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Composition of cosmic rays accelerated in supernova remnants
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The kinetic theory of regular acceleration of cosmic rays in supernova remnants is used to
investigate the expected chemical composition of the rays. It is shown that the shapes of the
calculated profiles of the chemical elements making up the cosmic rays are consistent
with experiment wherever the results of measurements are available. The acceleration process is
accompanied by relative enrichment of the cosmic rays with heavy elements. If the
analogous property of the mechanism underlying the injection of superthermal particles into the
acceleration regime is taken into account, such enrichment supports the formation of the
required composition of cosmic rays in the energy range up to 1014– 1015eV. © 1999 American
Institute of Physics.@S1063-7761~99!00109-2#
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1. INTRODUCTION

The chemical composition of cosmic rays carries dir
information about their sources, the medium from whi
they originate, and the mechanism of their acceleration.
massive quantity of experimental data accumulated to d
suggests that cosmic rays originate in a medium of nor
chemical composition typical of the interstellar medium~see,
e.g., Ref. 1!. This consideration provides further argument
the effect that the bulk of the cosmic rays are produced
shock waves from flares of supernovae, which constitut
natural class of galactic objects capable of providing the
ergy input required for cosmic rays in the interstel
medium.1

On the other hand, there are systematic differences in
compositions of cosmic rays and the interstellar mediu
The main difference is that the relative content of nuclei
elements heavier than helium in cosmic rays is higher tha
the interstellar medium, and the disparity between them
creases as the mass number of the elementsA increases. This
fact is usually attributed to a necessary property of the c
mic ray acceleration mechanism, that heavier elements
accelerated more efficiently than lighter elements.

Detailed measurements of the composition of cosm
rays are currently being carried out over a wide range
energies, and major efforts are underway to extend this ra
to the kink region in the cosmic ray spectrum: 1015– 1016eV
~Refs. 2 and 3!. Today it can be said that the demands i
posed on cosmic ray sources require not only that they m
tain the necessary acceleration efficiency, but also that
generate the observed composition of these rays. Deta
studies of the cosmic ray acceleration process in supern
remnants, based on the nonlinear kinetic theory of accel
tion ~the theoretical foundations of regular acceleration
presented in two surveys4,5!, have shown that the acceler
tion process is characterized by the necessary efficiency
proximately half the energy released in explosion is tra
ferred to accelerated cosmic rays.6–9
3911063-7761/99/89(9)/13/$15.00
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In this paper we compare calculations of the expec
spectra of various cosmic ray components carried out us
the nonlinear kinetic theory of cosmic ray acceleration
supernova remnants with existing experimental data, our
jective being to determine the extent to which the chemi
composition of cosmic rays accelerated in supernova r
nants satisfy the experimental requirements.

2. THEORY

The mechanical energyEsn released in a supernova ex
plosion in the initial stage of evolution is represented by
kinetic energy of the expanding shell of ejected matter. T
motion of the ejected shell generates a powerful shock w
in the surrounding interstellar medium, the radius of t
wave Rs increasing at the rateVs5dRs /dt. The diffusive
propagation of high-energy charged particles in the collisi
less dissipative medium enables them to cross the sh
front many times before they finally drift into the regio
behind the shock wave. Every pair of consecutive crossi
of the shock front is accompanied by an increase in the p
ticle’s energy, wherein lies the essential physical nature
the regular acceleration process.10–12 In the linear approxi-
mation this process generates a power-law cosmic ray
mentum spectrum at a planar shock front. Owing to the h
acceleration efficiency of acceleration and the hardnes
the spectrum, the accelerated cosmic rays constitute an
portant dynamical factor. The structure of the shock wa
modified by the reciprocal influence of cosmic rays on t
medium contains—in addition to the usual thermal front—
smooth extended zone known as the prefront. The modifi
tion of the shock wave, in turn, is reflected in the shape
the cosmic ray spectrum to the extent that it is not a p
power-law function of momentum in this case. The se
consistent cosmic ray spectrum can be determined by sol
the dynamical equations describing their transport and ac
eration, along with the dynamics of the medium~gas! with
allowance for the reciprocal influence of the rays on the m
© 1999 American Institute of Physics
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dium; this consideration is the foundation of the kine
theory of cosmic ray acceleration in supernova remnant
developed in previous studies6–9 in application to the case in
which only protons—the principal species of ions in the
terstellar medium–are assumed to be accelerated.

In the kinetic approach the acceleration of cosmic ra
by a supernova remnant shock wave is described assu
spherical symmetry by the diffusive transport equation
the cosmic ray distribution functionf A(r ,p,t):13,14

] f A

]t
5¹~kA¹ f A!2wc•¹ f A1

¹wc

3
p

] f A

]p
1QA , ~1!

wherer , t, andp are the radial coordinate, the elapsed tim
from the supernova remnant explosion, and the particle
mentum, respectively,kA is the cosmic ray diffusion coeffi
cient, the subscriptA designates the nuclear species char
terized by the mass number~atomic! A, wc ~wc5w for r
,Rs , andwc5w1ca for r .Rs! is the velocity of the scat-
tering centers, the role of which is taken by Alfve´n waves,w
is the velocity of the medium, andca is the velocity of the
Alfvén waves generated by accelerated cosmic rays. In
preshock region,r .Rs , the Alfvén waves propagate awa
from the shock front relative to the medium; in the postsho
region they are assumed to be isotropic with respect to
direction of propagation~see, e.g., Ref. 15!.

Cosmic rays originate at the thermal front, at which t
gas heats up, whereupon a small fraction of the high
energy particles is capable of crossing the thermal front
peatedly and thus becoming involved in the acceleration p
cess. The injection of particles into the acceleration regim
described by the source

QA5
Ninj

A u1

4p~pinj
A !2 d~r 2Rs!d~p2pinj

A !, ~2!

whereu5Vs2w, Ninj
A is the number of gas particles draw

into the acceleration process from unit volume intersect
the thermal front, andpinj

A is the momentum of these pa
ticles. The thermal shock front, situated atr 5Rs , is treated
as a discontinuity. The subscript 1~2! corresponds to the
point r 5Rs10 (r 5Rs20) directly ahead of~behind! the
thermal front.

Unfortunately, a systematic theory of collisionless sho
transfer in a gas~or, in our terminology, a thermal front! with
the capability of reliably predicting the rate of particle inje
tion into the acceleration regime is still lacking. Cons
quently, the rate of injection of protons as the principal s
cies of ions in the cosmic plasma is specified by
dimensionless parameter16,17,6–9

h5Ninj /N1 , ~3!

which characterizes the number of injected protonsNinj , and
by the parameterl.1, which characterizes their velocity:

v inj5lcs2 . ~4!

Here cs2 is the sound velocity in the postshock region,N1

5spNH is the density of protons ahead of the thermal fro
NH is the density of protons in the interstellar medium, a
sp is the compression ratio of matter within the limits of th
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prefront. The quantityv inj has the significance of the mini
mum velocity necessary for particles to be able to cross
shock front and hence enter into the acceleration proc
Beginning with the velocityv inj , the character of the spec
trum of particles is governed by the buildup of energy due
their quasi-cyclic crossing of the shock front, i.e., by regu
acceleration.

Note that the total modification of the shock wave to t
point where the thermal front completely vanishes18 is im-
possible in the presence of an expanding shock wave of fi
dimensions,6–9,19 owing to the influence of geometrica
factors.20

Inasmuch as the accelerated particles in the shock t
sition region are powerful energizers of Alfve´n waves,21,22

the diffusion of cosmic rays is assumed to be of the Bo
type, corresponding to the diffusion coefficient

kA5kB5rBv/3, ~5!

where rB5pc/QeB and v are the particle gyroradius an
velocity,B is the magnetic field,c is the speed of light,e and
m are the proton charge and mass, andQ is the ion charge
number. In the perturbation region the diffusion coefficien
kA5kA0r0 /r, wherer is the density of the medium, and th
subscript 0 refers to the unperturbed interstellar medium.
factor r0 /r is included, in effect, to account for the post
lated increase in the level of turbulence in the perturbed m
dium and to prevent the development of prefro
instability,23–25 which makes it difficult to solve the state
problem numerically.

In the initial period of acceleration the ion charge num
ber Q is equal to its equilibrium value in the interstella
medium,Q0 . With the passage of time the charge of the io
increases as a result of their ionization due to collisio
which causes the charge number to attain a value equal to
charge number of the nucleusZ. For simplicity we assume
that the charge numberQ increases in the energy interva
10Amc2– 103 Amc2, directly as the logarithm of the energy
from Q0 to Z.

The medium~gas! is described by the gasdynamic equ
tions

]r

]t
1¹~rw!50, ~6!

r
]w

]t
1r~w¹!w52¹~Pc1Pg!, ~7!

]Pg

]t
1~w¹!Pg1gg~¹w!Pg5aa~12gg!ca¹Pc , ~8!

wherer, gg , andPg are the density, adiabatic exponent, a
pressure of the gas, respectively,

Pc5
4pc

3 ( E
0

`

dp
p4f A

Ap21~Amc!2
~9!

is the cosmic ray pressure, in which the summation is car
out over all species of nuclei under consideration,aa51 for
r .Rs , andaa50 for r ,Rs . The reciprocal dynamical in-
fluence of cosmic rays on the medium is taken into acco
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by the term2¹Pc . According to Eq.~7!, the pressure gra
dient of the cosmic rays directly influences the velocity p
file of the mediumw(r ). The influence of the cosmic rays
particularly strong in the preshock region,r .Rs , where
their pressure varies considerably within a relatively sm
space scale (1023– 1022)Rs ~Ref. 8!, resulting in significant
modification of the shock transition, i.e., the formation of
prefront.

The influence of the cosmic ray pressure is also subs
tial in the postshock region,r ,Rs , even though it does no
produce the same radical changes therein, because its g
ent is much weaker.

In addition, the cosmic ray pressure enters into Eq.~8!
and induces considerable additional heating of the gas in
regionr .Rs . The role of cosmic rays is intermediate in th
case: They strongly energize Alfve´n waves in the regionr
.Rs , whose subsequent dissipation has the effect of hea
the gas.22 In the case of a high acoustic Mach numberMs

5Vs /cs0@AMa, where Ma5Vs /cs0 is the Alfvén Mach
number, and the subscript 0 refers to the unperturbed
dium, the dissipation of Alfve´n waves has a strong influenc
on the structure of the modified shock wave. It severely li
its the growth of the compression ratios5r2 /r0 of the mat-
ter at the levels'Ma

3/8, whereas ignoring this effect implie
s'Ms

3/4 ~Refs. 7 and 8!. Since the Alfve´n Mach number is
high in the active period of evolution of the shock wav
Ma;Ms@1, when the bulk of the cosmic rays are produc
the compression ratios far exceeds the classical limit 4 i
this case.

For a stationary, homogeneous medium, which is
only case treated below, Eqs.~1! and~6!–~8! are solved sub-
ject to the initial (t50) and boundary (r 5`) conditions

f A~p!50, r5r0 , Pg5Pg0 , w50. ~10!

We note that the conditionf A(r 5`,p,t)50 implies neglect
of the role of background cosmic rays, which is justifi
because injection and subsequent entrainment of super
mal gas particles in the acceleration regime dominates
accelerated background cosmic rays, owing to the low d
sity of the latter.

In the very earliest period of expansion of the explosio
ejected shell its matter is described by a self-similar dis
bution in terms of the velocitiesv5r /t ~see Refs. 26–28!:

rej5 HFt23, v,v t ,
Ft23~v/v t!

2k, v>v t , ~11!

where

F5
1

4pk

@3~k23!Mej#
5/2

@10~k25!Esn#
3/2, v t5F10~k25!Esn

3~k23!Mej
G1/2

,

Mej is the mass of the shell, and the parameterk has a value
typically in the interval between 7 and 12.

The internal pressure in the shell matter is negligib
Interaction with the environment modifies the density dis
bution and produces a backward shock wave inside
ejected matter; this wave, in turn, heats the gas to very h
temperatures~see, e.g., Ref. 29!. In this paper we take the
backward shock wave into account and use an approxim
description of the ejected matter dynamics, representing i
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two constituent parts: a thin shell~the piston! moving with a
certain velocityVp , and a free expanding part, which is d
scribed by the distribution~11!. The piston consists of the
hindered part of the distribution~11! with initial velocities
v.Rp /t:

M p54pt3E
Rp/t

`

dvv2rej~v,t !, ~12!

whereRp is the radius of the piston. The dynamics of th
piston is satisfactorily described by the thin-sh
approximation,30 whereby the motion of the piston obeys th
equation9

d~M pVp!

dt
54pRp

2@Pc~r 5Rp20!

2Pg~r

5Rp10!2Pc~Rp10!#. ~13!

The cosmic ray pressurePc(r 5Rp20) is created by par-
ticles that have penetrated the piston. The boundary co
tion on the surface of the piston characterizes the balanc
diffusion fluxes of cosmic rays across the boundaryr 5Rp :

k
] f A

]r
52fA at r 5Rp10, ~14!

where

fA5kA@ f A~r 5Rp20,p,t !2 f A~r 5Rp10,p,t !#/ l p ,

l p5dRp is the thickness of the piston, and the valued
50.1 is used in the calculations.

In the region behind the piston (r ,Rp) the cosmic ray
distribution function is described by the approximate eq
tion

] f A

]t
5

Vp

Rp
p

] f A

]p
2

S

V
fA , ~15!

which follows from Eq.~1! with allowance for the fact that
owing to the large diffusion coefficient, the spatial distrib
tion of the cosmic rays in the volumeV54pRp

3/3 is almost
homogeneous.

The penetration of cosmic rays through the piston is
a significant factor from the standpoint of the evolution
the shock wave or the acceleration of the rays themselve7,8

In the early stage of free expansion this process is incon
quential and the diffusion coefficientkA is therefore small,
owing to the high densityrp . In the Sedov intermediate
stage, when the majority of the cosmic rays are genera
the radius of the piston is small in comparison with that
the shock wave (Rp!Rs). Consequently, in this stage o
evolution of the supernova remnant as well, the penetra
of cosmic rays into the regionr ,Rp does not exert a majo
influence on the shock wave dynamics or the acceleratio
the rays.

The investigation of the real distribution~11! of ejected
matter is important in the initial stage of evolution of th
supernova remnant, when the mass of matter swept from
surrounding medium is much smaller than the mass
ejected matterMej ~Ref. 9!. During this period the velocity of
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FIG. 1. Differential densities of protons and alpha particles beh
the front of a longitudinal shock wave with Mach numberMs

57.1 and Alfvén Mach numberMa54.6 as a function of particle
velocity. The histogram is the result of numerical simulation;33 the
dot–dash curves correspond to a Maxwellian distribution with p
rameters corresponding to the Rankine–Hugoniot equations;
points represent power-law spectra corresponding to the theor
regular acceleration.
he
th

ci

he
th

low

al
de
un
e
i

th

s
-
-
-
io

s
ve
g
fo
sa

e
iti
th
on

-
se-
d in
ac-

in
e

t
-
ber

os-
re

ces
n
the

of
th
t
al

se-
ne-

e-

ed
the piston Vp is much higher than the averageVp0

5A2Esn/Mej, so that the shock velocity is higher, and t
acceleration of the cosmic rays is more rapid than in
frequently used simplified case where, in contrast with~11!,
the entire shell matter is assumed to expand with the velo
Vp0 .

We disregard the influence of radiation cooling of t
perturbed medium. This process becomes important in
later stage of evolution of the supernova remnant,31 when the
acceleration of cosmic rays is rendered inefficient by the
velocity of the shock wave.

This problem is exactly solvable only by numeric
methods. A description of the fundamentals of a newly
veloped and implemented numerical algorithm can be fo
in previous papers,6–9 along with a detailed discussion of th
physical results obtained via the algorithm for the case
which only protons—as the principal species of ions in
interstellar medium—are taken into account.

The results of a numerical simulation of collisionles
quasi-longitudinal shock waves,32,33 experimental results ob
tained in interplanetary space,34,35 and the results of a re
cently developed analytical theory36,37 show that superther
mal particles can be efficiently injected into the accelerat
regime at a rate exceedingh51024.

Calculations have shown8 that the indicated injection
rate makes the acceleration very efficient: Even ath51024

more than 20% of the explosion energyEsn is transferred to
cosmic ray protons. An increase in the injection rate cau
the cosmic ray acceleration efficiency to increase. Howe
this functional dependence is not very strong; increasinh
by two orders of magnitude produces at most a three
increase in the cosmic ray energy content. It is safe to
that the actual value ofh is not too critical from the energy
standpoint.

The situation changes dramatically when it becom
necessary to investigate the expected chemical compos
of accelerated cosmic rays. In the interstellar medium
nuclei of all elements constitute small impurities in relati
e
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to protons.1 Allowance for their acceleration cannot signifi
cantly influence the shock structure and dynamics. Con
quently, the spectra of these elements can be calculate
the linear approximation. This means that the number of
celerated particles of an element with mass numberA is
directly proportional to the number of particles involved
acceleration,Ninj

A , which, in turn, is expressed in terms of th
injection parameter

hA5Ninj
A /NA1 , ~16!

where NA15spNA , and NA is the density of the elemen
with mass numberA in the interstellar medium. Conse
quently, the number of accelerated nuclei with mass num
A is proportional to the parameterhA. In other words, unlike
the acceleration efficiency, the resultant composition of c
mic rays is in fact sensitive to the injection rate or, mo
precisely, to its dependence on the particle species.

Numerical simulation33 and experimental38 results show
that the thermalization of the gas at the shock front produ
an approximately identical velocity distribution for all io
species. This fact is demonstrated in Fig. 1, which shows
differential spectra~derivative of the number density with
respect to the velocityv! n5dN/dv of protons and
a-particles at the shock front, plotted from the results
numerical simulation of a longitudinal shock wave wi
Mach numberMs57.1 ~Ref. 33!. This result is consisten
with the notion that the conversion of energy of direction
motion of the gas impinging on the shock front is a con
quence of elastic scattering of gas particles by inhomoge
ities of the magnetic field frozen into the medium.

If the injection mechanism selected particles by their v
locities, the momenta of injected protonspinj and heavier
elementspinj

A would be related by the equation

pinj
A 5Apinj , ~17!

where the fraction of particles of different species involv
in acceleration would be the same,hA5h.
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However, calculations and experiment both indicate t
the acceleration process involves a much smaller fractio
particles of the thermal distribution than are purely capa
kinematically of moving out of the postshock region, cros
ing the shock front, and thus entering into the accelera
process. This means that within the shock transition z
there are more significant factors affecting the particles
enabling particles of insufficient velocity to cross the sho
front. The basis of these factors is the interaction of partic
with the electromagnetic field. Particles are therefore
lected according to their rigidities: The acceleration proc
involves particles whose hardnessR}p/Q ~Q is the ion
charge number! exceeds a certain critical valueRinj . Conse-
quently, the velocity of injected heavier elementsv inj

A

5v inj /Q is lower than the proton velocityv inj . Since the
power-law spectrum of the accelerated particles matche
with the much steeper thermal spectrum at the pointv inj

A , the
fraction of injected particles can be expected to be an
creasing function of the dimensionless parameterA/Q; this
function can be formally represented as

hA5heinj~A/Q!, ~18!

where the factoreinj(x)>1 is a monotonically increasing
function of its argumentx>1. The same is true if the numbe
of injected particles is converted to the injection moment
pinj

A 5Apinj , which we have used in the calculations as
matter of convenience. This assertion is evident, in part
lar, from Fig. 1, which shows~with a certain indeterminacy
due to the increased statistical error of the calculations as
velocity increases! that the actual injected proton velocity
v inj.6cs2 , because, beginning with the velocityv56cs2 ,
the proton spectrum obeys a power law,n}v2g, whose ex-
ponent is close to the universal valueg5(sef12)/(sef

21)52.5, wheresef5s(121/Ma)52.95 is the effective
compression ratio,Ma54.6 is the Alfvén Mach number, and
s53.78 is the compression ratio corresponding to the aco
tic Mach numberMs57.1. On the other hand, in accordan
with the role of hardness, the velocity of injecteda-particles
is approximately half the proton velocity,v inj

a .3cs2 . But
then, if v inj56cs2 is assumed for particles of both specie
the a-particle enrichment factor iseinj(2).2.

It should also be noted, as is evident from Fig. 1, that
profile of the self-consistent spectrum of thermal partic
differs significantly from the Maxwellian formn}v2

3exp(2v2/vT
2) v inj , even at velocities well below the thresh

old valuev.v inj .
Since, as was mentioned, the dynamical role of eleme

heavier than hydrogen is of minor significance, it follow
that the efficiency of cosmic ray acceleration, the salient f
tures of the modification of the shock wave, and the evo
tion of the latter do not differ markedly from the case wh
only the acceleration of protons is taken into account. In
present discussion, therefore, we shall not consider thes
pects of the problem in detail, referring the reader instea
previous papers.6–9 The ensuing discussion will be con
cerned primarily with the properties of the resultant ene
spectrum of cosmic rays produced by the shock wave du
the entire period of its active~from the standpoint of cosmic
ray production! evolution:
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A~ek!5

16p2~ek1Amc2!p

c E
0

`

drr 2f A~r ,p,t !. ~19!

Here ek5e2Amc2 is the kinetic energy of a particle with
mass numberA ande is its total energy, which is related t
the momentum by the usual equatione5Ap2c21(Amc2)2.
The spectrumNc

A(ek) varies in the course of evolution, pa
ticularly in its early stages, including the free expansi
stage and the initial Sedov stage, when the amplitude of
spectrum increases as an ever-greater number of part
enters into the acceleration process, and the maximum
ticle energyemax, at which an abrupt exponential cutoff o
the spectrumNc

A(ek) takes place, increases as well. In t
later stages of evolution, when the Mach number of
shock wave decreases toMs'4 as a result of its slowing
down, the acceleration of cosmic rays becomes relativ
inefficient, and the spectrumNc

A(ek) remains essentially un
changed. Consequently, the term ‘‘resultant’’ refers to
spectrum calculated from Eq.~19! for the indicated later
stage of evolution.

3. RESULTS OF CALCULATIONS AND DISCUSSION

A large portion of the volume of the Galaxy is occupie
by the so-called hot phase and warm phase of the interst
medium1 with densities of hydrogen atoms, temperatur
and magnetic fieldsNH50.003 cm23, T05106 K, B0

53 mG andNH50.3 cm23, T05104 K B055 mG, respec-
tively. We therefore confine our discussion to the evoluti
of supernova remnants in the two types of interstellar m
dium.

The evolution of supernova remnants in a homogene
interstellar medium is characteristic of type Ia supernov
for which the modification of the surrounding interstell
medium by the stellar wind is insignificant.39 In the calcula-
tions we use typical parameters of type Ia supernovae:
plosion energyEsn51051erg, mass of the ejected shellMej

51.4M( andk57.
According to calculations,40 the charge number of ion

in the hot interstellar medium increases smoothly fromQ0

51 for hydrogen~H! to Q058 for iron ~Fe!. In a warm
interstellar medium the ion charge is assumed to beQ051
for all elements.

The densityNA5NHaA of elements heavier than hydro
gen in the interstellar medium is assumed to be proportio
to the relative~to hydrogen! abundanceaA of the element in
the local region of the Galaxy.

The numerical solution of the problem of the evolutio
of the shock wave generated by the explosion-ejected s
sets the stage for calculating the resultant cosmic ray s
trum created by it,Nc

A(ek), i.e., the differential~with respect
to the kinetic energyek) number of accelerated rays. Pro
ceeding from the knowledge that supernova remnants are
primary source of cosmic rays~at least up to energiesek

;1014–1015eV!, we can determine the differential intensi
of cosmic rays in the Galaxy with allowance for their esca
~or the finiteness of their residence time in the Galaxy!:

JA
G~ek!}te~R!vNc

A~ek!. ~20!
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FIG. 2. Intensity of cosmic rays on Earth as a fun
tion of the kinetic energy. The experimental value
are taken from a survey paper.2 The solid~dashed!
curves represent calculations for the hot~warm!
phase of the interstellar medium at an injection ra
h51024. The dot–dash curves correspond to a h
interstellar medium with a magnetic fieldB0

512mG at an injection rateh5531024 with the
spectra extended into the high-energy range.
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Herete is the average residence time of cosmic ray partic
in the Galaxy, which is a function of their hardnessR(ek).
The profile of the cosmic ray spectrum at the source,Nc

A(ek),
and the profile of their average spectrum in the Gala
JA

G(ek), differ, because the residence time of cosmic rays
the Galaxyte depends significantly on their energy~or, more
precisely, their hardness!.

The functional dependencete(R) determined on the ba
sis of the measured ratio of the primary~generated at the
source! and secondary~resulting from the interaction of pri
mary cosmic rays with nuclei of the interstellar medium!
components of the cosmic rays can be written in the form

te}~R01R!2m, ~21!

whereR055 GV andm50.3– 0.7~Ref. 1!.
The cosmic ray spectrum observed on EarthJA(ek) dif-

fers from the average spectrum in the GalaxyJA
G(ek) because

of the modulating effect of the solar wind, which lowers t
cosmic ray intensityJA(ek) in the low-energy region relative
to JA

G(ek). This effect can be described quantitatively on t
assumption that each particle reaching Earth’s orbit loses
the average, an amount of energy

De5Zef,
s

,
n

on

which is determined by the value of the potentialf ~Ref. 41!.
In this case the cosmic ray intensity observed on Earth
expressed in terms of their intensity outside the heliosph
by the relation

JA~ek!5S e22e0
2

e212eDe1De22e0
2D JA

G~ek1De!, ~22!

in which e5ek1e0 is the total energy of the particle, an
e05Amc2 is its rest energy.

In Fig. 2 the expected terrestrial cosmic ray spectra fr
supernova remnants,JA(ek), calculated for a number of ele
ments, are compared with existing experimental data.
calculations correspond to a moderate injection rateh
51024 te . It is important to note that the uncertainty of th
supernova parameters and the residence time of cosmic
in the Galaxy prevents the expected cosmic ray inten
from being calculated with the required accuracy, even
protons. Consequently, the normalization of the theoret
spectrum of the proton component of the cosmic rays is c
sen in such a way as to achieve the best agreement
experiment.

The injection rateshA or, equivalently, the factors
einj(A/Q0), are chosen in such a way that, given the sa
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normalization as for protons, the amplitude of the spec
JA(ek) of all other elements will agree with experiment
the energyek;1010A eV. The spectrum of all particles

JS~ek!5( JA~ek!

is calculated by summing the element spectra shown in
2.

In the regionek&A GeV, where the modulation of cos
mic rays by the solar wind becomes important, the calcula
spectra are made to agree with experiment by choosing
parameterf5600 MV, which governs the energy losses
cosmic ray particlesDe5Zef when they penetrate Earth’
orbit from the interstellar medium.

The main conclusion that can be drawn from Fig. 2
that the existing experimental data on the contents of var
elements in the composition of cosmic rays are consisten
terms of the profile of the spectrum, with the predictions
the theory of their acceleration in supernova remnants in
energy rangeek&1015eV. It is important to note that calcu
lations corresponding to different phases of the interste
medium exhibit equally good agreement with experime
Consequently, the implementation of the necessary pro
dure for averaging the resultant cosmic ray spectrum w
allowance for the allocation of supernova remnants betw
the phases of the interstellar medium~for which data are all
but nonexistent! cannot influence the conclusion as to t
degree of agreement between theory and experiment.

The spectrum of protons as the main component of c
mic rays in the given energy range warrants special attent
The experimental cosmic ray fluxes shown in Fig. 2 ha
been obtained in different experiments.2 An analysis of the
entire set of existing measurement data reveals good ag
ment with a power-law proton spectrumJ(ek)}ek

2g with a
single exponentg52.75 over the entire rangeek&1015eV.
On the other hand, an analysis of data from individual
periments leads to a significantly different conclusion, t
the proton spectrum has a kink and becomes consider
softer atek;1 TeV ~Ref. 42!. There is no simple explanatio
for this situation from the theoretical point of view, becau
for example, prominent features are not observed in the
lium spectrum at these energies. Additional experime
planned for the very near future will doubtless shed light
this dilemma.

The energy limit of cosmic rays accelerated in supern
remnants is dictated by geometrical factors and for the p
tulated Bohm diffusion coefficient of cosmic rays~5! can be
estimated from the expression20

emax5531014ZS Esn

1051ergD
1/2S Mej

1.4M (
D 21/6

3S NH

331023 cm23D 1/3S B0

3 mGDeV, ~23!

which is in good agreement with the results of calculations
Fig. 2. We note that Eq.~23! is directly applicable to the
spectra of separate elementsJA(ek). As for the spectrum of
all particlesJS(ek), it is evident from Fig. 2 that it is char
a
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acterized by the maximum energyemax, which is only
slightly higher than the maximum proton energy.

The following consideration is of utmost importance. A
a low injection rate the spectrum of cosmic rays accelera
in supernova remnants is close toNc}ek

22 in the relativistic
range. Increasing the injection rate enhances the modifica
of the shock wave and the hardness of the resultant cos
ray spectrum. The case represented in Fig. 2 correspond
moderate injection. Agreement with experiment is achiev
for m50.73 in the hot phase and form50.86 in the warm
phase of the interstellar medium, both of these values ly
outside the experimentally established intervalm50.3–0.7
~Ref. 1!. In other words, the theory predicts a somewh
harder cosmic ray spectrum than is required. This contra
tion could be resolved by the preacceleration of cosmic ra
Since the preacceleration mechanism is less efficient than
regular acceleration~as we must assume to be true, otherw
regular acceleration could not be regarded as the prim
process generating the spectrum of cosmic rays!, it will af-
fect low-energy particles to a greater degree. This fact
plies a certain increase in the amplitude of the cosmic
spectrum, the amount of the increase being a decrea
function of the cosmic ray energy, so that softening of t
spectrum is implied. The preacceleration of cosmic rays
be achieved both by statistical mechanisms and as a resu
their repeated interaction with the whole ensemble of ex
ing shock waves in the Galaxy. Inasmuch as the probab
of repeatedly encountering a shock front is proportional
the number of shock waves, cosmic ray particles most o
interact with weak shocks, which can make their result
spectrum softer.

It must be borne in mind, however, that this is not
simple problem, even if one proceeds from energy consid
ations alone. The transformation of the cosmic ray spectr
Nc(e)}e22 in the range 109 eV<e<1014eV into the spec-
trum Nc(e)}e22.1 without any change in the amplitude a
the maximum energyemax5105 GeV requires the expendi
ture of higher energies than that contained in the initial c
mic ray spectrum.

To illustrate the enrichment of cosmic rays with hea
elements, which is maintained by regular acceleration,
Fig. 3 the calculated enrichment factor

e~ek /A!5 @ I A~ek /A!/I H~ek /A!/~NA /NH!# ~24!

at the energyek /A53 GeV/A is compared with the experi
mental data,43 where

I A~ek /A!5AJA~ek! ~25!

is the differential ~with respect to the kinetic energy pe
nucleon! cosmic ray intensity. The calculations have be
carried out for three different values of the injection ra
h:1025 ~low rate!; 331024 ~moderate rate!; 1023 ~high
rate!.

It is evident from Fig. 3 that for a low injection rate
when cosmic rays are accelerated by the unmodified sh
wave, enrichment does not take place during accelerat
e,1 holds for all elements withA.1. An increase in the
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FIG. 3. Cosmic ray enrichment factor at energyek /A
53 GeV/A as a function of the mass number. The e
perimental values are taken from Ref. 43. The eleme
denoted by circles, squares, circles with crosses,
filled circles correspond to condensation temperatu
Tc,400 K, Tc5400– 875 K, Tc5875– 1250 K, and
Tc.1250 K, respectively. The solid curves correspo
to an injection rateh51025, the light dashed curves to
h5331024, the dot–dash curves toh51023, and the
bold dashed curves toh5331024 with an enrichment
factor einj5A/Q0 . For every pair of like curves, the
lower one corresponds to the hot interstellar mediu
and the upper to the warm phase of the interstellar m
dium.
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injection rate has the effect of increasing the enrichment
tor, which is always greater in the warm interstellar mediu
than in the hot phase.

At a higher injection rate, when modification of th
shock wave by the reciprocal influence of cosmic rays
comes significant, the enrichment of cosmic rays with he
elements becomes more and more important. In other wo
this property of regular acceleration has a purely nonlin
character. Its basis is the fact that heavier nuclei hav
greater diffusion lengthl 5k/u}(ek /A)(A/Q) at equal en-
ergy per nucleonek /A, because we always haveQ,A. Here
u is the velocity of the medium relative to the shock front.
the presence of a modified shock the particles ‘‘sense’’
velocity drop within the limits of the shock transition,Du
5u( l )2u2 (u2 is the velocity of the medium immediatel
behind the shock front!, which is an increasing function ofl .
For the same energy per nucleon, therefore, heavy elem
have a harder spectrum, thus accounting for their higher r
tive content in the range of relativistic energies.

To estimate numerically the degree of enrichment
cosmic rays with heavy elements produced in the accel
tion process, we write the spectrum of accelerated proton
the simplified form

Nc}H Ninj

pinj
S p

pinj
D 2gn

, p<mc,

Ninj

pinj
S mc

pinj
D 2gnS p

mcD
2gr

, p>mc,

~26!

which explicitly reveals that nonrelativistic protons are a
celerated in part of the shock transition—the thermal fron
and therefore have a softer spectrum (gn.2) than relativis-
tic particles, for whichg r,2. The values of the paramete
pinj , Ninj , gn , and g r in Eq. ~26! must refer to the mos
c-

-
y
s,
r
a

e

nts
a-

f
a-
in

-

active~in terms of the efficiency with which cosmic rays a
generated! phase of evolution of supernova remnants, i.
the beginning of the adiabatic stage. The exponents of
spectrum are therefore related to the shock parameters in
phase—the compression ratio of matter at the thermal fr
ss and the total compression ratios—by the equations20,44

gn5~ss12!/~ss21!, ~27!

g r51.51~3.520.5ss!/~2s2ss21!. ~28!

Sincess<4 ands>4 always hold, we have a softer spe
trum in the nonrelativistic range (gn.2) than in the relativ-
istic range (g r<2).

The spectrum of heavier elementsNc
A(pA) is formed un-

der the conditions of the shock transition, whose structur
determined by the modification of protons. It has a kink
the momentumpA5Qmc, which corresponds to the sam
hardness as exhibited by protons with momentump5mc:

Nc
A}5

Ninj
A

pinj
A S pA

pinj
A D 2gn

, p<Qmc,

Ninj
A

pinj
A S Qmc

pinj
A D 2gnS pA

QmcD
2gr

, p>Qmc.

~29!

Invoking relations~26!–~29!, we can readily estimate th
enrichment factor in the relativistic energy range:

e5 S I A

I D Y S NA

NH
D5einjS A

ZD 2m S A

QD gn2gr

. ~30!

It is evident from this expression that the enrichment fac
is the product of three factors:

e5einjeesceacc.
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The first factoreinj is associated with the injection characte
istics. The second

eesc5~A/Z!2m ~31!

is attributable to the dependence of the residence time
cosmic rays in the Galaxy on the particle species. It is alw
less than unity, resulting in the depletion of heavy eleme
from the cosmic rays. Since the approximate relationZ
.A/2 holds for all nuclei heavier than protons, the factor

eesc.22m ~32!

is the same for all elements.
The enrichment of cosmic rays with heavy elements d

ing acceleration is characterized by the factor

eacc5~A/Q!gn2gr, ~33!

which depends significantly on the degree of shock mod
cation by the reciprocal influence of accelerated cosmic ra
At a low injection rate the shock is only slightly modifie
(ss.s.4), so that the cosmic ray spectrum has a sin
power-law profile with exponentgn.g r.2, and it follows
from Eq. ~33! that this profile precludes enrichment~eacc

51 e,1!.
For moderate injection (h5331024) the degree of

modification becomes significant: During the period of m
active generation of cosmic rays the shock is character
by the parametersss53.4 ands56.7 for the warm inter-
stellar medium, withss53.6 ands54.6 for the hot me-
dium. As a result, the difference in the exponents of
spectra in the relativistic and nonrelativistic ranges isgn

2g.0.5 for the warm interstellar medium andgn2g.0.2
for the hot medium.

At a high injection rate (h51023) the shock modifica-
tion is even higher: in the active periodss53.1, s57.1, and
gn2g r50.7 for the warm interstellar medium, withss

53.3, s54.8, andgn2g r50.4 for the hot medium.
It is evident from Fig. 3, therefore, that for moderate a

high injection rates the factoreacc increases with the atomi
numberA, its value rising considerably for allA.1 as the
injection rateh increases. On the other hand, even at a h
injection rate and for a warm interstellar medium, where
factor eacc is a maximum, the acceleration process does
support the required degree of enrichment of cosmic r
with heavy elements. As mentioned above, there is ev
reason to identify this discrepancy between theory and
periment with the heavy-element enrichment of cosmic r
during particle injection into the acceleration regime, i.
with the factoreinj(A/Q).1.

If we use the results in Fig. 1 as guidelines, we c
conclude that the injection process is characterized by
enrichment factoreinj5A/Q0 .

Figure 3 shows curves corresponding to an injection r
h5331024 with the factoreinj5A/Q0 taken into account.
Clearly, the experimental values fall into the region betwe
the two curves for different types of interstellar mediu
This fact implies that the regular acceleration of cosmic r
in supernova remnants supports the observed dependen
cosmic ray generation onA, owing to the dependence of th
of
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acceleration efficiency and the particle injection rate into
acceleration regime on the hardness of the particles.

We note that the necessary value of the enrichment
tor e can be attained exclusively by virtue of the accelerat
properties as long as an injection rate higher thanh51023 is
considered. As was mentioned, however, even forh51024

the calculated cosmic ray spectrum is somewhat harder
required. With a substantial increase in the injection rate
general increase in the hardness of the spectrum in the
tivistic energy range of the cosmic ray spectrum is accom
nied by the emergence of a bump at energies immedia
adjacent to the limitemax ~Ref. 45!, in contradiction with
experiment. It is most probable, therefore, that the inject
rate lies in the rangeh51024– 1023, where the properties o
the injection and acceleration of cosmic rays are capable
reproducing the observed functional dependencee(A).

It is important to note that the observed composition
the cosmic rays, as is evident from Fig. 3, is not reducible
a smooth dependencee}Aa. Significant anomalies are asso
ciated with carbon and oxygen nuclei, whose content in c
mic rays is substantially higher than that of adjacent e
ments. As mentioned in Ref. 46, this characteristic can
attributed to the contribution of type Ib supernovae. Wol
Rayet stars are presupernovae in this setting; they are c
acterized by a strong wind, which delivers into the surroun
ing medium ;10M ( of matter, in whose composition
carbon and oxygen are the predominant elements. Co
quently, cosmic rays generated by shock waves from
explosion of Wolf–Rayet stars are highly enriched w
these elements in comparison with their content in the n
mal interstellar medium.

The monotonic behavior of the dependencee(A) is also
violated by the content of refractory elements in the cosm
ray composition~see Fig. 3!. The main portion of these ele
ments exists in the interstellar medium as dust. Con
quently, the mechanism of injection into the regular acc
eration regime can differ substantially from the usual case
elements that move through the interstellar medium as s
tary atoms. It is highly probable that the injection of the
elements takes place in two stages.46 In the first stage, accel
eration involves actual grains considerably harder than s
tary ions. Upon reaching a certain critical energy, collisio
break up the grains into solitary ions, which are drawn
rectly into the acceleration process. An analysis shows46 that
this phenomenon can account for the observed conten
high-melting elements in the cosmic ray composition.

It is clear from the foregoing discussion that superno
remnants~source I! are capable of forming the spectrum
cosmic rays in the range up toemax;1015eV. It is legitimate,
therefore, to inquire how, in its general features at least,
spectrum of cosmic rays is formed at high energies.

Although little is known about source II, which is re
sponsible for the formation of the cosmic ray spectrum in
range above the kink (ek*1015eV!, it is useful to consider
its required properties. Above all, it is logical to inquir
whether the spectrum is generically related to source I, wh
forms the cosmic ray spectrum atek&1015eV. Indeed, a
continuous cosmic ray spectrum formed without any break
summation of the spectra generated by the two sources
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be obtained only when several conditions are met. The m
mum energyemax in the source I spectrum must coincid
with the minimum cosmic ray energy in the source II spe
trum, and the amplitudes of both spectra at the pointemax

must be identical. Inasmuch as the observed cosmic ray s
trum has one singularity, a kink in the spectrum atek'3
31015eV, it is desirable that the conditionemax'3
31015eV be satisfied. If we assume that the two cosmic
sources are independent, it seems highly improbable tha
stated conditions will be satisfied. A more justifiable noti
is the assumption that sources I and II are generically rela
the second one serving as a preacceleration mechanis47

which entrains the highest-energy cosmic ray particles g
erated by the first source. The matching of the cosmic
spectra is not a problem in this case. Estimates show tha
preacceleration of cosmic rays can take place when they
teract with the shock wave in the wind of young pulsars.47

If a pure power-law spectrum is formed during preacc
eration, it is most naturally assumed that the total cosmic
spectrum can be reproduced by extending the spectrum
cosmic rays from supernovae in the form of a power l
JA(ek)}ek

23.1, beginning with the pointek5e* at which the
local exponent of the spectrum formed in supernova re
nantsg52d ln JA /d ln ek is equal to 3.1. It is readily con
firmed that the cosmic ray spectrum constructed in this w
in the rangeek.1015eV has a considerably lower amplitud
than the observed spectrum. To achieve agreement with
periment, it is necessary that the maximum energy of cos
rays accelerated in supernova remnants be approxima
four times the energy corresponding to the calculated le
shown in Fig. 2. To visualize this relation, we have calc
lated the cosmic ray spectrum for the hot phase of the in
stellar medium with a magnetic fieldB0512mG and an in-
jection rateh5531024. The cosmic ray spectrum extende
into the high-energy region by the above-indicated techni
is also shown in Fig. 2. It is evident from the figure that t
calculations reproduce the measured cosmic ray spec
well both before and after the kink. The required magne
field B0'10mG can be achieved for type Ib and type
supernovae, the acceleration of cosmic rays taking place
medium significantly modified by the presupernova wind48

Even though the procedure for plotting the cosmic r
spectrum in the rangeek*1015eV does not have a reliabl
physical foundation, it is useful in that it predicts not on
the profile of the spectrum of cosmic rays, but also th
composition in the indicated energy range. The cosmic
composition is in fact particularly sensitive to the speci
matching of the cosmic ray spectra from the two sources

Figure 4 shows the results of calculations of the aver
atomic number of cosmic rays

^A&5( JA~ek!AY ( JA~ek! ~34!

as a function of the kinetic energyek . The summation in Eq
~34! is carried out over the elements shown in Fig. 2.

It is evident from Fig. 4 that the quantitŷA& increases
rapidly in the rangeek&1012eV up to ^A&.10 and then
remains constant up toek;1015eV. The rise of̂ A& in the
rangeek&1012eV is mainly attributable to the dependen
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of the loss factor and the modulating factor on the hardn
of the particles. Both factors increase the hardness of
spectrum in the rangeek&Z GeV. This is whŷ A& increases
as the energy is increased toek;1012eV, at which both
factors become relatively insignificant for iron nuclei.

The behavior of̂ A& in the rangeek51015– 1016eV, in-
creasing from̂ A&'10 to ^A&'20, is entirely attributable to
the dependence of the maximum cosmic ray energy on
nuclear chargeemax}Z. The results of numerous indirec
measurements,3 shown in Fig. 4, are fully consistent with th
predictions of the theory.

In the energy range 1014– 1016eV features can appear a
a result of the contribution of local supernova remnants~i.e.,
the ones closest to the solar system!.49 Since the experimen
tal evidence obtained in this regard indicates a critical rat3

it could be helpful to examine this possibility theoreticall
Accordingly, we write the average spectrum~differential
number density with respect to the kinetic energy! of cosmic
rays in the Galaxy in the form

nc
G5

ec~g22!

~mc2!2 S ek

mc2D 2g

, ~35!

whereec'1 eV/cm3 is the energy density of cosmic rays
the Galaxy, andg52.75.

Owing to the hardness of the spectrum of cosmic ra
accelerated in supernova remnants, their energy conte
concentrated mainly in the relativistic part of the spectru
Their density therefore obeys the approximate equation

nc5
dEsn

V~mc2!2ln~emax/mc2! S ek

mc2D 22

, ~36!

in which dEsn/V is the energy density of cosmic rays in th
supernova remnants,d is the fraction of the explosion energ
transferred into the acceleration process in the cosmic r
and V54pRc

3/3 is the volume occupied by relativistic cos
mic rays. In the active period of evolution of supernova re
nants,Dt&104 yr, when the bulk of the cosmic rays are ge
erated, they are all concentrated in the volume occupied
the shock wave, implying thatRc5Rs , whereRs is the ra-
dius of the shock wave. In later phases of evolution, after
shock wave has weakened and ceases to accelerate co

FIG. 4. Average atomic number of cosmic rays as a function of the kin
energy. The experimental values are taken from Ref. 3, and the calcula
correspond to the dot–dash curve in Fig. 3.
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rays efficiently, the radiusRc of the volume occupied by
them increases with time more rapidly than the shock rad
Rs ; this so-called runaway phenomenon first begins at
highest energies and then extends to lower energies as
shock wave weakens.5,8

The contribution of a solitary supernova remnant with
hard cosmic ray spectrum~36! superposed on the substa
tially softer galactic spectrum~35! is most noticeable in the
vicinity of the maximum energies,ek;emax. It is readily
confirmed that the critical radiusRc5R* , which is deter-
mined from the conditionnc(emax)5nc

G(emax), is given by the
expression

R* 5F 3dEsn

4pec~g22!ln~emax/mc2! S emax

mc2D g22G1/3

. ~37!

Substitutingg52.75,Esn51051erg, andd50.3 into this ex-
pression, we obtainR* '1 kps for an energy emax

5105 mc2. This means that at a definite time in the evoluti
~expansion! of a typical supernova remnant located at a d
tanced<R* 51 kps from the observer it creates an exce
density of cosmic rays with energiesek;1014eV, such that
Dnc>nc

G .
We now estimate the probability that an observer s

ated in the galactic disk will ‘‘see’’ this excess of the cosm
ray intensity. Inasmuch as supernovae in the Galaxy occ
a cylindrical region of radiusR'10 kps and heighth
'100 ps, the probability that an individual supernova will
situated at a distanced.R* is 12q, where q5R

*
2 /R2

51022. The probability that allNsn coexisting supernovae
whose growth is characterized by the conditionRc(emax)
5R* , will exist beyond the distanced51 kps is given by the
expression

P5~12q!Nsn'exp~2Nsnq!.

The number of supernovaeNsn5nT is dictated by the fre-
quencyn'1/30 yr21 of supernova flares in the Galaxy an
their lifetime T. The growth of the cloud of cosmic rays i
the stageRc.Rs is determined by their diffusion coefficien
because in this stage the region occupied by cosmic r
Rc'AkT, expands as a consequence of their diffus
propagation. In this stage the cosmic ray diffusion coeffici
k is a function not only of the energy, but also of time;k
increases with time, tending to the galactic average, bec
the level of turbulence generated by cosmic ray particles
creases as a result of the decrease in their energy den
Consequently, the determination of the increase inT reduces
to the solution of the nonlinear problem of self-consiste
expansion of the cosmic ray cloud. Owing to the complex
of this problem, it is advisable to consider the minimu
estimateT5Rc /c. It is seen at once to yieldP'1/e. This
means that with a probabilityQ512P close to unity the
solar system must be situated in a cloud of cosmic rays
duced by a local supernova, creating at least a twofold ex
of the intensity of cosmic rays with energies;1014eV above
the galactic average. Since the observed cosmic ray spec
does not exhibit any distinct hardening at these energies,
logical to infer that the estimate of the probabilityQ derived
above is far too high. The only one of the stated assumpt
that can actually be violated is the sphericity of the expa
s
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ing cosmic ray cloud. It is therefore justified to assume t
in reality the cloud becomes highly asymmetric in the la
stages, so that its radius in the galactic planeRi is much
smaller than the radiusR' in the perpendicular direction. We
therefore conclude that in the expansion stages of the c
of cosmic rays, when their energy density is still appreciab
ec*eG , the radius of the cloudR' in the direction perpen-
dicular to the galactic plane can be much greater than 1
Here, at least for energiesek;emax, the average cosmic ra
spectrum in the Galaxync

G(ek) forms in such a way tha
cosmic rays produced by a solitary supernova remnant
tially penetrate the region of the galactic halo and only th
intermingle in the Galaxy with cosmic rays from other s
pernova remnants. The physical cause of this scenario is
cosmic ray pressure. Since the investigated phases of ev
tion of the cosmic ray cloud correspond to the conditionec

*eG , their pressure gradient is capable of generating in
interstellar medium a perturbation that expands predo
nantly in the direction of regions having the lowest dens
of interstellar matter, i.e., in the direction of the galactic ha
One cannot rule out the possibility of some of the cosm
rays breaking through into intergalactic space and inevita
escaping the Galaxy. The remaining cosmic rays become
tangled in the magnetic field and contribute to the obser
average cosmic ray spectrum in the Galaxy. Inasmuch as
effect extends into the main high-energy part of the cosm
ray spectrum, it can soften the observed spectrum, the
offering a possible reconciliation of this discrepancy betwe
the required and observed energy dependence of the
dence time of cosmic rays in the Galaxy.

We note that the strong dependence of the volume oc
pied by cosmic ray particles on their energy in the la
stages of evolution should not significantly influence t
conclusions drawn above. It is essential only that the to
number of cosmic rays produced in the active period of e
lution of supernova remnants be described by the postul
energy dependenceNc}ek

22 , along with the assumption tha
the cosmic ray energy not subsequently undergo any ap
ciable change. The fact that the expected spectrum of cos
rays produced in supernova remnants is somewhat ha
than the spectrum~36! merely reinforces the dynamical rol
of cosmic rays having the highest energiesek;emax and is
conducive to actualization of this scenario.

If for the critical radius of the cosmic ray cloud in th
galactic plane we take what we consider to be the minim
estimate,Ri;100 ps, the corresponding probability of an o
server in the Galaxy ‘‘seeing’’ the effect from a local supe
nova remnantP;1022 is still not negligible and can in-
crease significantly if the maximum energy of cosmic ra
accelerated in supernova remnantsemax is higher than the
postulated value 1014eV.

4. CONCLUSION

The foregoing analysis shows that cosmic rays acce
ated in supernova remnants satisfactorily reproduce the
served profile of the energy spectrum of all the elements
which direct measurements have been made.
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The theory is also capable of reproducing the obser
dependence~increase! of the relative contents of elements
the composition of cosmic rays,e(A), for a fixed energy per
nucleon as a function of the atomic numberA, i.e., the cor-
rect amplitude ratio of the spectra of various elements
their composition. Here the increase ine(A) is partially at-
tributable to the property of the nonlinear process of regu
acceleration, as a result of which it more efficiently accel
ates particles having a larger ratioA/Q of the mass and
charge numbers. The quantitative reproduction of the dep
dencee(A) requires that the injection mechanism also ha
the property of enriching with heavy elements:einj}Aa, a
'1. The existing results of numerical simulation of col
sionless, quasi-longitudinal shock waves bear witness to
existence of an injection mechanism with these propertie

A preliminary analysis has shown that the details of h
and at what energyemax the spectrum of cosmic rays pro
duced in supernova remnants matches up with the spec
formed in the rangee.emax by certain other type II source
significantly influence the resultant composition of the c
mic rays. For example, if we haveemax;1015eV the cosmic
ray spectrum in the rangee.emax can be formed by the
preacceleration of rays produced in supernova remnant
the range 1015– 1016eV the average atomic number of th
cosmic rays^A& is expected to increase from̂A&.10 to
^A&.20 in this case, which does not contradict the exist
experimental results. But if the maximum energy of cosm
rays accelerated in supernova remnants isemax;1014eV or
lower, we encounter a problem that is difficult to solve in o
opinion: matching with the spectrum of source II. In add
tion, the expected ‘‘weighting’’ of cosmic rays shifts into th
interval 1014– 1015eV in this case, an event that is far le
consistent with measurements~see Fig. 4!.

Consequently, the maximum energyemax to which cos-
mic rays can be accelerated in supernova remnants sig
cantly affects their expected composition in the energy ra
1014– 1016eV. It is difficult to choose among the possib
values ofemax solely on the basis of theoretical conside
ations. We have shown above that the maximum ene
emax;1015eV corresponding to the simplest solution of t
problem of matching the spectra of cosmic rays from the t
sources is attained for a magnetic field in the interste
mediumB0512mG, which is two to four times the value
deemed to be typical of the unperturbed interstellar medi
B053 – 6mG. However, we need to bear in mind seve
facts that could account for the indicated inconsistency.
example, it is justified to assume that the evolution of sup
nova remnants often takes place against the backgroun
an already perturbed interstellar medium, in which it is e
tirely natural to postulate a somewhat elevated large-s
magnetic fieldB0 . The interstellar medium can then be pe
turbed both by previous supernova explosions and by
strong stellar winds of presupernovae, as is typical of type
and type II supernovae.39 In our opinion, therefore, today th
maximum energyemax;1015eV should not be viewed as un
justifiably excessive.

According to the above estimates, the probability o
local supernova remnant making a measurable contribu
to the observed cosmic ray spectrum in the energy rangek
d
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*1014eV is not negligible, so that the recording of this ph
nomenon can yield direct information about the maximu
energy of cosmic rays produced in supernova remnants.

The foregoing remark attests to the exceptional imp
tance of new and reliable measurements of the spectrum
cosmic ray components in the range 1014– 1016eV, as the
results can be used to formulate a more justifiable conclus
as to the adequacy of the theory of regular acceleration
to ascertain the maximum energy of cosmic rays produce
supernova remnants.
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Interpolation of experimental data without a theoretical model
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A new approach is proposed for the interpolation of experimental data when a theoretical model
is unavailable. The method is based on the minimization of a modified likelihood function
incorporating a generalized smoothness test of the theoretical curve. The conditions for
applicability of the method are a sufficiently accurate estimate of the statistical errors of
the experimental data~assuming that the results fit a Gaussian distribution in accordance with the
resulting rms deviations! and smoothness of the theoretical curve. A FORTRAN 77
program for the interpolation of experimental data has been written to implement the proposed
algorithm. The computing time and roundoff error are determined as functions of the
number of experimental points. ©1999 American Institute of Physics.@S1063-7761~99!00209-7#
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1. INTRODUCTION

The interpolation of experimental data poses one of
most important problems in experimental physics. In the m
jority of cases a theoretical model~possibly more than one!
is available for the accumulated data, permitting kno
methods to be used for optimal estimation of the model
rameters~the most popular methods are least squares
maximum likelihood; see, e.g., Refs. 1 and 2!. There are
times, however, when it is impossible to use a theoret
model for data interpolation, but the theoretical curve d
scribing the experimental data is positively known to
smooth. Either polynomials or polynomial splines are c
tomarily used in such cases. The objective of the pres
study is to develop a generalized algorithm for the inter
lation and smoothing of experimental data when statist
errors are present at all measured points and a theore
model does not exist. A recent paper on this subject3 sets
forth the basic notion of choosing a linear combination
cubic B splines with a uniform computational grid as th
smoothing function and of inferring the statistical behav
of the deviations of the experimental points from the the
retical curve by decreasing the number of spline nodesI opt

until satisfactory agreement is achieved between theory
experiment by thex2 test. In this paper a generalize
smoothness test is proposed for the approximation of exp
mental data, whereby the degree of smoothness of the c
is varied until satisfactory agreement is achieved betw
theory and experiment.

2. CHOOSING AN APPROXIMATING FUNCTION

Let it be required to find a smooth functionf (x) that
passes throughn experimental valuesyi with errorss i ~as-
sumed to have a Gaussian distribution! at points xi . The
standard approach to such problems is to minimize the lo
rithmic likelihood function~or x2!
4041063-7761/99/89(9)/9/$15.00
e
-

n
-
d

l
-

-
nt
-
l

cal

f

r
-

nd

ri-
ve
n

a-

L5(
i 51

n
@ f ~xi !2yi #

2

s i
2 . ~1!

In contrast with the standard approach, there are still
model parameters by which to minimize the functionL. Be-
low, we must somehow formulate a smoothness test. To
so, we propose minimizing the functional

I S5E
2`

`

@ f 9~x!#2dx. ~2!

To unify the smoothness test and achieve agreement with
experimental data, we modify the likelihood function as fo
lows:

L̃5L1wIS , ~3!

where w is a positive weighting factor. This technique o
consolidating the likelihood function and the smoothness
into a single objective function has in fact been used4 in
solving the problem of smoothing experimental data
second-order and third-order splines. In Ref. 4, however,
basis is given to explain why polynomial splines best a
proximate the experimental data. Nor in Ref. 4 are any r
ommendations given for choosing the coordinates of
spline nodes or the weighting factorw ~the purely math-
ematical problem is discussed in the book!. In the proposed
algorithm the weighting factor is increased untilL attains the
value L05n22. This value is in fact equal to the averag
value ofx2 in fitting the experimental values to a theoretic
curve with n degrees of freedom, subject to the conditi
that the overall level and slope are free parameters~although
a somewhat different level can also be set!.

It is obvious that outside the range of experimen
pointsx over which the required function varies, there are
restrictions on the value of the function and, hence, no r
son for any deviation from a straight line; we can therefo
assume that the required function has the minimum poss
value @ f 9(x)#2:
© 1999 American Institute of Physics
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f 9~x!50 for x,x1 or x.xn . ~4!

We attempt to find a solution by methods of the variatio
calculus.5 Following the standard variational calculus a
proach, we introduce a small arbitrary functiond f (x) and
determine the variationL̃:

dL52(
i 51

n
f ~xi !2yi

s i
2 d f ~xi !

52E
2`

` F(
i 51

n
f ~x!2yi

s i
2 d f ~x!d~x2xi !Gdx, ~5!

where

d~x!5H 0 for xÞ0,
` for x50, E

2`

`

d~x!dx51

and

dI S52E
2`

`

f 9~x!d f 9~x!dx52E
2`

`

f-8~x!d f ~x!dx. ~6!

Here we have made use of the fact that

f 9~x!→0, f-~x!→0 as x→6`. ~7!

The variation of the functionalL̃ must now be set equal t
zero:

dL̃52E
2`

`

d f ~x!dxF f-8~x!1(
i 50

n
f ~x!2yi

s i
2 d~x2xi !G50.

~8!

Since the functiond f (x) is arbitrary, Eq.~8! is valid only if

f-8~x!1(
i 50

n
f ~x!2yi

s i
2 d~x2xi !50. ~9!

This equation implies that in the intervals between the
perimental pointsxi andxi 11 the derivativef-8(x) is iden-
tically zero, which is one definition of an arbitrary third
degree polynomial, and one or more of the lead
derivatives can have discontinuities at the experimental m
surement points. This fact uniquely determines the type
approximating functionf (x): a cubic spline of deficiency 1
2, or 3~in the classification of splines in Ref. 4 the deficien
of a spline is the number of leading derivatives that ha
discontinuities at the nodes of the spline!. The coordinates of
the spline nodes are also uniquely determined: They are
coordinates of the experimental pointsxi .

We now consider the case of splines of deficiency
This solution obviously represents a broken line pass
through the experimental valuesyi . The functional L̃ is
equal to zero in this case. The solution is mathematic
possible, but is of no practical interest, as only the case
deficiencies 1 and 2 will be discussed below.

We choose a spline parametrization in terms of the v
ues of the splineSi and the values of the derivative of th
spline Di at the nodesxi . The value of the spline at a
intermediate point is then
l

-

g
a-
f

e

he

.
g

ly
of

l-

f ~x!5Sip1~x;xi ,xi 11!1Si 11p2~x;xi ,xi 11!

1Diq1~x;xi ,xi 11!1Di 11q2~x;xi ,xi 11!,

xi<x<xi 11 , ~10!

where

p1~x;x1 ,x2!5
~x2x2!2~2x1x223x1!

~x22x1!3 ,

q1~x;x1 ,x2!5
~x2x2!2~x2x1!

~x22x1!2 ,

p2~x;x1 ,x2!5
~x2x1!2~3x222x2x1!

~x22x1!3 ,

q2~x;x1 ,x2!5
~x2x1!2~x2x2!

~x22x1!2 . ~11!

Indeed, any third-degree polynomial can be written as a
ear combination of polynomialsp1 ,p2 ,q1 ,q2 . On the other
hand, the indicated standard polynomials have readily v
fiable properties:

p1~x2 ;x1 ,x2!5p18~x1 ;x1 ,x2!5p18~x2 ;x1 ,x2!50,

p2~x1 ;x1 ,x2!5p28~x1 ;x1 ,x2!5p28~x2 ;x1 ,x2!50,

q1~x1 ;x1 ,x2!5q1~x2 ;x1 ,x2!5q18~x2 ;x1 ,x2!50,

q2~x1 ;x1 ,x2!5q2~x2 ;x1 ,x2!5q28~x1 ;x1 ,x2!50,

p1~x1 ;x1 ,x2!5p2~x2 ;x1 ,x2!5q18~x1 ;x1 ,x2!

5q28~x2 ;x1 ,x2!51, ~12!

so that they can be used in the form~10! for the parametri-
zation of an arbitrary cubic spline of deficiency 2. This kin
of parametrization is particularly well-suited to splines in
multidimensional space~which the present author has use
e.g., in Ref. 6!. The second derivatives to the right and to t
left of xi are expressed in terms of the coefficientsSi andDi :

f 9~xi20!5
2~Di 2112Di !

xi2xi 21
1

6~Si 212Si !

~xi2xi 21!2 ,

f 9~xi10!52
2~Di 1112Di !

xi 112xi
1

6~Si 112Si !

~xi 112xi !
2 . ~13!

Consequently, for cubic splines of deficiency 1~the most
common type! the following conditions for continuity of the
second derivative must be satisfied for the coefficientsDi :

d2f

dx2 U
x5xi

5Ci5
2~Di 2112Di !

xi2xi 21
1

6~Si 212Si !

~xi2xi 21!2

52
2~Di 1112Di !

xi 112xi
1

6~Si 112Si !

~xi 112xi !
2 . ~14!

The set of coefficientsSi ,Ci could be used for the determ
nation of splines of deficiency 1, whereupon the coefficie
Di ~and the condition for continuity of the first derivative!
could be written
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d f

dxU
x5xi

5Di5
Si 112Si

xi 112xi
2

xi 112xi

6
~2Ci1Ci 11!

5
Si2Si 21

xi2xi 21
1

xi2xi 21

6
~2Ci1Ci 21!. ~15!

For brevity, from now on we denote the distances betw
consecutive nodes by

hi5xi 112xi . ~16!

3. MINIMIZATION OF THE MEAN-SQUARE SMOOTHNESS
PARAMETER IS

Looking at the problem of minimizing the objectiv
function ~3! for splines of deficiency 2, we note thatL does
not depend on the parameterDi . In the first stage, therefore
we can minimize the functionL̃ with respect toDi ~in fact
minimize I S!. Invoking the expression for a spline in term
of Si andDi , we readily obtain an equation forI S :

I S5 (
i 51

n21 H 1

hi
@Di 112Di #

21
3

hi
3

3@hi~Di 111Di !12~Si2Si 11!#2J . ~17!

If we write the system of equations specifying the co
dition of the minimum ofI S with respect toDi , we find that
it is equivalent to the condition of continuity of the seco
derivative at all intermediate nodes and vanishing of the s
ond derivative at the extreme nodes. We find that a cu
spline of deficiency 2 ‘‘shuns’’ the additional degree of fre
dom and reverts to a spline of deficiency 1 for the minim
zation of I S . In the ensuing discussion, therefore, we sh
not mention this characteristic of the spline every time, be
ing in mind that only cubic splines of deficiency 1 are co
sidered. For a spline of deficiency 1 the functionI S attains a
minimum for C15Cn50. This result is well known and is
used to draw a spline through points with given values ofSi

~Ref. 4!. We have thus exhausted the possibilities of mi
mizing the ‘‘smoothness parameter’’I S separately and mus
now minimize the entire functionL̃ with respect to the re-
mainingn free parameters.

Considering that one of our practical goals is to be a
to approximate large arrays~at least in the dozens! of experi-
mental points, we have no choice but to complicate the
vestigation by using large matrices. One of the most eff
tive techniques for obtaining almost diagonal matrices a
hence, significantly abating the effects of roundoff errors
to represent the spline by a linear combination ofB splines.
This technique has been employed to great advantage in
vious work.3

4. REPRESENTATION OF A SPLINE BY A LINEAR
COMBINATION OF B-SPLINES

A B spline is a special type of cubic spline.4 A distin-
guishing attribute ofB splines is that they are identicall
zero everywhere except in a few consecutive intervals
tween nodes of the given spline. By constructing a system
n

-

c-
ic

-
ll
r-
-

-

e

-
-

d,
s

re-

e-
of

B splines that covers the entire grid of spline nodes it
possible to represent any spline on this grid by a linear co
bination ofB splines.

Any cubic spline on a gridx1 ,...,xn can be represente
by a linear combination ofB splines:

f ~x!5 (
i 50

n11

b iBi~x!, ~18!

where

Bi~x![0 for x<xi 22 or x>xi 12 ,

Bi~xi 22!5Bi8~xi 22!5Bi9~xi 22!50,

Bi~xi 12!5Bi8~xi 12!5Bi9~xi 12!50.

The technical details of implementing this algorithm c
be found in Ref. 7.

If all the parametersb i are free, the second derivative o
the spline defined in Eq.~18! can have an arbitrary value a
the extreme nodes. On the other hand, to minimizeI S and
ensure continuity of the second derivative, we must u
splines for whichf 9(x1)5 f 9(xn)50. These conditions are
easily satisfied by the proper choice of coefficientsb0 and
bn11 , which is equivalent to modifying theB splines near
the extreme nodes, so that

B̃i9~x1!5B̃i9~xn!50.

Our required splines are now written as follows on the int
val (x1 ,xn):

f ~x!5(
i 51

n

b i B̃i~x!, ~19!

whereb i can take any values.
In this notation the likelihood function is written in th

form

L5(
i 51

n

(
j 51

n

Ai j b ib j22(
i 51

n

Pib i1(
i 51

n yi
2

s i
2 , ~20!

where

Ai j 5 (
k51

n
B̃i~xk!B̃j~xk!

sk
2 , Pi5 (

k51

n
ykB̃i~xk!

sk
2 . ~21!

If we define the matrixB and the vectorY by the equa-
tions

Bi j 5B̃i~xj !, Yi5yi /s i
2 , ~22!

we can rewrite the expressions forL andP in the form

L5bTAb22PTb1(
i 51

n yi
2

s i
2 , P5BY, ~23!

where the superscriptT denotes transposition.

5. ALGORITHM FOR CHOOSING THE WEIGHTING FACTOR

The modified likelihood function can now be written a

L̃5bTAb22PTb1(
i 51

n yi
2

s i
2 1wbTRb, ~24!
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whereR is a symmetric matrix,

Ri j 5E
x1

xn
Bi9~x!Bj9~x!dx. ~25!

The algorithm for simultaneously reducing two symmet
matrices to diagonal form by a linear transformation is w
known.8,9 Following this algorithm, we can obtain both like
lihood functions in the form~see Ref. 7 for details!

L5zTz22ETz1(
i 51

n yi
2

s i
2 , L̃5L1w•zTLz,

L i j 5l id i j . ~26!

The system of linear equations for finding the minimum ofL̃
can be separated into independent equations

1

2

]L̃

]zi
5zi2Ei1wl izi50, ~27!

which have the solutions

zi5
Ei

11l iw
, i 51,...,n. ~28!

We substitute the resulting solution into the equation
L and obtainL as a function ofw:

L5(
i 51

n yi
2

s i
2 2(

i 51

n Ei
2~112l iw!

~11l iw!2 . ~29!

In the limit w→0, obviously, the spline must pas
through the experimental points, and we must haveL→0,
i.e.,

(
i 51

n yi
2

s i
2 5(

i 51

n

Ei
2 . ~30!

This identity, incidentally, can be used to test the validity
the equations in application to the implementation of
algorithm in computer programs.

Bearing the latter consideration in mind, we can redu
the equation forL to the form

L5(
i 51

n
~Eil iw!2

~11l iw!2 . ~31!

Each term in this sum increases monotonically asw in-
creases, so thatL is also a monotonically increasing functio
of w. The equation

L5L05n22 ~32!

can be solved forw by any numerical method such as, f
example, the bisection algorithm.8

It can happen thatL remains smaller thanL0 even when
the weighting factor is increased to infinity. This conditio
must be checked before starting the iteration cycle. T
maximum possible value ofL is obtained when the exper
mental data are interpolated by a straight line, with

maxL5Lmax5(
i 51

n
~yi2y0!22a1

2~xi2x0!2

s i
2 , ~33!
l

r

f
e

e

e

where

a05(
i 51

n
1

s i
2 , x05

1

a0
(
i 51

n
xi

s i
2 ,

y05
1

a0
(
i 51

n
yi

s i
2 , a25(

i 51

n
~xi2x0!2

s i
2 ,

a15
1

a2
(
i 51

n
~xi2x0!~yi2y0!

s i
2 . ~34!

Once the weighting factorw and the corresponding co
efficientsb i have been chosen, the complete set of coe
cientsSi andDi can be obtained from the equations

S5BTb, Di5(
j 51

n

b j B̃ j8~xi !. ~35!

When the spline degenerates into a straight line, the
pressions forSi andDi are simplified:

Si5y01a1~xi2x0!, Di5a1 . ~36!

6. ESTIMATION OF STATISTICAL ERROR

In estimating the statistical error, we shall assume t
the experimental measurements at different points are st
tically independent. In principle, correlations can be tak
into account in the linear approximation if the covarian
matrix is known for the experimental data.

At an arbitrary pointxP(xi ,xi 11), according to Eq.
~10!, the following equation can be written for the varian
of the spline:

s2~x!5p1
2~^Si

2&2^Si&
2!1p2

2~^Si 11
2 &2^Si 11&

2!

1q1
2~^Di

2&2^Di&
2!1q2

2~^Di 11
2 &2^Di 11&

2!

12p1p2~^SiSi 11&2^Si&^Si 11&!

12q1q2~^DiDi 11&2^Di&^Di 11&!

12p1q1~^SiDi&2^Si&^Di&!12p1q2~^SiDi 11&

2^Si&^Di 11&!12q1p2~^DiSi 11&2^Di&^Si 11&!

12q2p2~^Di 11Si 11&2^Di 11&^Si 11&!, ~37!

where for brevity the standard polynomials from Eqs.~11!
are denoted by

pk5pk~x;xi ,xi 11!, qk5qk~x;xi ,xi 11!, k51,2.

For x,x1 the spline goes over to the straight linef (x)5S1

1D1(x2x1), so that

s2~x!ux,x1
5~^S1

2&2^S1&
2!1~x2x1!2~^D1

2&2^D1&
2!

12~x2x1!~^S1D1&2^S1&^D1&!. ~38!

Analogously, forx.xn

s2~x!ux.xn
5~^Sn

2&2^Sn&
2!1~x2xn!2~^Dn

2&2^Dn&
2!

12~x2xn!~^SnDn&2^Sn&^Dn&!. ~39!

The exact calculation of the necessary correlation functi
corresponding to the proposed algorithm poses a diffic
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task. However, the statistical error can be adequately e
mated in the approximation of a fixed weighting factorw.
These correlation functions can be calculated during fitt
of the experimental data and can be stored in an auxiliary
to be retrieved whenever needed for estimating the statis
curve-fitting error at an arbitrary pointx. If the factorw is
assumed to be fixed, the relations forSi and Di become
linear in yj , and the correlation functions are expressed
terms of matrix transformations used to diagonalize q
dratic forms~see Ref. 7 for details!.

7. TESTING THE OPERATION OF THE ALGORITHM IN
EXAMPLES

To implement the above-described algorithm, a FITA
program has been written in FORTRAN 77 for the appro
mation of experimental data, along with correspond
VALSPL and ERRSPL programs for calculating the value
a spline and estimating the statistical error.

We now examine a few simple applications of the alg
rithm.

7.1. Sine wave with large experimental errors

We choose ten points situated around a sine wave of
amplitude:

xi5 i 21 ^yi&5sinxi , i 51,2,...,10. ~40!

The points are dispersed relative to the sine wave accor
to a Gaussian law by means of an appropriate pseudoran
number generator:

dW

dyi
5

1

A2ps i

expF2
~yi2^yi&!2

2s i
2 G . ~41!

The solid curve in Fig. 1 represents the sine wavey5sinx
~exact theory!, and the ten points with error bars are obtain
for s i51.

The dashed curve represents results obtained by Anik
et al.3 ~using the CSPLS1 program!. Owing to the consider-
able latitude in choosing the CSPLS1 access parameters
necessary to fix certain principles for the selection of th
parameters. We assume that the limits of approximation bB
splines areXmin5x1 andXmax5xn and that the numberI opt of

FIG. 1. Interpolation of points on a sine wave (s i51). The solid curve
corresponds to the ‘‘exact’’ theory, the dotted curve bordered by an e
strip corresponds to the proposed approximation algorithm, and the da
curve corresponds to interpolation byB splines.3
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B splines used for the approximation are chosen accordin
the authors’ recommendations by the following algorithm

1! I opt52.
2! For a given number ofB splinesI opt, approximate the

experimental quantities and calculatex2.
3! If x2.nD5n2I opt ~the number of effective degree

of freedom! holds, increment once the number ofB splines
(I opt11→I opt) and go to step 2!.

In this figure the dotted line bordered by an error st
represents the results obtained by our proposed algorith

To obtain quantitative criteria for assessing the quality
approximation, we make use of the fact that the exact th
retical curve is known here. We introduce two characteris
of the deviation of the approximating curvef (x) from the
true theoretical curvef exact(x): the maximum deviation of
the absolute value

D f abs5 max
x1,x,xn

u f ~x!2 f exact~x!u ~42!

and the rms deviation

D f rms5H 1

xn2x1
E

x1

xn
@ f ~x!2 f exact~x!#2dxJ 1/2

. ~43!

The results of approximation by the two compared alg
rithms, shown in Fig. 1, are characterized by the parame

Smoothing algorithm d f abs d f rms
Ref. 3 1.60 0.79
This paper 1.09 0.57

The proposed algorithm has noticeably better characteris
in this case.

7.2. Sine wave with very small experimental errors

We now decrease the ‘‘experimental’’ errors by a fac
of five (s i50.2) and repeat the operation~Fig. 2!. It is evi-
dent that the curvature of the interpolating curve has
creased automatically, despite the invariance of the num
of spline nodes. The approximation characteristics for t

r
ed

FIG. 2. Interpolation of points on a sine wave~very small errors!. The solid
curve corresponds to the ‘‘exact’’ theory, the dotted curve bordered by
error strip corresponds to the proposed approximation algorithm, and
dashed curve corresponds to interpolation byB splines.3
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FIG. 3. Average values of the maximumD f abs ~a! and
rms D f rms ~b! deviations of the approximating curve
from the exact ‘‘theoretical’’ curve~a sine wave! for
two interpolation algorithms: one usingB splines (j)
from Ref. 3 and the algorithm proposed in this pap
(s).
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case are as follows:

Smoothing algorithm d f abs d f rms
Ref. 3 0.35 0.18
This paper 0.28 0.12

Even though our above-defined ‘‘quality of approxim
tion’’ parameters indicate that the proposed algorithm
this example provides a closer approximation to the t
curve, it is still impossible to draw any conclusion on t
basis of one statistical sample. Figure 3 shows the qualit
approximation as a function of the errors at each experim
tal point. For each value of the experimental error we ha
approximated several sets of experimental points obtaine
means of a pseudorandom number generator, and the g
shows the value ofD f abs or D f rms averaged over severa
samples.

7.3. Broken line

We now perform an analogous operation with a brok
line:

xi5 i 21, ^yi&50.3•uxi25u, i 51,2,...,10. ~44!

We carry out two series of fittings in precisely the same w
once withs i51 ~Fig. 4! and once withs i50.2 ~Fig. 5!. The
approximation characteristics for these cases are as follo

FIG. 4. Interpolation of points on a straight line~large errors,s i51!. The
solid curve corresponds to the ‘‘exact’’ theory, the dotted curve bordered
an error strip corresponds to the proposed approximation algorithm, an
dashed curve corresponds to interpolation byB splines.3
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s:

Smoothing algorithm D f abs D f rms D f abs D f rms
s51 s50.2

Ref. 3 1.02 0.61 0.27 0.15
This paper 0.99 0.45 0.15 0.10

Again, for large errors, when the nonuniformity of the a
proximated quantity is less than or of the same order as
experimental errors, the given algorithm chooses a straigh
almost-straight line for approximation, and for errors mu
smaller than the nonuniformity the approximation com
close to the theoretical curve.

As in the preceding example, the quality of approxim
tion in the proposed algorithm is generally not much bet
than for interpolation byB splines~Fig. 6!.

7.4. Gaussian peak against a flat background

Finally, we consider a more popular distribution fo
high-energy physics—a Gaussian peak against a flat b
ground:

xi59
i 21

n21
, i 51,2,...,n,

^yi&5110.05xi1exp@22~xi25!2#. ~45!

Figure 7 shows the results of fitting such data forn
560 ands i50.2. In this case the quality of approximatio
for the two algorithms has been evaluated as follows:

y
he

FIG. 5. Interpolation of points on a straight line~very small errors,s i

50.2!. The solid curve corresponds to the ‘‘exact’’ theory, the dotted cu
bordered by an error strip corresponds to the proposed approximation
rithm, and the dashed curve corresponds to interpolation byB splines.3
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FIG. 6. Average values of the maximumD f abs ~a! and
rms D f rms ~b! deviations of the approximating curve
from the exact ‘‘theoretical’’ curve~a broken line! for
two interpolation algorithms: one usingB splines (j)
from Ref. 3 and the algorithm proposed in this pap
(s).
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Smoothing algorithm d f abs d f rms
Ref. 3 0.24 0.085
This paper 0.38 0.13

The proposed algorithm falls well behind the method of
terpolation byB splines both in terms of such formal es
mates and from the standpoint of visual evaluation of
quality of interpolation: in the vicinity of the peak the algo
rithm tries to ‘‘stretch’’ the smoothing function into
straight line. This effect can be toned down by decreasing
objective value of the likelihood function:L→0.7(n22)
@this operation corresponds to a value of the argumentqL

5L0/(n22)50.7 in the FITAB program#. Figure 8 shows
the interpolation result under the stated conditions. Here
quality of approximation in terms of absolute deviation
already higher for the proposed method than for interpola
by B splines:

Smoothing algorithm d f abs d f rms
Ref. 3 0.24 0.085
This paper 0.18 0.13

The characteristics of the approximation quality as a funct
of s for this theoretical model are shown in Fig. 9. On t
average the proposed algorithm exhibits better charact
tics.

Even though the deficiency of the algorithm in appro
mating data over a large interval containing large, almost-
segments and segments with marked irregularities is so
what corrected by means of the argumentqL of the FITAB
program, this is not an adequately effective measure.

FIG. 7. Interpolation of points describing a Gaussian peak against a sm
background.
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cases involving a highly irregular function it will most likel
be necessary either to generalize the smoothness tests
integral of the square of a higher derivative or to develo
fundamentally different algorithm.

8. INFLUENCE OF ROUNDOFF ERRORS AND ESTIMATION
OF THE COMPUTATION TIME

It is obvious that despite measures undertaken to a
the influence of roundoff errors in working with large matr
ces, the cumulative roundoff error associated with matri
having a certain number of dimensions will still severe
distort the result. To investigate this effect, we have writte
version of the FITAB program containing a description of
variables with a smooth point of the form real* 16. We
denote the approximation obtained from this version of
program byf e(x). We then adopt the following measure o
the error of the solution:

D f m5 max
x1,x,xn

u f ~x!2 f e~x!u. ~46!

Figure 10 shows a graph of the error of the solutionD f m as
a function of the number of experimental points~which is
equal to the number of dimensions of the matrices used
intermediate calculations!. The last example in the precedin
section~Gaussian peak against a flat background! is used as
a test problem. Generally speaking, the dependence of
computational error on the number of points is not neces
ily smooth, and the error depends on the specific position
the points, on the levelL0 ~in the given situationL05n22!,

FIG. 8. Interpolation of points describing a Gaussian peak against a sm
background:qL5L0 /(n22)50.7.
th
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FIG. 9. Average values of the maximumD f abs ~a!

and rmsD f rms ~b! deviations of the approximating
curve from the exact ‘‘theoretical’’ curve~flat back-
ground1 Gaussian peak! for two interpolation algo-
rithms: one usingB splines (j) from Ref. 3 and the
algorithm proposed in this paper (s).
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and on the computer model~or, more precisely, on the form
in which the numbers and roundoff rules are represent!.
The computational error has been investigated on an Al
Server 4100~with a clock frequency of 400 MHz! running
under the Digital UNIX v4.0B~Rev. 564! operating system
with a Digital FORTRAN 77 compiler. It is evident that th
accumulation of roundoff errors is not very pronounced,
contrast with the simpler parametrization of the spline w
respect to the coefficients at the nodes, where roundoff er
have made it impossible to run calculations with matrices
no higher than about 10–20 dimensions.

In regard to the computing time~Fig. 11!, of course, the
dependence on the number of points is smooth. However
all the matrix operations in the algorithm are executed
direct cycles. The iterative method of successive rotation
used to reduce symmetric matrices to diagonal form. T
operation greatly complicates the dependence of the com
ing time on the number of pointsn. If the curve in Fig. 11 is
fitted by a fifth-degree polynomial, we obtain

tCPU@ms#5
n23.2

21
1S n

45.8D
2

1S n

9.37D
3

1S n

10.5D
4

1S n

22.86D
5

. ~47!

FIG. 10. Maximum deviationD f m of interpolation functions obtained by
calculations using real* 8 and real* 16 numbers as functions of the numb
of pointsn.
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The indicated Alpha Server 4100 has a sufficiently hi
speed. The same FITAB program runs 13 times slower
the Silicon Graphics Challenge-L server~clock frequency
150 MHz, IRIX 6.5 operating system, and MIPSpro v.7.2
compiler!, 30 times slower on the VAX Station 3600~Open-
VMS v5.5 operating system and VAX FORTRAN v5.5-9
compiler!, and 42 times slower on an IBM PC 486 DX/
~clock frequency 100 MHz and Microsoft FORTRAN Visua
Workbench version 1.00 compiler under the Windows
operating system!. The comparison has been made forn
520. The given coefficients permit Fig. 11 to be used
estimate computing times on other computer systems.

9. CONCLUSION

We have proposed an algorithm for the approximation
experimental data when sufficiently accurate statistical e
estimates are assumed to be available, but a theore
model is not. The method is based on the minimization o
modified likelihood function, which incorporates a gener
ized test of smoothness. The choice of a cubic polynom
spline of deficiency 1 with nodes at the coordinates of
experimental points as the interpolation function has b
justified by investigations using methods of variational c
culus. Internal parametrization of the spline in the form o
linear combination ofB splines has been chosen as a me

FIG. 11. Computing time of the FITAB program as a function of the nu
ber of pointsn ~Alpha Server 4100!.



rs

te
in
3
u

ca
m

te
to
ta
o
on

t
on
th
l o
a
te
n

-

n
in

has
ea-

ea-

s

-

d

412 JETP 89 (3), September 1999 A. D. Bukin
of significantly diminishing the influence of roundoff erro
in operations involving large-dimensional matrices.

We have presented several practical examples of in
polation with simultaneous comparisons of the quality of
terpolation by means of an algorithm proposed in Ref.
Major differences should not be encountered here, beca
cubic splines are used in both cases. However, a signifi
difference between the two algorithms is found in the nu
ber and positions of the spline nodes.

The proposed algorithm has the drawback that the in
polation curve tends to ‘‘stretch out into a straight line’’
the extent allowed by statistical errors of the experimen
data ~a similar effect is encountered in all smoothing alg
rithms!. The problem here is attributable to the formulati
of the smoothness test as an integral of the square of
second derivative of the interpolation function. If reducti
of this effect is desired, it will be necessary to generalize
algorithm with a smoothness test in the form of an integra
the square of a higher derivative, which, of course, will le
to splines of higher than third degree. In this case the in
polation curve will be drawn to polynomials of higher tha
first degree~e.g., a parabola!, to the extent allowed by ex
perimental errors.

An interpolation program in FORTRAN 77 has bee
written in accordance with the proposed algorithm. The
r-
-
.
se
nt
-

r-

l
-

he

e
f

d
r-

-

fluence of roundoff errors on the computational accuracy
been investigated, and the computing time has been m
sured for this implementation of the algorithm has been m
sured over a wide range of numbersn552300.
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Measurements used in quantum teleportation are examined from the standpoint of the general
theory of quantum-mechanical measurements. It is shown that in order to find a teleported
state, it is sufficient to know only the resolution of the identity operator~positive operator-valued
measure! generated by the respective instrument~the quantum operation determining the
change in the state of the system as a result of the measurement! in the state space of the system,
rather than the instrument itself. A protocol for quantum teleportation of the state of a
system with a nondegenerate continuous spectrum based on a measurement which corresponds to
a certain nonorthogonal resolution of the identity operator is proposed. ©1999 American
Institute of Physics.@S1063-7761~99!00309-1#
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1. INTRODUCTION

One of the main results of quantum information theory
the possibility of teleportating an unknown quantum state
means of a classical and a distributed quantum commun
tion channel, whose roles are played by a specially sele
nonlocal ~entangled state!, for example, an Einstein–
Podolsky–Rosen~EPR! pair.1 The quantum teleportation o
an unknown state from userA to distant userB is accom-
plished in the following manner.1 User A has a stater1 of
quantum system 1, which is unknown to him and is to
teleported to userB ~for example, a particle of spin 1/2;
generalization to the case of an arbitrary quantum sys
with a finite number of levels, i.e., with a finite-dimension
state space, was also given in Ref. 1!. In addition, there are
two other particles also of spin 1/2~systems 2 and 3! in the
spin-entangled EPR stater23, which is such that userA has
access to particle 2 and userB has access to particle 3. Us
A performs a certain joint measurementm12 on system 1 in
the stater1 , which is unknown to him, and particle 2 from
the EPR pair. As a result of the measurement, the comp
system consisting of particles 1, 2, and 3 passes from
state r1^ r23 to a new stater1238 , which depends on the
resultz of the measurement performed. It turns out that th
are measurementsm12, as a result of which the stater38 of
particle 3 from the EPR pair at userB ~which is obtained by
taking the trace of the state space of particles 1 and 2,
r385Tr1,2r1238 ) is related to the input stater1 of particle 1 by
a certain unitary transformation, which does not depend
r1 and is determined only by the resultz of the measuremen
m12 performed:

r385Uzr1 ~1!

~here and below, we assume that the isomorphous s
spaces of particles 1 and 3 are identical!. A classical com-
munication channel is needed for userA to communicate the
measurement resultz to userB. This result tellsB which
unitary transformationUz

21 he must perform on the stater38
4131063-7761/99/89(9)/8/$15.00
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of particle 3 so that its state would coincide withr1 . We
note that userA does not obtain any information on the tel
ported state.

In the quantum teleportation algorithm presented it
essential to utilize the fact that after performance of the m
surement, the system as a whole~all three particles! is in a
fully defined stater1238 , which is determined by the measur
ment result; the algorithm in Ref. 1 uses a so-called B
measurement, which corresponds to a certain self-conju
operator with a nondegenerate spectrum in four-dimensio
space, and the stater1238 is easily written out in an explicit
form.

The first algorithm for teleporting a continuous quantu
variable ~i.e., the wave function of a one-dimensional no
relativistic spinless particle, whose state space is infin
dimensional! was described in Ref. 2. A realistic algorithm
for teleporting a single-mode electromagnetic field was s
sequently proposed on the basis of that approach.3 It was
essentially assumed that in the case of an observable w
continuous spectrum, the system passes after a measure
into the state described by the ‘‘eigenvector’’ belonging
the ‘‘eigenvalue’’ of the corresponding self-conjugate ope
tor obtained as a result of that measurement.

However, the properly posed question of the state i
which a system passes after a measurement is far more
plicated for a continuous variable than in the case of a d
crete spectrum~see, for example, Ref. 4!. The problem here
is not just that in the case of a continuous spectrum there
no properly defined eigenvectors in the Hilbert state spac
the system. Let us consider, for example, a certain s
conjugate operatorA with a continuous spectrumL. Let the
point z belong to this spectrum and let the system be in
certain stater before the measurement. How intelligent th
is the question of which staterz is the system in after a
measurement which gives the resultr 5z? The problem
stems from the fact that, according to the statistical interp
tation of quantum mechanics, the very concept of a ‘‘stat
can be applied only to a certain ensemble of identical s
© 1999 American Institute of Physics
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tems and not to a single system. In the case under cons
ation this would appear to mean that the subensemble
systems selected after the measurement by the cond
r 5z must be considered. However, in the case of a cont
ous spectrum the probability of obtaining any specific va
of z is equal to zero, since a point has a measure of z
Thus, it is simply impossible to single out a subensemble
systems which give the resultr 5z, since the probability of
obtaining coinciding results in any two measurements eq
zero. Therefore, the question of the meaning ofrz is not
entirely trivial. In order to answer it, we need some fa
from the general theory of quantum-mechanical meas
ments ~see, for example, Refs. 4–6!. The basic postulate
and some results of that theory are presented in Sec. 2
Sec. 3 this general theory is used to study the special clas
measurements which are of interest for quantum telepo
tion. In Sec. 4 the protocol described in Ref. 2 for teleport
a continuous variable is examined from the standpoint of
results obtained in the preceding section. A protocol for te
porting states of a model system with a continuous spectr
which utilizes a measurement that corresponds to a ce
nonorthogonal resolution of the identity operator, is p
posed in Sec. 5. Finally, the main results obtained in t
work are briefly described in the last section.

2. QUANTUM-MECHANICAL MEASUREMENTS

For a quantum-mechanical state with a finit
dimensional state spaceH ~in which the spectrum of any
operator is purely discrete! a canonical~von Neumann! mea-
surement of a certain observable, which corresponds to
self-conjugate operatorA with the eigenvaluesl i , where
i 51...n, causes the system, which is initially described
the density matrixr, to pass into the stater j ~the von
Neumann–Lu¨ders reduction postulate7,8!,

r→r j5
EjrEj

Tr$Ejr%
, ~2!

if the measurement gives the resultl j . Here Ej is the or-
thogonal projector onto the space corresponding to the ei
valuel j , so that we have the resolution of the identity o
erator

(
j

Ej5I , ~3!

whereI is the identity operator inH, and the spectral rep
resentation of the operatorA is

A5(
j

l jEj . ~4!

The probability of obtaining thej th result equals

Prob~l j !5Tr$rEj%5Tr$EjrEj%. ~5!

Let us now consider the most general situation, wh
the set of all possible measurement results forms a ce
measurable spaceZ with a measure, which will be denote
below bydz, and the quantum systemS is described by the
Hilbert spaceH ~which is infinite-dimensional in the genera
case!, i.e., its states obey a one-to-one correspondence to
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set K(H) of all the positive operators inH with a trace
equal to 1~i.e., density matrices; the operatorA in H is
called positive, if ^vuAuv&>0 for any vPH). The set
K(H) is a subset of the spaceB1(H) of all operators with a
finite trace inH. In this case the mathematical object whic
completely characterizes any specific measuring proced
with the set of resultsZ, to which the systemS can be
subjected, is the instrument4 ~or operation, according to the
terminology in Ref. 5! T. The latter is equivalent to the map
ping D→T(D) of the setG of all the subsetsD,Z which
are measurable with respect to the measuredz in the set of
non-trace-increasing, completely positive operat
P(B1(H)) which mapB1(H) into itself and satisfy the fol-
lowing two conditions:

1! T(D)5( jT(D j ), if D5ø jD j and D jùD i5B for
iÞ j ~additivity!;

2! Tr$T(Z)r%5Trr for any rPB1(H) ~normaliza-
tion!.

We recall that the linear mappingF from B1(H) into
itself is called completely positive, ifF(L).0 for any
L.0 from B1(H), i.e., it converts positive operators from
B1(H) into positive operators and has the additional pro
erty that if H0 is another Hilbert space, the mapping

F^ I :B1~H ^ H0!→B1~H ^ H0!,

which is assigned in elements of the typeW^ W0PB1(H

^ H0) by a formula of the type

F^ I ~W^ W0!5F~W! ^ W0

and is continued by linearity into the entire spaceB1(H

^ H0), whereI is the identity operator inB1(H0), is also
positive for anyH0 . The meaning of the instrumentT is
that for any measurable subsetD,Z, DPG, the staterD of
the subensemble of systems which are initially placed in
staterPK(H) and are mapped during numerous repetitio
of the measuring procedure by the condition that the m
surement resultr 5z be in D is ~for brevity we writeT(D)r
instead of@T(D)#(r)…

rD5
r̃~D!

Tr$r̃~D!%
5

T~D!r

Tr$T~D!r%
PK~H!, r̃~D!5T~D!r,

~6!

and the probability of obtaining the resultr 5zPD following
the performance of a measurement is

Prob~zPD!5Tr$T~D!r%5Tr$r̃~D!%. ~7!

Here and below, we use a tilde to denote ‘‘unnormaliz
density matrices’’ ~positive operators with a trace<1),
which are obtained after applying the operator correspond
to the instrument under considerationT(D) to the original
density matrixr. In cases where no misunderstanding c
arise, we shall henceforth apply the term ‘‘density matrix’’
these operators for the sake of brevity.

It is easy to verify that for a fixedT formula ~7! gener-
ates an affine mapping of the convex setK(H) of the states
r of the systemS into the set of probabilistic measuresnProb

in Z: each staterPK(H) is mapped to a measuremr in Z

so that for each setDPG its measuremr(D) is exactly
Prob(zPD). As we know,6 the set of all such mapping
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r→mr from K(H) into nProb obeys a one-to-one correspo
dence with the family of Hermitian operatorsM (D), D
PG, acting in the Hilbert spaceH that satisfy the following
properties:

18) M (B)50, M (Z)5I ~normalization!;
28) M (D)>0 ~positiveness!;
38) M (D)5( jM (D j ), if D5ø jD j andD jùD i5B for

iÞ j ~additivity!; i.e., with resolutions of the identity operato
in Z with values in the set of positive operators inH. In this
case the measuremr of the setD is defined by the expressio

mr~D!5Prob~zPD!5Tr$rM ~D!%. ~8!

In other words,M (D) defines a positive operator-value
measure. A special case of such measures is created by
tral orthogonal resolutions of the identity operator cor
sponding to families of spectral projectors of self-conjug
operators inH for which the following equality holds:

M ~D1!M ~D2!50, if D1ùD250.

Measurements described by such a resolution of the ide
operator are naturally called orthogonal.

Thus, if we are interested only in the probability of o
taining a particular result and leave aside the far more c
plicated question of the state in which the system is afte
measurement, then instead of the family of operatorsT(D)
PP(B1(H)) it is sufficient to confine ourselves to a trea
ment of the positive resolutions of the identity opera
M (D)PB(H), which are related to one another in such
manner that the probability of obtaining a resultzPD upon
the performance of a measurement for any input stater of
the systemS originally specified by formula~7! can be cal-
culated using the operatorM (D) from formula~8!. Compar-
ing formulas~7! and ~8! to one another, we can easily se
that they are consistent if and only if

M ~D!5@T~D!#* I , ~9!

where the asterisk denotes a conjugate mapping from
spaceB(H) into itself, andI PB(H) is the identity operator
in H @we recall that the linear space of all the constrain
operatorsB(H) in H is isomorphous to the space conjuga
to B1(H). The corresponding isomorphism is generated
the bilinear mapping

B~H!3B1~H!→C:aPB~H!,bPB1~H!→Tr$a•b%PC,

whereC is the set of complex numbers#.
In the case of a canonical measurement of the observ

A ~i.e., a discrete spectrum! described by formulas~2!–~4! in
the finite-dimensional spaceH, the spaceZ coincides with
the finite set of eigenvaluesl i , i 51...n, of the operatorA,
the setG consists of all the subsets ofZ, and the operators
T($l j%) andM ($l j%) for the single-point sets$l j% have the
form

T~$l j%!r5EjrEj , M ~$l j%!5Ej . ~10!

The family of operatorsT(D) clearly gives a far more
complete description of the measurement process than
the corresponding resolution of the identity operatorM (D),
since the former not only permits calculation of the statist
of measurement results, but also specifies the state of
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system after a measurement~6!. In the general case, the sam
resolution of the identity operatorM (D) can be generated b
different instrumentsT1ÞT2 .

It then turns out4 that in the case ofZ5R ~the real
straight line!, for any fixedr we have the following integra
representation forr̃(D)5T(D)r:

r̃~D!5T~D!r5E
D
rzTr$rM ~dz!%, ~11!

whererz is a function of the space of measurement resultsZ

in the space of density matricesK(H), and Tr$rM (dz)% is
the ‘‘density’’ of the measuremr ~8! in Z, i.e.,

mr~D!5Prob~zPD!5Tr$rM ~D!%5E
D
Tr$rM ~dz!%,

~12!

mr~D!5E
D
dmr~z!, dmr~z!5Tr$rM ~dz!%. ~13!

The functionrz thus defined can already be interpreted
‘‘the state of the system after a measurement which gave
resultz. ’’ This does not contradict the statistical interpret
tion of quantum mechanics, since, in reality,rz only serves
as a convenient auxiliary instrument, which permits calcu
tion of the final state of the system after a measurement.
physical interpretation of formula~11! is perfectly clear,
since Tr$rM (dz)% is the probability of obtaining a result in
the vicinity dz of the pointz in a measurement. A represen
tation of the type~11! is important for us, because in the ca
of teleportation the state of the system after a measureme
corrected using a certain unitary transformationUz , which
depends on the result obtainedz. In this case the suben
semble of systems mapped by the conditionzPD after the
unitary correction can clearly be described by the den
matrix

r̃U,D5E
D
UzrzUz

1Tr$rM ~dz!%; ~14!

therefore, the introduction of the functionrz is a natural step
in an attempt to extend the algorithm for teleporting a st
of a finite-dimensional quantum system described in Re
to the case of a continuous variable.

3. MEASUREMENTS USED IN QUANTUM TELEPORTATION

Let us now consider the measurements which are use
quantum teleportation algorithms from the standpoint of
general quantum-mechanical theory presented above. L
measurement corresponding to the instrumentT12 be per-
formed on particles 1 and 2. Then, with respect to the en
system, including particle 3, this measurement correspo
to the instrumentT123(D)5T12(D) ^ I3 , where I3 is the
identity operator inB1(H3). It therefore follows that after a
joint measurement performed on the first and second
tems, the subensemble of systems mapped by the cond
zPD, whereD,Z andDPG ~we have still not concretized
the space of resultsZ!, is described by the density matrix
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r123,D8 5
T123~D!r

Tr1,2,3$T123~D!r%
, ~15!

and the probability thatz falls in D is Tr1,2,3$T123(D)r%. The
reduced density matrix describing the state of system 3
the form

r3,D8 5
Tr1,2$T123~D!r%

Tr1,2,3$T123~D!r%
. ~16!

Here we have a special case of the following more g
eral situation. Let there be a composite systemS, which
consists of two systemsA andB and is in the staterAB ~in
the case of teleportation the role of the systemA is played by
particles 1 and 2 considered together, and the role of
systemB is played by particle 3!. Next, let a measurement b
performed on the systemA using the instrumentTA , and let
us find the staterB,D8 of the systemB after the measuremen
~here and in the following the prime sign indicates that
state under consideration is the state of the particular sys
immediately after the measurement!. The instrumentTAB ,
which describes the change in the state of the entire sys
is TA^ IB , and, therefore,

rB,D8 5
TrA$TAB~D!rAB%

TrAB$TAB~D!rAB%
. ~17!

Let us now examine the numerator in this formula, which
denote byr̃B,D8 5TrA$TAB(D)rAB% in accordance with the
conventions adopted above~then the probability that the
measurement resultz belongs toD is TrBr̃B,D8 ). Let uB be an
arbitrary operator fromB(H). We calculate the trace
TrB$uBr̃B8 % ~for brevity we omit the subscriptD everywhere!:

TrB$uBr̃B8 %5TrB$uBTrA$TA^ IBrAB%%

5TrB$TrA$I A^ uB•TA^ IBrAB%%

5TrAB$I A^ uB•TA^ IBrAB%

5TrAB$@~TA^ IB!* I A^ uB#•rAB%

5TrAB$@~TA* I A! ^ IB* uB#•rAB%

5TrAB$@MA^ uB#•rAB%

5TrAB$@~MA^ I B!•~ I A^ uB!#•rAB%

5TrAB$@~ I A^ uB!•~MA^ I B!#•rAB%

5TrB$TrA$@~ I A^ uB!•~MA^ I B!#•rAB%%

5TrB$uBTrA$~MA^ I B!•rAB%%. ~18!

Therefore,

r̃B,D8 5TrA$TAB~D!rAB%5TrA$~MA~D! ^ I B!•rAB%.
~19!

Thus, in order to find the state of the systemB after a mea-
surement performed on the systemA, it is sufficient to know
only the resolution of the identity operator inHA generated
by TA in Z, rather than the instrumentTA itself.

We note that the machinery of quantum operators w
probably first applied to teleportation in Ref. 9, where t
simple case of ‘‘ideal’’ teleportation with a discrete space
as

-

e

e
m

m,

e

s

f

measurement outcomesZ was considered. In that case th
change in the state of the system caused by a measurem
described by an instrument of the type

r→AirAi
1 , ~20!

whereAi is a certain positive operator, andi 51,2... labels
the various measurement outcomes, i.e., points inZ. How-
ever, the teleported state was expressed in terms of the
eratorsAi , which completely assign the instrument itself.

We are interested in the possibility of representingr̃B,D8
in the form

r̃B,D8 5E
D
rz,BdmrAB

~z!, ~21!

where rz,BPK(HB), and the measuredmrAB
(z) describes

the probability density of the measurement result falling
the vicinity of the pointz, i.e., satisfies the condition

TrBr̃B,D8 5E
D
dmrAB

~z!. ~22!

Formally, such a representation can easily be found if
measuremrAB

is absolutely continuous relative to the inp
measuredz in Z, and the matrix elements of the operat
MA(D) acting on a certain orthonormalized basisuwnA& of
the systemA can be represented in the form

^wmAuMA~D!uwnA&5E
D
dzFmn~z!, ~23!

where Fmn(z) are certain complex-valued functions inZ
@for example, if the measurementM corresponds to the si
multaneous measurement of the complete system of c
muting observables with a continuous spectrum, since in
caseHA5L2(Z), andZ itself is the product of the spectr
of the operators appearing in this system, so thatFmn(z)
5wmA(z)* cnA(z)]. In fact, in this case

r̃B,D8 5TrA$~MA~D! ^ I B!•rAB%

5(
mn

^wmAuMA~D!uwnA&rnm,B

5(
mn

E
D
dzFmn~z!rnm,B5E

D
dzF(

mn
Fmn~z!rnm,BG

5E
D
dz r̃z,B , ~24!

where the operatorrnm,B in HB is obtained fromrAB by
taking the ‘‘partial matrix element’’ with respect to the ve
tors wnA andwmA from HA ,

rnm,B5^wnAurABuwmA&, ~25!

and

r̃z,B5(
mn

Fmn~z!rnm,B . ~26!

Therefore,
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TrB$r̃B,D8 %5E
D
dmrAB

~z!5E
D
dzTrB$r̃z,B%. ~27!

Thus, by multiplying and dividing the integrand in the la
integral in Eq.~24! by H(z)5Tr$r̃z,B%.0 we obtain formula
~21!, where

rz,B5
r̃z,B

Tr$r̃z,B%
5

r̃z,B

H~z!
, ~28!

so that Tr$rz,B%51, anddmrAB(z)5H(z)dz, i.e., H(z) is
the Radon–Nicodim derivative ofdmrAB

(z) with respect to
dz. We shall not dwell on substantiating the correctness
the rearrangement of the summation of the infinite series
integration in ~24! and other such operations, since in t
concrete cases considered in the remainder of this pape
integral representation of type~24! follows from the concrete
form of the operatorsM (D).

