, (12)

where R
FIG. 1. Schematic representation of the polarization operatgrs and

P(§=§’)Z<Ci)+(§')ci)(§)>ra yr=%r. (12 .5/{2,)2 corresponding to formula¢l5). Solid lines—the atomic functions

) . . . . G,..., dashed line—the propagatdf, , wavy line—the matrix?, .
The expressioiill) is valid for any operatoK. This means ve ve ve

that the expressiofi2) is the density matrix soughtfor the
photonic subsystem interacting with an atomic gas. To cal- - ) h larizati i i
culatep we utilize the kinetic Green’s function approdém  Heré7i» and.7j;; are the polarization operators in tfie

theT representation. We introduce formalism,
i . P e A=Ay, A=—A=A",
G (L8 )=~ i(TD (LD () or,  (13) o fam AT Ay
~ P =7 D = Po= P

where® is a field operator in the interaction representation: Sr=S e Sa= S
andp® is the density matrix of the free field of the photons.

@(g,t):E DON|DOAN)exd —is(N)t]. In the energy representation

N
0 " i0)-1
. . . . Lo =(E— + .

The averaging in13) is carried out over the initial state of Ar=(E=Hpti0)
the atomic system and the field of the photons before thdhe simple polarization operators
interaction between them occurs. The labalescribes the
temporal contour, which originate§€1) att— —o, ex- ,;5/’)'1|2=—
tends tot—o0, and returns backl €2) tot— — oo, and:rC is

the chronological operator on that contour. The oper&tor X pr2A"2G | (X,,X;)drdr,dRdR,,
has the form 2t

S=T. expr Z (—1)'*12

e\? .
—) D | prANGY | (X1, XA, (—1)'2*!

m vivp

X={r,R,t},
(15

An) — _
I1l2

2
e AviAvy 0
_) > | pmA IGIlIZ(XerZ)

m viv2

X | @y pA(r) @, dZdr dRdt}, ~
f | PA(T) g PidZdr } xplollz(_1)|2+1pV2AV2Gf’2|1(x2,xl)drldrzdeng

~ bip _ . are represented by the Feynman graphs shown in Fig. 1. In
lﬂZiEp lﬁi(r—R)WEXFIIP'R—wi(P)t]- this figure the solid lines depict the functio®?,; , the

5 dashed line represenmol|2, and the wavy line corresponds
We have omitted the operatét, whose inﬂuencc_e is mani- to P|O|  Each vertex is associated with a multiplifa}‘AV.
fested through the mass operators by broadening of the en- = 12 . , .

ergy levels of the atoms. The standard technique for goin&ve bprrow the explicit form of the Green’s function of the
over to a normal product of field operators is used to calcu- tomic system from Ref. 14.
late (13). However, sinck (2(N))" =0 in physical states
whenn>1, all the normal products, except the simplest, gives. INCOHERENT SCATTERING CHANNEL
a zero result. This is the source of the main advantage of the

I-operator formalism. The functiors);, have the following We are interested in the probability of finding one pho-
structuret! ton in the reflection moderg\), if the occupation number
7 . of photons in the modekg,\ ) is equal to two. In the lowest
D=2y —ipy. order of perturbation theory the corresponding matrix
e oy (M(r|]2—1) is associated with the sum of Feynman dia-
Thus,p=p,=i%;, att=t’. For A, andp,, we have the P : A=>o0 Y )
following system of equations: grams depicted in Fig. 2. We demonstrate the calculation of
. . these diagrams in the case of the first of them. The analytical
p1=p9+pD,  pl9=(1+A,7)p1+75A,), expression corresponding to it follows from iterations of the

(14)  system of equation€l4):
pB=—AADN.,  A=APHALAA, p{D(r|2—1)=— A2 ALADAL AL, (16)
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/‘—\' m /"\' As before, we neglect the Doppler effect, aNg is the oc-
L a N e S cupation number of thegth sublevel of the atoms. Using the

summation rulg3), for Im:%o we obtain

. 1
LN A2 IM 77 (E) @ |0) = = 5 %pr( E) i |0).

(2t 1) .
M Yor(E)= ——2—— %N,(2j ,+ 1) 8,(E— wp,), (18
N KON Yy o

iy|? iy\ 7Y 1
57(E)=— (E"‘?) —(E—i) }ﬁ

//’_\—m /-\ For A7 from (15) we obtain

2 ~ kqA 1Ko\
TRE)= 2 g, f Ci3 Y (Ey)
1

Akoha

N~ ‘\v_/ X piol E—Ey) ‘l_ila;m_

If the medium is spatially homogeneous, then
@T_\ C%MKZM(E)= 5(k11k2)0§§x1k2X2(E),
N < e .

kiN 1k
ci M HE) =2, KV

XN, 6, (Eten—g,).
If the scattering medium occupies the half-space0, then
/_\ in the Wigner approximation the following replacement must
O\/\NO be made in formulagl6) and (18):*
\___/ O(Kkq,Ka)— 0(Kqy ,Kay) 6( k1y vk2y) 5+(klz_ Ka2),

FIG. 2. Diagrams of incoherent scattering processes supplying one photo/here
to the reflection mode when there are two photons in the incident mode.

LJ2  dz
6+(q):f e—IqZL_.
0 z

According to the rules adopted, the left-hand functighin - Taking into account the difference dependence @t on t
(16) is represented in the first diagram in Fig. 2 by the left-andt’ under stationary conditions, after Fourier transforma-
hand dashed line. The next structure in this diagram is @on, in agreement with formulél6), we have

representation of the operatof,, which is consistent with

Fig. 1. It is followed by a dashed line correspondingAtp p$Y(E[2—1)=—(E—Hp,+i0) "1
and then by the representation of the operatd® . The
right-hand part of the graph is constructed in a symmetrical X 2 N Cfl)‘lkzkz
manner in accordance with the analytical expressib). kikgkohp
Formulas(15) are used for7, and /Y. If the space is X(E—F ) e (E— R +i0) L
homogeneous and the scattering process is stationary, in the . 2\ P
energy representatihwe have - &k3A3C§§A3k4Mp22& k+4)\4
kgNgkahg
@)= X, G E A, i N
CPM2Y2(E) = ¢ 22 E) 8(Ky ko), (17 L L
X (E—Flpr) e (E— Apn—i0) 7%, (20)
* N\ A
CklezAz(E)zz Pmul(kl)szu(kZ) N, _ _ In the pseudocoordinate representation the expression
r e 2kV E—wm,+iy/2 (20) takes the form
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explik,-r) CKMKOo(E)

(n) )= —
JrE2-D==- X e 0 E—keri0
kohokoho/ = _
Ci (E ZKO)CKO)\Okz)\Z(E)
E—ko—i0 a
exp(—iky-r)

x E—k,—i0 akl)\ |0><O|ak2)\
In this case

PIAE) = (& 5,)?0)(0] (@ ) S(E—2ko).

Since we are interested only in the reflected beam, we set
These circumstances permit the use of the

— —00,
asymptotic formuld’

1 explik,z2) exp(ik,z)
2KE—k+i0, . '"* 2k,
explik,z
X 8(K,, — VE?—ki—k?) 2mi F;k 22)
V- Z

X 8(k,+ VEZ—ki—k7).

Here 5(k,k") is a Kronecker delta, and(k—k') is a Dirac
delta function. The structure of formu{21) ensures correct
results following the subsequent limiting transitidf— o

and performance of the operationRp,, with any operator
K. The product of Kronecker deltas

8(Ky,,— VE? =k, —K3,) (ka,, — VE?— K5, —k3,)

can be rewritten by virtue of the equalitids,=k,, and
K1y=Kjpy in the form

O(Kyz,Kaz) 0(Kyz, = E*- klx_ kly)'

Bearing in mind the subsequent limiting transitidh- oo,
we write, in agreement witki21),

2
O(Kyz, = E*— k%x_ k%y)ﬁ T
X 8(kq,+ VE2— ki, —Kj,).

(21)

Now we are in a position to carry out the integration

over E after performing the replacement of variables
2 2 _
—ki,— ki, =t
We then have

dE
p{(r[2—1)= f P (rEl2—1)-—

Z— — Z— —®

ky CEPMM(ky)

=L S i
kitkor, K1z Ki—ko+i0

X CXarokoho( i, — 2kg)

Cgoxokzkz(k )

X k;—ko—i0 a’kl)\ |0><O|a'k1)\2- (22)
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The expressiof22) has a nonintegrable pole laf=k,. This
pole is the feature which was mentioned in Sec. 2.

The appearance of this singularity is caused by the
propagatora&?’a in (20), which describe the evolution of a
photon in the medium. The singularity vanishes, if the com-
plete propagators, which take into account the interaction of
the photon with the medium, are used msteaakf)g As an
acceptable approximation, we replaﬁé by the propaga-
tors of a photon in an infinite mediuth; ra (Ref. 12:

AYE)—~AT(E),
% A+ th a4 i
A(E)—AZ(E),
o] A+ th ~ +
AZ(E) &, |0)= (E k— )“kx|0>-
This replacement leads to the following replacemen{2i?)

as a result:

-1|2

7ph(k ))
2

|(k1_ko+i0)l|2—’( —ko+i

Then
klkocir(ﬁ‘lko)‘O( ky) CZO)\oklM( ky)

_ Sir?[ (ky,— ko)L ,/4]
(kg kgp)?L?

X 8(Kax ,Kox) 3(Kay Koy) | K1} 1Ko o( ko) |2,

5( I(1x rkOX) 5( kly rkOy)

Since we are interested in the diagonal elements of the
density matrix, we sek;=\,. Then formula(22) can be
rewritten for y> vy, in the form (L ,— )

1 (2]t 1)(2j ,+ 1)ky
D(rj2—1)=— = £ :
P12§_!7: ) ZkIEM wﬁwkl Yy

5( klx ' kOx) 5( kly ’ kOy)
X — )
P me O G ko P ko 4

Xy [0)(0l &y Trpf(r[1-1). (23
Because of the presence pand y, in the denominators in
(23), the equalitiek,,= —ky, andk,;=kq do not hold in the
reflected flux. Thus, we have a sharp frequency-angle distri-
bution in the reflected flux with a half-width proportional to

'yph( Ko)

Ky sind,

—CcosY

A19<x< cosv+

where ¥ is the angle of incidence of the beam. A similar
frequency-angle distribution was previously discovéfed

an investigation of the reflection of a one-photon state from a
thermally excited medium. The semiclassical theory of radia-
tion does not predict such a distribution. This distribution
likewise does not appear in calculations based on the Green’s
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function approaclll,7 which provides for a discontinuity in In agreement with formulag) and (25) at z— —«, the
the photon—photon correlators. Thus, the presence of mtegral reflection coefficienR for nMKSy,/y<1 equals
frequency-angle distribution in the direction of specular re- B (n) at A 0

flection is a characteristic consequence of the mutual corre- R_Trplz(r|2—>1)/Tr(a"oxoa"o}‘op )
lation of photons in the reflection process. =TrpO@(r|1-1),

There should be interest in the integral probability of the o
reflection of one photon of polarization i.e., Thus, we return to formul#d), i.e., to the classical Fresnel
formula, which is analytically dependent on the interaction
Trp{P(r[2—1). constant of the field with matter @ 0. Only in calculating
= such an integral characteristic Rscan the photons be con-

sidered mutually independent and can the concept of the re-
¢fractive index of the medium, which is what specifies the
Fresnel formulas, be used. We recall that before integration
over the angled, we had the dependen¢@3), which is not
analytic with respect te, for specifying the frequency-angle

Here we have omitted the summation ower

After the sums in23) vanish because of the presence o
the Kronecker deltas, the summation okgy remains. As
L,—, itis replaced by integration, and fg&> y,, we have

Trp{Y(r|2—1) m(2jm+1) distribution of the photons. The refractive index is insuffi-
Tfp(fz)(f|1—>1) = Zwﬁm cient for describ?ng such a_freguency-gngle distrit_)ution.
The calculation result is different, i< y,,. This con-
Xy, 6, (0m,—Ko)(2],+1) dition can easily be realized in an experiment. Instead of Eq.
o K (25), whenky= w,, , we have the following relation:
1z 1z
Xf 2, .2 - (29 Trp{(rj2—1
o (K= Ko) 2+ 72 (ko) 14 Ky p2(r2—1)  y B 28

© * 7
In the latter integral the vicinity ok,,= —Kkq, is signifi- Treaz(ri=1) " Yonl o)

cant. For this reason we use the expansion Under these conditions the Fresnel formulas are violated, and
reflection is suppressed. In other words, consideration of the
mutual correlation of photons foy<< y,,, leads to inapplica-
bility of the semiclassical theory of radiation for calculating

) o o ] the reflection of resonance radiation even from unexcited
and replace the upper integration limit by infinity. With con- negia as long as the photons are mutually correlated in the
sideration of(18) the expressioii24) is equal to unity. Now  incident flux. In this case the reflection coefficiddbegins

it should be recalled that we calculated the contribution of, depend on the statistical properties of the incident radia-

only the first diagram depicted in Fig. 2. Consideration of thejjon eyen when the interaction of light with the individual

Koz

kl:ko_ ko

( klz+ ka)

other diagrams leads to the following replacement28): atoms of the medium is linear.
VARE The suppression of the reflection of mutually correlated
(kl—ko)2+Tph _>47725§ (ki—ko). photons is subject to experimental testing. The quantum
P structure of the electromagnetic flux in free space can, in

In response to this replacement, the value of the reaiy ~ fact, be different. While the photons in the radiation flux

doubles. As a result, we have from a laser are mutually correlated for the most part, the
fraction of such photons in a flux of black-body radiation is
Trp{D(r[2—1) considerably smaller. Thus, in accordance with form(@a
WZZ' Zo T (29 we should expect a decrease in the reflection coeffidrent

when a thermal source of a incident flux is replaced by a
The two corresponds to the number of photons in the inci{aser source, which can be detected by comparing the critical
dent mode. Since the value pf(r|1—1) atz— — speci-  concentrations of atoms that determined the mutual switch-
fies the probability of the reflection of a photon when there ising between the diffuse and specular types of reflection in
one photon in the original mode¢,\,), the integral result Wood's experimeritwhen thermal and laser sources of inci-
can be interpreted as a consequence of the independent scaént radiation are employed.
tering of the photons. The correlation properties of the pho-
tons are moderated in the integral characteri§igs). For-
mula (25) is formally reminiscent of formul#28) from Ref.
12. In Ref. 12 the medium was assumed to be excited, and————
the scattering processes were, in a certain sense, the reverses
of the processes studied here. The difference by a factor of 2Yu. K. Zemtsov, A. Yu. Sechin, A. N. Starostin, A. G. Leonov, A. A.

is caused by the fact that in Ref. 12 the expression for the g;’d%"(‘lc’é;g]d D. 1. Chekhov, ZhkBp. Teor. Fiz114,135(1998 [JETP

operator.ff/f‘l”z) in a homogeneous space was used as an ap?A. A. Panteleev, V. A. Roslyakov, and A. N. Starostin, Zrksﬁ. Teor.
proximation to calculate the parameters of the radiation re- Fiz. 97, 1777(1990 [Sov. Phys. JETFO, 1003(1990].

flected from the excited medium. Consideration of the finite P"SO'V %ﬁizogg‘éggd&;\és'{lggae]" Zh. Esp. Teor. Fiz58, 1090(1970
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We develop a method for calculating diamagnetic susceptibilities based on higher-order
perturbation theory for the wave function and energy of the excited states of the hydrogen atom
with degeneracy of arbitrary multiplicity. We derive analytical expressions for third-order

matrix elements in the spherical stafasm) with fixed principal quantum number and magnetic
quantum numbem. The formulas for the susceptibilities of doubly degenerate levels are
represented in the form of radical-fractional relationships containing polynomials in the principal
guantum number. We establish the existence of a monotonic interdependence between the
absolute values of susceptibilities of the first three orders. We also present the results of numerical
calculations for the states witl=6 andm=23 mixed by the field. Finally, for Rydberg

states with largen and smallm we detect the existence of a discontinuity in the interdependence
of the susceptibilities at the boundary between the doublet and equidistant parts of the
spectrum of diamagnetic sublevels with opposite parities.1999 American Institute of Physics.
[S1063-776(199)00709-X

1. INTRODUCTION such field strengths for other states of atoms or for the same
levels but at different field strengths. In view of this, a
The study of the interaction between atoms and electromethod that would enable obtaining a closed system of ana-
magnetic fields is an important avenue of research in atomifytical expressions for calculating in a fairly simple manner
physics. The central problem here is the calculation of thehe shift and splitting of the atomic levels in situations inter-
Stark and Zeeman effects in the simplest quantum systengsting from the practical viewpoint would play a major role.
the hydrogen atom. The latest achievements in solving this The special interest in obtaining general formulas for
problems are reflected in review articles and monographelectromagnetic susceptibilities has lately emerged in con-
(see, e.g., Refs. 133Nevertheless, there are still many nection of studies of long-lived highly excited atoms in Ry-
problems to be solved. One such problem is the calculatiodberg states. The enormous number of such states and the
of corrections to the energy of an atom in a magnetic field inunlimited set of external fields that can act on them makes it
higher-order perturbation theory. In contrast to the Stark efimpossible to compile tables that would be complete enough
fect, where all calculations are conveniently done in a parato find the energies of these levels and the corresponding
bolic system of coordinates and where the analytical expredrequencies of the spectral lines. Rydberg states with high
sions for the higher-order corrections in the form of angular moment are almost the same for all atoms, with
polynomials in the parabolic quantum numbers of a levelthe result that the formulas derived for hydrogen can be ap-
were derived more than 20 years dgen far the results that plied to many-electron atoms in highly excited states with
have been obtained for the Zeeman effect are limited to thenagnetic quantum numbens> 3.
first- and second-order perturbations in the diamagnetic In a broad range of magnetic-field strengths encountered
interaction and to numerical calculations of higher-order in practice, the theory of perturbations in the atom—field in-
correction§”’ or of the exact energy valui&Sonly for spe- teraction proves to be sufficient for calculating the shift of
cific levels(the ground level and two to three excited leyels the energy of bound leveléRydberg levels included An
The real reason for such a situation is the fact that the comanalysis of the nonlinear Zeeman effect shows that the
plete set of constants of motion for an atom in an electrigperturbation-theory series are asymptotic, in which the coef-
field can be represented by parabolic quantum numberdicients, the diamagnetic susceptibilities, alternate in sign and
which are also constants of motion for a free atom, while independ strongly on the structure of the unperturbed state.
a magnetic field the set of constants of motion can be founé&nowing such susceptibilities makes it possible not only to
only approximately, to second order in the diamagneticnumerically calculate the energy values but also to determine
interaction!® Hence calculations of the third- and higher- the limits and errors of such calculations for a fixed value of
order corrections for multiply degenerate excited states ofhe field strength. Because the signs of the asymptotic series
hydrogen are fraught with substantial difficulties. alternate, the coefficients of the series enable determining the
Thus, most of the data on the interaction of an atom andipper and lower limits of the interval inside which the exact
a magnetic field exists in the literature in the form of tablesvalue of the energy of the atom in the field lies. The larger
of numerical values of the energies of the hydrogenlike levithe number of the coefficients of the series known, the closer
els in fields with a fixed streng'*and cannot be used at the upper and lower limits are to each other and the more

1063-7761/99/89(9)/10/$15.00 444 © 1999 American Institute of Physics
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accurate is the procedure of finding the energy by2. PERTURBATION THEORY FOR THE DEGENERATE
perturbation-theory techniques. Thus, the importance of cal-kEVELS OF HYDROGEN IN A MAGNETIC FIELD
culating higher-order corrections in the perturbation- theory
setting is related to the possibility of using these correction?ion
not only to estimate the shift and splitting of the atomic

levels k-)u.t also to monitor the accuracy of other methods 0Eumbem. The interaction between the atomic moment and a
determining the Zeeman energy of atoms.

. : : - agnetic field splits each state into sublevels with fixed mag-
Substantial progress in calculating the coefficients otm g P g

. ) . netic quantum numbens. The magnetic quantum number
perturbation-theory series was achieved byrerget al.,’ . g .

_ - ) o and the parityP=(—1)""P (p=0 or 1) are constants of
who calculated the first 80 diamagnetic susceptibilities for,, o1 in the magnetic field. Hence the operator of the mag-
the lower levels of hydrogefwith the principal quantum

T X netodipole interaction Vy,=—m-B, wherem=—(I+2s)/2
numbemn=3). They used these susceptibilities to build Padqs the magnetic momerts is the spin moment of the elec-

approximants, which enabled them to sum the series for thop), can be incorporated into the unperturbed Hamiltonian,
diamagnetic energy in a range of magnetic-field strengths ug;ith the result that we can limit ourselves to the subspace of

applied to higher levelsand this is especially true of Ryd- the diamagnetic interaction

berg statesand the significant technical difficulties in using

The main difficulty in calculating higher-order correc-
s to the energy of hydrogenlike atoms stems from the
2-fold degeneracy of a state with a given principal quantum

2 2
their method for high states only emphasize the need for a V(r)= (BXr) _ B—rz[l—Czo(e ©)] (1)
method of obtaining general formulas for higher-order sus- 8 12 ’
ceptibilities in the form of functions of the principal and 5¢ the perturbation. Her€,( 6, ) = VAm/5Y,(8,¢) is a
magnetic quantum numbers. modified spherical function.

In the present paper we develop a method for calculating  The wave function of the a degenerate state of the atom
higher-order susceptibilities. The method is based on the su¢, the field can be writtel?

cessive solution of a system of equations for the wave func- |

tion and energy of a degenerate state in the corresponding _ iﬁx

perturbation-theory orderSec. 2. In Sec. 3 we derive ana- YamelT) | 2 Pnim(T)

lytical expressions for the matrix elements of the

diamagnetic-interaction operator in the form of polynomials _G'E(”,)V(rlﬂ‘ﬁnpm(r/»’ 2)
in the principal quantum numben, the orbital quantum where summation is over all states,, of the same parity
numberl, and the magnetic quantum numiverof a degen-  from the givennm-shell, and

erate hydrogenlike staf@lm). The expressions are used to

I max ’
calculate, both analytically and numerically, the third-order GL(r.r")=Ge(r.r')— § @nim(N) @him(r") 3
magnetic susceptibility 'y, . The parametek labels the BV B 1= p E,—E

Zeeman states that arise as a result of the mixing, by the

diamagnetic interaction, of states with different angular mo-> the reduced Green's function. The total Green’s function

mental =m+p, m+p+2...) hax@nd conserve only the mag- dGEl(r’][,) is_ th‘? rs]olution Of. a Schirbnger equation with a
netic quantum numben and the parityP=(—1)™"P; here elta-function inhomogeneity,
[ max=N—2 (or | ho=n—1) if the parities ofl andn are the [A(r)—E]Gg(r,r)=8(r—r"), (4)
same(or opposite. For the four lowest components in the set
of Zeeman states with a fixed (nondegenerate stajemore
precisely,n=m+ 1 of parityP=(—1)", n=m+ 3 of parity
P=(—1)"*"! andn=m-+2 of both parities, the susceptibil-
ity is determined only by the diagonal matrix elemétite Enim(N @Fm(r")
corresponding expressions fgfS) can be found in Ref. 12 GE(r,r’)=Z —E_E ()

In Sec. 4 we give the analytical expressions for third- mm "
order diamagnetic susceptibilities and for the eight compo-  Thus, the first term on the right-hand side of E8),
nents that follow on the energy scale with=-m+3 and which is a linear combination of all states of a degenerate
P=(—1)", n=m+4 and P==*1, and n=m+5 and base with givennmp, is orthogonal to the second term,
P=(—1)™"1 which are doubly degeneratim the diamag- Which allows for the contribution of states from subshells
netic interactioh states with fixech, m, andP. The calcu-  With other principal quantum numbers #n. By iteratings
lation of susceptibilities of states whose degeneracy multiwe can represent the wave functi¢®) in the form of a
plicity is three or larger is discussed in Sec. 5. The numericaBrillouin—Wigner series,
data obtained for states with largeand smallm exhibit a I max o
discontinuity in the interdependence of the susceptibilities, Pamp(1) = 2 a E [—Ge(r,r VI ) @nim(r’)),
which develops at the boundary between the doublet and I=m+p ~ s=0
split diamagnetic states of opposite parities, and a difference ®)
in the relative rates of their monotonic increase in the twowhere the Green's function depends on the exact engrgy
characteristic parts of the diamagnetic spectra. Substituting this series into the Scdioger equation and

and can be written as a spectral expansion over the complete
set of eigenfunctions of the unperturbed atfime continu-
ous spectrum included
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projecting the result on the states of the unperturbed spherperturbation-theory order, while the theory of perturbations
cal base with fixed principaln) and magneticrf) quantum  for matrices, which is used in the first approach, requires a
numbers, we arrive at a system of algebraic equations for theolume of calculations proportional to the square of this

coefficientsa, of the linear combination: number, i.e.,K# in the second order, to the cube of this
e number, i.e.,K®, in the third order, etc., wher=(l yax
(E,—E)a + 2 a|r<<pn|m(r)|\7V(r,r’)|<pn|rm(r’)>=0, —m—p)/2+ 1 is the number of dimensions of the state space
I'=m+p in which the eigenvalue of the operat(8) is sought. Fur-
thermore, the approach in which the diamagnetic suscepti-
l=m+p,....lmax; (7 bilities and the expansion coefficients [{t2) are found suc-
where cessively also proves to be useful in calculations of the

magnetic-field dependent corrections not only for the energy

but also for the wave functions. Here the first-order suscep-

tibility x{* and the zeroth-order coefficiera§”(\) are the

B , , R eigenvalues and eigenvectors of the matmi#,). The dis-
=V(N)[1+Ge(r,r)V(r] (8) crete parametex=1,2,..,K, which we call the diamagnetic

is an integral operator of the atom—field interaction that in-quantum number, labels the states of the atom in the field

corporates all perturbation-theory orders\itr). To obtain  obtained as a result of mixing and rearrangement oKtbef

the Rayleigh—Schuiinger series for the energy, we must the degenerate states of a free atom. The very fact that the

also expand the Green’s function (8) in a power series in quantities in the system of equatiof® can be represented

B2 by using the relationship by the serieg11) and(12) makes it possible to remove the

factor B2 from (7) in any orderN.

The quadratic diamagnetic susceptibiljﬁf) appears in
the system of equatior(@) in the second order iB2. Sub-
stituting (11) and(12) in this system, we arrive at a system of
equations for the coefficieneél) that depends on the eigen-
value X§\1) and the corresponding eigenvector composed of
the coefficientaff))()\) (both the eigenvalue and the eigen-

w(r.r’><E>=V(r>s§O [—Ge(r,r)V(r')]®

[

Ge(r,r')= > [GE (r,r)INFYE-E)N. (9)
N=0 n

By expanding in this manner the operat8y in powers of
V(r), we can find the corresponding expansion for the ma
trix elementW,;, of the system of linear equatior):

Wi ={@nim(D) W, ") | @nirm(r’)). vector was found in the previous stage
Further calculations of the energy can be done in two Ways: o
(&N} _by expanding in a powers of the parameBsr the 2 af})()\)(wﬁlr)—X(xl)fSu')
determinant of the secular equation for the syst&m I <m+p
D(E)=det||a,.(E)[=0, (10 'max
_ (0) (2)s w2
= J(N Sy 7). 13
whose elementa,(E) = (E,,— E) 8, + W, are represented |,=§m:+p " ()0OAT o = wiis) (13
by the series
o X(N) All the quantities on the right-hand side (f3) are known
AE=E-E,=— X B, except for the susceptibility(*), which can easily be found
N=1 (2N)! by multiplying (13) into a{®* (\). By summing the resulting
% (N) equations over all we annihilate the left-hand side, since
W =— >, . B2N, (11 xY is an eigenvalue corresponding to the eigenvector
N=1 (2N)! {a{®(\)} of the matrixw{") . Allowing for the completeness

. . o iti (0) 2_ i i
where y(N andw™ are the diamagnetic susceptibifiyand condition =|a{*’(\)|*=1 for the basis, we arrive at an ex-

the diamagnetic matrix element of théth order that are Pression for the second-order susceptibility:

independent of the field strengBy and |
(2) by expandingtogether with the energy and the ma- §x )

. . . o (2) = (0) (0)
trix elemeny the coefficients of the linear combination in the X\ a " (May (Mw, (14

system of equation€?) in a power series, I =m+p
* N which is the second-order diagonal matrix elem@in the
a=> a™B™, (12)  diamagnetic states with a fixedand is written in the form

of a linear combination of the wave function of the spherical

and by solving the resulting equations for the corrections tdasis, which diagonalizes the diamagnetic Hamiltor{iBn

the coefficients in each order &%, which are then used to In the third order inB?, the coefficientsafz) of (12

determine the energy. become the unknown quantities of the system of algebraic
We will employ the second approach, which proves toequationg7). The equations foafz) are similar to(13). Us-

be easier in practical applications, since the volume of caling the same method as we did in deriving E&4), we

culations in this approach is proportional to the number ofannihilate the left-hand side of this system and arrive at an

the matrix elements(1l), i.e., K?, irrespective of the expression for the third-order susceptibiltfy:
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I max The calculation of second-order diamagnetic matrix ele-
xF= > [@*naPoowPo ments has also been done via a Sturm expansion of the re-
LI"=m+p duced Green’s function in the basis of states with fixed
1 2 4,15 . . . . .
+a|(0)*()\)a|(r)(7\)w|(|r)]- (15) moment$*1® without using an effective Hamiltonian. By

separating the orientational dependence in the matrix ele-
The first term on the right-ha(rg)()j side contains a quadratignentsw(? via integration over the angular variables we can
cczgr)lblnatlor? of the coeff|C|emz§|1) and t(hzt)a matrix elements  conveniently express these elements in terms of their irreduc-
w7 (X) (which, in contrast tav;” andw;;’, depend on the jple parts as follows:

susceptibilityy"). The second term is a bilinear form of the

2_
coefficientsa(®) and a{") of the first and second order, re- w(P=p0+ Sm——1(+1) (@)
spectively; the coefficients of this bilinear form are the ma- " l(21-1) "
; (2)
trix elementsw;j,. _ . 3(12+ 21 —5m?) (12— 5m?— 1) — 10m?(4m?— 1)
Thus, the transition from second to third order requires +

two operators: 1(21-1)(21-2)(21-3)

(1) the solution of the system of equatiofig in the x B, (18
second order i82, which leads to the inhomogeneous equa-
tion (13) for a(Y(\); and @ _ \/(I+1—m)2(l+1+m)2(n—l—2)2(n+l+1)2
(2) the calculation of third-order matrix elements in the "1 +2~ ~ (21—1)%(21+1)(21 +3)%(21 +5) (21 + 7)?
diamagnetic interaction/,v|(|3,)(>\), which contain a contribu- 6
tion from the corrections to the second-order matrix elements X " s[ 7 +m2y2), (19)
due to the expansio(®) of the Green’s function. 3z

+1-m)(I+1+m)(n—=1—=4)(n+1+1),

(
(2) —
3. DIAMAGNETIC MATRIX ELEMENTS OF A HYDROGENLIKE Vil +4 \/ (21+1)(21+3)%(21+5)2(21 + 7)2(21 + 9)
ATOM

205°
Calculating the diamagnetic interaction energy in degen- XW' (20

erate states involves diagonalizing the matrix of the operator

(1) in the states of the shell of the hydrogenlike atom withThe irreducible partg,, and y, can be expressed in terms
given principal magnetic number and magnetic quantum of the second-order radial matrix elements of the OpEITél;OF
numberm. In first order such diagonalization has been car-i.e., <n||r29|(|n,)(r,r’)r’2|n|’>, which can be calculated ana-
ried out both in the spherical basis of the stdtedsn) and in  Iytically by using a Sturm expansion of the Coulomb Green'’s

the basis with fixed parabolic quantum numbésse, e.g., function?1*
Ref. 3. In the spherical basis, the expressions for the first- o7¢ o7y
order matrix elements are w il — |l ——
n\2 12+1—1+m? gi"(r r’)=E > . : .
M | | T rBn241— ’ n k7, (k+21+1)! K+l+1—n
W), (22) (2|_1)(2|+3)[5n +1-3I(1+1)], n
(16)
5/ n)\2 n,! § E yA
W|(|1+)2:W|(«1+)2,|:§(§) +(N:I)!n+ 2 | T Tl
(14 1—m),(1 + 1+ m)p(n—1—2),(n+1+1),] 2 df l(g)
n !
(21+1)(21+3)%(21+5) - A I(2Zr)
nr
a7 r n
Here we have used the standard Pochhammer syhibol: df (E)
(c)y=c(c+1)-+(c+n—1). 2zr\ M n
Delande and Gdff were the first to calculate the second- ol )" dr’ (22)

order matrix elements. They used an effective Hamiltonian ) ]
(for which they wrote an explicit formujathat took into ~ Due to the orthogonality of the Sturm function
account thg additional symmetry of hydrogenlike statesina  f, (x)=e VA2 (x) (22)
magnetic field. Two years later Grozdanov and Tayldie ) .
agonalized this Hamiltonian in a basis of states with fixed@nd the radial wave function
parabolic quantum numbers. The corrections to the energy 27312 ni 27r
for nondegenerate states were found to coincide with the Ry (r)=—— \/; nl

. . ) n (n+1)r -
corresponding diagonal matrix elements. For doubly degen-
erate states, the expression for the diamagnetic energy cavhich follows from the orthogonality of the Laguerre poly-
also be found analytically by using the roots of the corre-nomialsL,(x) (see Ref. 1), the Sturm serie$21) is trun-
sponding quadratic equation. cated. In particular,

= (23
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27r ) 27r
P )| P
n\% =
:(i) f e—XX2|+4L§|+1(X)Lil+1(x)dx

0
n\S(k+2l+1)!
=l57] 7 {7 (K= 2)3d0i-atB(k+1)

X (K=1)8 12— 3K[5k(K+ 2l + 1)+ 4l (1 +1)

r

+ 2181+ [ (K+ 21 +2) 5+ 9K(k+ 21 +2) ,+9(k
—1),(k+21+2)+ (k—2)3] 8 — 3(k+ 21 +2)
X[5k(K+ 21 +3)+ 412+ 14 + 12] 81y 1 + 6(k+|
+2)(K+ 21 +2) 58 a— (K+ 21 +2) 3841 3}

(24)

where 6,/ is the Kronecker delta.
Thus, the irreducible parts ifl8)—(20) can be repre-

sented by polynomials of the principal and orbital quantum

numberst*

né
B =54qze (5N 97n* =33 (1+ 1) + 365] — 12(211*

+423+1792+ 158 + 60)}, (25
In®
ﬁﬁ):m{nz[sow— 1008 (1 +1)+2000]

+3(1794+350°%+5232+349 - 480}, (26

(1 —1)n®
(4) _
P = 12@ 21 +3)(21+5)

—185]—10013(1 +2) + 34212+ 4424 — 2160,

I41n%+22(1+1)

(27

yP=n?[429(1+3)—802]+2373(1 +6) + 31457
+3036 — 2484, (28)
Y@ =5(41n%+ 3712+ 111 - 75). (29

These expressions simplify substantially wHesind m take
specific numerical value®r are expressed in terms of.
The solution of the system of equatiof® also simplifies if

V. D. Ovsyannikov and K. V. Khalyov

(12) that determine their dependence on the amplitBdaf

the magnetic field. To fine{*)(\) it is enough to solve the
system of equatioil3) depending on the matricevq(,l,) and
WI(IZ,). Since the rank of the matrix consisting of the coeffi-
cients of the left-hand side of the systdiiB) is one unit
smaller than the number of unknowns, to solve the system
we must use the normalization condition for m%)()\):

lmax

|=%:+p a®@* (n)afP(n)=0.

What sets the matri>w|(,3,) apart from the first- and

second-order matrices is its dependencq&r’l, the eigen-
value of the matri>w|(|1,). After calculating the integrals over

the angular variables, we see that the matrix elemmﬁ%
can be expressed in terms of linear combinations of the radial

matrix elementsplz;‘l‘lzylz;,,=(nl|rzg|(;‘)rqg|(2)r2|nl’> and the

first-order susceptibility ()
45 .
wiP(\) =~ Z{Qi—2,m%|2—2,mp|2;$32,|—2;|

2 222 3 222
T20) 1 omPi =2 T O mP
2 222 2 222
20 m?’t PG 201 T Qv om? L Pl S 20 4 24
Oy, 202 2 202
+ 20\ P 512+ O R mPNA

+ PPt 2420 1h (30)

5
3 _ o2 222 2 222
WI(H)—Z()\)__Z~/)I,m{~/l—2,mpl;l—2,l;l+2+Ql,mpl;l,l;l-%—z

S 222 2 222
T @+ 2mPii i+ 20427 L mPi 20004 2
2 222

O omPi 20420142

2 222 O -~ 202
+%I+2,mpl;l+2,l+4;l+2+2X§\ )[Ql,mp|;|,|;|+2

+ D 2mPiis2r 20421 (3D
@ P
Wit a(M) == A nA+2m

XA+ 2mPl55 20+ 20+ 420 mPLA A 4 20+ 4

+ O amPri 22141 +4

+2x PP 24 242t (32

K is moderate. The corresponding analytical expressions for 4

nondegeneratek(=1) and doubly degenerat& & 2) states

3 . . 222
Wi g(N)=— Z-‘/ﬁ,m’/)wz,m"/)l camPl a4 +e

can be found in Refs. 14 and 15. Note that using the spheri-
cal basis has an important advantage over using the parabolic
basis, since the operat@t) is of even parity and hence the
wave functiongnIim), which have a well-defined parity, au-
tomatically take into account the symmetry of the atom in a
magnetic field. This feature of diamagnetic states was prob-
ably the reason why Grozdanov and Taylagho used an
effective Hamiltonian in the parabolic basis, examined only|, ihese expressions, the factafs,
three out of the four sets of doubly degenerate states of thg o the angular variables: ’
n-shell.

When calculating the third-order energy, one must take
into account the corrections to the expansion coefficients in

_ 25n'%(902n*+881%+ 616 +7125
h 2177191+ 3/2)5

\/(n—I—G)G(n+I+1)6(I +1-m)g(l+1+m)g
. 2+ D2+ 13 '

(33
andZ ., are integrals

_ _1| Lc iy [2+1+m?—1
-/I,m_§< m| 20(0,(,0)| m>_ (2|_1)(2|+3)’
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TABLE |. Coefficients of the ponnomiaIE(Vql)vyzYkzzcss,nsls' that determine the diagonak+0) radial matrix elementgf:, ., according to(35).

P2 o = P&, P& P, = P,
Cao 4510 4510 4510 4510 4510 0 0 0
Cez 7346 —5066 —6066 —5066 7346 0 0 0
Ce1 —126818 —60736 —6066 50604 141510 0 0 0
Ceo 261905 231967 204882 287637 396069 1804 1804 1804
Cas —13958 —3654 966 —3654 —13958 0 0 0
Cas 108832 95478 1932 —110094 —164664 0 0 0
Ca 113737 —270404 —200658 —578762 —296507 4424 —1344 4424
Ca —1405413 —608068 —201624 —233790 1250559 —39368 —1344 48216
Cao 1455860 1154248 944994 1392780 2852220 55098 37528 98890
Ca6 1150 2930 530 2930 1550 0 0 0
Cas 28110 —36300 1590 53880 —18810 0 0 0
Cas —428465 80495 22070 305945 —545765 —4340 —420 —4340
Cas 1409120 557700 41490 185880  —3373080 16600 -840 —33960
Ca —809656 —1025,439 —594154 -1808619 — 7865656 44760 —20700 —31080
o —1563937 —766264 —614634 —2436654 —6127845 —181100 —20280 203460
Ca0 1039645 771363 654758 74213 —70219 111626 49516 316546
Cos 840 1280 60 1280 840 0 0 0
Co7 —14940 -1130 240 11370 21660 0 0 0
Cos 87055 —12490 3802 31260 215155 —1600 —40 -1600
Cos —138135 —86480 10566 106950 1021245 29920 -120 —29520
Coa —329135 215159 34108 589359 2249068  —88570 -4012 -212170
Cos 1107453 262372 50886 1324494 1268409 158340  —7824 —743820
Coz —651797 —345051 183410 895807  —2924513 —87274 —19420 -1316914
Co1 —175392 —190332 —-207132 —50640 —4442784 -12912 —15528 -1100136
Coo 31680 33912 36360 —91620 —1640340 2592 3024 —340200
1 (3) The radial elements obey the symmetry relationship
Zm=3(IM[1=Cal0,)[I +2m) pX? ~,=pi% ., which corresponds to the symmetry of
102, 20

the matrix,wl(ls, ()\)=w|(,3|)(>\). This makes it possible to rep-

(34) resent all finite elements by the four general expressions
(30—(33).
. . . 4) F I trix el ts th totip>1 and
Only the matrix eIementwl(,S,)()\) with |”=1=6, which (4) For all ma rix elemen 5222 © asymp Otfg an

. , : n>I) dependence is the samg|”, .|, ~2255:1°9576 and
are farthest from the diagonal of the matrix, are independent,, , W H1las
of x{) and can be written in the closed forf83). The ma-  Pj;, i, ;;»~451n"/288.
trix elementSfo’,)(A) with ||’ —I|<4 depend on((f) and are These properties make it possible to write a general ex-
written in (30)—(32) in the form of linear combinations of the pression for the matrix elements (80)—(33):

radial matrix elements’,)lz;?i,z;l,, whereq=0 or 2. These

[(I+1)2=m?][(1 +2)2—m?]
~ V 421+1)(21+3)%21+5)

8+q

n

quantities, as well as the second-order matrix elements, can Pf+ vy vyl k= 1157874 VIn=T=K)p(n+1+1),
be calculated analytically via the Sturm expangi2d of the

Green’s function and the property of orthogonality of the ><P(Vql)'V2'k(n,I), (35

Sturm functiondsee Eq(24)].

We note the following features in the dependence otvhere theP(?  (n,l) are (6+q—k)-degree polynomials
these quantities on the principal and orbital quantum numin the principal and orbital quantum numbers:
bers that manifest themselves in the above analytical expres-

. S S!
sions: /
(a) — s|s
(1) All matrix elements contain the same common factor Pvmik(n'l) SZO szo G 30
8+q -
n°ra,

with s taking only even values from zero ®=6+q—K,
and s’ running through all integral value®ven and odd
from zero toS'=6+q—k—s. Thus, the number of terms
(and hence the number of the coefficienig) in the poly-

o _ _ _ 1 nomial is[4+ (q—k)/2]%. The numerical values of the co-
Piii, i, :1+k (two with k=2 and one wittk=4) contain radi-  efficients ¢,y are listed in Tables I-Ill. Polynomials are
cal factors of the product of two Pochhammer symbols withgrouped in the tables by the valuestofn accordance with
the index equal td, similar to the corresponding factors in the expressiong30)—(32) for the matrix elementsw(®),
(17), (19), (20), and(33). where they appear. Table | lists 25 coefficients for each of

(2) The seven diagonal elememf?, ., (four of these
are pairwise equgland the three elements;- | ., do not
contain radicals. The off-diagonal elemerpr{%‘zlfv,z;uk (six
with k=2, three with k=4, and one withk=6) and



450

JETP 89 (3), September 1999

V. D. Ovsyannikov and K. V. Khalyov

TABLE IlI. Coefficients of the polynomial§>ffi)y2|k that determine the off-diagonak€ 2) radial matrix elementp,z;‘,‘iyl“uz:I+2 according to(35).

Csy P02 P32 P§3. P§32 P§3, P§a> Pi32 P,

Ceo 4510 4510 4510 4510 4510 4510 0 0
Cs2 9680 930 —3732 —5820 930 9680 0 0

Cyy —97800 —50880 —11196 —17460 56460 155880 0 0
Cyo 144320 1230047.5 193063 188365 284057.5 524840 1804 1804
Coy —8930 —1270 —1650 —210 —1270 —8930 0 0

Cy3 36020 7068 —9900 —1260 —22308 —143180 0 0

Co 128820 49369 —100140 —252060 —82823 —677580 1380 1380

Co —504230 —338505 —255870 —750510 306723 —659830 —11988 20268

Cyo 315990 256130.5 661135 282865 1422260.5 1292190 15884 64268
Cos —940 —210 —280 —5680 —210 —940 0 0

Cos 21340 924 —2520 —51120 —4704 —38260 0 0

Coq —120620 —2658.5 —8395 —80665 —44868.5 —567620 200 200

Co3 209780 8697 —12570 282810 —237159 —4085420 —2064 4464

Co2 —12210 80199.5 —145543 617135 —642262.5 —15317610 5320 34696

Co1 —156510 —170328 —414084 111360 —550812 —28620990 —13560 122808

Coo 30780 332976 107172 —99540 437976 —20914740 3024 163512

the P(Vz)’VZ’O(n,I) polynomials and 16 coefficients for each of

For states withn=m+3 and p=0, n=m+4 and

the P>, «(n.1) polynomials, Table Il lists 16 coefficients P=0.1, andn=m+5 andp=1 (doubly degenerate stajes

for each of theP{?), (n,I) polynomials and 9 for each of
the P(V‘i)’VZ’Z(n,I) polynomials, and Table Il lists 9 coeffi-
cients for each of theP(fl)’VzA(n,l) polynomials and 4 for

each of the P(z(,)z),zt(”:') polynomials. The polynomial
P346(n,1) is written explicitly in (33).
The calculations of the matrix element35) and the

for which the diamagnetic matrix is 2-by-2, we can also de-
rive analytical formulas for the susceptibility in a form that
contains square roots of polynomials constructed from the
matrix elementg16) and (17), (18) and (19), and (30) and
(31). All such expressions fox™™) can represented in the
general form

2
polynomial factors(36) representing these elements were Xglr%piz—%[Q(Zmp)(n)i \/Rz(m'm(n)], (37
done by standard procedures used in transforming polyno-

mial expressiongfactorization and collecting like terms 6 R(MP) ()

which can employed through the use of computer programs X%Zr%pi: 6{ E{“vp)(n)i“—], (39
such as Maple or Mathematica. 16z VRSP (n)

4. SUSCEPTIBILITIES OF DOUBLY DEGENERATE STATES

For the stategnmp) with n=m+1 andp=0, n=m
+2 andp=0,1, andn=m+3 andp=1 (“nondegenerate”
state$, the matrixw

+:_ (mvp) n i
Xnmp, 64210[(26 ( ) [Rzm,p (n)]3/

; (39

whereQ{™P (n) andR{™P(n) arek-degree polynomials in
the principal quantum number. The explicit expressions

consists of one element, which de- ¢, e nolynomials of the four doublet states determined by

termines the corresponding susceptibility. Thus, by substitutgpeciﬁC sets of the quantum numbensand p are listed in

ing the corresponding values bfandm in (16), (18), and
(30) we have working analytical expressions fgf") of
these states up to the third order inclusive, formulas th
coincide with those known from the literatut

TABLE IIl. Coefficients of the polynomialsP!?
off-diagonal k=4) radial matrix elementpZ¥
vy

ok

T+,

é,12,15

that determine the
1+4 according to

Table IV. The coefficients of the leading powers of the poly-
nomials are the same for all four sets and increases with the
aaegree of the polynomial. We also note the same order in
which the signs alternate: the two leading powergirare
positive and the signs alternate for the lower powers down;
for R the signs of any two neighboring terms are opposite.
The formulas for they® and x(®) constructed from the
polynomialsQS™P(n), R{™P(n), Q{™P(n), andR{™P(n)

35).

i coincide with those known from the literatuté?

Csy P4 P, PE)4 P4 The explicit expressions for the polynomial™" (n)

Cao 4510 4510 4510 0 and R{™P(n) reveal the general properties of third-order
Coo 2574 -514 2574 0 diamagnetic energy. In particular, the dependencg®fof

Ca1 —31476 —2570 57216 0 doubly degenerate levels on the principal quantum number
220 45;’?2 96:(‘)55 267161962 1884 has the same asymptotic structure as that of nondegenerate
o 435a 500 654 0 statesl,z'so that forn>1 the leading term of the asymptotic
Coz 15493 —3299 97903 176 expansion,

Cor ~43015 ~79495 580995 880 3

Coo 10170 27405 1226820 11610 AE®~ = 166 (40)
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TABLE IV. Polynomials Q{™P(n) and R{™P(n) that determine the dia-
magnetic susceptibilitie@7)—(39) of doubly degenerate states with fixed
m, andp.

m,p Polynomial

Q,=n?+3n-7

R,=16n2—48n+41

Q,=12n*+117%— 3152+ 59— 714
R,=48*—1776n°+394°— 647+ 4734
Qp=21m°%+3915°—8631n*+ 32871°— 69750?
+7681— 65736

Rg=237317%— 1547904 "+ 6033408°— 18774360°
+43218888*— 68241351°+ 728347022 — 4997076
+17036568

Q,=n?+2n-11

R,=16n?—88n+136

Q,=12n*+96n%— 488+ 119 — 2100
R,=48*—296&°%+ 887M?— 1996+ 23880
Qe=216n°+3366°— 174081+ 6123814177212
+3020161— 350064

Rg=237310%— 295417+ 17745808°— 73238368°
+234785744%—567694784°+ 9590843362
—1034609184+ 557701488

Q,=n?+6n-19

R,=16n2—40n+40

Q,=12n*+216°—84M?+ 19200 — 3180
R,=48M*—176&°+ 436M2— 7624 + 7656
Qg=21m°%+707H5— 27408+ 1023061°— 283860
+43507— 476684

Rg=237317%— 1173568+ 3714448°—1152784@°
+31965008*— 65148608°+ 933018082 — 84091488
+39910896

Q,=n?+5n—27

R,=16n?—80n+ 145

Q,=12n*+195°— 11412+ 3295 — 7182
R,=480*—296(M°+ 1044%°— 28835 + 43578
Qe=216°+652m:°— 4330%*+ 17772H°%— 6007542
+1257900— 1789128

Rg=237310%— 25788407 + 14262784°— 610893201°
+243111464%—794683916°%+ 180181901A
—2490302346+ 1689045624

proves to be the same for all sublevels of a hydrogenlike
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The third-order correction in this relationship makes obvi-
ous, in particular, the asymptotic nature of the perturbation-
theory series for the diamagnetic energy: the asymptotic fac-
tor for this correction is three times larger than the similar
factor for the second order correction, which in turn coin-
cides with the factor for the first-order correction.

Due to this asymptotic nature, the last term in the series
that is taken into account determines the accuracy with
which perturbation theory approximates the true energy
vaIueEﬁﬁf;(B) and makes it possible to determine the range
of applicability of the corrections of the previous orders. The
alternation in the signs of the series allows us to find the
upper and lower bounds on the exact energy value, which
meet the condition

EGN.(B)<EZa(B)<EZNLM(B), (43
where
S X(k)
Egsg“p(B):En—kgl Z”T’“!““B” (44)

is the energy value obtained sth-order perturbation theory.
The binding energyE,, incorporates the self-energy of the
free atom and the paramagnetic enerdyp,=B(m
+2mg)/2.

Table V lists the numerical values of the diamagnetic
susceptibilities of the degenerate hydrogen states with
n<6. The values of the parametkrare selected in accor-
dance with the absolute values of the susceptibilif€s:
the minimum value ofx*)| corresponds ta =1, and as we
move to each next state jf*) the value of\ increases by
one unit, so that/}{"|<[xP|<...<[x&|. The data in
Table V together with the data on the nondegenerate sublev-
els of the samae-shells constitute the complete set of data on
the Zeeman effect for the first six levels of a hydrogenlike
atom to within corrections of ordeB® inclusive.

Note the rigorous correlation between the absolute val-

shell with fixed principal quantum number and projection of yes of the susceptibilities of the diamagnetic sublevels: the

angular momentum, froom=n—>5 tom=n—1. The overall

larger values of(? andx(®) correspond to states with larger

shift is accompanied by a splitting into sublevels, determineq,5es ofy®, i.e., forA>\" we haVe|X(xN)|>|X(ﬁ)| for N

by the terms in polynomial39) that follow the leading term.

5. RESULTS OF NUMERICAL CALCULATIONS AND A
DISCUSSION

=1,2,3. The maximum value of the susceptibility for a given
n corresponds to one of the states with=0 (in Table V
these values are printed in boldface typetier4,5,6). Here

the difference between the maximum and minimum absolute
values of the susceptibility for states with a giveincreases

The analytical expressions for the susceptibilities of nonwith n and with the perturbation-theory orddrand follows
degenerate and doubly degenerate diamagnetic state withtlee approximate relationshify i Xl ~ 2" *(n—m
fixed n make it possible to establish the asymptotic behavior—p).

(for n>1) common to all the sublevels:

4 10
NC oo 8N
nma 422!

135,16
8210 .
(41

This yields a relationship between the binding endggyand
the diamagnetic corrections of the first three orders:

3
Xﬁr%r—

Xnmxwﬁ!

The data in Table V can be used to find the limits of
applicability (in the magnetic-field strengthof specific
perturbation-theory orders in calculations of the energy of an
atom in a magnetic field. It occurs that the limit of applica-
bility for first-order diamagnetic correctionB,, is approxi-
mately twice the limit for the second ordeB,, i.e.,
B,>B,, as it should be for an asymptotic series.
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TABLE V. Diamagnetic susceptibilities of the degenerate states of hydro4s much closer to the exact value than that in the first order
gen withn=6. (provided the perturbation-theory does not break down
nmp —x® e VO ' All d|amagn§t|c corrections up to the third order inclu-
sive calculated in Ref. 7 agree with our data except for the

3001 1.0341) 2.4434) 5.3158) e ; ; _
2002 39160 1.9185) 71659) thlrd .order corrections for the dt?ubly degenerate linear com
4011 2.6701) 2.7785) 2.60210) bination of the 3 and 3 levels: both the smaller and the
4012 7.7300) 1.8096) 2.71711) larger of the two values attributed by Yéberget al.” to the
4001 3.7361) 8.1185) 1.03511) 3s and 3 states, respectively, yield absolute values of the
4002 1.30€2) 3.2996) 6.14311) susceptibilityy(® that are smaller than the values in Table V
4101 4.3010) 5.6235) 6.48710) b imately 10%
4102 1.25(2) 3.1216) 5.46311) y approximately 1U70. _ _
5001 5.6681) 2.1416) 6.36811) The laws governing the interdependence of the diamag-
5002 1.3782) 1.0237) 4.86312) netic susceptibilities, noted earlier on the basis of the data of
gg(l)i ggggi i-gggg ggiﬁg Table V, generally remain valid for states with large values
012 2:19()2) 1:9547) 1:07113) of n (Rydberg st.ate)s where there is also co'rrelat|on b.e—”
5111 8.8761) 3.4356) 1.22012) tween the numerical values of the diamagnetic susceptibili-
5112 2.11») 1.8367) 1.00713) ties of the first, second, and third orders. Everywhere except
5101 1.28%2) 9.5936) 4.45812) for the boundary between the doublet pédegenerate states
5102 3.21%) 2.9487) 1.95413 of opposite parity whose susceptibilities coincides in all
5201 1.17€) 5.8616) 2.49412) three perturbation-theory ordérand the split partthe nu-
5202 2.9480) 2.6407) 1.71913) ep y pitp
6011 1.04%2) 1.2547) 1.01213 merical values of the even and odd states altejnattehe
6012 2.3002) 4.1347) 5.24Q13) diamagnetic spectrum an increasexiﬂ) with the variation
ggéi ig:g; ;iéé% 22-4165;143)) of the sublevel numbex is accompanied by an increase in

. . . (2) (2) i i
6002 3.4200) 8.3507) 117214 Xy andy,”. The number of doul_alet states_ is approximately
6003 7.038) 1.8849) 3.63914) qne—fourth of the entire set of (_jlamagnetlc suble\(ellsg—
6101 1.6482) 1.6147) 1.43913 fifth of the energy band occupied by the )seAbove this
6102 3.33@) 7.7817) 1.09014) boundary the pattern changes to the oppoai@. increases
6103 6.90%2) 1.8438) 354414 faster thany{?). At the boundary the monotonic nature of the
6111 2.1182) 4.1417) 5.04713) interd q bet h tibilit h - first
6112 4.9072) 1.2758) 2.06714) inter ependence between the susceptibilities changes: firs
6211 2.109) 2.5347) 2.70913 there is a sharp decrease, which is followed by an increase in
6212 4.5512) 1.1338) 1.80814) relation to the value of higher-order susceptibilities, with the
2282 Z-gig 61331%5 2-2215(12; discontinuity becoming more abrupt as the order of suscep-
6301 2:5982) 3:8647) 4:78113) tibility increases and manifesting |ts¢If more VI)VId|y {S)r odd
6302 5.8622) 1.5008) 2.76414) states. For the boundary state the inequdlf”|<|x{",

for N=2,3 may be violated. The difference between the
maximum () and minimum §{) absolute values of the
susceptibilities in the diamagnetic set increases withso

A comparison of the numerical values of the energy ofthat for a state withm=0 the ratio of these values agrees
doubly degenerate levels that are linear combinations of theith the approximate formula given aboveyi/x{™
3s and 3 states, and also of thepdand 4 states with ~2""'n.
m=0 calculated by first-, second-, and third-order perturba-  As an illustration of the above facts, in Fig. 1 we depict
tion theories according t¢44), and the data of exact calcu- the diagrams representing the interdependence between the
lations done by the method &-splines in Ref. 8 fully con- absolute values of the first-, second-, and third-order suscep-
firms the validity of (43): the second- and third-order tibilities of the diamagnetic sublevels witm=40 and
energies yield the lower and upper limits, with the exactm=0. Up toA=5 the numerical values of the susceptibili-
value between them. Here the energy value in the third ordeties of the even and odd states are almost the same in all

22n0", - ,¥no* g
8: a FIG. 1. The interdependence of the first-, second-, and
6 @), 15 B3)y0 26 third-order susceptibilities for the first=1—10 (a),
X 107, -0 and second) =11-20 (b), halves of the diamagnetic
] b states of the level wittn=40 andm=0. The symbols

A (connected by dashed curyemnd O correspond to
second-order susceptibility, and the symbals(con-
nected by solid curveand® correspond to third-order
susceptibility for even statgg\ and X) and odd states
(@).
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three orders. An abrupt discontinuity is observed\at6, We believe that there is a real possibility of using this
after which the absolute values of all the susceptibilities ofmethod to calculate diamagnetic susceptibilities of higher or-
odd stategin Fig. 1 these are connected by solid curves forders, as it was done by Alliluev and Malkth(see also Ref.
the third order and by dashed curves for the second prded) in their calculations of the Stark effect, since both the
become smaller than the corresponding susceptibilities ofalculation of matrix elements via the Sturm expangi®h
even states. Here, however, the dots representing the depesf-the Green’s function and finding expressions for suscep-
dence of higher-ordefsecond or thirfl susceptibility on tibilities of the form (14) and (15), together with solving a
lower-order susceptibility of the even and odd statesNor system of equations of the forfi3), can be fully automated
>7 lie on the same curvesee Fig. 1a by computers.

The absolute values of the susceptibilities in Fig. 1 .
show, in particular, thaB~4T is the limit above which one The work was sponsored by the Russian Fund for Fun-

cannot use perturbation-theory techniques to calculate th@@mental ReseardBrant No. 97-02-16407and the Russian
diamagnetic energy of states with=40. In such a field the Ministry of Education(Grant No. 97-0-5.1-68
relationship (42) for states of maximum susceptibilitjh
=20 andp=0,1) becomes

|E:AE(, :[AED, |:AER), ~1:0.72:0.63:0.62. - mal vit@ovdvsuru

nmAp DWe use the atomic system of units, in whiek m=7%=1, with the mag-
netic fieldB expressed in units d8,=2.35x 10°T.
6. CONCLUSION

The method we have developed for calculating third-
order diamagnetic corrections to the energy of hydrogenlike
states qllowed us to obtain the r_nost compl_ete solution inty, s Lisitsa, Usp. Fiz. Nauk53 379 (1987 [Sov. Phys. Usp30, 927
comparison to the results of earlier calculatiqsse, e.g., (1987].
Refs. 6 and 12 In addition to general formulas, which make 2H. Friedrich, Theoretical Atomic PhysicSpringer-Verlag, Berli1991).
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values of the diamagnetic susceptibilities for arbitrary statessT. p. Grozdanov and H. S. Taylor, J. Phys18 4075(1986.
we have extracted new information concerning the structurejM- R. M. Witwit and J. P. Killingbeck, J. Phys. B6, 1599(1973.
of the diamagnetic spectrum of highly excited Rydberg at- ' V: M- Vainberg, V. A. Gani, and A. E. Kudryavtsev, Zhk&p. Teor. Fiz.
I ticular, we have found two features specific to the 113 550(1998 [JETP8E, 305(1998]
oms. In par , oun : p N€s; 4. Wang and C.-S. Hsue, Phys. Rev53 4508 (1995.
interdependence of susceptibilities of different orders: a dis-°yu. p. Kravchenko, M. A. Liberman, and B. Johansson, Phys. Ré&4,A
continuity, which separates two regions of monotonic in- 287(1996.

. 10 s . .
crease of susceptibility, at the boundary between the doubleti')f% (Sl‘gggf"' Zh. Esp. Teor. Fiz82, 1762(1989 [Sov. Phys. JETES,

and split dla:magnetlc S_tatéme dISCOﬂtIﬂUItY _mgmfests It- 1wy p, Grozdanov, L. Andric, C. Manescu, and R. McCarroll, Phys. Rev. A
self more vividly for higher-order susceptibilities and for 56, 1865(1997.
states of negative parityand a variation in the relative rate izV D. Ovsiannikov, Phys. Rev. A7, 3719(1998.
of monotonic increase of susceptibility in the transition be- Q'igﬂl“ggga"“' V. D. Ovsyannikov, and L. P. Rapoport, Phys. Ref,
tween the two characteristic regions of the diamagnetic spec«y p_oysiannikov and S. V. Goossev, Phys. S, 56 (1998.
trum. 153, V. Goossev and V. D. Ovsiannikov, J. Phys2& 5251 (1995.
The method that we employed to calculate the wave’L. D. Landau and E. M. LifshitzQuantum Mechanics: Non-relativistic

. . . : . Theory 3rd ed., Pergamon Press, Oxfdd®77), § 39.
functlons al_qd energy in higher-order perturbation thesee YA, Erddyi, Higher Transcendental Function®ateman ProjegtVol. 1,
Sec. 2is fa'_rly general, and the same concept can t_)e Usgd tOMcGraw-Hill, New York (1953, Chap 5; Vol. 2, Chap. 10.
calculate higher-order perturbation-theory effects in a field°D. Delande and J. C. Gay, J. Phys1B L335(1984.
that alters the symmetry of degenerate states in such a Wallilghp- AJ”'E'%{ ;”6d2'7- (Alé ";'Z;k'”v Zh. Esp. Teor. Fiz66, 1283(1974 [Sov.
that constants of motion of an unperturbed atom cease to ys. ’ '
exist. Translated by Eugene Yankovsky



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 89, NUMBER 3 SEPTEMBER 1999

Stimulated superradiance
R. A. Ismailov and A. Ya. Kazakov*)

St. Petersburg State University of Aerospace Instrumentation, 190000 St. Petersburg, Russia
(Submitted 17 March 1999
Zh. Eksp. Teor. Fiz116 858—-869(September 1999

If N atoms simultaneously interact with quasiresonant classical and quasiresonant quantized

fields, the modes exchange photons. This processes exhibits cooperative properties, i.e., the number
of photons in the quantized mode oscillates, and the amplitude of these oscillations is

proportional toN2. © 1999 American Institute of Physid$S1063-776(99)00809-4

1. INTRODUCTION formal viewpoint, we use an appropriate version of perturba-
tion theory and construct the leading term in the expansion
Suppose that a two-level atom simultaneously interact®f the solution of the initial-value problem in the small pa-
with the classical and quantized modes that are in quasirespameterR,/R.) In physically interesting situations, the aver-
nance with the atomic transition frequency. As shown inaged Hamiltonian has a simple structure: it is the product of
Refs. 1-3, the classical and quantized modes exchange phiire one-dimensional Fock operator and a matrix operator.
tons in such a system. Of course, a similar exchange takeknhis fact makes it possible to reduce the problem of finding
place whenN identical atoms simultaneously interact with the solution for anyN to that of solving a set of one-
both modes. The natural question is: Will cooperative prop-dimensional problem&ctually, to solving a similar problem
erties manifest themselves in such a process? In this papfar N=1). Therefore, we begin with a description of the
we show that the answer is yes. More precisely, the dynanresults presented in Ref. 3 that are important for us. That
ics of a system consisting &f atoms, a classical field, and a paper discusses the cade=1. We then use these results to
qguantized field exhibits properties similar to those ofexamine the case with an arbitrary number of atoms.
superradiancé.For instance, the number of photons in the
quantized mode oscillates, and the amplitude of the oscilla; e case v=1
tions is proportional tdN?>. However, in contrast to ordinary
superradiance, the oscillation frequency is independeht of 2-1. General considerations
The physical model of such a system can be realized by e begin by briefly discussing the case- 1. The start-
a chain of atoms. Here the direction of propagation of theng Hamiltonian is
classical field and the axis of the cavity containing the quan-
tized mode are assumed to be perpendicular to the linear
chain of atoms. It is also assumed that, on the one hand, the + u[J_ expliQt}+J, exp[—iQt}], (1)
atoms are far enough from each other so that the interaction " ) ] L
between them can be ignored but, on the other, are clog¥herea’ anda are the quantized-mode creation and annihi-
tion operatorsw is the frequency of this modd) is the

enough so that they interact with the classical and quantize@ i
field in the same way. frequency of the classical mode, and the parametee call,

To examine this problem we use the Sairger- at the cost of a certain ambiguity, the Rabi parameter of the

equation picture. Our approach is based on a modifie§lassical field. The matrices
Jaynes—Cummings model. Naturally, the effect of the classi- 0 0
cal component of the field on the atoms is much more im-  Jo=diag{1,—1}, J=JI=(1 O)
portant than that of the quantized component. The evolution

of the atoms can be separated into two parts: the “fast"describe the two-level atom and its interaction with an exter-
evolution associated with the interaction between the atomsal quasiresonant field. The operators and the matrices obey
and the classical component, and the “slow” evolution as-the following relationships:

sociated with the interaction between the atoms and the t1_ _ _

quantized component. In other words, we assuarel this [aal=1 [oJ-1=-2J-, [oJ:]=2ds.
assumption is quite natujahatR, the Rabi parameter of the The parametef in (1) characterizes the interaction between
classical field, is much larger thaR,, the effective Rabi the atom and the quantized mode. The wave function of the
parameter of the quantized mode. This condition makes i8ystem obeys the Schdimger equation

possible to separate the fast part of the dynamics of the at-

H=wa'a+kJy+{(atd_+ad,)

oms from the slow part. To this end we use an appropriate iwzH\If. 2
averaging procedurgor more details see Refs. 3 angdnd
derive an averagetbver the fast oscillationsHamiltonian We have written the Hamiltoniafl) in the rotating

that controls the slow evolution of the systefffrom the  wave approximation. Thus, we assume that the optical fre-

1063-7761/99/89(9)/6/$15.00 454 © 1999 American Institute of Physics
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quency is much higher than all other frequency parameters aofith ¢(0)=®(0), as(6) implies. Equation(8) is simpler

our problem. Such model@n particular, models of thev
=0 or w=2x=0 type) were used by Law and Eberly,
Alsing et al,” and Jyotsna and AgarwWah another physical

than(2), since its right-hand side is proportional to the small
parameteR,. This makes it possible to select an appropriate
asymptotic procedure to build its solution.

context, namely, the quantized mode was considered the What is the physical meaning of the above manipula-

probe field for the states of the atom.

tions? The matrixZ (t) is the solution of the problem of the

A remark is in order. We assume that the classical fieldevolution of a two level atom placed in a classical field. Here
is monochromatic. As shown in Ref. 3, the use of a poly-the functiong(t) describes the slow part of the system evo-

chromatic(i.e., a multifrequency field with equidistant har-

lution due to the interaction between the atom and the quan-

monic9 does not give rise to new situations with respect totized field. Thus(7) is an expression for our wave function

the case of a monochromatic field.

2.2. Averaging over fast oscillations

Our immediate goal is to derive a Hamiltonian, averaged
over the fast oscillations, that controls the slow part of the®

system evolution. We begin with the well-known transfor-
mation,

lI'(t)=exp{ —iwt

which isolates the optical frequency, so that
0D

at

)

Jo
ata+ ) d(1),

K— E)JOJF (@ty_+ald,)

+u[J_exp—i(o— )t} +J, expli(o—Q)t}] [ @

4
Now suppose that a 2-by-2 matfE(t) is the solution of
the initial-value problem

dE
Vdt T

K- % Jo+ u[J_ expl—i(w—Q)t)

+3, exp{i(w—mt}ﬁa (5)

E0)=1, (6)
wherel is the 2-by-2 identity matrix. We can easily write an
explicit expression for this matrix:

: Jo . ~
E(t)=expl’l(w—Q)t?]U exp{—iRtJ}U 2,
A—R) Q

:(R‘_‘A I
We seek the solution of Ed4) in the form
D) =E(t)e(t).
Using (5), we arrive at equation fop(t):
de(t)

e
i — —=(E

ot

(@)

M@ +al)EMe(t). 8

Thus, we can pass from the wave functi®it) to ¢(t) via
the substitution

Jo
aTa+

E(te(t),

<D(t)=exp[—|a)t

in the form of the product of the “fast” and “slow” cofac-
tors. In other words, it implies that we represent our wave
function via the basis of atomic states “dressed by the clas-
sical field.”

If we ignore the fast oscillations, which are due to the
action of the classical field, we arrive at the following equa-
tion:

fadu ©

——={E (@I +al)E()e(t).
Here(---) indicates that fast oscillations have been ignored.
It is here that we invoke the limiR,<R (implicitly; for a
more exact description see Refs. 3 and 5

Simple calculationgomitted herg¢ show that the only
harmonics that the operat@ ~*(t)(a’J_+aJ,)E(t) con-
tains are those with the frequencies(w—)) and *=(w
—Q=*=2R). If these frequencies are of order the harmon-
ics are fast and should be discarded in the averaging process,
so that only slow harmonics are left. We consider the situa-
tion where the averaging yields a nontrivial effelati— Q|
=|2v|<R. Leaving only these slow harmonics on the right-
hand side of Eq(9), we arrive at a formula for the leading
term in the asymptotic expansion in the small parameter
(v,Ry)/R:

Ha=p(al exp2i vt} +aexp{—2i vt})UJU 1,

where p=¢u(R—A)/D, with D=pu?+(R—A)2. The for-
mula implies that in this case, after an expansion in the basis
of the matrixUJy,U ~1, the dynamics of the system “splits”
into two one-dimensional problems.

There are two other cases where the averaging on the
right-hand side of Eq(9) yields a nonzero contribution, with
the selection of the slow harmonics being different. This
leads to the Jaynes—Cummings standard-model Hamiltonian.
In this paper we do not discuss the respective situations.

2.3. A particular case

Let us first consider one of the one-dimensional prob-
lems we have just mentioned. We would like to establish the
dynamics of the system controlled by the Hamiltonian

H,=p(a' exp{2i vt} +aexp{— 2i vt}).

We employ the Fock—Bargmann representafieo, thata®
—z anda—D,, with D, standing for differentiation with
respect toz. In this way we reduce this one-dimensional
problem to a partial differential equation:
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de(z,1) _ _ o(t) = n1(t)e;+ no(t)e,, where the values of the functions
o pzexp2ivti+exp—2ivtiD,)e(z,0). 7(t), k=1,2, belong to the Fock space. For these functions
(10 Wwe have the following analog of E10):
. . It
The solution of Eq(10) is given byzthe formula i 77a|<t( ) — eyplal expl2i vt} +a exp — 2i vt}) 7).
Zp . p .
<p(z,t)=exp{z(l—exp[2| vih)+ 4z (exp{—2ivt} The solution of these equatiofis the Fock—Bargmann rep-
resentationwas described earlier, so that
. P . 2
+2ivt—1 z+ ——[exp—2ivt}—1]]. expz
v )]Q o, L&A 2ivt;—1] r;k(z,t)zexp{zk—f}(l—exp[Zivt})+ 2 (expf— 2t}
(17)
Here the functionQ(z) describes the initial distribution of +2j Vt—l))Qk 74 SZLp[exp{_zi vty —1]],
the photons in the quantized mod®(z)=®,(z). For v v
=0 Eg.(11) becomes where the functiorQ,(z) can be found from the initial data.

2t2 If
¢(z,t)=exp{—ipzt— pT]Q(Z—iPt)- . O):(sol(z))
eLe ®2(2) )

then

According to Ref. 10, for the operat@=(a'a)™ we have

<G>=f dzdzexp{—zZ ¢(z,1)Gep(z,t). (12 1001(2)+ (R=A)oy(2)

Equationg11) and(12) make it possible to calculate the Qu(2) \/5 ’
dynamics of any physical variables for any initial data. Let
us discuss the situation where the quantized mode in the _ rea(2)+(A—-R)ei(2)
initial state contains exactlyn photons and the state of the Qa(2)= JD '
atom is an eigenvector of the mattixJ,U 1. The eigenval-
ues of this matrix are: 1. For the case where the eigenvalue
is 1 we obtaif!

The value of the operatd®=(a'a)™, which acts in the
Fock space, can be calculated by the following relationship:

1 2 - 7Bzt
<p(z,t)=\/ﬁex ;—Z(l—exp{Zivt})+:—Vz(exp{—Zivt} (G) kzl,zdedEeXp[ 24 nd(z)GndzY).

3. THE CASE N>1

+2ivt—1
) 3.1. General considerations

:z+ 2%(exp{—Zi -1t . (13

For the number of photons in the quantized mode we  Suppose that our system contaiNs>1 identical two-

arrive at the following expression: level atoms. For the state space we takeF® C?®C? --
2 ®C?, where the Fock spacE describes the states of the
p sir? vt . . 2 .
(n(t))=(a*a>=m+ —_— quantized mode, anll copies ofC* describe the states of
14

the atoms. Thud, is the set of linear combinations of vec-
At v=0, i.e., when the frequencies of the classical and quantors of type f|viv,---vy), where feF, and thev,, k
tized fields coincide, we find than(t))=m-+ p?t2. =1,2,..,N, are two-dimensional vector@t the cost of a

Our results make it possible to calculate the quantumslight ambiguity, we say that they are the “components” of
statistical characteristics of quantized radiation and to exanthe vectorv,v,:--vy)). In C2® C*--@C? we use the basis
ine the case where the initial state is cohefent. consisting of the vectorgg, ey -e ), whereky,=1,2.

We define the operatord{™, J(™ and Z(M(t), 1
=m=N, in the following manner: they act on theth com-
ponent of the vectofv,v,---vy) as the operatord,, J.,
and E(t), respectively, and do not alter the other compo-
Now we discuss the case where the initial state is not aments. Then the Hamiltonian of our system can be written

2.4. The general case

eigenvector olUJ,U L. We can easily calculate the eigen- N N
vectors of this operator that are orthogonal to each other: H=wa'at x 2 J(m)+§z (aTJ(m)+aJ(m))
- 0 - +
=1 =1
Bl el .
e =— , By=—— , N
tpIR-Al Dl ok

+u > (I expliQt}+IM exp{—iQt}).
whereg, = (—1)*"1, k=1,2, are the corresponding eigen- m=1
values. We seek the solution of the Satinger equation It describes the simultaneous interactionNbfdentical two-

with the HamiltoniarH ,, in the form of a linear combination level atoms with the quasiresonant classical and quasireso-
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nant quantized fields and is written in the rotating wave ap-

proximation, so that we can assurfes we did beforethat
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As before, we examine the case— Q| =|2v|<R. This
condition imposes a restriction on the difference of the fre-

the optical frequencies are much higher than all other frequencies of the classical and quantized components. Averag-

guency parameters of our problem.

ing yields a nontrivial contribution, and we find that

We are interested in the dynamics of the wave function N

W(t), the solution of the corresponding Sctimger equa-
tion. We isolate the optical frequen¢gis we did beforgby
using an analog of Eq3):

N ng)
ata+ D> —
m=1 2
For the functiond®(t) we have the equation

ad(t P N

i &: )=[<K— E)E IM+¢ > (afIm+alm)
m=1 m=1

N

+MmZ:1 [3(M exp(i (Q— )t}

d(t).

