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Abstract—The isomeric ratios measured for “™9Sc in (y, n), (p, n), (p, ap3n), and (o, p3n) reactions are pre-
sented. The values obtained in this way are compared with the results of cal culations within the cascade—evap-
oration model and with data coming from an investigation of reactions like (n, 2n), and (d, t). © 2000 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

One of the ways to deduce information about the
properties of nuclel consists in studying the excitation
of isomeric nuclear states and measuring isomeric
ratios in various nuclear reactions. These data are of
interest both from the standpoint of their possible prac-
tical application—for example, in optimizing the con-
ditions under which induced gamma radiation [1] can
produce radioactive pharmaceuticals—and from the
standpoint of studying reaction mechanisms and the
viability of their theoretical description [2]. In this con-
nection, comprehensive investigations that permit a
comparison of data obtained in various nuclear reac-
tions are of importance.

Among the few nuclide species that can be obtained
experimentally, we would like to mention the *Sc
nucleus. Owing to the availability of this nuclide, the
excitation of its isomeric states can be studied in vari-
ous nuclear reactions, including *Sc(y, n)*m9Sc,
$Sc(n, 2ny¥maSc, UK (a, ny*m9Sc, “Ca(p, n)y*m9Sc,
#Ca(a, p3n)**m9Sc, and 4°Ti(y, pn)*™ 9Sc. The present
article reports on a continuation and a generalization of
an investigation of the energy dependences of *Sc iso-
meric ratios in (y, n), (p, n), (p, ap3n), and (a, p3n)
reactions[3, 4].

2. EXPERIMENTAL PROCEDURE AND RESULTS

Methodologically, the activity of “Sc can be mea-
sured rather straightforwardly. The half-lives of the 6*
isomeric (m) and the 2* ground (g) state of “Sc are

T7, = 2.44 days and T3, = 3.92 h, respectively. The

lines of gamma rays accompanying their decays have
nearly 100% intensities. The decays of these states
were identified by the photopeaks at 0.271 and
1.157 MeV, respectively. The isomeric ratios of the
cross sections, r = 0,,/0y [yields Y,,/Y, for (y, n) reac-
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tions], were calculated by the formula

r=0,/0, = (Ag—Ap)
T Natn Afu®) , 5 E7 (D)
ﬁ R g ha =) = P [R5 + pm'

Here b = (QATE oK (O g (QATHE g, Ky o, AN

o being, r%pectlvely, the photoefﬁuency, the line
self -absorption factor in the sample under study, and
the line intensity; N, and N,,, are the numbers of pulses
in, respectively, the ground "state and the isomeric-state
photopeak; and

fm, g(t) = [1 - exp(_)\m, gtirrad)] exp(_)\ m, gtcool)
X [1 - eXp(—)\ m, gtmeas)] '

where i, teoo, @Nd tes are, respectively, the irradia-
tion time, the time of cooling, and the time of measure-
ments; A, 4 isthe decay constant; and ¢ = ¢,c, isafactor
representlng corrections for pulses that were missed
and for those that overlapped. The spectroscopic data
were borrowed from [5]. The (y, n) reaction was inves-
tigated in a beam of bremsstrahlung photons from the
M-30 microtron installed at the Institute for Electron
Physics (Uzhgorod, Ukraine), whereas the reactions
induced by charged particles were studied at the U-240
and U-120 cyclotrons of the Institute for Nuclear
Research (Kiev, Ukraine). Our experimental procedure
was described in detail elsewhere [4, 6].

The isomeric ratios of the yields (d = Y,/Y,) from
the reaction “Sc(y, n)*Mm9Sc were measured in the
energy range E = 12-21 MeV. Figure la shows the
experimental values of d versus the endpoint energy of
the bremsstrahlung spectrum E, , (closed circles). It
can be seen that, above the threshold, d increases
sharply, reaching a plateau at E, , = 21 MeV, its level
there being that of 0.21 + 0.01, aval ue that is compati-
ble, within the errors, with the result obtained previ-
ously at E, ,, = 22 MeV (open circles) [7]. However, it
is significantly larger than the isomeric ratio of the
yieldsthat was estimated in [8] asd < 0.02 for the reac-
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Fig. 1. (a) Isomeric ratios of the (curve I) yields and
scurveZ) cross sections versus energy for the reaction
3Sc(y, ny*M9sc. Curve 3 was calculated within the cas-
cade—evaporation model. (b) Cross section for the reaction
BSc(y, N)*M IS¢ (curve 1) aong with the total photo-
neutron cross section for this reaction (curve 2).

tion “°Ti(y, pn)*™9Sc at E, ,, = 48 MeV. Curve 1 in
Fig. larepresents aleast squaresfit to the experimental
dependence d =f(E, ) in terms of the form d =
Atanh[B(E — E,)], the fitted parameter valuesbeing A =
0.218 +£0.007, B=0.228 + 0.02 MeV-!, and E, = 11.6 +
0.07 MeV.

The yield Y(E, ) from (y, n) reactions is known to
be related to the cross section o(E) by the equation

E

Y(E,w) = k [ G(E)W(E, E, )CE,
Elhr

where W(E, E, ,) is the spectrum of bremsstrahlung
photons, k is a normalization factor, Ey, is the reaction
threshold, and E, , is the endpoint energy of the
bremsstrahlung spectrum.

Using the total cross sections o(E) for (y, n) reac-
tions from [9] and relation (2), we have calculated the
absolute total yield from the (y, n) reaction in ques-
tion—that is, thesum Y, = Y, + Y, where Y, and Y, are

2)

ZHELTONOZHSKY, MAZUR

the yields for the population of, respectively, the iso-
meric and the ground state. After that, the yield Y, of
theisomeric state was determined as Y, = dY,/(d + 1) by
using the measured isomeric ratios d, which correspond
to curve / in Fig. la. The calculation was performed
with a step of 0.5 MeV. On the basis of the values
obtained inthisway for theyield Y,,,, we have then com-
puted the cross section o, for the reaction
BSc(y, ny¥m9Sc (Fig. 1b) with the aid of the Penfold-
Leissinverse matrix [10]. The mean-square error in the
Cross section at its maximum was about 15%. For sake
of comparison, the total cross section for the reaction
Sc(y, N)**Sc is also displayed in Fig. 1b (curve 2).
Since we have both the cross section g,,, and the cross
section o at our disposal, we can estimate the isomeric
ratior = 0,/04. Asaresult, wefind that, in therange 14—
16 MeV, the isomeric ratio 0,/0, is greater than the
yield ratio Y,,/Y, by about 10% and that, at energies in
excess of 20 MeV, these two ratios virtually coincide
(curve2 inFig. 1a). That theratios 0,/o4 and Y,,/Y, for
the reaction being considered behave in the way
described above gives sufficient grounds to believe that
a comparison of the experimental values of the iso-
meric yield and cross-section ratios (d and r, respec-
tively) would be reasonable for other reactions as well.

In dealing with protons and apha particles, we
employed targets 10-15 mg/cm? thick manufactured
from enriched *CaCO; in the form of apowder pressed
with polyethylene and then baked at t = 100°C.

Target assemblies were irradiated with a proton
beam from the U-120 cyclotron, the primary beam
energy being E, = 6.7 MeV. The protons were moder-
ated by aluminum foils. In order to study (a, p3n) reac-
tions, target assemblies were exposed to a pha particles
of beams extracted from the U-240 cyclotron. The pri-
mary beam energies of 80 and 100 MeV were reduced,
in that case, with the aid of tantalum foils. The irradi-
ated targets were transported to a semiconductor spec-
trometer by a pneumatic rabbit. The proton and a-par-
ticle ranges were calculated on the basis of data tabu-
lated in [11].

We have also measured the isomeric ratios for the
reaction 3'V(p, ap3n)**™ 9S¢ implemented by exposing
foilsfrom natural vanadium to 50- and 70-MeV protons
of U-240 internal beams.

All the measurements were performed with semi-
conductor spectrometers having a resolution of about
2.0 keV for the °Co gamma lines. The measurements
were grouped into serieswith an interval of 2to 3 h. In
order to estimate the contribution of background
admixtures, the residua activity was additionally mea-
sured after alapse of aday since the completion of the
exposure. The results obtained for the reactions
#Ca(p, ny*m9Sc and “Ca(a, p3n)*m9Sc are displayed
in Figs. 2 and 3, respectively. In these figures, the iso-
meric ratiosfor thereactions*Sc(d, t)*™ 9Sc [12] (Fig. 2)
and K (a, n)*#m9Sc [13] (Fig. 3) are also shown for the
sake of comparison. For the (p, ap3n) reaction in ques-
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tion, it wasfound that 0,,/o,=1.4+0.2and 1.5+ 0.2 a
E, =50 and 70 MeV, respectively.

3. DISCUSSION OF THE RESULTS

A comparison of experimental data shows that the
isomeric ratio r isone order of magnitude greater inthe
(a, p3n) reaction in question than in the (y, n) reaction
(see Figs. 1a, 3a). This distinction is compatible with
the statistical pattern, because a pha particles introduce
a significant angular momentum in the target nucleus,
predominantly populating the 6* high-spin state.

A comparison of (y, n), (p, n), and (d, t) reactions
can be conveniently drawn in terms of the excitation
energies of the residual nucleus. Figures 1-3 show the
excitation energy E* = E - E, (top scale), where By, is
the reaction threshold. It can be seen that, for the (y, n)
and (d, t) reactions, the values of o,,/0, nearly coincide
at close excitation energies of the residual nucleus. At
the same time, the value of o,/ for the (p, n) reaction
is one order of magnitude less than that for the (Y, n)
reaction. Qualitatively, this can be explained within the
statistical approach by considering that the angular
momentum of the input channel isJ =1 + 7/2 in the
(y, n) reactionand J = 0 + (1/2 or 3/2) inthe (p, n) reac-
tion. By merely taking into account equiprobable
branching in gamma cascades from states with these
spin values, we can find that the 6+ stateis populated in
the (p, n) reaction with aprobability that is 20-30 times
less than that in the (y, n) reaction.

In support of the above, we also note that recent
studies of partial photonuclear channels (y, n;) and (v,
p;) of giant-resonance decay that populate individual
(ith) levels of the final nucleus A — 1 showed that, for
#Sc, the gtatistical mechanism saturates 70 to 90% of all
such decays [14]. In order to draw a comparison with
experimental data, we have therefore estimated the iso-
meric ratios for the reaction Sc(y, n)*#Mm 9Sc within the
cascade—evaporation model (CEM) [15, 16], which is
based on the gtatistical approach. In these calculations, it
was assumed that the “*Sc nucleus absorbs a dipole pho-
ton. After the evaporation of a neutron, excited states of
the daughter nucleus go over to the ground or theisomeric
stateviaacascadeof E1 transitions. The density of nuclear
levelswas calculated by the Bethe-Bloch formula[17].

Curve3 inFig. larepresentstheresults of these cal-
culations. We note that consistent calculations within
the above model [15, 16] fail to reproduce the experi-
mental data. The agreement is achieved if the spin-cut-
off parameter in the Bethe-Bloch formula is fixed at
o =3 (curve 3 inFig. 1a).

From Fig. 1a, it can be seen that, for the (y, n)™ reac-
tion, the results obtained with ¢ = 3 are qualitatively
similar to the corresponding experimental data. The
calculation with o = 3 agrees with the experimental
data at E = 20 MeV. We note that, for the reaction
BSc(y, m*m9Sc at E, ,=45MeV, Volpel [18] obtained
0,/0, = 0.23 and the spin-cutoff parameter of o = 2.8,
WhiC?‘I iscloseto our value.
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Fig. 2. Isomeric ratios for **Sc in the reactions (a) **Ca(p,
m**M 9s¢ and (b) *3Sc(d, t)**™ 9sc.

Calculations within a similar model that were per-
formed in a number of studies to determine theoreti-
cally the isomeric ratios for the neutron-induced reac-
tion #Sc(n, 2n)y*m9S¢ also yielded close values for o:
for the (n, 2n)™ reaction at E,, = 15.0 MeV, Karolyi and
Csikai [19] obtained o,/0, = 0.71, the agreement
between the calculated and measured values being
achievedat 0 =3.5+0.1; at E,= 14.1 MeV, Volpdl [18]
found the value of r = 0.91, with the spin-cutoff param-
eter being fixed at 0 = 3.68; at the same value of E, =
14.1 MeV, Tatarczuk and Medikus [8] arrived at r =
0.72 and the spin-cutoff parameter of o = 3.68.

A more sophisticated version of the CEM wasused in
[20] to calculate isomeric ratios for reactionsinduced by
massive particles. In this version, the isomeric pair is
populated on the basis of the scheme according to which
low-lying states deexcite and which is known from
experiments; in particular, it is considered that an yrast
trap can escape from statesin thevicinity onanyrast line
that have angular momenta exceeding those of metasta-
ble states, and an yrast lineis introduced.

The yrast-line energy is represented as

h2
Y(J) = 2—J(J +1),

3
7 3)
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Fig. 3. Isomeric ratios versus energy for the reactions (a) **Ca(a, p3n)**™ 9Sc and (b) *'K(a, my**™ 9sc.

where § = $,.,[1 — bexp(-0.693E/d)] is the moment of
inertia of the nucleus. Here, b and d are numerical
parameters (their commonly accepted values are b =
0.5 and d = 6 MeV), E is the excitation energy of the
residual nucleus, and $,,, is the moment of inertia of a
rigid body. The bracketed expression takes into account
deviations of the moment of inertiafrom the rigid-body
value at low excitation energies.

The density of nuclear levels was calculated on the
basis of the expression prescribed by the back-shifted
Fermi gas model; that is,

2J+1
E J) =
p( ) 24ﬁaﬂ4(E—5)5/403

Il 20
X expR /a(E_a)_Q_i_l_gl_D
O 200 [

where & is a correction for even—odd distinctions and
o® = 0.0888(1¢/6)[1— bexp(—0.693E/d)]
x Ja(E—3)A™,

For the energy dependence of the level-density param-
eter a, we employed the phenomenological representa-
tion

4

&)

a=a(l+ f(E)dW/E), (6)

where OW = M, ,(Z, A) — M p(Z, A) (Z isthe charge of
the nucleus, and Aisthe number of nucleonsinit) isthe
experimental value of the shell correction to the mass
formula, M,,,(Z, A) and M, p(Z, A) being, respectively,
the experimental value of the nuclear mass and the
binding energy of the nucleusin the liquid-drop model;

a isthe asymptotic value of the level-density parameter
at high excitation energies,

/A = a+pA
(a0 =0.154 MeV-!, B=-6.3x10°MeV);
and
f(E) = 1-exp(-yE), y=0.054 MeV~!,

Expression (5) isvalid for E> T (T isthe tempera-
ture of the nucleus); in view of this, the model level
density was matched with the mean experimental level
density at excitation energies of 02 MeV. If there was
no experimental information, the model level density
was matched with the value of p(E, J) =1 MeV-!inthe
vicinity of the yrast line.

In simulating the (a, p3n) reaction, we took into
account all possible sequences of particle emission
(p3n, 2npn, and 3np). Theresults of the calculations are
represented by solid curvesin Figs. 2a and 3a. It can be
seen that, for the reactions featuring charged particles,
the experimental valuesin question arefaithfully repro-
duced on the basis of the CEM version used here. This
suggests that the reactions being discussed are gov-
erned predominantly by the statistical mechanism.

It should be noted that the yrast trap was not consid-
ered in the calculations. That the giant E1 resonanceis
split into two maxima (Fig. 1b) indicates that the “Sc
nucleus is severely deformed. Figure 3b displays data
ontheisomericratiosr of the cross sectionsfor the (a, n)
reaction [13]. We can seethat, here, theratior beginsto
decrease as soon asthe excitation energy of theresidual
nucleus reaches a value of E* ~ 30 MeV. Concurrently,
this is the excitation-energy value at which the ratio r
calculated for the (a, p3n) reaction begins to deviate
from experimental data. All these observations may be
explained upon taking into account the yrast-line con-
tribution.

Bogila and Kolomiets [21] showed that, from some
value of the particle energy in the input channel, the
populations of states in the vicinity of the yrast linein
the residua nucleus affect significantly o(E*). In the
(0, p3n) reaction, the “*Ti compound nucleus is pro-
duced in states whose angular momenta exceed

J™ (#4Sc) for excitation energies E* of the residual
nucleus not less than 25 MeV. Thisleadsto ', > T,
(where T stands for the channel widths). In such situa-
tions, 0,/0, changes significantly upon taking into
account the competition of channels involving particle
emission inthe gammadeexcitation of 4*Sc inthevicin-
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ity of the yrast line (Fig. 3a, dashed curve). We can see
that, at energies up to 100 MeV, this can also improve
considerably the quantitative agreement of the o,/0y
values calculated for the (a, p3n) reaction with experi-
mental data.

It should be emphasized that the statistical process
is operative in the (p, ap3n) reaction as well, but the
channel of quasielastic proton scattering must be addi-
tionaly taken into account here. The fact that, for this
reaction, the ratio o,,/o, changes only slightly within
the energy range 50-70 MeV can be explained in this
case.

From the above, it follows that quite a vast body of
experimental data on the excitation of the 6* isomeric
state of the**Sc nucleusin variousreactionsisavailable
at present. An analysis of these data shows that the sta-
tistical mechanism plays an important role over awide
range of excitation energies of the residual nucleus and
awide range of particle species. This result could seem
important, but it should be taken with caution, because
adirect mechanism can contribute significantly to (d, t)
reactions, as well asto (p, n) reactions near the thresh-
old, and because, in reactions featuring alpha particles,
preequilibrium particle emission occurs at energies
E, > 25MeV.
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Abstract—In order to describe the doublet nucleon—deuteron system at low energies, Tomio et al. [Phys. Rev.
C 35, 441 (1987)] proposed a two-body model featuring a potential whose asymptotic behavior is consistent
with the Faddeev equation—that is, a potentia involving a long-range component. The characteristics of the
bound and the virtual triton and the position of the pole of kcotd—these quantities were not considered in the
above article of Tomio et al.—are calculated in the present study. A comparison of the results obtained in this
way with anal ogous results for the short-range Hulthén and Yukawa potentials reveal s that, for the doublet neu-
tron—deuteron system, the effects of long-range interaction do not play a significant role—that is, the system in
question is far from a state of the Efimov type. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The spin-doubl et neutron—deuteron systemisaclas-
sical testing ground for three-body Faddeev equations
featuring various versions of nucleon—nucleon forces.
Numerous investigations demonstrate that the proper-
ties of the neutron—deuteron system depend greatly on
the version of NN interaction. By way of example, we
indicate that correlations of the Phillips line type [1]
were discovered for the dependence of the triton bind-
ing energy & on the doublet scattering length a, and
that correlations of the Girard—Fuda type [2] were
found for the dependence of the virtual-triton binding
energy €1~ on the same variable. The opinion that,
because of the smallness of the deuteron binding
energy &4 in relation to the triton binding energy €+, the
three-body character of the neutron—deuteron system
must play a decisive role even at energies below the
threshold for deuteron breakup had long been prevalent
in the literature. However, calculations within the N/D
method revealed [3-5] that the low-energy features of
the neutron—deuteron system can be described fairly
well within the two-body model taking no account of
the three-body cut of the Smatrix in the complex plane
of energy. It follows that a two-body potential model
can also be used in this energy region.

The two-body potential model was proposed in [6,
7]. Thefirst of these two studies relied on the Hulthén
potential

V(r) = =Vo/[exp(ur)-1]. ey

The parameters V, and . were determined by fitting
data on the scattering length a, and the binding energy
&1 (for the neutron—deuteron system, the corresponding
experimental values are a, = 0.65 and &1 = 8.48 MeV).

The nuclear vertex constant G% was calculated in [6],

and the value obtained there complies well with that
which was presented by Simenog et al. [8], who made
use of the results of a phase-shift analysis of experi-
mental data on elastic neutron—deuteron scattering. It

should be recalled that the nuclear vertex constant G$

and the asymptotic normalization factor C$ in the

radial wave function of the bound state are related by a
linear equation (see below). In addition, it was shown
in [6] that the proposed model reproduces fairly well
the character of variations that the vertex constant cal-
culated on the basis of Faddeev equations displays in
response to changesin a, and &; values. Later on, it was
indicatedin [9, 10] that other low-energy features of the
doublet neutron—deuteron system—such as the posi-
tion of thevirtual pole (binding energy &+ of the virtual
triton T*), the corresponding nuclear vertex constant

(Gi* ), and the position of the pole of kcotd [zero of the
partial scattering amplitude f(k)] [10]—can be
described satisfactorily on the basis of the same model
without further fitting the parameters of the Hulthén
potential.

In order to assess the sensitivity of the results to a
specific form of the neutron-deuteron interaction
potential, we calculated [10] al the aforementioned
quantities for the Yukawa potential

V(r) = =Vo(ur) exp(—ur) )

and arrived at results that agree fairly well both with
experimental dataand with the results obtained with the
Hulthén potential.

Two potentials were proposed in [7]; of these, one
(version B) hasthe form

V(r) = ~Vo(R/r)[sin(r/R)]*exp(—r).  (3)

1063-7788/00/6303-0328%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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In contrast to the potentials (1) and (2), the potentia (3)
involves three parameters—V,, R, and p—which were
determined by fitting data on three quantities that
include, in addition to a, and & mentioned above, the
3He binding energy. The objective of the study reported
in [7] was to assess theoretically the doublet proton—
deuteron scattering length associated with nuclear
interaction. The aforementioned characteristics of the
doublet neutron—deuteron system other than the analo-
gous scattering length were not computed in [7]. The
oscillating factor in (3) wasintroduced in order that the
potential be regular at zero value of the radius. In the
other potential version (A), which is not considered in
the present study, regularization at zero was achieved
by matching the potential being considered with a con-
stant potential in the central region.

The present study is aimed at (i) filling the existing
gaps by calculating all the aforementioned low-energy
features of the doubl et neutron—deuteron system for the
potential (3), (ii) refining the parameters of the poten-
tial (3), and (iii) comparing the results of these calcula-
tions for the potentias (1)—(3) in order to assess the
sensitivity of these physical quantities to the character
of the asymptotic behavior of apotential of the form

V(r) — C(r)r"exp(—r), 4)

where C(r) < const, while the exponent n takes the val-
ues of n =0, 1, and 2 for, respectively, the Hulthén
potential, the Yukawa potential, and the potential (3)
(which was used in [7]). We note that the potential (3)
was chosen on the basis of the fact that the Faddeev
eguations lead to an effective interaction of the form
V(r) — C/r? when the scattering length in the two-
body subsystem tends to infinity. In the two-body
potential model, this correspondsto the limit u —» 0.

In this study, we consider only the two-parameter
problem, fixing the value of uR at 0.2646, asin[7]. This
choice was motivated, on one hand, by the fact that
there are correlations between the low-energy features
of the doublet neutron—deuteron system and, on the
other hand, by adesireto perform asystematic analysis
of the potential models (1)—3) at the same level of gen-
erality (that is, with two parameters). Varying uR is
beyond the scope of the present study. We also made
use of the scaling properties of the potential (3) (see
[10]). Thisenabled usto consider such combinations of
physical quantities (these combinations may include
the potential parameters) that are invariant under the
scaling transformationsr — yr and p — y~'p. The
combinations in question depend only on the interac-

tion strength g = K5 R2, where K§ = (2my,/A2)V,, m, ,
being the reduced mass of the system. In the case of the
neutron—deuteron system, which is considered here, the
reduced mass is m;, = (2/3)m, where m is the nucleon
mass. Specifically, we calculated the quantities

aX11 Xl/p-’ XZ/M! KO/p'! Clv CZ! (5)
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where X,, = (2my,€,) /A, €, and €, being, respectively,
the binding energy in the ground (real) state with prin-
cipal quantum number n = 1 and the binding energy in
thefirst excited (virtual in this case) state with principal
quantum number n = 2; K, = (2my,E,) /%, E, being the
position of the pole of kcotd in the complex plane of
energy E; and C, and C, are asymptotic normalization
factors. Itiswell known that the nuclear vertex constant
G? and the asymptotic normalization factor C are
related by the equation (see, for example, [9]; v = T¥)

(Gr.,)* = 31(3/2)%(h/mc)’Xy,»(Cr.,)°,

) ) (6)
(Cr,v)" = (2/3)(Cy )"
The distinction between C; , and C, , is associated
with taking into account the identity of nucleonsin the
isospin formalism.

By eliminating the parameter g, we can obtain rela-
tions that involve the aforementioned scaling physical

guantities—for example, Cf and ax,—but which are

free from the potential parameters. Allowances for the
scaling properties of the potential simplifies consider-
ably the procedure for fitting the potential parameters
to specific values of aand ;. In determining the param-
eters, we proceeded along the following chain:

ax,—9g—X/MH—H—R—V, (7
As matter of fact, the above scaling properties make it
possible to reduce the two-parameter problem to aone-
parameter problem. Thisfacilitates considerably thefit-
ting of parameters and a comparison of the results
obtained with the different potentials.

The virtual triton represents thefirst excited state of
the triton. Therefore, its features are determined by the
same parameter set as the features of the triton; that is,
the quantities x, and k,—or, on the energy scale, €, and
E,—aswell as Cy., are determined simultaneously with

X; and Cf. The position of the virtual pole (B, =¢, =
&1 —€&y) and the position of the pole (—E;) of the function

kcotd are reckoned from the threshold for the neutron—
deuteron scattering channel at E=—¢4. A comparison of

the ax, dependences of Ci for all three potentials over

a wide range of the interaction strengths, including
those that correspond to the formation of the extremely
light bound nuclear states [deuteron d, hypertriton 3H,,
triton T(*H)], is of particular interest, because such a
comparison does not involve the potential parameters
explicitly.

In our calculations, we relied on the integral Lipp-
mann-Schwinger equation and the Schrodinger equa-
tion in the momentum representation. Here, the doubl et
proton—deuteron scattering length was not calculated,
because the method used here cannot take properly into
account Coulomb interaction.
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Below, we consider such energies at which it is
legitimate to retain only the s wave. We use the system
of unitswheres=c=1.

2. EFFECTIVE POTENTIAL AND ANALYTIC
PROPERTIES OF THE SCATTERING AMPLITUDE

That the pole Feynman diagram that corresponds to
proton exchange between the deuteron and the neutron,
the singularity of this diagram in momentum transfer
lying closely to the physical region, plays an important
role in neutron—deuteron scattering is a theoretical
argument in favor of the two-body potential model. The
corresponding singularities of the partial scattering
amplitude are logarithmic branch points and the rele-
vant cuts in the complex plane of momentum that go
along the imaginary axis. Theinterval (-ik;, ik;), where

k, = (2/3)./mey = 0.154 fm~'—or, on the energy scale,
E, =—¢43 =0.738 MeV—is the domain of analyticity
of the partia amplitude. This character of singularity
can be simulated by using Yukawa type potentials—
that is, potentials whose asymptotic behavior is given
by (4), in which case a dynamical singularity occurs at
k = ip/2 (see, for example, [11]). Setting p = 2k;, we
obtain therange M = ! of about 3 fm.

The properties being discussed follow from the ana-
Iytic structure of the kernel of the Faddeev equation
(see, for example, [12]). Among other things, it follows
that a long-range interaction of the 1/r? type arises
when the scattering length for apair subsystem tendsto
infinity. It iswell known that thisresultsin the accumu-
lation of Efimov levels. Following the study of Efimov
[13], Tomio et al. [7] deem it necessary to introduce the
factor 1/r? in the potential of the two-body model as
well. It should be emphasized, however, that this char-
acter of long-range interaction is indeed of importance
if the physical system under study is close to a state
wherethe Efimov effect manifestsitself—that is, where
M — 0. As a matter of fact, the actual parameters of
the nucleon—nucleon interaction are such that the dou-
blet neutron—deuteron system has only one bound state
(triton). For thisreason, it isnatural to expect that a spe-
cific form of potential—and in particular, the value of
the exponent n in (4)—does not play a very important
role, provided that an exponentia decrease of the
potential at infinity isensured. Onthisbasis, we believe
(seedso[6]) that al the above potentia's (1)—(3) can be
used on equal termsto construct amodel description of
the characteristics of the doublet neutron—deuteron sys-
tem. The oscillations of the potential (3) look somewhat
unnatural. Tomio et al. [7] questioned the applicability
of “conventional” short-range potentials—in particular,
the exponential and the Yukawa potentials—to the
problem being discussed, but the critical comments of
those authors do not seem justified. For example, their
general statements that experimental data on the virtual
triton cannot be reproduced with short-range potentials
and that such potentials give no way to determine cor-

ORLOV et al.

rectly the pole of the function kcotd areinvalid, because
they are at odds with the results obtained in [9, 10]. The
assertion that the virtual state of the triton is unobserv-
able physically, another point advocated in[7], does not
withstand experimental tests—in fact, the existence of
the state in question was reliably established on the
basis of experimental data via a phase-shift analysis of
doublet neutron—deuteron scattering (see [8]) and was
confirmed by numerous calculations relying on the
Faddeev equations for various models of nuclear forces
(see, for example, [14]); we admit, however, that it is
rather hard to see this state in neutron—deuteron scatter-
ing directly.

In analyzing the results of our numerical calcula-
tions, we rely on what is known from quantum scatter-
ing theory, as well as on the theorem of symmetry for
bound and virtual levels[15], and on its important cor-
ollary concerning the trajectories of the zeros of the
partial scattering amplitude f(k) [16]. Recal that, for
Yukawa type potentials, whose asymptotic behavior is
given by (4) (with n < 2)), it was proven in [15] that the
disposition of the points at which the trgjectories of the
poles for bound and virtual states intersect the lines of
dynamical singularities is characterized by a mirror
symmetry with respect to the zero-momentum axis. It
was shown in [16] that these symmetry points also
belong to the trajectories of the poles of kcotd [zeros of
f(K)]. For Yukawatype potentials, the trajectories of the
zeros of f(k) issue from the points where the scattering
length a iszero (a = 0) and intersect the lines of dynam-
ical singularities simultaneously with the trgjectories of
the poles corresponding to bound and virtual levels—
that is, at the same symmetry points.

3. COMPUTATIONAL METHOD, CHOICE
OF PARAMETERS, AND RESULTS
OF THE COMPUTATIONS

The low-energy features of the doublet neutron—
deuteron system whose behavior is governed by the
potential (3) were computed by solving the integral
Lippmann—Schwinger and Schrodinger equations in
momentum space. These calculations are completely
analogous to those for the Yukawa potential (see[10]).
In order to describevirtual states, we used analytic con-
tinuations of these integral equations to the unphysical
sheet of energy (see, for example, [14]). These equa-
tions feature the Fourier transform V(k, k') of the poten-
tial V(r)—in particular, its values at imaginary
momenta and at zero momentum as well. The potential
in the form (3) is convenient because the function V(k,
k') isknown for it in an analytic form (see Appendix).

The results of the calculations for the scaling quan-
titiesin (5) are presented in Fig. 1 (M = ') versus the
potential strength. For the argument, we took the quan-
tity p = ./9/ 0., Where g, = 1.4218 is the g value at

which the ground state becomes a bound state. It is
interesting to note that, for the potentia (3), the p
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dependence of x;M is nearly linear; a linear relation
between x;M and g holds approximately for the
Yukawa potential and exactly for the Hulthén potential
(see[6, 10]). The results obtained for the parameters of
the potential (3) by fitting the experimental values of &;
and a, for the doubl et neutron—deuteron system are dis-
playedin Table 1, along with the parameter valuesfrom
[7]. Thefitting was implemented according to the chain
presented in (7). The R and u values obtained in the
present study are close to those from [7]. Our potential-
depth value of V,, =40.5 MeV issomewhat greater than
that presented in [7]. The dlight difference of AV, 0
0.7 MeV daffects, however, the value of the scattering
length a,, a quantity that shows the highest sensitivity
to changesin parameter values. By using the parameter
valuesfrom[7] (seeTable 1), we obtained a, = 0.82 fm,
the experimental value being 0.65 fm. For the position
of the closest dynamical singularity at k = xip, thevalue
of u 0J0.15 fmr! found from fitting for the exponent in
(3) yields p = /2 = 0.075 fm!. The last value is
approximately one-half as great as the momentum
valuethat determinesthe position of the singularity asso-
ciated with one-nucleon exchange (k, = 0.154 fmr).

The value of the potential range (M = p!) is of cru-
cia importance for correctly describing the position of
the virtual level of the triton. Indeed, the trajectory of
thevirtual level (of the energy of thefirst excited state),
X,M, cannot intersect the line of thefirst dynamical sin-
gularity determined by [pM | = 0.5 until the trajectory of
the bound level approaches this line—that is, until p
reaches avalue of about 1.12, in which case x,M = 0.5.
The value of p [011.68 corresponds to the experimental
value of ax, = 0.291. Thissetsthe constraint X, < /2 =
0.0753 fm~!. On the energy scale, we accordingly have
B, < 0.18 MeV, which is three times as small as the
well-known estimate B, 0O 0.5 MeV, which was
deduced from experimenta data, as well as from the
calculations based on the Faddeev equations. A com-
parison of the characteristics of the doublet neutron—
deuteron system for the potentials (1)—(3) isillustrated
in Table 2. This table aso displays the results of the
phase-shift analysis of experimental data that was per-
formed for this system by using the modified formula
of effective-range theory for the function kcotd, which
hasapoleat k = ik, and which involves (or which does

Table 1. Parameters of the potential (3) and their fitted values
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Fig. 1. Results of the calculations of the scaling quantities
axy, X;M, xoM, and koM with the potentia (3) (introduced

in [7]) versusthe scaling variable p = /g/gcr. Circles (and
arrow) indicate those points on the curvesthat correspond to
the experimental value of ax; = 0.291 for the doublet neu-
tron—deuteron system. For the fast growing function x; M,
the scale was changed by one order at p = 1.35.

not involve) ak* term:;
kcotd = (1+K/k2) ™ (=1/a+C,k +CkY. (8)

For the asymptotic normalization constant, this yields
(see[10] and references therein)

C? = (1-X*/K2)/(1-2Cx —3x*/K:+4C,X%). 9)

It isworth noting that the position of the dynamical
singularity in modified effective-range theory [equation
(8)] isclose to the singularity of the Feynman diagram
for one-nucleon exchange (E, = 0.738 MeV). The posi-
tion of the dynamical singularity in the two-body
model that employs the Hulthén potential [at n =0 in
(4), this singularity appears to be a spurious pole] aso
proves to be close to the position of the singularity of
this diagram. In the case of the Yukawa potential, the
corresponding point (on the energy scale) is offset from
the physical region by adistance twice aslarge asthose
in the preceding examples. For the potential given by

Parameter —1
Potential Vo, MeV R, fm M, fm &1 — &4, MeV ap, fm
Tomioet al. 39.839 1.7571 0.1506 6.013 0.822
Our study 40.495 1.7565 0.1507 6.260 0.650

Note: So large a number of decimal places have been presented only because this was done in [7] (since the model in question is quite
rough, it is sufficient to calculate only three decimal places).
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Table 2. Features of the doublet neutron—deuteron system

ORLOV et al.

Model G, fm B,, MeV —G2,fm —Ey, MeV

Effective-range theory:

[8,10],C, 20 1.48 0.530 0.0073 0.150

[17],C,=0 0.33 0.482 0.008 0.047
Hulthén potential [9, 10] 1.48 0.75 0.018 0.20
Y ukawa potential [10] 1.16 0.61 0.025 0.18
Potential of Tomio et al. from [7] 1.47 0.176 - 0.063
[equation (3) in the present study]

(3), thedynamical singularity isone order of magnitude
closer to the physical region than for the Yukawa poten-
tial. So great adistinction is due to the concerted effect
of two factors, the different powers of r [n =2 in the
potentia given by (3)] and the presence of the oscillat-
ing factor inthe potential (3). Both these factors smooth
out the attractive properties of the potential, but thisis

Ct

Eff. range

1 1
-0.5 0 0.5 1.0 1.5 ay,

Fig. 2. Results of the calculation for the asymptotic normal -

ization factor C% of the radial wave function of the ground

bound state versus the product ay;. The calculations were
performed with the Hulthén potential (Hu); the Yukawa
potential (Yu); and the potential in the form (3) (Tom),
which was introduced in [7] and which takes into account
long-range interaction. Closed circles represent the results
of calculations based of the Faddeev equations with various
nucleon—nucleon potentials (see references in [6]): (1)
results obtained with the separable Yamaguchi potential, (2)
results obtained on the basis of the quark-bag method, (3, 4)
results obtained with the rectangular-well potentia, (5)
results obtained with the Malfliet—Tjon potential, and (6, 7)
results obtained with soft-core Reid potential . Experimental

dataon C% were borrowed from (closed rectangle A) [18],
(closed square B) [19], (closed square C) [8], and (cross)
[20]. The error presented in [20] (C2 = 2.78 + 1.09) corre-
sponds to the scatter of the experimental datain Fig. 2.

compensated by an increase in itsrange (M = p') and
an increase in its depth (V,)). For the potentials (1)—(3),
the depth and range parameters are compared in Table 3.
These parameters do not differ very strongly for the
potentials (1) and (2). In the case of the potential (3),
the depth V, isapproximately twice aslarge asthosefor
the potentials (1) and (2), the corresponding potential
ranges being roughly in the ratios M;/M, = 3 and
Ms/M, = 2. From the point of view of practical applica-
tionsin the theory of nuclear reactions, the most impor-

tant quantity is the vertex constant G?; its value

obtained for the potential (3) is close to the results that
are produced by the Hulthén potential and by modified
effective-range theory according to equations (8) and
(9) (seeTable 2). The same can be seenin Fig. 2, which
illustrates the relationship between the asymptotic nor-

malization factor C$ and the quantity ax,. The results

obtained with the potentials (1)—(3) are qualitatively
similar, but they deviate drastically from the curve
computed in the effective-range approximation {see
equation (6) from the present study and equation (8)
from [10]}:

Cgff,range = ax l/ (2 - aXl) : (10)
The distinctions emerge immediately beyond the deu-
teron region, whereay, = 1.26. For the potential (3), the
position of the pole of the function kcotd on the energy
scale (E, = 0.063 MeV) is strongly underestimated in
relation to the results produced by the Hulthén and
Yukawa potentials (see Table 2), as well asin relation
to the experimental value of E, = 0.15 MeV [8]. In all
probability, thisis also because the value obtained for
the range M as the result of fitting is overly great, as
was discussed above in connection with the position of
the pole for T*. As can be seen from Fig. 1, the latter
takes the maximum possible value at given M because
thetrajectory of x,M tendsto the dynamical-singul arity
line as p approaches 1.8, the experimental value of ay;
for the doublet neutron—deuteron system correspond-
ing to p = 1.68. We cannot rule out the possibility that,
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in the case of the potentia (3), the resultsfor B, and E,
can be refined by including the third parameter Ry in
our fitting procedure.

It should be emphasized that, in effective-range the-

ory, the G? value at C, = 0 differs dramatically from
those at C, # 0. We note that, by formally extending
equation (10) to theregion where ay, < 1, we obtain the

value of G? =0.17. Adhikari [5], who derived formulas
of the N/D method that correspond to expression (9)

with C, = 0, also drew attention to the G7 value

strongly underestimated in relation to the results of the
calculationsfrom [2], which were based on the Faddeev
equations. The conclusion of Adhikari was radical and
incorrect: he asserted that the above implies the need
for taking into account the three-body cut of the S
matriX. In our opinion, the reason behind the aforemen-
tioned discrepancy is that, in [5], the number of terms
retained in the expansion of the amplitude (or the func-
tion kcotd) in power series in k was insufficient. In

Table 2, adashis placed instead of the Gi valuefor the

case being discussed, because it is meaningless to cal-
culate this quantity when the virtua-pole position
found for the potentia (3) differs very strongly from
that which is known very well (the calculations for the
region p < 1.8 have been performed, but their resultsare
not presented here). Moreover, the fact that the position
of the virtual pole nearly coincides with the position of
the dynamical singularity generates purely technical
problems in calculating the residue of the scattering
amplitude at the virtual pole.

In solving the aforementioned integral equations,
we used herethe dimensionlessvariable x=g/p (qisthe
wave number) and made the change of variable x = e.
The latter guaranteed a correct cutoff at the lower and
upper limits of the integrals involved and enabled us to
evaluate these integrals by the method of rectangles. It
iswell known that, for functions taking the same values
at the upper and lower limits of integration, other
guadrature formulas provide no advantages over this
method (in our case, the integrand tends to zero both at
the lower and at the upper limit). The accuracy of the
calculations was monitored by varying the width and
the number of steps (up to the value of N = 600; usually,
areasonable accuracy was achieved at N = 150) and by
verifying the behavior of the integrand over the entire
interval of integration. For the bound state, the energy
eigenvalues were determined by iterating the integral
Schrddinger equation in momentum space. As a matter
of fact, we solved the set of algebraic equations that
emerged as the result of applying the method of rectan-
gles to evaluating the integrals. The energies of virtua
levels were found by solving the following set of equa-

tions (see [12, 14]) for the vertex function g™ (q)

(below, the superscript n, which represents the principal
guantum number or the number of the level, and the
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Table 3. Parameters of the potentials (1)—(3) and position
(—E,) of the closest dynamical singularity

Parameter 1
Potential Vo, MeV | y, fm™ |-E;, MeV
Hulthén [9, 10] 2211 0.506 101
Y ukawa [10] 17.43 0.360 2.01
Tomio et al. [7] 40.50 0.1507 | 0.352

Note: The one-nucleon-exchange diagram leadsto a singularity at
E; =-0.738 MeV

orbital angular momentum | are suppressed for the sake
of brevity):

<)

9(a) = (2n2)‘1j[V<q, K)g(k)/ (z—k*/ 2my,)]k*dk
0

(11)
+(I/mM)my,g(p)V(a, p),

g(p) = [1-(i/mmu,pV(p, p)] " (2r) "

” (12)
x J'[V(p, K)g(k)/ (2= K>/ 2my,)] K dk.
0

Here, p = ./2my,z isthe arithmetic value of the square

root, zisthe eigenvalue of energy E (it isreal and neg-
ativefor avirtual level), and V(q, k) isthe Fourier trans-
form of the potential. The method that we used in deal-
ing with this set of equations consisted in the following.
First, we solved the nonhomogeneous equation (11),
imposing the normalization condition g(p) = 1. After
that, the eigenvalue of z was determined from equation

(12). In order to find G2 [G, = g(iX,)], we used the
generalized normalization condition [12, 14]

[(a’~ p*) “g’(a)q’dq + (iTV 2p)g°(p)
! (13)

x {1+ 2p[dg(K)/ dK]|, - o/ 9(P)} =217 (h/ 2my,0)°.

In the case of a bound state, the second term is present
neither on the right-hand side of (11) nor on the left-
hand side of (13). The scattering length and the position
of the zero of the amplitude f(k) were determined by
solving the conventional nonhomogeneous integral
Lippmann—Schwinger equation (see, for example, [10]).

4. CONCLUSION

To summarize, we can state that the effects of long-
range interaction are insignificant in the case of the
doublet neutron—deuteron system and that the potential
(3), which has a correct asymptotic behavior, does not
show substantial advantages over short-range poten-
tials usualy used in nuclear physics, such as the
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Yukawa and Hulthén potentials. It seems that the
Hulthén potential provides quite a reasonable descrip-
tion of the low-energy properties of the doublet neu-
tron—deuteron system; this potential is especially con-
venient because an analytic solution to the problem in
the swave isknown for this case. It would be desirable
to improve the precision to which the nuclear vertex

constant G2 is determined experimentally. This would

make it possible to make a more motivated choice
between various potentials of the two-body model that
are used in describing the doublet neutron—deuteron
system at low energies.
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APPENDIX

By definition, the Fourier transform of the potential
V(r) for an orbital angular momentum | is

00

Vi(q, k) = 4np|(qr)j.(kr)V(r)r2dr, (A1)
0

where j;(X) is a spherical Bessdl function [j(X) =
X"'sinx]. For the potential (3), we can easily obtain (see
[21, item 3.948]) the expression (I = 0)

V(g k) = ~(TV2)[VoR*/ 1l v (x, y);
X=0o/H, y=k/H, a=2uR (A2)
V(X y)

= (xy) " [Fa(% ¥, 0) + Fo(x, y, &) = F(x, y, 0)];
Fi(x . a) = wy(X Y, 0) —wy(x, Y, a),

Fo(X, Y, @) = Wy(X, Y, @) +Wy(X, y, —01),
wi(X Y, @) = [Vi(X Y, 0) + vy(x, Y, —a)]/2,
Wo(X, Y, @) = V(X =y, o) = Vy(X, Y, ),

where
vi(x Y, a)
= Inl[1+ (x-y+a)’)/[1+(x+y+a)’], (A3)
Vo(X y,a) = (X+y+a)arctan(x+y+a).

The absolute value is taken in the argument of the log-
arithm, since we need its real branch. It is worthwhile
to present expressions for v (x, ib) for the case where
one of the argumentsis purely imaginary. Thisfunction
isrequired for cal cul ating the asymptotic normalization
factor; it is also needed for calculations on an unphysi-
cal sheet of energy in the case of abound or aresonance
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state [see equations (11)—13)]. By using expressions
(A.2) and (A.3) and going over to thelimity — ib, we
arrive at

v (X, ib) = (2/xb){-v3(x)

+05[v,(x+a)+vy(x—a)] (A4)
—Imlv(X+a) + v, (x—a) —2v,(X)]},
where
Va(X) = arctan[22bx/(12+ X" —b%)] As)
+1(b* —1—x°),
v,.(X) = (x+ib)arctan(x +ib). (A.6)

The second term on the right-hand side of (A.5)—it
containsaHeaviside step function [B(t) =1 fort >0 and
B(t) = 0 for t < O]—has been introduced in order to
ensure the continuity of the function v;(x) when the
principal value of the arctangent (first term) is used.
From (A.2) and (A.3), we can easily find that, at x=y =
ib, the potential is given by

v(ib,ib) = (-b?){=In|1-4bF —In(1+a?)

+In|1+ (o + 2ib)? + 2bIn|(1—2b)/ (1 + 2b)| A

+ 2a arctana — 2Re[ (a + 2ib)arctan(a + 2ib)]}.

In order to calcul ate the scattering length, we must have
at our disposal an expression for the potential where
one or both arguments are close to zero. These expres-
sions can be obtained easily with the aid of equations
(A.2) and (A.3), which can be used down to very small
values of the arguments. Inthe limitx — 0ory —
0, it is necessary evaluate an indefinite form of the 0/0
type. In particular, we have

v(0,0) = 40%/(1+a?). (A.8)
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Abstract—The ,\,?He and ,?Be hypernuclei are treated asthe S= 0, T =0 (for the former) and S=1/2, T=0

(for the latter) bound states of the three-cluster systems AAa and Aaa, respectively. The cluster-reduction
method is used to solve the sswave differential Faddeev equations for these systems. On the basis of the MT 111

model, the AA interaction potential is specified intheform Vs = 2 Vun- Phenomenological potentials are used

3

to describe Aa and aa interactions. The binding energies of the ,'fHe and ,?Be hypernuclei and the parameters

of low-energy A-hyperon and a-particle scattering on a ,fHe hypernucleus are calculated. It is shown that the
proposed AA interaction potential makes it possible to reproduce faithfully the binding energy of the

,\,?He hypernucleus and that scattering in the A ,fHe system is similar to neutron scattering on a deuteron.

© 2000 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

In recent years, much attention in nuclear physics
has been given to three-particle systems consisting of
two identical particles and a third particle different
from the first two. Among the factors that provoke this
interest, we would like to indicate the devel opment of
baryon models and attempts at obtaining a consistent
description of the properties of baryons at different
energies[1-4]. A feature peculiar to these realmsisthat
experimental data on direct interactions of baryons at
low energies are scanty. A calculation of the binding
energies of mixed systems like A(Z)NN (hypertriton

nucleus ,:fH ) and AAa ( ,\,fHe hypernucleus) may serve

as a test for various model approaches. Theoretically,
such systems are usually studied on the basis of Fad-
deev equations either in the integral or in the differen-
tial form [5]. In the case of three identical particles (for
example, three nucleons), the set of Faddeev equations
takes the simplest form. Broad experience gained in
applying Faddeev equations to such systems was sum-
marized in [6]. Since the number of coupled equations
in Faddeev sets grows as soon as we embark on studies
of nonidentical particles, relevant computational prob-
lems become more involved. The situation is further
aggravated upon taking into account higher partial
waves. Here, direct computational methods lead to
algebraic problems of enormous dimension. These can
hardly be solved without invoking supercomputers.
Only in somerecent studiesweretherefore systemslike

* e-mail: filikhin@cph10.phys.spbu.ru

those mentioned above (ANN [1] and nna [4]) analyzed
on the basis of Faddeev equationswith realistic interac-
tion potentials.