4. TELEPORTATION USING AN ORTHOGONAL
MEASUREMENT

As an illustration of the general scheme described abo
we first consider the teleportation of an unknown quant
stateuc& of a one-dimensional nonrelativistic spinless p
ticle in the coordinate representation. In order to avoid
complications associated with consideration of the symm
relative to interchange of the particles, we assume tha
three particles are different. It is sufficient to consider t
case where the input state of particle 1 is pure:

r15rc5uc;1&^c;1u, uc;1&5E
2`

`

dxc~x!ux;1&.

~29!

The entangled state of particles 2 and 3 is chosen in the f
of an EPR state~with an infinite norm!

r235uc23&^c23u, uc23&5E
2`

`

dxux;2&ux;3&, ~30!

which can be represented as the limit of the normalized s

uC23&5E
2`

` E
2`

`

dxdyC~x,y!ux;2&uy;3&, ~31!

whereC(x,y)→d(x2y) @in the momentum representatio
C23(p1 ,p2)→d(p11p2)]. Formally, the state~30! is an ei-
genvector of the coordinate difference operator of the sec
and third particles: (X22X3)uc23&50.

Let us consider a joint measurement of one of the p
ticles in the EPR pair and of the system in the unknown st
Such a measurement can be defined by the following res
tion of the identity operator:

E
2`

` E
2`

`

E12~dXdP!5I , ~32!
f
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E12~dXdP!5uFXP&K FXPU dXdP

2p
~33!

5
1

2p E
2`

`

dxE
2`

`

dx8eiP(x2x8)

3ux1X;1&ux;2&^x81X;1u^x8;2udXdP, ~34!

where

uFXP&5E
2`

`

dxeiPxux1X;1&ux;2&. ~35!

We note that the state~35! is formally a common eigenvecto
for the pair of commuting observablesX12X2 and P11P2

~the coordinate difference and the total momentum!, which
form a complete set of commuting operators in the st
space of the two particles:

~X12X2!uFXP&5XuFXP&, ~P11P2!uFXP&5PuFXP&.

Therefore, teleportation withr23 of the form ~30! and the
measurement~33! coincides exactly with the algorithm in
Ref. 2. In the present case the space of measurement re
Z is the set of the ordered pairs (X,P) of the points (2`
,X,`, 2`,P,`), which form theR2 plane. The latter
is the direct product of the two copies of the real straight l
RX and RP , which correspond to the ‘‘coordinate’’X and
the ‘‘momentum’’ P: Z5RX3RP .

The exact meaning of formula~33! is that the matrix
elements of the positive operatorE(D), as applied to the se
D, can be calculated from the formula

^FuE12~D!uC&5E
D

dXdP

2p E
2`

`

dxE
2`

`

dx8eiP(x2x8)F*

3~x1X,x!C~x81X,x8!, ~36!

which is analogous to formula~23!.
Simple calculations show that the teleported density m

trix in channel 3 takes the form

r̃3,D8 5Tr1,2$~r1^ r23!E12~D!%5E
D
rXP

dXdP

2p
, ~37!

where

rXP5ucXP ;3&^cXP ;3u, cXP~x!5eiPxc~x1X!. ~38!

Since

Tr3$rXP%5E
2`

`

dxuc~x1X!u251, ~39!

it is clear that the probability density of obtaining values
the vicinity of the point (X,P) in the interval (dX,dP) in a
measurement is 1/2p and does not depend onuc;1&, so that
the measurement does not provide any information on
teleported state. The total probability of obtaining a p
(X,P) at all is infinite because of the unnormalized nature
the state~30!.

It follows from formulas~37! and ~38! that by applying
the unitary transformation

UXP : c~x!→eiP(x2X)c~x2X!, ~40!
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which depends only on the result of the measurement
formed on particles 1 and 2, to particle 3, we obtain a s
coinciding with the input state of particle 1 in channel 3, i.
we accomplish the teleportation of the state of system 1.
note that in this example the unitary correction~which does
not depend onr1) of the state of the third particle tor1 is
possible for any input stater1 and any measurement ou
come, i.e., for any pair (X,P). However, generally speaking
it is reasonable to also consider teleportation algorith
which permit the teleportation not of all the possible states
particle 1, but only of a certain subsetK8(H1), for example,
the states belonging to a certain subspaceH18,H1 ~Ref. 9!
~an example is considered in the next section!. In addition,
the requirement that the necessary unitary correctionUz ex-
ists for any measurement outcome is likewise not obligato
In fact, the entire space of possible measurement outco
Z can always be divided into two nonintersecting subs
Z1 andZ2 , i.e.,

Z5Z1ùZ25B, Z5Z1øZ2 ,

in the following manner: an arbitrary pointzPZ belongs to
the setZ1 if and only if the unitary transformationUz with
the properties needed exists. A sufficient condition for te
portation is then a nonzero measuremr(Z1) for all
rPK8(H1). The teleportation algorithm has the followin
form: an ensemble of systems representing the input statr1

is subjected to a joint measurementm12 with particle 2. If a
resultzPZ2 is obtained, the respective copy of system 3
discarded. IfzPZ1 , system 3 is subjected to the unita
correctionUz . Then the subensemble of particles 3 thus d
carded and corrected is in the same input stater1 .

5. TELEPORTATION USING A NONORTHOGONAL
MEASUREMENT

Let us now consider the example of the teleportation
an unknown state using a measurement described by a
orthogonal resolution of the identity operator. We conside
model quantum system, whose Hamiltonian has a pu
continuous degenerate spectrum coinciding with the inte
(0,1`) ~one example is a free nonrelativistic one-dime
sional spinless particle, whose attainable states are con
by the condition that their resolution contains plane wa
traveling in one arbitrarily chosen direction!. Thus, we as-
sume that an arbitrary pure state of system 1 is assigned
wave function defined on the positive semiaxis:

uc;1&5E
0

`

c~E!uE;1&dE, ^EuE8&5d~E2E8!. ~41!

The EPR state can be chosen in the energy representatio
for example, the form

uc23&5E
0

«0
d«u«;2&u«02«;3&. ~42!

Such an EPR pair can be regarded as the limit of the norm
ized state

uC23&5E
0

«0E
0

«0
d«1d«2c~«1 ,«2!u«1 ;1&u«2 ;2&, ~43!
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wherec(«1 ,«2)→d(«11«22«0). Such a state is obtaine
following parametric energy down-conversion, if the pum
frequency equals«0 . Formally, the EPR state can also b
chosen in the formc(«1 ,«2)→d(«12«2); however, it is
then not very clear how such a state could be realized
perimentally.

Let us now consider the joint measurementM12(dVdT)
of particles 1 and 2, which can be represented in the form
a nonorthogonal resolution of the identity operator:

M12~dVdT!

5
1

p S E
2V

V

dveivTuV1v;1&uV2v;2& D
3S E

2V

V

dv8e2 iv8T^V1v8;1u^V2v8;2u D dVdT

~44!

5
1

p E
2V

V E
2V

V

dvdv8ei (v2v8)TuV1v;1&

3uV2v;2&^V1v8;1u^V2v8;2udVdT. ~45!

Here V and T vary in the intervalsRV
15(0;1`) and RT

5(2`;1`), respectively, so that the space of all possib
measurement results isZ5RV

13RT . The quantitiesV and
v have the meaning of the half-sum and the half-differen
of the energies~we do not distinguish between frequency a
energy! of two particles, for example, the photons in a b
photon. Such a measurement, which, in a certain sens
intermediate between measures of the frequency and the
parameter for two-particle states, can, in principle, be p
formed experimentally for two-particle states using param
ric energy up-conversion.11

It is not difficult to show thatM12(dVdT) is, in fact, a
resolution of the identity operator:

E
0

`E
2`

`

M12~dVdT!

5
1

p E
0

`

dVE
2`

`

dTE
2V

V

dvE
2V

V

dv8ei (v2v8)T

3uV1v;1&uV2v;2&^V1v8;1u^V2v8;2u

52E
0

`

dVE
2V

V

dvE
2V

V

dv8d~v2v8!

3uV1v;1&uV2v;2&^V1v8;1u^V2v8;2u

5E
0

`

dv1E
0

`

dv2uv1 ;1&uv2 ;2&^v1 ;1u^v2 ;2u5I 12,

wherev15V1v andv25V2v.
It can easily be shown that the teleported density ma

now has the form

r̃3,D8 5Tr1,2$~r1^ r23!M12~D!%5E
D
rVT

dVdT

p
,

rVT5ucVT ;3&^cVT ;3u, ~46!
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where~for brevity we writeuc3& instead ofucVT ;3&):

ucVT ;3&5uc3&5E
«02min$«0,2V%

«0
d«e2 i (2V2«01«)T

3c~2V2«01«!u«;3&. ~47!

The probability of obtaining values in the interval (V,V
1dV;T,T1dT) in measurements equals

Tr$r̃dVdT8 %5Tr1,2,3$~r1^ r23!M12~dVdT!%

5
dVdT

p E
«02min$«0 ,2V%

«0
uc~2V2«01«!u2d«.

~48!

We note that the corresponding probability density does
depend onT. SinceT varies in an infinite range, the tota
probability turns out to be infinite, as in the preceding s
tion. Formally, this is due to the fact that the state~42! has an
infinite norm. However, this does not lead to any difficultie
since knowledge of the relative probabilities of the occ
rence of the various events is fully sufficient for obtaini
physically intelligible results.

We now assume that we know that the carrier of
function c of system 1 is concentrated in a certain interv
@Emin ,Emax#, i.e., c(E)50 at E.Emax and E,Emin . The
probability density~48! then begins to depend onV. For
example, it vanishes at 2V.Emax1«0, since in this casec is
identically equal to zero over the entire integration interv
The appearance of the carrier ofc in the integration interval
in ~47! is clearly a condition for the realization of exact tel
portation. In this case the probability density for obtaining
particular value ofV does not depend onuc;1&, since the
integral in ~48! is identically equal to unity by virtue of the
normalization ofuc;1&.

It is convenient to perform the further analysis separat
for the cases of«0.Emax and«0,Emax. Let us first consider
the case of«0.Emax. If a measurement gives a result 2V
,«0 ~case 1a!, the state of system 3 will have the form
uc3&^c3u, where

uc3&5E
g

«0
d«e2 i («2g)Tc~«2g!u«;3&, g5«022V.

~49!

The argument ofc in the integrand varies in the range fro
0 to 2V. Hence it follows that teleportation of the statec is
possible only if its carrier@Emin , Emax#,@0,2V#, i.e., if
Emax,2V. Thus, @Emax,«0#,Z1 ~we omit the trivial direct
multiplier RT in Z1 , since nothing depends on the value
T).

If a measurement gives a result 2V.«0 ~case 1b!, the
state of system 3 will have the formuc3&^c3u, where

uc3&5E
0

«0
d«e2 i («1g)Tc~«1g!u«;3&, g52V2«0 .

~50!

Now the argument ofc in the integrand varies in the rang
from g to 2V, and teleportation of the statec is possible
only if its carrier@Emin , Emax#,@g, 2V#, i.e., if g,Emin , or,
stated differently, 2V,«01Emin ~the conditionEmax,2V is
ot

-

,
-

e
l

l.

y

f

satisfied automatically, since 2V.«0.Emax). Thus,@«0 ,«0

1Emin#,Z1 . Combining cases 1a and 1b, we obtainZ1

5@Emax,«01Emin#.
It is seen from Eqs.~49! and~50! that in cases 1a and 1

system 3 goes over to a state which is identical to the stat
system 1 before the measurement, if, immediately after
measurement, it is subjected to the unitary transformatio

c~«!→c̃~«!5H c~«!, if «.«0 ,

c~«1g!ei«T, if 0,«,2V,

c~«22V!, if 2V,«,«0 ,

~51!

and

c~«!→c̃~«!5H c~«!, if «.2V,

c~«1g!ei«T, if g,«,2V,

c~«22V!, if 0,«,g,

~52!

respectively. Let us now consider the situation in which«0

,Emax. In this case measurements which gave a resultV
,«0 , are sure to be unsuitable for teleportation, since
range of variation of the argument ofc in ~49! does not
cover the carrier ofc. However, if a measurement gives
result 2V.«0 , then, just as in case 1b, teleportation is po
sible @using the unitary transformation ~50!#, if
@Emin , Emax#,@g, 2V#, i.e., if the conditionsg,Emin ~i.e.,
2V,«01Emin) and Emax,2V are satisfied simultaneousl
~now this inequality imposes another additional conditio
and it is not satisfied automatically!. In order that a certain
range of values ofV, in which the conditions 2V,«0

1Emin andEmax,2V are satisfied simultaneously, would e
ist, the inequality Emax,Emin1«0 or, stated differently,
«0.Emax2Emin must be satisfied. Once again,Z1

5@Emax,«01Emin#. Thus, in the proposed scheme telepor
tion is possible if and only if the width of the spectrum of th
EPR pair~42! exceeds the spectral width of the carrier ofc.

We note that the question of the teleportation of a bro
band one-photon wave packet was first considered in R
10 and 11. In addition, the algorithm for teleporting a sing
mode electromagnetic field using a squeezed state3 was re-
cently generalized to the case of a broad-band input sta12

whose spectral density was assumed to be concentrate
the vicinity of the half-frequency of the pump field genera
ing the squeezed state. Unlike the algorithm described ab
the scheme in Ref. 12 is based on orthogonal measurem
From the physical standpoint the nonorthogonal meas
ment~44! naturally appears when the states of the system
considered in the energy representation: just as in the o
nally proposed teleportation scheme, which was describe
the coordinate representation,2 a simultaneous measureme
of the coordinate and the momentum is employed. It is na
ral to presume that a similar procedure can be implemen
using a measurement of the energy and its conjugate, i.e.
time. However, because no self-conjugate operator co
sponds to the observed time in quantum mechanics, the m
surement obtained is nonorthogonal~an EPR pair in which
the states of the particles are energy-entangled, rather
coordinate-entangled, is, of course, used in this case!.
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We note that the teleportation of a quantum state
scribed by dynamic variables (x,p) was investigated in Ref
3 ~the unknown state in Ref. 3 corresponds to a single-m
photon state! for the case of a nonideal EPR pair~a squeezed
state!. The nonideality of the EPR correlations leads to
decrease in teleportation fidelity. As can be seen from
example based on an orthogonal measurement, uncondit
exact teleportation (fidelity51) can be achieved with a sin
gular EPR state. Unconditional teleportation refers here
situation in which any measurement outcome leads to e
teleportation. In the case of a nonorthogonal measurem
considered above, unconditional exact teleportation is imp
sible even for a singular EPR pair: for some measurem
outcomes there is no unitary transformation whose appl
tion to the teleported state would transform it into an ex
copy of the input state; such outcomes must be discar
Exact teleportation occurs for the remaining measurem
outcomes.

In teleportation experiments there can be a situat
where instead of a measurement which theoretically lead
exact and unconditional teleportation for any outcome, a c
tain approximation of it is actually realized, and the telep
tation becomes conditional~even if it is assumed that a
ideal EPR pair is used in the experiments!. Formally, any
measurement is described by a resolution of the identity
erator; when any particular resolution of the identity opera
is realized experimentally, an interaction with the measur
device must be chosen which is such that the measurem
outcomes would produce the probability distribution spe
fied by the particular resolution of the identity operator a
all the possible measurement results would be exhauste
these outcomes. As a rule, it is difficult to select such
interaction even for systems with a discrete variable~for ex-
ample, spin or polarization!; therefore, unneeded outcome
arise, which must be discarded. For example, the non
thogonal resolution of the identity operator~44! can be real-
ized by fusing a pair of photons into a single photon wh
they pass through a nonlinear crystal~parametric energy up
conversion! and then detecting it by a photodetector.11 How-
ever, because of the small nonlinear susceptibility a se
empty results appears and must be discarded.

6. CONCLUSION

Thus, measurements used in quantum teleportation h
been considered in this paper from the standpoint of the g
eral theory of quantum-mechanical measurements. It
been shown that the teleported state is completely spec
by the resolution of the identity operator~positive operator-
valued measure! generated by the respective instrume
-
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~quantum operation describing the change in the state of
system as a result of the measurement! in the state space o
the system, so that there is actually no need to comple
specify the instrument which gives the most complete
scription of the effects of the measurement procedure on
quantum system. A protocol for the quantum teleportation
a state of a system with a nondegenerate continuous s
trum based on nonorthogonal measurements has been
posed. In this protocol, as in all the other known protoc
which ensure exact teleportation, an ideal EPR pair with s
gular correlations, which corresponds to an unnormaliz
wave function, must be used.1! The question of the possibil
ity of the exact teleportation of a continuous quantum va
able using physically realized~normalized! states remains
open. Thus, there is still no known algorithm for the exa
teleportation of a continuous variable for nonsingular E
states.
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Interaction of an atom with superstrong laser fields
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A theory of atomic interaction with a superstrong laser field has been developed. The specific
feature of the suggested theory is that its small parameter is the interaction between the
atom and the solenoidal part of the external field, whereas its interaction with the potential part
is accurately taken into account. It follows from the reported investigation that, in
calculating the interaction of atoms with superstrong fields, one must abandon calculations of
multipole moments of transitions between unperturbed atomic levels, and calculate
instead the atomic response, which comprises multipole moments of all orders and depends on
the instantaneous field magnitude. The results are compared with calculations based on
the perturbation theory in terms of the interaction Hamiltonian. ©1999 American Institute of
Physics.@S1063-7761~99!00409-6#
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1. INTRODUCTION

In recent years a lot of researchers’ attention has b
attracted to interaction of isolated atoms and molecules,
dense media as well~such as pressurized gases, plasmas,
liquids! with ultrashort laser pulses of high intensity. Th
response of a medium to a laser field of high intensity
highly nonlinear. This leads to generation of high harmon
Raman components, or a quasicontinuum, i.e., the pro
leads to generation of waves of different frequencies.1–6 The
difference from quasi-stationary processes generating m
tiple frequencies is that the spectrum of the generated wa
varies as a laser pulse propagates through a medium.
existing theories of an atom’s interaction with a superstro
laser field~the theoretical approaches were reviewed in de
in Ref. 4! are usually based on treating the interatomic p
tential as a small parameter of the perturbation theory, s
the Hamiltonian of interaction with the external field ceas
to be a small parameter. Numerical and analytic calculatio4

have allowed the researchers to explain the basic feature
effects observed in experiments.

This paper describes a theory of atomic interaction w
a superstrong laser field, which has two distinctive featu
First, the small parameter is the atomic interaction with
solenoidal part of the external field, and the interaction w
the potential part is described in an exact form. Second,
reported investigation has led to a conclusion that one m
abandon calculations of multipole moments of electro
transitions between unperturbed states of an atom in stud
its interaction with laser fields, and calculate instead
atomic response at a certain frequency with due accoun
multipole moments of all orders up to infinity as a functio
of the instantaneous laser field magnitude. It follows fro
the calculations that the atomic response at the frequenc
thenth harmonic of the laser field in this case is proportion
to the corresponding power of the field only in the weak-fie
limit. When the external field strength becomes compara
4211063-7761/99/89(9)/7/$15.00
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to that of the intratomic field, the response amplitude sa
rates and then drops with the external wave intensity. T
explains the multiplicity of harmonic generation, i.e., the fa
that amplitudes of high-order harmonics in the atomic
sponse become comparable.

The basic equations of the suggested theory are give
Sec. 2. Then the specific features of atomic interaction w
superstrong laser fields are discussed. Section 4 desc
relativistic corrections to the Hamiltonian of atomic intera
tion with a superstrong laser field. Section 5 derives an
erator equation for the current density and analyzes the e
of gradient forces.

2. EQUATION DESCRIBING ATOMIC INTERACTION WITH A
SUPERSTRONG LASER FIELD

2.1. General case

Schrödinger’s equation for an atom interacting with
transverse electromagnetic field in the nonrelativistic
proximation has the form

i\
]c

]t
5Hc, ~1!

where

H5
1

2m S p2
e

c
AD 2

1U0 . ~2!

There are two basic approaches to the problem of ato
interaction with electromagnetic field. When the fie
strength in the incident electromagnetic wave is mu
smaller than the intratomic field strength, the perturbat
theory is widely used. The basic assumption in this cas
that the free-atom Hamiltonian

H05
p2

2m
1U0 ~3!

is much larger than the interaction Hamiltonian
© 1999 American Institute of Physics
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H int52
e

2mc
~p•A1A•p!1

e2

2mc2 A2, ~4!

and a solution of Eq.~1! is sought in the form of an expan
sion in powers of the external field.

In a strong external field, the intratomic potentialU0 in
Eq. ~2! is treated as a perturbation.

Both of these approximations have their specific ap
cation domains. In the problem under discussion, howe
one can find another small parameter which is independ
of the ratio between the strengths of the external and i
atomic fields, so this approach allows one to track change
an atom’s reaction to external field when the latter increa
from very weak to superstrong. This parameter is the ra
between the potential and solenoidal parts of the exte
field.

To separate the potential part of the vector poten
A(r ,t), we use the identity

grad~A•r !5r3curlA1~r¹!A1A.

Hence

A~r ,t !5A1~r ,t !1A2~r ,t !, ~5!

where

A15grad~A•r !, A25H3r2~r¹!A.

Thus, with due account of Eq.~5!, the wave equation~1! can
be rewritten as

i\
]c

]t
5expF i

e

\c
x~r ,t !GH~A2!expF2 i

e

\c
x~r ,t !Gc,

~6!

where

x~r ,t !5A~r ,t !•r .

Equation~6! has the form

i\
]c

]t
5V~H01H int~A2!!V21c, ~7!

where

V5expF i
e

\c
x~r ,t !G .

Note that

VH0V215
1

2m S p2
e

c
A1D 2

1U0 ,

VHint~A2!V2152
e

2mc
~p•A21A2•p!1

e2

2mc2 ~A22A1
2!.

It follows directly from Eq.~5! that atl@a, i.e., when the
laser wavelengthl is much larger than the amplitudea of
electron oscillations in the external field,

uA1u@uA2u.

We can therefore seek a solution of Eq.~7! using an iterative
method:
-
r,
nt
r-
in
s

io
al

l

i\
]c0

]t
5VH0V21c0 ,

i
]c1

]t
5VH0V21c11VHint~A2!V21c0 ,... ~8!

Let us focus attention on the zero-order approximat
of Eq. ~8!. Expand the wave functionc0(r ,t) in terms of the
eigenfunctions of both the discrete spectrum and the c
tinuum generated by the intratomic HamiltonianH0 :

c0~r ,t !5(
n

an~ t !un~r !1E dkak~ t !uk~r !.

By substituting this expansion in Eq.~8!, we obtain

dan

dt
52 i(

m,l
S expF i

eA•r

\c G D
nm

vmS expF2 i
eA•r

\c G D
ml

al .

~9!

Note that the sum in Eq.~9! also includes integration ove
the continuum states, which is not reflected in the form
for simplicity.

Let us investigate evolution of the wave function
atomic electrons under an intense monochromatic laser p
of the form

A~r ,t !5A0~r,t !sin~vt2kz!, ~10!

wherer is the transverse coordinate in the beam cross s
tion. In interpreting the equations to follow, it is more co
venient to use the electric field amplitudeE0 of the laser
pulse instead of the vector potentialA0 . Recall, therefore,
that when

U]A0

]t U!vuA0u,

one can set

m5
eA0•r

\c
'2

eE0•r

\v
.

Thus, a power-series expansion of the exponential func
in Eq. ~9! wheneE0•r!\v yields the standard perturbatio
expansion in powers of the field strength. However, if o
uses the generating functions for the Bessel equation

sin~m sinu!52(
n50

`

J2n11~m!sin~~2n11!u!,

cos~m sinu!5J0~m!12(
n51

`

J2n~m!cos~2nu!, ~11!

one can derive from Eq.~9! an explicit expression for the
atomic response at thenth harmonic frequency that include
all powers of the field strength. ForeE0•r!\v, the largest
term in the expansion of the Bessel function is the fir
which is proportional to the corresponding power of the fie
strength. The Bessel function, however, decreases with
creasing argument, i.e., field amplitude. Therefore,
atomic response at the frequency of an incident wave h
monic is a nonmonotonic function of the field amplitude
the inequality given above does not hold. The atomic
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sponse increases initially and then decreases, starting w
specific field amplitude that depends on the ordere of
harmonic. This fact alone indicates a substantial differe
between Eq.~9! and the various versions of the convention
perturbation theory, which are based on a power-series
pansion in terms of the incident wave amplitude.

2.2. Perturbation theory

Let us analyze in more detail the interaction betwe
atoms and superstrong laser fields. As noted above, in
conventional perturbation theory an atomic response at
nth harmonic frequency is proportional to the correspond
power of the field amplitude, and the polarizability is propo
tional to the (n11)th power of the dipole moment. The ap
proach suggested in this paper treats an atomic response
function of matrix elements calculated on the basis of
Bessel function. Let us analyze the impact of this modifi
tion of the mathematical model on the description of physi
effects.

Let us start with the simplest case. Assume that the a
was in its ground state before the arrival of the laser pu
@an(t50)5dn0#, and the changes in the populations of e
cited states during the pulse duration are negligible in co
parison with that of the ground state.

In this case, we obtain from Eq.~9!

dan

dt
52 i ~vn1Dvn!an22i(

m
S (

k51

`

@J2k cos~2ku!

1 iJ2k11 sin~2k11!u# D
nm

vm~J0~m!!m0

22i(
m

~J0~m!!nmvmS (
k51

`

@J2k cos~2ku!

2 iJ2k11 sin~2k11!u# D
m0

24i

3(
m

S (
k51

`

@J2k cos~2ku!1 iJ2k11 sin~2k11!u# D
nm

3vmS (
k51

`

@J2k cos~2ku!2 iJ2k11 sin~2k11!u# D
m0

,

~12!

whereu5vt2kz, and the Stark shift of thenth level is

Dvn5(
m

~J0~m!!nmvm~J0~m!!mn2vn . ~13!

Assuming that the incident wave has a linear polarizat
aligned with thex-axis, we havem5eA0x/\c in Eqs.~9! and
~12!. In the optical range, the wavelength is much grea
than sizes of atomic shells,l@a0 , so we can setz50 in
calculating matrix elements and neglect the dependenc
A0 on the transverse coordinates, since the laser beam t
a
e
e
l
x-

n
he
e

g
-

s a
e
-
l

m
e
-
-

n

r

of
ns-

verse size is of order of the wavelength even at the lens fo
point. Consequently, the matrix elements in Eq.~12! have
the form @Jn(ax)#kl .

2.3. Resonant case

Suppose that one of the field harmonics is resonant w
an atomic transition, i.e.,

n0v'vk01Dvk0 .

In this case, we obtain from Eq.~12!

ak~ t !'
1

vk01Dvk02n0v (
l

H (
m50

n0

~21!n02m

3~Jn02m~ax!!klv l~Jm~ax!! l01~21!n0

3 (
m51

`

~Jn01m~ax!!klv l~Jm~ax!! l0

1 (
m51

`

~Jm~ax!!klv l~Jn01m~ax!! l0J . ~14!

On the other hand, using the power-series expansion of
exponential function in accordance with the conventio
perturbation theory, we obtain

ak
~P!~ t !'

1

vk02n0v (
l

H an0 (
m50

n0

~21!n02m

3
~xn02m!klv l~xm! l0

2n0~n02m!!m!
1...J . ~15!

The comparison between Eqs.~14! and ~15! demon-
strates that the difference between the results obtained u
these two approaches is caused by the different forms of
matrix elements in the expressions for the level populat
amplitudes. Let us demonstrate that Eqs.~14! and ~15! pre-
dict different physical effects.

3. FEATURES OF INTERACTION BETWEEN AN ATOM AND
A SUPERSTRONG LASER FIELD

3.1. Harmonic oscillator

The linear harmonic oscillator is a natural first examp
of a system interacting with a laser pulse. The matrix e
ments of transitions between the levels of the harmonic
cillator are well known:

~x!n,n215A n\

2mv0
. ~16!

Let us assume first that the laser pulse carrier frequency
incides with that of the transitions in the harmonic oscillat
i.e., v'v0 . Using the expressions for the wave functions
the harmonic oscillator, one can easily obtain

~J1~ax!!105
b

2
expS 2

b2

4 D F I 0S b2

4 D2I 1S b2

4 D G , ~17!

whereI n(z) is the modified Bessel function,
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b5aA \

2mv0
5

eA0

\c
a05

eE0a0

\v
. ~18!

Substituting Eqs.~16! and~17! into ~14! and~15!, we obtain

a1

a1
~P! 5expS 2

b2

4 D F I 0S b2

4 D2I 1S b2

4 D G . ~19!

The parameterb in Eq. ~19! is the ratio between the force o
the external field driving the electron,Fe5eE0 , and the
force due to the intratomic potential:

Fat5u]U0 /]xu'\v0 /a0 .

Thus, ratio~19! equals unity for a field of a moderate inte
sity (b!1). This ratio, however, decreases with the exter
field amplitude, i.e., the perturbation theory overestima
the population of excited atomic states due to interact
with a superstrong laser field.

3.2. Forbidden transitions

Let the external field be resonant with the 0↔3 transi-
tion of the harmonic oscillator, i.e.,v'3v0 . The dipole
matrix element for this transition is identically zero, (x)30

[0. On the other hand, using the harmonic oscillator wa
functions, we obtain

~J1~ax!!305
b3

2A6
expS 2

b2

4 D F S 11
2

b2D I 1S b2

4 D2I 0S b2

4 D G .
Thus, this example clearly demonstrates that dipo
forbidden transitions in atoms and molecules interact w
resonant superstrong laser fields, and atb'1 the populations
of the corresponding higher levels are comparable to thos
levels connected to the ground state via dipole-allowed tr
sitions.

3.3. Hydrogen atom

Now let us consider the hydrogen atom as a more r
istic quantum mechanical model. Let thenth harmonic of the
driving field be in the resonance with the transition (n51, l
50,m50)↔(n52, l 51,m50). It follows from symmetry
considerations that the harmonic number must be odd,
(2k11)v5v21. Nonetheless, in order not to complicate t
formulas, we will use the labeln. Using the atomic wave
functions of hydrogen, we easily obtain

~Jn~ax!!215
1

&
S 2

3D 4

bn

3
3~11nA11b2!1n~11b2!~n1A11b2!

~11b2!5/2~11A11b2!n
.

~20!

For a given transition, the parameterb, whose physical sens
is the same as in the previous sections, is given by

b5
eA0

\c

2aB

3
,

l
s
n

e

-
h

of
n-

l-

.,

whereaB is the Bohr radius. Expression~20! has the follow-
ing asymptotic behavior:

~Jn~ax!!215
1

&
S 2

3D 4H ~b/2!n~n11!~n13!, b!1,

n/b2, b@1.
~21!

Comparing these with the matrix elements calculated on
basis of expansion terms of the exponential function prop
tional to thenth power of the field strength, we have

S anxn

2nn! D
21

5
1

&
S 2

3D 4S b

2 D n

~n11!~n13!. ~22!

It is clear that the matrix elements calculated by the t
different methods coincide in the low-field limit. In the su
perstrong field, however, there is a significant difference
tween the results. For example, in the low-field limit the ra
(Jn)21/(J1)21 is a power-law function of the field amplitud
(}bn21), whereas in the high-field limit this ratio no longe
depends on the field amplitude, and the matrix elements
crease with increasing field strength.

3.4. Ionization in a superstrong laser field

The suggested approach leads to fundamentally diffe
results concerning ionization of atoms by superstrong la
fields. This conclusion can be drawn from general consid
ations. The matrix elements of then-photon transition be-
tween the bound atomic states and continuum for oddn take
the general form

E eikr

r
xne2r /a0 cosu dV.

One can easily demonstrate that they decrease rapidly
increasing kinetic energy of ionized electrons,Ek

5\2k2/2m. On the other hand, owing to the fast oscillatin
character of the Bessel functions, matrix elements involv
these functions do not decrease withEk whenaa0@1:

E eikr

r
Jn~ar cosu!e2r /a0 cosu dV'EAucosuu

2par

1

r

3expF i S kr2ar cosu2
p~2n11!

4 D2
r

a0
GdV.

The latter equation clearly shows that these matrix eleme
have maxima if the conditionk'a is satisfied. This condi-
tion and energy conservation,Ek5E01n\v, determine the
energy distribution of ionized electrons. Thus, for a las
beam of a nonuniform cross section, a set of harmonics
be generated, and the highest harmonic number is de
mined by the field intensity on the beam axis.

3.5. Generation of even harmonics

Up to this point, we have not taken into considerati
the coordinate dependence of the vector potential in the
culations of matrix elements, i.e., we have assumed
A0(r ,t)5A0(r0 ,t), where r0 is the location of the atomic
nucleus. In this case, the selection rules for the matrix e
ments in the basis of functionsJn(ax) and xn are identical
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owing to their identical symmetry properties. However,
will be demonstrated in what follows that the coordinate d
pendence of the vector potential becomes an important fa
in the focused laser beams. In the general case, the m
elements take the form

S JnS e~x2x0!

\c
~A0~r0!1~~r2r0!¹!A0ur5r0

1...! D
3exp~ inkz! D

kl

. ~23!

Even taking account of just the first-order term changes
symmetry properties of the Bessel functions; as a result,
selection rules are modified. In the limit of high-intensi
fields, matrix elements~23! will be different from the matrix
elements calculated using the expansion in powers of
field amplitude, even if the coordinate dependence of
field envelope is taken into account. This shows up m
clearly in the relationship between the intensities of even
odd harmonics in the field generated by the atom.

4. RELATIVISTIC CORRECTIONS TO HAMILTONIAN OF
INTERACTION WITH SUPERSTRONG LASER FIELD

4.1. Relativistic corrections

In superstrong laser fields with intensities much grea
than that of the intratomic field, relativistic effects becom
important, so we now dwell in more detail on calculations
relativistic corrections to Hamiltonian~2!.

The interaction Hamiltonian of an atom and electroma
netic field can be expressed in the second-quantization
resentation as

H5E C1@a•~cp2eA!C1ewC1mc2bC#dV

1E F2pc2B21
1

8p
~curlA!22cB•gradwGdV,

~24!

wherea andb are Dirac matrices. In the second-quantizati
representation, the wave functionsC(r ,t) andC1(r ,t), the
vector potential of external electromagnetic fieldA(r ,t), and
the generalized momentumB(r ,t) canonically conjugate to
the vector potential satisfy the commutation relations

@C~r ,t !,C~r 8,t !#25@C1~r ,t !,C1~r 8,t !#250,

@C~r ,t !,C1~r 8,t !#25d~r2r 8!,

@Aa~r ,t !,Ab~r 8,t !#25@Ba~r ,t !,Bb~r 8,t !#250,

@Aa~r ,t !,Bb~r 8,t !#25 i\dabd~r2r 8!, ~25!

which lead to the Dirac wave equation and well known eq
tions for the electromagnetic field:

i\
]C

]t
5ca•S p2

e

c
ADC1ewC1bmc2C, ~26a!

]A

]t
54pc2B2c gradw, ~26b!
-
or
rix

e
e

e
e

st
d

r

f

-
p-

-

]B

]t
52

1

4p
curl curlA2eC1aC. ~26c!

Introducing the notation

P5p2
e

c
A, U5ew

and expressing the wave function in the form

C~r ,t !5S j
h DexpF2 i

mc2

\
t G ,

we easily transform Eq.~26a! to

S i\
]

]t
2U D j5cs•Ph , S i\

]

]t
2U12mc2Dh5cs•Pj.

~27!

From the second equation in~27!, we obtain

h5S 2mc22U1 i\
]

]t D
21

cs•Pj

5
1

2mc22U (
n50

` S i\
]

]t

1

2mc22U D n

cs•Pj. ~28!

When U,E!mc2, one can take into account only the tw
lowest-order terms on the right-hand side of Eq.~28!. As a
result, the wave equation for an electron in an electrom
netic field with the vector and scalar potentialsA(r ,t) and
w(r ,t) has the form

i\
]c

]t
5S 1

2m1
S p2

e

c
AD 2

1U Dc2
e\

2m1c
s•Hc

1
\c2

~2mc22U !2 s•Fe

c

]A

]t
1¹U, p2

e

c
AGc

1
\2c2

2
divS ~e/c!~]A/]t !1¹U

~2mc22U !2 Dc1 i
\2e

2c

3s•curlS c2

~2mc22U !2

]A

]t Dc

1\s•F¹ 1

2m1
, p2

e

c
AGc, ~29!

where

c~r ,t !5S 11s•P
c2

~2mc22U !2 s•PD j~r ,t !,

1

m1
5

1

m S 12S U

2mc22U D 2D , H5curlA. ~30!

The continuity equation

]r

]t
1div J50

follows directly from the wave equation~29!, where the cur-
rent density operator has the form
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J5
i\e

2m1
~¹c1c2c1¹c!2

e2

m1c
c1Ac

2
\e2c2

~2mc22U !2 @E, c1sc#. ~31!

The general scheme described in Sec. 2 can also be
plied to Eq. ~29!. The interaction HamiltonianH int(A2) in
this case has the form

H int~A2!52
e

2mc
~p•A21A2•p!1

e2

2mc2 A2
2

1H rel~A2!1Hspin~A2!.

This operator takes into account the effects of the nonlo
nature of interaction due to the nonpotential parts of fi
A2 , changes in the electron mass, and spin effects.

4.2. Ionization stabilization

The Hamiltonian in wave equation~29! is different from
the conventional Hamiltonian that takes into account q
dratic relativistic corrections.7 First of all, the corrections due
to the spin-orbit and contact interactions take into accoun
interaction not only with the static field of the nucleus, b
also with the transverse electromagnetic field. In order
clarify the resulting differences, recall that we wrote dow
the single-electron Hamiltonian~24! in the interest of brev-
ity. In the case of an atom, summation over all charg
should be performed on the right-hand side of Eq.~24!. If the
atom is driven by an external electromagnetic wave, the v
tor and scalar potentials incorporate the intratomic field,
ternal field, and the field generated by the atomic electro

A5A01Ae1A8, w5w01we1w8.

If we neglect motion of the nucleus in the external field, t
intratomic potential can be treated as static@A050,w0

5w(r )#. The external field can be deemed transve
(div Ae50,we50). In this case, the Hamiltonian of conta
interaction due to the fourth term on the right-hand side
Eq. ~29! at U!mc2 has the form

Hc5
e\2

8m2c2 divS 1

c

]A

]t
1¹w D5

e\2

8m2c2 Dw0

2
e\2

8m2c2 div E5
pe2\2Z

2m2c2 d~r !2
pe2\2

2m2c2 ucu2. ~32!

Similarly, the spin-orbit Hamiltonian acquires, in addition
the term due to the electron motion in the atomic potentia
term caused by their motion in the external wave field.

It is noteworthy, however, that under conditions of
high ionization degree, a fundamental role is played by
modified Hamiltonian~32! of contact interaction. The contri
bution of this Hamiltonian, which is proportional to the wav
function modulus squared, demonstrates that a decrea
the electron density leads to a higher energy of the a
interacting with electromagnetic field. This can be one of
causes of the ionization stabilization.6
p-
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4.3. Mass corrections

The second feature of the Hamiltonian in Eq.~29! is that
it takes into account the effect of external-field potent
we(r ,t) ~through relativistic corrections to the mass!. Note
that in deriving Eq.~29!, we took into account the time de
pendence of the scalar potential

U~r ,t !5U0~r !1ewe~r ,t !,

so a gradient gauge transformation of the wave function

C~r ,t !5C8~r ,t !expS i
e

\c
A~r ,t !•r D ,

transforms the scalar and vector potentials in Eq.~29! in
accordance with the well-known relations

A8~r ,t !5A2~r ,t !, we8~r ,t !52eE•r'Up . ~33!

Substituting Eq.~33! into ~30!, we see that relativistic mas
corrections are important when the ponderomotive poten
Up approachesmc2.

5. GRADIENT FORCES

In the previous sections, we have used the quantum
chanical approach based on calculation of wave functions
many cases, however, it is more convenient to utilize
operator approach, because the form of the resulting eq
tions is more similar to the classical equations. We ha
already derived the equation for the charge density. Us
Hamiltonian ~24! and commutation relations~25!, it is not
difficult to obtain an equation for the current density. If rel
tivistic corrections are neglected, the expression for the c
rent density operator can be written in the form

J5
i\e

2m
~¹c1c2c1¹c!2

e2

mc
c1Ac5 j2

e2

mc
c1Ac.

The equations forJ have the form

]Ja

]t
2

e

mc
A•¹Ja52

i

\
@ j a ,Ha#21

e

m
Ear

1
e

mc
@J curlA#a1S e

mcD
2

Ab¹b~Aar!

1
e

mc
¹b~AaJb!, ~34!

wherea,b5x,y,z, and the convention of summation ove
repeated indices is adopted in Eq.~34!. The commutator ofj
and the HamiltonianHa of intratomic interaction takes the
form

@ j a ,Ha#252
i\

m
r¹aU1

i\3

4m2 ¹a~Dr!

2
ie\3

2m2 ¹b~¹ac1¹bc1¹bc1¹ac!. ~35!

Substitution of Eq.~35! in ~34! yields an equation similar to
the classical one, with the exception of gradient terms. A
integration over a volume much larger that the amplitude
electron oscillations, some gradient terms cancel out.
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The set of equations for the charge and current dens
is presented in a more graphic form in the case of the C
lomb gauge of the electromagnetic field (divA50):

]r

]t
2

e

mc
A•¹r52div j ,

] j a

]t
2

e

mc
A•¹ j a52

i

\
@ j a ,Ha#21

e

mc
j b¹a~Ab!

2
1

2 S e

mcD
2

r¹aA2. ~36!

The left-hand sides in Eq.~36! indicate that the time depen
dences of the charge and current densities are controlle
the relations

r~r ,t !5r~r2r0~ t !,t !, j ~r ,t !5 j ~r2r0~ t !,t !,

where

dr0

dt
5

e

mc
A.

Thus, their Fourier transforms

r~r ,t !5E dkr~k,t !exp@ ik•~r2r0~ t !!#

again contain exponential functions of the vector potent
so we can again use expansion~11! in terms of Bessel func-
tions.

The first gradient term on the right-hand side of Eq.~36!
for the current density relates the various components of
polarization current density. Consequently, the field gen
ated by an atom acted upon by an intense linearly polar
wave has elliptical polarization in the general case. The
term in this equation yields a gradient force acting on
electron in a nonuniform field. It equals the derivative of t
ponderomotive potential

Up5
e2A0

2

2mc2 '
e2E0

2

2mv2 .

At the focus of a diffraction-limited beam,

U]Up

]x U' Up/l .

The force acting on the external electron of the atom
\v/aB . Noting that the ponderomotive potential is related
the field intensity byUp ~eV!510213I ~W/cm2!, we find that

U]Up

]x U' \v/aB

at I 51017W/cm2 for \v5122 eV andl50.521 mm. At
this power density, the external force driving the electr
equals the intratomic force. Thus, the gradient force will g
erate a distribution of dissociated electrons that is nonu
form in the laser beam cross section.

6. CONCLUSIONS

The reported investigation has demonstrated that un
laser fields of moderate intensity, the atomic response to
es
u-

by

l,

e
r-
d

st
n

s

n
-
i-

er
he

external field is essentially perfectly described by calcu
tions based on the perturbation theory in terms of the in
action Hamiltonian. Nonetheless, the atomic response to
external field of strength comparable to that of the intratom
field is radically different for several reasons. First, the a
plitude of thenth eigenstate of the unperturbed Hamiltoni
in the superposition state

c~r ,t !5(
n

an~ t !un~r !1E dk ak~ t !uk~r !,

generated by the external wave is no longer determined
the dipole moment of the transition from the ground state~or
other high-population states!. Populations of states connecte
to the ground state via dipole-forbidden transitions can
greater than those of states to which dipole transitions
allowed. Second, atomic interaction with superstrong la
fields is highly nonlinear and demonstrates saturation. T
response at the frequency of thenth harmonic is a power-law
function of the field strength only if the latter is much le
than that of the intratomic field. This equalizes amplitudes
different eigenstates in the superposition of different atom
states, and thereby leads to smaller differences between
monic amplitudes in the induced field. Ifaa0@1, i.e., we
have a superstrong laser field, the amplitudes of ioni
states with energiesEk5E01n\v no longer depend on the
numbern, but are controlled by the phase relations amo
them, withwn'p(2n11)/4. Finally, the gradient forces du
to the atom-field interaction on a distance scale of the or
of the wavelength are comparable to the atomic forces w
the external field strength is of the order of the intratom
field strength. As a result, the polarization response of
atom in a tightly focused beam is significantly different fro
its response to a plane optical wave with the same fi
strength. This effect provides additional tools for control
the spectrum of the resulting radiation.
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Multiphoton ionization of the hydrogen atom by a circularly polarized electromagnetic
field
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This paper examines the multiphoton ionization of the ground state of the hydrogen atom in the
field of a circularly polarized intense electromagnetic wave. To describe the states of
photoelectrons, quasiclassical wave functions are introduced that partially allow for the effect of
an intense electromagnetic wave and that of the Coulomb potential. Expressions are
derived for the angular and energy distributions of photoelectrons with energies much lower than
the ionization potential of an unperturbed atom. It is found that, due to allowance for the
Coulomb potential in the wave function of the final electron states, the transition probability near
the ionization threshold tends to a finite value. In addition, the well-known selection rules
for multiphoton transitions in a circularly polarized electromagnetic field are derived in a natural
way. Finally, the results are compared with those obtained in the Keldysh–Faisal–Reiss
approximation. ©1999 American Institute of Physics.@S1063-7761~99!00509-0#
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1. INTRODUCTION

The process of multiphoton ionization of atoms by t
field of an intense electromagnetic wave has been stu
both theoretically1–13 and experimentally14–19 ~see also the
books cited in Refs. 20–23 and the review articles cited
Refs. 24 and 25!. It is only proper to mention the pioneerin
work of Keldysh1 and the papers that followed,2–7 where the
main laws governing the multiphoton photoelectric effe
were investigated. A common feature of Refs. 1–9 is that
wave function of the photoelectron final state was taken
the form of the wave function of a free electron in the field
the wave~the Volkov wave function!, an approach justified
only for systems bound by short-range forces. The w
known Keldysh–Faisal–Reiss approximation, which igno
the effect of the Coulomb potential on the final electron sta
gives rise to an error in the coefficient of the formula for t
probability of ionization of a neutral atom by an intense ele
tromagnetic field and to the wrong threshold dependenc
the probability on the photoelectron velocity. The probabil
of a photoelectron emerging with zero momentum calcula
in the Keldysh–Faisal–Reiss approximation proves to
zero.8 It is known, however, that when a system bound
Coulomb forces breaks up the threshold value of the pr
ability of the process is always finite.26,27Moreover, ignoring
the Coulomb potential in the case of an atom being ioni
by a circularly polarized electromagnetic field makes it i
possible to obtain the multiphoton selection rules for
magnetic quantum number.~Because a circularly polarize
photon has a projection of angular momentum equal to 1
21, the selection rule that ans-photon ionization transition
must obey iss5umf2mi u, wheremi andmf are the projec-
tions of angular momentum of the initial and final state
respectively.!

The first difficulty was overcome by Perelomov an
Popov4 and Nikishov and Ritus,7 who found that under cer
tain conditions the Coulomb potential can be taken into
4281063-7761/99/89(9)/7/$15.00
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count by perturbation-theory techniques. This leads to a c
rect limiting transition to the formula that describes t
probability of ionization of an atom by a constant elect
field.26 Several other methods were proposed to resolve
difficulties in the theory, among which the approach usi
what is known as the pole approximation,21,12 and a method
of allowing for the Coulomb interaction of the photoelectro
with the residual ion by replacing the plane wave in t
Volkov solution with a Coulomb wave function of the con
tinuous spectrum with the appropriate asymptotic behav
are worthy of mention.10,11

In this paper we will consider the multiphoton ionizatio
of the hydrogen atom by a circularly polarized electroma
netic wave. Quasiclassical ideas will be used to constru
quasistationary wave function of the photoelectron, wh
will allow for both the intense electromagnetic wave and t
Coulomb potential. We will find that in expanding this wav
function with appropriate asymptotic properties~an analog of
the Sommerfeld function! into a series of partial waves with
well-defined values of the projection of angular momentu
transitions are possible only to states that obey multipho
selection rules for the magnetic quantum number. We w
also derive expressions for the angular and energy distr
tions of the photoelectrons. It will be demonstrated that at
reaction threshold the ionization probability tends to a co
stant finite value. We will find the critical value of th
electromagnetic-field strength at which the height of t
main ~first! above-barrier peak in the energy distribution
the photoelectrons is equal to that of the second abo
barrier peak. The formulas for the ionization probability w
be compared with those obtained in the Keldysh–Fais
Reiss approximation. Finally, we will show that allowin
consistently for the Coulomb potential in the wave functio
of the final electron state leads to an exponential increas
the ionization probability over that predicted by th
Keldysh–Faisal–Reiss theory.
© 1999 American Institute of Physics
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2. QUASICLASSICAL WAVE FUNCTIONS OF AN ELECTRON
IN THE FIELD OF A STRONG ELECTROMAGNETIC
WAVE

We will construct the approximate electron wave fun
tions describing continuous-spectrum states in the Coulo
and electromagnetic fields. Strictly speaking, all states in
field of a wave belong to the continuous spectrum, so t
here we are dealing with quasistationary states, and the
part of the average energy of these states is positive. Le
examine the electron states in the near-threshold region
momentap!\/r B , wherer B5\2/Me2 is the Bohr radius,
with M ande the electron mass and charge, respectively
is well known that in the near-threshold energy region
electron states are quasiclassical. Thus, the main contribu
to the electron evolution is provided by a narrow pencil
Feynman paths that lie near the classical path of the elec
Therefore, it is advisable to study more closely the motion
a classical electron in the field of the wave. It is known th
if in the absence of an electromagnetic field the elect
moves along a certain pathr (t), then in a fieldE(t) of fre-
quencyv and under the conditions that

minur ~ t !u@maxua~ t !u, ~1!

v@
1

T
, ~2!

with

a~ t !5
eE~ t !

Mv2 ~3!

~T is the period of unperturbed motion!, the electron moves
along the quasistationary path~for details see §30 of Ref
28!:

r 8~ t !5r ~ t !2a~ t !. ~4!

We see that the effect of a high-frequency wave on the e
trons amounts to oscillations appearing in the motion of
electron along the unperturbed pathr (t) ~see Fig. 1!. For-
mally this is equivalent to the electron motion in the abse
of an external field but in a noninertial reference frame, w
the new and old coordinates related by~4!. Hence, basing
our reasoning on quasiclassical ideas, we conclude tha

FIG. 1. The path of a classical electron in the field of an intense elec
magnetic wave.
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wave function of an electron in the field of the wave is a
proximately the Coulomb wave function written in the no
inertial reference frame:

C~r ,t !5CC~r2a~ t !,t !expH 2
i

\ E
2`

t

dt
e2A2~t!

2Mc2 J ,

~5!

whereA(t) is the vector potential of the applied electroma
netic field written in the dipole approximation,c is the speed
of light in vacuum, andCC(r ,t) is the Coulomb wave func-
tion. Note that the function~5! is not a state with a well-
defined angular momentum~the same is true of the exac
wave function of an electron in the Coulomb and elect
magnetic fields!. In view of the axial symmetry of the sys
tem, the projection of the orbital angular momentum on
symmetry axis is conserved.

The expression~5! can be obtained in a more forma
way. We write the electron Hamiltonian in the Coulomb a
electromagnetic fields,

H5

S P̂2
e

c
A~ t ! D 2

2M
2

e2

ur u
,

and represent it in the following manner:

H5H01Vint , ~6!

where

H05

S P̂2
e

c
A~ t ! D 2

2M
2

e2

ur2a~ t !u
, ~7!

Vint5
e2

ur2a~ t !u
2

e2

ur u
. ~8!

Clearly, Eq.~4! is the solution of the classical equation
of motion that follow from the Hamiltonian~7!, so that it is
mainly ~7! that determines the classical path of the elect
in the field of the wave. In this sense~7! is the zeroth-order
Hamiltonian and~8! must be interpreted as a perturbatio
Allowing for the fact that the electron is quasiclassical, i.
that it is almost certain to be near the classical path,
conclude that when go over to the quantum mechanical
scription the Hamiltonian can still be represented by the s
~6! of the zeroth-order Hamiltonian~7! and the perturbation
~8!. Hence for the zeroth-order wave functions we can u
the solution of the Schro¨dinger equation with the Hamil-
tonian ~7!:

i\
]C~r ,t !

]t
5H0C~r ,t !. ~9!

We seek the solution of Eq.~9! with the initial condition
C(r ,2`)5CC(r ,2`) in the form

C~r ,t !5U~P̂,t !CC~r ,t !, ~10!

where

-
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U~P̂,t !5expH 2
i

\ E
2`

t

dtS 2
eA~t!•P̂

Mc
1

e2A2~t!

2Mc2 D J .

~11!

Substituting ~10! and ~11! in Eq. ~9! and performing
simple transformations, we arrive at an equation
CC(r ,t):

i\
]CC~r ,t !

]t
5S P̂2

2M
2

e2

ur u DCC~r ,t !.

This implies thatCC(r ,t) is indeed a Coulomb wave func
tion that determines the electron state in the absence o
external electromagnetic field. If we take formula~3! into
account, we can easily show that the expressions~5! and~10!
are identical.

3. PROBABILITY OF MULTIPHOTON IONIZATION OF THE
GROUND STATE OF THE HYDROGEN ATOM

Let us study the probability amplitude of a transitio
from the ground state of the unperturbed atom,C i

C(r ,t), to
the continuous-spectrum statesC f(r ,t). The expression for
this amplitude is

Ai f 52
i

\ E
2`

`

dtE drC f* ~r ,t !

3S 2
eA~ t !•P̂

Mc
1

e2A2~ t !

2Mc2 DC i
C~r ,t !. ~12!

According to~5!, ~10!, and~11!, the final electron state
can be expressed in terms of the unperturbed Coulomb w
function of the continuous spectrum,C f

C(r ,t), in two
equivalent ways:

C f~r ,t !5C f
C~r2a~ t !!

3expH 2
i

\ S p2

2M
t1E

2`

t

dt
e2A2~t!

2Mc2 D J , ~13!

C f~r ,t !5U~P̂,t !C f
C~r !expH 2

i

\

p2

2M
tJ . ~14!

We will assume that at timest→6` the field is zero.
Then, using the representation~14! and doing the necessar
transformations related to the integration by parts in~12!, we
obtain

Ai f 5
i

\ S p2

2M
1I 0D E

2`

`

dt E drC f* ~r ,t !C i
C~r ,t !,

whereI 0 is the ionization potential of the ground state of t
atom.

We will now introduce the Fourier transforms of th
Coulomb wave functions:

w f ,i~k!5
1

~2p!3 E drC f ,i
C ~r !exp$2 ik•r%.

Using these and the representation~13! of the final-state
wave function, we can transform the ionization amplitu
into
r

an

ve

Ai f 5
i

\ S p2

2M
1I 0D E

2`

`

dt expH i

\ F S p2

2M
1I 0D t

1E
2`

t

dt
e2A2~t!

2Mc2 G J F~a~ t !!, ~15!

F~a~ t !!5E dr dk dk8w f* ~k!w i~k8!

3exp$ i ~k2k8!•r%exp$2 ik•a~ t !%. ~16!

Clearly, integration over the coordinate space yields
delta functiond(k2k8), and this resolves all problems wit
integration overk8. Formula~16! becomes

F~a~ t !!5~2p!3E dkw f* ~k!w i~k!exp$2 ik•a~ t !%.

~17!

We can use the following trick to evaluate~17!. Instead
of the specified bound–free transition, we examine a boun
bound transition from the ground state to a state belongin
the discrete spectrum. For the time being we interpret
w j (k) in ~17! as the Fourier transform of the wave functio
of a bound state with quantum numbers (nlm). After evalu-
ating the integral by analytically continuingn into the do-
main of imaginary values, we can find~17!. Such a proce-
dure simplifies the calculations significantly, since
evaluating~17! it is much simpler to deal with Fourier trans
forms of bound states than with Fourier transforms of
continuous-spectrum states. Note that a similar trick w
used in Refs. 29 and 30, where the amplitude of a boun
free transition was found by analytic continuation that
volved a known bound–bound transition amplitude.

The wave function of the bound state into which t
system is formally transferred can be written

C̄ f
C~r !5Rnl~r !Ylm~u,w!. ~18!

Next we write the Fourier transforms of the ground state a
state~18! ~see Ref. 31!:

w i~k!5
1

Apr B
5

1

~k211/r B
2 !2 , ~19!

w̄ f~k!5Fnl~k!Ylm~u,w!, ~20!

Fnl~k!5
22l 11l !kl

p2r B
l 15/2nl 12~k211/~nrB!2! l 12

3Cn2 l 21
l 11 S k221/~nrB!2

k211/~nrB!2D , ~21!

whereCN
n (x) is the Gegenbauer function. We will assum

that the applied electromagnetic field is circularly polarize

E~ t !5E0~ex cosvt1ey sinvt !, ~22!

whereex andey are the unit vectors of a Cartesian system
coordinates. We will also assume that the atom is oriente
such a way that the quantization axis coincides with the
rection in which the electromagnetic wave propagates. Th
taking Eqs.~17! and ~19!–~22! into account, we can write
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F̄~a~ t !!5
~2p!3

Apr B
5 E0

`

dk k2
Fnl~k!

~k211/r B
2 !2 E dVYlm* ~u,w!

3exp$2 ika0 sinu cos~w2vt !%,

wherea05eE0 /Mv2. It can be demonstrated that the val
of the integral is largely determined by the poles of the in
grand. According to~21!, the poles are atk5 i /r B and k
5 i /nrB . In weak fields, where we havea0!r b , the contri-
butions of the two poles are comparable, while in stro
fields,a0@r B , the main contribution is provided by the po
that lies closes to the real axis,k5 i /nrB ~due to the expo-
nential factor in the integrand!. In the latter case we ignor
the small terms of order 1/n, with n@1, and take the de
nominator (k211/r B

2)2 outside the integral sign at the poin
k5 i /nrB . The result is

F̄~a~ t !!5~2p!3w i S i

nrB
D E

0

`

dk k2Fnl~k!

3E dVYlm* ~u,w!

3exp$2 ika0 sinu cos~w2vt !%.

For the sake of comparison we will write the inver
Fourier transform of the wave function~18!:

C̄ f
C~r 8!5E

0

`

dk k2Fnl~k!E dVYlm~u,w!

3exp$ ikr 8@cosu cosu8

1sinu sinu8 cos~w2w8!#%.

Clearly, the penultimate expression is in fact the inve

Fourier transform of the functionC̄ f
C* (r 8) specified at the

point with r 85a0 , u85p/2, andw85vt. Thus, allowing
for ~18!, we have

F̄~a~ t !!5~2p!3w i S i

nrB
DRnl~a0!YlmS p

2
,vt D ,

a0

r B
, n@1.

If we continue this expression analytically into the d
main of imaginary values ofn, we arrive at the case wher
ionization proceeds to a state for which the angular mom
tum and its projection are well-defined.~More precisely,
C f

C(r ,t) in ~13! and~14! is a state with a well-defined angu
lar momentum and its projection.! But according to the gen
eral principles of scattering theory, for the Coulomb wa
function in ~13! and ~14! we must take a wave functio
whose asymptotic form contains a plane wave and a c
verging spherical wave. This Coulomb wave function can
written in the form of a partial-wave expansion:26

C f
C~r !5

1

A2p\p
(
l 50

`

(
m52 l

l

i l exp$2 id l%Rpl~r !

3Ylm~u,w!Ylm* ~up ,wp!,

where
-

g

e

n-

n-
e

Rpl~r !5
Cpl

~2l 11!! r B
S 2pr

\ D l

expH 2
i

\
prJ

3FS l 111 iq, 2l 12, 2
i

\
pr D ,

Cpl5A 8p

q~12exp$22pq%! )
h51

l

Ah21q2,

q5
\

prB
,

with up and wp the axial and polar angles of vectorp, re-
spectively.

Thus, allowing for the above formula, we arrive at th
desired value of the integral~17!:

F~a~ t !!5
~2p!5/2

\1/2p
w i S i

nrB
D

3(
l 50

`

(
m52 l

l

i 2 l exp$ id l%Rpl~a0!

3YlmS p

2
,vt DYlm* ~up ,wp!.

Using the relationship that exists between spheri
functions and associated Legendre polynomials,

Ylm~u,w!5~21!(m1umu)/2i lA2l 11

4p

~ l 2umu!!
~ l 1umu!!

3Pl
umu~cosu!exp$ imw%,

and formula~15! and performing a simple integration, w
find the ionization probability amplitude:

Ai f 5 i
~2p!7/2

\1/2p S p2

2M
1I 0Dw i S i

nrB
D

3(
l 50

`

(
m52 l

l
2l 11

4p
expH i S d l1

p

2
~ l 1m1umu! D J

3
~ l 2umu!!
~ l 1umu!!

Pl
umu~0!Pl

umu~cosup!exp$2 imwp%Rpl~a0!

3dS p2

2M
1I 01

e2E0
2

2Mv2 2m\v D , ~23!

where it is assumed thata0 /r B and \/prB are much larger
than unity.

Let us examine the above expression more thoroug
The presence of a delta function means that of all the pa
waves only that in which the magnetic quantum number
incides with the number of photons involved in the proce
can serve as the final state. This agrees with the selection
for magnetic quantum numbers in dipole multiphoton tran
tions ~from the ground state! initiated by circularly polarized
radiation.20

Allowing for the property of the zeros of Legendre pol
nomials, Pl

umu(0);cos@(l1umu)p/2#, we see that the transi
tion can end only in states in whichl 1umu52N, N
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51,2,3... . On the other hand, the dipole selection rules
the orbital quantum number require that its variation be eq
to the number of circularly polarized photons absorbed in
transition process, i.e.,l 5umu. Nevertheless, there is no con
tradiction here, since the selection rules in question h
been established for states with well-defined angular m
menta. In our case, because of the perturbation of the
states by the electromagnetic wave, the numberl is not a
constant of motion. Hence the terms in~23! with given l do
not determine the probability amplitude of ionization to
state with a well-defined angular momentum equal tol\.
This explains why the selection rules break down in~23!.

We will assume that
pa0

l\
!1 ~24!

@we will shortly show that this inequality follows from th
condition for the applicability of model~1!#. For the func-
tions Rpl(a0) in ~23! we employ the asymptotic represent
tion

Rpl~a0!'
Cpl

r B~2l 11!! S 2pa0

\ D l

,
pa0

l\
!1. ~25!

With this in mind we can now show that the main co
tribution to the ionization amplitude is provided by the ter
with the smallest possible value ofl :

l 5umu5s, ~26!

where bys we have denoted the number of photons absor
by the electron in the transition. Thus, discarding the un
portant phase factors, we can write thes-photon ionization
probability amplitude:

Ai f 52p (
s5[s0]

DpsS p2

2M
1I 0D S pa0

\
sinu D s

3dS p2

2M
1I 01

e2E0
2

2Mv0
2 2s\v D ,

Dps5Ap5r B
3q

\3

1

2s22s! )
h51

s A11S q

h D 2

,

where

s05
I 0

\v
1

e2E0
2

2M\v3 ,

@s0# is the minimum number of the electromagnetic-fie
photons needed to ionize the atom, andu is the angle be-
tween the photoelectron momentum and the direction
wave propagation. In deriving these formulas we used
~19! and allowed for the fact that the photoelectron mome
are small compared to the Bohr momentum:prB /\!1.

For the finite product we have the asymptotic repres
tation

)
h51

s S 11S q

h D 2D5
1

2pq S 11S q

s D 2D s11/2

3expH 22q arctan
q

s
1pqJ
r
al
e

e
-
al

d
-

f
q.
a

-

with q,s@1. This expression simplifies significantly whe
q/s!1:

)
h51

s S 11S q

h D 2D5
1

2pq
exp$pq%. ~27!

Now, performing well-known transformations, we find a
expression for the differential multiphoton ionization pro
ability per unit time~the ionization rate! in the form of a sum
of partial probabilities:

dW

dV
5 (

s5[s0]

dWs

dV
, ~28!

dWs

dV
5

~2p!6

22(s11)~s! !2

\v2

I 0
S s2

e2E0
2

2M\v3D 2

3S psa0

\
sinu D 2s

g~ps!, ~29!

where

g~ps!5 )
h51

s S 11
\2

ps
2r B

2h2D , ps5A2M\v~s2s0!.

Here and in what follows we assume that 1!a0 /r B!s and
psa0 /\!s.

Equations~27! and ~28! imply that the angular distribu-
tion of the photoelectrons has a narrow peak lying in
polarization plane of the electromagnetic wave,u5p/2. As
we move away from the angleu5p/2, the probability of
detecting a photoelectron decreases rapidly and vanishe
the limit u50. Thus, qualitatively the angular distribution o
photoelectrons follows the same pattern as it does in
Keldysh–Faisal–Reiss approximation.8

Integrating the differential probability over the soli
angle, we find the photoelectron energy distribution:

W5 (
s5[s0]

Ws, ~30!

Ws5
~2p!7

2~2s11!!

\v2

I 0
S s2

e2E0
2

2M\v3D 2S psa0

\ D 2s

g~ps!.

~31!

Formula~31! shows that near the ionization threshold, whe
the photoelectron momentum tends to zero, the probabilit
the process remains finite, as it should in reactions w
charged-particle production:26,27

lim
ps0

→0
W[s0]5

~2p!7

2~2@s0#11!!

I 0

\ S a0

r B
D 2[s0]

. ~32!

Let us find the critical value of the electromagnetic-fie
strength at which the heights5@s0#11 of the first additional
peak becomes equal to the height of the main peas
5@s0#. We will assume that the height of the main peak
described by~32!. Then, using~31! and~27!, we arrive at the
ratio

W[s011]

W[s0] '
1

p S \v

I 0
D [s0] 21/2 e2E0

2

M\v3 expH pA I 0

\vJ .
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Now, from the condition thatW[s011]/W[s0]51 we can eas-
ily derive an expression for the critical value of the elect
magnetic field strength:

E0
cr'Ap\v3

e2 S I 0

\v D [s0]/221/4

expH 2
p

2
A I 0

\vJ .

For instance, for an ionization potentialI 0513.6 eV and a
field frequency v'2.9231015s21 we have E0

cr'9.76
3107 V/cm. For large photoelectron threshold momen
ps0

2 /2M;\v, the critical field value is of the same order

in the Keldysh–Faisal–Reiss theory. ForE0.E0
cr the photo-

electron energy distribution has many peaks, and the di
bution maximum is shifted to the right from the main pe
s5@s0#. Note that far from the ionization threshold,s
2@s0#@1, the probability ratio has a more usual form:

Ws11

Ws ;
E0

2

v2 ,

which differs from the quasiclassical parameterE0
2/v10/3.

This discrepancy arises because in finding the wave fu
tions ~5! and ~10! we ignored the interaction~8!.

Let us establish the number of photonssmax at which for
a given field strengthE0 the ionization probability~31!
reaches its maximum.

Using the well-known Stirling formula and Eqs.~31! and
~27!, we can write

Ws5
~2p!5

2~2s11!
Ap~s2s0!

s

\2v3

I 0
2

3S s2
e2E0

2

2M\v3D 2

exp$ f ~s!%,

f ~s!52sS ln
psa0

2s\
11D1pA I 0

\v~s2s0!
, s.@s0#.

If we now ~formally! assume thats is a continuous pa-
rameter, we can findsmax by solving the equationf 8(smax)
50. In explicit form this equation is

ln
e2E0

2

2M\v3 5 ln
smax

2

smax2s0
2

1

smax2s0

3S smax2
p

2
A I 0

\v~smax2s0!
D . ~33!

We see that this formula determines~implicitly ! the function
smax5smax(E0). Unfortunately, there is no way to solve E
~33! can be solved. For the sake of an example we give
value ofsmax for the following values of the parameters:I 0

'13.6 eV, v'231015s21, @s0#522, and E0'1.5
3108 V/cm. In accordance with~33! we havesmax525.

The maximum value of the probability,Wsmax, is given
by the expression

Wsmax5
~2p!5

2~2smax11!
Ap~smax2s0!

smax

\2v3

I 0
2

3S smax2
e2E0

2

2M\v3Dexp$ f ~smax!%, ~34!
-

,

ri-

c-

e

f ~smax!52
smax

smax2s0
S 2s02smax2

p

2
A I 0

\v ~smax2s0!

3S 112
smax2s0

smax
D D ,

@s0#@smax2@s0#.1.

The two formulas,~33! and~34! can be used to compar
the theoretical and experimental dependences ofWsmax on the
field strength.

It is interesting to compare thes-photonionization prob-
ability ~31! with the probability of a similar process consid
ered in the Keldysh–Faisal–Reiss approximation:8

WKFR
s 5

25p4

~2s11!!
A\3v5

I 0
3 S s2

e2E0
2

2M\v3D 2

3As2
I 0

\v
2

e2E0
2

2M\v3 S psa0

\ D 2s

. ~35!

in the limit \/psr Bs!1 we have

Ws

WKFR
s 5expH pA I 0

\v~s2s0!J , s.@s0#.

Thus, even partial allowance for the Coulomb potent
in the final electron state leads to a sharp~exponential! in-
crease in the transition probability. The exponential diffe
ences of the formulas~31! and~35! are due to the long rang
of Coulomb forces, which were ignored in~35!. Note that
when s is large, more precisely, in the limits@s0

1p2I 0 /\v, the probability ratioW(s)/WKFR
(s) tends to unity.

This was to be expected, since for fast photoelectrons, wh
energy is much higher than the photoionization potential,
Born approximation is valid. This means that the effect
the Coulomb potential on the wave functions of the pho
electrons can be ignored, which in turn means that we
use the Keldysh–Faisal–Reiss approximation.

The reader will recall that the main condition for th
applicability of Eqs.~28!–~34! is the quasiclassicality of the
final electron state, i.e., the smallness of the electron mom
tum in comparison to the Bohr momentum. The results
have arrive at give a good description of the case of mu
photon ionization of the atom,g@1, where the Keldysh pa
rameter is given by the formulag252MI 0v2/e2E0

2, since
here the probability of a photoelectron having a moment
of order of, or larger than, the Bohr momentum is negligib
In the adiabatic caseg!1, the important photoelectron mo
menta ~near the maximum of the energy distribution! are
much larger than the Bohr momentum.25,13 Hence forg!1,
the formulas~28!–~34! can be used only to describe the low
energy fraction of the photoelectrons. Unfortunately, t
makes it impossible to calculate the total probability of io
ization in ultrahigh fields and thus to pass to the limiting ca
of ionization of an atom by a constant electric field.

In conclusion we will examine the criteria of applicabi
ity of ~1! and ~2! in greater detail. Using the formula tha
gives the minimum distance between the nucleus and
classical electron in the Coulomb problem,28
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r min5
\2

p2r B
SA11

p2r B
2

\2 l 221D , l @1,

we can write the inequality~1! in the form

a0

A11p2r B
2 l 2/\221

p2r B

\2 !1. ~36!

In the limit prBl /\@1 this reduces to thepa0 /\ l !1.
Clearly, this inequality determines the restriction on t
electromagnetic-field strength that follows from~36! and co-
incides with condition~24!, which governs the main result
~28!–~34!.

The motion of an electron with positive energy in th
field of the nucleus is not periodic, with the result that t
criterion ~2! must be reformulated. In our case, the criteri
~2! corresponds to the condition that the electron displa
ment along an unperturbed path in the course of the perio
the electromagnetic field be much smaller than the dista
to the nucleus:

2p

v

p

M
!r min

or, to put it differently,

2p

v

p3r B

\2M

1

A11p2r B
2 l 2/\221

!1. ~37!

It can be demonstrated that forl @1 andprB /\!1 the
conditions~36! and ~37! can be met simultaneously over
wide range of values of the parametersv andE0 .

4. CONCLUSION

We have studied the above-threshold ionization of
atom by a circularly polarized electromagnetic field a
found that the use of quasiclassical wave functions~5! and
~10! of an electron in the field of the wave has certain me
in comparison to the use of the Volkov wave function or t
functions used by Shakeshaft and Potvliege10 and Basile
et al.11 By allowing the Coulomb interaction in~5! and~10!,
we were able to arrive at two important results: first, t
finite threshold value of the ionization probability~32! and,
second, the appropriate selection rules~26! for the magnetic
quantum number. As noted earlier the Keldysh–Faisal–R
approximation does not lead to such results. The violation
the first condition in this approximation is obvious@see Eq.
~35!#, while the violation of the selection rules can be ma
clearer if in the expression for the transition amplitude

Ai f ;E
2`

`

dtE dr expH 2
i

\ Fp•r2
1

2M

3E
2`

t

dtS p2
e

c
A~t! D 2G J expH 2

r

r B
J

we expand the plane wave in a series in spherical functio26

and in evaluating the integral allow for the orthogonality
these functions.
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The problem of the quantum-statistical properties of resonance radiation selectively reflected
from unexcited media in the case where the photons are mutually correlated in the incident
radiation flux is posed and solved. Allowance for mutual photon correlation precludes, in
principle, solving the problem by perturbation methods. A quantum analog of the optical theorem
of absorption, which causes an infinite subsequence of Feynman diagrams to vanish, is
pointed out. The frequency-angle distribution of the photons in the reflected flux is predicted.
The Fresnel formulas are reconstructed for the averaged reflection characteristics. The
limits for their applicability in describing the reflection of mutually correlated photons are given.
A suppression effect is predicted for the reflection of radiation from a laser source. ©1999
American Institute of Physics.@S1063-7761~99!00609-5#
it
th
b
h

ce
n

th
ac
ive
re
9
to
v
e

io
r-
a

e
n
is
d
on
o

io
p
ie
r
l
rs
d
re
d

of
I

bil-
se.
hat

mu-
to

ow.
ns-
ing

on
e

y

eld
av-

ted
ents.
of
atic

he
rm

nt
1. INTRODUCTION

The resonant interaction of an electromagnetic field w
matter is classified as a strong interaction in the sense
the optical effects caused by it preclude investigations
perturbative methods. The interest in such phenomena
traditionally been great and has become stronger in re
years as a result of the research on optical effects in de
media1,2 and on the interaction of laser radiation wi
matter.3–5 One of the manifestations of the resonant inter
tion of an electromagnetic field with matter is the select
reflection of light from an interface between a gas and f
space. This area of research has its own rich past. In 1
Wood6 experimentally discovered a change from diffuse
specular light scattering as the pressure of the reflecting
por was increased, providing food for thought to research
for a good half a century.7,8 In 1966 Koester9 experimentally
discovered the possibility of amplifying resonance radiat
when it is reflected from a medium with population inve
sion. That work produced a new flood of research, which w
summarized to some extent in a monograph by Bo�ko and
Petrov.10 It was still too early to speak about complete agre
ment between theory and experiment. However, just the
thorough investigation of the influence of stimulated em
sion processes on the reflection mechanism demonstrate11,12

the inapplicability of the semiclassical theory of radiati
based on an unquantized electromagnetic field. It turned
that consideration of the quantum properties of radiat
qualitatively alters the calculation results on a macrosco
level. This is ultimately caused by the correlation propert
of photons in the medium and the change in the numbe
photons as a result of the stimulated emission. It is natura
expect that something similar should occur in the reve
process, i.e., in the scattering of correlated photons un
conditions allowing their absorption. This means that cor
lated photons are not scattered independently in cold me
even if the interaction of light with each individual atom
the medium is considered in the linear approximation.
4351063-7761/99/89(9)/9/$15.00
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analogy to the effects described in Ref. 12, the inapplica
ity of perturbation theory should be expected in this ca
Why was such a phenomenon not discovered before, w
are its characteristic features, and how do the Fresnel for
las, which have no nonanalytic features with respect
charge, arise? Answers to these questions are given bel

We shall examine the resonant reflection of two tra
versely polarized photons which belong to a mode be
scattered with the wave vectork0 and the polarizationl0 and
can be described by the common wave functi
(âk0l0

1 )2u0&/A& from a semi-infinite medium. We shall us

âkl
1 (âkl) to denote the creation~annihilation! operator of a

photon in the state (k,l). We shall determine the probabilit
of finding one of both photons in the reflection mode (k,l).
We shall study the statistical properties of the reflected fi
in this elementary example, and we shall investigate the
eraged characteristics of the field.

2. PRELIMINARY ANALYSIS

Some qualitative features of the reflection of correla
photons can be discovered on the basis of general argum
We usew i to denote the eigenfunctions of the Hamiltonian
the scattering medium. We take into account the adiab
hypothesis. Let the medium be in the statew0 before the
interaction with radiation. The complete wave function of t
‘‘radiation1medium’’ system can be represented in the fo

C5w0f 01(
iÞ0

w i f i .

To describe the radiation field in the medium it is sufficie
to know its density matrix:

r5TraCC* 5r (c)1r (n),

r (c)5 f 0f 0* , r (n)5(
iÞ0

f i f i* . ~1!
© 1999 American Institute of Physics
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The operation Tra extends to the atomic system, and t
functionsf i depend on the arguments of the electromagn
field. The matrixr (c), which corresponds to the cohere
scattering channel, describes the scattering processes w
result in the return of medium atoms to the initial~including
the translational! state. The matrixr (n), which corresponds
to the incoherent scattering channel, describes the other
tering processes. The matrixr can be measured directly b
photon-counting methods.13 It permits the calculation of any
averaged characteristics of an electromagnetic wave.
Ân(r ) be the vector potential operator (\5c51):

Ân~r !5(
kl

ekn
l

A2kV
~ âkleik•r1âkl

1 e2 ik•r !,

whereekn
l are the polarization unit vectors,V5LxLyLz is the

normalization volume, which is assumed to be infinite in t
final result,V→`, andr is the observation coordinate. Th
mean value of the operatorÂn(r ) is found as

^Ân~r !&5Tr Ân~r !r.

The summation is carried out over the arguments of the e
tromagnetic field. In this example we demonstrate the c
venience of the pseudocoordinate representation,14 to which
we are taken by the operator

Û5exp~ i k̂r !, k̂5(
kl

kâkl
1 âkl .

In the pseudocoordinate representation the operatorÂn loses
its dependence onr , and the matrix

r~r !5ÛrÛ1

acquires such a dependence. Now we callr(r ) the electro-
magnetic field density matrix at the pointr . Its introduction
is convenient for solving boundary-value problems. In p
ticular, if the scattering medium occupies the half-spacz
.0, to investigate the reflected field it is sufficient to kno
r(r ) at z→2`. If there is a single photonâk0l0

1 u0& in the

incident mode, then14 for nm|3g r /g,1 the density matrix
r (c) describing the reflected photon (k,l) has the form

r (c)~r u1→1!
z→2`

5(
k

1

8k0z
4 ucklk0l0~k0!u2

3d~k,k!âkl
1 u0&^0uâkl , ~2!

where

cklk0l0~k0!5(
mm

Pmm* l~k!Pmm
l0 ~k0!

nm

k02vmm1 ig/2
,

g5gm1gm , |52p/k, k5$k0x ,k0y ,2k0z%.

Here we have used the two-level approximation for the
oms. In additionm labels the Zeeman sublevels of their e
cited state,m labels the sublevels of the unexcited state,vmm

is the frequency of the resonant transition, andnm is the
concentration of scattering atoms in themth Zeeman sub-
level. The Doppler effect is assumed to be negligibly sm
and gm and gm are the collisional widths of the unexcite
ic

ich

at-

et

e

c-
-

-

t-

l,

and excited states. It is assumed that their sum exceed
radiation widthg r of the excited state of the atom. Next,
the dipole approximation

Pmm
l ~k!5

e

m E cm* ~r!p̂ek
lcm~r!dr, p̂52 i¹,

wherecmm denotes the wave functions of the valence el
trons in the atoms. It is also assumed that each gas atom
one valence electron. The matrixr (c)(r u1→1) is normalized
so that atz→2` the trace Trr (c) gives the probability of
finding a photon in the reflection mode (k,l). The following
summation formula should be used to concretize~2!:

(
mm

Pmm
* l1~k1!Pmm

l2 ~k2!5
p~2 jm11!

vmm
g r~ek1

l1ek2

l2!. ~3!

Here j m is the orbital quantum number. Then

Tr r (c)~r u1→1!
z→2`

5
1

8k0z
4

3Up~2 jm11!

vmm
g r~ek0

l0ek
l!

nm~2 j m11!

k02vmm1 ig/2U
2

.

~4!

This formula is equivalent to the Fresnel formula written f
rarefied media. For the resonant frequencyk05vmm we find

Tr rc~r u1→1!
z→2`

}S nm|3
g r

g D 2

.

Now let the incident electromagnetic field consist of tw
photons which are in the same state (k0 ,l0) and are de-
scribed by a common wave function. What can we say ab
the distribution of the photons in the reflection mode (k,l)?
We are interested in reflection at the specular angle~selective
scattering!. We omit the diffuse scattering. We turn to th
representation~1! and examine the coherent scattering cha
nel. We assume that under the conditions of a linear inte
tion between the field and individual atoms, the simultane
scattering of two photons is mutually independent. A th
near-boundary layer of the scattering medium of thickn
;k0

21 takes part in the formation of the scattered field in t
coherent channel. Therefore, perturbation theory can be u
Taking into account the independent character of the sca
ing of the photons, for the probability of the scattering of tw
photons from the initial state into a two-photon final state
have

Tr r (c)~r u2→2!
z→2`

5UTr r (c)~r u1→1!
z→2` U2}S nm|3

g r

g D 4

. ~5!

The calculation ofr (c) is, of course, associated with the a
pearance of the termr (c)(r u2→1), which describes the se
lective scattering of only one of the two photons, while t
other photon continues to propagate in the original direct
of k0 . In the lowest order of perturbation theory this term
proportional to (nm|3g r /g)2, and at low values ofnm it
should be decisive and have a modulus exceeding~5!. This
does not occur in reality. In fact, a photon propagating in
direction of k0 must interact with the semi-infinite
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medium sooner or latter. It either replenishes the chan
r (c)(r u2→2) in the higher approximations or, if absorbe
destroys the original state of the medium and leads to
replacement of the coherent scattering channel by an in
herent channel. Thus, it is clear from physical arguments
this term should not be taken into account. Mathematica
this means that the coherent scattering channel has an in
subsequence of terms described by Feynman diagram
high approximations, whose sum with the term under disc
sion gives zero. We omit the detailed mathematical proo
this physically obvious analog of the absorption theorem15

Thus, the contribution to the coherent scattering channe
described only by formula~5!. Two conclusions follow from
the analysis performed. First, the study of the statistical pr
erties of the scattered radiation cannot be confined to
lower orders of perturbation theory even in situations wh
analysis in terms of ‘‘quantum means’’ allows perturbati
theory. Second, it follows from the analog of the absorpt
theorem that the fate of one of the photons has an effec
the fate of the other one. Thus, the scattering of the pho
cannot be represented in the form of mutually independ
processes.

The validity of both conclusions is reconfirmed by a
analysis of the incoherent scattering channel. In this chan
a process involving the absorption of one of the photons
the medium and the elastic scattering of the other photon
the reflection mode (k,l) should be considered in the lowe
order of perturbation theory. The probability of such a p
cess is proportional to

e2nmS nm|3
g r

g D 2

ud~k2k0!d~k02vmm!u2. ~6!

This obvious result has some important consequences. It
lows from it and from the relation~5! that the Poynting vec-
tor s of the reflected beam should be proportional toe6 in the
lowest order of perturbation theory. However, this cannot
so, because the semiclassical theory of radiation requ
compliance to ans}e4 law, according to the Heisenberg
Kramers equation.16 The way out of this predicament is in
dicated by the features of the incoherent scattering chan
When the reflection coefficient is small, i.e., whe
nm|3g r /g,1, the probability of the reflection of both pho
tons must be smaller than the probability of the reflection
one of them. This means that the main role in shaping
Poynting vector is played by the incoherent channel. In t
channel the power of the interaction constante can be low-
ered in comparison to the first perturbative term only if t
expansion coefficients are singular and the singularity gro
in the high approximations. This is also the case in real
We again arrive at the conclusion that the propagation of
photons is mutually dependent, and an infinite subseque
of Feynman diagrams must be summed.

Let us turn to the expression~6!. A reasonable meaning
cannot be ascribed to such a product of four Diracd func-
tions. The standard way to overcome this difficulty is to
terpret the combined process under investigation as two
dependent processes: absorption of one of the photons
scattering of the other one. The probability of each of
processes is proportional tod2. Such expressions can alread
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be interpreted as the probabilities of the processes per
time. A similar interpretation is possible, if expressions
the type ~6! appear in the final formula. However, if the
appear in an intermediate stage, an infinite number of te
must be taken into account in the higher approximations
perturbation theory, which ‘‘smear’’ thed functions. For this
reason, it is better to interpret the expression~6! as the scat-
tering probability of one of the photons under the conditi
of absorption of the other photon and to describe this con
tional probability by a single formula. Thed functions
‘‘smeared’’ by the summation of infinite subsequences
longer allow interpretation of the expression sought as
product of the probabilities of independent events. The
havior of the photons is mutually dependent. A techni
procedure, which meets the task, is described below. Acc
ing to the analysis performed, our confinement to the low
approximation with respect tonm|3g r /g in the final formu-
las allows confinement to investigations of the incoher
scattering channel alone.

3. G-OPERATOR APPROACH

It is convenient to use theG-operator approach11,12 to
calculate the density matrixr of a photon subsystem reso
nantly interacting with an atomic medium with correct a
lowance for the photon–photon correlators. Let us consid
quantum gas, and letč(r ,t) be its field operator in the
Heisenberg representation. Being interested in the ene
density of a gas or its flux, we construct a Green’s funct
which is bilinear with respect to the operators and co
pletely specifies these characteristics:

G~x,x8!52 i ^T̂č~x!č1~x8!&, x5$r ,t%. ~7!

If we are interested in fluctuations of the energy flux, t
expression~7! is inadequate. On the other hand, the functi
~7! specifies the particle concentration defined by the f
mula

n~x!5 iG~x,x8!, r→r 8, t8→t10.

Now, if we study the diffusion, we can easily find any m
ment of the distribution:

^rm&5
*rmG~x,x8!dr

*G~x,x8!dr
, r→r 8, t8→t10.

Thus, the Green’s function plays the role of the distributi
function of parameters which are arguments of the avera
field operatorsč and č1. Under second quantization th
arguments~the coordinates of the particles! of the wave
function c(r ,t) become arguments of the wave operato
č(r ,t). The use of quantum Green’s functions in the seco
quantization formalism makes it possible to calculate the d
tribution function~density matrix! of the particles as a func
tion of their coordinates. The transformation scheme is
follows:

c~r ,t !→č~r ,t !→ iG~x,x8!→n~x!. ~8!

The quantized electromagnetic field is described by the w
function F(N,t), where the vectorN5...,Nkl ,... is the set
of the occupation numbersNkl of the individual modes



s

d
e
’s

re
n

t.
n
fo
th
h
d

un
b

th
e
le
e

er
n-

nd

th
n

te
O
f
q
c

e
m

s
c-

I

h is

–
al
hat
g

rent

ec-
by

r,

e

m.
of
ers
.

ing
es.

f-

of
oc-
e

,’’

r-
and
la-

are
-
all

438 JETP 89 (3), September 1999 B. A. Veklenko and Yu. B. Sherkunov
(k,l). We are interested in the density matrixr, which de-
pends onN. In analogy to~8!, the calculation scheme take
the form

F~N,t !→F̌~N,t !→ i D~N,t,N8,t8!→r.

Thus, if we wish to knowr(N,t), we can formally proceed
in the following manner. The second-quantized system
scribed by the functionF(N,t) must be quantized onc
again. The operatorF̌(N,t) appears as a result. The Green
function D should be constructed in the formalism thus c
ated. Actually, the formalism we used, which is reminisce
of the ‘‘third’’ quantization of fields, is essentially differen
The ‘‘third’’ quantization that we used is a formal operatio
and is constructed using a specially selected unitary trans
mation of the dynamic equations, which does not deform
fundamental principles. We again refer to an analogy. T
quantum mechanics of a single particle can be constructe
the coordinate representation on the basis of the wave f
tion c(r ,t), or the second-quantization representation can
used. The relationship between them is unitary. In
second-quantization representation the Bose and Fermi fi
lead to coinciding results in the case of only one partic
This remark is significant for devising our formalism. Th
use of a unitary transformation allows us to abandon the t
‘‘third’’ quantization and to call the representation co
structed aG representation in analogy to the many-particleG
space of a statistical function. Thus, from the formal sta
point, the construction of theG representation from the
second-quantization representation actually imitates
method for constructing the second-quantization represe
tion from the configuration representation.18 For this reason,
any discord in theG representation would at once indica
similar discord in the second-quantization representation.
the other hand, all the investigative methods developed
quantum systems, such as Feynman diagrams, Dyson e
tions, spectral representations, dispersion relations, etc.,
be used in theG representation.

Let the second-quantized transverse electromagn
field interact quasiresonantly with a gas consisting of ato
with one valence electron. We write the Schro¨dinger equa-
tion of the system in the form

i
]C

]t
5ĤC, Ĥ5Ĥ01Ĥ8, Ĥ05Ĥph1Ĥa ,

Ĥph5(
kl

kâkl
1 âkl , Ĥa5(

ip
« i~p!b̂ip

1b̂ip ,

Ĥ852
e

m E ĉ1p̂Â~r !ĉdrdR1H̃,

ĉ~r ,R!5(
ip

c i~r2R!
eip•R

AV
b̂ip , « i~p!5« i1

p2

2M
.

Herec i(r2R) are the wave functions of electrons in atom
with an energy« i , r andR are the coordinates of the ele
tron and the remainder of the atom,p is the momentum of
the atom, andM is its mass. Also,H̃ denotes the Hamil-
tonian of the interaction of gas atoms with the reservoir.
e-

-
t

r-
e
e
in
c-
e
e
lds
.

m

-

e
ta-

n
or
ua-
an

tic
s

n

the absence of temperature degeneracy of the atoms, whic
implied, the annihilation~creation! operatorsb̂ip (b̂ip

1) of at-
oms in the state (i ,p) can be assumed to belong to the Bose
Einstein field. We omit taking into account the longitudin
component of the electromagnetic field, understanding t
in media of elevated density it reveals itself by complicatin
the effects predicted here without eliminating them.

To calculater(N,t) we use theG-operator approach,
which automatically separates the coherent and incohe
scattering channels. We construct theG representation in the
following manner. Any state of a free second-quantized el
tromagnetic field with a definite energy can be described
the wave function

F0~Nuz!5)
kl

w~Nkluzkl!, ~9!

where w is the wave function of the quantum oscillato
which depends on the argumentszkl . The physical meaning
of these arguments is not important to us at this point. W
construct aG space with the creation vector&G

0 ~Refs. 11 and
12! and stipulate that this vector is a mathematical vacuu
Let Â(N) be the annihilation operator of an ensemble
noninteracting photons with the set of occupation numb
N, and let Â1(N)&G

0 be the wave function of such a state
These wave functions form a complete basis for expand
any wave function describing physically permissible stat
Between the basis vectorsÂ1(N)&G

0 thus introduced and the
functions~9! there is a unitary transformation, which is e
fected by the operatorÔ:11,12

Ô5F̂1&G
0 , F̂~z!5(

N
F0~Nuz!Â~N!, CG5ÔC.

If it is assumed that the operatorsÂ(N) andÂ1(N) obey
the commutation relations for a Bose–Einstein field

@Â~N!,Â1~N8!#5d~N,N8!, ~10!

it is clear that theG space is isomorphous to the space
occupation numbers of the Bose particles. However, the
cupation numbers in theG space do not exceed unity, sinc
no physical state corresponds to the vector (Â1(N))n&G

0

whenn.1. It can be stated that there is one ‘‘superparticle
for which the basisÂ1(N)&G

0 is sufficient for describing its
kinetics, in theG space. However, the behavior of one pa
ticle can be described with equal success using Bose
Fermi field operators. This means that anticommutation re
tions can be used forÂ and Â1. The result of the calcula-
tions remains unchanged. Other commutation relations
also permissible for them.19 Hence it is seen that these op
erators have no physical meaning. For simplicity, we sh
use the commutation relation~10! for them. In theG repre-
sentation the Schro¨dinger equation takes the form12

i
]CG

]t
5F Ĥa1(

N
«~N!Â1~N!Â~N!

2
e

m E F̂1ĉ1p̂Â~r !ĉF̂drdRdzGCG1H̃CG ,
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where

«~N!5(
kl

kNkl , dz5)
kl

dzkl .

The mean value of any photon operatorK̂ can be calculated
using the formula12

^K̂&5Tr K̂r5E K̂~z8,z!r~z,z8!dz dz8, ~11!

where

r~z,z8!5^F̂1~z8!F̂~z!&G , &G5CG . ~12!

The expression~11! is valid for any operatorK̂. This means
that the expression~12! is the density matrix soughtr for the
photonic subsystem interacting with an atomic gas. To c
culater we utilize the kinetic Green’s function approach20 in
the G representation. We introduce

D l l 8~z,t,z8,t8!52 i ^T̂cF̃ l~z,t !F̃ l 8
1

~z8,t8!Ŝc&0G , ~13!

whereF̃ is a field operator in the interaction representatio

F̃~z,t !5(
N

F0~Nuz!Â~N!exp@2 i«~N!t#.

The averaging in~13! is carried out over the initial state o
the atomic system and the field of the photons before
interaction between them occurs. The labell describes the
temporal contour, which originates (l 51) at t→2`, ex-
tends tot→`, and returns back (l 52) to t→2`, andT̂c is
the chronological operator on that contour. The operatorŜc

has the form

Ŝc5T̂c expH(
l

~21! l 11
ie

m

3E F̃ l
1c̃ l

1p̂Â~r !c̃ lF̃ ldz dr dR dtJ ,

c̃5(
ip

c i~r2R!
b̂ip

AV
exp@ ip•R2 i« i~p!t#.

We have omitted the operatorH̃, whose influence is mani
fested through the mass operators by broadening of the
ergy levels of the atoms. The standard technique for go
over to a normal product of field operators is used to cal
late ~13!. However, since11 (Â(N))n&G50 in physical states
whenn.1, all the normal products, except the simplest, g
a zero result. This is the source of the main advantage of
G-operator formalism. The functionsD l l 8 have the following
structure:11

D l l 85D l l 82 ir l l 8 .

Thus,r5r125 i D12 at t5t8. For D l l 8 andr l l 8 we have the
following system of equations:

r125r12
(c)1r12

(n) , r12
(c)5~11D rP̂ r !r12

0 ~11P̂ aDa!,
~14!

r12
(n)52D rP̂ 12

(n)Da , D r5D r
01D r

0
P̂ rD r .
l-

:

e

n-
g
-

e
he

Here P̂ l l 8 and P̂ l l 8
(n) are the polarization operators in theG

formalism,

D r5D11, Da52D225D r
1 ,

P̂ r5P̂ 11, P̂ a5P̂ 225P̂ r
1 ,

andr0 is the density matrix of the free field of the photon
In the energy representation

D r
05~E2Ĥph1 i0!21.

The simple polarization operators

P̂ l 1l 2
52S e

mD 2

(
n1n2

E p̂n1Ân1Gl 1l 2
0 ~X1 ,X2!D l 1l 2

0 ~21! l 211

3 p̂n2Ân2Gl 2l 1
0 ~X2 ,X1!dr1dr2dR1dR2 ,

X5$r ,R,t%,
~15!

P̂ l 1l 2
(n) 52S e

mD 2

(
n1n2

E p̂n1Ân1Gl 1l 2
0 ~X1 ,X2!

3r l 1l 2
0 ~21! l 211p̂n2Ân2Gl 2l 1

0 ~X2 ,X1!dr1dr2dR1dR2

are represented by the Feynman graphs shown in Fig. 1
this figure the solid lines depict the functionsGl 1l 2

0 , the

dashed line representsD l 1l 2
0 , and the wavy line correspond

to r l 1l 2
0 . Each vertex is associated with a multiplierp̂nÂn.

We borrow the explicit form of the Green’s function of th
atomic system from Ref. 14.

4. INCOHERENT SCATTERING CHANNEL

We are interested in the probability of finding one ph
ton in the reflection mode (k,l), if the occupation number
of photons in the mode (k0 ,l0) is equal to two. In the lowes
order of perturbation theory the corresponding mat
r (n)(r u2→1) is associated with the sum of Feynman d
grams depicted in Fig. 2. We demonstrate the calculation
these diagrams in the case of the first of them. The analyt
expression corresponding to it follows from iterations of t
system of equations~14!:

r12
(n)~r u2→1!52D r

0
P̂ rD r

0
P̂ 12

(n)Da
0
P̂ aDa

0 . ~16!

FIG. 1. Schematic representation of the polarization operatorsP̂ l 1l 2
and

P̂ l 1l 2
(n) corresponding to formulas~15!. Solid lines—the atomic functions

Gl 1l 2
, dashed line—the propagatorD l 1l 2

0 , wavy line—the matrixr l 1l 2
0 .
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According to the rules adopted, the left-hand functionD r
0 in

~16! is represented in the first diagram in Fig. 2 by the le
hand dashed line. The next structure in this diagram i
representation of the operatorP̂ r , which is consistent with
Fig. 1. It is followed by a dashed line corresponding toD r

0

and then by the representation of the operatorP̂ 12
(n) . The

right-hand part of the graph is constructed in a symmetr
manner in accordance with the analytical expression~16!.
Formulas~15! are used forP̂ r and P̂ 12

(n) . If the space is
homogeneous and the scattering process is stationary, in
energy representation11 we have

P̂ r
`~E!5 (

k1l1k2l2

âk1l1

1 Cr
k1l1k2l2~E2Ĥph!âk2l2

,

Cr
k1l1k2l2~E!5cr

k1l1k2l2~E!d~k1 ,k2!, ~17!

cr
k1l1k2l2~E!5(

mm

Pmm
* l1~k1!Pmm

l2 ~k2!

2kV

Nm

E2vmm1 ig/2
.

FIG. 2. Diagrams of incoherent scattering processes supplying one ph
to the reflection mode when there are two photons in the incident mod
-
a

l

the

As before, we neglect the Doppler effect, andNm is the oc-
cupation number of themth sublevel of the atoms. Using th
summation rule~3!, for Im P̂ r

` we obtain

Im P̂ r
`~E!âklu0&52

1

2
gph~E!âkl

1 u0&,

gph~E!5
p2~2 j m11!

vmm
2 g rnm~2 j m11!dg~E2vmm!, ~18!

dg~E!52F S E1
ig

2 D 21

2S E2
ig

2 D 21G 1

2p i
.

For P̂ 12
(n) from ~15! we obtain

P̂ 12
(n)~E!5 (

k1l1k2l2

âk1l1
E C12

k1l1k2l2~E1!

3r12~E2E1!
dE1

2p
âk2l2

1 .

If the medium is spatially homogeneous, then

C12
k1l1k2l2~E!5d~k1 ,k2!c12

k1l1k2l2~E!,

~19!

c12
k1l1k2l2~E!522p(

mm

Pmm
l1 ~k1!Pmm

* l2~k2!

2kV

3Nmdg~E1«m2«m!.

If the scattering medium occupies the half-spacez.0, then
in the Wigner approximation the following replacement mu
be made in formulas~16! and ~18!:11

d~k1 ,k2!→d~k1x ,k2x!d~k1y ,k2y!d1~k1z2k2z!,

where

d1~q!5E
0

Lz/2

e2 iqz
dz

Lz
.

Taking into account the difference dependence ofr12
(n) on t

and t8 under stationary conditions, after Fourier transform
tion, in agreement with formula~16!, we have

r12
(n)~Eu2→1!52~E2Ĥph1 i0!21

3 (
k1l1k2l2

âk1l1

1 Cr
k1l1k2l2

3~E2Ĥph!âk2l2
~E2Ĥph1 i0!21

3 (
k3l3k4l4

âk3l3
C12

k3l3k4l4r12
0 âk4l4

1

3~E2Ĥph2 i0!21 (
k5l5k6l6

âk5l5

1 Ca
k5l5k6l6

3~E2Ĥph!âk6l6
~E2Ĥph2 i0!21. ~20!

In the pseudocoordinate representation the expres
~20! takes the form

on
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r12
(n)~r ,Eu2→1!52 (

k1l1k2l2

exp~ ik1•r !

E2k11 i0

Cr
k1l1k0l0~E!

E2k01 i0

3
C12

k0l0k0l0~E22k0!

E2k02 i0
Ca

k0l0k2l2~E!

3
exp~2 ik2•r !

E2k22 i0
âk1l1

1 u0&^0uâk2l2
.

In this case

r12
0 ~E!5p~âk0l0

1 !2u0&^0u~ âk0l0
!2d~E22k0!.

Since we are interested only in the reflected beam, we sz
→2`. These circumstances permit the use of
asymptotic formula14

1

2k

exp~ ikzz!

E2k1 i0
——→
z→2`

iL z

exp~ ikzz!

2kz

3d~kz ,2AE22kx
22ky

2! ——→
V→`

2p i
exp~ ikzz!

2kz

3d~kz1AE22kx
22ky

2!. ~21!

Hered(k,k8) is a Kronecker delta, andd(k2k8) is a Dirac
delta function. The structure of formula~21! ensures correc
results following the subsequent limiting transitionV→`

and performance of the operation TrK̂r12 with any operator
K̂. The product of Kronecker deltas

d~k1z ,2AE22k1x
2 2k1y

2 !d~k2z ,2AE22k2x
2 2k2y

2 !

can be rewritten by virtue of the equalitiesk1x5k2x and
k1y5k2y in the form

d~k1z ,k2z!d~k1z ,2AE22k1x
2 2k1y

2 !.

Bearing in mind the subsequent limiting transitionV→`,
we write, in agreement with~21!,

d~k1z ,2AE22k1x
2 2k1y

2 !→ 2p

Lz

3d~k1z1AE22k1x
2 2k1y

2 !.

Now we are in a position to carry out the integratio
over E after performing the replacement of variables

E22k1x
2 2k1y

2 5t2.

We then have

r12
(n)~r u2→1!

z→2`

5E r12
(n)~r ,Eu2→1!

z→2`

dE

2p

5Lz (
k1l1k2l2

k1

k1z

Cr
k1l1k0l0~k1!

k12k01 i0

3C12
k0l0k0l0~k122k0!

3
Ca

k0l0k2l2~k1!

k12k02 i0
âk1l1

1 u0&^0uâk1l2
. ~22!
t
e

The expression~22! has a nonintegrable pole atk15k0 . This
pole is the feature which was mentioned in Sec. 2.

The appearance of this singularity is caused by
propagatorsD r ,a

0 in ~20!, which describe the evolution of a
photon in the medium. The singularity vanishes, if the co
plete propagators, which take into account the interaction
the photon with the medium, are used instead ofD r ,a

0 . As an
acceptable approximation, we replaceD r ,a

0 by the propaga-
tors of a photon in an infinite mediumD r ,a

` ~Ref. 12!:

D r
0~E!→D r

`~E!,

D r
`~E!âkl

1 u0&5S E2k1 i
gph

2 D âkl
1 u0&;

Da
0~E!→Da

`~E!,

Da
`~E!âkl

1 u0&5S E2k2 i
gph

2 D âkl
1 u0&.

This replacement leads to the following replacement in~22!
as a result:

u~k12k01 i0!21u2→US k12k01 i
gph~k1!

2 D 21U2

.

Then

k1k0Cr
k1l1k0l0~k1!Ca

k0l0k1l1~k1!

5
sin2@~k1z2k0z!Lz/4#

~k1z2k0z!
2Lz

2 d~k1x ,k0x!d~k1y ,k0y!

3d~k2x ,k0x!d~k2y ,k0y!uck1l1k0l0~k0!u2.

Since we are interested in the diagonal elements of
density matrix, we setl15l2 . Then formula~22! can be
rewritten forg@gph in the form (Lz→`)

r12
(n)~r u2→1!

z→2`

5
1

Lz
(
k1l1

p2~2 j m11!~2 j m11!k1z

vmm
2 k1

g rnm

3dg~vmm2k0!
d~k1x ,k0x!d~k1y ,k0y!

~k12k0!21gph
2 ~k0!/4

3âk1l1

1 u0&^0uâk1l1
Tr r12

(c)~r u1→1!. ~23!