\If(t)=exp{ —iwt

+J3M expli(w— Q)t}]] d(t).

The matricesE (™(t) (introduced earliercommute. We in-
troduce the matrix Z\(t)=1IN_,Z(™(t). Obviously,
E\(0) is the identity matrix inC?® C% --® C?. The matrix
E (1) is the solution of the equation

=N
"ot

w

N N
R R NEY
1 m=1

X expli(Q— w)t}+JIM

X expli(w— Q)t}]] En(t).

Substituting® (t) = En(t) ¢(t), which is the analog of7)

for the caseN>1, in this equation, we arrive at an equation

for ¢(t):

 de(1)
"ot

N
={EN) X (@™ +ad™)E () e(t).
m=1
(19
Note that in our transformations(0)=V¥ (0). Theoperator

N ng)
ata+ m§=:1 T) EN(t)

ENl(t)exp{ —iot

is unitary and commutes with'a. Hence for the operator

G=Lﬂa)m acting in the Fock spacé& we have (G)
=(D(t), GP(1))=(e(t), Go(t)).

3.2. The averaging procedure

Ha=p(al exp{2i vt} +aexp—2ivt}) >, U Ji™MU, 2,
m=1

where the matriXJ ,, acts(as matrixU) on themth compo-
nent and does not alter the other components. Note that the
terms on the right-hand side of this expression commute.
This Hamiltonian controls the slow evolution of atoms
“dressed by the field” for the casb>1. As in the caseN

=1, the averaged Hamiltonian is the product of the Fock
operatora’ exp{2i vt} +aexp—2iut} by a matrix. Thus, if we
pass to the expansion in the basis of the eigenvectors of this
matrix, the averaged Hamiltonian is a set of one-dimensional
Hamiltonians. We expand the desired function in this basis:
qo(t)=2(,77(,(t)|eklek2- . -ekN), where the values of the func-
tion #,(t) belong to the Fock space,stands for the set df
numbersk, ,k,,... ky each of which is either 1 or 2, and the
sum is over all such sets (the are 2 variants in al). For
eachz,(t) we obtain

i dan,(t)
ot

=pS,(a’ exp[2i vt} +aexp—2ivt}) 5,(1),
(15

whereS,=3=N_,(—1)*m*1 with the sum incorporating the
numbersk,, that comprise the set. HereS, is the sum over
m of the eigenvalues of the operata§J{™U ! (the eigen-
values aret1). What is important here is that of the entire
seto only the factorS, is present irS,. The solution of the
corresponding initial-value problem withy,(zg) =Q,(2)
has the formy,(z,t) = 7,(z,0)¢,(z,t), where

S,z S2p?

@.(z,1)= exp{ 2py(1— exp{2ivt}) + #

Sep

z+
2v

X (exp{— 2i vt} +2i Vt—l)]Qg

><(exp[—2ivt}—1)).

If the operatorG=(a'a)™ acts only on the Fock com-
ponent, we obtain, using the Fock—Bargmann representation,

(G)=(p(z,t), Go(z,1))
-3 [ dzdzexpi-277,20Gw,(20).

These relationships make it possible to describe analytically

As in the case with a single atom, the right-hand side ofthe solution of any initial-value problem.

Eq. (14) contains both fast oscillations due to the interaction

between the system of atoms and the classical field and slow

oscillations due to the interaction with the quantized mode

Discarding the fast harmonics, we arrive at the equation

0 :
iT=§< Eﬁ(t)m; (@"3™+ad(ME (1) ) o(b).

3.3. The initial-value problem

Here we discuss the problem corresponding to the fol-
lowing initial data: the quantized mode contaimsphotons,
all atoms are in a single statee C2, with v=e; cosy
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+e,siny. Expanding our wave function in the basis de- With the period determined by the difference of the frequen-
scribed earlier, we arrive at the following expression for thecies of the classical and quantized components.
corresponding coefficients:

m 4. CONCLUSION

z
- N=K( ain )k
70(2,0)=(cosy)™ H(sin) Jmt’ Our main findings are the following. If a two-level atom

simultaneously interacts with a classical field and a quan-
where k is the number of “twos” in the seto. Thus, tized mode, the classical and quantized components ex-
75(2,t) = (cosx)N(sin ) e, (z1). change photons, with the atom acting as a sort of carrier for
For a given setr, we denote the number of “twos” in  the photons. If there ar identical two-level atoms simul-
the set by o|. Note that if|o| =k, thenS,=N—2k, and that  taneously interacting with the classical and quantized modes
for a givenk there are ) different sets. Then the expression and if all the atoms have the same initial state, the photon
for ¢,(z,t) can be obtained fronil1) by replacingp with  exchange process exhibits cooperative properties: the emis-

(N=2K)p. sion power is proportional tbl?. Here the temporal dynam-
For the Fock operatoB=(a'a)™ we have ics is independent ofl and is periodic, with the period de-
termined by the difference of the frequencies of the classical
<G> = 2 f dzdzexp{—zZ 7,(z,t)G75,(z1) and quantized components.
o Let us recall the essence of the superradiance €fféct.
N we have a set of two-level atoms that were initially in the
=> ; j dzdzexp{—zZ 7,(z,t)G7,(z,1) upper state and interact with a quantized field, the interaction
k=0 [o]=k is of a collective nature: the number of photons in the quan-

NN tized mode exhibits a spike whose amplitude is proportional
=> ( (COSX)ZN—ZK(SmX)Zkf dz dz to N2. If the atoms were to “discharge” the photons inde-
o\ k pendently, the number of photons in the quantized mode
_— would be proportional tdN. This difference makes it pos-
Xexp{—2Z ¢, (2,1) Gpo(Z,1) | |of=k- sible to speak of superradiance. For reasons of convenience,

Here we have allowed for the fact that the coefficientsth® common approach to examining this phenomenon in

7.(z,t) with the sameS, have the same dynamics. We can duantum terms is to study the dynamics of the difference in

therefore use the above re'ationships to Ca'cdﬁﬁ populati(?ns. Then, USing the fact that the “number of exci-
Let us use these results to find the number of photons i#2tions” in such a system is conserved, one can calculate the

the quantized mode. The corresponding integrals in th&mission powefsee Ref. 4, p. 22In our case in addition to
above expression were calculated earlier. We have a classical field acting on the atoms there is a quantized field.

Here there is no analog of the law of conservation of the

N (N IN-2K o 2k number of excitations. An atom interacting with a classical
<”(t)>:go K | (cosx) (sinx) field can be interpreted as an atom “dressed” by the field.
Thus, what we are dealing with is an ensemble of atoms
Sir? vt “dressed by the field” that interact with a quantized field.
x| m+(N—2k)?p? . .
P2 The results of Ref. 3 imply that there is an exchange of

) ) ~ photons between the quantized and classical modes. In the
In our calculations we used the simple fact that for any inteoyrse of this exchange, individual atoms interact via the

gers, state of the field in the quantized mode. This interaction has
NN an effect on the transfer of photons, with the process being of
> (k)(N—Zk)Sco§N2szin2kX a 'coIIective nature, and there is a certain anqlogy bet\(veen
k=0 this process and interference phenomena. While in ordinary

superradiance the source of photons in the mode is the en-
) semble of atoms that has been excited in advance, in our case
expy=tany the source of photons in the quantized mode is the classical
field. Here the classical field determines the dynamics of the
process, which differs dramatically from the dynamics of
p Sir? vt ordinary superradiance. The very statement of the problem
(n(t))=m+ T[N(N—1)00§2 Xx+N]J. (16)  provides the means for interpreting the effect of collective
transfer of photons into the quantized mode in an external
Note thatN is the number of atoms. Thus, the emissionclassical field as stimulated superradiance.
power in the quantized mode, proportionakit(t)), is pro- Our results were obtained by a method in which a certain
portional toN?. Formula(16) demonstrate a cooperative be- averaging procedure is applied to the initial Hamiltonian,
havior of the atoms in our system typical of superradiancevhich amounts to using an appropriate version of perturba-
(see the discussion in Ref).4Here, however, in contrast to tion theory. The method can be applied under the following
ordinary superradiance, the temporal dynamics is indepereonditions:R,/R<1 andv/R<1. We construct the leading
dent ofN. The emission power is a periodic function of time, term in the asymptotic expansion of the solution in these

d(expy +exp{ —y}HN
dy®

=(cosy siny)N

The final formula is
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small parameters. The conditions have clear physical meamnanifest itself. An attractive feature of the model discussed
ing and can be easily realized. The first condition means thah this paper is that it provides the possibility of calculating
the amplitude of the quantized field is much smaller than thain explicit analytical terms all the characteristics of emission
of the classical field, while the second imposes certain rein the quantized mode that are of interest from the practical
strictions on the difference of the frequencies of the classicaliewpoint.

and quantum fields. It is precisely in these conditions that the

averaged Hamiltonian, which controls the “slow” dynamics «g_maii. akaz@phsc2.stu.neva.ru

of the system, has a simple structure: it is the product of thé&The results for the case where the eigenvalue iscan be obtained by an
one-dimensional Fock operator and a purely matrix operator.appropriate change of sign.

This fact makes it possible to describe the solution of the

problem in explicit analytical terms. Of course, the total

Hamiltonian of the problems, which includes correction to *A. va. Kazakov, Phys. Lett. 260, 229 (1995.

the averaged Hamiltonian, does not have such a simple struéA-g\ga- Kazakov, Opt. Spektrosi81, 549 (1996 [Opt. SpectrosB1, 498
Fure, but its terms with a much more compllcatgd structqres(Al_ Yg_]kazakov, Quantum Semiclassic. Opo, 49 (1998

influence the lower-order terms in the asymptotic expansiorns v andreev, V. I. Emel'yanov, and Yu. A. Ilinski Cooperative Phe-

of the solutiongfor details see Refs. 3 and.5The structure nomena in Optics: Superradiation, Bistability, and Phase Transitions
of the Hamiltonian simplifies considerably if the Hamil- '\g;éa,BMoslcivgél%a [English trans.:Cooperative Effects in Optics
tonian is averaged by a proce(_jurg based on the results QJL. Va Kra"zg’k(o\/’ %](‘)r. Mat. Fizl17, 92 (1998,

the well-known work of Poincare Bogolyubov, and  sc k. Law and J. H. Eberly, Phys. Rev. 48, 6337(1991.

Mitropol'skii (see Ref. 11 P. Alsing, D.-S. Guo, and H. J. Carmichael, Phys. Re¥5A5135(1992.
Thus, we have established the presence of superradianczé V. Jyotsna and G. S. Agarwal, Opt. Comm@, 344(1993.
with rigorous assumptions concerning the initial conditions é‘pm'gsf{f;ﬁg‘;VNijlniﬂkzlegngOherem States and their Applicatjons
imposed on the atoms and the fact that the atoms must beg| aliskenderov, A. S. Shumovskiand Ho Trung Dung, Fiz. Elem.

identical. Of course, in real situations these assumptions holdChastits At. Yadre24, 409 (1993 [Phys. Part. Nucle24, 177 (1993].
only approximately. There is reason to believe, however, tha]tlA- H. Nayfeh,Introduction to Perturbation Technique#iley, New York
if the necessary corrections are taken into accéwithin the 983

appropriate version of perturbation thepryhe effect will  Translated by Eugene Yankovsky
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The scattering of electrons on a standing electromagnetic \theeKapitza—Dirac effegtis

considered within the quantum-mechanical and classical descriptions of the motion of electrons.
The mean scattering angle and the distribution function of the electrons after scattering are
found. It is shown that assignment of the initial electronic wave function in the form of a plane
wave in the quantum-mechanical picture gives rise to the characteristic parg@neter

=md/hw’r (Wherew and 7 are the frequency of the field and the duration of the interagtion
which separates the regions of Brag8<€1) and nearly classical@>1) scattering.

When g>1, the mean scattering angle does not depend on the choice of the description method,
but the distribution functions of the electrons after scattering in the quantum and classical
approaches differ significantly. Whe®< 1, both the distribution function and the mean scattering
angle differ. Modification of the quantum theory and assignment of the initial electronic

wave function in the form of a more or less localized wave packet are apparently needed to
eliminate the differences discovered. The results obtained can be used to determine the
dimensions of the wave packet which characterizes the state of electrons in a beam from
experiments on scattering from a standing light wave. 1899 American Institute of Physics.
[S1063-776(199)00909-9

1. INTRODUCTION tion field) formed by the planes of equal phasatinodesin
the standing wave. The condition just noted, which follows

The scattering of electrons on a standing electromagnetiftom the energy and momentum conservation laws and de-
wave was first examined by Kapitza and Dirac in 1938.  termines the direction of motion of the incident electron for
the ensuing years, this effe¢the Kapitza—Dirac effegtwas  which induced Compton scattering on the standing wave is
widely investigated by both theoretiéal and experi- possible, is interpreted as the Wulff-Bragg condition for dif-
menta?~*? methods. The most convincing experimental datafraction of the de Broglie wave of an electron on a periodic
were obtained in Ref. 10, although they refer to the range ofattice® If 7/2— « is the angle between the direction of the
fairly strong fields (- 10*W-cm™?) and the effect observed momentum of the incident electrgy and the wave vectde
can be interpreted as a generalization of the Kapitza—Diratx is the glancing angle of the incident electyptihe Wulff—
effect to the multiphoton case’ Bragg condition has the form= = ag,, where ag, is the

From the quantum standpoint, the Kapitza—Dirac effecBragg angle:
is induced Compton scattering. Since a standing wave is a
superposition of two counterpropagating traveling waves of [ NpB [ fik
identical frequency(w), the process of induced Compton aB,=arcsn‘<T =arc3|r<a
scattering in the case under consideration consists of the ab-
sorption of a photon from one of the traveling waves and theJnder typical conditions ¢=3%x10°s™ ! and vo=pg/m
induced emission of a photon corresponding to the other10°cm-s™1) ap~10 3<1. Below we shall assume that
wave. The energy of the electron clearly does not vary, buhot only the Bragg anglevg,, but also the initial and final
its momentum varies by 27k, wherek is the wave vector glancing anglesr and «’, as well as the electron scattering
of one of the traveling waves. For assignedndk it fol- angled=a' — «a, are small(see Fig. 1
lows from the condition of equality between the energies of  As far as we know, a quantum-mechanical description of
the electron before and after scattering that such a processtise electron was used in all the theoretical studies of the
possible only for certain directions of the initial momentum Kapitza—Dirac effect which have been performed, and its
of the electron, rather than for any direction. According toinitial wave function was assigned in the form of a plane
Ref. 1, the stimulated Compton scattering of electrons on avave. Nevertheless, another approach, viz., the scattering of
standing wave can be interpreted as the diffraction of the da classical electron by the field of a classical standing light
Broglie wave of an electron on the periodic structure with awave, is justified and interesting. Such a formulation of the
period\/2 (where\ =27/ w is the wavelength of the radia- problem is examined in the fourth section of this paper. The

- Po’
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The expression(3) for the Hamiltonian of the electron is
equally applicable to both the quantum and classical descrip-
a tions with the one difference that while in the classical ap-
proach the momentum of the electrpe p(t) is an ordinary
BLNG 0 S function, in quantum theory it is the operajpe —i#V.

— 3 We use the averaged Hamiltonian approximatichln
this approximation it is assumed that an electron in a field
A2 undergoes both fast and slow motioftn the scale of the
field period 2/ w), but the amplitudes of the fast changes in
the coordinates, momentum, and wave function are small
FIG. 1. Scheme for the scattering of electrons on a standing light wave ir?ompared with the large-scale slow changes. This assump-
the Kapitza—Dirac effect. tion allows us to obtain equations for the slow components
of the quantities under consideration using simple averaging
of the Hamiltonian(3) with respect to time, which gives

Sy
.

3

fundamental approximations and a general statement of the 24 2A2(t)/c2
problem are formulated in Sec. 2. The third section provides H=———F5——=Hy+Hjy. )

a brief account of the known and some previously unreported

results of the quantum treatment. A comparison of the resultslereH,=p?/2m is the Hamiltonian of the free electron, and
of the classical and quantum approaches reveals some sSibh,,; is the Hamiltonian of its interaction with the field, which
nificant differences. A discussion of the reasons for thesés conveniently written in the form

differences and the prospects for future studies are given in

the fifth section of this article. We confine ourselves in this Hini=2U(t)cog2k2), ©
paper to the weak-field approximation for the standing waveyhere U(t) is ponderomotive potential of the electron,
and the electron velocity is assumed to be small compareginich depends slowly on time:

with the velocity of light.

2m

e?E2(t)
U= Z—"r. @)

2. GENERAL FORMULATION OF THE PROBLEM . .
It is noteworthy that the problem of electron scattering

To fix ideas, let the vectdk be directed along theaxis. ~ can be treated in both nonstationary and stationary formula-
Also, let the field of the standing wave be linearly polarizedtions. If each of the two counterpropagating traveling waves
and the electric field strength vectirbe directed along the has the form of short pulses and if the pulse duration is short
x axis, and let the initial momentumy of the electron lie in  compared with the time needed for an electron to cross the
the xz plane and form an angle with the direction of thec ~ focal region, then, as was pointed out aboEg(t) is the
axis (Fig. 1). For simplicity, we take a planar geometry, i.e., amplitude envelope of the field pulses. In this case the scat-
the radiation field does not depend on the coordiyatmd  tering problem has an explicitly nonstationary character. On
the projection of the momentum of the electron onto thethe other hand, if the pulse duration is much greater than the
direction of they axis is equal to zero both before and after time needed for an electron to cross the focal region, the field
scattering. can be considered stationary, but inhomogeneobs:

In both the quantum and classical descriptions of the=Eo(X). In this case, the interaction with the field is
motion of an electron, the starting point for formulating the switched on and switched off as an electron traverses the
problem is its Hamiltonian in the external radiation field. focal region. It can be seen that in both the quantum and
Assuming that in either case the external electromagnetiglassical descriptions the stationary scattering problem can
radiation can be described classically, for a configuratiorPe reduced to the nonstationary problem under certain, fairly
such as a standing wave we assign the electric field strengttatural assumptions by introducing the “effective time”
in the form =Xx/voy and changing the notation froBy(x) = Eg(tvoy) to

Eo(t), wherev,, is the projection of the initial velocity , of

E=Ey(t)[cof wt—kz) +coq wt+k2z)], 2) th(Za electron c(;nto thex axis. For this reason, we c(c)mfine
whereE(t) is the amplitude envelope of the radiation pulseourselves to a treatment of the nonstationary scattering prob-
andk=w/c. As is generally known, the Hamiltonian of a lem, bearing in mind the possibility of using the results in the
nonrelativistic electron in the fiel®) has the form stationary case.

(p—eA(t)/c)? Below, without explicitly specif_ying the_ form of the ﬁeld_

He ———— | (3) envelopeEy(t), we assume that it is defined by a certain

2m even function of timef(t), which is such that
whereA(t) is the vector potential corresponding to the elec-
tric field(s)trength(Z): P P ’ FO=1(=0, fra=f0)=1, Eo(t)=Eof (1),
CEo(t) and, in accordance with Eq7),

A= » [sin(wt—k2z)+sin(wt+kz)]. (4) U(H) =U,f (1),
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whereE, and U,=e’E2/4mw? are the maximum values of (Ap,) P,— Pos )
the electric field strength amplitudgy(t) and the pondero- i => oo |C(p,t— +)[2.
motive potentiall(t). The ultimate purpose of solving both . (13)

the classical and quantum problems will be to calculate the ] ] ]

mean electron scattering angle and the angular distribution We find the first-order correctio€™)(p,t=) to the
function of electrons after scattering. unperturbed probability amplitude®(p,t)=C(p,t=—c)

= 0p.p, directly from Eq.(9) in the weak-field approximation
within first-order perturbation theory with respect to the in-
teraction of an electron with the field with consideration of
the initial condition(11) and the explicit form of the inter-
action energyH;,; (6):

3. MODEL OF PLANE-WAVE SCATTERING IN THE
QUANTUM THEORY OF THE KAPITZA-DIRAC EFFECT

3.1. Mean deflection angle of electrons in the field of a i

standing wave C(l)(p,oo): s UOZ ap,pOchk(fZ)i 7 (14)
Using the Hamiltonian(5), we seek a solution of the -

Schralinger equation in the form of an expansion in planewhere §2).. is the Fourier transform of the square of the

waves, which are conveniently normalized to unity in a pe-dimensionless field envelofdét)

riodicity cube (its volume isV, and in the final result¥/

— ) (fz)vzf f2(t)exp(i vt)dt, (15
1 i p? - o
V(rt)=—> C(p,t)ex;{—(p-r——t”. (8)  calculated for values of the Fourier-transformation “fre-
W h 2m quency” » which equal
The expansion coefficients of the wave functid(p,t) sat- _ (Po* 2fik)?— ng o Vo o
isfy an equation which follows directly from the Sckiinger Ve mh ~*20—(atag). (16)
equation:

It is easy to see that the “frequencie#’. specify the prox-

4 ) imity of the glancing angler of the incident electrons to the
i —C(p,t)= 2 Hin(p" = P) Bragg anglesr ag,. Taking into account that at small values
P of v, (f?) ,~ 7 (whereris the duration of the interactiomnd
i (p?—p’? , comparingC™*) from Eq. (14) with C© from Eq. (11), we
X ex 71 7 om tic(p’ v, ©  find that the perturbation-theory parameterugr/A. The

. . . _ condition for applicability of the weak-field approximation in
whereH;(q) is the Fourier transform of the interaction en- the scattering model under consideratibh, /%<1, is sat-

ergy (6), or, more specifically, isfied, for example, fow=3x10s *andr=1 ps and 1 ns
1 g1 when the radiation intensity I<10'°W-cm 2 and
Him(q)z—J dr Him(r)exp(—). (100  10"W-.cm?, respectively.
v h Using Egs.(13) and (14), we can easily find the mean

e(glectron scattering angle in the first order of quantum pertur-
bation theory. Because there are Kronecker deltas in Egs.
(11) and(14), the glancing angle of the scattered electrons in
a beam,a’ =arcsinf,/p), can take the valuea’=a« and
a'~a*2ag,. In diffraction theory the equalitya’—«

In the model of plane-wave scattering it is assumed that b
fore an electron begins to interact with the field, it is in a
state with a definite momentupy, and the initial condition
for Eq. (9) has the form

C(p,t——%)=38y .. (11 =+2ag, is known as the Laue conditidfi.The mean scat-
tering angle is
The expansion coefficients in E¢8) C(p,t) are the Un 2
aye - 2 . e —
propabll|ty amplltudgs, ande(p,t.)| is the probability of o= =2 2apd|(F2)4|2—|(F2)_|2). (17)
finding an electron in a state with the momentpnat the

time t. The mean change in the projection of the electron, the special case of a Gaussian envelogé(t)
momentum onto the axis as a result of scattering is defined — exp(— (t/7)?), Eq. (17) takes the form
as

g (UO )22 [ ’{ Vi7'2> % V%TZ)}
=|—1| 2mag,) exp — —expg — .
(Ap)=2 (P,—Por)|C(p,t—+)[2. (12) h ° 2 2

p (18

In the approximation of a small change in the electron mo- ~ The mean scattering angle defined by ELjz) or (18)

mentum(Ap,)<po(Ap,) also determines the mean electron dgpends not only on the parameters of the field p(itgen-
scattering angle sity, pulse duration, and envelope shgppeut also on the

direction of the momentum of the electron in its initial state
> po or, stated differently, on the glancing angle of the incident

electrona: 6= 6(«). Plots of this dependence calculated for

o=(a'—a)= < arcsir{ﬂcoia)
[po+Apl|
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first terms ata~ — ag, and the second terms ats ag,. AS

the duration of the interaction decreases., asg increasep

the peaks on th&(«) curve broaden, and in the case @f
>1 the width of each of the peaks becomes considerably
greater than the distance between them. Under these condi-
tions, unlike the case g8<1, the first and second terms in
Egs.(17) and(18) can interfere and compensate one another,
significantly altering the structure of th#f «) curve (Fig. 3

and rendering it different from the curve corresponding to
the usual models of the Kapitza—Dirac effect. As a whole, at
large values of3 the peaks on thé(«) curve become broad
and shift into the regiofa|> ag,. Using this inequality, we
can transform Eqs(17) and (18) and expand the Fourier
transforms of the square of the field enveldfB) in powers

of ap, in the definition ofv.. (16). Equation(17) thus trans-

the case of a Gaussian pulse are depicted by the solid curvédmed takes the form

in Figs. 2 and 3. The solid curve in Fig. 2 corresponds to the
standard models of the Kapitza—Dirac effect, according to
which the mean scattering angle is nonzero only if the initial

glancing anglea is close to

the Bragg angleg,. In the

Uo )2 v0d|(f2),,|2
— g | 8w— ——

o~ , (20)

h c dv

v=2awvy/c

where, as before f¢), is defined by Eq(15). In the special

vicinity of these values of, the solid curve in Fig. 2 has the 55¢ wheref(t) is a Gaussian function, the corresponding

form of narrow peaks with a height (U,7/%4)22wag, and a

width

1
CUTVO/C

Aa=

where B is one of the fundamental parameters of the quan-

= apgB<ag,

tum theory of the Kapitza—Dirac effect

B mclhw

wT

19

result can be obtained either from EO) or directly from
Eq. (18) using the expansion ing,:
2

— U07'2w Vo 2 Vo
—ag| l6raexp —2| wr—a
h cC c

(21)

Unlike (17) and (18), the right-hand sides of Eq§20) and
(21) no longer depend on Planck’s constd@ntand can be
regarded as the classical limit of the quantum theory of the
Kapitza—Dirac effect. The resul21) corresponds to the dot-

Both the numerator and the denominator of the fraction orted curve in Fig. 3we recall that the solid curve corresponds
the right-hand side of Eq19) are large, i.e.mcZ/hw>1
andw7>1, and their ratid) can be either large or small. If g(a) curve specified by(21) are the height of the peaks
w=3x10%s71 the valueﬂ 1 corresponds to a duration of .73 ' their width A, and their positionsr ag:

the |nteract|onr~ 10710

s. The curves in Figs. 2 and 3 were
obtained forB<1 andB>1, which correspond to nanosec-

ond and picosecond values ef respectively, whenw=3

X 10®s 1. WhenB<1, because of the narrow width of the

peaks on tha?(a) curve, the terms in the curly brackets on
the right-hand sides of Eq$17) and (18) do not interfere

to the exact formulg18)]. The principal parameters of the

; _ 28 Vo 1
max— mVOCwT 7T(0TFEX _E'
1 1
Aa~ag= Zwomvglc 5 Bas> g (22)

with one another. They can be nonzero only individually: the

Y]

FIG. 3. Plots of?Ka) determined from the quantufsolid curvg and clas-

sical (dashed curvetheories forg=2.

3.2. Angular distribution function of scattered electrons

The mean electron scattering angle is not the only char-
acteristic of the scattering process which can be calculated
either by theoretical means or from experimental data. Ap-
parently, the distribution functioR () of the scattered elec-
trons with respect to the angkeor the number of electrons
F(6#)de detected by the sensor in an assigned directiam
an interval of angles of widtd ¢ is always measured directly
in an experiment. Within the model of plane-wave scattering
considered above, the number of electrons having a momen-
tum in the intervall p,p+dp] is related directly to the ex-
pansion coefficient&(r,t) of the electronic wave function
W(r,t) in plane waveg8):

dw

- (23

V 2
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a Ha b F c F

FIG. 4. Distribution function of scattered elec-

Uor 2 Uor 2 Uor 2 trons found from the quantum theory f@<1,
/\ S o /\ A TR A a=ag (@); B<1, a=— ag (b); andg>1 (c).
. | | ) —L ' A
—ZaBr 0 6 0 2a, 4 2aBr 0 2aBr g

BecauseAp,~pyf and dp,~pydé for small momentum process. In particular, using(6), we can easily calculate
changes |Ap,|<po), the probability density23) can be re- any moments of the scattering angle, for example, the mean
lated directly to the angular distribution function of the scat-square of the scattering angle

tered electrons

— U,\?2
dw dw 92:] 62':(9)0'9:(70) 4ag[1(f2) . 12+](F) _|7]
S
=4 PLdp. d(p,/po) (26)
PoV etc.
:—(Z;ﬁ)sfdpL|C(p,t—>+°0)|2|p2:p0[a+a], The distribution function(25) is shown in Fig. 4 for

three casesB<1, a=ag (@); B<1, a=—ag (b); and B

(29 >1 (c). In the first two cases there is a single additional peak
(in comparison to the principal peak corresponding to the
absence of scatterijpgwhich appears only when the Bragg
condition @= ag, Or @= — ap, is satisfied. In the third case
(B>1) both additional peaks are represented in the distribu-
tion functionF(6) over a broad range of variation of (out

(27h)3 to |a|~ay>ag,), and their heights are commensurate in
p,p’:T&p_p,)' magnitude(they are exactly equal in height only in the case

of =0, where we consequently hade=0).

wheredp, =dp,dp,. WhenC(p,t) is calculated from per-

turbation theory and the expressidid), (14), etc. are used,

the Kronecker deltas of the typ®, ,, are expressed in terms
of Dirac 6 functions using relations of the type

and, as a result, we find

2
_ 0 2y |2 2y |2
F(6)= 1—(7) CF9) |2+ (F9) |71 8(6) 4. SCATTERING OF A CLASSICAL ELECTRON ON A
, STANDING WAVE
) .
+ 70) [1(£2),?8(6—2ag) +|(f?)_|?6 4.1. Mean scattering angle
Within the classical approach, consideration of the time-
X(0+2ag)], (25  averaged Hamiltoniaits) as a classical Hamilton function

where, as before, the Fourier transforms of the square of th&ith the potential energy;y (6) yields a one-dimensional
field envelope {2). are given by Eqs(15) and (16). We Newtonian equation describing the motion of an electron in

note that the appearance of singularities in the distributiori® field of a standing wave in the directiafk:

function is associated with the unboundedness of the integra- d?z(t) _
tion region with respect ta. Actually the size of this region m—gz = 4kU()sin(Zkz(t)), 27

can be restricted, for example, by the distance between the _ _ . .
mirrors or the length of the focus. As a result, thesfunc- ~ WhereU(t) is the ponderomotive potentiar). We assign
tions in Eq.(25) and below are replaced by functions of a the initial conditions for Eq(27) at a certain distant moment

finite, but small widths9~#/Lpg. in time ty before the beginning of the interaction with the
The distribution functior(25) satisfies the following ob- field:
vious requirements: it is normalized to unity, i.e., 2(to) =2, 2(to)=Voy, (28)
f F(0)do=1, yvherezo is the initial coordinate ar_mloZ is the initial _veloc-
ity of the electron parallel to the axis. At the same time, the

velocity of the electron in the perpendicular directigaral-
lel to thex axis) is identically equal to a constant, am¢t)
_ =Xo+Vox(t—1p). As can easily be proved, Eq27) is
9:f oF(6)do, equivalent to an integral equation of the form

and the mean scattering angle calculated f(@%),

coincides with the previously derived expressiai). How- - )4 4_k jt ot Nsin 2kz(t! /
ever, of course, the distribution function contains consider 2V =20 F Vo t—to) 4 to(t THUE)sin(Zk(t))dt".
ably more information on the properties of the scattering (29
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We seek a solution of Eq29) in the weak-field approxima- _
tion by iterating with respect to the interaction, i.e., in the  0a=(8(Z0,t—%)), =
form of a series in powers df (t):

20 =2+ voult 1), [ v
o 0 N2 Vo : (35

2(t—>°°)_V0z>
Vo 2

0

t
D)= 4—kf (t—t")U(t")sin(2kZO(t"))dt’, (30) It is easy to see that in first-order perturbation theory with
m Jio respect toJ, the substitution o) (32) into Eq. (35) fol-
k2 [t lowed by averaging oveg, gives zero. A nonzero mean
Zd(t)= — (t—t")HU)z®(t")cod 2kZO(t"))dt, scattering angle appears only in the second order with re-
to spect toU,. In view of the cumbersome form of the general
formulas, we present only the expression for the second-

etc. . _ S order scattering angle averaged with resped,to
The scattering angl® of a classical particle is deter-
mined by the direction of its velocity after scattering. In the - 8k3U§ d .,
approximation of small scattering angles we can write 4 M Vo $|(f ), , (36)

v=2awvy/C

o= mws ), (31  Which is equivalent to the resul0) obtained in the preced-
ing section in the classical limit of the quantum theory of the
scattering of a plane wave. It should be noted that in the

where v,=(v2,+v2 )2 is the total initial velocity of the ; ;
electronoan(dcfxas gzefore is the glancing angle byefore Scat_quantum theory of the scattering of a plane wave, the classi-

. : . . cal limit (20) is obtained only in the approximatiof>1,
tering (see_ Fig. 1. Using the_ p_e_rturbatlon formula(§_0) f(.)r whereg is the parameter defined by Ed.9). In the classical
the coordinatez and the definition31), we can easily find . . o

. - . . theory of scattering there is no such constraint in the general
the corresponding explicit expressions for the scatterin

. . Rase. It can be stated that the classical theory of scattering
angle. In first-order perturbation theory the result of the cal- . . .

i extends the resul0), which was previously determined as
culations has the form

the classical limit of the quantum theory, to the entire range

)1/2

OD(t) = 0,,(t)sin(2kzo— ), (32  of large and small values ¢ Moreover, while the classical
treatment and the quantum theory of the scattering of a plane
where wave give the identical result?0) and (36) in the region
B>1, in the opposite case, whee<1, the results of the
6. (1)= 4wUq Jtdt’fz(t’)ex;< oi awﬁ) ’ quantunsee(17) and(18)] and the classicdbee(36)] theo-
mvqC | Jt, ries differ significantly, as is clearly seen from Fig. 2, where

the solid and dashed curves are plots of the form#(ef)

Vo, obtained from the quantum and classical treatments. It seems
(Zaw?t ) / to us that this difference between the results of the quantum
and classical analyses can be eliminated if the scattering of
wave packets, rather than plane waves, would be considered
in a quantum theoryA~'" In addition, if the width of the
wave packet would be small compared X and if such
In the case of a smooth field envelope assigned by an evesacket would not spread during the interaction timethe
function f(t), Egs.(33) become significantly simpler when results of the quantum-mechanical solution of the problem
t—oo andty— —oo: should differ significantly from those described in the pre-
ceding section and should correspond completely to the clas-
sical treatment at any value @& The solution of the quan-
tum problem of the Kapitza—Dirac effect in terms of
electronic wave packets will be described separately.

t
o(t)=2kvo,to— arcsir{ dt’ f2(t")sinl

to

t \"
j dt’fz(t’)cos(zaw—ot’)
t Cc

0

. (33

4wUg

0m_m|(f )V|V:2awVO/C’ (P_ZkVOZth (34)
where, as before f¢), is the Fourier transform of the square
of the envelopd (t) (15).

Under the assigned initial conditior88), the scattering
angle 6 (31) is uniquely defined in the classical treatment. A 4.2. Classical angular distribution function of scattered
spread of scattering angles appears when we proceed frofffctrons
the treatment of the motion of a single particle to the scat- |n a beam of classical electrons with a homogeneous
tering of a beam of particles, whose values of the initialdistribution with respect to the initial coordinai®, the
parameterg, andv,, are distributed in some manner. Let number of electrons having a value of the coordirzite the
Vo= const in the incident beam, and let the values of theinterval fromz, to z,+ dz, obviously equals
initial coordinatez, be distributed in the periodicity interval
N2 of the ponderomotive potentidV). By definition, the dN(zg)=N d_Zo 37)
mean scattering angle of the particles in a beam equals 0 ON2’
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scattering angle to differ from zero. As the field strength is
lowered, the width 2, of the localization interval — 6,,
+6,6,,+ 620 of the distribution functiorF 4(6) (40) de-
creases proportionally td)JOOCsS, while the degree of its
asymmetry decreases more rapidly, in proportion u@
xsé. By virtue of the normalization to unity it hence follows
that in the limite;—0 the functionFy(6) transforms into

N 6(0), which corresponds to the absence of scattering in an
g g+a> 0 infinitely weak field.

cl

V=G, T

_9m+ 9;52) 0

FIG. 5. Distribution function of scattered electrons found from the classicals, p|SCUSSION OF RESULTS
theory (40).
Let us briefly formulate and discuss the main results ob-
tained.
. _ o 1. A quantum-mechanical analysis of the scattering of an
whereN is the total number of electrons in the periodicity gjactron on a standing light wave with assignment of the

interval \/2. Before scatteringat t=1o) all the electrons in j,itia| electronic wave function in the form of a plane wave
the beam have the same velocity and the same glancing s revealed two scattering regimes, which differ with re-

gnglea. In view of. the conservation of the number of par- spect to the value of the parametr(19). The regions
ticles, after scattering the same number of electt@@swill <1 ¢qrresponds to the familiar picture of Bragg scattering:
have the velocity, and their direction will correspond to the the scattering is effective only if the initial glancing angte

interval of angleg 6,6+ d6]: of the electron is close to the Bragg angle, i.eq i — ap,

Nod 6 dzg)(a)‘ or @= ag,, and the dependence of the mean electron scatter-
dN(9)=NoF(0)do=—7 Z do_| ing angle ona, 6(«), has the form of a curve with sharp
peaks at+ ag, (the solid curve in Fig. 2 Conversely, the
~ Nodé 1 (38) classical limit of the quantum theory of scattering is realized

in the regionB>1. In this case the sharp dependence of the
scattering angle on the initial glancing angle of the electron
vanishes. The dependence @fon « is characterized by a
smooth broad curvéhe solid curve in Fig. B whose maxi-
mum and minimum correspond to valuesaivhich signifi-
cantly exceedvg, in absolute value. In the limit of very large
B, the result of the quantum-mechanical calculation in the
model of plane-wave scattering ceases to depend on Planck’s
constantf.
2. A classical calculation of the mean scattering angle of
eam of electrons uniformly distributed with respect to the
initial transverse coordinat®, on a standing wave has been
0= 0y, Sin(2kzo— @) + 0, (39)  performed. The result obtained coincides with the classical
limit of the quantum theory of the scattering of an electron,
whose initial wave function is assigned by a plane wave. The
classical treatment is not restricted by any assumptions re-
garding the value of the quantum paramegeiWhen 8>1,
the results of the classical and quantum treatments coincide
(Fig. 3). Conversely, wheB<1, these results differ signifi-
— (400  cantly, as is clearly seen from Fig. 2.
T 62— (60— 02))? 3. Even more striking differences between the classical
and quantum theories are displayed for the distribution func-
in the range of angles- f,+ 6< 6< 6,,+ 6% andF(6)  tion of scattered electrons fourtBigs. 4 and & It should be
=0 outside that range. The functiéh,(6) (40) is depicted concluded from the foregoing statements that direct experi-
in Fig. 5. It clearly displays striking differences from the mental measurements of the angular distribution of scattered
distribution function appearing in the model of plane-waveelectrons can serve as a basis for determining whether the
scattering(Fig. 4). Therefore, direct measurements of theclassical or quantum model of plane-wave scattering more
distribution of scattered electrons can be a source of inforfaithfully describes a given electron beam.
mation regarding the applicability of a particular model. The  According to the foregoing, whe<1, conclusions re-
distribution function(40) is normalized to unity. It gives the garding the applicability or inapplicability of a particular
correct value of the mean scattering anEIceyC,i’ (36). The  model can be drawn on the basis of measurements of the
functionF () is asymmetric: it is shifted as a whole bf) ~ dependence of the mean scattering angle on the initial glanc-
relative to 6=0, and just this asymmetry causes the mearing anglef(«). In the quantum model of plane-wave scat-

T N2 4 [(d6(zg) dzg) D]

whereF 4(0) is the classical distribution function arzg( )

is a function, which is the inverse af(zy). This function
can be multivaluedsee below, and, for this reason, the sum
overi, wherei=1,2 labels the solutions of the equatién

= 6(zy) with respect tozy, appears in the definition38).
The explicit form of 6(zy) is given by the equation from
first-order perturbation theory with respectliy [Eq. (34)]
with the addition of a correction term, which takes into ac-
count the contribution of the second order to the mean scat; |,
tering angle(36):

where 6,,, and ¢ are defined by Eqg34). Using the defini-
tion (38) and Eq.(39) for 6(zy), we ultimately find the dis-
tribution function Fy(6) of a beam of classical electrons
scattered on a standing wave:

I:cl( 0)=
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tering, narrow peaks should appear on a@) curve ata (~10‘16s_). Ther.efore, when electrons are scattered on at-
=T ag,, and in the classical theory they should appear aP™mS: the inequalitAr>a always hqlds, and the state of the
considerably smaller values @f i.e., ata=F ay= T Bag, incident electrons can be approximated by a plane wave.
(22) (see Fig. 2, whereBag,<ag, Conversely, wave packets of micron size do not spread for a
It seems to us that these differences are caused specif@ily long time (~10""s), enabling the realization of the
cally by the use of a plane wave as the initial electronic wave&ases 0f bothAr>x/2 and Ar<\/2. In addition, at the
function in the existing version of the quantum theory. In anPrésent time there are fully realistic methods for creating
alternative version of the quantum theory the initial state ofSUch €lectronic wave packets in a strictly controlled manner.
an electron is described in the form of a localized wave©ne of these methods is the multiphoton ionization of atoms
packet™® If the packet width is smaller than the inhomoge- by a Ia;er field. In this case the size _of the wave packets
neity scale length\/2 and if such a packet does not spreadformed in the continuum can be determined, for example, by
during the interaction timer, complete agreement between the duration of the pulse of ionizing r§d|at|on. The efficiency
the results of the classical and quantum descriptions shoufef Such a scheme for forming localized wave packets was
be expected. This program has not yet been fully imme_demonstrated in the experiment in Ref. 10, where scattering
mented and calls for a separate treatment. of the electrons obtained in such a way on the ponderomo-
In terms of wave packets, the experiment proposed antive potential in the focus of a second laser was observed.
described above for measuring the angular dependence 8¥St Such a scheme may prove to be very convenient for
scattered electrons and tﬁ(&a) curve can be regarded as a mvest_lgatlng the features of scattering on a standing wave
method for determining the wave packet widilr. If the described above.
measurement results are close to the predictions of the clas-
sical theory, them\r<\/2. If the measurement results are *'E-mail: fedorov@theor.msk.ru
close to what follows from the quantum theory of plane-
wave scattering, they can be regarded as evidence that the
packet width is very largeAr>\/2. 1p. L. Kapitza and P. A. M. Dirac, Proc. Cambridge Philos. $19;.297
The wave packet width for beam electrons is a parameter (1933. )
X . 52 (1967)].
cussed._EIectrqns 'n_a beam are tre_ated either as an ensemh . B. Fedorov,Electrons in a Strong Light Fieldlin Russiar, Nauka,
of classical point objectéwith a radius of the order of the  Moscow (1991, p. 45.
classical electron radiug,=e*/mc®~2.5x10 3cm) or as ‘L. S. Bartell, J. Appl. Phys38, 1561(1967).
a quantum plane wave. In this paper, first, attention has beent S: Bartell, R. R. Roskos, and H. B. Thompson, Phys. R&6 1494
focu_sed on the fact that these t\_No descriptions are Nobty Taxeda and 1. Matsui, J. Phys. Soc. Ji6, 1202(1968.
equivalent, and, second, an experiment has been proposed. c. pfeiffer, Phys. Lett. 426, 326 (1968.
for drawing conclusions regarding the value of this cryptic §H~ Schwarz, Phys. Lett. 43 457 (1973.
parameter of beam electrons, i.e., the quantum wave packg—:;,t- f‘ SZ‘SESE):U“%S-MLQI;SA&Z;SE (1;?(?% 3. Mcllrath, Phys. Rev. g8t
width, which characterizes their state before scattering. 349 (1987). Y v o s Tev SR

Finally, let us clarify the specific features of a standing'p. H. Bucksbaum, D. W. Schumacher, and M. Bashkansky, Phys. Rev.
wave as opposed to other objects on which electron scatter-Lett. 61, 1182(1988.

H . . . . 12
ing can occur. The inhomogeneity scale length in a standing g&?:é(hfggrse' J. P. Knauer, and D. D. Meyerhofer, Phys. Rev. L&.

wave \/2 is of the order of a micron{10"*cm) in the 1. Kittel, Introduction to Solid State Physicand ed., Wiley, New York
optical wavelength range and is thus much greater than in the(1956 [Russ. transl., Fizmatgiz, Mosco{#963, Chap. 3.

case of scattering on atomic targets. Just this circumstanciéE- Schralinger, Naturwissenschafte, 664 (1926.

makes it reasonable to pose the question of the scattering oi’lﬂdl\g‘(fgg%mv‘ S. P. Goreslavsky, and V. S. Letokhov, Phys. Res5,E
localized wave packets with a widthr <A/2. If targets and 1y, G, Mminogin, M. V. Fedorov, and V. S. Letokhov, Opt. Commus0,
wave packets have small dimensions, the wave 250(1997.

packets “spread” very rapidly, and the conditidyr <)\/2 D. R. Bitouk and M. V. Fedorov, Opt. Expre8s404(1998; Laser Phys.
ceases to hold. For example, a wave packet of atomic & 544(1998: Phys. Rev. A58, 1195(1998.

sizea (~10 8cm) spreads during an atomic time period Translated by P. Shelnitz
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We use the quasineutrality approximation and the method of moments to analyze a system of
kinetic equations that describes the expansion into vacuum of a plasma bunch generally
containing several species of charged particles. For a two-component collisionless plasma in slowly
varying external potential fields, we obtain a complete description of the dynamics of the

matrices of centered second moments of the particle velocity distribution functions. We construct
a new class of self-similar solutions of the kinetic equations in which the moments of the
distribution functions act as parameters. These solutions are found to be valid for any mass and
energy ratios of the constituent particles and generally describe the dynamics of a plasma

bunch that is asymmetric in space. For a symmetric bunch we also find an analytical solution
corresponding to the presence of eddy electric currents in the plasma, while for an

asymmetric bunch we find that interparticle collisions, which give rise to anisotropy in the

process of expansion of plasma into vacuum, play an important role. The method developed in the
paper is used to study the acceleration and compression of a plasma bunch in time-

dependent magnetic fields with a mirror configuration. 1@99 American Institute of Physics.
[S1063-776(199)01009-4

1. INTRODUCTION construct a solution for the Vlasov kinetic equations for a
plasma bunch in slowly varying external potential fields act-

In the absence of external fields, the dynamics of plasming on the plasma particles. The results are used to study the

in vacuum is quite obvious. A plasma bunch that was ini-acceleration and compression of a plasma bunch in time-

tially localized in space expands without limit and cools off. dependent magnetic fields with a mirror configuration.

But when an external magnetic field is switched on, this

bunch can be compressed and accelerated as a whole. Such

processes are of substantial interest to astrophysicists agSTATEMENT OF THE PROBLEM: THE STARTING

researchers working in the field of controlled fusion. An im- EQUATIONS

portant element in such investigations is the detailed study of The dynamics of a plasma bunch in external potential

the dynamics of the bunch in free space. Note that expansiofields is described in the general case by a system of kinetic

into vacuum of a semibounded plasma, studied earlier bgquations for the velocity distribution of the particles of each

many researchers? and the results of generalizing this one- speciesf (v,r,t):

dimensional problem to the three-dimensional &dsactu- 7 e

ally do not provide a correct descnpnon of the free dynam|c§ 2 (v-V)f,— —=(V,p-Vf,

of a plasma bunch. The problem is that the models used in t m,

the above studies presupposed the existence of an unlimited

supply of energy and particles in the plasma, which to a great -—(V,U,- V)f =1,

extent corresponds to a situation in which continuously op- Ma

erating sources are present in a certain region in space. Free 3 J 3 9

expansion of a bounded bunch of plasma into vacuum is VrEkZl qm, V\,EKZI GK&—Vk, (1)

accompanied by the plasma cooling off in space, a process
that earlier was accounted for only in the phenomenologicalvheree is the absolute value of the elementary chatge,
hydrodynamic approachHowever, recently real advances andm,, are the charge number and mass of a particle of the
in this field of research have been achieVetfwhich finally ~ « speciesg(r,t) is the potential of the electric field gener-
made it possible to construct, for two-component plasmas, aated in the course of plasma expansion due to charge sepa-
analytical solution of the collisionless kinetic equations inration,U ,(r,t) is the potential of the external field acting on
the self-consistent field generated by charge separation. the particles of thex species|, is the respective collision

In the present paper we analyze in detail these solutionstegral,r, andv, are the components of the radius veator
and generalize some of the results to the case of a densed the velocity vector, and g is the unit vector whose
plasma in which interparticle collisions play an importantdirection coincides with that af, . Below we limit ourselves
role and to the case of a multicomponent plasma with parto elastic collisions between the plasma particles, assuming
ticles of different species. The method we develop is used tall along that the collision integral does change the density of

1063-7761/99/89(9)/9/$15.00 468 © 1999 American Institute of Physics
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particles of each species, the momentum density in thénd the potentialy of the field generated in the course of
plasma, and the density of the plasma kinetic energy, i.e., plasma expansion due to charge separation from the
quasineutrality condition
f l,dv=0, (2
> Z.n,=0, na(r,t)zf f(v,r,t)dv, (5
> maJ Vil ,dv=0, k=1,2,3, 3 ‘
“ wheren,(r,t) is the density of particles of species In the

3 simplest case, when there are no eddy currents in the plasma,
> > f m,v2l dv=0. (49 Eq.(5) makes it possible to derive an explicit expression for
o k=1 the strength of the ambipolar electric field in terms of the
In analyzing the expansion of a dense plasma we caparticle distribution functions:

59 z
> > —f vkijafadv+2 —

du

“f f(v,r,t)dv

d k=1 drg % m, or;
e , ’ . ®)
ar; Z Z, J ; 0d
2 o V.1 t)av
|
Plugging(6) into the initial kinetic equations, we arrive at a 3 pe
system of integro-differential equations. Below we seek the > Z N, >, { vi—
solutions to these equations with fixed velocity distributions a k=1 Ml o
of the particles of each species. d - 9.
Using the quasineutrality approximati¢®), we derived => ZaNa[d—(\wa— <—\If> }=0. (8)
in Ref. 14 a self-similar solution of collisionless ,=0) @ t a [,

Vlasqv k!net|c equationgl) describing the freelf ,=0) ex- .. On the other hand, for the elastic—collision mo@H(4) we

pansion into vacuum of a two-component plasma bunch with L
. : . . can easily find that

arbitrary ratios of particle masses and energies of random

motion. Here the laws we found that govern the expansion ~

process are of a universal nature and can be derived for ar- f w(r,Hl,dvdr=0,

bitrary initial velocity distribution functions, including those

that do not correspond to a self-similar solution but agree ~

with the quasineutrality conditiofs). We believe that this 26:4 Maf f viWl,dvdr=0, k=123, ©

fact plays an important role in the analysis of more general

cases of plasma expansion into vacu(iu®., cases that allow 3 _

for interparticle collisionsand of the dynamics of a plasma > MY j J v2W(r,t)l ,dvdr=0,

bunch in external fields. Hence we begin with the results ofa k=1

general study by the method of moments of Hg5.(5), and  whereM ,=m,N,, is the total mass of the: component of

(6), which will then be used to obtain exact solutions. the plasma.

In the absence of external fields (=0), by combining
(8) and (9) with the kinetic equation$l) we can derive dif-
We define the operation of averaging of an arbitraryferential relationships that link the various moments of the
function ¥ (v,r,t) over the distribution functiorf,, as the particle distribution functions:
calculation of the functional

3. THE METHOD OF MOMENTS

d<rk>a _
1 —dr =V, (10
(‘I’)QEN— W(v,r,t)f, (v,r,t)dvdr, (7)

“ 2
where N, =[[f,(v,r,t)dvdr is the conserved number of > Mad<v">“EM d_sz:o' (12)
particles of thew species. Then, because of the quasineutral-  « dt dt
ity of the plasmdthe condition(5)], the following relation- s

. .7 .. d I’kr]->a e~ —

ships hold for every functiod’(r,t) that does not explicitly ai =TVt (VT () as (12

depend on the particle velocity

~ d
2 ZaNo(¥(r,0)4=0, G122 MalFij)a= 2 MoV ), (13)
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d 3 , (1) l(O)T\I (r—R) 20
— v2) = Ny(r,t)=+—=N,|—|.
at> 2 Ma(¥0a=0 a4 o T
whereM=3_M, is the total mass of the plasma, tRg(t) Unfortunately, in the general case of a multicomponent

=3 /(1) are the coordinates of the center of mass of the?/asma, Eqs(12)—(14) do not describe the variation of the
plasma bunch, withu,=M /M, and theF,=r,— R, and second spatial moment§,f;),, i.e., the e\(olutlc_)n _of the .
V.=V, —dR,/dt are the components of the radius vedtor sh_ape of the pla§ma bungh and the r.elat|ve d_|str|but|qn in
and the velocity vectdv in the reference frame in which the this bunch_ of particles of different species remain u_n(_jefmeq.
center of mass of the bunch is at rest. However, if the plasma has only two components, it is obvi-
In the general case of a multicomponent plasma, the sy£UsS that in view of the quasineutrality conditiés) the ma-
tem of equationg10)—(14) for the moments may be open, trlces_ of the second s_paﬂal moments are the same for the two
Nevertheless, such a system possesses a number of nontriviRecies of the oppositely charged particles. Here B3
integrals, which makes it possible to determine the evolutior}19 Provide a fairly complete description of the expansion
of the characteristic size of the plasma bunch and the enerqf)to vacuum of, say, a spherically symmetric plasma bunch.
of the thermal(chaotio motion of the constituent particles. " the simplest case of expansion of a collisionless two-
Indeed, let us define the characteristic dizd the plasma in component plasma in the absence of electric currents, i.e.,
terms of centered second moments: when

3
- Zaf v f,dv=0.
20=2 2 #a(fda- (15) a:zl,z “
_ , the matrices of the mixed second momefitgv;), are the
2 J/a
Then from(12)—(14) it follows that the dynamics of*(t)  game for the two particle species. Hence the system of equa-

(ie., th? _e_xpansion of the plasiria completely determ.ine_d tions for the second moments is found to be clo8ed:
by the initial values of the second moments of the distribu-

tion functionsf (g
dt] :<rij>+<Ver‘>, (21)
d22 > W
7 =22 2 pa{VE) =4 =const, (16) AP
dt = k=1 M rkV1>_z -~
dt - ” Ma(vkvj>al (22)
di? >
dr =22 2 sl (17) d o
@ k=1 &é ©o{Vi¥j) o =0. (23
whereW is the total kinetic energy of motion of the plasma . . _
particles in the center-of-mass reference frame. As a result, plasma expansions along the different coordinate
The cooling of the plasma during expansion is describedXis are independent of each other, i.e., for the sda(@}
by formulas that follow directly from Eqg12) and (13): (I(t)=(T)) we can write equations similar to Eq46) and
17):
> i M < 7 T"dl)2> 2W M(dl i (18) 7)d2I2 W,
4% V= 7 537 = - a1+ i~
@ k=1 “ordt) [ dt szzz ; Ma(vﬁ)az4ﬁk=const, (24)
Here the right-hand side decreases with time in inverse pro- 412
tion to 12, which foll f the first int | of Eq. K o~
E)loé)lon o |4, which follows from the first integral of Eq EZZ(kak% (25)
2W  [dl\? X where W, is the kinetic energy of motion of the plasma
VRS a) I(t) = const. (19 particles along the direction @ in the center-of-mass ref-

erence frame. Accordingly, the cooling of the plasma, i.e.,

Thus, the thermal velocity spread of particles of each speciethe decrease in the energy of chaotic motion of the particles,

in relation to the “hydrodynamic” velocity along one coordinate axis is independent of the cooling along
dR r—Rdl the other axes:

u=— , ~ 2
o bod 203 Ma<(vk—|r—k%) > =120 paV2.(0)=const
whereR is the vector with component®,, decreases in the “ k a “
course of the expansion in inverse proportion to the kiak (26)
the plasma bunch. Accordingly, we can state that after along Note that in this simple example of a two-component
time has passefaind the characteristic scalét) becomes collisionless “current-free” plasma, the method of moments
much larger than the initial scal¢0)], the expansion pro- can also be successfully employed in the study of the dynam-
cess sets into a self-similar regime with the hydrodynamidcs of a plasma bunch in slowly varying external potential
velocity u. In this regime all spatial scales for each plasmafields. As long as the bunch size is small compared to the
component increase in proportion Ito characteristic gradient lengths of th&,, the later can be
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represented in the form of power series in the spatial variticles of the« species along the direction specified Ty.
ablesT, in the neighborhood of the center of mass of theThus the system of equations consisting(88) and (34)
plasma bunch;=R. Keeping only terms whose order is no reduces to a single second-order equation:

higher than the second Ty, we can usél) and(5) to obtain 42
equationgthat replace Eqs(11)—(14)] for the moments of |§(t)d_2k+bkk(t)|‘k‘(t):2 ol Via(D (1) ]?= const.
the particle-velocity distribution functions: t a 36
2
d_R;k:ak, (27)  According to this equation, when the second derivatives of
dt the external-field potential are positive,(>0), there is a
ATF ) limit to the bunch expansion. Fawl2>3 ,u,VZ, the char-
T J =T\ V) +(ViTj), (28)  acteristic plasma scales may even decrease.

Note that the condition for localization of a plasma
AT, 7)) 3 bunch @, >0) coincides with the condition for stable accel-
dkt 2= nolVF)) e~ 2 bi(rF, (29 eration of the plasma particles in the traveling wave of the
@ i=1 effective potentiall(r,t). Hence, using the traveling wave
q 3 of the external field, we can ensure the acceleration of the
aE Ma<vkvj>a:_i21 {by(FV) +by(FVp)}. (30 Elasma bun'ch in the_ se!f-focusmg regime,” with the
a = unch remaining localized in space.
Here the componentg(t) of the acceleration vector and the | Thus,btlhe me;r;ﬁd gf mo”_‘e”‘i canl be eﬁECt'VﬂY usled Ito
matrix elementdy;(t) can be expressed in terms of the first Solve pro tems IO te tyqapllgs OI atphasma lun;: ns 0‘;”
and second derivatives, respectively, of the effective poten\-’arylng external potential Tields. ‘In the simplest case ot a

tial U(r,t)== ,N,U (r,t) with respect to the coordinates at collisionless two-component “current-free” plasma, the

the point coinciding with the center of mass of the plasm rnethod yields a closed system of equations for the elements

T ;) of the matrix of centered second moments, and the

bunch: ) . . . L
analysis of the solutions of this system for arbitrary initial
1 conditions does not present serious difficulties. On the other
&="M ng - 3D hand, it is possible to obtain a solution of the kinetic equa-
"= R tions in this casdthe specific dependence of thg on their
1 92U argumentsonly for a much narrower class of initial condi-
b=~ . (32)  tions corresponding to the self-similar nature of the plasma-
M or k&rj -~ -~ . . .
N=Ri M =R, bunch parameters. Nevertheless, it would be interesting to

find such a solution, since it would provide detailed informa-

Equationg27)—(30) clearly show that the gradient of the llion about the evolution of the plasma,

effective potential determines the law of motion of the cente
of mass of the plasma bunch and has no effect on the dy-

namics of the characteristic scales of the plasma. The spatial sg( F-sIMILAR SOLUTIONS OF THE KINETIC EQUATIONS
structure of the bunch depends only on the second deriva=or A TWO-COMPONENT PLASMA

tives of the external fieldJ. Hence the acceleration of the ) ) ] ]

plasma bunch and the expansion of the bunch can be con- N this section we discuss examples of analytically solu-
trolled independently. In particular, if initially all the matri- tions of the system of two kinetic equations in the quasineu-
ces of the second moments of the plasma-particle velocityal approximation. Such solutions are obtained under condi-
distribution functions are diagonal in a certain referencet'on_s_Co”eSp?”d'”g to thf‘{ above case of a two-component
frame and, at the same time, flo# j the second derivatives Collisionless “current-free” plasmaSec. 4.1 and in the

of the effective potential are zerd;=0), the expansion of Presence of eddy electric currents in the plagBec. 4.2. In
the bunch along one axis is independent of that along thaddition, in Sec. 4.3 we study the example of expansion into

other axes and is described by the system of equations ~ vacuum of a bunch of dense plasma, in which interparticle
collisions(or other processes responsible for isotropizing the

d?1g W ricle distribution in the veloci lay an importan
W;+2bkk(t)|ﬁ(t)=4ﬁk, (33 Fg;ce distributio the velocity spacelay a portant
d W, 1 2 4.1. Collisionless “current-free” plasma
atm Ebkk(t) dt (34 The determination of the analytical solutions of the ki-
) ) o o netic problem of the dynamics of a two-component collision-
This system of equations has a first integral similat1®):  |ess plasma bunch in external fields is based on the methods
2W,  [dl, )2 ) developed in Refs. 11-14, where the self-similar expansion
o (W) Ik(t)EE ol Via(D1 (1) ]?=const, of a plasma_l bunch in vacuum was studiéﬂa(_: 0)_. It was
“ (35 found that in slowly varying external potential fields when

the matrixb,; of the second derivatives of the external-field
where by analogy witl{26) we have used/,,(t) to denote potential is diagonal in the reference frame in which the cen-
the mean-square velocity of the thermal motion of the parter of mass of the plasma bunch is at rest, the form of the
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self-similar solutions of the kinetic equations coincides with 1 Mvi MT/§ M\7§
the exact solution in free space. All differences are due d)“(v’t):m%(ZW SW. ' DWW
H : a Xa Ya Za
solely to the nature of the time dependence of the first and
second moments, which enter into theas parameters: s M
< [T / , (39
FL (V.1 D =NF(GE G5 G, a=1,2, =1V 2Wi
-~ 2 ~ ~ 2 2Wka .
(@) _ | _k Vk‘“k(rk’t)) _ =[Via() 1+ [1(1)]?, (40)
© (Ik(o) BRI M
where the functionp, is determined by the initial velocity
_ _ dRy distribution of the particles. Equatioi39) states that in the
R=rc R, Vi=vie dt’ case of self-similar expansion of a two-component plasma
into vacuum the energy spectrum is conserved.
whereF is an arbitrary function of its arguments, the are Returning to the solutio37) of the problem of the dy-

normalization constants, ti®(t) are the coordinates of the namics of the plasma bunch in external fields, we note
center of mass of the plasma bunch in the laboratory referthat in fact it cannot provide an absolutely exact description
ence frame, which vary according (87), thelk(t)E\/<_T§ of the process we are interested in. The thing is that one
are the scales of spatial localization of the plasma bunch, theonsequence of the self-similar nature of the plasma motion
T (Fi 1) =T (T ¥ )/(FE) are the components of the averageis the quadratic dependence of the potential of the ambipolar
(hydrodynamig particle velocityl(r,t) in the plasma-bunch electric field, ¢, on the spatial coordinat&g, which corre-
center-of-mass reference frame, and the quantMggt)  sponds to the presence in space of a homogeneous electric
=((V—Ty)?), describe the thermal spread of the particlescharge density:

of the « species in their velocities along each direction speci- ( 1

2 Mi)_lz Z.N,

o o [e3

fied byTy. Here the dynamics of all the moments(BY) is g (T t)=
determined by Eqs36)? and Eq.(25) from Sec. 3, and in

the integral(35) each of the two terms separately is a con-

stant

% VE(O)IR0)_, 1
X k; RO maua} : (41
This means that generally the adopted model of the
The solutions thus constructed are valid for any massjuasineutral dynamics of the plasma bunch is meaningless in
and initial-kinetic-energy ratios of the particles of the differ- regions where the plasma density is low. Nevertheless, for a
ent species and describe the dynamics of a collisionlesgense plasma in  which the frequenciesw,,
plasma bunch characterized by an arbitrary initial velocity=47Z2¢e?n,/m, of Langmuir oscillations satisfy the in-
distribution and, in general, by an anisotropic distribution ofequality
the plasma density in space. 2
Our results show that the average velocitigg, of the > wls> =%
thermal motion of particles of the different species change  « Pa” 12 &

according to the adiabatic 1a(8), i.e., are inversely pro- o quasineutrality conditiofs) is violated only at the pe-

portional to the corresponding size of the plasma bunch. Thgyhery of the plasma structure, far from the region where the
hydrodynamic velocityi(r,t) is the same for both compo- |k of the plasma is localized. In the presence of fields

nents. , accelerating the plasma, the validity of the quasineutrality
As the plasma freely expands into vacuubh,=0), the  5n5roximation requires that one more condition be firet

thermal energy of the particles gradually transforms into theyygition t0(42)]: the electric field strength at the center of

energy of their collective motion. Depending on the ratio of ;,55s of the bunch must be small compared to the character-

the initial velocitiesV, , the ambipolar electric field accel- igiic value of the field generated by one of the plasma com-
erates particles with positive charge or with negative chargeponents separately. In general, such a condition places an

More precisely, the average kinetic energy of the particleg,yner hound on the possible acceleration of the bunch.

that initially had a lower thermal velocity increases. Accord- Note that within our solution in the case of free expan-
ingly, the average kinetic energy of the particl_e§ bellonging %ion of a plasma into vacuunU(,=0), the right-hand side
the other fraction decreases. The characteristic t|m¢ of enst (42) decreases as a function of time faster than the plasma
ergy exchange between the plasma components is detgfensity (because of the cooling of the plasmalence, with
mined by the time it takes sound to propagatéth a speed  the passage of time the quasineutral description of the expan-
equal toy2W, /M) over distances of order the initial scale gjon of the plasma bunch remains valid in the plasma local-
1,(0) of localization of the density of the plasma bunch;,aiion region.

along the respective axis.

A good way to illustrate the energy transfer is to write
the integral velocity distribution of the particles of specigs
¢, (V,t)=Jf,(V,T,1)dT, which at each moment in time re- The above class of self-similar solution of the problem
main similar to the initial distributions: of expansion of a two-component plasma bunch into vacuum

Vi (D1 (t)=const. (39

S [Vv2, 1 47U,

T

4.2. Collisionless plasma with eddy electric currents
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corresponds to the case in which there are no currents inthe f_(v,r.t)=\_F (G(a) J,,Gly,
plasma. Such a restriction guarantees that the system of
equations(12)—(14) in the second moments of the distribu- (@) p? \7X—7<ip/|p vy—yipnp 2
tion functions is closed. However, as noted in Sec. 3, this Gy :|2(t) + V(D) + V(1) '
requirement is not needed if the plasma possesses a certain P e e

space symmetry. In particular, for a spherically symmetric . dlI
: o | === (49)
plasma bunch the second spatial momeffiig;), can be T
written )
: 72 \% [V, =%,
Lokl T L st
TTDa=51%0. 0=, ko). 43 G IR TN SR
2 i i i . dl
wherel“ is determined by Eq€16) and(17) irrespective of _Ylz (D1 ()=const, V,(t)l,(t)=const,

whether there are eddy currents in the plasma. Here the off- * dt’
diagonal matrix element§V;), of the mixed second mo- _ =2 2_, 2 : .
ments, which generally do not coincide for particles of dif- where l,(t)=(Z') and IP_<p ) are the corresponding di

ferent species, are constant in time in view of conservation O@ensmns of the plasma bunch, which satisty E2d);

the angular momentum of each component of the plasma: za() andv"”‘(t) are the average thermal velocities of par-
9 P P " ticles of thea species, defined as i(87); and theF, are

s e dl? arbitrary functions, which, by virtue of quasineutrality, must
T)at FVa=3dGgr (44 meet the integral conditio8). The potential distribution is
s . given by the formula

(T¥Vj)o—(T Vi) ,=const. (45)

o . 1)t 1 [Vi(_, Vi ,
The symmetry also makes it possible to drop the requireeq(F,t)= | >, R > 7N, 2| 70y 2 72+ 220
ment that there must be no eddy currents in the plasma when « e @ e P

we construct analytical solutions of the kinetic equations. For (50

instance, the functions _ _ o
4.3. Effect of processes responsible for isotropization of the

falv,r,t)= Fa(GE“) J12,J23,J31), (46) particle velocity distribution function on the expansion
of a plasma bunch into vacuum

S {72

V—W

_|2_+ (2—) Jii=—Iixk=T¥; —T;Vy, The solution of the problem of expansion into vacuum
1) Ve (U,=0) of a two-component collisionless “current-free”

are solutions of the Vlasov collisionless kinetic equations foPlasma, Eq(24), shows that when the initial velocity distri-

arbitrary functionsF, if 1(t) satisfies Eq(16), bution of the particles is symmetriovhen W,=W; and
Vka=Vj, for k#j), the possible initial anisotropy in the
L 1d spatial distribution of the plasmé,(0)+1;(0) for k) dis-

V, (DI(t)= t, )
a(Dl(t)=cons I(t) dt appears as the plasma bunch expangd)/I;(t)—1 ast

a® . At the same time, Eq(38) suggests that the particle
veIOC|ty distribution becomes locally anisotropic with the
passage of time, so that,,(t)/V;,(t)—1(0)/1;(0) ast
o L . ¢ -

r —o0, This is possible only if there are no collisions or other
212(t) (47) processed that facilitate the restoration of local isotropy of
. _ o . o the distribution functions. The inverse of the process of ex-
Here the quasineutrality approximatidf) partially limits  pansion of dense plasma into vacuum is when the interpar-
the ambiguity in selecting the functiofs, : ticle collisions maintainV,.,(t)=V;,(t) at each moment in
time (for all values ofk andj). In this limit, assuming that

and the potential of the ambipolar electric field is determine
by the formula

1\ Yo Val
EM_) (; Z,N,

a a

ep(T,t)=

> f Z,F . (v,r,t)dv=0. (48) 5
@ 2 1 2 o _ Lo,
| | . Via(D=3 2 Vi (H=3Va(), (51)
The presence of thg; in the solution(46) makes it possible =1
to describe the expansion of a plasma bunch with eddy cur-
rents. Note that although is spherically symmetric, the spa-
tial distribution of the plasma density may be asymmetric.
Another example of free expansion into vacuum of a dzlﬁ ,uavi(t) dl,\?
plasma with an electric current is the case of an axisymmet- g2 — ; 3 (E) ’ (52)
ric plasma bunch, where the plasma density distribution and
the potentiakp of the ambipolar electric field depend only on dl\? 2w
two spatial variables, the longitudinal coordin@talong the 2 paVa(t) + E ( ) =-w = const (53
symmetry axis and the distange= \X>+V? from the axis.
Here the analytical solution in the center-of-mass referencéntegration of Eqs(52) and (53) yields the adiabatic law of
frame is plasma cooling:

we can close the system of equatiqdi®)—(14) in the mo-
ments(f2)=I2:
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3 12s Here p?=x2+y?, andB(r,t) is the induction vector of the
H I 2 ,uavi(t)zconst. (54 axisymmetric magnetic field directed mainly along the sym-
k=1 @ metry axisz:
Here the expansion of plasma is determined by the equations p 3By
|BO(Z,t)|>|Bp(p,Z,t)|, Bp(p,Z,t)Z—EE.

d?ly 1 5
O Gz =32 HaVialh), (55
@ We assume that the magnetic field is large in magnitude
whose analysis shows that the evolution of the schl@g ~ and slowly varies in space and time:
strongly depends on the initial ratio of these scales. In par-

J

ticular, if att=0 one of the characteristic dimensions of the w,m>1, “’—;“ <1, ;a < % ,

plasma bunch is small compared to the other dimensions @a z z

[e.g.,1x(0)<1,(0),1,(0)], with the passage of time the ther- where

mal energy of the plasma is transformed primarily into the 7

energy of Cp!lect_ive(hydrodynamiﬁc motion of the parfcicles W= o Bo(z,t)

in this specific directionX). Accordingly, the expansion of m.C

the plasma proceeds in the same direction: is the cyclotronfrequency of particles of speciesin the
dl,_ dl, dl, magnetic fieldc is the speed of lighty is the characteristic
G dc g KOO0 as tce. expansion time of a plasma bunch, dgds the longitudinal

o . o _ _ plasma size. Then the transverse mot{gnrelation to the
The self-similar solutions of the kinetic equatiofi3 in  direction of the magnetic fieJdof the particles can be de-

this case of a dense plasma can be wriftéf scribed in the adiabatic approximation, according to which
3 7 g2 3(Vy—Tiy)>2 the distribution function for particles of the species aver-
Fr VD =AF| D | e+ e K ) aged over the period of cyclotron rotation is
k=1 [1i(1) Va(t)

fo=Pu(t,2,v;,4,Ga),

- Ty dly
Uk(fk,t)=Ed—

, vit+v2
t

Gu= 0 08+y) +20vy =y, ===, (58

[e3

V(1)

3 213
k[[llk(t)} =const, (56)

whereF is an arbitrary function, and the, are normaliza-

: where® , satisfies the kinetic equation
tion constants.