In the present article, the three-particle systems
AAa and aoA are investigated on the basis of Faddeev
equationsin configuration space. In the s-wave approx-
imation, which is used here, the equations for the coor-
dinate parts of the Faddeev components take the same
form for the two systems in question. The swave Fad-
deev equations are numerically solved by the cluster-
reduction method. Previously, we used this method in
[7-9] to study three- and four-nucleon systems and in
[10] to study the Anp system. In our calculations, the
Aa and aa intercluster interactions are simulated by
the phenomenological potentialsfrom[11, 12]. The AA
interaction is specified on the basis of the s-wave model
employing the MT Il potential [13] modified as in
[14], the singlet component of the AA interaction

potential being taken in the form V, = %VNN. The

hypothesis that the singlet A/ interaction is similar to
the singlet nucleon—nucleon interaction has already
been put forth in some previous studies. In our model,
the proportionality factor between the AA and NN
potentials is chosen in such away as to reproduce the

experimental value of the , ~He binding energy.

The ensuing exposition is organized as follows. In
Section 2, we describe the model and present the
s-wave differential Faddeev equations for the AAa and
oo\ systems. There, we also give abrief account of the

1063-7788/00/6303-0336%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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method for solving these equations on the basis of clus-
ter reduction. Section 3 contains the results of the cal-

culations for the hyperon binding energy in the ,\,fHe

and ,?Be nuclei. The rate at which the results of the cal-

culations performed within the proposed approach con-
verge is investigated in the same section. The wave
functions of the hypernuclel are used to assess the
degree of clustering in the systems being considered.
Further, we investigate two-cluster scattering at ener-

gies below the three-body threshold—namely, A He

scattering and o ,?He scattering. We calculate the rele-
vant phase shifts and the parameters of the effective-
range expansion. It is shown that the behavior of the

function pcot(d) for /\,fHe scattering is similar to that
in the case of nd scattering.

2. BASIC EQUATIONS AND METHOD
FOR SOLVING THEM

We consider a three-particle system involving two
identical charged particles. In order to describethis sys-
tem, we make use of modified differential Faddeev
equations, where the Coulomb potential of interaction
between the charged particlesisincluded in the unper-
turbed Hamiltonian. Specifically, we have

(H3+V°°“' +Vp—E)U = -V, (W+eP,W), 0
(Ho + Ve + Vi, —E)W = —V5(U + eP,W),

where e = -1 (+1) for fermions (bosons), while the
components U and W of the total wave function W cor-
respond to, respectively, the {12} 3 and the { 13} 2 parti-
tion of the {123} system. The relevant kinetic-energy

operators are denoted by H, and H, . By convention,

the particles of the (12) pair are taken to be identical.
We denote by P;, the operator of particle permutationin
the {ik} pair, by V, the short-range pair interaction
potentials, and by V¢ the Coulomb potential of the
{12} pair. Thetotal wave function of the system can be
represented as

W = U+ (Il +ePy)W.

For the AAa and aoA systemsintheS=0,T=0
and S=1/2, T = 0 spin-isospin states, respectively, the
swave differential Faddeev equations form, in either
case, a set of two coupled equations for the coordinate
components of the spinors U and Wi that is,

[ho + v (X) + vip(x) —EJU(X, )

= —vy(X) jdu%W(xz ¥),

2)
[ho + Vi (X, ) + v 15(X) — EJW(X, y)
PHY SICS OF ATOMIC NUCLEI Vol. 63 No. 3 2000
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Fig. 1. Jacobi coordinates in the three-particle system.

1

1

1 Xy Xy
= —=v (X)) [du—2=U(x,, + fdu U(Xs, ,
5 13( ){Il X.Ys (X1, Y1) :[ XY, (X, yz)}

where

4 my, Y

w_  12m+mg
-

2 M+Mg
- 0, — 292
2m+m, 2m,

are the kinetic-energy operators that are expressed in
terms of the Jacobi coordinates and which correspond
to, respectively, the {12} 3 and the {13} 2 partition of
the {123} system. The Jacobi coordinates of the system
being considered are schematically illustrated in Fig. 1.

For the AAa system, we have

m
mg=m,, m=m,, Vp(X)= V/\/\(X)%‘;‘\,

m
Via(X) = V/\a(x)%—;\!

where m, isthe A-hyperon mass, m, isthe alpha-parti-
clemass, V A(X) isthe singlet part of the AA interaction
potential, and V,,(X) is the potential of interaction
between the A hyperon and the alphaparticle. Thereare
no Coulomb potentialsin the AAa system:

Coul Coul

Ve (X) = vy (Xy) = 0.
For the aa/\ system, we have

m,
m3 = morv m = m/\a V12(X) = Vaa(x);{gv

mor
Via(X) = VAG(X)%E1

where V,,(X) is the aa-interaction potential. The Cou-

lomb potentials vfou' (X, y) are given by

Coul

xand v,

Coul

ve(x) = nix, v

Ve (XY) = nlr,,

wherer, = max{bx, y} (the parameter b will be defined
below). The transformations of the coordinates in the
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integral terms of equations (2) are given by

. 0°

x +y + Xyus

y = ((ax)? + (by)? - 2abxyu)"”,
((bx)? +y? = 2bxyu) ™%,

X; =
2
y; = %ax) +4y +axyuDu
X, = ((cx)2 + y2 + 20xyu)1/2,
y, = (4(abx)? + (cy)— 4abexyu)™”,
where a = 221+ s b= —2_ adc= 1M
2m+mg’ m+ m; m+ mg

(@a=0.615,b=0.77, and c=0.23 for the AAa systemand
a=0.885, b =0.23, and c = 0.77 for the a0\ system).

The potential of interaction between two alpha par-
ticlesis given by [11]

O 20 O 20
aa(r) - VleXpB'—D'l' Vzexp G“‘D:
0 pi0 0 B30

where V, = 125.0 MeV, 3, = 1.563 fm, V, =-30.18, and
B, = 2.85 fm. The interaction between the A hyperon
and the alpha particle has the form [12]

3)

O (20
Vaa(r) = VoexpB-5
WRCHE

where V, = —47.97 MeV and [3, = 1.566 fm. Equations
(2) must be supplemented with the asymptotic bound-
ary conditions for the components U and W. States that
belong to the discrete spectra of the systems being con-
sidered correspond to boundary-value problems with
zero boundary conditions at x = 0, at y = 0, and at the
boundary of the asymptotic region in the coordinates x
and y. Further, we consider boundary-value problems
for two-cluster scattering at energies of relative motion
that do not exceed the threshold for the breakup of a

bound cluster ( ,fHe nucleus). The asymptotic boundary
conditionsfor the scattering processesinthe A ,fHe and
o ,i’He systems must be considered separately. In the

case of hyperon scattering on a ,i’He nucleus, the

asymptotic forms of the components U(x, y) and
W(x, y) for y — o are

U(x y) OO,
W(x, y) Owo(X)[Xp(Y) +a(p)cos(py)],
where J,(X) is the wave function of the ground state of
the ,i’He nucleus, while x,(y) is a function that

FILIKHIN, YAKOVLEV

describes the free relative motion of the A hyperon and
a ,i’He nucleus in the initial state. For the latter func-
tion, we have x,(y) = sin(py)/p, where ap® = E - &, &,
being the binding energy of the He nucleus. The

phase shift & is related to the amplitude a(p) by the
equation a(p) = tan(d)/p.

In the problem of a pha-particle scattering on a ,fHe

nucleus, the asymptotic expressions for the compo-
nentsU(x, y) and W(x, y) inthelimity — o aregiven
by

U(x y) 1o,
W(x, y) OWo(X)[Xp(Y) —alp)Go(n, PY)],
2
where x,(y) = Fo(n, py) and n = —E withn= 42‘;6‘ ,

Fo(n, p) and Gy(n, p) being, respectively, the regular
and the singular Coulomb function. Here, we have con-
sidered that there is the Coulomb interaction between
the alpha particles. The amplitude a(p) isrelated to the

phase shift by the equation a(p) = —tan(d) /pCS, where
C5 = 2mny[exp2mn) — 1].

The set of differential Faddeev equations (2) is
solved here by the cluster-reduction method, which was
proposed in [7-9] and which was used to calculate
bound states and low-energy scattering states in three-
and four-nucleon systems. Within this method, solu-
tionsto the original equations are expanded in the bases
of eigenfunctions of the Hamiltonians of two-particle
subsystems. Taking relevant projections, we arrive at a
set of equations describing the relative motion of the
clustersinvolved.

A solution to equations (2) can be represented as

Uxy) = S a0 fiy).
=0 4)

W(x,y) = z W) ai(y),
=0

where the functions @(x) and {)(x) are the solutions to
the boundary-value problems for the Hamiltonians of
the subsystems with zero boundary conditions; that is,
these functions satisfy the equations

(-0 + V(X))@ = g'a(x),

ool v = ) ©

and the boundary conditions @(0) = @¢(R) =0 and
P, (0) = Y (R) = 0. They form orthonormalized sets of
functions. By taking relevant projections, wereduce the
set of two-dimensiona integro-differential equations
(2) to aone-dimensional set of equations for the func-

(&)
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tionsf,(y) and g,(y) describing the relative motion of the
clusters. These functions must satisfy asymptotic
boundary conditions that are obtained by taking similar
projections[7, 8].

3. RESULTS OF THE CALCULATION

In this section, we present the results that we
obtained by solving numerically the effective equations
for the functions fi(y) and g,(y) describing the relative
motion of the clusters. We have considered boundary-
value problems corresponding to the bound statesin the
AAa and oo/ systemsand the problems of |ow-energy

N-hyperon and apha-particle scattering on a ,fHe

hypernucleus. The equations for the functions f(y) and
g(y) were solved by means of a finite-difference
approximation on an equidistant mesh having N, nodes.
In these calculations, the number N, of nodes, the radii
R(and R, that specified the region where the asymptotic
expressions for the sought solutions were used, and the
number N of terms retained in expansions (4) were
parameters to be chosen. For the bound state in the
ANa system, a relative error at a level of 0.5% was
achieved at N, = 100, R, = 17 fm, R, = 17 fm, and N =
10. For the aoA system, the same precision was
obtained at N, = 100, R,=35fm, R, =35fm, and N =
30. That the greater values of R,, R, and N were
required in the latter case was due to a slow decrease of
the Coulomb interaction between the alpha particles.
Figure 2 shows the binding energies of the aa/A and
AANa systems as functions of N. The results of various
calculations for the energy of hyperon separation from

the ,\,fHe hypernucleus are displayed in Table 1 along
with the experimental value of thisenergy [in the three-

body model, the separation energy E(, ,?He) coincides

in magnitude with the binding energy of the ,\,EfHe

hypernucleus, these two energies being opposite in
sign]. Our result is seen to comply well with the exper-
imental value. We note that the calculations performed
in [15] by the method of hyperspherical harmonicsin
momentum space relied on model potentials and that
the calculations performed in [2] employed the Fad-
deev equations with realistic potentials. For the root-

mean-square radius of the ,\,fHe hypernucleus, we

obtained the value of [*[¥? = 1.43 fm. The calculation
was based on the relation

2
Dzﬂjz _ %]§D+ my D?Z[%U,
m, +2m,

where Drﬁﬂjz is the root-mean-sgquare radius of the
apha particle in the three-body system AAa, while
[R*[Y? is the root-mean-square radius of the alpha par-
ticle as the “He nucleus (IR[Y? = 1.61 fm). The results
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Fig. 2. Binding energies of the A,?He and ,?Be hypernucle as
functions of the number N of termsretained in expansion (4).

of various calculations for the energy of A-hyperon
separation from the ,?Be hypernucleus are presented in

Table 2. This separation energy, E( ,?Be), was calcu-
lated by the formula E(,S\’Be) = —EB(,?Be) + Ez(®Be),

where Eg( ,?Be) isthe binding energy of the ,fBe hyper-
nucleus, while Eg(®Be) is the binding energy of the *Be
nucleus [Eg(®Be) = 0.09 MeV]. The separation-energy
value that resulted from our calculation is less than the
experimental value by about 1.0 MeV, but the former
complies well with the results obtained in [16, 17] on
the basis of the three-body model. The calculation from
[16] was performed by the method of hyperspherical
functions in the momentum representation, model
potentials being used there. The calculation from [17]
was based on the differential Faddeev equations. In that
study, the Aa interaction was simulated by the potential
from [18], while the aa interaction potential was taken
in the form (3).

The expansions in (4) are convenient for studying
the degree of clustering in the three-particle systems
AAa and oo . Indeed, the probability P,; of finding
the {123} system of particlesin the 1{ 23} form, where
the {23} pair appears to be a bound subsystem, can be

Tablel1. Energy of A-hyperon separation from the ,\,?He
hypernucleus and its root-mean-square radius

References E(, He), MeV 242, fm
Our study 10.88 143
[15] 10.69 1.66
[2] 116 -
Experimental study 109+ 0.6 -
reported in [2]
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Table 2. Energy of A-hyperon separation from the ,?Be hy-
pernucleus

References E( ,?B e), MeV
Our study 5.67
[16] 5.78
[17] 5.76
Experimental study reported in [16] 6.71+ 0.4

Table 3. Probability of clusteringinthe , \He and ;Be hy-
pernuclei

%/Stem P{23} P
A(AQ) 0.39 0.79
a(an) 0.42 0.85
estimated as
p _ g, | WO
=7 e

where W is the total wave function and where integra-
tion is performed with respect to the coordinates in
Fig. 1b. The probability P, 5, isdefined isasimilar way
(integration is performed with respect to the coordi-
natesin Fig. 1c). Sincethe particlesinthe {12} pair are
taken to beidentical, thetotal probability P that the sys-
temis clustered in the form particle 1 (or 2) + a bound
pair formed by particle 2 (or 1) and particle 3 is deter-
mined asthe sum P = P,;, + P;3,. In addition, we have
P13, = Pj23,. For the systems being considered, we are
to deal with clustering of the form A hyperon (alpha

0, deg

~10
20
-30
40

3
E, MeV

_50 | | |

(e}
Ju—
\9}

Fig. 3. Phase shift for apha-particle scattering by a ,?He

hypernucleus. (points) values obtained on the basis of a
numerical solution to equations (1) and (curve) phase shifts
obtained by formula (7) with the aid of approximation (8)
for the function K.(E).

FILIKHIN, YAKOVLEV

particle) + ,S\He. Theresults of our calculationsfor P,3,
and P are displayed in Table 3. For the sake of compar-
ison, weindicatethat, for the nnp(*H) system, the quan-
tity analogous to P,,;, is estimated at 0.448 [1]. The
method of cluster reduction makesit possibleto go over
easily to scattering problems. Here, we have studied
low-energy scattering in the o \He and A sHe systems
within the swave approximation. By virtue of the
asymptotic boundary conditions, expansions of the
form (4) are valid at energies of the relative motion of
the clusters below the threshold for the disintegration of
the bound subsystem ( ,?He). By numerically solving

the equations for the functionsf,(y) and g,(y), we evalu-
ated the relevant phase shifts at energies of relative
motion (in the c.m. frame) that do not exceed the bind-

ing energy of the ,fHe hypernucleus (E < 3.12 MeV).

An analysis of the energy dependence of the swave

phase shift for a ,‘r\’He scattering shows that this phase

shift behaves anomaloudy at energies of relative
motion below 1 MeV. There, the phase shifts are small
and positive. It is well known that, in the case of
charged-particle scattering, the effective-range expan-
sion holds for the function

Keo(E) = Con)peot(8(p) + 2h(n), (1)

where h(n) = -Inn + ReW(l + ni), Y(2 being a
digamma function, while p*> = ggg The function

Keou(E) can be closely approximated by a modified
effective-range expansion in the form

—VUA+rp’+qp’
1+p/ps

KCouI(E) = (8)

For the coefficients A, r, g, and pg, we obtained the
numerical values of A = —103 fm, r = 0.59 fm, q =

-4.55 fm?, and p: =-0.94 MeV. Here, the parameter A
has the meaning of the scattering length for alpha-par-

ticle interaction with the ,fHe nucleus. The phase shift

for O(,i’He scattering is displayed in Fig. 3, where the

circles represent its calculated values, while the solid
curve corresponds to the use of approximation (8) in
the calculation based on expression (7). In accordance

with (8), the scattering length for a ,fHe interaction is

large in magnitude and negative. This circumstance can
be attributed to the presence of a virtua level in the
Aaa system near the threshold for scattering [19]. On
the basis of expansion (8), wefind the effective ranger,

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 3 2000
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K(E), fm™!

0 1 2 3
E, MeV

Fig. 4. Function K(E) = pcot(d) for A-hyperon scattering by
a /?He hypernucleus: (curve) approximation (8) for the

function K(E) and (points) results obtained for pcot(d) from
anumerical solution to equation (1).

Eg=-8.54 MeV

A = 0.64 fm, p§=0.177 MeV, ry =460 fm

Ez=-10.9 MeV

A =1.0fm, p}=1.1MeV, ry=27.8 fm

Fig. 5. nnp and AAa systems. The scheme depicted in this
figureis explained in the main body of the text. For the nnp
system, the parameter values were obtained in [8].

for a ,fHe interaction by using the formula

— dKCouI 2
Iy = Zd—pz for P — 0. )

Theresultisr, =1.2fm.

Further, we investigated the applicability of the
effective-range approximation to describing the scatter-
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ing process in the A sHe system. For this purpose, we

evaluated the function K(E) = pcot(d) at low energies.
This function is closely approximated by a modified
effective-range expansion of the form (8) with the
parameter valuesof A=1.002fm, r =-5.5fm, q=0fm?’,

0

imation of K(E) by (8) isrepresented by the solid curve,
while the calculated values of pcot(d) are shown by cir-
cles. Here, we can clearly see the analogy with the thor-
oughly studied low-energy behavior of the function
K(E) in doublet neutron—deuteron scattering [8, 20].
The expansion given by (8) is usually associated with
the presence of a virtual level in the nd system. The
energy of the virtual level (pole of the S matrix) is
determined [19] by solving the equation

K(E)—ip = Oat p = —ik, K>O0. (10)

If arepresentation of the form (8) isused in (10) for the
function K(E), the energy of the virtua level is
2.38 MeV. For specific values of the parameters in the
effective-range expansion (8) for A-hyperon scattering

ona ,fHe hypernucleus, the scattering length is 1.0 fm,

while the effective range calculated for this interaction
by equation (9) is 28.8 fm. Further, we note that the

behavior of the function pcot(d) for the A ,fHe System

issimilar to the behavior of thisfunction for nd scatter-
ing (the binding energies of the entire systems and the
binding energies of the corresponding subsystems are
also similar); therefore, we can construct a direct anal-
ogy between the AAa and nnp systems. Thisanalogy is
illustrated by the scheme in Fig. 5, where we present
the parameters of the nnp system that were obtained in
[8]. Obviously, thissimilarity is dueto the compactness
of the alpha particle.

and p; = 1.1 MeV %32: %\E—ED. In Fig. 4, the approx-
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Abstract—The %0 nucleus is treated as a bound state of the four-al pha-particle system showing 3a + o clus-
tering. The pair interaction of the alphaparticlesinvolved is simulated by a phenomenological potential. Addi-
tional three-particle potentials are introduced in order that the entire system and its three-particle subsystems
be bound. The parameters of these potentials are determined by fitting the experimental values of the binding
energies and the root-mean-square radii of the '2C and °O nuclei. The calculations are performed on the basis
of the sswave differential equations for the Faddeev and Yakubovsky components. The ground and the first
excited state of the '°O nucleus are investigated. The most probable spatial arrangement of the alpha-particle
clusters in the system is determined. The charge form factors are calculated for the '>C and '°O nuclei. The
results of our model calculations comply well with experimental data. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

It iscommonly accepted at present that correlations
of the apha-particle-cluster type exist in the light
nuclei 2C and '°O. However, a complete theoretical
description of the properties of these nuclel that takes
into account clustering of the above type has yet to be
obtained [1-5]. Meanwhile, the idea of using a three-
body potential in treating the 'C nucleus as a system of
three apha particles made it possible to reproduce [4]

the experimental values of the parameters of the 0, res-

onance state in the '?C nucleus. This was done by con-
structing solutionsto the differential Faddeev equations
a positive energies. From the studies reported in [6],
which implemented the microscopic variationa
approach, it can be seen that, by taking into account
three-body forces, the experimentally observed behav-
ior of the 10O charge form factor is reproducible within
this approach aswell; in particular, a second diffraction
minimum, which did not arisein modelsrelying on pair
nucleon—nucleon interaction potential, could be
described upon the inclusion of three-body interac-
tions.

In the present study, we address the question of
whether it is possible to choose the parameters of the
three-body potential in such away that the properties of
the %O nucleus could be described on the basis of the
4a cluster model. In our analysis, we employ the Fad-
deev equations for the 3o subsystem and the four-par-
ticle' Yakubovsky equationsin the differential form [7].
The swave Faddeev and Yakubovsky equations are
solved numerically by the cluster-reduction method
[8]. The short-range interaction between two al pha par-
ticles is simulated by the phenomenologica potential
from [9].

* e-mail: filikhin@cph10.phys.spbu.ru

The ensuing exposition is organized as follows. In
Section 2, we describe the model underlying our inves-
tigations and formulate basic equations. In Section 3,
we give an account of the method used to solve the
equations from Section 2 and present our numerical
results. A brief summary of these resultsis given in the
Conclusion.

2. DESCRIPTION OF THE MODEL
2.1. Potentials Used

For the pair potential of interaction between the
alpha particles involved, we take the potential from [9]
(version “d’), which makes it possible to reproduce
faithfully the phase shiftsfor low-energy aa scattering.
The s-wave projection of this potential has the form

V(r) = Viexp(—r’/Bd) + Voexp(=r/B3), (1)

whereV, = 125.0 MeV, B, =1.53fm, V, =-30.18 MeV,
and 3, = 2.85 fm. Since apair potential cannot bind the
systems of three and four alpha particles because of the
strong Coulomb repulsion, athree-body potential V;(p)
is additionally introduced in the system of three alpha
particles in order that the system be bound. Following
[4], we specify this potential in the form

Va(p) = Vaexp[—(p/B)7, )
wherep? = %: j irlz r; being theradius vector of theith
particle (with respect to the center of mass of the sys-
tem).

For the four-particle system, we introduce two-
types of three-body potentials, V4 (p) and V5 (p). Of

these, the first binds a three-particle cluster in the sys-
tem, while the second specifies the interaction between

1063-7788/00/6303-0343%20.00 © 2000 MAIK “Nauka/Interperiodica’



Fig. 1. Three-body potentials in the system of four alpha
particles: [V'3 (p)] potential binding a three-particle cluster

within the system and [Vg (p)] potential simulating the

interaction between the fourth particle and the pairs of the
particles forming the three-particle cluster.

the fourth particle and each particle pair bound in the
three-particle cluster. These potentials are chosen in the

form (2), their parameters being denoted by V% and B!

for the former and by V3 and B! for the latter. In this

way, the 3a + a cluster structure is explicitly singled
out in the four-particle system. The three-body poten-
tialsin the system of four apha particles areillustrated
in Fig. 1. That the '°0 nucleus can be described within
this scheme of clustering is confirmed by the calcula-
tions of Dubovichenko [10], who used the '°C + a two-
cluster model to study the electromagnetic disintegra-
tion of the 10 nucleus. By fitting the parameters of the
intercluster potentials involving forbidden states, that
author was able to reproduce the structure of the 1°O
nucleus near the breakup threshold.

2.2. Three-Particle System

We consider the system of three charged particles
having the same mass m,. The particles are assumed to
have neither internal structure nor spin. In order to
describe this system, we make use of modified Faddeev
eguations in the differential form, with the Coulomb
potential of particle interaction being included in the
unperturbed Hamiltonian [7]. Since the particles of the
system being considered areidentical, the relevant Fad-
deev equations reduce to an equation for the U compo-
nent of the total wave function. Specifically, we have

(Ho+ V' + V3 +V-E)U = -V(P" +P)U,

where H, is the kinetic-energy operator, P* are the
operators of cyclic permutations of the particles
involved, V is the short-range potential of pair interac-
tion between the particles, and VC is the Coulomb
potential of the system. The three-particle-interaction
potential V; enters into the equations through the
unperturbed Hamiltonian. The total wave function of
the system can be represented as

W= (1+P +P)U.

FILIKHIN, YAKOVLEV

The system can be described in terms of the Jacobi
coordinates x and y, which are related to the particle
radius vectorsr, (k =1, 2, 3) by the equations

X =T0,=rq, Yy =(ry+ry)l2-r,.

The 3a subsystem is considered here in the swave
approximation—that is, the total orbital angular
momentum of the whole system and those for al of its
subsystems are zero. The s-wave Faddeev equation rep-
resents an equation for the coordinate part AU(x, y) of
the Faddeev component U and has the form

Coul(x) + Vora(x) + Vg(p) —S)m(x, y)

" xy (3)
= - Vua(X)IdVFylou(xl’ yl)i
-1

(ho+ v

where h, = —%65 — 97 is the kinetic-energy operator,

x= x|, y=lyl, and

|:}(2 ) |:|1/2
X =ty yve

2 5 3 D]JZ
AP LY 9
Y1 = %XD + a 4xyv% .
The s-wave projection vc(x) of the Coulomb poten-
tial hastheform

ve(x, y) = n/x+ 2rﬂ,

wherer, = max{x/2, y} and n=4m,e*/A> (n = 0.556 fm).
The short-range potential of interaction between the
alpha particles, v 4(X), is given by (1). The three-body
interaction potentia v4(p) has the form

Va(p) = v;exp(—(pfs'f)%, @)

wherep?= %yz + %x{ Vy =—24.32MeV, p' = 3.795fm,

and 72/m, = 10.44 MeV fm?. The choice of values for
the parameters V'3 and ' is explained in Section 3.

2.3. Four-Particle System

The system of four alpha particles represents a sys-
tem of four identical bosons. For such systems, the dif-
ferential Yakubovsky eguations reduce to two equa
tions for the components U' and U? of the wave func-
tion [7]. These equations can be written as

(Ho+V + V™ +V,—E)U" + V(P, + P;)U"
= —V((P; +P")U"+(P; + P;)U?),

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 3 2000



160 NUCLEUS IN THE 4a CLUSTER MODEL

(Ho+V+V™+V,—E)U?+ V(P'P")U?
= —V(P"+P))P'U",

where V is the pair potential of particle interaction,
Ve is the Coulomb interaction potential, V; is the
three-body potential, H, is the kinetic-energy operator,
P* are the operators of cyclic permutations of four par-

ticles, and P;" are the operators of cyclic permutations
of three particles (here, the subscript indicates the num-
ber of aparticlethat isnot involved in agiven permuta:
tion). The components U' and U? correspond to,
respectively, 3 + 1 and 2 + 2 partitions of the system.
The wave function of the system can be represented as

W= (I1+P +PP +P)(l +P, —P,)U"

+(1+ P} +P))(1 + P'PHU2.

In order to describe the system in configuration space,
we make use of the Jacobi coordinates X = {x;, y;, z;},
i =1, 2, where the subscript i labels coordinates associ-
ated with the different partitions of the system, taking
the valuesof i =1 and 2 for the 3+ 1 and 2 + 2 parti-
tions. The Jacobi coordinates are expressed in terms of
the particle radius vectorsr, (k=1, 2, 3, 4) as

Xp = 0p=rg, Yy = (rp+r)/2-r,

Zy = (rp+r,+r3)/3—ry, X, =1r,-1y,

Yo = T4l Zp = (M +1)/2—(r3+71,)/2.

We consider the system of four alpha particles in the
s-wave approximation; that is, we assume that the
orbital angular momentum of the whole system and the
orbital angular momenta of al its subsystems are equal
to zero. The sswave differential equations for the coor-
dinate partsU' and U2 of the Yakubovsky components
can be written as

Coul

(ho + Vea(®) + V(X ¥, 2) + V4(p) —€)U'(X, , 2)

1

X
+Vaa(¥) jdvﬁoul(xl, Y1, 7))
-1

1 1

_ _} [0 XYZ 4,1
= 2V““(X)IduIdV5(_2yzzzou (X2, Yar )

5)
Xyz O

+ X3y3236u (X3, Y3, Zs)D

(X, ¥, 2) + v3(p) —€)UX(X, Y, 2)

Coul

(ho +Vqo(X) + V3
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+ vm(x)ouz(y. X,2) = —Vq(¥)
I dv :(y42 40u (Xas Yar Z4)
wherex = [x|, y = |y|, z= |z|, and

hy = R+ 20+ 210

hg = -+ 05+ 2070

Thetransformations of the coordinates appearing in (5)
are given by

Xo = X3, X3 = Xg, X4 =Y,
2 1/2

Y, = %}g% +7+ Zyizug
_ o8, o, 7 0"

27 mpn "y 27y12“ !
4 2

Y3 = %hg*‘ 7+ §Y1ZUEU ;

DEEEFZZE Duz

Z3; = D@ylﬂ + Z_3ylzuD )
2
Y, = %Ez+z —xzuDU
_ 2,2 2 2
Z, = §(X + 7"+ 2xzu)

The s-wave projection of the Coulomb interaction in
the equation for the component of the 3 + 1 type hasthe
form

vt = £+2v(1)+2v(1)+v<(51),
W _ DZ/X for x>2y
Dl/y for x<2y,
e
% for Z>)§(+)§/
ot -t b
=n<for ;X—%y‘<2<%X+3y
)2( for X>§y1 Z<% _%y‘
:)—3/ for X<§% Z< %X_%y"
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NI

E for x>§y

"1
[Ry

The s-wave projection of the Coulomb interaction in
the equation for the component of the 2 + 2 type is
given by

v = '
f <=v.
or X<zy

+4vP,

where

v =

n

for x>y, z<

X;y‘
2

for x<y, z<

<IN XIN

2

As before, the short-range potential of interaction
between the alpha particles, v,,(X), istaken in theform
(1). The three-body interaction potential is simulated
by the expression

11
-1
Vs(p) - 4IIdVduz Vaz(paz)’ (6)
-1-1 a,
where the subscript a, takes the values that correspond
to the {123}{4}, {124}{3}, {134}{2}, and {234}{1}
two-cluster partitions of the system. The potential for
the {123}{4} partition is given above [see equation (4)
in Subsection 2.2]. The remaining potentials v, (p,,)
are determined by expression (2) with the parameters
V5 and B In equation (6), the variables p; are
expressed in terms of the Jacobi coordinates of the 3 +
1 type. Specifically, we have

2 1
pazlz = :—)’Eiz'l' éniz’
where
1 2
= z2+§y2+§,yzv, g = X,

2
E{ 124}{3}

1.2

2 _ 2 2 2 _ w2
Elan(zy = Z +§y1—§ylzu, N{1343{2} = X1,

2 _ 2 2 _ 2
Sy = Clazaizy Nizsapgy = Nisayiz-
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The expressions for the variables piz in terms of the
Jacobi coordinates of the 2 + 2 type are given by

2.0 1
Pe = 58 * 5

2 2 1o 2
&layay = Z —ZyV"'Zy, Ni{12ay(3 =

2 _ 2 1.2 2 —
&z = Z —ZXU"'ZX’ N{1343(2)

2 _ 2 2 _ 2
Sy = Sfizayay Nizsapiy = N1z

For these potentials, the parameters V5 and B! are cho-

sen in such away as to reproduce the experimental val-
ues of the binding energy of the 'O nucleus and its
root-mean-square radius.

2.4. Root-Mean-Sguare Radius of the 3a
and 4a Systems

Since the above model is based on the three- and
four-particle Faddeev and Yakubovsky equations, the
internal structure of the alpha-particle clusters cannot
be taken into account explicitly inthismodel. It isobvi-
ous that, in considering the geometric properties of the
120 and '°O nuclé, it is necessary to choose some way
to takeinto account the geometric features of the alpha-
particle clusters. From the literature, we know two
models that alow for the internal structure of clusters
in describing cluster systems. In the first model, all fea-
tures of the clusters that are bound in some system are
identical to their features in a free state. The second
model admits modifications of some properties of the
clusters when they are combined into a cluster system.
Within the first model, Mikhelashvili et al. [1] treated
the 12C nucleus as a system of bound apha particles,
whereas Dubovichenko [10] studied the '“C + a model
of the '°O nucleus. However, the experimental behavior
of the charge form factor at high momentum transfers
could be reproduced neither in [1] nor in [10]. A clus-
ter-model modification that takes into account changes
in the properties of bound clusters was considered by
Kamada et al. [11], who studied the properties of the
°Li nucleustreated asan a + d system. It turned out that
the eastic form factor is faithfully reproduced for the
lithium nucleus upon taking into account distortions of
the deuteron cluster, its root-mean-square radius being
afunction of the intercluster coordinate [11]. Changes
in the root-mean-square radii of the clusters were also
taken into account by Bluge and Langanke [12], who
studied a + t cluster systems, and by Dubovichenko
and Dzhazairov-Kahramanov [13], who studied n +
SHe cluster systems. In [11-13], the cluster-deforma-
tion factor served as an adjustable parameter. Obvi-
oudly, its choice cannot be substantiated rigorously
within the cluster model.

PHYSICS OF ATOMIC NUCLEI 2000
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160 NUCLEUS IN THE 4a CLUSTER MODEL

Following [11-13], we assumed that the root-mean-
sguare radius of the alpha-particle clusters in the 1>C
and '°0O nucle differsfrom that of afree alphaparticle.
We define the a pha-particle-deformation factor A as
A = (R,/R.)? where R, isthe charge radius of the alpha
particle (R, = 1.47 fm), while R; is the root-mean-
square radius of the alpha-particle cluster. By varying
the deformation factor A, the experimentally observed
behavior of the charge form factors for the 12C and '°O
nuclei at high momentum transfers can be faithfully
reproduced within the model outlined above. By using
the deformation factor A, the root-mean-square radius
of the systems of three and four alpha-particle clusters
is calculated as

R = JRIA+T2 @

where r stands for the root-mean-square radius of the
system of structureless particles. We note once again
that the parameters of the three-body potentials are
determined by requiring that the potential models spec-
ified by equations (3) and (5) reproduce not only the
relevant binding energies but also the experimental val-
ues of the root-mean-square radii of, respectively, the
12C and %0 nuclei. At agiven value of the deformation
factor A, equation (7) fixes the root-mean-square radius

r. The adjustable parameters Vi(p) and Vi (p) of the

potentials from (3) and (5) must lead to this value of r.
Thus, the choice of values for the parameters of the
three-body potentials depends on the cluster-deforma-
tion factor A.

Taking into account equation (7), we evaluated the
form factor for either of the '2C and '°O nuclei as the
product of the form factor f(q) for the system of struc-

tureless particles and the form factor Fo(q/./A) for the
alpha-particle cluster; that is,

F(a) = Fa(a/J/A)f(q). (8)

According to [10], the charge form factor F,(q) for the
alpha-particle cluster can be parametrized as

Fo(a) = (1-(aq)") exp(-ba?),

where a = 0.09986 fm?, b = 0.46376 fm?, and n = 6. We
use this parametrization here in calculating the form
factors for the '2C and '°O nuclei by formula (8). For
the deformation factor A, it was found here that, for the
12C and 'O nuclei, the values of , respectively, A= 3 and
A =4 must be substituted into equations (7) and (8).

3. METHOD FOR SOLVING EQUATIONS (3)
AND (5) AND RESULTS
OF THE CALCULATIONS

In the present study, the differential equations (3)
and (5) for the Faddeev and Yakubovsky components
were solved by the cluster-reduction method. Previ-
ously, this method was used in [8] to calculate the
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bound states of three- and four-nucleon systems and
low-energy scattering in these systems. The cluster-
reduction method alleviates considerably computa
tional difficulties in solving relevant equations. Within
this method, solutions to the original equations are
sought in the form of expansionsin the basesformed by
the eigenfunctions of the Hamiltonians of two-particle
(three-particle) subsystems. A transition to relevant
projections leads to a set of equations for functions that
describe the relative motion of the clusters. In this set,
the dimensionality of each equation is less than the
dimensionality of the original equations by unity. This
reduction procedure was described in detail elsewhere
[8]. The number N of basis functions that must be
retained in the above expansions in order that the
results of the calculations be convergent is the main
parameter that determines the efficiency of the method.
The point isthat this parameter specifies the dimension
of the algebraic problem that we areto solve in order to
construct numerical solutionsto the reduced equations.
It is obvious that the smaller the value of N, the greater
the gain in efficiency in relation to directly solving the
original equations by the finite-difference method. This
value is dependent on special features of the problem
being solved. In particular, the value of N is reduced if
the degree of clustering in the physical system under
investigation is high.

Let us now proceed to describe the results obtained
by numerically solving the differential equations (5) for
the Yakubovsky components. The basis functions that
are necessary for performing the above reduction were
calculated as the eigenfunctions of the boundary-value
problem for the Faddeev operator in (3) and the opera
tor conjugate to it [8]. Equations (3) and (5) were
solved within the rectangular domain Q of configura-
tion space. We denote by R,, R, and R, the parameters
that specify the dimensions of this domain as

Q ={xY,ZX<R,y<R,zZ<R}.

and set these parametersto R, = R = R, = 25fm. At the
boundary of the domain Q, we impose zero boundary
conditions on solutions to equations (3) and (5).

Let us now address the problem of calculating the
30 system, whose bound state represents the '°C
nucleus. The three-body potential (4) makesit possible
to reproduce the experimental value of the '2C binding
energy. The results of this calculation are displayed in
Table 1 (here, the energy isreckoned from the threshold
for the breakup of the system into separate alpha parti-
cles). For the sake of comparison, the corresponding
valuesfrom [4] areindicated there for the parameters of
the three-body potential and for the binding energy in
the ground state of the 3a system. The distinctions
between the potential parameters are explained by the
use of the different models here and in [4], where the
orbital angular momentum of the subsystemswas taken
into account up to that of the d wave. Table 1 also
guotes the root-mean-square radius as calculated for
the >C nucleus by formula (7) at A = 3. It can be seen
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Table 1. Parameters of the three-body potential, binding en-
ergy of the *2C nucleus, and its root-mean-square radius (the
energy isreckoned from the threshold of the 12C breakup into

separate a pha particles)

References Vi, Mev| B, fm |Eg, MeV| R, fm
[4] -96.8 | 1957 | -6.81 | 2.36
Our study 2432 | 3795 | —7.27 | 247
Experimental data —1.27 | 247
from [4]

Table 2. Binding energies of the *2C and %0 nuclei versus
the number N of basis functions taken into account in the
cluster-reduction method

N | Eg(*C), MeV || N | Eg(*%0), MeV | EZ (150), MeV
1 5.32 1 -14.37 —8.48
5 -7.73 2 ~14.39 -8.79

10 -8.10 3 -14.39 ~8.79

15 —7.69 4 ~14.40 -8.78

20 ~7.39

25 —7.28

26 -7.27

27 —7.27

that this value complies well with the experimental
result. The representation in (7) makes it possible to
describe, on the basis of the 3a model, the experimen-
tally observed behavior of the charge form factor for
the ?C nucleus at high momentum transfers (or the
charge-distribution density in this nucleus at small dis-
tances). In Fig. 2, the form factor f(q) for the 3a system
is represented by the dashed curve. Closed circles in

Fig. 2. Charge form factor for the '2C nucleus: (closed cir-
cles) experimental values from [14], (dashed curve) results
of the calculation for the system of three structureless alpha
particles, and (solid curve) results obtained by taking into
account the alpha-particle-cluster form factor by formula
(8)atA=3.
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thisfigure show experimental datafrom [14]. The func-
tion F(q) is depicted by the solid curve. The diffraction
minimum of the function F(q) is displaced with respect
to its experimental position, but the behavior of this
function at large values of g approximates closely the
behavior of the 1>C form factor.

The results of the calculations for the binding ener-
gies of the 30 and 4a systems versus the number N of
basis functions taken into account in the calculation are
quoted in Table 2. The rate at which the results pro-
duced by the cluster-reduction method converge mea-
sures the degree of clustering in the subsystems. That
the binding energy of the4a system cornvergesin N fast
suggeststhat the degree of clustering of the 3a + o type
is high, which isin accord with the results presented in
[10]. The binding energies calculated for the ground
and thefirst excited state of the4a system are displayed
in Table 3, along with relevant experimental data. The
parameters of the three-body potentials used in the cal-
culations are al'so quoted in thistable.

The parameters of the potential V'3(p) in equation
(4) were determined in calculating the ground state of
the '2C nucleus. In order to specify unambiguously the

parameters V'3 and B!, we used the experimental values

of the binding energy and the root-mean-square radius.
We will illustrate the above by the graphsin Fig. 3, but
we first redefine the parameters of the three-body
potential V(p) viatherelations Vi = Vy/pandv = B,
where V,, = 99 MeV. Thus, the binding energy obtained
in the calculation for the 3a system appears to be a
function of two variables: E = E(, v). In Fig. 3a, we
depicted a curve such that each point of it was obtained
asasolution to the equation E(p, v) = E=**, where E(l,
V) isthe binding energy calculated as described imme-
diately above, while E** is the experimental value of
the 12C binding energy. As can be seen from thisfigure,
the parameters 1 and v of the three-body potential can-
not be fixed unambiguously on the basis of the '°C
binding energy alone. The cal cul ated root-mean-square
radius r(y, v) of the 3a system is displayed in Fig. 3b
asafunction of v at ap value specified according to the
datain Fig. 3a. By using the dependence in Fig. 3b, we
can unambiguously determine the parameters p and v
by requiring that the functional form of r(u, v) corre-
spond to (7)—that is, by taking it to be r(u, v) =

JR = R§/A, where we denote by R the experimental

value of the root-mean-square radius of the '>C nucleus
(R = 2.47 fm). This illustrates the way in which the
cluster-deformation factor A affects the choice of val-
ues for the parameters u and v. The situation here is
such that, for various values of A, we can fit the binding
energy and the root-mean-square radius of the 3a sys-
tem to the corresponding experimental values for the
12C nucleus, thereby fixing the parameters p and v for
each given value of A. The ambiguity in choosing a
PHYSICS OF ATOMIC NUCLEI  Vol. 63
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Table 3. Parameters of the three-body potentials, binding energies of the 180 nucleus in the ground and in the first excited

state (Eg and Eg , respectively; these energies are reckoned from the threshold of the 1C breakup into separate al pha parti-
cles), and corresponding root-mean-square radii (R and R*, respectively)

References Vi, Mev | B.fm vy Mev| B'.fm |EgMev | Rfm |Eg,MeV| R+ fm
Our study —24.32 3.795 -5.66 5.7 -14.4 2.7 -8.8 35
Experimental datafrom [10] -14.4 271 -8.34 -

value for the deformation-factor A is removed by
requiring that the form factor obtained for the relevant
3a system according to (8) reproduce the experimen-
tally observed behavior of the '>C form factor. For the
3a system, we deduced here the value of A = 3. The
crosses in Fig. 3 show the values of p and v that corre-

spond to A = 3. The parameters of the potential V. (p)
were determined in asimilar way from afit to the bind-
ing energy in the ground state of the '°O nucleus and to
the experimental value of its root-mean-square radius
taken to have the form (7). In that case, the cluster-
deformation factor was chosen to be A = 4, which
enabled us to reproduce the experimentally observed
behavior of the 'O form factor with the aid of represen-
tation (8) for the system of four alpha-particle clusters.
The resulting swave potential model formulated in
terms of equation (5) with the parameters specified as
is described above has two bound states, the ground
state and thefirst excited state. The 1°O nucleusalso has
two 0* levels in the discrete spectrum. It can be seen
from Table 3 that, for thefirst excited state, the calcula
tion yields an energy value close to the experimental
one.

It is interesting to note that, geometrically, the 4a
cluster model considered here is compatible with the
simple '2C + a representation of the ground state of the
160 nucleus. Let us demonstrate this explicitly. Accord-
ing to the two-cluster model, the root-mean-square dis-
tance d between the alpha-particle and °C clusters is
calculated by the formula[15]

Aco 2 Ac o 1
2 TR ReTRS

where A: = 3 (A, = 4) is the number of apha particles
in the 1>C (°O) nucleus, while R, R, and R, are the
root-mean-square radii of, respectively, the '°O
nucleus, the >C nucleus, and the alpha particle. By
using the experimental values of R, R, and R,, we
obtain d = 3.4 fm. Within our model, a natural choice
for dis (4/3)r, wherer isthe root-mean-square radius of
the alpha-particle cluster in the 4a system (r = 2.58 fm).
It can easily be verified that d = (4/3)r.

Let us now discussthe results of the calculationsfor
the 1°O form factor. These cal culations were performed
by formula (8) at A = 4. In Fig. 4, the dashed curve,
points, and the solid curve represent, respectively, the
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form factor f(q) for the 4a system, the experimental
values from [16], and the function F(g). The function
F(qg) reproduces faithfully experimental data—in par-
ticular, the positions of the first and the second diffrac-
tion maximum, as well as the behavior of the charge
form factor for the 'O nucleus at high momentum
transfers g. Figure 5 shows the charge-distribution den-
sity p(r) for systems formed by three and four alpha
particles treated as structureless objects. The Fourier
transforms of these functions appear to be the functions

(@)

r, fm

(b)

22r

20F

1.8 1 1 1 1 1 1 1
2

Fig. 3. lllustration of the procedure used here to fix the
parametersin the three-body potential (4) for describing the

properties of the 12C nucleus: (a) relationship between the
parameters [t (V'3 =V/W and v (v = B that was obtained

from the condition requiring that the solution to equation (3)
with the three-body potential specified by the parameters u

and v lead to the experimental value of the '2C binding
energy and (b) root-mean-square radius r of the 3a system
as afunction of the parameter v with allowance for the con-
straint imposed by the relationship between p and v in Fig.
3a. The crosses indicate the 1 and v values chosen in the
present study.
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Fig. 4. Charge form factor for the '°0 nucleus: (closed
squares) experimental values from [16], (dashed curve)
results of the calculation for the system consisting of four
structureless alpha particles, and (solid curve) results
obtained by taking into account the alpha-cluster form fac-
tor by formula(8) at A=4.

f(@) in(8). InFig. 5, the solid, the dotted, and the dashed
curve correspond, respectively, to the ground state of
the 4a system, to the first excited state of the 4a sys-
tem, and to the ground state of the 3a system. The func-
tions pg(r) ae normaized by the condition

o Pen (r)r’dr = 1. Let uscompare the result obtained for

the form factor of the 4a system at A = 4 with the cor-
responding result at A = 1, in which case the alpha par-
ticlesin the nucleus are identical to a free alpha parti-
cle. The results of the calculations performed at A= 1
are presented in Fig. 6 (the notation thereisidentical to

pc(r),ifm’3
0.16

0.12
0.08

0.04

Fig. 5. Charge-distribution density in (solid curve) the
ground state of the system of four apha particles, (dotted
curve) thefirst excited state of the system of four alpha par-
ticles, and (dashed curve) the ground state of the system of
three alpha particles.
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that in Fig. 4). Inthis case, the behavior of the resulting
form factor differs drastically from the behavior of the
160 form factor, especially at high momentum trans-
fers. For the sake of completeness, we indicate that, in
the calculation at A = 1, the fitted values of the param-

eters that appear in the potentials V5 (p) and V4 (p) are

Vi =-82.5MeV, B = 2.35fm, Vi =-6.27 MeV, and
B = 5.95 fm.

The wave functions obtained for the4a and 3a sys-
tems by solving equations (5) and (3) were then used to
study the spatial disposition of the alpha-particle clus-
tersin the 1°O and '?C nuclei. The coordinate compo-
nent of the wave function of the 4a (3a) system
depends on six (three) variables. These are the absolute
values of the Jacobi coordinates—x, y, and z (x and y)—
and the angles between the vectors x, y, and z (x and
y)>—Uu = (X, y)/Xy, V = (X, 2)/XZ, and W = (y, z)/yz. The
most probable spatial configuration of the constituent
alphaparticlesinthe4a or the 3a system isdetermined
as that which is formed by the points at which the
square of the total wave function of the system being
considered peaks. Such configurations correspond to
thevaluesof x=2.9fm, y=25fm, and u = O for the
3a system; x=2.7fm,y=2.6fm,z=27fm,u=0,v =
0.5, and w = —0.4 for the 4a system in the ground state;
andx=25fm,y=2.6fm,z=2.7fm,u=0.5, v =0.86,
and w = 0O for the 4a system in the first excited state.
Figure 7 illustrates these configurations.