Because of the presence ofg andgph in the denominators in
~23!, the equalitiesk1z52k0z andk15k0 do not hold in the
reflected flux. Thus, we have a sharp frequency-angle di
bution in the reflected flux with a half-width proportional t

Dq}SAcosq1
gph~k0!

k0
2cosq D sinq,

where q is the angle of incidence of the beam. A simil
frequency-angle distribution was previously discovered12 in
an investigation of the reflection of a one-photon state from
thermally excited medium. The semiclassical theory of rad
tion does not predict such a distribution. This distributi
likewise does not appear in calculations based on the Gre
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function approach,17 which provides for a discontinuity in
the photon–photon correlators. Thus, the presence o
frequency-angle distribution in the direction of specular
flection is a characteristic consequence of the mutual co
lation of photons in the reflection process.

There should be interest in the integral probability of t
reflection of one photon of polarizationl, i.e.,

Tr r12
(n)~r u2→1!

z→2`

.

Here we have omitted the summation overl.
After the sums in~23! vanish because of the presence

the Kronecker deltas, the summation overk1z remains. As
Lz→`, it is replaced by integration, and forg@gph we have

Tr r12
(n)~r u2→1!

Tr r12
(c)~r u1→1!

52
p~2 j m11!

2vmm
2

3g rnmdg~vmm2k0!~2 j m11!

3E
2`

0 k1z

~k12k0!21gph
2 ~k0!/4

dk1z

k1
. ~24!

In the latter integral the vicinity ofk1z52k0z is signifi-
cant. For this reason we use the expansion

k15k02
k0z

k0
~k1z1k0z!

and replace the upper integration limit by infinity. With co
sideration of~18! the expression~24! is equal to unity. Now
it should be recalled that we calculated the contribution
only the first diagram depicted in Fig. 2. Consideration of
other diagrams leads to the following replacement in~23!:

F ~k12k0!21
gph

2

4 G21

→4p2dgph

2 ~k12k0!.

In response to this replacement, the value of the ratio~24!
doubles. As a result, we have

Tr r12
(n)~r u2→1!

Tr r12
(c)~r u1→1!

52, z→2`. ~25!

The two corresponds to the number of photons in the in
dent mode. Since the value ofr (c)(r u1→1) atz→2` speci-
fies the probability of the reflection of a photon when there
one photon in the original mode (k0 ,l0), the integral result
can be interpreted as a consequence of the independent
tering of the photons. The correlation properties of the p
tons are moderated in the integral characteristic~25!. For-
mula ~25! is formally reminiscent of formula~28! from Ref.
12. In Ref. 12 the medium was assumed to be excited,
the scattering processes were, in a certain sense, the rev
of the processes studied here. The difference by a factor
is caused by the fact that in Ref. 12 the expression for
operatorP̂ 12

(n) in a homogeneous space was used as an
proximation to calculate the parameters of the radiation
flected from the excited medium. Consideration of the fin
dimensions of the medium in this operator alters the resul
a factor of 2.
a
-
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In agreement with formulas~5! and~25! at z→2`, the
integral reflection coefficientR for nm|3g r /g,1 equals

R5Tr r12
(n)~r u2→1!/Tr~ âk0l0

1 âk0l0
r0!

5Tr r (c)~r u1→1!, z→2`.

Thus, we return to formula~4!, i.e., to the classical Fresne
formula, which is analytically dependent on the interacti
constant of the field with matter ase→0. Only in calculating
such an integral characteristic asR can the photons be con
sidered mutually independent and can the concept of the
fractive index of the medium, which is what specifies t
Fresnel formulas, be used. We recall that before integra
over the angleq, we had the dependence~23!, which is not
analytic with respect toe, for specifying the frequency-angl
distribution of the photons. The refractive index is insuf
cient for describing such a frequency-angle distribution.

The calculation result is different, ifg!gph. This con-
dition can easily be realized in an experiment. Instead of
~25!, whenk05vmm , we have the following relation:

Tr r12
(n)~r u2→1!

Tr r12
(c)~r u1→1!

}
g

gph~vmm!
, z→2`. ~26!

Under these conditions the Fresnel formulas are violated,
reflection is suppressed. In other words, consideration of
mutual correlation of photons forg!gph leads to inapplica-
bility of the semiclassical theory of radiation for calculatin
the reflection of resonance radiation even from unexci
media as long as the photons are mutually correlated in
incident flux. In this case the reflection coefficientR begins
to depend on the statistical properties of the incident rad
tion even when the interaction of light with the individu
atoms of the medium is linear.

The suppression of the reflection of mutually correlat
photons is subject to experimental testing. The quant
structure of the electromagnetic flux in free space can
fact, be different. While the photons in the radiation flu
from a laser are mutually correlated for the most part,
fraction of such photons in a flux of black-body radiation
considerably smaller. Thus, in accordance with formula~26!
we should expect a decrease in the reflection coefficienR
when a thermal source of a incident flux is replaced by
laser source, which can be detected by comparing the cri
concentrations of atoms that determined the mutual swi
ing between the diffuse and specular types of reflection
Wood’s experiment6 when thermal and laser sources of inc
dent radiation are employed.
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We develop a method for calculating diamagnetic susceptibilities based on higher-order
perturbation theory for the wave function and energy of the excited states of the hydrogen atom
with degeneracy of arbitrary multiplicity. We derive analytical expressions for third-order
matrix elements in the spherical statesunlm& with fixed principal quantum numbern and magnetic
quantum numberm. The formulas for the susceptibilities of doubly degenerate levels are
represented in the form of radical-fractional relationships containing polynomials in the principal
quantum number. We establish the existence of a monotonic interdependence between the
absolute values of susceptibilities of the first three orders. We also present the results of numerical
calculations for the states withn<6 andm<3 mixed by the field. Finally, for Rydberg
states with largen and smallm we detect the existence of a discontinuity in the interdependence
of the susceptibilities at the boundary between the doublet and equidistant parts of the
spectrum of diamagnetic sublevels with opposite parities. ©1999 American Institute of Physics.
@S1063-7761~99!00709-X#
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1. INTRODUCTION

The study of the interaction between atoms and elec
magnetic fields is an important avenue of research in ato
physics. The central problem here is the calculation of
Stark and Zeeman effects in the simplest quantum sys
the hydrogen atom. The latest achievements in solving
problems are reflected in review articles and monogra
~see, e.g., Refs. 1–3!. Nevertheless, there are still man
problems to be solved. One such problem is the calcula
of corrections to the energy of an atom in a magnetic field
higher-order perturbation theory. In contrast to the Stark
fect, where all calculations are conveniently done in a pa
bolic system of coordinates and where the analytical exp
sions for the higher-order corrections in the form
polynomials in the parabolic quantum numbers of a le
were derived more than 20 years ago,4 so far the results tha
have been obtained for the Zeeman effect are limited to
first- and second-order perturbations in the diamagn
interaction5 and to numerical calculations of higher-ord
corrections6,7 or of the exact energy values8,9 only for spe-
cific levels~the ground level and two to three excited level!.
The real reason for such a situation is the fact that the c
plete set of constants of motion for an atom in an elec
field can be represented by parabolic quantum numb
which are also constants of motion for a free atom, while
a magnetic field the set of constants of motion can be fo
only approximately, to second order in the diamagne
interaction.10 Hence calculations of the third- and highe
order corrections for multiply degenerate excited states
hydrogen are fraught with substantial difficulties.

Thus, most of the data on the interaction of an atom a
a magnetic field exists in the literature in the form of tab
of numerical values of the energies of the hydrogenlike l
els in fields with a fixed strength8,9,11 and cannot be used a
4441063-7761/99/89(9)/10/$15.00
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such field strengths for other states of atoms or for the sa
levels but at different field strengths. In view of this,
method that would enable obtaining a closed system of a
lytical expressions for calculating in a fairly simple mann
the shift and splitting of the atomic levels in situations inte
esting from the practical viewpoint would play a major rol

The special interest in obtaining general formulas
electromagnetic susceptibilities has lately emerged in c
nection of studies of long-lived highly excited atoms in R
dberg states. The enormous number of such states and
unlimited set of external fields that can act on them make
impossible to compile tables that would be complete eno
to find the energies of these levels and the correspond
frequencies of the spectral lines. Rydberg states with h
angular momental are almost the same for all atoms, wi
the result that the formulas derived for hydrogen can be
plied to many-electron atoms in highly excited states w
magnetic quantum numbersm.3.

In a broad range of magnetic-field strengths encounte
in practice, the theory of perturbations in the atom–field
teraction proves to be sufficient for calculating the shift
the energy of bound levels~Rydberg levels included!. An
analysis of the nonlinear Zeeman effect shows that
perturbation-theory series are asymptotic, in which the co
ficients, the diamagnetic susceptibilities, alternate in sign
depend strongly on the structure of the unperturbed st
Knowing such susceptibilities makes it possible not only
numerically calculate the energy values but also to determ
the limits and errors of such calculations for a fixed value
the field strength. Because the signs of the asymptotic se
alternate, the coefficients of the series enable determining
upper and lower limits of the interval inside which the exa
value of the energy of the atom in the field lies. The larg
the number of the coefficients of the series known, the clo
the upper and lower limits are to each other and the m
© 1999 American Institute of Physics
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accurate is the procedure of finding the energy
perturbation-theory techniques. Thus, the importance of
culating higher-order corrections in the perturbation- the
setting is related to the possibility of using these correcti
not only to estimate the shift and splitting of the atom
levels but also to monitor the accuracy of other methods
determining the Zeeman energy of atoms.

Substantial progress in calculating the coefficients
perturbation-theory series was achieved by Va�nberget al.,7

who calculated the first 80 diamagnetic susceptibilities
the lower levels of hydrogen~with the principal quantum
numbern<3!. They used these susceptibilities to build Pa´
approximants, which enabled them to sum the series for
diamagnetic energy in a range of magnetic-field strengths
to the atomic. However, the fact that their results cannot
applied to higher levels~and this is especially true of Ryd
berg states! and the significant technical difficulties in usin
their method for high states only emphasize the need fo
method of obtaining general formulas for higher-order s
ceptibilities in the form of functions of the principal an
magnetic quantum numbers.

In the present paper we develop a method for calcula
higher-order susceptibilities. The method is based on the
cessive solution of a system of equations for the wave fu
tion and energy of a degenerate state in the correspon
perturbation-theory orders~Sec. 2!. In Sec. 3 we derive ana
lytical expressions for the matrix elements of t
diamagnetic-interaction operator in the form of polynomi
in the principal quantum numbern, the orbital quantum
numberl , and the magnetic quantum numberm of a degen-
erate hydrogenlike stateunlm&. The expressions are used
calculate, both analytically and numerically, the third-ord
magnetic susceptibilityxnmpl

(3) . The parameterl labels the
Zeeman states that arise as a result of the mixing, by
diamagnetic interaction, of states with different angular m
mental 5m1p, m1p12...,l max and conserve only the mag
netic quantum numberm and the parityP5(21)m1p; here
l max5n22 ~or l max5n21! if the parities ofl and n are the
same~or opposite!. For the four lowest components in the s
of Zeeman states with a fixedm ~nondegenerate states!, more
precisely,n5m11 of parity P5(21)m, n5m13 of parity
P5(21)m11, andn5m12 of both parities, the susceptibi
ity is determined only by the diagonal matrix element~the
corresponding expressions forxnlm

(3) can be found in Ref. 12!.
In Sec. 4 we give the analytical expressions for thi

order diamagnetic susceptibilities and for the eight com
nents that follow on the energy scale withn5m13 and
P5(21)m, n5m14 and P561, and n5m15 and
P5(21)m11, which are doubly degenerate~in the diamag-
netic interaction! states with fixedn, m, andP. The calcu-
lation of susceptibilities of states whose degeneracy mu
plicity is three or larger is discussed in Sec. 5. The numer
data obtained for states with largen and smallm exhibit a
discontinuity in the interdependence of the susceptibiliti
which develops at the boundary between the doublet
split diamagnetic states of opposite parities, and a differe
in the relative rates of their monotonic increase in the t
characteristic parts of the diamagnetic spectra.
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2. PERTURBATION THEORY FOR THE DEGENERATE
LEVELS OF HYDROGEN IN A MAGNETIC FIELD

The main difficulty in calculating higher-order correc
tions to the energy of hydrogenlike atoms stems from
n2-fold degeneracy of a state with a given principal quant
numbern. The interaction between the atomic moment an
magnetic field splits each state into sublevels with fixed m
netic quantum numbersm. The magnetic quantum numbe
and the parityP5(21)m1p ~p50 or 1! are constants of
motion in the magnetic field. Hence the operator of the m
netodipole interaction1! Vm52m–B, wherem52( l12s)/2
is the magnetic moment~s is the spin moment of the elec
tron!, can be incorporated into the unperturbed Hamiltoni
with the result that we can limit ourselves to the subspace
states with fixedn andm and consider only the operator o
the diamagnetic interaction

V~r !5
~B3r !2

8
5

B2

12
r 2@12C20~u,w!# ~1!

as the perturbation. HereC20(u,w)5A4p/5Y20(u,w) is a
modified spherical function.

The wave function of the a degenerate state of the a
in the field can be written13

cnmp~r !5 (
l 5m1p

l max

alwnlm~r !

2GE8 ~r ,r 8!V~r 8!ucnpm~r 8!&, ~2!

where summation is over all stateswnlm of the same parity
from the givennm-shell, and

GE8 ~r ,r 8!5GE~r ,r 8!2 (
l 5m1p

l max wnlm~r !wnlm* ~r 8!

En2E
~3!

is the reduced Green’s function. The total Green’s funct
GE(r ,r 8) is the solution of a Schro¨dinger equation with a
delta-function inhomogeneity,

@Ĥ~r !2E#GE~r ,r 8!5d~r2r 8!, ~4!

and can be written as a spectral expansion over the comp
set of eigenfunctions of the unperturbed atom~the continu-
ous spectrum included!:

GE~r ,r 8!5(
nlm

wnlm~r !wnlm* ~r 8!

En2E
. ~5!

Thus, the first term on the right-hand side of Eq.~2!,
which is a linear combination of all states of a degener
base with givennmp, is orthogonal to the second term
which allows for the contribution of states from subshe
with other principal quantum numbersn8Þn. By iteratings
we can represent the wave function~2! in the form of a
Brillouin–Wigner series,

cnmp~r !5 (
l 5m1p

l max

al (
s50

`

@2GE8 ~r ,r 8!V~r 8!#suwnlm~r 8!&,

~6!

where the Green’s function depends on the exact energyE.
Substituting this series into the Schro¨dinger equation and
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projecting the result on the states of the unperturbed sph
cal base with fixed principal (n) and magnetic (m) quantum
numbers, we arrive at a system of algebraic equations for
coefficientsal of the linear combination:

~En2E!al1 (
l 85m1p

l max

al 8^wnlm~r !uŴ~r ,r 8!uwnl8m~r 8!&50,

l 5m1p,...,l max, ~7!

where

Ŵ~r ,r 8!~E!5V~r !(
s50

`

@2GE8 ~r ,r 8!V~r 8!#s

5V~r !@11GE8 ~r ,r 8!V~r 8!#21 ~8!

is an integral operator of the atom–field interaction that
corporates all perturbation-theory orders inV(r ). To obtain
the Rayleigh–Schro¨dinger series for the energy, we mu
also expand the Green’s function in~6! in a power series in
B2 by using the relationship13

GE8 ~r ,r 8!5 (
N50

`

@GEn
8 ~r ,r 8!#N11~E2En!N. ~9!

By expanding in this manner the operator~8! in powers of
V(r ), we can find the corresponding expansion for the m
trix elementWll 8 of the system of linear equations~7!:

Wll 85^wnlm~r !uŴ~r ,r 8!uwnl8m~r 8!&.

Further calculations of the energy can be done in two way14

~1! by expanding in a powers of the parameterB2 the
determinant of the secular equation for the system~7!,

D~E!5detia l l 8~E!i50, ~10!

whose elementsa l l 8(E)5(En2E)d l l 81Wll 8 are represented
by the series

DE5E2En52 (
N51

` xnm
(N)

~2N!!
B2N,

Wll 852 (
N51

` wll 8
(N)

~2N!!
B2N, ~11!

wherexnm
(N) andwll 8

(N) are the diamagnetic susceptibility15 and
the diamagnetic matrix element of theNth order that are
independent of the field strengthB; and

~2! by expanding~together with the energy and the m
trix element! the coefficients of the linear combination in th
system of equations~7! in a power series,

al5 (
N50

`

al
(N)B2N, ~12!

and by solving the resulting equations for the corrections
the coefficients in each order ofB2, which are then used to
determine the energy.

We will employ the second approach, which proves
be easier in practical applications, since the volume of c
culations in this approach is proportional to the number
the matrix elements~11!, i.e., K2, irrespective of the
ri-

he

-

-

o

l-
f

perturbation-theory order, while the theory of perturbatio
for matrices, which is used in the first approach, require
volume of calculations proportional to the square of th
number, i.e.,K4, in the second order, to the cube of th
number, i.e.,K6, in the third order, etc., whereK5( l max

2m2p)/211 is the number of dimensions of the state spa
in which the eigenvalue of the operator~8! is sought. Fur-
thermore, the approach in which the diamagnetic susce
bilities and the expansion coefficients in~12! are found suc-
cessively also proves to be useful in calculations of
magnetic-field dependent corrections not only for the ene
but also for the wave functions. Here the first-order susc
tibility xl

(1) and the zeroth-order coefficientsal
(0)(l) are the

eigenvalues and eigenvectors of the matrixwll 8
(1) . The dis-

crete parameterl51,2,...,K, which we call the diamagnetic
quantum number, labels the states of the atom in the fi
obtained as a result of mixing and rearrangement of theKs of
the degenerate states of a free atom. The very fact that
quantities in the system of equations~7! can be represente
by the series~11! and ~12! makes it possible to remove th
factor B2 from ~7! in any orderN.

The quadratic diamagnetic susceptibilityxl
(2) appears in

the system of equations~7! in the second order inB2. Sub-
stituting~11! and~12! in this system, we arrive at a system
equations for the coefficientsal

(1) that depends on the eigen
value xl

(1) and the corresponding eigenvector composed
the coefficientsal 8

(0)(l) ~both the eigenvalue and the eige
vector was found in the previous stage!:

(
l 85m1p

l max

al 8
(1)

~l!~wll 8
(1)

2xl
(1)d l l 8!

5 (
l 85m1p

l max

al 8
(0)

~l!~xl
(2)d l l 82wll 8

(2)
!. ~13!

All the quantities on the right-hand side of~13! are known
except for the susceptibilityxl

(2) , which can easily be found
by multiplying ~13! into al

(0)* (l). By summing the resulting
equations over alll we annihilate the left-hand side, sinc
xl

(1) is an eigenvalue corresponding to the eigenvec
$al

(0)(l)% of the matrixwll 8
(1) . Allowing for the completeness

condition (ual
(0)(l)u251 for the basis, we arrive at an ex

pression for the second-order susceptibility:

xl
(2)5 (

l ,l 85m1p

l max

al
(0)* ~l!al 8

(0)
~l!wll 8

(2) , ~14!

which is the second-order diagonal matrix element16 in the
diamagnetic states with a fixedl and is written in the form
of a linear combination of the wave function of the spheric
basis, which diagonalizes the diamagnetic Hamiltonian~1!.

In the third order inB2, the coefficientsal
(2) of ~12!

become the unknown quantities of the system of algeb
equations~7!. The equations foral

(2) are similar to~13!. Us-
ing the same method as we did in deriving Eq.~14!, we
annihilate the left-hand side of this system and arrive at
expression for the third-order susceptibility:14
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xl
(3)5 (

l ,l 85m1p

l max

@al
(0)* ~l!al 8

(0)
~l!wll 8

(3)
~l!

1al
(0)* ~l!al 8

(1)
~l!wll 8

(2)
#. ~15!

The first term on the right-hand side contains a quadr
combination of the coefficientsal

(0) and the matrix element
wll 8

(3)(l) ~which, in contrast towll 8
(1) andwll 8

(2) , depend on the
susceptibilityxl

(1)!. The second term is a bilinear form of th
coefficientsal

(0) and al
(1) of the first and second order, re

spectively; the coefficients of this bilinear form are the m
trix elementswll 8

(2) .
Thus, the transition from second to third order requi

two operators:
~1! the solution of the system of equations~7! in the

second order inB2, which leads to the inhomogeneous equ
tion ~13! for al

(1)(l); and
~2! the calculation of third-order matrix elements in th

diamagnetic interaction,wll 8
(3)(l), which contain a contribu-

tion from the corrections to the second-order matrix eleme
due to the expansion~9! of the Green’s function.

3. DIAMAGNETIC MATRIX ELEMENTS OF A HYDROGENLIKE
ATOM

Calculating the diamagnetic interaction energy in deg
erate states involves diagonalizing the matrix of the oper
~1! in the states of the shell of the hydrogenlike atom w
given principal magnetic numbern and magnetic quantum
numberm. In first order such diagonalization has been c
ried out both in the spherical basis of the statesunlm& and in
the basis with fixed parabolic quantum numbers~see, e.g.,
Ref. 3!. In the spherical basis, the expressions for the fi
order matrix elements are

wll
(1)52S n

2ZD 2 l 21 l 211m2

~2l 21!~2l 13!
@5n21123l ~ l 11!#,

~16!

wll 12
(1) 5wl 12,l

(1) 5
5

2 S n

2ZD 2

3F ~ l 112m!2~ l 111m!2~n2 l 22!2~n1 l 11!2

~2l 11!~2l 13!2~2l 15! G1/2

.

~17!

Here we have used the standard Pochhammer symb17

(c)n5c(c11)¯(c1n21).
Delande and Gay18 were the first to calculate the secon

order matrix elements. They used an effective Hamilton
~for which they wrote an explicit formula! that took into
account the additional symmetry of hydrogenlike states i
magnetic field. Two years later Grozdanov and Taylor5 di-
agonalized this Hamiltonian in a basis of states with fix
parabolic quantum numbers. The corrections to the ene
for nondegenerate states were found to coincide with
corresponding diagonal matrix elements. For doubly deg
erate states, the expression for the diamagnetic energy
also be found analytically by using the roots of the cor
sponding quadratic equation.
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The calculation of second-order diamagnetic matrix e
ments has also been done via a Sturm expansion of the
duced Green’s function in the basis of states with fix
moments14,15 without using an effective Hamiltonian. By
separating the orientational dependence in the matrix
mentswll 8

(2) via integration over the angular variables we c
conveniently express these elements in terms of their irred
ible parts as follows:

wll
(2)5bnl

(0)1
3m22 l ~ l 11!

l ~2l 21!
bnl

(2)

1
3~ l 212l 25m2!~ l 225m221!210m2~4m221!

l ~2l 21!~2l 22!~2l 23!

3bnl
(4) , ~18!

wll 12
(2) 52A~ l 112m!2~ l 111m!2~n2 l 22!2~n1 l 11!2

~2l 21!2~2l 11!~2l 13!2~2l 15!~2l 17!2

3
n6

32Z6 @gnl
(0)1m2gnl

(2)#, ~19!

wll 14
(2) 5A~ l 112m!4~ l 111m!4~n2 l 24!4~n1 l 11!4

~2l 11!~2l 13!2~2l 15!2~2l 17!2~2l 19!

3
205n6

128Z6 . ~20!

The irreducible partsbnl andgnl can be expressed in term
of the second-order radial matrix elements of the operatorr 2,
i.e., ^nlur 2gll 8

(n)(r ,r 8)r 82unl8&, which can be calculated ana
lytically by using a Sturm expansion of the Coulomb Gree
function:12,14

gl
(n)~r ,r 8!5

4Z

n
H (

kÞnr

`
k!

~k12l 11!!

f klS 2Zr

n D f klS 2Zr8

n D
k1 l 112n

1
nr !

~N5 l !!n
1F 5

2
f nr l S 2Zr

n D f nr l S 2Zr8

n D

1r

d fnr l S 2Zr

n D
dr

f nr l S 2Zr8

n D

1 f nr l S 2Zr

n D r 8

d fnr l S 2Zr

n D
dr8

G J . ~21!

Due to the orthogonality of the Sturm function

f kl~x!5e2x/2xlLk
2l 11~x! ~22!

and the radial wave function

Rnl~r !5
2Z3/2

n2 A nr !

~n1 l !!
f nr l S 2Zr

n D , ~23!

which follows from the orthogonality of the Laguerre poly
nomialsLk

a(x) ~see Ref. 17!, the Sturm series~21! is trun-
cated. In particular,
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K f klS 2Zr

n D Ur 2U f k8 l S 2Zr

n D L
5S n

2ZD 5 E
0

`

e2xx2l 14Lk
2l 11~x!Lk8

2l 11
~x!dx

5S n

2ZD 5 ~k12l 11!!

k!
$2~k22!3dk8k2316~k1 l !

3~k21!2dk8k2223k@5k~k12l 11!14l ~ l 11!

12#dk8k211@~k12l 12!319k~k12l 12!219~k

21!2~k12l 12!1~k22!3#dk8k23~k12l 12!

3@5k~k12l 13!14l 2114l 112#dk8k1116~k1 l

12!~k12l 12!2dk8k122~k12l 12!3dk8k13%.

~24!

wheredk8k is the Kronecker delta.
Thus, the irreducible parts in~18!–~20! can be repre-

sented by polynomials of the principal and orbital quant
numbers:14

bnl
(0)5

n6

240Z6 $5n2@97n2233l ~ l 11!1365#212~21l 4

142l 31179l 21158l 160!%, ~25!

bnl
(2)5

ln6

336Z6~2l 13!
$n2@802n221005l ~ l 11!12000#

13~175l 41350l 31523l 21348l 2480!%, ~26!

bnl
(4)5

l ~ l 21!n6

1120Z6~2l 13!~2l 15!
$15n2@41n2122l ~ l 11!

2185#21001l 3~ l 12!13421l 214422l 22160%,

~27!

gnl
(0)5n2@429l ~ l 13!2802#1237l 3~ l 16!13145l 2

13036l 22484, ~28!

gnl
(2)55~41n2137l 21111l 275!. ~29!

These expressions simplify substantially whenl andm take
specific numerical values~or are expressed in terms ofn!.
The solution of the system of equations~7! also simplifies if
K is moderate. The corresponding analytical expressions
nondegenerate (K51) and doubly degenerate (K52) states
can be found in Refs. 14 and 15. Note that using the sph
cal basis has an important advantage over using the para
basis, since the operator~1! is of even parity and hence th
wave functionsunlm&, which have a well-defined parity, au
tomatically take into account the symmetry of the atom in
magnetic field. This feature of diamagnetic states was pr
ably the reason why Grozdanov and Taylor,5 who used an
effective Hamiltonian in the parabolic basis, examined o
three out of the four sets of doubly degenerate states of
n-shell.

When calculating the third-order energy, one must ta
into account the corrections to the expansion coefficient
or

ri-
lic

a
b-

y
he

e
in

~12! that determine their dependence on the amplitudeB of
the magnetic field. To findal

(1)(l) it is enough to solve the
system of equation~13! depending on the matriceswll 8

(1) and
wll 8

(2) . Since the rank of the matrix consisting of the coef
cients of the left-hand side of the system~13! is one unit
smaller than the number of unknowns, to solve the sys
we must use the normalization condition for theal

(1)(l):

(
l 5m1p

l max

al
(0)* ~l!al

(1)~l!50.

What sets the matrixwll 8
(3) apart from the first- and

second-order matrices is its dependence onxl
(1) , the eigen-

value of the matrixwll 8
(1) . After calculating the integrals ove

the angular variables, we see that the matrix elementswll 8
(3)

can be expressed in terms of linear combinations of the ra
matrix elementspl ; l 1 ,l 2 ; l 8

2q2
5^nlur 2gl 1

(n)r qgl 2
(n)r 2unl8& and the

first-order susceptibilityxl
(1) :

wll
(3)~l!52

45

4
$Q l 22,mP l 22,m

2 pl ; l 22,l 22;l
222

12Q l ,mP l 22,m
2 pl ; l 22,l ; l

222 1Q l ,m
3 pl ; l ,l ; l

222

12Q l ,mP l ,m
2 pl ; l 12,l ; l

222 1Q l 12,mP l ,m
2 pl ; l 12,l 12;l

222

12xl
(1)@P l 22,m

2 pl ; l 22,l 22;l
202 1Q l ,m

2 pl ; l ,l ; l
202

1P l ,m
2 pl ; l 12,l 12;l

202 #%, ~30!

wll 12
(3) ~l!52

45

4
P l ,m$P l 22,m

2 pl ; l 22,l ; l 12
222 1Q l ,m

2 pl ; l ,l ; l 12
222

1Q l ,mQ l 12,mpl ; l ,l 12;l 12
222 1P l ,m

2 pl ; l 12,l ; l 12
222

1Q l 12,m
2 pl ; l 12,l 12;l 12

222

1P l 12,m
2 pl ; l 12,l 14;l 12

222 12xl
(1)@Q l ,mpl ; l ,l ; l 12

202

1Q l 12,mpl ; l 12,l 12;l 12
202 #%, ~31!

wll 14
(3) ~l!52

45

4
P l ,mP l 12,m

3$Q l 12,mpl ; l 12,l 12;l 14
222

Q l ,mpl ; l ,l 12;l 14
222

1Q l 14,mpl ; l 12,l 14;l 14
222

12xl
(1)pl ; l 12,l 12;l 14

202 %, ~32!

wll 16
(3) ~l!52

45

4
P l ,mP l 12,mP l 14,mpl ; l 12,l 14;l 16

222

5
25n10~902n2188l 21616l 17125!

217Z10~ l 13/2!5

3A~n2 l 26!6~n1 l 11!6~ l 112m!6~ l 111m!6

~2l 11!~2l 113!
.

~33!

In these expressions, the factorsQ l ,m andP l ,m are integrals
over the angular variables:

Q l ,m5
1

3
^ lmu12C20~u,w!u lm&5

l 21 l 1m221

~2l 21!~2l 13!
,
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TABLE I. Coefficients of the polynomialsPn1 ,n2 ,k
(q) 5Scss8n

sl s8 that determine the diagonal (k50) radial matrix elementspl ; l 1n1 ,l 1n2 ; l
2q2 according to~35!.

css8 P22,22,0
(2) P22,0,0

(2) P0,0,0
(2) P0,2,0

(2) P2,2,0
(2) P22,22,0

(0) P0,0,0
(0) P2,2,0

(0)

c80 4510 4510 4510 4510 4510 0 0 0
c62 7346 25066 26066 25066 7346 0 0 0
c61 2126818 260736 26066 50604 141510 0 0 0
c60 261905 231967 204882 287637 396069 1804 1804 1804
c44 213958 23654 966 23654 213958 0 0 0
c43 108832 95478 19322 2110094 2164664 0 0 0
c42 113737 2270404 2200658 2578762 2296507 4424 21344 4424
c41 21405413 2608068 2201624 2233790 1250559 239368 21344 48216
c40 1455860 1154248 944994 1392780 2852220 55098 37528 9889
c26 1150 2930 530 2930 1550 0 0 0
c25 28110 236300 1590 53880 218810 0 0 0
c24 2428465 80495 22070 305945 2545765 24340 2420 24340
c23 1409120 557700 41490 185880 23373080 16600 2840 233960
c22 2809656 21025,439 2594154 21808619 27865656 44760 220700 231080
c21 21563937 2766264 2614634 22436654 26127845 2181100 220280 203460
c20 1039645 771363 654758 74213 270219 111626 49516 316546
c08 840 1280 60 1280 840 0 0 0
c07 214940 21130 240 11370 21660 0 0 0
c06 87055 212490 3802 31260 215155 21600 240 21600
c05 2138135 286480 10566 106950 1021245 29920 2120 229520
c04 2329135 215159 34108 589359 2249068 288570 24012 2212170
c03 1107453 262372 50886 1324494 1268409 158340 27824 2743820
c02 2651797 2345051 183410 895807 22924513 287274 219420 21316914
c01 2175392 2190332 2207132 250640 24442784 212912 215528 21100136
c00 31680 33912 36360 291620 21640340 2592 3024 2340200
e

e

c

he

o
m
re
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P l ,m5
1

3
^ lmu12C20~u,w!u l 12m&

52A@~ l 11!22m2#@~ l 12!22m2#

4~2l 11!~2l 13!2~2l 15!
. ~34!

Only the matrix elementswll 8
(3)(l) with l 85 l 66, which

are farthest from the diagonal of the matrix, are independ
of xl

(1) and can be written in the closed form~33!. The ma-
trix elementswll 8

(3)(l) with u l 82 l u<4 depend onxl
(1) and are

written in ~30!–~32! in the form of linear combinations of th
radial matrix elementspl ; l 1 ,l 2 ; l 8

2q2 , where q50 or 2. These

quantities, as well as the second-order matrix elements,
be calculated analytically via the Sturm expansion~21! of the
Green’s function and the property of orthogonality of t
Sturm functions@see Eq.~24!#.

We note the following features in the dependence
these quantities on the principal and orbital quantum nu
bers that manifest themselves in the above analytical exp
sions:

~1! All matrix elements contain the same common fac
n81q.

~2! The seven diagonal elementspl ; l 1 ,l 2 ; l
222 ~four of these

are pairwise equal! and the three elementspl ; l 1 ,l 1 ; l
202 do not

contain radicals. The off-diagonal elementspl ; l 1 ,l 2 ; l 1k
222 ~six

with k52, three with k54, and one with k56! and
pl ; l 1 ,l 1 ; l 1k

202 ~two with k52 and one withk54! contain radi-

cal factors of the product of two Pochhammer symbols w
the index equal tok, similar to the corresponding factors i
~17!, ~19!, ~20!, and~33!.
nt

an

f
-
s-

r

h

~3! The radial elements obey the symmetry relations
pl ; l 1 ,l 2 ; l 8

2q2
5pl 8; l 2 ,l 1 ; l

2q2 , which corresponds to the symmetry o

the matrix,wll 8
(3)(l)5wl 8 l

(3)(l). This makes it possible to rep
resent all finite elements by the four general expressi
~30!–~33!.

~4! For all matrix elements the asymptotic~n@1 and
n@ l ! dependence is the same:pl ; l 1 ,l 2 ; l 8

222 ;2255n18/576 and

pl ; l 1 ,l 1 ; l 8
202 ;451n14/288.

These properties make it possible to write a general
pression for the matrix elements in~30!–~33!:

pl ; l 1n1 ,l 1n2 ; l 1k
2q2 5

n81q

1152Z81q A~n2 l 2k!k~n1 l 11!k

3Pn1 ,n2 ,k
(q) ~n,l !, ~35!

where thePn1 ,n2 ,k
(q) (n,l ) are (61q2k)-degree polynomials

in the principal and orbital quantum numbers:

Pn1n2 ,k
(q) ~n,l !5(

s50

S

(
s850

S8

css8n
sl s8, ~36!

with s taking only even values from zero toS561q2k,
and s8 running through all integral values~even and odd!
from zero toS8561q2k2s. Thus, the number of term
~and hence the number of the coefficientscss8! in the poly-
nomial is @41(q2k)/2#2. The numerical values of the co
efficients css8 are listed in Tables I–III. Polynomials ar
grouped in the tables by the values ofk in accordance with
the expressions~30!–~32! for the matrix elementswll 1k

(3)

where they appear. Table I lists 25 coefficients for each
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TABLE II. Coefficients of the polynomialsPn1 ,n2 ,k
(q) that determine the off-diagonal (k52) radial matrix elementspl ; l 1n1 ,l 1n2 ; l 12

2q2 according to~35!.

css8 P22,0,2
(2) P0,0,2

(2) P0,2,2
(2) P2,0,2

(2) P2,2,2
(2) P2,4,2

(2) P0,0,2
(0) P2,2,2

(0)

c60 4510 4510 4510 4510 4510 4510 0 0
c42 9680 930 23732 25820 930 9680 0 0
c41 297800 250880 211196 217460 56460 155880 0 0
c40 144320 1230047.5 193063 188365 284057.5 524840 1804 180
c24 28930 21270 21650 2210 21270 28930 0 0
c23 36020 7068 29900 21260 222308 2143180 0 0
c22 128820 49369 2100140 2252060 282823 2677580 1380 1380
c21 2504230 2338505 2255870 2750510 306723 2659830 211988 20268
c20 315990 256130.5 661135 282865 1422260.5 1292190 15884 6426
c06 2940 2210 2280 25680 2210 2940 0 0
c05 21340 924 22520 251120 24704 238260 0 0
c04 2120620 22658.5 28395 280665 244868.5 2567620 200 200
c03 209780 8697 212570 282810 2237159 24085420 22064 4464
c02 212210 80199.5 2145543 617135 2642262.5 215317610 5320 34696
c01 2156510 2170328 2414084 111360 2550812 228620990 213560 122808
c00 30780 332976 107172 299540 437976 220914740 3024 163512
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the Pn1 ,n2,0
(2) (n,l ) polynomials and 16 coefficients for each

the Pn1 ,n2,0
(0) (n,l ) polynomials, Table II lists 16 coefficient

for each of thePn1 ,n2,2
(2) (n,l ) polynomials and 9 for each o

the Pn1 ,n2,2
(0) (n,l ) polynomials, and Table III lists 9 coeffi

cients for each of thePn1 ,n2,4
(2) (n,l ) polynomials and 4 for

each of the P2,2,4
(0) (n,l ) polynomials. The polynomia

P2,4,6
2 (n,l ) is written explicitly in ~33!.

The calculations of the matrix elements~35! and the
polynomial factors~36! representing these elements we
done by standard procedures used in transforming poly
mial expressions~factorization and collecting like terms!,
which can employed through the use of computer progra
such as Maple or Mathematica.

4. SUSCEPTIBILITIES OF DOUBLY DEGENERATE STATES

For the statesunmp& with n5m11 and p50, n5m
12 andp50,1, andn5m13 andp51 ~‘‘nondegenerate’’
states!, the matrixwll 8

(N) consists of one element, which de
termines the corresponding susceptibility. Thus, by subst
ing the corresponding values ofl and m in ~16!, ~18!, and
~30! we have working analytical expressions forx (N) of
these states up to the third order inclusive, formulas t
coincide with those known from the literature.3,5,12,15

TABLE III. Coefficients of the polynomialsPn1 ,n2 ,k
(q) that determine the

off-diagonal (k54) radial matrix elementspl ; l 1n1 ,l 1n2 ; l 14
2q2 according to

~35!.

css8 P0,2,4
(2) P2,2,4

(2) P2,4,4
(2) P2,2,4

(0)

c40 4510 4510 4510 0
c22 2574 2514 2574 0
c21 231476 22570 57216 0
c20 45962 96269 267692 1804
c04 116 504 116 0
c03 24334 5040 6654 0
c02 15493 23299 97903 176
c01 243015 279495 580995 880
c00 10170 27405 1226820 11610
o-

s

t-

at

For states withn5m13 and p50, n5m14 and
p50,1, andn5m15 andp51 ~doubly degenerate states!,
for which the diamagnetic matrix is 2-by-2, we can also d
rive analytical formulas for the susceptibility in a form th
contains square roots of polynomials constructed from
matrix elements~16! and ~17!, ~18! and ~19!, and ~30! and
~31!. All such expressions forx (N) can represented in th
general form

xnmp6
(1) 52

n2

4Z2 @Q2
(m,p)~n!6AR2

(m,p)~n!#, ~37!

xnmp6
(2) 5

n6

16Z6 FQ4
(m,p)~n!6

R4
(m,p)~n!

AR2
(m,p)~n!

G , ~38!

xnmp6
(3) 52

5n10

64Z10FQ6
(m,p)~n!6

R8
(m,p)~n!

@R2
(m,p)~n!#3/2G , ~39!

whereQk
(m,p)(n) andRk

(m,p)(n) arek-degree polynomials in
the principal quantum numbern. The explicit expressions
for the polynomials of the four doublet states determined
specific sets of the quantum numbersm and p are listed in
Table IV. The coefficients of the leading powers of the po
nomials are the same for all four sets and increases with
degree of the polynomial. We also note the same orde
which the signs alternate: the two leading powers inQ are
positive and the signs alternate for the lower powers do
for R the signs of any two neighboring terms are opposit

The formulas for thex (1) andx (2) constructed from the
polynomialsQ2

(m,p)(n), R2
(m,p)(n), Q4

(m,p)(n), andR4
(m,p)(n)

coincide with those known from the literature.5,14

The explicit expressions for the polynomialsQ6
(m,p)(n)

and R8
(m,p)(n) reveal the general properties of third-ord

diamagnetic energy. In particular, the dependence ofx (3) of
doubly degenerate levels on the principal quantum numben
has the same asymptotic structure as that of nondegen
states,12 so that forn@1 the leading term of the asymptoti
expansion,

DE(3)'
3

128
n16B6, ~40!
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proves to be the same for all sublevels of a hydrogen
shell with fixed principal quantum number and projection
angular momentum, fromm5n25 to m5n21. The overall
shift is accompanied by a splitting into sublevels, determin
by the terms in polynomial~39! that follow the leading term.

5. RESULTS OF NUMERICAL CALCULATIONS AND A
DISCUSSION

The analytical expressions for the susceptibilities of n
degenerate and doubly degenerate diamagnetic state w
fixed n make it possible to establish the asymptotic behav
~for n@1! common to all the sublevels:

xnml
(1) ;2

n4

4Z2 , xnml
(2) ;

3n10

4Z6 , xnml
(3) ;2

135n16

8Z10 .

~41!

This yields a relationship between the binding energyEn and
the diamagnetic corrections of the first three orders:

TABLE IV. Polynomials Qk
(m,p)(n) and Rk

(m,p)(n) that determine the dia-
magnetic susceptibilities~37!–~39! of doubly degenerate states with fixedn,
m, andp.

m,p Polynomial

Q25n213n27
R2516n2248n141
Q4512n41117n32315n21597n2714

n23,0 R45480n421776n313948n226477n14734
Q65216n613915n528631n4132871n3269750n2

176812n265736
R85237312n821547904n716033408n6218774360n5

143218888n4268241357n3172834702n224997076n
117036568

Q25n212n211
R2516n2288n1136
Q4512n4196n32488n211192n22100

n24,1 R45480n422968n318872n2219960n123880
Q65216n613366n5217408n4161238n4177212n2

1302016n2350064
R85237312n82295417n7117745808n6273238368n5

1234785744n42567694784n31959084336n2

21034609184n1557701488

Q25n216n219
R2516n2240n140
Q4512n41216n32840n211920n23180

n24,0 R45480n421768n314360n227624n17656
Q65216n617074n5227408n41102306n32283860n2

1435072n2476684
R85237312n821173568n713714448n6211527840n5

131965008n4265148608n3193301808n2284091488n
139910896

Q25n215n227
R2516n2280n1145
Q4512n41195n321147n213295n27182

n25,1 R45480n422960n3110444n2228835n143578
Q65216n616525n5243303n41177725n32600754n2

11257900n21789128
R85237312n822578840n7114262784n6261089320n5

1243111464n42794683915n311801819010n2

22490302340n11689045624
e
f

d

-
a

r

uEnu:DEnml
(1) :uDEnml

(2) u:DEnml
(3)

'1:S n3B

2Z2D 2

:S n3B

2Z2D 4

:3S n3B

2Z2D 6

. ~42!

The third-order correction in this relationship makes ob
ous, in particular, the asymptotic nature of the perturbati
theory series for the diamagnetic energy: the asymptotic
tor for this correction is three times larger than the simi
factor for the second order correction, which in turn co
cides with the factor for the first-order correction.

Due to this asymptotic nature, the last term in the ser
that is taken into account determines the accuracy w
which perturbation theory approximates the true ene
valueEnmlp

exact (B) and makes it possible to determine the ran
of applicability of the corrections of the previous orders. T
alternation in the signs of the series allows us to find
upper and lower bounds on the exact energy value, wh
meet the condition

Enmlp
(2N) ~B!,Enmlp

exact ~B!,Enmlp
(2N11)~B!, ~43!

where

Enmlp
(s) ~B!5En2 (

k51

s xnmlp
(k)

2k!
B2k ~44!

is the energy value obtained insth-order perturbation theory
The binding energyEn incorporates the self-energy of th
free atom and the paramagnetic energyEpar5B(m
12ms)/2.

Table V lists the numerical values of the diamagne
susceptibilities of the degenerate hydrogen states w
n<6. The values of the parameterl are selected in accor
dance with the absolute values of the susceptibilitiesx (1):
the minimum value ofux (1)u corresponds tol51, and as we
move to each next state inx (1) the value ofl increases by
one unit, so thatux1

(1)u,ux2
(1)u,...,uxK

(1)u. The data in
Table V together with the data on the nondegenerate sub
els of the samen-shells constitute the complete set of data
the Zeeman effect for the first six levels of a hydrogenli
atom to within corrections of orderB6 inclusive.

Note the rigorous correlation between the absolute v
ues of the susceptibilities of the diamagnetic sublevels:
larger values ofx (2) andx (3) correspond to states with large
values ofx (1), i.e., for l.l8 we haveuxl

(N)u.uxl8
(N)u for N

51,2,3. The maximum value of the susceptibility for a giv
n corresponds to one of the states withm50 ~in Table V
these values are printed in boldface type forn54,5,6!. Here
the difference between the maximum and minimum abso
values of the susceptibility for states with a givenn increases
with n and with the perturbation-theory orderN and follows
the approximate relationshipuxnmpK

(N) /xnmp1
(N) u;2n21(n2m

2p).
The data in Table V can be used to find the limits

applicability ~in the magnetic-field strength! of specific
perturbation-theory orders in calculations of the energy of
atom in a magnetic field. It occurs that the limit of applic
bility for first-order diamagnetic corrections,B1 , is approxi-
mately twice the limit for the second order,B2 , i.e.,
B1.B2 , as it should be for an asymptotic series.



o
th

ba
-

r
c

rd

der

u-
the
m-

e

the
V

ag-
a of
es
-

bili-
ept
s
all

in
ly

e
first
e in
he
ep-
d

he

s

ict
n the
cep-

li-
all

ro

452 JETP 89 (3), September 1999 V. D. Ovsyannikov and K. V. Khalyov
A comparison of the numerical values of the energy
doubly degenerate levels that are linear combinations of
3s and 3d states, and also of the 4p and 4f states with
m50 calculated by first-, second-, and third-order pertur
tion theories according to~44!, and the data of exact calcu
lations done by the method ofB-splines in Ref. 8 fully con-
firms the validity of ~43!: the second- and third-orde
energies yield the lower and upper limits, with the exa
value between them. Here the energy value in the third o

TABLE V. Diamagnetic susceptibilities of the degenerate states of hyd
gen withn<6.

nmpl 2xnmpl
(1) xnmpl

(2) 2xnmpl
(3)

3001 1.034~1! 2.442~4! 5.315~8!
3002 3.916~1! 1.918~5! 7.165~9!
4011 2.670~1! 2.776~5! 2.602~10!
4012 7.730~1! 1.809~6! 2.717~11!
4001 3.736~1! 8.116~5! 1.035~11!
4002 1.306„2… 3.299„6… 6.143„11…
4101 4.301~1! 5.623~5! 6.487~10!
4102 1.250~2! 3.121~6! 5.463~11!
5001 5.668~1! 2.141~6! 6.368~11!
5002 1.375~2! 1.023~7! 4.863~12!
5003 3.308„2… 3.045„7… 2.035„13…
5011 6.849~1! 4.860~6! 2.041~12!
5012 2.190~2! 1.954~7! 1.077~13!
5111 8.876~1! 3.435~6! 1.220~12!
5112 2.112~2! 1.836~7! 1.007~13!
5101 1.282~2! 9.593~6! 4.455~12!
5102 3.218~2! 2.945~7! 1.956~13!
5201 1.176~2! 5.867~6! 2.494~12!
5202 2.948~2! 2.640~7! 1.719~13!
6011 1.043~2! 1.254~7! 1.012~13!
6012 2.300~2! 4.136~7! 5.240~13!
6013 5.027~2! 1.322~8! 2.153~4!
6001 1.152~2! 2.168~7! 2.463~13!
6002 3.420~2! 8.350~7! 1.172~14!
6003 7.038„2… 1.884„8… 3.638„14…
6101 1.643~2! 1.614~7! 1.439~13!
6102 3.330~2! 7.787~7! 1.090~14!
6103 6.907~2! 1.843~8! 3.541~14!
6111 2.113~2! 4.141~7! 5.047~13!
6112 4.907~2! 1.275~8! 2.067~14!
6211 2.109~2! 2.536~7! 2.709~13!
6212 4.551~2! 1.133~8! 1.808~14!
6201 3.025~2! 6.375~7! 8.665~13!
6202 6.615~2! 1.717~8! 3.251~14!
6301 2.598~2! 3.864~7! 4.782~13!
6302 5.862~2! 1.500~8! 2.764~14!
f
e

-
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is much closer to the exact value than that in the first or
~provided the perturbation-theory does not break down!.

All diamagnetic corrections up to the third order incl
sive calculated in Ref. 7 agree with our data except for
third-order corrections for the doubly degenerate linear co
bination of the 3s and 3d levels: both the smaller and th
larger of the two values attributed by Va�nberget al.7 to the
3s and 3d states, respectively, yield absolute values of
susceptibilityx (3) that are smaller than the values in Table
by approximately 10%.

The laws governing the interdependence of the diam
netic susceptibilities, noted earlier on the basis of the dat
Table V, generally remain valid for states with large valu
of n ~Rydberg states!, where there is also correlation be
tween the numerical values of the diamagnetic suscepti
ties of the first, second, and third orders. Everywhere exc
for the boundary between the doublet part3 ~degenerate state
of opposite parity whose susceptibilities coincides in
three perturbation-theory orders! and the split part~the nu-
merical values of the even and odd states alternate! of the
diamagnetic spectrum an increase inxl

(1) with the variation
of the sublevel numberl is accompanied by an increase
xl

(2) andxl
(2) . The number of doublet states is approximate

one-fourth of the entire set of diamagnetic sublevels~one-
fifth of the energy band occupied by the set!. Above this
boundary the pattern changes to the opposite:xl

(3) increases
faster thanxl

(2) . At the boundary the monotonic nature of th
interdependence between the susceptibilities changes:
there is a sharp decrease, which is followed by an increas
relation to the value of higher-order susceptibilities, with t
discontinuity becoming more abrupt as the order of susc
tibility increases and manifesting itself more vividly for od
states. For the boundary state the inequalityuxl

(N)u,uxl11
(N) u

for N52,3 may be violated. The difference between t
maximum (xK

(N)) and minimum (x1
(N)) absolute values of the

susceptibilities in the diamagnetic set increases withn, so
that for a state withm50 the ratio of these values agree
with the approximate formula given above:xK

(N)/x1
(N)

'2N21n.
As an illustration of the above facts, in Fig. 1 we dep

the diagrams representing the interdependence betwee
absolute values of the first-, second-, and third-order sus
tibilities of the diamagnetic sublevels withn540 and
m50. Up to l55 the numerical values of the susceptibi
ties of the even and odd states are almost the same in

-

nd
FIG. 1. The interdependence of the first-, second-, a
third-order susceptibilities for the firstl51210 ~a!,
and second,l511220 ~b!, halves of the diamagnetic
states of the level withn540 andm50. The symbols
n ~connected by dashed curves! and s correspond to
second-order susceptibility, and the symbols3 ~con-
nected by solid curves! andd correspond to third-order
susceptibility for even states~n and3! and odd states
~d!.
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three orders. An abrupt discontinuity is observed atl56,
after which the absolute values of all the susceptibilities
odd states~in Fig. 1 these are connected by solid curves
the third order and by dashed curves for the second or!
become smaller than the corresponding susceptibilities
even states. Here, however, the dots representing the de
dence of higher-order~second or third! susceptibility on
lower-order susceptibility of the even and odd states fol
.7 lie on the same curve~see Fig. 1a!.

The absolute values of the susceptibilities in Fig.
show, in particular, thatB'4T is the limit above which one
cannot use perturbation-theory techniques to calculate
diamagnetic energy of states withn540. In such a field the
relationship ~42! for states of maximum susceptibility~l
520 andp50,1! becomes

uEnu:DEnmlp
(1) :uDEnmlp

(2) u:DEnmlp
(3) '1:0.72:0.63:0.62.

6. CONCLUSION

The method we have developed for calculating thi
order diamagnetic corrections to the energy of hydrogen
states allowed us to obtain the most complete solution
comparison to the results of earlier calculations~see, e.g.,
Refs. 6 and 12!. In addition to general formulas, which mak
it possible to find in a fairly simple manner the numeric
values of the diamagnetic susceptibilities for arbitrary sta
we have extracted new information concerning the struc
of the diamagnetic spectrum of highly excited Rydberg
oms. In particular, we have found two features specific to
interdependence of susceptibilities of different orders: a
continuity, which separates two regions of monotonic
crease of susceptibility, at the boundary between the dou
and split diamagnetic states~the discontinuity manifests it
self more vividly for higher-order susceptibilities and f
states of negative parity!, and a variation in the relative rat
of monotonic increase of susceptibility in the transition b
tween the two characteristic regions of the diamagnetic sp
trum.

The method that we employed to calculate the wa
functions and energy in higher-order perturbation theory~see
Sec. 2! is fairly general, and the same concept can be use
calculate higher-order perturbation-theory effects in a fi
that alters the symmetry of degenerate states in such a
that constants of motion of an unperturbed atom ceas
exist.
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We believe that there is a real possibility of using th
method to calculate diamagnetic susceptibilities of higher
ders, as it was done by Alliluev and Malkin19 ~see also Ref.
4! in their calculations of the Stark effect, since both t
calculation of matrix elements via the Sturm expansion~21!
of the Green’s function and finding expressions for susc
tibilities of the form ~14! and ~15!, together with solving a
system of equations of the form~13!, can be fully automated
by computers.
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17A. Erdélyi, Higher Transcendental Functions~Bateman Project! Vol. 1,

McGraw-Hill, New York ~1953!, Chap 5; Vol. 2, Chap. 10.
18D. Delande and J. C. Gay, J. Phys. B17, L335 ~1984!.
19S. P. Alliluev and I. A. Malkin, Zh. E´ksp. Teor. Fiz.66, 1283~1974! @Sov.

Phys. JETP39, 627 ~1974!#.

Translated by Eugene Yankovsky



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 89, NUMBER 3 SEPTEMBER 1999
Stimulated superradiance
R. A. Ismailov and A. Ya. Kazakov* )

St. Petersburg State University of Aerospace Instrumentation, 190000 St. Petersburg, Russia
~Submitted 17 March 1999!
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If N atoms simultaneously interact with quasiresonant classical and quasiresonant quantized
fields, the modes exchange photons. This processes exhibits cooperative properties, i.e., the number
of photons in the quantized mode oscillates, and the amplitude of these oscillations is
proportional toN2. © 1999 American Institute of Physics.@S1063-7761~99!00809-4#
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1. INTRODUCTION

Suppose that a two-level atom simultaneously intera
with the classical and quantized modes that are in quasir
nance with the atomic transition frequency. As shown
Refs. 1–3, the classical and quantized modes exchange
tons in such a system. Of course, a similar exchange ta
place whenN identical atoms simultaneously interact wi
both modes. The natural question is: Will cooperative pr
erties manifest themselves in such a process? In this p
we show that the answer is yes. More precisely, the dyn
ics of a system consisting ofN atoms, a classical field, and
quantized field exhibits properties similar to those
superradiance.4 For instance, the number of photons in t
quantized mode oscillates, and the amplitude of the osc
tions is proportional toN2. However, in contrast to ordinar
superradiance, the oscillation frequency is independent oN.

The physical model of such a system can be realized
a chain of atoms. Here the direction of propagation of
classical field and the axis of the cavity containing the qu
tized mode are assumed to be perpendicular to the lin
chain of atoms. It is also assumed that, on the one hand
atoms are far enough from each other so that the interac
between them can be ignored but, on the other, are c
enough so that they interact with the classical and quant
field in the same way.

To examine this problem we use the Schro¨dinger-
equation picture. Our approach is based on a modi
Jaynes–Cummings model. Naturally, the effect of the cla
cal component of the field on the atoms is much more
portant than that of the quantized component. The evolu
of the atoms can be separated into two parts: the ‘‘fa
evolution associated with the interaction between the ato
and the classical component, and the ‘‘slow’’ evolution a
sociated with the interaction between the atoms and
quantized component. In other words, we assume~and this
assumption is quite natural! thatR, the Rabi parameter of th
classical field, is much larger thanRq , the effective Rabi
parameter of the quantized mode. This condition make
possible to separate the fast part of the dynamics of the
oms from the slow part. To this end we use an appropr
averaging procedure~for more details see Refs. 3 and 5! and
derive an averaged~over the fast oscillations! Hamiltonian
that controls the slow evolution of the system.~From the
4541063-7761/99/89(9)/6/$15.00
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formal viewpoint, we use an appropriate version of pertur
tion theory and construct the leading term in the expans
of the solution of the initial-value problem in the small p
rameterRq /R.) In physically interesting situations, the ave
aged Hamiltonian has a simple structure: it is the produc
the one-dimensional Fock operator and a matrix opera
This fact makes it possible to reduce the problem of find
the solution for anyN to that of solving a set of one
dimensional problems~actually, to solving a similar problem
for N51). Therefore, we begin with a description of th
results presented in Ref. 3 that are important for us. T
paper discusses the caseN51. We then use these results
examine the case with an arbitrary number of atoms.

2. THE CASE N51

2.1. General considerations

We begin by briefly discussing the caseN51. The start-
ing Hamiltonian is

H5va†a1kJ01z~a†J21aJ1!

1m@J2 exp$ iVt%1J1 exp$2 iVt%#, ~1!

wherea† anda are the quantized-mode creation and anni
lation operators,v is the frequency of this mode,V is the
frequency of the classical mode, and the parameterm we call,
at the cost of a certain ambiguity, the Rabi parameter of
classical field. The matrices

J05diag$1,21%, J25J1
T 5S 0 0

1 0D
describe the two-level atom and its interaction with an ext
nal quasiresonant field. The operators and the matrices o
the following relationships:

@a,a†#51, @J0 ,J2#522J2 , @J0 ,J1#52J1 .

The parameterz in ~1! characterizes the interaction betwe
the atom and the quantized mode. The wave function of
system obeys the Schro¨dinger equation

i
]C

]t
5HC. ~2!

We have written the Hamiltonian~1! in the rotating
wave approximation. Thus, we assume that the optical
© 1999 American Institute of Physics
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quency is much higher than all other frequency parameter
our problem. Such models~in particular, models of thev
5V or v52k5V type! were used by Law and Eberly,6

Alsing et al.,7 and Jyotsna and Agarwal8 in another physical
context, namely, the quantized mode was considered
probe field for the states of the atom.

A remark is in order. We assume that the classical fi
is monochromatic. As shown in Ref. 3, the use of a po
chromatic~i.e., a multifrequency field with equidistant ha
monics! does not give rise to new situations with respect
the case of a monochromatic field.

2.2. Averaging over fast oscillations

Our immediate goal is to derive a Hamiltonian, averag
over the fast oscillations, that controls the slow part of
system evolution. We begin with the well-known transfo
mation,

C~ t !5expH 2 ivtS a†a1
J0

2 D J F~ t !, ~3!

which isolates the optical frequency, so that

i
]F

]t
5H S k2

v

2 D J01z~a†J21aJ1!

1m@J2 exp$2 i ~v2V!t%1J1 exp$ i ~v2V!t%#J F.

~4!

Now suppose that a 2-by-2 matrixJ(t) is the solution of
the initial-value problem

i
dJ

dt
5H S k2

v

2 D J01m@J2 exp$2 i ~v2V!t%

1J1 exp$ i ~v2V!t%#J J. ~5!

J~0!5I , ~6!

whereI is the 2-by-2 identity matrix. We can easily write a
explicit expression for this matrix:

J~ t !5expH i ~v2V!t
J0

2 J U exp$2 iRtJ0%U
21,

U5S m D2R

R2D m D , R5Am21D2, D5k2
V

2
.

We seek the solution of Eq.~4! in the form

F~ t !5J~ t !w~ t !. ~7!

Using ~5!, we arrive at equation forw(t):

i
]w~ t !

]t
5zJ21~ t !~a†J21aJ1!J~ t !w~ t !. ~8!

Thus, we can pass from the wave functionF(t) to w(t) via
the substitution

F~ t !5expH 2 ivtS a†a1
J0

2 D J J~ t !w~ t !,
of

he

d
-

d
e

with w(0)5F(0), as ~6! implies. Equation~8! is simpler
than~2!, since its right-hand side is proportional to the sm
parameterRq . This makes it possible to select an appropria
asymptotic procedure to build its solution.

What is the physical meaning of the above manipu
tions? The matrixJ(t) is the solution of the problem of the
evolution of a two level atom placed in a classical field. He
the functionw(t) describes the slow part of the system ev
lution due to the interaction between the atom and the qu
tized field. Thus,~7! is an expression for our wave functio
in the form of the product of the ‘‘fast’’ and ‘‘slow’’ cofac-
tors. In other words, it implies that we represent our wa
function via the basis of atomic states ‘‘dressed by the c
sical field.’’

If we ignore the fast oscillations, which are due to t
action of the classical field, we arrive at the following equ
tion:

i
]w~ t !

]t
5z^J21~ t !~a†J21aJ1!J~ t !&w~ t !. ~9!

Here^¯) indicates that fast oscillations have been ignor
It is here that we invoke the limitRq!R ~implicitly; for a
more exact description see Refs. 3 and 5!.

Simple calculations~omitted here! show that the only
harmonics that the operatorJ21(t)(a†J21aJ1)J(t) con-
tains are those with the frequencies6(v2V) and 6(v
2V62R). If these frequencies are of orderR, the harmon-
ics are fast and should be discarded in the averaging proc
so that only slow harmonics are left. We consider the sit
tion where the averaging yields a nontrivial effect:uv2Vu
5u2nu!R. Leaving only these slow harmonics on the righ
hand side of Eq.~9!, we arrive at a formula for the leadin
term in the asymptotic expansion in the small parame
(n,Rq)/R:

Hav5r~a† exp$2int%1a exp$22int%!UJ0U21,

where r5zm(R2D)/D, with D5m21(R2D)2. The for-
mula implies that in this case, after an expansion in the b
of the matrixUJ0U21, the dynamics of the system ‘‘splits’
into two one-dimensional problems.

There are two other cases where the averaging on
right-hand side of Eq.~9! yields a nonzero contribution, with
the selection of the slow harmonics being different. Th
leads to the Jaynes–Cummings standard-model Hamilton
In this paper we do not discuss the respective situations

2.3. A particular case

Let us first consider one of the one-dimensional pro
lems we have just mentioned. We would like to establish
dynamics of the system controlled by the Hamiltonian

H15r~a† exp$2int%1a exp$22int%!.

We employ the Fock–Bargmann representation,9 so thata†

→z and a→Dz , with Dz standing for differentiation with
respect toz. In this way we reduce this one-dimension
problem to a partial differential equation:
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i
]w~z,t !

]t
5r~z exp$2int%1exp$22int%Dz!w~z,t !.

~10!

The solution of Eq.~10! is given by the formula

w~z,t !5expH zr

2n
~12exp$2int%!1

r2

4n2 ~exp$22int%

12int21!J QS z1
r

2n
@exp$22int%21# D .

~11!

Here the functionQ(z) describes the initial distribution o
the photons in the quantized mode:Q(z)5F0(z). For n
50 Eq. ~11! becomes

w~z,t !5expH 2 irzt2
r2t2

2 J Q~z2 irt !.

According to Ref. 10, for the operatorG5(a†a)m we have

^G&5E dzdz̄exp$2zz̄%w~z,t !Gw~z,t !. ~12!

Equations~11! and~12! make it possible to calculate th
dynamics of any physical variables for any initial data. L
us discuss the situation where the quantized mode in
initial state contains exactlym photons and the state of th
atom is an eigenvector of the matrixUJ0U21. The eigenval-
ues of this matrix are61. For the case where the eigenval
is 1 we obtain1!

w~z,t !5
1

Am!
expH zr

2n
~12exp$2int%!1

r2

4n2 ~exp$22int%

12int21!J H z1
r

2n
~exp$22int%21!J m

. ~13!

For the number of photons in the quantized mode
arrive at the following expression:

^n~ t !&5^a†a&5m1
r2 sin2 nt

n2 .

At n50, i.e., when the frequencies of the classical and qu
tized fields coincide, we find that^n(t)&5m1r2t2.

Our results make it possible to calculate the quantu
statistical characteristics of quantized radiation and to ex
ine the case where the initial state is coherent.3

2.4. The general case

Now we discuss the case where the initial state is no
eigenvector ofUJ0U21. We can easily calculate the eige
vectors of this operator that are orthogonal to each othe

e15
1

AD
S m
R2D D , e25

1

AD
S D2R

m D ,

where «k5(21)k11, k51,2, are the corresponding eige
values. We seek the solution of the Schro¨dinger equation
with the HamiltonianHav in the form of a linear combination
t
e

e

n-

-
-

n

w(t)5h1(t)e11h2(t)e2 , where the values of the function
hk(t), k51,2, belong to the Fock space. For these functio
we have the following analog of Eq.~10!:

i
]hk~ t !

]t
5«kr~a† exp$2int%1a exp$22int%!hk~ t !.

The solution of these equations~in the Fock–Bargmann rep
resentation! was described earlier, so that

hk~z,t !5expH «krz

2n
~12exp$2int%!1

r2

4n2 ~exp$22int%

12int21!J QkS z1
«kr

2n
@exp$22int%21# D ,

where the functionQk(z) can be found from the initial data
If

w~z,0!5S w1~z!

w2~z! D ,

then

Q1~z!5
mw1~z!1~R2D!w2~z!

AD
,

Q2~z!5
mw2~z!1~D2R!w1~z!

AD
.

The value of the operatorG5(a†a)m, which acts in the
Fock space, can be calculated by the following relationsh

^G&5 (
k51,2

E dzdz̄exp$2zz̄%hk~z,t !Ghk~z,t !.

3. THE CASE N>1

3.1. General considerations

Suppose that our system containsN.1 identical two-
level atoms. For the state space we takeL5F ^ C2

^ C2
¯

^ C2, where the Fock spaceF describes the states of th
quantized mode, andN copies ofC2 describe the states o
the atoms. Thus,L is the set of linear combinations of vec
tors of type f uv1v2¯vN&, where f PF, and the vk , k
51,2,...,N, are two-dimensional vectors~at the cost of a
slight ambiguity, we say that they are the ‘‘components’’
the vectoruv1v2¯vN&). In C2

^ C2
¯^ C2 we use the basis

consisting of the vectorsuek1
ek2

¯ekN
&, wherekm51,2.

We define the operatorsJ0
(m) , J6

(m) , and J (m)(t), 1
<m<N, in the following manner: they act on themth com-
ponent of the vectoruv1v2¯vN& as the operatorsJ0 , J6 ,
and J(t), respectively, and do not alter the other comp
nents. Then the Hamiltonian of our system can be writte

H5va†a1k (
m51

N

J0
(m)1z (

m51

N

~a†J2
(m)1aJ1

(m)!

1m (
m51

N

~J2
(m) exp$ iVt%1J1

(m) exp$2 iVt%!.

It describes the simultaneous interaction ofN identical two-
level atoms with the quasiresonant classical and quasir
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nant quantized fields and is written in the rotating wave
proximation, so that we can assume~as we did before! that
the optical frequencies are much higher than all other
quency parameters of our problem.

We are interested in the dynamics of the wave funct
C(t), the solution of the corresponding Schro¨dinger equa-
tion. We isolate the optical frequency~as we did before! by
using an analog of Eq.~3!:

C~ t !5expH 2 ivtS a†a1 (
m51

N J0
(m)

2 D J F~ t !.

For the functionF(t) we have the equation

i
]F~ t !

]t
5H S k2

v

2 D (
m51

N

J0
(m)1z (

m51

N

~a†J2
(m)1aJ1

(m)!

1m (
m51

N

@J2
(m) exp$ i ~V2v!t%

1J1
(m) exp$ i ~v2V!t%#J F~ t !.

The matricesJ (m)(t) ~introduced earlier! commute. We in-
troduce the matrix JN(t)5)m51

N J (m)(t). Obviously,
JN(0) is the identity matrix inC2

^ C2
¯^ C2. The matrix

JN(t) is the solution of the equation

i
dJN~ t !

dt
5H S k2

v

2 D (
m51

N

J0
(m)1m (

m51

N

@J2
(m)

3exp$ i ~V2v!t%1J1
(m)

3exp$ i ~v2V!t%#J JN~ t !.

SubstitutingF(t)5JN(t)w(t), which is the analog of~7!
for the caseN.1, in this equation, we arrive at an equatio
for w(t):

i
]w~ t !

]t
5zJN

21~ t ! (
m51

N

~a†J2
(m)1aJ1

(m)!JN~ t !w~ t !.

~14!

Note that in our transformationsw(0)5C(0). Theoperator

JN
21~ t !expH 2 ivtS a†a1 (

m51

N J0
(m)

2 D J JN~ t !

is unitary and commutes witha†a. Hence for the operato
G5(a†a)m acting in the Fock spaceF we have ^G&
5^F(t), GF(t)&5^w(t), Gw(t)&.

3.2. The averaging procedure

As in the case with a single atom, the right-hand side
Eq. ~14! contains both fast oscillations due to the interact
between the system of atoms and the classical field and
oscillations due to the interaction with the quantized mo
Discarding the fast harmonics, we arrive at the equation

i
]w~ t !

]t
5zK JN

21~ t ! (
m51

N

~a†J2
(m)1aJ1

(m)!JN~ t !L w~ t !.
-

-

n

f

w
.

As before, we examine the caseuv2Vu5u2nu!R. This
condition imposes a restriction on the difference of the f
quencies of the classical and quantized components. Ave
ing yields a nontrivial contribution, and we find that

Hav5r~a† exp$2int%1a exp$22int%! (
m51

N

UmJ0
(m)Um

21 ,

where the matrixUm acts~as matrixU) on themth compo-
nent and does not alter the other components. Note tha
terms on the right-hand side of this expression commu
This Hamiltonian controls the slow evolution of atom
‘‘dressed by the field’’ for the caseN.1. As in the caseN
51, the averaged Hamiltonian is the product of the Fo
operatora† exp$2int%1aexp$22int% by a matrix. Thus, if we
pass to the expansion in the basis of the eigenvectors of
matrix, the averaged Hamiltonian is a set of one-dimensio
Hamiltonians. We expand the desired function in this ba
w(t)5(shs(t)uek1

ek2
¯ekN

&, where the values of the func
tion hs(t) belong to the Fock space,s stands for the set ofN
numbersk1 ,k2 ,...,kN each of which is either 1 or 2, and th
sum is over all such setss ~the are 2N variants in all!. For
eachhs(t) we obtain

i
]hs~ t !

]t
5rSs~a† exp$2int%1a exp$22int%!hs~ t !,

~15!

whereSs5(m51
N (21)km11, with the sum incorporating the

numberskm that comprise the sets. HereSs is the sum over
m of the eigenvalues of the operatorsUmJ0

(m)Um
21 ~the eigen-

values are61). What is important here is that of the enti
sets only the factorSs is present inSs . The solution of the
corresponding initial-value problem withhs(z0)5Qs(z)
has the formhs(z,t)5hs(z,0)ws(z,t), where

ws~z,t !5expH Sszrn

2
~12exp$2int%!1

Ss
2r2

4n2

3~exp$22int%12int21!J QsS z1
Ssr

2n

3~exp$22int%21! D .

If the operatorG5(a†a)m acts only on the Fock com
ponent, we obtain, using the Fock–Bargmann representa

^G&5^w~z,t !, Gw~z,t !&

5(
s

E dzdz̄exp$2zz̄%hs~z,t !Ghs~z,t !.

These relationships make it possible to describe analytic
the solution of any initial-value problem.

3.3. The initial-value problem

Here we discuss the problem corresponding to the
lowing initial data: the quantized mode containsm photons,
all atoms are in a single statevPC2, with v5e1 cosx
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1e2 sinx. Expanding our wave function in the basis d
scribed earlier, we arrive at the following expression for t
corresponding coefficients:

hs~z,0!5~cosx!N2k~sinx!k
zm

Am!
,

where k is the number of ‘‘twos’’ in the sets. Thus,
hs(z,t)5(cosx)N2k(sinx)kws(z,t).

For a given sets, we denote the number of ‘‘twos’’ in
the set byusu. Note that ifusu5k, thenSs5N22k, and that
for a givenk there are (k

N) different sets. Then the expressio
for ws(z,t) can be obtained from~11! by replacingr with
(N22k)r.

For the Fock operatorG5(a†a)m we have

^G&5(
s

E dzdz̄exp{2zz̄} hs(z,t)Ghs(z,t)

5 (
k50

N

(
usu5k

E dzdz̄exp{2zz̄} hs(z,t)Ghs(z,t)

5 (
k50

N S N
k D (cosx)2N22k(sinx)2kE dz dz̄

3exp$2zz̄%ws(z,t)Gws(z,t)u usu5k .

Here we have allowed for the fact that the coefficie
hs(z,t) with the sameSs have the same dynamics. We ca
therefore use the above relationships to calculate^G&.

Let us use these results to find the number of photon
the quantized mode. The corresponding integrals in
above expression were calculated earlier. We have

^n~ t !&5 (
k50

N S N
k D ~cosx!2N22k~sinx!2k

3Fm1~N22k!2r2
sin2 nt

n2 G .
In our calculations we used the simple fact that for any in
ger s,

(
k50

N S N
k D ~N22k!s cos2N22k x sin2k x

5~cosx sinx!N
ds~expy1exp$2y%!N

dys U
expy5tanx

.

The final formula is

^n~ t !&5m1
r sin2 nt

n2 @N~N21!cos22 x1N#. ~16!

Note thatN is the number of atoms. Thus, the emissi
power in the quantized mode, proportional to^n(t)&, is pro-
portional toN2. Formula~16! demonstrate a cooperative b
havior of the atoms in our system typical of superradian
~see the discussion in Ref. 4!. Here, however, in contrast t
ordinary superradiance, the temporal dynamics is indep
dent ofN. The emission power is a periodic function of tim
e

s

in
e

-

e

n-

with the period determined by the difference of the freque
cies of the classical and quantized components.

4. CONCLUSION

Our main findings are the following. If a two-level atom
simultaneously interacts with a classical field and a qu
tized mode, the classical and quantized components
change photons, with the atom acting as a sort of carrier
the photons. If there areN identical two-level atoms simul-
taneously interacting with the classical and quantized mo
and if all the atoms have the same initial state, the pho
exchange process exhibits cooperative properties: the e
sion power is proportional toN2. Here the temporal dynam
ics is independent ofN and is periodic, with the period de
termined by the difference of the frequencies of the class
and quantized components.

Let us recall the essence of the superradiance effect4 If
we have a set of two-level atoms that were initially in t
upper state and interact with a quantized field, the interac
is of a collective nature: the number of photons in the qu
tized mode exhibits a spike whose amplitude is proportio
to N2. If the atoms were to ‘‘discharge’’ the photons ind
pendently, the number of photons in the quantized mo
would be proportional toN. This difference makes it pos
sible to speak of superradiance. For reasons of convenie
the common approach to examining this phenomenon
quantum terms is to study the dynamics of the difference
populations. Then, using the fact that the ‘‘number of ex
tations’’ in such a system is conserved, one can calculate
emission power~see Ref. 4, p. 22!. In our case in addition to
a classical field acting on the atoms there is a quantized fi
Here there is no analog of the law of conservation of
number of excitations. An atom interacting with a classic
field can be interpreted as an atom ‘‘dressed’’ by the fie
Thus, what we are dealing with is an ensemble of ato
‘‘dressed by the field’’ that interact with a quantized fiel
The results of Ref. 3 imply that there is an exchange
photons between the quantized and classical modes. In
course of this exchange, individual atoms interact via
state of the field in the quantized mode. This interaction
an effect on the transfer of photons, with the process bein
a collective nature, and there is a certain analogy betw
this process and interference phenomena. While in ordin
superradiance the source of photons in the mode is the
semble of atoms that has been excited in advance, in our
the source of photons in the quantized mode is the class
field. Here the classical field determines the dynamics of
process, which differs dramatically from the dynamics
ordinary superradiance. The very statement of the prob
provides the means for interpreting the effect of collect
transfer of photons into the quantized mode in an exter
classical field as stimulated superradiance.

Our results were obtained by a method in which a cert
averaging procedure is applied to the initial Hamiltonia
which amounts to using an appropriate version of pertur
tion theory. The method can be applied under the follow
conditions:Rq /R!1 andn/R!1. We construct the leading
term in the asymptotic expansion of the solution in the
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small parameters. The conditions have clear physical me
ing and can be easily realized. The first condition means
the amplitude of the quantized field is much smaller than t
of the classical field, while the second imposes certain
strictions on the difference of the frequencies of the class
and quantum fields. It is precisely in these conditions that
averaged Hamiltonian, which controls the ‘‘slow’’ dynamic
of the system, has a simple structure: it is the product of
one-dimensional Fock operator and a purely matrix opera
This fact makes it possible to describe the solution of
problem in explicit analytical terms. Of course, the to
Hamiltonian of the problems, which includes correction
the averaged Hamiltonian, does not have such a simple s
ture, but its terms with a much more complicated struct
influence the lower-order terms in the asymptotic expans
of the solutions~for details see Refs. 3 and 5!. The structure
of the Hamiltonian simplifies considerably if the Ham
tonian is averaged by a procedure based on the resul
the well-known work of Poincare´, Bogolyubov, and
Mitropol’ski� ~see Ref. 11!.

Thus, we have established the presence of superradi
with rigorous assumptions concerning the initial conditio
imposed on the atoms and the fact that the atoms mus
identical. Of course, in real situations these assumptions
only approximately. There is reason to believe, however,
if the necessary corrections are taken into account~within the
appropriate version of perturbation theory!, the effect will
n-
at
t
-

al
e

e
r.
e
l

c-
e
n

of

ce
s
be
ld
at

manifest itself. An attractive feature of the model discuss
in this paper is that it provides the possibility of calculatin
in explicit analytical terms all the characteristics of emissi
in the quantized mode that are of interest from the pract
viewpoint.

* !E-mail: akaz@phsc2.stu.neva.ru
1!The results for the case where the eigenvalue is21 can be obtained by an

appropriate change of sign.

1A. Ya. Kazakov, Phys. Lett. A260, 229 ~1995!.
2A. Ya. Kazakov, Opt. Spektrosk.81, 549 ~1996! @Opt. Spectrosc.81, 498
~1996!#.

3A. Ya. Kazakov, Quantum Semiclassic. Opt.10, 49 ~1998!.
4A. V. Andreev, V. I. Emel’yanov, and Yu. A. Il’inski�, Cooperative Phe-
nomena in Optics: Superradiation, Bistability, and Phase Transitio,
Nauka, Moscow~1988! @English trans.:Cooperative Effects in Optics,
IOPP, Bristol~1993!#.

5A. Ya. Kazakov, Teor. Mat. Fiz.117, 92 ~1998!.
6C. K. Law and J. H. Eberly, Phys. Rev. A43, 6337~1991!.
7P. Alsing, D.-S. Guo, and H. J. Carmichael, Phys. Rev. A45, 5135~1992!.
8I. V. Jyotsna and G. S. Agarwal, Opt. Commun.99, 344 ~1993!.
9A. M. Perelomov,Generalized Coherent States and their Application,
Springer-Verlag, New York~1986!.
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The scattering of electrons on a standing electromagnetic wave~the Kapitza–Dirac effect! is
considered within the quantum-mechanical and classical descriptions of the motion of electrons.
The mean scattering angle and the distribution function of the electrons after scattering are
found. It is shown that assignment of the initial electronic wave function in the form of a plane
wave in the quantum-mechanical picture gives rise to the characteristic parameterb
5mc2/\v2t ~wherev andt are the frequency of the field and the duration of the interaction!,
which separates the regions of Bragg (b!1) and nearly classical (b@1) scattering.
Whenb@1, the mean scattering angle does not depend on the choice of the description method,
but the distribution functions of the electrons after scattering in the quantum and classical
approaches differ significantly. Whenb!1, both the distribution function and the mean scattering
angle differ. Modification of the quantum theory and assignment of the initial electronic
wave function in the form of a more or less localized wave packet are apparently needed to
eliminate the differences discovered. The results obtained can be used to determine the
dimensions of the wave packet which characterizes the state of electrons in a beam from
experiments on scattering from a standing light wave. ©1999 American Institute of Physics.
@S1063-7761~99!00909-9#
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1. INTRODUCTION

The scattering of electrons on a standing electromagn
wave was first examined by Kapitza and Dirac in 1933.1 In
the ensuing years, this effect~the Kapitza–Dirac effect! was
widely investigated by both theoretical2–4 and experi-
mental5–12 methods. The most convincing experimental d
were obtained in Ref. 10, although they refer to the range
fairly strong fields (;1013W•cm22) and the effect observe
can be interpreted as a generalization of the Kapitza–D
effect to the multiphoton case.2,3

From the quantum standpoint, the Kapitza–Dirac eff
is induced Compton scattering. Since a standing wave
superposition of two counterpropagating traveling waves
identical frequency~v!, the process of induced Compto
scattering in the case under consideration consists of the
sorption of a photon from one of the traveling waves and
induced emission of a photon corresponding to the ot
wave. The energy of the electron clearly does not vary,
its momentum varies by62\k, wherek is the wave vector
of one of the traveling waves. For assignedv and k it fol-
lows from the condition of equality between the energies
the electron before and after scattering that such a proce
possible only for certain directions of the initial momentu
of the electron, rather than for any direction. According
Ref. 1, the stimulated Compton scattering of electrons o
standing wave can be interpreted as the diffraction of the
Broglie wave of an electron on the periodic structure with
periodl/2 ~wherel52pc/v is the wavelength of the radia
4601063-7761/99/89(9)/8/$15.00
tic
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tion field! formed by the planes of equal phase~antinodes! in
the standing wave. The condition just noted, which follo
from the energy and momentum conservation laws and
termines the direction of motion of the incident electron f
which induced Compton scattering on the standing wave
possible, is interpreted as the Wulff–Bragg condition for d
fraction of the de Broglie wave of an electron on a period
lattice.1 If p/22a is the angle between the direction of th
momentum of the incident electronp0 and the wave vectork
~a is the glancing angle of the incident electron!, the Wulff–
Bragg condition has the forma56aBr , whereaBr is the
Bragg angle:

aBr5arcsinS lDB

l D5arcsinS \k

p0
D'

\k

p0
. ~1!

Under typical conditions (v5331015s21 and v05p0 /m
5108 cm•s21) aBr'1023!1. Below we shall assume tha
not only the Bragg angleaBr , but also the initial and final
glancing anglesa anda8, as well as the electron scatterin
angleu5a82a, are small~see Fig. 1!.

As far as we know, a quantum-mechanical description
the electron was used in all the theoretical studies of
Kapitza–Dirac effect which have been performed, and
initial wave function was assigned in the form of a pla
wave. Nevertheless, another approach, viz., the scatterin
a classical electron by the field of a classical standing li
wave, is justified and interesting. Such a formulation of t
problem is examined in the fourth section of this paper. T
© 1999 American Institute of Physics
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fundamental approximations and a general statement of
problem are formulated in Sec. 2. The third section provi
a brief account of the known and some previously unrepo
results of the quantum treatment. A comparison of the res
of the classical and quantum approaches reveals some
nificant differences. A discussion of the reasons for th
differences and the prospects for future studies are give
the fifth section of this article. We confine ourselves in th
paper to the weak-field approximation for the standing wa
and the electron velocity is assumed to be small compa
with the velocity of light.

2. GENERAL FORMULATION OF THE PROBLEM

To fix ideas, let the vectork be directed along thez axis.
Also, let the field of the standing wave be linearly polariz
and the electric field strength vectorE be directed along the
x axis, and let the initial momentump0 of the electron lie in
thexz plane and form an anglea with the direction of thex
axis ~Fig. 1!. For simplicity, we take a planar geometry, i.e
the radiation field does not depend on the coordinatey and
the projection of the momentum of the electron onto
direction of they axis is equal to zero both before and aft
scattering.

In both the quantum and classical descriptions of
motion of an electron, the starting point for formulating t
problem is its Hamiltonian in the external radiation fiel
Assuming that in either case the external electromagn
radiation can be described classically, for a configurat
such as a standing wave we assign the electric field stre
in the form

E5E0~ t !@cos~vt2kz!1cos~vt1kz!#, ~2!

whereE0(t) is the amplitude envelope of the radiation pul
and k5v/c. As is generally known, the Hamiltonian of
nonrelativistic electron in the field~2! has the form

H5
~p2eA~ t !/c!2

2m
, ~3!

whereA(t) is the vector potential corresponding to the ele
tric field strength~2!:

A52
cE0~ t !

v
@sin~vt2kz!1sin~vt1kz!#. ~4!

FIG. 1. Scheme for the scattering of electrons on a standing light wav
the Kapitza–Dirac effect.
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The expression~3! for the Hamiltonian of the electron is
equally applicable to both the quantum and classical desc
tions with the one difference that while in the classical a
proach the momentum of the electronp5p(t) is an ordinary
function, in quantum theory it is the operatorp52 i\¹.

We use the averaged Hamiltonian approximation.2–4 In
this approximation it is assumed that an electron in a fi
undergoes both fast and slow motions~on the scale of the
field period 2p/v), but the amplitudes of the fast changes
the coordinates, momentum, and wave function are sm
compared with the large-scale slow changes. This assu
tion allows us to obtain equations for the slow compone
of the quantities under consideration using simple averag
of the Hamiltonian~3! with respect to time, which gives

H̄5
p21e2A2~ t !/c2

2m
>H01H int . ~5!

HereH05p2/2m is the Hamiltonian of the free electron, an
H int is the Hamiltonian of its interaction with the field, whic
is conveniently written in the form

H int52U~ t !cos~2kz!, ~6!

where U(t) is ponderomotive potential of the electro
which depends slowly on time:

U~ t !5
e2E0

2~ t !

4mv2 . ~7!

It is noteworthy that the problem of electron scatteri
can be treated in both nonstationary and stationary form
tions. If each of the two counterpropagating traveling wav
has the form of short pulses and if the pulse duration is sh
compared with the time needed for an electron to cross
focal region, then, as was pointed out above,E0(t) is the
amplitude envelope of the field pulses. In this case the s
tering problem has an explicitly nonstationary character.
the other hand, if the pulse duration is much greater than
time needed for an electron to cross the focal region, the fi
can be considered stationary, but inhomogeneous:E0

5E0(x). In this case, the interaction with the field
switched on and switched off as an electron traverses
focal region. It can be seen that in both the quantum a
classical descriptions the stationary scattering problem
be reduced to the nonstationary problem under certain, fa
natural assumptions by introducing the ‘‘effective time’’t
5x/v0x and changing the notation fromE0(x)5E0(tv0x) to
E0(t), wherev0x is the projection of the initial velocityv0 of
the electron onto thex axis. For this reason, we confin
ourselves to a treatment of the nonstationary scattering p
lem, bearing in mind the possibility of using the results in t
stationary case.

Below, without explicitly specifying the form of the field
envelopeE0(t), we assume that it is defined by a certa
even function of timef (t), which is such that

f ~ t !5 f ~2t !, f max5 f ~0!51, E0~ t !5E0f ~ t !,

and, in accordance with Eq.~7!,

U~ t !5U0f 2~ t !,

in
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whereE0 andU05e2E0
2/4mv2 are the maximum values o

the electric field strength amplitudeE0(t) and the pondero-
motive potentialU(t). The ultimate purpose of solving bot
the classical and quantum problems will be to calculate
mean electron scattering angle and the angular distribu
function of electrons after scattering.

3. MODEL OF PLANE-WAVE SCATTERING IN THE
QUANTUM THEORY OF THE KAPITZA–DIRAC EFFECT

3.1. Mean deflection angle of electrons in the field of a
standing wave

Using the Hamiltonian~5!, we seek a solution of the
Schrödinger equation in the form of an expansion in pla
waves, which are conveniently normalized to unity in a p
riodicity cube ~its volume isV, and in the final resultsV
→`)

C~r ,t !5
1

AV
(

p
C~p,t !expF i

\ S p•r2
p2

2m
t D G . ~8!

The expansion coefficients of the wave functionC(p,t) sat-
isfy an equation which follows directly from the Schro¨dinger
equation:

i\
]

]t
C~p,t !5(

p8
H int~p82p!

3expF i

\ S p22p82

2m D t GC~p8,t !, ~9!

whereH int(q) is the Fourier transform of the interaction e
ergy ~6!, or, more specifically,

H int~q!5
1

V E dr H int~r !expS iq•r

\ D . ~10!

In the model of plane-wave scattering it is assumed that
fore an electron begins to interact with the field, it is in
state with a definite momentump0 , and the initial condition
for Eq. ~9! has the form

C~p,t→2`!5dp,p0
. ~11!

The expansion coefficients in Eq.~8! C(p,t) are the
probability amplitudes, anduC(p,t)u2 is the probability of
finding an electron in a state with the momentump at the
time t. The mean change in the projection of the electr
momentum onto thez axis as a result of scattering is define
as

^Dpz&5(
p

~pz2p0z!uC~p,t→1`!u2. ~12!

In the approximation of a small change in the electron m
mentum^Dpz&!p0^Dpz& also determines the mean electr
scattering angle

ū[^a82a&5 K arcsinF Dpz

up01Dpu
cos~a!G L
e
n

-

e-

n

-

'
^Dpz&

p0
5(

p

pz2p0z

p0
uC~p,t→1`!u2.

~13!

We find the first-order correctionC(1)(p,t5`) to the
unperturbed probability amplitudeC(0)(p,t)[C(p,t52`)
5dp,p0

directly from Eq.~9! in the weak-field approximation
within first-order perturbation theory with respect to the i
teraction of an electron with the field with consideration
the initial condition~11! and the explicit form of the inter-
action energyH int ~6!:

C(1)~p,`!52
i

\
U0(

6
dp,p062\k~ f 2!6 , ~14!

where (f 2)6 is the Fourier transform of the square of th
dimensionless field envelopef (t)

~ f 2!n5E
2`

`

f 2~ t !exp~ int !dt, ~15!

calculated for values of the Fourier-transformation ‘‘fr
quency’’ n which equal

n65
~p062\k!22p0

2

2m\
'62v

v0

c
~a6aBr!. ~16!

It is easy to see that the ‘‘frequencies’’n6 specify the prox-
imity of the glancing anglea of the incident electrons to the
Bragg angles7aBr . Taking into account that at small value
of n, ( f 2)n;t ~wheret is the duration of the interaction! and
comparingC(1) from Eq. ~14! with C(0) from Eq. ~11!, we
find that the perturbation-theory parameter isU0t/\. The
condition for applicability of the weak-field approximation i
the scattering model under consideration,U0t/\,1, is sat-
isfied, for example, forv5331015s21 andt51 ps and 1 ns
when the radiation intensity I<1010W•cm22 and
107 W•cm22, respectively.

Using Eqs.~13! and ~14!, we can easily find the mea
electron scattering angle in the first order of quantum per
bation theory. Because there are Kronecker deltas in E
~11! and~14!, the glancing angle of the scattered electrons
a beam,a85arcsin(pz/p), can take the valuesa85a and
a8'a62aBr . In diffraction theory the equalitya82a
562aBr is known as the Laue condition.13 The mean scat-
tering angle is

ū5S U0

\ D 2

2aBr$u~ f 2!1u22u~ f 2!2u2%. ~17!

In the special case of a Gaussian envelope,f 2(t)
5exp(2(t/t)2), Eq. ~17! takes the form

ū5S U0

\
t D 2

2paBrH expS 2
n1

2 t2

2 D 2expS 2
n2

2 t2

2 D J .

~18!

The mean scattering angle defined by Eq.~17! or ~18!
depends not only on the parameters of the field pulse~inten-
sity, pulse duration, and envelope shape!, but also on the
direction of the momentum of the electron in its initial sta
p0 or, stated differently, on the glancing angle of the incide
electrona: ū5 ū(a). Plots of this dependence calculated f
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the case of a Gaussian pulse are depicted by the solid cu
in Figs. 2 and 3. The solid curve in Fig. 2 corresponds to
standard models of the Kapitza–Dirac effect, according
which the mean scattering angle is nonzero only if the ini
glancing anglea is close to the Bragg angleaBr . In the
vicinity of these values ofa, the solid curve in Fig. 2 has th
form of narrow peaks with a height6(U0t/\)22paBr and a
width

Da5
1

vtv0 /c
5aBrb!aBr ,

whereb is one of the fundamental parameters of the qu
tum theory of the Kapitza–Dirac effect

b5
mc2/\v

vt
. ~19!

Both the numerator and the denominator of the fraction
the right-hand side of Eq.~19! are large, i.e.,mc2/\v@1
andvt@1, and their ratio~b! can be either large or small. I
v5331015s21, the valueb51 corresponds to a duration o
the interactiont'10210s. The curves in Figs. 2 and 3 we
obtained forb!1 andb@1, which correspond to nanose
ond and picosecond values oft, respectively, whenv53
31015s21. Whenb!1, because of the narrow width of th
peaks on theū(a) curve, the terms in the curly brackets o
the right-hand sides of Eqs.~17! and ~18! do not interfere
with one another. They can be nonzero only individually: t

FIG. 2. Plots ofū(a) determined from the quantum~solid curve! and clas-
sical ~dashed curve! theories forb50.2.

FIG. 3. Plots ofū(a) determined from the quantum~solid curve! and clas-
sical ~dashed curve! theories forb52.
es
e
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e

first terms ata'2aBr and the second terms ata'aBr . As
the duration of the interaction decreases~i.e., asb increases!
the peaks on theū(a) curve broaden, and in the case ofb
@1 the width of each of the peaks becomes considera
greater than the distance between them. Under these co
tions, unlike the case ofb!1, the first and second terms i
Eqs.~17! and~18! can interfere and compensate one anoth
significantly altering the structure of theū(a) curve~Fig. 3!
and rendering it different from the curve corresponding
the usual models of the Kapitza–Dirac effect. As a whole
large values ofb the peaks on theū(a) curve become broad
and shift into the regionuau@aBr . Using this inequality, we
can transform Eqs.~17! and ~18! and expand the Fourie
transforms of the square of the field envelope~15! in powers
of aBr in the definition ofn6 ~16!. Equation~17! thus trans-
formed takes the form

ū'S U0

\
aBrD 2

8v
v0

c

du~ f 2!nu2

dn U
n52avv0 /c

, ~20!

where, as before, (f 2)n is defined by Eq.~15!. In the special
case wheref (t) is a Gaussian function, the correspondi
result can be obtained either from Eq.~20! or directly from
Eq. ~18! using the expansion inaBr :

ū'2S U0t2v

\

v0

c
aBrD 2

16pa expF22S vt
v0

c
a D 2G .

~21!

Unlike ~17! and ~18!, the right-hand sides of Eqs.~20! and
~21! no longer depend on Planck’s constant\ and can be
regarded as the classical limit of the quantum theory of
Kapitza–Dirac effect. The result~21! corresponds to the dot
ted curve in Fig. 3@we recall that the solid curve correspon
to the exact formula~18!#. The principal parameters of th
ū(a) curve specified by~21! are the height of the peak
6 ūmax, their widthDa, and their positions7acl :

ūmax5S U0

mv0c
vt D 2

8pvt
v0

c
expS 2

1

2D ,

Da;acl5
1

2vtv0 /c
5

1

2
baBr@aBr . ~22!

3.2. Angular distribution function of scattered electrons

The mean electron scattering angle is not the only ch
acteristic of the scattering process which can be calcula
either by theoretical means or from experimental data. A
parently, the distribution functionF(u) of the scattered elec
trons with respect to the angleu or the number of electrons
F(u)du detected by the sensor in an assigned directionu in
an interval of angles of widthdu is always measured directl
in an experiment. Within the model of plane-wave scatter
considered above, the number of electrons having a mom
tum in the interval@p,p1dp# is related directly to the ex-
pansion coefficientsC(r ,t) of the electronic wave function
C(r ,t) in plane waves~8!:

dw

dp
5

V

~2p\!3 uC~p,t→1`!u2. ~23!



-
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FIG. 4. Distribution function of scattered elec
trons found from the quantum theory forb!1,
a5aBr ~a!; b!1, a52aBr ~b!; andb@1 ~c!.
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BecauseDpz'p0u and dpz'p0du for small momentum
changes (uDpzu!p0), the probability density~23! can be re-
lated directly to the angular distribution function of the sc
tered electrons

F~u!5
dw

du
5E dp'

dw

dp'd~pz /p0!

5
p0V

~2p\!3 E dp'uC~p,t→1`!u2upz5p0[a1u] ,

~24!

wheredp'5dpxdpy . WhenC(p,t) is calculated from per-
turbation theory and the expressions~11!, ~14!, etc. are used
the Kronecker deltas of the typedp,p8 are expressed in term
of Dirac d functions using relations of the type

dp,p85
~2p\!3

V
d~p2p8!,

and, as a result, we find

F~u!5H 12S U0

\ D 2

@ u~ f 2!1u21u~ f 2!2u2#J d~u!

1S U0

\ D 2

@ u~ f 2!1u2d~u22aBr!1u~ f 2!2u2d

3~u12aBr!#, ~25!

where, as before, the Fourier transforms of the square of
field envelope (f 2)6 are given by Eqs.~15! and ~16!. We
note that the appearance of singularities in the distribu
function is associated with the unboundedness of the inte
tion region with respect toz. Actually the size of this region
can be restricted, for example, by the distance between
mirrors or the length of the focusL. As a result, thed func-
tions in Eq.~25! and below are replaced by functions of
finite, but small widthdu;\/Lp0 .

The distribution function~25! satisfies the following ob-
vious requirements: it is normalized to unity, i.e.,

E F~u!du51,

and the mean scattering angle calculated from~25!,

ū5E uF~u!du,

coincides with the previously derived expression~17!. How-
ever, of course, the distribution function contains consid
ably more information on the properties of the scatter
-

he

n
a-

he

r-
g

process. In particular, usingF(u), we can easily calculate
any moments of the scattering angle, for example, the m
square of the scattering angle

u25E u2F~u!du5S U0

\ D 2

4aBr
2 @ u~ f 2!1u21u~ f 2!2u2#

~26!

etc.
The distribution function~25! is shown in Fig. 4 for

three cases:b!1, a5aBr ~a!; b!1, a52aBr ~b!; and b
@1 ~c!. In the first two cases there is a single additional pe
~in comparison to the principal peak corresponding to
absence of scattering!, which appears only when the Brag
conditiona5aBr or a52aBr is satisfied. In the third case
(b@1) both additional peaks are represented in the distri
tion functionF(u) over a broad range of variation ofa ~out
to uau;acl@aBr), and their heights are commensurate
magnitude~they are exactly equal in height only in the ca
of a50, where we consequently haveū50).

4. SCATTERING OF A CLASSICAL ELECTRON ON A
STANDING WAVE

4.1. Mean scattering angle

Within the classical approach, consideration of the tim
averaged Hamiltonian~5! as a classical Hamilton function
with the potential energyH int ~6! yields a one-dimensiona
Newtonian equation describing the motion of an electron
the field of a standing wave in the directionzik:

m
d2z~ t !

dt2
54kU~ t !sin~2kz~ t !!, ~27!

where U(t) is the ponderomotive potential~7!. We assign
the initial conditions for Eq.~27! at a certain distant momen
in time t0 before the beginning of the interaction with th
field:

z~ t0!5z0 , ż~ t0!5v0z , ~28!

wherez0 is the initial coordinate andv0z is the initial veloc-
ity of the electron parallel to thez axis. At the same time, the
velocity of the electron in the perpendicular direction~paral-
lel to thex axis! is identically equal to a constant, andx(t)
[x01v0x(t2t0). As can easily be proved, Eq.~27! is
equivalent to an integral equation of the form

z~ t !5z01v0z~ t2t0!1
4k

m E
t0

t

~ t2t8!U~ t8!sin~2kz~ t8!!dt8.

~29!
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We seek a solution of Eq.~29! in the weak-field approxima
tion by iterating with respect to the interaction, i.e., in t
form of a series in powers ofU(t):

z(0)~ t !5z01v0z~ t2t0!,

z(1)~ t !5
4k

m E
t0

t

~ t2t8!U~ t8!sin~2kz(0)~ t8!!dt8, ~30!

z(2)~ t !5
8k2

m E
t0

t

~ t2t8!U~ t8!z(1)~ t8!cos~2kz(0)~ t8!!dt8,

etc.
The scattering angleu of a classical particle is deter

mined by the direction of its velocity after scattering. In t
approximation of small scattering angles we can write

u5
ż~ t→`!2v0z

v0
cos~a!, ~31!

where v05(v0x
2 1v0z

2 )1/2 is the total initial velocity of the
electron anda, as before, is the glancing angle before sc
tering ~see Fig. 1!. Using the perturbation formulas~30! for
the coordinatez and the definition~31!, we can easily find
the corresponding explicit expressions for the scatter
angle. In first-order perturbation theory the result of the c
culations has the form

u (1)~ t !5um~ t !sin~2kz02w!, ~32!

where

um~ t !5
4vU0

mv0c U Et0

t

dt8 f 2~ t8!expS 2iav
v0

c DU,
w~ t !52kv0zt02arcsinF E

t0

t

dt8 f 2~ t8!sinS 2av
v0

c
t8D Y

E
t0

t

dt8 f 2~ t8!cosS 2av
v0

c
t8D G . ~33!

In the case of a smooth field envelope assigned by an e
function f (t), Eqs.~33! become significantly simpler whe
t→` and t0→2`:

um5
4vU0

mv0c
u~ f 2!nun52avv0 /c , w52kv0zt0 , ~34!

where, as before, (f 2)n is the Fourier transform of the squa
of the envelopef (t) ~15!.

Under the assigned initial conditions~28!, the scattering
angleu ~31! is uniquely defined in the classical treatment.
spread of scattering angles appears when we proceed
the treatment of the motion of a single particle to the sc
tering of a beam of particles, whose values of the init
parametersz0 and v0z are distributed in some manner. L
v0z5const in the incident beam, and let the values of
initial coordinatez0 be distributed in the periodicity interva
l/2 of the ponderomotive potential~7!. By definition, the
mean scattering angle of the particles in a beam equals
-

g
l-

en

om
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e

ūcl5^u~z0 ,t→`!&z0
5 K ż~ t→`!2v0z

v0
L

z0

5E
0

l/2 dz0

l/2

ż~ t→`!2v0z

v0
. ~35!

It is easy to see that in first-order perturbation theory w
respect toU0 the substitution ofu (1) ~32! into Eq. ~35! fol-
lowed by averaging overz0 gives zero. A nonzero mea
scattering angle appears only in the second order with
spect toU0 . In view of the cumbersome form of the gener
formulas, we present only the expression for the seco
order scattering angle averaged with respect toz0

ucl
(2)5

8k3U0
2

m2v0

d

dn
u~ f 2!nu2U

n52avv0 /c

, ~36!

which is equivalent to the result~20! obtained in the preced
ing section in the classical limit of the quantum theory of t
scattering of a plane wave. It should be noted that in
quantum theory of the scattering of a plane wave, the cla
cal limit ~20! is obtained only in the approximationb@1,
whereb is the parameter defined by Eq.~19!. In the classical
theory of scattering there is no such constraint in the gen
case. It can be stated that the classical theory of scatte
extends the result~20!, which was previously determined a
the classical limit of the quantum theory, to the entire ran
of large and small values ofb. Moreover, while the classica
treatment and the quantum theory of the scattering of a p
wave give the identical results~20! and ~36! in the region
b@1, in the opposite case, whereb!1, the results of the
quantum@see~17! and~18!# and the classical@see~36!# theo-
ries differ significantly, as is clearly seen from Fig. 2, whe
the solid and dashed curves are plots of the forms ofū(a)
obtained from the quantum and classical treatments. It se
to us that this difference between the results of the quan
and classical analyses can be eliminated if the scatterin
wave packets, rather than plane waves, would be consid
in a quantum theory.14–17 In addition, if the width of the
wave packet would be small compared tol/2 and if such
packet would not spread during the interaction timet, the
results of the quantum-mechanical solution of the probl
should differ significantly from those described in the pr
ceding section and should correspond completely to the c
sical treatment at any value ofb. The solution of the quan-
tum problem of the Kapitza–Dirac effect in terms
electronic wave packets will be described separately.