If collisions ensuring that conditiof61) is met do not L b, Z,edp b, 1iw, P,
: ; —_— v, ———————-—J,—=0.
bring about effective exchange of thermal energy between 5 9z m, gz av, 2 dz v,
the particles of the different species, the functidhgt) can (59

be assumed to be independent for each component of tqe

plasma. Such a situation is realized, e.g., in the expansion %? the part|cullar casgd)a(t=0):¢a0(z,vz) (Ja=Ja0),
electron—ion plasma with cold heavy iong,<u; and «0=Cconst, by integrating Eq59) over the transverse coor-

1 VF(0)<uVE(0) (see Refs 15 and Join th opposie S1ee 0 veocies he prble can pe reduced (0 e
limiting case, where as a result of collisions thermal equilib- 9 P y

rium between particles of the different species sets in, ngasma bunch in slowly varying external fields:
must assume that aF, N oF, Z.,edpdF, 1 dU,dF,
t VZaz m, oz ov, m, oz v,

1

mVAD=5 D V(D).
255,

NaFa(t,z,vZ)Eff@adxdydlxdvy, U,=g,Bo(z1),

Here the velocity distribution of the particles corre- (60)

sponds to the Maxwellian distribution, i.e.F(G)
xexp(=G). _m, [I(vi+vy)®,dxdy di,dv,
94728, [[®,dxdydidv,

where the quantitg,, defined at=0, can be set constant in
the adiabatic approximation.
Thus, in accordance with the results of Sec. 3, the mo-
The results of the analysis of the dynamics of collision-tion of the center of mass of the plasma bunch (
less two-component plasma in external slowly varying po=[fzF,dzdv,) and the dynamics of the characteristic lon-
tential fieldsU,, may serve as a basis for studying the prob-gitudinal plasma sizelf(t)=[[(z—Z(t))?F ,dz dv,) in a
lem of acceleration and compression of a plasma bunch in slowly varying magnetic field are determined by the equa-

5. DYNAMICS OF A COLLISIONLESS TWO-COMPONENT
PLASMA BUNCH IN A SLOWLY VARYING MAGNETIC
FIELD

magnetic field with a magnetic-mirror configuration: tions
2
e+ d Z_ &BO _EaNaga
B(r,t)=By(zt)e,+B,(p,z1) % 57 G@&- Yz Y m (62)
V2 z=2(t) a'lla



JETP 89 (3), September 1999 D. S. Dorozhkina and V. E. Semenov 475

3d2|Z p a2 ) #°B, Using Egs.(61) and(62), we can study the compression
Iz gz T (DIz=Vilz=const, Q%()=y— > : of a plasma bunch in an exploding magnetic trap. If the
Z:Z(t)(62) magnetic field varies in time according to the law
2
whereVisZWZ/M—(dIZ/dt)z, and W, is the kinetic en- |30(z,t):E;0(t)Jr Q (t)ZZ, Q2(t)>0, (67)
ergy of the particle motion in the longitudinal direction in the 2y
center-of-mass reference frame. where By(t) and Q%(t) are slowly increasing functions of

Equations(61) and (62) make it possible to study the (ime the compression of the bunch is described by the adia-
acceleration of a plasma bunch in a moving magnetic mirrorpic 1aws

According to Eq(61), the plasma bunch is pushed out of the
region where the magnetic field is strong, i.e., for the bunch

to be accelerated in the positive direction of thaxis, we 12Bo(t) =const, —*—=const, (68)

must ensure thabB,/9z<0. At the same time, Eq(62) Bo(t)

implies that for the longitudinal plasma size to be conserved -

the second derivative @, must be positive: 12Q(t) = const, Wtz):conSt’ (69)
B, V32

—=—5. whereW, andW, are the energies of thermal motion of the
9z vz particles in the longitudinal and transverse directions, respec-
Thus the possibilities for the acceleration of a plasma bunciVelY:

as a whole in a time-independent magnetic field are ex-

tremely limited. These possibilities can be broadened by uss. concLUSION

ing a traveling magnetic-field wave: ,
Our results show that the method of moments is an ef-

a(t)\? fective instrument in theoretical studies of the dynamics of
z=Zo()— W) ' (63 quasineutral plasma bunches in external fields. Its use makes
it possible to calculate, in the general case, the evolution of
whereBy(t) anda(t)=d?Z,/dt? are arbitrary functions of the characteristic dimensions of the bunch and the cooling of
time, andQ? is a positive constant. Such a wave guarantees multicomponent plasma in the process of plasma expansion
a given acceleration of the bundiZ(t)=2Zy(t)] with the into vacuum. In the simplest case of a two-component colli-

~ 0?
Bo=Bo(t) + 2y

longitudinal size conserved: sionless plasma, the method of moments provides a complete
description of the dynamics of the bunch in slowly varying

|§:2_szzconst_ (64) external potential fields, which can be used as a basis for
MQ finding analytical solutions of the appropriate kinetic equa-

The variation of the characteristic transverse plasma scale i‘iJ\OnS' These solu_tlons can _be found for an _arbltrary mass
ratio of the constituent particles and for arbitrary velocity

this case is determined by the adiabatic &Bo(Zo.0 distributions of these particles in a broad class of spatial

=const, L.e., plasma-density distributions. We believe that the simplicity
) 1 and efficiency of the method argue in favor of its use in
o ~B—(t) a(t) solving many applied problems.
+ —_—
0 2y0° This work was made possible by Grants from the Rus-

Note that this acceleration regime is stable. In other>'a" Fund for Fundamental Resear(@rant No. 98-02-

words, if att=0 the coordinat& and the velocitydz/dt of 17052 and the Controlled Fusion Prograf@rant No. 363
the center of mass of the plasma bunch differ from the initial

valuesZ, anddZ,/dt, *)E-mail: dorozh@appl.sci-nnov.ru
DE-mail: sss@appl.sci-nnov.ru
dé YIn Egs. (21)—(23) we have discarded the subscrigton the spatial and
Z(t)—Zo(t)=&(t), &(0)#0, at #0. mixed moments, since they coincide for particles of the two species.

2In the absence of external fields (=0), Eq.(36) becomes Eq(24).

) ) o ) _ ) } . .
the functioné(t) does not increase with time since it satisfies Examples of such processes are various types of plasma instability.

the harmonic-oscillator equation

2 .
E _,_92520 (65) LA. V. Gurevich, L. V. Pariskaya, and L. P. Pitaevskizh. Eksp. Teor.
dt? : Fiz. 49, 644 (1965 [Sov. Phys. JETR2, 449 (1966)].
2A. Gurevich, D. Anderson, and H. Wilhelmsson, Phys. Rev. 14£t.769
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; ; i ; Fiti . A. V. Gurevich and A. P. Meshcherkin, Zhk&p. Teor. Fiz.80, 181
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Dust acoustic waves in a dc glow-discharge plasma
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The spontaneous excitation of low-frequency oscillations of the macroparticle density in ordered
dust structures levitating in standing striations of a dc glow discharge is discovered. It is
concluded on the basis of a simplified linear model of an ideal collisionless plasma that the
observed instability is caused by the drift motion of ions relative to the dust, which

leads to the excitation of dust acoustic oscillations of the plasmal9@9 American Institute of
Physics[S1063-776(99)01109-9

The presence of charged dust particles in a low-position correspond to the head of a striation, where the elec-
temperature plasma leads to the appearance of new oscillaic field intensity is greatest. In addition, it was discovered
tion modes and instabiliti€s3 For example, the phase ve- that the oscillations appear when there is a defittitical)
locity of ion sound increases as a result of the decrease in theumber of dust particles in the structure. This can be seen in
concentration of electrons, which are partially absorbed byFig. 2: the first framgFig. 2(a)] shows a well ordered struc-
the macroparticles. This leads to changes in the characteritdre, and the ensuing framéBigs. 2b) and Zc)] show the
tics of the ion-acoustic current instability appearing becauselevelopment of instability in response to the additional in-
of the relative motion of ions and electrons at frequenciegection of particles and their trapping by the structure.
close to the ion plasma frequency. At lower frequencies, We note that the oscillations disappear when the dis-
close to the dust plasma frequency, current instability caicharge current is raised or the gas pressure is increased.
appear as a result of the motion of electrons and ions relative  The frequency of the oscillations discovered is close to
to the charged dust particldsee Ref. 3 and the literature the frequency of plasma-dust oscillatichgherefore, an ex-
cited therein. Dust sound and a corresponding current instaflanation for the effects described above should be sought in
bility were recently observed in laboratory experiméhts. the possible instabilities of the low-frequency oscillations of
Dust acoustic instability can appear in various systems, suci dusty plasma. The spectrum of longitudinal modes of a
as, for example, Saturn’s rings, radio-frequency dischargeBlasma is determined from the solution of the dispersion
used in plasma-sputtering and etching technologies, angquation
plasma crystal3.

The appearance of natural oscillations in a dusty dc e(w.k)=0, @)
glow-discharge plasma sustained in neon was discovered {fjere, is the dielectric constant of the plasma, andndk
the present work, and an attempt was made to interpret thigre the frequency and wave vector of the oscillations. The
phenomenon as being a result of a plasma-dust current 'nStgnsceptibility of an ideal motionless plasma e —1 is ad-

bility. The experimental setup scarcely differed from the onegjtive with respect to the charged components of the plasma:
which we previously used in Ref. 9. The plasma-dust struc-

tures were formed in standing striations of a low-pressure .

discharge in a glass tube with a diameter of 3 cm and cold S(w’k)zlJ“j:; g [¢!(w,k)—1]. @
electrodes. Monodisperse microspheres of a melamine- o

formaldehyde resing= 1.5 g/cn?) with diameters of 10.24 Here the indices, i, andd correspond to electrons, ions,
and 1.87um, whose charge ranged from®1® 10 e, were  and dust particles. In a gas discharge the velocity distribution
used in the experiments. The structures were visualized usingf the charged particles deviates from equilibrium because of
transillumination by a laser “knife” in a vertical plane. the directed motion in the electric field with the drift veloci-
Video images of the structures were recorded using a CClesu; . The dielectric constant! of each of the components
camera and a video cassette recorder. Figure 1 presentsraa coordinate frame moving with the velocity has the
video image of a structure consisting of particles with a di-same form as in the laboratory coordinate frame with
ameter of 1.87um. Oscillations of the dust particle density =0. In going over to the laboratory frame, allowance should
are clearly seen in the lower part of the structure in the videde made for the Doppler frequency shift, which leads to gen-
image. These oscillations are particle density waves with &ralization of the expressiof2) to the case of nonzero drift
wavelength L~1 mm and an oscillation periodl~5  velocities:

X 10" 2 s, which travel downward from the anode to the cath-

ode. It should be stressed that these oscillations exist only in _ B e ) —

the lower part of the structures, whose linear dimension and s(w.k) 1+j:g,i,d [el(ok vk —1]. &

1063-7761/99/89(9)/4/$15.00 477 © 1999 American Institute of Physics
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X (= exp(—z%)dz
F(X):\/_—J’ z—x—i0
’n' — 0
1 3 2
—1-———5+i X x>1,
) B 4X4+|\/;xe ’ (6)
—2x%+i\m X, x<1.

In laboratory experiments dust particles levitate and per-
form chaotic thermal motions, and their drift velocity is
equal to zero. The thermal velocity of the electronsis
usually significantly greater than their drift velociy;, and
the latter can also be considered equal to zero. The following
inequalities usually hold in a dc gas-discharge plasma in the
region of parameters where dust acoustic instabilities are ob-

served:
FIG. 1. Video image of an ordered structure of monodisperse particles with kv > kv;>ku;> w>kv. (7)
a diameter of 1.87um at a discharge current of 5 mA and a pressure of 0.3
Torr. Each frame corresponds to 10.6 mm in the vertical direction. Thus, in accordance witli3)—(6), the complex dielectric
constant can be represented in the form
wg . Jmoeo—uk
In the case of a collisionless Maxwellian plasma in the — &(w,K)=1=—5+ 75 +i v 8
i\

absence of a magnetic field, the solution of Vlasov's equa-
tion leads to the following expression for the longitudinal where

dielectric constant® 172

4mNgZ5e? Ae\i
0= ||+ AT T €)
i(wk)=1 1+F| — @) i Nt
K) =1+ + , :
ei{wk) (k>\j)2 V2kv; are the dust plasma frequency and the electron-ion Debye
length, respectively, and, is the charge of the dust par-
where the parameters ticles.

Assuming that the absolute value of the imaginary part

\/T \F of e is small and setting
Y R N N | :
)\J 4’7TN]e ' VJ mJ (5) w:wr'ﬂ% wr>7’r (10)

) from (1) and(8) we find the low-frequency oscillation spec-
are the Debye length and the mean thermal velocity of therym of a dusty plasma:

jth component, and;, N;, and m; are the temperature,

concentration, and mass of the particles of jtle compo- 2= 2 k*\?

(11)

nent. The functiorF (x) is defined by the integral rT YA KA

FIG. 2. Video image of fragments of structures of monodisperse particles with a diameter @im.&7a discharge current of 0.6 mA and a pressure of 0.3
Torr. Each frame corresponds to 6 mm in the vertical direction.
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o, s ¥ s striation is probably due to the fact that the electric field
and thus the ion drift velocity; reach maxima in this region.
According to(12), the instability growth rate also reaches its
greatest value in this region.

In our opinion, dust acoustic instability is not observed
in radio-frequency discharges, because in the layers near the
100} 110 electrodes of these discharges, where the levitation of dust
= particles is usually observed, due to the Bohm effettie
ion drift velocity satisfies the condition

150t hy 115

50+ 45
Te Ti
uj= — >Vi = —.
1 _ I 0 ml ml
0 50 100 150 _1200 This leads to alteration of the spectrum of dust acoustic os-
k, om cillations (11) and the appearance of an exponentially small
FIG. 3. Dispersionw, (k) and growth ratey(k) of low-frequency plasma-  Multiplier exp(_Te/Ti) in the 'nStab'!'ty gr.ovvt.h ratle(12). _
dust oscillations in standing striations of a dc gas discharge. The recent discovery of dust acoustic oscillations in a radio-

frequency discharge under microgravitational condittdns
does not contradict the foregoing statements, since in this
T ®  wo—uk case dust structures are located throughogt the _volume of the
y=— \[§ i Av— (12 plasma and the phenomenon under consideration occurs far
RO from the electrodes, wherg <v; .
l I
When u;=0, this spectrum coincides with the spectrum of Dust acoustic instability can be initiated by the decrease
dust acoustic oscillations. A nonzero value of the drift veloc-in the gas pressure in the discharge or by the increase in the
ity of the ionsu; leads to a decrease in the damping decrenumber of macroparticles in the dust structure. The former
ment vy, and at values ofl; exceeding the phase velocity of effect is associated with an increase in the ion drift velocity
the waves/,,= w/k, the damping decrememtchanges sign, and a decrease in the viscosity of the neutral gas. The latter
i.e., instability appears. In complete analogy to the ion acouseffect, which is illustrated in Fig. 2, possibly occurs because
tic instability of an ordinary plasmd, the instability discov- the increase in the concentration of dust particles creates an
ered is caused by the Cherenkov radiation of dust acoustigdditional channel for a loss of chargepart from the prin-
waves by ions moving with a supersonic velocity. It is pos-cipal channel associated with ambipolar diffusion on the
sible only under the conditions walls of the discharge tubewhich, at a fixed discharge cur-
rent, necessitates an increase in the ionization frequency and,
ZaTiZTa, U= Vpr>Va, (13 consequently, leads to intensification of the field in the re-
which are satisfied with a large safety margin in a dusty dgyion where the dust particles are fouhdhis, in turn, leads

Vi

glow-discharge plasma. to a rise in the ion drift velocityy; and, as a result, to an
Under the conditions of our experiment, at a pressuréncrease in the instability growth rate.
p=21 Torr and an electric field intensig=3 V/cm, the ion Finally, we note that the disappearance of the oscilla-

drift velocity u; is roughly equal to & 10° cm/s. For a char- tions in response to an increase in the discharge current is
acteristic oscillation frequencyw=27/T=60s ' and a probably a consequence of the lowering of the electric field
wave vectork=2m/L=60cm ! the phase velocity of the intensity ordinarily observed under such conditions.

waves is small compared with the ion drift velocityy, ] )

— w/k=1 cm/s<u; . Estimates made in accordance wigh We thank S.A. Khrapak for some useful discussions.
and (5) for particles with a diameter of 1.8&m give wy

=210s? and A=1.2x10 %2cm (the values Z4=2.5

X 103 e, Ng= 10 Cm_3, andN; = 108 cm~2 were usell The *)E-mail: molotkov@hedric.msk.su

results of the calculation of the frequeney and the growth

ratey of the dust acoustic oscillations are presented in Fig. 3.

The instability growth rate has a maximum &tk

—1M\=60cn ! at the characteristic frequenay, (K, M. Rqsenberg, inThe Physics of Dusty PIgsm_qB. K_. Shukla, D. A.

. 1 . : Mendis, and V. W. Chow(Eds), World Scientific, Singaporé1996,
=wq/vV3=120s " Just such waves are excited in our ex- b. 129.

periment. 2F. Verheest, Space Sci. ReX7, 267 (1996.
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A boundary separating adjacent gas or liquid media is frequently unstable. Richtmyer—Meshkov
and Rayleigh—Taylor instability cause the growth of intricate structures on such boundaries.

All the lattice symmetriedrectangular pmn®), square p4mm), hexagonal 6mm), and
triangular P3m1) latticed which are of interest in connection with the instability of the

surface of a fluid are studied for the first time. They are obtained from initial disturbances
consisting of ondplanar case, two-dimensional flpytwo (rectangular cells or three

(hexagons and trianglesarmonic waves. It is shown that the dynamic system undergoes a
transition during development from an initial, weakly disturbed state to a limiting or asymptotic
stationary statéstationary point The stability of these pointgstationary statgss

investigated. It is shown that the stationary states are stable toward large-scale disturbances both
in the case of Richtmyer—Meshkov instability and in the case of Rayleigh—Taylor instability.

It is discovered that the symmetry increases as the system evolves in certain cases. In one example
the initial Richtmyer—Meshkov or Rayleigh—Taylor disturbance is a sum of two waves
perpendicular to one another with equal wave numbers, but unequal amplidyfies0)# a,(t

=0). Then, during evolution, the flow hge2 symmetry(rotation relative to the vertical

axis by 1809, which goes over tp4 symmetry(rotation by 909 att—, since the amplitudes
equalize in the stationary stat@;(t=«)=a,(t==). It is shown that the hexagonal and

triangular arrays are complementary. Upon time inversien {t), “rephasing” occurs, and the
bubbles of a hexagonal array transform into jets of a triangular array and vice versa.

© 1999 American Institute of Physids$1063-776(99)01209-3

1. INTRODUCTION tion of the boundary = - - -x2N, N=1) near a bubble apex,
is effective. It leads to a dynamic system, whose trajectories

Richtmyer—Meshkov instability appears when a shockdescribe the gradual transformation of the boundary strains
wave passes through a boundary between media of differefiiom the original, weakly disturbed state to the establishment
density, and Rayleigh—Taylor instability is generated by un-of a stationary statéor stationary point The stationary state
stable gravitational stratification. The stirring of the mediais achieved asymptotically @s-«. The scope of the prob-
caused by them is significant in many physical problems, folem can be narrowed, and the stationary state can be studied
example, in laser and beam inertial confinement fudidn, at once(the derivatives with respect to time are set equal to
astrophysicé;> and the physics of explosiofisThe corre-  zero at the stationary pointThen, instead of a dynamic sys-
sponding questions have been studied intently, and it is sutem and differential equations, there is a system of algebraic
ficient to cite the latest studiés ' The theory of equations, which represents a stationary version of the
Richtmyer—Meshkov and Rayleigh—Taylor instability is Layzer model. A first-order stationary stafearabolic ap-
quite formidable, being comparable in complexity to theproximation,N=1) was studied back before Layzer's work
theory of gravity waves. in the notable work by Davies and Tayfdr.The Layzer

Review of the theorytet us recall the principal theoret- approach is applicable to both Richtmyer—Meshkov instabil-
ical studies? grouping them according to the methods usedity (g=0, g is the acceleration of free faland Rayleigh—
The two-dimensional2D) case has been investigated for the Taylor instability (@=1).*"'°If the case of a rectangular
most part, since the three-dimensiofaD) case is far more lattice is ruled outfor further information on this lattice and
complicated. Therefore, we single out the studies in whictother 3D generalizations, see belpwhe phase space of the
the 3D case was investigated. Layzer model is planar This permits the investigation of

1. Parabolic model, RichtmyeMeshkov and Rayleigh  the corresponding dynamic system in the most generaltase
Taylor instability, nonstationary and stationary cas@$ie (see also the subsequent publications in Refs. 7, 9, and 16—
Layzer model! which is based on the parabolic approxima- 18). The analysis demonstrates, in particular, the stability of

1063-7761/99/89(9)/19/$15.00 481 © 1999 American Institute of Physics
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Richtmyer—Meshkov and Rayleigh—Taylor stationary stateshe surfacer. Section 6 presents the results of a direct nu-
in the class of large-scale disturbances, since each stationamyerical simulation. The Rayleigh—Taylor stationary states
point is a nodé>*"18 are presented in Secs. 10 and 11. The one-parameter charac-
2. Functional vicinity of the equilibrium configuration ter of the 3D stationary states is demonstrgt®ec. 10, and
Several studies have been carried out in the weakly nonlineat is shown that the stationary point is unigt@ec. 1J.
approximation, which is valid for small disturbance ampli-
tudes(see Refs. 19 and 20 and the references theréims 5 | ARMONICITY AND BOUNDARY CONDITIONS
approximation describes only the beginning of the departure
from the bubble-jet stage of motion, which is symmetric with ~ Flow is described by the velocity potential (A¢=0,
respect to inversiof, toward bubble-jet asymmetry. This V=Ve). The boundary conditions have the fofm
asymmetry is mgnifested by broadening of the bubble and m=wWl— |- V], U=ey, V=g, W=g,,
narrowing of the jet. 2.0
3. Integral formulation of the boundary-value problem of

_ — 2 2 2
potential theory The results determined can be obtained us- 2¢| =2gn+u|+vi+w,

ing conformal transformations after representing the fl=f],=f[x.y,z= n(x,y,t),t]. (2.2
boundary-value problem in the form of an integral 7 . ) .
equatior?t—23 The fluid boundary is assigned by the function

4. Successive approximatioriigher generalizations of = 7(X.¥,t). The acceleration isg=0 for Richtmyer—
model 1 in theNth-order approximation#g= - - -x2V, where Meshkov instability andy=1 for Rayleigh—Taylor instabil-
N is fairly large) were developed in Refs. 13, 15, 17, and 24 ity. The kinematic conditiori2.1) describes the advection of
They refer to both the stationd®?* and nonstationaf§*® the surfac_:en by the velocity fieIdVgg. The dynamic equa-
cases. Higher expansions provide a powerful tool for investion (2.2) is the Cauchy—Lagrange integral of Euler's equa-
tigating convergence and uniqueness probl&ms. tion. The stationary case is obtained wh&m0, and the

Combining approaches 1 and An obvious advantage two-dimensional case is obtained whg= 0. In the station-

of method 1 over 2 and 3 is that in 1 the transformation from@'y c@se the conditio(2.2) transforms into Bernoulli’s inte-

the linear limit to the nonlinear limit or an asymptotic state 92
can be traced in its entirety. When it is combined with ap-
proach 4, possibilities are opened up for obtaining exhaustive. RECTANGULAR, HEXAGONAL, AND TRIANGULAR
results on Richtmyer—Meshkov and Rayleigh—Taylor instaL ATTICES
bility. A significant shortcoming is the poor extent of devel-
opment of the higher stationary approximations for
Richtmyer—Meshkov instability(the stationary boundary
conditions are complicated, and it is not clear whether th
states sought are zero- or one-parameter 134 < anm

Combined approach in the 3D cas€he extension of ¢=-3 go mE:O qnanmeqyenm, Q3.1
method 1 to the 3D geometrisee below gives a general
description of the evolution. Itéurns out that it is accompa- ~ C,,=COSNX,  Cpqy=COSMQY,
nied by striking structural effects For its part, the extension
of technique 4, which was developed mainly for the 2D case, ~€nm=€XX—Unm2),  Gnm= Vn?+m?g?,
provides important qualitative conclusions regarding the

Decomposition symmetryrhe flow symmetry is deter-
mined by the symmetry of the potential. The spectral decom-
é)ositions of the potentials have the form

. : . " 14 « a
convergence and uniqueness of Rayleigh—Taylor instability —o=— = > > —"T(c,c/+5,S/+CaCrm+SnSm
in the 3D case. Thus, in this paper we are dealing with the 6 =0 m=0 Unm
extension of methods 1 and 4 to the 3D geometry. +cico—s's)e (3.2
n*m n=m nm:? .

Previous studies on 3D flow$n Refs. 17, 28, and 29
method 4 was applied to the stationary stage of Rayleigh— c,=cosnx, c,=
Taylor instability in the 3D case. The values bf were

cosné™, s,=sinnx,

small. References 30—32 were devoted to three-dimensional sE=sinng® gi_Xiﬁy
. . . . . n 1 - 1
numerical simulation. Some 3D experiments in shock tubes 2
were described in Refs. 33 and 34, and similar experiments — exH(— Qur2) — Jn—nm+m?
in an explosive system were described in Ref. 35. €nm=EXN~GnmZ),  Gnm= .

Content Sections 2 and 3 present a statement of thélhe serieg3.1) refers to the rectangular case. The unit cell is
problem, the boundary conditions, and the spectral decona pipe with a generatrix along the axis and a transverse
position of the 3D potentials. The symmetry of the potentialssection 27X 2#/q lying in the (x,y) plane(see Fig. 1 The
and the unit cells of the array is discussed. Sections 4 and &tio between the sides of the rectangle eqgal&n analysis
describe the derivation of the equations for generalizingf the rectangular lattice allows us to understand how 2D
model 1 to the 3D case. A complete analysis of the correflow transforms into 3D flow. The serig€8.1) is a combina-
sponding phase space is given. Exact integrals of the expresen of the two vectorg1,0,0 and (0g,0), and the series
sions obtained are given for the case of Richtmyer—Meshko¥3.2) is a combination of the three vecto,0,0 and (1/2,
instability. Sections 4, 5, and 7 explore the 3D structure of+v3/2,0). In the serie$3.1) each term is an eigenmode of
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the Laplacian, and in the serie€.2) the pairs ¢c* at theS; and S,, saddle points, respectively. At long times
+ss)eand c*c”—s*s7)e are eigenmodes. the distance along the verticalbetween thel andS; points
The matrices of the amplitudes,,, (3.1 and (3.2 are is smaller than the distance between drendS,, points. The
functions of time. The amplitudes,, (3.1) are not symmet- S, saddle points are farther from thk jet apices in the
ric (whenq# 1) with respect to interchange of the indices. downward direction along the axis than are thé&; saddle
The amplitudesa,,, (3.2 are symmetric &,m=amn). A points. Therefore, th§,, saddle points are called “weak” in
square lattice is obtained whep=1 is substituted into the comparison to the “strong’S, saddle points.
series(3.1). In this case the amplitudes are symmetric. Hexagonal-lattice bubble arrayLet us move on to the
Unit cell and ideal pipe The expansion§3.1) and(3.2) potential(3.2). First, let the amplitude;; dominate(let the
of the potentials rapidly converdthis was shown for the 2D  disturbances of; be equal to zernoatt=0, and, second, let
case in Refs. 15 and 17In the serieg3.1) a;gandag; are  a;p>0. Then it is easy to see that there are bubble apices at
dominant” and in(3.2) a,o is dominant. Let us examine the the B points in Fig. 2. The first few lattice points are num-
unit cell of the potentia(3.1). The center of the transverse bered 1, 2, 3, and 4. Point 1 is the coordinate center. At the
coordinatesX=0,y=0) is located at poinB (Fig. 1). If the  J points there are jet apices. Several jets are numkéred.
initial amplitudesa;o(0) anday,(0) are positive and there Symmetric verticalsV{, =0) pass through the bubble apices
are no initial disturbances on the surfage point B is a B, the jet apices], and the saddle pointS. Symmetry
bubble apex. In Fig. 1 the apices are encircled by ellipses. Iplanes pass through the straight lines which are continuations
is not difficult to see that rectilinear verticéle., parallel to  of segmentsBJ, BS, andJS. The minimal domain is tri-
the z axig trajectories of the fluid particles pass through angleBJS The total flow is the sum of the parquet of do-
(bubble, J (jet), S; (“strong” saddle, and S, (“weak” mains.
saddle points. Planar trajectory curves of the fluid particles  Triangular-lattice bubble array Complementariness of
fill the planes which are parallel to the axis and pass triangular and hexagonal lattices. Let us consider the case of
through the straight lineBS;, BS,, JS, andJS,. Seg- a triangular-lattice bubble arra¥ig. 3). We denote the cor-
ments of these straight lines are drawn in the small rectangleesponding potential bys(X3,Y,2,t). The case of a honey-
in Fig. 1. If g=1 (square, planar trajectories also fill the comb array(Fig. 2) with the potentiakpg(Xg,Y,2z,t), which is
planes passing through the diagonBl& given by the double sur(8.2) whena;>0, was considered
The facts just indicated are associated with the obviousibove. In that case the ap&k of a hexagonal bubble is
symmetry properties of the potenti@.1). On the symmetric located at the centerxf=0y=0). A triangular-lattice
verticals at theB, J, Sy, andS,, points the transvers@ori-  bubble array is also given by the sui®.2), but whena;,
zonta) velocitiesu andv (2.1) are equal to zero. This is <0. The potentiak;(x3, . ..) of atriangular-lattice bubble
because th8S;, BS,, JS, andJS, symmetry planes in- array with a bubble at the coordinate centes=0,y=0) is
tersect along these straight lines. The normal component afbtained fromeg(Xs, . . . ) by displacement by the segment
the velocityV, vanishes in these planes. Therefore, the quareonnecting points 1 and 5 in Fig. X{=4m/3+X3).
ter of a complete flow period enclosed within rectangle @ The complementariness of hexagonal and triangular
BSJS, is equivalent to flow in an ideal pipe. The normal bubbles follows from the invariance of the potentigl2)
component of the velocity,, rather than the total velocity with respect to rotation about thEs axis(by 60°), which is
V, is equal to zero on the walls of such a pipe. The quadraribcated at point 1, and about tp& axis(by 180°), which is
BSJS, forms a minimal pipe(domair). The flow in the located at point 5 in Figs. 2 and 3.
entire space is obtained by parquet multiplication of this do-
main by reflections and translations. In the case of a square
(q=1), triangleBJS is a domain. _ 4. PARABOLIC MODEL. TWO-DIMENSIONAL PHASE SPACE
Domains, wall jets, and archedNear-wall or wall jets
travel along the domain walls. The form of these jets is  4.1. The potentialspg, ¢4, and ¢3. In model 1 the
shown schematically in Fig. 1. Curvds,J andJS,J cor-  expansiong3.1) and(3.2) are cut off at the first terms. The
respond to the lowefalongz) edges of near-wall jets. They potentials of hexagonal, square, and triangular bubbles have
have the form of arches or horseshoes with a dome or a pedke form
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FIG. 2. Hexagonal array of bubbld. The apicesB are sur-
rounded by circles. It is important that three symmetry planes con-
verge at the jet apices (see the end of Sec. 5.2

a . . u?|, v?|, andw?|. We expand the expressions in the small
=" §(C+C++Cf)efz, C=COSX, C~=COS{™, parameterA (4.4), retaining the zeroth and first terms with
(4.1  respect to the powers df.

4.4, Laboratory and comoving coordinate frames and
zeroth order of the kinematic conditionThe multiplier
aexp(— 7o) appears during the calculation @f|. Let us con-
sider the laboratory coordinate frame and the coordinate
¢3=E(c—\/35+c+ +v3st+c +v3s )e %, (4.3  frame comoving with a bubble apex. In the laboratory coor-

6 dinate frame the fluid is at rest at infinity, and in the comov-
ing frame the bubble apex is at rest. We introduce the im-
portant notation

a
Q1=— E(cosx+ cosy)e %, (4.2

s=sinx, sT=siné*.

The bubbles are located at the center wherey=0. In
(4.1)—(4.3) a=a,. According to Sec. 3, the amplitudes A=aexp(— o). (4.9
>0 in (4.1) and(4.2), anda<0 in (4.3.

4.2. Fluid boundarylt can be shown that in the case of
a hexagon, a square, and a triangle the principal curvatures
the surfacey at B and J points coincide€ Therefore, the
surfacern can be approximated by a symmetric paraboloid in
the vicinity of apices. Accordingly, horizontal sections of the aexp— 7o) =A+ 7oA. (4.6)
boundaryz near apices have the form of small circlege
Figs. 2 and 3% In these regions we have

It is not difficult to see thaA is the Fourier amplitude in the
comoving coordinate frame, whikeis the Fourier amplitude
# the laboratory coordinate frame. Differentiatit@y5), we
find

We write the kinematic conditiof2.1) at a B point. This
gives the zeroth order of the expansi@l) with respect to
A at the point wherx=y=0. From(2.1) and(4.4) we have

A
7GY.0=no()—K(D) 7, A=x2+y? (4.4
m(Xx=0y=0t)=¢,[Xx=0y=0:z=75(0,01),t],
4.3. Calculation of velocities and derivativéd/e calcu-
late the acceleration potentia}, the velocitiesu, v, andw, 7(0,08) = no(1).
and the derivatives), and , using the direct differentiation
of (4.1)—(4.4). We consider the value of the potential and the

velocities at the boundary,|, u|, v|, andw|. We calculate (70)6=A, 4.7

Plugging in the velocity| calculated in Sec. 4.3, we find

J J z FIG. 3. Triangular array of bubbld (circles. Six symmetry planes
Ky - converge at thd apices.

A s A
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4.9
4.9

(70)a=A,
(70)3=—AJ2,

where formulag4.7)—(4.9) refer to the cases of a hexagon

(A>0), a square A>0), and a triangle A<0), respec-
tively. Substituting(4.7)—(4.9) into (4.6), we find

[aexp(— 70)Je=A+AZ,
[aexp(—no)la=A+A%  [aexp(— no)ls=A—A%2.
4.5, Substituting into the boundary conditioge write
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In the system(4.17) W= 7, is the bubble rise velocityK
=1/R, R is the radius of curvatureg=0 for Richtmyer—
Meshkov instability,g=1 for Rayleigh—Taylor instability,
andg=—1 in the case of gravity wavdsee Ref. 1k In the
cases of a hexagon, a square, and a triangle, we Wave
=A, A, and—A/2, respectivelysee formulag4.7)—(4.9)].

We see that the systerf#.17) is a universal system,
which describes hexagonal-, square-, and triangular-lattice
bubble arrays.

4.6. Complete analysis of the systéfhe phase space of
the system(4.17) in the variablesW and K is very

out the potentials, velocities, squares of the velocities, angimple’>*® In the case of 3D standing gravity waveg (
derivatives. The acceleration potential on the boundary i~ —1), the trajectoryW(t),K(t) in the W,K plane is a

given by the expressions

_ctcT+eT
(‘Pt)ﬁz_aTe ;

ctct+c”

(@r)el=—aexp— o) TGKNZZ —(A+A?)

1-2K
X|1— A (4.10
4
in the case of a hexagon,
. cosx+cosy
((pt)4: _aTe ’
. ) 1-2K
(¢l == (A+A%)| 1= —,—A (4.13
in the case of a square, and
_c—V3s+c +v3st+cT+v3sT
(¢t)3:a 6 €5
. A%\ c—V3s+...
At KA/2
(‘Pt)?zl (A 2 ) 6 €
(A A2 ) 1—2KA i1
277\ (412
in the case of a triangle.
Similarly, we obtain
1-2K
(¢el =A| 1-=—;—A ], (4.13
the expression forg,) .| coincides with(4.13, and
A 1-2K
(pa|=— 5| 1-—5—A), (4.14

(‘Px)6| :(QDX)4| =Ax/2,
(¢03l=—~AX4, (¢,)3]=—Ayi4.

(¢y)el=(@y)al=Ayl2, (4.19
(4.16

Substituting formulag4.10—(4.16 into the boundary

closed contour. Passage around the contour corresponds to
one wave oscillation period. It is interesting that the lattice of
wave crests is hexagonal during one half of the period and
triangular during the other half.

In the cases of Rayleigh—Taylor and Richtmyer—
Meshkov instability, the phase layout is exhausted by one
stationary point, which is a node. All trajectories having
physical meaning end at this nodetat . Hence follows
the stability of the solutions in the trajectory class of model 1
(Sec. 1. In the stationary state we have

W=1, W,=g/k (4.18

in the case of Rayleigh—Taylor instabilfty(the subscripd
denotes dimensional valueand

K=1/4, Ry=4k,

K=1/4, Ry=4k,

W=1t, Wy=1kt (4.19

in the case of Richtmyer—Meshkov instability.

The behavior of the systeni4.17) for Richtmyer—
Meshkov instability is especially simple. Whep=0, it be-
comes homogeneous and is easily integrated. While the tra-
jectories for Rayleigh—Taylor instability depend significantly
on the initial data, in the case of Richtmyer—Meshkov insta-
bility there is only one independent trajectory. The remaining
trajectories, which pertain to different initial data, are ob-
tained from it by simple scaling. The exact integrals of the
system(4.17) for g=0 have the form

1-2K 1 J2(1-2K)+1-4K
\/———1——In =W,t,
1-4K %) V2+1
(4.20

W, 1

V2+1vV2Wy—W
1+ —In
W 2v2

Vi—1VZW+W

The displacement of a bubble is easily calculated from Eq.

(4.2D:

t
no(t)=f0'no(r)dr=fW(r)dT.

conditions(2.1) and (2.2), we arrive at the dynamic system N Ref. 18 the systentd.17), the stationary state.18 and
sought for the parabolic model. The system of equations ha&-19, and the solution$4.20 and(4.21) were obtained for

the form

K_1—4KW e W2—4gK i1
T2 7 T 2(1-2K)” .19

the case of a square lattice. Here this approach has been
extended to two more important lattices. The systdm?)

and the solutiong4.20 and (4.21) describe the transition
from a linear to a nonlinear stationary state.



486 JETP 89 (3), September 1999 N. A. Inogamov and A. M. Oparin

O
@o

a

FIG. 4. Square lattice. The=0 andz=hq levels in the lineafa) and nonlinearb, ¢ stages. RAn h<<0 level, which is marked by a circle with dashes
directed outward, is in the square near the minus sign. The straight lines depict the separatrix network. It is marked by a zero, since the hdight in it is
=0. Anh>0 level, which is marked by a circle with dashes directed inward, is in the square near the plug sigrizbntal sections gt =0 in the linear

[dotted lines, transferred from Fi¢ga)] and nonlineaxsolid curves without dashgstages. rHorizontal sections at=0 [dotted lines, transferred from Fig.

(b)] andz=hg (dashed and solid curvem the nonlinear stage. The separatrix network consists of four-pointed stars with sharpened tips joined together at
S points. One such star is depicted by solid curves.

5. BOUNDARY SURFACE RELIEF (see Figs. 2, 4, and)3In 2m lattices there are two types of
saddle pointsS; andS,, (see Fig. 1 Therefore, in this case
the separatrix network is usually divided into two systems of
parallel chains:S chains(segments ofS,— S separatrices
and S, saddle pointsandS,, chains(see Sec. 5)3

The nonlinear stage is shown in Figgb¥and(c). In it
the shapes of the bubbles and jets are different. The zero
level hy is deformed. It transforms from the square depicted
by solid straight lines in Fig. @) and by dotted lines in Fig.
4(b) into the rounded contour depicted in Figb}by a solid
curve and in Fig. &) by dots. Within this contour the height

Let us discuss the topography of horizontal sections.h>0' This 'posmve 'areaS is the region \{vhgre the
“vacuum” rises. Outside the contouh<0. This is the

Consider the curvedevel lineg, along which the surface ) h ; )
“negative” areaS~, where the fluid drains downward. In

= n(x,y,t) and the horizontal plane=h, whereh is the § S ) o
height of the horizontal section of the relief, intersect. Con-the linear stageS'/S™=1. In the nonlinear stag& /S

sider also the level map. There are nonempty intersections al _ o )
h,<h<hg, where hg=7(2mn,2rm,t)>0, h,=7[(2n Let us cpnfspler the |Im|lt—_>C.>C_. A bul_)ple asymptotically
+1)m,(2m+1)m,t]<0, andn,m=0,+1,.... Thelevels ©€Scapes to infinity from the initial position of the boundary
with h>h,+ e (0<e<1) are closed around & point, and ~ (Ns—ho—2). In the process5"/S"—0, and the contolny
the levels withh<hg— € are closed around B point. One IS pressed against squatéJJ (see Fig. 1 fog=1). Square
such contour closed aroundJapoint and one such contour JJJJis a cross section of a pipe, along whose walls flattened
closed around 8 point are depicted in Fig.(d). The dashes ©OF wall jets travel. We see that rotation of the square by 45°
indicate the direction of increasirty takes place. At=0 theh=0 squares are obliquely oriented

In the linear stage the bubbles and jets divide e [see Fig. 4a)]. Their sides are parallel to the bisectors of the
plane into equal squaréa checkerboard, Fig.(@]. On the angles between the andy axes. Att=c the sides of the
black squares of the board there are jéte dashes point h=0 squares are parallel to tixeandy axes.
outward, and on the white squares there are bubliths In the nonlinear stage th8— S separatrices lose their
dashes point inwajd As the heighth increases, we havé  rectilinear character. They are depicted in Figb) 4nd 4c)
—S—B. The contours around a bubble agexgive way to by solid (the central starand dashed curves. The points on
contours around a jet apéy upon passage through the sepa-the tips of the stars are saddle poin®.(The center of each
ratrix network. Its points are saddle poin®)( The network star is a jet apexJ). With the passage of time the separatrix
is formed by separatrices joinirfg points. intersection angle becomes increasingly acutet-Ate, hg

In the linear stage the separatrices are rectilinear and are> — (the density ratiqu=0). The star then contracts into
all located at the zero level=hy= 0. This is a manifestation a cross ofJS segments.
of the “degeneracy” of the square case in the linear stage. The characteristic levels form the sequehgechs<hj
We note that #n structures are the simplest among the spa<<hg. The contour of the horizontal sectiontat 0 [dotted
tial structures. curves, Fig. 4c)] is located within thehg contour (dashed

In the nonlinear stage the coincidence of the separatriceand solid curves
with the h, level is eliminated. There is no such coincidence  Let us compare Fig. 4 and Fig. 1 in the caseqefl,
in either the linear stage ¢for sure in the nonlinear stage in where theS; and S,, saddle points are identical. Figures 1
the case of &, 3m, and 2n lattices(see Secs 5.2 and 5.3 and 4 show downward view@n the x,y plang. In addition,
In 6m, 4m, and 3n lattices there is one type of saddle point Fig. 1 presents a lateral vie(in a plane passing through the

5.1. Squares Let us systematically examine square
(4m), hexagonal (&, Sec. 5.2, and rectangular (13, Sec.
5.3 lattices. We begin with ther case. Let the potential
¢4(X,y,2,t=0) be given by the sum of two wavé4.2), and
let »(x,y,0)=0. The evolution of the spatial structure of the
surfacey from the linear to the nonlinear stage is traced in
Fig. 4. We can describe the relief of the surfagi,y,topd
with its “mounds” and “pits.” In the linear stage
[ pw|~w(x,y,z=0t)] the shapes of the bubbles
(“mounds”) and jets(“pits” ) are identical.
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N\ /s near-wall jet$. The jets are stronger at the corners of the
™ /S/ pipe. Because of this, the indentation depth of ihmoints is
\ /j greatest on thdS arcs. The degree of bulging of the curved
/ SN jets J from the “wall” is characterized by the ratio
(- ’ - ¢=(hy—ho/h;. (5
2 2 It is small in the case of wall jets. In the case of a finger-like
} jet J this ratio is large.
% \ Let us compare the topology of the jets imgFigs. 2
A N and 5 and 3n (Fig. 3 lattices. In a @n lattice the bulging of
the curved jets from the the walls)Sis weak, and the ratio

(5.1) is small. Accordingly, the bubbles in ar6lattice are
well isol from one another he w ratin
region is bounded by triangl8S$ which is composed of rectilinear sepa- ell isolated from one another by the wall separating

ratrices. In the nonlinear stage the separatrices become curves and the l]}hem along the_ entire b_Ube_e p?”meter'
angle transforms into a three-pointed star. A group of six stars surrounds 1N @ 3m lattice the situation is reversed. The bubbles are

each bubbleB. poorly isolated from another. The walls separating them
along theBSB directions through a saddle point are rela-
tively low, and, for this reason, the bulging of the curved jets
z axis), which is important for understanding the spatial J is significantly greater. Therefore, the rati@5.1) is fairly
structure of the flow. The lateral view of the flow shows thehigh. An array of strong finger-like jets forms.
J andS points of the dowarnward moving ard$Jand the This is the source of the specific features ofra [attice.
projection of an upward moving point onto aJJ plane.  Enhanced focusing of the jets occurs in it. Jets are generated
The JJ planes are symmetry planes or lateral walls of pipeddy bubbles. In a B lattice the six bubbles arranged in a
confining a flow cell. ArcJS (a planar curve; half of arch circle about one jed “feed” that jet and make it strong.
JSJ) lies in the line of intersection of a wall jet andJa Let us compare the types of rise fromJgpoint to aB
plane. It is the lower edge of the wetted part of the pipe wallpoint through anS saddle point. In the & case the differ-
In the horizontal view it is represented by segmast ence between the heights of tBeand J points equals %

For the spatial orientation we offer two variants of rise —2s) +Az’%. In the 3n case this difference equalszy(
from aJ point to aB point on the surface;. In the first — —2zs) +AZz’®, where the segmentsz’® andAz’® are defined
variant rise occurs along ardB, whose projection onto the in Figs. 2 and 3, and the numbers 3 and 6 in the superscripts
X,y plane is segmeniB. In the second variant rise occurs in J3 andJ6 indicate how many symmetry planes converge at
two stages. In the first stage we rise frdmto S along arc ~ aJ point. The differencedz’3 is smaller thamAz’®. There-

JS, and in the second stage we pass frBrto B along arc ~ fore, as has been stated, in en@attice the jets are of the
SB. The projections of these arcs onto tkgy plane are wall type, and in the B case a system of strong finger-like
perpendicular to one anothésee Fig. 1L Together, these jets forms. It is shown in Sec. 7 that the intersection of more
segments form triangléBS than three wall jets is unlikely. Therefore, in 3D flows the

5.2. HexagonsSection 7 contains a comparative analy-type of three-pointed star shown in Fig(€ee also Fig. Ris
sis of 6m, 4m, and 3n lattices. It is found that theré case  the principal type for the jets.
is unique® For this reason we shall dwell on it. 5.3. RectanglesThe structure of b lattices is signifi-

Let 7(x,y,0)=0, and let the potentiabg(x,y,z,0) be cantly more complicated than the high-symmetry cases con-
given by the sum of three wavé4.1). As in Sec. 5.1, let us sidered above. This is caused by the splitting of the saddle
consider the characteristic levéds, hg, hy, andhg. Inthe  points into two types and the increase in the number of char-
linear and nonlinear stages we hawe<h,. Using the trigo-  acteristic points. Because of the splitting, the network sepa-
nometric formulas for cosine addition, it is not difficult to ratrix diagrams give way to striped diagrams.

FIG. 5. Level of the hexagonal surfacg In the linear stage thé<<hg

show that in the linear stage, in whibhcw| and the velocity Let »(x,y,0)=0, and let the potential at the initial mo-
w is determined only by the linear combination of harmonicsment be given by a sum of two harmonics and have the form
(4.1, the network ofS—S separatrices consists of straight a(0) b(0

lines. They are depicted by solid lines in Fig. 5. The network  ¢(x,y,z,t=0)=— —— cosxe ?— —— cosqye %,

is formed from equilaterab S Striangles with centers al 2 29

points. Six triangles are linked around the ajiex (5.2
In the linear stage thé&—S separatrices are curved. wherea=a;y andb=ay; [compare this with formulaé3.1)
Three-pointed stars with sharpened tips form aroundJthe and(4.2)]. To fix ideas, we set(0)/b(0)=1 andg>1. The
apices. Att— the h=0 level, one-sixth of whose contour structure of the surface att>0 is shown in Fig. 6. Figure
att+ is depicted by arc 1-2 in Fig. 5, is pressed againsé has been stretched in the direction by a factor ofg
the walls of the pipe composed df] planes. They are de- (compare it with Fig. 1
picted by dashed straight lines in Fig. 5. &t the rays The laws governing the growth of disturbances with time
degenerate intd S segments. are different in the cases of Rayleigh—Taylor and
Jets drain along théJ walls. Because of the spreading Richtmyer—Meshkov instability. Let us consider them sepa-
in the plane of a wall, they are flattenéitattened, wall, or rately. We begin with Rayleigh—Taylor instability. It is sig-
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FIG. 6. Level map ofy in a 2m lattice. Chain-like structure of
S—S; and S,,— S,, separatrices. There are IR—S,, separa-
trices, which would have joined the chains in a network.
Circles—bubbles, crosses—jet apices, 0—zero lewekS;

— S, separatricesw—S,,—S,, separatrices. The dashes on the
levels are drawn in the direction of growth bf Right-hand
figure—dependence of the positions of characteristic points for
Rayleigh—Taylor instability or.

nificant that the wavelengths of the harmonics(fn2) are It is similar to the one shown in Fig.(d. In the 2D geom-
different. This distinguishes the potential of an2lattice  etry the jet apex velocity,; increases from the initial value
from the more symmetric potentialg.1)—(4.3). In the linear  a(0) to a value roughly two times larger. It is not entirely
stage a wave grows more rapidly in tlyedirection, since clear how the competition betwedn,(t) andhg(t) takes
a(t)=a(0)e! andb(t)=b(0)e@. We recall that instability place in Richtmyer—Meshkov instability. In any case these
normalization tok=1 andg=1 is chosen in the case of functions are not equal, and a striped structure forms instead
Rayleigh—Taylor and that (x,y,z,t)=—a(t)c,e > of anSs—S, network. We stress that the removal of mass by
—b(t)cq,e 9% Therefore, a separatrix diagram with cells jets occurs mainly in theJSJ jets, as in the case of
that would connect th&; andS,, saddle points in a network Rayleigh—Taylor instability.

is lacking already in the linear stage. Instead of a network,

separatrix chains of types — a —
P ypas (S~ Sy) ands (Ss—Sy) appear 6. COMPARISON OF THE THEORY WITH A NUMERICAL

(see Fig. 6.
” . . . . SIMULATION
During motion the positions of th§, points(curves in
Fig. 6) and theS,, points (curve w) relative to one another 6.1. Numerical methadThe complete system of Euler

and relative to the=0 level vary. The hierarchies of heights equations for a compressible inviscid medium written in the
have the following formshg,<0<hg at 0<t<ty, hg, divergence form’8was integrated. A quasimonotonic grid-

<hg<0 atty<t<t,s, andhg<hg,<0 att>t,s, where characteristic scheme for a second order of approximation
the subscriptsw and ss refer to S,, and S; saddle points. was used. The monotonicity was enhanced by a combination
The lower half of Fig. 6 shows thég,<hy<hg levels of schemes with central and oriented differences. A similar

(curvesw, 0, ands), which refer to the stage at<Ot<t. hybrid method was developed for numerically simulating
The subsequent stage, in which these levels are arranged flows of an incompressible fluitf. No artificial viscosity, no
the order of 0s, andw, is depicted in the upper half. smoothing, and no flow-constraining procedures were used

If the areas in thex,y plane within whichh<hg,, are in the calculation scheme. The scheme has such useful quali-
hatched, a system of separated stripes stretching parallel t@s as conservatism, monotonicity, and an increased ap-
thex axis is obtained. In the final stagetatt, ;theS;level  proximation order. The requirement for monotonicity en-
becomes lower. The orientation of the stripes then changesures nonlinear dissipation, which smooths any short-lived
from parallel to thex axis to parallel to the axis. perturbations with a wavelength of the order of several grid

In the final stage the motion associated with the longeisteps. The integration region has the form of a rectangular
side of the rectangle dominatésee Fig. 1; sincg>1, this parallelepiped, on whose lateral sides the symmetry condi-
side isx). The main flow of fluid occurs in the near-wall jets tions are satisfied and on whose lower and upper faces the
parallel to they axis, which drain along thdSJ walls. In  zero-flow conditions are satisfied.
this stageR,>R,, whereR, andR, are the radii of curva- 6.2. Rayleigh-Taylor instability. Figures 7—9 present the
ture at the apeB along thex andy axes. Let us transfer the results of the calculation of Rayleigh—Taylor instability. A
contour of theh, level from the upper half of Fig. 6 to the quarter of the total flow period in aX7X7 cell was
rectangleJJJJin Fig. 1. We useA, and A, to denote the calculated on a 3830x210 grid. Figure 7 shows a com-
distances from this level to thg, and S; points, respec- plete period. The initial position of the boundary coincides
tively. The gaps A, and 2\, characterize the thickness of with thez=0 plane(Fig. 7), which divides the cell along its
the near-wall jets traveling along thkS,J andJSJ walls.  height in a 3:4 ratio. The ratio between the densities of the
The predominance of th&SJ jets means thad, <A, . lower and upper fluids ige=1/10, and the normalization is

An analysis of rectangular lattices clearly reveals howto g=1 andk=1. The initial disturbance is given by Eq.
the flow changes upon the transition from the 3D case to thé4.2) with a(0)=0.05.
2D case. Asg—x, a rectangle becomes similar to a slot The displacement of a bubblegs(t) is shown in Fig. 8.
(Fig. 1), in which the transverse components of the motionlt is seen that a regime with a constant bubble rise velocity is
are directed mainly along the axis. established. In the numerical experiment the limiting veloc-

Let us examine Richtmyer—Meshkov instability. If the ity is w.((e2)=0.83, which amounts to roughly 90% of the
difference betweem(t) andb(t) in the initial stage is ne- theoretical ratd4.18 corrected by the factoy1l— u, which
glected, the separatrix diagram takes the form of a networkiakes into account the finite density of a light flSitf Figure
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Z
}7 FIG. 7. Form of the interface in the case of a square-lattice bubble
array at the tim¢=9. The arrows marls saddle points anB8 andJ
apices. Right-hand figure—scheme for the appearance of a mush-
77 room formation.
a

9 shows theoretical and numerical plots of the radius of curment. The bubble curvature in the numerical simulation is
vature R(t) =1/K(t). As we see, the theory and simulation somewhat greater than the calculated curvature at large
are in satisfactory agreement. times.
6.3. RichtmyerMeshkov instability Figures 10 and 11 6.4. Role of the density ratidrhe theory developed in
show the results in the case of Richtmyer—Meshkov instabilSecs. 4 and 5 refers to the caseust 0. Let us examine the
ity (g=0). The geometric dimensions and the raiiovere  changes occurring whep<1. The shape of the bubbles
the same as in Sec. 6.2. The initial perturbation was given bgcarcely change$. Their rate of motion varies slightf§/*°
Eqg.(4.2) with a(0)=1. As we see, the results with respect to At the same time, there is a qualitative detail, which vanishes
the velocity (and thus with respect to the displacemes®e  \wheny=0. It is the appearance of mushroom-shaped forma-
in good agreement. The descriptions of the bubble surfacggns.
bending procesfthe plots ofK(t)] are in satisfactory agree- In the case of Rayleigh—Taylor instability, the falling
matter accelerates to high speeds in the {#isrefore, the
jets are narroy As a result, velocities are achieved at which
iy the influence of aerodynamic drag on the part of the light
fluid on the advancement of the jet apex becomes important.
The aerodynamic thrust of the light fluid leads to the forma-
tion of mushrooms. This question was investigated in Ref. 40
ab for the case of the 2D geometry using conformal mappings
and a hodograph technique. The thrust of the light fluid is
also the cause of the formation of mushroom-shaped jets in
Richtmyer—Meshkov instability.
0 2 4 3 8 10 The formation of mushrooms is a consequence of the
d stagnation of the heavy fluid due to the thrust of the light
FIG. 8. Plot of 75(t). Thin curve with markers—theory in Sec. 4, thick ON€. The stagnation zone is localized near the point of sepa-
curve—simulation. ration of the flow of the light fluid by the jet of the heavy
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R
b
12+
8_
FIG. 9. Plot of R(t). Solid curve—calculation of the system
(4.17, markers—numerical simulation.
b
4" L 5 v
[ “,""’{".-'f.:iz...
. 13‘7?;,!'..:‘
0 2 4 6 3 10

light.** The jet apex is the separation point. A mushroompast the arch leads to the formation of a stripe-like
forms when the jet becomes sufficiently thin and gains amushroom-shaped formation along the entire arch.
sufficiently high speed. The jet is thin where the radius of  Let us consider a section of the arch and of the near-wall
curvatureR is small. Whenu=0, R is smallest at the jet jet following it in plane P, which is perpendicular to the
apex. arch. It is shown on the right in Fig. 7. Heaeis the point of

Matters are the same in the 3D geometry. Now the “thinintersection of pland® and archJSJ a# is the curve of
fast” zone is a stripe along &SJarch(see Sec. b Here the intersection of plan® and the surface), andaz is the plane
rate of motion of the light fluid against the arch is high, andof the wall along which the near-wall jet drains. Section 1
the radius of curvature of the surfagein the direction per- refers to the case qi =0, and section 2 refers to the case of
pendicular to the plane of the arch is small. Separation of thee>0. Whenu>0, the mushroonm forms, as occurs in the
flow of the light fluid occurs on the arch. Its streamlining 2D geometry*°

Wy
1.2
1 FIG. 10. Plots of the bubble velocityg(t). Smooth curve—
the integral(4.23), fluctuating curve—simulation.
0.4+
1 I P | 1
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K
04r
03
FIG. 11. Plots of the bubble curvatukgt). Smooth curve—the
02k integral (4.20), oscillating curve—simulation.
0.1
0 2 4 6 8 10
t
h'IthSe‘]arc of _thte mushroorln hez::]in CUti aI g;(r)]ove alon? N 872 < A2 s, A2
arc as pointa moves along the arcn. In the case or a =, 4= "T77 =
V3k? k V3k?

4m lattice four such grooves descend toward each apex

from four sides. In a horizontal section these grooves ar . .
located near the tips of the four-pointed star shown in Fig.?zsﬁgl‘gl)g_s,’l'_ (11 /‘%)T leielg ;?355?;6 Ir:()lts i(iqgunailiicﬁ?tshllaitsfhe

4(c). The grooves end near a toroidal mushroom, WhiCharea of a triangular cell differs significantly from the roughl
crowns the apex. Thus, the situation is fairly far from the g 9 y gnty

. ) I . : . .~ equal areas of square and hexagonal cells.
picture of a jet which is axisymmetric relative to the vertical . . L
. Let us require that the bubble areas be identical in the
passing through the apek

R lattices being compare(the condition of an equal number of
The grooves and the torus are clearly seen in Fig. 7. Th .
. . . ubbles per unit areaThen the wave numbers are related by
mushroom-shaped formation begins nearSasaddle point

and stretches toward hapex. The grooves, as they should the ratio

be, are adjacent to a wall of the “pipe(a boundary of the S, S, V2 1
kg Ky:kz= \E:l:\gz :1:—~1.071:0.76.
4 4

calculation regiopy since the archiSJlies in the plane of -1
31/4 31/4

this wall.

In this caseNg:Ns:hg=kg *:k; *:k31~0.931:1.3. The ra-

dii Rg, R,, andR; form the same ratio in Rayleigh—Taylor
and Richtmyer—Meshkov instability. According to the rate of
Let us compare ther, 4m, and 3n lattices. We ex- the transition process, the lattices are arranged in the order of

pand their potentials in combinations of single wave vector$: 4, and 3, i.e., the transition is slowest in the triangular

and their overtone3.1) and (3.2). Then in the parabolic lattice. In return, the limiting bubble velocity is highest in the

approximation(Sec. 4 the bubble rise velocities in theng ~ 3m lattice. These velocities are related as

4m, and 3n lattices are identical both in the case of

Rayleigh—Taylor instability and in the case of Richtmyer— W Wy W3= (S/S6) " 1:(S4/S5) M= ‘/)‘—6: ‘/)‘—4:\/7‘—3

Meshkov instability. It is found for Rayleigh—Taylor insta- = (31/821/4):1:318~0.971:1.15

bility that both the linear stag@quality of the growth rates

for k=1) and the entire transition procdshe systeni4.17)] in the case of Rayleigh—Taylor instabiliti4.18 and as

are identical in these lattices. The linear stage of Richtmyer-g:\4:\3 in the case of Richtmyer—Meshkov instability

Meshkov instability is determined not only by the wave vec-(4.19.

tors, but also by the initial velocities. If we start from a flat Comparing the results, we arrive at the conclusion that

boundary and choose equal initial velocities, then, as in théhe 6m and 4m bubble arrays are roughly equivalefthe

case of Rayleigh—Taylor instability, both the linear and non-difference in the limiting velocity does not exceed a few

linear stages are identical in all three lattices. This followspercent, but the 3n lattice stands apart. It has the strongest

from the results of Secs. 4.5 and 4.6. system of] jets (Sec. 5.2, and the bubble velocities exceed
Let us compare the lattices in another respect. For @he velocities in the other lattices by 15% in the case of

fixed wave numbek the areas per bubble in tigy plane in  Rayleigh—Taylor instability and by 30% in the case of

the 6m, 4m, and 3n lattices are, respectively, Richtmyer—Meshkov instability.

7. COMPARISON OF LATTICES
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Kx*  Qy?
3 U(X.y,t)zﬁo(t)—T—T-

9.2. ExpansionsWe proceed as in Secs. 4.2—-4.4. Now
the coordinatesx’ and y? appear in the expressions sepa-
rately, rather than in the form of the sudh4). Our goal is to
calculateey|, ul, v|, w|, 7y, and7,. We present the most
significant points. We differentiatéd.1) with respect tot.
The calculation ofp; on the boundary gives

da cosx _,  db
¢l == G &R —m0) e - 4t
FIG. 12. Random collection of bubbles. Each bubble is bounded by wall cosqy
jets. The junctions wittN, =3 are typical. Xexp—q ,70) 5 e~ gl n 9.2
q
whereA 7= 7— 79=— (Kx?*+ Qy?)/2. We introduce the no-

8. FORMATION OF THREE-FOIL JETS tations

The 3D structure of the surfacgwas congidered above. A =a(t)exd — 7o(H)], B(t)= B(I)exr[—qno(t)].
Its fundamental elements are bubbles and jets. The bubbles
are round and isolated, and the jets consist of extended re- A ©3
gions (near-wall or wall jets which form a network, and Let us express the derivatived/dt anddb/dt in (9.2) in
junctions, at which the wall jets intersect. The type of peri-terms ofA andB. For this purpose we differentiat@.3). We
odicity determines the number of wall jdis intersecting at  then have
a junction, and the ratio of the number of bubbles to the "
number of jetdNg/Nj. a s )
Let us consider a random surface appearing in the case aexp(— 70) =A+ Ao,
of 3D turbulence. Structurally, it consists of the same ele-

ments(isolated bubbles, wall and junction jets; see Fig).. 12 db . )

However, the long-range order gives way to short-range or- g &P~ 0d70) =B+qB,. (9.4
der, as occurs upon the transition from a crystal to a liquid.

Let us see what the numbBF. equals. This would allow us Let us now calculatep,. For this purpose we write the
to ascertain to which of the lattices the random surface i&inematic condition(2.1) at an apex. We then havg= 7,
topologically closest. =w/|. Plugging in(9.1), we obtain

It is fairly clear that the junctions withl,=3 dominate. )
In fact, any bubble is crowded by neighbors. The adjacent 0= (A+B)/2. 9.9
bubbles are separated by a boundary, i.e., a wall jet. Its po- Plugging(9.5) into (9.4), we find
sition is determined mainly by two neighbors, for example,

by bubbles 1 and 2see Fig. 12 Let us rise along a bound- da 2A+A2+AB
ary. At a certain point the influence of a third neighbor be- G &M= 70)=———% .
comes important. Here the boundary which separated

bubbles 1 and 2 branches. One branch passes between 2B+ qAB+ B2

bubbles 1 and 3, and the other passes between bubbles 2 and d—exp( —qn) =
3. Therefore, the valubl,=3 is typical. The ratidNg/N; is t 2
then between 0.5 and 1, which correspond to theadid 4m Expanding(9.2) in the small variables? andy?, with con-

lattices of bubbles. sideration of(9.6) we find

(9.6

2A+A%+AB (K—1)x2+Qy?
9. PARABOLIC DESCRIPTION OF A RECTANGULAR GDt| == 4 2
LATTICE. FOUR-DIMENSIONAL PHASE SPACE

= 2 2 _ 2
9.1. Potential and boundaryLet us apply the Layzer — 2B+aAB+qB” gRx"+a(Q—a)y )

model to the 2n lattice. The potential cut off at two harmon- 4q 2
ics (3.1) [see also Sec. 5.3 and E&.2)] has the form

The insignificant functions af which are homogeneous with
a(t) b(t) respect tax andy have been omitted.
e(X,y,z,t)=— Tcosxe‘z— 2q cosqxe 9%, (9.1 Similarly, we have
and the expansion of the boundary at a bubble #jes the _A+B N (KA=A+gKB)x*+(QA+qQB-g°B)y?

form 2 2 4
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Q Q@
q
a
1 1
G FIG. 13. Phase space and trajectories. PSiig a sta-
tionary point(node, which attracts trajectories emanat-
ing from weakly disturbed initial data:aq=1, b—q
>1.
Q)@
S
1741
0 174 1 K 0 Ky(q) 1 X
9.3. Boundary conditions and dynamic syst&ubstitut- Ko(q)=(q+17—r)/48, r=+g°+34g+1 (9.11)

ing the expansion from Sec. 9.2 into the boundary conditions . . n ,
(2.1) and (2.2), we arrive at the four-dimensional dynamic has physical meaning. The remaining functions sought are

system given by the expressions
. -1
K=(1-3K)a-qKb, 0D Q@)= "5 +Ko(a), ag(a)=+ Ko@),
d=—Qa+q(q—3Q)b, 9.8
Q=-Q q.(q Q) (9.8 s 0o o1
(1-K)a—Kb=—a?+gK, (9.9 otd q :
—0a+(g—0)b=—qg2b2+ 9.1 The stationary state defined 109.11) and(9.12 is the only

Qa+(9-Q) a 9Q . (010 one in the region having physical meaning.
for unknownK and Q and the amplitudesa=A/2 andb Let us investigate the stabiliff). We linearize the sys-

=B/2. If Q=0 andb=0 or if K=0 anda=0, we returnto  tem (9.7—(9.10 near the stationary state:
the planar(2D) systemt>*® and if q=1, K=Q, anda=b, N .
we return to the systerfd.17). The cross terms related to the K=Ko+dKe", Q=Qo+4Qe",
interaction of waves along theandy directions aregKb in a=ay+dae, b=Dby+ sheM.
(9.7 andKb in (9.9.

We note thex<—y symmetry. Let us writeo and » for an
arbitrary wave numbek. The potential has the form

The linearization leads to the matrix

—\—3a9—qby 0 1-3K, —qKq
a b 0 —N—ap—3qgb, —Qo 4°-3qQ
¢=— = coskxe **— — cosgkxe 92, 1 0 —(1-Kor—2a Kok
2k 29k 0 1 Qh  —(a—Qo)x—2q%h,

Let us derive the equations of the system. After the inversiofor the eigenvaluea ;(q) —X4(q). Wheng=1, the determi-
k—qk, g—1/q (rotation of the rectangle by 9B°the equa- nant of the matrixthe characteristic equatiphas the form
tions remain invariant to the replacemekits:Q, Q—K and  2\*+14\3+35\2+ 36\ +12=0 with the roots\; ,=(—6
a—b, b—a (interchange of the axgs *2v3)/4 and\ 3 4= — 2. The stability of the systerf#.17) is

The system(9.7)—(9.10 allows a complete investiga- obvious from an analysis of the phase plane. Linearization of
tion. Its phase space is similar to the phase space of thegs. (4.17 leads to the systemA{2)sK=0, 26K —(\
system(4.17). Again there is a single node, which captures +2)5a=0, which has the degenerate roet2. When q
all the trajectories having physical meaning. We shall next= 1, the coefficients of the characteristic equation are cum-
show this. bersome functions of the ratio between the sides of thegcell

9.4. RayleighTaylor instability Let g=1, and let us (Fig. 1). It follows from calculations of this equation that in
find a stationary solution. We sé{=Q=a=b=0. We the interval 6<1/q<1 the roots obey the inequalities,
eliminate the unknowa>0 andb>0 using Eqs(9.9) and <0, \,<0, Re\3<0, and R&,<0. The roots\; and\, are
(9.10 and Q using Egs.(9.7) and (9.8). As a result, we degenerate wheig=1. They become real, different, and
arrive at the equation fdK. It has the form negative near f=0.

2 _ Let us analyze the results obtained. It was demonstrated

8K*~[6+(q-D)/3]K+1=0. that the stationary stat defined by(9.11) and (9.12 is
Comparing with the case of a squag@=(1), we find that stable(is a node. The projection of the four-dimensional
only the root phase space of the systéth7)—(9.10 onto theK,Q plane is
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D
KO
FIG. 14. Dependence of the curvatuteand the
0.25¢ velocity w on the ratioq between the sides of the
rectangle. Curveq, 2, and 3—Rayleigh—Taylor
instability (a and B. Curve?2 (a), pointD (a and
¢), and curved andl—Richtmyer—Meshkov in-
stability (a and ¢.
0.5 05
0.15 P sy .
0 1 0 1 0 1
l/q l/gq t/q
a b c

shown in Fig. 13. Let us examine the mat of coeffi-  for unknownKg, Qq, ag, andBy. Successively eliminating

cients for the derivativeK, Q, a, andb of this system. Its  Bo, @0, andQo, we obtain the equation

determinant is given by the expressiin+ Q/q=1. On the 3 5 )

surface deG=0, and the acceleratiors and b vanish at 243 a)Kot (g +46q—79Kg

infinity.1'3*15 The projection of the surface is marked by the +2(13-119)Ko+3(q—1)=0 (9.13

letter G in Fig. 13. The surfac& bounds a physical region.

The physical trajectories start from the centeKatQ=0 (if  for Ky(q). The correct root is selected on the basis of the

the boundary is flat &=0) and its vicinity. Att—o they all  condition Ky(1)=1/4 [see (4.19]. Let Ko(q) be a given

end at the nodé&. root. The remaining functions are expressed in terms of it.
The case ofj=1 is shown separately in Fig. (8. As  We then have

we see, bubbles withr@ symmetry raise their symmetry at

t—o and transform into bubbles withrd symmetry. The ~1-3Kg .1 /3
iactori : : 0=3—=0 a@=1——+[=—1|K,,

trajectories passing along the bisector=Q apply to the 3-8K, qg \q

symmetric cas¢q=1, a(0)=b(0), andK(0)=Q(0)] with

the two-dimensional phase space of the systdm?7), K 1-3K,

=Q, anda=b in Fig. 13a). Bo= aKo @,  Wo=ag+ Bo. (9.14
Plots of the dependence of the curvature along the long

directionK (gq>1, see Fig. 1and of the bubble rise velocity Plots of the function&y(qg) andwg(q) are presented in

w on 14 are shown in Fig. 14. Curves were calculated Fig. 14 (curvesL). CurvesL end at points with q~1.26.
using formulas(9.11) and (9.12 (w=a+b), and curve®2  Two roots of Eq.(9.13 merge at that point. The real part of
are the asymptotes fai>1 (flow in a slod. In a slot-shaped the solution (Ré,,Rew,) after this merging is depicted by
rectangle the flow achieves a 2D regime. Motion along thedotted lines. The imaginary part comprises a smal(1)
long side dominates. In this cage~1/3, Q~1/3q, andw fraction of the real part. Curves begin from the poinfT,
~1W3+1/\/3q. The solutiong9.11) and (9.12), of course, which refers to the case of a square lattice. It is interesting
are not suitable for small values ofgl{allowance for addi- that another branchDb) emanates from poinD, which
tional harmonics with respect to tixeaxis is necessajyThe  corresponds to the plan&D) solution, wheng=1. When
curves which interpolate dependendeand? in the transi- q#1, it corresponds to bubbles with weak motion along the
tion region are labeled by the numb&r y axis. The interpolation curvejoins the asymptotes corre-
9.5. RichtmyerMeshkov instabilityLetg=0, and let us  sponding to a slotpoint D) and the solutiorL in the inter-
find the stationary state and investigate its stability. In themediate region. We note that the plotskofq) referring to
case of Richtmyer—Meshkov instabiliy=K,;, Q=Q,, a Rayleigh—Taylor instability (curve 3) and Richtmyer—
=ag/t, andb= B4/t in the stationary state:*>1”Substitut-  Meshkov instability(curve ), which have identical ends at
ing these relations into the systeé®7)—(9.10, we arrive at  1/g=0 andg=1, are different in the intermediate region.
the algebraic system Let us show that the stationary state defined(®y3
and(9.14) is stable. Consider the disturbance
(1-3Kp)ap=0KoBo, Qo@o=0(d—3Qo) 0,

K=Ko+ dKt", Q=Qq+Qt",
—(1-Ko)ag+KoBo=—af,
. ao+5at)‘ _Bo‘l‘ 5ﬁt}\
Qoao—(4— Qo) Bo=—04%B5 a= t T t :
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FIG. 15. One-parameter families of bubbles. a—2D
case, b,c—3D case.

We linearize the syster®.7)—(9.10 near it. The matridV  with the profilez= 7(x) depicted in Fig. 1) (curvel). The

for the eigenvalues has the form profile is found in the band @x< 7. The freestream veloc-
ity w,=1 is assigned foz— +<. The functionz(x) de-
I Ly E gl ey s et
a+t B 0 (1-K)(A-1)+2a  K(1—\) ¢ b 7 gns e g potel
_ _ _ 2 +iz). The pressure distribution on the profile boundary
0 atp Q(1-N)  (9-Q)(A\—1)+29°B. _ _ : : -
_ ) . ) p,(X) =p[x,z= n(x)] is determined together with the poten-
Here we have omitted the subscript 0 in the stationary functia|. The position of a point on this boundary is assigned both
tions for brevity. It follows from the calculations of the ei- by thex coordinate and by the coordinate. Therefore, the
genvalues\ that in the interval occupied by curtewith the  gistribution of the pressure can be represented in the form of
end pointsT and b (1<q<1.26) all the eigenvalues are the functionp,(z). Thus, the profiley specifies the distribu-
different and negative? Therefore, there is power-law tion p,(2) (7—p,).
damping of the disturbances and the stationary state defined Innthe opposﬁe case the functign(z) is assignedas
by (9.13 and (9.14 is stable. We note that on bran€lb,  pefore, w,,=1). There is a mutual one-to-one correspon-
which is depicted by dashed lines in Figs.(&4and 14c),  dence betweep,(z) and 7(x) (at least locally. Therefore,
there is one positive eigenvalue which is an indication of assigningp,(z) fixes the potentiaf (¢) and the form ofy(x)
the instability of this stationary state. (P 7).
_As in the case of Rayleigh—Taylor instability, the trajec- " | et us examine the dynamics of a heavy fluid with a free
tories of the systen®.7)—(9.10 for g=0 connect the vicin-  syrface in a uniform gravitational field. In this context we are

ity of the center ak =Q=0 and the nod&. Qualitatively,  interested only in the special class of the distributipnéz)
the structure of the phase space is similar to that shown igonsisting of the linear distributions

Fig. 13. In particular, fog=1 and asymmetric initial data
[a(0)#Db(0)] there is an increase in symmetrynf2-4m)
ast—o, The two-dimensional phase space of the square
lattice (Secs. 4.5 and 4)@s located on the bisectdt=Q,

a=b of the four-dimensional phase space of the systen)("ith g>0. There is a single paramegr which runs through
(9.7-(9.10). the clasg10.1). The distributiong10.1) correspond to a one-

parameter class of the potential§¢;g) and the profiles
7n(X;g). They are also solutions of the problem of the sta-
tionary rise of a bubble with the boundayx;g), since this
boundary is a streamline and the condition®4w?)]
The nonstationary stage was investigated above. It was —2g#» holds on it by virtue of(10.1) and Bernoulli's
shown that during evolution, the growth of disturbances isequation.
saturated and a weakly perturbed state transforms into a sta- Therefore, the problem of stationary Rayleigh—Taylor
tionary (limiting) state. Because of this, the theory of station-bubbles has ad family of solutions. Figure 1&) shows two
ary states is important. Let us examine it in the case obubbles from this familycurvesl and?2), which correspond
Rayleigh—Taylor instability. The principal property is the to the valuegy; andg,>g;.