In the '>C nucleus, the centers of mass of the alpha-
particle clusters are situated at the vertices of an equi-
lateral triangle with a side length of 2.9 fm (see
Fig. 7a). Thisresult is close to that from [4], where the
corresponding side length is 2.98 fm; in contrast to

Fig. 6. Charge form factor for the 10 nucleus: (closed
squares) experimental values from [16], (dashed curve)
results of the calculation for the system consisting of four
structureless alpha particles, and (solid curve) results
obtained by taking into account the alpha-cluster form fac-
tor by formula(8) at A= 1.
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2

Fig. 7. Most probable dispositign of the al pha-particle clus-
ters in (a) the ground state of 12¢ nucleus, (b) the ground
state of 1%0 nucleus, and (c) thefirst excited state (0%) of the

150 nucleus. Thefigures at the verticesindicate the numbers
of the clusters, while the figure by the sides of the triangle
in Fig. 7a and the figure by the edges of the tetrahedra in
Figs. 7b and 7c indicate the distances (in fm) between the
clusters.
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Fig. 8. Square of the wave function, lIJZ(x, y, u), of the sys-
tem of three alpha particles for the ground state of the 12C
nucleus. The distance x between two alpha particlesisfixed
at x = 2.93 fm (closed circles indicate the positions of the
centers of mass of the alpha-particle clusters). The function

is expressed in terms of the coordinates yu and y/'1— u?
plotted along the axesin fm.
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what was obtained in the present study, however, the
binding energy in [4] is less in magnitude than the
experimental value by 0.5 MeV. Figure 8 provides a
clear view of the spatial disposition of the alpha-parti-
cle clusters in the 12C nucleus. There, we can see the
sguare of the wave function, W(x, y, u), of the 3a sys-
tem. The distance between two alpha particles is fixed
at x = 2.9 fm, and the function itself is plotted in terms

of the coordinates yu and y./1—u°.

In the ground state of the °O nucleus, the centers of
mass of three alpha-particle clusters are situated at the
vertices of anisoscelestrianglewith sidelengths of 2.7,
2.9, and 2.9 fm (see Fig. 7b). The point offset from the
center of mass of the 3a cluster by adistance of 2.7 fm
in the direction determined by the angles 6,, = 60° and
8,, = 65° between the vectors x and z and between the
vectors y and z, respectively, corresponds to the most
probable position of the fourth apha particle. For the
first excited state of the 'O nucleus, the disposition of
the apha-particle clustersisillustrated in 7c. The spa
tial configuration of the alpha-particle clusters was
investigated in [2, 3, 17, 18], where the authors consid-
ered primarily aregular tetrahedron and a linear chain
of alpha particles. Our calculations reveal that neither
of theseisrealized in the %0 nucleus. By way of exam-
ple, we compare our results for the ground state of the
180 nucleus with the corresponding results of Dufour
et al. [3], who used the method of generator coordi-
nates and who considered the disposition of the alpha-
particle clusters at the vertices of aregular tetrahedron
with an edge length of 2.39 fm. The calculations of
Dufour et al. [3] underestimate grestly the root-mean-
square radius of the 80 nucleus, leading to the value of
R =2.25 fm. At the same time, their results for the 12C
nucleus are consistent with ours—namely, the disposi-
tion of the alpha-particle clusters in the 2C nucleus is
in accord with their disposition at the vertices of an
equilateral triangle with a side length of 2.8 fm. We
would aso like to mention the study of Bauhoff et al.
[18], who relied on the shell model of the nucleus. By
employing the “Rhomb” configuration of the alpha-
particle clusters in the %0 nucleus, those authors were
able to reproduce closely the position of the first
excited (0*) level. The above configuration from [18] is
similar to the configuration obtained here for the
excited 0* state of the 1O nucleus.

4. CONCLUSION

The 180 nucleus has been treated here as a bound
state of the system consisting of four alpha-particle
clusters. In addition to pair short-range potentials of
interaction between the alpha particles, we have aso
considered three-body interaction potentials of two
types. Of these, interaction of the first type binds three
alpha particles into a cluster, while interaction of the
second type simulates coupling between the fourth
alpha-particle cluster and the pairs of the alpha parti-



352

cles bound into the above three-particle subsystem. As
a matter of fact, this means that we have introduced a
four-body interaction. The potential parameters have
been determined by fitting the experimental values of
the binding energies and of the root-mean-square radii
for the *C and %O nuclei. The potential model
obtained in this way on the basis of equations for the
Yakubovsky components reproduces faithfully the first
excited (0*) state of the 6O nucleus. Following [11-
13], wherein-medium changesin the root-mean-square
radii of the clustersinvolved were considered in dealing
with cluster systems, we have assumed here that the
root-mean-square radius of the alpha-particle cluster in
the 3a and 4a bound systems differs considerably from
that of afree alphaparticle. By calculating, within this
framework, the charge form factors for the >C and 160
nuclei treated as the 30 and 4a systems, respectively,
we have been able to reproduce the experimentally
observed behavior of these form factors and their mag-
nitudes. Based on the results of our calculations for the
wave function of the %0 nucleus, we have found that
the most probable disposition of four apha-particle
clusters in this nucleus is that at the vertices of a
deformed tetrahedron.
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Abstract—All formulas that are necessary for deriving not only upper (Ey) but also lower (E,) variationa
bounds on the energy of systems featuring afew nonrelativistic particles are obtained with trial functionsin the
form of expansions in multidimensional Gaussian functions or exponentials. For potentials that are used most
widely, all matrix elements are expressed in terms of known functions, a circumstance that simplifies consider-
ably relevant numerical calculations. Thisisso for systemsfeaturing an arbitrary number of particlesin the case
of a Gaussian basis and for three-particle systemsin the case of an exponential basis. Numerical results for E,
and E, which are characterized by record accuracies, are presented for some Coulomb and nuclear systems
such asthe He atom; the e'ee", ppu~, 3a, and 4a systems; and hypertritium (pnA). Lower bounds with expo-
nential trial functions are obtained for the first time (the corresponding formulas are presented for thefirst time
aswell); for a Gaussian basis, lower bounds for Coulomb systems have not been known either. Given E; and
Ey, limitswithin which the exact value of energy, E, lies can be indicated with confidence. Moreover, an anal-
ysisof the correlation between E; and E; with increasing number of termsin the expansion of thetrial function
makes it possible to improve the accuracy (at least by one order of magnitude) of the value E,, extrapolated to
infinity. By considering specific examples, it is shown that the exponential basis is advantageous in relation to

the Gaussian one. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Investigation of systems involving three and more
particlesisof paramount importance for theory because
thismakesit possibleto reveal qualitatively new effects
of multiparticle forces and multiparticle correlations
that are absent in two-particle systems. Moreover, such
investigations contribute to understanding the role of
relativistic effects in systems of more than two parti-
cles. Calculations for few-particle systems are impor-
tant from the point of view of practical applicationsin
rapidly developing realms of science such as spectros-
copy of multiply charged ions and the physics of
positronium atoms and positronium molecules, mesic
molecules, exotic nuclear systems, hypernuclei, and
other hadronic and quark objects.

In the most popular nonrelativistic potential
approach, various methods—primarily, Faddeev's
methods, the method of hyperspherical functions, and
the Monte Carlo method—are commonly used to solve
the Schrodinger equation. In calculating bound sys-
tems, the variational approach, which provides the
highest accuracy, remains, however, the most universal
one in what is concerned with the shape and the struc-
ture of the potential. The absence of oscillations of the
resulting estimates around the true value and the possi-
bility of finding both the upper (E,) and the lower (E,)
bound on energy—in many cases, this ensures the

D Nuclear Safety Ingtitute, Russian Academy of Sciences,
Bol’shaya Tul’skaya ul. 52, Moscow, 113191 Russia.

accuracy and reliability of calculations—are important
advantages of the method.

In the overwhelming majority of studies, the authors
restrict themselves to a determination of an upper
bound on the ground-state energy E,,

]
E, = mqlln Wl (1)

where H isthe Hamiltonian of the system, and s isthe
trial function. But there is aways the problem of
assessing the proximity of E to E,. In calculations fea-
turing many parameters, it is possible to approach an
exact value by taking an ever more involved trial func-
tion and by constructing the dependence E = Ey(n),
where nisthe quantity directly related to the number of
variational parameters. For n, we can take the number
of termsin the general expansion

¥ =Y an(@), 2)
i=1
where @ are basis functions that are dependent on vari-
ational parameters a, and o'
In order to obtain an extrapolated energy value that

is closer to an exact value, the n dependence of E is
usually approximated by the expression

EU(n) = Eoo+ fU(n)v (3)

where f, is some nonnegative function tending mono-
tonically to zero as n —= o, while E, is the sought

1063-7788/00/6303-0353%20.00 © 2000 MAIK “Nauka/Interperiodica’
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extrapolated estimate of energy. However, the results of
this procedure are open to criticism. In order to clarify
this point, we note that, if the set of functions under use
is not complete or if variational parameters are sought
over some part of the full admissibleregion, E,, will not
coincide with E,, remaining only some far or close
approximation of it.

Provided that a lower bound is derived along with
E,, the variational method frequently makesit possible
to answer the most difficult question, that of the accu-
racy of theresultsit yields. If, in particular, the energy
E, of the first excited state?) (or its lower bound) is
known, then E, can befound by the Templeformula[1]

_E,(H|WO- mp|H gD
S T E Cmwhen

whichisvalidfor al trial functions ensuring fulfillment
of theinequality [|H|WX E;. It can be seen easily that,
a P =, this formula yields the exact value for the
energy of the system (as the expression for E; does).
Moreover, it can be shown (see, for example, [2]) that,
if thereis no a priori information other than that about
[HO) (H2[) and E,, equation (4) leads to the best lower
bound on E,,.

The calculations of few-nucleon nuclei from [3-6]
show that E, is arougher estimate of E, than E. For
example, the quantity

“)

Eo—EL
EU - EO’

which is often used in comparing various estimates,
proved to be 50-100 in calculating *He and “He nuclei
bound by simple NN potentials featuring a hard core
[3]. In calculating tritium with the Hamada—Johnston
potentials, Delves et al. [4] obtained the value of n ~
800 and arrived at the conclusion that ) tends to ascend
with increasing number of variational parameters. At
the same time, n values appear to be much less in the
case of potentials characterized by a simpler radia
dependence. In particular, it was found in [5] that n =
40 for three-particle systems bound by the soft-core
Ali-Bodmer aa potential [7] and that n = 5-10 for
three- and four-nucleon systems governed by the purely
attractive Baker potential.

n = (&)

2. CHOICE OF TRIAL FUNCTIONS

Variational calculations prove successful if the
choice of basis functions having good approximating
capabilities is combined with a highly efficient proce-
dure for optimizing parametersin order to ensure afast
convergence of energy estimates. At the sametime, itis
important that matrix elements of the Hamiltonian of

IHere, we mean an excited state corresponding to the same sym-
metry of the wave function and the same angular momentum asin
the ground state.

DONCHEYV et al.

the system and of its square have aform assimple asis
possible.

For S states of the system of particles—and we
investigate here precisely such states—these require-
ments are met by taking the functions

. o N
@(a') = exp+ >

k>l=1

O

arad (6)
Ul

N
i g i O
@(a) = exp+ 2 Ay Ml (7
O

k>1=1

where ry is the distance between the kth and Ith parti-
cles, while N is the number of particles.

For the function in (6), the matrix elements of the
Hamiltonian and of its square for systems featuring an
arbitrary number of particles bound by potentials used
extensively can be computed analytically, whereby
numerical calculations of both the upper and the lower
bound are simplified considerably. All formulas
required for such calculations (see also [5]) are pre-
sented in Appendix 1.

For the functionsin (7), the needed matrix elements
can be calculated analytically only for three-particle
systems. Some relevant cal culations—both for nuclear
and for atomic systems—can be found in the literature
(see, for example, [8-12]), but these refer to upper
bounds E, exclusively. Thisisnot only because a deter-
mination of lower boundsis laborious but aso because
some necessary formulas have not yet been derived. In
the next section and in Appendix 2, we present all for-
mulas required for calculating both the upper and the
lower bound on the energy of athree-particle system.

3. UPPER AND LOWER BOUNDS
ON THE ENERGY OF A THREE-PARTICLE
SYSTEM IN AN EXPONENTIAL BASIS

Upon separating the center of mass, the Hamilto-
nian of the three-particle system reduces to the form
2
_ P, P PP,
2l 2Hg ms

where P, = p,; and P, = p;, are the momentum opera-
tors for relative motion, V is the potential-energy oper-
ator, and

\

1 1,1 _1 1

— = 4= ===
Mo M, Mg K My
1 _1,1_11
My M3 mp  H N

For coordinates, it is convenient to choose the inter-
particle distancesR, =r,;, R, =5, and R;=r, and the
Euler angles. In the case of centra forces
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LOWER AND UPPER VARIATIONAL BOUNDS

[V= fij _, Vj; (ri)1, the ground-state wave function

depends only on the relative coordinates, whereas the
kinetic-energy operator can be represented in the form

7208
= ——=0
2 Dgl

1 1 o> O
G md™ MaRaR

2 0
Hu mkDRia Ry qua_F\)kD

where n, is aunit vector aligned with the vector R,.
In our notation, the basisfunctions (7) are written as

3

_ 0l .0
IC=@ = eXpB‘Z a RO
04 0

while the normalization condition for the trial function
(2) isgiven by

Wpd= Zaiaj [)j0
i

where

00 00

qj0= 81 IRlde J’RzolR2
0 0

R +R,
0o, i ;o0
x I R3dR3expEI—Z(0(k+0(k)RkD
[R. =Ry Dk:l H

The expressions for the upper and lower variational
bounds on the energy can be found by differentiating
the fundamental integrals

|000(X1X2X3)
0 [ R+ R, 3
O )]
= 8r[2J'dR1J’dR2 I dR3exsz xR}
0 < 0
0 0 R —Ry k=1
U(ioo(xlxzxa)
0 o R+ R, 3
0 oo
= 8T[2J'dR1V(R1)J’dR2 I dR3exsz xR
0 < 0
0 0 Ry —Ry k=1
with respect to the parameters x, (:O(ik + a,‘;).
Theintegral
1 (X1 %%)
[ e Rl + Rz 3 D(lo)
= 8r€jR‘§o|RIJ'R'ZdR2 I Rg‘ngexpErZ X; Rjg
0 0 |R,~Ry j=1
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can be evaluated by using the relation

K
| m(X1X2X3)

_ 0.9 0dg9dg 9w
t aX1DDaX2DD 6X3D

while the integral

(X1X2X%3),

00 0

UN™(x,X,X) = 8T J’V(Rl) R'dR, IR'zd R,
0 0 (11

R +R, 3
m O ad
X J’ R; dR3expE}—z x RO
1 & U
[R; =Ryl k=1
is taken with the aid of the relation
U il m(Xl XpX5)

=4 Od‘g a|jD 0 " 000
= |:| aX1DD aXZDD aX3D U]_ (X1X2X3).

The integral in (8) can be calculated easily, the result
being

161
(Xq + X2) (X2 + X3) (Xg + Xyp)

while the integral in (9) for arbitrary V(R,) reduces to
the form

000 _
7 (X1 XoXg) =

16T
U2%(x,%,X5) =
1 (XXex) (X2 + X3) (X2 — Xy)
><J-V( Rl)de(e—(X3+ X)) Ry _ e_(X1+X2)R1).
0

For the sake of convenience, we now introduce the
notation

R+R-R
RR;
t,=2(ng[hy), t3=2(n, [hy);
TpE D|tp|jD GpEml/RpHD
IklmEIklm

t;=2(n,[hy) =

(X1 X2X3) .

We also introduce the operator O, implementing a per-
mutation of any pair of coordinates x, and x,, for exam-
ple,

O F(X1XX3) = F(XoX1X3),

and satisfying the condition O, =1, p=1, 2, 3. It fol-
lows that

Gp — Op1|011’ Tp — Op1(|120+ |102_|300),
p=123.

After some simple algebra, we find that the matrix
elements of the operator T between the statesi and j can
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be represented as

3
GTj0= S (5,Gp—dyTp) —u'1™,
2
where
1 D S
SI——(XI, IZ—GI, I=—GI,
' Hos L% Ha1 2 5 M1 3
U = S04 + S0 + S0,
i_hzii i_ﬁzii i_hzii
d; = 2m1a2a3, d, = Zmzaso(l, d; = 2m30(10(2.

The matrix elements for potentials used extensively
are given by quite simple expressions. In particular, we
have

GIL/Ry[jO= 1°(a + o, ob + ob, o + ab)
for the Coulomb interaction V(R)) = 1/R,,
O|exp(-A\1Ry)|jO

e
(al + O(1 + Ay, 0(2 + a27 0(3 + (13)

for the exponential potential V(R,) = exp(-A,R,), and
[ exp(—A;Ry)/Ry j0

jou
= (C(1+O(1+)\1,0(2+(12,0(3+(13)

for the Yukawa potential V(R,) = exp(-AR))/R,. The
expressions for the matrix elements of V(R,) and V(R;)
aresmilar.

A determination of the lower variation bound (4)
requires additionally calculating the matrix elements of
the operators T2, V2, and VT. For this purpose, it is con-
venient to introduce the quantities

Jpq = OIV/RGRYJO Wog= Olt,/Ry[j0]
oq = Oltptg j0

A calculation of the matrix elements of T2 leads to
the expression

3
aT9jo= uu ™ - Z (spu’ +shu)G,

+ z(d u +d’u')T - Z (sqdJ +sdp)W
pg=1
+ z SiDSiIJPq-'- z dipdlePQ’
p.g=1 pg=1
where

020 002 2
W, = Opy(1%0+17% —17%),
110 3-1

—1°71,

112

qu - Oploq2(|
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Qpp - Opl(|5—1—1+ |13—1

1-13 31-1 3-11 111
+1 =2l =21 +2177),

04-1 40-1 003
[ =1 +17)

Qpg = Op10go(21%7H -

—111

Jop = Opl

Jog = 0,10, p#a.
Theintegralsin (10) with positiveindicesk, |, and m
represent algebraic functions of combinations of the
parameters (a, + oy ). The case of negative indicesin
(10) can be interpreted in terms of integrals with
respect to the parameters x,.. In the presence of at least

one negative index in IX™M, this leads to the emergence
of logarithmic terms in the ratios of nonlinear parame-
ters; for example, we have

2
1671
———1In
X — X3

X1+ X5

I—:LOO —
Xy + X3

In the case of two negative indices, there arise dilog-
arithmic functions, but they lead to divergences at ho
finite parameters values. In particular, the integral

X3/ Xy

16T

X3 .r
0
remains finite.

In numerical calculations, an accurate evaluation of
integral s featuring negative indices nonethel ess caused
the greatest difficulties, which were sidestepped by
means of special expansions whose form depended on
the relations between the parameters a, . The integrals
appearing in the expressions for E; and E, are pre-
sented in Appendix 2.

A calculation of the matrix elements of V2 issimilar
to the procedure for determining [V|j In particular,
we have

(i|luRdj) =
[|1/R,R,|j0= IOOl(O(1 +al, ab+ab os+al)
for the Coulomb interaction,
O|exp(—2A,Ry)|jO

N(X; + X3)
NXi+ X3

dn
n°-1

I—l—lO

1
(0‘1 + 0(11 O(2 + 0(21 0‘3 + 0(3)

e
= (al+al+2)\laa2+a2aa3+a3)

Olexp(=A1Ry = A,R,)|jU

111(0(1 + 01 +Aq, O(2 + 0(2 + A, 03 + 03)

for the exponential potential, and
[|exp(—2A,R,)/RE jO0
= 111(0(1 + 0(1 + 2, G2 + 0(2, G3 + 0(3)
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D|eXp(—)\1R1—)\2R1)/R1R2|]D

001
= |

(ay+a)+ Ay, 0+ 0+ Ay O3 + 1))
for the Yukawa potential.

Further, the matrix element of the operator V(R))T +
TV(R,) can be represented in the form

G[V(R)T + TV(Ry)|jO= sjui™ + sui® + jUy™
—UjUill'l' djs(U(l)O3_Ui01_U(1)21)
+dy(UT° - U - Up%) + (U - U3 - UT").

We have

K K=domy i 0 i
U™ = 177" (ay + g, ap + 0, a5+ a)

for the Coulomb potential V(R)) = 1/R;,
U™ = V(e +ad ey o+ o s+
for the exponential potential V(R,) = exp(-A,R;), and

" et i o
Up™ = 17770700 + ag + Ay, 05+ 0, O + 01g)

for the Yukawa potential V(R)) = exp(-A\|R))/R,;.

4. NUMERICAL CALCULATIONS

In our numerical calculations, the trial function was
takenintheform of expansion (2) in the basisfunctions
(6) or (7). Optimal values of the variational parameters
were determined by means a procedure that combined
step-by-step and global searches[13, 14]. According to
this procedure, the trial function is constructed by suc-
cessively adding termsto the expansion in (2). At each
step, only the nonlinear parameters of the added term
are determined at fixed parameters of the terms found
previously by minimizing an upper bound. For this pur-
pose, we invoke the Monte Carlo method with a distri-
bution function that is deduced in each calculation from
an analysis of the distribution that is actually being
formed (learning algorithm). The nonlinear parameters
obtained in thisway can be used for the lower bound as
well. At each step, the linear parameters are determined
for Ey and E, independently by means of conventional
methods. Specific calculations reveal (examples are
given below) that, at a fixed degree of precision, this
approach makes it possible to reduce considerably (by
afactor of 2 or more) the number of termsin expansion
(2) in relation to the case where nonlinear parameters
are fixed at some preset grid, chosen in one way or
another rather than varied. Stochastic searches become
more advantageous as the number of functions
increases.

Given an upper bound, a determination of a lower
bound isof importance, aboveall, for it fixesan interval
where the exact value of the energy lies. Although
lower bounds usually show more pronounced devia
tionsfrom E, than upper bounds, a determination of the
two bounds may refine the results of variational calcu-
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lations. This concerns primarily calculationsinwhich a
trial function is gradually complicated by increasing
the number of variational parameters. In such cases, an
analysis of the parametric relationship between E;, and
E, at various values of n may be very informative [2].
Let usclarify this point further. If an expression similar
to (3) is used for the lower bound, then the upper and
the lower bound are related by the equation

Ey = E.+(E.—E)/n(n), (12)

where n =—f_/f, isthe quantity introduced in (5). It can
be seen from (12) that, if the two bounds are character-
ized by approximately the same character of conver-
gence [so that f, (n) O fy(n); hence, N = const], equation
(12) islinear. It should be emphasized that thisis so for
any law of convergence, which isunknown, asarule. It
is obvious that, in this case, the estimate of E is of the
highest reliability. In actual practice, however, n is not
gtrictly constant, slowly growing, in the mgjority of
cases, aswe approach the exact solution (see, for exam-
ple, [4]). Nevertheless, the use of relation (12) simpli-
fies considerably the extrapolation procedure in rela-
tion to that based on formulas of the type (3).

The convergence of variational bounds is often
approximated by the power-law dependence

fon)On', f.(n) On™, (13)

wherey, and y, are adjustable parameters. In this case,
relation (12) can be recast into the form

E,=E, +const x (E,—E, )", (14)

wherey =(yy — Y)/V.- In deriving thisformula, we have
replaced E,, by E, on theright-hand side of it, assuming
that n > 1. It may be used to extrapolate the results of
the calculationsin order to refine them.

5. GAUSSIAN FUNCTIONS

Figures 1 and 2 show an upper and alower bound on
the energies of the 3a and 4a systems, respectively, for
various numbers n of terms in expansion (2) with the
basis functions (6). Table 1 displays the upper and
lower bounds aobtained at maximal n and the corre-
sponding extrapolated values (the probable extrapola-
tion error at the last decima place is given there in
parentheses). The same table also quotes the expecta-
tion values of the kinetic- and potential-energy operators
and the root-mean-square radii.® Here and below, al
energy values and al dimensions are given in MeV and
fm, respectively, for the nuclear systems and in atomic
units (a.u.) for the atomic systems.

The calculations were performed with the Ali—-Bod-
mer potential (the d, version featuring no Coulomb

3)The radius values are listed for the purpose of reference exclu-
sively—a dedicated analysis of the character of their convergence
was not performed for nuclear systems, so that the number of dec-
imal placesretained in the table was not matched, in general, with
the accuracy of the energy bounds.
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Fig. 1. Relation between the upper and lower bounds on the
energy of the 3a system (Gaussian basis).
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Fig. 2. Relation between the upper and lower bounds on the
energy of the 4a system (Gaussian basis).

interaction; #/M, = 10.4465 MeV fm?). In order to
determine E;, we used the energy of the first excited
state; it is equal to zero in the 3a system (there is no
excited bound states with zero angular momentum in
the 3a system) and to the binding energy of the 3a sys-
tem in the 4a system.

An analysis of the results reveded that the two
bounds converge similarly; that is, their convergence
can be approximated by a power-law dependence of the

DONCHEYV et al.

type (13) with y, =y = 3.7 for three-particle systems
and y, =y = 2.3 for four-particle systems. Hence, the
dependence E, = E, (E,) iscloseto alinear one, so that
uncertainties in the calculation can be reduced consid-
erably. Indeed, the extrapolation errors are estimated at
about 10 MeV in the three-particle case, the differ-
ence between the estimates being 0.003 MeV. In the
four-particle case, the accuracy of the calculations is
much poorer. Thisis due above all to the doubled num-
ber of interparticle couplings in the presence of strong
repulsion at small distances. It should be noted that n is
close to 35 for the 3a system and to 24 for the 4a sys-
tem. At present, the results that we obtained for the 3a
and 4a systems are the most precise (compare with [6]
and [13], respectively).

It can be seen from (4) that, in general, the lower the
energy of thefirst excited state, the poorer the accuracy
of the lower bound. By way of example, we present the
results of our calculations for hypertritium, the three-
particle system pnA with an anomaloudly low excita-

tion energy, which is equal to the binding energy Bj" =
0.13 MeV (the total binding energy of the system is
2.35MeV). Inthe calculations, we used the semirealis-

tic NN potential from [5] and the simplest AN potential
from [15], the latter being corrected in such away asto

obtain a correct value for the ,fH binding energy. The

energy of the first excited state is equd to the deuteron
binding energy (inour calculations, E, = E;=2.221 MeV).

Theresultsof the caculations are displayed in Table 2
[row (a)] andin Fig. 3. It can be seen that, asin the case
of alpha-particle systems, the dependence E, = E, (E,))
is close to alinear one, but the n value is about 2800.
Nevertheless, even so rough a lower bound makes it
possible to determine one more decima place by
means of the extrapolation procedure (E,, = —2.3689 +
0.0003 MeV, which corresponds to B, = 0.1479 %
0.0003 MeV).

As an example of the calculation for Coulomb sys-
tems, we quote the results for the He atom with an infi-
nitely heavy nucleus (*He). The calculations were per-
formed up to n = 525. As might have been expected, the
convergence of the variational procedure proved to be
much poorer than in the case of nuclear systems. This
was associated above all with the difficultiesin describ-
ing the asymptatic behavior of the wave function in
terms of the Gaussian basis. Apart from this, the con-
vergence of the lower bound is poorer than that of the
upper bound because of the specia features of the spec-
trum of Coulomb systems (in calculating E , the E,
value was chosen on the basis of the results of the cal-
culations with exponential functions; see below). By
way of illustration, we indicate that, in the present cal-
culation, y, = 1, while y, =0.3. Figure 4 displays the
relation between E;, and E, and its approximation
according to (14) (dashed curve). The extrapolated
value appeared to be —2.9039, whereas E(525) =
—2.9031 and E, (525) = —-5.18, n being about 4200.
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Table 1. Upper and lower bounds on the energies of the 3a and 4a systems, extrapolated values of these energies, and mean
kinetic and potential energies and root-mean-square radii for these systems

System = Ey E, T0 O m2y?
30 (n=100) —5.12212(1) -5.122038 -5.125085 7.62 —12.74 2.44
4a (n = 1000) -11.161(1) -11.154 -11.322 14.51 -25.67 2.562

Table 2. Upper and lower bounds on the energy of the ,fH system, extrapolated values of this energy, and mean kinetic and
potential energies and root-mean-square radii for this system

Es Eu E oo 2VAND Wit DiDUZ D,Z\,DUZ
@ —2.3689(3) —2.3677 -5.72 18.96 -4.30 -17.03 6.15 4.05
(b —2.3586114(2) —2.3586111 —2.3641| 18.00 —4.75 -15.62 6.62 4.33

Note: () Gaussian basis, n = 500; (b) exponentia basis, n = 300.

6. EXPONENTIAL FUNCTIONS

As afirst example of the calculation with exponen-
tial functions, we present the results for the helium
atomwith aninfinitely heavy nucleus(*He) (see Table 3).
At n =100, we obtained E,, = —2.903724364 and E, =
—2.903741. In calculating E, , we used thevalue of E, =
—2.1753, which is obviously smaller than the energy of
thefirst excited state.®) It can be seen that the results are
much more accurate (by a few orders of magnitude)
than those in the case of a Gaussian basis. The sought
value of energy is constrained in a relatively narrow
energy interval whose width can be further reduced by
increasing the number of termsin (2).

Figure 5, which shows a correlation between the
upper and lower bounds on the energy of the helium
atom “He for various numbers of termsin expansion (2)
with the basis functions (7), illustrates the procedure of
extrapolation in accordance with equation (14). An
analysis of convergence of variationa bounds reveas
that the dependences E, = E;(n) and E, = E,(n) can be
approximated by power-law functions with power-law
exponents y, = 6.7 and y, = 5.1, the extrapolated value
being E,, = —2.903724377(2). Despite the large value of
n = 1300 (owing to fast convergence of variational
bounds), an extrapolation makes it possible to reduce
computational errors by 1.5 orders of magnitude. It
should also be noted that the virial theorem holds to a
high accuracy (which increases further with increasing
n). By way of example, we indicate that, at n = 200, the
ratio [2[TUAV[ differs from unity only at the eleventh

decimal place.

Asto the upper bound, the most preciseresultsfor it
are presently thought to be those of Frankowski and

Pekeris  [16]

(Ey = —2.9037243770326,

E.

—-2.9037243770333), which were obtained at n = 246
by using arather cumbersome basis of the exponential
type, including, in particular, logarithmic terms. We

“The energy of the first excited state was determined as that eigen-
value of the energy matrix which follows the eigenval ue correspond-
ing to the ground state; at n = 200, we have E; = —2.17522938.
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would also like to indicate the study of Schwarz [17],
who combined exponential and power-law bases.
Purely exponential bases were used in [9, 11], but the
accuracy of calculations were poorer there. We empha-
size that, at a given number of termsin expansion (2),
our results for E; are the most precise ones. Among
other things, this shows that the accuracy of the calcu-
lation is more sensitive to the choice of procedure for
determining extrema of variational estimates than to
taking into account logarithmic termsin the trial func-
tion.

Finally, we have calculated the energies of some
helium isotopes—’He, “He, °He, and 3He—and deter-
mined thereby mass effects. It isinteresting to note that
the specific mass effect is quite large here. The specific

|
—-2.360
Ey, MeV

=30 1
-2.370

Fig. 3. Relation between the upper and lower bounds on the
energy of hypertritium (Gaussian basis).
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Table 3. Upper and lower bounds on the energy of the “He system, extrapolated values of this energy, and mean kinetic and
potential energies and root-mean-square radius for this system (exponential basis, n = 100)

Ew Ey E
—2.903724377(2) —2.903724364 —2.903741
TO 2V Voo rd?
2.9037243770 0.9458184488 —3.3766336014 1.0924664734
Table 4. Total and specific mass effects in helium atoms (in 10 a.u.)
SHe “He SHe 8He SHe “He He 8He
5.57166 3.98036 2.79175 2.09148 5.1878% 5.1887% 5.1904% 5.1906%

Table 5. Upper and lower bounds on the energy of the e*e e system, extrapolated value of this energy, and mean kinetic and
potential energies and root-mean-square radii for this system (exponentia basis, n = 150)

E, Ey E, 10
—0.2620050699(2) —0.2620050694 —0.26200561 0.2620050700
2 112 2 112
v__0O 20v__0 ne_d Ereﬁ
0.1556319057 —0.6796420457 5.1074695 3.3416086

mass effect with respect to the total mass effect is given
in Table 4, all restrictions on the accuracy being due to
the experimental uncertainties in nuclear masses.

Another example is provided by the exotic system
etee. Here, the calculations were performed up ton =
150, the results being presented in Table 5. A correla
tion between E, and E, over a fina segment of the

Ey, au._
n=250
-2.9030+
525,

-2.9035F
-2.9040 / L L L L L |
0 2 4 6
(E/Ey—1)*3

Fig. 4. Relation between the upper and lower bounds on the
energy of the “He atom (Gaussian basis).

curveisillustrated in Fig. 6 (in atomic units). The char-
acter of convergence is specified by the values of y, =
5.6 and y, = 4.7, the extrapolated estimate being E,, =
-0.2620050698(2), n = 900. In deriving the lower
bound, the value of —0.25, which corresponds to the
breakup of the system into e'e- and e, was chosen for
the energy of the first excited state.

Presented below are additionally the results of the
calculations for the mesic hydrogen molecule:

E,(100) = —102.223723,
E,(100) = —102.2258,
E., = —102.223742(3).

A calculation with the aid of the Gaussian basis again
yields the rougher results

E,(400) = -102.14,
E, = —102.20(4).

As an example of what can be abtained from a cal-
culation of three-body nuclear systems in an exponen-
tial basis, we present our results for hypertritium. In
this calculation, we employed the simplest nuclear

potentials of the exponential form V(r) = -V exp(-vr)
with the same parameters asin [15]:

V, =192.7 MeV, v = 1.506 fm!
for the NN potential;
Vy=711 MeV, v =444 fmr!
for the AN potential.
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EU, a.u.
—2.903724200

—2.903724300

100

361

—2.903724400O '

4 x 1077
(Ey/Ey— D'

Fig. 5. Relation between the upper and lower bounds on the energy of the “He atom (exponential basis).

Ey,au.
—0.262005067 -
—0.262005068 -
—0.262005069 - .
150 .7
—-0.262005070 ! L ! ! |
0 4x1077 8§ x 107
(E/Ey—1)'?

Fig. 6. Relation between the upper and lower bounds on the energy of the e"e"e” system (exponential basis).

Although these potential s differ from those used in the

calculations of ,fH with a Gaussian basis, theresults are
also presented in Table 2 [(b) row]. Therelation between
E, and E for various n values is illustrated in Fig. 7
[here, the extrapolated value is E,, = —2.3586114(2)
MeV]. Injust the sameway asin the case of atomic sys-

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 3 2000

tems, the exponential basis ensures here a faster con-
vergence and more precise resultsin relation to the Gaus-
sian basis. For example, aprecision of about 10> MeV is
achieved only at n =300 with the Gaussian basis and at
a much smaller value of n = 100 with the exponential
basis.
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Ey, MeV

—2.35859

n =200

—-2.35860

—2.35861

300

—2.35862 ! T — |
0 0.010

(E/Ey - D'

Fig. 7. Relation between the upper and lower bounds on the
energy of hypertritium (exponential basis).
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APPENDIX 1

Gaussian Basis: Matrix Elements of the Hamiltonian
and Its Square for Systems Featuring an Arbitrary
Number of Particles

It is convenient to represent Gaussian functions as
@(a') =jil>= exp(-R*AR),

whereR isthe (N-1) x 1 vector column{Ry, R, ...,
Ry_ . n}, While the elements of the (N - 1) x (N — 1)
matrix A' are related to the variational parametersa' by
the equations

N
i i
z Ay, Ag =
l#k=1

kzl =1,2,...,N-1.

i i
Ag = —Qy,

Overlap Integral
For the overlap integral, we have

[|j0= Iexp{—R+(Ai+Aj)R}dR1N...dRN_1yN
- T[3(N—1)/2/D3/2,
where

D =det(A +A)).

DONCHEYV et al.

Kinetic Energy

For the matrix element of the kinetic-energy opera-
tor, theresult is

GITj0= 0 (o, o),
where

N

J(a,p)= z M @ymBim(Li + Lim— L),

kim
W, = 34°/2m,,
L, =(0/0a,)InD;
here, we formally set
O =0, B =0, Ly,=0; k=
Potential Energy

For the potentia V,(ry) of interaction between the
kth and Ith particles, we have

. 4, 2
(1|Via(ra)| i0= TG [Via(JLax)e™ X ax.
0

From here, it is easy to calculate the matrix elements
for al widely used potentials (see[5]). In particular, the
results for the Gaussian and Coulomb potentials are

[ exp(~vrg)|i0= QL +vi)~?,
[|1/r|j0= Glj2//mLy.

Matrix Elements of the Squared Hamiltonian
For the relevant matrix € ements, we have

7 E—— 2, 0 iy 2 i
6Tjo= mnﬁﬁﬁ (@.0) =2 Y Mokl

KImk'I'm'

X O Oy O Pt (A Lmiery = 2Liiemt — 2Limier + Lig k'I')i|!

' (1= G 32
G|VigVind jO= mU&%

00

x [ [ew(- X + 2GimnXy — Y7) xydxdy

—00 —00

X Vkl(/\/ I—kl(l — Ok mn)lyl)vmn(/\/ I—mn(l - gklmn)|X|)1

O|TV + Ve T|j0= 27 (@', a') G|V j0
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+ 38[[”'15 [Vl L0 - 3o
kI

Z uq(amqanq + amqanq)(l-mqkl + I-nqkl - I—mnkl)

mnq
Here, we have introduced the additiona notation
2

_0

Okimn = /\/_Lkl mn/LkI I—mn'

InD,

klmn =

APPENDIX 2
Integrals 1™

Theintegrals IN™(x,, X,, X;) with nonnegative indices
are homogeneous polynomials of degreek + | + m+3in
the variables

ArsE(x+ Xs)_11 A= (X + X1)_l’

Ag= (X + %)

In order to obtain upper variational bounds in prob-
lems involving Coulomb, exponential, or Yukawa
potentials, we must calculate the following integrals
and their combinations:

10 = 16T° A ALA,,
| 2|000((A1 + A (A + A (A + A) —AAA),

[0 - 000(A1A2 + AA;+ AZA + ZAf)’
T, = 217 =8I AAL (A, + Ay).

To deal with similar integrals featuring negative

indices, it is convenient to introduce the notation
— -1
Bs=(X1—X%p) ",

By =(X— Xs)_11 B,=(X3— Xl)_l,

A B,A} Y
U = BEInX:—Bl A3—...—ﬁ,
BAY
S = Blln-——Bl A+ (=D)" 1—ﬁ—j—1—,
3

s = sl
1 A A; I -1gnd]
SCPsIngt - Abin - 865 + ()" s

In order to deduce lower variationa bounds, we
need the following integrals and their combinations:

1% = 19%(A, + A,
ATST - AST H1%UA + (A + AYI2),
Wy, = 21% -4

N[n] -

| -111 -
AcAs,
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Wy, = 2I°°OA1(A3 +2A,) + 4ASSH —ap3SY,
Qp = 4™ =161 A(AZ+ A2) —32A38Y
Qu = 12A,(— 2§E121A2+3§E22A2—3§E“21A2+2 )
+12A4(— 23 A3 39343 + 338 A, + 25))
+A(T, =1y + 1270,

5-1-1
I

2
JPSA LAY

A3 Di|
6 6

— [5] [Az
GOEI;[N —AAE 20

[N[‘” - A2A3DAZ Ao &D}

X 4 30

+ 2 [N[S] —A2A3DAZ

A3 D:|
X1

20

12 1w, 17, . A
+ =[NP ZAA] + =N +—[L| _
X, RN X; 2%1 AU
. 1l
+L|2%1—A‘°’D+1|n252+r—[2}g
0

Here, Li, isadilogarithmic function.

In the case where the parameters u = x,/x, and v =
X,/X; are small simultaneously, we can use the expan-
sions

AO 2 A, 6

|5_1—1 =X, z u Pn+5(W)n(lrE:]-f)6l)

Y VP (W) S,

n=0

P.(0) = Pk_z(a)-(‘g)k, k=23 .,

P, = —=In(1+a),

These expressions are employed for max(u,v) < 0.3.
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Abstract—Effects of weak nucleon interaction are calculated for the ground-state doublet of 5/2* levels of the
strongly deformed nucleus 22°Pay,. A parity-nonconservation effect in the doublet states can be observed in the
conversion spectrum for the isomeric transition between the doublet levels. By using a generalized model of
the nucleus, the matrix element of the effective one-nucleon weak-interaction potential, which determines the
weight of the opposite parity admixture in the doublet components is estimated in the single-particle approxi-
mation. Thereduced probabilities of the E1 and M1 nuclear transitions between the doubl et states are calculated
within various models of the deformed nuclear potential. The effect of Coriolis forces on the dipole electric
transition in question is considered. The lifetime of the upper doublet state is estimated. © 2000 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

It was predicted theoretically in [1] and established
experimentally in [2, 3] that the ground state of the
strongly deformed protoacti nium nucleus?*Paactually
represents a doublet of | = 5/2 states characterized by
opposite parities (x), their energy splitting and the life-
time of the upper level being respectively, AE = 220 +
50 eV and Ty, = 0.6 x 1059

Intheinteractions of 2°Panuclei with electrons, this
unique situation can be used to observe parity-noncon-
servation effect in the doublet states—namely, in the
conversion spectrum for the isomeric transition
between the doublet levels and in the differential cross
section for inelastic electron scattering leading to the
excitation of this transition. The parity-mixed (E1 +
M1) nuclear transition is amost completely saturated
by the contribution of conversion channels (the inter-
nal-conversion ratio is about 10%) featuring the upper
electron shells 5d;,, 55, 6S)2, 6Py /2, 6P, 6T3p2, Sspo,
and 7s,, of the atom.

Among the effects that can be observed experimen-
tally, there are those that are linear in the weak-interac-
tion coupling constant G.—for example, the helicity of
conversion electronsin the multipolarity-mixed nuclear
transition and the circular polarization of primary pho-
tons of atomic radiation that accompanies this transi-
tion under the condition that the momentum vector of a
conversion electron is fixed—and those that are qua-

T Deceased.

* e-mail: lomon@cerber.mbslab.kiae.ru

D On the basis of their experiments, Levon et al. [4] questioned the
existence of this doublet and proposed an alternative diagram of
229pa levels, but Sheline [5] and Ahmad [6] furnish additional
evidence for the existence of the above doublet.

dratic in Gz—for example, the effect that the admixture
of the magnetic M1 multipole to the basic electric E1
multipole exerts on the intensities of the lines associ-
ated with the excitation of electron orbits of the ?*°Pa
atom viathe conversion of the (E1 + M1) nuclear tran-
sition.

In the present study, we estimate the lifetime of the
upper isomeric state of the doublet, thereby verifying
the hypothesis of the one-nucleon structure of the dou-
blet states. The wave functions of the orbitals involved
were derived in the form of expansions in terms of a
single-particle basis in a spherical Woods-Saxon
potential, the expansion coefficients being taken from
the tables presented by Gareev et al. [7]. In order to test
the sensitivity of the results to the form of nuclear
potential, we compare them with analytic estimates
obtained on the basis of the Nilsson model with func-
tions of the spherical oscillator basis [8].

We calculate here the reduced probabilities of the
basic E1 and the admixed M1 nuclear transition and
present a tentative estimate for the possible variations
of the mixing amplitudein the (E1 + M1) transition that
are due to uncertainties in the parameters appearing in
the model of the nucleus used and to the possible com-
plications of the structure of the doublet (because of
Coriolis mixing).

2. MODEL WAVE FUNCTIONS OF THE (5/2)*
DOUBLET OF STATES OF THE ?»Pa NUCLEUS

In order to describe the states of the strongly
deformed nucleus ?*Pa, we make use of the general-
ized model of the nucleus due to Bohr and Mottelson
[9]. In accordance with the experimental results pre-

1063-7788/00/6303-0365%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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sented in [2], the ground state of the 2*°Pa,, nucleusis
interpreted here as the doublet of single-particle proton
orbits with quantum numbers [523]5/2, —, 5/2 and
[642]5/2, +, 5/2 (wefollow herethe [Nn,A1Q, I, | clas-
sification of orbits according to Nilsson [8]). The shape
of the nucleus is determined by the expression

R(9, ") = rOA”3[1+ ZBMYM(S', ¢')} 1)
Ap

wherer, =1.28 fm, Y,,(8', ¢') are normalized spherical

harmonics[Y{y (9, §) = (DMY__w(3, ¢)], and B, are
deformation parameters. In the laboratory frame, the
wave function of adeformed nucleushastheform|[8, 9]

W) = |2 ;2 duin Xa, (1) D (8)
16 @)
(1) 2 o (1D «(8)},

where | is the total angular momentum of the nucleus,
M isits projection onto the z axis that is fixed in space,
and K isits projection onto the symmetry axis Z of the
nucleus. Thetotal angular momentum of the nucleus, I,
is the sum of the angular momentum of the odd
nucleon, J, and the angular momentum of the nuclear
core, R, Q, being the projection of J onto the symmetry
axis z of the nucleus (K =2 Q = 0). The quantities

QD:\AK (8,) are the normalized elements of the rotation
matrix [8, 9]. The single-particle wave function Xa, (')

isasolution to the Schrédinger equation in the strongly
deformed model Woods-Saxon nuclear potentia [7,
10] or in the Nilsson oscillator potential [8]. Within the
model used in [7, 10], we have

Xa 1) = 3 cai” Fu” (1), ©

nlj

where Ffﬁ") (r') are solutions to the Schrédinger equa-
tion in the spherically symmetric (3,, = 0) Woods-
Saxon potential, nistheradial quantum number, | isthe
orbital angular momentum of the nucleon, and j is the
total angular momentum of the nucleon (j =1+ s). The
above solutions can be represented as

Fai”(r) = Ry(r)Qyuq (1'r),

where Q;, Q, (r'/r'y isaspherical spinor of the form

“)

Qjiq (r'/r) = ZCI/\SZYI/\(rI/r‘)(psZ- (5)

Here, Z isthe projection of the nucleon spin s onto the
symmetry axis Z of the nucleus, A is the projection of
the nucleon orbital angular momentum 1 onto the same

GRECHUKHIN, LOMONOSOV

axis, Clj,?spz isthe relevant Clebsch—Gordan coefficient,
and @.s is the nucleon spin wave function. The coeffi-

cients cn“") were calculated in [7] and were presented

in [10]; they satisfy the normalization condition

(Qp)|2
Z Crij’
oy

The effective potential of weak interaction, Ve,
leads to the mixing of the doublet states, which istaken
here into account in the first order of perturbation the-
ory. The resulting states are then represented as

o) - > _ O\, 042
—2:> - 21 !;>+Ib[642]21+!;>1
5

;> = [[642]2 +,§>+ib [523]%,—,%,

where b is a factor that characterizes the admixture of
an opposite-parity state. We have

=1.

(6)

(7

< [642 5IVPNCI[523] 2~ g>

b = AE ’

8)

where AE > 0.

The phases of the wave functions are chosen in such
a way that the relevant matrix elements are purely
imaginary quantities:

5 5jn~N 5 *
<[523]§, - §|VPNC|[642]§, +, §> o
_ 5 5jaN 5
= —< (52313, -, §|VPNC|[642]§, + §>

3. MATRIX ELEMENTS
OF THE SINGLE-PARTICLE E1 TRANSITION
BETWEEN THE [523]5/2, —, 5/2 AND [642]5/2, +,
5/2 STATES OF THE DEFORMED NUCLEUS *Pa

In the laboratory frame, the operator of the electric
dipole transition of a proton has the form

Ae(1pt) = €XrY,,(9, 0). (10)

Going over to the reference frame comoving with the
nucleus and taking into account the equalities|, =1, =1
and K, =K, =Q, =Q, = Q, wefind that the matrix ele-
ment of this operator between the deformed-nucleus
states || ,M,Q,Cand |I,M,Q,[can be represented as

0, M, QK| Mo(1p)] 1;M,Q, K,

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 3 2000
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1,M,

—ClMlpDA

XDZ 2. °

1 PPLIPY P

21, +1 Cle
T[ 2| + | 1K lKD
[ (@) Riit1 o0 e,
Nyl n2 22 j2+ 1C|1010leQllK

00

. . - , O
XU(Ll]1s; 1) fdr Ry, (M) Roy (1) 0
0

(11)

WhereK=K2_Kl=Q2_Ql

By using the above formulas, we have calculated the
reduced probability B(E1; (5/2)~ — (5/2)*) of the
electric dipole transition within the model relying on
the Woods-Saxon potential and within the Nilsson
model. The results are presented in Tables 1 and 2,
respectively. An estimate of the reduced probability for
this transition according to Weisskopf [9] yields the
value of By/(E;; I, — 1,) =2.75 ¢* fm?. Hence, the E1
transition between the [523]5/2, —, 5/2 and [642]5/2, +,
5/2 states of the deformed nucleus **°Pa is suppressed
in proportion to (2.8-6.4) x 10*. The model based on
the deformed oscillator potential leads to a stronger
suppression of the E1 transition between these states.
We note that either model predicts the growth of the
reduced probability B(E1; (5/2)- — (5/2)*) of the
above electric dipoletransition with increasing quadru-
pole deformation [3,, of the nucleus.

4. ESTIMATING THE LIFETIME
OF THE UPPER [(5/2)] DOUBLET STATE
OF THE 29Pa’ NUCLEUS

As was indicated above, the transition between the
[632]5/2, —, 5/2 and [642]5/2, +, 5/2 states of the
deformed nucleus 2*°Pais almost completely saturated
by the contribution of conversion channels.