4.2. Classical angular distribution function of scattered
electrons

In a beam of classical electrons with a homogene
distribution with respect to the initial coordinatez0 , the
number of electrons having a value of the coordinatez in the
interval fromz0 to z01dz0 obviously equals

dN~z0!5N0

dz0

l/2
, ~37!
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whereN0 is the total number of electrons in the periodici
interval l/2. Before scattering~at t5t0) all the electrons in
the beam have the same velocityv0 and the same glancin
anglea. In view of the conservation of the number of pa
ticles, after scattering the same number of electrons~37! will
have the velocityv, and their direction will correspond to th
interval of angles@u,u1du#:

dN~u!>N0Fcl~u!du5
N0du

l/2 (
i

Udz0
( i )~u!

du
U

5
N0du

l/2 (
i

1

u~du~z0!/dz0!( i )u
, ~38!

whereFcl(u) is the classical distribution function andz0(u)
is a function, which is the inverse ofu(z0). This function
can be multivalued~see below!, and, for this reason, the sum
over i , where i 51,2 labels the solutions of the equationu
5u(z0) with respect toz0 , appears in the definitions~38!.
The explicit form of u(z0) is given by the equation from
first-order perturbation theory with respect toU0 @Eq. ~34!#
with the addition of a correction term, which takes into a
count the contribution of the second order to the mean s
tering angle~36!:

u5um sin~2kz02w!1ucl
(2), ~39!

whereum andw are defined by Eqs.~34!. Using the defini-
tion ~38! and Eq.~39! for u(z0), we ultimately find the dis-
tribution function Fcl(u) of a beam of classical electron
scattered on a standing wave:

Fcl~u!5
1

pAum
2 2~u2ucl

(2)!2
~40!

in the range of angles2um1ucl
(2),u,um1ucl

(2) andFcl(u)
50 outside that range. The functionFcl(u) ~40! is depicted
in Fig. 5. It clearly displays striking differences from th
distribution function appearing in the model of plane-wa
scattering~Fig. 4!. Therefore, direct measurements of t
distribution of scattered electrons can be a source of in
mation regarding the applicability of a particular model. T
distribution function~40! is normalized to unity. It gives the
correct value of the mean scattering angleū5ucl

(2) ~36!. The
functionFcl(u) is asymmetric: it is shifted as a whole byucl

(2)

relative to u50, and just this asymmetry causes the me

FIG. 5. Distribution function of scattered electrons found from the class
theory ~40!.
-
t-

r-

n

scattering angle to differ from zero. As the field strength
lowered, the width 2um of the localization interval@2um

1ucl
(2),um1ucl

(2)# of the distribution functionFcl(u) ~40! de-
creases proportionally toU0}«0

2, while the degree of its
asymmetry decreases more rapidly, in proportion toU0

2

}«0
4. By virtue of the normalization to unity it hence follow

that in the limit «0→0 the functionFcl(u) transforms into
d(u), which corresponds to the absence of scattering in
infinitely weak field.

5. DISCUSSION OF RESULTS

Let us briefly formulate and discuss the main results
tained.

1. A quantum-mechanical analysis of the scattering of
electron on a standing light wave with assignment of
initial electronic wave function in the form of a plane wav
has revealed two scattering regimes, which differ with
spect to the value of the parameterb ~19!. The regionb
!1 corresponds to the familiar picture of Bragg scatterin
the scattering is effective only if the initial glancing anglea
of the electron is close to the Bragg angle, i.e., ifa52aBr

or a5aBr , and the dependence of the mean electron sca
ing angle ona, ū(a), has the form of a curve with shar
peaks at7aBr ~the solid curve in Fig. 2!. Conversely, the
classical limit of the quantum theory of scattering is realiz
in the regionb@1. In this case the sharp dependence of
scattering angle on the initial glancing angle of the elect
vanishes. The dependence ofū on a is characterized by a
smooth broad curve~the solid curve in Fig. 3!, whose maxi-
mum and minimum correspond to values ofa which signifi-
cantly exceedaBr in absolute value. In the limit of very large
b, the result of the quantum-mechanical calculation in
model of plane-wave scattering ceases to depend on Plan
constant\.

2. A classical calculation of the mean scattering angle
a beam of electrons uniformly distributed with respect to
initial transverse coordinatez0 on a standing wave has bee
performed. The result obtained coincides with the class
limit of the quantum theory of the scattering of an electro
whose initial wave function is assigned by a plane wave. T
classical treatment is not restricted by any assumptions
garding the value of the quantum parameterb. Whenb@1,
the results of the classical and quantum treatments coin
~Fig. 3!. Conversely, whenb!1, these results differ signifi-
cantly, as is clearly seen from Fig. 2.

3. Even more striking differences between the class
and quantum theories are displayed for the distribution fu
tion of scattered electrons found~Figs. 4 and 5!. It should be
concluded from the foregoing statements that direct exp
mental measurements of the angular distribution of scatte
electrons can serve as a basis for determining whether
classical or quantum model of plane-wave scattering m
faithfully describes a given electron beam.

According to the foregoing, whenb!1, conclusions re-
garding the applicability or inapplicability of a particula
model can be drawn on the basis of measurements of
dependence of the mean scattering angle on the initial gla
ing angleū(a). In the quantum model of plane-wave sca

l
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tering, narrow peaks should appear on theū(a) curve ata
57aBr , and in the classical theory they should appear
considerably smaller values ofa, i.e., ata57acl57baBr

~22! ~see Fig. 2!, wherebaBr!aBr .
It seems to us that these differences are caused sp

cally by the use of a plane wave as the initial electronic wa
function in the existing version of the quantum theory. In
alternative version of the quantum theory the initial state
an electron is described in the form of a localized wa
packet.14 If the packet width is smaller than the inhomog
neity scale lengthl/2 and if such a packet does not spre
during the interaction timet, complete agreement betwee
the results of the classical and quantum descriptions sh
be expected. This program has not yet been fully imp
mented and calls for a separate treatment.

In terms of wave packets, the experiment proposed
described above for measuring the angular dependenc
scattered electrons and theū(a) curve can be regarded as
method for determining the wave packet widthDr . If the
measurement results are close to the predictions of the
sical theory, thenDr !l/2. If the measurement results a
close to what follows from the quantum theory of plan
wave scattering, they can be regarded as evidence tha
packet width is very large,Dr @l/2.

The wave packet width for beam electrons is a param
which is usually not manifested in any way and is not d
cussed. Electrons in a beam are treated either as an ense
of classical point objects~with a radius of the order of the
classical electron radiusr 05e2/mc2'2.5310213cm) or as
a quantum plane wave. In this paper, first, attention has b
focused on the fact that these two descriptions are
equivalent, and, second, an experiment has been prop
for drawing conclusions regarding the value of this cryp
parameter of beam electrons, i.e., the quantum wave pa
width, which characterizes their state before scattering.

Finally, let us clarify the specific features of a standi
wave as opposed to other objects on which electron sca
ing can occur. The inhomogeneity scale length in a stand
wave l/2 is of the order of a micron (;1024 cm) in the
optical wavelength range and is thus much greater than in
case of scattering on atomic targets. Just this circumsta
makes it reasonable to pose the question of the scatterin
localized wave packets with a widthDr ,l/2. If targets and
wave packets have small dimensions, the wa
packets ‘‘spread’’ very rapidly, and the conditionDr ,l/2
ceases to hold. For example, a wave packet of ato
size a (;1028 cm) spreads during an atomic time perio
t
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(;10216s). Therefore, when electrons are scattered on
oms, the inequalityDr @a always holds, and the state of th
incident electrons can be approximated by a plane wa
Conversely, wave packets of micron size do not spread f
fairly long time (;1028 s), enabling the realization of th
cases of bothDr .l/2 and Dr ,l/2. In addition, at the
present time there are fully realistic methods for creat
such electronic wave packets in a strictly controlled mann
One of these methods is the multiphoton ionization of ato
by a laser field. In this case the size of the wave pack
formed in the continuum can be determined, for example,
the duration of the pulse of ionizing radiation. The efficien
of such a scheme for forming localized wave packets w
demonstrated in the experiment in Ref. 10, where scatte
of the electrons obtained in such a way on the pondero
tive potential in the focus of a second laser was observ
Just such a scheme may prove to be very convenient
investigating the features of scattering on a standing w
described above.
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Dynamics of plasma bunches in slowly varying external fields
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We use the quasineutrality approximation and the method of moments to analyze a system of
kinetic equations that describes the expansion into vacuum of a plasma bunch generally
containing several species of charged particles. For a two-component collisionless plasma in slowly
varying external potential fields, we obtain a complete description of the dynamics of the
matrices of centered second moments of the particle velocity distribution functions. We construct
a new class of self-similar solutions of the kinetic equations in which the moments of the
distribution functions act as parameters. These solutions are found to be valid for any mass and
energy ratios of the constituent particles and generally describe the dynamics of a plasma
bunch that is asymmetric in space. For a symmetric bunch we also find an analytical solution
corresponding to the presence of eddy electric currents in the plasma, while for an
asymmetric bunch we find that interparticle collisions, which give rise to anisotropy in the
process of expansion of plasma into vacuum, play an important role. The method developed in the
paper is used to study the acceleration and compression of a plasma bunch in time-
dependent magnetic fields with a mirror configuration. ©1999 American Institute of Physics.
@S1063-7761~99!01009-4#
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1. INTRODUCTION

In the absence of external fields, the dynamics of plas
in vacuum is quite obvious. A plasma bunch that was i
tially localized in space expands without limit and cools o
But when an external magnetic field is switched on, t
bunch can be compressed and accelerated as a whole.
processes are of substantial interest to astrophysicists
researchers working in the field of controlled fusion. An im
portant element in such investigations is the detailed stud
the dynamics of the bunch in free space. Note that expan
into vacuum of a semibounded plasma, studied earlier
many researchers,1–5 and the results of generalizing this on
dimensional problem to the three-dimensional case6,7 actu-
ally do not provide a correct description of the free dynam
of a plasma bunch. The problem is that the models use
the above studies presupposed the existence of an unlim
supply of energy and particles in the plasma, which to a g
extent corresponds to a situation in which continuously
erating sources are present in a certain region in space.
expansion of a bounded bunch of plasma into vacuum
accompanied by the plasma cooling off in space, a proc
that earlier was accounted for only in the phenomenolog
hydrodynamic approach.8 However, recently real advance
in this field of research have been achieved,9–14which finally
made it possible to construct, for two-component plasmas
analytical solution of the collisionless kinetic equations
the self-consistent field generated by charge separation.

In the present paper we analyze in detail these solut
and generalize some of the results to the case of a d
plasma in which interparticle collisions play an importa
role and to the case of a multicomponent plasma with p
ticles of different species. The method we develop is use
4681063-7761/99/89(9)/9/$15.00
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construct a solution for the Vlasov kinetic equations for
plasma bunch in slowly varying external potential fields a
ing on the plasma particles. The results are used to study
acceleration and compression of a plasma bunch in ti
dependent magnetic fields with a mirror configuration.

2. STATEMENT OF THE PROBLEM: THE STARTING
EQUATIONS

The dynamics of a plasma bunch in external poten
fields is described in the general case by a system of kin
equations for the velocity distribution of the particles of ea
species,f a(v,r ,t):

] f a

]t
1~v•“ r ! f a2

Zae

ma
~“ rw•“v! f a

2
1

ma
~“ rUa•“v! f a5I a ,

“ r[(
k51

3

ek

]

]r k
, “v[(

k51

3

ek

]

]vk
, ~1!

wheree is the absolute value of the elementary charge,Za

andma are the charge number and mass of a particle of
a species,w(r ,t) is the potential of the electric field gene
ated in the course of plasma expansion due to charge s
ration,Ua(r ,t) is the potential of the external field acting o
the particles of thea species,I a is the respective collision
integral,r k andvk are the components of the radius vector
and the velocity vectorv, and ek is the unit vector whose
direction coincides with that ofr k . Below we limit ourselves
to elastic collisions between the plasma particles, assum
all along that the collision integral does change the density
© 1999 American Institute of Physics
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particles of each species, the momentum density in
plasma, and the density of the plasma kinetic energy, i.e

E I a dv50, ~2!

(
a

maE vkI adv50, k51,2,3, ~3!

(
a

(
k51

3 E mavk
2I adv50. ~4!

In analyzing the expansion of a dense plasma we
a
th
n

it
o
io
r
e
re

ra

a
f

ry

f
ra
e

n

find the potentialw of the field generated in the course
plasma expansion due to charge separation from
quasineutrality condition

(
a

Zana50, na~r ,t ![E f a~v,r ,t !dv, ~5!

wherena(r ,t) is the density of particles of speciesa. In the
simplest case, when there are no eddy currents in the pla
Eq. ~5! makes it possible to derive an explicit expression
the strength of the ambipolar electric field in terms of t
particle distribution functions:
e
]w

]r j
52

(
a

(
k51

3
]

]r k
E vkv jZa f adv1(

a

Za

ma

]Ua

]r j
E f a~v,r ,t !dv

(
a

Za
2

ma
E f a~v,r ,t !dv

. ~6!
he
Plugging~6! into the initial kinetic equations, we arrive at
system of integro-differential equations. Below we seek
solutions to these equations with fixed velocity distributio
of the particles of each species.

Using the quasineutrality approximation~5!, we derived
in Ref. 14 a self-similar solution of collisionless (I a50)
Vlasov kinetic equations~1! describing the free (Ua50) ex-
pansion into vacuum of a two-component plasma bunch w
arbitrary ratios of particle masses and energies of rand
motion. Here the laws we found that govern the expans
process are of a universal nature and can be derived fo
bitrary initial velocity distribution functions, including thos
that do not correspond to a self-similar solution but ag
with the quasineutrality condition~5!. We believe that this
fact plays an important role in the analysis of more gene
cases of plasma expansion into vacuum~i.e., cases that allow
for interparticle collisions! and of the dynamics of a plasm
bunch in external fields. Hence we begin with the results o
general study by the method of moments of Eqs.~1!, ~5!, and
~6!, which will then be used to obtain exact solutions.

3. THE METHOD OF MOMENTS

We define the operation of averaging of an arbitra
function C(v,r ,t) over the distribution functionf a as the
calculation of the functional

^C&a[
1

Na
E E C~v,r ,t ! f a~v,r ,t !dv dr , ~7!

where Na[** f a(v,r ,t)dvdr is the conserved number o
particles of thea species. Then, because of the quasineut
ity of the plasma@the condition~5!#, the following relation-

ships hold for every functionC̃(r ,t) that does not explicitly
depend on the particle velocityv:

(
a

ZaNa^C̃~r ,t !&a50,
e
s

h
m
n

ar-

e

l

a

l-

(
a

ZaNa(
k51

3 K vk

]C̃

]r k
L

a

5(
a

ZaNaF d

dt
^C̃&a2 K ]

]t
C̃L

a
G50. ~8!

On the other hand, for the elastic–collision model~2!–~4! we
can easily find that

E E C̃~r ,t !I adv dr50,

(
a

MaE E vkC̃I adv dr50, k51,2,3, ~9!

(
a

Ma(
k51

3 E E vk
2C̃~r ,t !I adv dr50,

whereMa[maNa is the total mass of thea component of
the plasma.

In the absence of external fields (Ua50), by combining
~8! and ~9! with the kinetic equations~1! we can derive dif-
ferential relationships that link the various moments of t
particle distribution functions:

d^r k&a

dt
5^vk&a , ~10!

(
a

Ma

d^vk&a

dt
[M

d2

dt2
Rk50, ~11!

d^ r̃ kr̃ j&a

dt
5^ r̃ kṽ j&a1^ṽkr̃ j&a , ~12!

d

dt (a Ma^ r̃ kṽ j&a5(
a

Ma^ṽkr̃ j&a , ~13!
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d

dt (a (
k51

3

Ma^ṽk
2&a50, ~14!

whereM[(aMa is the total mass of the plasma, theRk(t)
5(ama^r k&a are the coordinates of the center of mass of
plasma bunch, withma[Ma /M , and ther̃ k[r k2Rk and
ṽk[vk2dRk /dt are the components of the radius vector̃
and the velocity vectorṽ in the reference frame in which th
center of mass of the bunch is at rest.

In the general case of a multicomponent plasma, the
tem of equations~10!–~14! for the moments may be open
Nevertheless, such a system possesses a number of non
integrals, which makes it possible to determine the evolut
of the characteristic size of the plasma bunch and the en
of the thermal~chaotic! motion of the constituent particles
Indeed, let us define the characteristic sizel of the plasma in
terms of centered second moments:

l 2~ t ![(
a

(
k51

3

ma^ r̃ k
2&a . ~15!

Then from ~12!–~14! it follows that the dynamics ofl 2(t)
~i.e., the expansion of the plasma! is completely determined
by the initial values of the second moments of the distrib
tion functionsf a :

d2l 2

dt2
52(

a
(
k51

3

ma^ṽk
2&a[4

W

M
5const, ~16!

dl2

dt
52(

a
(
k51

3

ma^ r̃ kṽk&a , ~17!

whereW is the total kinetic energy of motion of the plasm
particles in the center-of-mass reference frame.

The cooling of the plasma during expansion is describ
by formulas that follow directly from Eqs.~12! and ~13!:

(
a

(
k51

3

MaK S ṽk2
r̃ k

l

dl

dtD
2L

a

52W2M S dl

dtD
2

. ~18!

Here the right-hand side decreases with time in inverse
portion to l 2, which follows from the first integral of Eq
~16!,

F2W

M
2S dl

dtD
2G l 2~ t !5const. ~19!

Thus, the thermal velocity spread of particles of each spe
in relation to the ‘‘hydrodynamic’’ velocity

u5
dR

dt
1

r2R

l

dl

dt
,

whereR is the vector with componentsRk , decreases in the
course of the expansion in inverse proportion to the sizel of
the plasma bunch. Accordingly, we can state that after a l
time has passed@and the characteristic scalel (t) becomes
much larger than the initial scalel (0)], the expansion pro-
cess sets into a self-similar regime with the hydrodynam
velocity u. In this regime all spatial scales for each plasm
component increase in proportion tol :
e

s-

vial
n
gy

-

d

o-

es

g

c
a

na~r ,t !5
l ~0!

l ~ t !
Ña S r2R

l ~ t ! D . ~20!

Unfortunately, in the general case of a multicompone
plasma, Eqs.~12!–~14! do not describe the variation of th
second spatial momentŝr̃ kr̃ j&a , i.e., the evolution of the
shape of the plasma bunch and the relative distribution
this bunch of particles of different species remain undefin
However, if the plasma has only two components, it is ob
ous that in view of the quasineutrality condition~5! the ma-
trices of the second spatial moments are the same for the
species of the oppositely charged particles. Here Eqs.~16!–
~19! provide a fairly complete description of the expansi
into vacuum of, say, a spherically symmetric plasma bun
In the simplest case of expansion of a collisionless tw
component plasma in the absence of electric currents,
when

(
a51,2

ZaE vkf a dv50.

the matrices of the mixed second moments^ r̃ kṽ j&a are the
same for the two particle species. Hence the system of e
tions for the second moments is found to be closed:1!

d^ r̃ kr̃ j&
dt

5^ r̃ kṽ j&1^ṽkr̃ j&, ~21!

d^ r̃ kṽ j&
dt

5(
a

ma^ṽkṽ j&a , ~22!

d

dt (a ma^ṽkṽ j&a50. ~23!

As a result, plasma expansions along the different coordin
axis are independent of each other, i.e., for the scalesl k(t)
( l k

2(t)[^ r̃ k
2&) we can write equations similar to Eqs.~16! and

~17!:

d2l k
2

dt2
52 (

a
ma^ṽk

2&a[4
Wk

M
5const, ~24!

dlk
2

dt
52^ r̃ kṽk&, ~25!

where Wk is the kinetic energy of motion of the plasm
particles along the direction ofr̃ k in the center-of-mass ref
erence frame. Accordingly, the cooling of the plasma, i
the decrease in the energy of chaotic motion of the partic
along one coordinate axis is independent of the cooling al
the other axes:

l k
2~ t !(

a
maK S ṽk2

r̃ k

l k

dlk
dt D

2L
a

[ l k
2~ t !(

a
maVka

2 ~ t !5const.

~26!

Note that in this simple example of a two-compone
collisionless ‘‘current-free’’ plasma, the method of momen
can also be successfully employed in the study of the dyn
ics of a plasma bunch in slowly varying external potent
fields. As long as the bunch size is small compared to
characteristic gradient lengths of theUa , the later can be
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represented in the form of power series in the spatial v
ables r̃ k in the neighborhood of the center of mass of t
plasma bunch,r5R. Keeping only terms whose order is n
higher than the second inr̃ k , we can use~1! and~5! to obtain
equations@that replace Eqs.~11!–~14!# for the moments of
the particle-velocity distribution functions:

d2Rk

dt2
5ak , ~27!

d^ r̃ kr̃ j&
dt

5^ r̃ kṽ j&1^ṽkr̃ j&, ~28!

d^ r̃ kṽ j&
dt

5(
a

ma^ṽkṽ j&a2(
i 51

3

bi j ^r i r̃ k&, ~29!

d

dt (a ma^ṽkṽ j&a52(
i 51

3

$bi j ^ r̃ i ṽk&1bik^ r̃ i ṽ j&%. ~30!

Here the componentsak(t) of the acceleration vector and th
matrix elementsbk j(t) can be expressed in terms of the fir
and second derivatives, respectively, of the effective po
tial U(r ,t)[(aNaUa(r ,t) with respect to the coordinates
the point coinciding with the center of mass of the plas
bunch:

ak[2
1

M

]U

]r k
U

r k5Rk

, ~31!

bk j[
1

M

]2U

]r k]r j
U

r k5Rk ,r j 5Rj

. ~32!

Equations~27!–~30! clearly show that the gradient of th
effective potential determines the law of motion of the cen
of mass of the plasma bunch and has no effect on the
namics of the characteristic scales of the plasma. The sp
structure of the bunch depends only on the second der
tives of the external fieldU. Hence the acceleration of th
plasma bunch and the expansion of the bunch can be
trolled independently. In particular, if initially all the matr
ces of the second moments of the plasma-particle velo
distribution functions are diagonal in a certain referen
frame and, at the same time, forkÞ j the second derivative
of the effective potential are zero (bk j50), the expansion of
the bunch along one axis is independent of that along
other axes and is described by the system of equations

d2l k
2

dt2
12bkk~ t !l k

2~ t !54
Wk

M
, ~33!

d

dt

Wk

M
52

1

2
bkk~ t !

dlk
2

dt
. ~34!

This system of equations has a first integral similar to~19!:

F2Wk

M
2S dlk

dt D
2G l k

2~ t ![(
a

ma@Vka~ t !l k~ t !#25const,

~35!

where by analogy with~26! we have usedVka(t) to denote
the mean-square velocity of the thermal motion of the p
i-

n-

a

r
y-
ial
a-

n-

ty
e

e

r-

ticles of thea species along the direction specified byr̃ k .
Thus the system of equations consisting of~33! and ~34!
reduces to a single second-order equation:

l k
3~ t !

d2l k

dt2
1bkk~ t !l k

4~ t !5(
a

ma@Vka~ t !l k~ t !#25const.

~36!

According to this equation, when the second derivatives
the external-field potential are positive (bkk.0), there is a
limit to the bunch expansion. Forbkkl k

2.(amaVka
2 the char-

acteristic plasma scales may even decrease.
Note that the condition for localization of a plasm

bunch (bkk.0) coincides with the condition for stable acce
eration of the plasma particles in the traveling wave of
effective potentialU(r ,t). Hence, using the traveling wav
of the external field, we can ensure the acceleration of
plasma bunch in the ‘‘self-focusing’’ regime,’’ with the
bunch remaining localized in space.

Thus, the method of moments can be effectively used
solve problems of the dynamics of a plasma bunch in slo
varying external potential fields. In the simplest case o
collisionless two-component ‘‘current-free’’ plasma, th
method yields a closed system of equations for the elem
^ r̃ kr̃ j& of the matrix of centered second moments, and
analysis of the solutions of this system for arbitrary init
conditions does not present serious difficulties. On the ot
hand, it is possible to obtain a solution of the kinetic equ
tions in this case~the specific dependence of thef a on their
arguments! only for a much narrower class of initial cond
tions corresponding to the self-similar nature of the plasm
bunch parameters. Nevertheless, it would be interesting
find such a solution, since it would provide detailed inform
tion about the evolution of the plasma.

4. SELF-SIMILAR SOLUTIONS OF THE KINETIC EQUATIONS
FOR A TWO-COMPONENT PLASMA

In this section we discuss examples of analytically so
tions of the system of two kinetic equations in the quasin
tral approximation. Such solutions are obtained under con
tions corresponding to the above case of a two-compon
collisionless ‘‘current-free’’ plasma~Sec. 4.1! and in the
presence of eddy electric currents in the plasma~Sec. 4.2!. In
addition, in Sec. 4.3 we study the example of expansion i
vacuum of a bunch of dense plasma, in which interparti
collisions~or other processes responsible for isotropizing
particle distribution in the velocity space! play an important
role.

4.1. Collisionless ‘‘current-free’’ plasma

The determination of the analytical solutions of the k
netic problem of the dynamics of a two-component collisio
less plasma bunch in external fields is based on the meth
developed in Refs. 11–14, where the self-similar expans
of a plasma bunch in vacuum was studied (Ua50). It was
found that in slowly varying external potential fields whe
the matrixbk j of the second derivatives of the external-fie
potential is diagonal in the reference frame in which the c
ter of mass of the plasma bunch is at rest, the form of
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self-similar solutions of the kinetic equations coincides w
the exact solution in free space. All differences are d
solely to the nature of the time dependence of the first
second moments, which enter into thef a as parameters:

f a~v,r ,t !5laF~G1
(a) ,G2

(a) ,G3
(a)!, a51,2,

Gk
(a)5S r̃ k

l k~ t ! D
2

1S ṽk2ũk~ r̃ k ,t !

Vka~ t ! D 2

, k51,2,3, ~37!

r̃ k[r k2Rk~ t !, ṽk[vk2
dRk

dt
,

whereF is an arbitrary function of its arguments, thela are
normalization constants, theRk(t) are the coordinates of th
center of mass of the plasma bunch in the laboratory re
ence frame, which vary according to~27!, the l k(t)[A^ r̃ k

2&
are the scales of spatial localization of the plasma bunch,
ũk( r̃ k ,t)5 r̃ k^ r̃ kṽk&/^ r̃ k

2& are the components of the avera
~hydrodynamic! particle velocityũ(r ,t) in the plasma-bunch
center-of-mass reference frame, and the quantitiesVka

2 (t)
[^( ṽk2ũk)

2&a describe the thermal spread of the partic
of thea species in their velocities along each direction spe
fied by r̃ k . Here the dynamics of all the moments in~37! is
determined by Eqs.~36!2! and Eq.~25! from Sec. 3, and in
the integral~35! each of the two terms separately is a co
stant

Vka~ t !l k~ t !5const. ~38!

The solutions thus constructed are valid for any m
and initial-kinetic-energy ratios of the particles of the diffe
ent species and describe the dynamics of a collision
plasma bunch characterized by an arbitrary initial veloc
distribution and, in general, by an anisotropic distribution
the plasma density in space.

Our results show that the average velocitiesVka of the
thermal motion of particles of the different species chan
according to the adiabatic law~38!, i.e., are inversely pro-
portional to the corresponding size of the plasma bunch.
hydrodynamic velocityũ(r ,t) is the same for both compo
nents.

As the plasma freely expands into vacuum (Ua50), the
thermal energy of the particles gradually transforms into
energy of their collective motion. Depending on the ratio
the initial velocitiesVka , the ambipolar electric field acce
erates particles with positive charge or with negative cha
More precisely, the average kinetic energy of the partic
that initially had a lower thermal velocity increases. Accor
ingly, the average kinetic energy of the particles belonging
the other fraction decreases. The characteristic time of
ergy exchange between the plasma components is d
mined by the time it takes sound to propagate~with a speed
equal toA2Wk /M ) over distances of order the initial sca
l k(0) of localization of the density of the plasma bun
along the respective axis.

A good way to illustrate the energy transfer is to wr
the integral velocity distribution of the particles of speciesa,
fa( ṽ,t)5* f a( ṽ, r̃ ,t)d r̃ , which at each moment in time re
main similar to the initial distributions:
e
d

r-

he

s
i-

-

s
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y
f

e

e

e
f

e.
s
-
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n-
er-

fa~ v̂,t !5
1

uZau
f0 S M ṽx

2

2Wxa
,

M ṽy
2

2Wya
,

M ṽz
2

2Wza
D

3)
k51

3 A M

2Wka
, ~39!

2Wka

M
5@Vka~ t !#21@ l̇ k~ t !#2, ~40!

where the functionf0 is determined by the initial velocity
distribution of the particles. Equation~39! states that in the
case of self-similar expansion of a two-component plas
into vacuum the energy spectrum is conserved.

Returning to the solution~37! of the problem of the dy-
namics of the plasma bunch in external fieldsUa , we note
that in fact it cannot provide an absolutely exact descript
of the process we are interested in. The thing is that
consequence of the self-similar nature of the plasma mo
is the quadratic dependence of the potential of the ambip
electric field,w, on the spatial coordinatesr̃ k , which corre-
sponds to the presence in space of a homogeneous ele
charge density:

ew~ r̃ ,t !5 S (
a

1

Ma
D 21

(
a

1

ZaNa

3F (
k51

3 Vka
2 ~0!l k

2~0!

2l k
4~ t !

r̃ k
22

1

ma
UaG . ~41!

This means that generally the adopted model of
quasineutral dynamics of the plasma bunch is meaningles
regions where the plasma density is low. Nevertheless, f
dense plasma in which the frequenciesvpa

[4pZa
2e2na/ma of Langmuir oscillations satisfy the in

equality

(
a

vpa
2 @(

a

Za

uZau (k51

3 F Vka
2

l k
2~ t !

2
1

ma

]2Ua

]r k
2 G , ~42!

the quasineutrality condition~5! is violated only at the pe-
riphery of the plasma structure, far from the region where
bulk of the plasma is localized. In the presence of fie
accelerating the plasma, the validity of the quasineutra
approximation requires that one more condition be met@in
addition to ~42!#: the electric field strength at the center
mass of the bunch must be small compared to the chara
istic value of the field generated by one of the plasma co
ponents separately. In general, such a condition place
upper bound on the possible acceleration of the bunch.

Note that within our solution in the case of free expa
sion of a plasma into vacuum (Ua50), the right-hand side
of ~42! decreases as a function of time faster than the pla
density~because of the cooling of the plasma!. Hence, with
the passage of time the quasineutral description of the ex
sion of the plasma bunch remains valid in the plasma loc
ization region.

4.2. Collisionless plasma with eddy electric currents

The above class of self-similar solution of the proble
of expansion of a two-component plasma bunch into vacu
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corresponds to the case in which there are no currents in
plasma. Such a restriction guarantees that the system
equations~12!–~14! in the second moments of the distrib
tion functions is closed. However, as noted in Sec. 3,
requirement is not needed if the plasma possesses a ce
space symmetry. In particular, for a spherically symme
plasma bunch the second spatial moments^ r̃ kr̃ j&a can be
written

^ r̃ kr̃ j&a5
1

3
l 2dk j , dk j5 H1, k5 j ,

0, kÞ j , ~43!

wherel 2 is determined by Eqs.~16! and~17! irrespective of
whether there are eddy currents in the plasma. Here the
diagonal matrix elementŝr̃ kṽ j&a of the mixed second mo
ments, which generally do not coincide for particles of d
ferent species, are constant in time in view of conservatio
the angular momentum of each component of the plasm

^ r̃ kṽ j&a1^ r̃ j ṽk&a5
1

3
dk j

dl2

dt
, ~44!

^ r̃ kṽ j&a2^ r̃ j ṽk&a5const. ~45!

The symmetry also makes it possible to drop the requ
ment that there must be no eddy currents in the plasma w
we construct analytical solutions of the kinetic equations.
instance, the functions

f a~v,r ,t !5Fa~Gr
(a) ,J12,J23,J31!, ~46!

Gr
(a)5

r̃2

l 2~ t !
1

~ ṽ2w̃!2

Va
2~ t !

, Jk j[2Jjk5 r̃ kṽ j2 r̃ j ṽk ,

are solutions of the Vlasov collisionless kinetic equations
arbitrary functionsFa if l (t) satisfies Eq.~16!,

Va~ t !l ~ t !5const, w̃5 r̃
1

l ~ t !

dl

dt
,

and the potential of the ambipolar electric field is determin
by the formula

ew~ r̃ ,t !5S (
a

1

Ma
D 21S (

a

Va
2~ t !

ZaNa
D r̃2

2l 2~ t !
. ~47!

Here the quasineutrality approximation~5! partially limits
the ambiguity in selecting the functionsFa :

(
a

E ZaFa~v,r ,t !dv50. ~48!

The presence of theJk j in the solution~46! makes it possible
to describe the expansion of a plasma bunch with eddy
rents. Note that althoughw is spherically symmetric, the spa
tial distribution of the plasma density may be asymmetric

Another example of free expansion into vacuum of
plasma with an electric current is the case of an axisymm
ric plasma bunch, where the plasma density distribution
the potentialw of the ambipolar electric field depend only o
two spatial variables, the longitudinal coordinatez̃ along the
symmetry axis and the distancer[Ax̃21 ỹ2 from the axis.
Here the analytical solution in the center-of-mass refere
frame is
he
of

is
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c

ff-
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-
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r

r

d
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d

e

f a~v,r ,t !5laFa~Gr
(a) ,Jz ,Gz

(a)!,

Gr
(a)5

r2

l r
2~ t !

1S ṽx2 x̃l̇ r / l r

Vra~ t !
D 2

1S ṽy2 ỹ l̇ r / l r

Vra~ t !
D 2

,

l̇ r[
dlr
dt

, ~49!

Jz5 x̃ṽy2 ỹṽx , Gz
(a)5S z̃

l z~ t ! D
2

1S ṽz2 z̃l̇ z / l z

Vza~ t !
D 2

,

l̇ z[
dlz
dt

, Vra~ t !l r~ t !5const, Vz~ t !l z~ t !5const,

where l z(t)[^ z̃2& and l r
2[^r2& are the corresponding di

mensions of the plasma bunch, which satisfy Eq.~24!;
Vza(t) andVra(t) are the average thermal velocities of pa
ticles of thea species, defined as in~37!; and theFa are
arbitrary functions, which, by virtue of quasineutrality, mu
meet the integral condition~48!. The potential distribution is
given by the formula

ew~ r̃ ,t !5 S (
a

1

Ma
D 21

(
a

1

ZaNa
FVza

2 ~ t !

2l z
2~ t !

z̃21
Vra

2 ~ t !

2l r
2~ t !

r2G .

~50!

4.3. Effect of processes responsible for isotropization of the
particle velocity distribution function on the expansion
of a plasma bunch into vacuum

The solution of the problem of expansion into vacuu
(Ua50) of a two-component collisionless ‘‘current-free
plasma, Eq.~24!, shows that when the initial velocity distri
bution of the particles is symmetric~when Wk5Wj and
Vka5Vj a for kÞ j ), the possible initial anisotropy in the
spatial distribution of the plasma (l k(0)Þ l j (0) for kÞ j ) dis-
appears as the plasma bunch expands:l k(t)/ l j (t)→1 as t
→`. At the same time, Eq.~38! suggests that the particl
velocity distribution becomes locally anisotropic with th
passage of time, so thatVka(t)/Vj a(t)→ l k(0)/l j (0) as t
→`. This is possible only if there are no collisions or oth
processes3! that facilitate the restoration of local isotropy o
the distribution functions. The inverse of the process of
pansion of dense plasma into vacuum is when the inter
ticle collisions maintainVka(t)5Vj a(t) at each moment in
time ~for all values ofk and j ). In this limit, assuming that

Vka
2 ~ t !5

1

3 (
j 51

3

Vj a
2 ~ t ![

1

3
Va

2~ t !, ~51!

we can close the system of equations~12!–~14! in the mo-
ments^ r̃ k

2&[ l k
2 :

d2l k
2

dt2
52F(

a

maVa
2~ t !

3
1S dlk

dt D
2G , ~52!

(
a

maVa
2~ t !1 (

k51

3 S dlk
dt D

2

5
2W

M
5const. ~53!

Integration of Eqs.~52! and ~53! yields the adiabatic law of
plasma cooling:
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F )
k51

3

l kG2/3

(
a

maVa
2~ t !5const. ~54!

Here the expansion of plasma is determined by the equat

l k~ t !
d2l k

dt2
5

1

3 (
a

maVka
2 ~ t !, ~55!

whose analysis shows that the evolution of the scalesl k(t)
strongly depends on the initial ratio of these scales. In p
ticular, if at t50 one of the characteristic dimensions of t
plasma bunch is small compared to the other dimens
@e.g.,l x(0)! l y(0),l z(0)], with the passage of time the the
mal energy of the plasma is transformed primarily into t
energy of collective~hydrodynamic! motion of the particles
in this specific direction (x). Accordingly, the expansion o
the plasma proceeds in the same direction:

dlx
dt

@
dly
dt

,
dlz
dt

; l x~ t !@ l y~ t !,l z~ t ! as t→`.

The self-similar solutions of the kinetic equations~1! in
this case of a dense plasma can be written15,16

f a~r ,v,t !5laFS (
k51

3 F r̃ k
2

l k
2~ t !

1
3~ ṽk2ũk!

2

Va
2~ t ! G D ,

ũk~ r̃ k ,t !5
r̃ k

l k

dlk
dt

, Va~ t !F )
k51

3

l k~ t !G2/3

5const, ~56!

whereF is an arbitrary function, and thela are normaliza-
tion constants.

If collisions ensuring that condition~51! is met do not
bring about effective exchange of thermal energy betw
the particles of the different species, the functionsVa(t) can
be assumed to be independent for each component o
plasma. Such a situation is realized, e.g., in the expansio
electron–ion plasma with cold heavy ions:me!m i and
m iVi

2(0)!meVe
2(0) ~see Refs. 15 and 16!. In the opposite

limiting case, where as a result of collisions thermal equil
rium between particles of the different species sets in,
must assume that

maVa
2~ t !5

1

2 (
b51,2

mbVb
2~ t !.

Here the velocity distribution of the particles corr
sponds to the Maxwellian distribution, i.e.,F(G)
}exp(2G).

5. DYNAMICS OF A COLLISIONLESS TWO-COMPONENT
PLASMA BUNCH IN A SLOWLY VARYING MAGNETIC
FIELD

The results of the analysis of the dynamics of collisio
less two-component plasma in external slowly varying p
tential fieldsUa may serve as a basis for studying the pro
lem of acceleration and compression of a plasma bunch
magnetic field with a magnetic-mirror configuration:

B~r ,t !5B0~z,t !ez1Br~r,z,t !
ex1ey

&
. ~57!
ns

r-

s

n

he
of

-
e

-
-
-
a

Here r2[x21y2, andB(r ,t) is the induction vector of the
axisymmetric magnetic field directed mainly along the sy
metry axisz:

uB0~z,t !u@uBr~r,z,t !u, Br~r,z,t !52
r

2

]B0

]z
.

We assume that the magnetic field is large in magnitu
and slowly varies in space and time:

vat@1, Uv̇a

va
2U!1, U]va

]z U!Uva

l z
U,

where

va[
Zae

mac
B0~z,t !

is the cyclotronfrequency of particles of speciesa in the
magnetic field,c is the speed of light,t is the characteristic
expansion time of a plasma bunch, andl z is the longitudinal
plasma size. Then the transverse motion~in relation to the
direction of the magnetic field! of the particles can be de
scribed in the adiabatic approximation, according to wh
the distribution function for particles of thea species aver-
aged over the period of cyclotron rotation is

f a5Fa~ t,z,vz ,Ja ,Ga!,

Ga[va~x21y2!12~xvy2yvx!, Ja5
vx

21vy
2

va
, ~58!

whereFa satisfies the kinetic equation

]Fa

]t
1vz

]Fa

]z
2

Zae

ma

]w

]z

]Fa

]vz
2

1

2

]va

]z
Ja

]Fa

]vz
50.

~59!

In the particular caseFa(t50)5Fa0(z,vz)d(Ja2Ja0),
Ja05const, by integrating Eq.~59! over the transverse coor
dinates and velocities the problem can be reduced to
one-dimensional analog of the problem of the dynamics o
plasma bunch in slowly varying external fields:

]Fa

]t
1vz

]Fa

]z
2

Zae

ma

]w

]z

]Fa

]vz
2

1

ma

]Ua

]z

]Fa

]vz
50,

NaFa~ t,z,vz![E E Fa dx dy dvx dvy , Ua[gaB0~z,t !,

~60!

ga[
ma

2B0

**~vx
21vy

2!Fa dx dy dvx dvy

**Fa dx dy dvx dvy
,

where the quantityga , defined att50, can be set constant i
the adiabatic approximation.

Thus, in accordance with the results of Sec. 3, the m
tion of the center of mass of the plasma bunchZ
[**zFadzdvz) and the dynamics of the characteristic lo
gitudinal plasma size (l z

2(t)[**(z2Z(t))2Fa dz dvz) in a
slowly varying magnetic field are determined by the equ
tions

d2Z

dt2
52g

]B0

]z U
z5Z(t)

, g[
(aNaga

M(ama
, ~61!
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l z
3 d2l z

dt2
1V2~ t !l z

45Vz
2l z

25const, V2~ t ![g
]2B0

]z2 U
z5Z(t)

,

~62!

where Vz
2[2Wz /M2(dlz /dt)2, and Wz is the kinetic en-

ergy of the particle motion in the longitudinal direction in th
center-of-mass reference frame.

Equations~61! and ~62! make it possible to study th
acceleration of a plasma bunch in a moving magnetic mir
According to Eq.~61!, the plasma bunch is pushed out of t
region where the magnetic field is strong, i.e., for the bun
to be accelerated in the positive direction of thez axis, we
must ensure that]B0 /]z,0. At the same time, Eq.~62!
implies that for the longitudinal plasma size to be conser
the second derivative ofB0 must be positive:

]2B0

]z2 5
Vz

2

g l z
2 .

Thus the possibilities for the acceleration of a plasma bu
as a whole in a time-independent magnetic field are
tremely limited. These possibilities can be broadened by
ing a traveling magnetic-field wave:

B05B̃0~ t !1
V2

2g S z2Z0~ t !2
a~ t !

V2 D 2

, ~63!

whereB̃0(t) and a(t)5d2Z0 /dt2 are arbitrary functions of
time, andV2 is a positive constant. Such a wave guarant
a given acceleration of the bunch@Z(t)5Z0(t)# with the
longitudinal size conserved:

l z
25

2Wz

MV2 5const. ~64!

The variation of the characteristic transverse plasma sca
this case is determined by the adiabatic lawl r

2B0(Z0 ,t)
5const, i.e.,

l r
2}

1

B̃0~ t !1
a2~ t !

2gV2

.

Note that this acceleration regime is stable. In oth
words, if att50 the coordinateZ and the velocitydZ/dt of
the center of mass of the plasma bunch differ from the ini
valuesZ0 anddZ0 /dt,

Z~ t !2Z0~ t !5j~ t !, j~0!Þ0,
dj

dt
Þ0.

the functionj(t) does not increase with time since it satisfi
the harmonic-oscillator equation

d2j

dt2
1V2j50. ~65!

The longitudinal plasma sizel z(t) experiences similar oscil
lations if condition~64! is not met initially:

d2h

dt2
14V2h50, h[ l z

22
2Wz

MV2 . ~66!
r.

h

d

h
-

s-

s

in

r

l

Using Eqs.~61! and~62!, we can study the compressio
of a plasma bunch in an exploding magnetic trap. If t
magnetic field varies in time according to the law

B0~z,t !5B̃0~ t !1
V2~ t !

2g
z2, V2~ t !.0, ~67!

where B̃0(t) and V2(t) are slowly increasing functions o
time, the compression of the bunch is described by the a
batic laws

l r
2B̃0~ t !5const,

W̄r

B̃0~ t !
5const, ~68!

l z
2V~ t !5const,

W̄z

V~ t !
5const, ~69!

whereW̄r andW̄z are the energies of thermal motion of th
particles in the longitudinal and transverse directions, resp
tively.

6. CONCLUSION

Our results show that the method of moments is an
fective instrument in theoretical studies of the dynamics
quasineutral plasma bunches in external fields. Its use m
it possible to calculate, in the general case, the evolution
the characteristic dimensions of the bunch and the coolin
a multicomponent plasma in the process of plasma expan
into vacuum. In the simplest case of a two-component co
sionless plasma, the method of moments provides a comp
description of the dynamics of the bunch in slowly varyin
external potential fields, which can be used as a basis
finding analytical solutions of the appropriate kinetic equ
tions. These solutions can be found for an arbitrary m
ratio of the constituent particles and for arbitrary veloc
distributions of these particles in a broad class of spa
plasma-density distributions. We believe that the simplic
and efficiency of the method argue in favor of its use
solving many applied problems.

This work was made possible by Grants from the R
sian Fund for Fundamental Research~Grant No. 98-02-
17052! and the Controlled Fusion Program~Grant No. 369!.
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†!E-mail: sss@appl.sci-nnov.ru
1!In Eqs. ~21!–~23! we have discarded the subscripta on the spatial and

mixed moments, since they coincide for particles of the two species.
2!In the absence of external fields (Ua50), Eq. ~36! becomes Eq.~24!.
3!Examples of such processes are various types of plasma instability.
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Dust acoustic waves in a dc glow-discharge plasma
V. I. Molotkov,* ) A. P. Nefedov, V. M. Torchinski , V. E. Fortov, and A. G. Khrapak
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The spontaneous excitation of low-frequency oscillations of the macroparticle density in ordered
dust structures levitating in standing striations of a dc glow discharge is discovered. It is
concluded on the basis of a simplified linear model of an ideal collisionless plasma that the
observed instability is caused by the drift motion of ions relative to the dust, which
leads to the excitation of dust acoustic oscillations of the plasma. ©1999 American Institute of
Physics.@S1063-7761~99!01109-9#
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The presence of charged dust particles in a lo
temperature plasma leads to the appearance of new os
tion modes and instabilities.1–3 For example, the phase ve
locity of ion sound increases as a result of the decrease in
concentration of electrons, which are partially absorbed
the macroparticles. This leads to changes in the charact
tics of the ion-acoustic current instability appearing beca
of the relative motion of ions and electrons at frequenc
close to the ion plasma frequency. At lower frequenci
close to the dust plasma frequency, current instability
appear as a result of the motion of electrons and ions rela
to the charged dust particles~see Ref. 3 and the literatur
cited therein!. Dust sound and a corresponding current ins
bility were recently observed in laboratory experiments.4–8

Dust acoustic instability can appear in various systems, s
as, for example, Saturn’s rings, radio-frequency dischar
used in plasma-sputtering and etching technologies,
plasma crystals.3

The appearance of natural oscillations in a dusty
glow-discharge plasma sustained in neon was discovere
the present work, and an attempt was made to interpret
phenomenon as being a result of a plasma-dust current in
bility. The experimental setup scarcely differed from the o
which we previously used in Ref. 9. The plasma-dust str
tures were formed in standing striations of a low-press
discharge in a glass tube with a diameter of 3 cm and c
electrodes. Monodisperse microspheres of a melam
formaldehyde resin (r51.5 g/cm3) with diameters of 10.24
and 1.87mm, whose charge ranged from 105 to 104 e, were
used in the experiments. The structures were visualized u
transillumination by a laser ‘‘knife’’ in a vertical plane
Video images of the structures were recorded using a C
camera and a video cassette recorder. Figure 1 prese
video image of a structure consisting of particles with a
ameter of 1.87mm. Oscillations of the dust particle densi
are clearly seen in the lower part of the structure in the vid
image. These oscillations are particle density waves wit
wavelength L;1 mm and an oscillation periodT;5
31022 s, which travel downward from the anode to the ca
ode. It should be stressed that these oscillations exist on
the lower part of the structures, whose linear dimension
4771063-7761/99/89(9)/4/$15.00
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position correspond to the head of a striation, where the e
tric field intensity is greatest. In addition, it was discover
that the oscillations appear when there is a definite~critical!
number of dust particles in the structure. This can be see
Fig. 2: the first frame@Fig. 2~a!# shows a well ordered struc
ture, and the ensuing frames@Figs. 2~b! and 2~c!# show the
development of instability in response to the additional
jection of particles and their trapping by the structure.

We note that the oscillations disappear when the d
charge current is raised or the gas pressure is increased

The frequency of the oscillations discovered is close
the frequency of plasma-dust oscillations.3 Therefore, an ex-
planation for the effects described above should be sough
the possible instabilities of the low-frequency oscillations
a dusty plasma. The spectrum of longitudinal modes o
plasma is determined from the solution of the dispers
equation

«~v,k!50, ~1!

where« is the dielectric constant of the plasma, andv andk
are the frequency and wave vector of the oscillations. T
susceptibility of an ideal motionless plasmax5«21 is ad-
ditive with respect to the charged components of the plas

«~v,k!511 (
j 5e,i ,d

@« j~v,k!21#. ~2!

Here the indicese, i , and d correspond to electrons, ions
and dust particles. In a gas discharge the velocity distribu
of the charged particles deviates from equilibrium becaus
the directed motion in the electric field with the drift veloc
tiesuj . The dielectric constant« j of each of the component
in a coordinate frame moving with the velocityuj has the
same form as in the laboratory coordinate frame withuj

50. In going over to the laboratory frame, allowance sho
be made for the Doppler frequency shift, which leads to g
eralization of the expression~2! to the case of nonzero drif
velocities:

«~v,k!511 (
j 5e,i ,d

@« j~v2k•uj ,k!21#. ~3!
© 1999 American Institute of Physics
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In the case of a collisionless Maxwellian plasma in t
absence of a magnetic field, the solution of Vlasov’s eq
tion leads to the following expression for the longitudin
dielectric constant:10

« j~v,k!511
1

~kl j !
2 F11FS v

&kv j
D G , ~4!

where the parameters

l j5A Tj

4pNje
2, v j5ATj

mj
~5!

are the Debye length and the mean thermal velocity of
j th component, andTj , Nj , and mj are the temperature
concentration, and mass of the particles of thej th compo-
nent. The functionF(x) is defined by the integral

FIG. 1. Video image of an ordered structure of monodisperse particles
a diameter of 1.87mm at a discharge current of 5 mA and a pressure of
Torr. Each frame corresponds to 10.6 mm in the vertical direction.
-
l

e

F~x!5
x

Ap
E

2`

` exp~2z2!dz

z2x2 i0

.H 212
1

2x2 2
3

4x4 1 iAp xe2x2
, x@1,

22x21 iAp x, x!1.

~6!

In laboratory experiments dust particles levitate and p
form chaotic thermal motions, and their drift velocityud is
equal to zero. The thermal velocity of the electronsve is
usually significantly greater than their drift velocityue , and
the latter can also be considered equal to zero. The follow
inequalities usually hold in a dc gas-discharge plasma in
region of parameters where dust acoustic instabilities are
served:

kve@kv i.kui@v@kvd . ~7!

Thus, in accordance with~3!–~6!, the complex dielectric
constant can be represented in the form

«~v,k!512
vd

2

v2 1
1

k2l2 1 iAp

2

v2uik

k3v il i
2 , ~8!

where

vd5S 4pNdZd
2e2

md
D 1/2

, l5
lel i

Ale
21l i

2
~9!

are the dust plasma frequency and the electron-ion De
length, respectively, andZd is the charge of the dust par
ticles.

Assuming that the absolute value of the imaginary p
of « is small and setting

v5v r1 ig, v r@g, ~10!

from ~1! and~8! we find the low-frequency oscillation spec
trum of a dusty plasma:

v r
2.vd

2 k2l2

11k2l2 , ~11!

th
0.3
FIG. 2. Video image of fragments of structures of monodisperse particles with a diameter of 1.87mm at a discharge current of 0.6 mA and a pressure of
Torr. Each frame corresponds to 6 mm in the vertical direction.
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g.2Ap

8

v r
3

vd
2k3l i

2

v r2uik

v i
. ~12!

When ui50, this spectrum coincides with the spectrum
dust acoustic oscillations. A nonzero value of the drift velo
ity of the ionsui leads to a decrease in the damping dec
mentg, and at values ofui exceeding the phase velocity o
the wavesvph5v/k, the damping decrementg changes sign,
i.e., instability appears. In complete analogy to the ion aco
tic instability of an ordinary plasma,11 the instability discov-
ered is caused by the Cherenkov radiation of dust acou
waves by ions moving with a supersonic velocity. It is po
sible only under the conditions

ZdTi@Td , ui.vph@vd , ~13!

which are satisfied with a large safety margin in a dusty
glow-discharge plasma.

Under the conditions of our experiment, at a press
p.1 Torr and an electric field intensityE.3 V/cm, the ion
drift velocity ui is roughly equal to 83103 cm/s. For a char-
acteristic oscillation frequencyv52p/T.60 s21 and a
wave vectork52p/L.60 cm21 the phase velocity of the
waves is small compared with the ion drift velocity:vph

5v/k.1 cm/s!ui . Estimates made in accordance with~9!
and ~5! for particles with a diameter of 1.87mm give vd

.210 s21 and l.1.231022 cm ~the values Zd.2.5
3103 e, Nd.104 cm23, andNi.108 cm23 were used!. The
results of the calculation of the frequencyv r and the growth
rateg of the dust acoustic oscillations are presented in Fig
The instability growth rate has a maximum atk5km

51/&l.60 cm21 at the characteristic frequencyv r(km)
5vd /).120 s21. Just such waves are excited in our e
periment.

Despite the good agreement with experiment, the mo
proposed above cannot claim to provide a faithful quant
tive description of the spectrum of dust acoustic oscillatio
since the linear theory of an ideal collisionless plasma w
used to substantiate it. Nevertheless, it provides explanat
for several qualitative features of the phenomenon obser
For example, the development of the instability only in t
lower part of the dust structure resting on the head o

FIG. 3. Dispersionv r(k) and growth rateg(k) of low-frequency plasma-
dust oscillations in standing striations of a dc gas discharge.
f
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striation is probably due to the fact that the electric fieldE
and thus the ion drift velocityui reach maxima in this region
According to~12!, the instability growth rate also reaches i
greatest value in this region.

In our opinion, dust acoustic instability is not observ
in radio-frequency discharges, because in the layers nea
electrodes of these discharges, where the levitation of d
particles is usually observed, due to the Bohm effect12 the
ion drift velocity satisfies the condition

ui.ATe

mi
@v i5ATi

mi
.

This leads to alteration of the spectrum of dust acoustic
cillations ~11! and the appearance of an exponentially sm
multiplier exp(2Te/Ti) in the instability growth rate~12!.
The recent discovery of dust acoustic oscillations in a rad
frequency discharge under microgravitational condition13

does not contradict the foregoing statements, since in
case dust structures are located throughout the volume o
plasma and the phenomenon under consideration occur
from the electrodes, whereui,v i .

Dust acoustic instability can be initiated by the decrea
in the gas pressure in the discharge or by the increase in
number of macroparticles in the dust structure. The form
effect is associated with an increase in the ion drift veloc
and a decrease in the viscosity of the neutral gas. The la
effect, which is illustrated in Fig. 2, possibly occurs becau
the increase in the concentration of dust particles create
additional channel for a loss of charges~apart from the prin-
cipal channel associated with ambipolar diffusion on t
walls of the discharge tube!, which, at a fixed discharge cur
rent, necessitates an increase in the ionization frequency
consequently, leads to intensification of the field in the
gion where the dust particles are found.9 This, in turn, leads
to a rise in the ion drift velocityui and, as a result, to an
increase in the instability growth rate.

Finally, we note that the disappearance of the osci
tions in response to an increase in the discharge curre
probably a consequence of the lowering of the electric fi
intensity ordinarily observed under such conditions.

We thank S.A. Khrapak for some useful discussions.
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Three-dimensional array structures associated with Richtmyer–Meshkov and
Rayleigh–Taylor instability
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A boundary separating adjacent gas or liquid media is frequently unstable. Richtmyer–Meshkov
and Rayleigh–Taylor instability cause the growth of intricate structures on such boundaries.
All the lattice symmetries@rectangular (pmm2), square (p4mm), hexagonal (p6mm), and
triangular (p3m1) lattices# which are of interest in connection with the instability of the
surface of a fluid are studied for the first time. They are obtained from initial disturbances
consisting of one~planar case, two-dimensional flow!, two ~rectangular cells!, or three
~hexagons and triangles! harmonic waves. It is shown that the dynamic system undergoes a
transition during development from an initial, weakly disturbed state to a limiting or asymptotic
stationary state~stationary point!. The stability of these points~stationary states! is
investigated. It is shown that the stationary states are stable toward large-scale disturbances both
in the case of Richtmyer–Meshkov instability and in the case of Rayleigh–Taylor instability.
It is discovered that the symmetry increases as the system evolves in certain cases. In one example
the initial Richtmyer–Meshkov or Rayleigh–Taylor disturbance is a sum of two waves
perpendicular to one another with equal wave numbers, but unequal amplitudes:a1(t50)Þa2(t
50). Then, during evolution, the flow hasp2 symmetry~rotation relative to the vertical
axis by 180°!, which goes over top4 symmetry~rotation by 90°! at t→`, since the amplitudes
equalize in the stationary state:a1(t5`)5a2(t5`). It is shown that the hexagonal and
triangular arrays are complementary. Upon time inversion (t→2t), ‘‘rephasing’’ occurs, and the
bubbles of a hexagonal array transform into jets of a triangular array and vice versa.
© 1999 American Institute of Physics.@S1063-7761~99!01209-3#
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1. INTRODUCTION

Richtmyer–Meshkov instability appears when a sho
wave passes through a boundary between media of diffe
density, and Rayleigh–Taylor instability is generated by u
stable gravitational stratification. The stirring of the med
caused by them is significant in many physical problems,
example, in laser and beam inertial confinement fusion1–3

astrophysics,4,5 and the physics of explosions.6 The corre-
sponding questions have been studied intently, and it is
ficient to cite the latest studies.3,7–10 The theory of
Richtmyer–Meshkov and Rayleigh–Taylor instability
quite formidable, being comparable in complexity to t
theory of gravity waves.

Review of the theory. Let us recall the principal theoret
ical studies,1! grouping them according to the methods us
The two-dimensional~2D! case has been investigated for t
most part, since the three-dimensional~3D! case is far more
complicated. Therefore, we single out the studies in wh
the 3D case was investigated.

1. Parabolic model, Richtmyer–Meshkov and Rayleigh–
Taylor instability, nonstationary and stationary cases. The
Layzer model,11 which is based on the parabolic approxim
4811063-7761/99/89(9)/19/$15.00
k
nt
-

r

f-
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h

tion of the boundary (h5•••x2N, N51! near a bubble apex
is effective. It leads to a dynamic system, whose trajecto
describe the gradual transformation of the boundary stra
from the original, weakly disturbed state to the establishm
of a stationary state~or stationary point!. The stationary state
is achieved asymptotically ast→`. The scope of the prob
lem can be narrowed, and the stationary state can be stu
at once~the derivatives with respect to time are set equa
zero at the stationary point!. Then, instead of a dynamic sys
tem and differential equations, there is a system of algeb
equations, which represents a stationary version of
Layzer model. A first-order stationary state~parabolic ap-
proximation,N51! was studied back before Layzer’s wor
in the notable work by Davies and Taylor.12 The Layzer
approach is applicable to both Richtmyer–Meshkov insta
ity (g50, g is the acceleration of free fall! and Rayleigh–
Taylor instability (g51).13–15 If the case of a rectangula
lattice is ruled out~for further information on this lattice and
other 3D generalizations, see below!, the phase space of th
Layzer model is planar.15 This permits the investigation o
the corresponding dynamic system in the most general ca15

~see also the subsequent publications in Refs. 7, 9, and
18!. The analysis demonstrates, in particular, the stability
© 1999 American Institute of Physics



te
n

e
li-

tu
ith
s
an

of
us
th
al

f

4

es

om
te
p
tiv
ta
l-

fo

th

l
a

se
th
ili
th

h

on
be
n

th
om
al
nd
in
rre
re
ko
o

u-
tes
arac-

f

a-

m-

l is
e

2D

f

482 JETP 89 (3), September 1999 N. A. Inogamov and A. M. Oparin
Richtmyer–Meshkov and Rayleigh–Taylor stationary sta
in the class of large-scale disturbances, since each statio
point is a node.15,17,18

2. Functional vicinity of the equilibrium configuration.
Several studies have been carried out in the weakly nonlin
approximation, which is valid for small disturbance amp
tudes~see Refs. 19 and 20 and the references therein!. This
approximation describes only the beginning of the depar
from the bubble-jet stage of motion, which is symmetric w
respect to inversion,2! toward bubble-jet asymmetry. Thi
asymmetry is manifested by broadening of the bubble
narrowing of the jet.

3. Integral formulation of the boundary-value problem
potential theory. The results determined can be obtained
ing conformal transformations after representing
boundary-value problem in the form of an integr
equation.21–23

4. Successive approximations. Higher generalizations o
model 1 in theNth-order approximation (h5•••x2N, where
N is fairly large! were developed in Refs. 13, 15, 17, and 2
They refer to both the stationary17,24 and nonstationary13,15

cases. Higher expansions provide a powerful tool for inv
tigating convergence and uniqueness problems.17

Combining approaches 1 and 4. An obvious advantage
of method 1 over 2 and 3 is that in 1 the transformation fr
the linear limit to the nonlinear limit or an asymptotic sta
can be traced in its entirety. When it is combined with a
proach 4, possibilities are opened up for obtaining exhaus
results on Richtmyer–Meshkov and Rayleigh–Taylor ins
bility. A significant shortcoming is the poor extent of deve
opment of the higher stationary approximations
Richtmyer–Meshkov instability~the stationary boundary
conditions are complicated, and it is not clear whether
states sought are zero- or one-parameter!.

Combined approach in the 3D case. The extension of
method 1 to the 3D geometry~see below! gives a genera
description of the evolution. It turns out that it is accomp
nied by striking structural effects.3! For its part, the extension
of technique 4, which was developed mainly for the 2D ca
provides important qualitative conclusions regarding
convergence and uniqueness of Rayleigh–Taylor instab
in the 3D case. Thus, in this paper we are dealing with
extension of methods 1 and 4 to the 3D geometry.

Previous studies on 3D flows. In Refs. 17, 28, and 29
method 4 was applied to the stationary stage of Rayleig
Taylor instability in the 3D case. The values ofN were
small. References 30–32 were devoted to three-dimensi
numerical simulation. Some 3D experiments in shock tu
were described in Refs. 33 and 34, and similar experime
in an explosive system were described in Ref. 35.

Content. Sections 2 and 3 present a statement of
problem, the boundary conditions, and the spectral dec
position of the 3D potentials. The symmetry of the potenti
and the unit cells of the array is discussed. Sections 4 a
describe the derivation of the equations for generaliz
model 1 to the 3D case. A complete analysis of the co
sponding phase space is given. Exact integrals of the exp
sions obtained are given for the case of Richtmyer–Mesh
instability. Sections 4, 5, and 7 explore the 3D structure
s
ary
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the surfaceh. Section 6 presents the results of a direct n
merical simulation. The Rayleigh–Taylor stationary sta
are presented in Secs. 10 and 11. The one-parameter ch
ter of the 3D stationary states is demonstrated~Sec. 10!, and
it is shown that the stationary point is unique~Sec. 11!.

2. HARMONICITY AND BOUNDARY CONDITIONS

Flow is described by the velocity potentialw (Dw50,
V5¹w!. The boundary conditions have the form36

h t5wu2hxuu2hyvu, u5wx , v5wy , w5wz ,
~2.1!

22w tu52gh1u2u1v2u1w2u,

f u[ f uh[ f @x,y,z5h~x,y,t !,t#. ~2.2!

The fluid boundary is assigned by the functionz
5h(x,y,t). The acceleration isg50 for Richtmyer–
Meshkov instability andg51 for Rayleigh–Taylor instabil-
ity. The kinematic condition~2.1! describes the advection o
the surfaceh by the velocity field¹w. The dynamic equa-
tion ~2.2! is the Cauchy–Lagrange integral of Euler’s equ
tion. The stationary case is obtained when] t50, and the
two-dimensional case is obtained when]y50. In the station-
ary case the condition~2.2! transforms into Bernoulli’s inte-
gral.

3. RECTANGULAR, HEXAGONAL, AND TRIANGULAR
LATTICES

Decomposition symmetry. The flow symmetry is deter-
mined by the symmetry of the potential. The spectral deco
positions of the potentials have the form

w52
1

2 (
n50

`

(
m50

`
anm

qnm
cnxcmqyenm , ~3.1!

cnx5cosnx, cmqy5cosmqy,

enm5exp~2qnmz!, qnm5An21m2q2,

w52
1

6 (
n50

`

(
m50

`
anm

qnm
~cncm

11snsm
11cncm

21snsm
2

1cn
1cm

22sn
1sm

2!enm , ~3.2!

cn5cosnx, cn
65cosnj6, sn5sinnx,

sn
65sinnj6, j65

x6)y

2
,

enm5exp~2qnmz!, qnm5An22nm1m2.

The series~3.1! refers to the rectangular case. The unit cel
a pipe with a generatrix along thez axis and a transvers
section 2p32p/q lying in the (x,y) plane~see Fig. 1!. The
ratio between the sides of the rectangle equalsq. An analysis
of the rectangular lattice allows us to understand how
flow transforms into 3D flow. The series~3.1! is a combina-
tion of the two vectors~1,0,0! and (0,q,0), and the series
~3.2! is a combination of the three vectors~1,0,0! and (1/2,
6)/2,0). In the series~3.1! each term is an eigenmode o
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FIG. 1. Rectangular array of bubblesB. Their apices are
surrounded by ellipses.
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the Laplacian, and in the series~3.2! the pairs (cc6

1ss6)e and (c1c22s1s2)e are eigenmodes.
The matrices of the amplitudesanm ~3.1! and ~3.2! are

functions of time. The amplitudesanm ~3.1! are not symmet-
ric ~when qÞ1! with respect to interchange of the indice
The amplitudesanm ~3.2! are symmetric (anm5amn). A
square lattice is obtained whenq51 is substituted into the
series~3.1!. In this case the amplitudes are symmetric.

Unit cell and ideal pipe. The expansions~3.1! and ~3.2!
of the potentials rapidly converge~this was shown for the 2D
case in Refs. 15 and 17!. In the series~3.1! a10 anda01 are
dominant,4! and in~3.2! a10 is dominant. Let us examine th
unit cell of the potential~3.1!. The center of the transvers
coordinates (x50,y50) is located at pointB ~Fig. 1!. If the
initial amplitudesa10(0) anda01(0) are positive and there
are no initial disturbances on the surfaceh, point B is a
bubble apex. In Fig. 1 the apices are encircled by ellipse
is not difficult to see that rectilinear vertical~i.e., parallel to
the z axis! trajectories of the fluid particles pass throughB
~bubble!, J ~jet!, Ss ~‘‘strong’’ saddle!, and Sw ~‘‘weak’’
saddle! points. Planar trajectory curves of the fluid particl
fill the planes which are parallel to thez axis and pass
through the straight linesBSs , BSw , JSs , and JSw . Seg-
ments of these straight lines are drawn in the small recta
in Fig. 1. If q51 ~square!, planar trajectories also fill the
planes passing through the diagonalsBJ.

The facts just indicated are associated with the obvi
symmetry properties of the potential~3.1!. On the symmetric
verticals at theB, J, Ss , andSw points the transverse~hori-
zontal! velocities u and v ~2.1! are equal to zero. This is
because theBSs , BSw , JSs , andJSw symmetry planes in-
tersect along these straight lines. The normal componen
the velocityVn vanishes in these planes. Therefore, the qu
ter of a complete flow period enclosed within rectang
BSsJSw is equivalent to flow in an ideal pipe. The norm
component of the velocityVn , rather than the total velocity
V, is equal to zero on the walls of such a pipe. The quad
BSsJSw forms a minimal pipe~domain!. The flow in the
entire space is obtained by parquet multiplication of this
main by reflections and translations. In the case of a squ
(q51), triangleBJSs is a domain.

Domains, wall jets, and arches. Near-wall or wall jets
travel along the domain walls. The form of these jets
shown schematically in Fig. 1. CurvesJSsJ and JSwJ cor-
respond to the lower~alongz! edges of near-wall jets. The
have the form of arches or horseshoes with a dome or a p
It
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s

of
r-

nt

-
re

s

ak

at theSs and Sw saddle points, respectively. At long time
the distance along the verticalz between theJ andSs points
is smaller than the distance between theJ andSw points. The
Sw saddle points are farther from theJ jet apices in the
downward direction along thez axis than are theSs saddle
points. Therefore, theSw saddle points are called ‘‘weak’’ in
comparison to the ‘‘strong’’Ss saddle points.

Hexagonal-lattice bubble array. Let us move on to the
potential~3.2!. First, let the amplitudea10 dominate~let the
disturbances ofh be equal to zero! at t50, and, second, le
a10.0. Then it is easy to see that there are bubble apice
the B points in Fig. 2. The first few lattice points are num
bered 1, 2, 3, and 4. Point 1 is the coordinate center. At
J points there are jet apices. Several jets are numbered~5–7!.
Symmetric verticals (V'50) pass through the bubble apice
B, the jet apicesJ, and the saddle pointsS. Symmetry
planes pass through the straight lines which are continuat
of segmentsBJ, BS, and JS. The minimal domain is tri-
angleBJS. The total flow is the sum of the parquet of do
mains.

Triangular-lattice bubble array. Complementariness o
triangular and hexagonal lattices. Let us consider the cas
a triangular-lattice bubble array~Fig. 3!. We denote the cor-
responding potential byw3(x3 ,y,z,t). The case of a honey
comb array~Fig. 2! with the potentialw6(x6 ,y,z,t), which is
given by the double sum~3.2! whena10.0, was considered
above. In that case the apexB of a hexagonal bubble is
located at the center (x650,y50). A triangular-lattice
bubble array is also given by the sum~3.2!, but whena10

,0. The potentialw3(x3 , . . . ) of a triangular-lattice bubble
array with a bubble at the coordinate center (x350,y50) is
obtained fromw6(x6 , . . . ) by displacement by the segmen
connecting points 1 and 5 in Fig. 2 (x654p/31x3).

The complementariness of hexagonal and triangu
bubbles follows from the invariance of the potential~3.2!
with respect to rotation about thep6 axis~by 60°!, which is
located at point 1, and about thep3 axis~by 180°!, which is
located at point 5 in Figs. 2 and 3.

4. PARABOLIC MODEL. TWO-DIMENSIONAL PHASE SPACE

4.1. The potentialsw6 , w4 , and w3 . In model 1 the
expansions~3.1! and ~3.2! are cut off at the first terms. The
potentials of hexagonal, square, and triangular bubbles h
the form
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FIG. 2. Hexagonal array of bubblesB. The apicesB are sur-
rounded by circles. It is important that three symmetry planes c
verge at the jet apicesJ ~see the end of Sec. 5.2!.
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w652
a

3
~c1c11c2!e2z, c5cosx, c65cosj6,

~4.1!

w452
a

2
~cosx1cosy!e2z, ~4.2!

w35
a

6
~c2)s1c11)s11c21)s2!e2z, ~4.3!

s5sinx, s65sinj6.

The bubbles are located at the center wherex5y50. In
~4.1!–~4.3! a5a10. According to Sec. 3, the amplitudesa
.0 in ~4.1! and ~4.2!, anda,0 in ~4.3!.

4.2. Fluid boundary. It can be shown that in the case
a hexagon, a square, and a triangle the principal curvature
the surfaceh at B and J points coincide.5! Therefore, the
surfaceh can be approximated by a symmetric paraboloid
the vicinity of apices. Accordingly, horizontal sections of t
boundaryh near apices have the form of small circles~see
Figs. 2 and 3!.6! In these regions we have

h~x,y,t !5h0~ t !2K~ t !
D

2
, D5x21y2. ~4.4!

4.3. Calculation of velocities and derivatives. We calcu-
late the acceleration potentialw t , the velocitiesu, v, andw,
and the derivativeshx andhy using the direct differentiation
of ~4.1!–~4.4!. We consider the value of the potential and t
velocities at the boundaryw tu, uu, vu, andwu. We calculate
of

u2u, v2u, andw2u. We expand the expressions in the sm
parameterD ~4.4!, retaining the zeroth and first terms wit
respect to the powers ofD.

4.4. Laboratory and comoving coordinate frames a
zeroth order of the kinematic condition. The multiplier
ȧ exp(2h0) appears during the calculation ofw tu. Let us con-
sider the laboratory coordinate frame and the coordin
frame comoving with a bubble apex. In the laboratory co
dinate frame the fluid is at rest at infinity, and in the como
ing frame the bubble apex is at rest. We introduce the
portant notation

A5a exp~2h0!. ~4.5!

It is not difficult to see thatA is the Fourier amplitude in the
comoving coordinate frame, whilea is the Fourier amplitude
in the laboratory coordinate frame. Differentiating~4.5!, we
find

ȧ exp~2h0!5Ȧ1ḣ0A. ~4.6!

We write the kinematic condition~2.1! at a B point. This
gives the zeroth order of the expansion~2.1! with respect to
D at the point wherex5y50. From~2.1! and~4.4! we have

h t~x50,y50,t !5wz@x50,y50,z5h~0,0,t !,t#,

h t~0,0,t !5ḣ0~ t !.

Plugging in the velocitywu calculated in Sec. 4.3, we find

~ ḣ0!65A, ~4.7!
FIG. 3. Triangular array of bubblesB ~circles!. Six symmetry planes
converge at theJ apices.
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~ ḣ0!45A, ~4.8!

~ ḣ0!352A/2, ~4.9!

where formulas~4.7!–~4.9! refer to the cases of a hexago
(A.0), a square (A.0), and a triangle (A,0), respec-
tively. Substituting~4.7!–~4.9! into ~4.6!, we find

@ ȧ exp~2h0!#65Ȧ1A2,

@ ȧ exp~2h0!#45Ȧ1A2, @ ȧ exp~2h0!#35Ȧ2A2/2.

4.5. Substituting into the boundary conditions. We write
out the potentials, velocities, squares of the velocities,
derivatives. The acceleration potential on the boundary
given by the expressions

~w t!652ȧ
c1c11c2

3
e2z,

~w t!6u52ȧ exp~2h0!
c1c11c2

3
eKD/252~Ȧ1A2!

3S 12
122K

4
D D ~4.10!

in the case of a hexagon,

~w t!452ȧ
cosx1cosy

2
e2z,

~w t!4u52~Ȧ1A2!S 12
122K

4
D D ~4.11!

in the case of a square, and

~w t!35ȧ
c2)s1c11)s11c21)s2

6
e2z,

~w t!3u5S Ȧ2
A2

2 D c2)s1 . . .

6
eKD/2

5S Ȧ

2
2

A2

4
D S 12

122K

4
D D ~4.12!

in the case of a triangle.
Similarly, we obtain

~wz!6u5AS 12
122K

4
D D , ~4.13!

the expression for (wz)4u coincides with~4.13!, and

~wz!3u52
A

2 S 12
122K

4
D D , ~4.14!

~wx!6u5~wx!4u5Ax/2, ~wy!6u5~wy!4u5Ay/2, ~4.15!

~wx!3u52Ax/4, ~wy!3u52Ay/4. ~4.16!

Substituting formulas~4.10!–~4.16! into the boundary
conditions~2.1! and ~2.2!, we arrive at the dynamic system
sought for the parabolic model. The system of equations
the form

K̇5
124K

2
W, Ẇ52

W224gK

2~122K !
. ~4.17!
d
is

as

In the system~4.17! W5ḣ0 is the bubble rise velocity,K
51/R, R is the radius of curvature,g50 for Richtmyer–
Meshkov instability,g51 for Rayleigh–Taylor instability,
andg521 in the case of gravity waves~see Ref. 15!. In the
cases of a hexagon, a square, and a triangle, we havW
5A, A, and2A/2, respectively@see formulas~4.7!–~4.9!#.

We see that the system~4.17! is a universal system
which describes hexagonal-, square-, and triangular-lat
bubble arrays.

4.6. Complete analysis of the system. The phase space o
the system ~4.17! in the variables W and K is very
simple.15,18 In the case of 3D standing gravity waves (g
521), the trajectoryW(t),K(t) in the W,K plane is a
closed contour. Passage around the contour correspon
one wave oscillation period. It is interesting that the lattice
wave crests is hexagonal during one half of the period
triangular during the other half.

In the cases of Rayleigh–Taylor and Richtmye
Meshkov instability, the phase layout is exhausted by o
stationary point, which is a node. All trajectories havin
physical meaning end at this node att→`. Hence follows
the stability of the solutions in the trajectory class of mode
~Sec. 1!. In the stationary state we have

K51/4, Rd54/k, W51, Wd5Ag/k ~4.18!

in the case of Rayleigh–Taylor instability7! ~the subscriptd
denotes dimensional values! and

K51/4, Rd54/k, W51/t, Wd51/kt ~4.19!

in the case of Richtmyer–Meshkov instability.
The behavior of the system~4.17! for Richtmyer–

Meshkov instability is especially simple. Wheng50, it be-
comes homogeneous and is easily integrated. While the
jectories for Rayleigh–Taylor instability depend significan
on the initial data, in the case of Richtmyer–Meshkov ins
bility there is only one independent trajectory. The remain
trajectories, which pertain to different initial data, are o
tained from it by simple scaling. The exact integrals of t
system~4.17! for g50 have the form

A122K

124K
212

1

&
ln

A2~122K !1A124K

&11
5W0t,

~4.20!

W0

W
211

1

2&
lnS&11

&21

&W02W

&W01W
D 5W0t. ~4.21!

The displacement of a bubble is easily calculated from
~4.21!:

h0~ t !5E
0

t

ḣ0~t!dt5E W~t!dt.

In Ref. 18 the system~4.17!, the stationary states~4.18! and
~4.19!, and the solutions~4.20! and~4.21! were obtained for
the case of a square lattice. Here this approach has b
extended to two more important lattices. The system~4.17!
and the solutions~4.20! and ~4.21! describe the transition
from a linear to a nonlinear stationary state.
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FIG. 4. Square lattice. Theh50 andz5hs levels in the linear~a! and nonlinear~b, c! stages. a! An h,0 level, which is marked by a circle with dashe
directed outward, is in the square near the minus sign. The straight lines depict the separatrix network. It is marked by a zero, since the heighh
50. An h.0 level, which is marked by a circle with dashes directed inward, is in the square near the plus sign. b! Horizontal sections ath50 in the linear
@dotted lines, transferred from Fig.~a!# and nonlinear~solid curves without dashes! stages. c! Horizontal sections ath50 @dotted lines, transferred from Fig
~b!# andz5hs ~dashed and solid curves! in the nonlinear stage. The separatrix network consists of four-pointed stars with sharpened tips joined tog
S points. One such star is depicted by solid curves.
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5. BOUNDARY SURFACE RELIEF

5.1. Squares. Let us systematically examine squa
(4m), hexagonal (6m, Sec. 5.2!, and rectangular (2m, Sec.
5.3! lattices. We begin with the 4m case. Let the potentia
w4(x,y,z,t50) be given by the sum of two waves~4.2!, and
let h(x,y,0)[0. The evolution of the spatial structure of th
surfaceh from the linear to the nonlinear stage is traced
Fig. 4. We can describe the relief of the surfaceh(x,y,tobs)
with its ‘‘mounds’’ and ‘‘pits.’’ In the linear stage
@h}wu'w(x,y,z50,t)# the shapes of the bubble
~‘‘mounds’’! and jets~‘‘pits’’ ! are identical.

Let us discuss the topography of horizontal sectio
Consider the curves~level lines!, along which the surfacez
5h(x,y,t) and the horizontal planez5h, whereh is the
height of the horizontal section of the relief, intersect. Co
sider also the level map. There are nonempty intersection
hJ,h,hB , where hB5h(2pn,2pm,t).0, hJ5h@(2n
11)p,(2m11)p,t#,0, and n,m50,61, . . . . The levels
with h.hJ1e (0,e!1) are closed around aJ point, and
the levels withh,hB2e are closed around aB point. One
such contour closed around aJ point and one such contou
closed around aB point are depicted in Fig. 4~a!. The dashes
indicate the direction of increasingh.

In the linear stage the bubbles and jets divide thex,y
plane into equal squares@a checkerboard, Fig. 4~a!#. On the
black squares of the board there are jets~the dashes poin
outward!, and on the white squares there are bubbles~the
dashes point inward!. As the heighth increases, we haveJ
→S→B. The contours around a bubble apexhB give way to
contours around a jet apexhJ upon passage through the sep
ratrix network. Its points are saddle points (S). The network
is formed by separatrices joiningS points.

In the linear stage the separatrices are rectilinear and
all located at the zero levelh5h050. This is a manifestation
of the ‘‘degeneracy’’ of the square case in the linear sta
We note that 4m structures are the simplest among the s
tial structures.

In the nonlinear stage the coincidence of the separatr
with theh0 level is eliminated. There is no such coinciden
in either the linear stage or~for sure! in the nonlinear stage in
the case of 6m, 3m, and 2m lattices~see Secs 5.2 and 5.3!.
In 6m, 4m, and 3m lattices there is one type of saddle poi
.

-
at

-

re

e.
-

es

~see Figs. 2, 4, and 3!. In 2m lattices there are two types o
saddle points:Ss andSw ~see Fig. 1!. Therefore, in this case
the separatrix network is usually divided into two systems
parallel chains:Ss chains~segments ofSs2Ss separatrices
andSs saddle points! andSw chains~see Sec. 5.3!.

The nonlinear stage is shown in Figs. 4~b! and ~c!. In it
the shapes of the bubbles and jets are different. The z
level h0 is deformed. It transforms from the square depict
by solid straight lines in Fig. 4~a! and by dotted lines in Fig.
4~b! into the rounded contour depicted in Fig. 4~b! by a solid
curve and in Fig. 4~c! by dots. Within this contour the heigh
h.0. This ‘‘positive’’ area S1 is the region where the
‘‘vacuum’’ rises. Outside the contourh,0. This is the
‘‘negative’’ area S2, where the fluid drains downward. I
the linear stageS2/S151. In the nonlinear stageS2/S1

,1.
Let us consider the limitt→`. A bubble asymptotically

escapes to infinity from the initial position of the bounda
(hB2h0→`). In the process,S2/S1→0, and the contourh0

is pressed against squareJJJJ ~see Fig. 1 forq51!. Square
JJJJ is a cross section of a pipe, along whose walls flatten
or wall jets travel. We see that rotation of the square by 4
takes place. Att50 theh50 squares are obliquely oriente
@see Fig. 4~a!#. Their sides are parallel to the bisectors of t
angles between thex and y axes. Att5` the sides of the
h50 squares are parallel to thex andy axes.

In the nonlinear stage theS→S separatrices lose thei
rectilinear character. They are depicted in Figs. 4~b! and 4~c!
by solid ~the central star! and dashed curves. The points o
the tips of the stars are saddle points (S). The center of each
star is a jet apex (J). With the passage of time the separatr
intersection angle becomes increasingly acute. Att→`, hs

→2` ~the density ratiom50!. The star then contracts int
a cross ofJS segments.

The characteristic levels form the sequencehJ,hs,h0

,hB . The contour of the horizontal section ath50 @dotted
curves, Fig. 4~c!# is located within thehs contour ~dashed
and solid curves!.

Let us compare Fig. 4 and Fig. 1 in the case ofq51,
where theSs and Sw saddle points are identical. Figures
and 4 show downward views~in the x,y plane!. In addition,
Fig. 1 presents a lateral view~in a plane passing through th
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z axis!, which is important for understanding the spat
structure of the flow. The lateral view of the flow shows t
J andS points of the dowarnward moving archJSJand the
projection of an upward movingB point onto aJJ plane.
The JJ planes are symmetry planes or lateral walls of pip
confining a flow cell. ArcJS ~a planar curve; half of arch
JSJ) lies in the line of intersection of a wall jet and aJJ
plane. It is the lower edge of the wetted part of the pipe w
In the horizontal view it is represented by segmentJS.

For the spatial orientation we offer two variants of ri
from a J point to a B point on the surfaceh. In the first
variant rise occurs along archJB, whose projection onto the
x,y plane is segmentJB. In the second variant rise occurs
two stages. In the first stage we rise fromJ to S along arc
JS, and in the second stage we pass fromS to B along arc
SB. The projections of these arcs onto thex,y plane are
perpendicular to one another~see Fig. 1!. Together, these
segments form triangleJBS.

5.2. Hexagons. Section 7 contains a comparative ana
sis of 6m, 4m, and 3m lattices. It is found that the 6m case
is unique.8! For this reason we shall dwell on it.

Let h(x,y,0)[0, and let the potentialw6(x,y,z,0) be
given by the sum of three waves~4.1!. As in Sec. 5.1, let us
consider the characteristic levelshJ , hs , h0 , andhB . In the
linear and nonlinear stages we havehs,h0 . Using the trigo-
nometric formulas for cosine addition, it is not difficult t
show that in the linear stage, in whichh}wu and the velocity
w is determined only by the linear combination of harmon
~4.1!, the network ofS2S separatrices consists of straig
lines. They are depicted by solid lines in Fig. 5. The netwo
is formed from equilateralSSStriangles with centers atJ
points. Six triangles are linked around the apexB.

In the linear stage theS2S separatrices are curved
Three-pointed stars with sharpened tips form around thJ
apices. Att→` the h50 level, one-sixth of whose contou
at tÞ` is depicted by arc 1–2 in Fig. 5, is pressed agai
the walls of the pipe composed ofJJ planes. They are de
picted by dashed straight lines in Fig. 5. Att5` the rays
degenerate intoJS segments.

Jets drain along theJJ walls. Because of the spreadin
in the plane of a wall, they are flattened~flattened, wall, or

FIG. 5. Level of the hexagonal surfaceh. In the linear stage theh,hs

region is bounded by triangleSSS, which is composed of rectilinear sepa
ratrices. In the nonlinear stage the separatrices become curves and th
angle transforms into a three-pointed star. A group of six stars surrou
each bubbleB.
l

s

l.

-

s

k

t

near-wall jets!. The jets are stronger at the corners of t
pipe. Because of this, the indentation depth of theJ points is
greatest on theJS arcs. The degree of bulging of the curve
jets J from the ‘‘wall’’ is characterized by the ratio

z5~hJ2hs!/hJ . ~5.1!

It is small in the case of wall jets. In the case of a finger-li
jet J this ratio is large.

Let us compare the topology of the jets in 6m ~Figs. 2
and 5! and 3m ~Fig. 3! lattices. In a 6m lattice the bulging of
the curved jetsJ from the the wallsJS is weak, and the ratio
~5.1! is small. Accordingly, the bubbles in a 6m lattice are
well isolated from one another by the wallsJS separating
them along the entire bubble perimeter.

In a 3m lattice the situation is reversed. The bubbles a
poorly isolated from another. The walls separating th
along theBSB directions through a saddle point are rel
tively low, and, for this reason, the bulging of the curved je
J is significantly greater. Therefore, the ratioz ~5.1! is fairly
high. An array of strong finger-like jetsJ forms.

This is the source of the specific features of a 3m lattice.
Enhanced focusing of the jets occurs in it. Jets are gener
by bubbles. In a 3m lattice the six bubbles arranged in
circle about one jetJ ‘‘feed’’ that jet and make it strong.

Let us compare the types of rise from aJ point to aB
point through anS saddle point. In the 6m case the differ-
ence between the heights of theB and J points equals (zB

2zs)1DzJ3. In the 3m case this difference equals (zB

2zs)1DzJ6, where the segmentsDzJ3 andDzJ6 are defined
in Figs. 2 and 3, and the numbers 3 and 6 in the supersc
J3 andJ6 indicate how many symmetry planes converge
a J point. The differenceDzJ3 is smaller thanDzJ6. There-
fore, as has been stated, in a 6m lattice the jets are of the
wall type, and in the 3m case a system of strong finger-lik
jets forms. It is shown in Sec. 7 that the intersection of m
than three wall jets is unlikely. Therefore, in 3D flows th
type of three-pointed star shown in Fig. 5~see also Fig. 2! is
the principal type for the jets.

5.3. Rectangles. The structure of 2m lattices is signifi-
cantly more complicated than the high-symmetry cases c
sidered above. This is caused by the splitting of the sad
points into two types and the increase in the number of ch
acteristic points. Because of the splitting, the network se
ratrix diagrams give way to striped diagrams.

Let h(x,y,0)[0, and let the potential at the initial mo
ment be given by a sum of two harmonics and have the fo

w~x,y,z,t50!52
a~0!

2
cosxe2z2

b~0!

2q
cosqye2qz,

~5.2!

wherea5a10 andb5a01 @compare this with formulas~3.1!
and~4.2!#. To fix ideas, we seta(0)/b(0)51 andq.1. The
structure of the surfaceh at t.0 is shown in Fig. 6. Figure
6 has been stretched in they direction by a factor ofq
~compare it with Fig. 1!.

The laws governing the growth of disturbances with tim
are different in the cases of Rayleigh–Taylor a
Richtmyer–Meshkov instability. Let us consider them sep
rately. We begin with Rayleigh–Taylor instability. It is sig

tri-
ds
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FIG. 6. Level map ofh in a 2m lattice. Chain-like structure of
Ss2Ss and Sw2Sw separatrices. There are noSs2Sw separa-
trices, which would have joined the chains in a networ
Circles—bubbles, crosses—jet apices, 0—zero level,s—Ss

2Ss separatrices,w—Sw2Sw separatrices. The dashes on th
levels are drawn in the direction of growth ofh. Right-hand
figure—dependence of the positions of characteristic points
Rayleigh–Taylor instability ont.
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nificant that the wavelengths of the harmonics in~5.2! are
different. This distinguishes the potential of a 2m lattice
from the more symmetric potentials~4.1!–~4.3!. In the linear
stage a wave grows more rapidly in they direction, since
a(t)5a(0)et andb(t)5b(0)eAqt. We recall that instability
normalization tok51 and g51 is chosen in the case o
Rayleigh–Taylor and that 2w(x,y,z,t)52a(t)cxe

2z

2b(t)cqye
2qz. Therefore, a separatrix diagram with ce

that would connect theSs andSw saddle points in a network
is lacking already in the linear stage. Instead of a netwo
separatrix chains of typesw (Sw2Sw) ands (Ss2Ss) appear
~see Fig. 6!.

During motion the positions of theSs points~curves in
Fig. 6! and theSw points ~curve w! relative to one anothe
and relative to thez50 level vary. The hierarchies of heigh
have the following forms:hsw,0,hss at 0,t,ts0 , hsw

,hss,0 at ts0,t,tws , andhss,hsw,0 at t.tws , where
the subscriptssw and ss refer to Sw and Ss saddle points.
The lower half of Fig. 6 shows thehsw,h0,hss levels
~curvesw, 0, ands!, which refer to the stage at 0,t,ts0 .
The subsequent stage, in which these levels are arrang
the order of 0,s, andw, is depicted in the upper half.

If the areas in thex,y plane within whichh,hsw are
hatched, a system of separated stripes stretching parall
thex axis is obtained. In the final stage att.tws theSs level
becomes lower. The orientation of the stripes then chan
from parallel to thex axis to parallel to they axis.

In the final stage the motion associated with the lon
side of the rectangle dominates~see Fig. 1; sinceq.1, this
side isx!. The main flow of fluid occurs in the near-wall je
parallel to they axis, which drain along theJSsJ walls. In
this stageRx.Ry , whereRx andRy are the radii of curva-
ture at the apexB along thex andy axes. Let us transfer th
contour of theh0 level from the upper half of Fig. 6 to the
rectangleJJJJ in Fig. 1. We useDx and Dy to denote the
distances from this level to theSw and Ss points, respec-
tively. The gaps 2Dx and 2Dy characterize the thickness o
the near-wall jets traveling along theJSwJ and JSsJ walls.
The predominance of theJSsJ jets means thatDx,Dy .

An analysis of rectangular lattices clearly reveals h
the flow changes upon the transition from the 3D case to
2D case. Asq→`, a rectangle becomes similar to a sl
~Fig. 1!, in which the transverse components of the mot
are directed mainly along thex axis.

Let us examine Richtmyer–Meshkov instability. If th
difference betweena(t) and b(t) in the initial stage is ne-
glected, the separatrix diagram takes the form of a netw
,

in

to

es

r

e

n

k.

It is similar to the one shown in Fig. 4~a!. In the 2D geom-
etry the jet apex velocityḣJ increases from the initial value
a(0) to a value roughly two times larger. It is not entire
clear how the competition betweenhsw(t) and hss(t) takes
place in Richtmyer–Meshkov instability. In any case the
functions are not equal, and a striped structure forms inst
of anSs2Sw network. We stress that the removal of mass
jets occurs mainly in theJSsJ jets, as in the case o
Rayleigh–Taylor instability.

6. COMPARISON OF THE THEORY WITH A NUMERICAL
SIMULATION

6.1. Numerical method. The complete system of Eule
equations for a compressible inviscid medium written in t
divergence form37,38 was integrated. A quasimonotonic grid
characteristic scheme for a second order of approxima
was used. The monotonicity was enhanced by a combina
of schemes with central and oriented differences. A sim
hybrid method was developed for numerically simulati
flows of an incompressible fluid.39 No artificial viscosity, no
smoothing, and no flow-constraining procedures were u
in the calculation scheme. The scheme has such useful q
ties as conservatism, monotonicity, and an increased
proximation order. The requirement for monotonicity e
sures nonlinear dissipation, which smooths any short-liv
perturbations with a wavelength of the order of several g
steps. The integration region has the form of a rectang
parallelepiped, on whose lateral sides the symmetry co
tions are satisfied and on whose lower and upper faces
zero-flow conditions are satisfied.

6.2. Rayleigh–Taylor instability. Figures 7–9 present th
results of the calculation of Rayleigh–Taylor instability.
quarter of the total flow period in ap3p37p cell was
calculated on a 303303210 grid. Figure 7 shows a com
plete period. The initial position of the boundary coincid
with thez50 plane~Fig. 7!, which divides the cell along its
height in a 3:4 ratio. The ratio between the densities of
lower and upper fluids ism51/10, and the normalization is
to g51 and k51. The initial disturbance is given by Eq
~4.2! with a(0)50.05.

The displacement of a bubblehB(t) is shown in Fig. 8.
It is seen that a regime with a constant bubble rise velocit
established. In the numerical experiment the limiting velo
ity is wcs(`)50.83, which amounts to roughly 90% of th
theoretical rate~4.18! corrected by the factorA12m, which
takes into account the finite density of a light fluid.6,40 Figure



ble

ush-

489JETP 89 (3), September 1999 N. A. Inogamov and A. M. Oparin
FIG. 7. Form of the interface in the case of a square-lattice bub
array at the timet59. The arrows markS saddle points andB andJ
apices. Right-hand figure—scheme for the appearance of a m
room formation.
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9 shows theoretical and numerical plots of the radius of c
vatureR(t)51/K(t). As we see, the theory and simulatio
are in satisfactory agreement.

6.3. Richtmyer–Meshkov instability. Figures 10 and 11
show the results in the case of Richtmyer–Meshkov insta
ity (g50). The geometric dimensions and the ratiom were
the same as in Sec. 6.2. The initial perturbation was given
Eq. ~4.2! with a(0)51. As we see, the results with respect
the velocity~and thus with respect to the displacement! are
in good agreement. The descriptions of the bubble surf
bending process@the plots ofK(t)# are in satisfactory agree

FIG. 8. Plot ofhB(t). Thin curve with markers—theory in Sec. 4, thic
curve—simulation.
r-

l-

y

ce

ment. The bubble curvature in the numerical simulation
somewhat greater than the calculated curvature at la
times.

6.4. Role of the density ratio. The theory developed in
Secs. 4 and 5 refers to the case ofm50. Let us examine the
changes occurring whenm!1. The shape of the bubble
scarcely changes.18 Their rate of motion varies slightly.6,40

At the same time, there is a qualitative detail, which vanis
whenm50. It is the appearance of mushroom-shaped form
tions.

In the case of Rayleigh–Taylor instability, the fallin
matter accelerates to high speeds in the jets~therefore, the
jets are narrow!. As a result, velocities are achieved at whi
the influence of aerodynamic drag on the part of the lig
fluid on the advancement of the jet apex becomes import
The aerodynamic thrust of the light fluid leads to the form
tion of mushrooms. This question was investigated in Ref.
for the case of the 2D geometry using conformal mappin
and a hodograph technique. The thrust of the light fluid
also the cause of the formation of mushroom-shaped jet
Richtmyer–Meshkov instability.

The formation of mushrooms is a consequence of
stagnation of the heavy fluid due to the thrust of the lig
one. The stagnation zone is localized near the point of se
ration of the flow of the light fluid by the jet of the heav
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FIG. 9. Plot of R(t). Solid curve—calculation of the system
~4.17!, markers—numerical simulation.
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light.40 The jet apex is the separation point. A mushroo
forms when the jet becomes sufficiently thin and gains
sufficiently high speed. The jet is thin where the radius
curvatureR is small. Whenm50, R is smallest at the je
apex.

Matters are the same in the 3D geometry. Now the ‘‘th
fast’’ zone is a stripe along aJSJarch~see Sec. 5!. Here the
rate of motion of the light fluid against the arch is high, a
the radius of curvature of the surfaceh in the direction per-
pendicular to the plane of the arch is small. Separation of
flow of the light fluid occurs on the arch. Its streamlinin
a
f

e

past the arch leads to the formation of a stripe-li
mushroom-shaped formation along the entire arch.

Let us consider a section of the arch and of the near-w
jet following it in plane P, which is perpendicular to the
arch. It is shown on the right in Fig. 7. Herea is the point of
intersection of planeP and archJSJ, ah is the curve of
intersection of planeP and the surfaceh, andaz is the plane
of the wall along which the near-wall jet drains. Section
refers to the case ofm50, and section 2 refers to the case
m.0. Whenm.0, the mushroomm forms, as occurs in the
2D geometry.40
FIG. 10. Plots of the bubble velocitywB(t). Smooth curve—
the integral~4.21!, fluctuating curve—simulation.
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FIG. 11. Plots of the bubble curvatureK(t). Smooth curve—the
integral ~4.20!, oscillating curve—simulation.
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The arc of the mushroom headam cuts a groove along
archJSJ as pointa moves along the arch. In the case of
4m lattice four such grooves descend toward each apeJ
from four sides. In a horizontal section these grooves
located near the tips of the four-pointed star shown in F
4~c!. The grooves end near a toroidal mushroom, wh
crowns the apexJ. Thus, the situation is fairly far from the
picture of a jet which is axisymmetric relative to the vertic
passing through the apexJ.

The grooves and the torus are clearly seen in Fig. 7.
mushroom-shaped formation begins near anS saddle point
and stretches toward aJ apex. The grooves, as they shou
be, are adjacent to a wall of the ‘‘pipe’’~a boundary of the
calculation region!, since the archJSJ lies in the plane of
this wall.

7. COMPARISON OF LATTICES

Let us compare the 6m, 4m, and 3m lattices. We ex-
pand their potentials in combinations of single wave vect
and their overtones~3.1! and ~3.2!. Then in the parabolic
approximation~Sec. 4! the bubble rise velocities in the 6m,
4m, and 3m lattices are identical both in the case
Rayleigh–Taylor instability and in the case of Richtmye
Meshkov instability. It is found for Rayleigh–Taylor insta
bility that both the linear stage~equality of the growth rates
for k51! and the entire transition process@the system~4.17!#
are identical in these lattices. The linear stage of Richtmy
Meshkov instability is determined not only by the wave ve
tors, but also by the initial velocities. If we start from a fl
boundary and choose equal initial velocities, then, as in
case of Rayleigh–Taylor instability, both the linear and no
linear stages are identical in all three lattices. This follo
from the results of Secs. 4.5 and 4.6.

Let us compare the lattices in another respect. Fo
fixed wave numberk the areas per bubble in thex,y plane in
the 6m, 4m, and 3m lattices are, respectively,
re
.

h

l

e

s

–
-

e
-
s

a

S65
8p2

)k2
, S45

4p2

k2 , S35
4p2

)k2

~see Figs. 1–3!. These areas are not equal, andS6 :S4 :S3

5(2/)):1:(1/)) '1.15:1:0.577. It is significant that the
area of a triangular cell differs significantly from the rough
equal areas of square and hexagonal cells.

Let us require that the bubble areas be identical in
lattices being compared~the condition of an equal number o
bubbles per unit area!. Then the wave numbers are related
the ratio

k6 :k4 :k35AS6

S4
:1:AS3

S4
5

A2

31/4
:1:

1

31/4
'1.07:1:0.76.

In this casel6 :l4 :l35k6
21 :k4

21 :k3
21'0.93:1:1.3. The ra-

dii R6 , R4 , andR3 form the same ratio in Rayleigh–Taylo
and Richtmyer–Meshkov instability. According to the rate
the transition process, the lattices are arranged in the ord
6, 4, and 3, i.e., the transition is slowest in the triangu
lattice. In return, the limiting bubble velocity is highest in th
3m lattice. These velocities are related as

w6 :w4 :w35~S4 /S6!1/4:1:~S4 /S3!1/45Al6:Al4:Al3

5~31/8/21/4!:1:31/8'0.97:1:1.15

in the case of Rayleigh–Taylor instability~4.18! and as
l6 :l4 :l3 in the case of Richtmyer–Meshkov instabilit
~4.19!.

Comparing the results, we arrive at the conclusion t
the 6m and 4m bubble arrays are roughly equivalent~the
difference in the limiting velocity does not exceed a fe
percent!, but the 3m lattice stands apart. It has the stronge
system ofJ jets ~Sec. 5.2!, and the bubble velocities excee
the velocities in the other lattices by 15% in the case
Rayleigh–Taylor instability and by 30% in the case
Richtmyer–Meshkov instability.
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8. FORMATION OF THREE-FOIL JETS

The 3D structure of the surfaceh was considered above
Its fundamental elements are bubbles and jets. The bub
are round and isolated, and the jets consist of extended
gions ~near-wall or wall jets!, which form a network, and
junctions, at which the wall jets intersect. The type of pe
odicity determines the number of wall jetsNr intersecting at
a junction, and the ratio of the number of bubbles to
number of jetsNB /NJ .

Let us consider a random surface appearing in the c
of 3D turbulence. Structurally, it consists of the same e
ments~isolated bubbles, wall and junction jets; see Fig. 1!.
However, the long-range order gives way to short-range
der, as occurs upon the transition from a crystal to a liqu
Let us see what the numberNr equals. This would allow us
to ascertain to which of the lattices the random surface
topologically closest.

It is fairly clear that the junctions withNr53 dominate.
In fact, any bubble is crowded by neighbors. The adjac
bubbles are separated by a boundary, i.e., a wall jet. Its
sition is determined mainly by two neighbors, for examp
by bubbles 1 and 2~see Fig. 12!. Let us rise along a bound
ary. At a certain point the influence of a third neighbor b
comes important. Here the boundary which separa
bubbles 1 and 2 branches. One branch passes bet
bubbles 1 and 3, and the other passes between bubbles
3. Therefore, the valueNr53 is typical. The ratioNB /NJ is
then between 0.5 and 1, which correspond to the 6m and 4m
lattices of bubbles.

9. PARABOLIC DESCRIPTION OF A RECTANGULAR
LATTICE. FOUR-DIMENSIONAL PHASE SPACE

9.1. Potential and boundary. Let us apply the Layzer
model to the 2m lattice. The potential cut off at two harmon
ics ~3.1! @see also Sec. 5.3 and Eq.~5.2!# has the form

w~x,y,z,t !52
â~ t !

2
cosxe2z2

b̂~ t !

2q
cosqxe2qz, ~9.1!

and the expansion of the boundary at a bubble apex9! has the
form

FIG. 12. Random collection of bubbles. Each bubble is bounded by
jets. The junctions withNr53 are typical.
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h~x,y,t !5h0~ t !2
Kx2

2
2

Qy2

2
.