-x-3a-qg8 O 1-3K —gK

p,(2)=9z (10.2

10. ONE-PARAMETER CHARACTER OF
RAYLEIGH-TAYLOR STATIONARY STATES

one-parameter (d) character of the stationary stafés?3?* It is clear that the velocityv,, can serve as the parameter
Owing to it, a quantitative theory of stationary states hadnstead ofg. In fact, let us fix the form of a certain profile
been devised? 7(x;g¢) from the clasg10.1). When the form ofy is fixed,

10.1. One-parameter solutions in the 2D geomelrgt  the variation ofg (the pressure is measured relative to the
us consider the potential streamlining by an external flowpressure at the apex of the profileads to the variation of
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W... A more obtuse bubblécurve 2 in [Fig. 15a)] has a 11. TRUE STATIONARY STATES AND ONE-PARAMETER
smaller rise velocityw., . SOLUTIONS

The existence of a one-parameter family of solutions in - The parabolic approximationN=1, Sec. 1 is fairly
the heavy-fluid problem is well known from the theory of gimple (Secs. 4 and )9 For this reason, it is possible to ana-
gravity waves®! lytically describe structural effects associated with the 3D

10.2. One-parameter solutions in the 3D geometty geometry(Secs. 5—¥. The extension of this approach to
follows from simple arguments that there are also onehigher approximationsN>1) is a very interesting problem.
parameter solutions in the 3D case. Let us demonstrate thigyhenN=1, the system undergoes a transition of an initial,
Consider the potential streamlining of the profi}éx,y) ina  weakly disturbed statk to a stationary stats (I —S; Secs.
vertical pipe of arbitrary cross sectiofFigs. 1%b) and 4, 5, and 9. The trajectoryl — S eludes the surfac& (Fig.
15(c)]. Let w,,=1. The potentialf(x,y,z) and the pressure 13). The analysis of systems of higher order that are similar
distribution p,(x,y) on the boundary are specified by the to (4.17) runs into difficulties. It turns out foN>1 that
form of the profilen(x,y) (7—p,). trajectories which start out frorh states are blocked by the

We represent the functiop,(x,y) in the form of the  surfaceG.**'>We can approach the problem from another
equivalent functiorp,(z,6), whered is the azimuthal angle side. Consider the stationary states and the trajectories near
lying in the horizontal plane. The profiles have a stagna- them. In this way it is possible to obtain some important
tion point. It is marked by a cross in Figs. (bb and 15c). results.
We shall call it the bubble apeR. The case in which the Zero-parameter solutionsAn analysis of the vicinity of
point B is the highest point on the profile has bearing on thestationary states requires finding stationary points and inves-
heavy-fluid problem. Accordingly, the tangent plane at thatigating their stability. Let us consider some aspects of the
point is horizontal. A streamline entering an apex is perpensearch for stationary states. From the qualitative standpoint
dicular to the tangent plane. The crosses in Figgbjland the situation in the 2D and 3D cases is completely
15(c) indicate the directions of the principal curvaturés identical?®?*In higher approximations in the 2D geometry

andQ. we have
In the opposite case the functign,(z, 6) is assigned. It N N einé
specifies the potentidi(x,y,z) and the form ofp(x,y). 7= KX, f(&)=e+ig=—2 a, ——ig),
A uniform gravitational field corresponds to a special n=1 n=1 n
class of the functiong,(z,6). In it these functions are iso- E=x+iz. (11.2)

tropic and linear: . ) ) .
Stationary solutions are obtained from the algebraic systems

(/la(Kl, P ,KN,al, . ,aN):O,
Py(z.0)=92 (10.2 Pu(Kys - Kyyags - - an) =0, 11.2

wherea=1,... N. WhenN=1, the system(11.2 for un-

o ) ) ~ known K, and a, (11.1) takes the form¢;=1-3K;=0,
This is a simple consequence of Bernoulli's theorem, Wthf‘blza%_ K,=0. It is similar to the equationg;=1—4K,

must be applied to the streamlines emanating from an apex 0, P1=a§—4K1=0, which are obtained from the system

and to the contours which are obtained in horizontal sectiont34.17) (g=1:6m,4m) whenK1=O anda, =0.

of the surfacesn. The class(10.2 is associated with adl WhenN’$6,,the system€11.2 can be solved exactf§’

family of potentials and bubbles, which cap be represented i'ilet the indexi run through the roots of the syste(hl.2

the form f(x,y,z;9),7(x.y;9) and in the form . 3, in the Nth approximation, where Ky

f(x.y.ZW..), X,y we). ) ={Ky, ... Ky} anday={a, ..., ay}. It was shown in Ref.
Let w, be the parameter. As in the 2D cas®mmpare 17 that from the set of rootd}, no more than one root is

curvesl and2 in Fig. 15a)], a bubble with a small value of - hysically correct in each order defined byin the range
W., is more obtuséthe curvatureX andQ are smallerand  N<g. We denote this root by

has a thinner near-wall j¢Figs. 18b) and 1%c)].*? o
The variety of pipe cross sections is greater in the 3D (Knsan)™. 11.3

geometry. In the 2D case the pipe is a band or a slot bounded A program for numerically solving the systefhl.2 by

by two parallel walls, which are perpendicular to tkez  Newtonian iterations was written. It was found that the dis-
plane[see Fig. 169)]. In the 2D case the bubbles have thetances between the root$1.3 from different orders as de-
form of shafts perpendicular to the plane of the figure, and irfined by N are significantly greater than the convergence
the 3D case they have the form of “fingers” surrounded byradius of the iterations. It was also found that iterations do
near-wall jets. The special cases of pipes of general fornmot permit reaching an approximation ordérwith a value
correspond to pipes with symmetric cross sections, whiciN>6 when roots withN<6 are used as the initial approxi-
can serve as the basis for parquet covef®ec. 3, Figs. 1-6 mation.

and 15c)]. In these cases the potentials are given by the One-parameter solutioné\n interesting approach to the
series(3.1) and(3.2), and the corners and walls are symmet-problem of stationary states is associated with their one-
ric verticals and plane&Sec. 3. parameter character. Section 10 was devoted to a qualitative
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a a
M y 1d N

a,,

@ 0d

0d 0d Q————-—>__ FIG. 16. a Curve 1d and point @ on it. b) The evolution of
the system at—oo can end only at point @, solid curves—

k k trajectories of the systerfi1.10.
w, .
a b

proof of the existence of one-parameter solutions. Let ude the solution(11.7) for w2¥. We see that it belongs to
analyze it quantitatively. The one-parameter solutions are desurve (11.7).
scribed by the expansions Let us compare Eg$l1.2 and(11.6. We substitute the
N M oimé solution (11.9 without a‘,?,,d into the system(11.2 of the
_ 2n — Z same order. It is easy to see tiat.9 gives a solution of the
7 n; Kax™, 1) mzl By TiWeE (114 system(11.2 of the form(11.3.

This allows us to circumvent the difficulty associated
with the absence of convergence of the iterative solution of
(11.2), since the systerfL1.2 and the systenil1.6 without
the last amplitudea,, and without the last equatioRa,,
M=N+1, (11.9  =w,, are identical. More specifically, thedlcurve of the

which relates the number of harmonics in the 4olution  Solutions(11.7 or the system(11.6 is constructed itera-

(11.4) and the approximation order, is important. The systenfiVely: The point(11.8 is sought on it. This point is thed)
of 2N+1 equations which are satisfied by the unknownPOintin the respective order as definedMyThe following
0d points were found by this methodR(N=1)=3, R(N

whereN is the approximation order of the boundary condi-
tions. The spectral decompositighl.4d has the asymptote
needed forz— +o. The expression

Ki,....Knsag, .. .,8y,ay, has the form
=3)=2.57, R(N=6)=2.556, and R(N=8)=2.4445,
oKy, ... Ky,ag,...ay,aw)=0, whereR is the radius of curvature at the bubble apex.
P(Ky, ... Ky,ag,...8y,ay)=0, (11.6 Figure 16a) shows the 8 curve(11.7) and the @ point
(11.3, (11.8, (11.9 lying on it for a certain ordeN. We
a;+...taytay=w,, a=1,...N, introduce the notation K=Kq,... Ky, ay
=ai,...,ay,ay, anday=a4,...,ay, and theMth com-

where the number of the last Fourier amplitude taken into . L
account in a particular ordeM is given by formula(11.5 ponent of the vectoay is equal to zero. The projection of the

and the parameteav,. has been eliminated from the functions 0d _poir_lt onto thek, ay space lies in they =0 plane. The

o, andp, using the last equation in the systéfi.§. The projections of all the other points from th& Turve onto this
condition for the presence of the required stagnation point a§pace,hfor example, the point marked by a square in Fig.
the apexé=0 supplements the equatidda,=w.,. in the 16(a), haveay #0.

system(11.6). The solutions of Eq411.6), as they should be h Trule srt]ati%nary statesit is not d_ifficult to undelrs:cand
(Sec. 10, are the functions that only the @ points are true stationary states. In fact, a

nonstationary system of the tygé.17) takes the following

Ki(Wa), o Kn(Wa),a1(Wee), - @n(We), ap (We) form in higher orders:
(117 |
of the parameter. We shall call the curv€sl.?) one- K = (K G a.—p (K
parameter or d solutions, and we shall call a solution in the o= Va(K,2), 521 ap2p=PalK,20),

form of the point(11.3 a zero-parameter orddsolution.
A program was written for the iterative solution of the a=1,... N, (11.10
system(11.6). In contrast to the case 611.2), it was found

: . : : here the right-hand sideg, andp, are the same as in the
that the iterations converge rapidly. This opens up a way tg' 13.15 @ o .
find 0d points using @ curves, system(11.2. The system(11.2) is obtained from Egs.

Relation betweed solutions andld solutions Com-  (11.10 whenK=0 anda=0. Therefore the solutio(l1.3
pare the systemd1.2 and(11.6 along with(11.5 and their IS @ stationary point of the syste(thl.10. Thel sQI.quns of
solutions (11.3 and (11.7 for identical values ofN. As  Eds. (11.10 asymptotically approach the limiting values
stated, the d solutions(11.7) are functions ofw... In par- (11.3, (118, a”d(ll-,? [see Fig. 1&0)]. In ac(i)gltlon,.ln the
ticular, the last amplituday, is a function ofw., . It turns out ~ @Symptote the sunk™a, takes the valuew..) which is

that there is a value of the parameteid at which obtained in that limit, i.e., it cannot be required that this
value differ fromw??. The stability of the @ point has been

am(w2h)=0. (11.9  demonstrated foN=1 (see Secs. 4 and 9 and Refs. 15 and
Let 18). The Od points are probably stable whé>1.
o od _od od _od We reiterate that the remaining points from thd 1
Ki'..o Kyhay,...ay,ay=0 (11.9  curve, for example, the square in Fig.(46 are not station-
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ary points in the respective order as defined Ny They
cannot be investigated for stability. If adlsolution (11.7),

say the square, is taken, the last amplitageis discarded,
and the ordered s&¢,, ... Ky,a1,...,ay thus obtained is
substituted into the nonstationary systé¢bi.10, the right-

N. A. Inogamov and A. M. Oparin

initial amplitudes and vector§a;k}); 3) interchangeability of hexagonal
and triangular bubbles upon rephasing of Richtmyer—Meshkov and
Rayleigh—Taylor instability. Incidentally, the array of crests is hexagonal
during half of a period according to the time of a standing gravity wave
and is triangular during the other half.

“This also permits the use of parabolic model 1 to describe flow.

hand sides of these equations will not be equal to zero, andThe principal curvatures have the opposite sign at saddle points.
therefore, there will be a deviation from Stationary behaviors)'n the case of a rectangular bubble the principal curvatures & tedJ

(K#0,a#0) at that point.

In this respect, stationary bubblé¢g=1, 9,=0, and
boundary condition§2.1) and(2.2)] differ qualitatively from
stationary gravity wavesg=—1, 4,=0, and the same
boundary conditions In the case of waves we have

N N eing

n=2, KX, f(&)=i2 ay———W.E
n=1 n=1 n

the amplitudesa,, are real, and there is fluid at>». The
system for waves which is analogous to systé.6 has
the form

P Ky, ... Ky,ag, ..
Pol..)=0, a=1,...N, (11.11

where the carets abowg and p indicate that the respective
functions of the arguments differ from the functions in
(11.6. It is significant that there is no additional equation

AN W) =0,

apices differ in value, and the contour of a cross section of the surfate
a horizontal plane is an ellipgsee Fig. 1L

The stationary point4.18, which applies to Rayleigh—Taylor instability,
was previously calculated in Refs. 8, 17, 18, 28, and 29 for the case of a
square array and in Ref. 8 for the case of a hexagonal array.

®In it the smallest possible number of symmetric wéllsed converge at a
jet apexJ. Just this feature sets apart thea ®ubble array. The bubbles in
a 6m lattice differ little from the bubbles in ar lattice.

9This approach can also be applied td @pex and taS, and S,, saddle
points(see Sec. 5)3 At these points, just as atB point, the linear terms
drop out, and the expansion of the boundgrpegins with the quadratic
terms.

1OWe note that in the case of high-symmetry latti¢8ec. 4 there is no
need to investigate the stability of the Rayleigh—Taylor and Richtmyer—
Meshkov stationary states. It is obvious from the structure of the phase
space. Conversely, in therRcase an investigation of the stability yields a
description of this structure.

Wror example, wherg=1, we have deM=2\*+10\3+17\2+1I\+2
=0 with the eigenvalues-1, —2, and (-4=+2v2)/4. The linearization
of (4.17) gives the systemN+2)8K=0, 25K+ (\+1)sa=0 with the
roots A;=—1 and \,=—2. When q#1, the characteristic equation
detM=0 is extremely cumbersome.

associated with the stagnation point here, and, thereforé’We recall that the limiting caset$ 1/Jgk), in which the S; and S,

there is no additional amplituda,,. The solutions of the
system(11.1)) are functions of the paramet&:

Ki(Wao), o Ky(Wao),  A5(Wa), ... An(Wa). (11.12

saddle points and apices are at large distances from Biapex, is being
considered. The ratia, /A, between the thicknesses of the near-wall jets
is discussed in Sec. 5.3.

Because the number of nonstationary equations in the wave

case that are analogous to Eq$1.10 coincides with the
number of the function§11.12, linearization of the nonsta-

tionary equations can be performed near each point on theA. M. Prokhorov, S. I. Anisimov, and P. P. Pashinin, Usp. Fiz. Nalg,

1d curve(11.12.
Uniqueness of th@d stationary pointlt is important to
stress that in each order as definedMyhere is no more

than one @ point. Therefore, the solution of the asymptote

problem for Rayleigh—Taylor bubbles is unique.
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Diffraction of x rays at a Bragg angle of /2 (back reflection ) with consideration
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The energy dependence of the back reflectivity in the dynamical diffraction of x rays at a Bragg
angle of /2 (back diffraction) in perfect crystals of cubic symmettgilicon) is investigated
theoretically. In this case strict backscattering is realized only under the conditions of multiple
diffraction. The features of the influence of multiple diffraction on back reflection in the

energy range near the nuclear resonance radiation energy of 14.41 k&#daruclei, specifically

in the six-wave case, including the silicdh,9,9 reflection(with an energy of 14.57 ke

which can be investigated experimentally with high energy resolyiomeV) using synchrotron
radiation and a monochromator developed for nuclear resonant absorption, are thoroughly
studied. It is shown that the back reflectivity observed under the conditions of multiple diffraction
has several maxima on the plot of its energy dependence with a value at each maximum
smaller than half, in contrast to two-wave diffraction, where there is one maximum with a value
close to unity. ©1999 American Institute of Physid$1063-776099)01309-§

1. INTRODUCTION therein. In this case very high monochromatization of the
radiation is needed to ensure a long longitudifiamporal
The back reflection of x rays during diffraction on per- coherence length. The necessary degree of monochromatiza-
fect crystals with a Bragg angle of/2 (back diffraction is  tion is achieved with a safety margin using a “S&bauer
known to occur only in a very narrow energy range with amonochromator,” i.e., the nuclear resonant scattering of
relative width less than 10, but has a relatively weak sen- pulses of synchrotron radiation in conjunction with a time-
sitivity to the angular divergence of the bedno more than \ingow technique, under which a detector with a high tem-

73 - . . .
10""rad). Since the construction of the dispersion surfacg, a| resolution, of the order of a nanosecond, permits isola-
introduced into the theory by Ewalés impossible in the case ﬁsion of only the scattered radiation delayed by nuclei. The

unld(te.r cor;sﬁeraﬂo”r?, It |n|t|tglly apgﬁarf?_ that.a tgenerfatlﬁe atter has an energy width of the order of the width of the
solution ot Maxwell's equations without linearization ottne o, 0 state of the nuclél. Only theS’Fe nuclear transition
dispersion correction to the wave vector must be used tQ

. oa ) -~ Wwith an energy E=14.413keV and a widthI'=4.66
analyze back reflectioh® In reality, the theory remains lin %10~ meV has been used hitherto fairly widely. A trans-

earized to a high accuracy, and in terms of the deviation .
o ) . parent detector and a large crystal-detector distance must
parameter from the Bragg condition it does not differ in any

way from diffraction at a Bragg angle smaller thaf2 (Ref. also be -employed to measure ;tr!ct backscqttermg. The inci-
4. dent (primary) synchrotron radiation pulse is also cut off

A slight angular deviation of the beam for the direction using a time window.

corresponding to strict backscattering was used in the experi- Just such a measurem_ent techmque_ was recently f|_rst
mental investigations of back reflection in Refs. 57, sincd’roP0sed and successfully implemented in Ref. 9. Sapphire

otherwise it was impossible to pass the incident beani/Al203) crystals, which did not have a sufficiently perfect
through the opaque detector. This simultaneously permitteﬁryStal lattice, were used to ellrr_nnate th.e multiwave eff_ects
elimination of the multiwave effects and allowed the use ofin Ref. 9. For this reason, despite the high angular collima-
the theory of two-wave diffraction to describe the measuredion and the very high monochromaticity of the incident
plots of the energytemperaturpand angular dependences of Peam, the experimental curves differed from the results of a
the reflectivity. Additional back reflection was employed to Calculation based on the dynamical theory for perfect crys-
monochromatize the beam, and the convolution of two thetals.
oretical reflection curves was calculated simultaneously for ~ Hitherto, only silicon crystals had a sufficiently perfect
comparison with experiment. Good agreement between thetructure. In this case several reflections have energies close
experimental temperature curve and the theoretical calculdo E=14.413keV. They are the(3,5,1) reflection
tion was obtained in Ref. 7. with  E=14.210keV, the (0,4,12 reflection with
Nevertheless, strict backscatterifigack diffraction) is E=14.437keV, and the (1,9,9 reflection with
of considerable interest in connection with the possibility ofE=14.572keV. In all cases back reflection is realized under
using it to create an x-ray analog of the familiar FabryrePe the conditions of multiple diffraction. The reflections indi-
interferometer(see, for example, Ref. 8 and the referencescated were recently measured in Ref. 10 at room tempera-

1063-7761/99/89(9)/8/$15.00 500 © 1999 American Institute of Physics
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ture. An x-ray monochromator with a resolution of the orderassigned accuracy of the order of the amplityge of the
of 1 meV was used this time. Monochromators of such aliffraction scattering from one wave to another. The sub-
type were widely used in the last few years in theddloauer  script | labels the possible solution, and is the degree of
facilities of third-generation synchrotron radiation sourcesexcitation of the respective solution in the crystal for an as-
(ESRF in France, APS in the U.S.A., and SPring-8 in Japan signed incident wave. It is found from the boundary condi-
in inelastic nuclear resonant absorption experiméiaistne  tions.
latest results on this subject, see Refs. 11 and 12 and the When solutions in the forni2) are plugged into Max-
references thereinand were developed specifically f&  well’'s equation for the amplitude of the electric field, the
=14.4keV with the possibility of scanning the energy in afollowing approximations are made to an accuracy of the
small range. order of yo~10"°.

Moreover, the use of back reflectivity peaks in silicon as 1) The electric field is assumed to be transverse:
reference marks on the energy scale of such a monochro-
mator permits measurement of the energy of the nuclear tran- E — E E, .6 &)
sition itself to a higher accuracy in comparison to other mg Tmeimms
methods. Just such a problem was solved in Ref. 10. For this ) o .
purpose, in particular, it is necessary to know how the mulWheres=m,o is the polarization index, and the unit vectors
tiwave effects influence the form of the back reflectivity €ms SPECify the polarization direction in beam in a plane
peak. Thus, an investigation of strict backscattering withPerpendicular to the unit vectsy,, which is parallel toKo
consideration of the multiwave effects has practical value in™ .
addition to being of purely physical interest. Tk®5,11 2) Only the first power of the dispersion correctieris
and (0,4,12 reflections correspond to 24-wave diffraction. taken into account in the equations. This corresponds to the
They will be studied at a later date. The present work isapproximation of generalized geometric optics in the small-
devoted to an analysis of back reflection with consideratiorngle case.
of multiwave effects in the case of the silic¢éh,9,9 reflec- 3) Averaging of the equation over a unit cell of the crys-
tion, which corresponds to 6-wave diffraction. The dynami-tal is pe_rformed _fo_r the purpose of eliminating the fast vari-
cal theory of the diffraction of plane waves in matrix form ables with a variation Ieng_th of the order of the wavelength
and the scheme for the computer calculations are present&f X rays from the calculations. _
in the next section. The scattering geometry and the results 4) Only the dipolar interaction of the electromagnetic
of the numerical calculations are presented in Sec. 3. Sectioffave with the medium is taken into accoutite accuracy of
4 offers a qualitative analysis of the influence of multiwavethis approximation is poorer than that of the preceding ap-
corrections on two-wave diffraction in ranges of parameterroximations, but in all cases, except the anomalous trans-
where they can be regarded as a perturbation. It providg®ission effect, it is sufficient

partial explanations for the numerical results obtained. ~ The approximations indicated allow us to write equa-
tions separately for each of the scalar amplituégs; in the
2 MATRIX FORM OF THE DYNAMICAL THEORY OF THE following form (for further details, see Refs. 1 and)13

MULTIPLE DIFFRACTION OF PLANE WAVES

Ym

The theory is devised for a monochromatic plane wave (?‘” ®m
with a frequencyw and a wave vectdf,. Real radiation can
always be represented as a superposition of plane waves, ahereK = w/c is the wave number; is the speed of light,
we assume that the different frequencies and directions of the
wave vectors are incoherent. Thus, the intensity of the back- Y= (Sn-N), grsnsr'n,:)(mfm,(ems. ens),
reflected radiation for a monochromatic plane wave must be
calculated, and then the result must be averaged over the o =[(K,+ hm)Z—Kg]/Kz, (5)
finite angular and frequencfenergy ranges corresponding
to the results of the specific experiment. When the conditiongnd - is the Fourier component of the polarizability of
for multiple diffraction in a crystal in the form of a plane- the crystal in the reciprocal-lattice vectog,—hp, .

Ems= E gsmsmrEm’s’v (4)
m’,s’

parallel plate with an internal normal to the entrance sur- To describe the calculation scheme in matrix form it is
face of the crystal are satisfied, an incident wave with theconvenient to combine the two indicesands into one, for
electric field intensity which we retain the notatiom. The indexm thus runs

. . through the values %, Oc, 17, 10,...,(n—1)m,(n—1)0 in
Eo(r,1)=Eo expliKo-r —iwt) @ the n-wave case. Going over to the new amplitudBg,;
corresponds to the superposition of truncated Bloch waves:= yﬁszm j» we can rewrite the system of equatiddgin the
form characteristic of many dynamical systeffetectrons,
E(r,)=2 ;X Epjexpliky; T—iot), phonons, etg, i.e., as the eigenvalue problem
] m

kmj:K0+hm+8jn, (2) SBmZE Gmm’Bm’ (6)
m’

which contains only reciprocal-lattice vectdrg of the crys-
tal that satisfy the Bragg conditiorKg+ hm)Z%Ké to an  for the kinematic scattering matrix
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Grmm =Hmm = AmSmm =K Y2
mm mm mOmm (Ym¥Ymr) R(k%):E |Mk5”%|2. )
X(Gmm — AmOmm ) (7) s’
where 8, is a Kronecker delta, which is equal to zero The parameters of the problem are the components of the
whenm#m’ and to unity wherm=m’". vectorg=Kgy+ h,/2, which describe small deviations of the

The matrixG,,y has a rank of B. Accordingly, there ~Wave vector of the incident wave from the direction corre-

are I different characteristic solutions of the problesy, ~ SPonding to strict backscatte_rmgg )= —hy2. It is conve-
which are distinguished by the indgxUnlike other dynami- ~ Nient to represent the vectarin the form

cal s.ystems', the matri@mm, ?s non-Hermitian, singe the q=K(016y,+ 6,60, + 0,%), (10
matrix g,y iS Non-Hermitian in the general case with con- . .
sideration of the absorption of x rays. However, the parts Owhere the pgrameter@l and 0, deicrlbe the angular qe"'a'
gmme Which describe scattering and absorption separately afP"S Of the incident beam and, = (o~ wc)/ ¢ describes
Hermitian. Nevertheless, the matri@,,,; is still non- the spegtral back reflectlon_ _Ilne sought. Th_e critical fre-
Hermitian even for a nonabsorbing crystal, if among the padtu€Ncy iswc=c|hy|/2, the critical wavelength i& =2dy,
rametersy,, there are some which have negative values. Thid"Ner€ di is the interplanar distance for the back-reflecting
always occurs in the case of back diffraction. Therefore, th@tomic planes, and the crystal photon enefigykeV) is E;

eigenvalues: of the problem, i.e., the dispersion corrections — 12-4Ac, Where is measured in angstroms. With consid-
ration of (10), the parameters of the deviation from the

to the wave vectors, are complex even for a nonabsorbin o . o .
crystal. In addition, some of them have a negative imaginar ragg condition in the linear approximation with respectjto
ual

part, which corresponds to growth of the Bloch waves asd
they move into the crystal. This, in turn, causes some diffi- ., =2(h,,-q)/K2=2K Y[ (hy- &,) 61
culty in solving the boundary-value problem by numerical
methods on a computer. + (N €05) 2+ (hn- S0) 6, ]- 1D

The general solution of the boundary-value problemina |n experiments the incident beam always has a finite
form which is stable toward increasing Bloch waves wasangular divergence, and the monochromator has a finite
given in Refs. 14 and 15. Below we shall briefly formulate width. For simplicity, we assume that the shape of the angu-
the solution method used. For this purpose, we order thgar and frequency spectra of the monochromator is rectangu-
elements in the matrix of eigenvectdss,; so that the index |ar. Thus, the spectral reflection line interesting us can be
m corresponds to decreasing values of the paramegteand  calculated from the formula
the indexj corresponds to decreasing values of the imagi-
nary part of.the eigenvalug . If the ngmber of Laue beams @(Gw): 21 fdew'f d6,d0RE)(61,605,60,,—6,),
corresponding to the passage of radiation through the crystal TyTs
plate for whichy,,>0 is equal ton, , then the number of (12

values ofm corresponding to these waves and the number ofyhere T, and T,, specify the angular and frequency widths

solutions with a positive imaginary part of the eigenvalueof the monochromator, respectively, and the integration is
(¢/>0) are equal to the same number 2 We denote the performed in these limits.

set of such values of the indicesandj by the single index

L, and we denote the set of remaining values by the single

index B. This allows us to divide the complete matrix of 3.(1,9,9) BACK REFLECTION IN SILICON UNDER THE
eigenvectors,; obtained as a result of the numerical solu- CONDITIONS OF SIX-WAVE DIFFRACTION. GEOMETRY AND

tion of (6) into the four submatrice8,, B g, Bg., and ~ CALCULATION RESULTS

Bgg, of which the diagonal matrice8 and Bgg are In crystals of cubic symmetry strict backscattering on a
strictly square, and the off-diagonal matrices are rectangulfecinrocal-lattice vector with fairly large Miller indices is
in the general case. The set of amphtudes for the reflection Oélways accompanied by reflection into other reciprocal-
Laue-type plane wavesy,>0) into Bragg-type plane |sttice vectors, which satisfy the Bragg conditions as a con-
waves (ym<<0) is described by the blocklg, of the com-  gequence of the symmetry of the crystal lattice. For example,
plete dynamical scattering matrix. S in a silicon crystal the(1,9,9 reflection occurs simulta-

In this paper we analyze the back reflectivity in the aP-neously with the ¢4,0,4), (—4,4,0), (59,5, and (5,5,9
proximation of a thick absorbing crystal, in which the in- refiections, so that six-wave diffraction is realized when the
creasing Bloch waves can be completely neglected. In thigaqq conditions are strictly satisfied. In this case the trun-
case the block of the dynamical scattering matrix of interest,tad Bloch waves are sums of plane waves with the wave
to us is described by the simple expression vectorsky,=Ko+hy,, which have the following values in

Mg =BgL(B) ™ (8) units of r/a, wherea is the lattice constant, in the coordi-

. . _ _ _nate system of the reciprocal lattice of the crystal:
If the incident plane wave has the index 0 and is polarized in

the s state(these conditions correspond to synchrotron radia-  (—0.5-4.5-4.5); (-4.5-4.5-0.9);
tion) and if the back-reflected wave has the indexn—1 CAE_AE_ .

. L ; . (=4.5-0.5-4.5);
and its polarization state is not analyzed, then the experimen-
tally measured reflectivity is described by the expression (4.5,4.5,0.5; (4.5,0.5,4.5; (0.5,4.5,4.5.
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(1,99 As follows from these conditions, two-wave back reflection
does not depend on the angular variables, but the reflection
maximum is shifted with respect to the photon energy by
AE=A,=E.0"=33.4meV.

It is difficult to graphically represent the three-
dimensional dependence of the reflecti\mﬁfg(AE,Hl,ez),
whereAE=E_ 6, . Therefore, we shall present and discuss
only fragments of the general dependence. Figure 2 shows
the dependence of the back reflectivity for i€9,9 reflec-
tion in the (AE, 0,) plane of arguments at; =0, and Fig. 3
presents the dependence in theE 60,) plane atd,=0 for
both polarization states in the incident wave. As follows
from the calculations represented in these figures, the two-
©1D wave band of the back reflection maximum due(199,9

diffraction vanishes as the multiwave region of parameters is
FIG. 1. Directions of the diffracted beams relative to the crystal plane. Theapproached. In addition, it is easy to discern the presence of
plane of the plate is perpendicular to the<{Q,—1) direction. additional reflection bands in regions where the Bragg con-
dition for (1,9,9 diffraction is not satisfied but the Bragg
condition for other reflections is satisfied.
Let the crystal plate be cut so that the normal to the While the value of the reflectivity increases as we move

surface is parallel to the (8,1,— 1) direction. In this case 2/0ng the two-wave band of th@.9,9 reflection from the

the parameters,, are equal to 0.997, 0.554, 0.5540.554 center to the edges, it decreases as we move along the addi-
0554 and— 0m997 respectivély i,e .we ha\./e thrée Léue-tional bands. This is because the additional reflection bands

type waves and three Bragg-type waves. Figure 1 shows tH&Ve an essentially multiwave character. The slope of these
directions of the diffracted beams relative to the crystal plate. aEds.re(Ijatlve tp tgef enerﬁy ax'sd_'f‘ thaH, §,) plane Iat
The polarization vectors in each wave can be chosen arbﬁ;]l_o 'Sd_ _etermflne rom t eé:_?fn |t|_oni$é_1). Fhor exampg,
trarily. Taking into account the scattering symmetry, Wet e conditions for two-wave diffraction in th¢5,9,9 an

choose the polarization vectors in the following manner. The(s’E"9 reflections are satisfied ir_1 the line 85=0.16AE
vectore,,. is parallel to the (0,1 1) direction, and the re- _ 2-932. Here and below, the shift of the photon enekdy

maining vectors are defined according to the formulas is measured in millielectron voltemeV). This means that
three-wave0,0,0; 5,9,5; 5,5,diffraction occurs in this line.

€0 =S1Xrs  Emnr=EmeX S (13  The(1,9,9 back reflection is weakkinematig, but it is en-

hanced because of the simultaneous presence of several
At the same time, the set of three vectegs, &, , ands,is  Strong waves. A more detailed analysis is given in the fol-
used to resolve the vectgy as follows from formula(10). lowing section.

The numerical values for the Fourier componeptsof As follows for Fig. 2, there is a second line of additional
the polarizability of the crystal were obtained using reflection. It corresponds to three-wave-4,0,4;-4,4,0;
Stepanov’s XOH program. When this work was carried out,1,9,9 diffraction. The Bragg condition for this case is ob-
this program was freely available on the Intertfet. tained by subtracting the condition for the-4,0,4) reflec-

As we know, a symmetric 2 matrix with diagonal tion from the condition for th¢1,9,9 reflection in formulas
elements equal to one another has eigenvectors with comp6l4). At 6;=0 a simple calculation then permits determi-
nents that are equal in absolute value and thus correspongigtion of the equation of the second line at
exactly to dynamical diffraction. Therefore, the centers of thef,=—0.156AE+5.932. The two lines cross at the point
two-wave reflection maxima are determined with considerAE=36.73meV, 6,=0.742urad. The lines split at the
ation of the dynamical displacement of the parameters bgrossing point, and there is symmetry of tt9,9 back
the relationsA,=H,,»—Hqoo, Which depend, among other reflectivity in the split lines relative to the change in the sign
things, on the parameteng,, rather than by the conditions Of the quantityf,—0.742, although the physical conditions
am=0. In the case under consideration these conditions havi@r reflection on both sides of the symmetric pattern are dif-

(5.9.5)

the following form in microradiangurac): ferent. In one case th€l,9,9 reflection is a disturbance in
the Bloch wave, where the strong waves are (8,0,
(—4,04: —-0.118,—-0.1769,—0.1050,= —0.271 (5,9,5, and(5,5,9 waves. In the other case tli£,9,9 wave
is a strong wave together with the-@,0,4) and (4,4,0)
(—4,4,0: +0.118,—-0.1769,—0.1050,= —0.271 waves, but the perturbation is a component in the incident
(0,0,0 band; therefore this Bloch wave is weakly excited in
(5,9,5: —0.118,—0.1769,+0.4296 ,= + 0.949 the crystal. The presence of polarization in the incident wave
weakly influences the two-wave band of tfie9,9 reflec-
(5,5,9: +0.1189,—-0.1769,+0.4296,,= +0.949 tion, but has a very significant effect on the additional reflec-
tion bands.

(1,9,9: +0.2966,= +0.678. (149 The dependence shown in Fig. 3 is even more compli-
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FIG. 2. Dependence of the reflectivity f¢t,9,9 back reflec-
tion at ;=0 for two polarization states of the incident wave
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cated. The two-wave diffraction in th€),0,0;5,9,% and As follows from the calculations, multiwave effects

(0,0,0;5,5,9 reflections now takes place in the lines atare displayed even with collimation of the beam to
6,=+0.249 (AE—32.2). The additional reflection bands 20x20uracf in the form of a lower maximum of the prin-
are strongly split for both polarization states. In addition,cipal reflection and additional regions of weak reflection.
two-wave (—4,4,0;1,9,9) and<{4,0,4;1,9,9) bands are dis- However, already with angular misorientation of the beam
played in the lines at,=+0.239 AE—33.7). The bands exceeding 18 10 urad, the principal maximum is fully dis-
are closely spaced, although they do not coincide with onéinguishable and has a position on the energy scale corre-
another. Therefore, the two-wave case with strong renormakponding to the two-wave case. This result can be utilized in
ization of the scattering parameters is partially realized herecalibrating monochromators with an energy resolution of the
The experimental observation of the dependences of therder of 1 meV.
reflectivity presented in this paper requires a strongly colli-
mated(less than Jurad®) and monochromatizetbf the or-
der of 1 meV beam. If the beam has finite collimation and is
not scanned over the angle, the dependence of the back
flectivity on the photon energy shifE can be obtained by
integrating over the angular variablés and 6, in assigned Multiwave dynamical diffraction is described by the sys-
limits [see formula(12)]. Figure 4 shows the back reflection tem of equationg6), which does not have an analytic solu-
energy spectra fof ,=0 andT,=0, 4, 8, 12, 16, 2Qurad, tion in the general case. Moreover, the results of detailed
andoe. The integration was carried out by simple summationstudies only of cases of systematic diffraction, in which all
on a square grid with a spacing of Qu2ad along both axes. the vectors of the reciprocal lattice lie in a single plane, have
For better visibility, the curves for different values ®f,  been published hitherto. In such cases the variation of the
have been shifted to achieve 0.2 spacing along the verticanergy of the incident photons leads only to variation of the
axis. The lower curve corresponds 1g=0 and the upper reference point on the plane of angular parameters without
curve (for T,=<0 within the approximation considergdor-  alteration of the angular dependence of the reflectivities. The
responds to pure two-wave diffraction. case which we considered refers to nonsystenagicdomn)

4. TWO-WAVE DYNAMICAL DIFFRACTION, KINEMATIC
rDI_FFRACTION, AND THE INFLUENCE OF OTHER
ISEFLECTIONS ON THEIR PROPERTIES
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FIG. 3. Dependence of the reflectivity f¢t,9,9 back reflec-
tion at 6,=0 for two polarization states of the incident wave.
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diffraction in Chang’s terminology’ Nevertheless, we can can be completely neglected and the polarization can be

use the approximate approach previously developed for aeparated. This corresponds to two-wave diffraction, for

gualitative analysis of the calculation results. which in the system of equatiort6) it is sufficient to retain
Let us consider the important special case where two obnly two equations:

the set of parameter&,, characterizing the deviation from

the Bragg conditions are close to one another, for example, (e+A;—H;;)B;—H;;B;=0,

the parameters with the indicesindj, while the remaining

parameters have values differing strongly from these two. In ~ — H;iBi+(e+A;—H;;)B;=0. (15

this case it is natural to presume that only the compor@nts

and B; of the eigenvector will have large and comparableThis system has two solutions, in which

values, while the remaining components will be small. We

first consider the situation in which the small componentse; = H;;—A;+ 0.5 —a=* (a?+4H;;H;)*?],

R
2.01 201
] z FIG. 4. Energy spectra of the angle-integrated
15 1.57 back reflectivity for various values of the colli-

c JL
A\ / \ mation of the incident beam: X0 (lower
1.01 /\ 1.0 N (

curve, 4x4, 8x8, 12x12, 16x16, 20
x20urac, and the two-wave caséupper

0.5 7% 0.5 _A__//\_,..\_\ curve. For better visibility the curves have been
W shifted along the vertical axis with 0.2 spacing.
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a=(A;—A)—(Hj;—H;), B;/Bi=(e+A—H;)/H;. multipliers in Ref. 18 as a method for approximate solution
(16)  of the problem. In Refs. 19-21 the mechanism for renormal-
jzation of the parameters was called virtual Bragg scattering.
he same approach was used in Refs. 22 and 23 to investi-
dgate standing x-ray waves and total reflection in a forbidden
reflection.
Under ordinary conditions for two-wave diffraction the

Here the branch with a positive imaginary part is chosen fo
the square root.

If the indexi=0 corresponds to the incident beam, an
the indexj=h corresponds to th€1,9,9 back reflection,
then n the approxmaﬂon of a thick absorblhg crystal, the arameter describing the deviation from the Bragg condition
reflection amplitude is exactly equal to the ratio between th

. . or a weak waveA,,>¢, H,,,, and the renormalization of
components of the Bloch wave and can be written in the L . L L
: ) the coefficient is very small. However, in a situation which is
standard notationas follows:

close to the pure multiwave situation, this renormalization is

Bn . P+ Vp2—4BxnxnC significant and can significantly distort the character of two-
B_0:| 2xXn ' 17 wave diffraction, i.e., can significantly shift the position of

the maximum and alter its width and height. In this case even

where the magnitude of the dispersion correction should be calcu-

p=aB=xo(1+B), B=70llval. C=(exmy. (18 lated sel-consistently. _ _
Thus, an analysis of the multiwave corrections to the

Here it has been taken into account explicitly that<0. In - yyo-wave(1,9,9 back reflection reveals effects of two types.
the case of back reflectiop=1. Equations(17) and (18)  First, the two-wave back reflectivity peak is distorted as a
correspond exactly to the upper curve in Fig. 4 with considyesylt of the renormalization of the parameters of the scatter-
eration of the relationv=—46,=—4AE/E.. ing associated with rescattering on other reflections. Second,
In the kinematic approximation, in which the rescatter-renormalization of the kinematic diffraction appears when
ing between the weak components of the mixed Bloch wavgne Bragg conditions for any of the other reflections are sat-
for m#i,j can be neglected and only the single scatteringsfied with consideration of the renormalization of its param-
from strong waves into weak waves need be taken into acsters. Significant interference of the two scattering channels
count, the weak components are given by the following exthen occurs, as a result of which, as the analysis showed, the
pression: single-band approximation does not provide the required ac-
HumiBi+HpmBj curacy in comparison to an exac_t mgltiwav_e calculat_ion.
= (19 Therefore, the formulas presented in this section are suitable
only for a qualitative understanding of the results of the ex-
As follows from this formula, ordinary single-wave single act calculation presented in Figs. 2 and 3, but cannot be used
scattering from the incident wave with=(000) into the directly for calculations.
back reflection wave witm=(1,9,9) can be enhanced in the The mechanism discussed here can also be considered in
presence of several strong waves, and the appearance of dbe case where the conditions for three-wave diffraction are
ditional reflection maxima can be expected in the case whergatisfied simultaneously, as occurs gt=0. The formulas
the Bragg condition is satisfied for some wave withpresented above can easily be generalized to this case. The
j#(1,9,9) and this wave is scattered in phase with the incisituation is far more complicated when the regions of two-

™ e+An—Hmm

dent wave. wave diffraction for different reflections are fairly close, but
In addition, we can write the system of equations fordo not coincide exactly. In this case, the interference of dif-
strong waves in the more exact form ferent scattering channels leads to a complicated structure of

peaks of kinematic scattering, as is clearly seen in Fig. 3.

(e+ A= Hip)Bi—H;B; = % HimBum. We express our thanks to Yu. Shvyd'ko for formulating

the problem and taking an interest in this work.
—HjiBi+(s+Aj—Hjj)Bj=% HimBrm. (20)
*)E-mail: kohn@kurm.polyn.kiae.su
wherem#i,j in the sum. Now, using formulél9 for weak

waves and substituting it int®0), we obtain a system of the

type (15), but with renormalized coefficients: 1Z. G. PinskerX-Ray Crystal Optic§in Russian, Nauka, Moscow1982.
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We employ the Monte Carlo method to provide a computer description of the thermodynamic
properties of the disordered antiferromagnetic Ising model for a simple cubic lattice with
allowance for the nearest neighbors interaction and the next-nearest neighbors interaction. We
construct the phase diagram for the model in an external magnetic field for systems with

spin concentrationp=1.0, 0.95, and 0.8. We also establish the tricritical behavior of the model.
Finally, we study the critical behavior of the model in weak fields. 1899 American

Institute of Physicg.S1063-776(99)01409-3

In the last two decades the efforts of many researchethatd,=2 and Parisi and Sourlashat d,=3, Imbri¢® and
have been focused on understanding of how impurities anBricmont and Kupiaineh came to the conclusion that
other defects affect the behavior of various systems in phasd=2. However, the nature of the phase transition in the
transitions. Of special interest here is the effect of frozerthree-dimensional Ising model is still unclear. According to
impurities, whose presence manifests itself in the form ofYoung and Nauenbefgand Rieger and Yourg this is a
random local perturbations of temperature in ferromagnet§irst-order phase transition down to very random-field values,
and antiferromagnets in the absence of an external field or iwhile according to Ogielski and Hudl! it is a second-
the form of random magnetic fields for antiferromagnets in aorder phase transition.
uniform magnetic field. In view of the fact that a magnetic ~ Two (qualitatively) equivalent models have been used to
field breaks the symmetry of the system with respect to alescribe the effect of random fields on the behavior of mag-
change in the signs of spins, the statistical properties of suchetic systems: the model of random-field Ising ferromagnets
disordered systems differ substantially. (RFIM)*? and the model of Ising dilute antiferromagnets in a

Studies have shovirthat in phase transitions without an field (DAFF).'* Real magnetic systems with random-field ef-
external magnetic field the presence of frozen impurities alfects are antiferromagnets with frozen impurities of nonmag-
ters the properties of only those magnetic substances whosgetic atoms. Such systems exhibit not only effects associated
specific heat in the homogeneous state diverges at the criticalith the antiferromagnetic interaction of nearest neighbors
point. In all other cases the impurities have no effect on thdut also effects associated with the ferromagnetic interaction
behavior of the magnetic substances at the critical point. Thef next-nearest neighbors. The DAFF model does not ac-
given criterion is met only by systems whose effectivecount for the competition of the ferromagnetic interaction,
Hamiltonian near the point is isomorphic to the Ising model.with the result that its real uséke that of the RFIM model
The literature devoted to study of the critical properties ofis fairly limited.
the Ising model is vadisee, e.g., the review articles in Refs. To establish the features of the phase transitions in
2 and 3. For dilute systems, good agreement has beemandom-field magnetic substances that set these substances
achieved between the theoretical results and the results @part from systems with a random local temperafraiadom
experiments and Monte Carlo simulations. spin interactions we did a Monte Carlo simulation of the

As for magnetic substances with random fields, notwith-critical behavior of an Ising dilute antiferromagnet using a
standing the intensive theoretical and experimental researciimple cubic lattice with allowance for the nearest-neighbor
done in the last two decad@shere are still very few reliable interaction and the next-nearest-neighbor interaction. The
facts characterizing the behavior of such systems. In particunodel Hamiltonian is
lar, the nature of the phase transition in the random-field
Ising model is yet to be determined, while the results ob- .
tained by computer simulation of such systems are contra- 7~ 9% IE] Pipjoioj+J2 % PiPkoi ot wH EI i
dictory. The almost single reliable fact established so far is (1)
that the upper critical dimensionality for this phase transition
(the dimensionality of the system above which critical phe-whereo;=*1, J;=1 characterizes the exchange interaction
nomena are described by the mean-field theasysix? in  between the nearest-neighbor spiwdich is of an antiferro-
contrast to the value of four for homogeneous systemsmagnetic nature J,= — 1/2 characterizes the ferromagnetic
Lately, in the problem of the lower critical dimensionality of interaction of the next-nearest-neighbor spiis, is the
the transition in the random-field Ising modghe dimen-  strength of the uniform external magnetic field, andndp;
sionality d, of the system above which long-range orderingare the random variables described by the distribution func-
sets in at finite temperaturesvhere Imry and Maargued tion
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P(pi)=pd(pi—1)+(1—p)s(p;) (2)  the system volumé/, but N/V—cons}. In a finite system
there can be no real second-order phase transition. Neverthe-

and characterizing the frozen nonmagnetic impurity atomsess, it is believed that if(T) is smaller than the linear size
(vacant sitegdistributed over the lattice sites with a concen- of the system, a finite system correctly describes the proper-
tration ¢,,=1—p. The given model wittp=1.0 and com- ties of an infinite system. In other words;Tifis not too close
peting interactions has been studied for more than two deto T., model calculations must yield results comparable to
cades by Monte Carlo metho&'>However, we are the first those for an infinite system. To firil,, we use the assump-
to use the model to describe the influence of disorder effectgon that the critical properties for systems of different scales
on the critical behavior of systems. From the viewpoint of L are attained only ak— .
physics, this model is the most realistic one. The size of the  One method that can be used to find the critical tempera-
random-field effects in this model and in real magnetic systure T, in an infinite system I(=) is to determine the
tems is determined by the impurity concentration and the‘critical temperature” of a finite systenT (L) from the
magnitude of the external field. For this reason the paramposition of the peak in the temperature dependence of the
eters of the model uniquely correspond to the parameters oktaggered” susceptibility s T,L) and use the scaling
a real physical experiment. The situation is different in theasymptotic dependence
RFIM model: the magnitude of the random field is fixed and 1
cannot be unambiguously related to the parameters of a real 1o(L) ~Te(L==)=aL™"" L>1, @)

physical experiment, i.e., the impurity concentration in thewherea is a constant depending on the details of the model

sample and the magnitude of the external field. and the boundary conditions. However, in the case of com-
What makes the present disordered model so remarkablsuter simulation of the critical behavior of homogeneous

is that atH =0 it is able to describe the critical behavior of a system, the best method so far for determinihglL =) is

system with random spin interactions, while f8k<H;, ac-  Binder's method of cumulant§,which in our case involves

cording to the results discussed below, it demonstrates th@troducing the cumulant) of the form,

critical behavior of a system with random fields. For

4
H>H,, magnetization fluctuations violate the stability of the _1, Mgyl @
second-order phase transition, so that phase transformations 2 [(Mztg)]2 ’

in the system acquire the features of a first-order phase tran- - .
sition. At H=H, and T=T, the system exhibits tricritical where the angle brackets stand for statistical averaging and

behavior. Thus, the given model describes a broad class 6'?e square brackets, for averaging over the different impurity
phase transitions and makes it possible to study the effect &onﬂguratmns. The cumulani(L,T) has a scaling form
the disorder introduced by impurities on the thermodynamic  U(L,T)=u(LY"(T—T,)) (5)

characteristics of the system in phase transitions. o o . o

To establish the features of the thermodynamic characthat is important fc.)r.descrlbl_ng. thg behavior of finite systems
teristics of a disordered system that determine the system@d does not exhibit a multiplicative dependenceLorihe
behavior for different types of phase transitions, we musfumulant s defined in so as to obey<@<1 and so that at
first construct the phase diagram of the system, which specfémperatures above, it tends to zero ak —. The scaling
fies the dependence of the phase transition temperatyre deper?c_zlence of the cumulant makes it p055|bl_e to determine
on the magnetic field strengt at a given spin concentra- the critical temperatur& (L =) from the coordinate of the
tion p, i.e., Tpy=Tpn(H,p). In finding the component of the point of intersection of the curves specifying the tempergture
phase diagranT.=T(H,p) corresponding to second-order dependgncEJ(L,T) for d|ﬁgrent valt_Jgsl_. Mo_re than that, it
phase transitions we must bear in mind that the critical be¢@n €asily be shown that in the critical region,Tas T,
havior of the antiferromagnetic system is determined by qy
strong, long-lived fluctuations of the “staggered” suscepti- ﬁ=aLl’V(1+ bL™®), (6)
bility Mg, the difference of the sublattice magnetizations.
The measure of magnetic fluctuations is the linear §{Ze with the result that the exponentcan be found from the
of a characteristic magnetic domain, a region with stronglymaximum slope of the cumulants corresponding to different
correlated spins. A3 approached, the correlation in the values ofL in the limit L—o0 near their intersection point.
spin orientations grows in strength and the increasg(n We examined cubic lattices with=12, 18, 24, and 32
is described by a power law with an exponent &(T) with spin concentrationp= 1.0, 0.95, and 0.8. In growing
| T—T,~*. The “staggered” susceptibility and the specific the impurity configurations, the number of impurity atoms
heat of the system also experience an anomalous increaéeacant sites(1—p)L* was taken to be the same for each
nearT.: xs g |T—Tc| 7 and C(T)x|T—T % wherea  antiferromagnetic lattice and a procedure for sampling their
and vy are the critical exponents. Due to the long-lived fluc-random distributions among the sites of the sublattices was
tuations ofM g, the relaxation timer, also increases with- implemented. The initial localization of the “critical tem-
out limit nearT, . Such behavior of the thermodynamic func- perature” of the finite systeml.(L,H), was determined in
tions and the physical parameters is observed in theelation to the maximum in the temperature dependence of
immediate vicinity of T, i.e., (T—T.)/T <1, for systems the “staggered” susceptibilityysT,L) for the following
that are assumed to be at the thermodynamic Iithi¢ num-  values of field strengtliin units ofJ;/uw): H=0, 1, 2, 3, 4,
berN of particles in the system tends to infinity and so does4.5, and 5.2Fig. 1 depicts the dependence yf,on T for
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Ksg with L=24 and a spin concentratiop=0.8 we used a

8of Monte Carlo simulation and found that in the low-
temperature phase the system usually relaxes in the course of
2000 to 4000 steps per spin to one of its metastable states,
and this process is followed by fluctuation flips of the “stag-
gered” magnetization with intervals amounting, on the aver-
age, to 5000 steps. These flips are accompanied by an
anomalously slow relaxation of the values of “staggered”
magnetization through a series of metastable states to a state
close to equilibrium in the course of 100 000 steps per spin.

To guarantee that the system reaches an equilibrium
state at temperatures close to critical and to determine the
thermodynamic characteristics of such states, we carried out
' ‘ a procedure of slow quasistatic freezing of the system from
2.0 85 920 95 10.0 the disordered phase, beginning at a temperature at which no

T metastable states were found in all the “runs.” The proce-
FIG. 1. Temperature dependence of the “staggered” susceptibﬂé{y dure of quasistatic freezing amounted to a relaxation regime
along the curves of second-order phase transition in the systémwitl8 consisting of 3000 steps, repeated at each temperature, fol-
p=0.95 atH=0 (curvel), H=2 (curve2), andH =3 (curve3). lowed by an averaging regime consisting of 10 000 steps and
a lowering of the temperature with a stépr=0.01, with
each initial spin configuration being the one obtained at the
three values of). Then we employed the method of cumu- last step of the preceding temperature. To avoid possible
lants to determind (L =,H) more accurately. irreversible effects, especially in strong fiefdsyhich mani-

To obtain reliable values off the equilibrium thermody- fest themselves in the difference of the thermodynamic quan-
namic characteristics of the behavior of systems in the crititities in the thermal cycling from the disordered phase to the
cal region, the procedures of statistical averaging and avelrdered phase and back, each “run” consisted of the proce-
aging over the different impurity configurations must bedure of quasistatic freezing described above followed by
carried out after the specific system has reached the state béating.
equilibrium. The critical behavior of various systems, espe- In the process of calculating the cumulaktéL, T), for
cially disordered, is characterized by anomalously long reeach lattice of siz& and fixedH and p we did statistical
laxation times, which increase substantially as the systeraveraging over ten “runs” with different initial spin con-
being modeled grows in size. figurations for each impurity configuration, which was fol-

Disordered systems with random fields, such as spifowed by averaging over 20 to 40 different impurity configu-
glasses, belong to the class of frustrated systems, in whictations. Note that using cumulants provides a good test of the
frustration is due to their structural disorder. In frustratedtype of transition in the system. For instance, in the case of
systems, the competing interactions with different spin orsecond-order phase transitions, the curves representing the
dering contradict each other and cause a series of events iemperature dependence of the cumulates have an intersec-
which there is not a single one of the possible spin configution point (actually a triangle if a finer scale is ugeds
rations that can minimize all the components of the systenshown in Fig. 2, while in the case of first-order phase tran-
Hamiltonian simultaneously. In disordered antiferromagnetsitions the temperature curves of the cumulants have a spe-
the aligning of the spins in a uniform external field is the cific shape and do not intersect. Studies have revealed that as
cause for competition with antiferromagnetic ordering in thethe impurity concentration and the magnetic field strength
low-temperature range. increase, so does the error in determining the average value

Some of the researchéts’~?'who studied the behavior of the critical temperaturéhe area of the triangle of inter-
of the RFIM and DAFF models with random-field effects section of the temperature curves of the cumulants increases;
found that at low temperature a set of metastable states sepsee Fig. 2, due to the increase in strength of the configura-
rated by energy barriers appears. One such state is a stdtenal impurity fluctuations.
with long-range ordetferromagnetic for RFIM and antifer- The tricritical point[T,(L),H;(L)] was determined for
romagnetic for DAFF, while the other states have different each lattice withL=12, 18, 24, and 32 and spin concentra-
configurations of the domain structure. It was shown that dionsp=1.0, 0.95, and 0.8 from the behavior of the isother-
system initially frozen in one of its domain states anoma-mal magnetizatiorM under variations of the field strength
lously slowly relaxes to the state with long-range order. TheH. The change of the order of the phase transition from first
effect of various experimental conditiorithe freezing and to second at the tricritical point was found to be accompa-
heating rates for the system in the presence or absence of ared by the disappearance of the hysteresis loop, which char-
external field on the nature of the states that occur in theacterizes the dependence Mf on H with a decrease or in-
ordered phase and the size of the irreversible effects as funcrease of field strengtid along the curve of first-order
tions of the random-field amplitude and the proximity to thetransitions(Fig. 3). The value of the tricritical temperatufig
critical temperature was studied in Refs. 13, 17, 20, and 21for an infinite system was determined by extrapolafing-)

In our studies of the relaxation properties of the modelasL — o according to(3), while the corresponding value of
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H; was found by extrapolatingl;(L) in accordance with the The curves for first-order phase transitions were local-
scaling relationship ized by analyzing the temperature and field dependences of
the magnetization, internal energy, and specific heat.
Hy(L) ~ Hy(L=5)=bL~(¢+2- ", @ ’ i

Our investigation resulted in determining the phase dia-

whered is the dimensionality of the system, angk<1 is the ~ grams(see Fig. 4 for the antiferromagnetic homogeneous
Fisher exponent. Ising model =1.0), a weakly disordered modelp (
As a result of our investigations we arrive at the follow- =0.95), and a highly disordered modegd<0.8). We see

ing values of the parameters that determine the critical pointhat as the impurity concentration grows, the curves repre-
T,=6.14+0.03 and H,=5.40+0.10 at p=1.0, T,=5.15 Senting the phase transitions shift to the region of lower tem-

+0.10 andH,=5.35+0.07 atp=0.95, andT,=2.64+0.03  Peratures and weaker magnetic fields. The localization of

andH,=4.71+0.05 atp=0.8 (here the temperature values these curves makes it possible to carry out a detailed analysis

are given in units of; /k, wherek is Boltzmann’s constant ~ Of the special features in the critical behavior of systems with
Note that for a homogeneous system=(1.0) the value fandom spin interactions and random fields.

of T, and H, are a refinement of the corresponding values By analyzing the asymptotic scaling dependence of the

obtained by Landa?? because we were dealing with larger Cumulants for lattices with =12, 18, 24, and 32 in accor-
systems(in Ref. 22, 6<L<20). dance with(6) and the “staggered” susceptibility at the criti-

cal temperaturd (L =,H) in accordance with the expres-
sion XstgocLV’” we found the critical exponents and vy for
homogeneous and disordered states of the antiferromagnetic

M Ising model. For instance, for the homogeneous system with
1 2 p=1.0,H=0, andT.=10.15 we found that=0.63+0.01
08 rr‘ 3 and y=1.25+0.02, which are in good agreement with the
0.6
HC
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FIG. 3. MagnetizatiorM as a function of the magnetic field strengthin T

the system 1Bwith p=0.95 at three temperature near the tricritical point

T,=4.6: T=4.0 (curve 1), T=4.5 (curve 2), and T=4.6 (curve 3). The FIG. 4. Phase diagrams for the antiferromagnetic Ising model prithi
curvesl and3 are shifted to the left and right along the horizontal axis by (curve 1), p=0.95(curve2), p=0.8 (curve 3); the * indicate the tricritical
—1.0 and+ 1.0, respectively. points.
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results of theoretical calculations, the high-temperature exteresis effects in the behavior of the magnetization. Finally,
pansion, and the experiment conducted by Le Guillou andhe high accuracy of localization of the critical temperatures
Zinn-Justin?® For disordered systems with random spin in-has made it possible to find the critical exponents for the
teractions atp=0.95, H=0, andT;=9.62 and atp=0.8, Ising model with random-temperature effe@Gtsthe absence
H=0, andT.=7.97, the resulting values of the critical ex- of an external fieldand random-field effectén a finite mag-
ponents, v=0.65+0.02 and y=1.27+0.03, andv=0.68 netic field.

+0.02 andy=1.31+0.03 agree with Heuer's resufsof a , ,
computer simulation of the disordered ferromagnetic Ising 1S Work was sponsored by the Russian Fund for Fun-
model and with the results of Mayer's theoretical d@mental Researoi@rant No. 97-02-16124
calculatiorf® for the weakly disordered Ising model. For dis-
ordered systems with random-field effects pt0.95,  “E.mail: prudnikv@univer.omsk.ru
H=1, andT.=9.53 and ap=0.8, H=1, andT.=7.84, the
resulting values of the critical exponeniss- 0.68+0.02 and
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A dynamic theory of two-photon correlators for a single impurity center developed recently by
the authofl. S. Osad’ko, Zh. Esp. Teor. Fiz113 1606(1998 [JETP86, 875(1998]

has been generalized to the case in which the center interacts with nonequilibrium two-level
systemgTLSs) in polymers and glasses. Quantum tunneling transitions in TLS manifest
themselves as random jumps of a spectral line of an impurity center. These jumps can be either
spontaneous or light-induced. Interaction between the impurity center and many
nonequilibrium TLSs, which exist in polymers, results in a time dependence of the optical
dephasing rate T4 of an impurity molecule, i.e., in spectral diffusion. This paper describes how
the jumps of the spectral line manifest themselves in the two-photon correlator, which can

be measured in experiments. 99 American Institute of Physid$1063-776(99)01509-7

1. INTRODUCTION of photons emitted by a molecule is counted. If the laser
frequencyw, equals that of the spectral line maximum

The spectroscopy of a single molecule embedded in ghe light absorption intensity is maximal, hence the mean
polymer or glass offers unique opportunities for studying theinterval between emitted photons is minimal. The mean in-
local dynamics of these soliddt is now clear that in glasses terval between emitted photons decreases with the detuning
or polymers, there is not only a distribution of frequencies Ofwo—Q. Therefore the number of photoh wy— Q) emit-
electronic transitions, which determines the inhomogeneoug,q by a molecule over the time intertdb a function of the
broadening of impurity spectral lines, but also distributionsdetunmg_ This function describes the absorption line.
of the magnitgde a_nd type of I(_)cal el_ectron—phonon coupling At an excitation intensity of 10- 10° photons per sec-
and Of, the impurity mteracno_rl with two—Ie\(eI systems ond, which is typical of the single-molecule spectroscopy,
(TLSS) in polymers and glassés’ Slow relaxation due 10 seyera) tens of seconds are needed to record the absorption
tunneling trgnsmons in T'LS has peen extensively studlecfine with good accuracy by detecting emitted photons. This
recently using the technique of single-molecule SpeCtrOSéhortcoming is inessential for solids which do not contain

copy. TLSs. But in polymers, where tunneling transitions in TLSs
Excitations of TLSs(tunnelon$ manifest themselves in ' poly T 9 ;
occur, one has to deal with jumps of spectral lines, after

electronic absorption spectra as spectral lines due to the, . o .
! . which excitation of a molecule, hence emission of photons,

electron-tunnelon coupling. The spectroscopy of single mol- . . ;
. . : S terminates. Such jumps on the frequency scale are shown in

ecules offers unique opportunities for studying this interac-

tion, as well as the local electron-phonon coupling. Fig. 1. As will be demonstrated below, these jumps of spec-

The basic experimental technique in the spectroscopy 0t(al lines are due to interaction between molecules and non-

single molecules is excitation of fluorescence. Direct mea_equmbrlum TLSs, which are always present in a polymer or

surements of light absorption are very inefficient because iglass. It is cIear on the intuitive level that the fre_quency of
is difficult to detect absorption of a single photon from a such spectral jumps should reflect the relaxation rate of

great number of photons in the exciting light beam. In theLSS: Unfortunately, the one-photon technique based on
fluorescence excitation technique, the absorption intensity i§0UNting the total number of emitted photons and described
estimated on the basis of the number of emitted photon§bove is not a convenient tool for measuring the TLS relax-
whose frequencies shifted to the red side with the respect t@tion rate. The TLS relaxation time, however, can be easily
the excitation frequency. For this reason, the exciting radia@ssessed using the technique of two-photon correl&fots.
tion does not interfere with the photons emitted by a mol- [N two-photon detection techniqyepairs of photons
ecule. emitted by a molecule with a certain time deteyetween the

In studies of single molecules, cw lasers with spectraftwo photons of the pair are counted. Figure 2 shows three
widths of several megahertz are used. Under cw excitation, 8uch pairs corresponding to omeThe count ratep(t) of
molecule performs jumps between the ground and exciteduch pairs is called the two-photon correlator. It is also a
electronic levels at random moments of time. Therefore dunction of the incident light frequency, i.ep(t)=p(wg
light detector receives a sequence of photons emitted by the (1,t). The task of the theoretical research is determination
molecule and separated by random time intervals. of a mathematical formula fop(t). A quantum mechanical

In single-photon detection techniqué®e total number theory of two-photon correlators for a three-level molecule,

1063-7761/99/89(9)/12/$15.00 513 © 1999 American Institute of Physics
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v, GHz ecule’s interaction with a larger number of TLSs in the sub-
8 sequent sections. In Sec. 5, an approximate effective
"'WJ‘U"LLA technique will be developed for determining the kinetics of a
6 system consisting of one molecule and one TLS without
4 light-induced tunneling. In Sec. 6 this technigue will be gen-
, eralized to the case of interaction between one molecular
0 500 1000 1500 2000 2500 chromophore and many TLSs, which will allow us to obtain

s an expression for the light absorption coefficient with due
account of the time-dependent broadening of spectral lines,
‘?.e., the spectral diffusion due to interaction with a lot of
nonequilibrium TLSs. On the basis of the equations derived
in Secs. 3 and 6, an expression for the two-photon correlator

whose density operator was analyzed using optical Blochvill be derived in Sec. 7 taking into account the electron-
equations or three kinetic equations, was described in detaihonon coupling, TLS relaxation, and effect of spectral dif-

FIG. 1. Jumps of the 580.77-nm spectral line of terrylene molecule dope
polyethylene®

in a previous publicatiof.It turned out that fusion. Two specific examples of its applications will be
given there. Section 8 summarizes the paper and presents
_p® (1) ~ conclusions.
Tl !

wherep,(t) is the probability of exciting a molecule derived 5 HAMILTONIAN OF THE ELECTRON-PHONON-TUNNELON
from the Bloch equations. The probabiligy(t) calculated in  gysTEM

this manner, however, did not take account of the presence . o
of nonequilibrium TLSs in a solid. A theory without this Let us consider a system consisting of a two-level chro-
limitation will be developed in this paper, and this will be a Mophore interacting with a transverse electromagnetic field,
dynamic theory of the two-photon correlator taking into ac-Vibrations of nuclei in the latticéphonons, and tunneling
count interaction with nonequilibrium TLSs whose relax- transitions in the solventtunnelons. The Hamiltonian of
ation times range from fractions of microseconds to severafuch a system has the form
hours or even weeks. _ _ _ H=Ho+H, +A+X, )

The paper is organized as follows. Section 2 discusses
the full Hamiltonian of the electron-photon-phonon-tunnelonwhereH, is the Hamiltonian of the transverse electromag-
system and interactions between its components. In Sec. Betic field andH, is the Hamiltonian of the chromophore-
on the basis of this Hamiltonian, an infinite set of equationgPhonon-tunnelon system:
for t.he full depsity_ matri>§ of this: system will pe derived, and Ho=[AQ+AH(&)]B*B+H(&). 3)
basic approximations will be discussed, which allow one to
simplify these equations and replace them with four kineticHere(} is the frequency at which the electronic system of the
equations for populations of the states of a quantum systefghromophore is excited” andB are creation and annihila-
consisting of a two-level molecule coupled to phonons andion operators of the electronic excitatidti( ) is the Hamil-
one TLS. In the process of realizing these approximationsionian of phonons and TLS. The functidrH () describes
microscopic expressions for both tunneling transition rates ofhanges in the phonon-tunnelon system when the chro-
TLS and coefficients of light absorption and emission by amophore’s electronic system is excited. This interaction of
two-level molecule interacting with phonons and one nonthe Franck—Condon type is determined by changes in the
equilibrium TLS will be derived concurrently. This transition adiabatic potentials when the electronic system is excited.
from the infinite set of equations to the four kinetic equa-The operatorA =d-E(B+B™) describes an interaction be-
tions, which requires, unfortunately, cumbersome calculatween the optically active electron in the chromophore and
tions, is the main topic of Sec. 3. If the reader is not inter-light, andA =\ (c+c™) is the operator of tunneling in TLS.
ested in the discussion of the approximations employed in  The Hamiltonian of the phonon-tunnelon system has the
this analysis and the derivation of basic equati@®&—(29), form
which will be used in Secs. 6 and 7, he can omit Sec. 3 and
skip to Sec. 4, which analyzes spontaneous and light-induced (&) =2 +V(R)]e c+H(R). “)
tunneling in TLS on the basis of the four kinetic equationsHerefe is the tunnelon energy,” andc are the creation and
taking into account only one TLS and shows that the light-annihilation operators of excitations in TLS, i.e. tunnelons,
induced tunneling can be neglected at low intensities oH(R) is the phonon Hamiltonian, and(R) characterizes
pumping. This conclusion makes considerably easier the dechanges in the phonon Hamiltonian due to excitations in
velopment of an approximate method for describing a mol-TLS, i.e., it is an interaction of the Franck—Condon type in

L—T-l Photoelectronic
— multiplier FIG. 2. Train of photons emitted by a single molecule

g--g----0g-g--g--0-a-0-g-e-0e-0 D\ --2 Photoelectronic excited by a cw laser. Pairs of photons with the same
— — — multiplier delay are shown.
t ' t
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the ground state of the chromophore electronic system which
is diagonal with respect to the tunnelon operators. B

130
Strictly speaking, the tunneling operathe=X(c+c™)
N e+ A
of the tunnelon-phonon system, which is represented by a i \ [DIb)
separate term on the right of EQR) expressing the full N1
Hamiltonian, should also be included in the phonon-tunnelon
Hamiltonian. There is a good reason, however, to express it E
by a separate term in the full Hamiltonian because the latter
is used in deriving the full set of equations for the density N /\7g——£
operator, so one can easily see what new terms are generated 0) =
in the equations by this tunneling operator. 10)a) 2)a)
As was noted above, the adiabatic potential of the _ _
FIG. 3. Electron-phonon-tunnelon wave functions and corresponding energy
chromophore-phonon-tunnelon system changes when thg o
chromophore’s electronic system is excited, therefore, an ad-
ditional term turns up in the tunnelon-phonon Hamiltonian

H(&): B*|0)=[1), B*|1)=0,
AH(&)=[2A+AV(R)]cTc+AH(R). (5) B|1)=0, B[1)=|0). 7

HerefA is the change in the splitting in TLS, i.e., the changetne phonon functions in the ground electronic state are de-

in the tunnelon system. This parameter characterizes the e from the following two equations corresponding to dif-
teraction, which is quadratic in the electron and tunneloq:erent states of TLS:

operators. The termAH(R) is the operator of electron-
phonon interaction, andV(R) determines changes in the  H(R)[a)=%1Qa),
tunnelon-phonon interaction due to the electronic excitation. _
H(R)+V(R =hQ , 8
The latter contribution is required because the rates of tun- [. (R) (. Mla) ‘f|a> ®
neling transitions in the ground and electronically excitedand in the excited electronic state from the other two equa-
states are different. tions:
The I_ast two terms on the right-h_and side of Hf) [H(R)+AH(R)]|b)=%Q,|b),
characterize, as was noted above, the interaction between the
chromophore and transverse electromagnetic field and the [H(R)+V(R)+AV(R)+AH(R)][B)=1Q4B). (9

tunneling operator. Indeed, if we sét=\=0, transitions  The tunnelon wave functions in the ground and excited elec-
between two chromophore states and in TLS become impogronic states satisfy the equations

sible. N N
On the other hand, if we sét=0 butA =0, transitions £¢7¢|0)=0. (s+A)c7c|1)=0,

in the electronic system become possible, but tunneling tran- sctc|2)=¢|2), (e+A)cc|3)=(e+A)[3). (10)

sitions in TLSs are not allowed. This is the case for which

the density operator was calculated previobisijthout tak-

ing account of TLS. Now we are facing the problem of de-

riving equations for the density operator with due account o

TLSs and tunneling operator=\(c+c*). This problem

will be solved in the next section.

E+ A

The eigenfunction$n)=|n4,n,,...) of the HamiltonianH
of transverse electromagnetic field are the harmonic oscilla-
for functions.

It is obvious that the eigenfunctions of Hamiltonigkp
+H, have the form

0/a)
W=Imio)A) =0} 1%
3. EQUATIONS FOR THE DENSITY MATRIX OF AN |1>|b>
ELECTRON-PHONON-TUNNELON SYSTEM |B)=|n—1>|1)|B>=|n—l>|1)[|3>|’8>2 (11)

Now consider the equation for the density matrix of the

entire system: where the wave functions of the system containing the chro-

mophore, tunnelons, and phonons satisfy the equations

p=[H.2] ©  Hio)a) =10,0)/A),
whereH is given by Eq.(2). In order to derive equations for .
the matrix elements from this basic equation, we have to Hol1)|B)=(E+7€p)[1)[B), (12
choose a definite basis. Let us choose the eigenfunctions afhere

the operatoHy+H, , which does not account for tunneling Q Q

. .. . . ar b
and electronic transitions, for such a basis. These functions QA:[Q T B:{Q et A (13
are products of electron, phonon, and tunnelon wave func- a™ & pTE '

tions, as well as oscillatory functions describing photons. This set of functions and a diagram of corresponding energy
The electron functions of a two-level chromophore arelevels are shown in Fig. 3. Using the earlier investigatiths,
determined by the equations where spontaneous light emission was taken into account in
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deriving equations for the density operator, and b&kis,
we transform operator equatid) to the following set of
equations:

i
Apgt+Qpa— 2_T1> PBA

pPeA= "I
- > AgarparaTi > pes'Agia
A B’
—i 2 Npmpeati X peaiaras
B’ A
( i Ao+ Q i
pas=—i| — — 5P
AB ot AT 57 | Pas

—i X Aappseti X panAae
B’ A

—i 2 Maaparsti 2 pashees
A B’

. . [ .
pBB = _|(QBB'_ T_1>PBB'_' ; (Agapae’ —Pealag)

—i 2 (Nes"PB"B’ ~ PBR"ABIB!),
BH

p 1 1 ! ’
pan =~ 1Qanpan + - > (AlB)pge(B'|A")
1B’

—i % (AaePBA— PABNBA)

_| 2 ()\AA"PA”A'_PAA")\A”A’)- (14)

A

Here Aj=Q0— w, is the difference between the electronic

resonant frequency and absorbed photon frequency. The ma-
trix elements and frequencies in this set of equations are

given by the following relations:

b 110)x=Apa, .
ABA:<B|A>X:{<<,8||Z;§3||2;);=A;a, Apg=Aga, (19
\ :[<b|/3><1|3>7\=>\b/s:

BB (BIb)(B[1)A=Ngp,

M\A':[<a|a><2|o>x=xaa, (10

Qpa=0p—0a, Qpp=05—0p, Qaa=0a— Q4.
7

Here y=d- E/# is the Rabi frequency. The underlined com-

ponents of Eq(12) are generated by the tunneling operator.

I. S. Osad’ko

density matrix and two approximations. First, we take into
account only vertical optical transitions shown in Fig. 3.
These optical transitions are not assisted by simultaneous
tunneling processes. Then all matrix elements and density
matrix elements can be equated to zefg;z=Ap,=pags
=pp.=0. Second, we also omit the off-diagonal matrix ele-
ments of the density matriX,a , pPob s Paar» @Ndpggr,
which are inessential for the analysis of the effect of opera-
tors A andX on the diagonal elements of the density matrix
in the lowest nonvanishing order, and this approximation
will be used hereafter.

With due account of these approximations, let us pro-
ceed to a more detailed form of the four equationg1i4).
From the first and second equations, we obtain

Poa= —1(Ag+Qpa—1/12T1)ppa—iApa(paa=™ Pob),
Ppa= —1(AgtA+Qp,—112T1)pga—i1AgalpPaa=Ppp)
Pab=—1(— Ao+ Qap—i/2T1) pap— i Aap(pbb— Paa)s
Pap=—1(—Ao= A+ Q= i/2T1)pap=iAap(ppp=Pad)-

(18)
The third equation transforms to the following four equa-
tions:

Pog=—1(—e—=A+Qps—10)ppg—iNpg(Pss— Pobb)s

'pBb: —|(8+A+Qﬁb_|O)pﬁb_|}\ﬁb(pbb_pﬂﬂ)’

. Pob .
[ > (Apapab—Poalap)
1 a
=i % (NP o= PbpN b))
_ Ppp .
Ppg="— T_l_l ; (AgaPap™Ppallap)

(19

—i % (N goPbp— Ppphpg)-

Finally, the fourth equation ifi14) transforms to the follow-
ing four equations:

paa: _i(_8+Qaa_iO)Paa_i)\aa(Paa_Paa)v

Paa: _i(8+Qaa_io)Paa_i)\aa(paa_ pauz)r

paa= S (@001 P 110)(BI)—1 T (Mg

—PabMpa) —i Z (NaaPaa™ Paclaa)s

1
Paa=T, % (@l B)(2|3)ppp(3[2)(Bla)

If these terms are omitted, the resulting set of equations is

essentially identical to the set of equatidd®) in Ref. 6.
Now let us write down each of the four lines of E42)

in a more detailed form. To this end, we introduce for sim-

plicity the following notation: pp1a0=pPpas Pp3a2=Ppga>

Pb1g3=Pbg+ Pada2=Paa:--- TOr thematrix elements of the

—i % (Aaﬁpﬁa_paBABa)

—i ; (N eaPaa— Paalaa)- (20)
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Here and in the previous equations, the underlined terms are
those generated by the tunneling operator.