By calculating the intensity of the conversion lines
of the E1 nuclear transition for al electron subshells
involved in the conversion process, we can obtain the
total probability of conversion and the lifetime of the
upper doublet level, which is to be compared with the
experimental value of Texp = 0.6 X 10° s[2]. The wave
functions of the conversion electron are determined
within the relativistic Hartree-Fock—Slater method. In
order to assess the stability of the effect magnitude to
uncertainties in the parameters of the atomic potential,
we vary both the form of the exchange atomic potential
and the population of the valence zone of the atom (a
simulation of the effect of chemical environments). The
details of our calculation of the total conversion proba-
bility can be found in [11]. For the 2*°Pa atom, the total
conversion probability was also computed in [12, 13].

For the E1 nuclear transition, the total conversion
probability (that is, that which is summed over all elec-
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Table 1. Reduced probability B(E1; 5/2~ — 5/2*) of the
electric dipoletransition (the cal cul ations were performed on
the basis of the model employing the Woods—Saxon poten-
tial; (Bso = 0.08)

Boo B(E1; 5/2 — 5/2%) x 103, € fm™
0.20 0.77
0.23 1.31
0.25 1.80

Table 2. Reduced probability B(E1; 5/2~ — 5/2*) of the
eectric dipoletransition (the cal cul ations were performed on
the basis of the Nilsson model)

Bao n B(EL; 5/2- —» 5/2%) x 103, & fm™
=0.1 2 0.14
=0.2 4 0.25
=0.3 6 0.28

tron shells of the atom) per unit time [14, 15] is
given by

tot .5 5" |

Wc BE]., E —»E, €1 —>82|:|

(12)
e me

ﬁ

*BLEL; —_.% P(E1, AE = hw),

where W' (E1, AE = A1) is the dimensionless el ectron-

conversion factor for the E1 multipole (this factor is
defined, for example, in [11, 14]), B(EL; (5/2) —
(5/2)*) is the reduced probability of the electric dipole
transition in € fm? units, AE = #w, € is the eectron
energy, and g, is the Bohr radius for the electron. The
contribution of the admixed M1 nuclear transition to
the total conversion probability can be disregarded;
hence, the lifetime of the [523]5/2, —, 5/2 isomer of
229Pg,, is determined completely by the E1 conversion
nuclear transition.

For various values of the transition energy AE, the

caculated dimensionless conversion factor for the E1
tot

multipole, w, (E1; Aw), and the calculated total con-

version probability Wy (E1, (5/2)~ — (5/2)*; &, —»
€,) per unit time for the E1 nuclear transition are dis-
played in Table 3 versus the parameter 3,, of the qua-
drupole deformation of the nucleus.

Thus, the estimated lifetime of the [523]5/2, —, 5/2
isomer of 2*°Pay,, T.,., falls between 4 x 10 and 1 x
107 s. So dramatic a deviation of those estimates from
the experimental value of 1., =0.6 x 10 s, which
requires, however, a further reflnement may be due to
the disregard of some factorsin T,,,.— __such as Coriolis
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Table 3. Total electron conversion factor WtOt(El AE =

i) [for 5fg,)%(603,)Y(7sy,)% anormal configuration of the

protoactinium atom] and total conversion probability
tot

W, (E1; 5/2- — 5/2%) per unit time

W (EL; 5/27 — 5/27) x 1075,
N | W EL, AE = i) s?
Bso = 0.20 |Byp = 0.23|Bsp = 0.25
170 9.91 1.12 2.00 2.63
220 8.86 1.01 1.79 2.35
270 8.32 0.95 1.68 221

mixing, core polarization, and admixtures of multipar-
ticle configurations—that affect the structure of the
doublet states, rendering it more complicated. In this
study, we restrict ourselves to estimating the effect of
Corialis forces, which admix nucleon orbits within an
interval of £5 MeV to the 5/2* doublet states.

5. CORIOLIS MIXING OF PROTON ORBITS
IN THE STRONGLY DEFORMED NUCLEUS ?*°Pay,

In the laboratory frame, the Hamiltonian of the
Coriolisinteraction has the form [16]
2
HCor = —ZL—(I D]), (13)
Fo
where $, is the moment of inertia of the nuclear core
with respect to the x' axis of an axisymmetric nucleus
(‘g‘x':gy':‘g)o)-

The operator Hcor mixes the orbits that differ in the
projections Q of the total angular momentum J of the
particle by |[AQ|= 1 and in the projectionsK of thetotal
angular momentum | of the nucleus by AK = 1. The
AQ =0 term leads to the shift of the level only for Q =
3/2 [16]. Thus, the orbits [Nn,A]3/2, — 5/2 and
[Nn,A13/2, +, 5/2 can be admixed to the original dou-
blet components [5233]5/2, —, 5/2 and [642]5/2, +, 5/2,
respectively; here, Q <1, K, =Q,, and K, = Q,. Gareev
et al. [7] indicate the fO||O\NI ng series of such Q = 3/2
orbits: [532]3/2, —, 5/2; [521]3/2, —, 5/2; [512]3/2, —,
5/2; [501]3/2, —, 5/2; [411]3/2, +, 5/2; [402]3/2, +, 5/2;
and [651]3/2, +, 5/2. In the first order of perturbation

h2 I(1+1)
$olE1 + By
sion for thefirst level of the doublet has the form

H (5231 g - ;>

5 5 _
(52315,-3), = AL
3 3
"2
i [523]2,—,3

theory in the small parameter — , the expres-

[532] g
(52313, 5
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3 5
B2z =3 3
+A[523]g_‘gx [521]5, ,g> (14)
3 b5
(51215, -3 3
ot (51213 - 3)
3 5
(501135, ~3 3 O
Ao 5 % (503 ,g>[}
For the second level of the doublet, we have
164212 +.2) = A | (64212 +, 2
21 12c [ 21 12
3.5
[411], +, 3
+A §§ [411] 5>
(64215, +.5 "2
s s (15)
+A[402]§+§
3.5
[651]3, +, 3 0
+A[64§ 5 [651] §>S

In these expressions, A, and A, are new normalization
constants, and
[Nonz Aol Q. My 1
[NlnzlAllle My 1y

(16)
 OINNZAGTQy, My, 1yl Aol [Nz AL TQy, M, 1,0

E[NlnzlAllle Myly ™

E[ Nanz, A2l Qa Mo 1

The matrix €elements of the Coriolis interaction
operator Heor (Q, = 5/2, Q, = 3/2) hasthe form

0,M,Q,M,K | Aol 1;M,Q, M, K, 0

#? 12K,
"9, =8 1,0m,m,0n,n, /1 (1 + D)C ik,

(Qy) (Q) /—
x zcnlj1 nlj2 J(J +1 CJQ 10,-0,"

nlj
In order to calculate the matrix element [642]5/2,

+,5/2) Me(110)|[642]5/2, +, 5/2[for the electric dipole
transition being considered, we make use of equation
(11). In this calculation, we take into account only the
El transitions to the dominant orbitals of the superpo-
sition.

In accordance with the asymptotic selection rules
[9], the allowed AQ = 0 single-particle E1 transitions
correspond to AN = 1, An, = 1, AA =0, and AZ = O,
while the alowed AQ = 1 single-particle E1 transitions
correspond to AN = 1, An, = 0, AA = £1, and AZ = 0.
All the transitions being considered are forbidden.

(17)
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The spectrum of nuclear states of the core has not
yet received adequate study; therefore, its moment of
inertia $, is uncertain to a considerable extent. The
present cal cul ations have been performed with A%/$, =
10, 15, and 20 eV. The contribution of the admixed E1
transitions to the reduced probability (see Table 4) is
small (lessthan 5%); hence, it hasvirtually no effect on
the estimate of the isomer lifetime.

6. MATRIX ELEMENT
OF THE NUCLEAR-VOLUME-AVERAGED

POTENTIAL Vpne(r, P, o)
OF PARITY-NONCONSERVING FORCES
FOR THE DEFORMED NUCLEUS 2°Pa

The simplest Hermitian operator of the effective

parity-nonconserving potential acting on the odd
nucleon (proton) hasthe form [17]

\A/,F\"Nc(l’, P, (;')

A ~ 18)
[(P)p(r) +p(r)(o [P)}.

Here, G = 1043/ mﬁ c is the Fermi constant of weak
interaction; m, is the proton mass; p is the nucleon-

momentum operator; ¢ is the nucleon-spin operator;
p(r) is the density of the nucleon distribution over the
volume of the deformed nucleus—it is taken in the
Woods-Saxon form

Po
[1+exp{(r'=R(,¢"))/a}]’

where p, = (3/4™)(1/rp)*; and a(N, Z) is a numerical
coefficient of about unity. Data on the effects of parity
nonconservation in resonance-neutron interactions
with heavy ions can be interpreted in such a way that
this coefficient is enhanced by one to two orders of
magnitude; this in turn enhances, in the same propor-
tion, the effects being discussed (see, for example,
[18]). Nonetheless, we set a(N, Z) = 1 in our ensuing
calculations. By using the expansion in (1) and equa-
tion (19), we obtain

p(r') = (19)

p(r) = Zpo%au(r')sz(ﬁ', o). (20)
m

For axisymmetric nuclei, g = 0 and the quantities rep-
resented by & are even.

Let us now calculate the matrix element of the par-
ity-nonconserving potential (18) between the [523]5/2,
— 5/2 and [642]5/2, +, 5/2 states of the deformed
nUClEUSznga (Qpl = sz = Qp, Il = |2 = |, Kl =K2 = Qp)
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Table 4. Reduced probability B(EL; 5/2~ — 5/2*) of the
electric dipole transition with allowance for Coriolis mixing
of orbitals (3,9 = 0.08)

B(E1; 5/2~ — 5/2%) x 108, € fm?
KT, eV
[320 =0.20 [320 =0.23 [320 =0.25
10 0.72 1.22 1.75
15 0.69 117 1.63
20 0.67 1.13 1.56

In the case of the wave function taken in the form (2),
we arrive at

(1,MKVie(r, B, 6)[1,M,K;) =

6II6MM2KKZZZ ;
nlilinlhl, €=

< A i
2

l«/l + 1C| +10§ou(|1(|1 +1)ss; 1jy)

(Qp)
nl 11

(Qp)
n2 2l2

00

xU(EL,jss; (I, + 1)) fdr'r'Zanlzjz(r')%zo(r')

[aRnl|1jl("')
X

arl n1111( )i| /I +1C|Jl?.]_0§0

xU(ly(I, + Dss; 1j)u(€lqjos; (I, +1)]q)

0R,,.,;,(r" O
or' 2

(21)
anlzjz(r')}

r.l

x J’dr'r'anl,ljl(r')%Eo(r‘)[
0

1,0 .
- «/l_lcll—loaou(l (I +1)ss; 1j,)

0

x U(ElLjs; (I + 1)) fdr'r'Zan.zjz(r')%ao(r')
0

x[aRnglrj-l(r) £ (1, +1) n“h( )}

1,0 :
- /\/I_ZCIZ—lOEOu(IZ(I 2—1)ss; 1j,)

xU(Elj,S; (1,—1)j,) jdr'r'zRnl.ljl(rv%zo(r')
0

|:a Rn2|2j2(l")
X | —2222  °
or'

( l) n1 111( )}El
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Table 5. Matrix element —i [J 642] g +, S‘VQNC‘ [523] g,—, gD of the effective parity-nonconserving potential (the calcula-

tions were performed on the basis of the model employing the Woods-Saxon potential; 3,5 = 0.08)

. 5 5|, N 5 5
BZO - [[642]5,"‘, E‘VPNC‘[SZS]E’_, éD, eV
0.20 0.48
0.23 0.52
0.25 0.55

Table 6. Matrix element —i []642] g +, g‘Vch‘ [523] g,—, gD of the effective parity-nonconserving potential (the calcula-

tions were performed on the basis of the Nilsson model)

. 5 5| N 5 5
B0 n ~i11642)3,+, 2 Vincl[52313, -, 201 ev
=0.1 2 0.11
4 0.21
= 6 0.27

For the model based on the single-nucleon potential
in the Woods-Saxon form, Table 5 displays the calcu-

lated matrix element of the operator Ve (r', P, &)
(18) between the [523]5/2, —, 5/2 and [642]5/2, +, 5/2
states of the deformed nucleus 2>°Pa. Table 6 presents
the results of analogous cal cul ations within the Nilsson
model.?) The coefficient b (8), which characterizes the
weight of the opposite-parity admixture, is depicted in
Fig. 1 asafunction of the spacing AE between the lev-
elsin question; it isseento vary between 1.6 x 10~ and
3.2 x 107

Thus, our calculations have reveaed that the parity-

nonconserving potential Vpne (r, P, o) generatesasiz-
able mixing of the doublet components since the rele-
vant matrix element of this potentia is not suppressed
owing to the complicated structure of the proton orbits
that form the 5/2* doublet of states in the spectrum of
the strongly deformed nucleus >*’Pay,.

7. MATRIX ELEMENT OF THE OPERATOR
OF THE SINGLE-PARTICLE M1 TRANSITION
BETWEEN THE [523]5/2, —, 5/2 AND [642]5/2, +, 5/2
STATES OF THE DEFORMED NUCLEUS 2Pa

Only states characterized by identical parities con-
tribute to the matrix element of the operator of the mag-

netic dipole transition between the parity-mixed |5C\/JZD

2Here, we took into account only the spherically symmetric term
(p = 0) in the interaction operator.

and |5'/20 states (7) of the deformed nucleus 2°Pa.
Therefore, the matrix element of the M1 transition is
proportional to the difference of the magnetic moments
for the [523] and [642] orbits, the mixing constant b (8)
being the proportionality factor:

5o . 5
Glﬂmm(lu)@
_ .G 5 57 5
= ib (64213, + Slln(uil 625, +.3) @2

(152903, Sdtnumliszn3 - ) 5

In thelaboratory frame, the operator of the magnetic
dipole moment for the deformed nucleus with one odd
nucleon has the form

° 3
Mm(Ly) = /\/%_[HN

x [(9s— 93 + (9 — 9) Ju + Orlul,

(23)

where i = efi/2m,cisthe nuclear magneton, I = R + ]
is the total angular momentum of the whole nucleus,

and ] =1 + § isthetotal angular momentum of the odd
nucleon. For the proton, we have (provided that the spin
polarization of the core is disregarded) g, = 5.585, g, =

1, and gg = Z/A. The operator | isa compl ete integral
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b x10°

1 1 1 1 1 1 1 1 1

1.6 |
170 190 210 230 250 270
AE, eV

Fig. 1. Coefficient b (8), which characterizes the mixing of
opposite-parity states, as a function of the spacing between
these states for the quadrupol e-deformation-parameter val-
uesof B,y =(1) 0.20, (2) 0.23, and (3) 0.25 (the calculations
that yielded these results were based on the model employ-
ing the Woods—Saxon potential).

of the motion, whence it follows that, for the [523]5/2,
—, 5/2 and [642]5/2, +, 5/2 orbits (I, = 1, = | = 5/2), the
relation

B(M1) x 105, p%
16

1 1 1 1 1 1 1 1 1

|
170 190 210 230 250 270
AE, eV

Fig. 2. Reduced probability B(M1; 52~ — 5/2°) of the
magnetic dipoletransition between the doubl et statesasafunc-
tion of the spacing between these states for the quadrupole-
deformation-parameter values of 3,5 = (1) 0.20, (2) 0.23,
and (3) 0.25 (the calculations that yielded these results were
based on the model employing the Woods-Saxon potential).

and 8 for the former and latter model versions, respec-
tively. Either version predicts the growth of B(M1;

371

OMK | Mim(1p) | MKD

3 | / 1Q,
= /\/;F[HBC:’\h;llluE'gR I(I + 1) + (gl _gR)QpCIQplo

+(gs—9)~s(s+1) CIQ 10{2 26” Eﬂjp) fﬂi) (24)

nlj n'l'j*

527 —~ 5/~2+) with increasing quadrupol e-deforma-
tion parameter.

The resulting reduced probability B(M1; 52—~
5/2") of the magnetic dipole transition is on the same

Table 7. Reduced probability B(M1; 5/2 — 5/2+) of the
magnetic dipole transition (the calculations were performed
on the basis of the model employing the Woods-Saxon po-
tential; B4 = 0.08)

X( 1)J ¥ [21+ u(]llS SJ)CJQj_O

00

0
xJ’dr'r'sz,-(r') Rn‘l'j'(rl)i| U
J 0

holds in the laboratory frame.

In the case being considered, we havel, =1, =1 and
Q, =Q, = Q; therefore, the first two terms on the right-
hand side of (24) do not contribute to the required dif-
ference.

Within the models relying on the Woods-Saxon
potential and on the oscillator potential, we have calcu-

|ated the reduced probability B(M1; 5/2° —~ 5/2") of
the magnetic dipole transition between the |572‘D and
|5/2" Dstates of the deformed nucleus 2°Pa. The results
of these calculations (in uﬁ, units) are quoted in Tables 7

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 3 2000

B0 B(M1; 5/2° —» 5/2")/k?, 1%,
0.20 1.31
0.23 1.39
0.25 1.44

Table 8. Reduced probability B(M1; 5/2° — 5/2") of the
magnetic dipole transition (the calculations were performed
on the basis of the Nilsson model)

B0 n B(ML; 527 — 52" )/b?, 12
~0.1 2 0.21
0.2 4 0.64
~0.3 6 0.99
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order of magnitude as the Weisskopf single-particle
estimate B, (5/2° — 5/2") = 1.8u5/b% hence, the

M1 transition between the states being considered is
not suppressed. Figure 2 shows the reduced probability

B(M1; 5/2° —~ 5/2") of the M1 transition as a func-
tion of the energy spacing between these levels.

8. CONCLUSION

Theoretical estimates of the parity-nonconserving
single-particle nuclear potential depend on the scheme
chosen for the formation of the weak interaction
between nucleons. Quantitatively, estimates obtained
within different schemes differ substantially. Available
experimental data were obtained for nuclei having a
complicated structure, and thisreducesthe reliability of
quantitative data analysis. In the case of the 2*Pay,
nucleus, which is being considered here, there are
grounds to interpret the levels of the (5/2)* doublet as
single-particle ones. However, an additional experi-
mental check upon this interpretation is required, the
more so as an alternative diagram of protoactinium lev-
els was proposed by Levon et al. [4] on the basis of
their experimental study. It is also of interest to refine
the lifetime of the [523]5/2, —, 5/2 isomer of the 2°Pay,
nucleus and to determine more precisely the energy
splitting AE in the doublet.

It should be noted that, within this original interpre-
tation of the (5/2)* doublet of states of the ?*°Pay,
nucleus, the El1 transition is strongly suppressed, which
leads to the estimated isomer lifetime of T, = 4 x 10—
1 x 107 s; at the same time, the experimental value,
which requires, however, a refinement, is T, = 0.6 x
10 's. We have shown that the inclusion of Coriolis
forces does not remove this discrepancy. Possibly, the
effect of nuclear-core polarization and the admixture of
multiparticle configurations are factors that enhance
the El transition in question.

We note that the above P-odd effect of mixing of the
(5/2)* states in the spectrum of the 2>Pa,, nucleus can
also be observed in the electron lines of conversion
involving the outer 6s,,,, 6p,;, 6Psp, 60s,, 6ds,, and
7s,, shells of the atom. By virtue of parity nonconser-
vation, the M1 multipole is admixed to the dominant
the E1 transition between the doublet states. From our
calculations, it followsthat theintensity of the M1 tran-
sition is suppressed in relation to the intensity of the E1
transition by four orders of magnitude. In the conver-
sion channel, however, the M1 transition for some
intense conversion lines is enhanced, according to our
estimate, by a factor of about 10>-10°, which compen-
sates, to a considerable extent, for the smallness of the
doublet-mixing amplitude. A detailed discussion and
estimates of parity-nonconservation effects accessible
to observation will be presented elsewhere.
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NUCLEI

Theory

Nonconservation of the Quantum Number K
and Phase Transitionsin Rapidly Rotating Nuclel
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Abstract—Three different effects observed in experiments with rotating nuclei—backbending, noncollective
quadrupole transitions between different levels of the same band, and transitions that occur, in rapidly rotating
nuclei, from large-K isomeric states immediately to the levels of arotational band despite their strong forbid-
denness in K—are explained in terms of nonconservation of the quantum number K in such nuclei. © 2000

MAIK “ Nauka/Interperiodica” .

Shortly after the experimental discovery of back-
bending [1], it was assumed [2] that this phenomenon
was due to the alignment of the angular momenta of
constituent nucleons along the angular-velocity vector
of the nucleus. However, the physics behind such align-
ment has not been clarified until now. That the above
alignment is of a collective nature is supported by the
entire body of data on the levels of rotational bands in
various nucle. In order to clarify this point in some
detail, we can consider the frequency of a rotating
nucleus as afunction of the angular momentum |; from
the graph of this function, which, at large values of I,
has the form

_ dE(l)
ha = ==, (1)

we can see that backbending is always accompanied by
afal of 2Q below therigid-body line

ﬁZ

hQ = g—ol, )

where

9o = MR 3)
5

is the rigid-body value of the moment of inertia of the
nucleus being considered, M and R being its radius and
mass, respectively. For the first backbending, such a
correlation is observed for each rotational band of a
nonspherical nucleus. In contrast to this, secondary
backbends occur completely under the rigid-body line,
whereas so-called low-frequency anomalies[3, 4] show
no correlation with thisline. By way of illustration, the
rotationa frequency asafunction of | isplotted in Fig. 1
for three rotational bands of the '°Yb nucleus (experi-
mental data on the transition energies for this nucleus

1 I nstitute of Spectroscopy, Russian Academy of Sciences, Troitsk,
Moscow oblast, 142092 Russia.

were borrowed from [5]). For each of these bands, we
seethat, in the region of the first backbending, the rota-
tional frequency as a function of | traverses the rigid-
body line in the downward direction. In the rotational
band built on the ground state of the Y nucleus (that
is, in the yrast line of this nucleus), the second back-
bending occurs below the rigid-body line. In the rota-

tiona band built onthe I™= 6 state, the low-I irregu-
larity of Q represents a low-frequency anomaly. Such
anomalies are probably due to a noncollective aign-
ment of an “odd” angular momentum, which is weakly
coupled to the nuclear core [6, 7].

The above feature of the experimental | depen-
dences of Q suggests [8] that the first backbendings
have a specific collective origin that distinguishes them
both from higher backbendings and from low-fre-
guency anomalies. Experimental data indicate that
backbending has nothing to do with intersections of
different bands; therefore, it may be viewed as an
intrinsic property of a given band. In [8], we hypothe-
sized that backbending results from nonconservation
on the quantum number K, the projection of the total
angular momentum onto the symmetry axis of the
nucleus. Generally, the quantity K=1 - n iswell defined
only inthelimit Q — O0—that is, for anucleus at rest.
As soon as components with different values of K
appear in therotational density matrix of anucleus, the
angle 9 between the direction of angular momentum I
and the symmetry axisn of the nucleus becomes uncer-
tain. For the spin of the nucleusin excess of some crit-
ical vaue, I, al K in theinterval - < K <1 become
equiprobable. In this way, a smooth evolution of the
scheme governing the coupling of angular momentain
a rotating nucleus is completed, resulting in a simple
form of this coupling; the most typical mean values are
then given by

2 1
O= z;
[tos 9 3

“

1063-7788/00/6303-0373%20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Rotational frequency Q as a function of the angular
momentum | (a) for the yrast line of the 160y nucleus and
(b) for the I = (closed circles) 6~ and (open circles) 9~
bands of the same nucleus. For the yrast line of 199y b, the
critical value of the angular momentum is 12.5. The straight
line corresponds to the rigid-body approximation.

that is, we go over from a less symmetric to a more
symmetric rotationa state: in particular, the distribution
of the angle & becomes isotropic [see the last relation in
(4)]. Thecritical value of the nuclear spin, I, corresponds
to thefirst backbending of the rotational band being con-
sidered; experimentally, this backbending manifestsitself
asthe above intersection of therigid-body line.

The above collective (macroscopic) transition that
involves a change in symmetry is naturally formulated
within the theory of phase transitions due to Landau
[9]. In [8, 10-12], the required formalism was devel-
oped in terms of the order parameter

3K°0

R ©

KAMCHATNOV, NOSOV

which vanishesin the more symmetric | = |, phase—we
refer to it as the n phase. At the point where Q(1) inter-
sects the rigid-body line in the region of the first back-
bending, we have

ﬁ2
= —| ,
$o ©
where Q. is the value of the rotational frequency at |

valuesjust above | —that is, at the onset of the n phase.

Let us describe the situation in some detail. In the
limit of adiabatically dow rotation, the wave function
can be represented as

Diw (MXk (£).

If, however, thevaluesof | and M = |, arefixed, thetotal
wave function of a nonspherical nucleus generally has
the form

A Qne (6)

Wu = Z DII(M(n)C:(XK(E)'

K=-l

In order to obtain a self-consistent description in terms
of the collective variable n, we assume, as usual, that
the extrinsic and intrinsic values of K coincide:

| Th=K,.

()

8)

Upon the convolution of the internal (nonrotational)
variables &, the relevant density matrix takes the form

p(n.n") = 5 W(K)Di(n)Diu(n),
K=l 9)
| 2

w(K) = |ci| .

In the representation of three angular-momentum vari-

ables|, M, and K, the rotational density matrix has the

particularly simple form

P (1, M, K; 1, MY K)

(10)
=9 |05|'|06M M05M'M05KK'W(K)-

Generally, the rotational state &, W(K) is mixed—it

becomes pure and factorizes only for the degenerate
case where K assumes a definite value. In the region
I =1, where the scheme of coupling of angular

momentais simplified, we have w(K) = 21 + 1)

The proposed interpretation of the backbending
phenomenon must be verified or disproved by confront-
ing other predictions of the underlying approach with
data. One of the possible checks was indicated in [8].
The probability w of electric quadrupole transitions
between different levels of a band is known to depend
on K2. Therefore, a calculation of the lifetime of a state
that picks up contributions characterized by different
values of K necessarily involves averaging over the K
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distribution. In the semiclassical approximation, the
probability w for | > 1 wasderived in [8, 12] as
2 5
ew
w = :
360%AcC

where w = 2Q and Q, is the macroscopic quadrupole
moment of the nucleus due to its deformation. At the
sametime, theresultat K=0is

W= €w  I1(1=-1)
407,c°(21-1)(21 +1)

By somewhat formally defining the quantity Q, as

2
+35Q5, an

Qo-

:_ 4
Ql_g

we finally arrive at the interpolation formula

W = €w  I1(1-1)

" 40rc>(21-1)(21 + 1)
which holds approximately for all values of |. We can
seethat, inthe n phase (1 = 1)), the effective quadrupole
moment for radiative transitions, Q;, amounts to only
two-thirds of the quadrupole moment Q, for the lowest
value of | in the yrast band of an even—even nucleus.
The predictions are conveniently compared with the
datain terms of theratio Q,2 / Q§ , Where Q, isthe qua-
drupole moment for the 2+ — O* transition. We have

:Q_|2=
% B

2
+A5 Q3 (12)

Q

(13)

2(21-1)@1+ )W 0 Wi 1o

¢ I(1 -1) Loy 0wy g (14

That the probability of quadrupole transitions in a
rotational band decreases with increasing | was indeed
observed experimentally (see, for example, [13]), but
no attempt has been made to relate this phenomenon,
referred to as the loss of collectivity, to nonconserva
tion of K in rapidly rotating nuclei. The observed |
dependence of theratio ¢, for the yrast line of the '°Yb
nucleus [14] is displayed in Fig. 2 along with our pre-
dictions. Asarule, ¢, < 1, and the experimental values
of ¢, tend to decrease with increasing |. Because of
large uncertainties, the agreement with the predictionis
not compelling.

Previoudly, there was one more experimental find-
ing that supports the hypothesis of K nonconservation
in rapidly rotating nuclei. We mean here the observa-
tion of direct radiative transitions from the large-K iso-
meric states of the 1820s, '7*Hf, and "W nuclidesto the
levels of the rotational bands built on the corresponding
ground states[15-19]. Had K been constant throughout
the above bands, such radiative transitions would be
strongly forbidden. That these transitions occur only to
higher levels in the vicinity of backbending suggests
that the amount of K nonconservation increases as |
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Fig. 2. Squared ratio of the effective quadrupole momentum
in the yrast line of 6% b to the quadrupole momentum for

the 2 — 07 transition [see equation (14)] versus the
angular momentum |.

approaches the critical spinvalue l... Yet another impor-
tant observation is that some transitions to different
bands of the '"#Hf nucleus (namely, to the ground-state
band, to the band built on the B-vibrational state of the
nucleus, and to the octupole and hexadecapole bands)
are characterized by very similar delay factorsf, (v =
|Ki — K¢ | — A isthe order of forbiddennessin K, A being
the multipolarity of the transition from the state i to the
statef). Thisimpliesthat violation of the quantum num-
ber K has a universal character independent of the
structure of a particular band. Likewise, the data are
consistent with the assumption that final states are
broadly spread in K.

To summarize, nonconservation of the quantum
number K provides a clue to understanding the afore-
mentioned phenomena. Experimental data suggest that
K isviolated because the scheme of coupling of angular
momenta gradually evolves as | increases within a
band.
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Abstract—The coupled-channel method is used to calculate photonuclear reactions on Mg, 28Si, and 32S
nuclei within the intermediate-coupling scheme. The origin of relatively narrow peaks corresponding to photo-
absorption on these nuclel is studied. Partial channels of giant-dipole-resonance decay are considered. It is shown
that the splitting of the giant dipole resonance in the 2*Mg nucleus into two broad maximais due to the defor-
mation of its surface. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In light and medium-mass nuclel (A < 100) with
unfilled outer shells, giant multipole resonances
(GMR) are formed from configurations of the particle +
(A—1) corein an excited state and hole + (A + 1) core
in an excited state type rather than from configurations
of the particle + hole type because particle and hole
excitations of the valence shell that are generated by
primary single-particle transitions (see Fig. 1) decay
fast, transferring their energy to a large number of
valence nucleons. This circumstance was partly taken
into account in [1-3], where basis configurations of the
particle + (A — 1) core type were used in calculating
GMRs in 1p-shell nuclel within the so-called interme-
diate-coupling scheme, but where configurations corre-
sponding to single-particle transitions from deep filled
levels were disregarded.

Calculations within the intermediate-coupling
scheme have not become popular because it is difficult
to treat quantitatively low-lying states of heavy and
medium-mass nuclei in the full configuration space of
the valence shell. Recently, a method for computing
low-lying nuclear states by consecutively adding nucle-
ons to the nuclear system was proposed in [4]. In this
method, a relatively small number of basis states are
used at each step of the calculations. The method is
applicable not only to light but also to medium-mass
nuclei. Owing to this, aversion of the coupled-channel
method within the intermediate-coupling scheme could
be developed in aform that is rather simple, but which
is suitable for calculating the structure and decay fea
tures of GMRs in light and medium-mass nuclei with
unfilled outer shells[5].

In [5], nucleon—nucleus scattering states |(a%)§\i)D
that feature diverging (+) or converging (-) spherical

waves at infinity were represented in the form

(BN D= > Z o'B) Al (BN ' B) A0

(1)
+ ; ; [y A (aB) Ty 4D

where A isthe total angular momentum of the nucleon
system (if isospin is considered to be a good quantum
number, A will represent the set of quantum numbers
that includes the above angular momentum and the

m
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Fig. 1. Basic types of single-particle transitions leading to
theformation of giant resonancesin light and medium-mass
nuclei.
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isospin moment of the system); a = saa = & laiaMyTao
a', ... stand for the quantum numbers characterizing
unfilled single-particle states in the mean nuclear field
un); v, Y, ... are quantum numbers of filled single-par-
ticle states in the mean nuclear field u(r); [(a) 0=

(a, B0, (@B, ... are basis wave functions that

describe open and closed channels of the particle + (A—
1) core type (by a channel, we mean here a partition of
the nuclear system in question into two components);
[(ysh)ACE (ay | A D, [(YAIAL... arebasiswave function
that describe closed channels of thehole+ (A + 1) core

type; a, and a, are the operators of, respectively,
nucleon creation and annihilation in the single-particle
state |AGHBORB'D... (40 |4'T...) are low-lying nat-
ural-parity excited states of the A — 1 (A + 1) nucleus
that diagonalize the nuclear Hamiltonian within the
configuration space of thevalenceshell; and ) | denotes

summation over discrete quantum numbers and inte-
gration with respect to continuous quantum numbers x.

This approximation provides a natural generaliza-
tion of the standard 1p1h approximation for light and
medium-mass nuclei with unfilled shells; in just the
same way as the latter, it takes no account of correla-
tions in the ground state of the nucleus.

The expansion coefficients [a'%B"), (@B )% Dand

[y 4 [(B)S Ceharacterize the contributions of var-
ious a'®B' and ys' channels to the scattering state

@)% 0 Coupling between the channels arises in the

internal region of the reaction in question, where the
residual nucleon—nucleon forces V, are operative over
distancesr < R, = 1.5A!. In afinite spatia region, sin-
gle-particle states |aLbf the continuous spectrum can be
expanded in terms of a discrete set of the oscillator

functions{lna 0 as

la0= Zm&pqham for <R, )
n
wheren =0, 1, 2, ... is the number of the oscillator

guanta. For the channel amplitudes, we therefore have
the relation

o' B)Al(aB) = Z '@ mn'd’, BYalaB) 0
n (3)
for

r<R,.

The scalar products [N'd', B)A|@B) 0 and

[y 4 (@) Odescribe the configurational content

of the scattering state in the internal region of the reac-
tion being considered. They determine completely all
the characteristics of the nuclear reaction. In particular,
the amplitude of the probability for the transition of a

GOLOVACH et al.

nucleus from the ground state |W,[Jto the scattering

state |(0(%)E\i) Cunder the effect of the multipole opera-
tor F, that is responsible for GMR excitation can be
expressed in terms of these scalar products. In [5], a
compact set of algebraic equations (equations of chan-
nel coupling) was derived for the quantities

INd', BHAleB)S 0 and Gy sd)al@B)S’ 0 The
matrix for this set of equations was obtained within
standard shell-model calculations in the basis
{1(@B)A0 |(ysd) AT}, which in turn was computed by the
procedure proposed in [4].

In the present study, the model in question is
employed to describe the photodisintegration of Mg,
2881, and 32S nuclel in the giant-dipole-resonance
(GDR) region.

2. DETAILS OF THE CALCULATIONS

The interaction of nuclel with an electromagnetic
field can be taken into account by perturbation theory.
In the absorption of a photon with energy E between
about 8 and 30 MeV by a nucleus, a dominant role is
played by electric-dipole-excitation processes leading
to the formation of a GDR, which subsequently decays
into aresidual nucleus and anucleon. In order to obtain
the effective cross sections for photonuclear reactions,
it is then sufficient to calculate the amplitudes of the
probabilities for the electric-dipole transitions,

%)V (D|W,0,, where D is the electric-dipole-

moment operator. These probability amplitudes can be
represented as linear combinations of the scattering-state

components [(n' a, BYA 0B ) Cand [y A 0B O
in the internal region of the reaction [5].

In order to simplify the calculations, we assume that
nuclear Hamiltonian is invariant under the charge-con-
jugation operation and that the isospin is a good quan-
tum number. In actual nuclei, these assumptions are
violated because neutrons and protons move in differ-
ent potential wells and have different separation thresh-
olds. Therefore, only proton features [in describing (v,
p) reactions] or only neutron features [in describing (y,
n) reactions] are usualy included in calculations that
take into account isospin conservation in light nuclel
[6]. It should be emphasized, however, that the use of
the same potential well for neutrons and for protonsand
of the same separation threshold for these particle spe-
ciesgivesno way to takeinto account the effect of these
factors on the competition between the neutron and
proton channels of GDR decay. The fact that this pro-
cedure is not correct has an especially strong effect on
the description of the photodisintegration of N # Z
nuclei (owing to the strong impact of the neutron excess
on the nucleon-separation thresholds). Taking thisinto
account, we restricted our consideration to three self-
conjugate nuclei, *Mg, 28Si, and S, not belonging to
close vicinities of the beginning or the end of the 1d2s
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shell, in order to avoid dealing with strong correlations
in the ground state of the nucleus.

For these nuclei, we have calculated the partial pho-
toproton cross sections o(y, p,) corresponding to the
ground state (i = 0), the first excited state (i = 1), and
other states of the final nucleus, as well as the total
cross section for E1 absorption, o, = 2[0(Y, py) + O(Y,
p) + oy, p,) + ...]. We did not consider the photo-
neutron cross sections because, within the isospin for-
malism, the reaction cross sections for the neutron
channels of photodisintegration on self-conjugate
nuclei are close to those for the proton channels.

2.1. Sngle-Particle Sates

For the 1d2s shell nuclei, the unfilled single-particle
states {|al, the valence states {|B{, and the filled
states {|y[J] correspond, respectively, to 1f,, 5, and
2p3pp, 120 10 1dsp, 3 @Nd 25, and to 1p;y, 4, OFbitals
(seeFig. 1).

In calculating the single-particle states |1f,, 5,0and
12ps2. 1,0} we used the proton potential

u(r) = Upfo(r) + (uy/r)(df(r)/dr)l Lo + gy (r),
)

where u, and u, are amplitudes of, respectively, nuclear

and spin—orbit interactions; ucq,(r) is the Coulomb
potential; and f,(r) and f(r) are the Woods-Saxon form

factors. With the exception of the nuclear-potential-

well depth u,, which is generally dependent on the
orbital quantum number |, the parameters of these
potentials were chosen to be identical to those in the
global optical model [7]. On the basis of data presented
in[8] for one-nucleon-transfer reactions, we can obtain

an upper bound on the depth of the nuclear-potential

well for f states (by using the energy of the 1f,, level):

Uyt < 64, 60, and 58 MeV for 2*Mg, 28Si, and *2S, respec-

tively. The eventual values of the parameters U, and U,

were found by varying them in the course of calcula

tions. They are presented in Table 1. The states |1f;, 5,,0]
and [2ps,, 1, of the continuous spectrum correspond to

these parameters.

For the single-particle states |1ds, 3,0 [2s,,,0) and
|1ps). 1,00 we used spherical-oscillator functions with
oscillator parameter v = (f/mw) ' = 1.005A fm (hw =
41A13 MeV). Thesefunctionswere also used asabasis
for the expansion of the states {|aJ = {|1f;, s,0and
12ps. 1,0 in the internal region of the reaction. The
energies of the states { |y[}) = {|1p;,L]|1p, .} appearing
directly in the coupled-channels equations (see [5])
were considered as model parameters. They can be
roughly estimated on the basis of data on quasielastic
nucleon knockout. For example, it follows from the
dataof Arditi et al. [9] that, for Mg, the energies €,,

and €,, , are equal, respectively, to22 + 2 andto 18 +
2 MeV (if we assume that the maxima of the strength
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Table 1. Fitted parameters of the model used
Nucleus|(ug, MeV | ug,, MeV €1pypr | Eipyy Vo, MeV
MeV MeV
Mg 62 62 —20 =17 50
2gj 58 58 -23 -19 50
%23 57 62 —24 -20 45

function that are observed experimentally at excitation
energies of 2Na nuclei equal to about 14.4, 9.9, and 2.5
MeV correspond to the three Nilsson orbits into which
the 1p,, and 1p,,, levels split in the deformed nucleus

[10]). Theparameters €, , and €,,  werevariedin the

course of the calculations in order to obtain better
agreement between the theoretical and experimental
GDR dtructures. Their eventual values are presented in
Table 1.

Strictly speaking, the single-particle basis described
above is not orthonormalized, since the bound states
|1pss. 120 which appear in it and which were approxi-
mated by the oscillator states |113/20and |111/20] are
not orthogonal to the states [2p;, ,,,0of the continuous
spectrum. In discretizing the continuum, measures
were therefore taken to restore the orthogonality of the
basis—the oscillator states|113/20and [111/20wvere not
included in the set of oscillator states in which we
expanded the state [2p;, ;,L0ntheinternal region of the
reaction.

The value chosen for the oscillator parameter
ensures afast convergence of the results of the calcula-
tions with increasing total number N of oscillator func-
tions used in expanding the single-particle states of the
continuous spectrum. Thisisillustrated in Fig. 2, where
the estimates of the model photoabsorption cross sec-
tion that were obtained for the truncated {|BL) |4}
basis (10 + 10 states) are depicted at various values of
N. It can be seen from this figure that the results prove
to be reasonable even at N = 1 and that, from N = 3, the
curves calculated for different N become virtually
indistinguishable.

2.2. Low-Lying States of A ¥ 1 Nuclei

Natural-parity low-lying states {|%0) |40 for the
A F 1 nucle werecalculated by the method that relieson
successively adding nucleons to the nuclear system in
the configuration space of the 1d2s shell [4]. In these cal-
culations, the energies of the single-particle valence
states and the matrix elements of the effective two-parti-
cleinteraction, which are dependent on the mass number
A, weretaken in just the same way asin [11].

In describing the photodisintegration of 2*Mg, 28Si,
and *2S nuclei, wetook into account al low-lying states
|0 and |40 at excitation energies not exceeding
11 MeV. Thismadeit possible to calcul ate the structure
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Fig. 2. Model cross section for photoabsorption as afunction of energy for the cases where single-particle states were approximated
by using N = (dotted curve) 1, (dashed curve) 2, (thin solid curve) 3, and (thick solid curve) 4 oscillator functions.

and the decay features of the GDR up to about 30-32 MeV
(the last value is obtained as the sum 11 MeV +
nucleon-separation threshold + energy of the highest
single-particle resonance in a continuum).

2.3. Residual Nucleon—Nucleon Interaction

The coupled-channel equations (see [5]) do not
involve the matrix elements of the effective two-parti-
cle interaction between nucleons belonging to the
valence shell, nor do they contain explicitly the ener-
gies of single-particle valence levels. Therefore, it is
not necessary to match the nuclear Hamiltonians used
to describe the low-lying states |%BCand |4 Cwith those

used to calculate the scattering states |[(a %) [

As was indicated above, the coupling of reaction
channels is due to the residual nucleon—nucleon inter-
action V,. This interaction must be chosen in such a

way as to prevent the emergence of an additional mean
field for particle a and hole y-! moving in the field of
the A ¥ 1 core; otherwise, expansion (1), which implies
that the single-particle states |aCand | [y[torrespond the
true mean field of the nucleus, becomes meaningless.

Taking this into account, we choose the residual
interaction V, in the form
Vres = V_Uadd’ (5)

where

V =

i

ZZZZE{MVMVQSaIa;a\,a“
K A M vV

is the effective nucleon—nucleon interaction
(A |v|pvll stands for antisymmetrized two-particle
matrix elements), while

Z Z [Z mlA|v|vAgst(‘6)}a;av

is the additional mean field that is generated for a par-
ticle (hole) by V forcesif the A ¥ 1 coreisin the state
€= |BOIB'T... (|40]|4'D)...) [12]. Intheexpression

for Uy,
z z aa

v, (@) = <<6

Uua =

<6>[2(21A 1)

is the occupation number for the single-particle level |ALl

In this study, we employed the Rosenfeld forces for
the effective nucleon—ucleon forces V. The radial
dependence of these forces is determined by the
Yukawa potential of radius 1/u = 1.5 fm. The amplitude
of the forces, V,, was considered as a model parameter
and was varied to fit the energy position of the giant res-
onance. The resulting values of V, are presented in
Table 1.

3. DISCUSSION OF THE RESULTS
OF THE CALCULATIONS

Themain results of our calculationsare displayedin
Figs. 3-9 and in Tables 2-5.

3.1. Intermediate Structure of GDRs

Figure 3 shows the calculated (thin solid curve) and
experimental (thick solid curve) cross sections for E1
photoabsorption. Both theoretical results and experi-
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Fig. 3. Photoabsorption cross sections: (thin solid curve) theoretical cross section o, = 2[a(y, pg) + o(Y, p;) + o(Y, pp) + ...] and
(thick solid curve) experimental data{ cross section for photoabsorption on anatural mixture of isotopes for Mg [13], cross section

for photoabsorption on 28Si [14], and the sum of the cross sections a(y, p) [15] and a(y, n) [16] for 32S}. For the >*Mg nucleus, the
dashed curve represents the sum of the experimental cross sections a(y, p) [17] and o(y, n) [18].

mental data exhibit a pronounced intermediate struc-
ture of GDRs. This structure can be associated with the
intrusion of closed ys{ channels into the continuum of
the nuclear system. Indeed, it was shown in a number
of studies (see, for example, [19]) that discrete states
superimposed on a continuous spectrum must generate
aresonance structure in the reaction cross section.

The role of closed y«d channels corresponding to
1p — ld2s dipole transitions in the formation of the
intermediate structure of giant resonancesisillustrated
in Fig. 4, which displays the results of our calculations
for the GDR in 2*Mg for the following cases:

(i) Effective interaction is switched off completely
(dotted curve).

(i) We take into account only the interaction
between the configurations |(a%),corresponding to
the 1d2s —» 1f2p dipole transitions (dashed curve).
No. 3 2000

PHYSICS OF ATOMIC NUCLEI  Vol. 63

(iif) We take into account the interactions between
all reaction channels (solid curve).

Figure 4 demonstrates how the residual nucleon—
nucleon interaction forms acollective dipole state [ case
(ii)] from single-particle resonances [case (i)] and how
the inclusion of closed channels increases the intensity
(integrated cross section) of a GDR and leads to the
emergence of many resonance states [case (iii)].