9.2. Expansions. We proceed as in Secs. 4.2–4.4. No
the coordinatesx2 and y2 appear in the expressions sep
rately, rather than in the form of the sum~4.4!. Our goal is to
calculatew tu, uu, vu, wu, hx , andhy . We present the mos
significant points. We differentiate~9.1! with respect tot.
The calculation ofw t on the boundary gives

w tu52
dâ

dt
exp~2h0!

cosx

2
e2Dh2

db̂

dt

3exp~2qh0!
cosqy

2q
e2qDh, ~9.2!

whereDh5h2h052(Kx21Qy2)/2. We introduce the no-
tations

A~ t !5â~ t !exp@2h0~ t !#, B~ t !5b̂~ t !exp@2qh0~ t !#.

~9.3!

Let us express the derivativesdâ/dt and db̂/dt in ~9.2! in
terms ofȦ andḂ. For this purpose we differentiate~9.3!. We
then have

dâ

dt
exp~2h0!5Ȧ1Aḣ0 ,

db̂

dt
exp~2qh0!5Ḃ1qBḣ0 . ~9.4!

Let us now calculateḣ0 . For this purpose we write the
kinematic condition~2.1! at an apex. We then haveh t5ḣ0

5wu. Plugging in~9.1!, we obtain

ḣ05~A1B!/2. ~9.5!

Plugging~9.5! into ~9.4!, we find

dâ

dt
exp~2h0!5

2Ȧ1A21AB

2
,

db̂

dt
exp~2qh0!5

2Ḃ1qAB1qB2

2
. ~9.6!

Expanding~9.2! in the small variablesx2 andy2, with con-
sideration of~9.6! we find

w tu52
2Ȧ1A21AB

4

~K21!x21Qy2

2

2
2Ḃ1qAB1qB2

4q

qKx21q~Q2q!y2

2
.

The insignificant functions oft which are homogeneous wit
respect tox andy have been omitted.

Similarly, we have

wzu5
A1B

2
1

~KA2A1qKB!x21~QA1qQB2q2B!y2

4
.

ll
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FIG. 13. Phase space and trajectories. PointS is a sta-
tionary point ~node!, which attracts trajectories emana
ing from weakly disturbed initial data: a—q51, b—q
.1.
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9.3. Boundary conditions and dynamic system. Substitut-
ing the expansion from Sec. 9.2 into the boundary conditi
~2.1! and ~2.2!, we arrive at the four-dimensional dynam
system

K̇5~123K !a2qKb, ~9.7!

Q̇52Qa1q~q23Q!b, ~9.8!

~12K !ȧ2Kḃ52a21gK, ~9.9!

2Qȧ1~q2Q!ḃ52q2b21gQ ~9.10!

for unknown K and Q and the amplitudesa5A/2 and b
5B/2. If Q50 andb50 or if K50 anda50, we return to
the planar~2D! system,13,15 and if q51, K5Q, anda5b,
we return to the system~4.17!. The cross terms related to th
interaction of waves along thex andy directions areqKb in
~9.7! andKḃ in ~9.9!.

We note thex↔y symmetry. Let us writew andh for an
arbitrary wave numberk. The potential has the form

w52
â

2k
coskxe2kz2

b̂

2qk
cosqkxe2qkz.

Let us derive the equations of the system. After the invers
k→qk, q→1/q ~rotation of the rectangle by 90°!, the equa-
tions remain invariant to the replacementsK→Q, Q→K and
a→b, b→a ~interchange of the axes!.

The system~9.7!–~9.10! allows a complete investiga
tion. Its phase space is similar to the phase space of
system~4.17!. Again there is a single node, which captur
all the trajectories having physical meaning. We shall n
show this.

9.4. Rayleigh–Taylor instability. Let g51, and let us
find a stationary solution. We setK̇5Q̇5ȧ5ḃ50. We
eliminate the unknowna.0 andb.0 using Eqs.~9.9! and
~9.10! and Q using Eqs.~9.7! and ~9.8!. As a result, we
arrive at the equation forK. It has the form

8K22@61~q21!/3#K1150.

Comparing with the case of a square (q51), we find that
only the root
s

n

he

t

K0~q!5~q1172r !/48, r 51Aq2134q11 ~9.11!

has physical meaning. The remaining functions sought
given by the expressions

Q0~q!5
q21

3
1K0~q!, a0~q!51AK0~q!,

b0~q!51
AQ0~q!

q
. ~9.12!

The stationary state defined by~9.11! and ~9.12! is the only
one in the region having physical meaning.

Let us investigate the stability.10! We linearize the sys-
tem ~9.7!–~9.10! near the stationary state:

K5K01dKelt, Q5Q01dQelt,

a5a01daelt, b5b01dbelt.

The linearization leads to the matrix

2l23a02qb0 0 123K0 2qK0
0 2l2a023qb0 2Q0 q223qQ0

1 0 2(12K0)l22a0 K0l
0 1 Q0l 2(q2Q0)l22q2b0

for the eigenvaluesl1(q)2l4(q). Whenq51, the determi-
nant of the matrix~the characteristic equation! has the form
2l4114l3135l2136l11250 with the rootsl1,25(26
62))/4 andl3,4522. The stability of the system~4.17! is
obvious from an analysis of the phase plane. Linearization
Eqs. ~4.17! leads to the system (l12)dK50, 2dK2(l
12)da50, which has the degenerate root22. When q
Þ1, the coefficients of the characteristic equation are cu
bersome functions of the ratio between the sides of the ceq
~Fig. 1!. It follows from calculations of this equation that i
the interval 0,1/q,1 the roots obey the inequalitiesl1

,0, l2,0, Rel3,0, and Rel4,0. The rootsl3 andl4 are
degenerate whenq51. They become real, different, an
negative near 1/q50.

Let us analyze the results obtained. It was demonstra
that the stationary stateS defined by~9.11! and ~9.12! is
stable ~is a node!. The projection of the four-dimensiona
phase space of the system~9.7!–~9.10! onto theK,Q plane is
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FIG. 14. Dependence of the curvatureK and the
velocity w on the ratioq between the sides of the
rectangle. Curves1, 2, and 3—Rayleigh–Taylor
instability ~a and b!. Curve2 ~a!, point D ~a and
c!, and curvesL and I—Richtmyer–Meshkov in-
stability ~a and c!.
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shown in Fig. 13. Let us examine the matrixG of coeffi-
cients for the derivativesK̇, Q̇, ȧ, and ḃ of this system. Its
determinant is given by the expressionK1Q/q51. On the
surface detG50, and the accelerationsȧ and ḃ vanish at
infinity.13,15 The projection of the surface is marked by t
letter G in Fig. 13. The surfaceG bounds a physical region
The physical trajectories start from the center atK5Q50 ~if
the boundary is flat att50! and its vicinity. Att→` they all
end at the nodeS.

The case ofq51 is shown separately in Fig. 13~a!. As
we see, bubbles with 2m symmetry raise their symmetry a
t→` and transform into bubbles with 4m symmetry. The
trajectories passing along the bisectorK5Q apply to the
symmetric case@q51, a(0)5b(0), andK(0)5Q(0)# with
the two-dimensional phase space of the system~4.17!, K
5Q, anda5b in Fig. 13~a!.

Plots of the dependence of the curvature along the l
directionK (q.1, see Fig. 1! and of the bubble rise velocity
w on 1/q are shown in Fig. 14. Curves1 were calculated
using formulas~9.11! and ~9.12! (w5a1b), and curves2
are the asymptotes forq@1 ~flow in a slot!. In a slot-shaped
rectangle the flow achieves a 2D regime. Motion along
long side dominates. In this caseK'1/3, Q'1/3q, andw
'1/)11/A3q. The solutions~9.11! and ~9.12!, of course,
are not suitable for small values of 1/q ~allowance for addi-
tional harmonics with respect to thex axis is necessary!. The
curves which interpolate dependences1 and2 in the transi-
tion region are labeled by the number3.

9.5. Richtmyer–Meshkov instability. Let g50, and let us
find the stationary state and investigate its stability. In
case of Richtmyer–Meshkov instabilityK5K0 , Q5Q0 , a
5a0 /t, andb5b0 /t in the stationary state.13,15,17Substitut-
ing these relations into the system~9.7!–~9.10!, we arrive at
the algebraic system

~123K0!a05qK0b0 , Q0a05q~q23Q0!b0 ,

2~12K0!a01K0b052a0
2 ,

Q0a02~q2Q0!b052q2b0
2

g

e

e

for unknownK0 , Q0 , a0 , andb0 . Successively eliminating
b0 , a0 , andQ0 , we obtain the equation

24~32q!K0
31~q2146q275!K0

2

12~13211q!K013~q21!50 ~9.13!

for K0(q). The correct root is selected on the basis of t
condition K0(1)51/4 @see ~4.19!#. Let K0(q) be a given
root. The remaining functions are expressed in terms o
We then have

Q05
123K0

328K0
q, a0512

1

q
1S 3

q
21DK0 ,

b05
123K0

qK0
a0 , w05a01b0 . ~9.14!

Plots of the functionsK0(q) andw0(q) are presented in
Fig. 14 ~curvesL!. CurvesL end at pointsb with q'1.26.
Two roots of Eq.~9.13! merge at that point. The real part o
the solution (ReK0,Rew0) after this merging is depicted b
dotted lines. The imaginary part comprises a small (.0.1)
fraction of the real part. CurvesL begin from the pointT,
which refers to the case of a square lattice. It is interest
that another branch (Db) emanates from pointD, which
corresponds to the planar~2D! solution, whenq51. When
qÞ1, it corresponds to bubbles with weak motion along t
y axis. The interpolation curveI joins the asymptotes corre
sponding to a slot~point D! and the solutionL in the inter-
mediate region. We note that the plots ofK(q) referring to
Rayleigh–Taylor instability ~curve 3! and Richtmyer–
Meshkov instability~curve I !, which have identical ends a
1/q50 andq51, are different in the intermediate region.

Let us show that the stationary state defined by~9.13!
and ~9.14! is stable. Consider the disturbance

K5K01dK tl, Q5Q01dQ tl,

a5
a01da tl

t
, b5

b01db tl

t
.
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FIG. 15. One-parameter families of bubbles. a—2
case, b,c—3D case.
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We linearize the system~9.7!–~9.10! near it. The matrixM
for the eigenvaluesl has the form

2l23a2qb 0 123K 2qK
0 2l2a23qb 2Q q223qQ
a1b 0 (12K)(l21)12a K(12l)
0 a1b Q(12l) (q2Q)(l21)12q2b.

Here we have omitted the subscript 0 in the stationary fu
tions for brevity. It follows from the calculations of the e
genvaluesl that in the interval occupied by curveL with the
end pointsT and b (1,q,1.26) all the eigenvalues ar
different and negative.11! Therefore, there is power-law
damping of the disturbances and the stationary state defi
by ~9.13! and ~9.14! is stable. We note that on branchDb,
which is depicted by dashed lines in Figs. 14~a! and 14~c!,
there is one positive eigenvaluel, which is an indication of
the instability of this stationary state.

As in the case of Rayleigh–Taylor instability, the traje
tories of the system~9.7!–~9.10! for g50 connect the vicin-
ity of the center atK5Q50 and the nodeS. Qualitatively,
the structure of the phase space is similar to that show
Fig. 13. In particular, forq51 and asymmetric initial data
@a(0)Þb(0)# there is an increase in symmetry (2m→4m)
as t→`. The two-dimensional phase space of the squ
lattice ~Secs. 4.5 and 4.6! is located on the bisectorK5Q,
a5b of the four-dimensional phase space of the syst
~9.7!–~9.10!.

10. ONE-PARAMETER CHARACTER OF
RAYLEIGH–TAYLOR STATIONARY STATES

The nonstationary stage was investigated above. It
shown that during evolution, the growth of disturbances
saturated and a weakly perturbed state transforms into a
tionary~limiting! state. Because of this, the theory of statio
ary states is important. Let us examine it in the case
Rayleigh–Taylor instability. The principal property is th
one-parameter (1d) character of the stationary states.41–43,24

Owing to it, a quantitative theory of stationary states h
been devised.24

10.1. One-parameter solutions in the 2D geometry. Let
us consider the potential streamlining by an external fl
-
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with the profilez5h(x) depicted in Fig. 15~a! ~curve1!. The
profile is found in the band 0,x,p. The freestream veloc
ity w`51 is assigned forz→1`. The functionh(x) de-
creases monotonically, andh→2` as x→p. The form of
the profile h(x) assigns the streaming potentialf (j5x
1 iz). The pressure distribution on the profile bounda
ph(x)5p@x,z5h(x)# is determined together with the poten
tial. The position of a point on this boundary is assigned b
by thex coordinate and by thez coordinate. Therefore, the
distribution of the pressure can be represented in the form
the functionph(z). Thus, the profileh specifies the distribu-
tion ph(z) (h→ph).

In the opposite case the functionph(z) is assigned~as
before, w`51!. There is a mutual one-to-one correspo
dence betweenph(z) andh(x) ~at least locally!. Therefore,
assigningph(z) fixes the potentialf (j) and the form ofh(x)
(ph→h).

Let us examine the dynamics of a heavy fluid with a fr
surface in a uniform gravitational field. In this context we a
interested only in the special class of the distributionsph(z)
consisting of the linear distributions

ph~z!5gz ~10.1!

with g.0. There is a single parameterg, which runs through
the class~10.1!. The distributions~10.1! correspond to a one
parameter class of the potentialsf (j;g) and the profiles
h(x;g). They are also solutions of the problem of the s
tionary rise of a bubble with the boundaryh(x;g), since this
boundary is a streamline and the condition (u21w2)u
522gh holds on it by virtue of~10.1! and Bernoulli’s
equation.

Therefore, the problem of stationary Rayleigh–Tay
bubbles has a 1d family of solutions. Figure 15~a! shows two
bubbles from this family~curves1 and2!, which correspond
to the valuesg1 andg2.g1 .

It is clear that the velocityw` can serve as the paramet
instead ofg. In fact, let us fix the form of a certain profile
h(x;gf) from the class~10.1!. When the form ofh is fixed,
the variation ofg ~the pressure is measured relative to t
pressure at the apex of the profile! leads to the variation of
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w` . A more obtuse bubble~curve 2 in @Fig. 15~a!# has a
smaller rise velocityw` .

The existence of a one-parameter family of solutions
the heavy-fluid problem is well known from the theory
gravity waves.44

10.2. One-parameter solutions in the 3D geometry. It
follows from simple arguments that there are also o
parameter solutions in the 3D case. Let us demonstrate
Consider the potential streamlining of the profileh(x,y) in a
vertical pipe of arbitrary cross section@Figs. 15~b! and
15~c!#. Let w`51. The potentialf (x,y,z) and the pressure
distribution ph(x,y) on the boundary are specified by th
form of the profileh(x,y) (h→ph).

We represent the functionph(x,y) in the form of the
equivalent functionph(z,u), whereu is the azimuthal angle
lying in the horizontal plane. The profilesh have a stagna
tion point. It is marked by a cross in Figs. 15~b! and 15~c!.
We shall call it the bubble apexB. The case in which the
point B is the highest point on the profile has bearing on
heavy-fluid problem. Accordingly, the tangent plane at t
point is horizontal. A streamline entering an apex is perp
dicular to the tangent plane. The crosses in Figs. 15~b! and
15~c! indicate the directions of the principal curvaturesK
andQ.

In the opposite case the functionph(z,u) is assigned. It
specifies the potentialf (x,y,z) and the form ofh(x,y).

A uniform gravitational field corresponds to a spec
class of the functionsph(z,u). In it these functions are iso
tropic and linear:

ph~z,u!5gz. ~10.2!

This is a simple consequence of Bernoulli’s theorem, wh
must be applied to the streamlines emanating from an a
and to the contours which are obtained in horizontal secti
of the surfaceh. The class~10.2! is associated with a 1d
family of potentials and bubbles, which can be represente
the form f (x,y,z;g),h(x,y;g) and in the form
f (x,y,z;w`),h(x,y;w`).

Let w` be the parameter. As in the 2D case@compare
curves1 and2 in Fig. 15~a!#, a bubble with a small value o
w` is more obtuse~the curvaturesK andQ are smaller! and
has a thinner near-wall jet@Figs. 15~b! and 15~c!#.12!

The variety of pipe cross sections is greater in the
geometry. In the 2D case the pipe is a band or a slot boun
by two parallel walls, which are perpendicular to thex,z
plane@see Fig. 15~a!#. In the 2D case the bubbles have t
form of shafts perpendicular to the plane of the figure, and
the 3D case they have the form of ‘‘fingers’’ surrounded
near-wall jets. The special cases of pipes of general fo
correspond to pipes with symmetric cross sections, wh
can serve as the basis for parquet covering@Sec. 3, Figs. 1–6
and 15~c!#. In these cases the potentials are given by
series~3.1! and~3.2!, and the corners and walls are symm
ric verticals and planes~Sec. 3!.
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11. TRUE STATIONARY STATES AND ONE-PARAMETER
SOLUTIONS

The parabolic approximation (N51, Sec. 1! is fairly
simple~Secs. 4 and 9!. For this reason, it is possible to an
lytically describe structural effects associated with the
geometry ~Secs. 5–7!. The extension of this approach t
higher approximations (N.1) is a very interesting problem
WhenN51, the system undergoes a transition of an initi
weakly disturbed stateI to a stationary stateS (I→S; Secs.
4, 5, and 9!. The trajectoryI→S eludes the surfaceG ~Fig.
13!. The analysis of systems of higher order that are sim
to ~4.17! runs into difficulties. It turns out forN.1 that
trajectories which start out fromI states are blocked by th
surfaceG.13,15 We can approach the problem from anoth
side. Consider the stationary states and the trajectories
them. In this way it is possible to obtain some importa
results.

Zero-parameter solutions. An analysis of the vicinity of
stationary states requires finding stationary points and inv
tigating their stability. Let us consider some aspects of
search for stationary states. From the qualitative standp
the situation in the 2D and 3D cases is complet
identical.28,29,17In higher approximations in the 2D geomet
we have

h5 (
n51

N

Knx2n, f ~j!5w1 ic52 (
n51

N

anS einj

n
2 i j D ,

j5x1 iz. ~11.1!

Stationary solutions are obtained from the algebraic syst

ca~K1 , . . . ,KN ,a1 , . . . ,aN!50,

pa~K1 , . . . ,KN ,a1 , . . . ,aN!50, ~11.2!

wherea51, . . . ,N. WhenN51, the system~11.2! for un-
known Kn and an ~11.1! takes the formc15123K150,
p15a1

22K150. It is similar to the equationsc15124K1

50, p15a1
224K150, which are obtained from the syste

~4.17! (g51;6m,4m) when K̇150 andȧ150.
WhenN<6, the systems~11.2! can be solved exactly.45

Let the indexi run through the roots of the system~11.2!
(KN ,aN) i in the Nth approximation, where KN

5$K1 , . . . ,KN% andaN5$a1 , . . . ,aN%. It was shown in Ref.
17 that from the set of roots$ i %, no more than one root is
physically correct in each order defined byN in the range
N<6. We denote this root by

~KN ,aN!0d. ~11.3!

A program for numerically solving the system~11.2! by
Newtonian iterations was written. It was found that the d
tances between the roots~11.3! from different orders as de
fined by N are significantly greater than the convergen
radius of the iterations. It was also found that iterations
not permit reaching an approximation orderN with a value
N.6 when roots withN<6 are used as the initial approx
mation.

One-parameter solutions. An interesting approach to th
problem of stationary states is associated with their o
parameter character. Section 10 was devoted to a qualita
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FIG. 16. a! Curve 1d and point 0d on it. b! The evolution of
the system att→` can end only at point 0d, solid curves–
trajectories of the system~11.10!.
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proof of the existence of one-parameter solutions. Let
analyze it quantitatively. The one-parameter solutions are
scribed by the expansions

h5 (
n51

N

Knx2n, f ~j!52 (
m51

M

am

eimj

m
1 iw`j, ~11.4!

whereN is the approximation order of the boundary con
tions. The spectral decomposition~11.4! has the asymptote
needed forz→1`. The expression

M5N11, ~11.5!

which relates the number of harmonics in the 1d solution
~11.4! and the approximation order, is important. The syst
of 2N11 equations which are satisfied by the unkno
K1 , . . . ,KN ,a1 , . . . ,aN ,aM , has the form

ca~K1 , . . . ,KN ,a1 , . . . ,aN ,aM !50,

pa~K1 , . . . ,KN ,a1 , . . . ,aN ,aM !50, ~11.6!

a11 . . . 1aN1aM5w` , a51, . . . ,N,

where the number of the last Fourier amplitude taken i
account in a particular orderN is given by formula~11.5!
and the parameterw` has been eliminated from the function
ca andpa using the last equation in the system~11.6!. The
condition for the presence of the required stagnation poin
the apexj50 supplements the equation(am5w` in the
system~11.6!. The solutions of Eqs.~11.6!, as they should be
~Sec. 10!, are the functions

K1~w`!, . . . ,KN~w`!,a1~w`!, . . . ,aN~w`!,aM~w`!
~11.7!

of the parameter. We shall call the curves~11.7! one-
parameter or 1d solutions, and we shall call a solution in th
form of the point~11.3! a zero-parameter or 0d solution.

A program was written for the iterative solution of th
system~11.6!. In contrast to the case of~11.2!, it was found
that the iterations converge rapidly. This opens up a way
find 0d points using 1d curves.

Relation between0d solutions and1d solutions. Com-
pare the systems~11.2! and~11.6! along with~11.5! and their
solutions ~11.3! and ~11.7! for identical values ofN. As
stated, the 1d solutions~11.7! are functions ofw` . In par-
ticular, the last amplitudeaM is a function ofw` . It turns out
that there is a value of the parameterw`

0d at which

aM~w`
0d!50. ~11.8!

Let

K1
0d , . . . ,KN

0d ,a1
0d , . . . ,aN

0d ,aM
0d50 ~11.9!
s
e-

o

at

to

be the solution~11.7! for w`
0d . We see that it belongs to

curve ~11.7!.
Let us compare Eqs.~11.2! and~11.6!. We substitute the

solution ~11.9! without aM
0d into the system~11.2! of the

same order. It is easy to see that~11.9! gives a solution of the
system~11.2! of the form ~11.3!.

This allows us to circumvent the difficulty associate
with the absence of convergence of the iterative solution
~11.2!, since the system~11.2! and the system~11.6! without
the last amplitudeaM and without the last equation(am

5w` are identical. More specifically, the 1d curve of the
solutions ~11.7! or the system~11.6! is constructed itera-
tively. The point~11.8! is sought on it. This point is the 0d
point in the respective order as defined byN. The following
0d points were found by this method:R(N51)53, R(N
53)52.57, R(N56)52.556, and R(N58)52.4445,
whereR is the radius of curvature at the bubble apex.

Figure 16~a! shows the 1d curve~11.7! and the 0d point
~11.3!, ~11.8!, ~11.9! lying on it for a certain orderN. We
introduce the notation K5K1 , . . . ,KN , aM

5a1 , . . . ,aN ,aM , andaN5a1 , . . . ,aN , and theM th com-
ponent of the vectoraN is equal to zero. The projection of th
0d point onto theK , aM space lies in theaM50 plane. The
projections of all the other points from the 1d curve onto this
space, for example, the point marked by a square in F
16~a!, haveaMÞ0.

True stationary states. It is not difficult to understand
that only the 0d points are true stationary states. In fact,
nonstationary system of the type~4.17! takes the following
form in higher orders:

K̇a5ca~K ,aN!, (
b51

N

Gabȧb5pa~K ,aN!,

a51, . . . ,N, ~11.10!

where the right-hand sidesca andpa are the same as in th
system~11.2!.13,15 The system~11.2! is obtained from Eqs.
~11.10! when K̇50 andȧ50. Therefore the solution~11.3!
is a stationary point of the system~11.10!. The solutions of
Eqs. ~11.10! asymptotically approach the limiting value
~11.3!, ~11.8!, and~11.9! @see Fig. 16~b!#. In addition, in the
asymptote the sum(Nan takes the value (w`

0d) which is
obtained in that limit, i.e., it cannot be required that th
value differ fromw`

0d . The stability of the 0d point has been
demonstrated forN51 ~see Secs. 4 and 9 and Refs. 15 a
18!. The 0d points are probably stable whenN.1.

We reiterate that the remaining points from the 1d
curve, for example, the square in Fig. 16~a!, are not station-
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ary points in the respective order as defined byN. They
cannot be investigated for stability. If a 1d solution ~11.7!,
say the square, is taken, the last amplitudeaM is discarded,
and the ordered setK1 , . . . ,KN ,a1 , . . . ,aN thus obtained is
substituted into the nonstationary system~11.10!, the right-
hand sides of these equations will not be equal to zero,
therefore, there will be a deviation from stationary behav
(K̇Þ0,ȧÞ0) at that point.

In this respect, stationary bubbles@g51, ] t50, and
boundary conditions~2.1! and~2.2!# differ qualitatively from
stationary gravity waves (g521, ] t50, and the same
boundary conditions!. In the case of waves we have

h5 (
n51

N

Knx2n, f ~j!5 i (
n51

N

an

einj

n
2w`j,

the amplitudesan are real, and there is fluid atz.h. The
system for waves which is analogous to system~11.6! has
the form

ĉa~K1 , . . . ,KN ,a1 , . . . ,aN ;w`!50,

p̂a~ . . . !50, a51, . . . ,N, ~11.11!

where the carets abovec and p indicate that the respectiv
functions of the arguments differ from the functions
~11.6!. It is significant that there is no additional equatio
associated with the stagnation point here, and, theref
there is no additional amplitudeaM . The solutions of the
system~11.11! are functions of the parameter:44

K̂1~w`!, . . . ,K̂N~w`!, â1~w`!, . . . ,âN~w`!. ~11.12!

Because the number of nonstationary equations in the w
case that are analogous to Eqs.~11.10! coincides with the
number of the functions~11.12!, linearization of the nonsta
tionary equations can be performed near each point on
1d curve ~11.12!.

Uniqueness of the0d stationary point. It is important to
stress that in each order as defined byN there is no more
than one 0d point. Therefore, the solution of the asympto
problem for Rayleigh–Taylor bubbles is unique.

We express our sincerest thanks to S.I. Anisimov a
O.M. Belotserkovski� for their interest in this work. This
study was carried out with financial support from the Russ
Fund for Fundamental Research~Projects 99-02-16666 an
97-01-00931! and the program for supporting leading scie
tific teams~96-15-96448 and 96-15-96137!.
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1!The experimental and numerical studies are cited over the course o

presentation.
2!The linear stage is symmetric. In it an arbitrary disturbance is a lin

combination of harmonics. The harmonics develop independently. In e
sinusoidal period the bubbles and jets are symmetric.

3!A preliminary description of these effects was given in Ref. 18. Only
p4mm case~a square! was considered in that work. The general ca
(pmm2, p6mm, and p3m1 lattices; for the symmetry classes see Re
25–27! is considered below. We note the following new effects: 1! the
identical nature of the bubble dynamics in different lattices; 2! an
asymptotic increase in symmetry~the symmetry of the set$k% of the initial
wave vectors is more important than the collective symmetry of the se
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f

initial amplitudes and vectors$a;k%!; 3! interchangeability of hexagona
and triangular bubbles upon rephasing of Richtmyer–Meshkov
Rayleigh–Taylor instability. Incidentally, the array of crests is hexago
during half of a period according to the time of a standing gravity wa
and is triangular during the other half.

4!This also permits the use of parabolic model 1 to describe flow.
5!The principal curvatures have the opposite sign at saddle points.
6!In the case of a rectangular bubble the principal curvatures at theB andJ

apices differ in value, and the contour of a cross section of the surfaceh in
a horizontal plane is an ellipse~see Fig. 1!.

7!The stationary point~4.18!, which applies to Rayleigh–Taylor instability
was previously calculated in Refs. 8, 17, 18, 28, and 29 for the case
square array and in Ref. 8 for the case of a hexagonal array.

8!In it the smallest possible number of symmetric walls~three! converge at a
jet apexJ. Just this feature sets apart the 6m bubble array. The bubbles in
a 6m lattice differ little from the bubbles in a 4m lattice.

9!This approach can also be applied to aJ apex and toSs and Sw saddle
points~see Sec. 5.3!. At these points, just as at aB point, the linear terms
drop out, and the expansion of the boundaryh begins with the quadratic
terms.

10!We note that in the case of high-symmetry lattices~Sec. 4! there is no
need to investigate the stability of the Rayleigh–Taylor and Richtmy
Meshkov stationary states. It is obvious from the structure of the ph
space. Conversely, in the 2m case an investigation of the stability yields
description of this structure.

11!For example, whenq51, we have detM52l4110l3117l2111l12
50 with the eigenvalues21, 22, and (2462&)/4. The linearization
of ~4.17! gives the system (l12)dK50, 2dK1(l11)da50 with the
roots l1521 and l2522. When qÞ1, the characteristic equation
detM50 is extremely cumbersome.

12!We recall that the limiting case (t@1/Agk), in which the Ss and Sw

saddle points andJ apices are at large distances from theB apex, is being
considered. The ratioDx /Dy between the thicknesses of the near-wall je
is discussed in Sec. 5.3.
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Diffraction of x rays at a Bragg angle of p/2 „back reflection … with consideration
of multiwave effects

V. G. Kohn,* ) I. V. Kohn, and É. A. Manykin

Russian Research Center ‘‘Kurchatov Institute’’, 123182 Moscow, Russia
~Submitted 26 January 1999!
Zh. Éksp. Teor. Fiz.116, 940–952~September 1999!

The energy dependence of the back reflectivity in the dynamical diffraction of x rays at a Bragg
angle ofp/2 ~back diffraction! in perfect crystals of cubic symmetry~silicon! is investigated
theoretically. In this case strict backscattering is realized only under the conditions of multiple
diffraction. The features of the influence of multiple diffraction on back reflection in the
energy range near the nuclear resonance radiation energy of 14.41 keV for57Fe nuclei, specifically
in the six-wave case, including the silicon~1,9,9! reflection~with an energy of 14.57 keV!,
which can be investigated experimentally with high energy resolution~1 meV! using synchrotron
radiation and a monochromator developed for nuclear resonant absorption, are thoroughly
studied. It is shown that the back reflectivity observed under the conditions of multiple diffraction
has several maxima on the plot of its energy dependence with a value at each maximum
smaller than half, in contrast to two-wave diffraction, where there is one maximum with a value
close to unity. ©1999 American Institute of Physics.@S1063-7761~99!01309-8#
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1. INTRODUCTION

The back reflection of x rays during diffraction on pe
fect crystals with a Bragg angle ofp/2 ~back diffraction! is
known to occur only in a very narrow energy range with
relative width less than 1026, but has a relatively weak sen
sitivity to the angular divergence of the beam~no more than
1023 rad). Since the construction of the dispersion surfa
introduced into the theory by Ewald1 is impossible in the cas
under consideration, it initially appeared that a generali
solution of Maxwell’s equations without linearization of th
dispersion correction to the wave vector must be used
analyze back reflection.2,3 In reality, the theory remains lin
earized to a high accuracy, and in terms of the deviat
parameter from the Bragg condition it does not differ in a
way from diffraction at a Bragg angle smaller thanp/2 ~Ref.
4!.

A slight angular deviation of the beam for the directio
corresponding to strict backscattering was used in the exp
mental investigations of back reflection in Refs. 5–7, sin
otherwise it was impossible to pass the incident be
through the opaque detector. This simultaneously permi
elimination of the multiwave effects and allowed the use
the theory of two-wave diffraction to describe the measu
plots of the energy~temperature! and angular dependences
the reflectivity. Additional back reflection was employed
monochromatize the beam, and the convolution of two t
oretical reflection curves was calculated simultaneously
comparison with experiment. Good agreement between
experimental temperature curve and the theoretical calc
tion was obtained in Ref. 7.

Nevertheless, strict backscattering~back diffraction! is
of considerable interest in connection with the possibility
using it to create an x-ray analog of the familiar Fabry–Pe´rot
interferometer~see, for example, Ref. 8 and the referenc
5001063-7761/99/89(9)/8/$15.00
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therein!. In this case very high monochromatization of th
radiation is needed to ensure a long longitudinal~temporal!
coherence length. The necessary degree of monochroma
tion is achieved with a safety margin using a ‘‘Mo¨ssbauer
monochromator,’’ i.e., the nuclear resonant scattering
pulses of synchrotron radiation in conjunction with a tim
window technique, under which a detector with a high te
poral resolution, of the order of a nanosecond, permits is
tion of only the scattered radiation delayed by nuclei. T
latter has an energy width of the order of the width of t
excited state of the nucleiG. Only the57Fe nuclear transition
with an energy E514.413 keV and a widthG54.66
31026 meV has been used hitherto fairly widely. A tran
parent detector and a large crystal–detector distance m
also be employed to measure strict backscattering. The i
dent ~primary! synchrotron radiation pulse is also cut o
using a time window.

Just such a measurement technique was recently
proposed and successfully implemented in Ref. 9. Sapp
(Al2O3) crystals, which did not have a sufficiently perfe
crystal lattice, were used to eliminate the multiwave effe
in Ref. 9. For this reason, despite the high angular collim
tion and the very high monochromaticity of the incide
beam, the experimental curves differed from the results o
calculation based on the dynamical theory for perfect cr
tals.

Hitherto, only silicon crystals had a sufficiently perfe
structure. In this case several reflections have energies c
to E514.413 keV. They are the~3,5,11! reflection
with E514.210 keV, the ~0,4,12! reflection with
E514.437 keV, and the ~1,9,9! reflection with
E514.572 keV. In all cases back reflection is realized un
the conditions of multiple diffraction. The reflections ind
cated were recently measured in Ref. 10 at room temp
© 1999 American Institute of Physics
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ture. An x-ray monochromator with a resolution of the ord
of 1 meV was used this time. Monochromators of such
type were widely used in the last few years in the Mo¨ssbauer
facilities of third-generation synchrotron radiation sourc
~ESRF in France, APS in the U.S.A., and SPring-8 in Jap!,
in inelastic nuclear resonant absorption experiments~for the
latest results on this subject, see Refs. 11 and 12 and
references therein! and were developed specifically forE
514.4 keV with the possibility of scanning the energy in
small range.

Moreover, the use of back reflectivity peaks in silicon
reference marks on the energy scale of such a monoc
mator permits measurement of the energy of the nuclear t
sition itself to a higher accuracy in comparison to oth
methods. Just such a problem was solved in Ref. 10. For
purpose, in particular, it is necessary to know how the m
tiwave effects influence the form of the back reflectiv
peak. Thus, an investigation of strict backscattering w
consideration of the multiwave effects has practical value
addition to being of purely physical interest. The~3,5,11!
and ~0,4,12! reflections correspond to 24-wave diffractio
They will be studied at a later date. The present work
devoted to an analysis of back reflection with considerat
of multiwave effects in the case of the silicon~1,9,9! reflec-
tion, which corresponds to 6-wave diffraction. The dynam
cal theory of the diffraction of plane waves in matrix for
and the scheme for the computer calculations are prese
in the next section. The scattering geometry and the res
of the numerical calculations are presented in Sec. 3. Sec
4 offers a qualitative analysis of the influence of multiwa
corrections on two-wave diffraction in ranges of paramet
where they can be regarded as a perturbation. It prov
partial explanations for the numerical results obtained.

2. MATRIX FORM OF THE DYNAMICAL THEORY OF THE
MULTIPLE DIFFRACTION OF PLANE WAVES

The theory is devised for a monochromatic plane wa
with a frequencyv and a wave vectorK0 . Real radiation can
always be represented as a superposition of plane waves
we assume that the different frequencies and directions o
wave vectors are incoherent. Thus, the intensity of the ba
reflected radiation for a monochromatic plane wave mus
calculated, and then the result must be averaged over
finite angular and frequency~energy! ranges correspondin
to the results of the specific experiment. When the conditi
for multiple diffraction in a crystal in the form of a plane
parallel plate with an internal normaln to the entrance sur
face of the crystal are satisfied, an incident wave with
electric field intensity

E0~r ,t !5E0 exp~ iK0•r2 ivt ! ~1!

corresponds to the superposition of truncated Bloch wav

E~r ,t !5(
j

l j(
m

Em j exp~ ikm j•r2 ivt !,

km j5K01hm1« jn, ~2!

which contains only reciprocal-lattice vectorshm of the crys-
tal that satisfy the Bragg condition (K01hm)2'K0
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assigned accuracy of the order of the amplitudexm of the
diffraction scattering from one wave to another. The su
script j labels the possible solution, andl j is the degree of
excitation of the respective solution in the crystal for an
signed incident wave. It is found from the boundary con
tions.

When solutions in the form~2! are plugged into Max-
well’s equation for the amplitude of the electric field, th
following approximations are made to an accuracy of
order ofx0'1026.

1! The electric field is assumed to be transverse:

Em j5(
s

Ems jems, ~3!

wheres5p,s is the polarization index, and the unit vecto
ems specify the polarization direction in beamm in a plane
perpendicular to the unit vectorsm , which is parallel toK0

1hm .
2! Only the first power of the dispersion correction« is

taken into account in the equations. This corresponds to
approximation of generalized geometric optics in the sm
angle case.

3! Averaging of the equation over a unit cell of the cry
tal is performed for the purpose of eliminating the fast va
ables with a variation length of the order of the waveleng
of x rays from the calculations.

4! Only the dipolar interaction of the electromagne
wave with the medium is taken into account~the accuracy of
this approximation is poorer than that of the preceding
proximations, but in all cases, except the anomalous tra
mission effect, it is sufficient!.

The approximations indicated allow us to write equ
tions separately for each of the scalar amplitudesEms j in the
following form ~for further details, see Refs. 1 and 13!:

S gm

K
«1amDEms5 (

m8,s8
gmm8

ss8 Em8s8 , ~4!

whereK5v/c is the wave number,c is the speed of light,

gm5(sm•n), gmm8
ss8 5xm2m8~ems•em8s8!,

am5@~K01hm!22K0
2#/K2, ~5!

andxm2m8 is the Fourier component of the polarizability o
the crystal in the reciprocal-lattice vectorhm2hm8 .

To describe the calculation scheme in matrix form it
convenient to combine the two indicesm ands into one, for
which we retain the notationm. The index m thus runs
through the values 0p, 0s, 1p, 1s,...,(n21)p,(n21)s in
the n-wave case. Going over to the new amplitudes,Bm j

5gm
1/2Em j , we can rewrite the system of equations~4! in the

form characteristic of many dynamical systems~electrons,
phonons, etc.!, i.e., as the eigenvalue problem

«Bm5(
m8

Gmm8Bm8 ~6!

for the kinematic scattering matrix
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Gmm85Hmm82Amdmm85K~gmgm8!
21/2

3~gmm82amdmm8!, ~7!

where dmm8 is a Kronecker delta, which is equal to ze
whenmÞm8 and to unity whenm5m8.

The matrixGmm8 has a rank of 2n. Accordingly, there
are 2n different characteristic solutions of the problem~6!,
which are distinguished by the indexj . Unlike other dynami-
cal systems, the matrixGmm8 is non-Hermitian, since the
matrix gmm8 is non-Hermitian in the general case with co
sideration of the absorption of x rays. However, the parts
gmm8 which describe scattering and absorption separately
Hermitian. Nevertheless, the matrixGmm8 is still non-
Hermitian even for a nonabsorbing crystal, if among the
rametersgm there are some which have negative values. T
always occurs in the case of back diffraction. Therefore,
eigenvalues« of the problem, i.e., the dispersion correctio
to the wave vectors, are complex even for a nonabsorb
crystal. In addition, some of them have a negative imagin
part, which corresponds to growth of the Bloch waves
they move into the crystal. This, in turn, causes some d
culty in solving the boundary-value problem by numeric
methods on a computer.

The general solution of the boundary-value problem i
form which is stable toward increasing Bloch waves w
given in Refs. 14 and 15. Below we shall briefly formula
the solution method used. For this purpose, we order
elements in the matrix of eigenvectorsBm j so that the index
m corresponds to decreasing values of the parametergm and
the index j corresponds to decreasing values of the ima
nary part of the eigenvalue« j9 . If the number of Laue beam
corresponding to the passage of radiation through the cry
plate for whichgm.0 is equal tonL , then the number of
values ofm corresponding to these waves and the numbe
solutions with a positive imaginary part of the eigenval
(« j9.0) are equal to the same number 2nL . We denote the
set of such values of the indicesm and j by the single index
L, and we denote the set of remaining values by the sin
index B. This allows us to divide the complete matrix o
eigenvectorsBm j obtained as a result of the numerical so
tion of ~6! into the four submatricesBLL , BLB , BBL , and
BBB , of which the diagonal matricesBLL and BBB are
strictly square, and the off-diagonal matrices are rectang
in the general case. The set of amplitudes for the reflectio
Laue-type plane waves (gm.0) into Bragg-type plane
waves (gm,0) is described by the blockMBL of the com-
plete dynamical scattering matrix.

In this paper we analyze the back reflectivity in the a
proximation of a thick absorbing crystal, in which the i
creasing Bloch waves can be completely neglected. In
case the block of the dynamical scattering matrix of inter
to us is described by the simple expression

MBL5BBL~BLL!21. ~8!

If the incident plane wave has the index 0 and is polarized
thes state~these conditions correspond to synchrotron rad
tion! and if the back-reflected wave has the indexk5n21
and its polarization state is not analyzed, then the experim
tally measured reflectivity is described by the expression
f
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Rk0
(s)5(

s8
uMks8,0su2. ~9!

The parameters of the problem are the components of
vectorq5K01hk/2, which describe small deviations of th
wave vector of the incident wave from the direction corr
sponding to strict backscatteringK0

(0)52hk/2. It is conve-
nient to represent the vectorq in the form

q5K~u1e0p1u2e0s1uvs0!, ~10!

where the parametersu1 andu2 describe the angular devia
tions of the incident beam anduv5(v2vc)/vc describes
the spectral back reflection line sought. The critical fr
quency isvc5cuhku/2, the critical wavelength islc52dk ,
wheredk is the interplanar distance for the back-reflecti
atomic planes, and the crystal photon energy~in keV! is Ec

512.4/lc , wherelc is measured in angstroms. With consi
eration of ~10!, the parameters of the deviation from th
Bragg condition in the linear approximation with respect toq
equal

am52~hm•q!/K252K21@~hm•e0p!u1

1~hm•e0s!u21~hm•s0!uv#. ~11!

In experiments the incident beam always has a fin
angular divergence, and the monochromator has a fi
width. For simplicity, we assume that the shape of the an
lar and frequency spectra of the monochromator is rectan
lar. Thus, the spectral reflection line interesting us can
calculated from the formula

Rk0
(s)~uv!5

1

Tu
2Tv

E duv8E du1du2Rk0
(s)~u1 ,u2 ,uv82uv!,

~12!

whereTu and Tv specify the angular and frequency width
of the monochromator, respectively, and the integration
performed in these limits.

3. „1,9,9… BACK REFLECTION IN SILICON UNDER THE
CONDITIONS OF SIX-WAVE DIFFRACTION. GEOMETRY AND
CALCULATION RESULTS

In crystals of cubic symmetry strict backscattering on
reciprocal-lattice vector with fairly large Miller indices i
always accompanied by reflection into other reciproc
lattice vectors, which satisfy the Bragg conditions as a c
sequence of the symmetry of the crystal lattice. For exam
in a silicon crystal the~1,9,9! reflection occurs simulta-
neously with the (24,0,4), (24,4,0), ~5,9,5!, and ~5,5,9!
reflections, so that six-wave diffraction is realized when t
Bragg conditions are strictly satisfied. In this case the tr
cated Bloch waves are sums of plane waves with the w
vectorskm5K01hm , which have the following values in
units of p/a, wherea is the lattice constant, in the coord
nate system of the reciprocal lattice of the crystal:

~20.5,24.5,24.5!; ~24.5,24.5,20.5!;

~24.5,20.5,24.5!;

~4.5,4.5,0.5!; ~4.5,0.5,4.5!; ~0.5,4.5,4.5!.
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Let the crystal plate be cut so that the normal to
surface is parallel to the (0,21,21) direction. In this case
the parametersgm are equal to 0.997, 0.554, 0.554,20.554,
20.554, and20.997, respectively, i.e., we have three Lau
type waves and three Bragg-type waves. Figure 1 shows
directions of the diffracted beams relative to the crystal pla
The polarization vectors in each wave can be chosen a
trarily. Taking into account the scattering symmetry, w
choose the polarization vectors in the following manner. T
vector e0p is parallel to the (0,1,21) direction, and the re-
maining vectors are defined according to the formulas

ems5sm3e0p , emp5ems3sm . ~13!

At the same time, the set of three vectorse0p , e0s , ands0 is
used to resolve the vectorq, as follows from formula~10!.

The numerical values for the Fourier componentsxm of
the polarizability of the crystal were obtained usin
Stepanov’s X0H program. When this work was carried o
this program was freely available on the Internet.16

As we know, a symmetric 232 matrix with diagonal
elements equal to one another has eigenvectors with com
nents that are equal in absolute value and thus corresp
exactly to dynamical diffraction. Therefore, the centers of
two-wave reflection maxima are determined with consid
ation of the dynamical displacement of the parameters
the relationsAm5Hmm2H00, which depend, among othe
things, on the parametersgm , rather than by the condition
am50. In the case under consideration these conditions h
the following form in microradians~mrad!:

~24,0,4!: 20.118u120.176u220.105uv520.271

~24,4,0!: 10.118u120.176u220.105uv520.271

~5,9,5!: 20.118u120.176u210.429uv510.949

~5,5,9!: 10.118u120.176u210.429uv510.949

~1,9,9!: 10.296uv510.678. ~14!

FIG. 1. Directions of the diffracted beams relative to the crystal plane.
plane of the plate is perpendicular to the (0,21,21) direction.
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As follows from these conditions, two-wave back reflecti
does not depend on the angular variables, but the reflec
maximum is shifted with respect to the photon energy
DE5D05Ecuv

(0)533.4 meV.
It is difficult to graphically represent the three

dimensional dependence of the reflectivityRk0
(s)(DE,u1 ,u2),

whereDE5Ecuv . Therefore, we shall present and discu
only fragments of the general dependence. Figure 2 sh
the dependence of the back reflectivity for the~1,9,9! reflec-
tion in the (DE,u2) plane of arguments atu150, and Fig. 3
presents the dependence in the (DE,u1) plane atu250 for
both polarization states in the incident wave. As follow
from the calculations represented in these figures, the t
wave band of the back reflection maximum due to~1,9,9!
diffraction vanishes as the multiwave region of parameter
approached. In addition, it is easy to discern the presenc
additional reflection bands in regions where the Bragg c
dition for ~1,9,9! diffraction is not satisfied but the Brag
condition for other reflections is satisfied.

While the value of the reflectivity increases as we mo
along the two-wave band of the~1,9,9! reflection from the
center to the edges, it decreases as we move along the
tional bands. This is because the additional reflection ba
have an essentially multiwave character. The slope of th
bands relative to the energy axis in the (DE,u2) plane at
u150 is determined from the conditions~14!. For example,
the conditions for two-wave diffraction in the~5,9,5! and
~5,5,9! reflections are satisfied in the line atu250.167DE
25.932. Here and below, the shift of the photon energyDE
is measured in millielectron volts~meV!. This means that
three-wave~0,0,0; 5,9,5; 5,5,9! diffraction occurs in this line.
The ~1,9,9! back reflection is weak~kinematic!, but it is en-
hanced because of the simultaneous presence of se
strong waves. A more detailed analysis is given in the f
lowing section.

As follows for Fig. 2, there is a second line of addition
reflection. It corresponds to three-wave~24,0,4;24,4,0;
1,9,9! diffraction. The Bragg condition for this case is ob
tained by subtracting the condition for the (24,0,4) reflec-
tion from the condition for the~1,9,9! reflection in formulas
~14!. At u150 a simple calculation then permits determ
nation of the equation of the second line
u2520.156DE15.932. The two lines cross at the poi
DE536.73 meV, u250.742mrad. The lines split at the
crossing point, and there is symmetry of the~1,9,9! back
reflectivity in the split lines relative to the change in the si
of the quantityu220.742, although the physical condition
for reflection on both sides of the symmetric pattern are d
ferent. In one case the~1,9,9! reflection is a disturbance in
the Bloch wave, where the strong waves are the~0,0,0!,
~5,9,5!, and~5,5,9! waves. In the other case the~1,9,9! wave
is a strong wave together with the (24,0,4) and (24,4,0)
waves, but the perturbation is a component in the incid
~0,0,0! band; therefore this Bloch wave is weakly excited
the crystal. The presence of polarization in the incident wa
weakly influences the two-wave band of the~1,9,9! reflec-
tion, but has a very significant effect on the additional refle
tion bands.

The dependence shown in Fig. 3 is even more com

e
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FIG. 2. Dependence of the reflectivity for~1,9,9! back reflec-
tion at u150 for two polarization states of the incident wav
~p ands!.
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cated. The two-wave diffraction in the~0,0,0; 5,9,5! and
~0,0,0; 5,5,9! reflections now takes place in the lines
u2560.249 (DE232.2). The additional reflection band
are strongly split for both polarization states. In additio
two-wave (24,4,0;1,9,9) and (24,0,4;1,9,9) bands are dis
played in the lines atu2560.239 (DE233.7). The bands
are closely spaced, although they do not coincide with
another. Therefore, the two-wave case with strong renorm
ization of the scattering parameters is partially realized h

The experimental observation of the dependences of
reflectivity presented in this paper requires a strongly co
mated~less than 1mrad2) and monochromatized~of the or-
der of 1 meV! beam. If the beam has finite collimation and
not scanned over the angle, the dependence of the bac
flectivity on the photon energy shiftDE can be obtained by
integrating over the angular variablesu1 andu2 in assigned
limits @see formula~12!#. Figure 4 shows the back reflectio
energy spectra forTv50 andTu50, 4, 8, 12, 16, 20mrad,
and`. The integration was carried out by simple summat
on a square grid with a spacing of 0.2mrad along both axes
For better visibility, the curves for different values ofTu

have been shifted to achieve 0.2 spacing along the ver
axis. The lower curve corresponds toTu50 and the upper
curve ~for Tu5` within the approximation considered! cor-
responds to pure two-wave diffraction.
,
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e
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As follows from the calculations, multiwave effect
are displayed even with collimation of the beam
20320mrad2 in the form of a lower maximum of the prin
cipal reflection and additional regions of weak reflectio
However, already with angular misorientation of the bea
exceeding 10310mrad2, the principal maximum is fully dis-
tinguishable and has a position on the energy scale co
sponding to the two-wave case. This result can be utilized
calibrating monochromators with an energy resolution of
order of 1 meV.

4. TWO-WAVE DYNAMICAL DIFFRACTION, KINEMATIC
DIFFRACTION, AND THE INFLUENCE OF OTHER
REFLECTIONS ON THEIR PROPERTIES

Multiwave dynamical diffraction is described by the sy
tem of equations~6!, which does not have an analytic solu
tion in the general case. Moreover, the results of deta
studies only of cases of systematic diffraction, in which
the vectors of the reciprocal lattice lie in a single plane, ha
been published hitherto. In such cases the variation of
energy of the incident photons leads only to variation of
reference point on the plane of angular parameters with
alteration of the angular dependence of the reflectivities. T
case which we considered refers to nonsystematic~random!
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FIG. 3. Dependence of the reflectivity for~1,9,9! back reflec-
tion at u250 for two polarization states of the incident wave
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diffraction in Chang’s terminology.17 Nevertheless, we can
use the approximate approach previously developed fo
qualitative analysis of the calculation results.

Let us consider the important special case where two
the set of parametersAm characterizing the deviation from
the Bragg conditions are close to one another, for exam
the parameters with the indicesi and j , while the remaining
parameters have values differing strongly from these two
this case it is natural to presume that only the componentBi

and Bj of the eigenvector will have large and comparab
values, while the remaining components will be small. W
first consider the situation in which the small compone
a

f

e,

n

s

can be completely neglected and the polarization can
separated. This corresponds to two-wave diffraction,
which in the system of equations~6! it is sufficient to retain
only two equations:

~«1Ai2Hii !Bi2Hi j Bj50,

2H ji Bi1~«1Aj2H j j !Bj50. ~15!

This system has two solutions, in which

«1,25Hii 2Ai10.5@2a6~a214Hi j H ji !
1/2#,
d
-

n
.

FIG. 4. Energy spectra of the angle-integrate
back reflectivity for various values of the colli
mation of the incident beam: 030 ~lower
curve!, 434, 838, 12312, 16316, 20
320mrad2, and the two-wave case~upper
curve!. For better visibility the curves have bee
shifted along the vertical axis with 0.2 spacing
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a5~Aj2Ai !2~H j j 2Hii !, Bj /Bi5~«1Ai2Hii !/Hi j .
~16!

Here the branch with a positive imaginary part is chosen
the square root.

If the index i 50 corresponds to the incident beam, a
the index j 5h corresponds to the~1,9,9! back reflection,
then in the approximation of a thick absorbing crystal, t
reflection amplitude is exactly equal to the ratio between
components of the Bloch wave and can be written in
standard notation1 as follows:

Bh

B0
5 i

p1Ap224bxhx h̄C

2x h̄
, ~17!

where

p5ab2x0~11b!, b5g0 /ugnu, C5~e0sehs!. ~18!

Here it has been taken into account explicitly thatgh,0. In
the case of back reflectionb51. Equations~17! and ~18!
correspond exactly to the upper curve in Fig. 4 with cons
eration of the relationa524uv524DE/Ec .

In the kinematic approximation, in which the rescatte
ing between the weak components of the mixed Bloch w
for mÞ i , j can be neglected and only the single scatter
from strong waves into weak waves need be taken into
count, the weak components are given by the following
pression:

Bm5
HmiBi1Hm jBj

«1Am2Hmm
. ~19!

As follows from this formula, ordinary single-wave sing
scattering from the incident wave withi 5(000) into the
back reflection wave withm5(1,9,9) can be enhanced in th
presence of several strong waves, and the appearance o
ditional reflection maxima can be expected in the case wh
the Bragg condition is satisfied for some wave w
j Þ(1,9,9) and this wave is scattered in phase with the in
dent wave.

In addition, we can write the system of equations
strong waves in the more exact form

~«1Ai2Hii !Bi2Hi j Bj5(
m

HimBm ,

2H ji Bi1~«1Aj2H j j !Bj5(
m

H jmBm , ~20!

wheremÞ i , j in the sum. Now, using formula~19 for weak
waves and substituting it into~20!, we obtain a system of the
type ~15!, but with renormalized coefficients:

~«1Ai2Fii !Bi2Fi j Bj50,

2F ji Bi1~«1Aj2F j j !Bj50, ~21!

where

Fkl5Hkl1 (
mÞ i , j

HkmHml

«1Am2Hmm
, k5 i , j , l 5 i , j . ~22!

Formulas like~19!, ~21!, and ~22! were obtained for a
more general case with consideration of the polarizat
r
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multipliers in Ref. 18 as a method for approximate soluti
of the problem. In Refs. 19–21 the mechanism for renorm
ization of the parameters was called virtual Bragg scatter
The same approach was used in Refs. 22 and 23 to inv
gate standing x-ray waves and total reflection in a forbidd
reflection.

Under ordinary conditions for two-wave diffraction th
parameter describing the deviation from the Bragg condit
for a weak waveAm@«, Hmm, and the renormalization o
the coefficient is very small. However, in a situation which
close to the pure multiwave situation, this renormalization
significant and can significantly distort the character of tw
wave diffraction, i.e., can significantly shift the position
the maximum and alter its width and height. In this case e
the magnitude of the dispersion correction should be ca
lated self-consistently.

Thus, an analysis of the multiwave corrections to t
two-wave~1,9,9! back reflection reveals effects of two type
First, the two-wave back reflectivity peak is distorted as
result of the renormalization of the parameters of the scat
ing associated with rescattering on other reflections. Sec
renormalization of the kinematic diffraction appears wh
the Bragg conditions for any of the other reflections are s
isfied with consideration of the renormalization of its para
eters. Significant interference of the two scattering chann
then occurs, as a result of which, as the analysis showed
single-band approximation does not provide the required
curacy in comparison to an exact multiwave calculatio
Therefore, the formulas presented in this section are suit
only for a qualitative understanding of the results of the e
act calculation presented in Figs. 2 and 3, but cannot be u
directly for calculations.

The mechanism discussed here can also be consider
the case where the conditions for three-wave diffraction
satisfied simultaneously, as occurs atu150. The formulas
presented above can easily be generalized to this case.
situation is far more complicated when the regions of tw
wave diffraction for different reflections are fairly close, b
do not coincide exactly. In this case, the interference of d
ferent scattering channels leads to a complicated structur
peaks of kinematic scattering, as is clearly seen in Fig. 3

We express our thanks to Yu. Shvyd’ko for formulatin
the problem and taking an interest in this work.
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Phase transformations in the disordered antiferromagnetic Ising model
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We employ the Monte Carlo method to provide a computer description of the thermodynamic
properties of the disordered antiferromagnetic Ising model for a simple cubic lattice with
allowance for the nearest neighbors interaction and the next-nearest neighbors interaction. We
construct the phase diagram for the model in an external magnetic field for systems with
spin concentrationsp51.0, 0.95, and 0.8. We also establish the tricritical behavior of the model.
Finally, we study the critical behavior of the model in weak fields. ©1999 American
Institute of Physics.@S1063-7761~99!01409-2#
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In the last two decades the efforts of many researc
have been focused on understanding of how impurities
other defects affect the behavior of various systems in ph
transitions. Of special interest here is the effect of froz
impurities, whose presence manifests itself in the form
random local perturbations of temperature in ferromagn
and antiferromagnets in the absence of an external field o
the form of random magnetic fields for antiferromagnets i
uniform magnetic field. In view of the fact that a magne
field breaks the symmetry of the system with respect t
change in the signs of spins, the statistical properties of s
disordered systems differ substantially.

Studies have shown1 that in phase transitions without a
external magnetic field the presence of frozen impurities
ters the properties of only those magnetic substances w
specific heat in the homogeneous state diverges at the cr
point. In all other cases the impurities have no effect on
behavior of the magnetic substances at the critical point.
given criterion is met only by systems whose effecti
Hamiltonian near the point is isomorphic to the Ising mod
The literature devoted to study of the critical properties
the Ising model is vast~see, e.g., the review articles in Ref
2 and 3!. For dilute systems, good agreement has b
achieved between the theoretical results and the result
experiments and Monte Carlo simulations.

As for magnetic substances with random fields, notwi
standing the intensive theoretical and experimental rese
done in the last two decades,3 there are still very few reliable
facts characterizing the behavior of such systems. In part
lar, the nature of the phase transition in the random-fi
Ising model is yet to be determined, while the results o
tained by computer simulation of such systems are con
dictory. The almost single reliable fact established so fa
that the upper critical dimensionality for this phase transit
~the dimensionality of the system above which critical ph
nomena are described by the mean-field theory! is six,3 in
contrast to the value of four for homogeneous syste
Lately, in the problem of the lower critical dimensionality o
the transition in the random-field Ising model~the dimen-
sionality dl of the system above which long-range orderi
sets in at finite temperatures!, where Imry and Ma4 argued
5081063-7761/99/89(9)/5/$15.00
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that dl52 and Parisi and Sourlas5 that dl53, Imbrie6 and
Bricmont and Kupiainen7 came to the conclusion tha
dl52. However, the nature of the phase transition in
three-dimensional Ising model is still unclear. According
Young and Nauenberg8 and Rieger and Young9, this is a
first-order phase transition down to very random-field valu
while according to Ogielski and Huse,10,11 it is a second-
order phase transition.

Two ~qualitatively! equivalent models have been used
describe the effect of random fields on the behavior of m
netic systems: the model of random-field Ising ferromagn
~RFIM!12 and the model of Ising dilute antiferromagnets in
field ~DAFF!.13 Real magnetic systems with random-field e
fects are antiferromagnets with frozen impurities of nonm
netic atoms. Such systems exhibit not only effects associ
with the antiferromagnetic interaction of nearest neighb
but also effects associated with the ferromagnetic interac
of next-nearest neighbors. The DAFF model does not
count for the competition of the ferromagnetic interactio
with the result that its real use~like that of the RFIM model!
is fairly limited.

To establish the features of the phase transitions
random-field magnetic substances that set these substa
apart from systems with a random local temperature~random
spin interactions!, we did a Monte Carlo simulation of the
critical behavior of an Ising dilute antiferromagnet using
simple cubic lattice with allowance for the nearest-neighb
interaction and the next-nearest-neighbor interaction. T
model Hamiltonian is

H5J1 (
i , j

pipjs is j1J2 (
i ,k

pipks isk1mH (
i

s i ,

~1!

wheres i561, J151 characterizes the exchange interacti
between the nearest-neighbor spins~which is of an antiferro-
magnetic nature!, J2521/2 characterizes the ferromagnet
interaction of the next-nearest-neighbor spins,H is the
strength of the uniform external magnetic field, andpi andpj

are the random variables described by the distribution fu
tion
© 1999 American Institute of Physics
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P~pi !5pd~pi21!1~12p!d~pi ! ~2!

and characterizing the frozen nonmagnetic impurity ato
~vacant sites! distributed over the lattice sites with a conce
tration cimp512p. The given model withp51.0 and com-
peting interactions has been studied for more than two
cades by Monte Carlo methods.14,15However, we are the firs
to use the model to describe the influence of disorder eff
on the critical behavior of systems. From the viewpoint
physics, this model is the most realistic one. The size of
random-field effects in this model and in real magnetic s
tems is determined by the impurity concentration and
magnitude of the external field. For this reason the para
eters of the model uniquely correspond to the parameter
a real physical experiment. The situation is different in t
RFIM model: the magnitude of the random field is fixed a
cannot be unambiguously related to the parameters of a
physical experiment, i.e., the impurity concentration in t
sample and the magnitude of the external field.

What makes the present disordered model so remark
is that atH50 it is able to describe the critical behavior of
system with random spin interactions, while forH,Ht , ac-
cording to the results discussed below, it demonstrates
critical behavior of a system with random fields. F
H.Ht , magnetization fluctuations violate the stability of th
second-order phase transition, so that phase transforma
in the system acquire the features of a first-order phase t
sition. At H5Ht and T5Tt the system exhibits tricritica
behavior. Thus, the given model describes a broad clas
phase transitions and makes it possible to study the effec
the disorder introduced by impurities on the thermodynam
characteristics of the system in phase transitions.

To establish the features of the thermodynamic cha
teristics of a disordered system that determine the syste
behavior for different types of phase transitions, we m
first construct the phase diagram of the system, which sp
fies the dependence of the phase transition temperatureTph

on the magnetic field strengthH at a given spin concentra
tion p, i.e., Tph5Tph(H,p). In finding the component of the
phase diagramTc5Tc(H,p) corresponding to second-orde
phase transitions we must bear in mind that the critical
havior of the antiferromagnetic system is determined
strong, long-lived fluctuations of the ‘‘staggered’’ suscep
bility M stg, the difference of the sublattice magnetization
The measure of magnetic fluctuations is the linear sizej(T)
of a characteristic magnetic domain, a region with stron
correlated spins. AsT approachesTc , the correlation in the
spin orientations grows in strength and the increase inj(T)
is described by a power law with an exponentn: j(T)
}uT2Tcu2n. The ‘‘staggered’’ susceptibility and the specifi
heat of the system also experience an anomalous incr
near Tc : xstg}uT2Tcu2g and C(T)}uT2Tcu2a, where a
andg are the critical exponents. Due to the long-lived flu
tuations ofM stg, the relaxation timetp also increases with
out limit nearTc . Such behavior of the thermodynamic fun
tions and the physical parameters is observed in
immediate vicinity ofTc , i.e., (T2Tc)/Tc!1, for systems
that are assumed to be at the thermodynamic limit~the num-
berN of particles in the system tends to infinity and so do
s
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the system volumeV, but N/V→const!. In a finite system
there can be no real second-order phase transition. Neve
less, it is believed that ifj(T) is smaller than the linear siz
of the system, a finite system correctly describes the pro
ties of an infinite system. In other words, ifT is not too close
to Tc , model calculations must yield results comparable
those for an infinite system. To findTc , we use the assump
tion that the critical properties for systems of different sca
L are attained only asL→`.

One method that can be used to find the critical tempe
ture Tc in an infinite system (L5`) is to determine the
‘‘critical temperature’’ of a finite systemTc(L) from the
position of the peak in the temperature dependence of
‘‘staggered’’ susceptibilityxstg(T,L) and use the scaling
asymptotic dependence

Tc~L !2Tc~L5`!.aL21/n, L@1, ~3!

wherea is a constant depending on the details of the mo
and the boundary conditions. However, in the case of co
puter simulation of the critical behavior of homogeneo
system, the best method so far for determiningTc(L5`) is
Binder’s method of cumulants,16 which in our case involves
introducing the cumulantU of the form,

U5
1

2 S 32
@^M stg

4 &#

@^M stg
2 &#2D , ~4!

where the angle brackets stand for statistical averaging
the square brackets, for averaging over the different impu
configurations. The cumulantU(L,T) has a scaling form

U~L,T!5u~L1/n~T2Tc!! ~5!

that is important for describing the behavior of finite syste
and does not exhibit a multiplicative dependence onL. The
cumulant is defined in so as to obey 0<U<1 and so that at
temperatures aboveTc it tends to zero asL→`. The scaling
dependence of the cumulant makes it possible to determ
the critical temperatureTc(L5`) from the coordinate of the
point of intersection of the curves specifying the temperat
dependenceU(L,T) for different valuesL. More than that, it
can easily be shown that in the critical region, asT→Tc ,

dU

dT
5aL1/n~11bL2v!, ~6!

with the result that the exponentn can be found from the
maximum slope of the cumulants corresponding to differ
values ofL in the limit L→` near their intersection point.

We examined cubic lattices withL512, 18, 24, and 32
with spin concentrationsp51.0, 0.95, and 0.8. In growing
the impurity configurations, the number of impurity atom
~vacant sites! (12p)L3 was taken to be the same for ea
antiferromagnetic lattice and a procedure for sampling th
random distributions among the sites of the sublattices
implemented. The initial localization of the ‘‘critical tem
perature’’ of the finite system,Tc(L,H), was determined in
relation to the maximum in the temperature dependence
the ‘‘staggered’’ susceptibilityxstg(T,L) for the following
values of field strength~in units of J1 /m!: H50, 1, 2, 3, 4,
4.5, and 5.2~Fig. 1 depicts the dependence ofxstg on T for
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three values ofH!. Then we employed the method of cum
lants to determineTc(L5`,H) more accurately.

To obtain reliable values off the equilibrium thermod
namic characteristics of the behavior of systems in the c
cal region, the procedures of statistical averaging and a
aging over the different impurity configurations must
carried out after the specific system has reached the sta
equilibrium. The critical behavior of various systems, es
cially disordered, is characterized by anomalously long
laxation times, which increase substantially as the sys
being modeled grows in size.

Disordered systems with random fields, such as s
glasses, belong to the class of frustrated systems, in w
frustration is due to their structural disorder. In frustrat
systems, the competing interactions with different spin
dering contradict each other and cause a series of even
which there is not a single one of the possible spin confi
rations that can minimize all the components of the sys
Hamiltonian simultaneously. In disordered antiferromagn
the aligning of the spins in a uniform external field is t
cause for competition with antiferromagnetic ordering in t
low-temperature range.

Some of the researchers13,17–21who studied the behavio
of the RFIM and DAFF models with random-field effec
found that at low temperature a set of metastable states s
rated by energy barriers appears. One such state is a
with long-range order~ferromagnetic for RFIM and antifer
romagnetic for DAFF!, while the other states have differe
configurations of the domain structure. It was shown tha
system initially frozen in one of its domain states anom
lously slowly relaxes to the state with long-range order. T
effect of various experimental conditions~the freezing and
heating rates for the system in the presence or absence
external field! on the nature of the states that occur in t
ordered phase and the size of the irreversible effects as f
tions of the random-field amplitude and the proximity to t
critical temperature was studied in Refs. 13, 17, 20, and

In our studies of the relaxation properties of the mo

FIG. 1. Temperature dependence of the ‘‘staggered’’ susceptibilityxstg

along the curves of second-order phase transition in the system 183 with
p50.95 atH50 ~curve1!, H52 ~curve2!, andH53 ~curve3!.
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with L524 and a spin concentrationp50.8 we used a
Monte Carlo simulation and found that in the low
temperature phase the system usually relaxes in the cour
2000 to 4000 steps per spin to one of its metastable sta
and this process is followed by fluctuation flips of the ‘‘sta
gered’’ magnetization with intervals amounting, on the av
age, to 5000 steps. These flips are accompanied by
anomalously slow relaxation of the values of ‘‘staggere
magnetization through a series of metastable states to a
close to equilibrium in the course of 100 000 steps per sp

To guarantee that the system reaches an equilibr
state at temperatures close to critical and to determine
thermodynamic characteristics of such states, we carried
a procedure of slow quasistatic freezing of the system fr
the disordered phase, beginning at a temperature at whic
metastable states were found in all the ‘‘runs.’’ The proc
dure of quasistatic freezing amounted to a relaxation reg
consisting of 3000 steps, repeated at each temperature
lowed by an averaging regime consisting of 10 000 steps
a lowering of the temperature with a stepDT50.01, with
each initial spin configuration being the one obtained at
last step of the preceding temperature. To avoid poss
irreversible effects, especially in strong fields,13 which mani-
fest themselves in the difference of the thermodynamic qu
tities in the thermal cycling from the disordered phase to
ordered phase and back, each ‘‘run’’ consisted of the pro
dure of quasistatic freezing described above followed
heating.

In the process of calculating the cumulantsU(L,T), for
each lattice of sizeL and fixedH and p we did statistical
averaging over ten ‘‘runs’’ with different initial spin con
figurations for each impurity configuration, which was fo
lowed by averaging over 20 to 40 different impurity config
rations. Note that using cumulants provides a good test of
type of transition in the system. For instance, in the case
second-order phase transitions, the curves representing
temperature dependence of the cumulates have an inte
tion point ~actually a triangle if a finer scale is used!, as
shown in Fig. 2, while in the case of first-order phase tra
sitions the temperature curves of the cumulants have a
cific shape and do not intersect. Studies have revealed th
the impurity concentration and the magnetic field stren
increase, so does the error in determining the average v
of the critical temperature~the area of the triangle of inter
section of the temperature curves of the cumulants increa
see Fig. 2!, due to the increase in strength of the configu
tional impurity fluctuations.

The tricritical point @Tt(L),Ht(L)# was determined for
each lattice withL512, 18, 24, and 32 and spin concentr
tions p51.0, 0.95, and 0.8 from the behavior of the isothe
mal magnetizationM under variations of the field strengt
H. The change of the order of the phase transition from fi
to second at the tricritical point was found to be accom
nied by the disappearance of the hysteresis loop, which c
acterizes the dependence ofM on H with a decrease or in-
crease of field strengthH along the curve of first-orde
transitions~Fig. 3!. The value of the tricritical temperatureTt

for an infinite system was determined by extrapolatingTt(L)
asL→` according to~3!, while the corresponding value o
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FIG. 2. Curves representing the temperature d
pendence of the cumulantsU(T,H) for lattices
with L518 ~curves1!, L524 ~curves2!, L532
~curves 3! and spin concentrationsp50.95 ~a!
andp50.8 ~b! at H51.
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Ht was found by extrapolatingHt(L) in accordance with the
scaling relationship

Ht~L !2Ht~L5`!.bL2(d122h t)/2, ~7!

whered is the dimensionality of the system, andh t!1 is the
Fisher exponent.

As a result of our investigations we arrive at the follow
ing values of the parameters that determine the critical po
Tt56.1460.03 and Ht55.4060.10 at p51.0, Tt55.15
60.10 andHt55.3560.07 atp50.95, andTt52.6460.03
and Ht54.7160.05 atp50.8 ~here the temperature value
are given in units ofJ1 /k, wherek is Boltzmann’s constant!.

Note that for a homogeneous system (p51.0) the value
of Tt and Ht are a refinement of the corresponding valu
obtained by Landau,22 because we were dealing with larg
systems~in Ref. 22, 6<L<20!.

FIG. 3. MagnetizationM as a function of the magnetic field strengthH in
the system 183 with p50.95 at three temperature near the tricritical po
Tt54.6: T54.0 ~curve 1!, T54.5 ~curve 2!, and T54.6 ~curve 3!. The
curves1 and3 are shifted to the left and right along the horizontal axis
21.0 and11.0, respectively.
t:

s

The curves for first-order phase transitions were loc
ized by analyzing the temperature and field dependence
the magnetization, internal energy, and specific heat.

Our investigation resulted in determining the phase d
grams ~see Fig. 4! for the antiferromagnetic homogeneou
Ising model (p51.0), a weakly disordered model (p
50.95), and a highly disordered model (p50.8). We see
that as the impurity concentration grows, the curves rep
senting the phase transitions shift to the region of lower te
peratures and weaker magnetic fields. The localization
these curves makes it possible to carry out a detailed ana
of the special features in the critical behavior of systems w
random spin interactions and random fields.

By analyzing the asymptotic scaling dependence of
cumulants for lattices withL512, 18, 24, and 32 in accor
dance with~6! and the ‘‘staggered’’ susceptibility at the crit
cal temperatureTc(L5`,H) in accordance with the expres
sion xstg}Lg/n we found the critical exponentsn and g for
homogeneous and disordered states of the antiferromag
Ising model. For instance, for the homogeneous system w
p51.0, H50, andTc510.15 we found thatn50.6360.01
and g51.2560.02, which are in good agreement with th

FIG. 4. Phase diagrams for the antiferromagnetic Ising model withp51
~curve1!, p50.95 ~curve2!, p50.8 ~curve3!; the * indicate the tricritical
points.



e
n

in-

x-

in
al
s-

t
IM

o
v
n
ur

te
de
es
ex
o
ra

na
nd
m
oy
u
cy
te
t
he
hy

lly,
res
the

un-

n-

512 JETP 89 (3), September 1999 Prudnikov et al.
results of theoretical calculations, the high-temperature
pansion, and the experiment conducted by Le Guillou a
Zinn-Justin.23 For disordered systems with random spin
teractions atp50.95, H50, andTc59.62 and atp50.8,
H50, andTc57.97, the resulting values of the critical e
ponents,n50.6560.02 and g51.2760.03, andn50.68
60.02 andg51.3160.03 agree with Heuer’s results24 of a
computer simulation of the disordered ferromagnetic Is
model and with the results of Mayer’s theoretic
calculation25 for the weakly disordered Ising model. For di
ordered systems with random-field effects atp50.95,
H51, andTc59.53 and atp50.8, H51, andTc57.84, the
resulting values of the critical exponents,n50.6860.02 and
g51.3560.03, andn50.7960.03 andg51.4560.04 dem-
onstrate a sharp increase with the degree of disorder in
system. In contrast to a computer simulation of the RF
model done by Young and Nauenberg,8 in our model the
values of critical exponents do not exhibit a quasi-tw
dimensional nature. Such features could appear at higher
ues ofH, where the random-field effects play an importa
role, but this is a problem for future investigations of o
model.

To summarize, we note that our results of compu
simulation of a three-dimensional disordered Ising mo
with antiferromagnetic interaction between the near
neighbors and ferromagnetic interaction between the n
nearest neighbors in an external field are of primary imp
tance. We have been the first to construct the phase diag
for the given model at spin concentrationsp50.95 and 0.8.
We also have convincingly shown that in weak exter
fields the random-field effects do not destroy the seco
order phase transition. In order to localize the critical te
peratures along the phase-transition curve we have empl
the method of cumulants, which has made it possible to
scaling analysis not only to determine, with a high accura
the temperature of the second-order transition but also to
the nature of the phase transition. We have been the firs
localize the tricritical points in the phase diagrams of t
disordered systems under investigation by analyzing the
x-
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teresis effects in the behavior of the magnetization. Fina
the high accuracy of localization of the critical temperatu
has made it possible to find the critical exponents for
Ising model with random-temperature effects~in the absence
of an external field! and random-field effects~in a finite mag-
netic field!.
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Emergence of spectral line jumps and spectral diffusion in the two-photon correlator of
a single impurity center
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A dynamic theory of two-photon correlators for a single impurity center developed recently by
the author@I. S. Osad’ko, Zh. E´ksp. Teor. Fiz.113, 1606~1998! @JETP86, 875 ~1998!#
has been generalized to the case in which the center interacts with nonequilibrium two-level
systems~TLSs! in polymers and glasses. Quantum tunneling transitions in TLS manifest
themselves as random jumps of a spectral line of an impurity center. These jumps can be either
spontaneous or light-induced. Interaction between the impurity center and many
nonequilibrium TLSs, which exist in polymers, results in a time dependence of the optical
dephasing rate 1/T2 of an impurity molecule, i.e., in spectral diffusion. This paper describes how
the jumps of the spectral line manifest themselves in the two-photon correlator, which can
be measured in experiments. ©1999 American Institute of Physics.@S1063-7761~99!01509-7#
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1. INTRODUCTION

The spectroscopy of a single molecule embedded i
polymer or glass offers unique opportunities for studying
local dynamics of these solids.1 It is now clear that in glasse
or polymers, there is not only a distribution of frequencies
electronic transitions, which determines the inhomogene
broadening of impurity spectral lines, but also distributio
of the magnitude and type of local electron-phonon coupl
and of the impurity interaction with two-level system
~TLSs! in polymers and glasses.2–4 Slow relaxation due to
tunneling transitions in TLS has been extensively stud
recently using the technique of single-molecule spectr
copy.

Excitations of TLSs~tunnelons! manifest themselves in
electronic absorption spectra as spectral lines due to
electron-tunnelon coupling. The spectroscopy of single m
ecules offers unique opportunities for studying this inter
tion, as well as the local electron-phonon coupling.

The basic experimental technique in the spectroscop
single molecules is excitation of fluorescence. Direct m
surements of light absorption are very inefficient becaus
is difficult to detect absorption of a single photon from
great number of photons in the exciting light beam. In t
fluorescence excitation technique, the absorption intensit
estimated on the basis of the number of emitted phot
whose frequencies shifted to the red side with the respec
the excitation frequency. For this reason, the exciting rad
tion does not interfere with the photons emitted by a m
ecule.

In studies of single molecules, cw lasers with spec
widths of several megahertz are used. Under cw excitatio
molecule performs jumps between the ground and exc
electronic levels at random moments of time. Therefor
light detector receives a sequence of photons emitted by
molecule and separated by random time intervals.

In single-photon detection techniquesthe total number
5131063-7761/99/89(9)/12/$15.00
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of photons emitted by a molecule is counted. If the la
frequencyv0 equals that of the spectral line maximumV,
the light absorption intensity is maximal, hence the me
interval between emitted photons is minimal. The mean
terval between emitted photons decreases with the detu
v02V. Therefore the number of photonsN(v02V) emit-
ted by a molecule over the time intervalt is a function of the
detuning. This function describes the absorption line.

At an excitation intensity of 1042105 photons per sec-
ond, which is typical of the single-molecule spectrosco
several tens of seconds are needed to record the absor
line with good accuracy by detecting emitted photons. T
shortcoming is inessential for solids which do not conta
TLSs. But in polymers, where tunneling transitions in TL
occur, one has to deal with jumps of spectral lines, a
which excitation of a molecule, hence emission of photo
terminates. Such jumps on the frequency scale are show
Fig. 1. As will be demonstrated below, these jumps of sp
tral lines are due to interaction between molecules and n
equilibrium TLSs, which are always present in a polymer
glass. It is clear on the intuitive level that the frequency
such spectral jumps should reflect the relaxation rate
TLSs. Unfortunately, the one-photon technique based
counting the total number of emitted photons and descri
above is not a convenient tool for measuring the TLS rel
ation rate. The TLS relaxation time, however, can be ea
assessed using the technique of two-photon correlators.1,4,5

In two-photon detection techniques, pairs of photons
emitted by a molecule with a certain time delayt between the
two photons of the pair are counted. Figure 2 shows th
such pairs corresponding to onet. The count ratep(t) of
such pairs is called the two-photon correlator. It is also
function of the incident light frequency, i.e.,p(t)5p(v0

2V,t). The task of the theoretical research is determinat
of a mathematical formula forp(t). A quantum mechanica
theory of two-photon correlators for a three-level molecu
© 1999 American Institute of Physics



oc
et

d

c
s
a
c
x-
er

s
on
c.
n
d
t
ti
te
n
n

s o

n
n
a
la

er

an
c
ns
ht
o
d
o

b-
tive
f a
out
n-
ular
in
ue
es,

of
ed

ator
n-
if-
e
ents

ro-
eld,

g-
-

he
-

hro-
of
the

ted.
-
nd
.
the

s,

in
in

pe
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whose density operator was analyzed using optical Bl
equations or three kinetic equations, was described in d
in a previous publication.5 It turned out that

p~ t !5
r1~ t !

T1
, ~1!

wherer1(t) is the probability of exciting a molecule derive
from the Bloch equations. The probabilityr1(t) calculated in
this manner,5 however, did not take account of the presen
of nonequilibrium TLSs in a solid. A theory without thi
limitation will be developed in this paper, and this will be
dynamic theory of the two-photon correlator taking into a
count interaction with nonequilibrium TLSs whose rela
ation times range from fractions of microseconds to sev
hours or even weeks.

The paper is organized as follows. Section 2 discus
the full Hamiltonian of the electron-photon-phonon-tunnel
system and interactions between its components. In Se
on the basis of this Hamiltonian, an infinite set of equatio
for the full density matrix of this system will be derived, an
basic approximations will be discussed, which allow one
simplify these equations and replace them with four kine
equations for populations of the states of a quantum sys
consisting of a two-level molecule coupled to phonons a
one TLS. In the process of realizing these approximatio
microscopic expressions for both tunneling transition rate
TLS and coefficients of light absorption and emission by
two-level molecule interacting with phonons and one no
equilibrium TLS will be derived concurrently. This transitio
from the infinite set of equations to the four kinetic equ
tions, which requires, unfortunately, cumbersome calcu
tions, is the main topic of Sec. 3. If the reader is not int
ested in the discussion of the approximations employed
this analysis and the derivation of basic equations~26!–~29!,
which will be used in Secs. 6 and 7, he can omit Sec. 3
skip to Sec. 4, which analyzes spontaneous and light-indu
tunneling in TLS on the basis of the four kinetic equatio
taking into account only one TLS and shows that the lig
induced tunneling can be neglected at low intensities
pumping. This conclusion makes considerably easier the
velopment of an approximate method for describing a m

FIG. 1. Jumps of the 580.77-nm spectral line of terrylene molecule do
polyethylene.3
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ecule’s interaction with a larger number of TLSs in the su
sequent sections. In Sec. 5, an approximate effec
technique will be developed for determining the kinetics o
system consisting of one molecule and one TLS with
light-induced tunneling. In Sec. 6 this technique will be ge
eralized to the case of interaction between one molec
chromophore and many TLSs, which will allow us to obta
an expression for the light absorption coefficient with d
account of the time-dependent broadening of spectral lin
i.e., the spectral diffusion due to interaction with a lot
nonequilibrium TLSs. On the basis of the equations deriv
in Secs. 3 and 6, an expression for the two-photon correl
will be derived in Sec. 7 taking into account the electro
phonon coupling, TLS relaxation, and effect of spectral d
fusion. Two specific examples of its applications will b
given there. Section 8 summarizes the paper and pres
conclusions.

2. HAMILTONIAN OF THE ELECTRON-PHONON-TUNNELON
SYSTEM

Let us consider a system consisting of a two-level ch
mophore interacting with a transverse electromagnetic fi
vibrations of nuclei in the lattice~phonons!, and tunneling
transitions in the solvent~tunnelons!. The Hamiltonian of
such a system has the form

H5H01H'1L̂1l̂, ~2!

whereH' is the Hamiltonian of the transverse electroma
netic field andH0 is the Hamiltonian of the chromophore
phonon-tunnelon system:

H05@\V1DH~j!#B1B1H~j!. ~3!

HereV is the frequency at which the electronic system of t
chromophore is excited,B1 andB are creation and annihila
tion operators of the electronic excitation,H(j) is the Hamil-
tonian of phonons and TLS. The functionDH(j) describes
changes in the phonon-tunnelon system when the c
mophore’s electronic system is excited. This interaction
the Franck–Condon type is determined by changes in
adiabatic potentials when the electronic system is exci
The operatorL̂5d•E(B1B1) describes an interaction be
tween the optically active electron in the chromophore a
light, andl̂5l(c1c1) is the operator of tunneling in TLS

The Hamiltonian of the phonon-tunnelon system has
form

H~j!5@\«1V~R!#c1c1H~R!. ~4!

Here\« is the tunnelon energy,c1 andc are the creation and
annihilation operators of excitations in TLS, i.e. tunnelon
H(R) is the phonon Hamiltonian, andV(R) characterizes
changes in the phonon Hamiltonian due to excitations
TLS, i.e., it is an interaction of the Franck–Condon type

d

le
e

FIG. 2. Train of photons emitted by a single molecu
excited by a cw laser. Pairs of photons with the sam
delay are shown.
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515JETP 89 (3), September 1999 I. S. Osad’ko
the ground state of the chromophore electronic system w
is diagonal with respect to the tunnelon operators.

Strictly speaking, the tunneling operatorl̂5l(c1c1)
of the tunnelon-phonon system, which is represented b
separate term on the right of Eq.~2! expressing the full
Hamiltonian, should also be included in the phonon-tunne
Hamiltonian. There is a good reason, however, to expres
by a separate term in the full Hamiltonian because the la
is used in deriving the full set of equations for the dens
operator, so one can easily see what new terms are gene
in the equations by this tunneling operator.

As was noted above, the adiabatic potential of
chromophore-phonon-tunnelon system changes when
chromophore’s electronic system is excited, therefore, an
ditional term turns up in the tunnelon-phonon Hamiltoni
H(j):

DH~j!5@\D1DV~R!#c1c1DH~R!. ~5!

Here\D is the change in the splitting in TLS, i.e., the chan
in the tunnelon system. This parameter characterizes the
teraction, which is quadratic in the electron and tunne
operators. The termDH(R) is the operator of electron
phonon interaction, andDV(R) determines changes in th
tunnelon-phonon interaction due to the electronic excitati
The latter contribution is required because the rates of
neling transitions in the ground and electronically excit
states are different.

The last two terms on the right-hand side of Eq.~2!
characterize, as was noted above, the interaction betwee
chromophore and transverse electromagnetic field and
tunneling operator. Indeed, if we setL̂5l̂50, transitions
between two chromophore states and in TLS become im
sible.

On the other hand, if we setL̂Þ0 but l̂50, transitions
in the electronic system become possible, but tunneling t
sitions in TLSs are not allowed. This is the case for wh
the density operator was calculated previously6 without tak-
ing account of TLS. Now we are facing the problem of d
riving equations for the density operator with due accoun
TLSs and tunneling operatorl̂5l(c1c1). This problem
will be solved in the next section.

3. EQUATIONS FOR THE DENSITY MATRIX OF AN
ELECTRON-PHONON-TUNNELON SYSTEM

Now consider the equation for the density matrix of t
entire system:

i\ṙ̂5@H,r̂ #, ~6!

whereH is given by Eq.~2!. In order to derive equations fo
the matrix elements from this basic equation, we have
choose a definite basis. Let us choose the eigenfunction
the operatorH01H' , which does not account for tunnelin
and electronic transitions, for such a basis. These funct
are products of electron, phonon, and tunnelon wave fu
tions, as well as oscillatory functions describing photons

The electron functions of a two-level chromophore a
determined by the equations
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B1u0)5u1), B1u1)50,

Bu1)50, Bu1)5u0). ~7!

The phonon functions in the ground electronic state are
rived from the following two equations corresponding to d
ferent states of TLS:

H~R!ua&5\Vaua&,

@H~R!1V~R!#ua&5\Vaua&, ~8!

and in the excited electronic state from the other two eq
tions:

@H~R!1DH~R!#ub&5\Vbub&,

@H~R!1V~R!1DV~R!1DH~R!#ub&5\Vbub&. ~9!

The tunnelon wave functions in the ground and excited e
tronic states satisfy the equations

«c1cu0&50, ~«1D!c1cu1&50,

«c1cu2&5«u2&, ~«1D!c1cu3&5~«1D!u3&. ~10!

The eigenfunctionsun&5un1 ,n2 ,...& of the HamiltonianH'

of transverse electromagnetic field are the harmonic osc
tor functions.

It is obvious that the eigenfunctions of HamiltonianH0

1H' have the form

uA)5un&u0)uA&5un&u0)H u0&ua&,
u2&ua&,

uB)5un21&u1)uB&5un21&u1)H u1&ub&,
u3&ub&,

~11!

where the wave functions of the system containing the ch
mophore, tunnelons, and phonons satisfy the equations

H0u0)uA&5\VAu0)uA&,

H0u1)uB&5~E1\VB!u1)uB&, ~12!

where

VA5 H Va ,
Va1«, VB5 H Vb ,

Vb1«1D. ~13!

This set of functions and a diagram of corresponding ene
levels are shown in Fig. 3. Using the earlier investigations5,6

where spontaneous light emission was taken into accoun

FIG. 3. Electron-phonon-tunnelon wave functions and corresponding en
levels.



ic
m
a

-
or
s

m

to
3.
ous
sity

le-

ra-
rix
ion

ro-

a-

516 JETP 89 (3), September 1999 I. S. Osad’ko
deriving equations for the density operator, and basis~11!,
we transform operator equation~6! to the following set of
equations:

ṙBA52 i S D01VBA2
i

2T1
D rBA

2 i (
A8

LBA8rA8A1 i (
B8

rBB8LB8A

2 i (
B8

lBB8rB8A1 i (
A8

rBA8lA8A,

ṙAB52 i S 2D01VAB2
i

2T1
D rAB

2 i (
B8

LAB8rB8B1 i (
A8

rAA8LA8B

2 i (
A8

lAA8rA8B1 i (
B8

rAB8lB8B,

ṙBB852 i S VBB82
i

T1
D rBB82 i (

A
~LBArAB82rBALAB8!

2 i (
B9

~lBB9rB9B82rBB9lB9B8!,

ṙAA852 iVAA8rAA81
1

T1
(
BB8

^AuB&rBB8^B8uA8&

2 i (
B

~lABrBA2rABlBA8!

2 i (
A8

~lAA9rA9A82rAA9lA9A8!. ~14!

Here D05V2v0 is the difference between the electron
resonant frequency and absorbed photon frequency. The
trix elements and frequencies in this set of equations
given by the following relations:

LBA5^BuA&x5 H ^bua&^1u0&x5Lba ,
^bua&^3u2&x5Lba , LAB5LBA* , ~15!

lBB85 H ^bub&^1u3&l5lbb ,
^bub&^3u1&l5lbb ,

lAA85 H ^aua&^0u2&l5laa ,
^aua&^2u0&l5laa , ~16!

VBA5VB2VA , VBB85VB2VB8 , VAA85VA2VA8 .
~17!

Herex5d•E/\ is the Rabi frequency. The underlined com
ponents of Eq.~12! are generated by the tunneling operat
If these terms are omitted, the resulting set of equation
essentially identical to the set of equations~19! in Ref. 6.

Now let us write down each of the four lines of Eq.~12!
in a more detailed form. To this end, we introduce for si
plicity the following notation: rb1a05rba , rb3a25rba ,
rb1b35rbb , ra0a25raa ,... for thematrix elements of the
a-
re

.
is

-

density matrix and two approximations. First, we take in
account only vertical optical transitions shown in Fig.
These optical transitions are not assisted by simultane
tunneling processes. Then all matrix elements and den
matrix elements can be equated to zero:Lab5Lba5rab

5rba50. Second, we also omit the off-diagonal matrix e
ments of the density matrix,raa8 , rbb8 , raa8 , and rbb8 ,
which are inessential for the analysis of the effect of ope
tors L̂ and l̂ on the diagonal elements of the density mat
in the lowest nonvanishing order, and this approximat
will be used hereafter.

With due account of these approximations, let us p
ceed to a more detailed form of the four equations in~14!.
From the first and second equations, we obtain

ṙba52 i ~D01Vba2 i /2T1!rba2 iLba~raa2rbb!,

ṙba52 i ~D01D1Vba2 i /2T1!rba2 iLba~raa2rbb!,

ṙab52 i ~2D01Vab2 i /2T1!rab2 iLab~rbb2raa!,

ṙab52 i ~2D02D1Vab2 i /2T1!rab2 iLab~rbb2raa!.
~18!

The third equation transforms to the following four equ
tions:

ṙbb52 i ~2«2D1Vbb2 i0!rbb2 ilbb~rbb2rbb!,

ṙbb52 i ~«1D1Vbb2 i0!rbb2 ilbb~rbb2rbb!,

ṙbb52
rbb

T1
2 i (

a
~Lbarab2rbaLab!

2 i (
b

~lbbrbb2rbblbb!,

ṙbb52
rbb

T1
2 i (

a
~Lbarab2rbaLab!

2 i (
b

~lbbrbb2rbblbb!. ~19!

Finally, the fourth equation in~14! transforms to the follow-
ing four equations:

ṙaa52 i ~2«1Vaa2 i0!raa2 ilaa~raa2raa!,

ṙaa52 i ~«1Vaa2 i0!raa2 ilaa~raa2raa!,

ṙaa5
1

T1
(

b
^aub&^0u1&rbb^1u0&^bua&2 i (

b
~Labrba

2rabLba!2 i(
a

~laaraa2raalaa!,

ṙaa5
1

T1
(
b

^aub&^2u3&rbb^3u2&^bua&

2 i (
b

~Labrba2rabLba!

2 i (
a

~laaraa2raalaa!. ~20!
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Here and in the previous equations, the underlined terms
those generated by the tunneling operator.

Under low-intensity pumping, the kinetics of populatio
numbers can be investigated neglecting coherence eff
which is equivalent to omitting time derivatives of the of
diagonal elements of the density matrix. In the case un
consideration, both the pumping intensity and tunneling
erator can be treated as small quantities. Therefore, a
approximation can be applied to Eq.~18! and underlined
terms of Eqs.~19! and ~20!, specifically, we can setṙba

5 ṙab5 ṙba5 ṙab5 ṙbb5 ṙbb5 ṙaa5 ṙaa50. After that, one
can easily derive from these equations expressions for
diagonal matrix elements and substitute them in the last
pairs of equations~19! and~20!. Then we have the following
set of rate equations:

ṙbb52S 1

T1
1(

a
kbaD rbb1(

a
kbaraa

2(
b

r bbrbb1(
b

r bbrbb ,

ṙaa5
1

T1
(

b
^aub&^0u1&rbb^1u0&^bua&1(

b
kbarbb

2(
b

kbaraa2(
a

r aaraa1(
a

r aaraa ,

ṙbb52S 1

T1
1(

a
kbaD rbb1(

a
kbaraa

1(
b

r bbrbb2(
b

r bbrbb ,

ṙaa5
1

T1
(
b

^aub&^2u3&rbb^3u2&^bua&1(
b

kbarbb

2(
b

kbaraa1(
a

r aaraa2(
a

r aaraa . ~21!

Here

kba5LbaLab

1/T1

~D01Vba!
21~1/2T1!2 ,

kba5LbaLab

1/T1

~D01D1Vba!21~1/2T1!2 ~22!

characterize the rates of optical transitions, and

r bb52plbblbbd~Vbb2«2D!,

r aa52plaalaad~Vaa2«! ~23!

are the rates of tunneling transitions.
It is obvious that we can express the diagonal eleme

of the density matrix in~21! in the form

raa5rar0 , rbb5rbr1 , raa5rar2 , rbb5rbr3 ,

~24!

wherera , rb , ra , andrb are the probabilities of finding the
system in the corresponding phonon states. They satisfy
condition
re

ts,

er
-

ird

ff-
o

ts

he

(
a

ra5(
b

rb5(
a

ra5(
b

rb51. ~25!

By substituting~24! in the set of equations~21! and sum-
ming over the phonon indices, we obtain the following ra
equations:

ṙ152G1r11L0r02br11Br3 ,

ṙ05G1r12L0r02ar01Ar2 ,

ṙ352G3r31L2r21br12Br3 ,

ṙ25G3r32L2r21ar02Ar2 , ~26!

where

G151/T11L1 , G351/T11L3 , ~27!

and the coefficients

L05k10
g 5(

b,a
rakba

5^1u0&2x2(
b,a

ra^bua&2
1/T1

~D01Vba!
21~1/2T1!2 ,

L15k10
e 5(

ba
rbkba ,

L25k32
g 5(

b,a
rakba

5^3u2&2x2(
b,a

ra^bua&2
1/T1

~D01D1Vba!21~1/2T1!2 ,

L35k32
e 5(

b,a
rbkba ~28!

characterize the rates of induced optical transitions betw
the pairs of levels~1,0! and ~3,2!, as shown in Fig. 4. The
coefficients

A5(
aa

rar aa52p(
aa

ralaalaad~Vaa2«!,

a5(
aa

rar aa ,

FIG. 4. Optical and tunneling transitions described by Eqs.~26!.
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B5(
bb

rbr bb52p(
bb

rblbblbbd~Vbb2«2D!,

b5(
bb

rbr bb ~29!

are the desired microscopic expressions for the rates of
neling transitions between the levels in the upper and lo
potential wells, respectively, specifically, the ratesb and B
refer to tunneling transitions in the excited electronic st
and the ratesa and A to the transitions in the ground stat
The rates of optical and tunneling transitions determined
Eqs. ~27!–~29! are indicated in Fig. 4 next to the arrow
corresponding to these transitions. The lettersA andB denote
the rates of tunneling transitions from higher to lower pote
tial wells. These transition rates do not vanish at zero te
perature and are higher than the ratesa andb of transitions
from lower to higher wells, which tend to zero at zero te
perature.

4. SPONTANEOUS AND LIGHT-INDUCED TRANSITIONS IN
A TWO-LEVEL SYSTEM

Generally speaking, the set of kinetic equations~26!,
which is the main result of the previous section, could
written without complicated calculations using the diagra
of transitions shown in Fig. 4. Using this approach, howev
we would not have obtained~a! microscopic expressions fo
the constants in these kinetic equations, which will be u
in what follows, and~b! a clear understanding of what ap
proximations underlie Eqs.~26!. The latter can be used as
starting point for further analysis.

Rate equations~26! take into account the tunneling i
both ground and electron-excited chromophore states. Le
estimate the relative contributions of these processes. C
sider the case in which the system is excited only at
frequency of transition 1–0, i.e.,L25L350. Let us assume
also that level 3 in Fig. 4 is lower than the excited level
The latter condition is necessary so that the model could
applied to the situation with jumps of the spectral line li
those shown in Fig. 1. After such a modification of t
model, the constantsB and b should be interchanged, an
rate equations~26! transform to

ṙ152~G11B!r11L0r01br3 ,

ṙ35Br12~1/T11b!r3 ,

ṙ05G1r12~L01a!r01Ar2a,

ṙ25ar01r3 /T12Ar2 . ~30!

Let us assume that the transition rate constants satisfy
inequalities

G@L0@A, B.a,b, ~31!

which are quite common for real systems. If the rate c
stants satisfy these conditions, the probabilityr j changes
varies time on two scales: the shorter and longer ones
which the relaxation rate ofr j is faster and slower, respec
tively. The fast relaxation occurs on a time scale of the or
of T1 . After that, quasi-equilibrium is established betwe
n-
r

e

y

-
-
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e
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e

.
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the populationsr1 and r3 of electron-excited states on th
one hand, and the populationr0 on the other. The required
relation can be obtained by settingṙ15 ṙ350. Then, taking
into account inequalities~31!, we derive from the first and
second equations in~30!

r15
~1/T11b!L0r0

~G11B!/T11bG1
.

L0

G1
r0 ,

r35
BL0r0

~G11B!/T11bG1
.

L0

G1
T1Br0 . ~32!

After substituting these results in the remaining two eq
tions in ~30!, we obtain the equations

ṙ052~B̃1a!r01Ar2 ,

ṙ25~B̃1a!r02Ar2 , ~33!

whose solution is

r0~ t !5
A

B̃1R
1F r0~0!2

A

B̃1R
Gexp@2~B̃1R!t#,

r2~ t !512r0~ t !. ~34!

Here

B̃5
L0

G1
B, R5A1a. ~35!

According to Eqs.~32! and ~34!, the slow relaxation rate o
all populations is determined both by tunneling betwe
states 0 and 2 and between 1 and 3. The transition betw
states 1 and 3 is light-induced tunneling. Its rateB̃ is propor-
tional to the pumpingL0 .

Now consider the case in which the pumping frequen
resonates with the 3–2 transition. Then rate equations~26!
take the form

ṙ152~1/T11B!r11b3 ,

ṙ35Br12~G31b!r31L2r2 ,

ṙ05r1 /T12ar01Ar2 ,

ṙ25G3r31ar02~L21A!r2 . ~36!

Let us solve these equations similarly to Eqs.~30!. After
settingṙ15 ṙ350, we derive from~36!

r15
bL2r2

~G31b!/T11BG3
.

L2

G3
T1br2 ,

r35
~1/T11B!L2r2

~G31b!/T11BG3
.

L2

G3
r2 . ~37!

With due account of these results, the last two equation
~36! transform to

ṙ052ar01~ b̃1A!r2 ,

ṙ25ar02~ b̃1A!r2 , ~38!

where
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b̃5
L2

G3
b ~39!

accounts for the contribution of light-induced transitions
the tunneling when the pumping light frequency coincid
with that of the 3–2 transition. The solution of Eqs.~38! is

r2~ t1t0!5
a

b̃1R
1F r2~ t0!2

a

b̃1R
Gexp@2~ b̃1R!t#,

r0~ t1t0!512r2~ t1t0!. ~40!

With a view to investigate later the situation illustrated
Fig. 1, we set the initial moment of time not to zero, butt0 .
We describe in Sec. 7 how one can account for spectral
jumps like those shown in Fig. 1 with the help of Eqs.~32!
and ~34!, and with Eqs.~37! and ~40! as well.

The rates of light-induced transitions can be higher th
those of spontaneous ones. This is the case of TLSs invo
in photochemical burning of holes in inhomogeneou
broadened optical bands. Such TLSs usually describe
states of chromophores themselves, i.e., these are TLSs
to embedding of impurity molecules in a solvent~extrinsic
two-level systems!. Obviously, the number of such extrins
TLSs approximately equals the number of impurities. In t
situation, as follows from experimental data, a steady-s
spectral hole is burnt in an inhomogeneously broadened
tical band owing to the light-induced tunneling. Since su
holes persist at low temperatures and for several days
even weeks after the optical pumping is turned off, t
means that the ‘‘dark’’ tunneling in the ground electron
state has a very low efficiency, i.e., the constantsa andA are
low in such extrinsic TLSs. Consequently, the light-induc
tunneling cannot be neglected in such TLSs.

In polymers and glasses, however, there are TLSs
different type, which are inherent to a solvent~and called
intrinsic two-level systems! and whose existence is no
caused by the presence of impurities. The number of s
TLSs can be enormous and much larger than that of imp
ties. If an isolated TLS discussed in this section is of suc
nature, the spontaneous tunneling rate constantsb and B in
this TLS in the excited state of a chromophore are com
rable to the tunneling constantsa andA in the ground state
Then, in accordance with Eqs.~35! and~39!, one can neglec
light-induced transitions between states 1 and 3 sinceL/G
!1. This situation takes place in a chromophore coupled
TLSs in a polymer or glass. How to take account of t
chromophore’s interaction with the set of nonequilibriu
TLSs inherent to polymers then becomes a problem, wh
will be discussed in the next two sections.

5. INTERACTION WITH ONE TWO-LEVEL SYSTEM

Before proceeding to solving one of the central proble
of the reported investigation, namely, the problem of tak
into account interaction with the great number of nonequi
rium TLSs, let us radically simplify rate equations~30!,
which take account of only one TLS. After neglecting t
s

e

n
ed

he
ue

s
te
p-
h
nd
s

a

ch
i-
a

-

to

h

s
g
-

tunneling transition in the excited electronic state, which
possible in the case of an intrinsic TLS, we derive from E
~30! the following simplified equations:

ṙ152G1r11L0r0 ,

ṙ05G1r12L0r02ar01Ar2 ,

ṙ25ar02Ar2 , ~41!

whose exact~but complicated! solution can be found. With
due account of conditions~31! and in the zero-order approxi
mation in the small parameterR/G, this exact solution can
be transformed to the following form:

r1~ t !5n1~ t !2n1~`!p2~ t !,

r2~ t !5n0~`!p2~ t !,

r0~ t !512r1~ t !2r2~ t !