Under low-intensity pumping, the kinetics of population
numbers can be investigated neglecting coherence effects,
which is equivalent to omitting time derivatives of the off-
diagonal elements of the density matrix. In the case under
consideration, both the pumping intensity and tunneling op-
erator can be treated as small quantities. Therefore, a third
approximation can be applied to E¢L8) and underlined
terms of Egs.(19) and (20), specifically, we can sepy,
:bab:bBa:paﬁ:bbB:bBb:baa:baazo' After that! one
can easily derive from these equations expressions for off-
diagonal matrix elements and substitute them in the last two
pairs of equation§19) and(20). Then we have the following
set of rate equations:

Pbb= Pbpt é KbaPaa

1
T, " b

- % MogPobt % MbpPBa s

I. S. Osad’ko

B
b— 3

B
4//ﬂ\\J

4

AN

[Vep}
t~
~

/\\/,

I S——

2 pa=2 =2

a b

23

FIG. 4. Optical and tunneling transitions described by Eg6).

= =1.
p % Pp
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(29

By substituting(24) in the set of equation§21) and sum-

ming over the phonon indices, we obtain the following rate

baa=TiZ (a|b)(0[1) ppr(L|0)(bla)+ > kpapbp
17D 5

_% kbapaa_E raapaa"‘z raapaal

equations:

p1=—T1p1+Lopo—bpi+Bps,

po=T1p1—Lopo—apo+Apz,

p3=—I'sps+Lopa+bp;—Bps,

1 .
. _ _ + _
Ppp=— T—l+§ Kga pIBB-i-% KgaPaa p2=T3p3—Lopr+apo—Ap,, (26)
where
—|—E rbﬂpbb_E rb,BpBB! Fl:1N1+Ll, F3:1H—1+L3, (27)
° ° and the coefficients
1
Paa=7" +
Paa Tl % <a|B><2|3>pﬁﬁ<3|2><B|a> % kﬁapﬁ,B LO:k%O:bEa pakba
_2 kﬁapaa+2 raapaa_E laaPaa - (21) — 2.2 2 1/T1
B a a _<1|O> X bE,a pa<b|a> (AO+Qba)2+(1/2Tl)2’
Here
1T, lekio:% PoKbas
Kpa=Apalap 2 2
(Ag+Qpa) "+ (1/2T)
l/Tl LZZngZﬁE pakﬁa
kﬁa_ABaAa,B (AO+A+‘Qﬁa)2+(1/2T1)2 (22) o
. . . _ 2.2 2 1
characterize the rates of optical transitions, and (3|2)%x /;1 pol Bl @) (Rt AT 0,07+ I
— L€ —
Fan=2Th oo wad(Qan— &) 23 LS—kaz—% PeKpa (28)

are the rates of tunneling transitions.

characterize the rates of induced optical transitions between

It is obvious that we can express the diagonal elementge pairs of leveld1,0) and (3,2), as shown in Fig. 4. The
of the density matrix in21) in the form coefficients

Paa=™ PaPos  Pbb~ PbP1s  Paa™ PaP2: P~ PBP3:

(24)
wherep,, py, p,, @ndpg are the probabilities of finding the
system in the corresponding phonon states. They satisfy the
condition

A:Ea paraaZZWEa Palach 0ad(Qan—¢),

a= E Palaa>
aa



518 JETP 89 (3), September 1999 I. S. Osad’ko

the populationg; and p; of electron-excited states on the

BZEb P;;fb,BZZWEb PeNbphppd(pg—e—A), one hand, and the populatign, on the other. The required
p p relation can be obtained by settipg= p3;=0. Then, taking
into account inequalitie§31), we derive from the first and

b:% Polbs (29 second equations if80)
are the desired microscopic expressions for the rates of tun- (T3t b)Lopg Lo

neling transitions between the levels in the upper and lower pl_(Fl+ B)/Ti+ bFlz 1“_1p°’

potential wells, respectively, specifically, the rateand B

refer to tunneling transitions in the excited electronic state _ BLopo _ ET B (32)
and the rates and A to the transitions in the ground state. P3 (I'y+B)/T+bl'y T4 1BPo-

The rates of opt|call aqd tunnglmg transitions determined byﬁ\fter substituting these results in the remaining two equa-
Egs. (27)—(29) are indicated in Fig. 4 next to the arrows tions in (30), we obtain the equations

corresponding to these transitions. The letéeedB denote ' q

the rates of tunneling transitions from higher to lower poten-  ,, — _(B+a)p,+Ap,,

tial wells. These transition rates do not vanish at zero tem-

perature and are higher than the radesndb of transitions bz=(~B+a)po—Apz, (33
from lower to higher wells, which tend to zero at zero tem- o
perature. whose solution is
A A ~

4. SPONTANEOUS AND LIGHT-INDUCED TRANSITIONS IN po(t)=———+| po(0)— exd —(B+R)t],
A TWO-LEVEL SYSTEM B+R B+R

Generally speaking, the set of kinetic equatid@s), p2(t)=1—po(t). (34
which is the main result of the previous section, could be
written without complicated calculations using the diagram
of transitions shown in Fig. 4. Using this approach, however, _ L,
we would not have obtaine@) microscopic expressions for B= 1“_18’ R=A+a. (35

the constants in these kinetic equations, which will be used

in what follows, and(b) a clear understanding of what ap- According to Eqs(32) and(34), the slow relaxation rate of

proximations underlie Eq$26). The latter can be used as a all populations is determined both by tunneling between

starting point for further analysis. states 0 and 2 and between 1 and 3. The trimsition between
Rate equationg26) take into account the tunneling in states 1 and 3 is light-induced tunneling. Its rgtes propor-

both ground and electron-excited chromophore states. Let i®nal to the pumpind.q.

estimate the relative contributions of these processes. Con- Now consider the case in which the pumping frequency

sider the case in which the system is excited only at theesonates with the 3-2 transition. Then rate equati@6s

frequency of transition 1-0, i.el,,=L3;=0. Let us assume take the form

also that level 3 in Fig. 4 is lower than the excited level 1. .

The latter condition is necessary so that the model could be P1~ ~(UTy+B)py+bs,

applied to the situation with jumps of the spectral line like =By, —(I'3+b)ps+L,p,,

those shown in Fig. 1. After such a modification of the

model, the constantB and b should be interchanged, and po=p1/Ti—apo+Ap,,

rate equation$26) transform to

. (F1+B)p1+ Lopot b p2=Tzpstapo—(La+A)p,. (36)
& ! prTmoPoTBbs Let us solve these equations similarly to E§R0). After
p3=Bp;—(LT,+b)ps, settingp,;=p3=0, we derive from(36)
po=T1p1—(Lot+a)potAp;a, bL,p, Lo b
b2=ap0+p3/T1—Ap2. (30) (F3+b)/Tl+BF3 F3
Let us assume that the transition rate constants satisfy the _ (1/T1+B)Lop, _ L, 3
inequalities PS= T, b)/ T+ B, T5P% (37
I'>Lo>A, B>ab, (3D with due account of these results, the last two equations in

which are quite common for real systems. If the rate con{36) transform to
stants satisfy these conditions, the probability changes
varies time on two scales: the shorter and longer ones, on
which the relaxation rate gf; is faster and slower, respec- . e
. ) ) ' =apg—(b+A)p,, 38
tively. The fast relaxation occurs on a time scale of the order P2~ °F0 ( )2 (38)
of T,. After that, quasi-equilibrium is established betweenwhere

po=—apo+(b+A)p,,



JETP 89 (3), September 1999 I. S. Osad’ko 519

~ L, tunneling transition in the excited electronic state, which is

b= F_sb (39 possible in the case of an intrinsic TLS, we derive from Eq.
(30) the following simplified equations:

accounts for the contribution of light-induced transitions to

the tunneling when the pumping light frequency coincides p1=~T1p1+Lopo,

with that of the 3—2 transition. The solution of E¢88) is po=L1p1—Lopo—apo+Ap,,
a a ~ p2=apo—Apz, (42)
pat+to)=———+| palte) ~ ——— |exd — (b+Ryt], , | ,
b+R b+R whose exactbut complicategl solution can be found. With

due account of condition81) and in the zero-order approxi-
po(t+tg)=1—ps(t+tp). (40 mation in the small parametd&/I", this exact solution can

. . . . L be transformed to the following form:
With a view to investigate later the situation illustrated by

Fig. 1, we set the initial moment of time not to zero, Iyt p1(t)=ng(t) —ng(=)py(t),
We describe in Sec. 7 how one can account for spectral line
jumps like those shown in Fig. 1 with the help of E¢32) p2(1) =No(*) (1),
and(34), and Wlth Eqs_(37) and (40) as well. _ po(t)=1—pa(t)— pa(t)
The rates of light-induced transitions can be higher than
those of spontaneous ones. This is the case of TLSs involved =Ng(t) —No()P2(t) +Nny(*)pa(t), (42

in photochemical burning of holes in inhomogeneously,,nere the functions
broadened optical bands. Such TLSs usually describe the

states of chromophores themselves, i.e., these are TLSs due Lo B B

to embedding of impurity molecules in a solveeixtrinsic ny(t)= r+ Lo{1 ex = (I + Lot}

two-level systems Obviously, the number of such extrinsic

TLSs approximately equals the number of impurities. In this ~ No(t)=1—ny(t) (43

situation, as follows from experimental data, a steady-statgescribe the time dependence of the probabilities controlled

spectral hole is burnt in an inhomogeneously broadened opsy aser pumping, but with the tunneling mechanism “turned
tical band owing to the light-induced tunneling. Since suchopff » and the functions

holes persist at low temperatures and for several days and
even weeks after the optical pumping is turned off, this
means that the “dark” tunneling in the ground electronic
state has a very low efficiency, i.e., the constandsdA are

a
P2()= 5 (1-e7%),  po()=1—py(1), (44)

low in such extrinsic TLSs. Consequently, the Iight-inducedon the contrary, determlne the eyolutlon of the probab|I.|t|es
controlled by tunneling, but with the optical pumping

tunneling cannot be neglected in such TLSs. o A . .
turned off.” This separation of the relaxation processes of
In polymers and glasses, however, there are TLSs of . . .
: : : e electronic and tunneling degrees of freedom in the ap-
different type, which are inherent to a solvediaind called ; : . .
proximate formulag42) will allow us to obtain a relatively

intrinsic two-level systemsand whose existence is not imple generalization to the case of many extrinsic TLSs
caused by the presence of impurities. The number of such "P€ 9 . . y ext :
At p,(0)=0, the functionp,(t) rises on a time scale of

T.LSS can .be enormous "?‘”d much. Iarg.er thar] th"f‘t of Implm(_)rderl"‘1 only to values of the order dR/I'<<1. Therefore
ties. If an isolated TLS discussed in this section is of such a . . ]

nature, the spontaneous tunneling rate constarzisd B in We can replace some variables in EG&):

this TLS in the excited state of a chromophore are compa-  ng(«)py(t)—ng(t)p,(t), Ny(e)p,(t)—n(t)p,(t).
rable to the tunneling constargisand A in the ground state. 4
Then, in accordance with Eq&5) and(39), one can neglect
light-induced transitions between states 1 and 3 sindé
<1. This situation takes place in a chromophore coupled to  p1(t)=n.(t)po(t), pa(t)=ng(t)po(t),
TLSs in a polymer or glass. How to take account of the

Then Egs(42) transform to

chromophore’s interaction with the set of nonequilibrium  Po(t) =N1(O[1=Po(t)]+No(t)Po(t). (46)
TLSs inherent to polymers then becomes a problem, whiclThe difference between these formulas a@@), derived
will be discussed in the next two sections. from the exact solution of Eqg41), is of the order of the

very small parameteR/I". The solution(46) is more conve-
nient than the exact solution of Eqg.l) because the former
5. INTERACTION WITH ONE TWO-LEVEL SYSTEM is based on the functions, o(t) and py(t), which were
obtained under the condition that the tunneling and laser
Before proceeding to solving one of the central problemgumping do not influence one another. This property of Egs.
of the reported investigation, namely, the problem of taking(46) allows us to draw up a prescription for finding an ap-
into account interaction with the great number of nonequilib-proximate solution in the case in which a chromophore in-
rium TLSs, let us radically simplify rate equatiorf80), teracts with a set of TLSs and calculation of the exact solu-
which take account of only one TLS. After neglecting thetion is very difficult.
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R 8 R 8 As in the previous sections, we limit our analysis to
G/VG/V ‘a/ve/v J\"Je JVJG yerucal o.p_t|cal transmons,.Le., thosg. not gsssted by tunnel-

ing transitions. These vertical transitions include only those

T T 1 T shown in Fig. 5. All other optical transitions are assisted by

a tunneling transition in one TLS, i.e., their rates are very
SIS Sy~ SO s ow.

8 B p ) The states of TLS in a given electronic state can be
coupled only by the tunneling operatin: NMc+ch). Since
this operator is linear in the tunnelon creation and annihila-
tion operators, it can only couple states that differ by one

FIG. 5. Possible quantum states of a system of two TLSs and allowed dire
optical transitions without tunneling.

tunnelon, i.e.,
The underlying idea of the approximate solution is that B—P—P—F, A—h—A—5-
the equationg30) consist of two almost decoupled blocks: —~— ~——
the “electronic” block with large relaxation rate constatts These comments explain why the system of a chro-
andL, and the “tunneling” block with relatively small re- mophore and two TLSs is described by the following eight
laxation rate constant® anda. equations:

a) First, neglecting the tunneling constants in E@L),

s ! !
we solve the equations with the electronic rate constants: p1=—(F1+b+Db")ps+Lopo+Bpst+B'ps,

. i po=T1p1—(Lo+a+a’)po+Ap,+A'p,,
p1=—T1p1+Lopo, po=T1p1—Lopo- (47) .
p3=—(I'3+B+b")p3+Lopy+bpy+B'p7,
The solution is hereafter denoted by(t). This solution of

the electronic block adequately describes the evolution of p2=T3p3= (Lot Ata’)patape+Aps,

iliti i -1 . ’ ’
exact probabilities at small timas-I""%. ' ps=—(T's+B’ +b)ps+Lyps+b pi+Bpy,
b) Then, neglecting the optical pumping and electronic
relaxation rate constants, we derive from E4fl) the equa- pa=T'sps—(Ls+ A" +a)ps+a’ pot+Apsg,
tions

p7=—(I'7+B"+B)p7+Lepstb’ps+bps,
po=—apot+Apz, pr=apo—Apy, (48 pe=T7p7— (Lg+ A’ +A)pg+a’p,+ap,, (49

where the tunneling ratels, B, a and A in one TLS are

whose solution is denoted byy 5(t). This solution of the ) ] :
’ determined by Eqs29) and(23), and the primed tunneling

tunneling block describes the system evolution at large time

t~R°L rates for the second TLS are determined by similar expres-

¢) Finally, as was shown above, one can construct aiions- The coefficients
approximate solution from the combination of E¢47) and Lo=kd, Lo=k%, L,=k&, Le=KkY%,
(48) with due account of Eq$46), and this solution is fairly 10 %
close to the exact solution of Eqgtl) over the entire time Li=k5y, Lz=k5,, Ls=kg,, L;=k% (50)
interval. determine the rates of induced vertical transitions shown in

Fig. 5.
Let us again turn to the case in which the laser pumping

6. INTERACTION WITH A MULTITUDE OF TWO-LEVEL resonates with the frequency of the 1-0 transition. If light-
SYSTEMS induced tunneling is neglected, we can betB=b’'=B’

. . =0. Then the set of equatiorig9) is written in the simpli-
Let us first apply the suggested prescription to CaICUIaTied form:

tion of approximate solution of a system consisting of one
chromophore interacting with two TLSs. Since one TLS has  p1=—T"1p1+Lopo.,
two quantum states, the system of two TLSs has four states. . , ,
Figure 5 shows these four states of two TLSs in both ground 0~ L 1P1~Lopo=(a+a’)potApa+A"py,
and excited statgs o.f the chromophore. Let us label these pr=apy—(A+a')p,+A pg,
states as shown in Fig. 5.

In Sec. 3 we replaced the infinite set of equati¢hé) ps=a’'po— (A" +a)ps+Aps,
with Egs. (26), which contain only four lines; concurrently
we derived formulas for the relaxation rate constants. A simi-
lar procedure can be performed in the case of a chromophoiEhese equations, like Eq€0), also have an electronic and
interacting with two TLSs. But now we have, instead of fourtunneling block, with the tunneling block expressed in a
equations, a system of eight equations because the numbermbre complicated form. Since the scheme suggested above is
the states of two TLSs in combination with two electronic based on calculating separate solutions of these two blocks
states is, according to Fig. 5, eight. and combining these solutions, it can also be applied to find-

pe=a'pataps— (A" +A)ps. (51)
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ing an approximate solution of the latter equations. The exbe easily obtained by trivially generalizing the latter equa-
pressions fon; andn, are the same because the electronictions. To this end, let us write the above formulas for the
block has remained unchanged. Only the slowly changingptical pumping at the frequency resonant with te-M
solution of the tunneling block is different. The approximatetransition in the form

solution takes the form PO =M(OPY(D,  pur (=M (OP (D) (M #M),
p1(t)=ny(t)Po(t),  pa(t)=ng(t)Px(t),

pm()=nn(D[1=Pyu(t)]+ny()Pu(t), (59
P4 =No(D)P4(1),  pe(t) =No(t)Pe(1), which also applies to the case in which a chromophore inter-
po()=n1()[1—Po(t)]+Nng(t)Py(t). (52) acts withNy TLSs. In this case the probabilify,,(t), how-

ever, is a product o, one-particle probabilitiep; (t).
Here the expressions for the populatigns and p; of the P 0 P P B0

two levels coupled by optical transitions are essentially un-
changed. New expressions for the populations of levels 4 and
6, which are not directly involved in optical transitions, are 7- TWO-PHOTON CORRELATOR
calculated in a manner similar to that of the previously found

populationp,. Obviously, the tunneling rateB, satisfy the The expression for the two-photon correlator contains

the probability to find the excited electronic state, which is

equations populated by absorption a laser photon. Consequently, when
pO: —(a+a’)Po+AP,+A'P,, the laser resonates with tiNe—M transition, the expression
) for the two-photon correlator has the form
P2: _(A+a,)P2+aP0+A,P6,
(t)= pn(t) (60)
P,=—(a+A’)P,+a'Py+APg, P T,
Pe=—(A+A")Pg+a’P,+aP,, (53) By_ substituting _Eq.(60) in the first equation in(59) and
o using the conditionL,/I'<<1, we can express the two-
whose solution is photon correlator in the form
Po=PoPg, P2=p2Ps, Pa=PoPz, Pe=p2ps, NN(DPw(t)  LyPy
(54) p(t)= = [1-exp(—I\t)]
Tl TIFN

where the coefficients are the rates characterizing each TLS
and determined by the equations =LuPul1=exp(=t/Ty)]. (62)

_ f et At The optical transitions shown in Fig. 5 and their correspond-
Po=—aPot APz, Po=—a'Pot APz, ing LorentziansLg,L,,L,,... have different resonant fre-
p,=apo—Ap,, p,=a’'p,—A’p;. (55) quencies. When the laser frequency is scanned, the main
contribution results from the Lorentzian whose resonant fre-
quency coincides with the laser frequency. With this fact in

Po+ Pyt Pyt Pe=(Po+P2)(po+ps)=1. (56) ~ Mind, we can transform Eq61) to

Equations(52) describe the desired solution of E4S1) p(t)=k(Ag,t, T)[1—exp(—t/T1)], (62
controlled by the optical pumping at the frequency of theyhere
1-0 transition. We can similarly analyze the case in which
the pumping frequency is resonant with the 3—2 transition. k(AO,t,T)=2 Ly Pu(t) (63)
Then we have instead of Eq&2) the expressions M

The rates satisfy the condition

p3(H)=nz(1)Py(t), po(t)=n,(t)Py(t), is in fact the coefficient of light absorption by a molecule as
a function of the frequency detuninky,, temperaturd’, and
P4 =n2(OP4(1),  pe(t) =na(t)Ps(1), time t measured with respect to the moment when the first
(1) =n3(H)[ 1= Po(t)]+na(t) Py(t), (57) photon of a pair was emitted. If Fhe time ter_1d_s to mﬁmty, this
formula describes the conventional coefficient of light ab-
where sorption by a molecule interacting with photons and equilib-
L, rium TLSs. After substitution of,, given by Egs.(28) in
ns(t) = Tt L {1—exd —(I'3+Ly)t]}, the latter equation, it transforms to
3 2
ny(t)=1-n4(t), (59 k(AO,t,T):NEM Pum(t)knm

whose difference from Eq$52) is that subscripts 0 and 1 are
replaced with 2 and 3.

Obviously, an increase in the number of TLSs only leads
to a further increase in the size of the tunneling block with-
out affecting the electronic one. Therefore, equations for the > E pa(bla)? 1,
case in which a chromophore interacts with many TLSs can ba o (Ag+Qpat Q)+ (1/2T1)?

=x*2 Pu(t)(N|M)?
N,M
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+x? NEM Pu(t)(N|M)?

S , T,
G palBle) (Aot Qg+ Qym)?+(1/2T)?

=x? X, WA(t, T)(B|A)?
B,A

X mik 64
(Ag+Qga)°+(1+2Ty)% (64)
where the probability
p
wA<t,T>=PM<t>pA<T>=PM<t>[ pa] (65)

I. S. Osad’ko

andfie;, A;, andR; are the splitting between the levels, the
change in the splitting due to excitation of the electronic
system, and the relaxation rate constant of jithe TLS, re-
spectively.

An important point is that the dipole correlatd(x)
given by Eq.(67) leads to the Lorentzian shape of a line,
irrespective of the type of the electrostatic interaction be-
tween the chromophore and TLS. In point of fact, the lines of
single molecules and spectral holes have Lorentzian shapes.
On the other hand, the correlatbfx) had been calculated
many times on the basis of the stochastic apprdactiand
the line shapes obtained usih@x) depended on the interac-
tion type. This difference between the results can be ascribed
to the fact that the tunnelon-phonon interaction was intro-
duced in the earlier worké1® only partially through the
finite lifetime 1R of the tunnelon. The effect of this interac-

of detectingA state of the tunnelon-phonon system is a func-tion on the amplitudes of electron-tunnelon transitions was

tion of both time and temperature.

not taken into consideration, which is equivalent to setting

The latter two equations take into account the effect ofC;=p; in Eq. (67). The exponentially decaying factor in
all TLSs, both in and out of equilibrium, on the optical tran- front of the product sign in Eq67) was also not found in the

sition through the overlap integra{l|M) and probabilities

stochastic theorie¥ 1 These two differences lead to con-

Py (t). The time dependence of the probabilities is only de-tradictions between the predictions of the two theories con-
termined by nonequilibrium TLSs through their tunneling cerning the line shape and the effect of the type of interaction

ratesR=a+A.

between the chromophore and TLS.

The shape of the optical absorption band was calculated According to Eq.(67), based on the dynamic theory, the
using Eq.(64) with due account of equilibrium phonons and gregt number of TLSs Iocate_d far from the chromop_hore and
tunnelon$® in the dynamic approach only based on the syshaving smallA; do not contribute to the product ovebe-

tem Hamiltonian. Subsequent calculatidfs took into ac-

cause the functioﬁ:j cuts off the effective interaction at

count the nonequilibrium condition of TLSs, which resulted large distances. At the same time, the distant TLSs make a

in a time dependence &f,(t). It turned out that

o2 |7 0
k(Ag,t,T)=2x f_wl(AO,t,T,x)exr{ o7,

significant contribution to the dephasing constaf&. In the
stochastic theories, on the contrary, the great number of re-
mote TLSs make a decisive contribution to the product over
j, which leads to the absorption band broadening. The broad-
ening resulting from the product ovgractually depends

where the dipole correlator of the chromophore interactingstrongly on the type of interaction between the chromophore
with nonequilibrium TLSs is described by the following and TLS. The difference between the stochastic and dynamic

expressiort®1!

No
(Ao, t, T)=TT 1;(A0,t,T,%)
]

=exp{i(Ao—6)x—¥ IN:i {1-Cy(t,T)
X[1—exp(—iAx—|x|R)]}, (67)
where
A
C=3 R, LT (68)
No g2

0= 2, a7 R P),

y Mo R2p2
=N 1 h1—p,
2 = A]2+R12p](l pj)1 (69)

J

PI = exgtie A 1L SR o

approaches to the problem of line broadening is discussed in
detail elsewheré?

Formula (69) for /2 characterizes the rate of optical
dephasing due to the interaction between the chromophore
and all intrinsic TLSs. The full rate of the optical dephasing
is given by the formula

1 oD vt 1
T,(t,T) 2 2 2T,’

where the first term is due to the electron-phonon interaction
and the second is due to the interaction with equilibrium and
nonequilibrium intrinsic TLSs. Only the second term deter-
mines the time dependence of the optical dephasing, which is
called spectral diffusion. It is a linear function of temperature
and a logarithmic function of tim&-**~1"The emergence of
the spectral-diffusion term in the expression for the optical
dephasing rate, hence in the expression for the two-photon
correlator, is the main result of the calculation taking into
account the molecule’s interaction with many nonequilib-
rium TLSs.

Now let us apply general formul®2) to a chromophore
whose optical absorption band consists of two resolved lines.
This means that the chromophore strongly interacts with one

(71



JETP 89 (3), September 1999 I. S. Osad’ko 523

TLS in its vicinity, i.e., the product in Eq67) reduces to
one term. The diagram of energy levels of this system is
shown in Fig. 4. In this case

k(t,T)=LoPo+L2p2=2x*[Po(t)L(w)
+p2()L(w—A)], (72)

where

UTH(t,T)

HT T

(73

Here the frequency of the purely electronic transition is set to
zero. The interaction with a great number of intrinsic TLSs

i
shows up in the time dependence Bf. The probabilities 0
pj(t) are given by loge(s]
po(t+te)=Ff+[pa(tg)—fle” Rt FIG. 6. Manifestation of the spectral diffusion and exponential relaxation
due to jumps in TLS in the two-photon correlator) R=10Fs™%; 2)

po(t+to)=l_ pz(t+t0) (74) 10°s7%

Here f=a/R=[expfie/kT)+1] ! is the population in ther-
mal equilibrium.

) L . the ensemble of molecules. Persistent holes are burned out
Let the laser line frequency coincide with that of the 1-0

e o o when tunneling transitions in the electronic ground state of
tran5|t|on. Theq the probability,(t,=0)=0 at the |n|§|al the chromophore are suppressed, ae=A=0. We examine
time to, which is when the photon labeled by zero is de-jst sych a case in excitation with the 1-0 laser transition.
tected. If the laser is tuned to the 1-0 line peak, when Then, given thap,(0)=1 at the initial moment, when the

=0 and the contribution of the second Lorentzian can befirst photon is detected, we derive from E¢82) and (34)
neglected, Eq(62) for the two-photon correlator takes the e following expression for the two-photon correlator:

form
P(t)=2x*To(t, T)[1—exp( —t/T)][1-f(1—e RY]. p(t)= PO )
7

. T =L, exp —Bt). (77)

This correlator is a product of three functions of time. As When Bty>1, the fluorescence intensity vanishes. Conse-
was shown in earlier publicatiot$!®1"the component of quently, the spectral line jumps to a new position at a ran-
the optical dephasing ratg(t,T) due to interaction with dom time of ordet,. In fact, after the disappearance of the
many intrinsic TLSs is described by a logarithmic function 1-0 line and tuning the laser to the frequency of the 3-2

of time. Therefore we can set in E(5) transition, we can again detect emitted light, because in ac-
cordance with Eqs(37) and(40), the two-photon correlator
1 100 o
— = [1+102In(Ryt)] (76)  under such excitation has the form
T, T '
p1(t+to) +ps(t+ty)

~L,exp—bt). (79

A logarithmic broadening of this type of a spectral line gen- p(t+tg)= T
erated by a molecule in a polymer was actually detected in !
experiments with persistent spectral holgsn Eq. (76) R, In deriving the latter equation, we have taken into account
=10"s ! is the largest tunneling rate in TLSs, and the fac-thatp,(to) =1 at timet, of the onset of excitation at the 3-2
tor in front of the logarithm determines the ratio between thetransition frequency. It follows from Eq$77) and (78) for
line FWHM v(t,T) due to the spectral diffusion to the the correlators that B/ is the mean “lifetime” of the 1-0
FWHM v, due to interaction with phonons. transition line, and 1 of the 3—2 transition line. In prin-
Figure 6 shows the two-photon correlatdS) plotted  ciple, these times can also be calculated by processing one-
versus timet between emitted photons of one pair. The eX-photon measurements discussed in Introduction. This proce-
ponential relaxation of TLS in the Chromophore’s neighbor—dure, however, is very Comp"cated when ana|yzing

hood shows up in Fig. 6 in the form of the smoothed stepsjtuations more complex than that discussed here.
with a width of approximately one order on the logarithmic

time scale, and the spectral diffusion results in the linear tim

dependence of the two-photon correlator on the Iogarithmi%‘ CONCLUSIONS

time scale. The main result of the reported investigation is develop-
Now let us discuss how the suggested theory interpretment of the technique taking into account effects of a mol-

spectral line jumps illustrated by Fig. 1. Such a jump can bescule’s interaction with a great number of nonequilibrium

treated as burning out the spectral component correspondingtrinsic TLSs on the two-photon correlator. With this end in

to a single molecule. In fact, this process considered in termgiew, we have theoretically analyzed in detail in Secs. 3-6

of an ensemble of molecules can be treated as spectral halee problem of how the interaction with nonequilibrium in-

burning in the inhomogeneously broadened spectral band dfinsic TLSs can be introduced to the set of equations for the
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not only relaxation of TLS from the nearest vicinity of the

molecule under consideration, but also relaxation of all in-

trinsic TLSs. All nontrivial information concerning relax-
ation of TLS is contained in functiok(Aq,t,T), which
tends to the conventional light absorption coefficienttas
—00,
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This paper examines, in the mean-field approximation, the phase transitions in an elasto-isotropic
cubic ferroelectric crystal with randomly distributed ring dislocations. It is found that a

transition to the dipole-glass phase with chaotic, spontaneous unit-cell dipole moments,
characterized by the Edwards—Anderson nonlocal parameter, precedes the transition to the
ferroelectric phase. Also determined are the features of the thermodynamic parameters of

the crystal at the phase-transition points. 1®99 American Institute of Physics.
[S1063-776(199)01609-1

1. INTRODUCTION ture of polarization fluctuations. This occurrence of an inho-
mogeneous distribution of polarization néaris an indica-
Numerous investigations of various phase transitions irtion of a transition to the intermediate dipole-glass phase
real crystalg(i.e., crystals with defecishave shown that the accompanied by specific anomalies of thermodynamic
defects in the crystal structure have profound effects on thquantities® In this paper we will discuss, in the mean-field
nature and features of the transitions. For instance, the preapproximation, the possibility of such an intermediate glassy
ence of point defects in a crystal may change the criticaphase developing in the simplest case of an elasto-isotropic
exponents of a second-order transition if the specific-heatubic ferroelectric crystal with a low concentration of ran-
exponent of the ideal crystal is positi¥é Extended defects domly distributed ring dislocations. We will find that in this
also affect the critical behavidr® Furthermore, extended case the transition to the ferroelectric phase is indeed pre-
defects such as dislocations may give rise to local ordering iceded by a transition to the dipole-glass phase with inhomo-
their vicinity above the temperature of a global second-ordegeneous spontaneous polarization characterized by the
phase transition if there are short-range fluctuations of th&dwards—Anderson nonlocal parameter
order parametét’

. . 7

dAS notr(]ad by [()jgtirovs!iland ;(nvgglaé, the_ appegrhance 2. THE REPLICA FORMALISM FOR A FERROELECTRIC
and growth near dislocations of ordered regions with a rangy, .., 51 ocaTIONS
dom sign of the order parameter appear as a smearing of the
phase transition, a phenomenon often observed in experi- The Ginzburg—Landau thermodynamic potential for a
ments. Most often this smearing can be detected in ferroelegubic ferroelectric with dislocations has the form
tric crystals, where it manifests itself in the broadening of the

; . ; . 1 u

peak in the dielectric constant. Generally speaking, however, E= f dr[—[er(r)—IzP(r) AP ]+ = (P3(r))?
the results of Nabutovskand Shapirdand Dubrovskiand v (2 4

Krivoglaz’ cannot be applied to ferroelectric crystals, since 3

? . - . . L \Y; 1 A
there is a fairly strong dipole—dipole interaction in such crys- +-> Pi4] + _f drf dr'P(r)D
tals. At the same time, there is a high probability that in such 431 2)v v

crystals, too, inhomogeneous structures may be induced b , , ,
diZIocations above thg point of transition to t)P/1e ferroelectricy X(r=riHu(n) = u(r))Pr). @
phase. Qualitatively, the mechanism by which such strucwhere P(r) is the polarizationu(r) represent the atomic
tures form can be interpreted as the result of tuning of thelisplacement caused by ring dislocations randomly distrib-
directions of spontaneous local dipole moment to theuted in the crystal, and=(T—T.)/T,. Below we assume
intrinsic-electric-field fluctuations caused by random defor-that the coupling constantsandv are small, with

mations of the crystal with the distributed dislocations. Here u<v. ©

the nonparallel ordering of the local dipole moments is more

advantageous as long as spontaneous polarization is smalfis condition means that in an ideal crystal there is a tran-
and the loss in the short-range energy of an inhomogeneity igition to the rhombohedral ferroelectric phase with an isotro-
not larger than the gain in the electrostatic energy, so tha@ic dielectric susceptibility

inhomogeneous structures may exists in a temperature inter- P,

val near the tgmperaturﬁc of transition to the ferrpeleptrlc Xij :EZXéij .

phase in the ideal crystal. More than that, the directions of I

polarization in such structures may prove to be correlated’he fact simplifies calculations in the ferroelectric phase but
over the entire bulk of the crystal due to the long-range nais not needed in determining whether there exists an inter-

1063-7761/99/89(9)/8/$15.00 525 © 1999 American Institute of Physics
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mediate glassy phase. In what follow3(r) is the dipole— B T im EIn(Z“) 0
dipole interaction tensor, which in the absence of conductors V., oh ¢

has the form*° _ _ .
i.e., we must averagg" for integral values oh, continue

B(r)= —VVE the resulting expression to nonintegral valuesipind then
r' let n go to zero. For integral values aof with allowance for

A 2) we get
The tensoD(r) has the same form when there are conduc-( ) ¢

tors on the surface of the ferroelectric but at distances much o
smaller than the crystal size<L. In this case we hav@ (z >_f DP.(r)exp = BFa}, ®)
~ n 1
fver(r)=o. ) Fo= dr|z[rPi(r)—IzPa(r)-APa(r)]
a=1
We take this case, where the transition in an ideal crystal is 3
to the monodomain state, to be the simplest one. But if there + v > p;‘a} +Fy, 9
are no conductors, the transition is to the polydomain state, 4=

whose description is somewhat more complicated. n

Here we alsp consiQer only th(_e effect of (_jislocations on g o —_T In< exp( 2 i f drf dr'P,(r)D
the long-range interaction, assuming that this effect on the a=12T
short-range interaction is much weaker in view of the usual
smallness of the electrostrictional constants. / / /

Below we will be interested in the behavior of the po- XU = u(r))Pe(r ))> ' (19
larization correlators over large distances, much larger than ) ) )
the lattice constara and the average size of the dislocation e are interested in the case of large differences’ and
loops, since it determines the behavior of the thermodynamiemall dislocation number densitieg;s=Ngs/V. Then the
quantities near phase transitions. At such distances from trfg#antitiesu(r), which decrease at large distances, will be
dislocation loops, the displacement&) can be writteA* small, so that if we expandFys in the small differences

u(r)—u(r’), we get
1 n
Fais=— 5yT 2 f drm<< 2 | dr f dr'Py(r)

Here the vector,, determines the position of an individual " “
dislocation,\ j, is tensor of the elastic moduli of the crys- ~ 2
tal, C;;(r) is the Green’s function of the equations of the X[Um(r—rm)V]D(f—r')Pa(f')) : (19
theory of elasticity, \jymdxd|Cryj(r)=d(r) 6, and di, c
=Sby, is the dislocation moment of a closed dislocationwhereu,,(r—r,,) is the contribution of a single dislocation
(S=[s,dS, whereS; is the surface stretched over the dis- to the atomic displacemeritsee Eq(4)], and averaging over
location contour and is the Burgers vector of the disloca- the dislocation positions, in view of the assumed smallness

C

Ui(f):_% A Cij (r =T m) N jiimdip- (4)

tion). of ngs, reduces to integrating over the vectarg that
We seek the pair correlators of the polarization Fourierspecify these positions.
transforms Ifin (11) we go over to Fourier transforms and integrate
1 overr,,, we arrive at the final expression:
P(k)z\/—v fvdrP(r)exp{lk-r}, Nais, , n dk dq, da,
Fas=— 57V a;ﬂ “2n°
averaged over the positions of the dislocations and the their ’
momenta; more _precisely, we are looking for the inhomoge- X[Pa(k—Q1)5(Q1)Pa(Q1)][PZ(k—Q2)
neous susceptibility A .
_ XD P; A(k , 12
Gi;(K)=B(P(K)P;(—K))rc, B=T71, (5) (A2)P3(92) 1[a1A(k) ] (12
and the Edwards—Anderson nonlocal parameter Ajj (k)= Cij(k)ki(didmn) ckmCrmj(K),  dijj =7\ijk|dk(|113)
Qij(K)={(Pi(k))r(Pj(—K))1)c- (6) Ak K
7k K:
Here the subscripT stands for Gibbs averaging with the Djj(k)= k2| L kL>1. (14
potentialF [see Eq(1)], and the subscripE indicates aver-
aging over the random distribution of the dislocations. Note that integration over the wave vectorg1?) is done in
We must also find the average value of the density of thehe first Brillouin zone|k;| < m/a.
equilibrium thermodynamic potentiakp = — (T/V)In(Z), It is natural to consider such distributions of dislocation

with Z=[DPexp{—BF}. We will use the replica methdti, moments that on the average preserve the cubic symmetry of
according to which the crystal, so that the mean-square dislocation-moment ten-
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sor (d;;dy)c and the tensofdydync, which enters into
(13), have the same finite components Mg, . Assuming
that the crystal is elasto-isotropic, so that

1
Nijki = N 126 6 + 5()\11_7\12) (6ik0j1+ 61 0jk),

(dijdip) =(d11d29) 65 Sy
1
+§<d§l— dy1055) (8851 + St i)

we can represeni;;(k) in the form

Ay (k) = Ak ik + Ak (k25 — kik;),

2

P
1+2—

A=(diy +2(dy1d12)( 2)\114')\12) 2 ,

11

A= 2<d§1_ d11d22>-

To be able to describe the transition into the ferroelectric

phase, we introduce the thermodynamic poterda(P,),
which can be obtained frork, by isolating the homoge-
neous polarizatio®®, =V~ 1[,drP(r) in the expression for
Fn:

n

<I>n(Pa)=—$ln H dP 5(P —lf drPa(r)>

a=1

X exp{— BF .}, (15
so that
n
) T
®=—1lim —In | [] dP,exp{—BV®,(P,)}
n—0 \4 a=1
1
~lim = minP,,. (16)
n—ol p

a

Note that Eq.(15) implies that the equilibrium valué@®

where®,(P,) attains its minimum determines the average

value of homogeneous spontaneous polarization:

(P)r.c=lim — 2 PY. (17)
n—0 na
We can ﬁndP?Y by solving the equation of state
ab(P,)
P, (18

Assuming that in(9) P,(r)=P,+P.(r), we obtain

n 3
T \%
O(P)= 2 (5 Ptz 2 Pf‘a)
1 i=1

T , ,
— vln j DP.(r)expg — BF (P, ,P.(r)n},
(19

Fr(Pa Pa(r) =Fn(Po(r) + 6Fn(Py, Po(r)). (20
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HereF,[P.(r)] has the same form &5, in (9), and 5F, in
the presence of conductdisee(3)] is given by the following

formula (which is valid in the lowest order iR/ (k) suffi-
cient in the mean-field region

SF (P, P, (r))——vf(2 3<v2 P2 P’z(k)‘

- Bwk* «(K))

|
(21)

where w=(4m)2ng,/3. In deriving (21) we ignored the
contribution of the region wherdeL<1 to the integral ovek
and used14).

If we employ(15) for the potentiakb,(P,), we can find
not only the equilibrium thermodynamic potentidl [Eq.
(16)] and the average spontaneous polarizatiof but also
other thermodynamic quantities. For instance, the definition
of a correlator,

-1

9*®(P,) 22

Gii :ﬁV<PianB>d>n:[m

makes it possible to find the homogeneous dielectric suscep-
tibility

JP; 1 wa
Xij (9—Ej—r|1|m0 - azl G (23)
and the homogeneous glassy correlator
S =VU{PIHPIr)e= | dri(PLn){Py(0))r)e
=i G 24
nlino n(n 1) E;ﬁ 29

More than that, we can calculate the contribution of polar-
ization fluctuations to the crystal specific heat:
s 9*®
IR

By differentiating the first equality if16) with respect tor
we get

oot T (D, (P,)
=lim 2\ Tarap
n—0 TO aT(?Pia
PD(P,) FD(P,)
aB n o _ n a
*CV P, o | (25)

The potentiatb,,(P,) can be found in the lowest order in
the interaction by calculating, fokL>1, the replica cor-
relator

Gii’ (k)= B(P{“(K)P{#(K)), (26)

where we have assume that there is Gibbs averaging with the
potential F [P, ,P.(r)] [Eq. (20)] at the equilibrium value

Pg at which®,(P,) is at its minimum. Indeed, differentiat-
ing (7) with respect tor, we get
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1 T dk _ .
I 2 o
- 2 z Pa+ 2 f (ZW)BTrG(k)r

(27)

where T6G(k) is the trace of the replica correlat26) re-
garded as a matrix of dimensiom3According to(20) and
(21), the correlatorGi‘}B(k) can be written

[G(K) M8P=[(r+12K2+3VP%) 8+ Dy (k)16
—3Bwk™*kikj(k-P,) (k-Pg) — 2 (k)
(28)

where the dependence of the self-energy ﬁaﬁﬁ(k) onr
can be ignored, so that integration (&7) yields (to lowest
order in the interaction

3
Tp2 Vs pa
(ZPH+4;1PM)

n

D (Py)=2

I f &Trlné(k).

Also in the lowest order in the interaction, E@S), (12), and
(20) yield

dq
S50 =~ 30Toy0,p | o33 GHP (@) +Ngs

d -
% [ s (At ORI GEP (@

X Dyj (k) +[kA(k+0a)q]
X[Dik(k)GEf(q)Dy;(q)
+Di(A) G () Dy (k) ]+ [ g (k
+a)q]Di(q) G () Dy ()}

Formulas(28) and (30) comprise an equation deﬁ'B(k) in
the mean-field region in the case of weak interaction.

According to(18), (28), and(29), the equation of state
for P% has the form

(30

0P _ P p3 3Tf dk G (k)P
P =7Pi VP, + W[V i“(K)Pig
— BWK ki G (K)km(k-Pg)1=0, (31
while for the derivatives i22) and(25) we have
FPy(P,) Tf dk a2k -
(77_2 - E (277)3 r ( )! ( )
PO(Pa) _ +3VPZ,) 8 8,5+3T
aPuyapjﬁ_(T \ ia) ij%ap
dk e
Xf(zTﬁ[VG“ (K)8ijSup
— BWK ™ *kikjki G{iF (K) K, (33
D (P,)
~P;, . (34

IPidT @
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Thus, the solution of Eq$28) and(30) for Gf}ﬁ(k) provides

a complete description of the thermodynamics of the crystal
in the mean-field region. We can also find the inhomoge-
neous susceptibilityG;; (k) [Eqg. (5)] and the Edwards—
Anderson nonlocal paramet€x; (k) [Eq. (6)], sincé

n

Gy(k=lim = 3, Gy(K), (35
n—o N a=1
N 1 é af
Qyl=lim Sy 2 Gk, (36

3. CORRELATORS AND THE EQUATIONS OF STATE IN THE
MEAN-FIELD APPROXIMATION

As noted earlier, when conditiof2) is met, in an ideal
crystal there is a transition to the rhombohedral ferroelectric
phase. We will seek the replica-symmetric solutions of the
equation of statg31). Accordingly, we will assumeP
=P, where, in agreement wittl7), P=(P;)1 . Then the
solution of Eqs.(28) and (30) for kL>1 can be written as
the sum of the longitudinal and transverse parts:

GiP(k) =GP (k)k ™ 2kik;+ G (k) k™ 2(K?8; — kik)),
whereG2#(k), s=1I,t, has the form

[Gg 1(K)]%P=(7+3vP?+1%K?+ 47 3g) 8up

—3Bwk 2(k-P)285— 3 2P(k) (37)
with the following self-energy parts:
S eB(k)=—vTo fﬂ[eaa( )+2GE(q)]
|—Vaﬁ(2ﬂ_)3|q t (g
+(4w)2n-f da [AX2G{#(q)
dis W | |
+R(k,)G(a)], (38)
S (k)=—vTsS f da [G¥(g)+2G{4(q)]
1 (K)==vTd,s (2m)3LCi q £ (g
+(4 )Zn-JﬂR KG(@), (39
( ™ dis (277)3 (q1 | (ql
A[K?g?— (k-q)%]+ A (K*+k-q)?
(12t
R(k,a)=(1-x%) et ,
(40)
where x=k-q/kq. Equations (37)—(40) have replica-
symmetric solutions of the form
GP(k)=G'(K) up+ G(K) (1= 8ap). (41)

According to(35) and(36), with such solutions the correla-
tors Gj; (k) [Eq. (5)] andQj;(k) [Eq. (6)], which are of in-
terest to us, have the form

Gij(k)=Gy(K)k™2kik; + Gy(k)k~2(K5;; — kik;),
Qi (k)=Q(k)k~?kik; + Qu(K)k~2(k?5;; —kik;),
Gy(k)=1lim G(k), Qqk)=T lim G(k).

n—0 n—0
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Substituting(41) in (37)—(39) and lettingn go to zero, we

arrive at equations foG¢(k) and Qg(k), s=I,t, for kL
>1.
Qs(k)=G2(K)[Bwk™?(k-P)255+233(K)], (42)
Gs(k)=Gg(k)+BQs(k), (43

G. Y K)=1+3vP2+12%Kk%+ 475y — S (k) + 31 k),

(44
d
310 =T | 5 15161(0)+26,0)]
d
+(47T)2ndisf ﬁ[&szl(Q)
+R(KQ)G(Q)], (@5
12, 2 dq 2
2ik)=(4m) ndisf W[A'X Qi(a)
d
S8 =T | 5 15161(0)+26,0)]
47)? d
| posR@G@, @
d
2000 = (4745 | 513 REKIQUQ) @9

We seek the spherically symmetric solutidBg(k) = G4(k)
and Qs(k)=Q¢(k) near the transitiony—0, for small k

7/1, so that the expressioii45)—(48) for the self-energy
parts can be simplified substantially by employing the fact
that G{(q) rapidly increases ag—0. Hence in integrals
wherth’z(q) is present the domain of integration is limited
to smallg=< \/7/I, so that, in particular, we have

d
S =By (47)Ngs | (53 RKAIQUA)

(4m)*ngs [ dgdp ,
—wB+ ——— | 5 sRK.)G{()
(477)4n§is

XR(p.Q)Qu(p) ~WB; +
d

% | s RkaG@)
d

% | pmRPOQUP)

:WB|

d
1+ (475 | o RKDG@)|, 49

where B¢ with s equal tol or t is the Edwards—Anderson
“integral” parameterQg defined according t636) and(42):

d
8, | Q0.

More than that, for smak we have
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S0~ S H(k)~ —vT(A+2A) + WA, (50
S~ w8, 5D
where
dq
ASEJ WGS(q):Hls+IBBS’
dg
oo | aga0i@).
Thus,
G| k) =0+12k2+4m, G Hk)=6+1%2 (52
0=7'+v(B,+2B,+3P?),
m'=7+vT(Ily+2H;,) —wily . ®3
As 6—0,
1 Vol | !

where a is the cell parameter. Combining4), (40), and
(41), we get

3(k-P)?

—kz—+B| 1+(47T) Nyis

Qi(k)=G/*(k)w {

f 5 RKAG) } (54)
Qu(k)=~G{A(K)X{%0)= G *(k)WB; . (55)
For k> 6 the integral in(54) is almost independent dx,
12 3(k )2
Qi(k) =G| “(k)w —kz—+B(1+2WH2t)

while for k<6,
" [3(k-P)?
Qi(k)=G/“(k)w K2

47Tndisk2(A| + 4At)
1503/2

+ B,

)}

Integrating(54) and (55) over k and using the same line of
reasoning as in deriving49), we arrive at the following
equations of state:

B,=wWII,[B(1+2wll,,)+ 3P?], (56)
B=wII,B,. (57)
As 6—0,
- 1 1 t Jal la
2T 2mA®| o7 28 T mZvaa?)
My~ — (58
& 8’7T|3\/4—9.

Let us find the equation of state fd?. Substituting
P,i=P in (31) and using(37) and(41), we obtain
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IDd(P,) 4. PHASE TRANSITIONS

aPi,

dk
=TP+VP3+TPJ ———[v(G(k)+2GH (k)
(2m) The possible phases in the ferroelectric with dislocations
_IBW(Glll(k)Jr(n_l)thz(k))]zo_ considere_d here are determined by the possible solutiqns of
the equations of staté6), (57), and (59). The paraelectric
Taking n to zero and allowing for(43), we arrive at the phase corresponds to the trivial solutiBp=B,=P=0. In
equation of state for the polarizatidi this phase we havg=1/7" and

7 +v(P?+B,+2B,)]P=0. 59 7’
L+ v +280] (59 @PE— T(ITy+210,,) — TH w2 (65)
Combining (22), (23), and(33) results in the following ex-

pression for the homogeneous dielectric susceptibjliy —and the contribution of the polarization fluctuations to the

=X0ij : specific heat is
x =7 +v(B+2B+3P?). (60) T2
, . SCpp~ ————. (66)
If we compare (60) with (53), we see thaty=¥6 8ml3T2\7"
=G/ (0). For theglassy correlatos; =Sé;; Egs.(24) and
(33)t35ie)ld gassy Si i Eas.(24) The phase is stable i >0.
The dipole-glass phase corresponds to a solution with
S=x*wB,=Q,(0), (61) P=0 butB, andB; finite. For this case Eq56) yields
while for the contribution to the specific heat we have 1=wll, (1+22wWIIy). (67)
3TXP2 T2 Using the assumed smallnessvef in view of which
6C= Iy + 2115+ 2
7z oy llatellates wil, <1, (69)
dk , , we combineg(53), (57), (60), and(67) and get
Xf—§[GI(k)Ql(k)+ZGt(k)Qt(k)] -
(2m) W2IT, 2
~( ==& =61 (69)
3TyP2 T2 X\ amr® ¢
N_TZ_+_2'[H2I+2H2t+ 2pwll ,
Wy (60— 7") B
) B| ~—_—, Bt% . (70)
X (By+ 2B+ 3P?)+48wII4B,]. (62) v 2wIl,,
As 6—0, Thus, for7r' < 6. there is a positive solution fdB, , with the
result that we have positive Edwards—Anderson parameters
1 |la(wl?-4a% 1 Vrl Q(k) and Q(k), i.e., there is a transition to the glassy
Iy~ Aa3|  al7—2aZ " arctanz—-/, phase. The thermodynamic potential in this phase is
1 wily,
1 Ppo= 5 0T (Mg +2113) = —= (0= 7)
o= 3501355
Combining(16), (35), (41), and(43) at P,;=P and lettingn - ET 11,632, (7
go to zero, we get 3l
3 3 1 dk and the contribution to the specific heat is
®=-7P%+ — P4——f— TInG/(k
2P 2 | @l TG . 2 WALy (60— ') .
DG~
+2TING!(K) +G| XK Q (k) 87l°T3Vo, 4T,
+2G] “Lk)Q,(K)]. (63) The glassy phase is stable in the entire range of its existence,
7' <6,.
If we now plug(52), (54), and(55) into this equation and use Before we consider the transition from the paraelectric
(56) and(57), in the lowest order ird (we discard an unim- phase to the glassy phase, let us discuss the limits within
portant term of the form-T X cons} we get which the above results are valid. The mean-field region
3 3 1 within which the results are valid is determined by the con-
o= > P2+ ZyP4+ > O[T(I1y+2I1,,)+B,+4B,] dition for the smallness of the fluctuation contribution to the

renormalization of the coupling constant (see Ref. 12
vT <1, or, assuming thdt~-a,
VTl <V6, s=It. (73)

The final formulas for the thermodynamic parameters of theThis is the only condition because;s of Eq. (12) (and the
crystal can be found by substituting the solutions of Egscoupling constantv) is not renormalized in the region of
(56), (57), and(59) for which y is positive in(60)—(64). large fluctuations, since it contains two longitudinal Fourier

——B|(H 15+ 2wl ) — TH1t03’2 (64)
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transforms of the polarization with a finite susceptibility at 1 2
the transition poinfsee the first equation i(62)]. The con- T
dition (73) implies that for the region of interest to us, 3
~ 6., to belong to the mean-field region, the following con- 3
dition must be met: )
2
VT <W. 74 3 I 2
’ 7 \4 4
In this case®ps<Ppg for all 7'< 6., so that the phase p a "
transition to the glassy phase is a second-order transition at P ¢
point 7' = 6. FIG. 1. Temperature dependence of the thermodynamic quantities for a

Let us now consider the ferroelectrithombohedral
phase, which corresponds to a solution with B;, andB;
finite. This phase meets the following conditions:

6=2vP?, (75)
wll, (60— 7'
B — 21( ) , 76)
\%
and the reciprocal susceptibility satisfies the equation
032+ 2020+ 27 (62— 677 =0. (77

For 7'<—wl.=19, m=(/3993+59)/16~7.637, this
equation has two solutions satisfying the conditiérn 7',
which ensures thaB, is positive [see the conditior(76)].
Near 7, these solutions have the form

0i=00i0'\/00(7'0_7"), GOEVHC,

4 45 183 )2
V=§ 1+§/J,)L —1} ~2.782,
45 —2/3
o= l+§,u,) \/2(M2—2)~0.866.

For 7' <— 6, the larger of these two solutiong, ,
tends to—27" and the smallerg_, to 6.. With allowance
for the condition(74), the potential of the ferroelectric phase
has the form

4V(I)|:Em(0+ 27,)(WH1|_4W2H2|H1t)

3
+7'(30—4\0.0)+40.6°+ 7 0°.

Comparing this atd= 6. with ®pg, we see that at’

~ —2wll; =7, there is a second-order phase transition to

the ferroelectric phase corresponding to the solution For
7' <7, we haved,~—27'=x !, so that

Y R
= v BTy a(—37'),

B 3 0.7
v 2v 2
. 3T . T? 1. 3w2H2,)
2vTy  T28713— 27 VT

ferroelectric with dislocations near glassy and ferroelectric phase transitions:
1, the reciprocal dielectric susceptibili= y ~*; 2, the specific heas, B, ;
4, B, ; and5, polarizationP.

5. CONCLUSION

Let us discuss some qualitative features of the dipole-
glass phase in a ferroelectric with dislocations and the pos-
sibility of studying this phase in experiments. From the the-
oretical viewpoint, the most important feature of this phase is
the occurrence of the Edwards—Anderson nonlocal param-
eterQj; (k) =((Pi(k))r(P;(—k))1)c . In the existing models
of glassy transitionsQ;; (k) is independent ok (see Ref. 8
which means that there are no correlations between the spon-
taneous local dipole moments that appear in the glassy
phaseQ;j(r)=Q;;(r). In our case, however, such correla-
tions are present and extend over distance of order of the
longitudinal and transverse correlation radiugese Egs.
(54) and (55)], &=1/\6 and &=1/\/6+4m. Sinceé>a,
we can expect that in the glassy phase there may be regions
of correlated vortextransversgpolarization whose size is of
order &,. The existence of such regions should manifest it-
self, in particular, in the diffuse scattering of x rays and
neutrons, which is described by the inhomogeneous suscep-
tibility G;j(k). According to(42) and (43), in the glassy
phase there appears a contribution @(k)=G/(k)
+Qi(k) proportional to the square of a Lorentzian with a
halfwidth & . Experimental observations of such an effect
will make it possible to establish the point of transition to the
dipole-glass phase and to determine the temperature depen-
dence of the quantit,, which acts as the order parameter
for this transition. Note that instead Bf we can consider the
common Edwards—Anderson order parameter

dk -
Q=fWTrQ<k>=B.+2Bt=Bl<1+2wﬂzt>-

Generally speaking, the replica-symmetric description of the
glassy phase by a single order parameter may prove to be
inadequate in view of replica instabilifyln this paper we

did not check solutions for replica stability, which in the
model considered here may prove to be a complicated task.
Our aim was only to demonstrate the possibility, in principle,
of the existence of an intermediate glassy phase in a ferro-
electric with dislocations. In view of this, the temperature
dependences of the susceptibility obtained in this paper are
of a preliminary qualitative nature and demonstrate the quali-

The temperature dependence of the obtained thermodynantiative features to which the existence of an intermediate
guantities near glassy and ferroelectric transitions is depictedlassy phase, in particular, may smooth out dielectric anoma-

in Fig. 1.

lies.
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A theory of Massbauer absorption spectra in the presence of external rf fields is developed for
Stoner—Wohlfarth particles in an extended relaxation model with a more realistic

description of the relaxation process. Calculating in this model, we track the transformation of
the Mcssbauer spectra as a function of relaxation processes for the transitional region

and frequencies and amplitudes of the rf field where the well-resolved hyperfine structure
transitions into an isolated central peak with satellites. In this transitional region new types of
resonance effects are found which have no analogy with previously known resonance
phenomena. ©1999 American Institute of Physid$$1063-776(199)01709-9

1. INTRODUCTION some quasi-equilibrium state corresponding to various en-
ergy minima. This latter fact greatly complicates the prob-
At present, a large amount of experimental material hasem, especially its numerical realization.
accumulated demonstrating a wide variety in the shape of the  On the other hand, even small deviations of the relax-
transformation of Mesbauer absorption spectra as a functiongtion process from the original SW model give rise to no-
of the frequency and amplitude of the rf field in magneticticeable changes in the Msbauer spectra in the region of
systems consisting of magnetic clusters of srfridhometer  {he transition from the allowed hyperfine structure to an iso-
dimensions:™® In Ref. 10 we developed a theory of ¥  |5ted central line and, moreover, to new physical phenomena.
bauer absorption spectra in the presence of an rf magnetif thjs transitional region qualitatively new types of reso-
field for the case of an ensemble of Stoner—Wohlf&8)  hances are realized at frequencies of the rf field coupled by

particles which included relaxation processes in full agreeyhe narametric resonance conditions with the frequencies of

melnt with"the original m(:de;lRef: 11). The theory ¥ve de-' the components of the magnetic hyperfine structure. These
veloped allows one to calculate lésbauer spectra for arbi- o 1ances differ, both in their position and in the manner in

trary values of the amplitude and frequency of the rf field.WhiCh they are manifested, from previously known reso-

An important consequence of this theory Is the presence of Rances at frequencies corresponding to splitting of the en-

sharp transnlqn from the wel-l-resolved.hyperfme struct_ureergy levels in the ground state and excited states of the
for small amplitudes of the rf field to an isolated central lmenucleusw'lz'l?‘

with satellites for large amplitudes of the rf field. This pre- Section 2 formulates the modified SW model with a

diction of the theory does not find confirmation in existing more general description of the relaxation process. Section 3
experimental studies, primarily because of the simplified de- 9 P P )

scription of the relaxation process in the original SW obtains a general expression for the ddbauer absorpuop
modelt! spectra in the extended SW relaxation model on the basis of

The present paper generalizes the results of precediﬁé}e approaches proposed ear.lier in R"efs. 10 and 14. The use
studies to the case of a broader description of the relaxatiofil 9eneral formulas to describe the bibauer spectra re-
process in a system of SW particles. In the initial SW modefduires, generally speaking, complicated computer calcula-
the time dependence of the hyperfine field at the nucleus caPns: which necessitates a deeper approach to the analysis of
be described by a strictly deterministic trajectory, i.e., at allthe calculational methods prior to the writing of the com-
times the magnitude of the hyperfine field at the nucleus foPuter program. These questions are considered in Sec. 4,
any particle, depending on the frequency and amplitude ofvhich also gives examples of calculations of ddbauer

the rf field, is exactly determined. In the extended SW relax-Spectra using the described technique.

ation model proposed here, the trajectories acquire a stochas- On the basis of the numerical calculations, Sec. 5 ana-
tic character, so that for each individual particle one cannotyzes the transformation of the Msbauer spectra as a func-
indicate exactly the magnitude and direction of the magneti¢ion of the parameters of the relaxation model for the region
moment (and, consequently, the the hyperfine field at theof transitional amplitudes of the rf field, where the resolved
nucleus of the particle at every instant of time. It is possible hyperfine structure goes over to an isolated central line with
only to determine the probabilities of finding a particle in satellites. It is found that in a narrow interval of

1063-7761/99/89(9)/14/$15.00 533 © 1999 American Institute of Physics
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frequencies of the rf field near multiples of the frequencies of h,
the components of the magnetic hyperfine structure, depend- LOf
ing on the multiplicity of the indicated frequencies, the lines
undergo both a relaxational narrowing and a mutual repul-
sion. A simplified model is proposed to reveal the physical
essence of these phenomena.

2. THE GENERALIZED STONER-WOHLFARTH MODEL

To describe the remagnetization processes in magnetic
alloys, wide use is made of the model proposed in 1948 by
Stoner and Wobhlfarth! This model considers a ferromagnet 0‘500 30 o o
as a set of individual particles or clusters, inside which a é
strong exchange interaction takes place, so that each partioiG. 1. Dependence of the critical field of a SW particle on the angle
can be treated as being uniformly magnetized with magnetit_)e_tween the direction of the external magnetic field and the easy axis in the

zationMg. It is assumed here that each particle has the shapoer"‘]’Ilnal SW model

of a prolate ellipsoid of revolution with the axes of theseggen from the figureh, has a minimum a®=45° and a
particles randomly distributed in space, so that the totalyaximum at the angle8=0 and 90°. An important conse-
Hamiltonian of such a particle in an external magnetic fieldquence of this model is that even a system of noninteracting
H can be represented as SW particles possesses pronounced nonlinear magnetic prop-
A= —HVM,cosp—KV co(6— &), 1) erties, specificglly, the presence of a hy;teresis Iqop, and also
such hysteresis-generated characteristics as residual magne-
where V is the volume of the particleK is the magnetic tization, a critical field, etc. As will be shown below, this
anisotropy constant is the angle between the direction of property of an ensemble of SW particles in and of itself
the external field and the easy axis of the particle, éid  defines the specific dependence of the shape of thesMo
the angle between the direction of the magnetic moment anfauer spectra on the amplitude of the external rf field. In

the external field. reality the critical fields for the majority of particles lie in the
The SW model also assumes that interval 0.5—-0.75see Fig. L
KV kgT, (2 According to the SW model the dynamics of such an

ensemble is the following. If the external field exceédsn

so that in the absence of external fields the magnetic momeRagnitude, then the particle has only one energy minimum
of each particle is either aligned or anti-aligned with the easyyng is always found at this minimum. As the field is de-
axis. As a consequence of relati¢?) hops between these creased, say, from positive values, the magnetic moment of
two states are assumed to be very slow, so that during th@ye particle tracks the position of the local minimum and
measurement time they can be neglected. instantaneously adjusts its direction in accordance with it,

When a magnetic field is applied the energy minimagnd only for fieldsh< —h, does the magnetic moment in-
with respect to the angle are shifted, i.e., the magnetic stantaneously transition to its absolute minimum. When the
moment is deflected from the easy afigith the exception  gmplitude of the external periodic magnetic field is greater
of particles with#=0). For weak magnetic fields, two en- thanh,, the time dependence of the magnetization of the

ergy minima separated by a maximum are preserved. particle has the form of a hysteresis loop. If the amplitude of
If the external field, normalized to the anisotropy energythe periodic field is less thahn,, then according to the SW
HM, model the particle is found in one of two minima and never
h= 5K 3 leaves it. Curves of the corresponding dependence of the

magnetization of the particle on the intensity of the external
exceeds some critical vallg depending on the orientation periodic magnetic field
of the particle'! one of the minima disappears, and we have B .
curves with one minimum. Figure 1 plots the dependence of H(t)=Hosin(wrt) )
the critical field on the orientation of the particle. As can beare plotted in Fig. 2, which plots projections of the magnetic

MiM, MiM,

14 1
/

FIG. 2. Magnetization curves of a group of SW particles with orien-
hl tation §=45° for amplitudes of the periodic magnetic figig=0.75

-0.5 0 05h -0.5 0 0.5 (@) and 0.5(b).
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where the assumption of a large value of the barrier is clearly
not fulfilled [see Eq(4)]. As a consequence, a more accurate
description of the relaxation process is needed. Specifically,
we assume that a sudden reorientation of the magnetic mo-
ment of the particle will occur not only for magnetic fields
exceedindh;, but also for weaker fields, where the effective

U anisotropy energyJ,; is not too large relative to the tem-
perature. As we will see below, such a generalization of the
SW model radically alters both the magnetic properties and
Ey the Mossbauer spectra of the SW particles
FIG. 3. Scheme of transitions between local energy minima in the general- ) o p p . .
ized SW relaxation model. For simplicity we assume that at any instant of time,

depending on the magnitude of the magnetic field, the relax-
ation process is governed by only two quantities:

moment onto the direction of the field for a group of particles  p,(h)=p,exd —U;(h)/kgT],
with orientationd=45° for different amplitudes of the peri-
odic field hy, normalized to the magnetic anisotropy con-  P21(N)=Poexf —Uxa(h)/kgT], (6)
stant[see Eq(3)]. Naturally, the magnetization curve for an wherep, is some constant and
ensemble of SW particles will be the result of averaging both _
over particles with different orientations and over different U1 dh)=Emaf(h) =Ey4h). @)
trajectories within one group in those cases where the ampliHerep;, andp,; have the meaning of transition probabilities
tude of the external periodic field does not exceed its criticaper unit time between local-equilibrium levels. For each
value for this group. For amplitudds,<0.5 the curve has group of particles with different orientations the quantities
the form of the reversible magnetization curve. In the inter-Enax andE; , are found by fairly straightforward numerical
val 0.5<hy<1 the magnetization curve acquires the form ofcalculationsi.1 The proposed relaxation model possesses the
loops; however, in essence it is a superposition of hysteresigrtue that the entire relaxation process is characterized by
loops and open curves of the type depicted in Figs. 2a and 2@nly two parameters, the constgey and the barrier height
(see Ref. 1D Ugy. For fixed py and limitingly largeU, the original SW
A system of SW particles possesses a number of charagnodel is realized, and ad, is increased the time interval
teristic features, foremost of which is the fact that its mag-where the barriers cannot be taken to be small decreases and
netization curves, including the hysteresis loops, do not detends to zero in the limitg— .
pend on the frequency of the periodic magnetic field. The  In magnetic fieldh|<h, each particle can be found only
curves depicted in Fig. 2 should not vary with if the in two states corresponding to local energy minima, between
system is described exactly by the SW model. which relaxation hops can occur. Their equilibrium popula-
Although the relaxation process is nowhere considered!ionsw(fg)(h) are determined by the principle of detailed bal-
directly in Ref. 11, relaxation is nevertheless present implicance
it!?! alltlhOI_thh it enters (;ntr? tsometvr\]/hat nont{iv(ijal f?crrtr;{ Sfpelzj ) extf —E1 Ah)/kgT]
cifically, it is assumed that as the magnitude of the fie w = .
varies, the magnetic moment of a particle located at a defi- H ex —Ei(n)7kgT]+exd —E5(h)/kgT]
nite energy minimum will, on the one hand, track the varia-  Naturally, in the presence of an external variable mag-
tion of the position of this minimum and alter its direction in netic field the true populations of the local states will not be
accordance with the magnitude of the applied field and thatin equilibrium but will depend on the amplitude of the field
on the other hand, transitions between states with differerand the relation between its frequency and the relaxation
energy minima are assumed to be forbidden until the magniparameters. Thus, at all times the variation of the nonequi-
tude of the applied field exceeds its critical value. In othedibrium populations of the local states;(t) and wy(t) in
words, the relaxation process is simultaneously limitinglytime can be described by the equations
fast and limitingly slow. The impossibility of hops between dw, A1)
states with different energy minima is implicitly due to the d—’tz F P Hwy(t) = poq(t)wy(t). 9
fact that there are high energy barriers hindering such tran-
sitions (see Fig. 3. This assumption turns out to be valid In magnetic fields exceeding the critical figld|>h., ac-
only in magnetic fields substantially less thag; near the cording to the original SW model there are no longer two,
critical field it should break down. It is not hard to show that but rather only one local minimum of the energy of the par-
nearh. the height of the barrier is given by ticle, and according to this same model the particle under-
goes a transition to the state corresponding to this minimum
Uzi(h)=aUo(he—[h)?, [hl<he, ® i magnetic fields exceeding, by an arbitrarily small
where «; is some numerical constant which depends on themount. In what follows it will be convenient in such fields
orientation of theith particle, andJ,=KV is the height of to maintain two states of the particle with identical values of
the energy barrier foH =0. the magnetic moment and to assume that at times corre-
For amplitudes of the periodic field nelag, the particle  sponding to|h|>h, the true populations do not depend on
will be found a significant part of the time in a situation time and that the population vect@W(t)| has the form

®



536 JETP 89 (3), September 1999 Afanas’ev et al.

MIM, MiM,
1 1

FIG. 4. Magnetization curves for an ensemble of randomly
oriented SW particles in the modified relaxation model for
h h Ug/kgT=20 and assorted values of the ratio
r T . v T Po/(w/27)=1, 1¢, 10¢, 1P, 10°, 10'° (from the outer
1 -1 1 hysteresis loop inwaydin the regime of strong rf fields,
hy=1 (a) and in the regime of weak rf fieldag=0.25(b).

(1 0), h>h, remagnetization field, naturally, grows as the frequency of

(W(t)|=(wq(t)wy(t)) = (0 1), h<—h,. (100 the field is increased. This picture has a simple physical ex-

_ ’ C i . planation. At low frequencies the particles take a long time

For amplitudes of the external magnetic field exceedingy, thermalize and reach equilibrium, and the remagnetization
the critical field, condition(10) plays the role of a boundary fie|ds are small. At high frequencies,; the magnetic field

condition ensuring uniqueness of the solution of &) For  joeg not have enough time to repopulate the local energy
fields with amplitudeho<h., we choose the condition of |g\es in accordance with their equilibrium populations. In
periodicity this case, remagnetization requires larger amplitudes of the rf

(W(t+T)|=(W(t)], (1y  field.

Note that this fact may have a direct bearing on the
Mossbauer experiments performed in the pioneering work of
Pfeiffer on the collapse effe¢tin which the resolved hyper-
fine structure “collapses” into an isolated central line with
satellites as the amplitude of the rf field is increased. Pfeiffer
worked with permalloy and a frequency of the external rf
field on the order of 100 MHz, where the collapse effect and,
consequently, effective remagnetization of the magnetic
M(t)=w,(t)M(h(t))+w,(t)M,(h(t)), (120  clusters occur in rf fields of order several oersteds. On the

other hand, permalloy is a magnetically soft material, and it
remagnetizes at low frequencies even in fields on the order of
. L ! : “hundredths of an oersted. Pfeiffer did not draw attention to
particle onto the direction of the external field, which are_, . S -
. . this fact. Moreover, in his subsequent works he did not com-
calculated independently according to the scheme set forth in o ) : .
pare the remagnetization fields at high and low frequencies
Ref. 11. ) o
: . . of the rf field. On the other hand, it is clear that to construct
To determine the evolution in time of the magnetic mo-

. ; a consistent theory of Misbauer spectra it is necessary to
mentM (t) of an ensemble of randomly oriented, noninter- y P Y

. . o take this fact into account. The generalized relaxation model
acting SW particles, it is necessary to sum up the magnetic

moments of particles of thigh typeM,(t), each of which is proposed here makes it possible to describe this phenom-

determined by the set of equatiot®—(11). enon.

- . In weak rf fields with amplitudes less than criticd_J,
Generalization of the relaxation process produces dra: . . .
. o . : . or all particles(see Fig. 4bthe shape of the hysteresis loops
matic qualitative changes in the nonlinear magnetic proper- . L .
. 2 : as a function of the frequenay,; varies in a more compli-
ties of the system, primarily to changes in the shape of the .

. 2 cated way. In the low-frequency region, growth ©f; the
hysteresis loops. In the original SW model the shape of the - ' L .

. . . . remagnetization fields strengthen. In the limit of high fre-
hysteresis loop is determined only by the amplitude of the

variable magnetic field and does not depend on its frequencquencies, where the relaxation process becomes unimportant,

. . . . Y¥he hysteresis loops disappear and a reversible magnetization
whereas in the generalized relaxation model it depends on Y P PP 9

the frequency of the field, specifically on the ratig; /pg, curve of paramagnetlc typt_a appears. In the region of mter
) . ._mediate frequencies,; exotic loops of the type depicted in
and also on the relative magnitude of the energy barrief. s
Un/kaT ig. 4b are observed. Of course, in this case one can expect
ornpt-

; . . th f ial effects in thesstoa tra.
Figure 4a shows hysteresis loops as a function of the € appearance of special etiects in the Uer spectra

ratio w / po in the regime of large amplitudes of the rf field .
3. RELAXATION MO SSBAUER SPECTRA OF

h, exceeding the values of the critical fields for all particles
) . . . STONER-WOHLFARTH PARTICLES: BASIC FORMULAS
with different orientations. As can be seen from the figure, as

the frequency of the magnetic field increases the hysteresis The rf field affects the hyperfine structure spectra via the
loop broadens and in the limit of large,; tends to the hys- hyperfine fieldHy:(t) acting on the nucleus, where this latter
teresis loop characteristic of the original SW model, and thdield, acted upon by the rf field via complex relaxation pro-

as the boundary condition, whefg; =27/ w,¢ is the period
of the external magnetic field.

The system of nonlinear equatio(® together with the
boundary condition$10) and(11) is relatively easy to solve
numerically. Knowingw,(t) and w,(t), it is not hard to
determine the evolution of the magnetic moment of the par
ticle in time under the action of the external magnetic field:
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magnetizatiorM,(t) of the SW particle, which in turn varies i

in time under the action of the rf field. If the magnetization

model is prescribed, i.e., M;(t) and, consequenthy:(t)

can be assumed to be known, then the Hamiltonian of the d

system will have the form

cesses, begins to depend on time. The simplest and physi- ™V~ ﬁ
cally clearest situation is realized in the case where the re-
laxation processes are quite fast, so tHaf(t) tracks some
of the macroscopic characteristics of the sample, e.g.,

H=Hqy+ gg,e,uNlA(g‘e)th(t)+\7yN(t0)' (13

whereH, is the Hamiltonian determining the energy levels

of the nucleus without allowance for the hyperfine interac- W

tion; the second term describes the hyperfine interaction of c
the nucleusy is the nuclear magnetogy . is the nucleag

factor, 119 is the nuclear spin for the groungy) state and
the excited €) states of the nucleus; the operafb;N(to) b

describes the interaction of a quantum with the nucleus,
andt, is the time at which this interaction is switched tn.
As can be seen from E@l3), the shape of the absorption
spectrum is determined byt ¢(t).

In Ref. 10, where the time dependencetbf; was as- a
sumed to be strictly determined in accordance with the origi-
nal SW model, we obtained a general expression for the
absorption cross section of pquantum of energE=7%w

1 L i " 1 I i

. . . . . -5 0 5 -5 0 5
for a group of SW particles with prescribed orientation of the », mm/s v, mmis
easy axis o T w FIG. 5. Transformation of the Misbauer spectra of an ensemble of ran-
oi(w)= @ f dtf dt’ domly oriented SW particles with variation of the amplitude of the rf field
: oy (w,1/2w=75 MHz) in the original SW modeleft) for h,=0, 0.5, 0.51, 0.6,

1 (curves a—gand in the extended relaxation model for,/kgT= 20,
~ [ SN Po/(w.¢/27)=10* (right) for hy=0, 0.2, 0.225, 0.25, 0.@urves a—g The
Tex scale of spectra e is reduced by a factor of two. Here and below, the calcu-
lations are fo’’Fe nuclei,w /27w=50 MHz, and an unpolarized beam pf
guanta, perpendicular to the direction of the external magnetic field.