The importance of taking into account ys{ channels
in describing the intermediate structure of GDRs can be
seen from the configurational content of resonance
states. As was indicated above, the scalar products

NG, B)al@B);’ Oand Qyst)slad), ) which
characterize the configurational content of scattering

states in the internal region of the reaction being con-
sidered, are found in solving the equations for channel
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Fig. 4. Effect of channel coupling on the properties of the GDR in 2*Mg: (dotted curve) no coupling is taken into account, (dashed
curve) only the coupling of channelsthat correspond to 1d2s — 1f2ptransitionsistaken into account, and (solid curve) all chan-
nel couplings are taken into account.

coupling. By using these quantities, the contribution of  given in Tables 2—4, which list the contributions of the
various configurations of the |(a%),Cand |(ysd),[types ten most important configurations near resonance ener-
to the GDR can be estimated at any excitation energy E  gies. From these data, it can be seen that the intermedi-
of the nucleus involved. For some dipole states of the ate structure of the GDRs in 1d2s-shell nuclei is of a
nuclei considered in this study, the relevant data are collective origin and that it arises owing to the strong

Table 2. Main components of the GDR in 2*Mg near some photoabsorption resonances

Ees = 17.1 MeV E e = 18.6 MeV E,es = 19.8 MeV E e = 24.2 MeV E e = 25.5 MeV
configuration Ct(i)gg'e/l;' configuration C,fi)gg'tg/l;' configuration Ct(i)gtanE/L;- configuration Ct(i)gg'e/l;' configuration Ct(i)gg”é’%-

1p,,(880) | 17.14 | 16,045 | 7.00 | 1p1(601) | 590 | 1pp(7.62) | 433 | 1p1,(10.19)| 365
1p32(7.88) | 1136 | 1p1s(456) | 433 | 2092(551) | 409 | 1py(6.76) | 257 | 1p;,(10.54) 2.69
1py,(7.77) 704 |1 P1/2(6.01) 383 |1 P12(6.76) a01 |1 P/ (9.09) 202 | 1f72(880) | 254
1f75(0.45) 546 | 2py(454) | 380 | 1p;,(5.63) | 359 | Us52(045) | 190 | 2psp(836) | 1.92
1p3(291) | 360 | 2Pan(551) | 342 | 2pan(6.09) | 345 | 1p3,(6.28) | 185 | 1f7.(837) | 188
1 p11,2(6.01) 3.48 2p32(4.54) 3.13 1f7,(0.45) 3.04 1f75(5.80) 1.82 1 p11,2(9.39) 1.84
1py(456) | 295 | 1f5(551) | 285 | 1f5(551) | 293 | 1f7x(754) | 179 | 1f72(888) | 1.80
1p3,(762) | 278 | 1p1p(9.92) | 281 | 1p3y(0.00) | 257 | 1pyy(7.62) | 177 | 1f,(7.83) | 1.79
1p3x(9.92) | 265 | 2032242 | 264 | 2p12(276) | 246 | 1f7(8.80) 150 | 1f7,(864) | 164

1f7,(5.51) 240 | 2P42(276) | 233 | 2012(454) | 238 | 1p12(920)| 136 | 1P32(6.76) | 163

Note: Here and in Tables 3-5, the theoretical excitation energies (in MeV) of states of the A ¥ 1 cores are indicated in parentheses.
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Table 3. Main components of the GDR in 2Si near some photoabsorption resonances

E,e = 18.1 MeV E,es = 19.0 MeV E,e = 19.7 MeV E,e = 20.6 MeV E,es = 21.2 MeV
2p3(7.89) | 546 | 1pip(952)| 1195 |[1f72(000) | 95 |1pi,(11.67)| 604 |1p;,(11.08)| 358
1p3,(2.35)| 490 |2P32(568)| 568 |2P32(622) | 394 |1p;p(5.18) | 303 [1fs2(123) | 189
2p5,(4.00) | 465 |1f,,(0.00)| 560 |1f,(272) | 3.81 |2ps(645) | 2.84 |2ps(7.08) | 1.83
1170272) | 449 |1f72(236)| 374 [1p;,(952) | 343 |[1p;,(10.32)| 222 |1p;,(11.67)| 1.83
1172(478) | 416 |2Ps2(549)| 318 [1p;»(10.32)| 339 |[2P32(081) | 215 |[2p3p(7.04) | 183
2p3(41) | 361 | 1pip(149)| 282 |1f72(645) | 209 |1ps,(840) | 199 |2Ps2(68D) | 177
1f,,(236) | 358 |2pyp(270)| 218 |1f4,(3.15) 274 | 2p;(7.08) 191 | 2p;(8.70) 175
2pyp(365) | 334 |1f72(6.74)| 208 |1pi(149) | 269 |2P32(568) | 179 |1p;,(6.86) | 1.59
2P3(272) | 319 | 1p(5.18)| 199 |1psp(10.32)| 267 | 177200000 | 168 |1py,(840) | 155
2p1p(1.23) | 318 | 2psp(270)| 194 |1f,,(236) | 205 |1f,(645) | 167 |1f,,(5.51) | 1.46

Table 4. Main components of the GDR in 32S near some photoabsorption resonances

Eres = 17.1 MeV Eres = 19.1 MeV E,es = 19.6 MeV Eres = 21.4 MeV E,es = 24.3 MeV
configura- | contribu- | configura- | contribu- | configura- | contribu- | configura- | contribu- | configura- | contribu-

tion tion, % tion tion, % tion tion, % tion tion, % tion tion, %
1f,,(249)| 758 |1f,,(6.73)| 487 |1f,,(7.28)| 587 |1f,,(755)| 933 |1f,,(5.28)| 446
1172(443) | 461 |2Psp(755)| 449 |[1f72(650)| 466 |[1f72619)| 396 |1pi,(582)| 331
117:(582) | 403 |1f72(728)| 405 |1f72699| 380 |[1f72(810)| 314 |1p,(681)| 325
1172(513) | 345 |2p1(76))| 374 |1p,(217)| 372 |1f72684)| 274 |1f50(735)| 275
2pp(596) | 318 |1f7(651)| 300 |[1f50(513)| 286 |1p,;,(373)| 267 |1pi(458)| 251
1pp(5.10) | 299 |2P32(841)| 304 |2P12(789)| 268 |[1f72(528)| 237 |1f7(750)| 211
2p3/,(6.99) 2.88 1 pll,z(0.00) 2.75 1f,,(6.51) 2.49 1f75(2.49) 2.29 1f/,(5.60) 2.07
2p3(7.00) | 280 | 2Psp(76D) | 270 |1f70(622)| 201 |1fs2(471)| 215 |1pi.(467)| 205
1172853 | 274 |1fs0(249)| 200 |[2P12(700)| 201 |[1f72(699)| 108 |1pi,(641)| 1.92
2p4,(6.38) 2.62 1f,,,(6.99) 2.09 1f5,(5.82) 1.99 1f,,,(6.50) 184 1f,,(7.78) 1.86

mixing of the |(a%),0and |(ysd),Oconfigurations; of

these, the configurations corresponding to the lpj2
hole play the most important role in the formation of
the intermediate structure of GDRs. Figure 5, which
shows the energy dependences of those componentsin
the cross sections for photoabsorption on Mg, 28Si,
and 32S that are associated with the (dashed curve)
|(a%B),[and (dotted curve) |(ysd),[onfigurations, also
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illustrates the strong mixing of these configurations in
dipole states.

In going over from 2*Mg to 2!Si and further to %S,
the contribution to the photoabsorption cross section
from the |(ys{) 0 configuration decreases steadily
because the filling of the 1d2svalence shell leadsto the
blocking of 1p — 1d2s single-particle transitions.
Nonetheless, these configurations continue to play a
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Fig. 5. Configurational content of the GDRs in the 2*Mg, 28Si, and 32S nuclei: (dashed curve) contribution of configurations corre-
sponding to 1d2s — 1f2p transitions, (dotted curve) contribution of configurations corresponding to 1p —— ld2s transitions,

and (solid curve) total photoabsorption cross section.

significant role in the formation of the intermediate
structure of GDRs. Thisis confirmed by the data from
Table 5, which displays the configurational content of
the GDR in *S in the vicinity of the 17.1-MeV reso-
nance. As can be seen from this table, the resonance
correlates definitively with one of the ys{ closed chan-
nels: asthe excitation energy of the nucleus approaches
the position of the resonance peak, the contribution of

the a,,, _|4; E,; = 5.1 MeV Oconfiguration to the pho-
toabsorption cross section increases sharply.

3.2. Gross Sructure of GDRs

In addition to the intermediate structure, the cross
section for photoabsorption on the 2*Mg nucleus shows
a gross structure: it distinctly splits into two broad
peaks localized in the regions 16-22 and 22-28 MeV.
Usually, these features of the GDR in *Mg are

explained by the deformation of the nuclear surface.
Indeed, there are a few experimental factors indicating
that the 2*Mg nucleus has the shape of a prolate spher-
oid of revolution.

The effect of nuclear deformations on the properties
of GDRs in 1d2s-shell nuclei was considered by
Bassichis and Scheck [20], who first calculated single-
particle states in an axisymmetric self-consistent Har-
tree—Fock potential in order to use them, at the next
stage, in an analysis of a GDR within the 1p1h scheme.
Those authors found that the dipole states in 2*Mg and
28Si break down into two energy groups, the upper one,
which is due primarily to 1p — 1d2s transitions, and
the lower one, which is associated with 1d2s — 1f2p
transitions. In addition, they established that the upper
energy group of states corresponds primarily to AK =1
single-particle transitions, where K is the projection of
the nucleon angular momentum onto the symmetry axis
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Table5. Changesin the configurational content of the GDR in %S in the vicinity of the 17.1-MeV resonance

E =16.8 MeV E=16.9 MeV E=17.0MeVv E=17.1 MeV E=17.2MeV
configura- | contribu- | configura- | contribu- | configura- | contribu- | configura- | contribu- | configura- | contribu-

tion tion, % tion tion, % tion tion, % tion tion, % tion tion, %
2p;3p(6.19) | 7.09 | 2p5;p(6.19) | 7.26 | 1f;(249)| 661 | 1f;5(249)| 758 |2pg(6.99)| 5.34
2p35(6.38) | 675 | 2p3;p(6.38)| 441 | 1f,,(443)| 434 | 1f,,(443)| 461 |1f,,(249)| 4.86
2p,,(522)| 514 |1f,,(249) | 420 |2ps,p(6.19)| 396 | 1f,,(582)| 4.03 |1f,,(443)| 412
2p4,(8.53) 4.60 1f,,(4.43) 3.63 2p4,(7.00) 3.78 1f,,(5.13) 3.45 1f,,,(5.60) 3.85
2p3(5.28) | 317 | 2pgp(7.00) | 322 | 1f;5(582)| 370 | 2pyp(5.96) | 318 | 1f;,(5.82)| 3.66
2p3(7.35)| 300 |2P12(522)| 318 |1p;n(5.10)| 335 |1p,;,(5.10)| 299 |1f72(853)| 314
2p3p(7.00) | 292 | 1f5(122)| 270 | 2pyp(5.96) | 331 | 2p3(6.99)| 288 |1f,,(5.13)| 295
1f,,(513) | 274 |2p3(853)| 259 |2p5(6.38)| 299 |2ps(7.00)| 280 | 2ps(7.35)| 2.83
2p1,(4.93) 2.73 1f,,5(5.13) 2.59 2p1,(4.93) 2.32 1f,,(8.53) 2.74 2p4/,(5.65) 273
2p30(684) | 264 | 1p;n(5.10)| 255 |1f72(513)| 220 |2P32(638)| 262 |2P32(684)| 266

of the nucleus and that the lower energy group corre-
sponds to transitions leaving this quantum number
unchanged (AK = 0 trangitions). On this basis,
Bassichis and Scheck [20] concluded that there are
configuration splitting of the giant resonance in these
nuclei [21] and the splitting of it due to nuclear defor-
mations.

The analysis performed in [20] is disadvantageous
in that (i) it relies on a phenomenological two-particle
interaction in evaluating the deformed self-consistent
field, (ii) it coversonly 1plh configurations, and (iii) it
takes no account of the continuum effect on giant-reso-
nance formation. The present calculation also suggests
that configurations associated with 1p — 1d2stransi-
tions play an important rolein the formation of the sec-
ond, high-energy, maximum of photoabsorption on the
24Mg nucleus (see Fig. 4). From Fig. 5, it can be seen,
however, that these configurations come to be dominant
above the second GDR maximum (their contribution
grows significantly there)—that is, in the energy region
E = 28 MeV, where the role of 1p;, — 1d2s transi-
tions becomes more pronounced. This means that the
observed gross structure of the GDR in **Mg isof acol-
lective origin.

Let us consider the possibility of the splitting of the
GDR in ?*Mg due to a deformation of the nuclear sur-
face. We have already indicated that this GDR, as well
as the other ones considered in the present study, pos-
sesses a high degree of collectivization. On the basis of
the Danos—Okamoto model [22], it was deduced that, in
a prolate axisymmetric nucleus, there can arise two
types of collective dipole vibrations of neutrons with
respect to protons—that, with alower energy, along the
symmetry axis of the nucleus and that, with a higher
energy and doubled intensity (because there are two
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degenerate transverse modes), in the plane orthogonal
to the symmetry axis. Thisis precisely the reason that
the photoabsorption cross section is split into two
peaks.

In the generalized model from [23], the collective
transverse and longitudinal dipole vibrations of a sphe-
roidal even—even nucleus can be described in terms of

the wave functions |W!M Cand |WfM [that, in the labo-
ratory frame, are given by

1 + 2 +
NJ!MDz /\/éqlMquOD_ A/::3‘((311|l|"201|\/|1
(6)

2 + l +
|qJ1DMDz /\/:_;’qlMlLIJOEH- J%(Q1|W2D1M’

where q;,, is the operator of creation of collective
dipole vibrations, |W,0is the ground state of the
nucleus, and |W,[isthefirst excited (J"= 2+) state of the
nucleus. {In going over to the intrinsic coordinate

frame, formulas (6) are transformed into the conven-
tional relations

3 1 +
Wi, o= /;@Mo(ei)qmwom
Tt

Wwh,0= /é[(%(ei)qmwoa

+ Dy_1(8) 011 W,

and
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Fig. 6. Contributions of the longitudinal and transverse configurationsto the GDRsin the >*Mg, 28Si, and 32S nuclei: (dotted curve)
longitudinal component, (dashed curve) transverse component, and (solid curve) total photoabsorption cross section.

since, for adeformed nucleus, the relation

5
W, 0= /S—f@ao(ewom

holds in the strong-coupling approximation.}

In (6), we replace the operator q;,, by the dipole-

moment operator D(1M), considering that, if the giant
resonance is fully collectivized, we have D(1IM) O

[QIM + (-1)!'*Mq, _\] and q;|¥,= q,|W,[= 0. We can
then obtain therelation

o) Ol

o) 1wt
_ | 0a®) 0D, - 200 B) |(DIV)
|20 ) 1D, + Ga®)I(DW,0,|

)

‘2

which determines the ratio of the probahilities for the
excitation of the longitudinal and transverse dipole

vibrations in an arbitrary scattering state |(0(97?>),(\_) Cwith
energy E and which makes it possible to break down the
total photoabsorption cross section into the longitudinal
and transverse components. The matrix elements

%)’ (D|W,05 and [adB);” [(D|W,0h, which are
necessary for such calculations, can be expressed in
terms of the intrinsic components of the scattering states

and’, BB Cand [y st @) 0

The results obtained by breaking down the photoab-
sorption cross section into the longitudinal and the
transverse component are displayed in Fig. 6. It can be
seen from this figure that, for **Mg, the longitudinal
vibrational mode is indeed localized predominantly in
the region of the low-energy photoabsorption maxi-
mum and that the transverse mode is localized in the
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Fig. 7. Differential partial cross sections corresponding to proton emission at aright angle for the 2*Mg nucleus: (thin curve) theo-
retical results and (thick curve) experimental data. The figures indicate the mean energies (in MeV) for those groups of states of the
final nucleus that were singled out in the experiment reported in [17]. The experimental cross section dao(y, py)/dQ was rescaled

from the cross section do(p, Y)/dQ [24].

region of the high-energy maximum. This suggests a
direct relationship between the gross structure of the
GDR in**Mg and the nuclear deformation. For 28Si and
328, on the contrary, it isimpossible to separate the lon-
gitudina and transverse photoabsorption peaks. This
makes it possible to state that these nuclei are nearly
spherical.

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 3 2000

The dominance of the transverse component of 28Si
and 32S photodisintegration at energies E < 23 MeV

suggeststhat the strong inequality [ ) [(D|W,0| >
IGadB) [(D|W,0,| holdsin this energy region (seefor-

mula (7)) and that the photoabsorption cross section is
determined primarily by the giant resonance over the
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Fig. 8. Photoprotonic partial cross sections for the 2Si nucleus. The notation isidentical to that in Fig. 7. The experimental cross
sections o(y, p;), i = 1, 2, were borrowed from [25], whereas the remaining experimental data were taken from [26].

ground state of the nucleus. At higher energies (E > 3.3. Partial Channels of GDR Decay
23 MeV), the relative value of the longitudinal compo- o .
nent of the photoabsorption cross section increases, More detailed information about the character of

which indicates that the effect of the giant resonance  nuclear photodisintegration is contained in partial pho-
over the first excited (J© = 2*) state of the nucleus toprotonic cross sectionsthat correspond to fixed states
becomes more pronounced. (or groups of states) of thefinal nucleus. The calculated
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Fig. 9. Differential partial cross sections corresponding to proton emission at aright angle for the 32S nucleus. The notation isiden-

tical to that in Fig. 7. Experimental data were taken from [15].

partial cross sections are presented in Figs. 7-9, where
they are contrasted against experimental data.

In practice, partial cross sections are often
employed to estimate the contributions of various shell
configurations to giant resonances. However, some
caution should be exercised in this case. In particular, it
can be seen from Table 2 that, for >Mg, none of theten
most important configurations of the 17.1-MeV reso-
nance corresponds to the ground state of the final

PHYSICS OF ATOMIC NUCLEI  Vol. 63

No. 3 2000

nucleus. At the same time, the partial cross section o(y,
p,) saturates about one-half of the total proton cross
section a(y, p) = 0,,,/2 at the excitation energy E of the
nucleus about 17.1 MeV (compare with Figs. 3 and 7).
A similar pattern is observed at other resonance excita-
tion energies of 2*Mg.

It iswell known that partial cross sections are much
more sensitive to the details of the calculation than the
total reaction cross section. Therefore, they provide a
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reliable criterion for testing various models. It can be
seen from Figs. 7-9 that, by and large, the coupled-
channel equations in the scheme of intermediate cou-
pling describe fairly well partial channels of the photo-
disintegration of 2*Mg, 28Si, and 32S nuclei. This means
that the approach in question takes into account the
main factors that affect the formation and decay of
giant resonancesin light and medium-mass nucle with
unfilled outer shells.

4. CONCLUSION

We have demonstrated the capabilities of the cou-
pled-channel method in the intermediate-coupling
scheme by applying it to the photodisintegration of
some 1d2s-shell nuclei. The results that we have
obtained (see preceding section) revea that the pro-
posed model is able to describe satisfactorily the mech-
anism of GDR formation and its position on the energy
scale, aswell asitswidth, structure, and decay charac-
teristics, in light and medium-mass nuclei with unfilled
shells. Thisisthe main result of our study.

It should be noted, however, that there are discrep-
ancies between the theoretical results and experimental
data and that these discrepancies are due to the model
approximations used. As can be seen from Figs. 3 and
7-9, the calculations give the poorest fit to the experi-
mental data at high excitation energies of the nucleus.
One of the possiblereasonsfor thisisthat the basis con-
figurations {|BL0) |4} were restricted to states with
excitation energies of E < 11 MeV. The agreement with
experimental data could probably be improved by
expanding the basis, but thisis hindered by difficulties
in calculating the states |%BCand |4 Cat high excitation
energies, difficulties that stem from the fact that, in the
region E > 10-11 MeV, mixing effects must be taken
into account for different principal nuclear shells. It is
possible that the results of the calculations are aso
affected by the disregard of ground-state correlationsin
nuclei (see [27]). First of all, this concerns the
deformed nucleus **Mg, where deformed orbitals of
opposite parities may approach. However, taking into
account ground-state correlations in a nucleus would
also require significantly expanding the basis used in
the intermediate-coupling scheme.
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Abstract—The effect of pion—nucleon and nucleon—nucleon rescatterings on polarization observables of the
reaction yd — pprt are cal cul ated in the delta-isobar region. Pion—nucleon and nucleon—nucleon rescatterings
are considered on the basis of adiagrammatic approach. Lorentz invariant expressionsare used for the operators
of photoproduction and of pion scattering on afree nucleon. A unitarization procedure in the K-matrix approx-
imation is used for resonance partial-wave amplitudes. It is shown that, in the delta-resonance region, rescatter-
ing has a sizable effect on polarization observables of the reaction yd — pprt at high momenta of final pro-

tons. © 2000 MAIK “ Nauka/Interperiodica” .

1.In[1, 2], the reaction ea — €pp1T was studied
at the photon point by using the internal polarized tar-
get of theVEPP-3 storage ring. In this experiment, pro-
tons with momenta in excess of 300 MeV/c were
recorded in coincidence. The resulting differential
cross sections and asymmetry components, especially
a,,, differ significantly from the results obtained on the
basis of the spectator model. In view of this, it seems
necessary to take into account final-state interaction
(FSI) for the reaction in question—that is, pion—
nucleon and nucleon—nucleon rescatterings. In [3], a
diagrammatic approach allowing for FSI was used to
compute the spin-averaged differential cross sections
for negative-pion photoproduction on a deuteron in the
process

yd — ppTT. (1)

The effect of final-state interactions on polarization
observables of the electro- and photodisintegration of
deuterons was taken into account in [4-8]. In the
present study, we calculate the effect of FSI on polar-
ization observables of reaction (1). The results of these
calculations can serve as a basis for simulating the
behavior of polarization observables in specific ele-
ments of the phase space of reaction (1) and for plan-
ning polarization experiments at high proton momenta
in an optimal way. These results can aso be used for a
direct comparison with available experimental data.
Such a comparison can contribute to clarifying the
guestion of whether it is necessary to consider more
complicated mechanisms of reaction (1).

The present article is organized as follows. In Sec-
tion 2, we describe the model used and derive expres-
sions for the amplitudes corresponding to various res-
cattering mechanisms. In Section 3, we determine the
relevant helicity amplitudes and polarization observ-

ables. The results of our calculations are presented in
Section 4.

2. In order to obtain the amplitude for reaction (1),
we make use of the diagrammatic approach devel oped
in [9, 10]. In [3, 11], the diagrammatic approach was
applied to the reaction of pion photoproduction on a
deuteron. In our calculations, we take into account the
contributions to the amplitude that come from the dia-
gramsin Fig. 1 and from the diagrams that differ from
those by the permutations of identical final-state nucle-
ons. The first diagram corresponds to the spectator
model, which describes well experimental data corre-
sponding to kinematical conditions close to those of
guasifree pion photoproduction. If the momenta of both
nucleons are rather high (greater than 200 MeV/c), itis
necessary to take into account the contributions of the
remaining diagrams, which describe rescatterings in
the final state. The need for taking these diagrams into
account stems from the fact that, with increasing
momentum of the spectator nucleon, the probability of
finding it inside the deuteron decreases. Within the
spectator model, this leads to the reduction of the reac-
tion amplitude. At the same time, the rescattering
amplitude is determined by an integral with respect to
the momentum of the nucleon in the deuteron. Even at
high momenta of the nucleons in the fina state, the
main contribution to this integral may come from the
low-momentum component of the deuteron wave func-
tion. Therefore, therole of rescattering effectsincreases
with increasing nucleon momenta.

In constructing analytic expressions corresponding
to the diagramsin Fig. 1, Laget [3] and Blomqvist and
Laget [11] took the photoproduction amplitude in the
nonrelativistic form. In the delta-isobar region, this
form is valid in an arbitrary reference frame at small
values of p?/n?, where p and m are the nucleon mass
and the nucleon momentum, respectively. In order to
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Fig. 1. Diagramsfor the reaction yd — pp1t: (a) diagram
of the spectator model, (b) diagram for pion—nucleon rescat-
tering; and (c) diagram for nucleon—nucleon rescattering.

describe the resonance partial-wave amplitude M2,

they took the delta-isobar mass with a small imaginary
addition dependent on the isobar energy. The parame-
trization that those authors used for this dependence
gave no way to obtain a unified description of the pho-
toproduction of charged and neutral pions. We make
use of the amplitude for pion photoproduction on
nucleons from [12]. This amplitude is written in the
Lorentz invariant and gauge-invariant form; it realizes
the pseudovector version of pion—nucleon interaction
and takes into account the contributions of the Born
diagrams in the s, t, and u channels; the s- and the
u-channel contribution of the deltaisobar; and the con-
tribution of the t-channel exchanges of rho and omega
mesons. The unitarization procedure in the K-matrix
approximation was used for the resonance partia-wave

amplitudes E>? and M3?. This made it possible to

avoid introducing an imaginary addition to the delta-
isobar mass and to obtain a unified description of the
photoproduction of charged and neutra pions. Pion—
nucleon scattering was described by the Lorentz invariant
amplitude from [13]. This amplitude also redlizes the
pseudovector version of pion—nucleon interaction and
takes into account the contribution of the Born termsiin
thes, t, and u channels; the contribution of the deltaii sobar
in the sand u channdl's; and the contribution of thet-chan-
nel exchanges of o and p mesons. In just the sameway as
in the case of pion photoproduction on nucleons, the uni-
tarization procedure in the K-matrix approximation was
used for the resonance partial-wave amplitude P;.

The amplitude of nucleon—nucleon scattering was
represented in the form of multipole expansion includ-
ing partial wavesto order L = 2 inclusive. The partial-
wave phase shifts for nucleon—nucleon scattering were
taken from [14].

For the final NN state, the wave function that satis-
fies the requirements of symmetry under nucleon per-
mutations and which is written in terms of the coupled
basis in spin and isospin spaces has the form

1
’ 1 Sms1 t D = — Ij |j)
IP1, P2 my A/§(|pl P2

+(=1)""*"p,OIp,H) lsmrm )

)

LOGINOV et al.

where p, and p, are the nucleon momenta; sand m, are,
respectively, the nucleon-pair spin and its projection
onto the zaxis; and t and m, are the nucleon-pair isospin
and its projection onto the zaxis. In the reference frame
wherethe deuteron momentum isd and wherethezaxis
coincides with the photon-momentum direction, the
amplitude for reaction (1) in the spectator model then
has the form [15]

TspeCt(pl’ p2’ ql SY ms; k! }\ya dl md)

E 1
=-2 E*msl{ /ﬁTyn L pre(Pr @i d=P2 K, A))
m's 2
E
X Wi 5(d - 2p) 5+ (-1)° =
—-P1
1

: L Oq e
xT . pT[i(p27 q, d- p17 k1 )\y)l‘pm's, md[E(d _Zpl)D}llmSD

3)

yn

where q is the final-pion momentum; k and }\y are,
respectively, the photon momentum and helicity; d and
my are, respectively, the deuteron 3-momentum and the
deuteron spin projection; s and my are the spin of the
final-state nucleon pair and its projection on the z axis,
my; is the projection of the total spin of the nucleons

forming the deuteron onto the z axis; E, is the on-shell
energy of a nucleon with a momentum p; and

in o (@1 & d— Py, K, A is the amplitude of nega-

tive-pion photoproduction on a neutron—this ampli-
tude is treated as an operator that acts on the spin vari-

ables of the first nucleon, |Im;0and |smJ] in two-
nucleon systems. The quantities W, ., (p) are

expressed in terms of the S- and D-wave components of
the deuteron wave function as [15]

W m(P) = (2% /2E,
4)

xy ZiLUL(p)YLmL(f))<LmL1mIS 1md>’

L=02m

where E, is the deuteron energy, and p isthe unit vec-
tor in the direction of the momentum p. In the calcula-
tions, we use here the deuteron wave functions for the
Bonn potential (full model) [16].

Pion—nucleon rescattering is described by the dia-
gram in Fig. 1b and by the analogous diagram where
the identical final-state nucleons are interchanged. In
reaction (1), there can occur the charge-exchange-free
pion—nucleon rescattering Ttp — 1P and the charge-
exchange pion-nucleon rescattering mn — 1rp. With
allowance for this and for the identity of final-state
nucleons, the contribution of pion—nucleon rescattering
to the amplitude of reaction (1) can be represented as
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T™(p1, P2, 0,5 Mg k, A, d, mg)

_ 0P < BMY[To(ps, 0 P, q)TyN(pz,q d- p k,Ay)]IlmDV
B 2 (d—p' p;
I( % ("’ —Eq_p +ie)(p°—Ey +ie)(q°—mi+ie)

&)

my)

(N’ —Eq_p +i€)(p”

where Ty (p1, 4 P @) [Ton (2. 4 d —p k, A)] isthe
pion—nucleon scattering amplitude (pion-photoproduc-
tion amplitude) acting, as an operator, on the spin vari-
ables of the first (second) nucleon in two-nucleon sys-
tems |1 m; Cand [smJJThe quantitiesn® and p° (Ey _, and
E,) are the off-shell (on-shell) energies of nucleons with
momenta d — p' and p', respectively. The quantity

[TrnTin] Stands for a sum over isospin variablesin the
two-particle operator; that is,

1 2 1 2 1
[TTINTVN] = Tn’p Swp yn-pv  1n- n’pTyp - pr™ (6)
Since the deuteron isospin is zero, the amplitude of
charge-exchange pion—nucleon scattering and the
amplitude of charge-exchange-free pion—nucleon scat-
tering appear in the rescattering amplitudes with oppo-
sitesigns. The quantity V(p", p'; mg, my) isthednp ver-
tex function. In the nonrelativistic limit, it is related to
Wi m, a[3]

V(p", p'; m;, my)

Ep— Ep")lpm;, md%(p" - p')g

wherep' and p" are the momenta of nucleons constitut-
ing the deuteron. In expression (5), we decomposed the
relativistic nucleon propagators into terms correspond-
ing to virtual nucleons with positive and negative ener-
gies and retained only terms with positive energies.
This was done because virtual nucleons with negative
energies manifest themselves only from momenta
higher than a value of about 1 GeV/c [17], but such
momenta are not reached in the kinematical region of
the deltaisobar. In this kinematical region, the relativ-
istic form must be used for the pion propagator. The

(7
= (Ed_

Ton(P1, P2 0, S Mg K, Ay, d,my) =

B[ Trn(P2 0 P q)TyN(pl.q d-p'k, Ay)]llmDV d—
z —E, +ie)(q7—mi+ie) (d=p’ P m, My,

integrand in (5) has four poles in the variable p?; of
these, two lie in the upper half-plane of the complex
variable p°, while the other two lie in its lower half-
plane:

. 0 0 .
le, Por = Pa—Wy tle,

'0
P+ = Ed - Ed—p' +

'0 '0 (8)
P = Ey—ie, P, = pa+wy—ie.

Here, pg is the energy of the pion—nucleon pair
involved in the rescattering process, while w, isthe on-
shell energy of the pion with the momentum q'. Integra-
tion with respect to energy in (5) is performed by clos-
ing the contour of integration in the lower half-plane. In
evaluating the resulting contour integral, we take into

account only the residue at the nucleon pole plo_ The

residue at the pole pzo_ of the pion propagator is disre-

garded because of its smallness[3]. In performing inte-
gration with respect to the nucleon 3-momentum, the
pion propagator can be represented in the form

1 1 . .
———— = P—=— —im(q” - m).
q —my+le q —mg
The expression in (5) then decomposes into the sum of
terms corresponding to the contribution of the delta
function and the contribution of the principal value of
the integral. Specifically, we have

©))

T™(ps, P2 0, s, Mg K, A, d, my)
= T (P2, P2, 0, S Mg; K, Ay, d, my) (10)

+ Tgf’;l(plv p21 qv S, ms; k, y? d md)
where

21 P+

L rdg [ pdp
16pa) 9] PP

p|

xS BMY[Tr(Pa, 6 P, ) Tyn(P2 O d =, K, A)][Lmi]
ms

mmd|:2
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xS SMU[Thn(Par 0 B, 6) Tin(Pa, 03 d =, K, ALy, o B (d —2p)3

ms

Tgf,;l(pl' p2’ ql si ms: kl )\yl d| md)

E'kmsl[TnN(pl,q P, ) Ton(P2 s d =P, kJ\V)]IlmQP

|PJ' q'2

My

50 =293 (12)

3 1
+(_1)1+sipj.% ZSms,l[Tm(loz,q P ) Tyn(P2, 0 d—p' k, A)][Im,

2

q

In expression (11), the quantities p_and p, are given by

[Pa
pi Q

where Q istheinvariant mass of the pion-nucleon pair;
E.., andp.,, are, respectively, the nucleon energy and
momentum in the c.m. frame of the pion—nucleon pair;

and PZ and P, are the energy and momentum of the

pion—nucleon pair in the reference frame used. The
quantities |p_| and p, represent, respectively, the mini-
mal and the maximal values of the nucleon momentum
in the reference frame where the energy and the

momentum of the pion—nucleon pair are Py and P,. We
notethat p,, p_, and the kinematical variables appearing
in (13) take different values for the first and the second
termin (11). In the amplitude given by (11), integration
with respect to the momentum p' is performed in the
reference frame where the z axis is aigned with the
momentum of the pion-nucleon pair; the integration
with respect to cos8' is removed by the delta function,
whereby the angle 6' isfixed.

The amplitudein (11) depends crucially on the inte-
gration limit |p_|. Let us consider it in the laboratory
frame. If the motion of the nucleonsin the deuteron and
the contribution of the D-wave component of the deu-
teron wave function are disregarded, each term in [11]
is proportional to theintegral

E (13)

c.m. — Q|pcm|

P+
I p'dp'us(p').

|

lap = (14)

In the kinematical region of the deltaisobar, the upper
limit p, isalmost always greater than 300 MeV/c; at the
same time, the lower limit |p_| depends greatly on the
momenta of the nucleons and of the pion, varying
between 0 and 300 MeV/c. Therefore, the integral in
(14) increases strongly at small |p_| and depends only
dightly on p,. In the c.m. frame of reaction (1), the
argument of the deuteron wave function develops an

mf[ msmd[Q(d 2p' )D

azimuthal dependence; as a result, each term in (11)
now proves to be proportional to the integral

2n Py
n = [49 [ Papuwid-2eDF a3
0 Ip]

which also depends primarily on the lower integration
limit |p_|.

In the amplitudes Tp, and Th;, the residue at the

nucleon pole fixes one nucleon on the mass shell. Here,
the second nucleon is not on the mass shell, but its off-
mass-shellness is moderately small in the kinematical

region being considered. In the amplitude TQ,T, relation
(9) fixes the pion on the mass shell. In the amplitude

TZ}T , the pionisnot on the mass shell, but the main con-

tribution to the integral comes from the region where
we can use the on-shell amplitudes for pion photopro-
duction and pion—nucleon scattering. Theamplitudesin
(11) and (12) were determined by means of anumerical
integration; in doing this, the approximation where the
amplitude of pion photoproduction and the amplitude
of pion—nucleon scattering are factored out of the inte-
gral sign at zero momenta of the nucleons within the
deuteron was used to evaluate the principal value of the
integral.

Nucleon—ucleon rescattering is described by the
diagram in Fig. 1c and the analogous diagram with the
interchanged identical final-state nucleons. The contri-
butions of these diagrams to the amplitude of nucleon—
nucleon rescattering are identical in magnitude, but
they are oppositein sign. Since the diagramswith inter-
changed fermions enter into the amplitude with oppo-
site signs, their contributions add up; as a result, the
expression for the amplitude of nucleon—nucleon res-
cattering in the coupled-basis representation takes the
form
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d4p|
(2m)*

d,my = ZI

(16)

e
ms

where Top, oo (P1 P2 PL P [T), (0", g d —p'k,
Ay)] is the proton—proton scattering amplitude (pion-
photoproduction amplitude) acting, as an operator, on
the spin variables of both nucleons (the second

nucleon) of the two-nucleon systems [sm,[Jand |s'm; [

(Jt miCand |[s'm; 0. In just the same way as in the case
of pion—nucleon rescattering, integration with respect
to the variable p" is performed by closing the contour
in the lower half-plane and by taking the residue at the
nucleon pole p* = E, — ie. Upon factoring the photo-
production amplitude and the amplitude of nucleon—
nucleon scattering out of the integral sign and disre-
garding the contribution of the D-wave component of
the deuteron wave function, we can represent the
amplitude of nucleon—nucleon rescattering as[3]

sms>

a7

TNN(plv le q; S, ms; k; )\y, d, md)

1 1 1 1
z 5Mh5My| 1Mg)( SMy5my
m, "

d n
X Tpp - pppP1 P2 S My > P5S mSE

n . d D
X Tyn R pT[_ ’ mp"1 q, E, mn, k, )\VD

« (0% (2m ™. J2Euq(1§ + P/2)
f 2mn)° JaT

(Pem +B7)
(Pim —&* +ie)(E2+P)

where m,, m,, and m,. are the z projections of the spins
of intermediate-state nucleons; W is the energy of the
nucleon pair in its c.m. frame; p.,, is the nucleon
momentum in the sameframe; P=p, + p,—d; p"=p, +
p, — d/2; and 3 = 241 MeV. The quantities Ty,  o,(p»
p.. S, Mg p', p", S, m) are the diagonal matrix elements
of the pp-scattering amplitudesin the channel-spin rep-
resentation; represented in the form of a multipole
expansion, they are expressed in terms of the phase
shiftsfor nucleon—nucleon scattering. Theintegral with
respect to the variable & in (17) can be calculated ana-
Iytically [3].

X
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V(d_ p'l p': rn‘s’ md)v

Double rescattering in reaction (1) can be repre-
sented by the diagramsin Fig. 2 and the analogous dia-
grams with the interchanged identical final-state nucle-
ons. We have calculated the contribution of these dia-
grams to the squared modulus of the amplitude and
found that, under the kinematical conditions being con-
sidered (that is, in the delta-resonance region and at
high momenta of final nucleons), it is about 1% of the
contribution from single rescattering. For this reason,
we disregard the effects of double rescattering and rep-
resent the amplitude of reaction (1) in the form

T(pl! p21 q1 S, ms; k, )\y, d, md)
= TspeCt(pl’ pZ! q! S, m51 k, )\y, d, md)
d, my)

d, my).

n (18)
+T™(p1, p2r A, S M5 K, A,

+ TNN(p11 pZ’ q’ S, ms; ka )\yy
The use of the amplitude for pion photoproduction on
nucleons from [12] ensures gauge invariance of the
amplitudein (18).

3. Theamplitude in (18) iswritten in the mixed rep-
resentation: the polarization of theinitial-state particles
is described in terms of the photon helicity A, and the z
projection my of the deuteron spin, while the polariza-
tion of the final state is described by the total spin s of
the nucleon pair and its z projection m.. In order to cal-
culate polarization observables, it is more convenient to
use helicity amplitudes [18]. In order to accomplish a
transition to the helicity amplitudes of the reaction in
guestion, we perform a unitary transformation from a
coupled basis of the nucleon pair to its helicity basis
and go over from the deuteron-spin projection onto the
zaxis (whichisaligned with the direction of the photon

Fig. 2. Diagrams for double rescattering in the reaction
yd — pprt: (a) TON-TIN rescattering, (b) TON-NN rescatter-
ing, and (c) NN-TiN rescattering.
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T, MeV—*

Fig. 3. Squared moduli of the amplitudes corresponding to
the diagrams in Fig. 1 as functions of the proton emission

angle 6, at p; =300 MeV, 8; = 100°, ¢, =0°, ¢, = 180°, and
E, = 360 MeV (al kinematical variables are taken in the
c.m. frame of thereaction): (1) results produced by the spec-
tator model, (2) contribution of on-shell pion—nucleon res-
cattering, (3) contribution of off-shell pion—nucleon rescat-
tering, (4) contribution of nucleon—nucleon rescattering, (5)
contribution of double rescattering, and (6) sum of al con-
tributions.

momentum) to the deuteron helicity. Specifically, we
have

T(pl! )\l! p2! )\2! q’ k, )\yv d, )\d)

= 3.3 {Emanfsmo
x D0 8, 0)(-D)
X T(p11 pZ! q! S, m51 k! )\y1 dv _)\d)y

D* 1/2

mA, (9,64, 0)

(19)
-A

where Dy (@, 8, 0) are D functions defined according

to [18], @ and 6, being the Euler angles specifying a
trangition to the individual helicity frame of the ith
nucleon. The helicity amplitudes in (19) are antisym-
metric under the interchange of final protons. From the
parity-conservation law, it follows that they also satisfy
the relations

=
T(p1 s, P2 Az A K, Ay A A = [ i1
' (20)
X T(pzl.! _)\lv p'2’ _}\21 qlv kla _)\ya dlv _)\d)v

wheren; and s are, respectively, theintrinsic parity and
spin of the ith particle and where the momenta on the
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right-hand side are obtained from the original ones by
means of areflection with respect to the xz plane. In the
case of coplanar kinematics, these relations coincide
with those for two-body reactions. In al, there are 24
complex helicity amplitudesfor reaction (1). In order to
determinethem, it is necessary to know 47 independent
observables (the common phase factor remains indefi-
nite). For coplanar kinematics, the number of indepen-
dent helicity amplitudes of reaction (1) is halved by
relations (20), so that we are left with the same number
of these as that in the case of the two-body reaction
yd — pn.

According to [18], the general expression for polar-
ization observables of the three-body reaction (1) is

1My, 1M, trTTIyMyTIdeTTTllerlez
M laMa = T '
where T arethe helicity amplitudes given by (19); T,
is the spherical spin—tensor for a nucleon with a
momentum p;; and T m, and 1, , are the spherical

spin—tensors of the photon and the deuteron, respec-
tively. It should be noted that, at a given initial-state
energy, polarization observables of the two-body reac-
tion depend only on one kinematical variable, scatter-
ing angle; in the three-body reaction, however, the anal -
ogous observables depend on five variables, whose
choice is ambiguous. Freguently, the momentum and
two emission angles for one of the particles and two
emission angles for a second particle are chosen for
these.

4. In order toillustrate the effects of rescattering, we
have calculated the squared moduli of the amplitudes
corresponding to the diagrams in Fig. 1, the compo-
nents of the anayzing power of reaction (1) with
respect to beam and target polarizations (T,, oo and
Too. 20, respectively), and the polarization of one of the
final protons (P1 y)- The calculations were performed in
the c.m. frame of reaction (1) under the conditions of
coplanar kinematics. The results are presented below
versusthe proton-emission angle 6, at p, = 300 MeV/c,
8, =100°, @, = 0°, @, = 180°, and E, = 360 MeV.

Figure 3 shows the quantities obtained upon averag-
ing the squared moduli of the amplitudes over the spins
of the initial particles and summing the result of this
averaging over the spins of final particles. At proton-
emission angles 6, in excess of 120°, the effect of res-
catteringsisinsignificant in relation to the contribution
of the spectator mechanism. For this reason, these
results are displayed only for 8, values between 0° and
120°. In these data, the most spectacular feature is that
the squared modulus of the amplitude for on-shell
pion—nucleon rescattering has a distinct maximum at
0, ~ 40°. The main contribution to this maximum
comes from the first term in the amplitude given by
(12). This term corresponds to the case where the pro-
ton with the momentum p, participatesin the scattering
process. In this kinematical domain, the value of |p | is

21
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120
0,, deg

Fig. 4. Effect of rescatterings on the reaction analyzing
power Toq 20 (the cal culations were performed for the same
kinematicsasin Fig. 3): (/) results produced by the specta-
tor model, (2) results taking into account on-shell pion—
nucleon rescattering, (3) resultstaking into account on-shell
and off-shell pion—nucleon rescatterings, and (4) resultstak-
ing into account on-shell and off-shell pion-nucleon rescat-
terings and nucleon—nucleon rescattering.

small for the first term in (11), so that the integral in
(15) ismaximal. Asto off-shell pion—nucleon rescatter-
ing, the main contribution to it comes from the first
term in the amplitude given by (12). In just the same
way as in the preceding case, this term corresponds to
the rescattering of the proton with the momentum p,.
The behavior of the amplitude for off-shell pion—
nucleon rescattering is determined primarily by the
dependence of the integral

o5 1d — 2

2

q*—m;

on the proton emission angle 8,. The contribution of
nucleon—nucleon rescattering increases fast with
decreasing kinetic energy of the relative motion of final
nucleons. This is because the 'S, phase shift increases
in that case. In Fig. 3, thisis manifested in the growth
of the contribution from nucleon—nucleon rescattering
intheregion of small 8,. With increasing kinetic energy
of therelative motion of final nucleons, the contribution
of 'S, scattering decreases, but this is accompanied by
an increase in the contribution of scatteringinL =1, 2
states (°P,, 3P, 3P,, 'D,). In Fig. 3, an increase in the
contribution from nucleon—nucleon rescattering in the
region around the point 6, ~ 90° is due to rescatterings
inthe P and D states.

| off-sheil = desp'

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 3 2000

397

T22, 00

0.4

0.2

-0.21 1 1 1 1 1
0 40 80

120
0,, deg

Fig. 5. Effect of rescatterings on the reaction analyzing
power T, (o (the calculations were performed for the same
kinematicsasin Fig. 3). The notation for the curvesisiden-
tical to that in Fig. 4.

Figures 4 and 5 illustrate the effect of rescattering
on, respectively, the tensor anayzing power with

respect to target polarization, Ty, 2 = Fog 5. and the

tensor analyzing power with respect to beam polariza-

tion, T,y oo = Fag 0. ON-shell pion-nucleon rescatter-
ing has the most pronounced effect on these quantities,
leading to the emergence of deep minima near a value
of 8, ~ 40°. Off-shell pion—nucleon rescattering and
nucleon—nucleon rescattering reduce the depths of the
minima, especially for T,, (. It is interesting to note
that apartial filling of the minimum for T, , is caused
by off-shell pion—nucleon rescattering, athough the
squared modulus of its amplitude has a minimum pre-
cisely intheregion around 6, ~ 40°. The main contribu-
tion to the reduction of the minimum depth for T, ¢,
comes from the interference of the amplitudes for off-
and on-shell pion—nucleon rescattering.

Figure 6 illustrates the effect of rescattering on the
polarization of the final proton with the momentum p,
in the case of an unpolarized initia state. We define the
above polarization as

‘
_ trTT o,(1)
trTT'

where T arethe helicity amplitudes given by (19), while
(1/2)o,(1) isthe operator of the'y projection of the pro-

P1,
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Fig. 6. Effect of rescatterings on the nucleon polarization
P1y (the calcul ations were performed for the same kinemat-
icsasin Fig. 3). The notation for the curves is identical to
that in Fig. 4.

ton spin; under the conditions of coplanar kinematics,
the other components of the polarization vector vanish.
It can be seen that rescattering affects considerably the
behavior of P1,, especialy in therange 6, ~ 40°-60°. It
should be noted that, in the case of an unpolarized ini-
tial state, the polarization of the protons originating
from reaction (1) is nonzero even within the spectator
model (that is, without allowing for pion—nucleon and
nucleon—nucleon rescatterings). This is because the
description of pion photoproduction on anucleoninthe
delta-isobar region requires taking into account, in
addition to the Born terms, the s- and u-channel contri-
butions of the delta isobar and the contribution of the
t-channel exchanges of rho and omega mesons. Allow-
ance for the delta-isobar contribution in the s channel
induces an imaginary part in the amplitude of pion pho-
toproduction on a nucleon; as aresult, thefinal nucleon
proves to be polarized even in the case of an unpolar-
ized initial state. At the same time, the polarization of
final nucleons from the reaction e<d — €-pn proceed-
ing from an unpolarized initial state is nonzero only if
proton—neutron rescattering is taken into account [4],
since the amplitude of elastic el ectron—nucleon scatter-
ing is real-valued in the Born approximation.

In summary, we have used a diagrammatic approach
to calculate the effect of pion—nucleon and nucleon—
nucleon rescatterings on polarization observabl es of the
reaction yd — pprt. Our calculations have revealed
that, at high momenta of final-state protons, these res-

LOGINOV et al.

cattering processes affect noticeably the behavior of the
polarization observables in the kinematical region of
the delta isobar. We would like to emphasize that res-
cattering effects must be taken into account in analyz-
ing experimental data.
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Mean Field for thep + ®Zr System in the Energy Range
—60 MeV < E <+65 MeV and Single-Particle Features
of Proton Statesin ®Zr from a Dispersive Optical-Model Analysis
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Abstract—Data on the scattering of protons with energies 5 MeV < E < 65 MeV by *°Zr nuclei and data on
the energies of proton particle and hole levelsinthe A+ 1 and A — 1 systems with A = 90 are analyzed within
the dispersive optical model. The parameters of the mean proton field for °°Zr are determined in the energy
range —60 MeV < E < +65 MeV. The predicted single-particle features of the levels (root-mean-square radii of
orhits, occupation numbers, spread widths, spectroscopic factors, and spectral functions) comply well with
experimental data obtained in (d, *He), (*He, d), (n, d), and (d, n) reactionsfor levels near the Fermi surface and
in (e, €p) and (p, 2p) reactions for deep levels. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The shell and optical models are widely used in
studying the structure of nuclel and nuclear reactions.
In these models, nucleon—nucleus interaction is
described on the basis of the mean-field concept. In tra-
ditional realizations of the models, the mean nuclear
field is represented as a single-particle local potential
that is complex in the optical model (optical potential)
and real in the shell model (shell-model potentia).
These potentials are determined independently of each
other in the energy regions E > 0 and E < 0 within,
respectively, the optical and the shell model.

A unified approach to determining a mean field for
nucleon—nucleus interaction was developed in recent
years (see[1, 2] and references therein). This approach
relies on the assumption that the optical and the shell-
model potential are both complex-valued; it indicates a
way to determine the shell-model potential by extrapo-
lating some parametersfound at positive energiesto the
region of negative energies. The extrapolation proce-
dureisbased on the use of dispersion relations between
the real and imaginary parts of the mean field and is
referred to as a dispersive optical-model analysis. The
approach in question makes it possible to determine a
unified mean field for both positive and negative ener-
gies by using smultaneously experimental data on
scattering and on the positions of single-particle levels.
This in turn permits a determination of single-particle
features of levels such as root-mean-square radii, occu-
pation numbers, spectroscopic factors, and spectral
functions at energies well below the Fermi energy,
where experimental data are very scanty asarule.

The dispersive optical-model analysis aso provides
a physicaly reasonable description of scattering at
energies below the Coulomb barrier, where the predic-

tive power of the traditional optical model is question-
able because of well-known continuous and discrete
ambiguities. The region of subbarrier energiesis inter-
esting in that it is the region where the optical potential
can be used to describe both scattering cross sections
and the properties of quasi stationary nucleon statesin a
nucleus. In particular, there arises the possibility of
describing a direct nucleonic decay of subbarrier sin-
gle-particle states [3, 4].

The dispersive optical model (see, for example, [5])
and the variational moment approach [6, 7], al'so known
as DOM and VMA, respectively, are the main two ver-
sions implementing the above ideas. These versions
differ by proceduresfor constructing the energy depen-
dence of the parameters determining the mean-field
potential. In the studies quoted above, these versions
were applied to theinteractions of neutrons and protons
with 4°Ca, °Zr, and 2°Pb nuclei. These systems repre-
sent an important subject of theoretical and experimen-
tal studies, and a vast body of data for bound and scat-
tering states are available in the literature for them. As
a development of the DOM version from [5], a proce-
dure was proposed in [8] for determining the parame-
ters of the mean-field potential for protonsin the mass-
number region 40 < A <208 and in the energy region —
60 MeV < E <+65 MeV on the basis of global system-
atizations of the potential parameters in the traditional
(nondispersive) optical model. In particular, use was
made of the CH-89 systematization [9], which was
based on an analysis of rich experimental information
about differential cross sections for scattering, o(0),
and the polarization P(0) for the above class of nucle
in the energy range 10 MeV < E < 65 MeV. By addi-
tionally including data on reaction cross section from
[10] in the above analysis, the A dependence of the
parameters appearing in the imaginary part of the
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potential was determined more precisely (CH-89* ver-
sion [11]).