5n0~ t !2n0~`!p2~ t !1n1~`!p2~ t !, ~42!

where the functions

n1~ t !5
L0

G1L0
$12exp@2~G11L0!t#%,

n0~ t !512n1~ t ! ~43!

describe the time dependence of the probabilities contro
by laser pumping, but with the tunneling mechanism ‘‘turn
off,’’ and the functions

p2~ t !5
a

R
~12e2Rt!, p0~ t !512p2~ t !, ~44!

on the contrary, determine the evolution of the probabilit
controlled by tunneling, but with the optical pumpin
‘‘turned off.’’ This separation of the relaxation processes
the electronic and tunneling degrees of freedom in the
proximate formulas~42! will allow us to obtain a relatively
simple generalization to the case of many extrinsic TLSs

At p2(0)50, the functionp2(t) rises on a time scale o
orderG21 only to values of the order ofR/G!1. Therefore
we can replace some variables in Eqs.~42!:

n0~`!p2~ t !→n0~ t !p2~ t !, n1~`!p2~ t !→n1~ t !p2~ t !.
~45!

Then Eqs.~42! transform to

r1~ t !5n1~ t !p0~ t !, r2~ t !5n0~ t !p2~ t !,

r0~ t !5n1~ t !@12p0~ t !#1n0~ t !p0~ t !. ~46!

The difference between these formulas and~42!, derived
from the exact solution of Eqs.~41!, is of the order of the
very small parameterR/G. The solution~46! is more conve-
nient than the exact solution of Eqs.~41! because the forme
is based on the functionsn1,0(t) and p0,2(t), which were
obtained under the condition that the tunneling and la
pumping do not influence one another. This property of E
~46! allows us to draw up a prescription for finding an a
proximate solution in the case in which a chromophore
teracts with a set of TLSs and calculation of the exact so
tion is very difficult.
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The underlying idea of the approximate solution is th
the equations~30! consist of two almost decoupled block
the ‘‘electronic’’ block with large relaxation rate constantsG
and L, and the ‘‘tunneling’’ block with relatively small re-
laxation rate constantsA anda.

a! First, neglecting the tunneling constants in Eqs.~41!,
we solve the equations with the electronic rate constants

ṙ152G1r11L0r0 , ṙ05G1r12L0r0 . ~47!

The solution is hereafter denoted byn1,0(t). This solution of
the electronic block adequately describes the evolution
exact probabilities at small timest;G21.

b! Then, neglecting the optical pumping and electro
relaxation rate constants, we derive from Eq.~41! the equa-
tions

ṙ052ar01Ar2 , ṙ25ar02Ar2 , ~48!

whose solution is denoted byp0,2(t). This solution of the
tunneling block describes the system evolution at large tim
t;R21.

c! Finally, as was shown above, one can construct
approximate solution from the combination of Eqs.~47! and
~48! with due account of Eqs.~46!, and this solution is fairly
close to the exact solution of Eqs.~41! over the entire time
interval.

6. INTERACTION WITH A MULTITUDE OF TWO-LEVEL
SYSTEMS

Let us first apply the suggested prescription to calcu
tion of approximate solution of a system consisting of o
chromophore interacting with two TLSs. Since one TLS h
two quantum states, the system of two TLSs has four sta
Figure 5 shows these four states of two TLSs in both gro
and excited states of the chromophore. Let us label th
states as shown in Fig. 5.

In Sec. 3 we replaced the infinite set of equations~14!
with Eqs. ~26!, which contain only four lines; concurrentl
we derived formulas for the relaxation rate constants. A si
lar procedure can be performed in the case of a chromop
interacting with two TLSs. But now we have, instead of fo
equations, a system of eight equations because the numb
the states of two TLSs in combination with two electron
states is, according to Fig. 5, eight.

FIG. 5. Possible quantum states of a system of two TLSs and allowed d
optical transitions without tunneling.
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As in the previous sections, we limit our analysis
vertical optical transitions, i.e., those not assisted by tunn
ing transitions. These vertical transitions include only tho
shown in Fig. 5. All other optical transitions are assisted
a tunneling transition in one TLS, i.e., their rates are ve
low.

The states of TLS in a given electronic state can
coupled only by the tunneling operatorl̂5l(c1c1). Since
this operator is linear in the tunnelon creation and annih
tion operators, it can only couple states that differ by o
tunnelon, i.e.,

These comments explain why the system of a ch
mophore and two TLSs is described by the following eig
equations:

ṙ152~G11b1b8!r11L0r01Br31B8r5 ,

ṙ05G1r12~L01a1a8!r01Ar21A8r4 ,

ṙ352~G31B1b8!r31L2r21br11B8r7 ,

ṙ25G3r32~L21A1a8!r21ar01A8r6 ,

ṙ552~G51B81b!r51L4r41b8r11Br7 ,

ṙ45G5r52~L41A81a!r41a8r01Ar6 ,

ṙ752~G71B81B!r71L6r61b8r31br5 ,

ṙ65G7r72~L61A81A!r61a8r21ar4 , ~49!

where the tunneling ratesb, B, a, and A in one TLS are
determined by Eqs.~29! and ~23!, and the primed tunneling
rates for the second TLS are determined by similar exp
sions. The coefficients

L05k10
g , L25k32

g , L45k54
g , L65k76

g ,

L15k10
e , L35k32

e , L55k54
e , L75k76

e ~50!

determine the rates of induced vertical transitions shown
Fig. 5.

Let us again turn to the case in which the laser pump
resonates with the frequency of the 1–0 transition. If lig
induced tunneling is neglected, we can setb5B5b85B8
50. Then the set of equations~49! is written in the simpli-
fied form:

ṙ152G1r11L0r0 ,

ṙ05G1r12L0r02~a1a8!r01Ar21A8r4 ,

ṙ25ap02~A1a8!r21A8r6 ,

ṙ45a8p02~A81a!r41Ar6 ,

ṙ65a8p21ar42~A81A!r6 . ~51!

These equations, like Eqs.~30!, also have an electronic an
tunneling block, with the tunneling block expressed in
more complicated form. Since the scheme suggested abo
based on calculating separate solutions of these two blo
and combining these solutions, it can also be applied to fi

ct
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ing an approximate solution of the latter equations. The
pressions forn1 andn0 are the same because the electro
block has remained unchanged. Only the slowly chang
solution of the tunneling block is different. The approxima
solution takes the form

r1~ t !5n1~ t !P0~ t !, r2~ t !5n0~ t !P2~ t !,

r4~ t !5n0~ t !P4~ t !, r6~ t !5n0~ t !P6~ t !,

r0~ t !5n1~ t !@12P0~ t !#1n0~ t !P0~ t !. ~52!

Here the expressions for the populationsr0 and r1 of the
two levels coupled by optical transitions are essentially
changed. New expressions for the populations of levels 4
6, which are not directly involved in optical transitions, a
calculated in a manner similar to that of the previously fou
populationr2 . Obviously, the tunneling ratesPA satisfy the
equations

Ṗ052~a1a8!P01AP21A8P4 ,

Ṗ252~A1a8!P21aP01A8P6 ,

Ṗ452~a1A8!P41a8P01AP6 ,

Ṗ652~A1A8!P61a8P21aP4 , ~53!

whose solution is

P05p0p08 , P25p2p08 , P45p0p28 , P65p2p28 ,
~54!

where the coefficients are the rates characterizing each
and determined by the equations

p052ap01Ap2 , p0852a8p081A8p28 ,

p25ap02Ap2 , p285a8p082A8p28 . ~55!

The rates satisfy the condition

P01P21P41P65~p01p2!~p081p28!51. ~56!

Equations~52! describe the desired solution of Eqs.~51!
controlled by the optical pumping at the frequency of t
1–0 transition. We can similarly analyze the case in wh
the pumping frequency is resonant with the 3–2 transiti
Then we have instead of Eqs.~52! the expressions

r3~ t !5n3~ t !P2~ t !, r0~ t !5n2~ t !P0~ t !,

r4~ t !5n2~ t !P4~ t !, r6~ t !5n2~ t !P6~ t !,

r2~ t !5n3~ t !@12P2~ t !#1n2~ t !P2~ t !, ~57!

where

n3~ t !5
L2

G31L2
$12exp@2~G31L2!t#%,

n2~ t !512n3~ t !, ~58!

whose difference from Eqs.~52! is that subscripts 0 and 1 ar
replaced with 2 and 3.

Obviously, an increase in the number of TLSs only lea
to a further increase in the size of the tunneling block wi
out affecting the electronic one. Therefore, equations for
case in which a chromophore interacts with many TLSs
-
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be easily obtained by trivially generalizing the latter equ
tions. To this end, let us write the above formulas for t
optical pumping at the frequency resonant with theN←M
transition in the form

rN~ t !5nN~ t !PM~ t !, rM8~ t !5nM~ t !PM8~ t ! ~M 8ÞM !,

rM~ t !5nN~ t !@12PM~ t !#1nM~ t !PM~ t !, ~59!

which also applies to the case in which a chromophore in
acts withN0 TLSs. In this case the probabilityPM(t), how-
ever, is a product ofN0 one-particle probabilitiespj (t).

7. TWO-PHOTON CORRELATOR

The expression for the two-photon correlator conta
the probability to find the excited electronic state, which
populated by absorption a laser photon. Consequently, w
the laser resonates with theN←M transition, the expression
for the two-photon correlator has the form

p~ t !5
rN~ t !

T1
. ~60!

By substituting Eq.~60! in the first equation in~59! and
using the conditionLM /G!1, we can express the two
photon correlator in the form

p~ t !5
nN~ t !PM~ t !

T1
.

LMPM

T1GN
@12exp~2GNt !#

.LMPM@12exp~2 t/T1!#. ~61!

The optical transitions shown in Fig. 5 and their correspo
ing LorentziansL0 ,L2 ,L4 ,... have different resonant fre
quencies. When the laser frequency is scanned, the m
contribution results from the Lorentzian whose resonant
quency coincides with the laser frequency. With this fact
mind, we can transform Eq.~61! to

p~ t !5k~D0 ,t,T!@12exp~2t/T1!#, ~62!

where

k~D0 ,t,T!5(
M

LMPM~ t ! ~63!

is in fact the coefficient of light absorption by a molecule
a function of the frequency detuningD0 , temperatureT, and
time t measured with respect to the moment when the fi
photon of a pair was emitted. If the time tends to infinity, th
formula describes the conventional coefficient of light a
sorption by a molecule interacting with photons and equil
rium TLSs. After substitution ofLM given by Eqs.~28! in
the latter equation, it transforms to

k~D0 ,t,T!5 (
N,M

PM~ t !kNM

5x2(
N,M

PM~ t !^NuM &2

3(
b,a

ra^bua&2
1/T1

~D01Vba1VNM!21~1/2T1!2
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1x2 (
N,M

PM~ t !^NuM &2

3(
b,a

ra^bua&2
1/T1

~D01Vba1VNM!21~1/2T1!2

5x2 (
B,A

wA~ t,T!^BuA&2

3
1/T1

~D01VBA!21~112T1!2 , ~64!

where the probability

wA~ t,T!5PM~ t !rA~T!5PM~ t !H ra

ra
J ~65!

of detectingA state of the tunnelon-phonon system is a fun
tion of both time and temperature.

The latter two equations take into account the effect
all TLSs, both in and out of equilibrium, on the optical tra
sition through the overlap integrals^NuM & and probabilities
PM(t). The time dependence of the probabilities is only d
termined by nonequilibrium TLSs through their tunnelin
ratesR5a1A.

The shape of the optical absorption band was calcula
using Eq.~64! with due account of equilibrium phonons an
tunnelons7,8 in the dynamic approach only based on the s
tem Hamiltonian. Subsequent calculations9–11 took into ac-
count the nonequilibrium condition of TLSs, which result
in a time dependence ofPM(t). It turned out that

k~D0 ,t,T!52x2 E
2`

`

I ~D0 ,t,T,x!expS 2
uxu
2T1

Ddx, ~66!

where the dipole correlator of the chromophore interact
with nonequilibrium TLSs is described by the followin
expression:10,11

I ~D0 ,t,T,x!5)
j

N0

I j~D0 ,t,T,x!

5expF i ~D02d!x2
uxug

2 G )
j

N0

$12Cj~ t,T!

3@12exp~2 iD j x2uxuRj !#%, ~67!

where

Cj5
D j

D j2 iRj
pj~ t,T!, ~68!

d5(
j 51

N0 Rj
2D j

D j
21Rj

2 pj~12pj !,

g

2
5(

j 51

N0 Rj
2D j

2

D j
21Rj

2 pj~12pj !, ~69!

pj5
1

exp~\« j /kT!11
@12exp~2Rjt !#, ~70!
-

f

-

d

-

g

and\« j , D j , andRj are the splitting between the levels, th
change in the splitting due to excitation of the electron
system, and the relaxation rate constant of thej th TLS, re-
spectively.

An important point is that the dipole correlatorI (x)
given by Eq.~67! leads to the Lorentzian shape of a lin
irrespective of the type of the electrostatic interaction b
tween the chromophore and TLS. In point of fact, the lines
single molecules and spectral holes have Lorentzian sha
On the other hand, the correlatorI (x) had been calculated
many times on the basis of the stochastic approach,12–16and
the line shapes obtained usingI (x) depended on the interac
tion type. This difference between the results can be ascr
to the fact that the tunnelon-phonon interaction was int
duced in the earlier works12–16 only partially through the
finite lifetime 1/R of the tunnelon. The effect of this interac
tion on the amplitudes of electron-tunnelon transitions w
not taken into consideration, which is equivalent to sett
Cj5pj in Eq. ~67!. The exponentially decaying factor i
front of the product sign in Eq.~67! was also not found in the
stochastic theories.12–16 These two differences lead to con
tradictions between the predictions of the two theories c
cerning the line shape and the effect of the type of interac
between the chromophore and TLS.

According to Eq.~67!, based on the dynamic theory, th
great number of TLSs located far from the chromophore a
having smallD j do not contribute to the product overj be-
cause the functionCj cuts off the effective interaction a
large distances. At the same time, the distant TLSs mak
significant contribution to the dephasing constantg/2. In the
stochastic theories, on the contrary, the great number of
mote TLSs make a decisive contribution to the product o
j, which leads to the absorption band broadening. The bro
ening resulting from the product overj actually depends
strongly on the type of interaction between the chromoph
and TLS. The difference between the stochastic and dyna
approaches to the problem of line broadening is discusse
detail elsewhere.11

Formula ~69! for g/2 characterizes the rate of optic
dephasing due to the interaction between the chromoph
and all intrinsic TLSs. The full rate of the optical dephasi
is given by the formula

1

T2~ t,T!
5

gph~T!

2
1

g~ t,T!

2
1

1

2T1
, ~71!

where the first term is due to the electron-phonon interac
and the second is due to the interaction with equilibrium a
nonequilibrium intrinsic TLSs. Only the second term dete
mines the time dependence of the optical dephasing, whic
called spectral diffusion. It is a linear function of temperatu
and a logarithmic function of time.11,15–17The emergence o
the spectral-diffusion term in the expression for the opti
dephasing rate, hence in the expression for the two-pho
correlator, is the main result of the calculation taking in
account the molecule’s interaction with many nonequil
rium TLSs.

Now let us apply general formula~62! to a chromophore
whose optical absorption band consists of two resolved lin
This means that the chromophore strongly interacts with
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TLS in its vicinity, i.e., the product in Eq.~67! reduces to
one term. The diagram of energy levels of this system
shown in Fig. 4. In this case

k~ t,T!5L0p01L2p252x2@p0~ t !L~v!

1p2~ t !L~v2D!#, ~72!

where

L~v!5
1/T2~ t,T!

v211/T2
2~ t,T!

. ~73!

Here the frequency of the purely electronic transition is se
zero. The interaction with a great number of intrinsic TL
shows up in the time dependence ofT2 . The probabilities
pj (t) are given by

p2~ t1t0!5 f 1@p2~ t0!2 f #e2Rt,

p0~ t1t0!512p2~ t1t0!. ~74!

Here f 5a/R5@exp(\«/kT)11#21 is the population in ther-
mal equilibrium.

Let the laser line frequency coincide with that of the 1
transition. Then the probabilityp2(t050)50 at the initial
time t0 , which is when the photon labeled by zero is d
tected. If the laser is tuned to the 1–0 line peak, whenv
50 and the contribution of the second Lorentzian can
neglected, Eq.~62! for the two-photon correlator takes th
form

p~ t !52x2T2~ t,T!@12exp~2t/T1!#@12 f ~12e2Rt!#.
~75!

This correlator is a product of three functions of time. A
was shown in earlier publications,11,15–17the component of
the optical dephasing rateg(t,T) due to interaction with
many intrinsic TLSs is described by a logarithmic functi
of time. Therefore we can set in Eq.~75!

1

T2
5

100

T1
@111022 ln~R2t !#. ~76!

A logarithmic broadening of this type of a spectral line ge
erated by a molecule in a polymer was actually detected
experiments with persistent spectral holes.16 In Eq. ~76! R2

.1010s21 is the largest tunneling rate in TLSs, and the fa
tor in front of the logarithm determines the ratio between
line FWHM g(t,T) due to the spectral diffusion to th
FWHM gph due to interaction with phonons.

Figure 6 shows the two-photon correlator~75! plotted
versus timet between emitted photons of one pair. The e
ponential relaxation of TLS in the chromophore’s neighb
hood shows up in Fig. 6 in the form of the smoothed s
with a width of approximately one order on the logarithm
time scale, and the spectral diffusion results in the linear t
dependence of the two-photon correlator on the logarith
time scale.

Now let us discuss how the suggested theory interp
spectral line jumps illustrated by Fig. 1. Such a jump can
treated as burning out the spectral component correspon
to a single molecule. In fact, this process considered in te
of an ensemble of molecules can be treated as spectral
burning in the inhomogeneously broadened spectral ban
is

o
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-
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-
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e
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the ensemble of molecules. Persistent holes are burned
when tunneling transitions in the electronic ground state
the chromophore are suppressed, i.e.,a5A.0. We examine
just such a case in excitation with the 1–0 laser transiti
Then, given thatr0(0)51 at the initial moment, when the
first photon is detected, we derive from Eqs.~32! and ~34!
the following expression for the two-photon correlator:

p~ t !5
r1~ t !1r3~ t !

T1
.L0 exp~2B̃t !. ~77!

When B̃t0@1, the fluorescence intensity vanishes. Con
quently, the spectral line jumps to a new position at a r
dom time of ordert0 . In fact, after the disappearance of th
1–0 line and tuning the laser to the frequency of the 3
transition, we can again detect emitted light, because in
cordance with Eqs.~37! and ~40!, the two-photon correlator
under such excitation has the form

p~ t1t0!5
r1~ t1t0!1r3~ t1t0!

T1
.L2 exp~2b̃t !. ~78!

In deriving the latter equation, we have taken into acco
thatr2(t0)51 at timet0 of the onset of excitation at the 3–
transition frequency. It follows from Eqs.~77! and ~78! for
the correlators that 1/B̃ is the mean ‘‘lifetime’’ of the 1–0
transition line, and 1/b̃ of the 3–2 transition line. In prin-
ciple, these times can also be calculated by processing
photon measurements discussed in Introduction. This pro
dure, however, is very complicated when analyzi
situations more complex than that discussed here.

8. CONCLUSIONS

The main result of the reported investigation is develo
ment of the technique taking into account effects of a m
ecule’s interaction with a great number of nonequilibriu
intrinsic TLSs on the two-photon correlator. With this end
view, we have theoretically analyzed in detail in Secs. 3
the problem of how the interaction with nonequilibrium in
trinsic TLSs can be introduced to the set of equations for

FIG. 6. Manifestation of the spectral diffusion and exponential relaxat
due to jumps in TLS in the two-photon correlator: 1! R5106 s21; 2!
103 s21.
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density operator of a system including a two-level molecu
phonons, and long-lived excitations in TLSs. From the
sults of this analysis, we derived in Sec. 7 theoretical exp
sion ~62! for the two-photon correlator taking into accou
not only relaxation of TLS from the nearest vicinity of th
molecule under consideration, but also relaxation of all
trinsic TLSs. All nontrivial information concerning relax
ation of TLS is contained in functionk(D0 ,t,T), which
tends to the conventional light absorption coefficient at
→`.

The basic physical results of our investigation are illu
trated by Fig. 6, which clearly shows that the two-phot
correlator is controlled by both the exponential relaxation
TLS from the vicinity of a molecule and the relaxation of a
intrinsic TLSs. The former process shows up in the form
broadened steps, and the latter in the logarithmic time dep
dence of optical dephasing rate 1/T2 , i.e., the slow linear
drop of the curve in Fig. 6.

By varying the frequency of the pumping laser, one c
record, using the correlator technique, the profile of the
tremely complicated optical band of a single molecule wit
high accuracy, and by varying the time interval between t
detected photons one can measure the rates of both the
and fast TLS relaxation processes.

The technique based on measuring two-photon corr
tors in optical spectra of single molecules has obvious
vantages over the conventional one-photon technique
measuring absorption spectra.

Using one-photon detection techniques, it is essenti
impossible to measure the time dependence of the op
dephasing rate 1/T2 , i.e., spectral diffusion, whereas this d
pendence can be easily determined using the expressio
the two-photon correlator.
,
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The intermediate glassy phase in a ferroelectric with dislocations
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This paper examines, in the mean-field approximation, the phase transitions in an elasto-isotropic
cubic ferroelectric crystal with randomly distributed ring dislocations. It is found that a
transition to the dipole-glass phase with chaotic, spontaneous unit-cell dipole moments,
characterized by the Edwards–Anderson nonlocal parameter, precedes the transition to the
ferroelectric phase. Also determined are the features of the thermodynamic parameters of
the crystal at the phase-transition points. ©1999 American Institute of Physics.
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1. INTRODUCTION

Numerous investigations of various phase transitions
real crystals~i.e., crystals with defects! have shown that the
defects in the crystal structure have profound effects on
nature and features of the transitions. For instance, the p
ence of point defects in a crystal may change the crit
exponents of a second-order transition if the specific-h
exponent of the ideal crystal is positive.1,2 Extended defects
also affect the critical behavior.3–5 Furthermore, extended
defects such as dislocations may give rise to local orderin
their vicinity above the temperature of a global second-or
phase transition if there are short-range fluctuations of
order parameter.6,7

As noted by Dubrovski� and Krivoglaz,7 the appearance
and growth near dislocations of ordered regions with a r
dom sign of the order parameter appear as a smearing o
phase transition, a phenomenon often observed in exp
ments. Most often this smearing can be detected in ferroe
tric crystals, where it manifests itself in the broadening of
peak in the dielectric constant. Generally speaking, howe
the results of Nabutovski� and Shapiro6 and Dubrovski� and
Krivoglaz7 cannot be applied to ferroelectric crystals, sin
there is a fairly strong dipole–dipole interaction in such cr
tals. At the same time, there is a high probability that in su
crystals, too, inhomogeneous structures may be induce
dislocations above the point of transition to the ferroelec
phase. Qualitatively, the mechanism by which such str
tures form can be interpreted as the result of tuning of
directions of spontaneous local dipole moment to
intrinsic-electric-field fluctuations caused by random def
mations of the crystal with the distributed dislocations. He
the nonparallel ordering of the local dipole moments is m
advantageous as long as spontaneous polarization is s
and the loss in the short-range energy of an inhomogenei
not larger than the gain in the electrostatic energy, so
inhomogeneous structures may exists in a temperature i
val near the temperatureTc of transition to the ferroelectric
phase in the ideal crystal. More than that, the directions
polarization in such structures may prove to be correla
over the entire bulk of the crystal due to the long-range
5251063-7761/99/89(9)/8/$15.00
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ture of polarization fluctuations. This occurrence of an inh
mogeneous distribution of polarization nearTc is an indica-
tion of a transition to the intermediate dipole-glass pha
accompanied by specific anomalies of thermodynam
quantities.8 In this paper we will discuss, in the mean-fie
approximation, the possibility of such an intermediate gla
phase developing in the simplest case of an elasto-isotr
cubic ferroelectric crystal with a low concentration of ra
domly distributed ring dislocations. We will find that in thi
case the transition to the ferroelectric phase is indeed
ceded by a transition to the dipole-glass phase with inhom
geneous spontaneous polarization characterized by
Edwards–Anderson nonlocal parameter

2. THE REPLICA FORMALISM FOR A FERROELECTRIC
WITH DISLOCATIONS

The Ginzburg–Landau thermodynamic potential for
cubic ferroelectric with dislocations has the form

F5E
V
dr H 1

2
@tP2~r !2 l 2P~r !–DP~r !#1

u

4
~P2~r !!2

1
v
4 (

i 51

3

Pi
4J 1

1

2 EV
drE

V
dr 8P~r !D̂

3~r2r 81u~r !2u~r 8!!P~r 8!. ~1!

where P(r ) is the polarization,u(r ) represent the atomic
displacement caused by ring dislocations randomly dist
uted in the crystal, andt5(T2Tc)/T0 . Below we assume
that the coupling constantsu andv are small, with

u!v. ~2!

This condition means that in an ideal crystal there is a tr
sition to the rhombohedral ferroelectric phase with an isot
pic dielectric susceptibility

x i j 5
]Pi

]Ej
5xd i j .

The fact simplifies calculations in the ferroelectric phase
is not needed in determining whether there exists an in
© 1999 American Institute of Physics
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mediate glassy phase. In what follows,D̂(r ) is the dipole–
dipole interaction tensor, which in the absence of conduc
has the form9,10

D̂~r !52¹¹
1

r
.

The tensorD̂(r ) has the same form when there are cond
tors on the surface of the ferroelectric but at distances m
smaller than the crystal size,r !L. In this case we have10

E
V
dr D̂~r !50. ~3!

We take this case, where the transition in an ideal crysta
to the monodomain state, to be the simplest one. But if th
are no conductors, the transition is to the polydomain st
whose description is somewhat more complicated.10

Here we also consider only the effect of dislocations
the long-range interaction, assuming that this effect on
short-range interaction is much weaker in view of the us
smallness of the electrostrictional constants.

Below we will be interested in the behavior of the p
larization correlators over large distances, much larger t
the lattice constanta and the average size of the dislocati
loops, since it determines the behavior of the thermodyna
quantities near phase transitions. At such distances from
dislocation loops, the displacementsu(r ) can be written11

ui~r !52(
m

]kCi j ~r2rm!l jklmdlm
a . ~4!

Here the vectorrm determines the position of an individua
dislocation,l jklm is tensor of the elastic moduli of the crys
tal, Ci j (r ) is the Green’s function of the equations of th
theory of elasticity, l iklm]k] lCm j(r )5d(r )d i j , and dlm

a

5Sl
abm

a is the dislocation moment of a closed dislocati
(S5*SD

dS, whereSD is the surface stretched over the d
location contour andb is the Burgers vector of the disloca
tion!.

We seek the pair correlators of the polarization Four
transforms

P~k!5
1

AV
E

V
drP~r !exp$ ik–r%,

averaged over the positions of the dislocations and the t
momenta; more precisely, we are looking for the inhomo
neous susceptibility

Gi j ~k!5b^Pi~k!Pj~2k!&T,C , b5T21 , ~5!

and the Edwards–Anderson nonlocal parameter

Qi j ~k!5^^Pi~k!&T^Pj~2k!&T&C . ~6!

Here the subscriptT stands for Gibbs averaging with th
potentialF @see Eq.~1!#, and the subscriptC indicates aver-
aging over the random distribution of the dislocations.

We must also find the average value of the density of
equilibrium thermodynamic potential,F52(T/V)ln^Z&C ,
with Z5*DPexp$2bF%. We will use the replica method,8

according to which
rs

-
h

is
re
e,

n
e
l

n

ic
he

r

ir
-

e

F52
T

V
lim
n→0

1

n
ln^Zn&C , ~7!

i.e., we must averageZn for integral values ofn, continue
the resulting expression to nonintegral values ofn, and then
let n go to zero. For integral values ofn, with allowance for
~2! we get

^Zn&5E DPa~r !exp$2bFn%, ~8!

Fn5 (
a51

n E dr H 1

2
@tPa

2~r !2 l 2Pa~r !–DPa~r !#

1
v
4 (

i 51

3

Pia
4 J 1Fdis, ~9!

Fdis52T lnK expS (
a51

n
1

2T E drE dr 8Pa~r !D̂

3~r2r 81u~r !2u~r 8!!Pa~r 8!D L
C

. ~10!

We are interested in the case of large differencesr2r 8 and
small dislocation number densitiesndis5Ndis/V. Then the
quantitiesu(r ), which decrease at large distances, will
small, so that if we expandFdis in the small differences
u(r )2u(r 8), we get

Fdis52
1

2VT (
m

E drmK S (
a51

n E dr E dr 8Pa~r !

3@um~r2rm!¹#D̂~r2r 8!Pa~r 8!D 2L
C

. ~11!

whereum(r2rm) is the contribution of a single dislocatio
to the atomic displacements@see Eq.~4!#, and averaging over
the dislocation positions, in view of the assumed smalln
of ndis, reduces to integrating over the vectorsrm that
specify these positions.

If in ~11! we go over to Fourier transforms and integra
over rm , we arrive at the final expression:

Fdis52
ndis

2T
V2 (

a,b51

n E dk dq1 dq2

~2p!9

3@Pa~k2q1!D̂~q1!Pa~q1!#@Pb* ~k2q2!

3D̂~q2!Pb* ~q2!#@q1D̂~k!q2#, ~12!

D i j ~k!5Ci j ~k!kl^d̃kld̃mn&CkmCm j~k!, d̃i j 5l i jkl dkl ,
~13!

Di j ~k!5
4pkikj

k2 , kL@1. ~14!

Note that integration over the wave vectors in~12! is done in
the first Brillouin zone,uki u,p/a.

It is natural to consider such distributions of dislocati
moments that on the average preserve the cubic symmet
the crystal, so that the mean-square dislocation-moment
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sor ^di j dkl&C and the tensor̂ d̃kld̃mn&C , which enters into
~13!, have the same finite components asl i jkl . Assuming
that the crystal is elasto-isotropic, so that

l i jkl 5l12d i j dkl1
1

2
~l112l12! ~d ikd j l 1d i l d jk!,

^di j dkl&5^d11d22&d i j dkl

1
1

2
^d11

2 2d11d22& ~d ikd j l 1d i l d jk!,

we can representD i j (k) in the form

D i j ~k!5D lk
24kikj1D tk

24~k2d i j 2kikj !,

D l5^d11
2 &S 112

l12
2

l11
2 D 12^d11d12&~2l111l12!

l12

l11
2 ,

D t52^d11
2 2d11d22&.

To be able to describe the transition into the ferroelec
phase, we introduce the thermodynamic potentialFn(Pa),
which can be obtained fromFn by isolating the homoge
neous polarizationPa[V21*VdrPa(r ) in the expression for
Fn :

Fn~Pa!52
T

V
ln )

a51

n

dPadS Pa2
1

V E
V
drPa~r ! D

3exp$2bFn%, ~15!

so that

F52 lim
n→0

T

nV
ln E )

a51

n

dPa exp$2bVFn~Pa!%

' lim
n→0

1

n
min
Pa

Pa . ~16!

Note that Eq.~15! implies that the equilibrium valuePa
0

whereFn(Pa) attains its minimum determines the avera
value of homogeneous spontaneous polarization:

^P&T,C5 lim
n→0

1

n (
a51

n

Pa
0 . ~17!

We can findPa
0 by solving the equation of state

]F~Pa!

]Pa
50. ~18!

Assuming that in~9! Pa(r )5Pa1Pa8 (r ), we obtain

Fn~Pa!5 (
a51

n S t

2
Pa

21
v
4 (

i 51

3

Pia
4 D

2
T

V
ln E DPa8 ~r !exp$2bFn~Pa ,Pa8 ~r !!n%,

~19!

Fn~Pa ,Pa8 ~r !!5Fn~Pa8 ~r !!1dFn~Pa ,Pa8 ~r !!. ~20!
c

HereFn@Pa8 (r )# has the same form asFn in ~9!, anddFn in
the presence of conductors@see~3!# is given by the following
formula ~which is valid in the lowest order inPa8 (k) suffi-
cient in the mean-field region!:

dFn~Pa ,Pa8 ~r !!5
3

2
V E dk

~2p!3 S v (
i ,a

Pia
2 UPia8

2~k!U
2 bwk24U(

a51

n

~k–Pa!~k–Pa8 ~k!!U2D ,

~21!

where w[(4p)2ndisD l /3. In deriving ~21! we ignored the
contribution of the region wherekL<1 to the integral overk
and used~14!.

If we employ~15! for the potentialFn(Pa), we can find
not only the equilibrium thermodynamic potentialF @Eq.
~16!# and the average spontaneous polarization~17! but also
other thermodynamic quantities. For instance, the definit
of a correlator,

Gi j
ab5bV^PiaPj b&Fn

5F]2Fn~Pa!

]Pia]Pj b
G21

, ~22!

makes it possible to find the homogeneous dielectric sus
tibility

x i j 5
]Pi

]Ej
5 lim

n→0

1

n (
a51

n

Gi j
aa ~23!

and the homogeneous glassy correlator

Si j 5V^^Pi&T^Pj&T&C5E
V
dr ^^Pi~r !&T^Pj~0!&T&C

5 lim
n→0

T

n~n21! (
aÞb

n

Gi j
ab . ~24!

More than that, we can calculate the contribution of pol
ization fluctuations to the crystal specific heat:

dC52T
]2F

]T2 .

By differentiating the first equality in~16! with respect toT
we get

dC5 lim
n→0

T

nT0
2 S ]2Fn~Pa!

]t]Pia

3Gi j
ab ]2Fn~Pa!

]t]Pj b
2

]2Fn~Pa!

]t2 D . ~25!

The potentialFn(Pa) can be found in the lowest order i
the interaction by calculating, forkL@1, the replica cor-
relator

Gi j
ab~k!5b^Pi8

a~k!Pj8
b~k!&, ~26!

where we have assume that there is Gibbs averaging with
potentialFn@Pa ,Pa8 (r )# @Eq. ~20!# at the equilibrium value
Pa

0 at whichFn(Pa) is at its minimum. Indeed, differentiat
ing ~7! with respect tot, we get
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]F~Pa!

]t
5

1

2 (
a51

n

Pa
21

T

2 E dk

~2p!3 Tr Ĝ~k!, ~27!

where TrĜ(k) is the trace of the replica correlator~26! re-
garded as a matrix of dimension 3n. According to~20! and
~21!, the correlatorGi j

ab(k) can be written

@Ĝ~k!21# i j
ab5@~t1 l 2k213vPia

2 !d i j 1Di j ~k!#dab

23bwk24kikj~k–Pa!~k–Pb!2S i j
ab~k!,

~28!

where the dependence of the self-energy partS i j
ab(k) on t

can be ignored, so that integration in~27! yields ~to lowest
order in the interaction!

Fn~Pa!5 (
a51

n S t

2
Pa

21
v
4 (

i 51

3

Pia
4 D

2
T

2 E dk

~2p!4 Tr ln Ĝ~k!. ~29!

Also in the lowest order in the interaction, Eqs.~9!, ~12!, and
~20! yield

S i j
ab~k!523vTd i j dabE dq

~2p!3 Gii
ab~q!1ndis

3E dq

~2p!3 $@kD̂~k1q!k#Dik~k!Gkl
ab~q!

3Dl j ~k!1@kD̂~k1q!q#

3@Dik~k!Gkl
ab~q!Dl j ~q!

1Dik~q!Gkl
ab~q!Dl j ~k!#1@qD̂~k

1q!q#Dik~q!Gkl
ab~q!Dl j ~q!%. ~30!

Formulas~28! and~30! comprise an equation forGi j
ab(k) in

the mean-field region in the case of weak interaction.
According to~18!, ~28!, and ~29!, the equation of state

for Pa
0 has the form

]F~Pa!

]Pia
5tPia1vPia

3 13TE dk

~2p!3 @vGii
aa~k!Pia

2bwk24kiklGlm
ab~k!km~k–Pb!#50, ~31!

while for the derivatives in~22! and ~25! we have

]2Fn~Pa!

]t2 52
T

2 E dk

~2p!3 Tr Ĝ2~k!, ~32!

]2F~Pa!

]Pia]Pj b
5~t13vPia

2 !d i j dab13T

3E dk

~2p!3 @vGii
aa~k!d i j dab

2bwk24kikjklGlm
ab~k!km#, ~33!

]2F~Pa!

]Pia]t
'Pia . ~34!
Thus, the solution of Eqs.~28! and~30! for Gi j
ab(k) provides

a complete description of the thermodynamics of the cry
in the mean-field region. We can also find the inhomog
neous susceptibilityGi j (k) @Eq. ~5!# and the Edwards–
Anderson nonlocal parameterQi j (k) @Eq. ~6!#, since8

Gi j ~k!5 lim
n→0

1

n (
a51

n

Gi j
aa~k!, ~35!

Qi j ~k!5 lim
n→0

1

n~n21! (
aÞb

n

Gi j
ab~k!. ~36!

3. CORRELATORS AND THE EQUATIONS OF STATE IN THE
MEAN-FIELD APPROXIMATION

As noted earlier, when condition~2! is met, in an ideal
crystal there is a transition to the rhombohedral ferroelec
phase. We will seek the replica-symmetric solutions of
equation of state~31!. Accordingly, we will assumePa i

5P, where, in agreement with~17!, P5^Pi&T,C . Then the
solution of Eqs.~28! and ~30! for kL@1 can be written as
the sum of the longitudinal and transverse parts:

Gi j
ab~k!5Gl

ab~k!k22kikj1Gt
ab~k!k22~k2d i j 2kikj !,

whereGs
ab(k), s5 l ,t, has the form

@Ĝs
21~k!#ab5~t13vP21 l 2k214pdsl!dab

23bwk22~k–P!2dsl2Ss
ab~k! ~37!

with the following self-energy parts:

S l
ab~k!52vTdabE dq

~2p!3 @Gl
aa~q!12Gt

aa~q!#

1~4p!2ndisE dq

~2p!3 @D lx
2Gl

ab~q!

1R~k,q!Gt
ab~q!#, ~38!

S t
ab~k!52vTdabE dq

~2p!3 @Gl
aa~q!12Gt

aa~q!#

1~4p!2ndisE dq

~2p!3 R~q,k!Gl
ab~q!, ~39!

R~k,q!5~12x2!
D t@k2q22~k–q!2#1D l~k21k–q!2

uk1qu4 ,

~40!

where x[k–q/kq. Equations ~37!–~40! have replica-
symmetric solutions of the form

Gs
ab~k!5Gs

11~k!dab1Gs
12~k!~12dab!. ~41!

According to~35! and ~36!, with such solutions the correla
tors Gi j (k) @Eq. ~5!# andQi j (k) @Eq. ~6!#, which are of in-
terest to us, have the form

Gi j ~k!5Gl~k!k22kikj1Gt~k!k22~k2d i j 2kikj !,

Qi j ~k!5Ql~k!k22kikj1Qt~k!k22~k2d i j 2kikj !,

Gs~k!5 lim
n→0

Gs
11~k!, Qs~k!5T lim

n→0
Gs

12~k!.



ac

d

n

f

529JETP 89 (3), September 1999 P. N. Timonin
Substituting~41! in ~37!–~39! and lettingn go to zero, we
arrive at equations forGs(k) and Qs(k), s5 l ,t, for kL
@1:

Qs~k!5Gs8
2~k!@3wk22~k–P!2dsl1Ss

12~k!#, ~42!

Gs~k!5Gs8~k!1bQs~k!, ~43!

Gs8
21~k!5t13vP21 l 2k214pdsl2Ss

11~k!1Ss
12~k!,

~44!

S l
11~k!52vTE dq

~2p!3 @Gl~q!12Gt~q!#

1~4p!2ndisE dq

~2p!3 @D lx
2Gl~q!

1R~k,q!Gt~q!#, ~45!

S l
12~k!5~4p!2ndisE dq

~2p!3 @D lx
2Ql~q!

1R~k,q!Qt~q!#, ~46!

S t
11~k!52vTE dq

~2p!3 @Gl~q!12Gt~q!#

1
~4p!2

2
ndisE dq

~2p!3 R~q,k!Gl~q!, ~47!

S t
12~k!5~4p!2ndisE dq

~2p!3 R~q,k!Ql~q!. ~48!

We seek the spherically symmetric solutionsGs(k)5Gs(k)
and Qs(k)5Qs(k) near the transition,t→0, for small k
<At/ l , so that the expressions~45!–~48! for the self-energy
parts can be simplified substantially by employing the f
that Gt8(q) rapidly increases asq→0. Hence in integrals
whereGt8

2(q) is present the domain of integration is limite
to smallq<At/ l , so that, in particular, we have

S l
12~k!5wBl1~4p!2ndisE dq

~2p!3 R~k,q!Qt~q!

5wBl1
~4p!4ndis

2

2 E dq dp

~2p!6 R~k,q!Gt8
2~q!

3R~p,q!Qt~p!'wBl1
~4p!4ndis

2

2

3E dq

~2p!3 R~k,q!Gt8
2~q!

3E dp

~2p!3 R~p,0!Qt~p!

5wBlF11~4p!2ndisE dq

~2p!3 R~k,q!Gt8
2~q!G , ~49!

whereBs with s equal to l or t is the Edwards–Anderso
‘‘integral’’ parameterQs defined according to~36! and~42!:

Bs[E dq

~2p!3 Qs~q!.

More than that, for smallk we have
t

S l
11~k!'S t

11~k!'2vT~Al12At!1wAl , ~50!

S t
12~k!'wBl , ~51!

where

As[E dq

~2p!3 Gs~q!5P1s1bBs ,

Pms[E dq

~2p!3 Gs8
m~q!.

Thus,

Gl8
21~k!5u1 l 2k214p, Gt8

21~k!5u1 l 2k2, ~52!

u5t81v~Bl12Bt13P2!,

t8[t1vT~P1l12P1t!2wP1l . ~53!

As u→0,

P1l'
1

2p l 2a S 12
2a

Ap l
arctan

Ap l

2a D , P1t'
1

2p l 2a
,

where a is the cell parameter. Combining~34!, ~40!, and
~41!, we get

Ql~k!5Gl8
2~k!wF3~k–P!2

k2 1Bl S 11~4p!2ndis

3E dq

~2p!3 R~k,q!Gt8
2~q! D G , ~54!

Qt~k!'Gt8
2~k!S t

12~0!5Gt8
2~k!wBl . ~55!

For k@u the integral in~54! is almost independent ofk,

Ql~k!'Gl8
2~k!wF3~k–P!2

k2 1Bl~112wP2t!G ,
while for k!u,

Ql~k!5Gl8
2~k!wF3~k–P!2

k2 1Bl

3S 11
4pndisk

2~D l14D t!

15u3/2 D G .
Integrating~54! and ~55! over k and using the same line o
reasoning as in deriving~49!, we arrive at the following
equations of state:

Bl5wP2l@Bl~112wP2t!13P2#, ~56!

Bt5wP2tBl . ~57!

As u→0,

P2l'
1

~2p!2l 3 S 1

2Ap
arctan

Ap l

2a
2

la

p l 214a2D ,

P2t'
1

8p l 3Au
. ~58!

Let us find the equation of state forP. Substituting
Pa i5P in ~31! and using~37! and ~41!, we obtain
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]F~Pa!

]Pia
5tP1vP31TPE dk

~2p!3 @v~Gl
11~k!12Gt

11~k!!

2bw~Gl
11~k!1~n21!Gt

12~k!!#50.

Taking n to zero and allowing for~43!, we arrive at the
equation of state for the polarizationP:

@t81v~P21Bl12Bt!#P50. ~59!

Combining~22!, ~23!, and ~33! results in the following ex-
pression for the homogeneous dielectric susceptibilityx i j

5xd i j :

x215t81v~Bl12Bt13P2!. ~60!

If we compare ~60! with ~53!, we see thatx5u21

5Gt8(0). For theglassy correlatorSi j 5Sd i j Eqs. ~24! and
~33! yield

S5x2wBl5Qt~0!, ~61!

while for the contribution to the specific heat we have

dC5
3TxP2

T0
2 1

T2

2T0
2 H P2l12P2t12b

3E dk

~2p!3 @Gl8~k!Ql~k!12Gt8~k!Qt~k!#J
'

3TxP2

T0
2 1

T2

2T0
2 @P2l12P2t12bwP3l

3~Bl12Bt13P2!14bwP3tBl #. ~62!

As u→0,

P3l'
1

~4p l !3 F la~p l 224a2!

p l 224a2 1
1

2Ap
arctan

Ap l

2a G ,

P3t'
1

32p l 3u3/2.

Combining~16!, ~35!, ~41!, and~43! at Pa i5P and lettingn
go to zero, we get

F5
3

2
tP21

3

4
vP42

1

2 E dk

~2p!3 @T ln Gl8~k!

12T ln Gt8~k!1Gl8
21~k!Ql~k!

12Gt8
21~k!Qt~k!#. ~63!

If we now plug~52!, ~54!, and~55! into this equation and us
~56! and~57!, in the lowest order inu ~we discard an unim-
portant term of the form2T3const! we get

F5
3

2
tP21

3

4
vP41

1

2
u@T~P1l12P1t!1Bl14Bt#

2
1

2
Bl~P1lP2l

2112wP1t!2
a

3l
TP1tu

3/2. ~64!

The final formulas for the thermodynamic parameters of
crystal can be found by substituting the solutions of E
~56!, ~57!, and~59! for which x is positive in~60!–~64!.
e
.

4. PHASE TRANSITIONS

The possible phases in the ferroelectric with dislocatio
considered here are determined by the possible solution
the equations of state~56!, ~57!, and ~59!. The paraelectric
phase corresponds to the trivial solutionBl5Bt5P50. In
this phase we havex51/t8 and

FPE5
t8

2
T~P1l12P1t!2

a

3l
TP1tt83/2, ~65!

and the contribution of the polarization fluctuations to t
specific heat is

dCPE'
T2

8p l 3T0
2At8

. ~66!

The phase is stable ift8.0.
The dipole-glass phase corresponds to a solution w

P50 but Bl andBt finite. For this case Eq.~56! yields

15wP2l~1122wP2t!. ~67!

Using the assumed smallness ofw, in view of which

wP2l!1, ~68!

we combine~53!, ~57!, ~60!, and~67! and get

x'S w2P2l

4p l 3 D22

[uc
21 , ~69!

Bl'
wP2l~uc2t8!

v
, Bt'

Bl

2wP2l
. ~70!

Thus, fort8,uc there is a positive solution forBl , with the
result that we have positive Edwards–Anderson parame
Ql(k) and Qt(k), i.e., there is a transition to the glass
phase. The thermodynamic potential in this phase is

FDG'
1

2
ucT~P1l12P1t!2

wP1l

2v
~uc2t8!

2
a

3l
T P1tuc

3/2, ~71!

and the contribution to the specific heat is

dCDG'
T2

8p l 3T0
2Auc

S 11
w2P2l~uc2t8!

4vTuc
D . ~72!

The glassy phase is stable in the entire range of its existe
t8,uc .

Before we consider the transition from the paraelec
phase to the glassy phase, let us discuss the limits wi
which the above results are valid. The mean-field reg
within which the results are valid is determined by the co
dition for the smallness of the fluctuation contribution to t
renormalization of the coupling constantv ~see Ref. 12!,
vTcP2t!1, or, assuming thatl;a,

vTcP1s!Au, s5 l ,t. ~73!

This is the only condition becauseFdis of Eq. ~12! ~and the
coupling constantw! is not renormalized in the region o
large fluctuations, since it contains two longitudinal Four
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transforms of the polarization with a finite susceptibility
the transition point@see the first equation in~52!#. The con-
dition ~73! implies that for the region of interest to us,u
;uc , to belong to the mean-field region, the following co
dition must be met:

vTc!w. ~74!

In this caseFDG,FPE for all t8,uc , so that the phase
transition to the glassy phase is a second-order transitio
point t85uc .

Let us now consider the ferroelectric~rhombohedral!
phase, which corresponds to a solution withP, Bl , andBt

finite. This phase meets the following conditions:

u52vP2, ~75!

Bl5
wP2l~u2t8!

v
, ~76!

and the reciprocal susceptibilityu satisfies the equation

u3/212uc
1/2u12t8~u1/22uc

1/2!50. ~77!

For t8,2muc[t0 , m5(A3993159)/16'7.637, this
equation has two solutions satisfying the conditionu.t8,
which ensures thatBl is positive @see the condition~76!#.
Neart0 these solutions have the form

u65u06sAu0~t02t8!, u0[vuc ,

v5
4

9 F S 11
45

8
m D1/3

21G2

'2.782,

s5S 11
45

8
m D22/3

A2~m222!'0.866.

For t8!2uc the larger of these two solutions,u1 ,
tends to22t8 and the smaller,u2 , to uc . With allowance
for the condition~74!, the potential of the ferroelectric phas
has the form

4vFFE'~u12t8!~wP1l24w2P2lP1t!

1t8~3u24Aucu!14Aucu
31

3

4
u2.

Comparing this atu5u6 with FDG , we see that att8
'22wP1l[tp there is a second-order phase transition
the ferroelectric phase corresponding to the solutionu1 . For
t8,tp we haveu1'22t85x21, so that

P5A2
t8

v
, Bl5

w

v
P2l~23t8!,

Bt5
3

2v
A2

uct8

2
,

dC'
3T

2vT0
2 1

T2

T0
28p l 3A22t8

S 11
3w2P2l

3vT D .

The temperature dependence of the obtained thermodyn
quantities near glassy and ferroelectric transitions is depi
in Fig. 1.
at

o
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d

5. CONCLUSION

Let us discuss some qualitative features of the dipo
glass phase in a ferroelectric with dislocations and the p
sibility of studying this phase in experiments. From the th
oretical viewpoint, the most important feature of this phase
the occurrence of the Edwards–Anderson nonlocal par
eterQi j (k)5^^Pi(k)&T^Pj (2k)&T&C . In the existing models
of glassy transitions,Qi j (k) is independent ofk ~see Ref. 8!,
which means that there are no correlations between the s
taneous local dipole moments that appear in the gla
phase:Qi j (r )5Qi j d(r ). In our case, however, such correl
tions are present and extend over distance of order of
longitudinal and transverse correlation radiuses@see Eqs.
~54! and ~55!#, j t5 l /Au and j l5 l /Au14p. Since j t@a,
we can expect that in the glassy phase there may be reg
of correlated vortex~transverse! polarization whose size is o
order j t . The existence of such regions should manifest
self, in particular, in the diffuse scattering of x rays a
neutrons, which is described by the inhomogeneous sus
tibility Gi j (k). According to ~42! and ~43!, in the glassy
phase there appears a contribution toGt(k)5Gt8(k)
1Qt(k) proportional to the square of a Lorentzian with
halfwidth j t

21 . Experimental observations of such an effe
will make it possible to establish the point of transition to t
dipole-glass phase and to determine the temperature de
dence of the quantityBl , which acts as the order paramet
for this transition. Note that instead ofBl we can consider the
common Edwards–Anderson order parameter

Q5E dk

~2p!3 Tr Q̂~k!5Bl12Bt5Bl~112wP2t!.

Generally speaking, the replica-symmetric description of
glassy phase by a single order parameter may prove to
inadequate in view of replica instability.8 In this paper we
did not check solutions for replica stability, which in th
model considered here may prove to be a complicated t
Our aim was only to demonstrate the possibility, in princip
of the existence of an intermediate glassy phase in a fe
electric with dislocations. In view of this, the temperatu
dependences of the susceptibility obtained in this paper
of a preliminary qualitative nature and demonstrate the qu
tative features to which the existence of an intermedi
glassy phase, in particular, may smooth out dielectric ano
lies.

FIG. 1. Temperature dependence of the thermodynamic quantities f
ferroelectric with dislocations near glassy and ferroelectric phase transiti
1, the reciprocal dielectric susceptibilityu5x21; 2, the specific heat;3, Bt ;
4, Bl ; and5, polarizationP.
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It must also be noted that, in addition to the spherica
symmetric solutions forGs(k) andQs(k) considered in this
paper, there are solutions with an angular dependenc
these quantities, determined by one of the spherical harm
ics Ylm . Generally speaking, due to the additional inhom
geneity, such solutions have a higher thermodynamic po
tial and may be metastable, but a thorough study of
problems merits a separate~and very complicated! investiga-
tion.

This work was sponsored by the Russian Fund for F
damental Research~Grants Nos. 98-02-18069 and 97-0
17878!.

* !E-mail: timonin@icomm.ru

1A. B. Harris and T. C. Lubensky, Phys. Rev. Lett.33, 1540~1974!.
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A theory of Mössbauer absorption spectra in the presence of external rf fields is developed for
Stoner–Wohlfarth particles in an extended relaxation model with a more realistic
description of the relaxation process. Calculating in this model, we track the transformation of
the Mössbauer spectra as a function of relaxation processes for the transitional region
and frequencies and amplitudes of the rf field where the well-resolved hyperfine structure
transitions into an isolated central peak with satellites. In this transitional region new types of
resonance effects are found which have no analogy with previously known resonance
phenomena. ©1999 American Institute of Physics.@S1063-7761~99!01709-6#
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1. INTRODUCTION

At present, a large amount of experimental material
accumulated demonstrating a wide variety in the shape of
transformation of Mo¨ssbauer absorption spectra as a funct
of the frequency and amplitude of the rf field in magne
systems consisting of magnetic clusters of small~nanometer!
dimensions.1–9 In Ref. 10 we developed a theory of Mo¨ss-
bauer absorption spectra in the presence of an rf magn
field for the case of an ensemble of Stoner–Wohlfarth~SW!
particles which included relaxation processes in full agr
ment with the original model~Ref. 11!. The theory we de-
veloped allows one to calculate Mo¨ssbauer spectra for arb
trary values of the amplitude and frequency of the rf fie
An important consequence of this theory is the presence
sharp transition from the well-resolved hyperfine struct
for small amplitudes of the rf field to an isolated central li
with satellites for large amplitudes of the rf field. This pr
diction of the theory does not find confirmation in existin
experimental studies, primarily because of the simplified
scription of the relaxation process in the original S
model.11

The present paper generalizes the results of prece
studies to the case of a broader description of the relaxa
process in a system of SW particles. In the initial SW mo
the time dependence of the hyperfine field at the nucleus
be described by a strictly deterministic trajectory, i.e., at
times the magnitude of the hyperfine field at the nucleus
any particle, depending on the frequency and amplitude
the rf field, is exactly determined. In the extended SW rel
ation model proposed here, the trajectories acquire a stoc
tic character, so that for each individual particle one can
indicate exactly the magnitude and direction of the magn
moment ~and, consequently, the the hyperfine field at
nucleus! of the particle at every instant of time. It is possib
only to determine the probabilities of finding a particle
5331063-7761/99/89(9)/14/$15.00
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some quasi-equilibrium state corresponding to various
ergy minima. This latter fact greatly complicates the pro
lem, especially its numerical realization.

On the other hand, even small deviations of the rel
ation process from the original SW model give rise to n
ticeable changes in the Mo¨ssbauer spectra in the region
the transition from the allowed hyperfine structure to an i
lated central line and, moreover, to new physical phenome
In this transitional region qualitatively new types of res
nances are realized at frequencies of the rf field coupled
the parametric resonance conditions with the frequencie
the components of the magnetic hyperfine structure. Th
resonances differ, both in their position and in the manne
which they are manifested, from previously known res
nances at frequencies corresponding to splitting of the
ergy levels in the ground state and excited states of
nucleus.10,12,13

Section 2 formulates the modified SW model with
more general description of the relaxation process. Sectio
obtains a general expression for the Mo¨ssbauer absorption
spectra in the extended SW relaxation model on the basi
the approaches proposed earlier in Refs. 10 and 14. The
of general formulas to describe the Mo¨ssbauer spectra re
quires, generally speaking, complicated computer calc
tions, which necessitates a deeper approach to the analys
the calculational methods prior to the writing of the com
puter program. These questions are considered in Sec
which also gives examples of calculations of Mo¨ssbauer
spectra using the described technique.

On the basis of the numerical calculations, Sec. 5 a
lyzes the transformation of the Mo¨ssbauer spectra as a fun
tion of the parameters of the relaxation model for the reg
of transitional amplitudes of the rf field, where the resolv
hyperfine structure goes over to an isolated central line w
satellites. It is found that in a narrow interval o
© 1999 American Institute of Physics
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frequencies of the rf field near multiples of the frequencies
the components of the magnetic hyperfine structure, dep
ing on the multiplicity of the indicated frequencies, the lin
undergo both a relaxational narrowing and a mutual rep
sion. A simplified model is proposed to reveal the physi
essence of these phenomena.

2. THE GENERALIZED STONER–WOHLFARTH MODEL

To describe the remagnetization processes in magn
alloys, wide use is made of the model proposed in 1948
Stoner and Wohlfarth.11 This model considers a ferromagn
as a set of individual particles or clusters, inside which
strong exchange interaction takes place, so that each pa
can be treated as being uniformly magnetized with magn
zationM0 . It is assumed here that each particle has the sh
of a prolate ellipsoid of revolution with the axes of the
particles randomly distributed in space, so that the to
Hamiltonian of such a particle in an external magnetic fi
H can be represented as

Ĥ52HVM0 cosf2KV cos2~u2f!, ~1!

where V is the volume of the particle,K is the magnetic
anisotropy constant,u is the angle between the direction
the external field and the easy axis of the particle, andf is
the angle between the direction of the magnetic moment
the external field.

The SW model also assumes that

KV@kBT, ~2!

so that in the absence of external fields the magnetic mom
of each particle is either aligned or anti-aligned with the e
axis. As a consequence of relation~2! hops between thes
two states are assumed to be very slow, so that during
measurement time they can be neglected.

When a magnetic field is applied the energy minim
with respect to the anglef are shifted, i.e., the magneti
moment is deflected from the easy axis~with the exception
of particles withu50!. For weak magnetic fields, two en
ergy minima separated by a maximum are preserved.

If the external field, normalized to the anisotropy ener

h5
HM0

2K
~3!

exceeds some critical valuehc depending on the orientatio
of the particle,11 one of the minima disappears, and we ha
curves with one minimum. Figure 1 plots the dependence
the critical field on the orientation of the particle. As can
f
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seen from the figure,hc has a minimum atu545° and a
maximum at the anglesu50 and 90°. An important conse
quence of this model is that even a system of noninterac
SW particles possesses pronounced nonlinear magnetic p
erties, specifically, the presence of a hysteresis loop, and
such hysteresis-generated characteristics as residual ma
tization, a critical field, etc. As will be shown below, th
property of an ensemble of SW particles in and of its
defines the specific dependence of the shape of the M¨ss-
bauer spectra on the amplitude of the external rf field.
reality the critical fields for the majority of particles lie in th
interval 0.5–0.75~see Fig. 1!.

According to the SW model the dynamics of such
ensemble is the following. If the external field exceedshc in
magnitude, then the particle has only one energy minim
and is always found at this minimum. As the field is d
creased, say, from positive values, the magnetic momen
the particle tracks the position of the local minimum a
instantaneously adjusts its direction in accordance with
and only for fieldsh,2hc does the magnetic moment in
stantaneously transition to its absolute minimum. When
amplitude of the external periodic magnetic field is grea
than hc , the time dependence of the magnetization of
particle has the form of a hysteresis loop. If the amplitude
the periodic field is less thanhc , then according to the SW
model the particle is found in one of two minima and nev
leaves it. Curves of the corresponding dependence of
magnetization of the particle on the intensity of the exter
periodic magnetic field

H~ t !5H0 sin~v r f t ! ~4!

are plotted in Fig. 2, which plots projections of the magne

FIG. 1. Dependence of the critical fieldhc of a SW particle on the angleu
between the direction of the external magnetic field and the easy axis in
original SW model.
n-
FIG. 2. Magnetization curves of a group of SW particles with orie
tation u545° for amplitudes of the periodic magnetic fieldh050.75
~a! and 0.5~b!.
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moment onto the direction of the field for a group of partic
with orientationu545° for different amplitudes of the peri
odic field h0 , normalized to the magnetic anisotropy co
stant@see Eq.~3!#. Naturally, the magnetization curve for a
ensemble of SW particles will be the result of averaging b
over particles with different orientations and over differe
trajectories within one group in those cases where the am
tude of the external periodic field does not exceed its crit
value for this group. For amplitudesh0,0.5 the curve has
the form of the reversible magnetization curve. In the int
val 0.5,h0,1 the magnetization curve acquires the form
loops; however, in essence it is a superposition of hyster
loops and open curves of the type depicted in Figs. 2a an
~see Ref. 10!.

A system of SW particles possesses a number of cha
teristic features, foremost of which is the fact that its ma
netization curves, including the hysteresis loops, do not
pend on the frequency of the periodic magnetic field. T
curves depicted in Fig. 2 should not vary withv r f if the
system is described exactly by the SW model.

Although the relaxation process is nowhere conside
directly in Ref. 11, relaxation is nevertheless present imp
itly although it enters in a somewhat nontrivial form. Sp
cifically, it is assumed that as the magnitude of the fi
varies, the magnetic moment of a particle located at a d
nite energy minimum will, on the one hand, track the var
tion of the position of this minimum and alter its direction
accordance with the magnitude of the applied field and t
on the other hand, transitions between states with diffe
energy minima are assumed to be forbidden until the ma
tude of the applied field exceeds its critical value. In oth
words, the relaxation process is simultaneously limiting
fast and limitingly slow. The impossibility of hops betwee
states with different energy minima is implicitly due to th
fact that there are high energy barriers hindering such t
sitions ~see Fig. 3!. This assumption turns out to be val
only in magnetic fields substantially less thanhc ; near the
critical field it should break down. It is not hard to show th
nearhc the height of the barrier is given by

U2i~h!5a iU0~hc2uhu!2, uhu,hc , ~5!

wherea i is some numerical constant which depends on
orientation of thei th particle, andU05KV is the height of
the energy barrier forH50.

For amplitudes of the periodic field nearhc , the particle
will be found a significant part of the time in a situatio

FIG. 3. Scheme of transitions between local energy minima in the gen
ized SW relaxation model.
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where the assumption of a large value of the barrier is cle
not fulfilled @see Eq.~4!#. As a consequence, a more accura
description of the relaxation process is needed. Specifica
we assume that a sudden reorientation of the magnetic
ment of the particle will occur not only for magnetic field
exceedinghc , but also for weaker fields, where the effectiv
anisotropy energyU2i is not too large relative to the tem
perature. As we will see below, such a generalization of
SW model radically alters both the magnetic properties a
the Mössbauer spectra of the SW particles.

For simplicity we assume that at any instant of tim
depending on the magnitude of the magnetic field, the re
ation process is governed by only two quantities:

p12~h!5p0 exp@2U1~h!/kBT#,

p21~h!5p0 exp@2U2~h!/kBT#, ~6!

wherep0 is some constant and

U1,2~h!5Emax~h!2E1,2~h!. ~7!

Herep12 andp21 have the meaning of transition probabilitie
per unit time between local-equilibrium levels. For ea
group of particles with different orientations the quantiti
Emax andE1,2 are found by fairly straightforward numerica
calculations.11 The proposed relaxation model possesses
virtue that the entire relaxation process is characterized
only two parameters, the constantp0 and the barrier heigh
U0 . For fixed p0 and limitingly largeU0 the original SW
model is realized, and asU0 is increased the time interva
where the barriers cannot be taken to be small decreases
tends to zero in the limitU0→`.

In magnetic fielduhu,hc each particle can be found onl
in two states corresponding to local energy minima, betw
which relaxation hops can occur. Their equilibrium popu
tionsw1,2

(0)(h) are determined by the principle of detailed ba
ance

w1,2
(0)~h!5

exp@2E1,2~h!/kBT#

exp@2E1~h!/kBT#1exp@2E2~h!/kBT#
. ~8!

Naturally, in the presence of an external variable ma
netic field the true populations of the local states will not
in equilibrium but will depend on the amplitude of the fie
and the relation between its frequency and the relaxa
parameters. Thus, at all times the variation of the noneq
librium populations of the local statesw1(t) and w2(t) in
time can be described by the equations

dw1,2~ t !

dt
57p12~ t !w1~ t !6p21~ t !w2~ t !. ~9!

In magnetic fields exceeding the critical fielduhu.hc , ac-
cording to the original SW model there are no longer tw
but rather only one local minimum of the energy of the p
ticle, and according to this same model the particle und
goes a transition to the state corresponding to this minim
in magnetic fields exceedinghc by an arbitrarily small
amount. In what follows it will be convenient in such field
to maintain two states of the particle with identical values
the magnetic moment and to assume that at times co
sponding touhu.hc the true populations do not depend o
time and that the population vector^W(t)u has the form

l-
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FIG. 4. Magnetization curves for an ensemble of random
oriented SW particles in the modified relaxation model f
U0 /kBT520 and assorted values of the rat
p0 /(v r f /2p)51, 102, 104, 106, 108, 1010 ~from the outer
hysteresis loop inward! in the regime of strong rf fields,
h051 ~a! and in the regime of weak rf fields,h050.25~b!.
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^W~ t !u5~w1~ t !w2~ t !!5 H ~1 0!, h.hc ,
~0 1!, h,2hc . ~10!

For amplitudes of the external magnetic field exceed
the critical field, condition~10! plays the role of a boundar
condition ensuring uniqueness of the solution of Eq.~9!. For
fields with amplitudeh0,hc , we choose the condition o
periodicity

^W~ t1Tr f !u5^W~ t !u, ~11!

as the boundary condition, whereTr f 52p/v r f is the period
of the external magnetic field.

The system of nonlinear equations~9! together with the
boundary conditions~10! and~11! is relatively easy to solve
numerically. Knowingw1(t) and w2(t), it is not hard to
determine the evolution of the magnetic moment of the p
ticle in time under the action of the external magnetic fie

M ~ t !5w1~ t !M1~h~ t !!1w2~ t !M2~h~ t !!, ~12!

whereM1(h) andM2(h) are the projections, correspondin
to the local energy minima, of the magnetic moment of
particle onto the direction of the external field, which a
calculated independently according to the scheme set for
Ref. 11.

To determine the evolution in time of the magnetic m
ment M (t) of an ensemble of randomly oriented, noninte
acting SW particles, it is necessary to sum up the magn
moments of particles of thei th typeM i(t), each of which is
determined by the set of equations~6!–~11!.

Generalization of the relaxation process produces d
matic qualitative changes in the nonlinear magnetic prop
ties of the system, primarily to changes in the shape of
hysteresis loops. In the original SW model the shape of
hysteresis loop is determined only by the amplitude of
variable magnetic field and does not depend on its freque
whereas in the generalized relaxation model it depends
the frequency of the field, specifically on the ratiov r f /p0 ,
and also on the relative magnitude of the energy bar
U0 /kBT.

Figure 4a shows hysteresis loops as a function of
ratio v r f /p0 in the regime of large amplitudes of the rf fie
h0 exceeding the values of the critical fields for all particl
with different orientations. As can be seen from the figure
the frequency of the magnetic field increases the hyster
loop broadens and in the limit of largev r f tends to the hys-
teresis loop characteristic of the original SW model, and
g
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remagnetization field, naturally, grows as the frequency
the field is increased. This picture has a simple physical
planation. At low frequencies the particles take a long tim
to thermalize and reach equilibrium, and the remagnetiza
fields are small. At high frequenciesv r f the magnetic field
does not have enough time to repopulate the local ene
levels in accordance with their equilibrium populations.
this case, remagnetization requires larger amplitudes of th
field.

Note that this fact may have a direct bearing on t
Mössbauer experiments performed in the pioneering work
Pfeiffer on the collapse effect,1 in which the resolved hyper
fine structure ‘‘collapses’’ into an isolated central line wi
satellites as the amplitude of the rf field is increased. Pfei
worked with permalloy and a frequency of the external
field on the order of 100 MHz, where the collapse effect a
consequently, effective remagnetization of the magne
clusters occur in rf fields of order several oersteds. On
other hand, permalloy is a magnetically soft material, an
remagnetizes at low frequencies even in fields on the orde
hundredths of an oersted. Pfeiffer did not draw attention
this fact. Moreover, in his subsequent works he did not co
pare the remagnetization fields at high and low frequenc
of the rf field. On the other hand, it is clear that to constru
a consistent theory of Mo¨ssbauer spectra it is necessary
take this fact into account. The generalized relaxation mo
proposed here makes it possible to describe this phen
enon.

In weak rf fields with amplitudes less than critical (hc),
for all particles~see Fig. 4b! the shape of the hysteresis loop
as a function of the frequencyv r f varies in a more compli-
cated way. In the low-frequency region, growth ofv r f the
remagnetization fields strengthen. In the limit of high fr
quencies, where the relaxation process becomes unimpor
the hysteresis loops disappear and a reversible magnetiz
curve of paramagnetic type appears. In the region of in
mediate frequenciesv r f exotic loops of the type depicted i
Fig. 4b are observed. Of course, in this case one can ex
the appearance of special effects in the Mo¨ssbauer spectra.

3. RELAXATION MÖ SSBAUER SPECTRA OF
STONER–WOHLFARTH PARTICLES: BASIC FORMULAS

The rf field affects the hyperfine structure spectra via
hyperfine fieldHh f(t) acting on the nucleus, where this latt
field, acted upon by the rf field via complex relaxation pr



hy
r

th
s
n

th

ls
c

,
.
n

ig
th

he

o
r,

s

n
i
e
i
a
a
e

e
e
e

ec.
ic
ctly
ar-

ne
si-

a

the
ti-

two
ot

if by
. In
x-
nd,
rise.
er

-
stic

n-
ld

lcu-

537JETP 89 (3), September 1999 Afanas’ev et al.
cesses, begins to depend on time. The simplest and p
cally clearest situation is realized in the case where the
laxation processes are quite fast, so thatHh f(t) tracks some
of the macroscopic characteristics of the sample, e.g.,
magnetizationM i(t) of the SW particle, which in turn varie
in time under the action of the rf field. If the magnetizatio
model is prescribed, i.e., ifM i(t) and, consequently,Hh f(t)
can be assumed to be known, then the Hamiltonian of
system will have the form

Ĥ5Ĥ01gg,emNÎ (g,e)Hh f~ t !1V̂gN~ t0!, ~13!

whereĤ0 is the Hamiltonian determining the energy leve
of the nucleus without allowance for the hyperfine intera
tion; the second term describes the hyperfine interaction
the nucleus,mN is the nuclear magneton,gg,e is the nuclearg
factor, Î (g,e) is the nuclear spin for the ground (g) state and
the excited (e) states of the nucleus; the operatorV̂gN(t0)
describes the interaction of ag quantum with the nucleus
and t0 is the time at which this interaction is switched on15

As can be seen from Eq.~13!, the shape of the absorptio
spectrum is determined byHh f(t).

In Ref. 10, where the time dependence ofHh f was as-
sumed to be strictly determined in accordance with the or
nal SW model, we obtained a general expression for
absorption cross section of ag quantum of energyE5\v
for a group of SW particles with prescribed orientation of t
easy axis

s i~v!5
sa

G0Tr f
E

0

Tr f
dtE

t

`

dt8

3(
h

TrH V̂hF T̂ expH E
t

t8
i @ṽ1̂n

2L̂ Ĥ~ t9!#dt9J G V̂h
1J 1c.c., ~14!

where T̂ is the time-ordering parameter,L̂ Ĥ(t) is the Liou-
ville superoperator of the static hyperfine interaction,16 act-
ing in a space of (2I (g)11)(2I (e)11) variables~the explicit
form of this operator for the case of57Fe nuclei is given in
the Appendix!, 1̂n is the unit superoperator in the space
the nuclear variables,V̂h(t) is the nuclear current operato
which defines the intensity of the nuclear transitions,sa is
the effective thickness of the absorber, andṽ5v1 iG0/2
(G0 is the width of the excited energy level of the nucleu!.
The sum in formula~14! is over polarizationsh of the inci-
dentg radiation.

Figure 5~left! shows an example of the transformatio
of Mössbauer spectra of an ensemble of SW particles w
variation of the amplitude of the rf field, calculated in th
original SW model. A characteristic feature of the spectra
their transformation from a resolved hyperfine structure to
isolated line with satellites is the presence of an abrupt qu
tative change in the spectra at amplitudes of the rf field n
the lower critical fieldhc50.5. Even a small~on the order of
a few percent! excess of the amplitude of the rf field abov
its critical valuehc50.5 gives rise to a distinct central lin
with small satellites superposed on the well-resolved hyp
fine structure.
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In the extended SW relaxation model considered in S
2 the time trajectories ofHh f already acquire a stochast
character, i.e., for each individual particle one cannot exa
indicate the magnitude of the magnetic moment of the p
ticle ~and consequently the hyperfine field at the nucleus! at
every instant of time. In this case it is possible only to defi
the probabilities of finding the particle in some qua
equilibrium state corresponding to different energy minim
of the particle. As a consequence, expression~14! must be
averaged over all possible trajectories ofHh f(t).

Let us start with the case where the amplitude of
external rf field for all of the SW particles is less than cri
cal:

h0,hc . ~15!

In this case, at every instant of time each particle has
distinct energy minima. The original SW model does n
assume any transitions between these two states, as
virtue of a large energy barrier separating these states
reality, the magnitude of this barrier is finite, and in all e
ternal fields near critical it can be as small as desired a
consequently, quite rapid relaxation processes can a
Here, the transition probabilities between local levels p
unit time @see expressions~6!# completely determine the en
tire set of stochastic curves. Averaging over these stocha

FIG. 5. Transformation of the Mo¨ssbauer spectra of an ensemble of ra
domly oriented SW particles with variation of the amplitude of the rf fie
(v r f /2p575 MHz) in the original SW model~left! for h050, 0.5, 0.51, 0.6,
1 ~curves a–e! and in the extended relaxation model forU0 /kBT520,
p0 /(v r f /2p)5104 ~right! for h050, 0.2, 0.225, 0.25, 0.3~curves a–e!. The
scale of spectra e is reduced by a factor of two. Here and below, the ca
lations are for57Fe nuclei,vL/2p550 MHz, and an unpolarized beam ofg
quanta, perpendicular to the direction of the external magnetic field.
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curves is performed in accordance with the procedure p
posed long ago by Anderson17 for the case where relaxatio
is governed by a uniform Markov process with constant~in
time! transition probabilities. In Ref. 14 this approach w
generalized to the case where the transition probabilities
pend on time, assuming that the hyperfine field at the nuc
varies only in magnitude while remaining parallel to one
the axes. This latter assumption allows us to avoid havin
introduce superoperators of the hyperfine interaction into
theory, which must be introduced when not only the mag
tude but also the direction of the hyperfine field varies in
dynamics of the hyperfine fields. Here, an account of
latter effect even without generalizing the relaxation mo
yields qualitatively different transformations of the Mo¨ss-
bauer spectra as a function of the frequency and amplitud
the rf field.10 For a more complete description of all possib
variants of the effect of an rf field on the Mo¨ssbauer spectra
it is of course necessary to consider a model in which, on
one hand, relaxation processes are taken into account an
the other, the hyperfine field can vary its direction in time

If condition ~15! is satisfied, then generalization of th
results of Refs. 10 and 14 by going over to superoperator
a more general form will allow us to obtain the followin
expression for the absorption cross section in the genera
SW relaxation model:

s i~v!5
sa

G0Tr f
E

0

Tr f
dtE

t

`

dt8^Wi~ t !u(
h

Tr$V̂hĜi~ t,t8!

3exp@ i ṽ~ t82t !#V̂h
1%u1&1c.c., ~16!

where

Ĝi~ t,t8!5T̂ expH E
t

t8
dt9@2 i L̂ ~ t9!2P̂~ t9!#J . ~17!

Here

L̂ ~ t !5S L̂
Ĥ

(1)
~ t ! 0

0 L̂
Ĥ

(2)
~ t !

D , ~18!

P̂~ t !5 P̂~ t ! ^ 1̂n , ~19!

P̂~ t !5S p12~ t ! 2p12~ t !

2p21~ t ! p21~ t !
D , ~20!

where the symbol̂ stands for the direct product of th
operators. In our case, the superoperatorĜi(t,t8) acts in a
space of variables with dimension

N52~2I (g)11!~2I (e)11!. ~21!

Here the superoperators of the hyperfine interactionL̂
Ĥ

( j )
(t)

act only in the space of nuclear variables and correspon
two different local minima of the energy of the SW partic
in the external magnetic field, and the relaxation matrixP̂(t)
is diagonal in the nuclear variables and is defined by
relaxation parametersp12(t) andp21(t) introduced above. Of
course, the matricesL̂ (t) andP̂(t) are different for particles
with different orientations, and the particle indexi has been
dropped for simplicity. Note that the superoperatorsL̂ (t) and
o-
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P̂(t) are completely determined by the characteristics of
original SW model and the characteristics of the rf fie
however, on the whole the Mo¨ssbauer spectra of the particle
are still determined by the dynamics of the system of p
ticles via the vector of nonequilibrium populations^Wi(t)u
appearing in Eq.~16!, to find the components of which it is
necessary to solve system of equations~9!–~11! for each
type of particle.

In complete analogy with the results of Refs. 10 and
as a consequence of the periodicity of the rf field

Ĝi~ t1Tr f ,t81Tr f !5Ĝi~ t,t8!, ~22!

it is possible to transform expression~16! to the following
form:

s i~v!5
sa

G0Tr f
E

0

Tr f
dtE

0

Tr f
dt^Wi~ t !u

3(
h

TrH V̂h

exp~ i ṽt!

1̂2exp~ i ṽTr f !Ĝi~ t,t1Tr f !

3Ĝi~ t,t1t!V̂h
1J u1&1c.c. ~23!

This form, where the integration is over finite limits, is mo
suitable for specific calculations. The total absorption cr
section is obviously found by averaging over all particlei
with different orientations.

The above result~23! for small amplitudes of the exter
nal rf field @condition ~15!# cannot be automatically carrie
over to the case where the external magnetic field exceed
critical value for some group of particles. Indeed, for ma
netic fields exceedinghc the particle does not have a barri
separating local minima. At these times it is found in o
absolute minimum, and the question of relaxation proces
at these times becomes moot. In other words, as the exte
magnetic field varies in time there takes place, as it wer
reduction of states of the particle, between which relaxat
occurs. Result~23! can be generalized to this case as follow

We assume formally, as was done in Sec. 2, that
uh(t)u.hc the particle is found in two states with identic
hyperfine interaction parameters

L̂ ~ t !5L̂ Ĥ~ t ! ^ 1̂e , ~24!

where 1̂e is the unit operator in the space of energy stat
Obviously, at the corresponding times relaxation is abs
and in the time interval (t,t8) in which the external magnetic
field exceeds the critical field the general formula~17! can be
used to calculate the functionĜi(t,t8), where the relaxation
operator P̂(t) can be set equal to zero and the hyperfi
interaction operator is given by formula~24!.

Let us now consider a time interval (t,t8) such that
h(t),hc , h(t8).hc , and there is only one point in time,tc ,
at which h(tc)5hc . According to the SW model, in the
point tc the system undergoes an instantaneous rearra
ment. The relaxation process in the vicinity of this point
not described by the relaxation constants, but is prescribe
the final result: in whatever state the particle was found
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times beforetc , at times aftertc it should be found in the
state~1!. This assumption also remains in force in our mod
This process is not hard to take into account if we introdu
the projection operator

R̂15S 1 0
1 0D . ~25!

The operatorĜi(t,t8) in the indicated time interval obvi
ously has the form

Ĝi~ t,t8!5Ĝi~ t,tc!R̂1Ĝi~ tc ,t !. ~26!

For motion opposite the rf field, when we haveh(t).hc ,
h(t8),hc , the abrupt rearrangement in the vicinity of th
point tc no longer takes place, and

Ĝi~ t,t8!5Ĝi~ t,tc!Ĝi~ tc ,t !. ~27!

In the region of negative values of the rf field, when we ha
h(t).2hc , h(t8),2hc , we obtain an expression for th
operatorĜi(t,t8) analogous to expression~26!. In this ex-
pression the operatorR̂1 must be replaced by the projectio
operator

R̂25S 0 1
0 1D . ~28!

Using these formulas, it is not hard to write out expressio
for the superoperatorĜi(t,t8) even in those cases when th
rf magnetic field cycles through the region of critical valu
repeatedly during the time interval (t,t8).

Applying formulas ~25!–~28!, we can use the genera
expression~23! to calculate the spectra for arbitrary values
the amplitude of the rf field. Note that the number of calc
lations grows radically in comparison with the situatio
considered previously, where either the field varied only
magnitude and not in direction14 or relaxation was not taken
into account.10

4. CALCULATIONAL METHODS

The general expression~23! for the absorption spectrum
is a double integral in time of complicated superopera
functions, and therefore the numerical realization of the c
responding calculations requires a special analysis both f
the point of view of observing the required calculational a
curacy and from the point of view of finding the optim
calculation schemes. The central element of these calc
tions is to calculate the matrixĜ(t,t8) ~here and below we
drop the indexi running over the SW particles!. According
to the definition of theT̂-product,

Ĝ~ t,t8!5 lim
n→`

@Ĝ~ t,t1t!...Ĝ~ tk ,tk1t!...Ĝ~ t82t,t8!#,

~29!

where t5(t2t8)/n. This definition also gives a basis fo
calculating theĜ(t,t8) matrices. The calculation reduces
multiplying the n matricesĜ(tk ,tk1t), which for smallt
can be represented in the form of a series in this small
rameter:
l.
e

e

s

f
-

n

r
r-
m
-

la-

a-

Ĝ~ tk ,tk1t!5T̂ expH E
tk

tk1t

dt@2F̂~ t !#J
[1̂2E

tk

tk1t

dt1F̂~ t1!

1E
tk

tk1t

dt1E
t1

tk1t

dt2F̂~ t1!F̂~ t2!2...,

~30!

where

F̂~ t !5 i L̂ ~ t !1P̂~ t !. ~31!

Through terms inO(t3) we have

Ĝ~ tk ,tk1t!51̂2F̂~ t1!t1
1

2
F̂~ t1!F̂~ t1!t2, ~32!

where t15tk1t/2. Here the accuracy of calculation of th
initial expression~29! will be proportional tot2. The neces-
sary calculational accuracy is achieved by increasing
number of partitionsn, i.e., by decreasing the correspondin
values oft.

It is clear that the optimal number of partitionsn needed
to achieve the given calculational accuracy will depend
the ratio of the characteristic frequencies of the proble
which in our case are the frequency of the rf field, the L
mor frequencyvL in the field Hh f , and the relaxation fre-
quenciesp(t)5p12(t)1p21(t). Only the direction, not the
magnitude of the hyperfine field at the nucleus changes
that to obtain estimates of the accuracy it can be assu
that the parametervL /v r f does not vary in time. As for the
second parameter, the ratiop(t)/v r f can vary over very wide
limits. Taking the specifics of the problem into account, sp
cifically that a distinct hyperfine structure should be o
served in the absence of the rf field, we assume in w
follows that

p~h50![p0 exp~2U0 /kBT!!vL/2p. ~33!

Of course, satisfaction of inequality~33! is ensured chiefly
by the large value of the barrierU0 , whereas the ratiop0 /vL

can be arbitrary. Since the dependencep(t) is determined by
the size of the barrier and has an exponential character
inequality

p~ t !<vL/2p ~34!

is satisfied over a wide range of times, with the exception
small regions near the critical points. In the interval of tim
where inequality~34! is satisfied, to calculate the matri
Ĝ(t,t8) it is necessary to use the above-described proced
with the number of partitions determined by the ra
vL /v r f . On time intervals where condition~34! is not ful-
filled, it is necessary to introduce additional partitions.

4.1. Segments with fast relaxation

For large values of the ratiop(t)/vL we expand the
superoperator of the hyperfine interaction in Eq.~30! and
take the relaxation parameters to be arbitrary:
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Ĝ~ t,t1t!5Ĝ0~ t,t1t! % 1̂n

1Ĝ1~ t,t1t!1Ĝ2~ t,t1t!1..., ~35!

where

Ĝ0~ t,t1t!5T̂ expF2E
t

t1t

dt8P̂~ t8!G , ~36!

Ĝ1~ t,t1t!5E
0

t

dt8Ĝ0~ t,t1t8!

3@ i L̂ ~ t1t8!#Ĝ0~ t1t8,t1t!, ~37!

Ĝ2~ t,t1t!52E
0

t

dt8E
0

t8
dt9Ĝ0~ t,t1t8!

3L̂ ~ t1t8!Ĝ0~ t1t8,t1t81t9!

3L̂ ~ t1t81t9!Ĝ0~ t1t81t9,t1t!. ~38!

Formulas~35!–~38! define the operatorĜ(t,t1t) through
terms in (vLt)3, where the relaxation parameters do n
impose any restrictions.

The relaxation matrixP̂(t) can always be represented
the form

P̂~ t !5p~ t !Ŝ~ t !, ~39!

where

Ŝ~ t !5S w2
(0)~ t ! 2w2

(0)~ t !

2w1
(0)~ t ! w1

(0)~ t !
D ~40!

is a matrix comprised of the equilibrium populationsw1,2
(0)(t).

If the relaxation parameters vary weakly over times on
order oft, then

Ĝ0~ t,t1t!5exp@2 P̂~ t1!#

5R̂~ t1!1Ŝ~ t1!exp@2p~ t1!t#, ~41!

wheret15t1t/2, and

R̂~ t !51̂e2Ŝ~ t !5S w1
(0)~ t ! w2

(0)~ t !

w1
(0)~ t ! w2

(0)~ t !
D . ~42!

With the help of this expression, it is easy to take the in
grals on the right-hand sides of Eqs.~37! and~38!; as a result
we obtain

Ĝ1~ t,t1t!5 i L̂RRt1
12exp~2pt!

p
i @ L̂RS1L̂SR#

1t exp~2pt!i L̂SS, ~43!

Ĝ2~ t,t1t!52~ L̂RR!2
t2

2
2~ L̂RRL̂RS1L̂RSL̂SR

1L̂SRL̂RR!
t

p F12
12exp~2pt!

pt G
1~ L̂RSL̂SS1L̂SRL̂RS1L̂SSL̂SR!

1

p2
t

e

-

3@12exp~2pt!~11pt!#2~ L̂SS!2

3exp~2pt!
t2

2
, ~44!

wherep[p(t1), L̂XY5X̂L̂ Ŷ, and all operators are evaluate
at the pointt1 . Formulas~35!, ~41!–~44!, on the one hand
do not complicate the calculation excessively and, on
other, make it possible to calculate the matricesĜ(t,t8) on
time intervals of a trajectory with fast relaxation without r
sorting to an extraordinary increase in the number of pa
tionsn. For smallp(t) these formulas reduce to the origin
formula ~32!.

In the limit p(t)t@1 through terms in (vL /t)3 we have

Ĝ~ t,t1t!5R̂~ t1! ^ exp~ i L̂̄n~ t1!t!, ~45!

where

L̂̄n~ t !5w1
(0)~ t !L̂

Ĥ

(1)
~ t !1w2

(0)~ t !L̂
Ĥ

(2)
~ t ! ~46!

is the mean superoperator of the hyperfine interaction a
aged over equilibrium states.

4.2. Integration over time with additional factorization

Let us turn to the main formula~23! and estimate the
number of operations needed to calculate the absorp
spectrum. As a simple estimate we take the total numberNtot

of products of two complex numbers, neglecting the num
of sums, which require substantially less calculation tim
Simple estimates show that

Ntot}NiNvn2N2, ~47!

whereNi is the number of partitions into groups with diffe
ent orientations,Nv is the number of points at which th
Mössbauer spectrum is calculated,n is the number of parti-
tions needed to calculate the matricesĜi(t,t8), and N is
given by formula~21!. For a reasonable choice of value
namely,Ni'128, Nv'512, n'256, N516, we obtain the
number of required complex multiplicationsNtot'240

'1012. Obviously, to perform these calculations on a co
puter in this case requires a large amount of time. In rea
the calculation time can be substantially simplified.

Returning to the original formula~16! for the absorption
cross section, we divide the integral on its right-hand s
into two parts:

s i~v!5s i
(1)~v!1s i

(2)~v!, ~48!

where

s i
(1)~v!5

sa

G0Tr f
E

0

Tr f
dtE

Tr f

`

dt8^Wi~ t !u

3(
h

Tr$V̂hĜi~ t,t8!

3exp@ i ṽ~ t82t !#V̂h
1%u1&1c.c., ~49!
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FIG. 6. Mössbauer spectra~solid lines! and par-
tial components of the absorption cross secti
s i

(1)(v) ands i
(2)(v) ~empty and filled points, re-

spectively! for an ensemble of SW particles
(U0 /kBT520, p0 /(v r f /2p)5104) in an rf field
with v r f /2p575 MHz, h050.2 ~a! and 0.3~b!.
The scale of spectrum b is reduced by a factor
four.
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(2)~v!5

sa

G0Tr f
E

0

Tr f
dtE

t

Tr f
dt8^Wi~ t !u

3(
h

Tr$V̂hĜi~ t,t8!

3exp@ i ṽ~ t82t !#V̂h
1%u1&1c.c. ~50!

From definition~17! of the matrixĜ(t,t8) as aT̂-product it
follows that it possesses the property

Ĝ~ t,t8!5Ĝ~ t,Tr f !Ĝ~Tr f ,t8! for t8.Tr f .t. ~51!

Employing relation~51!, we can reduce expression~49! to
the form

s i
(1)~v!5

sa

G0Tr f
E

0

Tr f
dtE

0

Tr f
dt8^Wi~ t !u

3(
h

TrH V̂h~ t !
exp@ i ṽ~ t82t !#exp~ i ṽTr f !

1̂2exp~ i ṽTr f !Ĝi~0,Tr f !

3V̂h
1~ t8!J u1&1c.c., ~52!

where

V̂h~ t !5V̂hĜi~ t,Tr f !, V̂h
1~ t !5Ĝi~0,t !V̂h

1 . ~53!

In turn, making the substitution of variablest5t82t
also reduces the integral on the right-hand side of Eq.~50! to
a form more convenient for calculation:

s i
(2)~v!5

sa

G0
E

0

Tr f
dt exp~ i ṽt!I i~t!1c.c., ~54!

where

I i~t!5
1

Tr f
E

0

Tr f 2t

dt^Wi~ t !u

3(
h

Tr$V̂hĜi~ t,t1t!V̂h
1%u1&. ~55!

It can be seen by inspection that expression~52! factor-
izes so that the double integral int and t8 reduces to the
calculation of two single integrals. Here, of course, the nu
 -

ber of operations needed to calculate expression~52! is
sharply decreased and instead of expression~47!, taking the
averaging over groups of particles with different orientatio
into account, we have the estimate

Ntot}NiNvnN2. ~56!

For the same values ofNi , Nv , n, andN we obtain for the
number of required complex multiplicationsNtot'232'109,
which provides a basis for carrying out the calculations us
moderate computing resources, specifically personal com
ers.

As for the second terms i
(2)(v), its calculation requires

a considerably smaller number of calculations than does
calculation ofs i

(1)(v). Indeed, the main fraction of the ca
culations are needed in the calculation of the correlat
function I (t). It is not hard to show thatNin

2N2 complex
multiplications suffice for calculations taking into accou
averaging over groups of particles with different orien
tions. Since the same calculations do not need to be repe
for different points of the spectrum, the given estimate
small in comparison with estimate~56!.

For high frequencies of the rf field, when we havev r f

.vL , the main contribution to the absorption cross sect
comes from the terms i

(1)(v). The contribution of the sec
ond term is a smooth curve with characteristic variations
frequencies nearv r f ~see Fig. 6!. In the limit of high fre-
quenciesv r f it is possible to obtain the following expressio
for this term:

s i
(2)~v!5

2saTr f

G0

12cos~vTr f !

~vTr f !
2 . ~57!

However, it should be noted that even if the contributi
from s i

(2)(v) is small, it cannot be neglected, since the co
tribution from s i

(1)(v) can give a physically invalid resul
with negative values of the absorption cross section exce
ing the background~see Fig. 6!. The second term compen
sates for these negative contributions, so that the resu
absorption cross section is always positive.

In the region of low frequencies of the rf field, when w
havev r f !vL , the main contribution to the absorption cro
section comes froms i

(2)(v), and the first term gives only
small corrections.
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Figure 5 ~right side! displays relaxation Mo¨ssbauer ab-
sorption spectra for different amplitudes of the rf field, c
culated according to the above-described scheme. As in
case of the original SW model, the well-resolved hyperfi
structure collapses into a central line with satellites as
amplitude of the rf field is increased. Here, as in Fig.
collapse occurs at considerably smaller amplitudes of th
field in comparison with the original model, i.e., relaxatio
results in an effective decrease in the magnitude of the c
cal field ~see Sec. 2 and Fig. 4!. Also, the spectral lines on
which a hyperfine structure is still observed are found to
broadened and their width grows with the amplitude of
field. It is clear that for a quantitative description of the spe
tra it is very important to have a more accurate description
the relaxation processes. As for qualitative effects, if th
can show up they can be expected to appear only in
region of the transition from a resolved hyperfine structure
a central line with satellites~see Figs. 5b–5d!. It may be
expected that the abrupt qualitative change in the shap
the spectra for values of the amplitude of the rf field near
lower value of the critical fieldshc50.5 will be smoothed
out by the relaxation processes. An analysis of the trans
mation of Mössbauer spectra in this initial stage of the tra
sition as a function of the problem parameters is of spe
interest.

5. RELAXATION-STIMULATED RESONANCES

The proposed relaxation model differs from the origin
SW model in one very important physical way. In the orig
nal model the remagnetization process is understood in
ways: 1! if the amplitude of the rf fieldh0 exceeds the criti-
cal field hc , then remagnetization occurs every half-peri
of the rf field, and 2! for h0,hc remagnetization does no
occur and the particle returns to its initial state every ha
period. The generalized relaxation model admits such rem
netization regimes, where during a half-period the parti
can return to to its initial state with probabilityr or change
the direction of its magnetic moment with probabilityq51
2r . Qualitative effects in the Mo¨ssbauer spectra can be e
pected precisely in these remagnetization regimes.

Calculations of the spectra as functions of the freque
of the rf field and the relaxation parameters in the abo
described scheme showed that in the case of slow relaxa
(q!1) the behavior of the spectra has a distinctive chara
that depends on the relative values of the frequencies of
hyperfine structure and the frequency of the rf field. Sin
the minimum value of the critical fieldhc50.5 is realized for
the group of particles withu545°, to reveal the specifics o
the transition we first analyzed the absorption spectra for
group of particles. Figure 7 shows the corresponding spe
for representative values of the frequency of the rf field n

v r f 5v1 , ~58!

wherev15u63ve/27vg/2u is the frequency correspondin
to lines 1 and 6 in the magnetic sextet (ve,g5gg,emNHr f ).
For exact resonance, as can be seen from the figure, the
lines are much narrower than the inner ones and, co
quently, their peak intensity is dramatically increased.
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one goes away from the resonance toward either side,
line width is restored, where the inner part of the spectr
varies relatively weakly. This is effect is so strong that it
preserved even in spectra for the entire ensemble of
particles.

A qualitatively different situation arises for frequencie
of the rf field in the vicinity of

v r f 52v1 . ~59!

The corresponding spectra are shown in Fig. 8. For ex
resonance, splitting of the outer lines of the sextet is
served, which can be interpreted as a superposition of
central line, e.g., line 1, and a satellite of the second line
the pair, line 6. This interpretation finds confirmation in t
shape of the spectra calculated for the case of small detu
of the frequency of the rf field from the ‘‘resonance’’ fre
quency~Figs. 8a and 8c!. In these spectra one can clear
make out the satellites of lines 1 and 6, indicated by arro
in the figure. Note that in this case no satellites of the in
lines of the spectrum are observed, and that satellites of l
1 and 6 are absent in the inner regions of the spectr
Equally interesting is the fact that lines 1 and 6 and
corresponding satellites can never coincide for any value
the frequency of the rf field, so there exists some minim
distanceD12 between the lines. As a result, we cannot s
which lines in Fig. 8b are the central lines, and which a
satellites.

Interest in resonance phenomena in the presence of
field in Mössbauer spectroscopy arose in the 1960’s and
not weakened to the present day.12,13 However, attempts to
find such effects were concentrated on cases of reson
with real distances between the levels of the nucleus in
ground state (vg) or the excited state (ve). The latter should

FIG. 7. Mössbauer spectra of SW particles with orientationu545° ~left!
and an ensemble of SW particles~right! for U0 /kBT520, p0 /(vL/2p)
5104 in an rf field with amplitudeh050.2 and frequency near the fre
quency of the hyperfine componentv1/2p550 MHz (Dv/2p55 MHz):
v r f 5v11Dv ~a!, v1 ~b!, v12Dv ~c!. The scale of the spectra on the righ
has been reduced by a factor of 1.8.
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appear in the form of splitting of all components of the sp
trum, and they show up distinctly in the SW model@see Fig.
9a, and also Ref. 10#. As can been seen from Fig. 9b, a mo
accurate account of the relaxation process causes a s
smearing of this effect, which may explain the fact that t
numerous efforts to detect these resonance effects have
been unsuccessful.

Thus, relaxation processes hinder one from observ
ordinary physical resonances, but stimulate the appear
of new resonances now at frequencies of the hyperfine t
sitions instead of the nuclear transitions. The nontrivial ch
acter of these resonances arises because the frequenc
the hyperfine transitions exceed the actual distances betw
the nuclear levels by ten orders of magnitude.

Obviously, it is practically impossible to track the phy
ics of the formation of these resonance phenomena on
basis of general formulas~52!–~55!, which not only do not

FIG. 8. Transformation of the Mo¨ssbauer spectra of SW particles with or
entation u545° for U0 /kBT520, p0 /(vL/2p)5104 in an rf field with
amplitudeh050.2 and frequency near twice the frequency of the hyperfi
componentv1/2p550 MHz: v r f /2p5104 ~a!, 99 ~b!, 94 MHz ~c!.

FIG. 9. Mössbauer spectra of an ensemble of SW particles with amplit
h050.2 at the resonant frequencyv r f /2p5vg/2p536.8 MHz in the origi-
nal SW model~a! and in the extended relaxation model forU0 /kBT520
andp0 /(vL/2p)5104 ~b!.
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have such a simple analytical form, but also require sign
cant efforts just for their computer realization. Neverthele
we may suggest a simplified model that would make it p
sible to some degree to explain this phenomenon.

For simplicity, we assume that the amplitude of the
field is not large, so that variations of the direction of t
hyperfine field at the nucleus in states corresponding to lo
energy minima can be neglected. In this case, we can tr
form from expressions~52!–~55! with complicated operator
functions to a sum over the various frequencies of the hyp
fine transitions~see Ref. 14!; as a result, we obtain

s~v!5sa(
a

uCau2wa~v!, ~60!

where a5(m,M ); m and M are the projections of the
nuclear spin in the ground state and the excited state onto
direction of the hyperfine field; the coefficientsCa determine
the intensities of the corresponding hyperfine transitions,

wa~v!5
1

G0
^Aa~v!u

Tr f

1̂2exp~ i ṽTr f !ĝa~0,Tr f !
uBa~v!&

1E
0

Tr f
dt exp~ i ṽt!I a~t!1c.c., ~61!

^Aa~v!u5
1

Tr f
E

0

Tr f
dt^W~ t !uĝa~ t,Tr f !exp@ i ṽ~Tr f 2t !#,

~62!

uBa~v!&5
1

Tr f
E

0

Tr f
dt exp~ i ṽt !ĝa~0,t !u1&, ~63!

I a~t!5
1

Tr f
E

0

Tr f 2t

dt^W~ t !uĝa~ t,t1t!u1&. ~64!

Here ĝa(t,t8) is an operator that is represented by a mat
of second rank:

ĝa~ t,t8!5T̂ expF E
t

t8
dt9~2v̂a2 P̂~ t9!!G , ~65!

v̂a5S va 0

0 2va
D , ~66!

whereva5Mve2mvg .
A quirk of the above relaxation process is the fact th

for an overwhelming number of particles, with the excepti
of the group of particles oriented perpendicular to the dir
tion of the rf field, relaxation has a unilateral character, s
cifically, probabilities of transitions from a higher energ
state to a lower state are of considerable significance w
the probabilities of the reverse transitions are negligi
small. Moreover, even according to formulas~6! and~7! the
relaxation process is concentrated at the ends of the traje
ries tc5kTr f /2, where the intensity of the rf field reaches i
maximum value, and the relaxation rate falls off with di
tance from these points.~Here, for simplicity, we reckon
time from the point where the intensity of the rf field has
minimum value, i.e.,h(0)52h0 .! We assume that the re
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laxation process is maximally localized, but that there i
finite integral effect, defined by the constantsr andq:

r 5expF22E
Tr f /22t«

Tr f /2

p~ t !dtG , q512r , ~67!

where t« defines the time interval where intense relaxat
processes occur; according to our assumptiont«→0.

In the vicinity of these points, in the calculation of th
functionsĝa(t,t8) it is possible to neglect the hyperfine in
teractions and keep only the relaxation operator, in wh
case we have

ĝa~Tr f /22t« ,Tr f /21t«!51̂2S 0 0

2q qD ,

ĝa~Tr f 2t« ,Tr f 1t«!51̂2S q 2q

0 0 D . ~68!

For intermediate times, whent and t8 lie in the intervals
(t« ,Tr f /22t«), (Tr f /21t« ,Tr f 2t«), relaxation processe
can be neglected, and taking properties~27! into account we
easily find for the functionĝa(0,Tr f )

ĝa~0,Tr f !5S r exp~2 ivaTr f ! q exp~2 ivaTr f !

qr q21r exp~ ivaTr f !
D .

~69!

We assume that the relaxation is weak, i.e.,

q!1. ~70!

We will consider segments of the spectrum near the
quencyva , so that

uv2vau!va . ~71!

We also assume that the frequency of the rf field is near
of the parametric-resonance frequencies:

uv r f 2vn
(r )u!va , ~72!

where

vn
(r )52va /n. ~73!

If conditions~70! and~71! are satisfied, the vectors~62!
and ~63! do not depend on the frequency and take on
simple form:

^Aa~v!u5
1

2
~1,0!, uBa~v!&5S 1

0D . ~74!

As for the second term in formula~61!, it gives only a
small background contribution~see Sec. 4.2!. It is not hard to
write out an expression for this term in explicit form, b
within the limits of accuracy of formula~74! we should set
this term identically equal to zero, since an account of ter
linear in q in the calculation of vectors~74! would give
corrections comparable with the contribution of the seco
term. Moreover, in the given approximation we should a
discard terms quadratic inq in the termĝa(0,Tr f ) in formula
~61!.

By utilizing formulas~74! and ~69! while keeping only
terms linear inq, we can reduce formula~61! to the simple
form
a

h

-

e

a

s

d
o

wa~v!52
1

G0

3Im
v2va2Dv1 iG/2

~v2va1 iG/2!~v2va2Dv1 iG/2!6g2 ,

~75!

where

g5q/Tr f , ~76!

Dv5nv r f 22va , ~77!

G5G012g. ~78!

The 1 and 2 signs before the second term in the denom
nator in expression~75! correspond to odd and even res
nances~73!. It is clear that expression~75! can be repre-
sented as a sum of two lines with Lorentzian shape:

wa~v!52
1

G0
Im S A1

v2va2l1 iG/2

1
A2

v1va2nv r f 1l1 iG/2D , ~79!

where

l5
1

2
~A~Dv!274g22uDvu!, ~80!

A15
uDvu1l

uDvu12l
, A25

l

uDvu12l
. ~81!

If the relaxation process is not important and it is possible
setg50, we have one Lorentzian line at the frequencyva .
But as soon as the relaxation is switched on, a second
appears, located at the frequency2va1nv r f , i.e., at the
position of a satellite of the hyperfine component with fr
quency2va . Thus, the relaxation process generates the
pearance of satellites. Moreover, as follows from formu
~79!–~81!, such generation has a sharp resonance chara
At large detunings ofv r f from the resonant frequency, whe
uDvu@2g, the intensity of the central line is close to uni
and the intensity of the satellite is low. On the other hand
exact resonance, as can be seen from formula~81!, the in-
tensities of both lines are equal:A15A250.5.