X Tr[\A/,7
7

—E,;(t")]dt"]

\‘/;} +c.c., (14)

In the extended SW relaxation model considered in Sec.
2 the time trajectories oH,; already acquire a stochastic
ng i & space of (€91 1)(21(¥+ 1) variablestine explit e S0 e of the par.
form of this operator for the case ofFe nuclei is given in ticle (and consequently the hyperfine field at the nudleis
the Appendiy, 1, is the unit superoperator in the space of every instant of time. In this case it is possible only to define
the nuclear variables/, () is the nuclear current operator, the probabilities of finding the particle in some quasi-
which defines the IntenSIty of the nuclear transitioag,is  equilibrium state corresponding to different energy minima
the effective thickness of the absorber, ahe-w+il'o/2  of the particle. As a consequence, expressibf) must be
(I'y is the width of the excited energy level of the nucleus averaged over all possible trajectoriesHyf(t).

The sum in formula14) is over polarizations; of the inci- Let us start with the case where the amplitude of the
denty radiation. external rf field for all of the SW particles is less than criti-
Figure 5(left) shows an example of the transformation cal: h<h (15
of Mossbauer spectra of an ensemble of SW particles with 0=
variation of the amplitude of the rf field, calculated in the In this case, at every instant of time each particle has two

original SW model. A characteristic feature of the spectra indistinct energy minima. The original SW model does not
their transformation from a resolved hyperfine structure to arassume any transitions between these two states, as if by
isolated line with satellites is the presence of an abrupt qualivirtue of a large energy barrier separating these states. In
tative change in the spectra at amplitudes of the rf field neareality, the magnitude of this barrier is finite, and in all ex-
the lower critical fieldh,=0.5. Even a smallon the order of ternal fields near critical it can be as small as desired and,
a few percentexcess of the amplitude of the rf field above consequently, quite rapid relaxation processes can arise.
its critical valueh.=0.5 gives rise to a distinct central line Here, the transition probabilities between local levels per
with small satellites superposed on the well-resolved hyperunit time [see expression®)] completely determine the en-
fine structure. tire set of stochastic curves. Averaging over these stochastic

whereT is the time-ordering parametdr;(t) is the Liou-
ville superoperator of the static hyperfine interactidrmct-
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curves is performed in ac%)rdance with the procedure prop(t) are completely determined by the characteristics of the
posed long ago by Anderstrfor the case where relaxation qriginal SW model and the characteristics of the rf field:

is governed by a uniform Markov process with constant 1,5 \yever, on the whole the fdsbauer spectra of the particles
time) transition probabilities. In Ref. 14 this approach was e siill determined by the dynamics of the system of par-
generalized to the case where the transition probabilities dgjq|es via the vector of nonequilibrium populatiofV;(t)|
pend on time, assuming that the hyperfine field at the ”UCleuéppearing in Eq(16), to find the components of which it is

varies only in magnitude while remaining parallel to one Ofnecessary to solve system of equatid8s-(11) for each
the axes. This latter assumption allows us to avoid having t%/pe of particle.

introduce superoperators of the hyperfine interaction into the

theory, which must be introduced when not only the magni-,,

tude but also the direction of the hyperfine field varies in the

dynamics of the hyperfine fields. Here, an account of the éi(t+Trf ,t’+Trf)=éi(t,t’), (22)

latter effect even without generalizing the relaxation model ) . )

yields qualitatively different transformations of the e it is possible to transform expressi¢h6) to the following

bauer spectra as a function of the frequency and amplitude derm:

the rf field2° For a more complete description of all possible o (Te  [Ta

variants of the effect of an rf field on the Msbauer spectra, oi(©)=F _Icf J' dtf dr(W;(1)]

it is of course necessary to consider a model in which, on the olrf /O 0

one hand, relaxation processes are taken into account and, on

the other, the hyperfine field can vary its direction in time. XE Tr
If condition (15) is satisfied, then generalization of the K

results of Refs. 10 and 14 by going over to superoperators of A A

a more general form will allow us to obtain the following X Gi(t,t+ T)V:;

expression for the absorption cross section in the generalized

SW relaxation model:

In complete analogy with the results of Refs. 10 and 15,
s a consequence of the periodicity of the rf field

explinT)

V= ——
1- qulerf)Gi(t,t‘FTrf)

|1)+c.c. (23

This form, where the integration is over finite limits, is more

o, (T (= o suitable for specific calculations. The total absorption cross
oi(w)= T f dtf dt’(Wi(t)IE ™V,Gi(t,t") section is obviously found by averaging over all partidles
07rf /0 ! 7 with different orientations.

X exgia(t’ —t)]\7;}|1>+c.c., (16) Thg above r(_a_sul(t23) for small amplitudes pf the extgr—
nal rf field [condition (15)] cannot be automatically carried
where over to the case where the external magnetic field exceeds its
A A v . . critical value for some group of particles. Indeed, for mag-
Gi(t,t’)zTexp{ f dt’[ —i L(t”)—P(t”)]]. (17) netic fields exceedinb, the particle does not have a barrier
t separating local minima. At these times it is found in one
Here absolute minimum, and the question of relaxation processes
~ (1) at these times becomes moot. In other words, as the external
R Ly () 0 magnetic field varies in time there takes place, as it were, a
L(t)Z( 0 ~(2) ) ; (18)  reduction of states of the particle, between which relaxation
Ly () occurs. Resul23) can be generalized to this case as follows.
Ao 5 We assume formally, as was done in Sec. 2, that for
P)=Pt)@1,, (19 |h(t)|>h, the particle is found in two states with identical
R ( pt)  — plZ(t)) hyperfine interaction parameters
P(t)= , (20)
—pai(t)  par(t) C=Cat)el,, (24)

where the symbolw stands for the direct product of the

operators. In our case, the superoperdig(t,t’) acts in a
space of variables with dimension

where AJe is the unit operator in the space of energy states.
Obviously, at the corresponding times relaxation is absent,
and in the time intervalt(t’) in which the external magnetic
N=2(21@+1)(21©®+1). (21)  field exceeds the critical field the general form(1&) can be
used to calculate the functicfai(t,t’), where the relaxation

Here the superoperators of the hyperfine interacfigf(t A .
uperop yperiine | {jﬁ( ) operatorP(t) can be set equal to zero and the hyperfine

e S aper eracton opertor s g by ool
gy P Let us now consider a time intervat,{’) such that

in the external magnetic field, and the relaxation ma@(K) h(t)<h,, h(t')>h., and there is only one point in time,,

is diagonal in the nuclear variables and is defined by they \vhich h(t.)=h.. According to the SW model, in the
relaxation parameters(t) andp,y(t) introduced above. Of  hoint ¢ the system undergoes an instantaneous rearrange-
course, the matriceis(t) andP(t) are different for particles ment. The relaxation process in the vicinity of this point is
with different orientations, and the particle indekias been  not described by the relaxation constants, but is prescribed as
dropped for simplicity. Note that the superoperafofs) and  the final result: in whatever state the particle was found at
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times beforet;, at times aftert, it should be found in the R R tyt 7 .
state(1). This assumption also remains in force in our model.  G(tk.tyt 7)=Tex Jt dt[ —F(1)]
This process is not hard to take into account if we introduce K

the projection operator -~ tetr

& _(1 0) 25 ty
e 1 0 ' tk+7' tk+7' N N
A . - . . . + dtf dt,F(t)F(ty)—...,

The operatorG,(t,t") in the indicated time interval obvi- ftk ! ty 2F(t)F(to)
ously has the form (30)
For motion opposite the rf field, when we hakét)>h_, . . R
h(t')<h,, the abrupt rearrangement in the vicinity of the ~ F()=iL(t)+P(t). (39
pointt. no longer takes place, and Through terms ir0(+%) we have

Gi(t,t)=Gi(t,t)Gi(te,b). 27 ) o 1
In the region of negative values of the rf field, when we have ~ G(tk,txt 7)=1—F(t)) 7+ §F(t1)F(t1)TZ, (32

h(t)>—h., h(t')<—h., we obtain an expression for the
operatorG;(t,t’) analogous to expressioi26). In this ex-  Wheret;=t,+ 7/2. Here the accuracy of calculation of the

pression the operatd?, must be replaced by the projection initial expression29) will be proportional tor?. The neces-
sary calculational accuracy is achieved by increasing the

operator " . . .
number of partitions, i.e., by decreasing the corresponding
~ (01 values ofr.
R,= . (29 ) . "
01 It is clear that the optimal number of partitionseeded

Using these formulas, it is not hard to write out expression§0 ach|_eve the given calcglaponal accuracy will depend on
the ratio of the characteristic frequencies of the problem,

which in our case are the frequency of the rf field, the Lar-
mor frequencyw, in the fieldH,;, and the relaxation fre-
qguenciesp(t) =pq(t) + po1(t). Only the direction, not the
magnitude of the hyperfine field at the nucleus changes, so
that to obtain estimates of the accuracy it can be assumed
that the parameten, /w,s does not vary in time. As for the
second parameter, the rapi¢t)/w,; can vary over very wide
limits. Taking the specifics of the problem into account, spe-
cifically that a distinct hyperfine structure should be ob-
served in the absence of the rf field, we assume in what
follows that

for the superoperatdB;(t,t’) even in those cases when the
rf magnetic field cycles through the region of critical values
repeatedly during the time interval,{’).

Applying formulas (25)—(28), we can use the general
expressior{23) to calculate the spectra for arbitrary values of
the amplitude of the rf field. Note that the number of calcu-
lations grows radically in comparison with the situations
considered previously, where either the field varied only in
magnitude and not in directidhor relaxation was not taken
into account?

4. CALCULATIONAL METHODS p(h=0)=pgexp—Uy/kgT)<w /27 (33

The general expressid@3) for the absorption spectrum Of course, satisfaction of inequalif3) is ensured chiefly
is a double integral in time of complicated superoperatoy the large value of the barriéry, whereas the ratipo/w,
functions, and therefore the numerical realization of the corcan be arbitrary. Since the dependep¢t) is determined by
responding calculations requires a special analysis both frorihe size of the barrier and has an exponential character, the
the point of view of observing the required calculational ac-inequality
curacy and from the point of view of finding the optimal
calculation schemes. The central element of these calcula- P()<w /2w (34)

tions is to calculate the matrits(t,t") (here and below we s satisfied over a wide range of times, with the exception of

drop the index running over the SW particlgsAccording  small regions near the critical points. In the interval of times

to the definition of the‘T’—product, where inequality(34) is satisfied, to calculate the matrix

G(t,t’) it is necessary to use the above-described procedure

with the number of partitions determined by the ratio

(290  @L/w. On time intervals where conditiof84) is not ful-
filled, it is necessary to introduce additional partitions.

G(t,t) = lim[G(t,t+7)...C(t ty+ 7)...G(t — 7t")],

n—oe

where 7=(t—t’)/n. This definition also gives a basis for
calculating theG(t,t') matrices. The calculation reduces to 4-1- Segments with fast relaxation
multiplying the n matricesG(t, ,t,+ 7), which for smallr For large values of the ratip(t)/w, we expand the

can be represented in the form of a series in this small pasuperoperator of the hyperfine interaction in Eg0) and
rameter: take the relaxation parameters to be arbitrary:
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G(t,t+71)=6y(t,t+ Nl X[1—exp(—p7)(1+p7)]—(L59?

: c 2
+ Gyt t+ 1)+ Gyt t+7)+..., (39 Xexp—pr) 3 (44)
where
i i thr wherep=p(t;), LXY=XLY, and all operators are evaluated
Go(t,t+ T)ZTeXF{—f dt'P(t’)}, (36)  at the pointt;. Formulas(35), (41)—(44), on the one hand,
! do not complicate the calculation excessively and, on the

N T other, make it possible to calculate the matriéi(s,t’) on
Gyttt )= fo d7’'Go(t,t+7") time intervals of a trajectory with fast relaxation without re-
sorting to an extraordinary increase in the number of parti-
X [i I:(t+ T’)]GO(H 't 1), (37 tionsn. For smallp(t) these formulas reduce to the original
formula (32).
Bo(tt+r)=— der’fT,dH’éo(t,tJrr’) In the limit p(t) 7>1 through terms ing, /7)® we have
0 0 o
A A G(t,t+7)=R(t)® expliL,(t1)7), (45)
XL(t+7")Go(t+ 7', t+ 7" +7")
where
XL(t+7 +7)Gy(t+ 7' + 7 t+7). (38 N
Lo =Wt L0+ W) L (1) (46)

Formulas(35)—(38) define the operato6(t,t+ 7) through
terms in (_7)°, where the relaxation parameters do notis the mean superoperator of the hyperfine interaction aver-

impose any restrictions. aged over equilibrium states.
The relaxation matriX(t) can always be represented in
the form
Is(t) — p(t)é(t), (39) 4.2. Integration over time with additional factorization
Let us turn to the main formulé23) and estimate the
where . .
number of operations needed to calculate the absorption
) wt)  —wi(t) spectrum. As a simple estimate we take the total nurhlgr
S(t)= (400 of products of two complex numbers, neglecting the number

—_w(0) (0)
wi(t wi(t . . . . .
(V) (Y of sums, which require substantially less calculation time.

is a matrix comprised of the equilibrium populatiom%’z)(t). Simple estimates show that
If the relaxation parameters vary weakly over times on the on2
order of 7, then NiorNiN,n“N7, (47)

whereN; is the number of partitions into groups with differ-
ent orientationsN,, is the number of points at which the
=R(ty) +S(ty)exd —p(ty) 7], (41)  Mossbauer spectrum is calculatedis the number of parti-
tions needed to calculate the matrioégt,t’), and N is
given by formula(21). For a reasonable choice of values,
wiO(t) W(ZO)(t)) namely,N;~128, N,~512, n~256, N=16, we obtain the

Go(t,t+7)=exg — P(ty)]

wheret,;=t+ 7/2, and

) ) (42)  number of required complex multiplicationdN,~2*

wi /(1) wy(t) 1012 ; i -
1 2 ~10'2 Obviously, to perform these calculations on a com

With the help of this expression, it is easy to take the intePuter in this case requires a large amount of time. In reality,

grals on the right-hand sides of E¢87) and(38); as a result the calculation time can be substantially simplified.

ﬁ«o:ie—:w:(

we obtain Returning to the original formulél6) for the absorption
cross section, we divide the integral on its right-hand side
A ~ 1—exp—p7). . N i .
Gy(tth m)=iCRRry TR TPTrs, oy Into two parts:
k gi(w)= oM (w)+ ol (), (48)
+rexp —p7)ilSsS (43)
where

2
~ ~ T ~ ~ PN
Ga(t,t4 7) = — (LR = — (LRALRSH LRALSK

T [
(D)= 2 J”dtJ dt’ (Wit
o (o) ToT Jo T < i )|

. 1—exp —p7)
[SRERRY |1 o 4
i R)p pr X X TV, Gi(t,t")
7
U |
e S B il S R xexdim(t' —t)]V; }1)+c.c., (49)
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FIG. 6. Massbauer spectrésolid lineg and par-
tial components of the absorption cross section
(o) ando®(w) (empty and filled points, re-
spectively for an ensemble of SW particles
(Uo/kgT=20, po/(w,s/2m)=10% in an rf field
with w,¢/2m=75 MHz, hy=0.2 (a) and 0.3(b).
The scale of spectrum b is reduced by a factor of
four.

v, mm/s

o

Trf Trf
@)= = f dtf dt’ (Wi(t
0 (w) ToTor Jo . (Wi(1)]

XX THV,Gi(t,t)
7

xexdin(t' 1)V }1)+c.c. (50)

From definition(17) of the matrixG(t,t') as aT-product it
follows that it possesses the property

G(t,t")=G(t, T, )G(T,,t') for t'>T,>t. (51)

Employing relation(51), we can reduce expressidd9) to
the form

()= —2 fTrfdthrfdt’Wt
O (w)_FOTrf . . (Wi(t)]

exdia(t' —t)]expi®T,)
1-expli®T,)Gi(0,T )

x> Tr[\7,7(t)
7

xf/;(t')J|1>+c.c., (52)

where

V,(0=V,Gi(t,T,), Vit)=GOonv;. (53

In turn, making the substitution of variables=t’ —t
also reduces the integral on the right-hand side of(E@). to
a form more convenient for calculation:

O'i(z)(w)=%fTrdequiZbT)Ii(T)-l-C.C., (54
0JO
where
1 Te—7
li(r>=T—ff0f dt(W(1)|
xZﬂ TV, Gi(t,t+ 1)V }H1). (55)

It can be seen by inspection that expres<i®® factor-
izes so that the double integral thandt’ reduces to the

v, mm/s

ber of operations needed to calculate expressi®) is
sharply decreased and instead of expres&iam, taking the
averaging over groups of particles with different orientations
into account, we have the estimate

Nt NN, nN?. (56)

For the same values ®f;, N,, n, andN we obtain for the
number of required complex multiplicatiom$~23°~ 10°,
which provides a basis for carrying out the calculations using
moderate computing resources, specifically personal comput-
ers.

As for the second ternr{?)(w), its calculation requires
a considerably smaller number of calculations than does the
calculation Ofai(l)(w). Indeed, the main fraction of the cal-
culations are needed in the calculation of the correlation
function 1 (7). It is not hard to show thalN;n?N? complex
multiplications suffice for calculations taking into account
averaging over groups of particles with different orienta-
tions. Since the same calculations do not need to be repeated
for different points of the spectrum, the given estimate is
small in comparison with estima(&6).

For high frequencies of the rf field, when we hawg
>w, , the main contribution to the absorption cross section
comes from the terna{")(w). The contribution of the sec-
ond term is a smooth curve with characteristic variations at
frequencies neaw,; (see Fig. & In the limit of high fre-
guenciesw,¢ it is possible to obtain the following expression
for this term:

20,Ts 1— cog wT,f)
Iy (‘l’Trf)2

O'i(z)(w)= (57)
However, it should be noted that even if the contribution
from oi(z)(w) is small, it cannot be neglected, since the con-
tribution from (Ti(l)(w) can give a physically invalid result
with negative values of the absorption cross section exceed-
ing the backgroundsee Fig. & The second term compen-
sates for these negative contributions, so that the resulting
absorption cross section is always positive.

In the region of low frequencies of the rf field, when we
havew;<w, , the main contribution to the absorption cross
section comes fromri(z)(w), and the first term gives only

calculation of two single integrals. Here, of course, the numsmall corrections.
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Figure 5(right side displays relaxation Mssbauer ab- -
sorption spectra for different amplitudes of the rf field, cal-
culated according to the above-described scheme. As in the
case of the original SW model, the well-resolved hyperfine
structure collapses into a central line with satellites as the
amplitude of the rf field is increased. Here, as in Fig. 5,
collapse occurs at considerably smaller amplitudes of the rf
field in comparison with the original model, i.e., relaxation
results in an effective decrease in the magnitude of the criti- b
cal field (see Sec. 2 and Fig.) 4Also, the spectral lines on
which a hyperfine structure is still observed are found to be

broadened and their width grows with the amplitude of the
field. It is clear that for a quantitative description of the spec-

tra it is very important to have a more accurate description of

the relaxation processes. As for qualitative effects, if they ¢
can show up they can be expected to appear only in the

region of the transition from a resolved hyperfine structure to ‘ . .

a central line with satellite¢see Figs. 5b—5d It may be — 0 s -5 0 5
expected that the abrupt qualitative change in the shape of v, mm/s v, mm/s

the spectra for values of the amplitude of the rf field near theFIG. 7. Massbauer spectra of SW particles with orientatibr45° (left)
lower value of the critical field$i.=0.5 will be smoothed and an ensemble of SW particlesght) for U, /kgT=20, po/(w /2)
out by the relaxation processes. An analysis of the transfor= 10% in an rf field with amplituden,=0.2 and frequency near the fre-
mation of Mssbauer spectra in this initial stage of the tran- E(Z f;tzeza;‘yzer(fgewcomfzn(i;m ﬁg Sfa(:eMo':fhéAs‘;/:grai:A t';é)”ght
sition as a function of the problem parameters is of speua}hafs been reduced éy 2 factor of 1.8.

interest.

one goes away from the resonance toward either side, the
line width is restored, where the inner part of the spectrum

The proposed relaxation model differs from the originalvaries relatively weakly. This is effect is so strong that it is
SW model in one very important physical way. In the origi- preserved even in spectra for the entire ensemble of SW
nal model the remagnetization process is understood in twparticles.
ways: 1 if the amplitude of the rf fielchy exceeds the criti- A qualitatively different situation arises for frequencies
cal field h., then remagnetization occurs every half-periodof the rf field in the vicinity of
of the rf field, and 2 for hy<h. remagnetization does not _5 (59
occur and the particle returns to its initial state every half- @rtT @1
period. The generalized relaxation model admits such remagrhe corresponding spectra are shown in Fig. 8. For exact
netization regimes, where during a half-period the particleesonance, splitting of the outer lines of the sextet is ob-
can return to to its initial state with probabilityor change served, which can be interpreted as a superposition of the
the direction of its magnetic moment with probabiliy= 1 central line, e.g., line 1, and a satellite of the second line of
—r. Qualitative effects in the Mssbauer spectra can be ex- the pair, line 6. This interpretation finds confirmation in the
pected precisely in these remagnetization regimes. shape of the spectra calculated for the case of small detuning

Calculations of the spectra as functions of the frequencyf the frequency of the rf field from the “resonance” fre-
of the rf field and the relaxation parameters in the abovequency(Figs. 8a and 8c In these spectra one can clearly
described scheme showed that in the case of slow relaxationake out the satellites of lines 1 and 6, indicated by arrows
(g<1) the behavior of the spectra has a distinctive characten the figure. Note that in this case no satellites of the inner
that depends on the relative values of the frequencies of thines of the spectrum are observed, and that satellites of lines
hyperfine structure and the frequency of the rf field. Sincel and 6 are absent in the inner regions of the spectrum.
the minimum value of the critical field.=0.5 is realized for Equally interesting is the fact that lines 1 and 6 and the
the group of particles witl#=45°, to reveal the specifics of corresponding satellites can never coincide for any values of
the transition we first analyzed the absorption spectra for thihe frequency of the rf field, so there exists some minimal
group of particles. Figure 7 shows the corresponding spectrdistanceA ;, between the lines. As a result, we cannot say
for representative values of the frequency of the rf field neawhich lines in Fig. 8b are the central lines, and which are

satellites.

@rf= @1, (58) Interest in resonance phenomena in the presence of an rf
wherew; =| T 3w/2%+ wy /2| is the frequency corresponding field in Mossbauer spectroscopy arose in the 1960's and has
to lines 1 and 6 in the magnetic sextef(;=ggeunH ).  not weakened to the present ddy? However, attempts to
For exact resonance, as can be seen from the figure, the oufard such effects were concentrated on cases of resonance
lines are much narrower than the inner ones and, consavith real distances between the levels of the nucleus in the
quently, their peak intensity is dramatically increased. Asground stated,) or the excited stated,). The latter should

5. RELAXATION-STIMULATED RESONANCES
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have such a simple analytical form, but also require signifi-
cant efforts just for their computer realization. Nevertheless,
we may suggest a simplified model that would make it pos-
sible to some degree to explain this phenomenon.

For simplicity, we assume that the amplitude of the rf
field is not large, so that variations of the direction of the
hyperfine field at the nucleus in states corresponding to local
energy minima can be neglected. In this case, we can trans-
form from expressiong52)—(55) with complicated operator
functions to a sum over the various frequencies of the hyper-
fine transitiongsee Ref. 1% as a result, we obtain

-
e
jos)

o

. o(@)=0,2 |Col*pa(w), (60
a
where a=(m,M); m and M are the projections of the
T T nuclear spin in the ground state and the excited state onto the
direction of the hyperfine field; the coefficier®s, determine
15 (-) : the intensities of the corresponding hyperfine transitions,
v, mm/s 1 T ;
FIG. 8. Transformation of the Misbauer spectra of SW particles with ori- e(w)= (A (w)| = — i — |Bo(w))
entation #=45° for Uy/kgT=20, po/(w /2)=10" in an rf field with Lo 1-expioT)8,0,T,¢)

amplitudehy=0.2 and frequency near twice the frequency of the hyperfine

componentw,/27=50 MHz: w,;/27=104 (a), 99 (b), 94 MHz (c). n JT”dTEXQiﬂ)T)I (r)+c.c 61)
o .C.,
0

appear in the form of splitting of all components of the spec- 1 (T
trum, and they show up distinctly in the SW modiste Fig. (Al(w)|= T_f dt(W()[@.(t, Trexdia(T—1)],
9a, and also Ref. 10As can been seen from Fig. 9b, a more rf 7o

: (62)
accurate account of the relaxation process causes a strong
smearing of this effect, which may explain the fact that the 1 (T
numerous efforts to detect these resonance effects have long [Bu(®))= T J' dtexp(i®t)g,(0)[1), (63
been unsuccessful. 70

Thus, relaxation processes hinder one from observing 1 (Ty-r
ordinary physical resonances, but stimulate the appearance |,(7)= T_f . dt{W(1)|9,(t,t+7)|1). (64)

r

of new resonances now at frequencies of the hyperfine tran-
sitions instead of the nuclear transitions. The nontrivial CharHerega(t,t’) is an operator that is represented by a matrix
acter of these resonances arises because the frequencies;pkecond rank:

the hyperfine transitions exceed the actual distances between

the nuclear levels by ten orders of magnitude. . . A S,
Obviously, it is practically impossible to track the phys- Ga(t,t )=Tex;{ jt dt'(—a,—P(t") |, (65)
ics of the formation of these resonance phenomena on the
basis of general formula&?2)—(55), which not only do not W, 0
&)az( 0 —w ) (66)

wherew,=Mwe—Mawy.
A quirk of the above relaxation process is the fact that

a for an overwhelming number of particles, with the exception
of the group of particles oriented perpendicular to the direc-
tion of the rf field, relaxation has a unilateral character, spe-
cifically, probabilities of transitions from a higher energy
state to a lower state are of considerable significance while
the probabilities of the reverse transitions are negligibly
small. Moreover, even according to formul@ and (7) the

L . . relaxation process is concentrated at the ends of the trajecto-

-5 0 5 riest.=kT,¢/2, where the intensity of the rf field reaches its

v, Mm/s . . . .

FIG. 9. Mossbauer spectra of an ensemble of SW particles with amplitude{maxm]um value, and. the relaxation .rate. f.a”S off with dis-
ho=0.2 at the resonant frequenay;/2m= wy/2m=36.8 MHz in the origi- _ance from thes_e pomtsHere,_ for s_|mpI|C|ty, W? reCkon_
nal SW model(a) and in the extended relaxation model 1dg /ksT=20  time from the point where the intensity of the rf field has its
andpy /(w /27) =10* (b). minimum value, i.e.h(0)=—hy.) We assume that the re-
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laxation process is maximally localized, but that there is a 1
finite integral effect, defined by the constantandq: Polw)=— F_o
T2 i
r=exr{—2J f p(t)dt|, g=1-r, (67) < Im w—w,~Ao+il'/2
Teil2=t (0= w,+iTR2)(0—w,~Aw+iT/2)* >’
wheret, defines the time interval where intense relaxation (75)

processes occur; according to our assumptjen 0.
In the vicinity of these points, in the calculation of the Where
functionsg,(t,t") it is possible to neglect the hyperfine in-

teractions and keep only the relaxation operator, in which y=a/Te, (76)
case we have Aw=nw;—2w,, 77
N 0 O
0a(Ti/2—t, , Tyel2+1,)=1— —q g [=To+2y. (78)
The + and — signs before the second term in the denomi-
. -~ (9 —Q nator in expressiori75) correspond to odd and even reso-
g“(T”_tS'T”H*’)_l_(o 0 ) (68) nances(73). It is clear that expressiofi’5) can be repre-
. . . R . sented as a sum of two lines with Lorentzian shape:
For intermediate times, whenandt’ lie in the intervals
(t, , Tie/2—t,), (T.s/2+t,,T,s—t,), relaxation processes 1 A
can be neglected, and taking properii2®) into account we Pal@)=— F_Olm w—w,—N+il/2
easily find for the functior§,(0,T¢)
: . Az
9 (O,Trf):(rexq_'waTrf) Zexq 'f"aTrf) _ + w+wa—nwrf+)\+if‘/2)’ (79)
“ qr ge+rexplio,T )
(69  where
We assume that the relaxation is weak, i.e., 1
A=-(V(Aw)’F4y?—|Aw)|), 80
g1, 70 5 (V(A0)*5 497~ [Aw)) (80
We will consider segments of the spectrum near the fre- |Aw|+\ A
guencyw,, so that 1=m, A2=m. (81

—w,y|<w,. 71 . . . . .
0= w.l <0, (72) If the relaxation process is not important and it is possible to

We also assume that the frequency of the rf field is near ongety=0, we have one Lorentzian line at the frequensy.
of the parametric-resonance frequencies: But as soon as the relaxation is switched on, a second line
o —w(”|<w (72 appears, located gt the frequeneyl')aJr Nw, i.e., at.the
- %n @’ position of a satellite of the hyperfine component with fre-
where quency— w, . Thus, the relaxation process generates the ap-
(=2 73 pearance of satellites. Moreover, as follows from formulas
@n @l (73 (79—(81), such generation has a sharp resonance character.
If conditions (70) and(71) are satisfied, the vectot62) At large detunings ol from the resonant frequency, when
and (63) do not depend on the frequency and take on dAw|>27, the intensity of the central line is close to unity

simple form: and the intensity of the satellite is low. On the other hand, at
exact resonance, as can be seen from forni®da the in-
(Ay(w)|= 1(1,0), IB(w))= ( 1)_ (74) tensities of both lines are equal; =A,=0.5.
2 0 It is interesting to track the transformation of the shape

As for the second term in formulé6d), it gives only a of these I_ines. In the_ given case, we have two different types
small background contributiofsee Sec. 4)2It is not hard to of behavior depending on the parity of the resonance. Thus,
write out an expression for this term in explicit form, but fOr €ven resonancesee formula(58)] at exact resonances
within the limits of accuracy of formulé74) we should set h€ guantityA turns out to be purely imaginary, so that both
this term identically equal to zero, since an account of termdn€s coincide in position, but differ in width:
linear i.n g in the calculat_ion of vecto_r$74) would give [,=T, [,=Ty+4y. (82)
corrections comparable with the contribution of the second
term. Moreover, in the given approximation we should alsoFor y>T" the spectrum is a superposition of a narrow line
discard terms quadratic opin the term§,(0,T,¢) in formula  and a wide line, which should be manifested as an abruptin-
(61). crease in the peak intensity for these lines, as we demon-

By utilizing formulas(74) and (69) while keeping only  strated by numerical calculations based on the general for-
terms linear ing, we can reduce formulgsl) to the simple  mulas(52)—(55) (see Fig. 7. As one moves away from the
form exact resonance, the width of the first line increases while the
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width of the second line decreases, farw|=2y they are  nances all of these properties are preserved for individual
equal, and with further growth ¢A w| the line widths do not  groups of particles, whereas for the ensemble of particles
change. they are, to a significant degree, “washed out” and for this
Qualitatively different behavior obtains in the case ofreason do not show up in Fig. 8. Clearly, the experimental
odd resonancegsee formula59)]. In this case, the quantity detection of odd resonances will require the preparation of
\ is always real and the widths of the two lines are identicaltextured samples.
But on the other hand, as follows from formulé&9) and
(80), these lines can never coincide, i.e., between them the
is a minimum distance

r% CONCLUSION

In the present paper we have constructed a theory of

A 89 Mé;spauer absorption spectra in the presence of a rf mag-
12=47 netic field for a system of SW particles in the extended re-

and they cannot lie closer than thakee Fig. 3. laxation model, which allows a more complete description of

Thus, the above analysis within the framework of thethe relaxation process. In this model it is possible to describe
simplified relaxation model allows one to reveal in clearerhysteresis loops, which depend on the frequency of the rf
form aspects of the numerically detected relaxationfield, and thereby explain the huge differences between the
stimulated resonance effects. Note that the analysis withinemagnetization fields observed in ordinary magnetic mea-
the framework of the simplified model cannot replace exacsurements and obtained from the $ébauer absorption spec-
calculations, which take into account the presence of partra. Qualitatively new behavior in the absorption spectra is
ticles with different orientations and variations of the hyper-predicted in the region of rf fields where a resolved hyperfine
fine field in direction. Thus, our calculations based on thestructure is still observed, consisting in relaxation-stimulated
exact formulas for the entire ensemble of SW particles shovprocesses of intense satellite lines at frequencies of the rf
that even resonances show up quite clearly not only in théeld coupled by parametric-resonance conditions with the
Mossbauer spectra for a certain group of particles with ayperfine frequencies. These effects should be observed in
given orientation, but also in the spectra of the entire enweak rf fields, and the conditions for their observation
semble, which gives hope of the possibility of their eventualshould be realized in experiments in a simpler way than the
experimental detection. On the other hand, for odd resoeonditions for the observation of the collapse effect.

APPENDIX A

TABLE |. Matrix representation of the superoperaqu(t) for 5’Fe nuclei.

IM)(m| 3\ /1 3\/ 1 1\ /1 1/ 1 1\ /1 1/ 1 3\ /1 3\/ 1
d: Bl AR BE R R Ak
3\ /1 3we— wy g . V3we .
§><§‘ 5 ——=sin¢ > sin ¢ 0 0 0 0 0
X CcOoS¢
§><—} ~Dsing Bwet vy 0 V9% g 0 0 0 0
2 2 2 2 2
X OS¢
1\ /1 V3w, . We— Wy wy .
§><§‘ 5 sing¢ 0 — —7sm¢ we SN 0 0 0
X CoS¢h
}><—} 0 ‘/gwesind; —ﬁsind; Lel 0 we SiNg 0 0
2 2 2 2 2 €
X CoS¢
1\ /1 ) wet wy wy V3we |
_§><§ 0 we SiNg 0 5 —7sm¢ 5 sin¢ 0
X cOoS¢
7}><7E 0 0 wesin® —&’sim{) e 0 ‘/jwesim{:
2 2 2 2 2
X CoS¢
- ;><% 0 0 0 3T%sin¢ 0 - 3%;% - %sinqﬁ
X coS¢h
3 1 V3w, | wy 3w wg
,§><,E 0 0 0 0 5 sing¢ —7sm¢ i
X OS¢

Remark.Here ¢= ¢(t).
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An algorithm is proposed for calculating the field dependence of the emission rates based on a
form-function for the optical transition. A comparison is made with experimental data for

the VgzSas complex in gallium arsenide. This scheme for calculating the field dependence is found
to be preferable to methods based on a single-coordinate model99® American

Institute of Physics.S1063-776(99)01809-0

Multiphoton processes play an important role in radia-epitaxy with concentrations of dopant impurity ranging from
tionless transition$-* Electron—phonon interactions give 4.7-107cm 2 to 1.510"®¥cm 3. The photoluminescence
rise to temperature dependence for capture coefficients argbectral characteristics were recorded over wavelengths from
to an increase in the thermal emission rate in strong electri800 to 1200 nm and temperatures from 100 to 200 K on an
fields. In particular, it has been shown experimentafipd ~ SDL-2M system.
theoreticallj1# that in strong electric fields, the probability The spectra from all the samples had two characteristic
of these transitions increases exponentially as the square peaks: one with photon energies at the peakhef,,,
the electric field strength. Thus, more accurate calculations-1.48—-1.49 eV and the second, a broader peak tith,,
of the parameters of optoelectronic and high power semicon=1.22-1.24 eV. The first luminescence peak was associated
ductor devices associated with generation, recombinatiorwith band—band emission in GaAs and the second, with
and tunnelling processes involving deep levels will requireemission from \;.Sas complexes[Fig. 1(a)]. Given that
information on the parameters of the electron—phonon inter“gallium-donor vacancies in the nearest lattice site” produce
actions which characterize a given electronic transition.  deep levels in the gap of GaAs near the ceiling of the valence

The theory has found practical application mainly for theband, the luminescence band with a peak at 1.22-1.24 eV
single-coordinate modé&r:* This model imposes rather rigid corresponds to radiative recombination of an electron in a
requirements on the character of the oscillations in the sysstate near the bottom of the conduction band with a hole
tem and requires verification in each individual case. Degenlocalized at the deep center being studied.
eracy of the electronic states of a crystal with an impurity A study of the dependence of the integrated emission
center causes the adiabatic approximation to fail and givemtensity of these complexes on the dopant impurity concen-
rise to vibrational mixing of the electronic levels. In this tration showed that the intensity actually is proportional to
case, the single-coordinate model may not be suitable fathe concentration of sulfur in the samples, which confirms
calculating the field dependence. the model for the complex that has been chdseg. 1(b)]. It

In this paper we propose an algorithm for calculating thewas also found that the shape of the emission b&imdsar-
field dependence of the thermal emission rates which reliescular the dispersion of the bapat fixed temperatures is
on a form-function for the optical transition calculated from independent of the dopant impurity concentration and is
the emission spectrum. Some results obtained in this way aggrobably determined by an electron—phonon interaction,
compared with experiment. rather than by doping effects. Measurements at different tem-

Gallium arsenide doped with sulfur was chosen as theperatures[Fig. 1(a)] confirm this. As the temperature is
material for testing the model experimentally. Group VI im- raised, a shift to lower energies and a broadening of the
purities in gallium arsenide occupy arsenic sites and becomemission band are observed. The shape of the spectra and
donors, forming shallow levels near the bottom of the contheir temperature dependence suggest that the electron—
duction band. In addition, they are knoWn'’ to form  phonon interaction plays an important role.

“gallium-donor vacancy complexes at arsenic sites” Metal-semiconductor contacts were fabricated on the
(VeDas)- These complexes produce broad bands with peaktest samples by electrochemical deposition of nickel on the
at 1.18-1.25 eV in the photoluminescence spectrum. Thgallium arsenide. A study of the electrical properties of these
symmetry and electronic structure of these complexes haveontacts showed that the charge carrier transport is described
been studied in detdd™” and it is also known that in an by thermionic emission. Thus, the contacts served as
excited state a hole captured by one of these complexes itschottky barriers with a potential barrier height of 1 eV. We
teracts with incompletely symmetric vibrations of the atomsstudied the field dependence of the rate of thermal emission
surrounding \,, i.e., the Jahn—Teller effect occurs. of holes from a deep level created by thg8,s complex in

The samples of GaAs:S were grown by gaseous phaghese structures. The experiments were done at 77 K in the

1063-7761/99/89(9)/5/$15.00 547 © 1999 American Institute of Physics
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I, rel. units I, rel. units
I 1.0t
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FIG. 1. 3 Emission spectra of ¥,S,s complexes at
different temperatures:1—100 K; 2—118 K;
0.5+ 3—137 K; 4—161 K; 5—180 K; 6—200 K. b In-
tegrated intensity of the emission spectrum of
VeaSas complexes as a function of dopant impurity
concentration.
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following way. The centers were photoionized using AL-106whereW. (E{") - ) is the probability of a purely electronic

infrared photodiodes with a peak emission at a wavelength dfansition,Ei(fJ) is the energy of the purely electronic transi-

A=914nm hv=1.36 eV, which corresponds roughly to the tion from sublevei of the multiplet of the initial state of the

peak in the absorption spectrum og)b.). The photoca- center to subleve] of the final state of the multiplet, and

pacitance kinetics was measured when the light was turnef] ;(¢) is the form-function for this optical transition. Essen-

on and turned off. tially, f; ;(¢) represents the contribution of the electron—
The analysis of the measurement data relied on a simplphonon transition to the transition probability.

kinetic equation, which takes the following form in the case  The probability of a purely electronic transition can be

where there is no capture of electrons and holes in the fieldalculated using the formufa:

of the space-charge region:

(0)( () ef
dnt Wi’j(Ei’j_s)ZA\/*—ﬁh
dt :_(an+en)nt+(Jqp+ep)(Nt_nt): D 2y2m (Ei,j_s)
* t) 3
whereJ is the flux of photons in the space-charge region, ><exp< _A 2m*(Ejj—e) &)
On(p) is the electror{hole) cross section for photoionization, 3 enF ’

€n(p) IS the rate of emission of electrorioles from the  \yhere A is a normalizing factorF is the electric field
level, N, is the concentration of the complexes, ands the strength, andn* is the effective electron mass.
concentration of electrons in the complexes. The emission |4 order to calculate the field dependence of the transi-

rate is a combination of all thermal-field processes. Thus, thgg, probability using Eq(2), it is necessary to know the

time constant for the fall in capacitance when the light iSom_function for absorption by an electron from a local state

turned off isT"=e,+e,. near the valence band to a level. We shall find this form-
Given that the level lies closer to the valence band and

the energy distance to the bands is more thaal1Qve may
assume that the recharging of the level when the light is
turned off is entirely determined by hole emission and that
the time constant for this process is given bjﬂzep. The
experiment was repeated for different reverse bias voltages,
so it was possible to find the field dependence of the thermal
emission rate. Typical plots of the emission rate as a function 0.57
of the square of the field in the space-charge region are I
shown in Fig. 2. We note, once again, that in this case the
emission rate we have measured includes a combination of
all the thermal-field processes and is essentially the probabil-
ity of a hole transition from a deep level.

The calculations of the field dependence relied on Ref.

e W, s
1.0

18, in which it was shown rigorously that the probability of a 0.1 ) \ ,
guantum mechanical transition including the electron— 04 028 o 1.2 1.6
phonon interaction can be written, in general, in terms of the F,107° v3iem?®

overlap integralsee the Appendijx FIG. 2. Experimental &,, triangleg and theoretical \(, smooth curve

% field dependence of the probability for a transition of a hole from deep levels
W= 2 Wi(o-)( Ei(tj) —e)f; j(e)de, 2) corresponding to the ground state of g,8, center to a local state near the
i, e M ' ' ceiling of the valence band.
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function in the following way: we calculate the form- by |s)) and a degenerate excited state formed-tfpe wave
function for the radiative transition and then its moments.functions. We shall consider two transitions: one that is ra-
We then transform them, relying on the model for the com-diative from a local state near the bottom of the conduction
plex and the symmetry of the wave functions. band, corresponding to an excited state of the center, into the
If the emission spectrum of an electronic transition isground state and another with absorption from a local state
known, then its form-function can be calculated using thenear the ceiling of the valence band to a deep level corre-
formula® sponding to the ground state of the center. Given that there is
f(e)=1(e)/Mqs™. 4) a fairly strong electronfphonon inj[eraction in the systédm _
experimentally determined magnitude of the Stokes loss is
Herel(e) is the luminescence intensity,is the photon en- ~0.12 eV) and that both initial statésear the bottom of the
ergy, andMy, is the zeroth moment of the emission band, conduction band and the ceiling of the valence basuire-
which is proportional to the oscillator strength, and is givenspond to the same excited state of the complex, we can as-

by My=[l(g)de. sume that the wave functions of these states are the same,
We now consider the sum associated with the degenke., |p)=|p’). The energy spectrum of this system consists
eracy of the electronic terms in E(R). of ones-level, which corresponds to the ground state of the

According to the model proposed forg\Teas com-  center with energfs, and two groups of close leves and
plexes in Refs. 15-17, because of the Jahn—Teller effegs/ with energiesE,,; andE,/, .
there is a reduction in the symmetry of the complex in its  The form-functions for the bands with emission from
excited state where each defect continues to exist in one @ftate|p) into state|s) and absorption from statg’) into
three equivalent configurations corresponding to the threetate|s), respectively, can be written in the fotfrt
possible orientations of the Jahn—Teller distortion. In each of 1 E
the.se conflg_uratlons, t_hgre em;ts{]alO} symmetry plane f(e)<s)=—2 2 |(s||\7||pi>lzexr{ _i> S(Eq—Epi+8),
which contains the original axis of the complex, i.e., the Z,T Sp kT
lattice sites corresponding to the initial position of both com- (6)
ponents of the complex. A reorientation of the Jahn-Teller,, g
distortions of the complex reduces to a rotation of this plane
about the initial axis by an angle=*=2#/3. It has been
shown rigorousl§* that in this case the adiabatic potentials
of the three terms of the excited state are energetically and
geometrically equivalent with respect to the ground-state
equilibrium configuration of the complex. Thus, the prob-
abilities of Fhe pqrely electrlonlc transitions are eqqal for eac.QNhereES > iS @ sum over the vibrational states of the
of the configurations. In this case, we can take this probabil- d ,'ptp m
ity out from under the summation sign in E®), placing the andp(p’) terms,

sum immediately in front of the form-functions: Eppn)
Zp(p/): 2| ex - —kT

is the partition function of the group of leveigp’), andM

Thens, f; j(e)="f(e) and this quantity is calculated from is the_perturbation operator that generates the transiti_on.
experimental data using E¢g). Given that|p)=|p’) and E,/;=E—Egy, whereEgy is
Equation(5), therefore, contains a form-function derived the band gap, we rewrite E(7) in the form
from experimental emission spectfilae form-function of a 1
transition from a local state near the bottom of the conduc- @ (g)=— > > |(s|M|p;)|2
tion band corresponding to an excited state of theSds ZpT sp
complex into the ground statevhich makes it possible to E,;
perform the numerical integration and determine the transi- Xex;{ - ﬁ) (Es—Epi—e+Ey). (8
tion probability.
The form-function for a transition from a local state near Equation(8) is the same as E@6) after transformation to the
the ceiling of the valence band to a deep level correspondingew variables’ = —e+E4 in Eq. (8).
to the ground state of }/.Sx (for which the field dependence Therefore, by taking the mirror reflection of our experi-
of the thermal emission rate have been meaguredalcu- mental emission form-function with respect to the 0 axis
lated on the basis of the following arguments. and shifting to higher energies by an amoégt, we obtain
Strictly speaking, models of the electronic—vibrationalthe form-function of the absorption band for a transition
interaction are valid for intracenter transiticffsThus, we  from a local state near the ceiling of the valence band to a
shall assume that the wave functions are determined only bgeep level corresponding to the ground state of the center.
the states of the recombination center. We substitute this form-function in Eq2), taking Eq.(5)
According to Ref. 16, the center we are studying has anto account, and calculate the probability of hole emission
nondegenerate ground state, whose wave function hdsom a deep level of the ¥.S,s complex as a function of the
s-symmetry(we shall denote the wave function of this state average field in the space-charge region. This dependence is

1 .
@ (g)= z—plE > KsIM|p))|?
I S,p’

Epi
Xex —W 5(E5_Ep’i_8)i @)

W= F WOED —¢) > f; i(e)de. (5)
. 5
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plotted in Fig. 2(smooth curvie The factorA was chosen for  whereW(®(E( —¢) is the probability of a purely electronic

a best fit of the calculated and experimental curves at higfransition andg(e) is a function containing information on

fields. the contribution of the phonon subsystem to the transition
Therefore, a calculated field dependence has been olprobability.

tained without making the assumptions associated with the We shall show that, to within a constant coefficient,

single-coordinate model. The basis for these calculations ig(e) equals the form-functiofi(v) of the optical transition,

the experimental form-function, which naturally reflects thewhich depends on the frequeneyof the emitted light:

complex electron—vibrational interactions. In this regard, a

computational scheme of this type for calculating the fieldf(y)= 2 p1n|<1n||\7||2n,>|25(52n,—Eln—hy)

dependence is preferable to methods based on the single- n,n’

coordinate model.

=2 punl(19M[29)|2|(15]2;,,) |2 8(E i — E1n—hw)
n,n’

APPENDIX

Here we provide a brief derivation of ER). The tran- =[(1°M|2%)2 > p1al(15]2;)|28(Egn —Eqq—hv)
sition probability under the influence of a perturbatidh is nn
given by =|M%y(hw)|2g(hv). (12)

~ Now Eg.(11) can be rewritten in the form
W= pial(LaA’[20)[?8(Egn = E1n=EW),  (9) o
n,n’ el e
(1) — Oy .y "7

where n and n’ enumerate the vibrational states of the WE™) ffww (E 8)|M‘{2(a)|2d‘8' (13

ground and excited electronic terms gmg, is the probabil-
ity of finding an electron in the vibrational stateof term
1,2 which, for a Boltzmann distribution, is given by
o exp(—Eq,/KT) B
pl“_zn,, exp(— Eqpr /KT) W(E“)):f WOED - g)f(e)de. (14

Within the limits of the optical band of the-%2 transition,
the matrix element of the dipole—dipole interaction can be
regarded as independent of enefygo

In the adlabatlt(): appf"x'm‘_"‘“oﬂ thfe quantgn;emthanlcal_'ere the matrix element of the dipole interaction appears in
state vector can be written in the forf@,)=[2%[2;,), the normalization coefficient ifi(e).

where|2°) is the state vector of the electron allrﬁ#,) is the We now consider the case where the energy spectrum
state vector of the lattice. In first-order perturbation thébry consists of two groups of close levels; (2;), separated by a
the vector|2°) is independent of the coordina@ of the  |arge energy gap. Suppose the relaxation time within group 1
oscillator (Condon approximation Thus, we can partition s considerably shorter than the lifetime with respect to 1

the matrix element into a purely electronic component and a.,2 transitions. Thef? the expression for the transition
purely vibrational component which contains only the over-propability can be written in the form

lap integral of the oscillator wave functions:
W=
Ty L —
W= puol (1A"[29) (25|25 )?0(Eap — Esn— E®).
" (100  Where the sum is taken over all sublevels of the multiplets 1
and 2.

WID(ES) —e)f; j(e)de, 49

We shall use the rule
fjc F(x)8(y—x)dx=F(y). *)E-mail: har@ulsu.ru

We then obtain
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This paper reports on an investigation of transient photoimpedance response to radiation, in other
words, real-time variations of the impedance induced by femtosecond optical pulses in
superconducting films transferred to the mixed state by an external magnetic field applied parallel
to thec-axis. When the films were in a state characterized by the abserderesistivity,

the response amplitude increased with the magnetic field faster than expected owing to the
contribution of magnetic vortices to the impedance of a superconductorswitive

pairing of electrons. It turned out that the effect is due to a growth in the effective density of
quasiparticle states in the mixed state al-aave superconductor. In the absence of

magnetic field, however, the response amplitude was higher at lower temperatures, which
contradicts the predictions of both models. Possible reasons for this feature in the response as a
function of temperature are discussed. 1899 American Institute of Physics.
[S1063-776(199)01909-5

1. INTRODUCTION This paper reports on the photoimpedance response of
YBaCuO epitaxial films in the mixed state generated by ap-
Several different mechanisms of the photoimpedance replied magnetic field. The measured response as a function of
sponse of superconducting films based on interaction benagnetic field has turned out too steep to be ascribed to the
tween optical photons and magnetic vortices have recentlgontribution of magnetic vortices in an isotrogevave su-
been put forward. These include hops of vortices betweeperconductor. This dependence is put down to modifications
neighboring pinning centers driven by electromagnetic radiain the quasiparticle density of states in the mixed state of a
tion (flux creep,! viscous flux flow? and generation of d-wave superconductor.
vortex-antivortex pairs with their subsequent dissociation.
As far as we know, none of these mechanisms has yet be
detected in experiments. One complication for experimenta
studies of such effects is the lack of a model that would  YBaCuO epitaxial films with a thickness of 90 nm were
describe interaction of an optical photon with a magneticgrown on lanthanum aluminate (LaAdDsubstrates so that
vortex as a whole without perturbing the surrounding regiortheir c-axis is perpendicular to the substrate plane. From
of the superconductor. these films, we lithographically fabricated structures shaped
Resonant interaction between photons of lower energieas bridges 5Qum long and 5um wide connected to gold-
in the terahertz band and quasi-particles localized aroundoated contact pads. The sample resistivity at the room tem-
vortices has been detecfeid YBaCuO films. Optical pho- perature was ¥10 6Q-m and dropped linearly with de-
tons, whose energy is considerably higher than both the swereasing temperature so that it was< 80 °Q-m at a
perconducting gap width and the characteristic binding entemperature slightly higher than the superconducting transi-
ergy of quasiparticles in vortex cores, likewise interact withtion temperature. The transition temperature was 92 K, and
Cooper pairs and quasiparticles. In this case, the descriptidts width was 1.8 K. At the liquid-nitrogen temperature, the
of the nonthermal impedance response of a film in the supeeritical current density in the samples was 1.8
conducting state in terms of real-time variations in the superx 10° A-cm™2. The samples were placed in an optical cry-
conducting condensate density is quite satisfactagd in  ostat which allowed us to vary the temperature between 4 K
the resistive state it can be accounted for in terms of theand room temperature, and to applg@magnetic field of up
effective electron temperature and temperature dependente4 T. The magnetic field was generated by superconducting
of the film resistivity around the superconducting transitionHelmholtz coils and aligned with the-axis of the film.
point® A photoresponse due to optically driven relaxation of ~ The laser system, which included a pulsed titanium-
the flux line density gradient has been detected in YBaCuGapphire laser with active phase locking and a pulse selector,
films in Ref. 7. The authors of the latter study, however,generated a sequence of pulses with a duration of 100 fs at a
assert that the primary effect of optical radiation was filmwavelength of 0.&«m and a rate of 2.6 MHz. The system for
heating. Even so, the presence of vortices can indirectly afdetection of optically induced signals included high-
fect the photoresponse, since the film impedance in the sdrequency spring-loaded contacts, an electric bias-tee, a
perconducting state changes in the presence of magnetic vdrroad-band amplifier, and a sampling oscilloscope. The tran-
tices. sient time of the entire circuit was 37 ps. The laser beam was

. EXPERIMENTAL TECHNIQUES
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focused on the sample surface into a spop#®in diameter. Signal, mV

Accurate measurements of the radiation power absorbed by 2.0 !

the sample were performed using the same sample, whose

temperature was maintained, with this end in view, in the L6r

middle of the superconducting transition, and which acted in

this case as a bolometer with parametéemperature re- 1.2¢

sponse, response tilnmeasured in advance. The time con-

stant of the bolometric response of our samples was 13 ns, 0.8

which is in conformity with both the film thickness and our | i

previously published resulfsThis allowed us to determine 0.4} i
the radiation energy density absorbed by the sample per
pulse, which proved to be 18J-cm 2. In measurements of

the photoresponse versus magnetic field, the samples were

a1 |1
IR Ui
ilx”i‘

i l;. |
O
i ],.“ il

0 i --

cooled to the required temperature at zero magnetic field. -0.4f]# (
When an optical pulse is absorbed by a sample, the im- ' ‘
pedance of the latter changes. If a bias current flows across 0.8 R /
the sample, a pulsed electrical sigig{t) is generated be- 0 0.1 02 03 04 05
tween its terminals. The signgl(t) observed on the oscillo- Time, ns

scope is related to the amplitude and shape of the voltag8g. 1. Typical photoresponse signal recorded at zero magnetic field at a

transient across the sample; nonetheless, it is not completelymperature of 70 K and bias current of 1 mA. The solid line shows model

determined by the latter, but also depends on the impu|s@alculations. The dashed line is the zero signal level.

response of the electric circuit. Voltage pulses across the

sample with a duration shorter than the circuit transient time ) o

are distorted so that neither their shape nor duration are faitt@n Pe expressed in terms of the complex magnetic field

fully reproduced by the oscilloscope. penetration depth,, asZ,=jwuo(\,)?/d. In this case, Eq.
The situation is much simpler if the shape of the pulse(2) reduces to

across the sample is constant. In this case, the signal ampli- I

tude is proportiona(with a constant factorto the maximal S,= ool W—d{|m()\i)+i Re(\2)}, )

deviation of the sample impedance from its equilibrium

value. Moreover, if the maximal variation of the impedancewhereu is the magnetic permeability of the vacuum dnd

is small in comparison with its equilibrium value, and the w, andd are the length, width, and thickness of the sample.

time-dependent current component is much smaller than thi order to analyze experimental results, we calculated on the

bias, the measured signal amplitusliecan be expressed as basis of various theories changes\ip due to absorption of

follows: optical pulses, then calculated the signal maxima using the

inverse Fourier transform and compared them with measured

signal amplitudes.

M =ma>{E(t)]=ma>{ JtS(t)K(t— T)dr}
0

3. EXPERIMENTAL RESULTS AND DISCUSSION

=kma{ S(t)],
3.1. Experimental results
B d At all temperatures below the superconducting transi-
S(t)=1 R(t)_aL(t)} @ tion, we recorded typical bipolar optically induced signals

(see Ref. 6 and references thejefrihe sampledc resistivity

HereK(t) is the impulse response of the detection circuit, was zero, and both the current bias and optical energy den-
is the bias current, and(t) andL(t) are the time-dependent sity were sufficiently low. Such curves were described in
sample resistance and inductance. The faktdepends on literature many times and interpreted in terms of a change of
both the electric pulse shape across the sample and the irtfie kinetic inductance of a superconducting film under irra-
pulse response of the electric circuit. This factor, however, igliation. A typical signal recorded in our experiment is shown
invariant under the conditions listed above. Since the impedin Fig. 1 with a curve obtained using the formalism described
ance of a superconducting film in the mixed state is a comin the previous sectioiithe fitting parameters will be dis-
plex function of frequency, the formulas become more com-<cussed later The signal is composed of a symmetrical posi-

pact if we use the Fourier transform of EJ): tive component of width 75 ps, and a negative component
whose decay time is slightly longer than the rise time. The
S,=1(R,—jwL,)=I[R&Z,)—]Im(Z,)], (2 oscillations in the region of the negative component decay

are probably due to the impedance mismatch between the
whereZ,, is the complex frequency-dependent sample im-sample and high-frequency contacts.
pedance ana is the angular frequency. In the limiting case The positive signal amplitude, which is defined as the
of a thin film,d<<\, whered is the film thickness and, is  maximal signal measured with respect to the base line, is
the London magnetic field penetration depth, the impedancproportional to the optical pulse energy and bias current
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FIG. 3. Normalized response amplitudes at different temperatures as func-
FIG. 2. Response amplitude normalized to the bias current versus tempertions of magnetic field. The solid lines plot calculations by E9). with
ture. Measurements were performed in zero magnetic field at various cuffitting parameters adjusted to obtain the best agreement between calculations
rents. The solid and dashed lines plot calculations fostivave andd-wave and measurements. The dashed lines plot calculations femave super-
pairing, respectively. conductor at a temperature of 50 K. In the latter case, for better visibility,
the calculated signal amplitudes were multiplied by a factor of five. The
following limiting cases were analyzed; gortices are immobile; bvortices

when both these parameters are fairly small and the Signéxfe_retgined at pinning center_s but capable of oscillatingn @ddition to
. . .~ oscillations, vortices can contribute to the creep and flux flow.

shape is constant. In what follows, we will term the regime
of signal detection in this region of parameters a linear re-
gime. When the current and/or pulse energy go beyond the
boundaries of this region, the signal has a bolometric com-
ponent whose decay time is considerably longer, of the order At each temperature, the bias current was selected suffi-
of several nanoseconds. The emergence of the purely thermeiently small so as on the one hand to have a linear response
component is correlated with the onsetduf resistivity, al-  at the maximal magnetic field, and on the other, to have a
though the latter event occurred at somewhat higher currentgsponsivity sufficient for detecting a signal in zero magnetic
or energy density in the pulse. After feeding a sufficientlyfield. In the region of intermediate magnetic fields, the signal
high current(usually several tens of milliampepethrough a  amplitude was a sublinear function of the field strength,
sample cooled in zero magnetic field, we observed a wealhereas the signal shape was invariant. At higher magnetic
response in the absence of the bias current with the sigfields, there was an inflection point on the curves of the
opposite to that in the presence of a bias current. When thgignal versus magnetic field at each temperature. The slope
bias current was cyclically varied between a negative and @& the region below the inflection point increased with the
positive value, the signal exhibited hysteresis, and the loopemperature. The magnetic field magnitude at the inflection
width increased as the temperature was lowered. point marked the boundary between the linear regime at

In the absence of magnetic field, the positive amplituddower magnetic fields and the regime in which a bolometric
of the linear response dropped considerably with decreasingpmponent was detected and samples had a nonvanidhing
temperature(Fig. 2), but below the temperature of about resistivity. Since the bolometric response of HTSC films has
0.35T, and down to the lowest temperature attainable in thébeen studied previously in detail and is beyond the scope of
experiment 4 K the signal grew slightly as the temperature this paper, here we concentrate on the linear response, which,
dropped. An important point is that, although changes in thegyiven such characteristics as its low amplitude and fast de-
signal in the range of low temperatures were small, theyay, can be associated beyond doubt with nonthermal mecha-
were notably larger than the experimental uncertainty aneisms. The slope of the normalized signal amplitude as a
reproducible. This property of the response was observed &tinction of magnetic field0.6—1.5 per tes)an the region of
all bias currents that were within the region of the linearintermediate fields is obviously higher than predictions based
regime. The growth in the response amplitude at low temeon theories developed for superconductors with an isotropic
peratures is a very interesting feature, given that the amplierder parameter anstwave electron pairing. Indeed, in this
tude of the kinetic response is assumed to be inversely pra&ase a drop in the superconducting condensate density due to
portional to the superconducting condensate density in thgeneration of magnetic flux lines and the corresponding in-
simplest models. Under magnetic field, the signal amplituderease in the normalized signal amplitude should be of order
was, generally speaking, higher, although hysteresis was d8/B.,(T), which is 0.05 per tesla even if we take the highest
tected in the amplitude versus magnetic field to about 0.2 second critical field for YBaCuO cited in literature. In the
T) when the field increased from zero to a certain value anaext section, we will discuss how the derivative of the signal
then dropped to zero. The magnetic field dependence of theith respect to magnetic field intensity can change if the
normalized amplitude of the positive component is shown irelectron pairing and superconducting gap have different spa-
Fig. 3. tial symmetry properties.
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3.2. Interaction between optical photons and magnetic temperature and superconducting condensate density are

vortices uniquely related to one another by time-independent equa-
tion over a time interval fromr, to the time of electron-

p_phonon interaction. The moment when the positive signal
component achieves its maximum is within this time inter-

In early publications;? the possibility of depinning an
isolated magnetic vortex through its interaction with an o
tical photon was intuitively associated with the proximity

between two characteristic energies, namely, the photon e . , L
In the absence of magnetic vortices, the magnetic field

ergy and depinning potential. These two parameters, how- ) _ .
9y b gp P enetration depth is constant with the frequency over the

ever, have different physical natures. The photon energy is B e ) )
. : pny >S. The p . 9y range limited by the reciprocal laser pulse width and equals
microscopic parameter characterizing interaction betwee

- “the conventional London penetration depth~f2, wheref
the photon and an electron, whereas the depinning potential . . .
IS the relative density of the superconducting condensate.

is a thermodynamic parameter characterizing the binding en:, L ;
o . . The impedance response to laser pulse in this case is purely
ergy of a vortex as a whole to a pinning center and is used in

describing the dynamic equilibrium between free and bounc!lnduaive and should be independent of the magnetic field

) g the dy q . trength, at least in the range below the first critical field, at
vortices at a finite temperature. Thus, a correct description o hich penetration of flux lines into a sample sets in. This
magnetic vortex depinning by one photon requires a micro;[ pe of response is termed a kinetic inductance photore-
scopic mechanism that would redistribute the photon energ

Il elect forming the flux i in oth q ponse in the literature.
among aff electrons forming the TiUX fin€ or, 1N 0INer words, = yypen magnetic vortices are present in a sample, they

screening the magnetic flux associated with the vortex. With., atfect the impedance of the sample in several ways when
the.exceptlon.of t.he local hegtlng mechanism discussed in Ris exposed to short laser pulses.
series of publications by Kadin and co-workesee, for ex- (a) Magnetic vortices reduce the density of the supercon-
ample, Ref. 3 no such mechanism has been suggested in thg,cting condensate by a quantity corresponding to the num-
above cited papers and subsequent publications. In the cagg of quasiparticles contained in normal vortex cores. In an
of depinning due to local heating, the critical time scale isjsqtopic superconductor witkwave pairing this results in a
determined by the time of electron thermalizatiqp, which  agnetic-field dependence of the penetration depth de-
is of order 1 ps in YBaCuQRef. 9 is essen_nally indepen-  seribed by the formula = (1—B/B.,) Y2
dent of temperature. Here we do not take into account pho- (1)) The decrease in the density of the superconducting
non heating, which is significantly slower and leads to acondensate due to absorption of photons leads to a redistri-
much smaller increase in the temperature. bution of the screening current circulating around a vortex

Since the optical pulse width in our experiment is muchcore. The effective radius of the vortex increases, and this
smaller thanr,, one can say that all photons of one opticaljeads to a change in the retaining force, which binds the
pulse are absorbed simultaneously. The material heating ifortex to its pinning center. Since the vortex is continuously
local when the average distance between phota)s, acted upon by the Lorentz force generated by the bias cur-
= (hv/eo)? wherehv is the photon energy anel, is the  rent, the abrupt change in the retaining force results in
energy density in the laser pulse, is considerably larger thagamped oscillations of the vortex about the pinning center.
the electron diffusion length during the thermalization time, These oscillations contribute to both real and imaginary parts
L+= (D7) "2 whereD is the electron diffusion coefficient. of the sample impedance.
In the opposite limit,L+>a,, photons absorbed by the (c) An optical pulse generates a short-time uniform in-
sample lead to a uniform heating of electrons. Estimategrease in the electron temperature. Since the depinning is
based on the average temperature derivative of the secomdused by activation processes, the temperature rise leads to
critical field at the transition temperature, 0.5 T/yield an  a larger number of vortices dissociated from their pinning
electron diffusion coefficient of 3 cfrs %, and accordingly a  centers per unit time and makes possible local displacements
diffusion length of 150 A, which is considerably larger than of vortex fragments(magnetic flux creep The additional
both the vortex core diameter and the distance between laynobile vortices or their fragments generated in this process
ers of the crystal lattice along theaxis. The latter dimen- travel in the sample until they are captured by the same or a
sion determines the minimal length of the flux line fragmentneighboring pinning center. The thermally activated creep
which can move in a quasi-independent manner. Thus, thand magnetic flux flow contribute mostly to the real part of
local heating can have a reasonable efficiency in generatindpe sample impedance variation.
additional vortices capable of flowing through the sample in ~ Coffey and Clen* suggested the following general ex-
the viscous manner only if the average separation betwegpression for the frequency dependent penetration depth tak-
photons equals the average distance between the vortices aig account of all the mechanisms listed above:
the density of the latter is fairly low.

However attractive the concept of optical depinning may
seem, the pulse energy density of @d/cnf, which marks > )\E_j 512/2
the boundary between the regimes of local and uniform heat- No= 1+2jN218%°
ing, is much lower than the sensitivity achieved in modern
experiments with femtosecond laser pulses. For this reason,
we assume in discussions of the reported experiments tha@he effective lengthss, and 6, characterize the contribu-
the electron heating is uniform and that the effective electrorions of vortices and unpaired electrons to the impedance,

4
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and )\ describes the contribution from the superconductingTABLE I. YBaCuO parameters used in simulation.
condensate. These three parameters can be expressed by the

f | London penetration depthk, o 1.4x10" " m
ormulas Viscosity of vortex flowz 2X10" " N-s/m
A2 2 Retaining force per unit lengtkyg 2.1x 10* N/m?
A\2=_L0 52 Pn Resistivity in the normal statg, 2.8x10°°0-m
Lof o " uow(1—1)° Average potential of the pinning centelr, 0.15 eV
0. Time constant of electron thermalizatiog, 900 fs
2o 2B®; e+ (wrp) +j(l—e)wTg
Mown 1+(w7o)? ’
7 IS( v)—1 1 U depend on the pinning parametérandk,,, and the electron
TO_k_p (v ° 12(v)’ YT 2kgT’ (5 thermalization time. In contrast, such parameters as the de-

] ] cay time of the quasiparticle concentration, the London pen-
where\, o is the London penetration depth at zero temperagtration depth, and the relative numhsf of Cooper pairs
ture and magnetic fieldp, is the magnetic flux quantum,  gestroyed by absorption of photons and subsequent multipli-
is the material resistivity in the normal statgis the viscos-  cation of quasiparticles determine the response to a laser
ity that controls motion of vortices driven by the Lorentz pise aimost completely. The latter two parameters equally
force, k, is the retaining force per unit lengthl is the pin-  4ffect the positive and negative components of the signal,
ning potential, and, and!, are modified Bessel functions of anq have little impact on the shape of the waveform, whereas
the first kind. The two-liquid approximation yields the fol- {he decay time affects largely the ratio between the ampli-
lowing expression for the parameters as functions of magg,des of the positive and negative components of the re-

netic field and temperature: sponse signal. By varyingf and\, , the calculated ampli-
T\4 B tude of the positive component was fitted to the experimental
f=(1—(.|.—2> )( —m) data. The best fit was obtained Atf/f;=0.05 and\ g
C C

=1400A. The best coincidence between the shapes of the
1—(T/T,)? calculated and recorded signals was achiefféd. 1) at a

Bca(T)=Bc2(0) 1+(TIT)? (6) quasiparticle decay time of 3.7 ps, which is in good agree-
ment with investigations of YBaCuO films published
3/2 T 212 . .912 e . . .
U=U|1-— k—kod1—|— earlier”*~ The positive signal amplitude versus magnetic
-0 T P PO Teo) | field calculated for various limiting cases at a temperature of
50 K is plotted in Fig. 3. Curve a corresponds to the case of
__ 1+B/B,(0) immobile vortices K,o,U—), curve b corresponds to the
€27 ¢ N 1-B/B.,(0) case with vortex oscillations about pinning centetd (

Assuming that the pinning potentials and retaining force are oo){ and curve ¢ dSh?[\r']ththe cal_culatlons That ftlake Into ac- d
determined by the instantaneous relative density of the corz2uNt, as compared wi € previous case, the fiux creep an
densate, we have expressegdand U versus temperature in viscous flow. Note that the calculations plotted by curves

terms off so as to analyze the vortices’ contribution to thed_C Were multiplied by a factor of five |n.order to make the_
gm‘erences among them and the calculations themselves vis-

photoresponse using a unified formalism. Then the Fourielble in the scale in which the experimental data are plotted
transform of the electric sign&B) is given b . . o
gnas) is g y The graph also shows experimental data obtained at various
I d temperatures. It is perfectly obvious that neither the changes
— . . 2 : 2
Su= @ ol wd fo o|f{|m()‘w)”LJ Re(A)} (7 in the kinetic inductance taken separately nor the effect of
magnetic vortices on the impedance can account for the

wheref , is the Fourier transform of changes in the conden-Change of the photoimpedance response measured as a func-
sate density as a function of real time. Model calculations[ion of magnetic field

have been performed using the following analytic formula

for the changes in the condensate density versus time:
3.3. Anisotropy of superconducting gap

t4 t
f(t)=1(0)—Af P exp< - —), (8) Since the energy gap in an anisotropic superconductor is
Tth 7 more narrow for some directions of the Cooper pair quasi-

where the electron thermalization timg, is the rise time momentum, the critical current density in these directions is
and 7; is the decay time of the concentration of excess elecalso lower. Accordingly, the screening current circulating
trons. The electrical signal generated in the sample was exabout a vortex core should lead to electron decoupling at
pressed using Eq$l)—(7). The effect of the electric circuit distances considerably larger than the average coherence
on the output signal was described using the procedure sugength. The effective increase in the quasiparticle density
gested previousl§. The calculated signal amplitude was caused by this effect was predicted for a superconductor
compared to the experimental data. The parameters used \Wwhose gap width tends to zero at some points on the Fermi
the calculation are listed in Table I. surface, for example, owing to tliewave symmetry of elec-

The simulation of the electric signal revealed that bothtron pairing®® This result implies that the number of quasi-
the shape and amplitude of the calculated response weakparticles bound to a vortex core is higher by a factor
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1/2
f=

a~a,l¢ in this superconductor in comparison with an iso- signal component due to the asymmetry of vortices vanishes.
tropic superconductor, wheme,~ (®,/B)Y? is the average In our opinion, the suggested model provides a satisfactory
distance between vortices ag¢T) =&,/(1—T/T,)*?is the  explanation of the signal hysteresis in the range of low mag-
effective coherence lengtld, is the coherence length at zero netic fields and the presence of photoresponse at zero bias
temperaturg Irrespective of the manner in which vortices current.
move, the band gap anisotropy should increase the amplitude Taking the normalized condensate density as a function
of the impedance response to a laser pulse as a function of temperature typical of isotropis-wave and anisotropic
magnetic field. We have incorporated the effect of anisotropyd-wave superconductors, we have calculated the signal am-
by inserting in Eq.(6) the following formula for the super- plitude versus temperature in zero magnetic field. The com-
conducting condensate density as a function of temperatufgarison between our calculations and experimental @éta
and magnetic field: 2) shows that calculations by the anisotropic model are in
good agreement with experimental data in the ranges of high
T T\* B and intermediate temperatures. The isotropic model, in con-
1_0'75T_02 = Ter 1_chZ(T) - O g, provides better agreement with experimental data at
T<0.5T.. At lower temperatures, however, the experimen-
The temperature dependent component of Eq. (9) was tal points deviate from both theoretical curves;l specifically,
constructed using the dafaon the magnetic field penetration the signal amplitude has a minimum and increases in the
depth in pure YBaCuO crystals. The only fitting parameterrange of the lowest temperatures. Since the response ampli
used in adjusting the calculations to the experimental datéude is largely determined by the superconducting conden-
was the coherence length at zero temperature. For éach sate density, it is tempting to attribute the increase in the
the second critical field was calculated using the expressiosignal amplitude in the range of lower temperatures to a de-
BC2=<I)0/27T§§. The best fit of the calculations to experimen- crease in this density, or equivalently to an increase in the
tal data(Fig. 3 was obtained at a coherence length of 16 A, concentration of unpaired particles. Such a behavior was for-
which is in reasonable agreement with the coherence lengtimally derived from measurements of the surface impedance
in the ab plane measured in YBaCuO by alternative meth-versus temperature using the traditional two-liquid mddel.
ods. Nonetheless, the authors of this reSuttoncluded from gen-
Note that the signal amplitude as a function of magneticeral considerations that such a description is non-physical
field is not bound to follow the predictions of the model and got round the difficulty by assuming that the density of
under discussion, which assumes a uniform distribution otinpaired particles did not tend to zero, as was expected in
the bias current over the sample cross section and of maghe case of a purd-wave superconductor, but asymptotically
netic flux lines over the sample plane. The configuration oftended to a finite value as the temperature approached zero.
the samples used in the experiments corresponds to the de- This approach is consistent with a nonvanishing density
magnetization factorrd/2(wl)¥2~2x 1072, Therefore, if of quasiparticle states at the Fermi energy, which was pre-
the first critical field at zero temperature is 500 MTthe  dicted ford-wave superconductors doped with nonmagnetic
onset of vortex penetration in the sample should take place anpurities® The characteristic energy below which the den-
a magnetic field induction of 2 mT. This magnetic field is sity of states becomes constant is a function of the impurity
generated near sample edges by a current of 20 mA even oncentration. Thus, the linear drop with temperature in the
the absence of external field. At higher temperatures, thquasiparticle concentration in a dirtiywave superconductor
onset of vortex penetration should take place at even loweshould be replaced in the range of low temperatures by a
currents and magnetic fields. As compared with internal reflatter curve, whereupon the thermal energy of quasiparticles
gions, sample edges usually contain larger quantities of desecomes comparable to the characteristic energy.
fects, which can act as pinning centers. If a vortex generated Since the impurity concentration in the tested samples is
in the sample by the bias current is bound to a pinning centennknown, an accurate estimate of the parameters character-
at a distance from the sample edge smaller thé/rd, the izing the effect is impossible. Taking into account impurities
mean density of the screening current flowing between thén the superconductor, irrespective of their quantity, can lead
sample edge and the vortex is higher than that between the better agreement between calculations fdreave super-
vortex and the middle of the sample. The total screeningonductor and measurements, but cannot explain the increase
current of such an asymmetric flux line contributes to thein the signal amplitude at low temperatures. Moreover, our
response signal, with the polarity of that contribution beingexperiments have not revealed that the magnitude of the ef-
the opposite of that due to the bias current that generated tHfect under discussion depends on the sample quality. Al-
vortex. though samples irradiated with high-energy gold ions had
An estimate of the mean density of the screening currentarger widths of their superconducting transitions, their be-
by the formulajm~2<1>0d/7r,u0)\f indicates that the signal havior in the region of low temperatures was almost identical
component due to the asymmetric configuration of vorticego that of control samples.
can have a magnitude equal to that of the contribution from It is noteworthy that there is an alternative mechanism
a bias current of one milliampere. An increase in the currenthat can have a notable effect on the signal amplitude, irre-
or magnetic field leads to a growth in the number of vorticesspective of the sample purity. The coefficient of quasiparticle
in a sample and their redistribution to the inner region. Whemmultiplication, in other words, the number of secondary qua-
the average distance between vortices approa)cﬁ/eds the  siparticles generated in the system by one absorbed photon,
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The nonlinear current—voltage characteristics of a three-dimensional tunnel junction with weak
(low impurity concentrationstructural disorder are obtained for temperafiire0, and a

formula is derived for the magnitude of the mesoscopic fluctuations in its resonant static tunnel
conductance. ©1999 American Institute of PhysidS1063-776099)02009-7

1. INTRODUCTION
Uimp(D)=_ > Q(r,r)), )

In this paper some resutt$or a quasi-one-dimensional 0<x=<L
tunnel junction with weak structural disorder are generalized ) ) ) o
to the case of a three-dimensional junction in the most inter?Vhere the points; are macroscopically uniformly distrib-
esting (resonant case, where resonant subbarrier impurityYt€d over the volume layev=SL with a densityn=N/V,
scattering of tunnelling electrons radically alters the current-2nd 0(r.r;) <0 is the local attractive potential of the elec-
voltage characteristic of a tunnel junction with impurities {ons to the impurities at the poin with a radius of action
compared to that of an “empty(without impuritie$ tunnel ~ 'o- . . ] )
junction. Here we use the concept of quantum resonant- In the case of low impurity concentrations considered

percolation trajectories in tunnel junctions with a weak struchere, the following relationships for the characteristic lengths
tural disorder, developed in Ref. 2. hold and allow us to use the procedure of expanding the

We use the one-electron approximatiorTat0 and ex- tunnel current in powers of the impurity concentratfoh:

pand in powers of the impurity concentration to determine
the form of the nonlinear resonant current—voltage charac-
teristic of a tunnel junction with impurities, to obtain a for- where a=a(e)=(Uy—¢)¥? and art=a"Yeg) is the
mula for the magnitude of the mesoscopic fluctuations in itgharacteristic damping length for the electronic state with
resonant static tunnel conductance, and to find a lower bounghergye - in a uniform barrier.

estimate for the transverse dimensions of the barrier layer por yoltagesv<er, Uy—er, andT=0, we can write
consistent with the condition that these fluctuations be smalkhe tunnel currenti(v)), tunnel conductancéG(v)), and

their relative root mean square fluctuatigri(v) )2 as

ro<apt<n <L, ©)

2. MODEL: BASIC EQUATIONS

egtv
As in Ref. 1, we shall consider a model of a tunnel (i(v)>=f ] (g(e))de, (G(v))=v Xi(v)), (4
junction in the form of arN-1-N sandwich consisting of two eF

identical normal metal®\ separated by a plane layer of in- and

sulator! of thicknessL and areaS impregnated with impu-

rities. i2(w))Y—(i(v))2]Y2
For the conduction electrons of thé-metals we shall (52(V)>1/2[%ﬁ : %)
assume a three-dimensional isotropic quadratic dispersion
law e =k? (A%/2m=1,A=1,m=1/2) with Fermi energgr.  where
The electrons in the barrier are assumed not to interact
with one anotherfone-electron approximatipnand for the 2 N , ,
barrier potentialJ(r) (electronic charge=1) in the region (i"(v))= JEF (9(e)g(e"))de de’, ©
0=x=L occupied by the insulator in the absence of an elec-
tric field (v=0), at the barrier we assume a structural disor- d?q )
der model of the form g(s)Eg(S'FN):f f D(S'q'p'rN)(zT)Zd p, (D

U =UotUim(r), r=(x.p), 0O<xs<L, @ D(e,q,p,.I'y) is the tunnel transparency of a barrier with a
where Uy=const>¢¢ is the regular potential of a uniform random impurity configuratiod’y={rq,r,,...,ry} for elec-
barrier without impuritiesU;,,(r) is a random potential pro- trons with energye that have a fixed transverse component
duced by a system dfl identical impurities randomly dis- of their momentumg at the entrance to the barrier and a
tributed over the insulator layer: fixed transverse coordinageat the exit, the integral overis

1063-7761/99/89(9)/5/$15.00 559 © 1999 American Institute of Physics
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taken for all 0<g?<e¢, and that ovep over the barrier area characterizing the twisting of the trajectorjdere the param-
S. The averages in Eq&4) and(6) are taken over the set of etersm,y, 6 for weakly twisting trajectories are not indepen-

impurity configurationgI"y}: dent and are related by
- - 1+ " (10)
= — m= — -1,
e I L ® e

where 4= al andu=2ay are, respectively, the dimension-
less thickness of the barrier layer and the step size in the
1 quantum resonant-percolation trajectory. Thus, for calcula-
W ’ tions using Eqs(8) and(9), any two of the three parameters
ale)ate"); ATy J{FN}g(S’FN)g(S Twdly, @ in Eq. (10) can be chosen as independent. In the following,
they arem andu.
where dI'y=drdr,--dry, Aly=VN=(LS)", and N Therefore, forN>1 and o2V>1 and taking only the
=nV. principal contribution from the trajectories into account, the
average(8) reduces to

and

3. RESONANT TUNNELLING CURRENT AS THE SUM OVER _ re
QUANTUM MECHANICAL RESONANCE-PERCOLATION (9()) SmE:l f Pm(e,U)gnTe.u)du, 1D
TRAJECTORIES

where

As the analysis of the quasi-one dimensional tdses
shown, the most radical difference between the current— 3
voltage characteristic of a barrier with impurities and that for ~ Pm(e,u)=a*(e)c™e™ *™ (u?¢?(m,u))™* (12)
an empty barrier shows up in the conditions for resonant
tunnelling, when the energy of the tunnelling particles is is the probability per unit area barrier layer of forming an
close to the energy, of a local single-impurity level. Thus, isolated m-center quantum resonant-percolation trajectory
in the following we shall consider the situation where With a step sizai, c=na"? is the dimensionless impurity
er= &, holds forv=0. In this case, for each energyclose  concentrationp(m,u) is expressed through E¢10), and
to er the phase spadd™y} factorizes in the form of a set of
resonance and nonresonance regions, and the principal con- o dq ,
tribution to the averageé8) and (9) for the low impurity gms(s,u)=J J Dms(s’q""u)md P (13
concentrations considered here is from resonance regions
corresponding to isolgted Wgakly .twisting quantum meCha”iWhereD[ﬁS(s,q,p,u) is the transparency of a barrier with a
cal resonant-percolation trajectorfes. singlem-centered trajectory with step size

The calculations of the averagé® and(9) rely signifi- Note that the dependence &Y&,q,p,u) on v for
cantly on the following concepts of the spatial structure 0fv<Uo—sF, e can be neglected, since it yields a relative
the qualjtum resonant-percolation trajectoriesa‘aﬂosg to  orrection of ordew/(Ug—e¢)<1 to D'®{e,q,p,u)~1 cal-
g0 The ideal isolated, shortesti-center (M=1,2,..) trajec-  ¢yjated forv=0 in a tube of resonant transparency along a
tory consists of a strictly periodic chain of impurities sepa- quantum resonant-percolation trajectory.
rated by a distancey2=L/m from one another, with the first Now, substituting Eq.(11) in Eq. (4), we note that
and last impurities in the chain lying a distangdrom the p.(s,u) is a smooth function of in the neighborhood of
corresponding bour?darie's' from t'he barrier Iaygr. ThereSF, while g/®{e,u) is a rapidly varying function of con-
should be no other impurities within a tube of radiu®y  centrated in the immediate neighborhoodsgf, so that on
around the chain, except for those belonging to this tra]ecl'ntegrating with respect te it is possible to take,(,u) at

tory (the isolation condition, which, along with the condi- e nointe =& out from under the integral. As a result, we
tions of chain perlod|C|ty_ and of closeness oo o, en-  \rite the tunnel currentd) in the form

sures resonant tunnelling of electrons along quantum

resonant-percolation trajectories with a transparebgy .