In the present study, the DOM version proposed in
[8] is used to analyze the p + *°Zr system. We pursue
here the following goals.

(i) Within this DOM version, the procedure for
determining the mean geometric parameters of the
imaginary part of the mean-field potential differs from
that in [5]. In contrast to what was donein [5], the data
set analyzed here contains data on scattering at low
energies (6 MeV < E < 25 MeV); at the same time, the
energy range included in our analysisis bounded from
above by a value of 65 MeV. Experimental and esti-
mated information about the total proton cross sections
for p+ %Zr interactionsis used at theinitial stage of the
analysis. A comparison of the parameter values found
in the present study and in [5] isimportant for assessing
the accuracy in determining the parameters.

(ii) In the present study, the calculated features of
single-particle states are compared both with the exper-
imental dataused in [5] and with the results of the most
comprehensive and precise investigation of deep hole
states in *Zr that was performed at the Petersburg
Nuclear Physics Institute by the method quasielastic
proton scattering at 1 GeV [12]. Owing to this, the pre-
dicted and measured features of deep hole states could
be compared for the first time.

The present article is organized as follows. In Sec-
tion 2, we giveabrief account of the DOM version used
here. In Section 3, we determine the average parame-
tersof the mean-field potential withinthe DOM version
proposed in [8]. Problems that arise in determining the
energy dependence of the Hartree—-Fock component of
the mean-field potential for the p + *°Zr system in the
energy range —-60 MeV < E < +65 MeV are discussed
in Section 4. Proton scattering by °°Zr nuclei for E <
20 MeV isanalyzedin Section 5. In Section 6, we com-
pare the calculated and measured features of the bound
states in *°Zr. In Section 7, we compare the mean-field
parameters for the “°Ca, *°Zr, and *°®Pb nuclei. The
results of our study are summarized in the Conclusion
(Section 8).

2. DISPERSIVE OPTICAL MODEL

The most justified DOM version was applied in [5].
The method developed in [8] for determining the aver-
age parameters of the mean field relies on the DOM
version from [5]. Given below is a brief description of
this version.

The proton—nucleus potential, both in the traditional
and in the dispersive version of the optical model, is
represented as the sum of three components; that is,

U(r- E) = _Up(rv E) _Uso(rv E) +VCouI(r)a (2-1)

whereU,(r, E) isacentral potentia, Ug(r, E) isthe spin—
orbit potential, and V(1) is the Coulomb potential.
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In the region E < 65 MeV, the real and imaginary
parts of the central potential and the spin—orbit poten-
tial in the traditional optical model are usualy
expressed in terms of the Woods—Saxon form as

U,(r, E) = Vg(r, E) +iW,(r, E)

= VR(E)(r, rr ag) +iW(E)f(r, 15 8)  (2.2)

. d
—i ><4ade(E)af(r, Iy, 8q)s

Uy(r, E) = 2VSO(E)%%f(r,rSO, a )l (23)

where

1
1+exp[(r—rA®)/a]

(=R s d, s0)

isthe Woods-Saxon function. The Coulomb interaction
is simulated by the potential of a uniformly charged
sphere of radius R = I coqA”>. The subscriptssand d
label, respectively, the volume and the surface part of
the imaginary potential. Within the DOM, the central
component of the mean-field potential can be repre-
sented as the sum of two components, a static and a
dynamical one. The former is a smooth function of E
determined by the local approximation. Physically, it
corresponds to the Hartree—Fock potential for the sys-
tem of A nucleons; therefore, it isusualy referred to as
the Hartree—Fock component of the mean field (V).
The dynamical component is a complex quantity
dependent sharply on energy near Eg. It is assumed that
this component carries information about correlation
(for E < Eg) and dynamica polarization (for E > Ep)
effects. By virtue of analytic properties, its real and
imaginary parts (AV and W, respectively) arerelated by
a dispersion equation. In view of this, the dynamical
component is often referred to asadispersiveterm. It is
precisely this component that determines the important
energy dependence of the central component (Vg):

U,(r, E) = Vg(r, E) +iW,(r, E) (2.4a)
= Vie(r, E) + AV((r, E) + AVy(r, E) +iW,(r, E).

For this component, we also use the Woods-Saxon
parametrization

Uo(r, E) = Vie(B) F(r, rue aue)

f(r,r;,q) =

+AV(E) f(r,r, a) — 4adAVd(E)% f(r, re ag) (2.4b)

+IWL(E) (1, 1, 8) —1 X 43Wo(E) S (1, 4, ).

The volume and the surface dispersive components of
the real potential [AV,(r, E) and AV(r, E), respectively]
can be calculated with the aid of the dispersive relation,
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provided that the corresponding components of the
imaginary part are known. Specifically, we have

AVealB) = (EF_E)EJ (E'VYSI(E(SE,EE_')E')

de',
(2.5)

where the symbol P denotes the principal value of an
improper integral.

Various applications of the optical potential are
often based on the traditional Woods-Saxon form of
thereal potential. In order to go over from the parame-

ters of VR ¥ (r, E) to the parameters of the effective
eff

real Woods-Saxon potential, Vi (E) and rf (E), we
can proceed asin [6], requiring invariability of the vol-
umeintegral of thereal potential and invariability of the
real-potential value at r = 0. The diffuseness ay, of the
effective potential then coincides with the parameter
ayr for the Hartree—Fock component of the real disper-
sive optical potential.

We note that, in (2.4b), the same geometric shape of
f(r, r,, &) (i = s, d) is assumed for the corresponding
components of the dispersive part and the imaginary
part of the potential. This follows from fulfillment of
the dispersion relation between these components, pro-
vided that the geometric shape of f(r, r;, &) (i = s, d) is
independent of (or dependent very slightly on) energy,
or, in other words, provided that the same is true for
geometric parameters rqq and ayq, which determine
this function.

Experimental data on scattering can be conveniently
analyzed in terms of the volume integrals of the poten-
tial components being considered:

3.(E) = 4—A"Ivi(r, Ey’dr, i = RHF.  (26)
Jav (E) = %HIAVi(r, E)r’dr; (2.7)

0
J3,(E) = %”Iwi(r, E)y’dr, i=sd  (28)
JI(E) = Ji(E) + I4(E). (2.9)

The dispersion relation (2.5) remainsin force for these
volume integrals as well:

‘]AVi(E) = (Ee-E)

J(E)
E-)(E-E)

(2.10)

de, i=-sd

XEI(E'—

The volume integrals J,(E) (2.8) and J, (2.9) of the
imaginary potentia are determined on the basis of the
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parameters W,, W, r,, a,, g, and a4 found within the
conventional optical model from an analysis of data on
elastic scattering for each energy value E, individualy.
In order to determine the dispersive contributions
Jav(B) and J,y (E) according to (2.10), the resulting
sets J(E), J4«(EY, and J(E) are approximated by
dependences that are integrable analytically. Various
expressions for J,(E) and J(E) were considered in [1,
2]. Here, in just the same way asin [5, 8], J,(E,) and
J{(E,) are approximated by the IM formulas [1]

4

JME) = ai%, i=1l,s (1)
F i

JNE) = IM(E)-3T(E). (2.12)

The parameters a, and 3, are determined by minimizing
thefunctional x2infitting J;" (E) to the set J,(E,), while
the parameter P is determined by fitting J2" (E) to the
set J(E) (in doing this, it is assumed that a, = ay).

Upon this parametrization, the integral in (2.10) is cal-
culable analytically. The results are

o,B(E-EQ)[(E-Ep)’+ B

Jav(E) = (e —E) p" . (2.13)
_ a,B(E-ER)[(E-Ef)° +Bi]
BT T=Rr=R O B

Jav,(E) = Jav(E) = Jav (E). (2.15)

A transition to the strength parameters of the potential
is accomplished by using the formulas

wyE) = —=B8
S J’f(r,rs, aJ)dr’

= (E) (2.16)
Wy(E) = - J,df(dr — ad)
v (E) = —ovlB)
If(rv Is as)dl"

AV,(E) = Jav,(E) (2.17)
i af(r, rd, ad)

e

In analyzing o=*P'(8), P=*P(8), and o, on the basis
of the DOM, the substitution of (2.16) and (2.17) into
(2.2) makesit possibleto find, for each value of E,, ten
parameters of the mean-field potential. These are Vyy,
Furs 8ue Te As Far 8y Vo Moy aNd g, From individual
parameter sets, we then determine the energy-averaged
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geometric parameters ryg, ayp, I, @, Mg, 8g, Mo, aNd ag,,
aswell asthe energy dependence of the strength param-
eter V(E). Further, the fitting procedure is applied
once again in order to derive the optimal parameters
Vur(E) at fixed averaged parameters listed above. On
the basis of the set Vi;=(E,), we can determine the aver-
aged energy dependence V;=(E) for E > 0.

In order to find Vy(E) for E < 0, we use experimen-
tal information about the energies of particle and hole
levels E" inthe A+ 1 and A— 1 systems, respectively.
In solving the Schrédinger equation for bound states,

DZ
[_%J’V(r' En'i)}q’nu(r) = Ep®oy(r), (2.18)

where
=V(r, En) = Vie(r, Ey) +AV((r, Ey)
+AVy(r, Ey) + Ug(r, Eqy),

the method that relies on fitting the well depth is used
to determine the strength parameters Vy(E,;) and the
single-particle wave functions for the subshell having
the quantum numbersn, |, and j:

Upi (1)
r

The parameters AV(E) and AV4E) of the potential
(2.19) are calculated by formulas (2.17); for the geo-
metric parameters, we take averaged results from the
analysis of scattering data. In the following, the wave
functions (2.20) are used to determine the single-parti-
cle features of the levels.

(2.19)

®,(r) = Yim(€2). (2.20)

3. p + *Zr SYSTEM: DETERMINATION
OF AVERAGED PARAMETERS

Asin[5], weanayzeherethep+ °Zr system. Inthis
analysis, we included data from [13] at E, = 6.35 and
8.38 MeV; datafrom[14] at 9.7, 9.8, 10.75, 12.7, 16.0,
18.8, 19.08, 20.25, 20.37, 22.04, 22.5, 22.9, 40.0,
49.39, and 61.4 MeV; and data from [5] at 30 and
65 MeV. In contrast to [5], we restricted our analysisto
the energy region E < 65 MeV, but we included a vast
body of datafrom the energy region E < 20 MeV.

In [5], the average values of the geometric parame-
tersryq and ayq were fixed by using the parameter sets
determined in the conventional optical model individu-
ally for each specific energy vaue E,. The parameters
r, and a, were averaged over the interval 80 MeV < E
< 135 MeV, where surface absorption is negligibly
small, while the parameters ry and a; were averaged
over theregion E <80 MeV. Thisway iswell validated,
but it is difficult to implement it for the mgority of 40
< A <208 nuclei, because the main body of experimen-
tal datafor these nuclel was obtained for energiesin the
region E < 65 MeV. We notethat theindividual analysis
from [5] did not invoke data on total reaction cross sec-
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tions o,. The vaues obtained in [5] for J(E) in the
energy interval 2065 MeV differ from their arithmetic
mean of [J(E)G, es mev = 107 MeV fm? by more than
10%.

In analyzing data on the p + “°Ca system within the
VMA version, Maxaux and Sartor [6] showed that the
mean parameters of the conventional optical model can
be used for the mean values of the parameters r g, and
agq)- IN[8], it was proposed to determine the parameters
sy @nd agq by using the global systematization CH-
89* [9], which was composed for the parameters of the
conventional optical model and which included data on
total reaction cross section measured to within 3% [10].

For the p + %Zr system, the dependence ;" (E) in the
region 20 < E<65MeV wasestimated in[11] to within
5%. The result proved to be in fairly good agreement
with that which was found within the conventional
optical model with the parameter values from the
CH-89* systematization (a = 0.61 fm). For the imag-
inary volumeintegral J, < (E), the mean value obtained
in [11] for this energy interval is I (E)O= 100 +
2 MeV .

In accordance with what was said in Section 2, the
first stage of our analysis involves determining the
parameters a,, 3,, and 3, which appear in (2.11) and
which are used to calculate, by means of dispersion
relations, the strength parameters of the components of
the dispersive term in the rea part of the mean-field
potential [see equations (2.13)—(2.17)].

First of al, we note that, at sufficiently high ener-
gies, the approximate relation a, = J,(E) follows from
(2.11). Fromtheresults presented in [5, 8, 11], it can be
seen that, in the approximation given by (2.11), the
dependence J(E) for p +°Zr a B = 10 MeV
approaches a nearly constant value for E > 20 MeV.
Therefore, it is expedient to fix the parameter a, at the

value equal to LO-* (B)Othat is,
o, =100 MeV fm’. (3.1)

(The value of o, = 106.97 MeV fm? was found in [5].)
Thus, it isseen that, by additionally invoking, at theini-
tial stage of the analysis, data on total reaction cross
sections, we were ableto refinethe a, valuefixed in the
ensuing calculations. The parameter (3, is determined
by the values of J,(E) intheregion E, <20 MeV.AtE =
10 MeV, reliable values of the volume integrals J,(Ey)
within the conventional optical model are clustered in
the interval 75-90 MeV fm?, which corresponds to the
interval 9.4 MeV < (3, < 12.2 MeV. The value of 3, =
12.208 MeV was obtained in [5]. In the present studly,
the calculations were performed at 3, = 12.2 and

9.4 MeV. The dependence J™ (E) according to (2.11)

at the above two B, values and at a, = 100 MeV fm? is
displayed in Fig. 1, aong with the dependence
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CH-89*

J, (E). In Section 5, it will be shown that the above

ambiguity in 3, does not have a pronounced effect on
the agreement between the calculated and measured
values of the cross sections. The results presented
below were obtained at

B, = 12.2 MeV,

unless otherwise stated.

Theresults of numerous analyseswithin the conven-
tional optical model reveal that, because of ambiguities
inherent in multiparametric fits, the quantities J(E,)
show awider scatter than J,(E,) = J(E,) + J4(E,) do. For
some nuclei with mass numbers between 40 and 124,
the scatter of the empirical values of J(E,) often goes

beyond the corridor within which the dependences
CH-89*

Jo 7 (E) predicted for these nuclei lie. Therefore, the

parameter B, extracted from afit of J2(E,) to the set of
empirical values of J(E, (this procedure was

employedin[5]) isdetermined with large uncertainties.
In the present study, the value of 3, was found from the

condition requiring that the deviation of J(E) from
CH-89*

Jo 7 (E) be minimal in the interval 2065 MeV (see
Fig. 1). The value of

B.=60.3 MeV, (3.3)

which was deduced in thisway, is 30% greater than the
value of 3 = 46.695 MeV, which was obtained in [5].
The distinctions between the 3, and a, values from this
study and those from [5] lead to a 30% decrease in
Jav,(E) (2.14) for energiesof E<30 MeV inrelationto

the result presented in [5]. In the energy region 30 MeV <
E < 60 MeV, the dependence J,, (E) obtained here is

closeto thatin [5].

At the next stage, we determine the mean values of
the geometric parameters of the spin—orbit potential
and asmooth energy dependence of the strength param-
eter Vo (E). The CH-89 systematization of the potential
parameters was based not only on the analysis of avast
body of data on elastic-scattering cross sections but
also on analyses of polarizations. For the p + *Zr sys-
tem, the mean values of the parameters of the spin—
orbit potential in the CH-89 systematization are close
to values obtained in [5]. In the present study, we
employed the mean values of the parameters of the
spin—orbit potential both from [5] and from [9]. The
calculations revealed that the small distinctions
between the values obtained in [5] and in [9] for the
parameters of the spin—orbit potential have only adlight
effect on the determination of the parameters of the
Hartree—Fock component. Wiesdl et al. [15] studied
changes in the positions E,; of single-particle levelsin
response to variations in the parameter Vg, between 5.3
and 7.3 MeV and in responseto variationsin the param-
eter ro, between 1.03 and 1.23 fm at afixed value of a,.

(3.2)
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Ji s, a» MeV fm3

120
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- ~
1 ]
920 80
E, MeV

Fig. 1. Volume integrals of the imaginary potential for the
p+ 99Zr system: (thick solid curves 7 and 2) J™ (E) at B, =
94 and 122 MeV, respectively; (thin solid curve)
37T (E); (thick dashed curve) J2"(E); (thin dashed

CH-89*

curve) IS (E); (thick dash-dotted curve) J" (E); (thin

CH-89*

dash-dotted curve) J (E); and (points) empirical value

DOM

of J, within the conventional optical model.

The calculations performed there for the n + 2%Pb sys-
tem showed that, for particle and for hole states, the val-
ues of E,; undergo virtually no changes for j < 7/2,
depending noticeably on Vg, and rg, only for j > 7/2.
Because these regularities are observed both for pro-
tonic and for neutronic systems and because our calcu-
lations were performed only for j < 9/2, moderately
small uncertainties in choosing the parameters of the
spin—orbit potential must not affect the results of the
calculationsfor E,;. For thisreason, we will henceforth
fix the parameters of the spin—orbit potential in accor-
dance with [9], setting them to

V(E) = 59 MeV fm”?,
ro = 1.072 fm, ay, = 0.63 fm.

(3.4)

The next step consistsin determining the parameters
of the Hartree—Fock component of the potential given
by (2.4a) and (2.4b). For this purpose, we first fix the
geometric parameters of the imaginary part of this

potential at the CH-89* values of
rg=rs=1.24fm, 3.5)
ay=2a,=0.61fm (3.6)

and calculate the parameters W,, W, AV,, and AV, at
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Fig. 2. Strength parameter of the Hartree—Fock component
of the dispersive optical potential for the p + *°Zr system:

(solid curve) dependence specified by equations (4.1) and
(4.4) with the parameters set to the values from (4.2), (4.3),
(4.6), and (4.7); (closed circles) Vyr(Ey) values for Ey;
from[12]; (open circles) Vyr(Ey;) val uesfor Epj from [16-
21]; and (open triangles) our datafor E,> 0.

each energy value E, according to the equations

M
wyg) = —=B_
J’f(r, re ag)dr
M (3.7)
Wd(Ek) = d‘?fd(r(fk) ) ’
4a, J’ —’drd, 2a) e
J E
avy(E) = —odE)_
J’f(r, re ag)dr
Av(Ey = — (B

df(r,rg ag)
4adJ‘ O dr

The values of J2'(E), J3"(E), Jav(E), and I,y (E)
werefound on the basis of equations (2.11)—2.15). The
parameters Vir(EY), rys(E, and age(E,) were estab-
lished by means of two procedures. Within the first of
these, all three parameters were varied freely, and their
set was determined, for each individual energy value
E,, by minimizing the x? functional in fitting the com-

puted values a°M(@), PPoM(@), and oV (E,) to the
corresponding experimental resultsintherange 20 MeV <
E < 65 MeV. Within the second procedure, the strength
parameter of the Hartree-Fock component was esti-
mated by using the CH-89 systematization of the
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parameters:

Vie(E) = Jue(Ew)

J’f(r, lyp, Aye)dr
_ RP(E) - Iav(EY)
If (r, Mg @ue)dr

The last equality is based on the results presented in
[11], where it was shown that, to within 3-5%, the
empirical values of Ji corresponding to those parame-
ter sets that make it possible to reproduce not only

o°*P(0) and P=ry(@) but also o;" (E,) are consistent

with the values JS*® for 40 < A < 124 and 20 MeV <

E < 65 MeV. At this step, the geometric parameters
rur(En) and age(E,) remained free. As within the first
procedure, their values were determined for each indi-
vidua value of E,. The calculations relied on the mod-
ified SPI-GENOA code, which makes it possible to
vary the geometric parameters of the potential at fixed
values of the corresponding volume integrals. In either
case, we used the values from (3.1)—«3.6) and rg,, =
1.264fm[9]. Thevaluesof Vie(EY), ryr(Ey), and age(E)
as determined by applying the above two procedures
are consistent within 1 to 2%. On the basis of the result-
ing parameter sets, we found the mean values of the
geometric parameters of the Hartree-Fock components
in the energy range 2065 MeV. The results are

rHF = 1.24 + 0.04 fm,
2y = 0.68 + 0.02 fm,

(3.9

(3.10)
(3.11)

4. p + *Zr SYSTEM: DETERMINATION
OF THE ENERGY DEPENDENCE Vyr(E)
IN THE ENERGY RANGE 60 MeV < E < +60 MeV

The energy dependence Vy(E) was determined on
the basis of dataon Vyr(E,) for 20 MeV < E, < 65 MeV
and data on Vy(E,;) for E < O a ry and aye values
fixed according to (é 10) and (3.11). For 20MeV < E, <
65 MeV, Vyr(E)) values are presented in Fig. 2. In order
to determine Vr(E) for E < 0, we used experimental
information from [12, 16-21] on the energies of parti-
cle and hole statesin the systems A+ 1 and A— 1 sys
tems (A = 90), respectively, which was obtained from
an analysis of various nuclear reactions and which is
displayed in Table 1.

The energies of bound states were computed with
the aid of subroutines from the DRUCK-4 package
[22]. The strength parameter Vyy(E;) was determined
by fitting the energies E,; calculated for single-particle
states in solving the Schradi nger equation (2.18) with
the potential (2.19) to the corresponding experimental
values. In doing this, the parameters ryr and ay: were
set to the values in (3.10) and (3.11) and were not var-
ied, while the spin—orbit potential was fixed in accor-
dance with (3.4). Thefitted values of Vyr(Ey;) aregiven
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Table 1. EnergiesEy; (in MeV) of single-particle proton statesin %zr

405

nlj Experimentdl data of theR;eaIﬂcJ::}ISations
(e €p) [16] |(p, 2p) [171** | (p, 2p) [12] |(d, *He) [18]| (n, d) [19] |(*He, d) [20]| (d, n) [21] | our study (5]
2ds)» -1.30 -1.09 -0.05 -0.45
197 -0.34 >0 >0
1992 -5.11 -5.16 -5.10 -4.87
2pyp | —8.36 -9.1(0.4)* -8.36 -8.36 -8.10 -8.60
2psp |—10.4 (0.2) -9.87 -9.87 —9.66 -10.30
1fs, |-10.8(0.2) -11.0(0.4)| -10.11 -10.11 -9.84 —9.68
1f;, |-17.0 (0.5) -17.2(0.5)| -15.56 -15.38 -15.69
2s,» |—21.8 (0.4) —22.3(0.5) -23.8 —24.01
1dy, |—23.8(0.5)*|—27.0 (0.8)* |—24.8 (0.6) -25.78 -25.19
1ds, -30.2(0.8) -31.72 -30.39
1py —43.0(0.8)* |-41.9(1.1) —43.03 -41.81
1psp» —-46.8 (1.5) —45.24 —44.40
1sy5 -54.0(0.8) |-59.4(2.1) -57.62 -59.88

* Mean value for the n, orbits.

** Data from [17] were borrowed from Table 2 of the study of Vorob'ev [12].

in Fig. 2. On the basis of this data on Vyr(E;), we
approximated it in the region E < E; by the dependence

Vie(E) = Vue(Er) —A(E-Eg), 4.1)
where the parameters found on the basis of a least
squaresfit are

V,e(Ef) = 58.06+ 0.81 MeV, 4.2)

A = 0.591 + 0.035. (4.3)
Information about Vyr(E,;) values that was deduced
from an analysis of experimental data presented in [12]
for the energy region —60 MeV < E < -9 MeV suggests
that, for .60 MeV < E < Eg, Vye(E) isalinear function
of energy to within 5%. The parameter valuesin (4.2)
and (4.3) are close to the values of Vyr(Er) = 60.8 MeV
and A = 0.606, which were found in [5] under the
assumption of alinear behavior of Vye(E) in theregion
—25MeV < E< E;.

In a number of studies (see [1] and references
therein), itisassumed that Vy(E) isalinear function of
energy for E > 0 as well. From Fig. 2, it can be seen,
however, that the functional form of Vi=(E) for E < Eg
is different from that for E > E. That V(E) isalinear
function of energy for E > Eg leadsto thereversal of the
sign of the real potential at E =90 MeV rather than in
the region E = 350-500 MeV, as is predicted by an
analysis of scattering datawithin therelativistic version
of the conventional optical model [23].
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In just the same way asin [5], Vur(E) for E > Eg is
approximated here by the dependence

_ il 2 —A(E-Ef)
Viue(E) = Vie(Eg) + Vie(Ee) ap[m} '4.4)
Vie(Er) = Vie(Ee) + Vie(Eg), 4.5)
where the parameter values are
Vie(Ef) = 15.16 MeV, (4.6)
V2(Ep) = 42.90 MeV. 4.7)

In Figs. 3b and 3c, the elastic-scattering differential
cross sections and polarizations calculated with the
parameter values from (3.1)—(3.6), (3.10), (3.11), (4.3),
(4.6), and (4.7) are contrasted against relevant experi-
mental data over a broad energy region not covering,
however, near-barrier and subbarrier energies. It can be
seen from these figures that, in the region E > 20 MeV,
the computed dependences ¢”°M(0)/0; and PPOM(B)
comply well with the experimental angular distribu-
tions o%*PY(0)/0 and Pe*PY(B).

5. p+ °%Zr SYSTEM: ANALY SIS OF SCATTERING
DATA IN THE REGION E < 20 MeV

It was shown in [6, 24] that, in the region of near-
threshold and subthreshold energies, the assumption
that the mean geometric parametersr,=ry and a; = a4
areindependent of energy leads to an overestimation of
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Fig. 3. Differential cross sectionsfor elastic scattering in the energy regions (a) E < 20 MeV and (b) 20 MeV < E < 65 MeV: (points)

experimental data, (solid curves) results of the calculations with the average parameters from the present study (f;, = 12.2 MeV),

(dotted curve) results of the calculations with the average parameters from the present study (B; = 9.4 MeV), and (dashed curves)

results of the calculations with the average parameters from [5]; (c) polarizations (the notation here is identical to that in Figs. 3a

and 3b).
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the total reaction cross sections and to considerable
deviations of aP?°M(0) and PP°M(8) from o**r{(0) and
PexPy(@). Since the main contribution to absorption at

low energies comes from the surface term, o> and

expt

o, can be brought into closer proximity by introduc-
ing an energy dependence in the geometric parameters
rq and ay of the imaginary potential at the volume inte-
grals J, s 4(E) fixed in accordance with (2.11) and

(3.1)«3.3). Agreement with the values o;" (E) esti-
mated in [11, 25, 26] for E < 20 MeV isthen achieved
by reducing the parameter a4 and by dlightly increasing
rq with decreasing energy. As to the volume integrals
Ji.s «(B), they still remain fixed in accordance with
(2.11) and (3.1)—(3.3), whereas the dispersive surface
component is computed with the parameters ry and a4
set to the valuesin (3.5) and (3.6).

Following [27], we parametrized the energy depen-
dences of the geometric parametersry(E,) and ay(E,) of
the imaginary potential (see Fig. 4) for 5 MeV < E <
20 MeV as

rZ(E_EF)4
E) = -—, 5.1
rqe(E) =1y (E—E,:)4+rg (5.1)
4
ay(E) = al+M (5.2)

(E-Ep)'+ag
where

rp, =15fm, r, =028fm, ry = 12MeV,

a, = 0.1 fm, = 0.61fm, a; = 18 MeV. >-3)

From the dispersion relations, it follows that, if the
surface-absorption form is dependent on energy, the
potentials W(r(E), E) and AV (r(E), E) cease to be
identical. The estimates presented in [25] give suffi-
cient reason to believe, however, that, in the energy
range 5 MeV < E < 20 MeV, the effective real potential

Ve (r, E) that, in the conventional optical model, cor-

responds to the DOM potential featuring a dispersive
component modified by the energy dependence of the
form of the potential W,(r(E), E) changesinsignificantly
(by less than 1%) in relation to the potential computed
with the parametersr4 and a4 independent of E.

Figure 3a shows the cross sections a?°M(8)/0g and
o*PY(B)/oxfor E < 20 MeV. The calculations here were
performed with the mean values of ry and ag from
(5.1)—5.3). At E, = 6.35, 8.38, and 9.7 MeV, the dis-
tinctions between the calculated and measured values
of the cross sections for scattering angles in the region
0 < 90° may be due to the contribution of elastic scat-
tering through a compound nucleus. The values calcu-
lated for the total reaction cross section on the basis of

the DOM, o™, agree with the corresponding values

a
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Fig. 4. Geometric parameters of the imaginary surface
potential for 5 MeV < E < 20 MeV as functions of energy:
(solid curve) ry(E), (dashed curve) ay(E), and (points)
results of fitting from the present study.

estimated in [26] with allowance for the compound-

est

nucleus contribution, o, , within the errors of the esti-
mate. For E, = 9.7 MeV, Fig. 3a displaystwo computed
dependences aP°M(B)/og at B, = 9.4 and 12.2 MeV. It
can be seen that these computed angular distributions
are close. The computed total reaction cross sections
also differ only dlightly from each other. In view of this,
it proves impossible to remove the ambiguity in 3, by
comparing the computed angular dependences
oPOM(0)/a and the computed total reaction cross sec-
tion with available experimental or estimated values.
DOM

Thecrosssection o, (E) calculated with the mean

parameter values found in this study is displayed in
Fig. 5along with the experimental valuesfrom[10], the
estimates from [11, 28], and the predictions from [5].

From this figure, it can be seen that the cross sections

o’ as computed within our DOM version comply

with the experimental data and with the estimates.

6. BOUND STATES

The mean-field parameters were used to calculate
the features of single-particle bound protonic states in
theA+land A—1nucle at A=90.

6.1. Energies of Sngle-Particle Levelsin %Zr

The positions (energies) of single-particle bound
states in the mean-field potential were calculated by the
method of fitting. The Schroédinger equation (2.18) was
solved with the potential V(r, E) (2.19) computed by
using equation (3.8) with the parameters set to the val-
uesin (3.1)—3.6), (3.10), (3.11), and (4.1)—4.7); this
was done at some energy E; playing the role of a free
parameter. In fitting E;, the difference between the
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Fig. 5. Total reaction cross section: (closed circles and open
diamonds) experimental data from [10] for *°Zr and "2zr,
respectively; (open squares) estimate from [11]; (open cir-
cles) estimate from [28]; (solid curve) results of the calcula-
tions with the average parameters from the present study;
and (dashed curve) results of the calculations with the aver-
age parameters from [5].

resulting eigenvalue EY} (E) and E,, A%} = |ES) (E) -
E;|, decreases with increasing number i of iterations. By
analogy with [29], the value of E; is treated here as the
eigenvalue E,,; assoon as A} ceasesto exceed 10 keV.
The results of seeking Ej; in this way are quoted in
Table 1.

We note that, for the levelsfrom the 1g,,, to the 1,
one, the E,; values computed here agree with those
from [5] to within 3%. An experimental investigation of
the hole statesin °Zr was performed in [12]. Within the
experimental errors, the calculated values of E; agree
with those measured in [12].

6.2. Effective Proton Mass

The energy dependence of the mean field can be
taken into account by introducing the concept of the
effective nucleon mass in the real central potential of
the nucleus. This quantity is used in the ensuing calcu-
lations of the root-mean-square radii, of the occupation
numbers for nucleon shells, of spectroscopic factors,
and of spectral functions. Theratio of the total effective
mass m* to the bare nucleon mass m is expressed in
terms of the derivative of the potential as

" =4
m*(r,E)/m = 1—dEV(r, E). (6.1)

The Hartree—Fock effective mass mj is defined in a
similar way:

mie(r, E)/m = l—iVHF(r, E).

dE 6.2)
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The so-called E mass m(r, E) isrelated to m* and mi-
by the equation

m(r, E)/m = m*(r, E)/m}(r, E)
d (6.3)
= 1—-[m/mjg(r, E)]d—EAV(r, E).

In evaluating quantities characterizing the single-parti-
cle motion of nucleons in a nucleus, the effects of non-
locality can be taken into account in terms of the wave
function [1]

Unij(r) = CpyjPryj(r)uq;(r), (6.4)

where

P (r) = [mig(r, Emj)/m]ﬂ2 (6.5)
is the Perey factor and where the normalization factor
C,; is determined from the condition

J‘uﬁlj(r)dr = 1. (6.6)
0

The expectation value of the ratio of the total effective
proton mass to the free-proton mass was cal culated by
the formula

[

5,/ m= J'uﬁlj(r)[m*(r, Ey)/mldr.  (6.7)
0

The [Omy,; /mCvalues as computed by this formula are

guoted in Table 2, along with the corresponding results
from [5] and the estimates from [30]. The values pre-
sented in [30] were abtained by fitting the results of the
calculations performed in the spherical approximation
with sets of parameters of the effective Skyrme interac-
tion to the measured energies of single-particle proton

states. The values of [y, /mCfrom this study proved

closeto the corresponding valuesfrom [5] for all levels,
with the exception of the 1s,,, one; for this level, our
results are in better agreement with the estimates from
[30], which comply with our present results and with
datafrom [5] to within 10-15%.

6.3. Root-Mean-Sguare Radii of Orbits

From an analysis of the spectral functions for the
reaction *°Zr(e, €p), Den Herder et al. [16] determined
the root-mean-square radii of single-particle orbits for
some states. Below, the predictions of the DOM involv-
ing the mean-field potential obtained here will be com-
pared with datafrom [16].

The root-mean-square radii of single-particle orbits
were computed here according to the standard prescrip-
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tions of quantum mechanics:

Ry = {J’Uﬁ“(r)r dr}

The root-mean-square radii calculated with the mean
parameters of the potential (2.19) are listed in Table 3,
along with the corresponding results from [5] and the
experimental and theoretical values of these radii from
[16] and [31], respectively. From this table, it can be
seen that our results comply with those from [5] to
within 1% for high-lying levels and to within 1 to 2%
for deep levels; our results also agree with those from
[16, 31] to aprecision not poorer than 5%.

12
(6.8)

6.4. Shell Occupation Numbers

For single-particle orbits, the occupation numbers
were calculated by the formulas

-1

< 0 O
N = J’uﬁlj(r)[1+ EmﬁF/m(r, Emj)E e

(6.9)
J’ W, E) dE}dr for E,; <Eg,
( nlj)
w a
> _ O, o _
Ny = _‘[Uﬁu(r){D“HF/m(rv En|j)D T
O O
(6.10)
I(W(r E) dE‘}dr for Ey; > Ep.
nlj

Theexpressionsfor Ny;;” were obtained with the aid
of the REDUCE system for analytic calculations [32].

>

Approximate expressions for Nﬁij can also be found

in[7].

Theresults of the calculations according to formulas
(6.9) and (6.10) are presented in Table 4, aong with
experimental data from [16], the results from [5], and
the theoretical predictions from [33-35]. In the micro-
scopic calculations, Brand et al. [33] used the G-matrix
approach allowing for short-range cal cul ations, Kumar
and Gunye [34] relied on the Hartree—-Fock—Bogolyu-
bov formalism for quadrupole-plus-pair interaction,
and Van Neck et al. [35] took into account the coupling
single-particle and vibrational degrees of freedom to
short-range correlations. The present calculation and
that from [5] somewhat underestimate the occupation
numbersfor thelevelsfrom the2p;, to the 1s, , one and
overestimate them for particle levels in relation to the
theoretical values. We note that our results comply with
the theoretical values from [35] to within 5%. We also
note that, in [16], the occupation numbers were deter-
mined with the aid of the sum rule in the independent-
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Table 2. Effective proton mass on the nlj orbit in *°Zr
] i /i, i
nlj
our study [5] [30]

205, 1.07 1.10

1G5 1.06

1o, 0.97 0.947

2Py 0.91 0.902

2P 0.94 0.917

1, 0.90 0.844 0.75

1f, 0.84 0.814 0.68

25,7 0.49 0543 0.65

10y, 051 0.554 0.63

1ds, 0.54 0571 0.59

1Py, 0.57 0.544 0.54

14 057 0525 053

1y, 0.50 0.384 0.50

rms

Table 3. Root-mean-square radii R,;” (in fm) of single-
particle proton orbitsin %zr

- Results of the calculation Experimental
our study (5] [31]* data [16]

2ds)» 5.60 5.63

19g/> 4.99 5.01 493 | 4.97(10)

2p12 470 477 463 | 4.57(9)

203 4.68 4.66 457 | 4.48(7)

1fe) 455 451 452 | 4547)

1f), 438 4.39 391 | 451(11)

25, 3.85 3.90 4.01 3.87

1ds, 391 3.90 4.08 3.99(10)**

1ds), 4.06 3.99 4.01

1py» 357 3.46

1ps, 3.65 353

1sy0 3.03 2.86

* Thetheoretical estimates of Negele and Vautherin [31] werebor-
rowed from the study of Den Herder et al. [16] (Table 11).

** Mean value for the 1d orbits.

particle model: N,; = §;;/(2] + 1). The spectroscopic
factors §;; extracted from data on (e, €p) reactions are
dependent on the choice of model. Presently, there are
no experimental methods that would makeit possibleto
determine occupation numbers in a model -independent
way. The discontinuity Z between the occupation num-
bersfor particle and hole orbits at E = E isfound here
tobe 0.47 (see Fig. 6). It was 0.53 in [5].
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Table4. Occupation numbers N,; for single-particle proton orbitsin Dzr

Results of the calculation ) Results of the calculation )

nlj our I;lx%en mtlaré- nlj our Ealxpc)jerl m(iré-

sudy | 15 | [33] | [34] | [35] |tal data[lo] sudy | 181 | [331 | [34] | [39] |t cta[ld]
2ds, | 0.134 | 0.131| 0.054 | 0.02 2s,, |0.87310.880 | 0.96 0.84 0.64
197 0.04 | 0.02 1dy, | 0.877 | 0.880 | 0.95 0.84 0.71*
19y, | 0.251 | 0.210|0.08 | 0.19 | 0.04 1ds,, | 0.892 | 0.891 | 0.96 0.85
2py» | 0.768 | 0.790| 0.86 | 0.65 | 0.76 0.36 1py» | 0.909 | 0.910 | 0.97
2p;3, | 0.794 |1 0.813|0.88 | 0.88 | 0.77 0.56 1py, | 0.912 | 0.913 | 0.97
1fg, | 0.779 | 0.804|0.90 | 0.86 | 0.78 0.60 1s;, |0.922|0.928 |0.98
1f;, | 0.830 | 0.845|0.93 | 0.97 | 0.80 0.68

* Mean value for the 1d orbits.

6.5. Spectroscopic Factors of States

The spectroscopic factors for nlj single-particle
states were computed by the formula[1]

00

Sy = jnﬁu(r)[m/m(r,En.j)]dr. (6.11)

The §;; values obtained in the present study are quoted
in Table 5, along with the results of the calculations
from [5] and the experimental data from [16, 18-21].
Our predictions are closeto thosefrom [5] for all levels,

Xpt

with the exception of the 1s;,, one. The values S

show a wide scatter and deviate strongly from the cal-
culated values. Among the reasons behind the wide

scatter of S, we can indicate the following. Spectro-

scopic factors extracted from data on one-nucleon-
transfer reactions are sensitive to the parameters (in
particular, to geometric parameters) of the potential for
the proton bound state in a hucleus and to the parame-
ters of the optical potentials for incident and scattered

Nn/j
1.0¢
0.8 ‘__—“\‘%\_E}
0.6- |
7.
0.4} |
L
02} \
E
O 1 1 IF‘

1 1 1 1
-60 -40 =20 0 E,MeV
Fig. 6. Occupation numbers for (closed triangles) particle
and (closed circles) hole orbits. The lines were drawn to

guidethe eye.

particles. In practice, it is impossible to take into
account all transitions in sum rules, since it is difficult
to detect weak transitions. Moreover, different defini-
tions for spectroscopic factors extracted from experi-
mental data are used in different studies. Therefore, a

comparison of hﬁ"r and ;7" should be performed
with caution. The spectroscopic factors §;; calculated
on the basis of (6.11) are “absolute” ones[1], but there
isno experimental information about the absol ute spec-
troscopic factors for the p + °Zr system.

6.6. Spectroscopic Functions and Widths of Levels

For nlj single-particle states, the spectroscopic func-
tions, which appear to be averaged energy distributions
of spectroscopic factors, were calculated by the for-
mula[1]

anj(E)
_ Shj W, (E) Oy, / mO (6.12)
(E—Epny)®+ [ (W, (E) T,/ m?’
where
(6.13)

wwmaDzjﬁﬂannEML
0

For the 1f,,, 1d;, + 1ds,, and 2s,,, states, the spec-
tral functions calculated with the aid of (6.12) are
shown in Fig. 7, along with the corresponding results
from [5] and experimental datafrom [16].

The full spread widths at half maximum, I";, of nlj
single-particle states were calculated by the formula

rn'j = 2|]anj(Enlj)D/ Hﬂ:”/mD (6.14)

Table 6 presentsthe results of these cal culations and the
corresponding experimental datafrom[12, 16] for deep
hole levelsin *°Zr. We can see that the I ; val ues cal cu-
lated in the present study for the 1f;,, 1p,,, 1p;,, and
1s,,, states comply well with experimental data deter-
PHYSICS OF ATOMIC NUCLEI  Vol. 63
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Table 5. Spectroscopic factors S,; for single-particle proton orbitsin 0zr
' Results of the calculation Experimental data
nij
our study [5] (e, €p) [16] | (d,3He) [18] | (n,d)[19] | (CHe d)[20] | (d, n)[21]
2ds)» 0.670 0.682 0.83 0.435
1975 0.38
1995, 0.627 0.666 1.0 0.97
2py» 0.665 0.680 0.36(4) 0.90 0.85(3)
2p32 0.649 0.660 0.56(6) 0.98 0.45(13)
Ifg), 0.622 0.665 0.60(8) 148 0.13(7)
14, 0.637 0.670 0.68(9) 141
23» 1.070 0.959 0.64(8)
1dy, 0.989 0.896 0.71(10)*
1ds, 0.939 0.876
1py 0.811 0.833
1p3p 0.824 0.870
1o 0.880 1114

* Mean value for the 1d orbits.

mined for the first time in [12]. The calculated widths
Iy of the 2s,,, 1d;,, and 1ds,, states are greater than
the corresponding experimental values from [12] by
nearly 50%, but they agree well with data on (e, e'p)
[16]. On the basis of this comparison, we conclude that
the degrees of fragmentation of deep hole states can be
reliably predicted on the basis of the DOM.

7. COMPARISON OF THE MEAN-FIELD
PARAMETERS FOR THE p + 4Ca, *Zr, 2%Pb
SYSTEMS

It is of interest to compare the mean-field parame-
tersfor the p + °Zr system that were obtained here and
in [5] with the corresponding parameters for the p +
40Ca, 208Pb systems from [7, 36]. For al of these sys-
tems, the values of the parameters ryr and ay are dis-
playedin Table 7.

Although the parameters in the dependence Vy;=(E)

[Vie (Ep), Vie (Ep), and A] take different values in this
study and in [5], the corresponding volume integrals
agree to within 3%. The values of rys as determined
here and in [5] agree to the same degree of precision,
whereas the values of ay differ by morethan 10%. The
mean geometric parameters of the Hartree—Fock com-
ponent that were evaluated in the present study are
close to the geometric parameters of the real part of the
conventional-optical-model potential for the p + *Zr
system (ry = 1.23fm, a, = 0.68 fm) [37].

It should be noted that the total reaction cross sec-
tions calculated with the mean parameters from [5],

o.M (Ey), are larger than o™ from [11, 28] by about

10%. This indicates that the mean parameters from [5]
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should be refined. The values o-°"(E,) as computed
with the mean parameters from the present study com-

ply with the corresponding estimates from [11, 28] to
within 3%.

@ + Dy
Ry=
2b || Vs,

1f7p

1,

Fig. 7. Spectral functions for the 1f;,, 1d;/, + 1ds,, and
2s), single-particle orbits: (solid curves) results of our
present calculation, (dashed curves) results of the calcula
tions from [5], (dash-dotted curve) our present results for
the 1ds), orbit, (dotted curve) our present results for the
1d;, orbit, and (points on the histogram) experimental data
from [16].



412

Table6. Total widthsT,; (inMeV) of single-particle proton
levelsin®zr

" Results Experimental data
J of our calculation [12] [16]

15, 1.91 2.03(0.89) 6.7(1)
3.1(6)

2s10 10.59 3.65(0.63) 10(2)
8(2)

1dg, 9.79 4.46(0.79) 7(2)

1ds, 12.18 7.57(0.76) 13

1pyyn 10.65 9.18(0.88)

1ps 12.04 15.55(0.95)

1sy, 17.94 18.78(1.0)

Table 7. Parametersrye and ayg of the Hartree--Fock com-
ponent of the mean field

Nucleus e, fmM aye, fm References
40ca 1.20 0.73 [36]
0zr 1.217 0.76 [5]
0zy 1.24+0.04 | 0.68+0.02 | Our study
208pp 1.225 0.71 [7

A detailed analysis of 0=*'(@) and o}" (E,) for the
energy range 6.35 MeV < E < 16 MeV was performed
in [25]. Processes | eading to compound-nucleus forma-
tion and to the excitation of isobaric analogous reso-
nances were taken into account there at low energies.
All the parameters of the dispersive optical potential,
with the exception of ryg, ayg, ry, and ay, were fixed in
accordance with [5]. In varying these four parameters,

the volume integral I (E) was required to be fixed at

the values corresponding to the parametrization from
[5]. The parameter values were tabulated in [25], and
graphs illustrating the qualities of relevant fits were
also presented there. The values averaged over the sets
rue(E) and ayR(E,) proved to be ryp= 1.26 £ 0.02 fm
and ay = 0.65 + 0.04 fm; that is, they are consistent
with the results obtained here.

The results of Mahaux and Sartor [6], who used the
variational moment approach to determine the mean
parameters of the Hartree—Fock potential for the p +
40Ca system, also agree with the value of ay; from the
present study. It should be recalled that, in the varia-
tional moment approach, the parameter ay is a priori
introduced as the mean value of the diffuseness of areal
conventional-optical-model potential and that the
parameter r; and the dependence V(E) are obtained
on the basis of avariational procedure (see[6]). Within
the variational moment approach, the correctness of a
determination of ayg istested by requiring that the cal-
culated and measured values of E;, a(8), P(6), and o,

ROMANOVSKY et al.

be in agreement, and it was established in [23] that this
isindeed the case. In the CH-89 systematization of glo-
bal parameters[9], aunified valueof ag=0.69 £0.006 fm
of the diffuseness of the real potential was established
for al 40 < A <208 nuclei. We can thus see that it is
close to the value of a;r = 0.68 £ 0.02 fm found in the
present study.

8. CONCLUSIONS

(i) We have analyzed data on proton scattering by
7r nuclel and data on the energies of protonic particle
and hole statesinthe A+ 1 and A— 1 (A =90) systems.
This analysis was performed within the dispersive opti-
cal-model version proposed in [8]. In order to deter-
mine the average parameters of the mean-field poten-
tial, we have used the geometric parameters of the
imaginary potential from the CH-89 and CH-89* sys-
tematizations (see [9] and [11], respectively). In afree
determination of the remaining three parameters of the
Hartree—Fock component, this has made it possible to
reduce considerably the ambiguity in evaluating the
mean-field parameters and to achieve agreement
between the calculated and measured differential cross
sections for elastic scattering, polarizations, total reac-
tion cross sections, and positions of single-particle lev-
els to a precision better than 5%. The predictions that
we have obtained here for single-particle properties of
bound states agree with the results presented by Wang
et al. [5], who deduced the parameters of the mean field
by averaging the individual parameters for the p + *°Zr
system.

That the results of our calculations comply well
with experimental data both for E > 0 and for E< O
gives sufficient grounds for using the proposed disper-
sive optical-model version to deduce information about
the average parameters of the Hartree—Fock component
of the mean-field potential for 40 < A < 208 nuc-lei in
the energy range —60 MeV < E < +65 MeV.

(i) An analysis of (p, 2p) data on the positions
(energies) of hole levels in *Zr has revealed that the
Hartree—Fock component of the mean-field potential,
Vur(E), is a linear function of energy in the range
-60 MeV < E<E;.

(iii) The method proposed in [8] for determining the
parameters of the proton mean field has enabled us to
predict the features of single-particle proton states in
the A+ 1 and A—1 systems (A = 90) down to deep ones.
The predicted features of proton states in *°Zr are in
good agreement with currently available experimental
information.

ACKNOWLEDGMENTS

We are grateful to E. Stephenson for valuable con-
sultations; P. Kunz for kind permission to use the
DWUCK-4 code and for advice; M.G. Urin, V.G. Neu-
datchin, and N.P. Yudin for enlightening discussions;

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 3 2000



MEAN FIELD FOR THE p + %Zr SYSTEM

and to G.D. Satchler for stimulating our investigations
along these lines.

ACKNOWLEDGMENTS
Thiswork was supported by the Russian Foundation

for Basic Research (project no. 96-02-174024).

wN e

e

O N O

10.
11

12.

13.

14.

15.
16.

17
18

REFERENCES

C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991).
G. R. Satchler, Phys. Rep. 199, 147 (1991).