It is interesting to track the transformation of the sha
of these lines. In the given case, we have two different ty
of behavior depending on the parity of the resonance. Th
for even resonances@see formula~58!# at exact resonance
the quantityl turns out to be purely imaginary, so that bo
lines coincide in position, but differ in width:

G15G0 , G25G014g. ~82!

For g@G0 the spectrum is a superposition of a narrow li
and a wide line, which should be manifested as an abrup
crease in the peak intensity for these lines, as we dem
strated by numerical calculations based on the general
mulas~52!–~55! ~see Fig. 7!. As one moves away from the
exact resonance, the width of the first line increases while
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width of the second line decreases, foruDvu52g they are
equal, and with further growth ofuDvu the line widths do not
change.

Qualitatively different behavior obtains in the case
odd resonances@see formula~59!#. In this case, the quantity
l is always real and the widths of the two lines are identic
But on the other hand, as follows from formulas~79! and
~80!, these lines can never coincide, i.e., between them th
is a minimum distance

D1252g, ~83!

and they cannot lie closer than that~see Fig. 8!.
Thus, the above analysis within the framework of t

simplified relaxation model allows one to reveal in clea
form aspects of the numerically detected relaxatio
stimulated resonance effects. Note that the analysis wi
the framework of the simplified model cannot replace ex
calculations, which take into account the presence of p
ticles with different orientations and variations of the hyp
fine field in direction. Thus, our calculations based on
exact formulas for the entire ensemble of SW particles sh
that even resonances show up quite clearly not only in
Mössbauer spectra for a certain group of particles with
given orientation, but also in the spectra of the entire
semble, which gives hope of the possibility of their event
experimental detection. On the other hand, for odd re
f

l.

re

r
-
in
t
r-
-
e
w
e
a
-
l
-

nances all of these properties are preserved for individ
groups of particles, whereas for the ensemble of partic
they are, to a significant degree, ‘‘washed out’’ and for th
reason do not show up in Fig. 8. Clearly, the experimen
detection of odd resonances will require the preparation
textured samples.

6. CONCLUSION

In the present paper we have constructed a theory
Mössbauer absorption spectra in the presence of a rf m
netic field for a system of SW particles in the extended
laxation model, which allows a more complete description
the relaxation process. In this model it is possible to desc
hysteresis loops, which depend on the frequency of the
field, and thereby explain the huge differences between
remagnetization fields observed in ordinary magnetic m
surements and obtained from the Mo¨ssbauer absorption spec
tra. Qualitatively new behavior in the absorption spectra
predicted in the region of rf fields where a resolved hyperfi
structure is still observed, consisting in relaxation-stimula
processes of intense satellite lines at frequencies of th
field coupled by parametric-resonance conditions with
hyperfine frequencies. These effects should be observe
weak rf fields, and the conditions for their observati
should be realized in experiments in a simpler way than
conditions for the observation of the collapse effect.
APPENDIX A

TABLE I. Matrix representation of the superoperatorL̂ Ĥ(t) for 57Fe nuclei.

uM &^mu U32LK12U U32LK2
1

2U U12LK12U U12LK2
1

2U U2 1

2LK12U U2 1

2LK2
1

2U U2 3

2LK12U U2 3

2LK2
1

2U
U32LK12U 3ve2vg

2
3cosf

2
vg

2
sinf

)ve

2
sinf 0 0 0 0 0

U32LK2
1

2U 2
vg

2
sinf

3ve1vg

2
3cosf

0
)ve

2
sinf 0 0 0 0

U12LK12U )ve

2
sinf 0

ve2vg

2
3cosf

2
vg

2
sinf ve sinf 0 0 0

U12LK2
1

2U 0
)ve

2
sinf 2

vg

2
sinf

ve1vg

2
3cosf

0 ve sinf 0 0

U2 1

2LK12U 0 0 ve sinf 0 2
ve1vg

2
3cosf

2
vg

2
sinf

)ve

2
sinf 0

U2 1

2LK2
1

2U 0 0 0
ve sinf

2
vg

2
sinf 2

ve2vg

2
3cosf

0
)ve

2
sinf

U2 3

2LK12U 0 0 0 0
)ve

2
sinf 0 2

3ve1vg

2
3cosf

2
vg

2
sinf

U2 3

2LK2
1

2U 0 0 0 0 0
)ve

2
sinf 2

vg

2
sinf 2

3ve2vg

2
3cosf

Remark.Heref[f(t).
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Calculation of the field dependence of the rates of emission of carriers from deep
centers based on an experimental form-function for the optical transition
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Zh. Éksp. Teor. Fiz.116, 1027–1034~September 1999!

An algorithm is proposed for calculating the field dependence of the emission rates based on a
form-function for the optical transition. A comparison is made with experimental data for
the VGaSAs complex in gallium arsenide. This scheme for calculating the field dependence is found
to be preferable to methods based on a single-coordinate model. ©1999 American
Institute of Physics.@S1063-7761~99!01809-0#
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Multiphoton processes play an important role in rad
tionless transitions.1–4 Electron–phonon interactions giv
rise to temperature dependence for capture coefficients
to an increase in the thermal emission rate in strong elec
fields. In particular, it has been shown experimentally5 and
theoretically6–14 that in strong electric fields, the probabilit
of these transitions increases exponentially as the squa
the electric field strength. Thus, more accurate calculati
of the parameters of optoelectronic and high power semic
ductor devices associated with generation, recombinat
and tunnelling processes involving deep levels will requ
information on the parameters of the electron–phonon in
actions which characterize a given electronic transition.

The theory has found practical application mainly for t
single-coordinate model.6–14This model imposes rather rigi
requirements on the character of the oscillations in the s
tem and requires verification in each individual case. Deg
eracy of the electronic states of a crystal with an impur
center causes the adiabatic approximation to fail and g
rise to vibrational mixing of the electronic levels. In th
case, the single-coordinate model may not be suitable
calculating the field dependence.

In this paper we propose an algorithm for calculating
field dependence of the thermal emission rates which re
on a form-function for the optical transition calculated fro
the emission spectrum. Some results obtained in this way
compared with experiment.

Gallium arsenide doped with sulfur was chosen as
material for testing the model experimentally. Group VI im
purities in gallium arsenide occupy arsenic sites and bec
donors, forming shallow levels near the bottom of the co
duction band. In addition, they are known15–17 to form
‘‘gallium-donor vacancy complexes at arsenic site
(VGaDAs). These complexes produce broad bands with pe
at 1.18–1.25 eV in the photoluminescence spectrum.
symmetry and electronic structure of these complexes h
been studied in detail15–17 and it is also known that in an
excited state a hole captured by one of these complexe
teracts with incompletely symmetric vibrations of the ato
surrounding VGa, i.e., the Jahn–Teller effect occurs.

The samples of GaAs:S were grown by gaseous ph
5471063-7761/99/89(9)/5/$15.00
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epitaxy with concentrations of dopant impurity ranging fro
4.7•1017cm23 to 1.5•1018cm23. The photoluminescence
spectral characteristics were recorded over wavelengths f
800 to 1200 nm and temperatures from 100 to 200 K on
SDL-2M system.

The spectra from all the samples had two characteri
peaks: one with photon energies at the peak ofhnmax

51.48– 1.49 eV and the second, a broader peak withhnmax

51.22– 1.24 eV. The first luminescence peak was associ
with band–band emission in GaAs and the second, w
emission from VGaSAs complexes@Fig. 1~a!#. Given that
‘‘gallium-donor vacancies in the nearest lattice site’’ produ
deep levels in the gap of GaAs near the ceiling of the vale
band, the luminescence band with a peak at 1.22–1.24
corresponds to radiative recombination of an electron i
state near the bottom of the conduction band with a h
localized at the deep center being studied.

A study of the dependence of the integrated emiss
intensity of these complexes on the dopant impurity conc
tration showed that the intensity actually is proportional
the concentration of sulfur in the samples, which confir
the model for the complex that has been chosen@Fig. 1~b!#. It
was also found that the shape of the emission bands~in par-
ticular the dispersion of the band! at fixed temperatures is
independent of the dopant impurity concentration and
probably determined by an electron–phonon interacti
rather than by doping effects. Measurements at different t
peratures@Fig. 1~a!# confirm this. As the temperature i
raised, a shift to lower energies and a broadening of
emission band are observed. The shape of the spectra
their temperature dependence suggest that the elect
phonon interaction plays an important role.

Metal–semiconductor contacts were fabricated on
test samples by electrochemical deposition of nickel on
gallium arsenide. A study of the electrical properties of the
contacts showed that the charge carrier transport is descr
by thermionic emission. Thus, the contacts served
Schottky barriers with a potential barrier height of 1 eV. W
studied the field dependence of the rate of thermal emis
of holes from a deep level created by the VGaSAs complex in
these structures. The experiments were done at 77 K in
© 1999 American Institute of Physics
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FIG. 1. a! Emission spectra of VGaSAs complexes at
different temperatures:1—100 K; 2—118 K;
3—137 K; 4—161 K; 5—180 K; 6—200 K. b! In-
tegrated intensity of the emission spectrum
VGaSAs complexes as a function of dopant impurit
concentration.
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following way. The centers were photoionized using AL-1
infrared photodiodes with a peak emission at a wavelengt
l5914 nm (hn51.36 eV, which corresponds roughly to th
peak in the absorption spectrum of VGaSAs). The photoca-
pacitance kinetics was measured when the light was tur
on and turned off.

The analysis of the measurement data relied on a sim
kinetic equation, which takes the following form in the ca
where there is no capture of electrons and holes in the fi
of the space-charge region:

dnt

dt
52~Jqn1en!nt1~Jqp1ep!~Nt2nt!, ~1!

whereJ is the flux of photons in the space-charge regio
qn(p) is the electron~hole! cross section for photoionization
en(p) is the rate of emission of electrons~holes! from the
level, Nt is the concentration of the complexes, andnt is the
concentration of electrons in the complexes. The emiss
rate is a combination of all thermal-field processes. Thus,
time constant for the fall in capacitance when the light
turned off ist215en1ep .

Given that the level lies closer to the valence band a
the energy distance to the bands is more than 10kT, we may
assume that the recharging of the level when the ligh
turned off is entirely determined by hole emission and t
the time constant for this process is given byt215ep . The
experiment was repeated for different reverse bias volta
so it was possible to find the field dependence of the ther
emission rate. Typical plots of the emission rate as a func
of the square of the field in the space-charge region
shown in Fig. 2. We note, once again, that in this case
emission rate we have measured includes a combinatio
all the thermal-field processes and is essentially the proba
ity of a hole transition from a deep level.

The calculations of the field dependence relied on R
18, in which it was shown rigorously that the probability of
quantum mechanical transition including the electro
phonon interaction can be written, in general, in terms of
overlap integral~see the Appendix!:

W5(
i , j

E
2`

`

Wi , j
(0)~Ei , j

(t)2«! f i , j~«!d«, ~2!
of

ed

le
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,

n
e

d
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t
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n
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e
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f.

e

whereWi , j
(0) (Ei , j

(t)2«) is the probability of a purely electronic
transition,Ei , j

(t) is the energy of the purely electronic trans
tion from subleveli of the multiplet of the initial state of the
center to sublevelj of the final state of the multiplet, and
f i , j («) is the form-function for this optical transition. Esse
tially, f i , j («) represents the contribution of the electron
phonon transition to the transition probability.

The probability of a purely electronic transition can b
calculated using the formula:19

Wi , j
(0)~Ei , j

(t)2«!5A
eF

2A2m* ~Ei , j
(t)2«!

3expS 2
4

3

A2m* ~Ei , j
(t)2«!3

e\F
D , ~3!

where A is a normalizing factor,F is the electric field
strength, andm* is the effective electron mass.

In order to calculate the field dependence of the tran
tion probability using Eq.~2!, it is necessary to know the
form-function for absorption by an electron from a local sta
near the valence band to a level. We shall find this for

FIG. 2. Experimental (ep , triangles! and theoretical (W, smooth curve!
field dependence of the probability for a transition of a hole from deep lev
corresponding to the ground state of a VGaSAs center to a local state near th
ceiling of the valence band.
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function in the following way: we calculate the form
function for the radiative transition and then its momen
We then transform them, relying on the model for the co
plex and the symmetry of the wave functions.

If the emission spectrum of an electronic transition
known, then its form-function can be calculated using
formula20

f ~«!5I ~«!/M0«4. ~4!

Here I («) is the luminescence intensity,« is the photon en-
ergy, andM0 is the zeroth moment of the emission ban
which is proportional to the oscillator strength, and is giv
by M05* I («)d«.

We now consider the sum associated with the deg
eracy of the electronic terms in Eq.~2!.

According to the model proposed for VGaTeAs com-
plexes in Refs. 15–17, because of the Jahn–Teller ef
there is a reduction in the symmetry of the complex in
excited state where each defect continues to exist in on
three equivalent configurations corresponding to the th
possible orientations of the Jahn–Teller distortion. In each
these configurations, there exists a$110% symmetry plane
which contains the original axis of the complex, i.e., t
lattice sites corresponding to the initial position of both co
ponents of the complex. A reorientation of the Jahn–Te
distortions of the complex reduces to a rotation of this pla
about the initial axis by an anglew562p/3. It has been
shown rigorously21 that in this case the adiabatic potentia
of the three terms of the excited state are energetically
geometrically equivalent with respect to the ground-st
equilibrium configuration of the complex. Thus, the pro
abilities of the purely electronic transitions are equal for ea
of the configurations. In this case, we can take this proba
ity out from under the summation sign in Eq.~2!, placing the
sum immediately in front of the form-functions:

W5E
2`

`

W(0)~E(t)2«!(
i , j

f i , j~«!d«. ~5!

Then ( i , j f i , j («)5 f («) and this quantity is calculated from
experimental data using Eq.~4!.

Equation~5!, therefore, contains a form-function derive
from experimental emission spectra~the form-function of a
transition from a local state near the bottom of the cond
tion band corresponding to an excited state of the VGaSAs

complex into the ground state! which makes it possible to
perform the numerical integration and determine the tra
tion probability.

The form-function for a transition from a local state ne
the ceiling of the valence band to a deep level correspond
to the ground state of VGaSAs ~for which the field dependenc
of the thermal emission rate have been measured! is calcu-
lated on the basis of the following arguments.

Strictly speaking, models of the electronic–vibration
interaction are valid for intracenter transitions.22 Thus, we
shall assume that the wave functions are determined onl
the states of the recombination center.

According to Ref. 16, the center we are studying ha
nondegenerate ground state, whose wave function
s-symmetry~we shall denote the wave function of this sta
.
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by us&) and a degenerate excited state formed ofp-type wave
functions. We shall consider two transitions: one that is
diative from a local state near the bottom of the conduct
band, corresponding to an excited state of the center, into
ground state and another with absorption from a local s
near the ceiling of the valence band to a deep level co
sponding to the ground state of the center. Given that the
a fairly strong electron–phonon interaction in the system~the
experimentally determined magnitude of the Stokes los
;0.12 eV) and that both initial states~near the bottom of the
conduction band and the ceiling of the valence band! corre-
spond to the same excited state of the complex, we can
sume that the wave functions of these states are the s
i.e., up&5up8&. The energy spectrum of this system consi
of ones-level, which corresponds to the ground state of t
center with energyEs , and two groups of close levelspi and
pi8 with energiesEpi andEp8 i .

The form-functions for the bands with emission fro
stateup& into stateus& and absorption from stateup8& into
stateus&, respectively, can be written in the form22,23

f (e)~«!5
1

zp
(

i
(
s,p

u^suM̂ upi&u2 expS 2
Epi

kT D d~Es2Epi1«!,

~6!

and

f (a)~«!5
1

zp8
(

i
(
s,p8

u^suM̂ upi8&u
2

3expS 2
Ep8 i

kT D d~Es2Ep8 i2«!, ~7!

where(s,p(p8) is a sum over the vibrational states of thes
andp(p8) terms,

zp(p8)5(
i

expS 2
Ep(p8)

kT D
is the partition function of the group of levelsp(p8), andM̂
is the perturbation operator that generates the transition.

Given thatup&5up8& and Ep8 i5Epi2Eg , whereEg is
the band gap, we rewrite Eq.~7! in the form

f (a)~«!5
1

zp
(

i
(
s,p

u^suM̂ upi&u2

3expS 2
Epi

kT D d~Es2Epi2«1Eg!. ~8!

Equation~8! is the same as Eq.~6! after transformation to the
new variable«852«1Eg in Eq. ~8!.

Therefore, by taking the mirror reflection of our expe
mental emission form-function with respect to the«50 axis
and shifting to higher energies by an amountEg , we obtain
the form-function of the absorption band for a transiti
from a local state near the ceiling of the valence band t
deep level corresponding to the ground state of the cen
We substitute this form-function in Eq.~2!, taking Eq.~5!
into account, and calculate the probability of hole emiss
from a deep level of the VGaSAs complex as a function of the
average field in the space-charge region. This dependen
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plotted in Fig. 2~smooth curve!. The factorA was chosen for
a best fit of the calculated and experimental curves at h
fields.

Therefore, a calculated field dependence has been
tained without making the assumptions associated with
single-coordinate model. The basis for these calculation
the experimental form-function, which naturally reflects t
complex electron–vibrational interactions. In this regard
computational scheme of this type for calculating the fi
dependence is preferable to methods based on the si
coordinate model.

APPENDIX

Here we provide a brief derivation of Eq.~2!. The tran-
sition probability under the influence of a perturbationĤ8 is
given by23

W5 (
n,n8

r1nu^1nuĤ8u2n8&u
2d~E2n82E1n2E(t)!, ~9!

where n and n8 enumerate the vibrational states of t
ground and excited electronic terms andr1n is the probabil-
ity of finding an electron in the vibrational staten of term
1,23 which, for a Boltzmann distribution, is given by

r1n5
exp~2E1n /kT!

(
n9

exp~2E1n9 /kT!
.

In the adiabatic approximation the quantum mechan
state vector can be written in the formu2n8&5u2e&u2n8

L &,
whereu2e& is the state vector of the electron andu2n8

L & is the
state vector of the lattice. In first-order perturbation theor24

the vectoru2e& is independent of the coordinateQ of the
oscillator ~Condon approximation!. Thus, we can partition
the matrix element into a purely electronic component an
purely vibrational component which contains only the ov
lap integral of the oscillator wave functions:

W5 (
n,n8

r1nu^1euĤ8u2e&u2u^1n
Lu2n8

L &u2d~E2n82E1n2E(t)!.

~10!

We shall use the rule

E
2`

`

F~x!d~y2x!dx5F~y!.

We then obtain

W~E(t)!5E
2`

`

(
n,n8

r1nu^1euĤ8u2e&u2u^1n
Lu2n8

L &u2d

3~E2n82E1n2«!d~«2E(t)!d«

5E
2`

`

u^1euĤ8u2e&u2d~«2E(t)!

3 (
n,n8

r1nu^1n
Lu2n8

L &u2d~E2n82E1n2«!d~«!

5E
2`

`

W(0)~E(t)2«!g~«!d«, ~11!
h

b-
e
is

a

le-

l

a
-

whereW(0)(E(t)2«) is the probability of a purely electronic
transition andg(«) is a function containing information on
the contribution of the phonon subsystem to the transit
probability.

We shall show that, to within a constant coefficien
g(«) equals the form-functionf (n) of the optical transition,
which depends on the frequencyn of the emitted light:

f ~n!5 (
n,n8

r1nu^1nuM̂ u2n8&u
2d~E2n82E1n2hn!

5 (
n,n8

r1nu^1euM̂ u2e&u2u^1n
Lu2n8

L &u2d~E2n82E1n2hn!

5u^1euM̂ u2e&u2(
n,n8

r1nu^1n
Lu2n8

L &u2d~E2n82E1n2hn!

5uM12
0 ~hn!u2g~hn!. ~12!

Now Eq. ~11! can be rewritten in the form

W~E(t)!5E
2`

`

W(0)~E(t)2«!
f ~«!

uM12
0 ~«!u2 d«. ~13!

Within the limits of the optical band of the 1→2 transition,
the matrix element of the dipole–dipole interaction can
regarded as independent of energy,21 so

W~E(t)!5E
2`

`

W(0)~E(t)2«! f ~«!d«. ~14!

Here the matrix element of the dipole interaction appears
the normalization coefficient inf («).

We now consider the case where the energy spect
consists of two groups of close levels (1i ;2 j ), separated by a
large energy gap. Suppose the relaxation time within grou
is considerably shorter than the lifetime with respect to
→2 transitions. Then22 the expression for the transitio
probability can be written in the form

W5(
i , j

E
2`

`

Wi , j
(0)~Ei , j

(t)2«! f i , j~«!d«, ~15!

where the sum is taken over all sublevels of the multiplet
and 2.
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This paper reports on an investigation of transient photoimpedance response to radiation, in other
words, real-time variations of the impedance induced by femtosecond optical pulses in
superconducting films transferred to the mixed state by an external magnetic field applied parallel
to thec-axis. When the films were in a state characterized by the absence ofdc resistivity,
the response amplitude increased with the magnetic field faster than expected owing to the
contribution of magnetic vortices to the impedance of a superconductor withs-wave
pairing of electrons. It turned out that the effect is due to a growth in the effective density of
quasiparticle states in the mixed state of ad-wave superconductor. In the absence of
magnetic field, however, the response amplitude was higher at lower temperatures, which
contradicts the predictions of both models. Possible reasons for this feature in the response as a
function of temperature are discussed. ©1999 American Institute of Physics.
@S1063-7761~99!01909-5#
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1. INTRODUCTION

Several different mechanisms of the photoimpedance
sponse of superconducting films based on interaction
tween optical photons and magnetic vortices have rece
been put forward. These include hops of vortices betw
neighboring pinning centers driven by electromagnetic rad
tion ~flux creep!,1 viscous flux flow,2 and generation of
vortex-antivortex pairs with their subsequent dissociatio3

As far as we know, none of these mechanisms has yet b
detected in experiments. One complication for experime
studies of such effects is the lack of a model that wo
describe interaction of an optical photon with a magne
vortex as a whole without perturbing the surrounding reg
of the superconductor.

Resonant interaction between photons of lower ener
in the terahertz band and quasi-particles localized aro
vortices has been detected4 in YBaCuO films. Optical pho-
tons, whose energy is considerably higher than both the
perconducting gap width and the characteristic binding
ergy of quasiparticles in vortex cores, likewise interact w
Cooper pairs and quasiparticles. In this case, the descrip
of the nonthermal impedance response of a film in the su
conducting state in terms of real-time variations in the sup
conducting condensate density is quite satisfactory,5 and in
the resistive state it can be accounted for in terms of
effective electron temperature and temperature depend
of the film resistivity around the superconducting transiti
point.6 A photoresponse due to optically driven relaxation
the flux line density gradient has been detected in YBaC
films in Ref. 7. The authors of the latter study, howev
assert that the primary effect of optical radiation was fi
heating. Even so, the presence of vortices can indirectly
fect the photoresponse, since the film impedance in the
perconducting state changes in the presence of magnetic
tices.
5521063-7761/99/89(9)/7/$15.00
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This paper reports on the photoimpedance respons
YBaCuO epitaxial films in the mixed state generated by
plied magnetic field. The measured response as a functio
magnetic field has turned out too steep to be ascribed to
contribution of magnetic vortices in an isotropics-wave su-
perconductor. This dependence is put down to modificati
in the quasiparticle density of states in the mixed state o
d-wave superconductor.

2. EXPERIMENTAL TECHNIQUES

YBaCuO epitaxial films with a thickness of 90 nm we
grown on lanthanum aluminate (LaAlO3) substrates so tha
their c-axis is perpendicular to the substrate plane. Fr
these films, we lithographically fabricated structures sha
as bridges 50mm long and 5mm wide connected to gold
coated contact pads. The sample resistivity at the room t
perature was 731026 V•m and dropped linearly with de
creasing temperature so that it was 331026 V•m at a
temperature slightly higher than the superconducting tra
tion temperature. The transition temperature was 92 K,
its width was 1.8 K. At the liquid-nitrogen temperature, th
critical current density in the samples was 1
3106 A•cm22. The samples were placed in an optical cr
ostat which allowed us to vary the temperature between
and room temperature, and to apply adc magnetic field of up
to 4 T. The magnetic field was generated by superconduc
Helmholtz coils and aligned with thec-axis of the film.

The laser system, which included a pulsed titaniu
sapphire laser with active phase locking and a pulse sele
generated a sequence of pulses with a duration of 100 fs
wavelength of 0.8mm and a rate of 2.6 MHz. The system fo
detection of optically induced signals included hig
frequency spring-loaded contacts, an electric bias-tee
broad-band amplifier, and a sampling oscilloscope. The tr
sient time of the entire circuit was 37 ps. The laser beam w
© 1999 American Institute of Physics
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focused on the sample surface into a spot 40mm in diameter.
Accurate measurements of the radiation power absorbe
the sample were performed using the same sample, w
temperature was maintained, with this end in view, in
middle of the superconducting transition, and which acted
this case as a bolometer with parameters~temperature re-
sponse, response time! measured in advance. The time co
stant of the bolometric response of our samples was 13
which is in conformity with both the film thickness and o
previously published results.8 This allowed us to determine
the radiation energy density absorbed by the sample
pulse, which proved to be 15mJ•cm22. In measurements o
the photoresponse versus magnetic field, the samples
cooled to the required temperature at zero magnetic field

When an optical pulse is absorbed by a sample, the
pedance of the latter changes. If a bias current flows ac
the sample, a pulsed electrical signalS(t) is generated be
tween its terminals. The signalE(t) observed on the oscillo
scope is related to the amplitude and shape of the vol
transient across the sample; nonetheless, it is not comple
determined by the latter, but also depends on the imp
response of the electric circuit. Voltage pulses across
sample with a duration shorter than the circuit transient ti
are distorted so that neither their shape nor duration are fa
fully reproduced by the oscilloscope.

The situation is much simpler if the shape of the pu
across the sample is constant. In this case, the signal am
tude is proportional~with a constant factor! to the maximal
deviation of the sample impedance from its equilibriu
value. Moreover, if the maximal variation of the impedan
is small in comparison with its equilibrium value, and th
time-dependent current component is much smaller than
bias, the measured signal amplitudeM can be expressed a
follows:

M5max@E~ t !#5maxF E
0

t

S~ t !K~ t2t!dtG
5k max@S~ t !#,

S~ t !5I FR~ t !2
d

dt
L~ t !G . ~1!

HereK(t) is the impulse response of the detection circuiI
is the bias current, andR(t) andL(t) are the time-dependen
sample resistance and inductance. The factork depends on
both the electric pulse shape across the sample and the
pulse response of the electric circuit. This factor, however
invariant under the conditions listed above. Since the imp
ance of a superconducting film in the mixed state is a co
plex function of frequency, the formulas become more co
pact if we use the Fourier transform of Eq.~1!:

Sv5I ~Rv2 j vLv!5I @Re~Zv!2 j Im~Zv!#, ~2!

where Zv is the complex frequency-dependent sample
pedance andv is the angular frequency. In the limiting cas
of a thin film,d!lL , whered is the film thickness andlL is
the London magnetic field penetration depth, the impeda
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can be expressed in terms of the complex magnetic fi
penetration depthlv asZv5 j vm0(lv)2/d. In this case, Eq.
~2! reduces to

Sv5vm0I
l

wd
$Im~lv

2 !1 j Re~lv
2 !%, ~3!

wherem0 is the magnetic permeability of the vacuum andl,
w, andd are the length, width, and thickness of the samp
In order to analyze experimental results, we calculated on
basis of various theories changes inlv due to absorption of
optical pulses, then calculated the signal maxima using
inverse Fourier transform and compared them with measu
signal amplitudes.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Experimental results

At all temperatures below the superconducting tran
tion, we recorded typical bipolar optically induced signa
~see Ref. 6 and references therein! if the sampledc resistivity
was zero, and both the current bias and optical energy d
sity were sufficiently low. Such curves were described
literature many times and interpreted in terms of a chang
the kinetic inductance of a superconducting film under ir
diation. A typical signal recorded in our experiment is show
in Fig. 1 with a curve obtained using the formalism describ
in the previous section~the fitting parameters will be dis
cussed later!. The signal is composed of a symmetrical po
tive component of width 75 ps, and a negative compon
whose decay time is slightly longer than the rise time. T
oscillations in the region of the negative component de
are probably due to the impedance mismatch between
sample and high-frequency contacts.

The positive signal amplitude, which is defined as t
maximal signal measured with respect to the base line
proportional to the optical pulse energy and bias curr

FIG. 1. Typical photoresponse signal recorded at zero magnetic field
temperature of 70 K and bias current of 1 mA. The solid line shows mo
calculations. The dashed line is the zero signal level.
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when both these parameters are fairly small and the si
shape is constant. In what follows, we will term the regim
of signal detection in this region of parameters a linear
gime. When the current and/or pulse energy go beyond
boundaries of this region, the signal has a bolometric co
ponent whose decay time is considerably longer, of the o
of several nanoseconds. The emergence of the purely the
component is correlated with the onset ofdc resistivity, al-
though the latter event occurred at somewhat higher curr
or energy density in the pulse. After feeding a sufficien
high current~usually several tens of milliamperes! through a
sample cooled in zero magnetic field, we observed a w
response in the absence of the bias current with the
opposite to that in the presence of a bias current. When
bias current was cyclically varied between a negative an
positive value, the signal exhibited hysteresis, and the l
width increased as the temperature was lowered.

In the absence of magnetic field, the positive amplitu
of the linear response dropped considerably with decrea
temperature~Fig. 2!, but below the temperature of abo
0.35Tc and down to the lowest temperature attainable in
experiment of 4 K the signal grew slightly as the temperatu
dropped. An important point is that, although changes in
signal in the range of low temperatures were small, th
were notably larger than the experimental uncertainty
reproducible. This property of the response was observe
all bias currents that were within the region of the line
regime. The growth in the response amplitude at low te
peratures is a very interesting feature, given that the am
tude of the kinetic response is assumed to be inversely
portional to the superconducting condensate density in
simplest models. Under magnetic field, the signal amplitu
was, generally speaking, higher, although hysteresis was
tected in the amplitude versus magnetic field~up to about 0.2
T! when the field increased from zero to a certain value
then dropped to zero. The magnetic field dependence of
normalized amplitude of the positive component is shown
Fig. 3.

FIG. 2. Response amplitude normalized to the bias current versus tem
ture. Measurements were performed in zero magnetic field at various
rents. The solid and dashed lines plot calculations for thes-wave andd-wave
pairing, respectively.
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At each temperature, the bias current was selected s
ciently small so as on the one hand to have a linear respo
at the maximal magnetic field, and on the other, to hav
responsivity sufficient for detecting a signal in zero magne
field. In the region of intermediate magnetic fields, the sig
amplitude was a sublinear function of the field streng
whereas the signal shape was invariant. At higher magn
fields, there was an inflection point on the curves of t
signal versus magnetic field at each temperature. The s
in the region below the inflection point increased with t
temperature. The magnetic field magnitude at the inflect
point marked the boundary between the linear regime
lower magnetic fields and the regime in which a bolomet
component was detected and samples had a nonvanishindc
resistivity. Since the bolometric response of HTSC films h
been studied previously in detail and is beyond the scop
this paper, here we concentrate on the linear response, w
given such characteristics as its low amplitude and fast
cay, can be associated beyond doubt with nonthermal me
nisms. The slope of the normalized signal amplitude a
function of magnetic field~0.6–1.5 per tesla! in the region of
intermediate fields is obviously higher than predictions ba
on theories developed for superconductors with an isotro
order parameter ands-wave electron pairing. Indeed, in thi
case a drop in the superconducting condensate density d
generation of magnetic flux lines and the corresponding
crease in the normalized signal amplitude should be of or
B/Bc2(T), which is 0.05 per tesla even if we take the highe
second critical field for YBaCuO cited in literature. In th
next section, we will discuss how the derivative of the sign
with respect to magnetic field intensity can change if t
electron pairing and superconducting gap have different s
tial symmetry properties.

ra-
r-

FIG. 3. Normalized response amplitudes at different temperatures as f
tions of magnetic field. The solid lines plot calculations by Eq.~9! with
fitting parameters adjusted to obtain the best agreement between calcula
and measurements. The dashed lines plot calculations for ans-wave super-
conductor at a temperature of 50 K. In the latter case, for better visibi
the calculated signal amplitudes were multiplied by a factor of five. T
following limiting cases were analyzed: a! vortices are immobile; b! vortices
are retained at pinning centers but capable of oscillating; c! in addition to
oscillations, vortices can contribute to the creep and flux flow.
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3.2. Interaction between optical photons and magnetic
vortices

In early publications,1,2 the possibility of depinning an
isolated magnetic vortex through its interaction with an o
tical photon was intuitively associated with the proximi
between two characteristic energies, namely, the photon
ergy and depinning potential. These two parameters, h
ever, have different physical natures. The photon energy
microscopic parameter characterizing interaction betw
the photon and an electron, whereas the depinning pote
is a thermodynamic parameter characterizing the binding
ergy of a vortex as a whole to a pinning center and is use
describing the dynamic equilibrium between free and bou
vortices at a finite temperature. Thus, a correct descriptio
magnetic vortex depinning by one photon requires a mic
scopic mechanism that would redistribute the photon ene
among all electrons forming the flux line or, in other word
screening the magnetic flux associated with the vortex. W
the exception of the local heating mechanism discussed
series of publications by Kadin and co-workers~see, for ex-
ample, Ref. 3!, no such mechanism has been suggested in
above cited papers and subsequent publications. In the
of depinning due to local heating, the critical time scale
determined by the time of electron thermalizationt th , which
is of order 1 ps in YBaCuO~Ref. 9! is essentially indepen
dent of temperature. Here we do not take into account p
non heating, which is significantly slower and leads to
much smaller increase in the temperature.

Since the optical pulse width in our experiment is mu
smaller thant th , one can say that all photons of one optic
pulse are absorbed simultaneously. The material heatin
local when the average distance between photons,al

5(hn/«0)1/2, wherehn is the photon energy and«0 is the
energy density in the laser pulse, is considerably larger t
the electron diffusion length during the thermalization tim
LT5(Dt th)1/2, whereD is the electron diffusion coefficient
In the opposite limit,LT.al , photons absorbed by th
sample lead to a uniform heating of electrons. Estima
based on the average temperature derivative of the se
critical field at the transition temperature, 0.5 T/K,10 yield an
electron diffusion coefficient of 3 cm2•s21, and accordingly a
diffusion length of 150 Å, which is considerably larger tha
both the vortex core diameter and the distance between
ers of the crystal lattice along thec-axis. The latter dimen-
sion determines the minimal length of the flux line fragme
which can move in a quasi-independent manner. Thus,
local heating can have a reasonable efficiency in genera
additional vortices capable of flowing through the sample
the viscous manner only if the average separation betw
photons equals the average distance between the vortice
the density of the latter is fairly low.

However attractive the concept of optical depinning m
seem, the pulse energy density of 0.1mJ/cm2, which marks
the boundary between the regimes of local and uniform h
ing, is much lower than the sensitivity achieved in mode
experiments with femtosecond laser pulses. For this rea
we assume in discussions of the reported experiments
the electron heating is uniform and that the effective elect
-
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temperature and superconducting condensate density
uniquely related to one another by time-independent eq
tion over a time interval fromt th to the time of electron-
phonon interaction. The moment when the positive sig
component achieves its maximum is within this time inte
val.

In the absence of magnetic vortices, the magnetic fi
penetration depth is constant with the frequency over
range limited by the reciprocal laser pulse width and equ
the conventional London penetration depthlL' f 1/2, wheref
is the relative density of the superconducting condens
The impedance response to laser pulse in this case is pu
inductive and should be independent of the magnetic fi
strength, at least in the range below the first critical field,
which penetration of flux lines into a sample sets in. Th
type of response is termed a kinetic inductance photo
sponse in the literature.

When magnetic vortices are present in a sample, t
can affect the impedance of the sample in several ways w
it is exposed to short laser pulses.

~a! Magnetic vortices reduce the density of the superc
ducting condensate by a quantity corresponding to the n
ber of quasiparticles contained in normal vortex cores. In
isotopic superconductor withs-wave pairing this results in a
magnetic-field dependence of the penetration depth
scribed by the formulalL}(12B/Bc2)21/2.

~b! The decrease in the density of the superconduc
condensate due to absorption of photons leads to a red
bution of the screening current circulating around a vor
core. The effective radius of the vortex increases, and
leads to a change in the retaining force, which binds
vortex to its pinning center. Since the vortex is continuou
acted upon by the Lorentz force generated by the bias
rent, the abrupt change in the retaining force results
damped oscillations of the vortex about the pinning cen
These oscillations contribute to both real and imaginary p
of the sample impedance.

~c! An optical pulse generates a short-time uniform
crease in the electron temperature. Since the depinnin
caused by activation processes, the temperature rise lea
a larger number of vortices dissociated from their pinni
centers per unit time and makes possible local displacem
of vortex fragments~magnetic flux creep!. The additional
mobile vortices or their fragments generated in this proc
travel in the sample until they are captured by the same
neighboring pinning center. The thermally activated cre
and magnetic flux flow contribute mostly to the real part
the sample impedance variation.

Coffey and Clem11 suggested the following general ex
pression for the frequency dependent penetration depth
ing account of all the mechanisms listed above:

lv
2 5

lL
22 j dn

2/2

112 j lL
2/dn f

2 . ~4!

The effective lengthsdn and dn f characterize the contribu
tions of vortices and unpaired electrons to the impedan
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andlL describes the contribution from the superconduct
condensate. These three parameters can be expressed
formulas

lL
25

lL0
2

f
, dn f

2 5
2rn

m0v~12 f !
,

dn
25

2BF0

m0vh

«1~vt0!21 j ~12«!vt0

11~vt0!2 ,

t05
h

kp

I 0
2~n!21

I 0~n!I 1~n!
, «5

1

I 0
2~n!

, n5
U

2kBT
, ~5!

wherelL0 is the London penetration depth at zero tempe
ture and magnetic field,F0 is the magnetic flux quantum,rn

is the material resistivity in the normal state,h is the viscos-
ity that controls motion of vortices driven by the Loren
force, kp is the retaining force per unit length,U is the pin-
ning potential, andI 0 andI 1 are modified Bessel functions o
the first kind. The two-liquid approximation yields the fo
lowing expression for the parameters as functions of m
netic field and temperature:

f 5S 12S T

Tc2
D 4D S 12

B

Bc2~T! D ,

Bc2~T!5Bc2~0!
12~T/Tc!

2

11~T/Tc!
2 , ~6!

U5U0S 12
T

Tc2
D 3/2

, kp5kp0F12S T

Tc2
D 2G2

,

Tc25TcA11B/Bc2~0!

12B/Bc2~0!
.

Assuming that the pinning potentials and retaining force
determined by the instantaneous relative density of the c
densate, we have expressedkp andU versus temperature in
terms of f so as to analyze the vortices’ contribution to t
photoresponse using a unified formalism. Then the Fou
transform of the electric signal~3! is given by

Sv5vm0I
I

wd
f v

d

d f
$Im~lv

2 !1 j Re~lv
2 !%, ~7!

where f v is the Fourier transform of changes in the conde
sate density as a function of real time. Model calculatio
have been performed using the following analytic formu
for the changes in the condensate density versus time:

f ~ t !5 f ~0!2D f
t4

t41t th
4 expS 2

t

t f
D , ~8!

where the electron thermalization timet th is the rise time
andt f is the decay time of the concentration of excess e
trons. The electrical signal generated in the sample was
pressed using Eqs.~1!–~7!. The effect of the electric circui
on the output signal was described using the procedure
gested previously.6 The calculated signal amplitude wa
compared to the experimental data. The parameters use
the calculation are listed in Table I.

The simulation of the electric signal revealed that bo
the shape and amplitude of the calculated response we
g
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depend on the pinning parametersU andkp , and the electron
thermalization time. In contrast, such parameters as the
cay time of the quasiparticle concentration, the London p
etration depth, and the relative numberDf of Cooper pairs
destroyed by absorption of photons and subsequent mult
cation of quasiparticles determine the response to a l
pulse almost completely. The latter two parameters equ
affect the positive and negative components of the sig
and have little impact on the shape of the waveform, wher
the decay time affects largely the ratio between the am
tudes of the positive and negative components of the
sponse signal. By varyingDf andlL , the calculated ampli-
tude of the positive component was fitted to the experime
data. The best fit was obtained atD f / f 050.05 andlL0

51400 Å. The best coincidence between the shapes of
calculated and recorded signals was achieved~Fig. 1! at a
quasiparticle decay time of 3.7 ps, which is in good agr
ment with investigations of YBaCuO films publishe
earlier.9,12 The positive signal amplitude versus magne
field calculated for various limiting cases at a temperature
50 K is plotted in Fig. 3. Curve a corresponds to the case
immobile vortices (kp0 ,U→`), curve b corresponds to th
case with vortex oscillations about pinning centers (U0

→`), and curve c shows the calculations that take into
count, as compared with the previous case, the flux creep
viscous flow. Note that the calculations plotted by curv
a–c were multiplied by a factor of five in order to make t
differences among them and the calculations themselves
ible in the scale in which the experimental data are plott
The graph also shows experimental data obtained at var
temperatures. It is perfectly obvious that neither the chan
in the kinetic inductance taken separately nor the effec
magnetic vortices on the impedance can account for
change of the photoimpedance response measured as a
tion of magnetic field.

3.3. Anisotropy of superconducting gap

Since the energy gap in an anisotropic superconducto
more narrow for some directions of the Cooper pair qua
momentum, the critical current density in these directions
also lower. Accordingly, the screening current circulati
about a vortex core should lead to electron decoupling
distances considerably larger than the average coher
length. The effective increase in the quasiparticle den
caused by this effect was predicted for a supercondu
whose gap width tends to zero at some points on the Fe
surface, for example, owing to thed-wave symmetry of elec-
tron pairing.13 This result implies that the number of quas
particles bound to a vortex core is higher by a fac

TABLE I. YBaCuO parameters used in simulation.

London penetration depthlL0 1.431027 m
Viscosity of vortex flowh 231027 N•s/m
Retaining force per unit lengthkp0 2.13104 N/m2

Resistivity in the normal statern 2.831026 V•m
Average potential of the pinning centerU0 0.15 eV
Time constant of electron thermalizationt th 900 fs
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a'an /j in this superconductor in comparison with an is
tropic superconductor, wherean'(F0 /B)1/2 is the average
distance between vortices andj(T)5j0 /(12T/Tc)

1/2 is the
effective coherence length~j0 is the coherence length at ze
temperature!. Irrespective of the manner in which vortice
move, the band gap anisotropy should increase the ampli
of the impedance response to a laser pulse as a functio
magnetic field. We have incorporated the effect of anisotro
by inserting in Eq.~6! the following formula for the super
conducting condensate density as a function of tempera
and magnetic field:

f 5S 120.75
T

Tc2
D F12S T

Tc2
D 4G1/2F12a

B

Bc2~T!G . ~9!

The temperature dependent component off in Eq. ~9! was
constructed using the data14 on the magnetic field penetratio
depth in pure YBaCuO crystals. The only fitting parame
used in adjusting the calculations to the experimental d
was the coherence length at zero temperature. For eacj0

the second critical field was calculated using the expres
Bc25F0/2pj0

2. The best fit of the calculations to experime
tal data~Fig. 3! was obtained at a coherence length of 16
which is in reasonable agreement with the coherence le
in the ab plane measured in YBaCuO by alternative me
ods.

Note that the signal amplitude as a function of magne
field is not bound to follow the predictions of the mod
under discussion, which assumes a uniform distribution
the bias current over the sample cross section and of m
netic flux lines over the sample plane. The configuration
the samples used in the experiments corresponds to the
magnetization factorpd/2(wl)1/2'231022. Therefore, if
the first critical field at zero temperature is 500 mT,10 the
onset of vortex penetration in the sample should take plac
a magnetic field induction of 2 mT. This magnetic field
generated near sample edges by a current of 20 mA eve
the absence of external field. At higher temperatures,
onset of vortex penetration should take place at even lo
currents and magnetic fields. As compared with internal
gions, sample edges usually contain larger quantities of
fects, which can act as pinning centers. If a vortex genera
in the sample by the bias current is bound to a pinning ce
at a distance from the sample edge smaller thanlL

2/d, the
mean density of the screening current flowing between
sample edge and the vortex is higher than that between
vortex and the middle of the sample. The total screen
current of such an asymmetric flux line contributes to
response signal, with the polarity of that contribution bei
the opposite of that due to the bias current that generated
vortex.

An estimate of the mean density of the screening curr
by the formula j m'2F0d/pm0lL

4 indicates that the signa
component due to the asymmetric configuration of vorti
can have a magnitude equal to that of the contribution fr
a bias current of one milliampere. An increase in the curr
or magnetic field leads to a growth in the number of vortic
in a sample and their redistribution to the inner region. Wh
the average distance between vortices approacheslL

2/d, the
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signal component due to the asymmetry of vortices vanish
In our opinion, the suggested model provides a satisfac
explanation of the signal hysteresis in the range of low m
netic fields and the presence of photoresponse at zero
current.

Taking the normalized condensate density as a func
of temperature typical of isotropic~s-wave! and anisotropic
~d-wave! superconductors, we have calculated the signal a
plitude versus temperature in zero magnetic field. The co
parison between our calculations and experimental data~Fig.
2! shows that calculations by the anisotropic model are
good agreement with experimental data in the ranges of h
and intermediate temperatures. The isotropic model, in c
trast, provides better agreement with experimental data
T,0.5Tc . At lower temperatures, however, the experime
tal points deviate from both theoretical curves;l specifica
the signal amplitude has a minimum and increases in
range of the lowest temperatures. Since the response am
tude is largely determined by the superconducting cond
sate density, it is tempting to attribute the increase in
signal amplitude in the range of lower temperatures to a
crease in this density, or equivalently to an increase in
concentration of unpaired particles. Such a behavior was
mally derived from measurements of the surface impeda
versus temperature using the traditional two-liquid mode15

Nonetheless, the authors of this result15 concluded from gen-
eral considerations that such a description is non-phys
and got round the difficulty by assuming that the density
unpaired particles did not tend to zero, as was expecte
the case of a pured-wave superconductor, but asymptotical
tended to a finite value as the temperature approached z

This approach is consistent with a nonvanishing den
of quasiparticle states at the Fermi energy, which was p
dicted ford-wave superconductors doped with nonmagne
impurities.16 The characteristic energy below which the de
sity of states becomes constant is a function of the impu
concentration. Thus, the linear drop with temperature in
quasiparticle concentration in a dirtyd-wave superconducto
should be replaced in the range of low temperatures b
flatter curve, whereupon the thermal energy of quasipartic
becomes comparable to the characteristic energy.

Since the impurity concentration in the tested sample
unknown, an accurate estimate of the parameters chara
izing the effect is impossible. Taking into account impuriti
in the superconductor, irrespective of their quantity, can le
to better agreement between calculations for ad-wave super-
conductor and measurements, but cannot explain the incr
in the signal amplitude at low temperatures. Moreover,
experiments have not revealed that the magnitude of the
fect under discussion depends on the sample quality.
though samples irradiated with high-energy gold ions h
larger widths of their superconducting transitions, their b
havior in the region of low temperatures was almost identi
to that of control samples.

It is noteworthy that there is an alternative mechani
that can have a notable effect on the signal amplitude, i
spective of the sample purity. The coefficient of quasiparti
multiplication, in other words, the number of secondary qu
siparticles generated in the system by one absorbed pho
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contains contributions from two channels, namely,
electron-electron and electron-phonon ones. The latter yi
a higher multiplication coefficient because high-energy el
trons release energy needed for dissociation of Cooper p
through emission of phonons. The lattice anharmonicity
turn, leads to a lower multiplication mechanism since a p
non emitted by an electron can decay into two phonons w
lower energies, which cannot dissociate a Cooper pair
generate additional quasiparticles. This anharmonicity res
in a loss of the electron energy and an increase in the b
metric component of the photoresponse. There are sev
optical phonon modes in YBaCuO, whose anharmo
broadening reduces at lower temperatures.17 The fraction of
the electron energy transmitted to acoustic phonons via th
modes can reduce with decreasing temperature, thus inc
ing the multiplication coefficient and the signal amplitud
accordingly.

4. CONCLUSIONS

We have demonstrated that the increase in the ampli
of the photoimpedance response to optical pulses
YBaCuO caused by external magnetic field cannot be
plained in terms of the contribution of magnetic vortices
the mixed state of an isotropics-wave superconductor, but i
rather an indication of the anisotropy of the energy gap
to thed-wave symmetry of electron pairing. The increase
the signal amplitude at low temperature is tentatively
cribed to the strong anharmonicity of optical phonons
YBaCuO. An accurate description of the temperature dep
dence of the response amplitude with due account of
quasiparticle density of states due to impurity scattering
possible only in the case of optimized samples with kno
impurity concentrations.
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1. INTRODUCTION

In this paper some results1 for a quasi-one-dimensiona
tunnel junction with weak structural disorder are generaliz
to the case of a three-dimensional junction in the most in
esting ~resonant! case, where resonant subbarrier impur
scattering of tunnelling electrons radically alters the curre
voltage characteristic of a tunnel junction with impuriti
compared to that of an ‘‘empty’’~without impurities! tunnel
junction. Here we use the concept of quantum reson
percolation trajectories in tunnel junctions with a weak str
tural disorder, developed in Ref. 2.

We use the one-electron approximation atT50 and ex-
pand in powers of the impurity concentration to determ
the form of the nonlinear resonant current–voltage cha
teristic of a tunnel junction with impurities, to obtain a fo
mula for the magnitude of the mesoscopic fluctuations in
resonant static tunnel conductance, and to find a lower bo
estimate for the transverse dimensions of the barrier la
consistent with the condition that these fluctuations be sm

2. MODEL: BASIC EQUATIONS

As in Ref. 1, we shall consider a model of a tunn
junction in the form of anN-I -N sandwich consisting of two
identical normal metalsN separated by a plane layer of in
sulatorI of thicknessL and areaS impregnated with impu-
rities.

For the conduction electrons of theN-metals we shall
assume a three-dimensional isotropic quadratic disper
law «5k2 (\2/2m51,\51,m51/2) with Fermi energy«F .

The electrons in the barrier are assumed not to inte
with one another~one-electron approximation!, and for the
barrier potentialU(r ) ~electronic chargee51) in the region
0<x<L occupied by the insulator in the absence of an el
tric field (v50), at the barrier we assume a structural dis
der model of the form

U~r !5U01U imp~r !, r5~x,r!, 0<x<L, ~1!

where U05const.«F is the regular potential of a uniform
barrier without impurities,U imp(r ) is a random potential pro
duced by a system ofN identical impurities randomly dis
tributed over the insulator layer:
5591063-7761/99/89(9)/5/$15.00
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U imp~r !5 (
0<xj<L

û~r ,r j !, ~2!

where the pointsr j are macroscopically uniformly distrib
uted over the volume layerV5SL with a densityn5N/V,
and û(r ,r j ),0 is the local attractive potential of the ele
trons to the impurities at the pointr j with a radius of action
r 0 .

In the case of low impurity concentrations consider
here, the following relationships for the characteristic leng
hold and allow us to use the procedure of expanding
tunnel current in powers of the impurity concentration:2,3

r 0!aF
21!n21/3,L, ~3!

where a5a(«)5(U02«)1/2 and aF
215a21(«F) is the

characteristic damping length for the electronic state w
energy«F in a uniform barrier.

For voltagesv!«F , U02«F , andT50, we can write
the tunnel current̂ i (v)&, tunnel conductancêG(v)&, and
their relative root mean square fluctuations^d2(v)&1/2 as

^ i ~v !&5E
«F

«F1v
^g~«!&d«, ^G~v !&5v21^ i ~v !&, ~4!

and

^d2~v !&1/2F ^ i 2~v !&2^ i ~v !&2

^ i ~v !&2 G1/2

, ~5!

where

^ i 2~v !&5E
«F

«F1v
^g~«!g~«8!&d« d«8, ~6!

g~«![g~«,GN!5E E D~«,q,r,GN!
d2q

~2p!2 d2r, ~7!

D(«,q,r,GN) is the tunnel transparency of a barrier with
random impurity configurationGN5$r1 ,r2 ,...,rN% for elec-
trons with energy« that have a fixed transverse compone
of their momentumq at the entrance to the barrier and
fixed transverse coordinater at the exit, the integral overq is
© 1999 American Institute of Physics
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taken for all 0<q2<«, and that overr over the barrier area
S. The averages in Eqs.~4! and~6! are taken over the set o
impurity configurations$GN%:

^g~«!&5
1

DGN
E

$GN%
g~«,GN!dGN , ~8!

and

^g~«!g~«8!&5
1

DGN
E

$GN%
g~«,GN!g~«8,GN!dGN , ~9!

where dGN5dr1dr2¯drN , DGN5VN5(LS)N, and N
5nV.

3. RESONANT TUNNELLING CURRENT AS THE SUM OVER
QUANTUM MECHANICAL RESONANCE-PERCOLATION
TRAJECTORIES

As the analysis of the quasi-one dimensional case1 has
shown, the most radical difference between the curre
voltage characteristic of a barrier with impurities and that
an empty barrier shows up in the conditions for reson
tunnelling, when the energy« of the tunnelling particles is
close to the energy«0 of a local single-impurity level. Thus
in the following we shall consider the situation whe
«F5«0 holds forv50. In this case, for each energy« close
to «F the phase space$GN% factorizes in the form of a set o
resonance and nonresonance regions, and the principal
tribution to the averages~8! and ~9! for the low impurity
concentrations considered here is from resonance reg
corresponding to isolated weakly twisting quantum mecha
cal resonant-percolation trajectories.2

The calculations of the averages~8! and~9! rely signifi-
cantly on the following concepts of the spatial structure
the quantum resonant-percolation trajectories for« close to
«0 . The ideal isolated, shortest,m-center (m51,2,...) trajec-
tory consists of a strictly periodic chain ofm impurities sepa-
rated by a distance 2y5L/m from one another, with the firs
and last impurities in the chain lying a distancey from the
corresponding boundaries from the barrier layer. Th
should be no other impurities within a tube of radius;2y
around the chain, except for those belonging to this tra
tory ~the isolation condition, which, along with the cond
tions of chain periodicity and of closeness of« to «0 , en-
sures resonant tunnelling of electrons along quan
resonant-percolation trajectories with a transparencyDm

res

;1). However, the phase volume$GN% in the space occu
pied by such an ideal, strictly periodic quantum resona
percolation trajectory and, therefore, its probability of form
tion, are zero. Thus, in calculations using Eqs.~8! and~9!, it
should be noted that the transmission coefficients along
trajectory,Dm

res, do not change significantly and remain o
the order of unity, if the coordinates of the impurities diff
from those in an ideal quantum resonant-percolation tra
tory by amountsdx&a21 along thex-axis and by amounts
dr&yu in the transverse direction~whereu!1 is an angle
–
r
t
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f

e
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m
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-
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characterizing the twisting of the trajectory!. Here the param-
etersm,y,u for weakly twisting trajectories are not indepe
dent and are related by

m5
L

u S 11
u2

2 D , ~10!

whereL5aL andu52ay are, respectively, the dimension
less thickness of the barrier layer and the step size in
quantum resonant-percolation trajectory. Thus, for calcu
tions using Eqs.~8! and~9!, any two of the three parameter
in Eq. ~10! can be chosen as independent. In the followin
they arem andu.

Therefore, forN@1 and aF
3V@1 and taking only the

principal contribution from the trajectories into account, t
average~8! reduces to

^g~«!&5S(
m51

` E pm~«,u!gm
res~«,u!du, ~11!

where

pm~«,u!5a2~«!cme2cmpu3
~u2u2~m,u!!m21 ~12!

is the probability per unit area barrier layer of forming a
isolated m-center quantum resonant-percolation trajecto
with a step sizeu, c5na23 is the dimensionless impurity
concentration,u2(m,u) is expressed through Eq.~10!, and

gm
res~«,u!5E E Dm

res~«,q,r,u!
d2q

~2p!2 d2r, ~13!

whereDm
res(«,q,r,u) is the transparency of a barrier with

singlem-centered trajectory with step sizeu.
Note that the dependence ofDm

res(«,q,r,u) on v for
v!U02«F , «F can be neglected, since it yields a relati
correction of orderv/(U02«F)!1 to Dm

res(«,q,r,u);1 cal-
culated forv50 in a tube of resonant transparency along
quantum resonant-percolation trajectory.

Now, substituting Eq.~11! in Eq. ~4!, we note that
pm(«,u) is a smooth function of« in the neighborhood of
«F , while gm

res(«,u) is a rapidly varying function of« con-
centrated in the immediate neighborhood of«F , so that on
integrating with respect to« it is possible to takepm(«,u) at
the point«5«F out from under the integral. As a result, w
write the tunnel current~4! in the form

^ i ~v !&5S(
m51

` E pm~«F ,u!i m~v,u!du, ~14!

where

i m~v,u!5E
«F

«F1v
gm

res~«,u!d« ~15!

is the tunnel current passing along a singlem-center trajec-
tory with step sizeu.
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Thus, Eq.~14! @with Eq. ~12!# represents the resona
tunnel current̂ i (v)& in the form of a series in powers of th
concentration, whosemth term is the contribution of the
m-centered trajectories~to ^ i (v)&).

Similarly, Eq. ~6! also reduces to

^ i 2~v !&5S2 (
m,m851

` E F11
1

S
vm,m8~«F ;u,u8!G

3pm~«F ,u!pm8~«F ,u8!

3 i m~v,u!i m8~v,u8!du du8, ~16!

where
an

f

d

ns
vm,m8~«F ;u,u8!

5paF
22u2F aF

2

pu2pm~«F ,u!
dm,m8d~u2u8!21G , ~17!

dm,m8 is the Kronecker symbol, andd(u2u8) is the delta
function.

The termS21vm,m8(«F ;u,u8) in Eq. ~16! accounts for
the pairwise statistical spatial correlations between traje
ries owing to the requirement that they be isolated.

Substituting Eqs.~14! and ~16! in Eq. ~5!, we obtain
^d2~v !&1/25
1

AS
F(m,m8*vm,m8~«F ;u,u8!pm~«F ,u!pm8~«F ,u8!i m~v,u!i m8~v,u8!du du8

~(m*pm~«F ,u!i m~v,u!du!2 G1/2

. ~18!
ffi-

ed

x

-

ed
For further calculations using Eqs.~14! and ~18!, it is
necessary to find the tunnel transparencyDm

res(«,q,r,u) that
appears in Eq.~13!.

4. CALCULATING DM
res

„«,q, r,U…

The local transparency of a barrier containing
m-center trajectory with a step sizeu has been found
previously2 for the special case of particles with energy«
normally incident (q50) on a barrier. Here the problem o
calculating the transparencyDm

res(«,q,r,u) is generalized to
the case of arbitraryq in the framework of the same metho
and its dependence on« is found in more detail.

The Schro¨dinger equation in the region of a barrier~with
onem-center quantum resonant-percolation trajectories! has
the form (v50)

Dc2a2c5(
j 51

m

ûjc, 0<x,xj<L,

a25U02«, û j5û~r ,r j !. ~19!

The continuity conditions are satisfied forc and its normal
derivatives]c/]x at the barrier boundariesx50 andx5L
for all r.

To the left of the barrier (x,0), the functionc(x,r) is
a superposition of a wave incident on the barrier with tra
verse momentumq and a reflected wave:

c~x,r!5aq exp~ ikqx1 iq•r!

1E bs exp~2 iksx1 is•r!
d2s

~2p!2 ,

ks5A«2s2. ~20!

To the right of the barrier (x.L) the functionc(x,r) is
the transmitted wave:

c~x,r!5E cs exp~ iks~x2L !1 is•r!
d2s

~2p!2 . ~21!
-

The integral with respect tos in Eqs. ~20! and ~21! is
taken for all 0<s2<« and the spectral amplitudescs andbs

depend, among others, on the trajectory parametersm andu.
The object of the calculation is the transmission coe

cient

Dm
res~«,q,r,u!5

j x
out~«,r,u!ux5L

j x
in~«,q!ux50

, ~22!

where

j x
out~«,r,u!ux5L52ReE kscscs8

* exp$ i ~s2s8!•r%

3
d2s

~2p!2

d2s8

~2p!2 ~23!

is the x-component of the density vector of the transmitt
flux at the point (L,r) and

j x
in~«,q!ux5052kquaqu2 ~24!

is thex-component of the density vector of the incident flu
at the planex50.

Thus, substituting Eqs.~23! and ~24! in Eq. ~22!, we
obtain

Dm
res~«,q,r,u!5ReE kscscs8

*

kquaqu2 exp$ i ~s2s8!r%

3
d2s

~2p!2

d2s8

~2p!2 . ~25!

The next problem is to find the relationship betweencs

andaq by solving Eq.~19! with the above boundary condi
tions at thex50 andx5L planes.

As in Ref. 2, this problem reduces to solving a clos
system ofm algebraic equations:

w j 112
1

mh
w j1w j 2150, 2< j <m21, ~26!
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S 1

mh
1

a1 ik

a2 ik Dw11w25 f qaq , ~27!

S 1

mh
1

a1 ik

a2 ik Dwm1wm2150, ~28!

for the quantities

wk5E û~r ,r k!c~r !dr , k51,2,...,m, ~29!

where

f q52
2ikq

aq2 ikq

e2aqy

4p2h
, y5

u

2a
,

h5
ae2u

4pu
, aq5AU02«2q2, ~30!

and m5m(«) is the amplitude of the subbarrier impurit
scattering introduced in Ref. 2.

The continuity condition in thex5L plane implies that
the unknown amplitudecs is given in terms ofwm ~Ref. 2!:

cs52
exp~2asy2 isrm!

as2 iks
wm , ~31!

where rm is the transverse coordinate of themth impurity
~closest to the planex5L) in the chain.

The solution to Eq.~26! can be written in the form

w j5C1l1
j 1C2l2

j , 2< j <m21, ~32!

whereC1 andC2 are constants to be determined andl1 and
l2 are the roots of the characteristic equation

l22hl1150, h5~2mh!21, ~33!

l1,25h6 iA12h2. ~34!

The condition for an energy band with resonant transp
ency ~i.e., the absence of dampingw j ~32! along a quantum
resonant-percolation trajectory! is ul1,2u51, which, as can be
seen from Eq.~34! is equivalent to requiringh2<1 or, given
Eq. ~33! for h, requiring a sufficiently large amplitude o
subbarrier scattering,

umu>~2h!21, ~35!

which occurs for« close to«0 .
Since the subbarrier scattering amplitude for« close to

«0 is2

m5m~«!52
8pa0

«2«0
, a05AU02«0, ~36!

given formula~30! for h we find from Eq.~35! that resonant
transmission is possible for

u«2«0u<g, ~37!

whereg5g(u)54a0
2u21e2u andu52a0y.

Equations~26!–~28!, with Eq. ~32!, yield a system of
equations forC1 andC2 :

H a11C11a12C25 f qaq ,

a21C11a22C250,
~38!
r-

where

a1 j5F S 1

mh
1

a1 ik

a2 ik D S 1

mh
2l j D11Gl j

2 ,

a2 j5F S 1

mh
1

a1 ik

a2 ik D S 1

mh
2l j

21D11Gl j
m21 , j 51,2.

~39!

Having foundC1 and C2 from Eq. ~38!, Eqs. ~28! and
~32! now give

wm5wm~«,q!5
f q

Dm~«!
exp@ ln~l12l2!#aq , ~40!

whereDm(«)5a11a222a12a21 is the determinant of the sys
tem ~38! calculated for energy«.

Now, substituting Eq.~40! in Eq. ~31!, and Eq.~31! in
Eq. ~25!, we find

Dm
res~«,q,r,u!5

a2k2

p4~a21k2!2

kq

k

3expH 2
aur2rmu2

y J
3expH 2

yq2

a J expH 2
~«2«0!2

g2 J ,

y5
u

2a
. ~41!

It is clear from this thatDm
res;1 holds when the following

conditions are simultaneously satisfied:ur2rmu,Ay/a,
q,Aa/y, andu«2«0u,g. Equation~41! is a generalization
of the corresponding Eq.~5.16! of Ref. 2 to the caseqÞ0
and refines the dependence of the resonant transparency«.
For q50 and«5«0 , these formulas are identical.

5. CURRENT–VOLTAGE CHARACTERISTIC

With Eqs.~41!, ~13!, ~15!, and~12!, the current–voltage
characteristic~14! takes the form

^ i ~v !&5S(
m51

` E pm~«F ,u!i m~v,u!du, ~42!

where

pm~«F ,u!5aF
2cme2cmpu3

@2u2~mu/L21!#m21,

i m~v,u!5
1

8p3Ap

kF
2aF

2

~aF
21kF

2 !2 gF erfS v
gF

D ,

gF5gF~u!54aF
2u21e2u,

and

erf~x!5
2

Ap
E

0

x

e2t2dt

is the probability integral. The function̂i (v)& is highly non-
linear, and thus differs radically from the correspondi
function for an empty barrier.



ou

n
en

on

e

r-

of

i-
age
o-

ua-

q.

f

nce

563JETP 89 (3), September 1999 V. Ya. Kirpichenkov
Formally assuming that the parameterm is continuous,
we calculate the right hand side of Eq.~42! by the method of
steepest descents. The point of steepest descent is f
from the system of equations

23pcmu212~m21!u211m~m21!~mu2L!21

212u211j~u,v !50,

ln c2cpu312 lnu1 ln 21 ln~mu2L!

2 ln L1~m21!u~mu2L!2150, ~43!

where

j~u,v !5
]

]u F ln erfS v
gF~u! D G .

The asymptotic solution of the system forv;gF ,
L@1, andcL 2!1 has the form

m05L 1/2u ln~cL!u21/2, u05L/m0 , u05u ln~cL!u21/2.
~44!

Here we haveu0!1, which justifies our earlier assumptio
that the principal contribution to the resonant tunnel curr
for low impurity concentrations~see Eqs.~47! and ~48!, be-
low! is from weakly twisting quantum resonant-percolati
trajectories.

Let us find the range of concentrationsc, within which
the resonant tunnel current^ i (v)& is much greater than th
currenti 0(v) for an empty barrier

^ i ~v !&@ i 0~v !, ~45!

where

i 0~v !5S
4aF

2kF
2

p~aF
21kF

2 !2

aF
2

L
e22Lv. ~46!

Substituting Eqs.~42! and~46! in Eq. ~45! and limiting our-
selves for an estimate to the term withm51 in Eq. ~42!, we
obtain

ce2cpL 3
@

32p2Ape22L

L

v
gF~L!erf~v/gF~L!!

. ~47!

For example, whenv;gF(L), for the typicalL;10, Eq.
~47! gives the estimate

1026!c!1022. ~48!

Within this range of concentrations, forL;10 and
v;gF(L), for the point of steepest descent~44! we find
~given thatm is a discrete parameter!

m051, u05L. ~49!

Then the current–voltage characteristic takes the form

^ i ~v !&5SaF
2ce2cpL 3

i 1~v,L!, ~50!

where

i 1~v,L!5
1

8p3Ap

kF
2aF

2

~aF
21kF

2 !2 gF~L!erfS v
gF~L! D .
nd

t

Under these conditions, for example, withc;1023, the reso-
nant tunnel current̂ i (v)& exceedsi 0(v) by two orders of
magnitude.

The differential tunnel conductance

Gd~v !5
d^ i &
dv

5
S

4p4

kF
2aF

4

~aF
21kF

2 !2 ce2cpL 3

3expF2
v2

gF
2~L!G , ~51!

regarded as a function ofv, is a gaussian curve with a cha
acteristic widthgF(L). If, as above, we takeL;10, while
aF

2;kF
25«F;10 eV, then the characteristic energy width

the first (m51) resonance isgF(L);1023 eV. This means
that a temperatureT!10 K is needed to observe it exper
mentally and this resonance itself should show up at volt
scalesv;1023 V. Similar estimates can be made for res
nances withm.1.

Proceeding to a calculation of the mesoscopic fluct
tions in the tunnel conductance, we substitute Eq.~17! in Eq.
~18! and, given thatpm

21(«F ,u)@paF
22u2 holds within the

concentration range~48! under consideration, we reduce E
~18! to the form

^d2&1/25
1

AS
F (m*pm~«F ,u!i m

2 ~v,u!du

@(m*pm~«F ,u!i m~v,u!du#2J 1/2

. ~52!

Retaining only the principal terms withm51 in the sums in
Eq. ~52! as an estimate, we obtain

^d2&1/25
1

aFAcS
expS cpL 3

2 D . ~53!

The condition̂ d2&1/2!1 yields a lower bound on the area o
the tunnel junction

AS@
1

aFAc
expS cpL 3

2 D , ~54!

that will ensure real self-averaging of the tunnel conducta
for the impurity concentrations considered here.
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The properties of spin excitations superposed on a uniform ground state with antiferromagnetic
~or spiral! spin structure are studied in a 2D Hubbard model. Expressions are derived for
the spin susceptibility in the random phase approximation~RPA! using split Hubbard bands as a
zeroth approximation. The calculated collective modes with dispersionv(Q)5cuQ
2(p,p)u nearQ;(p,p) reproduce well the characteristics of the spin excitations observed in
undoped cuprates. For doped systems with an antiferromagnetic structure of the ground
state, calculatingx9(Q,v→0) gives the same mode with a peak atQ;(p,p), regardless of the
type of Fermi surface. It is shown that in doped systems with a spiral ground state spin
structure,x9(Q,v→0) peaks occur with incommensurate quasimomentaQ that are coupled to
the spirality vector. ©1999 American Institute of Physics.@S1063-7761~99!02109-5#
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1. INTRODUCTION

In recent years a number of fundamental discove
have been made about the electronic structure of
cuprates.1–3 These include data obtained from angle-resolv
photoemission spectroscopy~ARPES!3 and inelastic neutron
scattering,4 the discovery of the ‘‘small’’ Fermi surface5 and
of an anisotropic pseudogap in the ground state of undo
samples,6,7 etc. Inelastic neutron scattering data occupy
special place. The spin susceptibilityx(kv) has been ob-
served to behave differently in various cuprates asv→0:
low-frequency peaks appear inx(k,v) for k;(p,p) in yt-
trium ceramic or for incommensurate quasimomentak;(p
6d,p) in La22xSrxCuO4 ~LSCO!.3,8–12 The intensities and
dispersion of spin waves have been measured absolute
doped and undoped cuprates at high frequencies~up to 300
meV!.13–15 Peaks inx(kv) have been observed in yttrium
ceramic that depend on temperature and on the super
ducting transition.16,17

Many of these results are often treated via a band
proach assuming a uniform ground state. For example,
cording to one interpretation,18–20 the low-frequency behav
ior of x(k,v) in various cuprates is related to the behavior
the Fermi boundary in the unperturbed band. However,
the band theories18–20 retain a stage with renormalization o
the spin susceptibility of the unperturbed systemx0(kv) to
the susceptibilities of a highly correlated system. None of
renormalization variants is entirely clear. For example,
Ref. 18x0(kv) is renormalized by an exchange spin inte
action ;J(SnSm . The latter is a consequence of a stro
one-center interaction, which changes the band structure
nificantly. In such a situation, it is impossible to use t
unperturbed band, even as a basis. This conclusion foll
from the most rigorous calculations of a Fermi liquid with
weak interaction.21–25 In the case of Fermi boundaries wit
nesting in the presence of van Hove singularities at f
points in the phase plane, the system was shown to be
stable to antiferromagnetic ordering—a spin density wa
5641063-7761/99/89(9)/13/$15.00
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for U.0. However, the perturbation theory used in Re
21–25 is not applicable to strong and intermediate coupli
which occurs in the cuprates. Thus, we shall use a med
field variation method, in which the specific instability ob
served in Ref. 21 is assumed from the start. The correspo
ing electronic spectrum will be characterized by a band s
into two.

The purpose of this paper is to calculatex(kv), relying
on specific variational realizations of the pattern of upper a
lower Hubbard bands, to compare the quantitative charac
istics of the spin-wave excitations with observations, and
understand whether the interpretation of the incommensu
peaks in the dynamic susceptibility still holds in this a
proach. This analysis only concerns uniform states with
tiferromagnetic and spiral spin structures.

This statement of the problem is of current interest
several reasons.

1. The quantitative characteristics of collective spin e
citations are currently known all the way tov<300 meV
from absolute inelastic neutron scattering measurement
doped and undoped systems.13–15 It has become possible t
compare these with the characteristics calculated on the b
of a band picture.

2. The idea of splitting of the band into upper and low
Hubbard subbands is fairly well justified for a largeU/t ratio
and has been used in many approaches.1,26,27It is consistent
with an explanation of many physical properties of the c
prates in terms of the closeness of the van Hove singula
in the spectrum of states to the Fermi level~the so-called
VHS scenario!.2 On the other hand, the Hubbard gapDH

;U renormalizes the band gaps, bringing them into agr
ment with photoemission data, and strengthens the van H
singularity. However, a two-band picture differs from th
VHS scenario of Markievicz.2,28 According to the latter, the
van Hove singularity lies at the center of the band, while
pseudogapD* !U of the ground state of undoped com
pounds is explained by a small splitting of the band owing
charge density waves or lattice distortions. Another expla
© 1999 American Institute of Physics
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tion of the pseudogap has been proposed in a picture of
Hubbard bands.29–32 It is related to the fine details of th
upper edge of the lower Hubbard band and to dielectriza
of separate parts of the generalized Fermi boundary with
doping. This permits an explanation of the small Fermi s
face and the phase diagram in terms of a correlation me
nism for attraction of holes. The latter reduces to a sp
polaron attraction in thet2J model31 or to its analog,
valence-bond correlations in the Hubbard model.29,30 In each
of the models, thed-symmetry superconductivity can be e
plained without empirical parameters. Here the range of d
ing for which a two-dimensional antiferromagnetism of t
CuO2 planes exists greatly exceeds the range in which v
ume antiferromagnetism is observed and overlaps the re
in which superconductivity occurs. In both the Hubba
picture30,31 and the picture of a weakly split single band,2,28

the type of Fermi surface and the properties of the pseudo
are very sensitive to the small parametert8, which takes the
non-nearest neighbors into account, or to the parametertOO,
which characterizes jumps between oxygen atoms. A ca
lation of the spin excitations of this system should help
making a choice between the two interpretations of
pseudogapD* : either this is a small splitting of a singl
band2,28 or it is the energyD* (k)52(Ek2m).0 of the
lower Hubbard band in the dielectric segments of the gen
alized Fermi boundary.29,30

The possibility of describing collective spin perturb
tions in the band approximation of an unbounded Hartre
Fock method~i.e., an average field method with alternatio
of the spin projection! has been demonstrated for 1D Hub-
bard models for the electronic structure of the polyenes.33 In
this paper we make an analogous calculation of the spin
ceptibility for a 2D Hubbard model and discuss its confo
mity with the observed characteristics of spin wave in
cuprates. In any case, the proposed method is the oppos
the approach of Pineset al.34 In the latter, an empirical spin
susceptibilityx(kv) serves to a great extent as the basis
describing the properties of the ground state and, in part
lar, superconducting coupling. Our goal, on the other hand
to use explicitly constructed variational functions with d
ferent spin structures to calculate the susceptibility, in or
to be able to evaluate the reality of spin states with a part
lar structure.

Our method for calculatingx(kv) is similar to that of
Ref. 33, but differs from that of Ref. 35. In the latter, th
splitting into lower and upper subbands is described in
Hubbard I approximation. In this approach there is no st
definition of the band states and their structure is not
tailed; this shows up in the well-known failure of a numb
of sum rules. Thus, our results differ substantially from tho
of Ref. 35. In this paper the properties of the spin excitatio
are studied for the simplest uniform average-field states,
antiferromagnetic and spiral states, neglecting valence-b
correlations. When the latter are taken into account,29,30there
is a significant drop in the energy, the dielectric gap is
duced, and there is a narrowing of the doping range wit
which two-dimensional antiferromagnetism occurs. Th
valence-bond correlations should also affect the spin exc
tions of the system. We avoid some topics of current inter
lit
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including a description of inhomogeneous charge and s
structures, such as stripe phases with alternation of
antiphase antiferromagnetic domains and concentrat
of charge at their boundaries. Rigorous experimen
proof of the existence of such static stripe phases has b
obtained for LaNiO41d ,36,37 La22x2ySrxNdyCuO4,38,39

La2SrCuO4.005,
40 and other compounds. Data have been o

tained which indicate the presence of analogous dyna
spin fluctuations in La22xSrxCuO4 ~LSCO!.40–42 This pro-
vides a basis for an alternative interpretation of the inco
mensuratex(kv) peaks in LSCO~as opposed to the ban
interpretation18–20!.

Despite these remarks, in this paper we shall only c
sider uniform average-field states, in order to underst
how the two-band nature of the Hubbard correlated sys
affects the spin dynamics.

2. SUSCEPTIBILITY OF THE AVERAGE-FIELD
ANTIFERROMAGNETIC STATE

Let us consider a standard Hubbard model which give
single-band representation of the CuO2-plane of the HTSC:

H5(
k,s

ekcks
† cks1HU , HU5U(

n
nn↑nn↓ ,

ek52t~coskx1cosky!14t8 coskx cosky . ~1!

The spin susceptibility is defined as the Fourier transform
the retarding correlation function:43,44

xab~qv!5^^Sa
q~v!;Sb

2q&&

5
i

\ E e2 ivt^^Sa
q~ t !;Sb

2q&&dt, ~2!

where

^^A~ t !;B&&5H ^@A~ t !,B#&, t.0,

0, t,0.
~3!

In Eq. ~2!, the q-components of the spin and densityrq

50.5nq can be written in a uniform fashion:

Sa
q5

1

2 (
ss8

~sa!ss8r ss8
q , rq5

1

2 (
ss8

~s0!ss8r ss8
q , ~4!

where

r ss8
q

5
1

AN
(

n
eiqn^c†

nscns8&. ~5!

Here thesa with a51,2,3 ~or x,y,z! are the Pauli matrices
ands0 is the unit matrix.

In the absence of an interaction (U50), the susceptibil-
ity tensor is isotropic,

xab
0 ~qv!5dab

1

2
x0~qv!,

x0~qv!52
1

N (
k

f k1q2 f k

ek1q2ek2v1 ig
~6!
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and is determined by the band energiesek and the corre-
sponding Fermi functionsf k5 f (ek /kT). The same sort of
expressions exist for the density correlation whenU50.

There are several equivalent methods for deriving
susceptibilities, renormalized by the interaction: the rand
phase approach~RPA!, factoring the equations of motion
and summing ladder diagrams.44 All of these yield the same
result:

xaa~qv!5
1

2

x0~qv!

12Ux0~qv!
, a5x,y,z. ~7!

For largeU/t, this approach cannot be satisfactory in t
case of a half-filled band or lightly doped systems, since th
spectra are far from the zero spectrum ofek . For these sys-
tems, the lowest states of the average field are antiferrom
netic ~or spiral! states, in which the one-electron levels for
upper and lower Hubbard bands, separated by a gap

Ekl51(2)5
ek1e k̃

2
7Adek

21U2d0
2,

dek5
1

2
~ek2e k̃!, k̃5k2~p,p!. ~8!

Hered05(21)ns/usu^nns& is the alternating spin density.
An extension of these studies to correlated states

shown29,30 that when valence-bond correlations are tak
into account, the two-dimensional antiferromagnetism a
splitting of the bands into two subbands still occur ove
fairly wide range of doping. The most convincing argume
in favor of this picture is a determination that a pseudogap
the normal state is related to the dielectrization of individ
parts of the Fermi boundary and is possible only when a
exists between the upper and lower subbands.29,30 This
means that the spectrum~8! of a real split band must be use
for calculating the null susceptibilityx0(qv) and for its sub-
sequent renormalization taking the interaction into accou
Carrying out this program is the purpose of this paper.

For simplicity we take the antiferromagnetic solutions
the average field neglecting valence-bond correlations a
basis~although, according to Refs. 29 and 30, it is precis
the latter which ensures attraction of holes in thed-channel
and superconductivity!. Thus, we divide the initial Hamil-
tonian ~1! into a linearized Hamiltonian corresponding to
self-consistent solution with alternating spins and the r
which appears as a perturbation

H5HL1V, V5HU2~HU!L . ~9!

The eigenstates of the linearized Hamiltonian correspond
to the band energies~8! are

bkls
† 5(

i
$cks

† ,c
k̃s

†
% iUil~ks!,

i ,l51,2, k̃5k1~p,p!, ~10!

where

Uil~ks!5S coswk 2js sinwk

js sinwk coswk
D ,
e

ir

g-

as
n
d

t
n
l
p

t.

f
a

y

t,

g

tan 2wk5
dek

Ud0
, js5

s

usu
, dek5

1

2
~ek2e k̃!. ~11!

The inverse transformation of the basis operators is writt

cks
† 5(

l
Ui kl~kI s!bkls

† , ~12!

wherekI is the quasimomentum introduced into the Brillou
magnetic zoneF (ukI x6kI yu,p) and i k is the corresponding
reduction index: i k51, kI 5k for kPF or i k52, kI 5k
2(p,p) for k¹F.

The self-consistency condition for the solution, i.e., t
equation ford0 , has the familiar form

15U
1

N (
k

F
1

2gk
~ f k12 f k2!, gk5Adek

21U2d0
2. ~13!

The indexF on the summation sign means that the sum o
k is taken within the Brillouin zone and thef k1(2) are the
Fermi functions for the states of the lower and upper ban

This equation gives a high value for the critical dopin
level dc corresponding to a transition of the antiferroma
netic solution into a paramagnetic one:dc;0.45 for U/t
58. When the valence-bond correlations are taken i
account29,30 this level falls todc;0.3. However, both values
exceed the region where antiferromagnetism exists (dexp

;0.05). Nevertheless, variational calculations of t
energy30,45 and calculations by the slave-boson method46,47

suggest a large radius,RAF@a, for the two-dimensional an-
tiferromagnetic correlations. We note also that the corr
Néel temperatureTN;4t2/U cannot be obtained from Eq
~13!, which would imply TN;U/4 ~for U/t;8!. TN may
decrease when multiple electron scattering is taken into
count using parquet diagrams.21–23But, again, we emphasiz
that this sum is meaningful only for small parametersU/t.
For largeU/t the impossibility of describingTN using Eq.
~13! means, most likely, that it is necessary to proceed
inhomogeneous solutions. This follows from the idea2,37 that
the long-range antiferromagnetic ordering breaks down w
dynamic or static disordered antiferromagnetic domains
local spiral states develop. Proof of local magnetic order
in the cuprates over a wide range of doping has been
vided by data on the nuclear quadrupole resonance of
copper nuclei,m-meson spin resonance, and Mo¨ssbauer
measurements.2

Because of the doubling of the unit cell among the c
relators ^^r q(v);r 2q8&&, not only the correlators withq8
5q but also those withq85q6(p,p)5q̃ will be nonzero.
We shall now characterize the complete set of quasimom
of the Brillouin zonesG of the initial lattice by the vectorqI
normalized to the Brillouin magnetic zoneF and the normal-
ization indicesi q51,2:

qI 5q1~p,p!~ i q21!, qI PF. ~14!

Thus, we determine the entire set of spatial harmonics~5! for
the spin and density as

r ss8
q

5Yss8
q,1 , r ss8

q̃
5Yss8

q,2 , qPF, q̃5q1~p,p!.
~15!
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The expression for these components in the basis of z
operatorsbks takes the form

Ys,s8
q,m

5
1

N ( F

k
(
ll8

Mll8
m

~qkss8!bk1qls
† bkl8s8 , ~16!

where

Mll8
m

~qkss8!5(
i j

Uil~k1q,s!U j l8~k,s8!

3d (2)~ i 1 j 1m1 i kq!. ~17!

Herel,l8,i , j 51,2 and the vectork1q5k1q1(p,p)( i kq

21) is normalized to the Brillouin magnetic zone with th
corresponding normalization indexi kq andd (2) is d modulo
2.

The symmetry of the problem implies that there is

correlation ^^Ys,s8
q,m ;Ys,s8

2q,m8&& between the transvers
~s52s8! and longitudinal (s5s8) components. We begin
by calculating the nonzero transverse correlators

Di j ~qvsI s!5^^YsI ,s
q,i ;Ys,sI

2q, j&&. ~18!

Of the equivalent methods of deriving an expression for
susceptibility, we shall use the simplest, factoring the eq
tion of motion.43 Turning to the representation~16! for Yqi,
we consider the correlation functions

Al1l2

q j ~ksI st !5^^ql1l2

q ~sI ,s,t !;Ys,sI
2q, j&&, ~19!

wheresI 52s and the operator

qll8
q

~sI ,s!5bk1qlsI
† bkl8s ~20!

is taken at timet. Following Ref. 43 and differentiating Eq
~20! with respect to time, we obtain

i
d

dt
All8

q j
~ksI st !5d~ t !^@qll8

q
~sI ,s!,Ys,sI

2q, j #&u t50

1~Ek1ql2Ekl8!All8
q j

~ksI st !

1^^@qll8
q ,V# t ;Ys,sI

2q, j&&. ~21!

HereEkl is the energy~8! of the split bands (l51,2) and an
expression for the perturbationV in terms of the operators
bkls is given in the Appendix, Eqs.~A1!–~A3!. For calcu-
lating the last term in Eq.~21!, in the commutator@q,V# we
retain only those operators which reproduce a particle–h
pair b†

k81ql1sI bk8l2s with the same total momentumq
against the background of the ground antiferromagnetic s
of the average field~the approximation of a low excitation
concentration!. As a result, we obtain

@qll8
q ,V#u t.2U~ f k1q,l2 f kl8!

3(
i

Mll8
i

~qksI s!YsI ,s
q,i ~ t !. ~22!

Here the operatorsY and functionsM are given by Eqs.~16!
and ~17!, while all the quasimomenta are normalized, i.
k, q, k1qPF. The Fermi functionsf kl correspond to the
levelsEkl of the upper and lower Hubbard bands. Repeat
the steps of the derivation in Ref. 43, we find expressions
ne

e
-

le

te

,

g
r

the Fourier transformsAl1l2

q j (ksI sv) and Di j (qvsI s). The

latter, in turn, are expressed in terms of a sum overk8 of the
Al1l2

q j (k8sI sv) with the corresponding weighting function

~17!. As a result, we arrive at a system of algebraic equati
for the correlatorsDi j @see Eqs.~18! and~19!#. The solution
of these equations gives a matrix analog of the renormali
transverse susceptibility for the case of split bands:

Di j ~qvsI s!5$@ Î 2UD̂0#21D̂0% i j . ~23!

The matrix of second rank,Di j
0 , in Eq. ~23! is given by

Di j
0 52

1

N (
ll8

( F

k

f k1ql2 f kl8
Ek1ql2Ekl82\v1 ig

Rll8
i j , ~24!

with

Rll8
i j

~q,k,sI s!5Mll8
i

~qksI s!Mll8
j

~qksI s!. ~25!

Using the definitions~17! and ~11!, we obtain the following
compact expressions forRi j :

Rll8
i i

~q,k,sI s!5
1

2 H 11~21!l2l8

3F ~21! i 1 i kq
dekqdek

gkqgk
2

D2

gkqgk
G J ,

~26!

and

Rll8
12

~q,k,sI s!5Rll8
21

~q,k,sI s!

5
2s

2usu H ~21!l8
D

gkq
2~21!l

D

gk
J , ~27!

where

dek5
1

2
~ek2e k̃!, gk5Adek

21D2,

k̃5k1~p,p!, D5Ud0 , ~28!

while dekq and gkq are analogous functions of the reduc
quasimomentumk1q5k1q1(p,p)( i kq21), where i kq

51 ~2! for k1qPF(¹F).
The diagonal elements of the matrixDi j calculated using

Eq. ~24! directly determine the transverse susceptibility

xxx9 ~Qv!5xyy9 ~Qv!5
1

2
x219 ~Qv!

5
1

2
Im$Di Qi Q

~qvsI s!%, ~29!

whereq5Q2(p,p)( i Q21) is the quasimomentum norma
ized to the magnetic Brillouin cell and the indexi Q51 ~2!
for QPF(¹F). Thus, the diagonal componentsDii are di-
rectly observed in inelastic neutron scattering. The nondia
nal componentsDi j ( j Þ i ) can only contribute to the loca
characteristics of the spin system, in particular, those m
sured in NMR experiments.

For the paramagnetic state of the average fieldD
50, UÞ0), the diamagnetic components of the matrix~23!
transform to the well known expressions~7! and ~6! for the
renormalized susceptibilitiesx12(Qv), calculated using an
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unsplit band as a zeroth approximation. For the undoped
tiferromagnetic casen51 for the Fermi functions in Eq.~24!
we havef k151 and f k250. That is, the low-frequency, col
lective spin–wave perturbations are determined in this c
by an interband particle–hole interaction. The dispers
v(q) of the transverse spin wave is found from the equat
for the pole in Eq.~24!, i.e., from the equation

Det5id i j 2UDi j
0 ~qvsI s!i50. ~30!

We shall show that forq→0 andv→0, the determinant
behaves as

Det5aq22bv21O~q3,...!. ~31!

In fact, for q→0 and v→0 we haveD12;v, 12UD11

→const1O(q2,v2), and

12UD22
0 5F12

U

N ( F

k

f qk,12 f k2

2gk
G

1~aq22b8v2!1O~q3!. ~32!

But the expression in square brackets in Eq.~32! goes to zero
according to Eq.~13!, which defines the self-consistent qua
tity d0 for alternating spin. As a result, forQ near~p,p! or
uqu5uQ2(p,p)u!p, we have

x219 5Im D22~qv!5Ad~c2q22v2!5
A

2cq
d~v2cuqu!,

q,1. ~33!

Therefore, the band calculation of the spin susceptibility w
Hubbard splitting of the bands reproduces the character
dispersion of transverse spin waves,v(Q)5cuqu, for Q near
~p,p! obtained in the Heisenberg model for an undop
antiferromagnet44 and observed distinctly in a number o
cuprates.13–15Similar algebraic equations~see the Appendix!
describe the correlation of the density and longitudinal s
ceptibility, xzz, wherez is the axis of spin quantization o
the antiferromagnetic state. As opposed to the transv
components, there is no low-frequency collective mode
the spin excitations withz-polarization.

To conclude Sec. 2 we introduce an example of a mo
that characterizes the gap in the spin excitation spectrum.
supplement the Hamiltonian~1! with the interactionDH
5B0(21)nSzn of the spins with an alternating ‘‘magneti
field’’ parallel to the axis of spin quantization of the antife
romagnetic state. This interaction can serve as a crude m
of the spin exchange interaction of neighboring CuO2 planes.
Then the band energy spectrum is given by Eq.~8!, but with
a new gk5A(dek

21(Ud02B0)2, while the self-consisten
value of d0 of the alternating spin is now found from th
equation

15U
1

N ( F

k

1

2gk
S 12

B0

Ud0
D ~ f k12 f k2! ~34!

with the newgk . Equation~34! has two solutions with dif-
ferent signs,n5sign(d0B0). For the solution withn521,
which corresponds to the lower energy, at lowv/t, B0 /t,
and q5uQ2(p,p)u,1, the quantity 12UD22

0 has the fol-
lowing expansion:
n-

se
n
n

h
tic

d

-

se
f

el
e

del

12UD22
0 5~aq22b8v22nDSp

2 !1O~q3!. ~35!

It differs from Eq. ~32! in having a spin gap termDSp

5uB0 /(Ud0)u. As a result, for the lowest~in terms of en-
ergy! antiferromagnetic state (n521) Eq. ~35! we obtain a
typical spin-gap dependence for the excitation spectrum:

v~Q!5Ac2q21Dsp
2 , q5Q2~p,p!. ~36!

For the metastable antiferromagnetic solution withn51, on
the other hand,v(Q) goes to zero for finiteuquÞ0, which
indicates an unstable solution. In this model a gap shows
for any polarization of the transverse spin waves. In a nu
ber of cuprates14,15 a gap is observed for just one of th
components of the transverse spin excitations, with a po
ization perpendicular to theab-plane. One possible descrip
tion of this behavior might be provided by a model th
introduces an alternating magnetic field perpendicular to
orientation of the average spins of the antiferromagne
state. This kind of model is consistent with a noncolline
arrangement48 of the antiferromagnetic alternating spins
the different CuO2 layers in Pr2CuO4. However, a quantita-
tive description requires introducing an anisotropy in t
spin interactions and fixing the antiferromagnetic axis
space. A complete accounting for this type of spin–orb
and dipole-spin–spin interactions is a separate problem.

3. DISCUSSION OF RESULTS: ANTIFERROMAGNETIC
STATES

We begin with undoped systems (n51). In this case,
the completely filled lower Hubbard band (f 1k51) is sepa-
rated by a gap from the unfilled upper band (f 2k50) and the
spin excitations are determined solely by ‘‘interband
particle–hole pairs. Here the two-particle excitationsvq

(0)

>2D @the poles of the ‘‘zero’’ susceptibility~23!# are char-
acterized by the gap 2D, so that ImDij

(0)50 holds for v
,2D, g→0. The dispersion of the low-frequency branch
the collective excitationsvq is found from an equation for
the pole of the renormalized susceptibility~24! as g→0,
while the intensityI (Q) in the expression

xx(y)9 ~Qv!5I ~Q!d~v2vq!, q5Q2~p,p!i QPF
~37!

is determined minus the functionDii (v) as g→0. A clear
representation is provided by directly calculatingx9 accord-
ing to Eqs.~33! and ~23! for finite g.0, which simulates a
finite energy resolution. Figure 1 shows a typicalx9(Q,v)
curve for a series of values ofv along theqx5qy cross
section forg50.008t ~q is the quasimomentum normalize
to the magnetic Brillouin zone!. The location of the peak
repeats the dispersionvq found from Eq. ~30!. The peak
height and its widthDv1/2 depend on the artificially intro-
duced parameterg in such a way that the peak intensity

I ~Q!5E x9~Qv!dv5pgDv1/2

is independent ofg for small g. Figure 2 is a typical plot of
vQ for Q varying along aGMYG contour. The functionvQ

is periodic within the Brillouin magnetic zone, i.e.,vQ near
the pointY(p,p) repeatsvQ near the pointG(0,0). As op-
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posed tovQ , the intensity I (Q) is periodic only in the
ground Brillouin zone. Figure 3 shows a plot of the dime
sionlessI (Q) for quasimomentumQ varying along aGMYG
contour. The functionI (Q) behaves differently,}uQu or
}uQ2(p,p)u21, respectively, in the neighborhoods of th
points G and Y. Thus, for an undoped dielectric, the ban
calculation, like the standard description of spin waves in
Heisenberg model, yields a linear dispersionvQ;cq for low
v and the absorption peak corresponds toQ5(p,p) in ac-
cordance with the dependenceI (Q)}1/q for q5uQ
2(p,p)u,1.

We now compare the calculated characteristics of
spin waves of the undoped systems with experiment.
spin wave velocity c5dv/dquq50 varied over c
50.60– 0.58t/rad in our models with U/t58 and t8
560.05t. For the estimated49,50 t50.4– 0.5 eV (J54t2/U
580– 125 meV), we obtainc5880– 1140 meV•Å. These
values are entirely consistent with the valuescexp5850,
1020, 800 meV•Å measured in the cuprates La2CuO4,
Nd2CuO4, and Pr2CuO4, respectively.13 Absolute

FIG. 1. The susceptibilitiesx9(q,v) as functions of the reduced quasimo
mentumq ~in units of rad/a! for v50.1–0.6 in an undoped system wit
U58 and t8520.05. The curves were calculated forg50.008. U,t8,v,
andg are all given in units oft.

FIG. 2. Dispersion of the collective spin excitation modev(Q) ~in units of
t! for quasimomentum varying along the conto
G(0,0) –M (p,0) –Y(p,p) –G. The model parameters areU/t58, t8/t
520.05, andn51.
-

e

e
e

measurements13 of the inelastic scattering cross sections
the high-frequency region yielded a spectral weighting ch
acteristic, specifically

x̃2D~v!5
1

2
~gmB!2E dQ2D Im x~Qv!Y E dQ2D .

~38!

The factor containing the Bohr magnetonmB in front of the
integral is a consequence of the different definitions ofx in
Eq. ~2! and in Ref. 13. In the experimental region ofv
<300 meV, Eq.~38!, which is almost independent ofv,
gavex̃exp52.7, 1.8, 2.3mB

2/eV for the same cuprates.13 The
value of x̃2D that we have calculated for a model withU/t
58 also depends weakly onv ~see the inset to Fig. 4! and is
given by x̃2D'2 mB

2/t, which equalsx̃2D'5 – 4mB
2/eV for

t50.4– 0.5 eV. As expected, this result is less than th

FIG. 3. The intensityI (Q) of the peak inx9(Q,v) given by Eq.~37! for
quasimomentum that varies along the contourG –M –Y–G. The model pa-
rameters are as in Fig. 2.

FIG. 4. The frequencyv(q) of the collective mode~in units of t) as a
function of the reduced quasimomentumq5u(qx,0)u ~in radians! for an
undoped system~curve 1! and for doping 12n50.15 ~curve 2!. Curve 2
was calculated on the basis of the antiferromagnetic solution for the ave
field as the dependence of the position of the maximum,vmax(q), of the
susceptibility x9(q,v) for fixed q. The length of the vertical segment
equals the half widthDv1/2 of the peak. The dashes are for a clear rep
sentation of the width of the mode. The inset shows the dependence o
~38! on v in units of mB

2/t.
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x̃2D
cl 5S(gmB)2/2J (S51/2, J54t2/U) obtained by the clas

sical Heisenberg model neglecting quantum-mechanical
rections. This last value isx̃2D

cl 58 mB
2/eV for t50.5 eV (J

5125 meV). Our calculated values are twice the experim
tal results. We believe the main reason13 for the discrepancy
is the following. During the comparison with experiment, t
factor ad

4 , which reflects the amplitude of thead d-orbit of
copper in the hybridizedp–d orbital ~single-hole ‘‘node’’
orbit of the single-band Hubbard model49,50!, was left out of
the calculated form factor for neutron scattering on Cu. F
the estimatedad;0.86 ~Refs. 49 and 50! a correction factor
of ad

4'0.55 makes it possible to match the calculated va
of x̃ with experiment.

Thus, the band approach yields a reasonable quantita
description of spin excitations in undoped systems. T
means that it can be applied to doped systems in orde
answer three questions:~1! how does doping affect the dis
persion of spin waves and relaxation~the width of the ab-
sorption peaks!? ~2! Does the change in the type of Ferm
surface associated with the sign oft8 in Refs. 29–31 actually
change the low-frequency behavior of the susceptibi
x9(Q,v) in a fundamental way? 3! How do the model pa-
rameters influence the characteristics of spin waves?

Calculations ofx(Qv) for doped systems (n21<0.2)
show that for lowv, distinct collective spin excitations ar
still present. They show up in the transverse susceptibility
peaks inx9(qv) with a maximum atv5vq and a half width
Dv1/2. For smallv,0.4t, the peak width is twice the arti
ficially introduced widthDv1/252g ~for g50.04t). How-
ever, it increases sharply asv is raised, beginning withv
;0.4t (uqu.0.7 rad). Figure 2 shows the dispersionvq of
the spin excitations for a system withn50.85. The size of
the vertical segments on the curve characterizes the p
width Dv1/2 of thex9(qv) curve for fixedq. The spin wave
velocity c5dv/dquq50 is somewhat higher in doped sy
tems; this corresponds to the reduced dielectric gapUd0 with
doping. The sudden broadening and asymmetry of the p
for largev does not permit extending thevq curve into the
regionq.1.2 rad.

This picture is in qualitative agreement with measu
ments of x9(qv) in LSCO at high frequencies, 25 me
,v,200 meV. 15 However, at low frequencies,v
,20 meV, the susceptibility calculated for a doped antif
romagnetic state does not reproduce the low-energy p
for the incommensurate quasimomentaQ5(p6d,p) and
Q5(p,p6d) observed in LSCO.8–10 In the two alternative
approaches, these peaks are attributed either to differen
havior of the Fermi boundary of the ‘‘zero’’ band for th
different cuprates under antiferromagnetic correlat
conditions,8–10or to an actual spin and charge superstructu
the so-called stripe phases observed in a number
cuprates.38,40–42 An interpretation of the first type has on
major defect. It is based on a zero susceptibility associa
with the zero spectrum ofek . One of our purposes has bee
to study the effect of the Fermi surface onx(k,v) when the
band splits into upper and lower Hubbard subbands. It
been established previously29–32 that under the conditions o
two-dimensional antiferromagnetism, the Fermi surfaces
r-
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very sensitive to the parametert8, which accounts for diag-
onal jumps. When the sign oft8 changes, the type of Ferm
surface changes. Fort8.0 doping forms hole pockets
around k;(6p/2,6p/2), and for t8,0, around
k;(6p,0), (0,6p). Despite this difference, calculations o
x9(Qv) using Eqs.~23! and~25! for each of these systems
t8.0 or t8,0, give similar pictures of the spin excitation
vq5cq with small variations in the velocityc, but do not
reveal any peaks for incommensurate quasimomenta.
main influence on the variation inc is differences in the
dielectric gapD of systems of different types and the redu
tion in D owing to doping.

The reason for this insensitivity of the dispersion of sp
excitations to the details of the band energies whenv!t
~contrary to the conclusions of Refs. 18–20! is that the col-
lective spin mode develops from interband pairs, one part
form the upper band and the hole from the lower band.
them, the weighting functions~25! ~the matrix elements of
the transition! are of order ;1. When a dielectric gap
(Ek1q,12Ek,2>2D@v) is present, the details of the ban
have little influence on the interband contribution to Eq.~24!
for x0(q,v). With doping and smallq andv, the interband
contribution to x0(q,v) is still fundamental. In fact, for
smallv, of all the particle–hole pairs$b†

1k8↑ ,b1k↓% within a
given lower band, only those pairs whose quasimomentak8
5k1q andk lie within a narrow band near the Fermi boun
ary make a contribution toDi j

0 @see Eq.~24!#. For light dop-
ing, thesek andk8 lie close to the nesting lines. But in thi
region, the matrix elements for one-band transitions and
corresponding weighting functions~25! are small, R11

!uR12u. As a result of all this~small phase volume and
weighting functions!, in lightly doped systems with smal
v!t and uqu,1, a collective mode with very little broaden
ing is still attributable to interband pairs. Only forv>0.5t
does the interaction with the single-band pairs cause a s
broadening of the collective modes.

Therefore, the calculations do not yield incommensur
low-frequency peaks inx9(q,v) within a picture of antifer-
romagnetically split bands for any type of Fermi surfac
This contradicts the predictions of Refs. 18–20, which w
based on cruder renormalizations of the zero susceptibilit
the unsplit bandek .

4. SPIN SUSCEPTIBILITIES IN THE CASE OF SPIRAL
STATES

In light of the above remarks, the explanation of t
incommensurate peaks as a manifestation of nonuniform
and charge structures observed in the cuprates36–42 is plau-
sible. Hartree–Fock model calculations51–53confirm the pos-
sibility of stabilizing these structures. More accurate calc
lations, in particular, ones that include valence-bo
correlations, are desirable, but rather involved.

In this paper we limit ourselves to studying the susce
tibility of the simplest spin structures—the spiral spin sta
of the Hubbard average field model. It is not clear wheth
these states have a direct connection with cuprates suc
LSCO. As opposed to the oxides of nickel, in LSCO t
incommensurate spin fluctuations may have a dynamic c
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FIG. 5. The average energy^H& at a site~in units of t)
and the parameterj characterizing the vectorQ
5p(j,1) orQ5p(j,j) of the spiral state withx- or xy
symmetry, as functions of doping. The curveAF cor-
responds to the antiferromagnetic state of the aver
field with Q5(p,p). The system parameters are:U/t
58, t8/t520.05.
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acter without explicit signs of static stripe phases. The pr
erties of an electronic system interacting with a spin sys
in a spiral state have been studied before.54 Unlike thes–d
model examined there, with its two separate subsystem
spin and itinerant electrons, in the Hubbard model that
are studying the localized spins are formed directly from
electrons themselves. This changes the electronic spec
and the spectrum of the magnetic fluctuations compare
Ref. 54.