~1). However, the phase volun{é¢’y} in the space occu- (i(v))=S>, J' P(ee ,W)im(v,u)du, (14)
pied by such an ideal, strictly periodic quantum resonant- m=1

percolation trajectory and, therefore, its probability of forma-

tion, are zero. Thus, in calculations using E@.and(9), it  Where

should be noted that the transmission coefficients along this .

trajectory,D=°, do not change significantly and remain on ; [ FTY e

theJ orde}r/ ofmunity, if the coo?dina’?es of thgimpurities differ V)= LF Om{e,u)de 13
from those in an ideal quantum resonant-percolation trajec-

tory by amountsdx<a ! along thex-axis and by amounts is the tunnel current passing along a singleenter trajec-
Sp=y# in the transverse directiofwhere #<1 is an angle tory with step sizeu.

2
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Thus, Eq.(14) [with Eq. (12)] represents the resonant Omm (8g;U,U")
tunnel currenti(v)) in the form of a series in powers of the
concentration, whosenth term is the contribution of the 2 af ,
m-centered trajectoriego (i(v))). e W %p(erU) Ommd(U—U) =11, (17)

Similarly, Eq.(6) also reduces to
P2 Q2 " 1 . i . .
(iZv)=%* 2 f 1+ s@omm(eriuu’) Smm is the Kronecker symbol, and(u—u’) is the delta
m,m’ =1 function.
XPm(eg W) pm (eg,u’) The termelwm,m,(sF ;u,u’) in Eg. (16) accounts for
i (v Wi (v,u')du duf (16 the pairwise statistical spatial correlations between trajecto-
mi I mA T ’ ries owing to the requirement that they be isolated.
where Substituting Eqs(14) and(16) in Eqg. (5), we obtain

2

1 Em,m’f‘"m,m’(sF U )pmer, W) pPm (er,U")ig(Vv,u)in (v,u’)dudu v

2 1/2_
(V=15 (S f Pler U (V.0 AU 18
|
For further calculations using Egél4) and (18), it is The integral with respect ts in Egs. (20) and (21) is
necessary to find the tunnel transpareBi§ie,q,p,u) that  taken for all O<s?’<e and the spectral amplitudeg andbg
appears in Eq(13). depend, among others, on the trajectory parameteaadu.
The object of the calculation is the transmission coeffi-
cient
4. CALCULATING D3*(e,q,p,U)
Hell}
The local transparency of a barrier containing an  p'ey. q,p,u)= M (22)
m-center trajectory with a step size has been found Jx(8,9)|x=0
previously for the special case of particles with energy where
normally incident =0) on a barrier. Here the problem of
calculating the transparen®,-Ye,q,p,u) is generalized to _ _ )
the case of arbitraryg in the framework of the same method lgm(s””“”x:LZZRej kscsCq, expli(s—s') - p}
and its dependence anis found in more detail. ) ),
The Schrdinger equation in the region of a barrigvith d’s d’s 29

: : : X > 27532
onem-center quantum resonant-percolation trajectories (2m)= (2m)

the form (v=0) is the x-component of the density vector of the transmitted

m flux at the point (,p) and
Ay—a?y=2, Ujp, O=xx<L,

=1 jT(SvQ)|x=0=2kq|aq|2 (24)
a’=Up—e, Oj=0(r.ry). 19 s thex-component of the density vector of the incident flux
The continuity conditions are satisfied fgrand its normal ~ at the planex=0. _
derivativesdy/dx at the barrier boundaries=0 andx=L Thus, substituting Eqsi23) and (24) in Eq. (22), we
for all p. obtain

To the left of the barrierX<0), the functiony(x,p) is K.c.ct
a superposition of a wave incident on the barrier with trans- D™s,q,p,U) = Ref sbs SZI expli(s—5)p)
verse momentung and a reflected wave: kqlaq|

X,p) =aq explikox+iqg- d?s d3s’
(X, p)=aq expliky q-p) % , . (25
d2s (2m)° (27)
+j bsexp(—Tksx +is-p) (2m)?’ The next problem is to find the relationship betwegn
anda, by solving Eq.(19) with the above boundary condi-
ks= e =% (20 tions at thex=0 andx=L planes.
To the right of the barriers(>L) the functiony(x, p) is As in Ref. 2, this problem reduces to solving a closed
the transmitted wave: system ofm algebraic equations:

. . d’s 1 .
l//(X,P)ZfCseXFl(lks(X—L)+|S'P)(ZT)z- (21) (Pj+1_m¢j+¢’j71:01 2sjsm-1, (26)
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1
ot

1
E+

for the quantities

a+ik
ik Pt ea=Tedq, (27)
a+ik

m) ¢mt em-1=0, (28)

1,2,..m, (29

‘Pk:f a(r,r ) yw(r)dr, k=

where
2ikq e u
17" ag—ikg 4wh’ YT 2a°

ag= \/Uo—g—qz,

and u=pu(e) is the amplitude of the subbarrier impurity
scattering introduced in Ref. 2.

The continuity condition in thex=L plane implies that
the unknown amplitude; is given in terms ofp,, (Ref. 2:

ae™ Y

h= 4qu’

(30

_ exp(— asy —ispy)

ag—ikg

(31

Cs= Pm:

where p,, is the transverse coordinate of thah impurity
(closest to the plange=L) in the chain.

The solution to Eq(26) can be written in the form
@ =Ci\j+Co0,  2<j=m-1, (32

whereC; andC, are constants to be determined andand
\, are the roots of the characteristic equation

A—27A+1=0, 75=(2uh)" 1,

)\12: ﬂi|\ 1_77 .

(33
(39

V. Ya. Kirpichenkov

where
B 1 +a+ik 1 NN
A= %h " ik wh N i
1 a+ik)/ 1
== —— | — =AY 2N, j=12.
ay, (uh ik n N AT =12
(39

Having foundC; and C, from Eq. (38), Egs.(28) and
(32 now give

(40)

f
em=¢m(e,0)= ——exgIn(\;—\,)]ag,

Am(e)
whereA ,(g) =aj18,0,— 215851 IS the determinant of the sys-
tem (38) calculated for energy.

Now, substituting Eq(40) in Eq. (31), and EQ.(31) in
Eq. (25), we find
a’k? k

D:ﬁs(s,q,P,U)ZW !

k

_ 2
Xexp{— alp—pnl ]
y
p{ yqz] p{ (8_80)2]
Xexp — ——(exp — ———1,
a y

(41)

_ u
y_2a'

It is clear from this thaD[;>~1 holds when the following
conditions are simultaneously satisfietp— p| <\Yy/a,
q<\aly, and|e —£o|<y. Equation(41) is a generalization
of the corresponding Eq5.16) of Ref. 2 to the casg+#0
and refines the dependence of the resonant transparenrcy on
Forg=0 ande=¢, these formulas are identical.

The condition for an energy band with resonant transpar-

ency (i.e., the absence of dampirg (32) along a quantum
resonant-percolation trajectorg |\, J =1, which, as can be
seen from Eq(34) is equivalent to requiring?<1 or, given
Eq. (33) for %, requiring a sufficiently large amplitude of
subbarrier scattering,

|ul=(2h) 1, (35

which occurs fore close toegg.
Since the subbarrier scattering amplitude #oclose to
il

€0 IS

8may

ap=VUp— &y,

given formula(30) for h we find from Eq.(35) that resonant
transmission is possible for

p=ple)== (36)

(37

|8_80|S’y1

wherey=y(u)=4adu" e " andu=_2ayy.
Equations(26)—(28), with Eq. (32), yield a system of
equations foiC; andC,:
a.11C1+ a12C2: fqa.q y

a1C1+a,,C,=0, 38

5. CURRENT-VOLTAGE CHARACTERISTIC
With Egs.(41), (13), (15), and(12), the current—voltage
characteristid14) takes the form

(i(V)>=5mZ:1 f Pm(er,Wim(v,u)du, (42

where
Prler U) = adce S 2uX(mu v — 1)),

) ) k,2:a,2: f( V)
In(V,u)= er —|,
L Ry v v LR Gl e

¥e=ye(u)=4afu~te™",

and

f(x) 2 f “etdt
erf(x)=— 1| e

Ja o
is the probability integral. The functiofi(v)) is highly non-
linear, and thus differs radically from the corresponding
function for an empty barrier.
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Formally assuming that the parametaris continuous,
we calculate the right hand side of Eg2) by the method of

V. Ya. Kirpichenkov 563

Under these conditions, for example, with- 10~ 3, the reso-
nant tunnel currenti(v)) exceedsio(v) by two orders of

steepest descents. The point of steepest descent is founthgnitude.

from the system of equations
—3mcmi+2(m-1)u” *+m(m-1)(mu— %) !
—1-ut+&(u,v)=0,
Inc—caud+2Inu+In2+In(mu— %)
—In Z+(m—1)u(mu— %) =0, (43

where

&(u,v)=

o]
Ye(u/ |

The asymptotic solution of the system far~ yg,
>1, andc ¥ 2<1 has the form

mo=23In(c.2)|"*2,

—In erf(

0o=IIn(c2)| "2
(44)

u0=¢%7m0,

The differential tunnel conductance

d<|> S
dv 47 (a

kap 3
Gy(v)= ——5—5ce ™7
kg

exp — —1,
Ye(2)

regarded as a function &f, is a gaussian curve with a char-
acteristic widthyg(.%). If, as above, we také&s~ 10, while
a2~k2=gp~10eV, then the characteristic energy width of
the first (m=1) resonance ig(%)~10 3eV. This means
that a temperaturd <10K is needed to observe it experi-
mentally and this resonance itself should show up at voltage
scalesv~10"3V. Similar estimates can be made for reso-
nances withm>1.

Proceeding to a calculation of the mesoscopic fluctua-

(51)

Here we havedy<1, which justifies our earlier assumption tions in the tunnel conductance, we SUbStltUte(EE@ in Eq.

that the principal contribution to the resonant tunnel currenf18) and, given thapm (eF ,U)>7TaF

for low impurity concentrationgsee Eqs(47) and (48), be-

2 holds within the
concentration rangét8) under consideration, we reduce Eq.

low) is from weakly twisting quantum resonant-percolation (18) to the form

trajectories.
Let us find the range of concentratioas within which

the resonant tunnel currefit(v)) is much greater than the

currentig(v) for an empty barrier

(i(v))>ig(v) (45)
where
4 2k2 2
(V) =S—oF aFe—Z%v. (46)

m(ag+kg)® L

Substituting Eqs(42) and (46) in Eqg. (45) and limiting our-
selves for an estimate to the term with=1 in Eq.(42), we
obtain

endy 32n%\me 27 v
o ve()erf(vlye( )

For example, whew ~ yg (%), for the typical 4~ 10, Eq.
(47) gives the estimate

ce

(47)

10 8<c<1072 (48)

Within this range of concentrations, fors~10 and
v~ ve(¥%), for the point of steepest desce4) we find
(given thatm is a discrete paramefer

my=1, Uuy=%. (49
0 0

Then the current—voltage characteristic takes the form

(i(v))=Sa2ce ™ i (v, %), (50
where

) o 1 kFaF ( % )

|1(V,Lé) 3\/—( |:+ k2)2 yF( /)erf ([) .

<52>1/2:i[ E:mfpm(“llz,U)_iﬁ](V,u)du
VS [Zm/ P ,Wim(v,u)du]

1/2
I e

Retaining only the principal terms witim=1 in the sums in
Eqg. (52) as an estimate, we obtain

(53

-3
(52)12= 1 cm’ )

ex
a;:\/C—S 2

The conditior( §2)Y/?<1 yields a lower bound on the area of
the tunnel junction

Js>

1 cm 3
, (54

ex
a’F\/E 2

that will ensure real self-averaging of the tunnel conductance
for the impurity concentrations considered here.
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The properties of spin excitations superposed on a uniform ground state with antiferromagnetic
(or spira) spin structure are studied in &2Hubbard model. Expressions are derived for

the spin susceptibility in the random phase approximat®RA) using split Hubbard bands as a
zeroth approximation. The calculated collective modes with dispers{@) =c|Q

— (mr,m)| nearQ~ (,7) reproduce well the characteristics of the spin excitations observed in
undoped cuprates. For doped systems with an antiferromagnetic structure of the ground

state, calculating/”(Q,w—0) gives the same mode with a peak@t (7, 7), regardless of the
type of Fermi surface. It is shown that in doped systems with a spiral ground state spin
structure,x”(Q,w—0) peaks occur with incommensurate quasimoménthat are coupled to

the spirality vector. ©1999 American Institute of PhysidsS1063-776(99)02109-5

1. INTRODUCTION for U>0. However, the perturbation theory used in Refs.
21-25 is not applicable to strong and intermediate coupling,
In recent years a number of fundamental discoveriesvhich occurs in the cuprates. Thus, we shall use a medium
have been made about the electronic structure of théeld variation method, in which the specific instability ob-
cuprates: These include data obtained from angle-resolvedserved in Ref. 21 is assumed from the start. The correspond-
photoemission spectroscoRPES? and inelastic neutron  ing electronic spectrum will be characterized by a band split
scatterind’ the discovery of the “small” Fermi surfaéand  into two.
of an anisotropic pseudogap in the ground state of undoped The purpose of this paper is to calculattkw), relying
sample$,’ etc. Inelastic neutron scattering data occupy aon specific variational realizations of the pattern of upper and
special place. The spin susceptibilig(kw) has been ob- lower Hubbard bands, to compare the quantitative character-
served to behave differently in various cuprateseas0:  istics of the spin-wave excitations with observations, and to
low-frequency peaks appear j(k,w) for k~(m,7) in yt-  understand whether the interpretation of the incommensurate
trium ceramic or for incommensurate quasimomeata(7m  peaks in the dynamic susceptibility still holds in this ap-
+8,m) in Lay_,SKCuQ, (LSCO).*#*The intensities and proach. This analysis only concerns uniform states with an-
dispersion of spin waves have been measured absolutely tiferromagnetic and spiral spin structures.
doped and undoped cuprates at high frequengipsto 300 This statement of the problem is of current interest for
meV).2~15 Peaks iny(kw) have been observed in yttrium several reasons.
ceramic that depend on temperature and on the supercon- 1. The quantitative characteristics of collective spin ex-
ducting transitiort® citations are currently known all the way <300 meV
Many of these results are often treated via a band apfrom absolute inelastic neutron scattering measurements on
proach assuming a uniform ground state. For example, acioped and undoped systehis:® It has become possible to
cording to one interpretatiot¥;2°the low-frequency behav- compare these with the characteristics calculated on the basis
ior of x(k, ) in various cuprates is related to the behavior ofof a band picture.
the Fermi boundary in the unperturbed band. However, all 2. The idea of splitting of the band into upper and lower
the band theorié§ *retain a stage with renormalization of Hubbard subbands is fairly well justified for a largét ratio
the spin susceptibility of the unperturbed systgfhfkw) to  and has been used in many approactf@$! It is consistent
the susceptibilities of a highly correlated system. None of thavith an explanation of many physical properties of the cu-
renormalization variants is entirely clear. For example, inprates in terms of the closeness of the van Hove singularity
Ref. 18 x°(kw) is renormalized by an exchange spin inter-in the spectrum of states to the Fermi lev#ie so-called
action ~J=S,S,,. The latter is a consequence of a strongVHS scenarip? On the other hand, the Hubbard gap
one-center interaction, which changes the band structure sig-U renormalizes the band gaps, bringing them into agree-
nificantly. In such a situation, it is impossible to use thement with photoemission data, and strengthens the van Hove
unperturbed band, even as a basis. This conclusion followsingularity. However, a two-band picture differs from the
from the most rigorous calculations of a Fermi liquid with a VHS scenario of MarkievicZ:?® According to the latter, the
weak interactiorf:~?° In the case of Fermi boundaries with van Hove singularity lies at the center of the band, while the
nesting in the presence of van Hove singularities at foupseudogapA* <U of the ground state of undoped com-
points in the phase plane, the system was shown to be upounds is explained by a small splitting of the band owing to
stable to antiferromagnetic ordering—a spin density wavecharge density waves or lattice distortions. Another explana-

1063-7761/99/89(9)/13/$15.00 564 © 1999 American Institute of Physics
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tion of the pseudogap has been proposed in a picture of splibcluding a description of inhomogeneous charge and spin
Hubbard band$’=3? It is related to the fine details of the structures, such as stripe phases with alternation of the
upper edge of the lower Hubbard band and to dielectrizatiomntiphase antiferromagnetic domains and concentrations
of separate parts of the generalized Fermi boundary with lovef charge at their boundaries. Rigorous experimental
doping. This permits an explanation of the small Fermi surproof of the existence of such static stripe phases has been
face and the phase diagram in terms of a correlation mechabtained for LaNiQ. 5,°**" La,_,_,SKNd,Cu0Q,,%%
nism for attraction of holes. The latter reduces to a spin-LaZSrCuQ_oo5,4° and other compounds. Data have been ob-
polaron attraction in the—J modef! or to its analog, tained which indicate the presence of analogous dynamic
valence-bond correlations in the Hubbard mddéfin each  spin fluctuations in La ,Sr,CuQ, (LSCO).*°~*? This pro-
of the models, thel-symmetry superconductivity can be ex- vides a basis for an alternative interpretation of the incom-
plained without empirical parameters. Here the range of dopmensuratey(kw) peaks in LSCO(as opposed to the band
ing for which a two-dimensional antiferromagnetism of theinterpretation®=29.
CuG, planes exists greatly exceeds the range in which vol-  Despite these remarks, in this paper we shall only con-
ume antiferromagnetism is observed and overlaps the regicsider uniform average-field states, in order to understand
in which superconductivity occurs. In both the Hubbardhow the two-band nature of the Hubbard correlated system
picture’®3 and the picture of a weakly split single bahtf ~ affects the spin dynamics.
the type of Fermi surface and the properties of the pseudogap
are very sensitive to the small parametgrwhich takes the
non-nearest neighbo_rs into account, or to the paramgter  , SUSCEPTIBILITY OF THE AVERAGE-FIELD
which characterizes jumps between oxygen atoms. A calCUsNTIFERROMAGNETIC STATE
lation of the spin excitations of this system should help in
making a choice between the two interpretations of the Letus consider a standard Hubbard model which gives a
pseudogap\*: either this is a small splitting of a single single-band representation of the Gu@ane of the HTSC:
band? or it is the energyA* (k)= —(E,—u)>0 of the
lower Hubbard band in the dielectric segments of the gener- H:Z .gkcl”ckvjL Hy, Hy= UE NniNny s
alized Fermi boundar§?*° ko n

The possibility of describing collective spin perturba-
tions in the band approximation of an unbounded Hartree—
Fock method(i.e., an average field method with alternation The spin susceptibility is defined as the Fourier transform of
of the spin projectionhas been demonstrated foD]g%ub- the retarding correlation functich:**
bard models for the electronic structure of the polyetids. _ -
this paper we make an analogous calculation of the spin sus- X"B(qw)_«sg(w)’sﬁ Rl
ceptibility for a 2D Hubbard model and discuss its confor- i _ B
mity with the observed characteristics of spin wave in the =7 f e 'i((Sk(1);S;%))dt, @)
cuprates. In any case, the proposed method is the opposite of
the approach of Pinest al3* In the latter, an empirical spin Where
susceptibilityy(kw) serves to a great extent as the basis for ([A(),B]), t>0
describing the properties of the ground state and, in particu- ((A(t);B})z[ T ’ (3
lar, superconducting coupling. Our goal, on the other hand, is 0, t<0.
to use explicitly constructed variational functions with dif- |n Eq. (2), the g-components of the spin and densjty
ferent spin structures to calculate the susceptibility, in ordec g 5n9 can be written in a uniform fashion:
to be able to evaluate the reality of spin states with a particu-
lar structure.

Our method for calculating(kw) is similar to that of
Ref. 33, but differs from that of Ref. 35. In the latter, the

€= 2t(cosk,+ cosk, )+ 4t" cosk, cosk, . (D)

1 1
SI== 2 (0a)sstdy, pI=5 D (0p)sstds, (4
2 SSI 2 Ss!

splitting into lower and upper subbands is described in Jvhere

Hubbard | approximation. In this approach there is no strict 1 _

definition of the band states and their structure is not de- rl,=— > et e (5)
tailed; this shows up in the well-known failure of a number \/N n

of sum rules. Thus, our results differ substantially from thosgqere theo,, with a=1,2,3 (or x,y,z) are the Pauli matrices
of Ref. 35. In this paper the properties of the spin excitationgynq o, is the unit matrix.

are studied for the simplest uniform average-field states, i.e., | the absence of an interactiob € 0), the susceptibil-
antiferromagnetic and spiral states, neglecting valence-bong, tensor is isotropic,

correlations. When the latter are taken into accétitthere

is a significant drop in the energy, the dielectric gap is re-
duced, and there is a narrowing of the doping range within
which two-dimensional antiferromagnetism occurs. Thus,

valence-bond correlations should also affect the spin excita- YO(qo)=— i Fierg— fi _ (6)
tions of the system. We avoid some topics of current interest, N K erq— ek otiy

0 1 0
Xaﬁ(qw)z 5&,BEX (qw)i
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and is determined by the band energigsand the corre- Sey o 1
sponding Fermi function$,= f(e,/kT). The same sort of tan 2ox= 5 &me dex=75 (k™ €k). (13)
expressions exist for the density correlation whén 0. 0

There are several equivalent methods for deriving thelhe inverse transformation of the basis operators is written
susceptibilities, renormalized by the interaction: the random
phase approackRPA), factoring the equations of motion, CL;:E U, )\(l_(a')bl)\o_, (12)
and summing ladder diagrarffSAll of these yield the same A “ -

result: wherek is the quasimomentum introduced into the Brillouin

1 x%qw) magnetic zoné (|k,+k,|<) andiy is the corresponding

Xao(qQw)= > To(qw)’ a=X,Y,Z. (7) reduction index:i,=1, k=k for keF or i,=2, k=k
X —(mr,7) for ke F.

For largeU/t, this approach cannot be satisfactory in the  The self-consistency condition for the solution, i.e., the
case of a half-filled band or lightly doped systems, since theiequation fordg, has the familiar form
spectra are far from the zero spectrumepf For these sys- 1 1
tems, the I(_)west states of the average field are antiferromag- 1=y - SF Z_(fkl_fKZ)’ Oi= \/m_ (13)
netic (or spira) states, in which the one-electron levels form k Ok

upper and lower Hubbard bands, separated by a gap The indexF on the summation sign means that the sum over

et e k is taken within the Brillouin zone and thg,,, are the
Ekle(z)Z% + \/565+ u2dj, Fermi functions for the states of the lower ano(l L)Jpper bands.
This equation gives a high value for the critical doping
1 ~ level 6. corresponding to a transition of the antiferromag-
dex=5(ex—€), k=k—(mm). (8 netic solution into a paramagnetic oné;~0.45 for U/t
=8. When the valence-bond correlations are taken into
Heredo=(—1)"o/|a|(n,,) is the alternating spin density. accourt®*this level falls tos,~0.3. However, both values
An extension of these studies to correlated states hasxceed the region where antiferromagnetism exigts(
showrf®* that when valence-bond correlations are taken-0.05). Nevertheless, variational calculations of the
into account, the two-dimensional antiferromagnetism andnergy®*® and calculations by the slave-boson metli§d
splitting of the bands into two subbands still occur over asuggest a large radiuR,>a, for the two-dimensional an-
fairly wide range of doping. The most convincing argumenttiferromagnetic correlations. We note also that the correct
in favor of this picture is a determination that a pseudogap irNeel temperaturely~4t%/U cannot be obtained from Eq.
the normal state is related to the dielectrization of individual(13), which would imply Ty~U/4 (for U/t~8). Ty may
parts of the Fermi boundary and is possible only when a gagecrease when multiple electron scattering is taken into ac-
exists between the upper and lower subb&fid8.This  count using parquet diagrarfs:2*But, again, we emphasize
means that the spectru(@) of a real split band must be used that this sum is meaningful only for small parameter& .
for calculating the null susceptibility®(qw) and for its sub-  For largeU/t the impossibility of describingy using Eq.
sequent renormalization taking the interaction into account(13) means, most likely, that it is necessary to proceed to
Carrying out this program is the purpose of this paper.  inhomogeneous solutions. This follows from the t&ahat
For simplicity we take the antiferromagnetic solutions of the long-range antiferromagnetic ordering breaks down when
the average field neglecting valence-bond correlations as @namic or static disordered antiferromagnetic domains or
basis(although, according to Refs. 29 and 30, it is preciselylocal spiral states develop. Proof of local magnetic ordering
the latter which ensures attraction of holes in thehannel in the cuprates over a wide range of doping has been pro-
and superconductivily Thus, we divide the initial Hamil-  vided by data on the nuclear quadrupole resonance of the
tonian (1) into a linearized Hamiltonian corresponding to a copper nuclei, u-meson spin resonance, and $bauer
self-consistent solution with alternating spins and the restmeasurements.
which appears as a perturbation Because of the doubling of the unit cell among the cor-
H=H_+V, V=Hy—(Hy),.. (9) relators ((r%w);r ~9')), not only the correlators withg’
=q but also those witly' =q=* (7r,7) =G will be nonzero.
The eigenstates of the linearized Hamiltonian correspondingve shall now characterize the complete set of quasimomenta

to the band energie@®) are of the Brillouin zonesG of the initial lattice by the vectoq
. normalized to the Brillouin magnetic zofreand the normal-
b= {Cky G, JiUn(Ko), ization indicesi,=1,2:
|
_ _ q=q+(mm)(ig—1), qeF. (14
iAN=1,2, k=k+(m,m)), (10

Thus, we determine the entire set of spatial harmog&g$or

where the spin and density as

cos —£&_sin T .
fr TEosiney Mo =Yau Tow=Yee, d€F, G=g+(mm).

Ui, (ko)= . ,
WKOZ1 g sing cosey (15)



JETP 89 (3), September 1999 A. A. Ovchinnikov and M. Ya. Ovchinnikova 567

The expression for these components in the basis of zone Fourier transformaﬂjlkz(kgaw) andDjj(qwgo). The
operatorshy,, takes the form latter, in turn, are expressed in terms of a sum dveof the
AV (k'gow) with the corresponding weighting functions
Yﬂ? N > " > M ;nx'(qk““')blhqwbkwa' , (16 (171).2As a result, we arrive at a system of algebraic equations
MW o for the correlatord;; [see Eqs(18) and(19)]. The solution

where of these equations gives a matrix analog of the renormalized
transverse susceptibility for the case of split bands:
m N — ’ ~ ~ A~
M (akoo’) = 25 Un(kt .o Ujn (ko) Dy (qwea) ={[T ~UD~1D%; . 23
X @i+ +m+ig) (17) The matrix of second ranIDﬁ , in Eq. (23) is given by
-
HereX,\’,i,j=1,2 and the vectok+q=k+q+ (m,7)(iyq _ 1 2 S fea=for oy (24)
—1) is normalized to the Brillouin magnetic zone with the NG X B Ear—fotiy M
i ization indé @) -
gorrespondmg normalization index, and 6'“’ is 6 modulo with
The symmetry of the problem implies that there is no  R),,(q.,k,co)=M}, . (qgkgo)M., (qkgo). (25

correlation (Y2, ;Y 2,’" )) between the transverse Using the definitiong17) and(11), we obtain the following
(o=—-0") and Iong|tud|nal ¢=0') components. We begin compact expressions f@t':
by calculating the nonzero transverse correlators

ii 1 .
Dij(dwaa)=((YE,;Y, ). (19) Ru(@kgo)=5 1+ (=1

Of the equivalent methods of deriving an expression for the Sergdex A2 “
susceptibility, we shall use the simplest, factoring the equa- P
tion of motion®® Turning to the representatiati6) for Y9, Okedic Gk
we consider the correlation functions (26)

AT (kgot)=((93, (g.0,0:Y,51)), (19 and

X (_1)i+ikq

R} (q.k,go)=Rey,(g.k,
whereg = — ¢ and the operator wldker) =Ry, (q.k o)

- , A A
6?\}\’(g10):bl+q)\(rbk)\’v (20) g [(— ) __(_ ) ) (27)
. . - . . L. 2|U| gkq Ok
is taken at timd. Following Ref. 43 and differentiating Eq. where
(20) with respect to time, we obtain
1
d Se==(ex—€x), ¢ =\/m,
| A (kgat) = S(([ 97, (2,0).Y, 3o o e ST
i k=k+(m,m), A=Ud,, (28)
(B B )AL (ko) Feked i |
A while de¢,q and gy4 are analogous functions of the reduced
O VG Y, Sh). (21)  quasimomentumk+q=k+q+ (m,m)(ixg—1), where iy

=1 (2) for k+qeF(«F).
The diagonal elements of the matf; calculated using
Eq. (24) directly determine the transverse susceptibility

HereE,, is the energy8) of the split bandsX=1,2) and an

expression for the perturbatiov in terms of the operators
by, is given in the Appendix, EqQSA1)—(A3). For calcu-

lating the last term in Eq22), in the commutatof J,V] we " "
retain onIy those operators which reproduce a particle—hole Xxx( Q@) = xyy(Qu) = EX‘+(QC")
pair b’ K+ qr, me o with the same total momentuny

against the background of the ground antiferromagnetic state 1 |m{D. (Qwoo)}, (29)
of the average fieldthe approximation of a low excitation dle
concentration As a result, we obtain whereq=Q— (,7)(io—1) is the quasimomentum normal-

ized to the magnetic Brillouin cell and the index=1 (2)
for Qe F(&F). Thus, the diagonal componerilg; are di-
. ) rectly observed in inelastic neutron scattering. The nondiago-

x> M}, (akga) YE', (). (220 nal component®;; (j#i) can only contribute to the local

' characteristics of the spin system, in particular, those mea-

Here the operatorg and functionM are given by Eqs(16)  sured in NMR experiments.
and (17), while all the quasimomenta are normalized, i.e., For the paramagnetic state of the average fiedd (
k,q,k+geF. The Fermi functionsf, correspond to the =0, U#0), the diamagnetic components of the matég)
levelsE,, of the upper and lower Hubbard bands. Repeatingransform to the well known expressiofi® and (6) for the
the steps of the derivation in Ref. 43, we find expressions forenormalized susceptibilitieg, - (Qw), calculated using an

(97, V]= U(kar_q,)\_fk)\’)
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unsplit band as a zeroth approximation. For the undoped an- 1—UD32=(aq2—b’w2— vAép)+O(q3). (35
tiferromagnetic case= 1 for the Fermi functions in Eq24) ) ) ] )
we havef, =1 andf,=0. That is, the low-frequency, col- 't differs from Eq. (32) in having a spin gap term\s,

lective spin—wave perturbations are determined in this casg |Bo/(Udo)|. As a result, for the lowestin terms of en-
by an interband particle—hole interaction. The dispersiorf"9Y) antiferromagnetic statevt=—1) Eq.(35) we obtain a

(q) of the transverse spin wave is found from the equatiorfYPic@! spin-gap dependence for the excitation spectrum:

for the pole in Eq(24), i.e., from the equation w(Q)=/c’q?+ AS? . q=Q—(,m). (36)
Det=||8; —UD}(quwga)|=0. (300 For the metastable antiferromagnetic solution with1, on

We shall show that fog— 0 andw— 0, the determinant the other handw(Q) goes to zero for finit¢q|# 0, which
indicates an unstable solution. In this model a gap shows up

behaves as
for any polarization of the transverse spin waves. In a num-
Det=ag’—bw?+0(c?,...). () per of cuprate¥® a gap is observed for just one of the
In fact, for q—0 and w—0 we haveD,,~w, 1-UD,; Ccomponents of the transverse spin excitations, with a polar-
—const+O(¢,w?), and ization perpendicular to thab-plane. One possible descrip-
tion of this behavior might be provided by a model that
1— UDgzz 1— B EF ak1~ fie introduces an alternating magnetic field perpendicular to the
N < 20y orientation of the average spins of the antiferromagnetic
s s 3 state. This kind of model is consistent with a noncollinear
+t(ag’—b'w?)+0(q). (82 arrangemerit of the antiferromagnetic alternating spins of

But the expression in square brackets in &%) goes to zero  the different Cu@ layers in PsCuQ,. However, a quantita-
according to Eq(13), which defines the self-consistent quan-tive description requires introducing an anisotropy in the

t|ty dO for a|ternating Spin_ AS a resu|t, f(@ near(ﬂ-,ﬂ-) or Spin interactions and leIng the antiferromagnetic axis in
lg|=|Q— (,7)|<, we have space. A complete accounting for this type of spin—orbital

A and dipole-spin—spin interactions is a separate problem.
X"+ =ImDyy(qu)=Ad(c’q*— w?)= 5 — 8(w—c|q)),

2cq 3. DISCUSSION OF RESULTS: ANTIFERROMAGNETIC
q<1. (33 STATES
Therefore, the band calculation of the spin susceptibility with
Hubbard splitting of the bands reproduces the characteristi . B
dispersion of transverse spin wave£Q) =c|q|, for Q near rat_ed by a}tg?p from thedur;fllleq ugper ?"’}ﬁq‘é— O‘)"apdt:hed”
(7r,7m) obtained in the Heisenberg model for an undope pin Iexcrl]allons_ areH eeLmlne SO(?BII y  nter a)n
antiferromagnéf and observed distinctly in a number of p;azrtic er: oel palrfs.h e“re t f two—parktjlﬁ_e %Xc'tam??)
cuprates>~1°Similar algebraic equation(see the Appendix ~ ~ [the poles of the “zero” susceptibility23)] are char-

: ©0)_
describe the correlation of the density and longitudinal Susgc;eAnzed gy_me O?_ap &, so tfh";‘]t 'Ieriif_O holdsbfor “’h f
ceptibility, x,,, wherez is the axis of spin quantization of <24, y—0. The dispersion of the low-frequency branch o

the antiferromagnetic state. As opposed to the transverstﬁe collective exmtaﬂon&)q is found fro_m_ an equation for
components, there is no low-frequency collective mode o € pole 9f the. renorn_"nallzed suscept|b|I|(94) as y=0,
the spin excitations witlz-polarization. while the intensity (Q) in the expression
To conclude Sec. 2 we introduce an example of a model [ (Qw)=1(Q)d(w—wy), q=Q—(m,m)igeF
that characterizes the gap in the spin excitation spectrum. We (37
supplement the Hamiltoniafl) with the interactionAH
=By(—1)"S,, of the spins with an alternating “magnetic
field” parallel to the axis of spin quantization of the antifer-
romagnetic state. This interaction can serve as a crude mo
'?’Ltehrftignbzzgh:r?gf 'n;eg:ttr'grr;?; n?\'/gzbg ”g%ﬁ?&ﬁﬁ curve for a series of values ab along theq,=q, cross
- > gy Sp > g y & i section fory=0.008 (q is the quasimomentum normalized
a new g=/(de+(Udo— ',30) ’ \(vh!le the self-consistent . 4o magnetic Brillouin zone The location of the peak
value_of do of the alternating spin is now found from the repeats the dispersion, found from Eq.(30). The peak
equation height and its widthA w4, depend on the artificially intro-
1 fF 1 duced parametey in such a way that the peak intensity
1=U—> -—
N 20«

I(Q)=f X" (Qu)do=myAwy,

with the newg, . Equation(34) has two solutions with dif-

ferent signs,y=sign(doBy). For the solution withv=—1, s independent of for small y. Figure 2 is a typical plot of
which corresponds to the lower energy, at lexit, By/t, wq for Q varying along "M YI" contour. The functionwg

andq=|Q—(m,m)|<1, the quantity 1—UD82 has the fol- is periodic within the Brillouin magnetic zone, i.euq near
lowing expansion: the pointY(,7) repeatswg near the poinf’(0,0). As op-

We begin with undoped systems=£1). In this case,
g]e completely filled lower Hubbard band;(=1) is sepa-

is determined minus the functidd;;(w) as y—0. A clear
representation is provided by directly calculatipyaccord-
ing to Eqgs.(33) and(23) for finite y>0, which simulates a
inite energy resolution. Figure 1 shows a typigd(Q, w)

Bo
1_U_do (fir—fi2) (34
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®=0.1-06, y= 0.008 Y
n=1,4=4q,q)

20+

10

AVIWiWi\ ]

0 05 10 ¢ I0,0) M Y(x, %) 0 I(0,0)

x 10

FIG. 1. The susceptibilitieg”(g,®) as functions of the reduced quasimo- ) : - .
mentumg (in units of radA) for ©=0.1-0.6 in an undoped system with F!C- 3. The intensity (Q) of the peak iny"(Q,w) given by Eq.(37) for
U=8 andt’'=—0.05. The curves were calculated fpr=0.008. U,t', o, guasimomentum that varies along the contbeM —Y—I". The model pa-

and y are all given in units of. rameters are as in Fig. 2.

posed towqg, the intensityl(Q) is periodic only in the measurements of the inelastic scattering cross sections in
ground Brillouin zone. Figure 3 shows a plot of the dimen-the high-frequency region yielded a spectral weighting char-
sionlesd (Q) for quasimomentur® varying along &' MYI"  acteristic, specifically

contour. The functionl (Q) behaves differentlyx|Q| or 1

«|Q—(m,7)| "1, respectively, in the neighborhoods of the  Y,p(w)= —(g,uB)Zf dQ,pIm X(Qw)/ f dQ,p .
pointsI" and Y. Thus, for an undoped dielectric, the band 2 (39)
calculation, like the standard description of spin waves in the
Heisenberg model, yields a linear dispersiag~ cq for low The factor containing the Bohr magnetgs in front of the

w and the absorption peak corresponds)te (7, ) in ac-  integral is a consequence of the different definitiong ah
cordance with the dependencEQ)x=1/q for gq=|Q Eq. (2) and in Ref. 13. In the experimental region of
—(m,m)|<1. <300meV, Eq.(38), which is almost independent ab,

We now compare the calculated characteristics of th@laVeXeq=2.7, 1.8, 2.3ug/eV for the same cupratéd The
spin waves of the undoped systems with experiment. Th¥alue ofxzp that we have calculated for a model with't
spin wave velocity c=dw/dq|q:0 varied over ¢ =8 also depends weakly an (see the inset to Fig.)4and is
—0.60-0.58/rad in our models withU/t=8 and t'  given byX,p~2 ud/t, which equalsy,p~5-4ug/eV for
=+0.08. For the estimatéd®® t=0.4-0.5eV (=4t>/U t=0.4-0.5eV. As expected, this result is less than that,
=80-125meV), we obtairc=880-1140meVA. These
values are entirely consistent with the values,=850,

1020, 800 meVA measured in the cuprates JGuO,, f;

Nd,CuO, and PyCuQ, respectively®> Absolute =g, 0
oo
Y 0.8F 7 1
/ = 2
/ 2 Hglt
2:__._3-—/
04F 2
0.5r 0 02 04
@
0 1 2 3
lql
. FIG. 4. The frequencyw(q) of the collective modgin units oft) as a
0 function of the reduced quasimomentups|(q,,0)| (in radiang for an
1(0,0) M Y(n: ) 1(0,0) undoped systenicurve 1) and for doping +n=0.15 (curve 2). Curve 2

was calculated on the basis of the antiferromagnetic solution for the average
field as the dependence of the position of the maximum,(q), of the
FIG. 2. Dispersion of the collective spin excitation mad€Q) (in units of susceptibility x”(q,») for fixed q. The length of the vertical segments
t) for guasimomentum varying along the contour equals the half widtlA w4, Of the peak. The dashes are for a clear repre-
I'(0,0)-M(#,0)-Y(m,7)—-I". The model parameters ard/t=8, t'/t sentation of the width of the mode. The inset shows the dependence of Eq.
=-0.05, andn=1. (38) on w in units of u2/t.
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Yo =S(gue)?/2] (S=1/2, J=4t?/U) obtained by the clas- Very sensitive to the parameter, which accounts for diag-
sical Heisenberg model neglecting quantum-mechanical co@nal jumps. When the sign ¢f changes, the type of Fermi
rections. This last value Tig'D=8,u§/eV for t=0.5eV ( surface changes. For'>0 doping forms hole pockets
=125meV). Our calculated values are twice the experimenaround  k~(xm/2,xm/2), and for t'<0, around
tal results. We believe the main reasdfor the discrepancy K~ (*,0), (0= ). Despite this difference, calculations of
is the following. During the comparison with experiment, the X" (Q®) using Eqs(23) and (25) for each of these systems,
factor a?, which reflects the amplitude of the, d-orbit of ~ t'=0 ort’<0, give similar pictures of the spin excitations
copper in the hybridizeg—d orbital (single-hole “node” ~ @q= ¢4 with small variations in the velocitg, but do not
orbit of the single-band Hubbard motfet9, was left out of ~ r€veal any peaks for incommensurate quasimomenta. The
the calculated form factor for neutron scattering on Cu. Fof&in influence on the variation in is differences in the
the estimatedr,~0.86 (Refs. 49 and 5pa correction factor di€lectric gapA of systems of different types and the reduc-

of aj~0.55 makes it possible to match the calculated valudion In & owing to dopln_g. e . . .
of 3 with experiment. The reason for this insensitivity of the dispersion of spin

Thus, the band approach yields a reasonable quantitati C'ttat'onf t?h the deltall's of t?% bfanti;n;@rg;}est t\/f\}/heﬁtl
description of spin excitations in undoped systems. Thi cotrilvraryi:medcodncvulsmns}romiits.rb r?d ira ne co ;ti |
means that it can be applied to doped systems in order tf?c ©sp ode develops ro erband pairs, one particie
: : . orm the upper band and the hole from the lower band. For
answer three questionét) how does doping affect the dis-

persion of spin waves and relaxatiéie width of the ab- them, the weighting function&5) (the matrix elements of

. . . the transition are of order~1. When a dielectric gap
sorption peak® (2) Does the change in the type of Fermi (Ex:q1—Ex2=2A>w) is present, the details of the band

surface associated with the signtofin Refs. 29-31 actually S . o
change the low-frequency behavior of the susceptibilityhave little influence on the interband contribution to E2f)

. for x°(g,w). With doping and smalfj and w, the interband
" ’) - X . g )
X'(Q,0) na fundamental way.)3—l|ow do the model pa contribution to x°(q,®) is still fundamental. In fact, for
rameters influence the characteristics of spin waves?

. small w, of all the particle—hole pairfb';,; by} within a
Calculations OfX(Qw.) for dope_d syst_emsn(f 1§0'2) given lower band, only those pairs whose quasimomgkhta
show that for loww, distinct collective spin excitations are

. . > 2= =k+q andk lie within a narrow band near the Fermi bound-
still present. They show up in the transverse susceptibility aﬁry make a contribution tDﬂ [see Eq(24)]. For light dop-

peaks inx"(qw) with a maximum a =wq and a half width 0 ‘thesek andk’ lie close to the nesting lines. But in this

Awyjp. For smallo<0.4, the peak width is twice the arti- o4ign the matrix elements for one-band transitions and the
ficially introduced widthAw,,;=2y (for g=0.04). How-  cqrresponding weighting functiong25) are small, Ry,
ever, it increases sharply asis raised, beg!nn|ng.W|thu <|RyJ. As a result of all this(small phase volume and
~0.4t (|q|>0.7rad). Figure 2 shows the dispersiag of  ejghting function in lightly doped systems with small
the spin excitations for a system with=0.85. The size of ¢ and|q| <1, a collective mode with very little broaden-
the vertical segments on the curve characterizes the peq,kg is still attributable to interband pairs. Only far=0.5
width Awy, of the x"(qw) curve for fixedq. The spin wave  goes the interaction with the single-band pairs cause a sharp
velocity c=dw/dg|q-o is somewhat higher in doped sys- proadening of the collective modes.
tems; this corresponds to the reduced dielectriclgelp with Therefore, the calculations do not yield incommensurate
doping. The sudden broadening and asymmetry of the peakw-frequency peaks iy’ (q, ») within a picture of antifer-
for large w does not permit extending the, curve into the  romagnetically split bands for any type of Fermi surface.
regiong>1.2 rad. This contradicts the predictions of Refs. 18—20, which were
This picture is in qualitative agreement with measure-pased on cruder renormalizations of the zero susceptibility of
ments of x"(qw) in LSCO at high frequencies, 25 meV the unsplit bandk, .
<w<200meV. ® However, at low frequenciesw
<20meV, the susceptibility calculated for a doped antifer-
romagnetic state does not reproduce the low-energy peaks SPIN SUSCEPTIBILITIES IN THE CASE OF SPIRAL
for the incommensurate quasimomer@e= (7= 8,7) and STATES
Q= (m, 7+ 5) observed in LSCY*%In the two alternative In light of the above remarks, the explanation of the
approaches, these peaks are attributed either to different bercommensurate peaks as a manifestation of nonuniform spin
havior of the Fermi boundary of the “zero” band for the and charge structures observed in the cuptétésis plau-
different cuprates under antiferromagnetic correlationsible. Hartree—Fock model calculatihs>®confirm the pos-
conditions?~*%or to an actual spin and charge superstructuresibility of stabilizing these structures. More accurate calcu-
the so-called stripe phases observed in a number dhtions, in particular, ones that include valence-bond
cuprates®4°~*2 An interpretation of the first type has one correlations, are desirable, but rather involved.
major defect. It is based on a zero susceptibility associated In this paper we limit ourselves to studying the suscep-
with the zero spectrum of,. One of our purposes has been tibility of the simplest spin structures—the spiral spin states
to study the effect of the Fermi surface g(k,w) when the of the Hubbard average field model. It is not clear whether
band splits into upper and lower Hubbard subbands. It hathese states have a direct connection with cuprates such as
been established previoudly*?that under the conditions of LSCO. As opposed to the oxides of nickel, in LSCO the
two-dimensional antiferromagnetism, the Fermi surfaces arsncommensurate spin fluctuations may have a dynamic char-
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4 H)
1.0
I I-Q=mx(&1) | g5t 1-Q@=x=(§ 1)
2-Q=7&9d 2-Q=nd
(R4S
L FIG. 5. The average energil) at a site(in units oft)
i and the parametef characterizing the vectoQ
=m(&,1) orQ=m(¢,£) of the spiral state withx- or xy
0.6r 07t AF symmetry, as functions of doping. The curé cor-
! : responds to the antiferromagnetic state of the average
2 ] field with Q= (1, 7). The system parameters até/t
0.44 i =8, t'/t=-0.05.
L 1
0.2 -0.9 n L
0 0.2 04 0 0.2 04
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acter without explicit signs of static stripe phases. The propwhere

erties of an electronic system interacting with a spin system

in a spiral state have been studied beférelnlike the s—d 0y= Vo€l + U2d?,
model examined there, with its two separate subsystems of
spin and itinerant electrons, in the Hubbard model that we,,q
are studying the localized spins are formed directly from the
electrons themselves. This changes the electronic spectrum
and the spectrum of the magnetic fluctuations compared to  Yix sing, cosgy)’ tan 2p,=Udo/ de .

Ref. 54. (43)

Two types of spiral states of andxy-symmetry will be - .
examined, with spirality vectorsQ=m(71) and Q Herek runs through all the values within the complete Bril-

— (7, 7), respectively. The difference in the energies 0flouin zone. The definitions in Eq&41) and(42) are given in

the two types of spiral states of the average field is less thafi FO'M that is symmetric with respect to— —o.
the expected gain in energy from the valence-bond correla- Kno_wledgg of _the eigenstates and barid$) and (42)
tions. Thus, it is impossible to establish a preference for on81akes it possible, in tum, to calculate the one-electron aver-
of the two types of states on the basis of the average ener@@€S(39), in particulardy:
alone. In the following some of thg notation duplic_ates that 1 Udo(f 1 fa)
of Sec. 2 but has a different meaning. For exam@las the do=m 2 — 2q.
. - ) : K Ok
guasimomentum characterizing a spiral state, whiis the
quasimomentum of spin excitation which changes within theThis closes the procedure for self-consistency, i.e., for mini-
limits of the entire Brillouin zone. mizing the energyH) with respect to variations in the func-
The spiral states with vectorQ*°® are single- tions for a fixed parameted. The subsequent minimization
determinant states characterized by one-electron averagesaff (H) with respect to the spiral state parame@rdeter-
the form mines the optimum pitch of the spiral.
fo=(C! con)=(C! o) ' Fi.gure 5 shows the parametémwhich characterizes the
no=ne ng=ne/s spirality vectorQ and the average energy for the two types
(ryoy=(cl Cny)=dge'é", & =al|0]. (39  of spiral states withQ=w(7,1) andQ=m(7,7) as func-

. _ L _ tions of the doping.
The linearized Hamiltonian of the Hubbard model for this When the linearized Hamiltonian is chosen in the form

1
56k:§(€k—Q/2_ €k+012) (42

COS¢,  Singy

(44)

class of states has the form (40), the perturbatiotV=H —H, =H,— (H), serves as the
; interaction which drives the collective spin excitations. The
HL=kz €kCroCko— Udog expression forH in terms of the fermi operatorb,, is
7 derived directly and is given by
T 2 2
X 2, Cr_0/2C S+ U(rg—dg). (40) u
gr Qo qizet U (Moo HU:NK.E)\. Unna(K1)Uzp2(kz2)Uzya(ka)Ugya(Ka)

Hereg=—o. The band energieg,, , A=1,2 and the one- + +
electron operatorb®y, of the Hamiltonian(40) are given by Xby x Pipn by Pign, (ki — kot ks —ky). (49

_ The corresponding linearized operatotf), is found in the

Bra2)=5 (€k-or2 €k 02 + Ok usual way. Note that the operata}, [see Eq(41)] is not the
. . . eigenoperator of the quasimomentum associated with trans-

bin ={Ck—qr2 :Ckrqrz, fiUin - (41 |ation over the lattice period. Thus, the parametersn
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Eq. (45 are not true quasimomenta. Nevertheless, the 1 ferqr—frns
S&function has the same form as for an interaction which Zur(Q)=—§ E E “E.— :
. on’ Ek+ga T BT oty

conserves the total quasimomentum (pseudo-

) X "
quaS|momentumof the new particles. o X(FL (k)" (52)

For calculating the susceptibilities x,z(d, )
=((S}(»);S5%) in a system, whose ground state is spiral,and
we express thg-components of the spin and the densities in
terms of the band operatobg, for the spiral state:

(k)

P (=2 Ui (kt ) (@) Uy (53
1 1
S?’_Z %: i (oa)ij, 2 %: iy (o0)ij Substituting Eq.(45) for U;, into Eq. (53) yields compact
1 matrix expressions for the matricE:%x,(k):
rﬂ:NEk Cl+q’ickj- (46) FOZ(TOc__i(Tzs_, Fl:_O'1C+_(TSS+,
_ ; _ (54)
Hereo,, «=1,2,3, ando, are the Pauli matrices. The indi- F2=—oc_+iogs., F’=ois.+ogc,,
cesi,j=1,2 have been introduced in place®fc’'=*1/2.  \where
In the basis of the band Fermi operat¢44), we have )
1 C.=COoY @i gt @), S+=SIN(PyigF @)
riqj =N E Ui)\(k)uj)\’(k,)blxbk’k’g Here theo, are the Pauli matrices and tig are determined
kK’ by Eq.(43). All the quantities in Eqs(51)—(54) also depend

X (k=k'—q+(i—j)Q). (47) implicitly on_the ground state spirality parameft@r
) ) ) Calculating theZz,;/(q'w) using Egs.(52)—(54) and
We introduce the following notation for the new operatorsgolying the system of algebraic E¢&1), we find the corr-

that depend on the spatial harmonics elatorsG;.(q' w) for each of the three values of the argu-
1 ment q'=q—Q,q,9+Q. Recalling the definitions(47),
X?FE > (o), @=13, (48), and (50), we obtain the following expressions for the
]

unknown spin susceptibilitieg ,z= x.s(qw) and the den-
sity correlations:

Xzz:<<Sg(w);S;q>>:G33(qw)a
We shall characterize the operators defined this way by the {(pYH@):S; M) =Gy qw)
common parameteay because of their uniform representation 2 03 '

1 . o
ngi(rng*'rng’ Xg=7(rsz—rng). (48)

in terms of the spiral state band operatbgs, (SN w);p, H)=GC3o(qu), (55
1 q A
Xi=o0 D 3 () Unn(kt @)U (Kbl g b {pelw)ip: )= God Gw).
Ko i’ ' 1
(49 XxszyyZZ{[Gll+ G2y~ i(G12— G20 1lg+0
wherea=0, 1, 2, 3. The representatigdb) for H implies
that, in the case of the ground spiral state, only those corr- +[G11t Gt i(G1o— G |-} (56)
elators of the operatops® with the sameg will be nonzero: and
(XU (@):(X]) )= 84 Giir(@, @), (XDT=X, . i _
(50) Xxy= _ny:Z{[Gll+ G~ i1(G1o— Go)lg+0
This is yet another justification for introducing the operators )
(48). —[G11+ Gapt+i(G12—Gap)lg-q}- (57)

We calculate these correlators using the same scheme @iie arguments of the functior@;; in each of the square
in Sec. 2. Given the representatiof9) for XJ', we first find  brackets in Eqs(56) and (57) are, respectivelyq+ Q,w or
the equation for((z‘}q#,(kt);xf,q» and then for its g—Q,w. The indicex,y,z refer to the spin system of coor-
w-component, Wheré}w,(k):bT by, . As a result of dinates with arxy plane of rotation for the average spin of

k+q,u .
summing thesé( 9% ,(kw); X;,%) overk, u, andu’ with ~ the spiral state. _ .
the corresponding weighting functions from E49) we ob- _ Ifin calculating thez,;. we include only the main con-
tain the following system of algebraic equations for thetribution from the interband particle—hole pafrs,\'=1,2
Gy (qw): or 2,1 in Eq.(53)], then the determinant of_ the system goes
1 to zero foro— 0 andy— 0 because Eq44) is satisfied and
_ the transverse componen®; (kw), i, j=1,2 will diverge
Lo =UZimm]Gmr =5 217, GD fork—0 andw—0. Accordinjg to the relation&6) and(57)

betweeny,y, xyy, andG(q+Q), this controls the possibil-
ity of the appearance of low-frequency peakgfifqw) with
4=(1-260={—-111%, I,m1'=0,1,2,3, incommensurate quasimomernga + Q. A complete calcu-

where
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xR

1007 a q=n(d 300 Q.= n(n.n), n=0.88
o.__m,__ n =095 ¢ = n(£)
0.8 1.0 & 1.2 w= 0.0l - 0.09

800 200+ y=0.02

b w = 0.01 - 0.08
q=m(&D)
100} |
i
400t
f \
'IIIZI‘I'\:\S‘:\‘
”":’ 0' v ‘t <N
ol ‘///////"g""\i\\\\\\
0.8 0.9 1.0
4
o,g ) 1. T 1.2 FIG. 7. As in Fig. 6, forg=m(&,£) varying along the diagonal and spiral

state ofxy-symmetry withQ= 7(0.882,0.882). The regiog<1 of only

one of the two incommensurate peaks aro(mgr) is shown. The position
FIG. 6. x"(q,w) as a function of the quasimomentum that varies along theq,,,(w) of the maxima of they”(q, ) curves for fixedw corresponds to the
diagonal,q=m(¢,£) (Fig. @, or along thex-axis, q= m(£,1) (Fig. b) for a spin-wave dependenee= c|qma— Q|-
set of frequencies/t=0.01—0.09. The calculation was done for a spiral
state with doping *n=0.05, corresponding to the vectoQ
=(0.892,1). The parameters angt=0.01,U/t=8, andt’'/t=—0.05. x" . .
is in units of 2. For w—0 the peaks correspond to the incommensurate As the doplng is increased, the shXQ= |Q_ (77'77)|

momentag, = 7(1+0.108) on thex-axis. in the low-frequency peak of the susceptibilify’(q,)
changes in accordance with t¥n) curves shown in Fig.
5a. Figure 8 shows the sanyé(q,») curves as in Fig. 6, but
lation according to Eqs(55—(57) and (51)—(53) confirms  for a system wittn=0.85.
this. Yet another conclusion follows from a discussion of
Figure 6 shows the calculateg”(qw) for w=0.01  spiral states. The development of a spin structure along with
—0.09 at two cross sections of the phase plapes(¢,1)  the parametet’ that characterizes the diagonal jumps, in
andg=w(¢,&), for the spiral state witlx-symmetry with a  itself, changes the shape of the Fermi surface and this means
spirality vector Q=(0.892,1), which is optimal fom that it can influence the low-energy properties of the system.
=0.95. The incommensurate peaks show up orxthgis at ~ As an illustration, Fig. 9 shows the Fermi surfaces and band
the pointsq=Q and [2(w,7)— Q] which are symmetric energy levels [E(k)—u] as functions of the two-
relative to the vectol(sr,7r). Similarly, for the spiral state dimensional parametds, the pseudoquasimomentum of the
with the other symmetry witlQ=m(7,7), low-frequency one-electron eigenoperatdsg, of the spiral state. It is evi-
peaks show up iry”(qw) at incommensurate points which dent from Fig. 9 that the spiral spin ordering splits the van
lie symmetrically on the diagonal relative ta,7). The cor- Hove singularities(VHS) of the one-electron spectrum in
responding curves on the half interval are shown in Fig. 7energy and introduces an asymmetry in their positions in
The narrow peak withé=0.83 is attributable to the contri-
bution of intraband particle—hole pairs and depends on par-
allel segments of the Fermi surface of the lower Hubbard
band forn=0.95. The type of Fermi surface has little effect
on the main peaks fag= £ Q. ﬂ
As the frequency is increased, the main absorption peak 150+
splits. For a giverw, the maxima in the(”(q,w) curve cor-
respond to quasimomenta satisfying the conditiofq | [\
K‘

0 = 7(0.655, 1)
n =085, ¢ = 2({1)
w=10.01-009, y=0.02

—Q|=w. The latter is analogous to the dispersiorc|q 100}
— (mr,m)| of spin waves under antiferromagnetic spin order-
ing. For a system witiJ/t~8 the velocityc* ~0.7%t/a, of

the spin waves around the incommensurate ve@ter of the
same order of magnitude as for the antiferromagnetic solu-
tion. Note that similar spin waves around an incommensurate
Q have been observed in the nickel oxidésyhere the ex- e
istence of superstructures of inhomogeneous stripe phases : ) £
has been demonstrated rigorously. Our results are not di-

rectly applicable to charge-inhomogeneous structures. NeV=/G. 8. Asin Fig. 6, but for doping +n=0.15, corresponding to the vector

. . . - =m(0.658,1) of the spiral state with the samesymmetry. The region
ertheless, spiral states are interesting as the simplest char 21 of only one of the two incommensurate peaks aro(ms) is shown.

homOQGneOUS SyStemS that have a spin structure with afhe peak atz~0.85 is attributable to intraband particle—hole pairs and
incommensurate period. depends on the Fermi surface of the lower Hubbard band.

1.0
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a Q= n(n.1)

b

Q= x(n.n

Cc

A. A. Ovchinnikov and M. Ya. Ovchinnikova

FIG. 9. Fermi surfacesthick lines and energy levelsH
— w) of the lower Hubbard band for systems witk-0.95 in
spiral states withk- and xy-symmetry or antiferromagnetic
states of the average field in thie, (k,) pseudoguasimomen-

tum plane with|ky,|<. Figures a, b, and ¢ correspond to
Q=m(n,1), Q=m(%n,n), and Q=(,7); 1 and 2 corre-

spond tot’/t=0.05 ort’/t=—0.05. The diagonal straight
lines correspond to nesting lines of the original band in these
coordinates.

phase space. This behavior can be regarded as the electr®RPENDIX
analog of Jahn—Teller splitting of the VHS owing to lattice

distortions>°®

5. CONCLUSIONS

of the Hubbard model in a band approach with the RPA V=V,+V,,

In the self-consistent solution of the problem with the

zeroth-order linearized Hamiltoniat®), the perturbation is
an operator with four- and two-fermion contributions. In the
basis of the eigenoperatof%0), they have the form

We have derived an expression for the spin susceptibility

method using antiferromagnetically split Hubbard bands as g
zeroth approximation. It has been shown that a collective
mode of the spin excitations is formed by interband particle—
hole pairs and, therefore, is insensitii@ntrary to the pre-
dictions of the cruder RPA thed¥¥729 to the form and type

of Fermi surface.
The calculation conveys well the characteristics of spina
waves in a series of undoped and lightly doped cuprates.

nd

This serves as an additional argument that the band approach V,=-UryN+Ud,
in a picture of split upper and lower Hubbard subbands can
adequately describe the low-energy spin dynamics of a cor-
related system. This approach should be supplemented by

including valence-band correlations, which indifceuper-
conducting pairing, and possible charge and spin inhomogg;ag of the
neities for describing the superstructures that exist in a num;.

ber of cuprates.

We have demonstrated the impossibility of explaining
the incommensurate inelastic neutron scattering peaks i
LSCO in terms of the properties of the Fermi surface of a
homogeneous antiferromagnetic state of the average field.
The earlier conclusiofi~*? that the source of the spin fluc-

Vy=Hy, Vo=—(Hy)., (A1)
U
Vi=y 2 27 M (gkaa)MT,(qK og)
N m=L2kwq -
X bl-!—_q)\(rbk’ﬂva'bl’ ! (_,—bk)\ "o (AZ)
x 2 £,2F M) (gkoo)by by - (A3)

oA\ k

Here Z, andd, are the average and alternating spin densi-

particles at a nodé; = o/|o|; and,k+qg=k+q

(m,m)igeF is the quasimomentum, normalized to the

magnetic Brillouin zone with the corresponding normaliza-

tuations with an incommensurate momentum is inhomoge-
neous structures has been confirmed by a model calculation
of the susceptibility for the simplest structures with an in-

commensurate spin-ordering—charge-homogeneous spiral

states.

Ci
My (gkog) =

.Eon indexiyq. The functionsM} ,(gkaa’) are given by
g.

(17). In particular, fore’ = g=— o we obtain

gas+

—&,5+ C.

) SP(m+iyg)
AN/
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FIG. 10. First-order diagrams id for the transverse polar-
ization operator.

a b c

In the calculation of the commutat¢22), the contribu- 1
tion [ 9,V,] cancels with the corresponding termg if, V5] Bij(@,0) = 5{[1 - UoB%r03] to1B%r}; . (A9)
asny ,— frne- The result can be explained in terms of the
language of diagrams in first order  for the transverse Here oy and o3 are the Pauli matrices and the two-
polarization operatot Thus, in the diagrams of Fig. 10, the dimensional matrixBj} is given by
contributions from a and b cancel out and only the contribu-

tion from the ladder class c remains. The cross and square in Bﬂ =- % > > F E fk:E’}‘ _f';; —P! .,
Fig. 10 correspond to interactions , and V,, respec- Wk BkraaT B Tholy
tively. Summing the ladder diagrams of all orders in thewhere
basis of the zeroth-order Hamiltoniat,_ and the perturba- 5 o s
tion V gives a result identical to E¢23). pll _ C- s- p2 _ S+ C4

It has been shown previoudly?*that this class of dia- Wl o2 o e §)

grams is insufficient if the zeroth-order bagis,,,} of the

initial band €, is used with nesting and van Hove singulari- 12 21 C-S; S-Cy

ties from the four points A, B, C, and k=(=,0), (O, Pov =P = ~s.c, -c.s, ,
+ ). However, in the basi€l0) of split subbands, the zero M
vertex parts for the points A, B, C, and D and all the nesting  c.=cosp., S.=SiNQ., @+=@kiq* ¢k.
lines goes to zero for the dangerous diagrams. The latter : .
include the diagrams with propagatdB{khw)G(k'\' ') %’ 3% and ¢ are determined by Eq¢62) and (11); By,

: . , . andf,, (A=1,2) are the band energies and Fermi functions
corre_spo_ndlng 0 ? single su_bba)ae#)\ - (For the_ interband of the upper and lower Hubbard bands. It is important that
contributionsh #\ ' the resulting energy denominator has no

. o . B the determinants of the matrices in parentheses in 6.
singularities owing to the Hubb’ard 9dfe By >2Udo.) and(66) do not go to zero a®— 0. This means that there are
In fact, forq=0 or (m,7) andk,k’ =k+q lying on the nest-

ing lines |k k| = h no low-frequency collective fluctuation modes of the longi-
INg lINES|Kx=XKy|=m, We have tudinal spin and density components.
o=@ =—ml4, c,=s_=0, c_=—s+=1, (A6)
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The effect of radiation defects on the thermodynamics of a system of Pearl vortices in a thin
superconducting film is examined. The scenario for a Kosterlitz—Thouless transition in

this system is shown to depend on the defect concentratjorAt low concentrations, the

transition takes place continuously, while at high concentrations, a range of temperatures exists in
which there are two metastable states. The concentrations of free vortices and of vortices
captured by defects are calculated as functions of temperature for different defect concentrations
ng. A phase diagram is constructed for the vortex system imtheT plane. © 1999

American Institute of Physic§S1063-776(099)02209-X]

1. INTRODUCTION A thin superconducting film of thickness<A\ is not a

strictly two-dimensional system. Vortices in these systems

Inhrecelnt yee(tjrs there hz:;s been per:sis;e_ntmi:hterest in 'Giere first examined by Pedrd.The logarithmic interaction
search on layered superconductors with radiaimumna) of the vortices in a film is bounded by the large but finite

-5 . . .
defects'™ These defects are regions with sizes on the Ordeéffective Pearl length\ = 212/d. Nevertheless, it has been

of .the coherence "?09”5. of the superconductor, W'th'n. showrt? that processes can take place in a system of Pearl
which superconductivity is completely suppressed. This in-

- . - ) vortices which ensure that the system behaves in a manner
terest originates in the possibility of controlling the proper- . . I . .
) . ; . similar to a KT transition. These are the same instability and
ties of the superconductor by introducing this type of defects

which are efficient pinning centers. It has been Sshisithat tollective effects which cause a KT transition in a two-

- . . . ...dimensional m. In tem of Pearl vorti however
the critical superconducting current can be raised 5|gnn‘|-d ensional syste a system of Pearl vortices, however,

cantly by this method. the correlation length cannot exceed while in a two-

On the other hand, layered superconductors are systen@n?nsmnal system it approaches infinity as the tempergture
subject to strong influence by thermal fluctuations. They!«T IS @pproached from above. Thus, the phenomena in a
show up, for example, in the existence of the so-called lind €& film which are referred to as a KT transition are not a
of irreversibility in layered superconductdtsyhich is also ~ Phase transition in the strict sense.
associated with the phenomenon of pinning. This is a line in_ Since the thermodynamic behavior of systems of two-
the magnetic field—temperature plane, for which the magnedimensional and Pearl vortices is determined by the same
tization process in the superconductor becomes reversibRFocesses, it is natural to expect that radiation defects will
when it is crossed. We believe that the reversible behavior c#lS0 have the same effect on this behavior. Their role is to
the magnetic flux in superconductors with pinning is relatedcapture and confine Pearl vortices, limiting their mobility.
to a Kosterlitz—Thoules$KT) transitior’® in a system of The absence of a normal core in a vortex captured by a
magnetic vortices created by this flux. radiation defect makes this state more favorable energeti-

KT transitions take place in two-dimensional systems incally, and this has a fundamental effect on the course of the
which topological defects with a Coulomb interaction canprocesses that create a KT transition in a defective supercon-
exist. An example of a model two-dimensional supercon-ductor.
ducting system is layered superconductors without Joseph- In this paper we examine the effect of radiation defects
son coupling between layers with two-dimensional magnetion the KT transition in a thin superconducting film. It is
vortices as topological defects. A KT transition in such ashown that, depending on the defect concentratipnthree
system is caused by two effects: an instability of the vortexdifferent scenarios for the phase transition can occur. For low
dipoles against dissociation in the gas of free vortices whicn,, below a certain critical concentrationy;, the transition

develops in the system above a temperdttie takes place continuously as a second-order transition. At in-
termediate densitiesy; <nyg<ny,, there are two thermody-
¢§ namically equilibrium states of the free vortices, individual
TKT:lezA(TKT)’ 1) and collective. Here the phase transition takes place as a

first-order transition and hysteresis should be observed in the
and collective effects in the system of free vortices. Hége temperature dependence of the resistance. At high defect
is the quantum of magnetic flud, =2\?/s, \ is the London  concentrationsng>ny,, the lower stability boundary of the
length, ands is the period of the layered system. metastable states is shifted almosfTte 0.