M. G. Urinand G. A. Chekomazov, | zv. Akad Nauk, Ser.
Fiz. 59 (5), 2 (1995); G. A. Chekomazov and M. G. Urin,
Phys. Lett. B 349, 400 (1995).

M. G. Urin and G. A. Chekomazov, Yad. Fiz. 61, 435
(1998) [Phys. At. Nucl. 61, 375 (1998)].

Y. Wang et al., Phys. Rev. C 47, 2677 (1993).
C. Mahaux and R. Sartor, Nucl. Phys. A528, 253 (1991).
C. Mahaux and R. Sartor, Nucl. Phys. A503, 525 (1989).

E. A. Romanovsky et al., 1zv. Akad. Nauk, Ser. Fiz. 63,
980 (1999).

R. L. Varner, Phys. Rep. 201, 57 (1991).
R. F. Carlson, At. Data Nucl. Data Tables 68, 93 (1996).

E. A. Romanovsky et al., Yad. Fiz. 61, 37 (1998) [Phys.
At. Nucl. 61, 32 (1998)].

A. A. Vorob'ev et al., Yad. Fiz. 58, 1923 (1995) [Phys.
At. Nucl. 58, 1817 (1995)].

K. P Lieb, J. J. Kent, and C. F. Moore, Phys. Rev. 175,
1482 (1968).

C. M. Perey and F. G. Perey, At. Data Nucl. Data Tables
17, 1 (1976).
G. J. Weisd et al., Phys. Rev. C 54, 2410 (1996).

J. W. A. den Herder, H. P. Blok, E. Jans, et al., Nucl.
Phys. A490, 507 (1988).

A.N. Jameset al., Z. Phys. A 138, 145 (1969).
A. Stuirbrink et al., Z. Phys. A 297, 307 (1980).

PHYSICS OF ATOMIC NUCLEI  Vol. 63  No. 3

2000

19

20.
21.
22.
23.
24,

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

413

K. Bharuth-Ram, A. C. Bawa, and W. R. McMurray,
Phys. Rev. C 36, 1749 (1987).

G. Finkel et al., Nucl. Phys. A217, 197 (1973).

J. L. Horton et al., Nucl. Phys. A190, 362 (1972).

P. D. Kunz, Code DWUCK-4 (unpublished).

C. Mahaux and R. Sartor, Nucl. Phys. A484, 205 (1988).
E. A. Romanovsky et al., 1zv. Akad. Nauk, Ser. Fiz. 57
(10), 161 (1993).

E. A. Romanovsky et al., Izv. Akad. Nauk, Ser. Fiz. 60
(5), 32 (1996).

E. A. Romanovsky et al., 1zv. Akad. Nauk, Ser. Fiz. 62,
1056 (1998).

Y. Wang, C. C. Foster, E. J. Stephenson, et al., Phys. Rev.
C 45, 2891 (1992).

E. D. Cooper et al., Phys. Rev. C 47, 297 (1993).

J. P. Delaroche, Y. Wang, and J. Rapaport, Phys. Rev. C
39, 391 (1989).

Yu. V. Dotsenko, Doctoral Dissertation in Mathematical
Physics (St. Petersburg, 1996).

J. W. Negele and D. Vautherin, Phys. Rev. C 5, 1472
(1972).

A. C. Hearn, REDUCE User's Manual, version 3.6
[RAND Publ. CP78 (Rev. 7/95)].

M. G. E. Brand, G. A. Rijsdik, F. A. Muller, et al., Nucl.
Phys. A531, 253 (1991).

A. Kumar and M. R. Gunye, Phys. Rev. C 32, 2116
(1985).

D. van Neck, M. Waroquier, and J. Ryckebusch, Phys.
Lett. B 249, 157 (1990).

W. Tornow, Z. P. Chen, and J. P. Delaroche, Phys. Rev. C
42, 693 (1990).

A. J. Koning, J. J. van Wijk, and J. P. Delaroche, in Pro-
ceedings of a Specialists Meeting on Nucleon—-Nucleus
Optical Moddl up to 200 MeV, Bruyéres-le-Chétdl,
France (1996), p. 111.

Trandated by A. Isaakyan



Physics of Atomic Nuclei, Vol. 63, No. 3, 2000, pp. 414-421. Translated from Yadernaya Fizika, \ol. 63, No. 3, 2000, pp. 484-491.

Original Russian Text Copyright © 2000 by Grudzevich.

NUCLEI

Theory

Temperature Dependence of Radiative Strength Functions
and | someric Cross Sections

O. T. Grudzevich*

Institute of Atomic Power Engineering, Obninsk, Kaluga oblast, 249020 Russia
Received September 28, 1998; in final form, March 23, 1999

Abstract—The effect of a parametrization of the temperature dependence of radiative strength functions for
electric dipole transitions on the cross sections for isomer excitation in (n, y), (n, 2n), (n, p), (n, ), (Y, Y), (Y, 1),
(Y, p), and (y, 2n) reactionsisinvestigated. It is shown that the agreement of the results of calculations with the
observed isomeric cross sections can be considerably improved by using the proposed method. © 2000 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Investigation of mechanisms that populate isomeric
levelsin nuclear reactionsis of great topical interest in
nuclear physics, since this makes it possible to obtain
answers to some important questions concerning the
structure of nuclei and the ways of isomer deexcitation
and to refine methodsfor calculating theoretically thefea
tures of nuclear reactions. An accumulation of avast body
of experimentd data on the cross sections for the produc-
tion of nucle in specific states provides a testing ground
for new theoretica approaches that extends over wide
ranges of excitation energies and target mass numbers.

According to[1], isometric states are populated pre-
dominantly via a cascade deexcitation of a nucleus
excited in some reaction and via a direct population of
an isomeric level upon the emission of primary parti-
cles or photons. These mechanisms, which saturate,
respectively, 80-90 and 10-20% of relevant cross sec-
tion, are operative even in reactions where nonstatisti-
cal effects dominate the formation of the total reaction
cross section. Although being different in some details,
current theoretical methods for calculating isomeric
cross sections all employ two functionals to evaluate
the population probability for a specific nuclear state,
the level density in a nucleus and radiative strength
functions. Most often, physicists involved in relevant
investigations attribute discrepancies between the
results of calculations and experimental cross-section
values to uncertainties in the spin-dependence of the
level density, assuming that radiative strength functions
have a less pronounced effect on the results of the cal-
culations in question and that they have been deter-
mined to a higher precision than the level density of
nuclei with high angular momenta, which is based on
theoretical predictions alone. By analyzing experimen-
tal data on the spectra of photons from the deexcitation
of nuclel formed in neutron-induced reactions, it was

* e-mail: grudz@iate.obnisk.ru

shown, however, [2] that it is necessary to refine meth-
ods for calculating radiative strength functions. The
method for calculating E1 radiative strength functions
fri(E,, T) that takes into account quasiparticle fragmen-
tation and which was proposed by Kadmensky, Marku-
shev, and Furman [3] (KMF method) can be modified
by introducing a parametrization of f;,(E,, T) in such a
waly asto describe the features of the observed radiative
transitions between discrete levels. It turned out that,
when the temperature of theresidual nucleus, T = const,
is used as an adjustable parameter, which has the same
value for all excitation energies (KMF method of con-
stant temperature, quoted in the following as KM
CT), the upper limit on the experimental values of radi-
ative strength functions is reproduced satisfactorily for
photon energies £, < 3 MeV.

Among the models that were invoked to calculate
relevant cross sections, we would like to mention the
statistical model of nuclear reactions that takes into
account the laws of total-angular-momentum and parity
conservation, the cascade—evaporation model of the
decay of an excited nucleus [4], and the generalized
superfluid model [5] (it is used to calculate the level
density together with parameters appearing in it). Typ-
ical examplesillustrating changes exhibited by the pho-
ton spectra in response to modifications in the method
for calculating f, are given in Fig. 1. For all four iso-
topes of tungsten, the use of the KMF-CT method
improves considerably the agreement with the experi-
mental spectra of photons [6], a result that can hardly
be achieved within the other methods. By way of exam-
ple, weindicate that areduction of the slope of the com-
puted spectrum as great as is needed for this would
require changing the level-density parameters by 10—
20%, but thisisincompatible with available dataon the
density of neutron resonances. By using strength func-
tions as determined on the basis of the KMF-CT
method, the agreement with experimental data was
improved for awide range of target nuclei in (n, y) and

1063-7788/00/6303-0414%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Spectraof photons from the (n, y) reactions on tung-
stenisotopes 182 183 184,186y 5t £ = 0.5 MeV: (histogram)
experimental data from [6], (dashed curves) results of the
calculations employing E1 strength functions as determined
on the basis of the KMF method, and (solid curves) results
of the calculations employing E1 strength functions as
determined on the basis of the KMF-CT method (T =
0.1 MeV).

(n, n'y) reactions and for a wide range of incident-neu-
tron energies (10 keV-14 MeV). The results of the cal-
culations of the isomeric ratios for radiative thermal-
neutron capture were also improved radicaly in this
way [2].

The present article reports on a continuation of a
series of studies devoted to developing theoretical
methods for calculating isomeric ratios [1, 2]. It is
aimed at further verifying the applicability of the
KMF-CT method viaan analysis of isomeric cross sec-
tions for neutron-induced and photonuclear reactions.

2. NEUTRON-INDUCED REACTIONS

In radiative thermal-neutron capture, isomeric ratios
may undergo giant variations whose scale amounts to
ten orders of magnitude. In view of this, the most seri-
ous difficulties arise in interpreting these observable
isomeric cross sections. Agreement between the mea-
sured and calculated values within a factor of 2 would
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Fig. 2. Comparison of the measured and cal cul ated ratios of
isomeric cross sections (o,,/0,) for radiative thermal-neu-
tron capture. Experimental data were borrowed from [7].
Open and closed circles represent a comparison of experi-
mental data with the results of the calculations employing
E1 strength functions as determined on the basis of, respec-
tively, the KMF and the KMFCT (T = 0.1 MeV) method.

be a great success, but this has not yet been achieved
[1]. In an attempt at improving the agreement between
theoretical and experimental results, it therefore seems
natural to use the KMFCT method in calculating,
above all, isomeric ratios r = 0,,/a4 for (n, y) reactions
induced by thermal neutrons. A display of the general
situation is given in Fig. 2, which shows, along with
experimental datafrom [7] and theoretical results from
[1], results obtained with the strength functions calcu-
lated by the KMF-CT method (T = 0.1 MeV) for 89
isomeric states of nuclei from *Na to 2!°Bi. Perfect
agreement has not yet been reached, but the cal cul ated
values have a clear tendency to change in the desired
direction. Indeed, some points moved aong the
abscissatoward the bisectrix corresponding to the coin-
cidence of the calculated and experimental values. Fig-
ure 2 shows neither data on the reaction '¥Os(n,
y!?°0s"(10-)—here, the measured isomeric-ratio value
is 10-5, while the corresponding values calculated on
the basis of the KMF and KMF-CT methods are 8 x
107 and 6 x 107°, respectively—nor data on the reac-
tion 7"Hf(n, y)'7®Hf"2(16*), which were discussed in
[2]. It isfor these two isomers, which are characterized
by high spin values, that the experimental isomeric-
ratio values can be reproduced with no reasonable vari-
ationsin the spin dependence of the level density.

Of course, the partial cross sections for (n, p) and
(n, a) reactions leading to the formation of nuclei in
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Fig. 3. Comparison of experimental and cal culated values of the cross sectionsfor (1, p) reactions|eading to theformation of residual
nuclei in (a) ground and (b) isomeric states. The notation for the pointsisidentical to that in Fig. 2.

ground and isomeric states are less sensitive to modifi-
cations in the method for calculating radiative strength
functions. Thisis because, in such reactions, the forma-
tion of acompound nucleus by neutrons having abroad
spectrum of orbital angular momenta is accompanied
by a substantial averaging of the features of the isomer
population over the total angular momentum. The same
occurs when the residual nucleusis populated by emit-
ted particles having broad energy spectra and, hence,
broad angular-momentum spectra. This explains iso-
meric-ratio values, which lie, as arule, in the interval
0.1-1.0, and a weak sensitivity of the results to some
parameter or functional of the model. Nonetheless,
modifications in the method for calculating radiative
strength functions affect the results of the calculations
for isomeric cross sections. As a rule, the modified
results are in better agreement with experimental data
(seeFigs. 3and 4). Errorsindicated in Figs. 3and 4 are
not experimental uncertainties proper; in fact, they rep-
resent the scatter of cross-section values quoted by dif-
ferent authors. The present comparison was performed
not only for neutron energies E, between 14 and
15MeV but also for other energy values from the

region E, < 20 MeV scanned with a step of 1 MeV.
Thus, each point in Figs. 3 and 4 represents a compari-
son of the calculated and experimental partial cross sec-
tions for neutrons with energies from E,, to E,, for a
reaction resulting in the formation of a given residual
nucleus. Of course, the statistical significance and the
meaning of different pointsare different, but | think that
thisway of comparison is the most appropriate one for
qualitatively representing the situation for agiven reac-
tion over the entire interval of energy.

For testing the method being discussed, (2, 2n) reac-
tions are less suitable, but representative examples can
be found in this case as well. Quoted below are typical
cases of desirable and undesirable changesin the calcu-
lated cross sections. An example where the modifica-
tion to the method for calculating the E1 radiative
strength function leads to a change improving the
agreement between the theoretical and experimental
values of the isomeric ratio is given in Fig. 5, while
some examples where there are no such changes—
although they are expected for the reactions ''>In(n, 2n)
and &Rb(n, 2n)—areillustrated in Fig. 6.
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Fig. 1.
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Fig. 6. Asin Fig. 5, but for °>Mo, 3'Rb, and !°In target
nuclei. Points represent experimental datafrom [8-10]. The
notation for the curvesisidentical to that in Fig. 1.
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Fig. 7. |somer excitation functionsfor the (y, y) reactionson
(a) OHf and (b) 1%°0s nuclei. Points represent experimen-
tal datafrom [12]. The notation for the curvesisidentical to
that in Fig. 1. The computed cross sections were not aver-
aged over the bremsstrahlung spectrum.

Thus, evidence that the new method for calculating
radiative strength functions makesit possible to remove
some pronounced discrepancies between the theoreti-
cal and experimental values of isomeric cross sections
has been obtained for neutron-induced reactions. In
many cases, the new values deduced for the cross sec-
tions are closer to the experimental values.

3. PHOTONUCLEAR REACTIONS

A vaster part of experimental data on photonuclear
reactions leading to the excitation of isomeric levels
come from experiments employing bremsstrahlung
photons [11-16]. This circumstance complicates a the-
oretical analysisof such data, sincethe observed energy
dependence is smoothed, so that information about the
bremsstrahlung spectrum is required for averaging the
computed cross sections. Nonethel ess, the datain ques-
tion are of considerable interest for the following rea
sons: (i) The input reaction channe is unique. (ii) The
possibility of constructing a consistent description of iso-
meric cross sections can be extended to a wider set of
data. (iii) The datain question furnish fundamentally new
information about the excitation of high-spinisomersand
about reactions occurring on isomeric targets [11].

That the sengitivity of photonuclear reactions to the
spin characteristics of both target nuclei and residual
nuclei isincreased because there are only two dominant
waves—those of multipole orders A = 1 and 2—in the
input reaction channel isaproperty common to all such
reactions viewed as a source of information about the
population isomeric levels. Hence, the populations of
isomeric levelsof theresidual nucleusthat differ in spin
by a few units provide some sort of a proving ground
for methods used to calculate radiative strength func-
tions. In implementing such tests, however, it is neces-
sary to be confident that the deexcitation of the residual

GRUDZEVICH

nucleus via radiative and radiation-free transitions has
been simulated correctly. The method for mixing the
states of the decaying nucleus that belong to bands hav-
ing different values of the projection K of the total
angular momentum on the symmetry axis (selection
rulesin K) may be an additional source of errorsin the
model used. It is well known that transitions between
such states are characterized by the forbiddenness
degree dependent on the difference AK = K, — K,, but
it is very difficult to take into account these selection
rulesin practical calculations. At this stage of our anal-
ysis of data on photonuclear reactions, we will there-
fore ignore the selection rulesin K (that is, we assume
perfect mixing of states) and try to find out whether it
is necessary to take them into account in describing the
observed isomeric cross sections, especially in reac-
tions of inelastic photon scattering. In part, the answer
to this question was given in [2], where agreement with
experimental dataon the cross sectionsfor thereactions
67Er(y, Y)'Er” and "Hf(y, y)!"’Hf" was achieved
without taking into account selection rules in K. Data
that are presented in Fig. 7 and which show that agree-
ment with experimental data from [12] is achieved by
modifying the method for cal culating the strength func-
tionf;, provide further evidence in favor of strong mix-
ing of bands with different K values. It is obvious that,
had the selection rules that forbid transitions between
bands with different K values been introduced in the
computational scheme, the calculated isomeric cross
sections would be reduced considerably because iso-
mers having high K values and appearing to be levels
on which the corresponding bands are built (band-
heads) are populated via a large number of successive
gamma transitions between the states of various bands.
Thus, we confirmed the qualitative conclusion of Oga-
nessian and Karamian [13] that the states in question
are strongly mixed. That agreement with isomeric cross
sections of so small a magnitude (107-10° b) was
achieved is a merit of the method for evaluating E1
strength functions that is tested here.

In establishing the mechanism of isomer popula-
tion, it is aways hazardous to rely on an analysis of
only one reaction—for example, '8°Hf(y, y")!8'Hf"—
because the model parameters can be strongly biased in
this specific case. The model itself then loses its origi-
nal meaning, and the mechanism underlyingitisin fact
not tested via a comparison with measured cross sec-
tions. A consistent description of the population of the
sameisomer in two or more reactions [say, 1*°Os™(107)
in the (n, y) and (y, y) reactiong] is free from this flaw
and is more reliable from the viewpoint of testing theo-
retical methods.

We continue our consistent analysis by considering
one more example, the excitation of the #Zr"(1/2") iso-
mer in the (y, n) and (n, 2n) reactions (Fig. 8). For the
first reaction, the results of the calculations with the
conventional KMF strength function deviate strongly
from experimental data, but the above change in the
method for calculating f, leads to quite reasonable
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100
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Fig. 8. Ratios of theisomeric cross sections(a,,,/0,) for the
(y, n) and (n, 2n) reactions leading to the population of the
isomeric pair of the 8Zr nucleus as functions of primary
energy [E, for (y, n) and E,, for (n, 2n)]. Points represent
experimental datafrom [9, 14]. The notation for the curves
isidentical to that in Fig. 1.

agreement. Improving the agreement for the (y, n) reac-
tion, the use of the radiative strength functions calcu-
lated by the KMFPT method does not spail it for the
(n, 2n) reaction.

The proposed method is not universal—in particu-
lar, it does not of course supersede the conventional
method for describing the isomeric cross sections and
yields by varying the spin-cutoff parameter of the level
density, o%. For example, it was shown in [1] that acon-
sistent description of the isomeric ratios for '?Eu”(8-)
from (n, y) and (n, 2n) reactions can be obtained by
reducing o in relation to its value corresponding to the
rigid-body value of the moment of inertia of the

nucleus, ofigid . Thismethod is additionally validated by
thedatain Fig. 9, where the experimentally determined
ratio Y,,/Y, of the yields from the reactions '>'- 1>*Eu(y,
n) [15] are reproduced precisely upon changing o?.
That changing this parameter is a viable procedure is
further evinced by the datain Fig. 10, where we can see
that the modification to the method for cal culating radi-
ative strength functions affects the results only slightly,
but that the reduction of o2 leads to satisfactory agree-
ment with experimental data [16].The modification to
the method for calculating E1 strength functions has
virtually no effect on the results of the calculations for
isomeric cross sections in Fig. 10 because the differ-
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Table 1. Features of ground and isomeric levels populated in the reactions analyzed in the present article

Reaction a7 Jg Jn Reaction J7 Jg Jn
825¢(n, 2n)®lseM o v 7/2F || PSEu(y, n)t%um 5/2* 5 0
845e(n, 2n)83Se™ ot 92 32 || 158Eu(y, n)iS2EUm™ 5/t 3 0,8
15| n(n, 2n)t4nm 9/2* 1* 5+ 1900g(y, y)1%0s™ o o* 10-
87Rb(n, 2n)26RH™ 32 2 6 190 p(y, y) 194 rm 32+ 3/2* 112
2Mo(n, 2n)*Mo™ o* /2 U2 ||97Auy, v)'Au™ 3/2* 3/2* 112
0Zr(y, n)8zrm 0* 92t 12

Table 2. Ratio of theyields of isomeric and ground states (Y,,/Y,) from photonuclear reactions on Taand Hf isotopes

Reaction \]:T Jg JTan (Ym/ Yg)expt (Ym/ Yg)cdcl (Ym/ Yg)calcz
180Hf (y, y)180HfM 0* 0* 8 0.0029 2x10° 3x10°
180T aM(y, 2n)L78Tam 9 1 s 3.0 15 14
180T aM(y, p)L7oHf™ 9 9/2* 25/2~ 0.09 0.045 0.045
L9t (y, y)17OH™2 9/2* 9/2* 25/2- 0.0014 2 %1077 7x10°
84t (y, p)Lum 0* 712t 23/2- <0.005 9x 10~ 2x10°
L7842 (y, n)L7THf™ 16* 712 3712 0.12 0.19 0.19

Note: The experimental data quoted in thistable were borrowed from [11]; the cal cul ations were performed with the radiative strength functions

asdetermined on the basis of the (calcl) KMF and (calc2) KMF-CT methods. Presented in the table are the spin—parities J:T, J;[, and Jg
of the target nuclei, ground states of residual nuclei, and isomeric states of residual nuclei, respectively.

ence of the spins between the ground and isomeric lev-
elsof the !Ir and ' Au nuclei ismoderately small (see
Table 1). For thisreason, it does not seem reasonable to
introduce the above selection rulesin K.

Y,/Y,
o HEY P)
0 E :ﬁ_ — _+_ — _*_T*
107!

‘S‘Taw,p)¢I 4 G

TTTTT
\
\
\
\
\

]
24 E,, MeV

Fig. 11. Ratio of the yields of the isomeric state 178Lu’”(9 )
and the ground state ! 7®Lu8(1*) from the reaction 1PHf(y,
p) and ratio of the yiglds of the isomeric state 180y HE"(8)
and the ground state "8OHF8(0™) from the reaction ' Ta(y
p). Points represent experimental data from [11]. The nota-
tion for the curvesisidentica to that in Fig. 1.

A theoretical analysis of the isomeric cross sections
for (y, p) reactions is complicated by nonstatistical
effects and by proton emission. At the sametime, it can
be hoped that selection rulesin K for transitions in the
residual nucleus are less important for these reactions,
aswell asfor all other reactions featuring particle emis-
sion, than for photon scattering. That a satisfactory
description of the isomeric ratios for the reaction
18I Ta(y, p)'*'Hf was obtained and that good agreement
with experimental data was achieved for the reaction
19Hf(y, p)!8Lu™ (see Fig. 11) support this assumption.

As can be seen from Figs. 7-11, our theoretical
model faithfully reproduces the energy dependence of
the isomeric cross sections for photonuclear reactions;
therefore, an analysis of data from [11], which were
obtained for one value of the photon energy, the end-
point energy of the spectrum, seems quite informative.
These data make it possible to study further the effect
of the spin characteristics of nuclel on the mechanism
responsible for the excitation of partial levels of resid-
ual nuclei. For some reactions, the measured and com-
puted yields of the isomeric and ground states are
guoted in Table 2, which shows that the use of the
KMF-CT method improves, by and large, the agree-
ment with experimental data. There remain, however,
glaring discrepancies for four reactions. It seems
strange that, despite a good description of the isomeric
cross section for the reaction "°Hf(y, y) (see Fig. 7a),
the corresponding values (Y,,,/Y ey @ (Y,,/Y ) cq dif-
fer by nearly two orders of magmtude Hence the cal-
culated value of the cross section for the population of
the ground state is strongly overestimated. In al prob-
ability, the cross section o, for the reaction
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9H1(y, y)'7°Hf2 is also overestimated, since the iso-
meric cross section for '"°Hf(y, y)!7’Hf” is reproduced
quitereasonably [2]. Following the same line of reason-
ing, we can assume that the calculated cross sections
for the population of states whose spins are close to the
spin J, of the ground state of the target nucleus [thisis
a,, for 8Ta(y, 2rn)'"Ta™ and o, for '"*Hf(y, p)'""Lu™]
exceed the corresponding experimental values. This
overestimation can be explained by the existence of
some barrier [13] above which states having different K
valuesare mixed freely, but below which selection rules
in K are operative. Indeed, a high-spin state is popu-
lated through a cascade of a large number of low-
energy transitions; hence, these transitions proceed
between highly excited levels—that is, they are unaf-
fected by selection rules in K. States whose spins are
closeto J, are populated with the highest probability via
one or two high-energy transitions, and these transi-
tions must involve subbarrier levels—that is, they are
guenched by selection rulesin K.

4. CONCLUSION

We have tested the method for calculating radiative
strength functions for electric dipole transitions that
relies on the particle-fragmentation approach having a
sound theoretical basis and on experimental informa
tion about transitions between discrete levels; it is
referred to as the KMF-CT method.

The results of the calculations have been compared
with avast body of data on the cross sections for neu-
tron- and photon-induced reactions occurring on A =
90-180 target nuclei and leading to the population of
isomeric levels.

It has been shown that the method that was proposed
by the present author with the aim of improving the
description of the experimental spectraof photonsfrom
neutron-induced reactions and which is based on a spe-
cific parametrization of the temperature dependence of
the E1 strength functions fz(E,, T) appears to be quite
an effective means for removing some significant dis-
crepancies between the experimental and theoretical
values of isomeric cross sections. For cases where there
are relevant experimental data, a consistent description
of the cross sections for isomer population in two reac-
tions has been obtained, which renders the testing of
the method more reliable.

A considerable discrepancy (up to two orders of
magnitude) between the measured and cal culated ratios
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of the yields of isomeric and ground states was found
for four photonuclear reactions leading to the popula-
tion of high-spin states. Possible reasons behind these
discrepancies have been analyzed, and the most proba-
ble one has been indicated: it isthe presence of apoten-
tial barrier affecting transitions between states having
different values of the projection of the total angular
momentum onto the symmetry axis of the nucleus.
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Abstract—It is shown that the new data on the excitation energy E,, . spectrum of the residual nuclear system
in the >-hypernuclear region in the reactions (K-, 1) on ?Be and in the reaction (K-, 1t*) on “He and 2C can be
described without assuming the existence of excited Z-hypernuclear states. The basis is formed by a smulta-
neous consideration of the quasifree = production and Z-nuclear rescattering (elastic and with ~ —» A con-
version) with allowance for the interference of the respective amplitudes. To answer completely the question
on the nature of the irregularities in E,, . spectrum, it is proposed to study the picture corresponding to the so-
called moving complex singularity of the triangle graph with X rescattering: the position and the width of the
peak in E., distribution should be appreciably changed with momentum transferred from the initial kaon to the

final pion. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

New BNL data on °Be(K-, T¢) reactions at
600 MeV/c in the Z-hypernuclear region [1] trans-
formed drastically the status on the problem of the
excited statesfor X nuclei. Asfollowed from the former
data (see, for instance, review [2]), there were clear
indications on the narrow peaks (I < 10 MeV) in the
excitation energy spectrum of the residual nuclear sys-
tems in the region near Z-hyperon production. For this
reason, the idea about the creation of excited hypernu-
clear states seemed to be quite attractive. However,
after its appearance, the problem of a small hypernu-
clear width was discussed, since due to >N — AN
conversion in the nuclear matter all estimations lead to
the widths exceeding 2040 MeV [2, 3]. Recent data
[see Fig. 1, where circles correspond to °Be(K-, 1)
reaction and squares to °Be(K-, 11*) one] exclude overly
narrow peaks but reveal the structures with the width up
to 20 MeV for (K-, 1) and 3040 MeV for the case of
(K=, 1) reaction.

Several questions should be cleared up: Do these
peaks call for the idea about the existence of X hyper-
nuclei or are they caused by the reaction mechanism
and, probably, by the near-threshold phenomena? If
there is a way to understand the problem without
hypernuclei, then how will the natural and doubtless
description be made through the simplest mechanisms?
Finally, are there crucial tests to clear up the question
about the nature of the irregularities in the excitation
energy spectrum of Z-hypernuclear systems? Below,
we will try to answer these questions.

* This article was submitted by the authorsin English.
** e-mail: dalkarov@sci.lebedev.ru
*** eemail: kolybasv@sci.lebedev.ru

The first goal of this study isto show that there are
the means to describe entirely a set of data on the reac-
tion °Be(K-, 1) and the reactions (K-, 1) on °Be, 1°C,
and “He nuclei without the idea on the existence of
excited Z-hypernuclear states (see Fig. 2d), but using
the Feynman graphs and taking into account the quasi-
free Z-hyperon production (Fig. 2a), the elastic rescat-
tering of X (Fig. 2b), and final inelastic interaction of
hyperon with the ¥ — A conversion (Fig. 2¢). In this
approach, the interference of the pole graph of Fig. 2a
and thetriangle graph of Fig. 2b should be essential. We

d*0/dQdE, pb/(sr 2 MeV)

60
3 ﬁ%
ﬁ 3o

T
O
oA
o+

40

5
25955

201 %

Q
0 Bono0000009 1 1 1 1 1 ]
=20 0 20 40 60
E. ., MeV

Fig. 1. The data of [1] on the differential cross sections of
thereactions “Be(K™, ) (circles) and °Be(K™, i) (squares)
at small anglesat 600 MeV/c. The solid curveisthe approx-
imation of the tail of direct A production used in Section 3.

1063-7788/00/6303-0422%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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will al'so emphasize some characteristic features of the
process °Be(K-, 11) distinguishing it against others.

Another purpose, and apparently the main one, isto
advance a theoretical method for final revelation of the
nature of the peaks in the excitation energy spectra in
order to give away to distinguish the peaks caused by
the existence of Z hypernuclei from the ones produced
by the reaction mechanism. Thismethod is based on the
analytical properties of the Feynman graphs. In our
case, the singularities of the nonrelativistic triangle
graph (see Fig. 2e) are close to the physical region; this
leads to the appearance of moving maximain the exci-
tation energy spectra as a function of the momentum
transfer from aninitial kaon to final Ttmeson. Note that
the extraction of this graph as a unique one is achieved
within the experiment if the A hyperon, produced by
the interaction of virtual Z hyperon with the intermedi-
ate nucleus, is detected. Therefore, a study of the dou-
ble differential cross sections (with and without A-
hyperon detection in the fina state) for A(K, )X reac-
tionsis an effective test to distinguish the main features
of the reaction mechanism.

The theoretical model is described in Section 2.
Kinematical relations between various differential
cross sections are given, and the detailed properties of
the amplitude for the triangle graph are discussed. Sec-
tion 3 is devoted to the procedure of °Be data processing,
in particular, to a difference method which was used to
extract the contribution of the (K-, 1) process on the
outer weakly bound neutron. The question about therole
of relative phase between the amplitudesfor pole and tri-
angle graphs (see Figs. 2a, 2b) is also discussed.

Thefina results for the (K-, 1T) reaction on °Be and
(K-, ") on °Be, “He, and *°C nuclei, which are in good
agreement with the experimental data, are givenin Sec-
tion 4. We also discuss possible reasons for the sizable
difference between the excitation energy spectrum for
9Be and the same quantities for “He and 1°C.

The picture of the moving triangle singularities is
discussed in Section 5. We present results of the calcu-
lations for the excitation energy spectra for the chan-
nelswith = — A conversion for different momentum
transfers from initial kaon to final pion. These results
show that the moving peaks in the excitation energy
spectra are observable experimentally. For comparison,
the excitation energy spectra with a hypernuclear state
production (see Fig. 2d) are also calculated. In this
case, the position of the peak virtually does not depend
on the momentum transfer.

The main results and concluding remarks are given
in the Conclusion.

2. THEORETICAL MODEL

We will consider the graphs of Figs. 2a—2c, where
the pole graph (Fig. 2a) represents the quasifree -
hyperon production. The triangle graphs correspond to
the rescattering of avirtual Z hyperon on the interme-
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Fig. 2. The graphsfor the processes (K™, 1t) on nuclei (a—d)
and a generic form of the triangle graph (e).

diate nuclear system without any conversion (Fig. 2b)
and taking the conversion into account (Fig. 2c),
excluding production of the Z-hypernuclear bound or
resonance states (this process would correspond to the
graph of Fig. 2d). Let us analyze more accurately the
general properties of triangle Feynman graphs before
making the fitting procedure. We will consider the gen-
eral form of Fig. 2eimplying that the particle 2 isthe
hyperon and that the particle 1 is the residual nuclear
system and the lower vertex stands in principle for the
aggregate of all the processes that occur when the X
hyperon interacts with the residual nucleus. We denote
by p; and E; the momentum and total energy of a parti-
clei in thelab system and introduce the notation

q = px_pza
W =[5, = [(my+ E—E)° g1

Here, Wisthe invariant mass of the system4 + ... +n,
consisting of the particles produced after = conversion
in anuclear medium. We shall henceforth be restricted
by transfers g small enough only and the quantity W
from a region where Z hyperon 2 can be assumed as
nonrelativistic. If we neglect the complications caused
by the spin structure of the amplitudes and restrict our-
selves to the consideration of the triangle diagram only
(Fig. 2e), then the quantity d?c/dWdg®> can be
expressed in terms of the differential cross section
do;,/dQ of the elementary reaction K-+ N —» 11+ %
(in c.m. frame of this reaction) and the total cross sec-
tion a,,(W) for the interaction of the = hyperon and the
nucleus 1[4, 5]:

1)

2 2
do M; M, Sy 2
2 3 2 2Ky
dwdq~ 41t mg(m, + my) py 5
S @
2
Glz(W)D:bx déxaw .
Here, s, = ms + m. +2m;E, pi™ is the momentum

of therelative motion of the particles1 and 2 inthec.m.
frame of particles 4, ..., n; and p, and p, are the
momenta of particles x and z in the c.m. frame of the
reaction 3+ x —= 2+ z The quantities y? and k pertain
to the nuclear vertex

A—1+3, 3)
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y? is the reduced vertex part [6] and determines the
probability of the virtual disintegration (3), and K =

J2my;€, € =m, + my —m,. The factor M is determined
by the structure of the triangle graph.

We will also need the differential cross section
d?0/dQdW for comparison with the experimental data.
It can be obtained from (2) in the following manner:

d’c
dwdg®

Wp,p;
E,
Pz— EO Px cos8

d’o _
dQdw

“)
21E,

where 0 isthe angle between particleszand x and E, is
the total energy of all particlesin the lab system.

We shall henceforth focus our attention on the quan-
tity M which determines the behavior of differential
cross section (2) as function of kinematical variables
(2). It is convenient to introduce dimensionless vari-
ables[7]

E _ m2 mA W_ml_mz
mgm, + ... + m, € ’
2 ) (5)
A = ™ q
- 2 2"
(m; +m,) K

The quantity M can be expressed through these vari-
ablesin the form of adoubleintegral in the momentum
space
o 1
1 F|(Kx)x2de|(z)dz
M = RJ'J' 2,2 .
1) (1+X)(X"+ N =& —2x/Az~in)

(6)

with x = p/k. Here, F(p) isthe form factor of the vertex
A — 1+ 3, normalized by the condition F,(ik) = 1; |
is the angular momentum of the relative motion of par-
ticles 1 and 3 in the nucleus A; and P, is the Legendre
polynomial.

In practice, it is hecessary to use the more general
formulas taking into account the realistic nuclear form
factor. In such a case, it is more profitable to operate
into the coordinate space where M can be expressed as
asingleintegral [4]

0%
M = 2'—rJLP(r)j|(J7\Kr)exp(—AKr+iBKr)rdr. (7
0

Here, j, is the spherical Bessel function, and the quan-
tity W(r) isintroduced by the equation

Fi(p)
p2+ 2

W(r) = 4’ | ji(pr)p°dp @®)
0

(inthe single-particle model it would be proportional to
the wave function for the relative motion of the parti-

DALKAROV, KOLYBASOV

cles 1 and 3). The quantities A and B are specified as
B=.§ A=0a £=0,

A=.-£, B=0a £<0.

Hereinafter, except Section 5, we will take the
amplitude of the lower vertex of Fig. 2e to be constant
aswe arefirst of all interested in the effects due to the
structure and analytic properties of the graphs. We
would like, whenever possible, to gain the results as
model-independent ones. As there are no reliable data
on sigma-nuclear interactions, we prefer not to rely on
the calculations using a 2—A optical potential. Let us
point to the detailed research of K—*He interactions
with avariety of theformsfor such potential [8]. In par-
ticular, it shows an appreciable dependence of the
results on the potential parameters.

Theamplitude M (6) for the graph of Fig. 2e hastwo
kinds of singularitiesin W: (i) normal threshold at W =
m, + m, and (ii) so-called triangle logarithmic singular-
ity which appearsin the complex plane. The position of
thetriangle singularity is determined by the value of ¢f.
Intermsof thevariables& and A, thetriangle singularity
isfound as

€))

g, = A—1+2iJA.

If we can approach closely to the position of the trian-
gle singularity point in an experimental investigation,
then the amplitude of atriangle graph would seemto be
a sharp function. Thus, it is possible to expect that a
bump in the W distribution will appear. The position
and width of the bump should be varied with . We will
discuss in Section 5 how this property of a triangle
graph can be verified.

(10)

3. PROCEDURE

Though the data[1] on the processes
*Be(K™, ) (11)
and

*Be(K™, 1) (12)

(see Fig. 1) do not exhibit any narrow structures, these
data, as we shall see below, contain a lot of physical
infformation and unexpected features (positions of
bump maxima, an absence of narrow near-threshold
peaks due to channelswith Z — A conversion, and so
on). The channel (11) represents X production on the
protons of the Be nuclei

Kp—mg (13)

and the channel (12) can be realized on the protons

Kp—mz (14)
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as well as on the neutrons

Kn—mz’ (15)
At 600 MeV/c, the cross section of the mode (14) is
much less than that of the mode (15) [2]. The data for
the channels (11) and (12) are quite different. The main
reason, evidently, is the very small binding energy
(1.67 MeV only) of the outer neutron in °Be. So it is
useful to isolate the part of the channel (12) cross sec-
tion which takes place on the outer neutron.

The zero in the excitation energy E,,. in the channel
(11) corresponds to the invariant mass W of the final
state consisting of =~ plus the ground state of 8Li with-
out relative motion, and in the channel (12) it corre-
sponds to 20 plus the ground state of 8Be. Thus, Eg, =
0 for events with the X hyperon in afinal state. The left
parts of the spectra in Fig. 1, related to E_ . < O, can
have their origin in the process of X production fol-
lowed by the conversion

SN — AN, (16)

aswell as (for the channel (12)) inthe“tail” of direct A
production. The estimation of this tail behavior in the
model of a quasifree A production shows its sharp
decrease in the interval of Eg from —20 MeV to zero.
It is inconsistent with the data on the channel (12).
Therefore, we take the model of a quasifree A produc-
tion followed by its rescattering. It leads to the result
shown by the solid curvein Fig. 1 (the normalization of
the curve is fixed by the experimenta point at E,,. =
—-20 MeV). In the following, the corresponding values
(the physical background due to the direct A produc-
tion) will be subtracted from the datafor channel (12).

The nucleus °Be has most probably a cluster struc-
ture consisting of the core (8Be or two o particles) and
the weakly bound outer neutron. So the reaction (12)
can proceed through four protons and four neutrons of
the core as well as through an outer neutron. The reac-
tion (11) can proceed only through four core protons.
We have simultaneously the data on both channels (11)
and (12). This allows us to isolate the partial cross sec-
tion for channel (12), which is specified by the outer
neutron, in assuming that the wave functions of the core
neutrons and protons are similar. For this purposelet us
note that the sum of the cross sections of the processes
(14) and (15) at 600 MeV/c are equal roughly to 90%
of the cross section of process (13). Thus, we can
believe that the contribution of the core neutrons and
protonsto the cross section of channel (12) is estimated
as 90% of the cross section for channel (11). Then, the
expression (o, — 0.90,) gives the contribution of the
outer neutron to the cross section of process (12). Here,
0, isthe cross section of channel (12) minus the contri-
bution of the tail from the direct A production. In the
following, we will compare the results of our calcula-
tions of process (12) with the result just of this differ-
ence procedure (see below the pointsin Fig. 4a).

In the subsequent calculations, we will use the wave
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function (form factor) of the outer neutron in °Be from
the n—o—a cluster model [9]. The corresponding form
factor for the core proton was not calculated in the clus-
ter model of [9]. At the first stage, we will use the p-
wave oscillator wave function with the parameter p, =
130 MeV/c [10]. To estimate the sensitivity of our
results to the shape of a wave function, we will aso
make some cal culations with a model p-wave function
of a“quasi-Hulthén” type

hoOl, 1o
W(r) Ckr 720 (a7

x (e—Kr _ 3e—(K +p)r + 3e—(K +2p)r _ e—(K + 3p)r)
which has a correct asymptotic behavior for r — 0
and for r — . Note at once that it does not alter the
results qualitatively.

Let uspresent at first several intermediate resultsfor
the reaction (11) at 600 MeV/c at small angles. Figure
3a shows the real and imaginary parts of the triangle
graph for asecondary interaction of the = hyperon with
the residua nuclear system (Figs. 2b, 2c¢) as functions
of Eg.. Aswas mentioned earlier, the cal culations were
carried out with constant amplitude of a secondary
interaction in order to clarify, first of al, what results
are connected to the structure of the graphs. Figure 3b
demonstrates the modul us squared of the triangle graph
amplitude. We can see that it has a sharp peak near
Eo = Owith thewidth about 15 MeV. The cross section
for the process represented by the graph in Fig. 2b

includes the phase-space factor proportional to ,/Eg,,

and it leads to the smoothing and shifting of the peak.
Thisis not so for the process with the conversion (16),
and the corresponding peak must also appear in its
cross section. Note that the peak of the same origin is
well known for the process (K-, 1) on the deuteron
[11]. The cusp structures are aso distinctly seenin the
results of calculations of stopped and in-flight K- inter-
actionswith “He [8, 12].

The solid curve of Fig. 3c presentsthe E,. distribu-
tion corresponding to the quasifree Z production (the
pole graph of Fig. 2a). The dotted curve showsthe same
for the triangle graph of Fig. 2b. We see that both the
pole graph and the triangle graph separately lead to the
bumps with the width 3040 MeV but with maximain
the region of 10 MeV and it is inconsistent with the
experimental data. However, the amplitudes of the
graphs of Figs. 2a and 2b interfere with each other.
Comparison of the real and imaginary parts of the tri-
angle graph in Fig. 3a indicates that its phase varies
quickly with Eg. and the result of the interference
should be nontrivial. The dashed and dash-dotted
curves in Fig. 3c are the results of calculations for the
sum of the graphs of Figs. 2a and 2b with the relative
phase equal to 0.411and 0.911, respectively. They dem-
onstrate that the position and the shape of the resulting
peak may be varied over awide range as aresult of rel-
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Fig. 3 The results of intermediate calculations for the pro-
cess IBe(K™, Tt): (a) real and imaginary partsof thetriangle
graph amplitude (solid and dotted curves, respectively); (b)
modulus squared of thetriangle graph amplitude; and (c) the
shapes of the contributions to the cross section from the
quasifree X production of Fig. 2a (solid curve), fromthe Fig.
2b triangle graph (dotted curve), and from two versions of
the account of the interference of the Fig. 2a and 2b graphs
with the relative phase 0.411 (dashed curve) and 0.91t (dash-
dotted curve).

ative phase variation. (Note, that this phase is not
known a priori because it is essentially determined by
the phase of the elastic Z-nucleus scattering amplitude
and by the possible variation of the phases versus
energy of the elementary processes (13)—15).) Large
interference effects were also noted in [8].

4. RESULTS

Let us go to the results for the best fit to the data on
the channels (11) and (12). Firstly, we are interested in
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a principal possibility of the description without the
introduction of Z nuclei. Therefore, at thispoint, wedid
not try to estimate the absolute values of cross sections
(at leadt, this demands that we account additionally for
theabsorptionininitial and final states), but we concen-
trated on the description of the shape of the E,. distri-
butions at small pion angles. For this reason, the nor-
malization factors of the Fig. 2a and 2b graphs and their
relative phase were taken as free parameters. Here, itis
necessary to make a few notes. As to an absolute nor-
malization, [8] shows that the theoretical calculations
for “He case lead to reasonabl e results when taking into
account kaon and pion wave absorption. The relative
contribution and phase of the Fig. 2b graph now cannot
be evaluated reliably due to a lack of information on
sigma-nuclear interactions. It is possibleto invert atask
into deriving information on sigma-nuclear interaction
from outcomes of a comparison of calculations with
experimental data. However, it is a theme of indepen-
dent research.

The solid curve of Fig. 4a shows the result of the
calculation for the sum of the Fig. 2a and 2b graphs
with the relative phase 1.3t for the reaction °Be(K-, 1r°).
It agrees with the datavery well. The dashed curve cor-
responds to “switching off” the triangle graph of
Fig. 2b; i.e. it represents the separate contribution of the
guasifree Z production (Fig. 2a). The contribution of
the Fig. 2c graph was not taken into account since the
experimental points at E.. < 0 are virtually equal to
zero.

Figure 4b dealswith the difference datafor the reac-
tion °Be(K-, 1), which have their origin in the process
on the outer neutron (see the preceding section). The
dotted curve shows the supposed contribution from the
process with the conversion = — A (Fig. 2¢). Essen-
tially, it isan analog of the curve in Fig. 3b normalized
to the point at E, . = 0, where the contributions of the
Fig. 2a and 2b processes go to zero. The solid curveis
the result of a complete cal culation with account of the
interference of the Fig. 2a and 2b graphs with the rela-
tive phase 1.91t The dashed curve is the separate con-
tribution of the quasifree process. We notice that the
cross section of the process (12) on the outer neutron
has the appearance of the peak in E,,. with amaximum
in the region of 8-10 MeV, the width of 15-20 MeV,
and can be described very well by the combination of
the Fig. 2a—2c graphs.

Having obtained the good results for the production
of Z-hypernuclear systems on °Be, we go now to the
description by the same method of the new data on the
reaction “He(K-, ) at 600 MeV/c [13]Y and on the
reaction ?C(K-, 1) at 715 MeV/c[14]. For “He, we use

Dwe will not consider now the process “He(K™, 1) where the
bound Z-hypernuclear state of “He was discovered [13]. Here, the
picture is more complicated due to presence of a resonance peak.
In principle, our model must describe the background including,
in particular, all data at Eg,. > 0. We hope to discussiit in another
work.

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 3 2000
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d26/dQdE, pb/(st 2 MeV)
30-

Fig. 4. (a) The excitation energy distribution in the reaction

9Be(K™, 1"). The data are from [1]. The solid curve is the
result of afull calculation. The dashed curve shows the con-
tribution only from the quasifree X production (Fig. 2a). (b)

Theexcitation energy distribution in thereaction ®Be(K™, 77) on
the outer neutron. The experimental data are obtained from
the data of [1] by means of the difference procedure
described in Section 3. The solid curveis the result of afull
calculation. The dotted curve is the contribution of the pro-
cesses with the conversion ~ — A. The dashed curve
showsthe contribution only from the quasifree > production
(Fig. 2a).

the s-wave oscillator wave function with the parameter
Po = 90 MeV/c which givesthe best fit to the data on the
process “He(e, ep)H [15]. For °C, we use the p-wave
oscillator wave function with the parameter p, =
80 MeV/c which gives the best fit to the data on the
reaction C(e, ep) in the ground and low-lying states of
1B [16]. Theresultsare shown in Fig. 5afor 2C andin
Fig. 5b for “He. Here, the dotted curves are the contri-
butions of the processes with the conversion normal-
ized to the points at E,,. = 0. The solid curves present
theresults of full calculationswith account of the inter-
ference of the Fig. 2a and 2b graphs with the relative
phase equal to 0.91tfor Fig. 5a and 1.31tfor Fig. 5b. The
dashed curves are the separate contributions of the
guasifree Z production. One can see that our simple
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Fig. 5. (a) The excitation energy distribution in the reaction

2¢(k-, 1) at 715 MeV/c for 4°. The data are from [12].
The solid curveistheresult of afull calculation. The dotted
curve is the contribution of the process with the conversion
> — A. The dashed curve shows the contribution only
from the quasifree Z production (Fig. 2a). (b) The excitation

energy distributionin thereaction 4He(K‘, ") at 600 MeV/c
for small angles. The experimental histogram is from [11].
The meaning of the curvesisthe sameasin Fig. 5a.

model provides a possibility to describe the data very
well.

Certainly, owing to use of large number of fitting
parameters, our description of the data on (K-, T¢) reac-
tions can be considered simply as a successful parame-
trization. However, the possibility of such parametriza-
tion was not obvious beforehand. We shall note that in
sigma-nuclear physicsthe use of alarge number of free
parametersisnot an unusual fact. Let usturn, for exam-
ple, to [12], where four parameters were used for the
description of stopped K- interaction with “He.