Two types of spiral states ofx- andxy-symmetry will be
examined, with spirality vectorsQ5p(h,1) and Q
5p(h,h), respectively. The difference in the energies
the two types of spiral states of the average field is less t
the expected gain in energy from the valence-bond corr
tions. Thus, it is impossible to establish a preference for
of the two types of states on the basis of the average en
alone. In the following some of the notation duplicates th
of Sec. 2 but has a different meaning. For example,Q is the
quasimomentum characterizing a spiral state, whileq is the
quasimomentum of spin excitation which changes within
limits of the entire Brillouin zone.

The spiral states with vectorQ44,55 are single-
determinant states characterized by one-electron averag
the form

r 05^cns
† cns&5^cnsI

† cnsI &,

^r ssI &5^cns
† cnsI &5d0ei jsQn, js5s/usu. ~39!

The linearized Hamiltonian of the Hubbard model for th
class of states has the form

HL5(
k,s

ekcks
† cks2Ud0

3(
k,s

ck2Q/2,s
† ck1Q/2,sI 1U~r 0

22d0
2!. ~40!

HeresI 52s. The band energiesEkl , l51,2 and the one-
electron operatorsb†

kl of the Hamiltonian~40! are given by

Ek1(2)5
1

2
~ek2Q/21ek1Q/2!7gk ,

bkl
† 5$ck2Q/2,↑

† ,ck1Q/2,↓
† % iUil , ~41!
-
m

of
e
e
um
to

f
n

a-
e
gy
t

e

of

where

gk5Adek
21U2d0

2, dek5
1

2
~ek2Q/22ek1Q/2!, ~42!

and

Uil~k!5S coswk sinwk

sinwk coswk
D , tan 2wk5Ud0 /dek .

~43!

Herek runs through all the values within the complete Br
louin zone. The definitions in Eqs.~41! and~42! are given in
a form that is symmetric with respect tos→2s.

Knowledge of the eigenstates and bands~41! and ~42!
makes it possible, in turn, to calculate the one-electron a
ages~39!, in particulard0 :

d05
1

2N (
k

Ud0~ f 1k2 f 2k!

2gk
. ~44!

This closes the procedure for self-consistency, i.e., for m
mizing the energŷH& with respect to variations in the func
tions for a fixed parameterQ. The subsequent minimizatio
of ^H& with respect to the spiral state parameterQ deter-
mines the optimum pitch of the spiral.

Figure 5 shows the parameterj which characterizes the
spirality vectorQ and the average energy for the two typ
of spiral states withQ5p(h,1) andQ5p(h,h) as func-
tions of the doping.

When the linearized Hamiltonian is chosen in the fo
~40!, the perturbationV5H2HL5HU2(HU)L serves as the
interaction which drives the collective spin excitations. T
expression forHU in terms of the fermi operatorsbkl is
derived directly and is given by

HU5
U

N (
ki ,l i

U1l1~k1!U2l2~k2!U3l3~k3!U4l4~k4!

3bk1l1

† bk2l2
bk3l3

† bk4l4
d~k12k21k32k4!. ~45!

The corresponding linearized operator (HU)L is found in the
usual way. Note that the operatorbkl

† @see Eq.~41!# is not the
eigenoperator of the quasimomentum associated with tr
lation over the lattice period. Thus, the parameterski in
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Eq. ~45! are not true quasimomenta. Nevertheless,
d-function has the same form as for an interaction wh
conserves the total quasimomentum ~pseudo-
quasimomentum! of the new particles.

For calculating the susceptibilities xab(q,v)
5^^Sa

q(v);Sb
2q&& in a system, whose ground state is spir

we express theq-components of the spin and the densities
terms of the band operatorsbkl for the spiral state:

Sa
q5

1

2 (
i j

r i j
q ~sa! i j , r5

1

2 (
i j

r i j
q ~s0! i j ,

r i j
q 5

1

N (
k

ck1q,i
† ck j . ~46!

Heresa , a51,2,3, ands0 are the Pauli matrices. The ind
cesi , j 51,2 have been introduced in place ofs,s8561/2.
In the basis of the band Fermi operators~41!, we have

r i j
q 5

1

N (
kk8

Uil~k!U j l8~k8!bkl
† bk8l8d

3~k2k82q1~ i 2 j !Q!. ~47!

We introduce the following notation for the new operato
that depend on the spatial harmonics

Xa
q5

1

2 (
i j

~sa! i j r i j
q , a51,3,

X1
q5

1

2
~r 12

q2Q1r 21
q1Q!, X2

q5
2 i

2
~r 12

q2Q2r 21
q1Q!. ~48!

We shall characterize the operators defined this way by
common parameterq because of their uniform representatio
in terms of the spiral state band operatorsbkl ,

Xa
q5

1

2N (
k

(
i j ll8

~sa! i j Uil~k1q!U j l8~k!bk1q,l
† bkl8 ,

~49!

wherea50, 1, 2, 3. The representation~45! for HU implies
that, in the case of the ground spiral state, only those c
elators of the operatorsXq with the sameq will be nonzero:

^^Xl
q~v!;~Xl 8

q8!†&&5dqq8Gll 8~q,v!, ~Xa
q !†5Xa

2q .
~50!

This is yet another justification for introducing the operato
~48!.

We calculate these correlators using the same schem
in Sec. 2. Given the representation~49! for Xl

q , we first find
the equation for ^^qmm8

q (kt);Xl 8
2q&& and then for its

v-component, whereqmm8
q (k)5bk1q,m

† bkm8 . As a result of
summing thesê^qmm8

q (kv);Xl 8
2q&& over k, m, andm8 with

the corresponding weighting functions from Eq.~49! we ob-
tain the following system of algebraic equations for t
Gll 8(qv):

@d l l 82UZlmzm#Gml85
1

2
Zll 8 , ~51!

where

z l5~122d l0!5$21,1,1,1% l , l , m, l 850, 1, 2, 3,
e
h

,

e

r-

s

as

Zll 8~q!52
1

2 (
kll8

f k1q,l2 f k,l8
Ek1q,l2Ekl82v1 ig

Fll8
l

~k!

3~Fll8
l 8 ~k!!* , ~52!

and

Fll8
l

~k!5(
i j

Uil~k1q!~s l ! i j U j l8 . ~53!

Substituting Eq.~45! for Uil into Eq. ~53! yields compact
matrix expressions for the matricesFll8

l (k):

F05s0c22 is2s2 , F152s1c12s3s1 ,
~54!

F252s2c21 is0s2 , F35s1s11s3c1 ,

where

c65cos~wk1q6wk!, s65sin~wk1q6wk!.

Here thes l are the Pauli matrices and thewk are determined
by Eq.~43!. All the quantities in Eqs.~51!–~54! also depend
implicitly on the ground state spirality parameterQ.

Calculating theZll 8(q8v) using Eqs. ~52!–~54! and
solving the system of algebraic Eqs.~51!, we find the corr-
elatorsGll 8(q8v) for each of the three values of the arg
ment q85q2Q,q,q1Q. Recalling the definitions~47!,
~48!, and ~50!, we obtain the following expressions for th
unknown spin susceptibilitiesxab5xab(qv) and the den-
sity correlations:

xzz5^^Sz
q~v!;Sz

2q&&5G33~qv!,

^^rz
q~v!;Sz

2q&&5G03~qv!,
~55!

^^Sz
q~v!;rz

2q&&5G30~qv!,

^^rz
q~v!;rz

2q&&5G00~qv!,

xxx5xyy5
1

4
$@G111G222 i ~G122G21!#uq1Q

1@G111G221 i ~G122G21!#uq2Q%, ~56!

and

xxy52xyx5
i

4
$@G111G222 i ~G122G21!#uq1Q

2@G111G221 i ~G122G21!#uq2Q%. ~57!

The arguments of the functionsGi j in each of the square
brackets in Eqs.~56! and ~57! are, respectively,q1Q,v or
q2Q,v. The indicesx,y,z refer to the spin system of coor
dinates with anxy plane of rotation for the average spin o
the spiral state.

If in calculating theZll 8 we include only the main con
tribution from the interband particle–hole pairs@l,l851,2
or 2,1 in Eq.~53!#, then the determinant of the system go
to zero forv→0 andg→0 because Eq.~44! is satisfied and
the transverse componentsGi j (kv), i , j 51, 2 will diverge
for k→0 andv→0. According to the relations~56! and~57!
betweenxxx , xyy , andG(q6Q), this controls the possibil-
ity of the appearance of low-frequency peaks inx9(qv) with
incommensurate quasimomentaq56Q. A complete calcu-
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lation according to Eqs.~55!–~57! and ~51!–~53! confirms
this.

Figure 6 shows the calculatedx9(qv) for v50.01
→0.09 at two cross sections of the phase plane,q5p(j,1)
andq5p(j,j), for the spiral state withx-symmetry with a
spirality vector Q5p(0.892,1), which is optimal forn
50.95. The incommensurate peaks show up on thex axis at
the pointsq5Q and @2(p,p)2Q# which are symmetric
relative to the vector~p,p!. Similarly, for the spiral state
with the other symmetry withQ5p(h,h), low-frequency
peaks show up inx9(qv) at incommensurate points whic
lie symmetrically on the diagonal relative to~p,p!. The cor-
responding curves on the half interval are shown in Fig
The narrow peak withj50.83 is attributable to the contri
bution of intraband particle–hole pairs and depends on
allel segments of the Fermi surface of the lower Hubb
band forn50.95. The type of Fermi surface has little effe
on the main peaks forq56Q.

As the frequency is increased, the main absorption p
splits. For a givenv, the maxima in thex9(q,v) curve cor-
respond to quasimomenta satisfying the conditionc* uq
2Qu5v. The latter is analogous to the dispersionv}cuq
2(p,p)u of spin waves under antiferromagnetic spin ord
ing. For a system withU/t;8 the velocityc* ;0.7t/a0 of
the spin waves around the incommensurate vectorQ is of the
same order of magnitude as for the antiferromagnetic s
tion. Note that similar spin waves around an incommensu
Q have been observed in the nickel oxides,36 where the ex-
istence of superstructures of inhomogeneous stripe ph
has been demonstrated rigorously. Our results are no
rectly applicable to charge-inhomogeneous structures. N
ertheless, spiral states are interesting as the simplest ch
homogeneous systems that have a spin structure with
incommensurate period.

FIG. 6. x9(q,v) as a function of the quasimomentum that varies along
diagonal,q5p(j,j) ~Fig. a!, or along thex-axis,q5p(j,1) ~Fig. b! for a
set of frequenciesv/t50.01→0.09. The calculation was done for a spir
state with doping 12n50.05, corresponding to the vectorQ
5p(0.892,1). The parameters are:g/t50.01,U/t58, andt8/t520.05.x9
is in units of 2t21. For v→0 the peaks correspond to the incommensur
momentaqx5p(160.108) on thex-axis.
.
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As the doping is increased, the shiftDQ5uQ2(p,p)u
in the low-frequency peak of the susceptibilityx9(q,v)
changes in accordance with theQ(n) curves shown in Fig.
5a. Figure 8 shows the samex9(q,v) curves as in Fig. 6, bu
for a system withn50.85.

Yet another conclusion follows from a discussion
spiral states. The development of a spin structure along w
the parametert8 that characterizes the diagonal jumps,
itself, changes the shape of the Fermi surface and this m
that it can influence the low-energy properties of the syste
As an illustration, Fig. 9 shows the Fermi surfaces and b
energy levels @E(k)2m# as functions of the two-
dimensional parameterk, the pseudoquasimomentum of th
one-electron eigenoperatorsbkl of the spiral state. It is evi-
dent from Fig. 9 that the spiral spin ordering splits the v
Hove singularities~VHS! of the one-electron spectrum i
energy and introduces an asymmetry in their positions

e

FIG. 7. As in Fig. 6, forq5p(j,j) varying along the diagonal and spira
state ofxy-symmetry withQ5p(0.882,0.882). The regionj,1 of only
one of the two incommensurate peaks around~p,p! is shown. The position
qmax(v) of the maxima of thex9(q,v) curves for fixedv corresponds to the
spin-wave dependencev5cuqmax2Qu.

FIG. 8. As in Fig. 6, but for doping 12n50.15, corresponding to the vecto
Q5p(0.658,1) of the spiral state with the samex-symmetry. The region
j,1 of only one of the two incommensurate peaks around~p,p! is shown.
The peak atj;0.85 is attributable to intraband particle–hole pairs a
depends on the Fermi surface of the lower Hubbard band.
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FIG. 9. Fermi surfaces~thick lines! and energy levels (Ek

2m) of the lower Hubbard band for systems withn50.95 in
spiral states withx- and xy-symmetry or antiferromagnetic
states of the average field in the (kx ,ky) pseudoquasimomen
tum plane withukx(y)u<p. Figures a, b, and c correspond t
Q5p(h,1), Q5p(h,h), and Q5(p,p); 1 and 2 corre-
spond tot8/t50.05 or t8/t520.05. The diagonal straigh
lines correspond to nesting lines of the original band in the
coordinates.
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phase space. This behavior can be regarded as the ele
analog of Jahn–Teller splitting of the VHS owing to lattic
distortions.2,56

5. CONCLUSIONS

We have derived an expression for the spin susceptib
of the Hubbard model in a band approach with the R
method using antiferromagnetically split Hubbard bands a
zeroth approximation. It has been shown that a collec
mode of the spin excitations is formed by interband partic
hole pairs and, therefore, is insensitive~contrary to the pre-
dictions of the cruder RPA theory18–20! to the form and type
of Fermi surface.

The calculation conveys well the characteristics of s
waves in a series of undoped and lightly doped cupra
This serves as an additional argument that the band appr
in a picture of split upper and lower Hubbard subbands
adequately describe the low-energy spin dynamics of a
related system. This approach should be supplemente
including valence-band correlations, which induce30 super-
conducting pairing, and possible charge and spin inhomo
neities for describing the superstructures that exist in a n
ber of cuprates.

We have demonstrated the impossibility of explaini
the incommensurate inelastic neutron scattering peak
LSCO in terms of the properties of the Fermi surface o
homogeneous antiferromagnetic state of the average fi
The earlier conclusion36–42 that the source of the spin fluc
tuations with an incommensurate momentum is inhomo
neous structures has been confirmed by a model calcula
of the susceptibility for the simplest structures with an
commensurate spin-ordering—charge-homogeneous s
states.
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APPENDIX

In the self-consistent solution of the problem with th
zeroth-order linearized Hamiltonian~9!, the perturbation is
an operator with four- and two-fermion contributions. In th
basis of the eigenoperators~10!, they have the form

V5V41V2 , V45HU , V252~HU!L , ~A1!

with

V45
U

N (
m51,2

(
kk8q

F Mll8
m

~qkssI !M nn8
m

~qk8ssI !

3bk1qls
† bk81qnsbk8n8sI

† bkl8sI , ~A2!

and

V252Ur 0N1Ud0

3 (
sll8

js(
k

F Mll8
m

~qkss!bkls
† bkl8s . ~A3!

Here 2r 0 andd0 are the average and alternating spin den
ties of the particles at a node;js5s/usu; and,k1q5k1q
1(p,p) i kqPF is the quasimomentum, normalized to th
magnetic Brillouin zone with the corresponding normaliz
tion index i kq . The functionsMll8

m (qkss8) are given by
Eq. ~17!. In particular, fors85sI 52s we obtain

Mll8
m

~qkssI !5S c1 jss1

2jss1 c1
D

ll8

d (2)~m1 i kq!

1S jss2 c2

c2 2jss2
D

ll8

d (2)~m1 i kq11!,

~A4!

where

c65cos~wk1q6wk!, s65sin~wk1q6wk!. ~A5!

Hered (2) is thed-functionmodulo2. The averagesr 0 andd0

are determined by standard methods.
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FIG. 10. First-order diagrams inU for the transverse polar-
ization operator.
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In the calculation of the commutator~22!, the contribu-
tion @q,V2# cancels with the corresponding terms in@q,V2#
asnkls→ f kls . The result can be explained in terms of t
language of diagrams in first order inU for the transverse
polarization operator.44 Thus, in the diagrams of Fig. 10, th
contributions from a and b cancel out and only the contri
tion from the ladder class c remains. The cross and squa
Fig. 10 correspond to interactions ofV2 and V4 , respec-
tively. Summing the ladder diagrams of all orders in t
basis of the zeroth-order HamiltonianHL and the perturba-
tion V gives a result identical to Eq.~23!.

It has been shown previously21–24 that this class of dia-
grams is insufficient if the zeroth-order basis$cks% of the
initial bandek is used with nesting and van Hove singula
ties from the four points A, B, C, and D:k5(6p,0), (0,
6p). However, in the basis~10! of split subbands, the zer
vertex parts for the points A, B, C, and D and all the nest
lines goes to zero for the dangerous diagrams. The la
include the diagrams with propagatorsG(klv)G(k8l8v8)
corresponding to a single subbandl5l8. ~For the interband
contributionslÞl8 the resulting energy denominator has
singularities owing to the Hubbard gapEk22Ek1.2Ud0 .!
In fact, for q50 or ~p,p! andk,k85k1q lying on the nest-
ing lines ukx6kyu5p, we have

wk5wk852p/4, c15s250, c252s151, ~A6!

which, with Eq.~61!, givesMll
m (qkssI )50 for thesek and

q. In this regard, we can limit ourselves to summing t
ladder diagrams with a zeroth approximation for the ver
part, which corresponds to the result~23! for the transverse
susceptibility. This is not surprising, since a new basis w
disrupted symmetry was chosen precisely to eliminate
instability with respect to the spin density waves observed
the first expansions with the original band.21–24

The calculations of the susceptibility for the longitudin
components of the spin and density similar to the derivat
of Eq. ~23!. Of these,

Bi j ~qv!5S ^^Sz~qv!;Sz~q!&& ^^Sz~qv!;r~ q̃!&&

^^r~ q̃v!;Sz~q!&& ^^r~ q̃v!;r~ q̃!&&
D

i j

,

qPF, i , j 51, 2, ~A7!

determined within the magnetic Brillouin zone and ana
gous to the correlatorsBi j (q̃v) for q̃5q1(p,p)¹F, are
nonzero. Repeating the derivation as for Eqs.~23!, we obtain
the following expressions for theBi j :

Bi j ~q,v!5
1

2
$@ I 2UB0s3#21B0% i j ~A8!

and
-
in

g
er

x

h
e
n

n

-

Bi j ~ q̃,v!5
1

2
$@ I 2Us1B0s1s3#21s1B0s1% i j . ~A9!

Here s1 and s3 are the Pauli matrices and the two
dimensional matrixBi j

0 is given by

Bi j
0 52

1

N (
ll8

( F

k

f k1q,l2 f kl8
Ek1q,l2Ekl82\v1 ig

Pll8
i j ,

where

Pll8
11

5S c2
2 s2

2

s2
2 c2

2 D
ll8

, Pll8
22

5S s1
2 c1

2

c1
2 s1

2 D
ll8

,

Pll8
12

5Pll8
21

5S c2s1 s2c1

2s2c1 2c2s1
D

ll8

,

c65cosw6 , s65sinw6 , w65wk1q6wk .

c6 , s6 , andwk are determined by Eqs.~62! and ~11!; Ekl

and f kl (l51,2) are the band energies and Fermi functio
of the upper and lower Hubbard bands. It is important t
the determinants of the matrices in parentheses in Eqs.~65!
and~66! do not go to zero asv→0. This means that there ar
no low-frequency collective fluctuation modes of the long
tudinal spin and density components.
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Thermodynamics of a vortex system in a thin superconducting film with radiation
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The effect of radiation defects on the thermodynamics of a system of Pearl vortices in a thin
superconducting film is examined. The scenario for a Kosterlitz–Thouless transition in
this system is shown to depend on the defect concentrationnd . At low concentrations, the
transition takes place continuously, while at high concentrations, a range of temperatures exists in
which there are two metastable states. The concentrations of free vortices and of vortices
captured by defects are calculated as functions of temperature for different defect concentrations
nd . A phase diagram is constructed for the vortex system in thend2T plane. © 1999
American Institute of Physics.@S1063-7761~99!02209-X#
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1. INTRODUCTION

In recent years there has been persistent interest in
search on layered superconductors with radiation~columnar!
defects.1–5 These defects are regions with sizes on the or
of the coherence lengthj of the superconductor, within
which superconductivity is completely suppressed. This
terest originates in the possibility of controlling the prope
ties of the superconductor by introducing this type of defe
which are efficient pinning centers. It has been shown1–3 that
the critical superconducting current can be raised sign
cantly by this method.

On the other hand, layered superconductors are sys
subject to strong influence by thermal fluctuations. Th
show up, for example, in the existence of the so-called
of irreversibility in layered superconductors,6 which is also
associated with the phenomenon of pinning. This is a line
the magnetic field–temperature plane, for which the mag
tization process in the superconductor becomes revers
when it is crossed. We believe that the reversible behavio
the magnetic flux in superconductors with pinning is rela
to a Kosterlitz–Thouless~KT! transition7,8 in a system of
magnetic vortices created by this flux.

KT transitions take place in two-dimensional systems
which topological defects with a Coulomb interaction c
exist. An example of a model two-dimensional superco
ducting system is layered superconductors without Jose
son coupling between layers with two-dimensional magn
vortices as topological defects. A KT transition in such
system is caused by two effects: an instability of the vor
dipoles against dissociation in the gas of free vortices wh
develops in the system above a temperature9,10

TKT5
f0

2

16p2L~TKT!
, ~1!

and collective effects in the system of free vortices. Heref0

is the quantum of magnetic flux,L52l2/s, l is the London
length, ands is the period of the layered system.
5771063-7761/99/89(9)/6/$15.00
e-

r

-
-
s,

-

ms
y
e

n
e-
le

of
d

-
h-
ic

x
h

A thin superconducting film of thicknessd!l is not a
strictly two-dimensional system. Vortices in these syste
were first examined by Pearl.11 The logarithmic interaction
of the vortices in a film is bounded by the large but fin
effective Pearl lengthL52l2/d. Nevertheless, it has bee
shown12 that processes can take place in a system of P
vortices which ensure that the system behaves in a ma
similar to a KT transition. These are the same instability a
collective effects which cause a KT transition in a tw
dimensional system. In a system of Pearl vortices, howe
the correlation length cannot exceedL, while in a two-
dimensional system it approaches infinity as the tempera
TKT is approached from above. Thus, the phenomena
Pearl film which are referred to as a KT transition are no
phase transition in the strict sense.

Since the thermodynamic behavior of systems of tw
dimensional and Pearl vortices is determined by the sa
processes, it is natural to expect that radiation defects
also have the same effect on this behavior. Their role is
capture and confine Pearl vortices, limiting their mobilit
The absence of a normal core in a vortex captured b
radiation defect makes this state more favorable energ
cally, and this has a fundamental effect on the course of
processes that create a KT transition in a defective super
ductor.

In this paper we examine the effect of radiation defe
on the KT transition in a thin superconducting film. It
shown that, depending on the defect concentrationnd , three
different scenarios for the phase transition can occur. For
nd , below a certain critical concentrationnd1 , the transition
takes place continuously as a second-order transition. At
termediate densities,nd1,nd,nd2 , there are two thermody
namically equilibrium states of the free vortices, individu
and collective. Here the phase transition takes place a
first-order transition and hysteresis should be observed in
temperature dependence of the resistance. At high de
concentrations,nd.nd2 , the lower stability boundary of the
metastable states is shifted almost toT50.
© 1999 American Institute of Physics
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2. FREE ENERGY OF THE VORTEX SYSTEM

We consider Pearl vortices as classical massless
ticles. They can be in a free state or be captured by radia
defects. In order to describe the partition function of a th
modynamic system of this type, one of two equivalent a
proaches can be used.

The free and trapped vortices can be treated as two
systems in thermal and chemical contact. The free vortice
such a system can appear and disappear through the d
ciation and recombination of vortical dipoles, and also sh
into or leave the subsystem of vortices that have b
trapped by defects. In equilibrium, the temperatures
chemical potentials of the subsystems are equal.

The other approach is to consider the processes ta
place in the vortex system as ‘‘chemical reactions.’’ In su
a system, the annihilation of two oppositely oriented fr
vortices or of a free and a trapped vortex can occur, as
the capture of a free vortex by an empty defect, as wel
‘‘reactions’’ in the opposite direction. Here a restriction
imposed on the system whereby the sum of the empty
fects,Nd0 , and of the defects that have captured a flux qu
tum,Nt11Nt2 , equals the total numberNd of defects in the
system.

We write the partition function of the vortex system in
film with defects by analogy with a chemical system. In
real film, the defects form a random configuration specifi
by the set of their coordinates$Ra%. Let there beN1 andN2

free vortices with the two orientations,Nt1 andNt2 vortices
captured by defects, andNd.Nt11Nt2 radiation defects.
The number of vortices must be subject to the condit
N11Nt15N21Nt2 , which follows from the conservation
law for topological charge. We shall not take this into a
count explicitly, since the symmetry of the equilibrium sta
of the system, which is all we are interested in, impose
more severe restriction:N15N2 and Nt15Nt2 . Then the
partition function is given by

Z~N6 ,Nt6!

5
1

N1!N2!Nt1!Nt2!

1

~Nd2Nt12Nt2!!

3exp$2b~N11N2!E0%Tr expH 2(
i j

bU~xi2xj !

2(
ia

bU~xi2Ra!2(
ag

bU~Ra2Rg!J . ~2!

Here the symbol ‘‘Tr’’ denotes a sum over all possible sta
of the vortices in the system:

Tr[S E dx

pj2D N11N2S (
Ra

D Nt11Nt2

,

whereb51/T, E0 is the energy of the vortex core,pj2 is
the size of the spatial cell occupied by a single vortex, andU
is the interaction energy of free vortices located at the po
xi with vortices captured by defects lying at the pointsRa .
The second cofactor in Eq.~2! is related to the identica
nature of empty defects, which we treat as one of the co
ponents of the chemical system and is simply 1/(Nd0!), in-
r-
n
-
-

b-
in
so-
t
n
d

ng
h
e
an
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d
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-

a
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ts
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cluding the restriction mentioned above. We have neglec
the contribution to the partition function from vortex dipole
associated with the polarization of the medium and the in
action of vortices with empty defects, which will be dis
cussed below.

The free energy of the system depends on the coo
nates of the defects and should be averaged over their p
tions. Only the configuration part of the energy needs to
averaged, since the entropy part is independent of the c
dinates of the defects. To calculate the configuration ene
we formally expand the exponent in Eq.~2! in a series. The
logarithm of the partition function is expanded in a series
connected diagrams.13 For a gas of free vortices, the integr
is taken over the positions of all the vertices in the diagram
If the film contains defects at the pointsRa , then diagrams
accounting for the interaction with the vortices trapped in
defects, whose coordinates are fixed, show up in the
quence. The energy of these configurations depends on
coordinate of the captured vortices and cannot be calcul
in general. In order to take the average of the configurat
energy, we propose that all the defects be distributed w
uniform probability over the entire plane of the sample,
dependently of one another. We take the average by integ
ing the series obtained formally above with respect to
coordinates of the trapped vortices and dividing each inte
by the areaS. As a result of this operation, the contributio
of the trapped vortices, which were attached to defin
pointsRa in a specific configuration, is formally included i
the free energy of the system on an equal footing with
contribution from the free vortices. The only difference
that the state of the vortices trapped by the defects is m
energetically favorable because of the zero energy of
core.

Now it is easy to calculate the free energy of the syst
of vortices. Since we are mainly interested in collective
fects in the vortex system, we restrict ourselves to summ
the sequence of ring diagrams.13

The characteristic feature of systems in which collect
effects predominate is that the integralJ5*drU(r ) corre-
sponding to the simplest diagram diverges.14 This means that
even for a low concentration of vortices it is impossible
limit ourselves to their interaction with a particular numb
of nearest neighbors, but the interactions of each with all
others have to be taken into account. The ring diagrams
the principal sequence in the expansion of the configura
energy in this case.

The situation is different when a vortex interacts with
empty defect. The interaction energy of a Pearl vortex w
an empty cylindrical defect has been calculated elsewhe15

It falls off with distance from a defect much more rapid
than the interaction energy with a vortex. In this case,
integral J converges and the configuration energy can
expanded in a series with respect to the concentration
vortices and empty defects. In the equilibrium equation
yields terms proportional to the concentrations, which
small compared to the logarithms of the concentrations
can be omitted. Thus, in order to simplify the formulas, fro
the beginning we neglect the contribution of the interact
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FIG. 1. The concentrations of free~smooth
curves! and defect-trapped~dashed curves! vor-
tices as functions of temperature in the case o
continuous transition a and the case of a firs
order transition b. The thin dashed horizont
line indicates the total vortex concentration i
the system for which the Debye shielding leng
d equals the Pearl lengthL.
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between the vortices and empty defects to the partition fu
tion.

The free energy of a system of Pearl vortices has b
calculated in the ring approximation.14 We need only replace
the vortex concentration in the configuration part by the s
of the concentrations of the free vortices and the vorti
trapped in defects. Introducing dimensionless notation
the concentrations of the vortices,n5(N/S)pj2, and the
free energy density,f 5(F/S)pj2, we write the free energy
of the system in the form

f 5n1~ ln n121!1n2~ ln n221!1nt1~ ln nt121!1nt2

3~ ln nt221!1~nd2nt12nt2!~ ln~nd2nt12nt2!21!

1p~n11n21nt11nt2!~12 ln 4p~n11n21nt1

1nt2!!1
1

4L2 G@16pL2~n11n21nt11nt2!#

1~n11n2!pe0 , ~3!

where

G@x#5
1

2
ln

x

4
1Au12xu 5 arctan

1

Ax21
2

p

2
, x>1,

1

2
ln

11A12x

12A12x
, x<1.

Herepe05bE0 andp5f0
2/16p2LT.

3. EQUILIBRIUM STATE OF THE VORTEX SYSTEM

A vortex system in a thin film is a system with a variab
number of particles. The equilibrium number of particles
such a system must be determined from the condition o
minimum free energy, while the equilibrium chemical pote
tial vanishes. Thus, we obtain the equilibrium condition
the system by equating to zero the derivatives of the f
energy with respect to the concentration of free vortices,n6 ,
and the concentration of vortices trapped by defects,nt6 :

ln n62p ln 4p~n11n21nt11nt2!14pG8

3@16pL~n11n21nt11nt2!#1pe050,
c-

n

s
r

a
-
r
e

ln nt62 ln~nd2nt12nt2!2p ln 4p~n11n21nt11nt2!

14pG8@16pL~n11n21nt11nt2!#50. ~4!

Subtracting the equation forn2 from that forn1 , we obtain
n15n2 in the equilibrium state. The two other equatio
give nt15nt2 . This reduces the number of equilibrium
equations to two. In the following we shall omit the ‘‘1’’
and ‘‘2’’ subscripts.

Subtracting the equation fornt from that forn, we ob-
tain a relationship between the concentrations of free
trapped vortices,

nt5
nnd

2n1e2pe0
.

This equation shows thatnt→0 if the concentrationn of free
vortices approaches zero more rapidly than the exponen
the denominator. If, on the other hand, the exponent is s
stantially smaller thann, then the vortices tend to fill all the
defects. A study of the equilibrium behavior of the vorte
system has shown that the first of these asymptotic prope
of the subsystem of trapped vortices shows up in the in
vidual vortices and the second in the collective state of
vortex system.

The solutions of this system of equations for differe
defect concentrationsnd are plotted in Figs. 1 and 2. Th
temperature variations in the concentrations of the f
~smooth curve! and trapped~dashed curve! vortices at rela-
tively low defect concentrationsnd,nd1 are discontinuous
@Fig. 1~a!#. A sharp change in the concentrations nearTKT is
associated with the development of an instability similar
that predicted by Kosterlitz and Thouless8 for strictly two-
dimensional systems. The same sort of instability is obser
in perfect films~dotted curve!, but when defects are prese
it is shifted toward low temperatures. It is caused by a tr
sition of the vortex system into a collective state charac
ized by a Debye shielding lengthd5j/A8p(n1nt) for the
vortex interaction that has become shorter than the effec
Pearl shielding lengthL and the interaction energy of tw
vortices that depends on the concentration of vortices in



e
e

t

h

m

c

e
o
o
t

t
a

c

and
the

at
uf-
lity
di-
te,
ta-

ra-
ning

the
the

ree
r

en
tion

is
n of
ch
ex is
be-
era-
cts

ays
of
.

f
s the
ys-
w-
ive
t a

ned

-

-
tly as

f
e-
ia-

in
a-

em.
i-
nd

y

580 JETP 89 (3), September 1999 A. N. Artemov
system. Here additional creation of new free vortices b
comes favorable, since the interaction energy of the vortic
decreases as their concentration rises.

In Figs. 1 and 2 the thin dashed lines represent the to
concentration of free and trapped vortices for whichd5L.
These lines arbitrarily separate the domains of the individu
~below! and collective~above! states of the vortex system.
The difference between these states is more quantitative t
qualitative. Debye and Pearl shielding always occur in a sy
tem and do not replace one another during a transition
another state. The question is merely one of which pheno
enon predominates. The arbitrariness of the KT transition
Pearl films is also related to this.

At intermediate defect concentrations,nd1,nd,nd2 ,
there is a range of temperatures within which the vortex sy
tem has two stable states@Fig. 1~b#, of which the lower state
corresponds to individual vortices and the upper, to colle
tive vortices. Thus, a sufficiently high concentration of radia
tion defects in a superconductor will stabilize the collectiv
state of the vortex system, since the number of trapped v
tices in this state is determined primarily by the number
defects, as discussed above. Within this range of concen
tions, hysteresis in the resistance that depends on the conc
tration of free vortices should be observed.

At very high defect concentrationsnd.nd2 , the left sta-
bility boundary of the metastable states shifts almost
T50. It can undergo a transition into the lower state only
very low temperatures. Figure 2 shows the temperature d
pendences of the concentrations of free and trapped vorti
in this case. Almost all the defects in the film in the collec
tive state have trapped a flux quantum apiece. Thus, the to

FIG. 2. The concentrations of free~smooth curves! and defect-trapped
~dashed curves! vortices as functions of temperature in the case of a hig
defect concentration in the system, i.e.,nd.nd2 . The thin dashed line indi-
cates the total vortex concentration in the system for which the Deb
shielding lengthd equals the Pearl lengthL.
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concentration of vortices~free and trapped! is rather high, in
order to ensure the collective behavior of the system,
depends weakly on the temperature. In this situation, as
temperature is lowered, the screening lengthd begins to de-
crease, since it is proportional toAT. As a result, the creation
of additional free vortices becomes energetically favorable
low temperatures, as Fig. 2 shows clearly. However, at s
ficiently low temperatures, the collective state loses stabi
and the vortex system undergoes a transition to the in
vidual state. The stability boundary of the collective sta
which shows up here, is not an extension of the lower s
bility boundary into the region of medium defect concent
tions discussed above. This can be understood by exami
the phase diagram of the vortex system in thend–T plane,
which will be discussed in the next section.

All three scenarios have a common feature related to
presence of defects. For arbitrary defect concentrations,
free vortex concentrationn, which is related to the resistive
behavior of a superconductor, is higher than in a defect-f
film and the jump in the resistivity is shifted toward lowe
temperatures.

This phenomenon can be explained as follows. Wh
there are no radiation defects, the equilibrium concentra
of free vortices develops because a dynamic equilibrium
established between the dissociation and recombinatio
vortex dipoles. Defects form an additional reservoir in whi
vortices can accumulate, since the state of a trapped vort
more energetically favorable than that of a free vortex
cause of the core energy. This means that at low temp
tures, when the system is in a state where collective effe
are negligible, the concentration of trapped vortices is alw
higher than that of free vortices, while the concentration
free vortices is only slightly higher than in a defect-free film
As the temperature approachesTKT , the concentrations o
both free and trapped vortices increase, and this enhance
influence of collective effects on the state of the vortex s
tem in both perfect and defective films. In the latter, ho
ever, the total vortex concentration is higher and collect
effects make the jump in the vortex concentration occur a
lower temperature.

The numerical solutions presented here were obtai
for a model film with the parameterse053, L/j5102 at
T50, andTc0 /TKT51.2. The critical values of the dimen
sionless defect concentration for these parameters,nd1

'0.03 andnd2'0.09, are fairly high. The critical concen
trations depend on these parameters and decrease sligh
the parameters are reduced.

4. PHASE DIAGRAM OF THE VORTEX SYSTEM

Knowledge of thend–T phase diagram of a system o
Pearl vortices in a superconducting film with radiation d
fects allows us to understand its behavior better. This d
gram~Fig. 3! was constructed from a study of the minima
the free energy~3!. It shows the phase transition curves sep
rating the stability regions of the various states of the syst

The dashed curve1–2 is the continuous ‘‘phase trans
tion’’ curve. The changes in the concentrations of free a
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e
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defect-trapped vortices on crossing this curve are show
Fig. 1~a!. To the left of it we haved.L and the system is in
the individual state~IS!. To the right we haved,L and the
energy of the interaction between two vortices depends
the concentration of free vortices; this is the collective st
of the system~CS!.

Above the point2 (nd.nd1), the phase transition curv
splits into two. On the smooth curve2–3, the individual state
of the system becomes stable, as well as the collective s
On the curve2–4, the collective state loses stability. Fo
nd.nd2 , the collective state remains stable at very low te
peratures up to curve5–6, where the system undergoes
transition into the individual state. The temperature dep
dences ofn andnt within these ranges of the defect conce
tration nd are plotted in Figs. 1~b! and 2.

Because of a weakening of the thermal fluctuations
the temperature is lowered, the collective state of the vo
system again becomes stable on the curve4–5, having lost
stability on the curve5–6. A transition of the system into
this state is improbable, since in thend2T plane it can only
move along a line parallel to the temperature axis. On
such line abovend1 the collective state is separated from t
individual state by an energy barrier.

We conclude by examining the reliability of these r
sults. The method used to obtain them is based on the L
don approximation for the vortex interaction energy and
gas approximation for calculating the partition functio
Both approximations assume a low vortex concentration,
2n12nt!1. This means that the method works poorly wh
the vortex concentration is such that the distance betw
them approaches the coherence lengthj. A situation of this
sort arises in the region of the high temperature plateau in
n(T) andnt(T) curves asT.TKT and in the collective state
of the system fornd.nd2 . Here the dimensionless conce
tration of the free vortices approachesn;0.1 and even ex-
ceeds it. Estimates show that the screening length for
vortex interaction in this region is comparable to and b
comes shorter than the coherence length. Under these c

FIG. 3. nd2T phase diagram of a system of Pearl vortices in a thin sup
conducting film with radiation defects. The curves in this diagram sepa
the regions in which stable individual states~IS!, stable collective states
~CS!, or two metastable states~2S! of the vortex system exist.
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tions, the magnetic interaction of the vortices ceases to
dominate and it becomes necessary to take into accoun
interaction of their normal cores owing to the nonuniform
of the absolute value of the order parameter. In addition
vortex system under these conditions should be regar
more as a liquid than as a gas. Thus, an accurate analys
the system in this region will go beyond the framework
the London approach and employ a Ginzburg–Landau
proximation, which is a much more complicated problem

Based on the simple physical arguments given above
may conclude that this approach yields a qualitative desc
tion of the behavior of a vortex system in these regions,
well. The existence of the curve5–6 on which the collective
state of the system loses stability is somewhat in doubt, s
the reasons for this behavior are unclear. We have prese
these results here, in order to illustrate all the answers
can be obtained using the model and techniques employe
this paper.

5. CONCLUSION

In this paper we have shown that radiation defects
have various effects on the properties of a thin supercond
ing film. On one hand, they cause pinning of magnetic v
tices and a rise in the critical current for the transition o
superconductor into the resistive state. On the other ha
radiation defects form a reservoir in which vortices that a
not bound in dipoles can accumulate and thereby expand
stability region for the collective state of the vortex syste
In the collective state the system contains a significant nu
ber of free~not bound in dipoles and not trapped by defec!
vortices, which are responsible for the resistive proper
and reversible behavior of the superconductor.

The behavior of Pearl vortex systems described here
lows us to reach several qualitative conclusions about
properties of superconducting thin films. The above disc
sion implies that, without an external magnetic field no s
nificant increase in the critical current should be observed
this case, the resistive behavior is associated, under the
fluence of the current with the motion of vortices that ha
entered from the edge of the sample. The current which
taches the vortices from the edge of the sample is of the s
order of magnitude as the current that detaches vortices f
defects. Thus, the behavior of defects should not radic
change the situation. On the other hand, there is a dro
temperature at which the film begins to manifest resist
behavior owing to a transition into the collective state.

In an external magnetic field at low temperatures,
increase in the critical current can be observed owing to c
ture, by defects, of vortices which enter the sample under
influence of the field. After the onset temperature for av
lanche growth in the vortex concentration is reached,
critical current should go to zero, since the number of fr
vortices increases rapidly. This is one of the possible mec
nisms for depinning, which converts a superconductor int
resistive state and ensures reversible magnetization of
sample. In the case of a first-order transition, two irreve
ibility curves can be seen, depending on the direction of
change in the temperature during an experiment. A dee
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understanding of the physical processes leading to the
pearance of an irreversibility curve will require an examin
tion of the thermodynamics of a vortex system in a defect
film placed in an external magnetic field and possibly a m
accurate accounting for the effect of thermal fluctuations
the behavior of the system.

These comments apply equally to layered supercond
ors, since the mechanisms responsible for the resistive
havior of a sample and its magnetization are the same a
a Pearl film.
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We use the generalizeds-model to analytically study the solution of the problem of magnon
scattering in two-dimensional isotropic ferromagnets and antiferromagnets in the
presence of a Belavin–Polyakov soliton. We obtain the exact analytical solution to this problem
for the partial mode with the azimuthal quantum numberm51. The scattering amplitude
for other values ofm ~i.e., values not equal to unity! are studied analytically in the long- and short-
wavelength approximations and also numerically for an arbitrary value of the wave number.
We establish the general laws governing the soliton–magnon interaction. For a magnetic material
of finite dimensions we calculate the frequencies of the magnon modes. We also use the
data on local modes to derive the equations of motion of the soliton. Finally, we calculate the low-
temperature~long-wavelength! asymptotic behavior of the magnon density of states due to
the soliton–magnon interaction. ©1999 American Institute of Physics.@S1063-7761~99!02309-4#
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1. INTRODUCTION

It is now firmly established that solitons play an impo
tant role in low-dimensional magnetism, i.e., in on
dimensional~1D! and two-dimensional~2D! magnetic mate-
rials. Studies began with the simpler 1D case. Krumha
and Schrieffer1 found that solitons~kinks! must be consid-
ered on an equal basis with magnons as elementary ex
tions in the derivation of the thermodynamics of 1D ma
netic materials. Currie et al.2 construct a consisten
phenomenological theory of solitons, in which a nontriv
fact was established, namely, that the kink–magnon inte
tion substantially alters the magnon density of states, wh
has an effect on the thermodynamic properties of the sys
In particular, the temperature dependence of the soliton d
sity is determined by the shift in the magnon phase in kin
magnon scattering and can vary substantially for magn
materials with different kink–magnon interactions.3,4

A special role in soliton phenomenology is assigned
local magnon modes, which are spin waves localized a
magnetic soliton. For instance, the number of such mo
determines the total variation of the magnon density of sta
and hence the temperature dependence of the kink den3

More than that, local modes are interesting objects by th
selves, and their study is linked to direct experiments in
citing and detecting them, since by characterizing the int
sic latent degrees of freedom of the soliton the local mo
are the cause of soliton magnetic resonance at the chara
istic frequencies of ‘‘intrinsic’’ motion.5

Important results in the soliton thermodynamics of 2
5831063-7761/99/89(9)/13/$15.00
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magnetic materials were obtained by Mertenset al.6 and in
the research that followed~see the review articles in Refs.
and 7!. In research devoted to 2D solitons, the density
solitons~vortices! was taken as an external parameter of
theory. This approach was also used in analyzing the dat
the experiments in which the contribution of localized 2
solitons to the relaxation of spin excitations w
observed.8–14 The main difficulty in analyzing 2D system
lies in the absence of exact analytical solutions for m
models. Usually the solitons are treated numerically by
agonalizing with respect to small discrete systems.15–18 In
such finite geometry the soliton–magnon interaction ma
fests itself primarily in the existence of specific Goldsto
local modes with anomalously low frequencies and in
excitation of magnon modes by soliton motion. Thanks
the reverse effect, it was possible to describe the dynam
parameters of a soliton by the data on local modes.19

In this connection, an important role is played by t
analysis of such 2D models for which analytical results c
be obtained and the general laws governing the solito
magnon interaction can be established. Only one exact
lytical solution of this type is known, the Belavin–Polyako
~BP! soliton, which describes a topological soliton in an is
tropic 2D magnetic material.20 The existence of local mode
in such a system was predicted in Ref. 21 for an isotropic
ferromagnet and in Ref. 22 for an antiferromagnet. In p
ticular, it was found that a BP soliton with a topologic
chargen has 2unu local modes of zero frequency~local zero-
frequency modes!.

In the present paper we construct a solution of the pr
© 1999 American Institute of Physics
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lem of scattering of magnons by a BP soliton in 2D magne
materials. In Sec. 2 we examine the generalizeds-model,
which can be used to describe ferromagnets and antife
magnets, as well as ferrimagnets near the point of comp
sation of the sublattice spins. In Sec. 3 we formulate
scattering problem for this model and obtain its exact so
tion for the partial mode with azimuthal quantum numb
m51. Sections 4 and 5 are devoted to calculations of
scattering amplitude for the other values ofm(nÞ1) analyti-
cally in the long-wavelength approximationkR!1 ~Sec. 4!
and numerically for arbitrary values ofkR ~Sec. 5!, wherek
is the wave number andR is the radius of the soliton core. I
the sections that follow we use the results to describe
various physical properties of solitons and local magn
modes. Section 6 deals with calculations of the frequenc
the magnon modes for a magnetic material of finite dim
sions. In the same section, using the data on local modes
derive the equations of soliton motion. In Sec. 7 we calcu
the magnon density of states for which the soliton–mag
interaction is responsible. In the Conclusion we discuss
different ways in which the theory could develop and t
possible applications.

2. THE MODEL. ELEMENTARY EXCITATIONS

A broad class of classical isotropic Heisenberg 2D m
netic materials can be described dynamically in terms of
classical unit vectorn of the order parameter, i.e.,nz

5cosu andnx1 iny5sinu exp$if%. The dynamics of a clas
sical ferromagnet is described by the Landau–Lifshitz eq
tion for the normalized magnetization,23 which acts as the
dynamic variablen. In a classical antiferromagnet, the d
namic variable is the antiferromagnetism vector, which in
long-wavelength approximation can be assumed to be a
vector. The dynamics of an antiferromagnet is described
the equations of thes-model of then-field.24,25

In the interests of generality we examine two types
magnetic materials within a unified approach, more p
cisely, on the basis of a generalizeds-model, whose La-
grangian in the 2D case can be written26

L5
A

2 E d2xH 1

c2 S ]u

]t D
2

2~¹u!21sin2 uF 1

c2 S ]f

]t D 2

2~¹f!2G2
2

D
~12cosu!

]f

]t J , ~1!

whereA5JS2, whereJ is the exchange integral andS is the
atomic spin. The specific type of magnetic material is de
mined by the relationship between the parametersc andD.
To describe a ferromagnet we must drop the second t
derivatives in the equations of motion, i.e., formally letc go
to infinity. The dynamic term in the Lagrangian of the ferr
magnet is of a purely gyroscopic nature, with the parame
D having the meaning of the spin stiffness of the ferrom
net. The dynamics of an isotopics-model describing an an
tiferromagnet has a Lorentz-invariant form with a charact
istic speed parameterc. For an antiferromagnet there is n
gyroscopic term~the coefficientD can be taken to infinity!.
Note that the generalizeds-model for finite D and c de-
c
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scribes a ferrimagnet near the point at which the mechan
moments of the sublattices are balanced. For such a mag
material the gyroscopic term has the same structure as
ferromagnet but is proportional to the small parameterS1

2S2)/(S11S2), whereS1 andS2 are the average mechan
cal moments of the sublattices.27,28

The simplest elementary linear excitations of a 2D is
tropic magnetic material that arise against the backgroun
the ground homogeneous state are the magnons belongi
the continuous spectrum. If we select the orientation of
order-parameter vectorn along the polar axis, we get mag
non solutions in the form of a circularly polarized waveu
5const!1, F5kr 2v(k)t. The dispersion law for a ferro
magnet is quadratic,vFM(k)5Dk2. For an antiferromagne
the dispersion law is linear,uvAFM(k)u5ck, and there are
two degenerate branches with opposite circular polarizatio
v56ck, which is equivalent to the possibility of linear po
larization of magnons.

The simplest static nonlinear excitations in the 2D ca
are the BP solitons,20

tan
u0

2
5x2unu, f05w01nx, x5

r

R
, ~2!

which, naturally, has the same form for a ferromagnet,
antiferromagnet, and a ferrimagnet. Herer and x are the
polar coordinates in the plane of the magnetic material,
integern is the topological charge of the soliton, andR and
w0 are arbitrary parameters.

The energy of such a soliton is given by the formula

E054pAunu ~3!

and is independent ofR andw0 . The ambiguity in the choice
of w0 is a characteristic feature of many models and a c
sequence of the isotropy of the Heisenberg exchange.
existence of an arbitrary parameterR ~the soliton radius! and
the fact that the energy is independent ofR are related to the
scale invariance of the static two-dimensionals-model.23

Obviously, this symmetry is broken in dynamics, with th
exception of the trivial case of a pure antiferromagnet a
translational motion, when everything reduces to Lore
transformations.

In analyzing the static solutions it is convenient to intr
duce the complex-valued order parameterw5(nx1 iny)/(1
2nz) and interpret it as a function of the complex variab
z5reix describing the position of a point in the plane of th
magnetic material. In terms of these variables, the st
equations of the s-model reduce to the self-dualit
equation29 ]w/]z50 or ]w/]z̄50. The BP soliton corre-
sponds to the simplest solution of this equation of the fo

w05Azn for n.0, w05Az̄2n for n,0. ~4!

There are also more general solutions to this equation of
form 5 f (z) or w5 f ( z̄), wheref is any analytic function of
the complex variablez. In particular, the static multisoliton
solution with the topological chargen depends on 2unu
parameters23 and can be written
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w5A
)k51

n ~z2ak!

)k51
n21~12bkz!

for n.0 ~5!

~constructing the same general solution forn,0 is a trivial
task!. The energy associated with this solution is determin
by ~3! and is independent of the parametersA, ak , andbk .
We associate the soliton center with the valueu5p, this
solution has~for different ak and bk! n solitons with unit
topological charges at the pointsz5ak . If all ak coincide,
then atbk50 the solution~5! coincides with~4! and de-
scribes one soliton with the topological chargen at point z
5ak . Thus, variations in the parametersak and bk has a
strong effect on the structure of the soliton but do not cha
its energy or topological charge. This means that a BP s
ton has extremely high internal degeneracy, which refle
the property of conformal invariance of the static tw
dimensionals-model.20,29 Hence a BP soliton consists of
set of local modes with a zero frequency. The explicit fo
of these zero-frequency modes can be obtained by var
~5! in the parametersak andbk . In the limit ak ,bk→0, the
soliton can be represented by the expansion

V[
w2w0

w0
5 (

m52n11

n
Am

zm for Am→0, ~6a!

or, introducing the deviationsu andf from the quantitiesu0

andf0 into the simplest equation~2!, by the formula

u2u01 i sinu0~f2f0!52
sinu0Am

~ z̄ !m
. ~6b!

This implies that there are 2unu independent types of sma
perturbations that do not alter the soliton energy. Their fo
is determined by the functionV}( z̄)2m}exp$imx%. This is
equivalent to the statement that 2unu local modes with a zero
frequency are associated with a BP soliton~see below!.

3. MAGNON MODES IN THE PRESENCE OF A SOLITON

To describe the magnon excitations that arise agains
background of a BP soliton, it is convenient to introdu
local coordinates$e1 ,e2 ,e3% characterizing the distribution
of the order parameter in a fixed soliton:e3 coincides with
the order parametern0 of the immobile soliton~2!, e1

5ey cosf02ex sinf0, ande25e33e1 . Then the linear oscil-
lations of the order parameter can be described in term
the projections ofn on the local axese1 ande2 : q5n–e1 and
m5n–e2 ~q and m/sinu0 are the small deviations fromu0

andf0 , respectively!.
The linearized equations forq andm can be represente

in the form of the system of equations

F2¹x
21

1

x2

]2

]x2 1U1~x!Gq1
2n

x2

3cosu0

]m

]x
1

R2

c2

]2q

]t2 1
R2

D

]m

]t
50,
d

e
li-
ts

g

he

of

F2¹x
21

1

x2

]2

]x2 1U2~x!Gm2
2n

x2

3cosu0

]q

]x
1

R2

c2

]2m

]t2 2
R2

D

]q

]t
50, ~7!

where ¹x
2[(1/x)]/]x(x]/]x) is the radial part of the

Laplace operator andU1(x)5(n/x)2cos 2u0 and U2(x)
5cotu0¹x

2u02(du0 /dx)2 are the ‘‘potentials.’’18,19 Using the
explicit form ~2! for the static solution, we can easily sho
that the ‘‘potentials’’ in both equations are the same. T
fact is unique for the isotropics-model. For instance, for
vortices in a magnetic material with easy-magnetizat
planes,18,19 the potentials differ substantially. The very fa
that the potentials are different not only complicates
analysis technically~in comparison to the ordinary Schro¨-
dinger equation! but also introduces serious problems.
particular, for systems of the form~7! with unequal poten-
tials U1 and U2 many general assertions of the type of t
oscillation theorem have yet to be formulated. In Ref. 18
was shown that equations of this form may have truly loc
ized states with an exponential decrease of the wave func
and energies inside the continuous spectrum, which is
bidden for equations of the Schro¨dinger form.

In the degenerate case considered here the mag
modes can be described by a single complex-valued par
eterC5q1 im, which obeys the second equation

F2¹x
21

1

x2

]2

]x2 1
n2

x2 cos 2u0GC2 i
2n

x2 cosu0

]C

]x

1
R2

c2

]2C

]t2 2 i
R2

D

]C

]t
50, ~8!

whose analysis is almost the same as that of the Schro¨dinger
equation. It is convenient to seek the solution of Eq.~8! in
the form of a partial-wave expansion:

C5 (
m52`

`

f m exp$ imx2 ivt%. ~9!

Here each partial wavef n is an eigenfunction of the spectra
problem

Ĥ f m5¸2f m , ¸5kR, ~10!

for the 2D radial Schro¨dinger operatorĤ52¹x
21Um(x)

with the potential

Um~x!5
m212mn cosu01n2 cos 2u0

x2 .

The spectrum of the problem~10! is continuous and is de
scribed by functions of the formf m

¸ , with ¸>0. Clearly, the
zero-frequency modesf m

0 correspond to solutions21

f m
(0)5x2m sinu0 . ~11!

These modes correspond to perturbations of the form~6!,
i.e., their presence is due to the conformal invariance of
problem. Here and below, for the sake of definiteness,
examine the case wheren.0, and to analyze solitons with
n,0 it is enough to replacem by 2m. This solution be-
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haves regularly asr→0 only for partial modes with2`
,m<n. A simple analysis of Eq.~11! shows that for2n
11<m,` the function f m

(0) , regular asr→0, also de-
creases far from the soliton. Hence for2n11<m<n these
functions are finite over the entire range ofr . This corre-
sponds to the earlier conclusion that a BP soliton with
topological chargen has 2unu local modes represented in~6!.
Note that the physical meaning of two of these modes
obvious: the translational modef m51

(0) describes the displace
ment of the soliton as a whole, and the rovibrational mo
f m50

(0) describes the rotation and change of the soliton rad
~which corresponds to an ambiguity in the choice of the
sition of the soliton center and to arbitrary values ofw0 and
R, respectively!. The established bound states~local modes!
are limits for the magnon modes of the continuous spect
as ¸→0, on contrast to the case of 1D magnetic mater
~see the review in Ref. 3!.

Using the standard method of varying the arbitrary co
stant, we can find the second linearly independent solutio
Eq. ~10! with ¸50:

f m
(1)5xmS x2n

m1n
1

2

m
1

x22n

m2n D sinu0 , ~12!

which is regular at zero whenm.n.
Thus, atv50 one of the solutions,~11! or ~12!, for all

m has no singularities at zero. We use this solution to a
lyze scattering at small~but finite! values ofv in the range of
small r .

The exact solutionsf m
(0) that have been found can b

used to simplify the problem of the analysis of the contin
ous spectrum on the basis of the Darboux transformatio30

The same approach has been used in Refs. 31 to study th
case. To explain the method, we introduce the Hermiti
conjugate lowering and raising operators

Â52
d

dx
1

f m
(0)8

f m
(0) , Â†5

d

dx
1

1

x
1

f m
(0)8

f m
(0)

such thatÂf m
(0)50 ~here and in what follows a prime stand

for a derivative with respect tox!. By introducing these op-
erators we can represent the Schro¨dinger operatorĤ in the
factorized form Ĥ5Â†Â. What is important is that this
makes it possible to reformulate the initial problem~10! in
terms of the eigenfunctionsgm

¸ 5Âf m
¸ of the spectral problem

of the form

Ĥgm5¸2gm , Ĥ[ÂÂ†52¹x
21Um , ~13!

where the potential is

Um~x!5
~m21!21n212n~m21!cosu0

x2 .

Note that far from the soliton~as u0→0! the potentialUm

becomes the centrifugal potential of the form (n1m
21)2/r 2, which depends explicitly on the azimuthal numb
labeledm21, which explains the terminology used for th
operatorsÂ and Â†.

The initial functionf m is restored by applying the raisin
operator:
a

is

e
s
-

m
ls

-
of

a-

-

1D
-

r

f m
¸ 5

1

¸2 Â†gm
¸ . ~14!

The transformation we have just carried out simplifi
the problem for the translational mode (m51) substantially.
Indeed, in this caseU1(x)5n2/x2 for all values ofx, i.e.,g1

¸

determines the free motion. In view of this, the regular so
tion has the formg1

¸52Jn(¸x). Restoring the initial func-
tion by ~14!, we get

f 1
¸5Jn11~kr !2

2n

kr

Jn~kr !

~r /R!2n11
. ~15!

The existence of this exact solution for all values of t
wave vectork is a unique property of the model~1!. For
other values ofm ~as earlier, for the case of magnon scatt
ing by magnetic vortices in ferromagnets19 and
antiferromagnets18 with planes of easy magnetization!, the
problem can be solved only approximately or by numeri
methods.

The solution~15! demonstrates an important feature
magnon modes, which is absent in the cases discusse
Refs. 18 and 19, where the exponential decrease of the
viation of magnetization from the easy-magnetization pla
in a vortex far from the vortex center is a characteristic fe
ture. Equation~15! shows that the deviation off 1

¸ from the
asymptotic termJn11(kr) is not localized in a region with a
definite radius; instead it is characterized by a slow
~power-law! decrease. More than that, for the most intere
ing cases of long-wavelength asymptotic behavior, fork
!1/R, the solution~15! over a broad range of values ofr , or
R!r !1/k, has the same form as a combination of Bes
and Neumann functions, Jn11(z)}zn11 and Nn11

}z2(n11), i.e., the second term in~15! imitates the presence
of the function N. ~Below we will see that this property
remains valid for all values ofm.)

For magnetic vortices, the corresponding corrections
exponentially decreasing functions of the form exp$2r/rv%,
wherer v is the radius of the vortex core. In view of this, th
scattering amplitude, i.e., the coefficient of the Neuma
function, can be determined from the coefficient of 1/zm in
the region wherez!1. This is not true, however, in our cas
with the result that the method developed in Ref. 19
magnetic vortices and used to analyze the scattering ma
by analyzing the corrections to the zero-frequency mode
the regionr v!r !1/k needs to be thoroughly modified1! if
we wish to use it in our problem. This modification is don
in Sec. 4.

On the other hand, the terms with a power-law decre
of the form 1/r a, a.1/2, must be taken into account whe
we describe the properties of magnon modes in a magn
material of finite size with a soliton. This is done in Sec.

4. SCATTERING IN THE LONG-WAVELENGTH LIMIT

To describe the scattering of magnons by a BP solit
we note that free magnon states can be found if we sen
50 in the ‘‘potential’’ Um(x). The resulting magnon mode
f m,n50

¸ 5Jm(z), with z5kr, are the partial cylinder waves o
a plane spin wave of the form
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exp$ ik–r2 ivt%5 (
m52`

`

i mJm~z!exp$ imx2 ivt%. ~16!

In the presence of a soliton the behavior of the magn
solutions can be analyzed at large distances from the so
(r @R). In view of the asymptotic behaviorUm(x)'n2/x2,
in the leading approximation in 1/x we have the usua
result21

gm}Gm~z![Junu~z!1sm
n Nunu~z!, n5n1m21,

f m}Fm~z![Jupu~z!1sm
n Nupu~z!, p5n1m ~17!

~below we also use the notation involvingn and p, and
Gm(z) andFm(z) for the combination of cylinder function
of the specific form presented in~17! with allowance fors!.
A comparison of the asymptotic behaviors ofGm(z) and
Fm(z) with each other and with the solution~16! for free
magnons suggests thatsm

n [sm
n (¸) determines the soliton–

magnon scattering amplitude. Since the coefficientss are the
same forFm and Gm , to calculate the scattering amplitud
sm(¸) we can use the initial problem or the modified pro
lem. In particular, there is no scattering for the translatio
mode. Unfortunately, there is no way in which we can fi
analytical solutions for the other modes, but the scatter
can be analyzed fairly thoroughly in the limiting cases.

To analyze soliton–magnon scattering in the case
small k, we can use the fact that atk50 we know the exact
solutionsf m

0 : ~11! for m<n and~12! for m.n. In this case,
we can construct the solution for small but finitek(k!1/R)
by using a perturbation-theory expansion ink2. To this end
we seek the solution in the formf m

¸ 5 f m
0 (11¸2a(x)), where

¸2a(x)!1. The functiona(x) is determined by an inhomo
geneous second-order linear equation, whose solution ca
found by the method of variation of the arbitrary constan
the two linearly independent solutions of the homogene
problem are known. For a magnetic material with ea
magnetization planes this can be done only for the tran
tional mode.19 In the case of an isotropic magnetic mater
the solutions can be found by this method for arbitrary v
ues ofm ~see Refs. 32 and 22!.

In deriving a specific solution it is convenient to emplo
the modified problem by using the first-order equati
Â†gm

¸ 5¸2f m
0 , where f m

0 is the zeroth solution, bounded a
x→0. Whenm<n, the functionf m

(0) is such a solution, from
which we easily find that

gm
¸ 5

¸2

x fm
(0) F (0)~x!,

F (0)~x!5E
0

x

~ f m
(0)~j!!2jdj, for m<n. ~18a!

The same formulas can be used to readily restore
explicit form of the solutionf m

¸ of the initial problem:

f m
¸ ~x!5 f m

(0)~x!F12E
0

x gm
¸ ~j!

f m
(0)~j!

djG . ~18b!

Analysis of this solution has shown that in a broad interva
r values, 0<r !Rs(1/k)12s ~the values of parameters are
n
on

l

g

f

be
f
s
-
a-
l
-

e

f

between 0 and 1 and depend onm!, the addition to the zeroth
solution f m

(0) is small and perturbation-theory techniques c
be used.

The same laws stand for the magnon mode withumu
51 scattered by a vortex in a magnetic material with ea
magnetization planes.19 Since the deviations from the
asymptotic solution were found to be exponentially sma
both solutions are valid forR!r !1/k, the asymptotic solu-
tion ~18b! and of the form~17!. This made it possible to find
the coefficient of the Neumann functionNunu(kr) ~with al-
lowance for the fact thatNunu(kr)}(kr)2unu where kr!1!
and to write an analytical formula fors umu51(k). In our case,
however, the situation is more complicated. As noted in S
3 in the discussion concerning the exact solution~15!, the
asymptotic solutions far from the soliton contains correctio
that decrease by a power law. Although they do decre
faster than the asymptotic solution~18b!, it is very important
to account for them. In particular, they may have the sa
form as the Neumann function forz!1.

Thus, to calculate the scattering amplitude we must co
pare the approximate solution~18b! not with the asymptotic
form ~17! but with the refined solution that allows for term
increasing by a power law far from the soliton. FormÞ1 the
corrections can be expressed by exact formulas, but they
easily be calculated in the long-wavelength approximat
k!1/R, where we can assume thatkR!z5kr!1.

To do this, we introduce the variablez5kr5¸x into Eq.
~13!. Then the combination (R/r )n in u0(r ) becomeş n/zn

and vanishes for finitez as ¸→0. Hence in the limit¸
5kR→0 Eq. ~13! simply becomes a Bessel equation wi
the solution~17!, and the corrections can be found by a s
ries expansion in powers of (¸/z)n. Keeping only the first
nonvanishing approximation iņ n and representing the
asymptotic solution in the formgm

¸ (z)5Gm(z)1G n,m
¸ (z),

we arrive at the inhomogeneous Bessel equation

¹z
2
G 1S 12

n2

z2 D G 5
4n~12m!

z2 S ¸

2D 2n

Gm .

We see that to this accuracy the solution far from the soli
can be expressed in terms of the universal functionG unun(z),

gm
¸ ~z!5Gm~z!14n~m21!¸2nG unu,n~z!, ~19!

which can be found by solving an equation of the form

¹z
2
G unu,n1S 12

n2

z2 D G unu,n52
Gm

z2(n11) .

Using the standard method of variation of an arbitrary co
stant, we can write the solution of this equation in integ
form:

G unu,n~z!5
p

2
Nunu E

z

` Gm~z!Junu~z!

z2(n11) dz

2
p

2
Junu E

z

` Gm~z!Nunu~z!

z2(n11) dz. ~20!

Here integration can be carried out exactly, and atunu5n the
answer isG n,n52gn

(0)/8n2z2n.
But if unuÞn, we have the recurrence relation



.e

e
ar

b

th
o

o

h

ro

ust

ude

ring

rs.

i-

the

ly

588 JETP 89 (3), September 1999 Ivanov et al.
G unu,n5G n21Aunu,n1Bunu,n ,

Aunu,n[
2n21

2n~n22n2!
, Bunu,n[

zgn21
(0) 1~n2n!gn

(0)

4n~n22n2!z2n ,

which yields

G unu,n5G 1 )
k52

n

Aunu,k1 (
k52

n21

Bunu,k )
i 5k11

n

Aunu,i1Bunu,n .

Limiting ourselves to corrections to the Bessel function, i
taking Gm5Junu in ~20!, we arrive ~after involved calcula-
tions that use the properties of cylinder functions! at an ex-
pression forG 1 :

G unu,1~z!52
Junu~z!

4~n11! F 1

z2 1
ln~z/2!2c~ unu11!

n~n11! G
1

Junu21~z!

4z~n221!
1

1

4unu~n221!

3 (
k51

`

~21!k
~ unu12k!Junu12k

k~ unu1k!

1
pNunu~z!

8unu~n221!
, ~21!

wherec(x) is the Euler psi function.
Thus, as with the exact solution~15!, the asymptotic

behavior of the solution forr @R differs from that in mag-
netic materials with easy-magnetization planes discussed
lier. Even ifs50, i.e., there is no scattering, in the region f
from the solution but withr finite (R!r !1/k), the solution
contains a number of terms that formally diverge asz→0
(kr!1). In this case, forsÞ0, in the regionR!r !1/k of
interest to us, the solution of the scattering problem can
written

g~z!}Junu~z!14n~m21!¸2nG unu,n~z!1sNunu~z!. ~22!

Here we did not include the corresponding corrections to
Neumann function, since we can easily show that they c
tain higher orders of̧ and are unimportant.

By comparing the approximate solution~18! valid for
0,x!1/̧ with the solution~22! valid for 1!x!1/̧ we can
now find the scattering amplitudesm(¸). In analyzing this
problem it is convenient to examine the different ranges
variation of the parameters separately.

1. The caseunu,n incorporates both local modes wit
their numbersm taken from the interval2n11,m,1 (0
,n,n) and nonlocal modes for which22n11,m,2n
11 (2n,n,0). In finding the asymptotic solution~18a! of
the equation we realize that far from the soliton the ze
frequency modes have the form

f m
(0)'

2

xn11 S 12
1

x2nD . ~23!

Hence we arrive at an approximation forF (0)(x) in the im-
portant regionx@1:

F (0)~x!'F02
2

n
x22n1

4

n1n
x22n22n,
.,

ar-

e

e
n-

f

-

F05
2p~n2n!

n2 sin~pn/n!
, ~24!

where the contribution of the constantF0 is crucial when
n.0 but is a small correction whenn,0.

Integration in~18a! with the use of~23! and~24! leads to
an expression forgm

¸ :

gm
¸ ~x!}F0xn2

2

n
x2n. ~25!

Here we have ignored terms of the formx22n in comparison
to x22unu.

Let us compare the asymptotic solution we have j
found with the solution~22! of the scattering problem. Using
the expansion of cylinder functions for small values ofz and
comparing the resulting asymptotic expressions, we concl
that the termxunu in ~25! is related to the Bessel functionJunu ,
while the termx2unu is related to the Neumann functionNunu
and determines the scattering amplitudes. A simple com-
parison leads to an asymptotic expression for the scatte
amplitudes:

sm
n ~¸!5

p~nF0/2!n/unu

unu! ~ unu21!! S ¸

2D 2unu

, ~26!

with 22n11,m,1 andmÞ2n11. Note that allowance
for the correctionsG unu,n leads to a contribution tos of order
¸2n, which is insignificant in the given range of paramete

2. The caseunu.n is realized form,22n11 andm
.1. Integration in~18a! with the use of the same approx
mations~23! and ~24! leads to the asymptotic solution

gm
¸ ~x!}xunuS 11

n1unu
n1n

x22nD , ~27!

in which only the leading corrections in 1/x are retained.
The asymptotic expression~27! is valid for m<n, when

the zeroth solutionsf m
0 are described by the functionsf m

(0) . A
similar calculation can be done form.n, where for the ze-
roth functions we usef m

(1) :

gm
¸ 5

1

x fm
(0) ~12¸2F (1)~x!!,

F (1)~x!5E
0

x

f m
(0)~j! f m

(1)~j!jdj for m.n. ~28!

Calculating the integral in~28!, we arrive at the asymptotic
expression~27! for n.1. For n51 the asymptotic solution
for modes withm.1 is

gm
¸ ~x!}xmS 11

1

x2 2
¸2

m~m11!
ln xD . ~29!

Thus, the asymptotic solutions~27! and~29! obtained for
unu.n differ dramatically from the earlier solution~25!: the
solutions ~27! and ~29! do not contain terms of the form
1/xunu and hence cannot yield an asymptotic expression of
form Junu1sNunu . This is possible only if in the solution~22!
the correctionG unu,n is balanced by the scattering termsNn .
Note that this is an extremely stringent condition: not on
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must the terms 1/xunu be balanced but also all terms of th
form x2k/xunu, where 0<k<unu21. Allowing for the term in
G unu,n related toNn @see~21!#, we get

4n~m21!¸2n
pNn

8n~n221! )
k52

n

Ak1sNn50,

which yields a formula for the scattering amplitude:

sm
n ~¸!5A m

n S ¸

2D 2n

, 22n11,m,1, mÞ2n11,

A m
n 52

p2n~2n21!!!

~n21!! umu~m11!...~m12n21!
. ~30!

3. The special casesunu5n and unu50 where the solu-
tions ~30! and ~26! become invalid include the translation
mode (m51), the local mode withm52n11, and the non-
local mode withm522n11. For the translational mode th
exact solution~15! yields s50. A calculation done on the
basis of~18a! and a comparison of the results with the so
tion ~22! of the scattering problem lead in the other two ca
to the following asymptotic expressions fors:

sm
n ~¸!5

p

2 ln~1/̧ !
, m52n11, ~31!

sm
n ~¸!5

4p

@~n21!! #2 S ¸

2D 2n

ln
1

¸
, m522n11. ~32!

The above analysis of scattering in the long-wavelen
limit makes it possible to calculate the scattering amplitu
in the long-wavelength approximation, i.e., fork!1/R. At
this point in our discussion, several general remarks conc
ing the nature of soliton–magnon scattering are in order

It was found that ask→0 the scattering amplitude
sm(k) tends to zero for all values ofm andn. In most cases
the amplitudesm(¸) given by Eqs.~30! and~26! is a regular
function of ¸. In contrast to~30! and ~26!, for parameter
values specified by~31! and ~32! there exists a derivative
dps/d¸p that has a singularity. The order isp51 for
m52n11, with the scattering being at its maximum. Su
nonanalytic behavior ofs(k) was detected in the numerica
analysis of scattering of magnons withm50 by a vortex in
an antiferromagnet with an easy-magnetization plane don
Ref. 18 ~see also Ref. 32!. The scattering intensity~in con-
trast to the case of magnetic vortices discussed in Refs
and 19! is not at its maximum for partial waves with smalle
values ofm (m561,0).

The very fact that for a partial wave with a givenm the
limit point k50 serves as the local zero-frequency mode
not critical for the scattering intensity. In particular, th
mode withm51 ~the well-known translational mode! does
not undergo scattering.

We also note that for the case of scattering by a
soliton there are no simple relationships that link the scat
ing intensities form51umu andm52umu. For scattering of
magnons by a vortex in magnetic materials with ea
magnetization planes, such relationships were establishe
numerical analysis: for antiferromagnetssm

n (k)5s2m
n (k)
-
s

h
e

n-

in

18

s

P
r-

-
by

~Ref. 18!, while for ferromagnetssm
n (k) ands2m

n (k) can be
obtained from each other by changing the sign of the m
non frequency~Ref. 19!

In conclusion of this section, we give the general so
tion of the problem of the scattering of a plane spin wave
a BP soliton. It is convenient to formulate the solution

terms of the variableC̃5C exp$inx%, which becomes (nx

1 iny)exp$2ivt% as r→` and describes a spin wave prop
gating against the background of the homogeneous state
niez . The need to pass fromC to C̃ can be explained by the
fact that although far from the soliton the magnetization
homogeneous,e3iez, the unit vectorse1 ande2 depend onx.
With allowance for~9! and~17!, the asymptotic solution for
r @R can be written

C̃5 (
m52`

`

Cm~Jn~kr !1sm
n ~¸!Nn~kr !!exp$ inx2 ivt%,

~33!

wheren5n1m, and theCm are arbitrary constants. Usin
asymptotic expressions for the cylinder functions in the
gion r @1/k and selectingCn on the basis of a comparison o
~33! with the asymptotic expression~16! for free motion, we
can write the general solution of the problem of scattering
a plane spin wave:

C̃5Fexp$ ik–r%1F ~x!
exp$ ikr %

Ar
Gexp$2 ivt%,

F ~x!5
exp$2 ip/4%

A2pk
(

m52`

`

~exp$2idm
n %21!

3exp$ i ~n1m!x%. ~34!

In ~34! we have introduced the scattering phasedm
n (¸),

which is related to the scattering amplitude by the sim
formula s52tand.

The total scattering cross section is given by the form

%5E
0

2p

uF u2dx5 (
m52`

`

%m ,

where the%m5(4/k)sin2 dm
n are the partial scattering cros

sections.
As noted earlier, for smallk, the maximum scattering is

related to the local mode withm52n11, for which, ac-
cording to~31!, the scattering phases5p/2 ln¸. Hence, in
the leading approximation ink it is enough to limit oneself to
the contribution of this mode, with the result that we arrive
an expression for the scattering function of the form

F ~x!'Ap

2k

exp$ i ~x1p/4!%

ln kR
, k! 1/R . ~35!

In this approximation the scattering is isotropic (uF (x)u is
independent ofx!. The corrections to this expression are
order 1/(kR)2n11/2 and are important only for determinin
the anisotropy ofF (x).

The total scattering cross section~which has an inte-
grable singularity! in the limit ¸→0 is given by the formula
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%~¸!'
p2

k ln2 kR
, k! 1/R . ~36!

5. ANALYSIS OF SCATTERING DATA FOR MODERATE
VALUES OF k

The scattering can also be treated analytically in
short-wavelength limit,k@umu/R. It is natural to assume tha
in this case the problem can be analyzed in the quasiclas
approximation, which yields

gm
¸ }Ap~x!

x
cosFconst1E

x0

x

p~j!djG ,
p2~x!5¸22Um~x!1

1

4x2 . ~37!

Indeed, analysis shows that~37! is valid for all values ofz
5kr larger than the coordinate of the turning point,z0

5¸x0 , which corresponds to the conditionp(x0)50. The
value ofx0 is small,x0;umu/¸!1.

On the other hand, at small distancesr !R (x!1) the
‘‘potential’’ Um has the asymptotic formUm'(n2m
11)2/x2, i.e., it describes free magnons of the form~16!
with a mixed index:

gm}Jun2m11u~z!, f m}Jun2mu~z! for r !R.

For k@umu/R, there is a broad range of values ofr , umu/k
!r !R, in which we can limit ourselves to the asymptot
expression for the Bessel function in the limitz@1 and z
@umu:

gm
¸ }Jun2m11u'A 2

pz
cosS z2

1

2
un2m11u

2
p

4
1

4~n2m11!221

8z D . ~38!

To within terms of order 1/z2, the solutions~37! and
~38! coincide in the entire range of parameter overla
Hence, doing the asymptotic expansion of~37! far from the
soliton, we arrive at the short-wavelength asymptotic expr
sion for the scattering amplitude:

sm
n ~¸!'

p~m21!

sin~p/2n!

1

¸
, ¸@umu. ~39!

Most importantly, this formula reproduces a property
the exact solution~15! according to whichsm

n 50 holds at
m51. More than that, the scattering amplitude asympt
cally tends to zero as 1/¸ for all mÞ1, with the s being
equal in absolute value but having opposite signs for mag
modes withm5umu and m52umu12. Below we will see
that this result plays an important role in the analysis
density of magnon states in a 2D magnetic material.

Now we can compare the scattering amplitudes in
long- and short-wavelength limits. Clearly,s→0 in both
cases, but the signs ofs(¸) for ¸→0 and¸→` are oppo-
site. This situation is characteristic of magnon scattering b
1D soliton in the sine-Gordon andf4 models and of the
Landau–Lifshitz equation~see the review article in Ref. 3!.
It can be assumed that for a certain finitek5kp the scattering
e

cal

.

s-

f

i-

n

f

e

a

amplitude has a pole. Naturally, there is no real divergenc
this pole: the physically observed scattering phasedm

n varies
monotonically. The existence of a pole means that the t
increment of the scattering phase,d(`)2d(0), is finite. Ac-
cording to numerical calculations for a soliton with a top
logical chargen51, this increment is equal top ~to within
sign!, i.e., each mode is associated with a single pole. Suc
singularity manifests itself in the analysis of the number
magnon degrees of freedom~see Sec. 7!.

To analyze the intermediate valueskR;1, we solved the
scattering problem numerically. The calculations were do
by numerical integration of the spectral equations for
initial problem @Eq. ~10!# and the modified problem@Eq.
~13!# within a broad range of values ofkR and m: 1023

,kR,103 and220<m<20 ~the results of each calculatio
agree with what was said earlier!. Basically we are interested
in case withn51, where the soliton energy is at its min
mum. However, some data were obtained forn52, 3, and 4,
too.

Numerical calculations verified the long- and sho
wavelength asymptotic expressions for the scattering am
tude given above. In the intermediate region of wave-vec
values,k;1/R, there are poles in the scattering amplitud
at k5k1p for all the modes in question~Fig. 1 depicts the
data for the modes with different values ofm in the case of
a soliton withn51!.

Let us discuss the problem of the position of the poles
the scattering amplitude in greater detail. According to
numerical data atn51, for all mÞ1 there is only one pole a
k5kp . Here kp increases withumu, and the functionskp

5kp(m) are different form51umu and for m52umu ~the
reader will recall we are dealing with solitons withunu51!.
For very large values ofumu the pole goes to infinity~Fig. 2!.
The situation becomes more complicated whenn.1. More
precisely, preliminary numerical data show that for a giv
m there can be several poles, with their numberNm not ex-
ceedingn.

For comparative analysis of the scattering of modes w
different values ofm, we write explicitly the asymptotic ex-
pression for the scattering phase atn51:

FIG. 1. Plots ofdm vs. kR for n51, labeled with the corresponding value
of m. The dashed straight lines drawn through the valuesudmu5p/2 desig-
nate the positions of the poles of the scattering amplitude.
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d~¸!'H p sgnmS 12
¸2

2m~m11! D , ¸!1, mÞ21,0,

p~12m!

¸
, ¸@umu.

~40!

Assuming that these equations are valid at least qualitati
and settinģ ;1, we can make a rough estimate of the p
sition of the pole by equating the values ofd(¸) for ¸!1
and for ¸@1. This yieldskp'umu/R for umu@1. Such an
estimate reproduces fairly accurately the linear increase ikp

as a function ofumu for large values ofumu ~see Fig. 2!.

6. MAGNON MODES IN A MAGNETIC MATERIAL OF FINITE
SIZE

The foregoing analysis of the scattering problem in
long-wavelength limit can be used to study the natural m
non modes in a magnetic material of a finite surface a
containing a soliton. Such a problem plays an important r
in many applications. Firstly, its solution can be used to
scribe analytically the data obtained through computer sim
lations of soliton motion, which are always done for syste
of finite dimensions. In particular, in Refs. 33 and 19, th
approach was used to describe the dynamics of a vortex
ferromagnet with an easy-magnetization plane and to ve
the non-Newtonian equations of motion containing third d
rivatives of the vortex coordinates with respect to time. S
ondly, as noted earlier, this calculation can be used dire
to describe the natural modes for the small particles of
magnetic material, which are in what is called the vort
state.34

We begin with the simplest case of the magnon mode
a circular system with a finite radiusL and a soliton at the
center. We discuss both the Dirichlet boundary condition

C~r ,x!ur 5L50, ~41!

which correspond to a fixed value of magnetization at
boundary, and the Neumann boundary conditions

FIG. 2. The positions of the poleskp as a function of the mode numberm at
n51. Then correspond tom.0 and thes to m<0.
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]C~r ,x!

]r U
r 5L

50, ~42!

which model the case of free boundary conditions. There
no difficulty in extending these results to the case of gene
boundary conditions, but we do not do this here. The m
non spectrum in such a system is discrete. In the absenc
solitons, the characteristic wave numberskm,i are equal to
j m,i /L, wherej m,i is thei th zero of the Bessel functionJm or
the derivative of this function for the case~41! or ~42!, re-
spectively.

In a magnetic material with a BP soliton, whenk is
large, we can ignore the local part of the function and wr
Jn(kL)1s(k)Nn(kL)50. It is natural, then, to expect th
same behavior fromk, i.e.,k5 j /L, wherej lies between the
values of the corresponding root of the Bessel or Neum
functions or the derivatives of these functions.

However, for 2n,m<n, i.e., in the case of zero
frequency modes, the symmetry of the problem is high~scale
invariance is restored!. Hence we should expect the occu
rence of Goldstone modes. In an unlimited~infinite! mag-
netic material, the frequencies of the Goldstone modes
zero, while in the presence of a boundary these modes m
fest themselves as modes with very low frequencies,
kL!1. In particular, such modes arise for a vortex in a f
romagnet with an easy-magnetization plane in the c
whereumu51, which corresponds to translational motion
the vortex. For this mode,k;r v /L2!1/L, wherer v is the
radius of the vortex core. Since in this case the solution
approximated by~17! with an exponential accuracy even fo
r .r v , the existence of Goldstone modes is determin
solely by the scattering matrix.

When we are dealing with a BP soliton, in the analy
of Goldstone modes it is not enough to limit oneself to
solution in the form~17! corresponding to the scatterin
problem—one must also allow for the local part of the so
tion. The corresponding calculations are so tedious tha
studying Goldstone modes it is more convenient to deal w
the long-wavelength asymptotic expressions derived ear
the expressions are valid forr !1/k, i.e., forkr,kL!1. It is
this region that is so important in the analysis of such mod
Note that no Goldstone modes are present in the modi
problem ~the long-wavelength asymptotic expression~18a!
has no small parameter, with the result that the bound
conditiongm

¸ 50 leads only to the solutionk;1/L!.
In analyzing the Goldstone modes it is convenient

return to the initial problem for the functionf m
¸ . In this range

of values of k, it is only natural to use the approximat
expression~18b! for f m

¸ . The analysis done using this ex
pression shows that Goldstone modes occur only in the
gion where local modes exist. In the case of the Dirich
boundary conditions, the spectrum of the Goldstone mod
which can be found from the conditionf m(kL)50, has the
form



ee
ar

b
h

a

ith

f

a
ta
m

su
al
-
by
ie
li

th
di-

ca
n
old
tio

or

g

l

lead
-

ly.
en-

ry
e.

lts
ical

by
ns
,
ton

the

f
he

re-

res-
2D

de
fol-
ui-
.
ing
.

e

ing
ef-

592 JETP 89 (3), September 1999 Ivanov et al.
kL55 2nA11n

n2n

sin~pn/n!

p S R

L D n

, 2n11<m<n,

A 2

ln~L/R!
, m52n11.

~43!

The situation is somewhat more complicated for fr
boundary conditions. In particular, with Neumann bound
conditions, the solution~18b! does not allow for states with
kL!1. In this case, however, we can derive a solution
using a cylinder function of imaginary argument, whic
yields v5Dk2,0 for the case of a ferromagnet orv2,0
for an antiferromagnet. Below we discuss the physical me
ing of negative values ofv andv2.

The following roots of the equation already agree w
the conditionkL;1. They correspond tok2.0 for all types
of boundary conditions. Since fork;1/L andR!L the ratio
r /R is large at the boundary, the value ofkpL is close to the
value of the corresponding zero of the Bessel function,j p

[ j n11,p , whereJn11( j p)50, or to the value of the zero o
the derivative,j p8 , whereJn11( j p8)50 in the case of fixed
and free boundary conditions, respectively:

kpL5 j p1
2n

kL

Jn~ j p!

Jn118 ~ j p!
S R

L D 2n

, ~44a!

kpL5Jp81
2n

kL

~R/L !2n

Jn119 ~ j p8!
H 2n11

kL
Jn~ j p8!2Jn8~ j p8!J . ~44b!

Thus, the spectrum of the natural frequencies of a sm
particle of a magnetic material in an inhomogeneous s
contains anomalously low frequencies, which manifest the
selves in the magnetic resonance of samples containing
particles, say, ferroliquids and granular magnetic materi
Usov and Peschany34 found that the magnetization distribu
tion in a particle in the vortex state is well approximated
the BP soliton. Although our calculations can be appl
only to particles shaped as a thin disk, it is easy to genera
them to the case of a cylinder.

Now we go back to the discussion of the meaning of
resultk2,0 for a Goldstone mode for free boundary con
tions. We examine the most interesting case,m51, corre-
sponding to the translational motion of a BP soliton~below
we will show that the parameters of a Goldstone mode
be directly related to the equations of motion of the solito!.
The parameters of what is known as the translational G
stone mode can be obtained directly from the exact solu
~15!. For kR!1 the solution is

C~x!}r n11S 12
4n~n11!

~kr !2

1

~r /R!2n11D ,

which implies that for fixed boundary conditions,

k25
4n~n11!

L2 S R

L D 2n

. ~45!

For free boundary conditions the solution has the same f
but k2 is negative. Negativek2 is not inconsistent with the
presence of Bessel functions of imaginary argument~modi-
fied Bessel functions! in the solution, since we are studyin
y
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n-

ll
te
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ch
s.

d
ze

e

n

-
n

m

this solution in the regionuku&1/L, where the exponentia
increase of the functionI n(z)}exp$z% for z@1 does not
manifest itself.

For ferromagnets and antiferromagnets these results
to significantly different physical pictures of soliton dynam
ics, which means that cases must be analyzed separate

In the case of an antiferromagnet, there are two frequ
cies corresponding to the translational Goldstone mode:

v0
256

4n~n11!c2

L2 S R

L D 2n

. ~46!

Clearly, this frequency has meaning only for fixed bounda
conditions, and negativev2 mean that the system is unstabl
At the same time, for a ferromagnet the valuev5Dk2,0
does not contradict the condition for stability. These resu
can easily be explained on the basis of a simple phys
picture of soliton motion.

Obviously, for an antiferromagnet, which is described
Lorentz-invariant equations, the dynamics of all excitatio
must also be Lorentz-invariant. When the soliton is slowv
!c, this means that in the leading approximation the soli
coordinateX ~for X the origin is at the center of the system!
in the case of an antiferromagnet satisfies an equation of
Newtonian type:

M
]2X

]t2 5Fe , ~47a!

whereFe is the external force acting on the soliton, andM
5E0 /c2 is the effective soliton mass, withE0 the soliton
energy@see Eq.~3!#. Assuming that when the deviation o
the soliton from the equilibrium position at the center of t
system is small we can write

Fe5
aX

Lp , ~47b!

let us compare the value of the frequency obtained by~46!
with the value of v252a/MLp. We find that p52(n
11), and a5716pn2(n11)AR2n for the Dirichlet and
Neumann boundary conditions, respectively. This cor
sponds to the simple picture according to whichFe is the
force of the image acting on the soliton because of the p
ence of a boundary. Since magnetic vortices interact as
charges and a BP soliton withn51 is a vortex dipole, soli-
tons with givenn.1 can be interpreted as 2n-multipoles,
which explains the presence ofp in ~47b! and the sign ofa.

Thus, the properties of the translational Goldstone mo
in an antiferromagnet can easily be understood from the
lowing reasoning. When a soliton is deflected from its eq
librium positionX50, it is driven by the force of the image
For the Dirichlet boundary conditions the force is a restor
one ~repulsion from the boundary! and the motion is stable
If the soliton is attracted to the boundary~the Neumann
boundary conditions!, Eq. ~47! describes the departure of th
soliton from the unstable position of equilibrium atX50.

Allowance for the next values ofkn,i for i .0 can also
be explained on the basis of effective equations forX. Here
the hierarchy of the effective equations of motion contain
only even-order time derivatives manifests itself. The co
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ficients of the higher-order derivatives diverge asL→`.
Mertenset al.33 proposed equations of this type for descr
ing the behavior of interplanar vortices in a ferromagnet.

The situation is quite different for a ferromagnet. T
equation that is commonly used to describe the soliton
namics is

M
]2X

]t2 1GS ez3
]X

]t D5Fe . ~48!

HereFe is the external force, which, obviously, is the sam
as in the case of an antiferromagnet@see Eq.~47b!#, andG is
the gyroscopic term, whose value is determined only by
topology and has been reliably established,3,24,35,36 G
54pnA/D. The data on the effective mass of 2D solito
and vortices are contradictory: in Ref. 37 it is stated that i
ferromagnet with an easy-magnetization plane the value
M is finite but diverges as the anisotropy constantK tends to
zero,M}1/K. In Ref. 38 the result for a vertex isM}1/L, in
Ref. 33 the massM is proportional to lnL, and in Ref. 19M
is finite, but only if the termG3(ez3]3X/]t3) is present in
the effective equations of the form~48!. In Refs. 36 and 39,
the dynamics of a BP soliton is described on the basis of
Hamiltonian formalism with noncanonical Poisson bracke
and the relationship between momentum and velocity
the values of the mass are not discussed.

According to ~45!, the frequency of the translationa
Goldstone mode for a ferromagnet has the form

v056
4n~n11!D

L2 S R

L D 2n

, ~49!

with the ‘‘plus’’ and ‘‘minus’’ corresponding to the Dirichle
and Neumann boundary conditions, respectively. In
present case there is no instability, since Eq.~48! with M
50 ~i.e., only the gyroscopic term is taken into accou!
describes small oscillations of the soliton in the case of
traction to the boundary and in the case of repulsion from
boundary. Allowance for the next translation mode, who
frequency is determined by the formula

v15D~ j /L !2 or v152D~ j 8/L !2 ~50!

in the case of the Dirichlet or Neumann boundary conditio
respectively, makes it possible to draw a conclusion ab
the inertial terms in the equation of motion.

Assuming thatv0!v1 , these roots can easily be com
pared with the two frequencies that arise in the solution
Eq. ~48!. Indeed, in this case we havev0'2a/GLp, which
yields exactly the first value of the frequency of the trans
tional Goldstone mode. For the second value we
v1'2G/M . This value can be compared to~50! if we put

M52
4pnA

D2 S L

j D
2

or M5
4pnA

D2 S L

j 8D
2

, ~51!

respectively, for fixed or free boundary conditions. Thus,
for a vortex, the dynamics with the frequencyv1 is deter-
mined by the entire region to which the magnetic materia
confined. Just as the coefficientG3 in the third-order equa-
tions for vortices in a ferromagnet is nonlocal, so is the
efficient M : it depends on the boundary conditions and
-
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verges asL→`. The divergence ofM is probably a genera
property of 2D magnetic materials with a gapless dispers
law.

We also note that the finite value of the soliton ma
M}1/K, where K is the anisotropy constant, obtained
Ref. 37 for a magnetic material with an easy-magnetizati
axis does not contradict the above dependenceM}L2 for an
isotropic ferromagnet. Indeed, in a magnetic material with
easy-magnetization axis, the gap in the magnon spectru
finite and a characteristic linear scaleD05AA/K appears,
from which we can obtain the same result as in Ref. 37,M
}D0

2}1/K, if L is replaced byD0 in ~51!.

7. DENSITY OF MAGNON STATES OF A 2D ISOTROPIC
MAGNETIC MATERIAL IN THE PRESENCE OF A SOLITON

A 2D magnetic material can be described thermod
namically with allowance for soliton excitations via a gene
alization of soliton phenomenology developed by Krumha
and Schrieffer1 and Currieet al.2 for 1D systems to the two-
dimensional case. According to their approach, at low te
peratures the state of a 1D magnetic material can be
scribed in terms of almost free excitations, magnons a
kinks. The main effect of their interactions manifests itself
the form of an asymptotic shift of the phase of a magn
scattered by a kink. This causes the total number of mag
states from the continuous spectrum to change~in compari-
son to the case of a magnetic material without a soliton! by
DN5*

2k0

k0 r(k)dk, where r(k)5(1/2p)dd(k)/dk is the

density of states. This quantity is a negative integer, i.e.,
number of magnon states in the presence of a soliton
creases byDN, which is obvious, since a fraction of th
magnon states are now described as the collective mode
the kink dynamics. The variation of the density of magn
states due to the addition of a kink to the system cause
change in the thermodynamic characteristics of the mag
gas, in particular, the free energy of the magnons. In
phenomenological approach, this change in the free ene
of magnons is interpreted as a change in the kink energy
to kink–magnon interaction.

Let us use all these ideas in the 2D case. Clearly, in a
magnetic material the total number of states is proportio
to LxLy . A free magnon corresponds to the expansion~16!
in the cylinder harmonicsJm(kr)exp$imx% in which the an-
gular variable has already been quantized, so that only
radial partJ(kr) needs to be quantized. In a circular geom
etry with radiusL, the simplest quantization condition~41!
has the formJm(kL)50, from which it follows thatknL
5 j m,n . In the region of interest to us,n@1, the zeros of the
Bessel functions,j m,n , are approximately equal topn. From
this fact we can formally determine the admissible values
the wave number by the same expression as in the 1D c
However, one must bear in mind that such an approxima
for j m,n is valid only whenm is not very large. For modes
with umu@1 the first zero j m,1'umu. Hence in a system
whose sizeL is finite there is a restriction on the admissib
numbers of the modes, namely,umu<L. Allowing for this
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fact, we arrive at a rule for summing over the magnon sta
for a 2D magnetic material without a soliton:

(
k,m

5
L

p E
0

k0
dk (

m52kL

kL

.

Naturally, for the total number of magnon states we arrive
the usual formulaN2D5L2k0

2/p.
Allowance for the soliton–magnon interaction leads to

shift in the magnon phase and changes, just at its does in
systems, the expression for the density of states~in our case,
partial states for magnons with a givenm) rm(k)
5(1/p)ddm(k)/dk. The total density of magnon states
found by summing overm:

R~k!5 (
m52kL

kL

rm~k!5
1

p (
m52kL

kL
ddm~k!

dk
. ~52!

Note that the density of statesR(k) in the long-
wavelength region has an~integrable! divergence caused b
the mode withm50, for which, according to~31!, r0(k)
'(2k)21ln22(kR) diverges in the limitkR→0 @cf. ~36!#. It
is also obvious that at low temperatures,T!T* , whereT*
5\D/R2 for ferromagnets andT* 5\c/R for antiferromag-
nets, it is enough to limit oneself to the long-waveleng
approximation. In particular, in the adopted approximatio
the density of energy states can be written

g~E!}
1

ER ln2~E/T* !
. ~53!

In principle, the density of states for an arbitraryk can
be calculated numerically. Here the presence of a pole in
amplitude of scattering of magnons with a givenm means
that the total phase changes by1p or by 2p ask changes
from zero to infinity, with the modes withm.1 andm,1
providing contributions toR(k) that are opposite in sign
Thus, for values ofk that are not small the total number o
magnon states does not decrease~as it does in the 1D case!;
rather, the magnon modes are redistributed among the s
with different values ofm. In general the signs in the serie
~52! are found to alternate. In thermodynamic calculatio
the temperature acts as a sort of regularizing factor in
summation process. The main contribution of the vario
modes, in particular, the change of the number of par
states by one unit, manifests itself in the order in which
poleskp appear in the scattering amplitude ask increases.
Sincekp increases withm ~see Sec. 5!, the contributions of
the modes with an ever increasingm manifest themselves
successively as the temperature rises.

8. CONCLUSION

Thus, we have constructed the soliton–magnon sca
ing matrix for the simplest but physically interesting 2
model of an isotropic magnetic material. The analysis
been carried out both for the Landau–Lifshitz equation, u
to describe ferromagnets, and for the Lorentz-invari
s-model, used in field theory and to describe antiferrom
nets. We are the first to obtain an exact solution of the s
s

t
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e
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s
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e
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tering problem for the partial mode with the azimuthal qua
tum numberm51. Note that such solutions are not know
for all one-dimensional problems.

What is important is that the possibility of such an i
vestigation is not related to exact integrability of the pro
lem. Indeed, the model of an isotropic magnetic materia
exactly integrable in the static case,n5n(x,y), but nothing
is known of its integrability in the casen5n(x,y,t).

We have calculated the scattering amplitude formÞ1
~analytically in the long-wavelength approximationkR!1
and for large values ofkR and also numerically for arbitrary
values ofkR!. We have found that the partial scattering am
plitudes have poles~the scattering phases pass throughp/2!
at certain valuesk5kp , with kp increasing withm approxi-
mately by a linear law. This is enough to calculate the m
non density of states in the presence of a soliton.

We have used our results to describe various phys
properties of solitons and local magnon modes. In particu
we have calculated the frequencies of the magnon mode
a magnetic material of finite dimensions. What we ha
found is that in the small particles of ferromagnets conta
ing a soliton~particles in what is known as the vortex stat
whose properties are being widely discussed at present! natu-
ral modes arise with anomalously low frequencies. The d
on the frequencies of the local modes have been use
derive the equations of motion of a soliton in a ferromagn
We have calculated the magnon density of states in the p
ence of a soliton, which makes it possible to construc
soliton phenomenology for 2D magnetic materials that
lows for the soliton–magnon interaction.

There are other possible applications of our results wo
noting. In some of the papers~see, e.g., the review article i
Ref. 7! devoted to the study of ordered 1D media includi
magnetic materials, several nonequilibrium characteristic
a soliton gas, primarily, the coefficients of diffusion and v
cosity, were investigated. The theories developed by the
searchers were based on using the exact wave function
magnons against the background of a soliton. The asymp
expressions for the wave function for smallk derived in the
present paper have made it possible to study the irrevers
process for the 2D gas of elementary excitations, includ
solitons and magnons, in isotropic magnetic materials at
temperatures.

The results concerning thes-model can easily be ex
tended to the Euclidean case and can be used to describ
quantum properties of spin chains with antiferromagnetic
teraction. The properties of such systems are determine
the instantons of the Euclidean version of the nonlo
s-model. Also widely discussed are instantons with a str
ture of the BP soliton~see Ref. 40! and what is known as
merons, which have a half-integer topological charge~see
Ref. 41!. To calculate the pre-exponential factors in the c
responding transition amplitudes~the fluctuation determi-
nant!, we must know the complete set of eigenstates aga
the instanton background. Most important are zero-freque
modes~for more details see Ref. 42!. Hence our results, es
pecially concerning the nontrivial local zero-frequen
modes, may prove to be important in developing the inst
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ton approach in the quantum theory of 1D magnetic mat
als.
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1!If this fact is not taken into account, the amplitude for scattering of

translational mode by a BP soliton turns out to be finite,32,22 whereas ac-
cording to~15! it must be zero.

1J. A. Krumhansl and J. R. Schrieffer, Phys. Rev. B11, 3535~1975!.
2J. R. Currie, J. A. Krumhansl, A. R. Bishop, and S. E. Trullinger, Ph
Rev. B22, 477 ~1980!.

3B. A. Ivanov and A. K. Kolezhuk, Fiz. Nizk. Temp.21, 355 ~1995! @Low
Temp. Phys.21, 275 ~1995!#.

4M. M. Bogdan and A. S. Kovalev, Z. Phys. B: Condens. Matter71, 341
~1988!.

5J.-P. Boucher, G. Rius, and Y. Henry, Europhys. Lett.4, 1073~1987!.
6F. G. Mertens, A. R. Bishop, G. M. Wysin, and C. Kawabata, Phys. R
B 39, 591 ~1989!.

7V. G. Bar’yakhtar and B. A. Ivanov, inSoviet Scientific Reviews, Sectio
A, I. M. Khalatnikov ~Ed.!, Vol. 16, No. 3~1993!, p. 1.

8F. Waldner, J. Magn. Magn. Mater.31–34, 1203~1983!.
9F. Waldner, J. Magn. Magn. Mater.54–57, 873 ~1986!.

10F. Waldner, J. Magn. Magn. Mater.104–107, 793 ~1992!.
11C. E. Zaspel, Phys. Rev. Lett.48, 926 ~1993!.
12C. E. Zaspel, T. E. Grigereit, and J. E. Drumheller, Phys. Rev. Lett.74,

4539 ~1995!.
13C. E. Zaspel and J. E. Drumheller, Int. J. Mod. Phys.10, 3649~1996!.
14L. Subbaraman, C. E. Zaspel, and J. E. Drumheller, Phys. Rev. Lett80,

2201 ~1998!.
15G. M. Wysin, Phys. Rev. B49, 8780~1994!.
16G. M. Wysin and A. R. Vo¨lker, Phys. Rev. B54, 12921~1996!.
17G. M. Wysin, Phys. Rev. B54, 15156~1996!.
18B. A. Ivanov, A. K. Kolezhuk, and G. M. Wysin, Phys. Rev. Lett.76, 511

~1996!.
i-

y

m

.

.

19B. A. Ivanov, J. J. Schnitzer, F. G. Mertens, and G. M. Wysin, Phys. R
B 58, 8464~1998!.

20A. A. Belavin and A. M. Polyakov, JETP Lett.49, 245 ~1975!.
21B. A. Ivanov, JETP Lett.61, 917 ~1995!.
22B. A. Ivanov, V. M. Murav’ev, and D. D. Sheka, Ukr. Fiz. Zh.44, 500

~1999!.
23A. M. Kosevich, B. A. Ivanov, and A. C. Kovalev,Nonlinear Magnetiza-

tion Waves. Dynamic and Topological Solitons@in Russian#, Naukova
Dumka, Kiev~1983!.

24I. V. Bar’yakhtar and B. A. Ivanov, Fiz. Nizk. Temp.5, 759 ~1979! @Sov.
J. Low Temp. Phys.5, 361 ~1979!#.

25A. F. Andreev and V. I. Marchenko, Usp. Fiz. Nauk130, 39 ~1980! @Sov.
Phys. Usp.23, 21 ~1980!#.

26B. A. Ivanov and D. D. Sheka,Chaos, Solitons, & Fractals~Special Issue
‘‘Solitons in Science and Engineering: Theory and Applications’’!, Vol. 5,
~1995!, p. 2605.

27B. A. Ivanov and A. L. Sukstanski�, Zh. Éksp. Teor. Fiz.84, 370 ~1983!
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