1063-7761/99/89(9)/6/$15.00 577 © 1999 American Institute of Physics
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2. FREE ENERGY OF THE VORTEX SYSTEM cluding the restriction mentioned above. We have neglected
apje contribution to the partition function from vortex dipoles

We consider Pearl vortices as classical massless p iated with th larizati f th di d the int
ticles. They can be in a free state or be captured by radiatioff>>0¢!ated with the polarization of the mecdium and the Inter-
action of vortices with empty defects, which will be dis-

defects. In order to describe the partition function of a ther-
modynamic system of this type, one of two equivalent ap-cussed below. _
The free energy of the system depends on the coordi-

proaches can be used. i i
The free and trapped vortices can be treated as two sutpates of the defects and should be averaged over their posi-

systems in thermal and chemical contact. The free vortices iHONS- Only the configuration part of the energy needs to be
such a system can appear and disappear through the disyeraged, since the entropy part is independent of the coor-
ciation and recombination of vortical dipoles, and also shiftdinates of the defects. To calculate the configuration energy,
into or leave the subsystem of vortices that have beeMe formally expand the exponent in EQ) in a series. The
trapped by defects. In equ”ibrium, the temperatures andpgarithm of the partition function is expanded in a series of
chemical potentials of the subsystems are equal. connected diagrams.For a gas of free vortices, the integral
The other approach is to consider the processes takinig taken over the positions of all the vertices in the diagrams.
place in the vortex system as “chemical reactions.” In suchlf the film contains defects at the poin&,, then diagrams
a system, the annihilation of two oppositely oriented freeaccounting for the interaction with the vortices trapped in the
vortices or of a free and a trapped vortex can occur, as cadlefects, whose coordinates are fixed, show up in the se-
the capture of a free vortex by an empty defect, as well agluence. The energy of these configurations depends on the
“reactions” in the opposite direction. Here a restriction is coordinate of the captured vortices and cannot be calculated
imposed on the system whereby the sum of the empty ddn general. In order to take the average of the configuration
fects,Ngo, and of the defects that have captured a flux quanenergy, we propose that all the defects be distributed with
tum, N4 + N;_ , equals the total numbé&ty of defects in the uniform probability over the entire plane of the sample, in-
system. dependently of one another. We take the average by integrat-
We write the partition function of the vortex system in a ing the series obtained formally above with respect to the
film with defects by analogy with a chemical system. In acoordinates of the trapped vortices and dividing each integral
real film, the defects form a random configuration specifiechy the areeS. As a result of this operation, the contribution
by the set of their coordinatd®,}. Let there beN, andN_  of the trapped vortices, which were attached to definite
free vortices with the two orientationdl; . andN,_ vortices  pointsR,, in a specific configuration, is formally included in
captured by defects, anyg>N;, +N,_ radiation defects. the free energy of the system on an equal footing with the
The number of vortices must be subject to the conditioncontripution from the free vortices. The only difference is
N+ N =N_+N;_, which follows from the conservation that the state of the vortices trapped by the defects is more
law for topological charge. We shall not take this into ac-energetically favorable because of the zero energy of the
count explicitly, since the symmetry of the equilibrium state ;g e
of the system, Wh_ich is all we are interested in, imposes a  Now it is easy to calculate the free energy of the system
more severe restrictioN, =N_ andNy, =Ni_. Then the ¢ \ortices. Since we are mainly interested in collective ef-

partition function is given by fects in the vortex system, we restrict ourselves to summing
Z(N. ,Ni.) the sequence of ring diagrarhs.
The characteristic feature of systems in which collective
_ 1 1 effects predominate is that the integda: fdrU(r) corre-
NiINCINg INg ! (NG = Ney — N )! sponding to the simplest diagram diverdé3his means that
even for a low concentration of vortices it is impossible to
Xexp{—B(N,+N_)Eg}Trex —z BU(X—X;) limit ourselves to their interaction with a particular number
i

of nearest neighbors, but the interactions of each with all the
others have to be taken into account. The ring diagrams are
- BUX—R)—> IBU(Ra_R‘y)]- (2)  the principal sequence in the expansion of the configuration
e « energy in this case.
Here the symbol “Tr” denotes a sum over all possible states  The situation is different when a vortex interacts with an

of the vortices in the system: empty defect. The interaction energy of a Pearl vortex with
dx | N+ +N- Ny + Ny an empty cylindrical defect has been calculated elsewhere.

Trz( f —2) ( ) , It falls off with distance from a defect much more rapidly
mé Ra than the interaction energy with a vortex. In this case, the

where 8=1/T, E, is the energy of the vortex core;¢? is  integral J converges and the configuration energy can be
the size of the spatial cell occupied by a single vortex,ldnd expanded in a series with respect to the concentration of
is the interaction energy of free vortices located at the pointyortices and empty defects. In the equilibrium equation it

x; with vortices captured by defects lying at the poiRts. yields terms proportional to the concentrations, which are
The second cofactor in Eq2) is related to the identical small compared to the logarithms of the concentrations and
nature of empty defects, which we treat as one of the comean be omitted. Thus, in order to simplify the formulas, from

ponents of the chemical system and is simplyNL4!), in-  the beginning we neglect the contribution of the interaction
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FIG. 1. The concentrations of freésmooth
4 4 curves and defect-trappettlashed curvesvor-
10 10 tices as functions of temperature in the case of a
continuous transition a and the case of a first-
106 10_6 order transition b. The thin dashed horizontal
line indicates the total vortex concentration in
the system for which the Debye shielding length
108 1078 S equals the Pearl length.
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between the vortices and empty defects to the partition funan n,. —In(ng—ny, —n_)—pIndp(n, +n_+ny, +n,)
tion.

The free energy of a system of Pearl vortices has been T4PG'[16pA(n,+n_+ny . +n.)]=0. 4
calculated in the ring approximatidfiWe need only replace
the vortex concentration in the configuration part by the sungubtracting the equation for_ from that forn, , we obtain
of the concentrations of the free vortices and the vortice, =n_ in the equilibrium state. The two other equations
trapped in defects. Introducing dimensionless notation fogive n,, =n,_. This reduces the number of equilibrium
the concentrations of the vortices=(N/S)w¢%, and the  equations to two. In the following we shall omit the+*

free energy densityf =(F/S)w&?, we write the free energy and “—" subscripts.
of the system in the form Subtracting the equation far, from that forn, we ob-
f=n,(nn,—1)+n_(Inn_—1)+n. (INn., —1)+n,_ tain a relationship between the concentrations of free and

trapped vortices,
X(Inni-—=1)+(ng=n¢ —ne)(IN(Ng—ng —ne-)—1)
+p(ny+n_+ng +n)(1—=Indp(ny+n_+n.y o nng
. " onte P
+n))+ WG[prAZ(n++n,+nH+nt,)]
This equation shows that— 0 if the concentratiom of free

+(n.+n_)pey, (3  vortices approaches zero more rapidly than the exponent in
where the denominator. If, on the other hand, the exponent is sub-
stantially smaller tham, then the vortices tend to fill all the
; 1 T e defects. A study of the equilibrium behavior of the vortex
1 x arctan W—1 2’ - system has shown that the first of these asymptotic properties
G[x]= EInZJr V[1—X| of the subsystem of trapped vortices shows up in the indi-
Eln 1+V1-x w<1 vidual vortices and the second in the collective state of the
2 1-J1—x’ " vortex system.

The solutions of this system of equations for different
defect concentrationsy are plotted in Figs. 1 and 2. The
temperature variations in the concentrations of the free
(smooth curve and trappeddashed curvevortices at rela-
tively low defect concentrationsy<<ny; are discontinuous

A vortex system in a thin film is a system with a variable [Fig. 1(a)]. A sharp change in the concentrations négy is
number of particles. The equilibrium number of particles inassociated with the development of an instability similar to
such a system must be determined from the condition of #hat predicted by Kosterlitz and Thouléder strictly two-
minimum free energy, while the equilibrium chemical poten-dimensional systems. The same sort of instability is observed
tial vanishes. Thus, we obtain the equilibrium condition forin perfect films(dotted curvg but when defects are present
the system by equating to zero the derivatives of the fredt is shifted toward low temperatures. It is caused by a tran-
energy with respect to the concentration of free vortioes,  sition of the vortex system into a collective state character-
and the concentration of vortices trapped by defatts; ized by a Debye shielding leng= ¢/8p(n+n,) for the
vortex interaction that has become shorter than the effective
Pearl shielding lengtl\ and the interaction energy of two
X[16pA(n,+n_+n, +n,_)]+pe=0, vortices that depends on the concentration of vortices in the

Herepe,=BE, and p= ¢3/16m2AT.

3. EQUILIBRIUM STATE OF THE VORTEX SYSTEM

Inn.—plndp(n,+n_+n;, +n,_)+4pG’
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concentration of vorticeffree and trappeds rather high, in
order to ensure the collective behavior of the system, and
depends weakly on the temperature. In this situation, as the
temperature is lowered, the screening lendtiegins to de-
crease, since it is proportional tol. As a result, the creation

of additional free vortices becomes energetically favorable at
low temperatures, as Fig. 2 shows clearly. However, at suf-
ficiently low temperatures, the collective state loses stability
and the vortex system undergoes a transition to the indi-
vidual state. The stability boundary of the collective state,
which shows up here, is not an extension of the lower sta-
bility boundary into the region of medium defect concentra-
tions discussed above. This can be understood by examining
the phase diagram of the vortex system in the- T plane,
which will be discussed in the next section.

All three scenarios have a common feature related to the
presence of defects. For arbitrary defect concentrations, the
free vortex concentration, which is related to the resistive
behavior of a superconductor, is higher than in a defect-free
film and the jump in the resistivity is shifted toward lower
temperatures.

This phenomenon can be explained as follows. When
it sovammmanes s s o s e s o gy here are no adiaton defect, the equilrium concentaton
Eiefect concentration in the system, imzd>nd£ The thin dashed line indi- of freg vortices develops b?ca”§e ,a dynamic eq“",'b”‘,‘m 1S
cates the total vortex concentration in the system for which the DebyeeStablished between the dissociation and recombination of
shielding lengths equals the Pearl length. vortex dipoles. Defects form an additional reservoir in which
vortices can accumulate, since the state of a trapped vortex is
more energetically favorable than that of a free vortex be-

system. Here additional creation of new free vortices because of the core energy. This means that at low tempera-
comes favorable, since the interaction energy of the vorticetiires, when the system is in a state where collective effects
decreases as their concentration rises. are negligible, the concentration of trapped vortices is always
In Figs. 1 and 2 the thin dashed lines represent the totdligher than that of free vortices, while the concentration of
concentration of free and trapped vortices for whith A.. free vortices is only slightly higher than in a defect-free film.
These lines arbitrarily separate the domains of the individuaf\s the temperature approach@gr, the concentrations of
(below) and collective(above states of the vortex system. both free and trapped vortices increase, and this enhances the
The difference between these states is more quantitative thaffluence of collective effects on the state of the vortex sys-
qualitative. Debye and Pearl shielding always occur in a system in both perfect and defective films. In the latter, how-
tem and do not replace one another during a transition t€ver, the total vortex concentration is higher and collective
another state. The question is merely one of which phenoneffects make the jump in the vortex concentration occur at a
enon predominates. The arbitrariness of the KT transition idlower temperature.
Pearl films is also related to this. The numerical solutions presented here were obtained
At intermediate defect concentrationsg,<ng<ng,, for a model film with the parametersy=3, A/¢=10° at
there is a range of temperatures within which the vortex sysT =0, andT¢,/Txr=1.2. The critical values of the dimen-
tem has two stable statfSig. 1(b], of which the lower state Sionless defect concentration for these parametags,
corresponds to individual vortices and the upper, to collec=0.03 andny,~0.09, are fairly high. The critical concen-
tive vortices. Thus, a sufficiently high concentration of radia-trations depend on these parameters and decrease slightly as
tion defects in a superconductor will stabilize the collectivethe parameters are reduced.
state of the vortex system, since the number of trapped vor-
tices in this state is determined primarily by the number of
defects, as discussed above. Within this range of concentrg- pase DIAGRAM OF THE VORTEX SYSTEM
tions, hysteresis in the resistance that depends on the concen-
tration of free vortices should be observed. Knowledge of theny—T phase diagram of a system of
At very high defect concentratiomg>ny,, the left sta- Pearl vortices in a superconducting film with radiation de-
bility boundary of the metastable states shifts almost tdects allows us to understand its behavior better. This dia-
T=0. It can undergo a transition into the lower state only atgram(Fig. 3) was constructed from a study of the minima in
very low temperatures. Figure 2 shows the temperature dehe free energy3). It shows the phase transition curves sepa-
pendences of the concentrations of free and trapped vorticeating the stability regions of the various states of the system.
in this case. Almost all the defects in the film in the collec- The dashed curvé-2 is the continuous “phase transi-
tive state have trapped a flux quantum apiece. Thus, the totéibn” curve. The changes in the concentrations of free and
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] tions, the magnetic interaction of the vortices ceases to pre-
0.12[T g 3 dominate and it becomes necessary to take into account the
I interaction of their normal cores owing to the nonuniformity
o.10r 4 of the absolute value of the order parameter. In addition, a
"n~f 28 - vortex system under these conditions should be regarded
0.08f ; more as a liquid than as a gas. Thus, an accurate analysis of
Ve cs the system in this region will go beyond the framework of
the London approach and employ a Ginzburg—Landau ap-
/z" proximation, which is a much more complicated problem.
0-04'§ 5 Is 2 Based on the simple physical arguments given above, we
" e may conclude that this approach yields a qualitative descrip-
0.02 i tion of the behavior of a vortex system in these regions, as
3 o1 well. The existence of the cun&-6 on which the collective
0 02 04 06 08 10 12 state of the system loses stability is somewhat in doubt, since

T, the reasons for this behavior are unclear. We have presented
these results here, in order to illustrate all the answers that
FIG. 3. ng—T phase diagram of a system of Pearl vortices in a thin super-

conducting film with radiation defects. The curves in this diagram separaté:an be obtained using the model and teChnlqueS employed in

the regions in which stable individual staté§), stable collective states this paper.
(C9), or two metastable staté®S) of the vortex system exist.

5. CONCLUSION

defect-trapped vortices on crossing this curve are shown in In this paper we have shown that radiation defects can
Fig. 1(a). To the left of it we haveS> A and the system is in have various effects on the properties of a thin superconduct-
the individual statdlS). To the right we haveS<A and the ing film. On one hand, they cause pinning of magnetic vor-
energy of the interaction between two vortices depends otices and a rise in the critical current for the transition of a
the concentration of free vortices; this is the collective statesuperconductor into the resistive state. On the other hand,
of the systemCS). radiation defects form a reservoir in which vortices that are
Above the poin2 (ng>ngy;), the phase transition curve not bound in dipoles can accumulate and thereby expand the
splits into two. On the smooth cun&-3, the individual state  stability region for the collective state of the vortex system.
of the system becomes stable, as well as the collective statin the collective state the system contains a significant num-
On the curve2-4, the collective state loses stability. For ber of free(not bound in dipoles and not trapped by defgcts
Ng>>Ngyo, the collective state remains stable at very low tem-vortices, which are responsible for the resistive properties
peratures up to curvé—6, where the system undergoes aand reversible behavior of the superconductor.
transition into the individual state. The temperature depen- The behavior of Pearl vortex systems described here al-
dences oh andn, within these ranges of the defect concen-lows us to reach several qualitative conclusions about the
tration ny are plotted in Figs. (b) and 2. properties of superconducting thin films. The above discus-
Because of a weakening of the thermal fluctuations asion implies that, without an external magnetic field no sig-
the temperature is lowered, the collective state of the vortexificant increase in the critical current should be observed. In
system again becomes stable on the cub, having lost this case, the resistive behavior is associated, under the in-
stability on the curve5—6. A transition of the system into fluence of the current with the motion of vortices that have
this state is improbable, since in thg—T plane it can only entered from the edge of the sample. The current which de-
move along a line parallel to the temperature axis. On anyaches the vortices from the edge of the sample is of the same
such line abovey, the collective state is separated from the order of magnitude as the current that detaches vortices from
individual state by an energy barrier. defects. Thus, the behavior of defects should not radically
We conclude by examining the reliability of these re- change the situation. On the other hand, there is a drop in
sults. The method used to obtain them is based on the Lortemperature at which the film begins to manifest resistive
don approximation for the vortex interaction energy and abehavior owing to a transition into the collective state.
gas approximation for calculating the partition function. In an external magnetic field at low temperatures, an
Both approximations assume a low vortex concentration, i.eincrease in the critical current can be observed owing to cap-
2n+2n,< 1. This means that the method works poorly whenture, by defects, of vortices which enter the sample under the
the vortex concentration is such that the distance betweeimfluence of the field. After the onset temperature for ava-
them approaches the coherence lengtA situation of this lanche growth in the vortex concentration is reached, the
sort arises in the region of the high temperature plateau in theritical current should go to zero, since the number of free
n(T) andn,(T) curves asT>Tyr and in the collective state vortices increases rapidly. This is one of the possible mecha-
of the system fony>ng,,. Here the dimensionless concen- nisms for depinning, which converts a superconductor into a
tration of the free vortices approaches-0.1 and even ex- resistive state and ensures reversible magnetization of the
ceeds it. Estimates show that the screening length for theample. In the case of a first-order transition, two irrevers-
vortex interaction in this region is comparable to and be-bility curves can be seen, depending on the direction of the
comes shorter than the coherence length. Under these condihange in the temperature during an experiment. A deeper
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We use the generalizegtmodel to analytically study the solution of the problem of magnon
scattering in two-dimensional isotropic ferromagnets and antiferromagnets in the

presence of a Belavin—Polyakov soliton. We obtain the exact analytical solution to this problem
for the partial mode with the azimuthal quantum numiver 1. The scattering amplitude

for other values of (i.e., values not equal to unijtare studied analytically in the long- and short-
wavelength approximations and also numerically for an arbitrary value of the wave number.

We establish the general laws governing the soliton—magnon interaction. For a magnetic material
of finite dimensions we calculate the frequencies of the magnon modes. We also use the

data on local modes to derive the equations of motion of the soliton. Finally, we calculate the low-
temperaturélong-wavelength asymptotic behavior of the magnon density of states due to

the soliton—magnon interaction. @999 American Institute of Physid§1063-776(99)02309-4

1. INTRODUCTION magnetic materials were obtained by Mertensl® and in
the research that followe@ee the review articles in Refs. 3

It is now firmly established that solitons play an impor- and 7. In research devoted to 2D solitons, the density of
tant role in low-dimensional magnetism, i.e., in one-solitons(vortices was taken as an external parameter of the
dimensional1D) and two-dimensional2D) magnetic mate- theory. This approach was also used in analyzing the data of
rials. Studies began with the simpler 1D case. Krumhansihe experiments in which the contribution of localized 2D
and Schrieffef found that solitongkinks) must be consid- solitons to the relaxation of spin excitations was
ered on an equal basis with magnons as elementary excitabserved~'* The main difficulty in analyzing 2D systems
tions in the derivation of the thermodynamics of 1D mag-lies in the absence of exact analytical solutions for most
netic materials. Currieetal? construct a consistent models. Usually the solitons are treated numerically by di-
phenomenological theory of solitons, in which a nontrivial agonalizing with respect to small discrete systéms® In
fact was established, namely, that the kink—magnon interacsuch finite geometry the soliton—magnon interaction mani-
tion substantially alters the magnon density of states, whiclfiests itself primarily in the existence of specific Goldstone
has an effect on the thermodynamic properties of the systeniocal modes with anomalously low frequencies and in the
In particular, the temperature dependence of the soliton derexcitation of magnon modes by soliton motion. Thanks to
sity is determined by the shift in the magnon phase in kink—the reverse effect, it was possible to describe the dynamical
magnon scattering and can vary substantially for magnetiparameters of a soliton by the data on local modes.
materials with different kink—magnon interactiot’s. In this connection, an important role is played by the

A special role in soliton phenomenology is assigned toanalysis of such 2D models for which analytical results can
local magnon modes, which are spin waves localized at &e obtained and the general laws governing the soliton—
magnetic soliton. For instance, the number of such modemagnon interaction can be established. Only one exact ana-
determines the total variation of the magnon density of statelytical solution of this type is known, the Belavin—Polyakov
and hence the temperature dependence of the kink dénsityBP) soliton, which describes a topological soliton in an iso-
More than that, local modes are interesting objects by themtropic 2D magnetic materidf The existence of local modes
selves, and their study is linked to direct experiments in exin such a system was predicted in Ref. 21 for an isotropic 2D
citing and detecting them, since by characterizing the intrinferromagnet and in Ref. 22 for an antiferromagnet. In par-
sic latent degrees of freedom of the soliton the local modes$icular, it was found that a BP soliton with a topological
are the cause of soliton magnetic resonance at the characteharger has 2v| local modes of zero frequendiocal zero-
istic frequencies of “intrinsic” motior?, frequency modes

Important results in the soliton thermodynamics of 2D In the present paper we construct a solution of the prob-

1063-7761/99/89(9)/13/$15.00 583 © 1999 American Institute of Physics
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lem of scattering of magnons by a BP soliton in 2D magneticscribes a ferrimagnet near the point at which the mechanical
materials. In Sec. 2 we examine the generalizechodel,  moments of the sublattices are balanced. For such a magnetic
which can be used to describe ferromagnets and antiferranaterial the gyroscopic term has the same structure as in a
magnets, as well as ferrimagnets near the point of comperierromagnet but is proportional to the small paramet@r (
sation of the sublattice spins. In Sec. 3 we formulate the-S,)/(S;+S,), whereS; andS, are the average mechani-
scattering problem for this model and obtain its exact solucal moments of the sublattic52®

tion for the partial mode with azimuthal quantum number  The simplest elementary linear excitations of a 2D iso-
m=1. Sections 4 and 5 are devoted to calculations of théropic magnetic material that arise against the background of
scattering amplitude for the other valuesnofn+# 1) analyti-  the ground homogeneous state are the magnons belonging to
cally in the long-wavelength approximati&(R<1 (Sec. 4  the continuous spectrum. If we select the orientation of the
and numerically for arbitrary values &R (Sec. 3, wherek order-parameter vectar along the polar axis, we get mag-

is the wave number arid is the radius of the soliton core. In non solutions in the form of a circularly polarized wage

the sections that follow we use the results to describe the=cons&l, ®=kr —w(k)t. The dispersion law for a ferro-
various physical properties of solitons and local magnormagnet is quadratiapgy (k) =DKk?. For an antiferromagnet
modes. Section 6 deals with calculations of the frequency ofhe dispersion law is lineatwaey(K)|=ck, and there are

the magnon modes for a magnetic material of finite dimeniwo degenerate branches with opposite circular polarizations,
sions. In the same section, using the data on local modes, we= *+ ck, which is equivalent to the possibility of linear po-
derive the equations of soliton motion. In Sec. 7 we calculatdarization of magnons.

the magnon density of states for which the soliton—magnon The simplest static nonlinear excitations in the 2D case
interaction is responsible. In the Conclusion we discuss thare the BP soliton%

different ways in which the theory could develop and the

possible applications. b\, r
tan?:X | |, ¢O:@O+ VX, Xzﬁ, (2)

2. THE MODEL. ELEMENTARY EXCITATIONS which, naturally, has the same form for a ferromagnet, an

A broad class of classical isotropic Heisenberg 2D magantiferromagnet, and a ferrimagnet. Hereand y are the
netic materials can be described dynamically in terms of th@olar coordinates in the plane of the magnetic material, the
classical unit vectom of the order parameter, i.en, integervis the topological charge of the soliton, aRdand
=cosf andn,+in,=sinfdexpfi¢}. The dynamics of a clas- ¢o are arbitrary parameters. o
sical ferromagnet is described by the Landau—-Lifshitz equa-  The energy of such a soliton is given by the formula
tion for the normalized magnetizatidh which acts as the
dynamic variablen. In a classical antiferromagnet, the dy- Eo=47A[v| )
namic variable is the antiferromagnetism vector, which in the o o .
long-wavelength approximation can be assumed to be a un@"d iS independent & and¢g,. The ambiguity in the choice

vector. The dynamics of an antiferromagnet is described b)(? o is @ charact_eristic feature of many models and a con-
the equations of the-model of then-field 2425 sequence of the isotropy of the Heisenberg exchange. The

In the interests of generality we examine two types 0fexistence of an arbitrary paramefithe soliton radiusand

magnetic materials within a unified approach, more prein€ fact that the energy is independentoére related tolgge

cisely, on the basis of a generalizedmodel, whose La- scale invariance of the static two-dimensionaimode
grang’ian in the 2D case can be writ&n ' Obviously, this symmetry is broken in dynamics, with the

exception of the trivial case of a pure antiferromagnet and
L_éJ ) {i(a—a>2—(va)2+sin2 0[i<@>2 translational motion, when everything reduces to Lorentz
) c?\ gt c?\ ot transformations.
In analyzing the static solutions it is convenient to intro-
—(Vq&)z}— E(l—cosa) ﬁ] (1) duce the complex-valued order parameter (n,+in,)/(1
D at —n,) and interpret it as a function of the complex variable
whereA=JS%, whereJ is the exchange integral argiis the l=re'X _describir_lg the position of a point in_the plane of the_
atomic spin. The specific type of magnetic material is deterMagnetic material. In terms of these variables, the static
mined by the relationship between the parameteamdD. ~ €duations of the o-model reduce to the self-duality
To describe a ferromagnet we must drop the second timgquatior® ow/d{=0 or sw/3;=0. The BP soliton corre-
derivatives in the equations of motion, i.e., formallydego ~ Sponds to the simplest solution of this equation of the form
to infinity. The dynamic term in the Lagrangian of the ferro- _
magnet is of a purely gyroscopic nature, with the parameter wy=A¢" for v>0, wp=A{"" for »<O. 4
D having the meaning of the spin stiffness of the ferromag-
net. The dynamics of an isotopiemodel describing an an- There are also more general solutions to this equation of the
tiferromagnet has a Lorentz-invariant form with a characterform =f(¢) orw=1f(¢), wheref is any analytic function of
istic speed parametar. For an antiferromagnet there is no the complex variabl€. In particular, the static multisoliton
gyroscopic termthe coefficientD can be taken to infinily ~ solution with the topological charge depends on [2/]
Note that the generalized-model for finiteD andc de- parameters and can be written
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2 42 2
(constructing the same general solution for 0 is a trivial xcoseoj—ﬁ + R_ ‘9_'“ _ R_ I _ 7)

— =0,

task. The energy associated with this solution is determined c® gt> D ot

by (3) and is independent of the parametérsay, andby.  \here v2=(1/x)d/ax(xd/dx) is the radial part of the

We associate the soliton center with the valre 7, this Laplace operator andJ,(x)=(v/x)2cos %, and U,(x)

solution has(for different a, and by) » solitons with unit = ot 6,V26,— (d6/dX)? are the “potentials.’i®1° Using the
. .

topological_charges at the poins=ay. If all a, coincide, oy yjicit form (2) for the static solution, we can easily show
then atb,=0 the solution(5) coincides with(4) and de- 5 the “potentials” in both equations are the same. This
scribes one soliton with the topological charg@t point{  ¢at is ynique for the isotropie-model. For instance, for
=a. Thus, variations in the parameteag and by has a \qrices in a magnetic material with easy-magnetization
strong effect on the structure of the soliton but do not changﬂanesw,lg the potentials differ substantially. The very fact
its energy or topological charge. This means that a BP SOIIfhat the potentials are different not only complicates the

ton has extremely high internal degeneracy, which reflectg,ysis technicallyin comparison to the ordinary Schro
the property of conformal invariance of the static tWo- ginger equation but also introduces serious problems. In

; ; 20,29 ; ;
d|men3|onala-m0del._ Hence a BP soliton con5|s_ts_ of a particular, for systems of the foriv) with unequal poten-
set of local modes with a zero frequency. The explicit form; o U, andU, many general assertions of the type of the

of these zero-frequency modes can be obtained by varyingggjation theorem have yet to be formulated. In Ref. 18 it
(5) in the parameteray andby. In the limit a,b,—0, the 35 shown that equations of this form may have truly local-
soliton can be represented by the expansion ized states with an exponential decrease of the wave function

” and energies inside the continuous spectrum, which is for-
0= W—Wo _ A_nT for A0, (63 bidden for equations of the Séhﬁog_er form.
Wo m=—v+1 ¢ In the degenerate case considered here the magnon

modes can be described by a single complex-valued param-

or, introducing the deviationg and ¢ from the quantitiesly  eterw =9+iu, which obeys the second equation
and ¢, into the simplest equatio(®), by the formula

, 1 #? P 2v ov
SinOA _Vx+?(9_)(2+FC03260 ‘I’—I700300E
6— 6o-+i Sinfo( p— o) = — ———. (6b)
(Om R?*% R? gV
e o o ®

This implies that there are|2| independent types of small o .
perturbations that do not alter the soliton energy. Their formivhose analysis is almost the same as that of the Satger
is determined by the functiofec(7)  Meexplimy}. This is equation. It is convenient to seek.the solution of E8).in
equivalent to the statement thau® local modes with a zero  th€ form of a partial-wave expansion:

frequency are associated with a BP solitsee below. *
v= > fhexpimy—iot}. 9)
m=—o©
3. MAGNON MODES IN THE PRESENCE OF A SOLITON Hert()aI each partial wavg, is an eigenfunction of the spectral
problem
To describe the magnon excitations that arise against the . )
background of a BP soliton, it is convenient to introduce Hfm=2"fm,  %=kR, (10

local coordinatese; ,e,,e;} characterizing the distribution
of the order parameter in a fixed solitogy coincides with
the order parameten, of the immobile soliton(2), e;
=@, COSt—86Sin¢y, ande,=e; X e;. Then the linear oscil- m?+ 2mv coséy+ v2 cos 24,
lations of the order parameter can be described in terms of Um(x)= X2 '

the projections oh on the local axes; ande,: 9=n-e, and i i i
w=n-e, (¢ and u/sing, are the small deviations frorf, The spectrum of the problerfi0) is continuous and is de-

for the 2D radial Schidinger operatord=—V2+U (x)
with the potential

and ¢, respectively. scribed by functions of the forrfy;,, with x=0. Clearly, the
The linearized equations fa¥ and x can be represented Z€ro-frequency modef, correspond to solutiofis
in the form of the system of equations fsr?)zx—msina(). (11)

2

, 14 2v These modes correspond to perturbations of the f@m
_VX+P(9_X2+U1(X) 19‘?‘7

i.e., their presence is due to the conformal invariance of the
b 5 problem. Here and below, for the sake of definiteness, we
p  RE°9 R du examine the case where>0, and to analyze solitons with
Xcosbp—+ — —5 + = —=0, o ! X
dxy c° ot D ot v<0 it is enough to replacen by —m. This solution be-
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haves regularly as—0 only for partial modes with— .

<msv. A simple analysis of Eq(11) shows that for—» fﬁ:;zATgﬁ- (14)
+1<m< the function f{?), regular asr—0, also de-

creases far from the soliton. Hence ferv+1<m=< v these The transformation we haVe just Carried out SlmpllerS
functions are finite over the entire range rof This corre-  the problem for the translational moden{ 1) substantially.
sponds to the earlier conclusion that a BP soliton with dndeed, in this case/;(x) =»?/x* for all values ofx, i.e.,g}
topo|ogica| Charg@ has aV| local modes represented Gﬁ) determines the free motion. In view of this, the regular solu-
Note that the physical meaning of two of these modes idion has the formg7=—J,(xx). Restoring the initial func-

obvious: the translational modé?) , describes the displace- tion by (14), we get

ment of the soliton as a whole, and the rovibrational mode 2v  J(kr)
£(9) | describes the rotation and change of the soliton radius ~ f{=J,,1(Kr)— +— — =2 (15)
: S . kr (r/IR)?"+1
(which corresponds to an ambiguity in the choice of the po-
sition of the soliton center and to arbitrary values¢gfand The existence of this exact solution for all values of the

R, respectively. The established bound statéscal modey  wave vectork is a unique property of the modél). For
are limits for the magnon modes of the continuous spectrunather values ofn (as earlier, for the case of magnon scatter-
as x—0, on contrast to the case of 1D magnetic materialsng by magnetic vortices in ferromagn%"[s and
(see the review in Ref.)3 antiferromagnet§ with planes of easy magnetizatiprthe

Using the standard method of varying the arbitrary conroblem can be solved only approximately or by numerical
stant, we can find the second linearly independent solution ohethods.

Eq. (10) with »=0: The solution(15) demonstrates an important feature of
2 9 2 magnon modes, which is absent in the cases discussed in
fD=xm + 2 sin G, (12  Refs. 18 and 19, where the exponential decrease of the de-
m+v m m-—v viation of magnetization from the easy-magnetization plane
which is regular at zero whem> . in a vortex far from the vortex center is a characteristic fea-

Thus, ato=0 one of the solutiong11) or (12), for all ture. Equ_ation(15) shows. that the d_eviat!on dfy from t.he
m has no singularities at zero. We use this solution to ana@Symptotic termJ, ., (kr) is not localized in a region with a

lyze scattering at smalbut finite) values ofw in the range of definite radius; instead it is characterized by a slower
smallr. (power-law decrease. More than that, for the most interest-

The exact solutionsﬁ,?) that have been found can be INg cases of Igng—wavelength asymptotic behavior, Kor
used to simplify the problem of the analysis of the continu-<1/R the solution(15) over a broad range of valuesafor
ous spectrum on the basis of the Darboux transformafion. R<r <1k, has the same form as a COle'”a“O” of Bessel
The same approach has been used in Refs. 31 to study the #9d +l\1eu_mann functions, J,,,(2) 2" and N,
case. To explain the method, we introduce the Hermitian<? ("1, i.e., the second term ifL5) imitates the presence

conjugate lowering and raising operators of th(_a funct_ion N. (Below we will see that this property
remains valid for all values am.)
. d o Lo d o1 £(0 For magnetic vortices, the corresponding corrections are
A=—ax T TOr A= x™ TOr exponentially decreasing functions of the form gxp'r,},

wherer, is the radius of the vortex core. In view of this, the
such thaTAfﬁ]?):O (here and in what follows a prime stands scattering amplitude, i.e., the coefficient of the Neumann
for a derivative with respect t®). By introducing these op- function, can be determined from the coefficient af"lin

erators we can represent the Sd]"ger operatoﬁ in the the I’egion wherg<1. This is not true, hOWeVer, in our case,
factorized formA=A'A. What is important is that this with the result that the method developed in Ref. 19 for

makes it possible to reformulate the initial problét©) in magnetic vortices and used to analyze the scattering matrix

. .  Aex by analyzing the corrections to the zero-frequency modes in
terms of the eigenfunctiorgy,= Afr, of the spectral problem the regionr,<r<1/k needs to be thoroughly modifidf

of the form we wish to use it in our problem. This modification is done
Q=2  H=BAT=—VZ+/, (13  In Sec. 4. ,
o On the other hand, the terms with a power-law decrease
where the potential is of the form 1f2, a>1/2, must be taken into account when
’ (m—1)2+ »2+ 2(m—1)cosb, we de_scribe_ t_he p_roper_ties of magnon_m_odes in a magnetic
Zn(X) = 5 . material of finite size with a soliton. This is done in Sec. 6.

X

Note that far from the solitottas 6,— 0) the potential?/,,
becomes the centrifugal potential of the formy+Hm
—1)?/r?, which depends explicitly on the azimuthal number  To describe the scattering of magnons by a BP soliton,
labeledm— 1, which explains the terminology used for the we note that free magnon states can be found if wevset
operatorsA andA. =0 in the “potential” U ,,(x). The resulting magnon modes

The initial functionf ,, is restored by applying the raising f{ ,_,=Jn(2), with z=kr, are the partial cylinder waves of
operator: a plane spin wave of the form

4. SCATTERING IN THE LONG-WAVELENGTH LIMIT
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explik-r—iotl= >, i™(z)explimy—iwt}. (16)

In the presence of a soliton the behavior of the magnon
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between 0 and 1 and dependrmiy the addition to the zeroth
solution (%) is small and perturbation-theory techniques can

be used.
The same laws stand for the magnon mode iti

solutions can be analyzed at large distances from the solitorf 1 scattered by a vortex in a magnetic material with easy-

(r>R). In view of the asymptotic behavidy ,(x) ~n?/x?,
in the leading approximation in X/we have the usual
resulf!

ngCGm(Z)EJw(Z)+0':1’1N|n‘(z), n=v+m—1,

meCFm(Z)E\]‘m(Z)'FO'rVnN‘p|(Z), p=v+m

17

(below we also use the notation involving and p, and
Gn(2) andF,(2) for the combination of cylinder functions
of the specific form presented {d7) with allowance foro).
A comparison of the asymptotic behaviors Gf,(z) and
Fm(z) with each other and with the solutidii6) for free
magnons suggests thaf,=o,(») determines the soliton—
magnon scattering amplitude. Since the coefficientse the
same forF,, and G,,, to calculate the scattering amplitude

om(x) we can use the initial problem or the modified prob-

magnetization planesS. Since the deviations from the
asymptotic solution were found to be exponentially small,
both solutions are valid foR<r<1/k, the asymptotic solu-
tion (18b) and of the form(17). This made it possible to find
the coefficient of the Neumann functiow, (kr) (with al-
lowance for the fact thal,(kr)=(kr) =" wherekr<1)
and to write an analytical formula far|, =1 (k). In our case,
however, the situation is more complicated. As noted in Sec.
3 in the discussion concerning the exact soluti@b), the
asymptotic solutions far from the soliton contains corrections
that decrease by a power law. Although they do decrease
faster than the asymptotic solutioh8b), it is very important
to account for them. In particular, they may have the same
form as the Neumann function far<1.

Thus, to calculate the scattering amplitude we must com-
pare the approximate solutigd8b) not with the asymptotic

lem. In particular, there is no scattering for the translationaform (17) but with the refined solution that allows for terms
mode. Unfortunately, there is no way in which we can findincreasing by a power law far from the soliton. Fo# 1 the
analytical solutions for the other modes, but the scatteringorrections can be expressed by exact formulas, but they can

can be analyzed fairly thoroughly in the limiting cases.

easily be calculated in the long-wavelength approximation

To analyze soliton—magnon scattering in the case ok<1/R, where we can assume thaR<z=Kkr<1.

smallk, we can use the fact that k=0 we know the exact
solutionsf%: (12) for m=v and(12) for m>v. In this case,
we can construct the solution for small but finké&k<1/R)
by using a perturbation-theory expansionki To this end
we seek the solution in the forifif,= fﬁ](1+ x*a(x)), where
x?a(x)<1. The functiona(x) is determined by an inhomo-

To do this, we introduce the variakte= kr = xx into Eq.
(13). Then the combinationR/r)" in 6y(r) becomesx”/z”
and vanishes for finite as x—0. Hence in the limitx
=kR—0 Eg. (13) simply becomes a Bessel equation with
the solution(17), and the corrections can be found by a se-
ries expansion in powers ofx(z)”. Keeping only the first

geneous second-order linear equation, whose solution can m@nvanishing approximation in<” and representing the
found by the method of variation of the arbitrary constant ifasymptotic solution in the forngg(z)=Gn(2)+ <7 (2),
the two linearly independent solutions of the homogeneougve arrive at the inhomogeneous Bessel equation

problem are known. For a magnetic material with easy-
magnetization planes this can be done only for the transla-
tional mode'® In the case of an isotropic magnetic material

n?\  4v(l-m) (x|
1=z|=—%2—\3) Cm

Vig+

the solutions can be found by this method for arbitrary valye see that to this accuracy the solution far from the soliton

ues ofm (see Refs. 32 and 22

In deriving a specific solution it is convenient to employ
the modified problem by using the first-order equation

wherefy, is the zeroth solution, bounded as hich can be found by solving an equation of the form

ATg% — %ZfO
m m?
x—0. Whenm<= v, the functionf(?) is such a solution, from
which we easily find that

%2

ggzwqﬂ)(x),

OO (x)= fox(fg’)(g))%dg, for m=v. (183

The same formulas can be used to readily restore the

explicit form of the solutionf};, of the initial problem:

X g )
f2(x)=f9(x) 1—J fg(—%dg . (18b)

0
0 'm

Analysis of this solution has shown that in a broad interval ofanswer is¥’

r values, G<r<RS(1/k)!S (the values of parametes are

can be expressed in terms of the universal functigq,(2),

Im(2)=Cm(2) +4v(m=1)x>" %y ,(2), (19

n?\ Gm
1- ? .‘//‘|n",,= - 2—2(m5
Using the standard method of variation of an arbitrary con-
stant, we can write the solution of this equation in integral
form:

2
Vz*§|n|,u+(

) ™ * Gm(z)‘]\n|(z)
Il (2)=5 Npn| , —2ern 4z
T » Gm(Z)Njp(2)
- EJ‘nl , wdz (20)
Here integration can be carried out exactly, anthét v the
= gS,O)/szzz".
But if |n|# v, we have the recurrence relation
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Z;in\,vz ff,,_lA‘nLV'i‘ B|n|’V, 27 (v—n)

=y (24)
2v—1 g+ (v—n)gl® > visin(mn/)
Anl,v= 2v(n?—12)" Bin|,,= 4p(n2— 1222 where the contribution of the constadit, is crucial when
. . n>0 but is a small correction whem<0.
which yields Integration in(18a with the use 0f23) and(24) leads to

v v—1 v an expression fog;,:
Dnlp="21 kﬂz Alnjkt IZZ Bin| k i:];[+1 Alnl,it Bjnj,»- 5
g (X))o ®x"— —x" ", (25
Limiting ourselves to corrections to the Bessel function, i.e., n

taking G =Jj in (20), we arrive (after involved calcula-  Here we have ignored terms of the foxi2” in comparison
tions that use the properties of cylinder functipas an ex- g x—2Inl

pression forsy Let us compare the asymptotic solution we have just
7 In(2 [1 In(z/2)- ¥(|n|+1) found with t.he solutipr(22) of thg scattering problem. Using
Ginja(2)=— An+1) 2 nn+1) the expansion of cylinder functions for small valuezand
comparing the resulting asymptotic expressions, we conclude
Inj-1(2) 1 that the ternx!" in (25) is related to the Bessel functidy, ,
4z(n*—1)  4[n[(n?—1) while the termx““‘ is relateql to the l\_leumann_ functiow,
and determines the scattering amplitugleA simple com-
- k(|n| +2K) Iy + 2 parison leads to an asymptotic expression for the scattering
XIZl N CE amplitudeo:
Ny (2) 10— T2 (f)znl
+W|z_l), (21) Tl n[t(n]—2)1 2] (26)
where y(x) is the Euler psi function. with —2v+1<m<1 andm# — v+ 1. Note that allowance

Thus, as with the exact solutiofl5), the asymptotic for the correctionss |, ,, leads to a contribution to of order
behavior of the solution for>R differs from that in mag- %??, which is insignificant in the given range of parameters.

netic materials with easy-magnetization planes discussed ear- 2+ The casén|>v is realized form<-2y+1 andm
lier. Even ifo=0, i.e., there is no scattering, in the region far > 1. Intégration in(18a with the use of the same approxi-

from the solution but with finite (R<r<1/k), the solution ~Mations(23) and(24) leads to the asymptotic solution

contains a number of terms that formally divergezasO v+ n|

(kr<1). In this case, forr#0, in the regionR<r<1/k of g7 (x) x| 1+ —xz”), 27)
interest to us, the solution of the scattering problem can be vn

written in which only the leading corrections inxXLare retained.

The asymptotic expressid@?) is valid form= v, when
the zeroth solutions?, are described by the functioh§’ . A
Here we did not include the corresponding corrections to thgimilar calculation can be done fon> v, where for the ze-
Neumann function, since we can easily show that they conroth functions we uséfﬂl);
tain higher orders ok and are unimportant.

By comparing the approximate solutiqt8) valid for
0<x<<1/x with the solution(22) valid for 1<x<1/x we can
now find the scattering amplitude,,(x). In analyzing this )
problem it is convenient to examine the different ranges of (1) vy — (0) (1)
variation of the parameters separately. * fo fm'(§)Tm (£)€d¢ for m>». 9

1. The casdn|<v incorporates both local modes with
their numberan taken from the interval-v+1<m<1 (0
<n<wv) and nonlocal modes for which 2v+1<m<-—w»
+1 (—v<n<0). Infinding the asymptotic solutiofi8a of

9(2) %) (2) +4v(m=1)%*" )y (2)+ 0N (2). (22
1
g,?:)d—(a;(l—%zd)(”(x»,

Calculating the integral ii28), we arrive at the asymptotic
expression27) for v>1. For v=1 the asymptotic solution
for modes withm>1 is

the equation we realize that far from the soliton the zero- 1 52
x m -
frequency modes have the form gm(X)oex™ 1+ 2 mim+ D) Inx|. (29
O~ n2+1 ( 1— %) i (23) Thus, the asymptotic solutiorig7) and(29) obtained for
X X In|> v differ dramatically from the earlier solutiof25): the

Hence we arrive at an approximation wo)(x) in the im- solutions (27) and (29) do not contain terms of the form
portant regiorx>1: 1/xI" and hence cannot yield an asymptotic expression of the

form J;,+ o N, . This is possible only if in the solutiof22)
O 2oan, A oo, the correction? |, , is balanced by the scattering teen,,.
P (x)=d X N+ ——x , .. . LS
n v+n Note that this is an extremely stringent condition: not only
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must the terms ¥/" be balanced but also all terms of the (Ref. 18, while for ferromagnets,(k) ando” (k) can be
form x2¢/xI" where G<k=|n|—1. Allowing for the term in  obtained from each other by changing the sign of the mag-
n|,» related toN, [see(21)], we get non frequencyRef. 19

In conclusion of this section, we give the general solu-
tion of the problem of the scattering of a plane spin wave by
a BP soliton. It is convenient to formulate the solution in

terms of the variablel =¥ explivy}, which becomes r{,
+iny)exp{—iwt} asr—o and describes a spin wave propa-

B . 7N, - _
4y(m—1)x =1 kllAk—i—aNn 0,

which yields a formula for the scattering amplitude:

5\ 2 gating against the background of the homogeneous state with
om(x)=.72 r"n(§> , —2v+1l<m<l, m#-—-v+1, n|le,. The need to pass froff to ¥ can be explained by the
fact that although far from the soliton the magnetization is
w2 (2v— 1) homogeneous;||e,, the unit vectors; ande, depend ory.
A= (300 with allowance for(9) and(17), the asymptotic solution for

T (v=1)! +1)...(m+2v—1)" ;
(v=D!m|(m+1)...(m+2v-1) r>R can be written

3. The special casds|=v» and|n|=0 where the solu- "
tions (30) and (26) become invalid include the translational T= C(J(KE) + o IN-(KP) Y explin v — i ot
mode (m=1), the local mode witm= — v+ 1, and the non- mzz—oo m(In(kN)+om(Nn(kr)) expliny —iwt),
local mode withm= —2»+ 1. For the translational mode the (33

exact solution(15) yields o=0. A calculation done on the _ . .
. . . wheren=v+m, and theC,, are arbitrary constants. Using
basis 0f(188 and a comparison of the results with the solu- . . . : :
asymptotic expressions for the cylinder functions in the re-

:Ic?rt]h(:ii)lcl);\t\r/]i?l;;Z{;?T:Et%t?éoeb;ggsliﬁjdn? ft:re other two CaseSgion r>1/k and selectin@C,, on the basis of a comparison of

(33) with the asymptotic expressidi6) for free motion, we
can write the general solution of the problem of scattering of

T %)= le/%) m=-v+1, (31)  aplane spin wave:
v 4 % 2 1 qf: ik-rt+.7¢ M —ijwt ,
om(%)= m(z) In—, m=-2v+1. (32 expik-ri+.7(x) 7 exp—iwt}

The above analysis of scattering in the long-wavelength exp —im/4} - .
limit makes it possible to calculate the scattering amplitude ~ (X)= Wm;w (exp{2i 5} —1)
in the long-wavelength approximation, i.e., ferk1/R. At
this point in our discussion, several general remarks concern- xexpli(v+m)yx}. (34
ing the nature of soliton—magnon scattering are in order.
It was found that ask—O0 the scattering amplitude
om(Kk) tends to zero for all values @h andv. In most cases
the amplituder,(x) given by Eqs(30) and(26) is a regular
function of ». In contrast to(30) and (26), for parameter
values specified by31) and (32) there exists a derivative o o0
dPo/dxP that has a singularity. The order ig=1 for Q:f | 712dx= > ©m.
m= — v+ 1, with the scattering being at its maximum. Such 0 m= -

nonanglytlc behav!or oir(k) was dete_cted in the numer_|ca| where theg = (4/k)sir? &, are the partial scattering cross
analysis of scattering of magnons with=0 by a vortex in sections

an antiferromagnet with an easy-mag_neti_zation _pl_ane done in As noted earlier, for smak, the maximum scattering is
Ref. 18(see also Ref. 32 The scat.terlng.|nten3|tyr.1 €ON"  related to the local mode witm=— v+ 1, for which, ac-
trast to .the case of mggnetlc vortlcgs dlscusseg in Refs. 1 ording to(31), the scattering phase= /2 In x. Hence, in
and 19 is not at_'ti maximum for partial waves with smallest the leading approximation ikt is enough to limit oneself to
values ofm (m=+1,0). the contribution of this mode, with the result that we arrive at

. .The. very fact that for a partial wave with a givemthe _an expression for the scattering function of the form
limit point k=0 serves as the local zero-frequency mode is

not critical for the scattering intensity. In particular, the 7 exg{i(x+ w4}
mode withm=1 (the well-known translational mode&oes Tx)~ K ImkR
not undergo scattering.

We also note that for the case of scattering by a BRn this approximation the scattering is isotropicA(x)| is
soliton there are no simple relationships that link the scatterindependent ofy). The corrections to this expression are of
ing intensities fom= + |m| andm= —|m|. For scattering of order 1/kR)?**%2 and are important only for determining
magnons by a vortex in magnetic materials with easythe anisotropy of7 ().
magnetization planes, such relationships were established by The total scattering cross sectigwhich has an inte-
numerical analysis: for antiferromagnets, (k)= o’ (k) grable singularityin the limit x—0 is given by the formula

In (34) we have introduced the scattering phad(x),
which is related to the scattering amplitude by the simple
formula o= —tané.

The total scattering cross section is given by the formula

k<1/R. (35)
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2 Oml?

v

5. ANALYSIS OF SCATTERING DATA FOR MODERATE
VALUES OF k

The scattering can also be treated analytically in the
short-wavelength limitk>|m|/R. It is natural to assume that

in this case the problem can be analyzed in the quasiclassical 2 /3 /
approximation, which yields -0.5 //
. [P x /
Om>* \ ——cogconst- | p(§)dé|, -1.0
X X0
(37) FIG. 1. Plots ofs,, vs. kR for v=1, labeled with the corresponding values

of m. The dashed straight lines drawn through the va|de$= /2 desig-
nate the positions of the poles of the scattering amplitude.

PA(X) = #2— Wn(X) + !
“Om m.

Indeed, analysis shows th@7) is valid for all values ofz

=kr larger than the coordinate of the turning poimat,

= xXq, Which corresponds to the conditign(xy) =0. The

value ofxg is small,xg~|m|/x<1. amplitude has a pole. Naturally, there is no real divergence at
On the other hand, at small distanaesR (x<1) the this pole: the physically observed scattering phéevaries

“potential” 7/, has the asymptotic form7Z,~(v—m  monotonically. The existence of a pole means that the total

+1)%/x?, i.e., it describes free magnons of the fof@®)  increment of the scattering phasig) — 5(0), isfinite. Ac-

with a mixed index: cording to numerical calculations for a soliton with a topo-

logical chargev=1, this increment is equal te@ (to within

sign), i.e., each mode is associated with a single pole. Such a

For k>|m|/R, there is a broad range of valuesrof|m|/k  singularity manifests itself in the analysis of the number of
<r<R, in which we can limit ourselves to the asymptotic magnon degrees of freedofsee Sec. 7

gmocJ|V*m+l|(Z)1 fmocJ‘mel(Z) fOI’ r<R.

expression for the Bessel function in the linzit=1 andz To analyze the intermediate valueB~ 1, we solved the
>[m|: scattering problem numerically. The calculations were done
2 1 by numerical integration of the spectral equations for the
Im*Jy-me 1= \/; COS(Z—§|v—m+ 1] initial problem [Eq. (10)] and the modified problenpEqg.
(13)] within a broad range of values &R and m: 103
7 4(v—m+1)2-1 <kR<10® and — 20=m= 20 (the results of each calculation
2 + T) . (38 agree with what was said earlieBasically we are interested

in case withv=1, where the soliton energy is at its mini-

To within terms of order ¥, the solutions(37) and  mum. However, some data were obtained#er2, 3, and 4,
(38) coincide in the entire range of parameter overlap.ioo.

Hence, doing the asymptotic expansion(87) far from the Numerical calculations verified the long- and short-
soliton, we arrive at the short-wavelength asymptotic expreswavelength asymptotic expressions for the scattering ampli-
sion for the scattering amplitude: tude given above. In the intermediate region of wave-vector
#(m-1) 1 values,k~1/R, there are poles in the scattering amplitudes
(%)=~ Sn(a20) % x>|m|. (399 atk=k+p for all the modes in questio(Fig. 1 depicts the

data for the modes with different values ofin the case of
Most importantly, this formula reproduces a property ofa soliton withv=1).

the exact solutior{15) according to whicho;,,=0 holds at Let us discuss the problem of the position of the poles in

m=1. More than that, the scattering amplitude asymptotithe scattering amplitude in greater detail. According to the

cally tends to zero as #/for all m#1, with the o being  numerical data at=1, for allm+ 1 there is only one pole at

equal in absolute value but having opposite signs for magnok=k,. Here k, increases withm|, and the functions,

modes withm=|m| and m=—|m|+2. Below we will see =k,(m) are different form= +|m| and form=—|m| (the
that this result plays an important role in the analysis ofreader will recall we are dealing with solitons with|=1).
density of magnon states in a 2D magnetic material. For very large values din| the pole goes to infinityFig. 2).

Now we can compare the scattering amplitudes in théThe situation becomes more complicated whenl. More
long- and short-wavelength limits. Clearly;—0 in both  precisely, preliminary numerical data show that for a given
cases, but the signs of(x) for x—0 andx—o are oppo- m there can be several poles, with their numbgr not ex-
site. This situation is characteristic of magnon scattering by @eedingv.
1D soliton in the sine-Gordon ang* models and of the For comparative analysis of the scattering of modes with
Landau—Lifshitz equatioiisee the review article in Ref).3 different values ofn, we write explicitly the asymptotic ex-

It can be assumed that for a certain firkte k,, the scattering pression for the scattering phasevat 1:
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kR av(r,x)
p 1
351 J =0, (42)
r or r=L
o a -
301 o a
L a
°© a
251 o a
°°AAA which model the case of free boundary conditions. There is
201 OOAA no difficulty in extending these results to the case of general
15t o8 boundary conditions, but we do not do this here. The mag-
» o‘:A non spectrum in such a system is discrete. In the absence of
10F o*:A solitons, the characteristic wave numbé&s; are equal to
| Oa imilL, wherej,; is theith zero of the Bessel functiah, or
5r Oa ' o Lo .
oa the derivative of this function for the ca$él) or (42), re-
O ? i N 1 n i L H
0 5 10 15 20 Iml spectively.

In a magnetic material with a BP soliton, whdnis
FIG. 2. The positions of the polés as a function of the mode numberat large, we can ignore the local part of the function and write
v=1.The correspond tan=0 and theo to m=0. Jn(kL)+ o (k)N (kL) =0. It is natural, then, to expect the
same behavior from, i.e.,k=j/L, wherej lies between the
values of the corresponding root of the Bessel or Neumann

2 functions or the derivatives of these functions.

X
wsgnm( 1- —Zm(m+1) , %<l m#—1,0, However, for —v<m=<v, i.e., in the case of zero-
S(x)=~ frequency modes, the symmetry of the problem is Higtale
m(1—m) . . .
—_ x>|m|. invariance is restorgdHence we should expect the occur-
V.

(40) rence of Goldstone modes. In an unlimitédfinite) mag-
netic material, the frequencies of the Goldstone modes are
Assuming that these equations are valid at least qualitativelyero, while in the presence of a boundary these modes mani-
and settingx~1, we can make a rough estimate of the po-fest themselves as modes with very low frequencies, i.e.,
sition of the pole by equating the values &fx) for x<1 ) <1 | particular, such modes arise for a vortex in a fer-

and for »>1. This yieldsk,~|m|/R for [m[>1. Such an romagnet with an easy-magnetization plane in the case
estimate reproduces fairly accurately the linear increa&g in _ : . .
where|m|= 1, which corresponds to translational motion of

as a function ofm| for large values ofml (see Fig. 2 the vortex. For this modek~r, /L2<1/L, wherer, is the

radius of the vortex core. Since in this case the solution is

approximated by17) with an exponential accuracy even for
6. MAGNON MODES IN A MAGNETIC MATERIAL OF FINITE r>r,, the existence of Goldstone modes is determined
SIZE solely by the scattering matrix.

The foregoing analysis of the scattering problem in the ~ When we are dealing with a BP soliton, in the analysis
long-wavelength limit can be used to study the natural magof Goldstone modes it is not enough to limit oneself to a
non modes in a magnetic material of a finite surface aregolution in the form(17) corresponding to the scattering
containing a soliton. Such a problem plays an important rol@oroblem—one must also allow for the local part of the solu-
in many applications. Firstly, its solution can be used to detion. The corresponding calculations are so tedious that in
scribe analytically the data obtained through computer simustudying Goldstone modes it is more convenient to deal with
lations of soliton motion, which are always done for systemshe long-wavelength asymptotic expressions derived earlier;
of finite dimensions. In particular, in Refs. 33 and 19, thisthe expressions are valid for< 1/k, i.e., forkr<kL<1. Itis
approach was used to describe the dynamics of a vortex in s region that is so important in the analysis of such modes.
ferromagnet with an easy-magnetization plane and to verifiote that no Goldstone modes are present in the modified
the non-Newtonian equations of motion containing third de'problem (the long-wavelength asymptotic expressidrsa

rivatives of the vortex coordinates with respect to time. SeChas no small parameter, with the result that the boundary
ondly, as noted earlier, this calculation can be used direc“%onditiong"zo leads oniy to the solutiok~1/L)
m .

to describe the natural modes for the small particles of the In analyzing the Goldstone modes it is convenient to

magnetic material, which are in what is called the vortex o . .
9 return to the initial problem for the functidif,. In this range

state® o .
We begin with the simplest case of the magnon modes ir?f values ofk, it is only natural to use the approximate

a circular system with a finite radius and a soliton at the €xPression(18b) for fr,. The analysis done using this ex-

center. We discuss both the Dirichlet boundary conditions Pression shows that Goldstone modes occur only in the re-
gion where local modes exist. In the case of the Dirichlet
W(r,x)|=L=0, (41)

boundary conditions, the spectrum of the Goldstone modes,
which correspond to a fixed value of magnetization at thewhich can be found from the conditioi,(kL) =0, has the
boundary, and the Neumann boundary conditions form
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1+n sin(an/v)(R\" this solution in the regionk|<1/L, where the exponential
2v T T(E) , —vtlsmsy, increase of the function(z)*expz for z>1 does not
KL= manifest itself.
/ m=—p+1. For ferromagnets and antiferromagnets these results lead
In(L/R)’ to significantly different physical pictures of soliton dynam-

(43 ics, which means that cases must be analyzed separately.
The situation is somewhat more complicated for free In the case of an antiferromagnet, there are two frequen-

boundary conditions. In particular, with Neumann boundaryCIeS corresponding to the translational Goldstone mode:

conditions, the solutiorf18b) does not allow for states with 4v(v+1)c?(R\%
kL<1. In this case, however, we can derive a solution by wO:iT(E
using a cylinder function of imaginary argument, which
yields w=Dk?<0 for the case of a ferromagnet @*<0 Clearly, this frequency has meaning only for fixed boundary
for an antiferromagnet. Below we discuss the physical meaneonditions, and negative? mean that the system is unstable.
ing of negative values ob and w?. At the same time, for a ferromagnet the vale= Dk?<0

The following roots of the equation already agree withdoes not contradict the condition for stability. These results
the conditionkL~1. They correspond tk?>>0 for all types  can easily be explained on the basis of a simple physical
of boundary conditions. Since fér~ 1/L andR<L the ratio  picture of soliton motion.
r/Ris large at the boundary, the valuelgfL is close to the Obviously, for an antiferromagnet, which is described by
value of the corresponding zero of the Bessel functign, Lorentz-invariant equations, the dynamics of all excitations
=j,+1p, Whered, 1(j,) =0, or to the value of the zero of must also be Lorentz-invariant. When the soliton is slew,
the derivative,j,, whereJ, . (j,)=0 in the case of fixed <c, this means that in the leading approximation the soliton

(46)

and free boundary conditions, respectively: coordinateX (for X the origin is at the center of the system
20 3. [R|2” in the case of an antiferromagnet satisfies an equation of the
KL=j,+ — V_JP(_> , (449  Newtonian type:
P P kL ‘]1//+1(Jp) L
9?X
. 2v (RIL? (2v+1 M~z =Fe. (479
KoL=Jp+ KC7.1G0 | kL J(jp)—3(jp) |- (44D

whereF, is the external force acting on the soliton, avid
Thus, the spectrum of the natural frequencies of a smal=E,/c? is the effective soliton mass, witE, the soliton

particle of a magnetic material in an inhomogeneous statenergy[see Eq.(3)]. Assuming that when the deviation of

contains anomalously low frequencies, which manifest themthe soliton from the equilibrium position at the center of the

selves in the magnetic resonance of samples containing sugfystem is small we can write

particles, say, ferroliquids and granular magnetic materials.

Usov and Peschaffound that the magnetization distribu- :ﬂ (47

tion in a particle in the vortex state is well approximated by ¢ LP

the BP soliton. Although our calculations can be applledIet us compare the value of the frequency obtained4s)

only to particles shaped as a thin disk, it is easy to generallz\clavith the value of w?=—a/MLP. We find that p=2(v
them to the case of a cylinder.

Now we go back to the discussion of the meaning of th +1), and a==16mv*(v+1)AR for the Dirichlet and
9 9 “Neumann boundary conditions, respectively. This corre-

2 i
resultk<0 for a Goldstone mode for free boundary condi sponds to the simple picture according to whiEhis the

tions. We examine the most interesting case; 1, corre- force of the image acting on the soliton because of the pres-

sponding to the translational motion of a BP solitdelow : . . :
. ence of a boundary. Since magnetic vortices interact as 2D
we will show that the parameters of a Goldstone mode can

: . . . charges and a BP soliton witt=1 is a vortex dipole, soli-

be directly related to the equations of motion of the sojiton : : : :
) . tons with giveny>1 can be interpreted asv2nultipoles,
The parameters of what is known as the translational Gold-", . ) :
which explains the presence pfin (47b) and the sign ofx.

stone mode can be obtained directly from the exact solution Thus, the properties of the translational Goldstone mode

(15). ForkR<1 the solution is in an antiferromagnet can easily be understood from the fol-

i1 4dv(v+1) 1 lowing reasoning. When a soliton is deflected from its equi-
Wx)eer™H 1 k02 (rIRZ+1)’ librium positionX =0, it is driven by the force of the image.
S ) N For the Dirichlet boundary conditions the force is a restoring
which implies that for fixed boundary conditions, one (repulsion from the boundarand the motion is stable.
4v(v+1) (R\?" If the soliton is attracted to the boundafthe Neumann
kzzT(E) (45 boundary conditions Eq. (47) describes the departure of the

soliton from the unstable position of equilibrium Xt 0.
For free boundary conditions the solution has the same form  Allowance for the next values &, ; for i>0 can also
but k? is negative. Negativé? is not inconsistent with the be explained on the basis of effective equationsXoHere
presence of Bessel functions of imaginary argumiemdi-  the hierarchy of the effective equations of motion containing
fied Bessel functionsin the solution, since we are studying only even-order time derivatives manifests itself. The coef-
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ficients of the higher-order derivatives diverge las»c. verges as —. The divergence oM is probably a general
Mertenset al3® proposed equations of this type for describ- property of 2D magnetic materials with a gapless dispersion
ing the behavior of interplanar vortices in a ferromagnet. law.

The situation is quite different for a ferromagnet. The = We also note that the finite value of the soliton mass
equation that is commonly used to describe the soliton dyM«1/K, where K is the anisotropy constant, obtained in

namics is Ref. 37 for a magnetic material with an easy-magnetization,
22X X axis does not contradict the above dependévieel? for an
M —5 +G| e,x— | =F,. (48)  isotropic ferromagnet. Indeed, in a magnetic material with an
ot ot easy-magnetization axis, the gap in the magnon spectrum is

HereF, is the external force, which, obviously, is the samefinité and a characteristic linear scalg= \/m appears,
as in the case of an antiferromagfste Eq(47b], andG is frorr21 WhICh. we can obtain the same result as in Ref.Nd7,
the gyroscopic term, whose value is determined only by th& 20> 1K, if L is replaced byA, in (52).
topology and has been reliably establisfé#®3¢ G
=47vA/D. The data on the effective mass of 2D solitons
and vortices are contradictory: in Ref. 37 it is stated that in a
ferromagnet with an easy-magnetization plane the value of- PENSITY OF MAGNON STATES OF A 2D ISOTROPIC
M is finite but diverges as the anisotropy constariends to MAGNETIC MATERIAL IN THE PRESENCE OF A SOLITON
zero,M=1/K. In Ref. 38 the result for a vertex M« 1/L, in
Ref. 33 the masM is proportional to IrL, and in Ref. 1M
is finite, but only if the termG;(e,x 9°X/dt3) is present in
the effective equations of the forfd8). In Refs. 36 and 39,
the dynamics of a BP soliton is described on the basis of th
Hamiltonian formalism with noncanonical Poisson brackets
and the relationship between momentum and velocity an
the values of the mass are not discussed.

According to (45), the frequency of the translational

A 2D magnetic material can be described thermody-
namically with allowance for soliton excitations via a gener-
alization of soliton phenomenology developed by Krumhansi
and Schrieffef and Currieet al? for 1D systems to the two-
Gimensional case. According to their approach, at low tem-
geratures the state of a 1D magnetic material can be de-
Scribed in terms of almost free excitations, magnons and
kinks. The main effect of their interactions manifests itself in
the form of an asymptotic shift of the phase of a magnon
Goldstone mode for a ferromagnet has the form scattered by a kink. This causes the total number of magnon

4y(v+1)D [R\?” states from the continuous spectrum to chatigecompari-
iT E) ) (49) son to the case of a magnetic material without a solitpn
. ) ) L . N AN=fli°kOp(k)dk, where p(k)=(1/27)ds(k)/dk is the
with the "plus” and “minus” corresponding to the Dirichlet density of states. This quantity is a negative integer, i.e., the

and Neumann boundary conditions, respectively. In the . .
. : . : . humber of magnon states in the presence of a soliton de-

present case there is no instability, since EB) with M C : . .

i . . i creases byAN, which is obvious, since a fraction of the

=0 (i.e., only the gyroscopic term is taken into accqunt . .
. A L magnon states are now described as the collective modes of
describes small oscillations of the soliton in the case of at: . . L .
. . . the kink dynamics. The variation of the density of magnon
traction to the boundary and in the case of repulsion from the - .
. States due to the addition of a kink to the system causes a
boundary. Allowance for the next translation mode, whose . . .
. ) change in the thermodynamic characteristics of the magnon

frequency is determined by the formula X :

gas, in particular, the free energy of the magnons. In the
w,=D(j/L)? or w;=—D(j'/L)? (500  phenomenological approach, this change in the free energy

) . i of magnons is interpreted as a change in the kink energy due
in the case of the Dirichlet or Neumann boundary conditions, kink—magnon interaction.

respectively, makes it possible to draw a conclusion about

the inertial_terms in the equation of moion. ) magnetic material the total number of states is proportional
Assuming thaiwy<w,, these roots can easily be com- L,L,. A free magnon corresponds to the expangib®

pared with the tvx_/o frgquenues that arise in thep solqtlon oﬁn the cylinder harmonics,,(kr)explimy} in which the an-

Eg. (48). Indeed, |n.th|s case we hawg~ —a/GLP, which gular variable has already been quantized, so that only the

ylelds exactly the first value of the frequency of the transla-,iq) part](kr) needs to be quantized. In a circular geom-

tional Goldstone mode. For the second value we gelyy with radiusl, the simplest quantization conditiddd)

w1~ —G/M. This value can be compared (80) if we put 55 the formJ,(kL)=0, from which it follows thatk,L

47 vA ( L\2 47 vA L)Z =jmn- In the region of interest to us>1, the zeros of the

wo=

Let us use all these ideas in the 2D case. Clearly, in a 2D

Dz |7 OFM=-—]z 7 (51)  Bessel functionsj,, ,, are approximately equal ten. From

this fact we can formally determine the admissible values of
respectively, for fixed or free boundary conditions. Thus, aghe wave number by the same expression as in the 1D case.
for a vortex, the dynamics with the frequenay is deter- However, one must bear in mind that such an approximation
mined by the entire region to which the magnetic material isfor j, , is valid only whenm is not very large. For modes
confined. Just as the coefficieBg in the third-order equa- with |m|>1 the first zeroj,,~|m|. Hence in a system
tions for vortices in a ferromagnet is nonlocal, so is the co-whose sizd_ is finite there is a restriction on the admissible
efficient M: it depends on the boundary conditions and di-numbers of the modes, namelyn|<L. Allowing for this
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fact, we arrive at a rule for summing over the magnon statetering problem for the partial mode with the azimuthal quan-

for a 2D magnetic material without a soliton: tum numberm=1. Note that such solutions are not known
Lk KL for all one-dimensional problems.
2 S f Odk 2 ] What is important is that the possibility of such an in-
km 7T Jo  m=-kL vestigation is not related to exact integrability of the prob-
Naturally, for the total number of magnon states we arrive ateM- Indeed, the model of an isotropic magnetic material is
the usual formulaN,p= szg/m exactly integrable in the static casesn(x,y), but nothing

Allowance for the soliton—magnon interaction leads to alS known of its integrability in the case=n(x,y,t).
shift in the magnon phase and changes, just at its does in 1D We have calculated the scattering amplitude ro# 1
systems, the expression for the density of stétesur case, (analytically in the long-wavelength approximatidiR<1
partial states for magnons with a givem) p,(k)  and forlarge values R and also numerically for arbitrary

=(1/m)ds(k)/dk. The total density of magnon states is values ofkR). We have found that the partial scattering am-

found by summing ovem: plitudes have poleg&he scattering phases pass througR)
KL KL at certain valuek&=Kk,, with k, increasing withm approxi-
(k)= 2 ()= E 2 dom(k) _ (52) mately by a linear law. This is enough to calculate the mag-
m=—kL Tm=k dK non density of states in the presence of a soliton.

We have used our results to describe various physical
wavelength region has ditegrable divergence caused by properties of solitons and local magnon modes. In particular,
the mode withm=0, for which, according td31), po(K) we have calculated the frequencies of the magnon modes for
~(2k)_1|n_2(kR) diV'ergeS in th'e limitkR— 0 [Cf (,36)0] It a magnetic material of finite dimensions. What we have

is also obvious that at low temperaturd@ssT, , whereT found is that in the small particles of ferromagnets contain-

=#D/R? for ferromagnets and, =#c/R for ;ntiferroma*g— ing a soliton(particles in what is known as the vortex state,
* - . - .

nets, it is enough to limit oneself to the long-wavelengthWhOSe properties are being widely discussed at presafu-

approximation. In particular, in the adopted approximation,ral modes arise yvith anomalously low frequencies. The data
the density of energy states can be written on the frequencies of the local modes have been used to

derive the equations of motion of a soliton in a ferromagnet.
We have calculated the magnon density of states in the pres-
g(E)= 2 : (53 : . . )
ERIN*(E/T,) ence of a soliton, which makes it possible to construct a
In principle, the density of states for an arbitrarycan soliton phenom_enology for 2_D magr_1etic materials that al-
be calculated numerically. Here the presence of a pole in th@Ws for the soliton—magnon interaction.
amplitude of scattering of magnons with a givenmeans _There are other possible applications of our results worth
that the total phase changes byr or by — 7 ask changes noting. In some of the papefsee, e.g., the review article in
from zero to infinity, with the modes witm>1 andm<1 Ref. 7) devoted to the study of ordered 1D media including
providing contributions to72(k) that are opposite in sign. magnetic materials, several nonequilibrium characteristics of
Thus, for values ok that are not small the total number of @ soliton gas, primarily, the coefficients of diffusion and vis-
magnon states does not decreéaeit does in the 1D cake cosity, were investigated. The theories developed by the re-
rather, the magnon modes are redistributed among the statégarchers were based on using the exact wave functions of
with different values ofn. In general the signs in the series magnons against the background of a soliton. The asymptotic
(52) are found to alternate. In thermodynamic calculationsexpressions for the wave function for smiltlerived in the
the temperature acts as a sort of regularizing factor in thigresent paper have made it possible to study the irreversible
summation process. The main contribution of the variougProcess for the 2D gas of elementary excitations, including
modes, in particular, the change of the number of partiafolitons and magnons, in isotropic magnetic materials at low
states by one unit, manifests itself in the order in which theemperatures.
polesk, appear in the scattering amplitude lasncreases. The results concerning the-model can easily be ex-
Sincek, increases withn (see Sec. b the contributions of tended to the Euclidean case and can be used to describe the
the modes with an ever increasimg manifest themselves quantum properties of spin chains with antiferromagnetic in-
successively as the temperature rises. teraction. The properties of such systems are determined by
the instantons of the Euclidean version of the nonlocal
o-model. Also widely discussed are instantons with a struc-
ture of the BP soliton(see Ref. 4Dand what is known as
merons, which have a half-integer topological chatgee
Thus, we have constructed the soliton—magnon scatteRRef. 41). To calculate the pre-exponential factors in the cor-
ing matrix for the simplest but physically interesting 2D responding transition amplitudeghe fluctuation determi-
model of an isotropic magnetic material. The analysis hagiany, we must know the complete set of eigenstates against
been carried out both for the Landau-Lifshitz equation, usethe instanton background. Most important are zero-frequency
to describe ferromagnets, and for the Lorentz-invarianinodes(for more details see Ref. #2Hence our results, es-
o-model, used in field theory and to describe antiferromagpecially concerning the nontrivial local zero-frequency
nets. We are the first to obtain an exact solution of the scatmodes, may prove to be important in developing the instan-

Note that the density of states?(k) in the long-

8. CONCLUSION
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Yif this fact is not taken into account, the amplitude for scattering of the

translational mode by a BP soliton turns out to be fifft& whereas ac-
cording to(15) it must be zero.
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