It is necessary to emphasize aso the following. In
our calculations it was assumed that the residual
nuclear system is in the ground state or in one of the
low-excited states. Thereis direct experimental dataon
thereaction (e, ep) for “He and *2C nuclei. It was found
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Fig. 6. |M |2 for the triangle graph of Fig. 2c with two-parti-
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Fig. 7. The excitation energy distribution in the reaction

9Be(K‘, T0') with three-particleintermediate statein the Fig. 2¢
graph. The solid curveistheresult of afull calculation. The
dotted curve is the contribution of the processes with the
conversion ~ — A. Thedashed curve showsthe contribu-
tion only from the quasifree Z production.

that the vertices of avirtual breakup of these nuclei to
proton and ground states of t and 1B give the main con-
tribution [17, 18]. The same is also noted for *2C case
in[19] devoted to the quasifree X productionin (K-, 11%)
reactions. There are no electron data on the vertex
°Be — n + ®Be. However, the evaluation in the (2o +
n) model [9] shows a preference of the transition to the
ground state of 8Be. Apparently, it is not so for the pro-
cess 9Be(K-, 1*). This case will be considered sepa-
rately in the following section.

5. THE CASE OF °Be(K-, 111) REACTION

The E,,.. distribution for the °Be(K-, 1t) reaction dif-
fers substantially from other casesin two aspects: (i) its
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maximum is shifted to higher energies at 25-30 MeV,
whereasin all remaining casesitisfound near 10 MeV,
and (ii) it contains afew events at E,. < 0 and virtually
does not |eave a place for the contribution of the narrow
near-threshold peak of Fig. 3b. Thus, the description pre-
sented in Fig. 4a was obtained without the contribution
of the conversion process and used certainly too large a
value for the oscillator parameter p, = 130 MeV/c. On
the other hand, proceeding from known values of the
cross sections of the elementary processes 6(Zp —
>p) and o(Zp — AAn), each of whichisabout 150 mb
in the Z-momentum region 100-200 MeV/c, it is pos-
sible to evaluate that the cross sections of the processes
of conversion and elastic 2~ rescattering should be of
the same order asthe cross section of the quasifree pro-
duction.

The contribution of the conversion process could be
explained if we assumed that the secondary % interac-
tionsin the lower vertices of the Fig. 2b and 2c graphs
proceed mainly inthe p wave. It resultsin smoothening
of the near-threshold peak and shifts it to the higher
energies[20]. However, this explanation does not seem
natural because there are no reasons for the special
behavior in just the °Be(K-, 11*) case. More plausible is
another explanation. It is assumed that continuum
states of the residual nuclear system8Li dominatein the
breakup vertex °Be — p + &Li. As a difference to the
4He and °C cases, there are no high precision data on
the °Be(e, ep) reaction. It is possible only to state for
which the available data [21] show a wide distribution
with respect to the proton remova energy and do not
contradict such a hypothesis. In that case, on the one
hand, the E,,. distribution from the quasifree X produc-
tion is shifted to the higher energies. On the other hand,
the intermediate state in the Fig. 2c graph becomes
three-particle or many-particle but not a two-particle
one. It changes the shape of near-threshold behavior
absolutely. Figure 6 shows the comparison of [MJ? for
the triangle graphs with two-particle (solid curve) and
three-particle (dotted curve) intermediate states. The
character of the dotted curve leaves room for the signif-
icant contribution of the conversion, keeping small
number of events at E,, . < 0. Figure 7 demonstrates an
example of successful description of °Be(K-, ") data
with considerable contribution of the conversion pro-
cess (dotted curve). Here, the dashed curve is the sepa-
rate contribution of the quasifree X production. The
solid curve isthe summary result with account of inter-
ference of the Fig. 2a and 2b graphs, the relative phase
being 0.3511 The value of the oscillator parameter p, =
115 MeV/cwasused. Itisclosetothevaueof 110 MeV/c
which issuggested in [21] for the region of large proton
removal energies.
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Fig. 8. (a) The modulus squared of the Fig. 2c graph ampli-
tude for the reaction 12C(K~, t") at momentum-transfer val-
uesq = (solid curve) 200, (dotted curve) 250, (dashed curve)
300, and (dash-dotted curve) 350 MeV/c. (b) The same with
the inclusion of the excited Z-hypernuclear state (Fig. 2d)
with the width 10 MeV and the mass corresponding to
Eecc = 15 MeV.

6. MOVING SINGULARITIES
AND THE MECHANISM OF 2-HYPERNUCLEAR
SYSTEM PRODUCTION

Strictly speaking, the good description of the data
on the (K-, 1) processes in the Z-hypernuclear region
by the simplest mechanisms does not exclude a possi-
ble contribution from Z hypernuclei. For a complete
and unambiguous solution of the reaction mechanism
problem, it seems efficient to use the theoretical predic-
tions which follow from the picture of moving complex
triangle singularities described in Section 2. As men-
tioned above, the presence of these singularities near
the physical region of areaction should lead to a maxi-
mum for Eg,. distribution. The position and the shape of
the bump must be varied with the momentum q trans-
ferred from theinitial kaonto thefinal pion [5]. Numer-
ical caculations should show whether this effect is
noticeable or not. The contribution of the quasifree
2-hyperon production would conceal the above-men-
tioned effect. Therefore, it is more desirable to study it
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in the channels with the conversion ~ — A (i.e., with
the detection of A), where the Fig. 2a graph does not
contribute. To investigate the discussed picture, one
needs to measure the differential cross section
d?o/dE,,dqg?, which is directly expressed through the
modulus squared of the matrix element (see equation
(2)), inawide range of E, . and g.

For example, |et us consider the reaction 2C(K-, 1t").
Figure 8a shows the theoretical predictions for the
modulus squared of the Fig. 2c graph amplitude as a
function of E, for different values of q = 200, 250,
300, and 350 MeV/c. A distinct picture of moving and
broadening of the peak is visible. This picture is quite
available for an experimental observation.

The guestion is what would happen with the same
distributions in the case of Z-hypernucleus production
(the graph of Fig. 2d)? To answer the question, calcula-
tions were made with inclusion of aresonance state (a
Breit—Wigner pole was put in) with the width of 10 MeV
and the mass which was 15 MeV larger than the sum of
the masses of ~ and the ground state of the residual
nucleus. Figure 8b shows the results for the same set of
the momentum transfer. As could be expected, the posi-
tion of the maximum remains constant in this case. It
follows that the investigation of d?o/dE,,.dqg? would
make it possible to answer unambiguously the question
about the nature of the irregularities in the excitation
energy spectrum of the processes (K-, 1¢): whether they
appeared from the reaction mechanism or from the
existence of Z hypernuclel.

7. CONCLUSION

Thus, al considered data on the reactions (K-, T¢) in
the Z-hypernuclear region can be basicaly described
without the supposition on the existence of X hypernu-
clei. The bumpsin the excitation energy distributions of
theresidual nuclear systems are due to the peculiarities
of the reaction mechanisms.

The successful description of the available data by
means of the simplest mechanisms cannot completely
exclude the existence of hypernuclei. We tried to
emphasize that the decisive conclusion on this problem
can be made only through detailed investigation of the
>-hypernuclear system production mechanism. We
propose to study the cross section d?o/dE,,dg? at dif-
ferent values of momentum transfer g, since its behav-
ior strongly depends on the existence of X hypernuclei.
If the experimental investigations confirm the picture of
moving singularities, predicted in Section 5, and thus
the dominant contribution of the Fig. 3c graph in the
channels with the conversion, then it would be possible
to extract the cross section g, of the Z-nucleus interac-
tion using equation (2). In the future, this value of o,
could be compared with dynamical calculations.

Note that the considered picture of moving singular-
ities of triangle Feynman graphs in the case of rescat-
tering effects for Z-hypernuclear system production is
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universal. The same phenomena could be observed at
different kinematical conditions in other reactions, for
instance, A(e, e€K)X.
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Abstract—A collective adiabatic approach is used to explore the total and differential cross sections for the

reactionsd + d — p+ °H and d + d — n + 3He at incident-deuteron energies of up to 6 MeV. All substan-
tially contributing partial waves of order not higher than that of G waves are taken into account. The experi-
mental value of the difference of the cross sections for the above mirror reactions is reproduced theoretically
under the assumption that nuclear forces obey the condition of isotopic invariance. The positions and ampli-
tudes of the maxima in the calculated total cross sections virtually coincide with those of the corresponding
experimental values. It is shown that, around the maxima of the cross sections under study, dominant contribu-
tionsto them come from the P wave. The sensitivity of observablesto the parameters of nucleon—nucleon inter-
action isanalyzed. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Inelastic collisions of two deuterons are interesting
in that the experimental probability of n + *He forma-
tion in such collisions differs considerably from the
probability of p + *H formation in analogous collisions.
This leaves us on the horns of a dilemma asto whether
so pronounced a difference is due to the Coulomb
repulsion of protons exclusively or it results from vio-
lation of the isotopic invariance of nuclear forces. It is
obvious that only by means of a precise microscopic
calculation can we resolve this dilemma.

In this study, we use the dynamical equations of the
collective adiabatic approach [1-3], which describe
equally well problems of discrete and continuous spec-
tra [3-7]. An agorithm developed previously for
numerically solving these equations simplifies consid-
erably the task at hand, enabling us to focus primarily
on physical aspects of the problem.

Within the collective adiabatic approach, the fusion
of two deuteronswas analyzedin [8], wherethen + 3He
and p + *H channelswere combined into the unified N +
3N channel, where 3N is treated as a system of three
bound nucleons that is close either to *H or to *He. In
other words, the isospin T and its projection T, were
considered as conserved quantum numbers. In order to
determine the difference of the cross sections between
the above mirror processes that is due to the Coulomb
interaction, we do not assume here isospin conser-
vation.

2. CHOICE OF THE POTENTIAL
Asin any microscopic calculation, we run here into
an ambiguity in determining a phenomenological
nucleon—nucleon potential. Moreover, no version of

realistic nucleon—nucleon interaction is able to describe
precisely both a two-nucleon problem and the proper-
ties of extremely light nuclei that appear to be the prod-
ucts of the reactions under consideration. The only way
out of this situation consists in abandoning attempts at
describing phase shifts for high-energy scattering in
favor of alessambitioustask of constructing a potential
that would reproduce the entire body of low-energy
data.

Thus, it is necessary to choose a nucleon—nucleon
potential that makes it possibleto describe correctly the
following properties of nucleon—nucleon scattering:
(i) the triplet scattering length a; (ii) the triplet effec-
tiverangery; (iii) the singlet scattering length a (iv) the
singlet effective range r, (v) the deuteron binding
energy Eg; and (vi) the root-mean-sguare mass radius of
the deuteron, Ry. In addition, it is required that the *H
and ®He binding energies, E., and Es o also be repro-
duced.

This set of quantities can be closely approximated

with the central component V.. of the nucleon—nucleon
interaction alone. Moreover, we can use only the even

components Ve and Vs because the contribution of

the odd components Vo and V' to the binding ener-
gies of extremely light nuclei is negligible. Following

[3], we represent here the radial components v%' as
v = Afep(H(r/al)’) - A exp(~(r/a)"). (1)

The amplitudes A}, and radii a}’, of the repulsive
and attractive Gaussian potentials are specified as fol-
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Table 1. Calculated and experimental parameters of low-energy two-nucleon scattering and of extremely light nuclei in-

volved in the reaction under consideration

Parameters Calculation M easurement
Triplet scattering length &, fm 5.4122 541
Triplet effective ranger, fm 1.7475 175
Singlet scattering length ag, fm —23.719 —23.719
Singlet effective rangerg, fm 2.76 2.76
Deuteron binding energy E4, MeV 2.2246 2.224579
Root-mean-square radius Ry of the deuteron, fm 1.9667 1.9627
Triton binding energy E,_ , MeV .
g ay B, 6.5502 (0) 8.4822
8.491 (40)
Root-mean-square radius R; . of the triton, fm
Sq 3 1.6546 (0) 15556
1.814 (40)
Binding energy E; . of the ®He nucleus, MeV
g 9y Es 5.7885 (0) 77184
7.730 (40)
Root-mean-square radius R; . of 3He nucleus, fm
= *He 1.682(0) 1.703
1.851 (40)

Note: The values of K4 areindicated in parentheses.

lows. First, we determine the amplitudes A; , by fitting
parameters of the two-body problem at fixed radii a; 5.

After that, the radii a; , are fitted to the binding ener-
gies of the3H and *He nuclei.

The binding energies of the extremely light nuclei
were calculated by the method of hyperspherical func-
tions, the fundamental harmonic and all the potential
harmonics being taken into account in this calculation.
Constructing the NN-interaction matrix in this physical
basis is a crucia point in the present approach. One
possibleway of tackling the problem isto focus on ana
lytic manipulations, but this would lead to a very cum-
bersome final result and to poorly controllable calcula-
tions. Choosing ancther way, we apply our experience
gained in complicated computations of nuclear reac-
tions to the case of bound states. Only the averaging of
relative quantities over spin—isospin variables do we
perform analytically in the proposed procedure, relying
on an evaluation of remaining configuration integrals
by the method of random walks on a hypersphere. A
detailed account of the new approach will be given
elsewhere.

Implemented on the basis of modern computing
facilities, the Monte Carlo method is as good as ana-
lytic approaches, ensuring accurate numerical results at
a comparatively small number N of random walks. For
example, the number of N = 50000 is sufficient for cal-
culating the properties of the 3He nucleus, even though
grand orbital values as high as K = 40 are operative
here.

The best fit of the calculated values to experimental

data (see Table 1) is achieved at the following values of
the parameters in the potentia (1):

Al = 061127, AY = 3.67,

al' =095 a) =15,

AP =103115, A = 3.6463,
a; =07, a = 15.

Here, the energies and distances are measured in so-
caled nuclear energy units (NUE; 1 NUE =
20.738 MeV) and in fm, respectively.

Although theresultsfor thed, *He, and *H radii were
not fitted in determining the potential parameters, they
agree well with the experimental values.

To describe the fusion of two deuterons, the unified
pair nucleon—nucleon potential (1) will henceforth be
used for the entire four-nucleon system without invok-
ing additional free parameters, as should in fact be done
in a consistent microscopic approach. In the calcula-
tions, we will also employ a realistic nucleon—nucleon
interaction—specificaly, its versions that provide the
best description of the internal states of reaction prod-
ucts. This will enable us to assess the sensitivity of
observablesto the choice of nucleon—nucleon potential .

3. CONVENTIONAL METHOD
FOR CONSTRUCTING THE MAIN CHANNEL
HARMONICS

As soon as the Coulomb interaction V,, is taken
into account, the protons cease to be identical to the
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neutrons. Despite this, we can still employ the isospin
formalism. It should only be borne in mind that V
does not commute with squared-isospin operator T?;
therefore, the isospin is not conserved in the reactions
being considered.

The simple form (1) that we chose for the interac-
tion admits the conservation of the orbital angular
momentum L and of the spin moment S separately.
Therefore, al collision processes in the problem being
considered are characterized by five conserved quan-
tumnumbers: L, L,, S S, and T, (isospin projection).

All the reaction channels that are taken into consid-
eration here are numbered in the order of increasing
energy thresholds E; for these channels:

()p+°H, E,=-8.4822MeV,
(i) n+3He, E,=-7.7142MeV,
(i) d+d, E,=-4.4492 MeV.

In the collective adiabatic approach, aspecific func-
tion of the multidimensional angles Q;,_; = Q, that
depends on the hyperradius p as a parameter is as@om
ated with each channel. This function obeys the equa-
tion

(Q-1)U; = 0

where the operator Q has the form

)

O = [AgA g+ (3A 6)(3A— 4)}+v 3)

The e|genfunctions U, = Ui(p, Q) and the eigenvalues
I = li(p) are referred to, respectively, as the channel
function and as the channdl collective potential. These
are associated with a specific ith channel by consider-
ing their asymptotic behavior on a hypersphere of large
radius. As p — oo, the collective potential I; tends to
the energy threshold E; of the ith channel, while U; is
given by

i =1,23. )

Ui 0 0 Apoui Xi,
Here, the operator A permutes particles belonging to
different fragments in accordance with the require-
ments of the Pauli exclusion principle, while the com-

ponent X!“ describes the free motion of the fragments

in the space of angles. The superscripts on this compo-
nent represent the orbital angular momentum of rela-
tive motion, total internal angular momentum, and total
angular momentum of the entire system. An analytic
continuation of the expression on the right-hand side of
(4) to the region of finite p yields the so-called cluster

approximation U, which was successfully used to

describe the fusion reactiond + *H — n+ a [3]. The
cluster approximation can be improved by supplement-
ing it with a series of hyperspherical harmonics. Prior
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to this, however, the function UiCI is subjected to a har-
monic analysis aimed at optimizing the way in which
the functional space orthogonal to Ui‘:I isto be extended
in precisely solving equation (2) in the region where the
fragments overlap.

In a harmonic analysis of Ui°', akey roleis played

by the so-called main channel harmonic U; that
appears to be an eigenfunction of the operator ASA_ 5 of

main

multidimensional angles and which enters into UiCI
with amaximum weight. Thus far, a particular form of
UM™" has been established by directly selecting the

orbitals from the corresponding Slater determinant A x
A. Now that the range of the problems being considered
has been expanded—and especially in connection with
apartial-wave analysis with allowance for higher angu-
lar momenta—it isimpossible to dispense with the uni-
versal technigque for constructing the main harmonics.

We represent the function UiCI as a superposition of
its projections onto the subspace of harmonics with a
given value of K. For all channels that we know, this
expansion is dominated by the K = K, fundamental
harmonic. If this component is normalized to unity, we
obtain precisely the main harmonic U™". A specific
component is isolated by applying the projection oper-

ator Cx [9] as
Uy = Ckuy. )

According to [10], the kernel Ck (Q,, Q) of the inte-

gral operator Cx can be expressed in terms of the gen-
erating function as

A
\Y 1 2\ |:i ID
C(Q, Q) =Diedpl Y ppin  ©)
P i=1 O
Here, D isthe differential operator
v N-1
Dk = ——n—
o (3A-912
7
< [(N-1-m) o< 2" v
K—-2m — 1l
am Z( D2 TR 2m+ DaggF

where A=4,N=K + 3A-3)/2,v=3A-5)/2,and
p; = r; — R is the distance from the ith nucleon to the
center of mass R of the entire system.

In the expanded form, relation (5) reads

Uik(p, Q) = ICE(Qp, QUM (p, Q)dQ,.  (8)
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In choosing the contour of integration in (8), we must
take into account the cluster structure of Uf' —that is,
we must go over from the vectors p; to cluster variables.

Let A, be the number of particles in the g cluster,
and let RaJ beits center of mass. The position riaj of the

iaJ nucleon belonging to the a cluster is reckoned
from Raj,

(a)

p| - ria,_Ra-’
]

]

©)

and the vectors R, are measured from the center of
mass R of entire system,

M. = R, —R. (10)

We refer precisely to the vectors { pi(f_")} and{n,} as

cluster variables. In terms of these variables, the expo-
nent in the generating function in (6) can be represented
in the form

Zpi Cpi =

where the prime means that summation is performed
only over structure fragments.

For binary channels, the first term on the right-hand
side of (11) hasthe simple form

), (11)

ZA n, Chy + Z S ..’ b,

jll

i C A
z Aaj“e\j [hai - Tg [g ’ (12)
j=1

where € isthe distance between the fragments. We then
express the volume element in terms of the cluster vari-
ablesas

3¢-5)/2

z pa’D dQ

dp, dQ

1 D

daQ, =
p3(A q)D p

P Pout

(13)

(3a —4)

j=1
where dQ,, is the volume element of the multidimen-
siona angles Q,,, in the space of the centers of mass

{1]aj }, while Pa, is the hyperradius of the internd

motion of the fragment a. From the general expression
(13), we obtain the volume elements for the channels
under consideration:

p |:|1/2 5dp
dQ, = g [0 TP
oUpl p

3
p+°H, P T2

Y

ogo
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0 Pl +pal [Pacfdpe,
d+d, do, = @ -—25-%0 50
0 p° O Y
|j)d2|]2dpdz
X g7 —dQ, dQ, dQ;.

According to the expansion in (11), we break down
the generating function from (6) into factors and
expand each factor in relevant hyperspherical harmon-
icsas

OpA

A
eXpOS—F—
p

2 azé‘; (€' D anN i |[—m—m
Z 2Ba n g
p

(14)
J AlAZ

1+1/2 %2
() (a ) D (3A, =3)/2

eXIOD—zP 2

2 oy B0 R

K

.

X

O
K 3 DB ﬁ3A —5)/2 ki +3 [bzp' |:b'ajlj (15)

Ebzpl [pl

Va Va
x |U K;j(Qpaj)DHU K;j(QPaj)I’

where Ko = Kg + (BAy —6)/2, J(X) is aBessel func-
tion, Y, (n) stands for spherical harmonics, and

U\;‘ (Q,, ) is the hyperspherical harmonic for the
internal motion of the fragment a;.

The expansionsin (14) and (15) and the expression
on the right-hand side of (4) are further substituted into
the integral in (8). We single out a polynomial in 3 of
degree not higher than K, (or K,,;, + 2 in some cases

that occur in constructing the superposition of UiCI i =

1, 2, 3). Asamatter of fact, this polynomial is obtained
from lower terms in the expansion of the Bessel func-
tion appearing in (14) and (15). The results obtained by

further applying the differential operator D can be
derived easily. Numerous required integrals are calcu-
lated analytically with allowance for orthonormaliza-
tion in relevant spaces. As aresult, we arrive at general
expressionsfor main harmonics. For sake of brevity, we
present here specific results only for the channels of our
interest.

In order to implement this program, we need some
preliminary information about these channels and,
above all, about the values of the orbital angular
momentum | that are allowed by the Pauli exclusion
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principle and about K_;, as a function of this orbital
angular momentum (see Table 2).

We emphasize that al the structure fragments from
Table 2 represent S-shell nuclei. To ahigh accuracy, the
internal functions of these systems are reproduced by

the harmonics U\;’ (Q,, ) of minimum possible degree

Kaj = 0. For this reason, we restrict our consideration

to this basic approximation, where the internal angular
momentum j coincides with the total spin Sof the sys-
tem.

The eventual expressions for the main harmonics
are given by

U = ApL‘LIY“E%HEi(S), for K =1, (16)

main __
U =

~ u U
Apglut%ﬂ-_ (1+9/2) EPLNDEYHEEH:KS),

(1+32)0p O (17)

for K = | +2.

They possess definite values of the orbital angular
momentum (1) and of the spin moment (S). For the
potential (1), the calculated observables are indepen-
dent of theresult of composition of | and Sinto the total
angular momentum J; the expressionsin (16) and (17)
for U™™ correspondto J =1 + S Because the processes
under consideration are characterized by the isospin-
projection value of T, = 0, the quantum number of the
isospin projection is indicated explicitly nowhere. The
factor F,(S) in (16) and (17) is the spin—sospin compo-
nent of thefunction U™" having the quantum numbers
S,=Sand T, = 0. Specifically, we have

++

g
F.(0) = /?]_[3 -

—+
o
(18)

+

4

o

++
++

s = [Z7)
6Tt ||+—

(19)

Following [4, 7], we represent here the Slater determi-
nant in the form of a column that involves the spin—
isospin orbitals ||ut|} Recall that, as usual, a horizontal
line denotes the partition into clusters within which
orbitals are permuted. The spin—isospin function F,(S
of the second channel is obtained from F,(S) by merely
reversing the sign of the isospin 1. The functions F,(S
and F,(S are superpositionsof the T=0and T=1
states with identical weights.
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Table 2. Possible values of the quantum numbersin various
binary channels

% Orbital angular
Cramel | < 5 | of thereltive [Power of themain
&+ | motion of the '
=2 | fragments, |
5
p+3H,n+3He 0 Any |
p+3H,n+He | 1 | Any {I,forl>0
2,forl=0
d+d 0 Even |
d+d 1 | Odd |
d+d 2 Even {I,forl>0
2,forl=0

The spin of the system consisting of two deuterons
can take the values of S=0, 1, and 2 (only elastic scat-
tering ispossible at S= 2). Therefore, the set of the fac-
tors F5(S) is somewhat wider:

1
Fo(0) = ——
s 81./3
++| |-+ ++ +— ++ + g
<+ + |=| -l =| - |=* +1___+1__+E;
—+| [+ 2[++] 2|+ 2|+ 2|++|[
— |+= — —+ —+ b
E++ +4| [+ [+= E (20)
LUl = = o=+
Fa(1) = =035 -3 -||=| + |=
(D) 16T[E 4| [+ [++] [++ %
U =+ [+ [+-"
++
_ 14+
+—
It is assumed that the main harmonics U™" are always

normalized to unity—that is, formulas (16) and (17)
involve a normalization factor that is omitted here to
avoid encumbering the presentation.

main

In order to evaluate the contribution of U; " to the

normalization integral, we will need explicit expres-
sions for the cluster channel functions. They are close
in structureto their main harmonics, but the former also
carry information about the hyperradial motion of the
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Fig. 1. Overlap integrals of superpositions (26) for | = 0 that
arenormalized by the condition [W;|U,CF 1, where U isthe

main harmonic of the *He nucleus. The curves are labeled
with the channel numbers. The dashed curves differ from

the solid curves by the substitution of U id for U;.

fragments. For i = 1, 2, we have

U = ALV O (pIF(S), 1= 12,
where (l)éa) is the hyperradial function of the tritium
fragment (i = 1, a = *H) or of *He (i = 2, a = *He).
Denoting by d, and d, two identical fragments of the
third channel and by ¢(p,) the function describing the
hyperradial motion of the deuteron (the deuteron
hyperradius is pﬁ = 1/2r%, where r is the distance
between the deuteron nucleons), we obtain

A 3 -1, (dy) -1, (dy)

US = ALY EEEpii0s (pa)pittl” (0) P9
Further, we assume that UiCI is normalized by the con-
dition

w™Mufo= 1. (23)
(Hereafter, the symbol [I..]...[denotes integration with
respect to Q, and averaging over spin—isospin variables
of al nucleons.) In the case of this normalization, an
excess of the overlap integral (U™ |U Oover unity

main

directly demonstrates the weight with which U;
entersinto UY .

GORBATOV et al.

In order to analyze these overlap integrals, which
are shown by the dashed curvesin Fig. 1, we indicate
the critical values p,, at which the collective form of
motion givesway to acluster form. We make use of the
well-known representation of the hyperradius in the
form

2

A, A
P’ = =+ po, e (24)

Averaging this equality over the states UiCI and taking

into account the relation p; = AR, , where R, isthe
root-mean-square radius of the fragment a, we obtain

EFQH 03.02fm, p+ *H  channel

ERaHe 03.3fm, n+ *He channel (25)

A/€_3RdD5.6fm, d+d channel.

It can be seen from Fig. 1 that, in the case of the Swave
(I = 0), al three channels have a common main har-
monic and that U® ~ U™ in the region p < p,,.

For higher partial waves (I > 0), we similarly have
U® ~ U™" in the region p < p,, but the difference

between the main harmonics of different channels
becomes ever more pronounced with increasing .

4. VARIATIONAL SEARCH
FOR CHANNEL FUNCTIONS

In [4], a solution to equation (2) was sought in the

form of a superposition of UiCI . Inthe more recent study
[3], aseries of hyperspherical harmonics was added to
this superposition but the results for the calculated
observables were found to be virtually unchanged.
Bearing in mind this conclusion, we represent the
sought channel function U(p, Q,) in the form

3
Ui(p. Q) = 5 Cy(p)U7 (p)//UTUT (26)
i=1

The coefficients C;(p) are determined by minimizing
the functional

;|QluC

W;u;0°
The procedure of minimization was described in detail
elsawhere [3]; for this reason, we present here only the
final result for the case of the Swave (I =0, S=0). The

resulting coefficients C;(p) ensure orthogonality of dif-
ferent channels; that is, we have

WU0=0, i#j.

® = 27)

(28)
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Considering that, in the coefficients C;;(p), a constant
factor remains free, we choose it in such away that the
diagonal coefficients C;(p) are equa to unity for all p:

Ci(p) = L. (29)

This means that the normalization condition [W;|U;C= 1
is satisfied only in the asymptotic limit p — o, where
Cij(p) = &;. Owing to this, condition (29) makesit pos-
sible to evaluate quickly the interference of the cluster

functions UY for finite p values. That the coefficients
Cij(p), which are presented in Fig. 2, decrease rather

slowly indicates that the cluster functions US continue

to interfere far from the region where the collective
motion occurs (p > p,,).

Let us return to discussing data in Fig. 1. The solid
curves represent the overlap integrals

[U;|U,ZU™" UG, i = 1, 2, 3. The behavior of these
curves differs considerably from the behavior of the

dashed curves. Whereas the three functions U{ in the

Swave state have a common main harmonic of power
Kinin = O, the true channel functions (26) do not possess

this property—the main harmonics of UiCI do not gen-

erally coincide with the main harmonics of superposi-
tion (26).

The importance of the dataiin Fig. 1 becomes obvi-
ous when we notice that the character of the solid
curves alows us to draw some conclusions about the
behavior of thetotal cross section prior to calculating it.
Indeed, the orthogonality of the main harmonics U;(p,
Q,) indicates that they differ considerably in the space
of multidimensional angles Q,,. Itiswell known that the
intensity of inelastic processes is determined exclu-
sively by the overlap integrals of the partial derivatives
of these functions with respect to hyperradius,

m n
<—Q—U.‘—6——Uj , where m+ n < 2. In the case where

a m i apn

the main harmonics are different, these overlap inte-
gralswill obviously be small, and, accordingly, so will
the integrated cross section. The analysis of the fusion
reaction d + *H — n + a from [3] reveaed that the
main harmonics of thed + 3H and n + a channels coin-
cide. As a result, the total cross section has a pro-
nounced resonance with a large peak amplitude of
about 5 b. On the basis of the data in Fig. 1, nothing
similar should be expected in the total cross section for
the fusion of two deuterons.

Figure 3 shows the collective potentids I(p),
strength channel features that correspond to the coeffi-
cients C; displayed in Fig. 2. Only the collective poten-
tial |, has the shape of a potential well, the remaining
two potentials (I, and I;) being monotonically decreas-
ing functions over the entire region of the variable p.
This behavior is fully consistent with the above har-
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Fig. 2. Coefficients Cj;(p) in the linear combination (26) for
the Swave state.
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Fig. 3. Collective S'wave potentials l;(p) reckoned from the
corresponding energy thresholds E;.

monic anaysisof Uj(p, Q), reflecting the powers of the
main harmonics (K = 0 for the first channel and K > 0
for the second and the third channel).

5. FORMULAS FOR CALCULATING
CROSS SECTIONS

In the collective adiabatic approach, the wave func-
tion is expanded in a series in terms of the eigenfunc-

tions of the operator Q [see equation (3)]:

W= p YIS o (p)Ui(p. Q) (30)

The hyperradial expansion coefficients ®;(p) satisfy the
set of differential equations

2
Z<Uj‘_aa_pz+li(p)_E‘Ui>cDi(p) = 0. €19
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Fig. 4. Total cross section for the reactiond + d — n +
3He versus the incident-deuteron energy Eq (two upper
curves) and the contributions of various partia waves
(curvesS P, D, F, and G). Solid and dashed curveswere cal-
culated with the potential (1) and with the potential (42)
from [3], respectively. Experimental data were borrowed
from[11, 12].
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Fig. 5. Differential cross sectionsfor the reactions (curve /)
d+d— p+>Hand (curve2) d+d —> n+He at Ey=
50 keV. Experimental data were borrowed from [13].

Thereal symmetric K matrix [4] and the corresponding
unitary symmetric Smatrix are determined by studying
the asymptotic behavior of ®,(p) for p — co.

In expressing the cross sections for the relevant pro-
cesses in terms of the S matrix, it is necessary to con-
sider that identical particles collide in the input chan-
nel. Asiswell known, thisleads to an additional factor

of ./2 in the expression for the amplitude whose parity
coincides with the parity of the total spin Sof the sys-
tem of colliding deuterons. According to the numbering
of the channels, the fusion processes are denoted sym-
bolically as3 — 1and3 —~ 2. Theamplitudes f{ |

of these processes are related to the S'matrix elements

GORBATOV et al.

19 .
S( ~’; by the equation

1 ' i(5(3) +9(1)) AIS
8 = =5 (@2+1e 7 " p(cosh),
5 m,ﬂ ) S% Pi(cos). o

where k is the wave vector of the relative motion of the
two deuteronsinvolved, §(i) isthe Coulomb phase shift
in the ith channel, and P,(cosB) is a Legendre polyno-
mial. The primed sum is taken over | values whose par-
ity coincides with the parity of S We emphasize that
0,(2) = 0 in the case under consideration. The differen-
tial cross section for unpolarized deuteronsis expressed
in terms of the amplitude in (32) as

dos . _ 31, 2. 1.0 |2

o ol gl
Asusual, the nuclear component of the cross section for
alow-energy collision of charged particles can be con-
veniently represented in terms of the so-called astro-
physical Sfactor defined astheratio of the cross section
to the quantity e?™/E, wheren is the Coulomb param-
eter, aquantity that specifies the energy dependence of
the Coulomb cross section for low collision energiesE.
Thus, the Sfactor is given by

S(E) = E€™Mo; _, (34)

where g; _ ; isthe total cross section for the processes

d+d—p+3Handd+d — n+3He. In the case
under consideration, thisyields

S = 0.5E,exp(44.402E;)0; _ ;.

(33)

(35)

6. NUMERICAL RESULTS AND DISCUSSION

We first compare the calculated total cross section

05 _, ; With experimental datain order to test the viabil-
ity of the computational scheme used. There were sev-
era experiments that measured the total cross section
for thereaction d + d — n + 3He and which produced
consistent data. The results of our calculations are rep-
resented by the two upper curvesin Fig. 4, which repro-
duce qualitatively the behavior of the experimenta
Cross sections over awide energy range, the calculated
position and amplitude of the cross-section maximum
being virtually coincident with corresponding experi-
mental values. It isinteresting to establish the hierarchy
of the contributions to the total cross section from var-
ious partial waves. It can be seen that the main contri-
bution to the cross section o, _; comes from the P
wave. The reason why the Swave contribution is sup-
pressed was reveaed via the above harmonic analysis
(seeFig. 1). We now consider the difference of the cross
sections between thereactionsd+d — p+3 Handd +
d — n + *He. A comparison of the calculated and
measured cross sections shows their good agreement at
all values of the collision energy and all values of the
scattering angle. By way of illustration, Fig. 5 shows
PHYSICS OF ATOMIC NUCLEI  Vol. 63
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o,b
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E; , MeV

Fig. 6. Asin Fig. 4, but for the redlistic nucleon—nucleon
potentials GPT [15] and SSCg [16].

the differential cross sections for the two reactions
under consideration at the incident deuteron energy of
E, = 50 keV. Thus, data on the fusion of two deuterons
are compatible with the assumption of isotopic invari-
ance of nuclear forces.

The trend of the calculated total cross section
toward overestimating the experimental values at low
energies is of particular interest for astrophysical pro-
cesses. In the region Ey < 60 keV, the experimental S
factor isaslowly decreasing function tending to avalue
of about 55 keV b for E4 < 0. The calculated S factor
gualitatively reproduces this behavior, but its value is
twice as large as that determined experimentally [14].
In order to clarify the reasons behind so pronounced a
distinction, we considered a different version of
nucleon—nucleon interaction, that which is given by
equation (42) from [3] and which describes well exper-
imental data on the discrete and continuous spectra of
the five-nucleon system within the same collective adi-
abatic approach. This potential fails to reproduce data
on low-energy NN scattering, but it describes correctly
theinternal states of the fragments. A calculation of the
Sfactor with this potential changed next to nothing, but
the relevant total cross section somewhat increased
(Fig. 4, upper dashed curve). Thisindicatesthat the dis-
crepancy between the calculated and experimental

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 3 2000

439

results at low energies is caused by the inadequacy of
the cluster approximation (26), which should be
improved by adding a hyperspherical series (see
above). Thisis also confirmed by the curvesin Fig. 6
that were obtained with realistic nucleon—nucleon
forces. At the same time, we cannot rule out the possi-
bility that, at low energies, experimental data require
refinement.
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Abstract—Transverse-momentum distributions of light spectator fragments are analyzed by representing them
as superpositions of contributions from various interaction mechanisms. The temperatures and the collective
transverse momenta of light projectile fragments formed in Ne + Em and Si + Em interactions at momenta of
4.1-4.5 GeV/c per projectile nucleon are estimated under the assumption that these spectators are compressed
as the participant projectile nucleons traverse the target nucleus. This analysis reveals the important role of
sound waves in the transfer of collective momenta to spectator fragments. © 2000 MAIK “ Nauka/ I nter period-

ica”.

1. INTRODUCTION

Investigation into processes occurring in participant
and spectator parts of interacting nuclel and, in partic-
ular, into the interplay of such processes, which is due
to a central character of interactions, is an important
problem in establishing the mechanism of nucleus—
nucleus interactions.

Photoemulsion experiments, which ensure afull 41t
angular coverage and which make it possible to deter-
mine the charges of projectile fragments and identify
particles, according to the commonly accepted classifi-
cation, as b, g, and s particles [1] nearly without any
threshold, can contribute significantly to resolving
these problems. The intervals of momenta for particles
classified as nonrelativistic b and g particles (with the
exception of target fragments with charges Z = 3) are
listed in Table 1.

In contrast to models that rely on the cascade—evap-
oration mechanism and which attribute fragment for-
mation to the evaporation of the residual nucleus,
hydrodynamic models [2] and microscopic dynamical
models [3], which describe collective effectsin nuclei,
pay virtually no attention to the existence of spectator
fragments in the nuclei involved. A comparison of
experimental data coming from photoemulsion experi-
ments at ultrarelativistic energies with the results of
model calculations revealsthat model descriptions usu-
aly oversimplify the production of nonrelativistic par-
ticles[4].

From photoemulsion data, it follows that, in colli-
sions characterized by high multiplicities—and it is
precisely these collisions that are analyzed in studying
collective effects—the growth of the number of relativ-
istic s particles is accompanied by the growth of the
multiplicity of b and g particles[5, 6]. Here, it isneces-
sary to consider that, according to investigations of the

angular distributions within the above individual
classes of particles, the coefficient of azimuthal asym-
metry for b and g particles in the azimuthal plane is
much greater than the corresponding coefficient for s
particles[7].

In an alternative pattern of collective nuclear interac-
tions that was proposed by Baumgardt et al. [8], the
transfer of collective momentato particles occurs owing
to the compression of spectatorsin nucleus—nucleus col-
lisions; it isimportant here that these collective momenta
are carried predominantly by spectator fragments.

According to [8], the zone of ahead shock isformed
in the interaction of light projectile nuclei with heavy
target nuclei; as this zone propagates in the target
nucleus, cold nuclear matter of the spectator is pushed
sideways, forming a Mach shock wave, which prompts
the transfer of collective momenta to spectator frag-
ments. This effect was studied in [8] by analyzing the
angular distributions of the alpha-particle fragments of
Ag and Cl target nuclei. The density of the compressed
cold matter of the spectator, p, was estimated there at
p ~ 3.5py, Where py isthe normal nuclear density.

In more recent experiments performed with photo-
emulsions, which contain light nuclei aswell, the angu-
lar distributions of b particles proved to be more com-
plicated [5, 9].

Tablel
] Momentum, MeV/c
Particle _ y
b particles g particles
Alpha-particle fragment 0-900 >900
Proton 0-224 224-900
Pion 0-58.1 58.1-140

1063-7788/00/6303-0440$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Within the above pattern, we have studied manifes-
tations of collective momenta in the transverse-
momentum distributions of light projectile fragments
and connections between the fine structure of such dis-
tributions and the formation of compressed cold
nuclear matter featuring components of different densi-
ties. With this aim in view, we have analyzed experi-
mental data on the transverse-momentum distributions
of protonic and alpha-particle projectile fragments
formedinNe+ Emand Si + Eminteractions. A detailed
description of the experiments that furnished these data
can befoundin [7, 10].

2. TRANSVERSE-MOMENTUM DISTRIBUTIONS
OF LIGHT PROJECTILE FRAGMENTS

The transverse-momentum distributions of alpha-
particle projectile fragments from photoemulsion
experiments are complicated by the presence of tails at
high transverse momenta. Usually, such distributions
are fitted to a superposition of two Rayleigh distribu-
tions (distribution of a two-component quantity whose
components obey Gaussian distributions with identical
variances); that is,

do _ -2
dp, ‘0 Gf
2 2 a 2 2 (1)
x ep(-pi1201) + = exp(=P; 1203)8
2

where of and 0§ are the variances of these distribu-
tions, while a measures the weight of the second term.

In model descriptions of the transverse-momentum
distributions of apha-particle fragments, the tempera-
tures of the sources of fast a-particlefragmentsare overly
high for fragmentation processes both in the case of two
particle sources at rest [11] and in the case of two [12] (or
more [13]) systems moving at different velocities.

The existence of two partial transverse-momentum
distributions of the fragments may be due to the contri-
butions of two mechanisms of nucleus—nucleusinterac-
tions, the cascade-evaporation mechanism and the
mechanism of collective interactions, which results in
the transfer of collective momenta to the fragments.

In accordance with this, we consider two particle
sources such that they have identical temperatures T
and isotropic angular distributions in the azimuthal
plane, the transverse-momentum distribution of parti-
cles within either source being of a Rayleigh form.
Upon the transfer of a transverse collective momentum

coll

p; " tothefragments, their transverse-momentum dis-
tribution assumes the form

d (P max 10 d2 .
9] o
— = J(py, o*/pf, p)dpfdo*, (2
op, I Idpfd¢* (P, o*/pt, p)dpy do*, (2)
(p?)mino
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where quantities labeled with an asterisk are specified
in the rest frame of the particle source, ¢* and

J(p¥, 0*/p*, p) being, respectively, the azimuthal
angle and the Jacobian for the relevant transformation.

coll

It can be shown easily that, at afixed value of p, ",

the transverse-momentum distribution of the fragments
has the form

do ]
[d ptDpf"” = const
p coll p H (3)
coll
= Pexpl—((p)? + (p)1207] 1 22T
0; 0o, O
coll p 0
where I,F > ‘0 is aBessel function of an imaginary
o, U

argument, and of is the variance of the transverse-

momentum distribution of the fragments in the source
rest frame.

If the transfer of the collective transverse momen-

tum, p™', obeysaRayleigh distribution with avariance

osm.., the transverse-momentum distribution of the

fragmentsisalso of aRayleigh form, its variance being
2 2 2 2 .

02 =01 + 0 where o; = mT (mis the fragment

mass). In this case, the most probable value of the col-

lective transverse momentum, (p™),,, must be equal to
opcoll .

t

The transverse-momentum distribution of alpha-
particle fragments originating from nucleus—nucleus
collisions then appears to be a superposition of two

Rayleigh distributions (1) with the variances of and 05 .

We have analyzed the transverse-momentum distri-
butions of alpha-particle fragments from Ne + Em and
Si + Eminteractionsand the transverse-momentum dis-
tributions of spectator protons from Ne + Em interac-
tions. Datafrom [10] on the transverse-momentum dis-
tributions of spectator protons that were identified by
studying multiple Coulomb scattering along the tracks
of singly charged fragments within the fragmentation
cone are unique.

The numbers of fragments, the values of the param-
eters T and p™' (or 0 ), and therelative contribution

a of the collective-interaction mechanism were deter-
mined by fitting a superposition of two Rayleigh forms
to the experimental transverse-momentum distributions
of apha-particle and protonic fragments. The results
obtained in thisway arelisted in Table 2, along with the
computed values of the collective momentum p®!.
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Table2
P ; Collective momen-
; Number Temperature, | Contribution of collective | , coll
Interactiontype | fragments, N| T, MeV. interactions, a (P )m»MeVic tumcoolfI fragments,
p*, MeV/c
Ne+Em — p+ X 4275 7.86 + 0.64 0.45 + 0.06 136+6.4 151.4+£6.9
Ne+Em — a;+ X 3465 5.62 £ 0.40 0.29 £ 0.05 273+ 29 302+ 14
Si+Em— a;+ X 1939 7.14+29 0.27 £0.01 317 £ 58 302+ 14

In Fig. 1, the transverse-momentum distributions of
alpha-particle fragments from Ne + Em and Si + Em
events generated according to the cascade—evaporation
model are contrasted against the Rayleigh distributions
at the values of the temperature T from Table 2. The
agreement between the former and the latter confirms
the assumption that the first Rayleigh distributionin (1)
is associated with the cascade—evaporation mechanism.

In Fig. 2, the transverse-momentum distributions of
(@) protons and (b) alpha-particle fragments from Ne +
Em collisions and (c) alpha-particle fragments from
Si + Em collisions are contrasted against the results of
fitting in terms of two Rayleigh distributions. The
dashed curves represent the contributions of the indi-
vidua interaction mechanisms. According to the data
in Fig. 2, the protons with transverse momenta in the
range p, = 250-500 MeV/c and the alpha-particle frag-
ments with transverse momentain the range p, = 500—
800 MeV/c can be produced only via the mechanism of
collective interactions.

According to [14], the speed ¢, of the first sound in
normal, cold nuclear matter is given by

¢ = (1/3)JKIm,

where K is the compressibility modulus.
In sound waves, the values of ¢, are closeto theroot-

mean-square velocity [v2 (2 of the thermal motion of
fragments [15]. The values of ¢, as calculated at the

“)

Table3

. Thermal velocity Speed
Interaction type of fragments, EV% Duz of sound, ¢,

Ne+ Em — p+ X 0.158 + 0.007 0.161 + 0.015
S +Em—0;+ X 0.067 = 0.002 0.081 = 0.007
S +Em—0;+ X 0.076 £ 0.004 0.081 = 0.007
Table4

Interac- Na/Np

tiontype | experimental data| cascade-evaporation model
Ne+ Em 0.521 £0.011 0.118 £ 0.007
Si + Em 0.429 £ 0.012 0.110 £ 0.002

compressibility modulus of K = 220 + 20 MeV
obtained from an analysis of data on giant monopole
resonances[16] aregivenin Table 3, along with theval-

ues of V202 = ./3T/m. It can be seen that these

velocities are nearly identical. The proximity of collec-
tive fragment velocities to the speed of sound is aso
manifested in a comparison of collective fragment
momenta p®' = mc, with the results that the fitting to
data yields for the most probable values of the projec-
tions of collective fragment momenta onto the azi-

muthal plane, (p™),, The predicted fragment-mass

dependence of collective momenta is also confirmed
(see Table 1).

That the absol ute val ues of the velocities of protonic
and apha-particle fragments are close to the corre-
sponding speeds of the first sound in cold nuclear mat-
ter suggests that, in noncentral interactions of asym-
metric nuclei—this is precisely the case that is under
analysis here—there arise conditions for the formation
of sound waves in the spectator part of the projectile
nucleus.

3. SPECIAL FEATURES OF DISSOCIATION
OF PROJECTILE SPECTATORSAND FORMATION
OF COMPRESSED COLD MATTER
IN COLLECTIVE INTERACTIONS OF NUCLEI

That spectator fragmentation cannot be described
completely on the basis of the cascade—evaporation
model (there must exist amechanism that resultsin the
copious production of apha-particle fragments) is
illustrated by the data from Table 4, where the relative
numbers of the alpha-particle and protonic spectator
fragments of projectile nuclei in live events are con-
trasted against the corresponding values in events gen-
erated according to the cascade—evaporation model.

The most probable channels of the dissociation of
spectators from Ne and Si projectile nuclei [17, 18]—
these channels were selected according to the criterion
n/mO= 1.5, where n; is the number of events where
these spectators dissociate through the ith channel,
while mCisthe number of events per dissociation chan-
nel—are presented in Table 5 versus the total charge of
projectile fragments (Q).

From this table, it can be seen that events involving
aheavy fragment, which are usually associated with the

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 3 2000
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Fig. 1. Transverse-momentum distributions of alpha-particle fragments from (a) Ne + Em and (b) Si + Em interactions generated
according to the cascade—evaporation model. The curves represent Rayleigh distributions at the temperature values from Table 2.
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Fig. 2. Transverse-momentum distributions of spectator
fragments of projectile nuclei: (a) distribution of protons
from Ne + Em collisions, (b) distribution of alpha-particle
fragments from Ne + Em collisions, and (c) distribution of
alpha-particle fragments from Si + Em collisions. Dashed
curves represent the contributions of the individual mecha-
nisms (long and short dashes correspond, respectively, to
the cascade—evaporation and collective-interaction mecha
nisms), while solid curves show their sums.
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cascade—evaporation mechanism, emerge predomi-
nantly from peripheral interactions at large Q values.
As the impact parameter is reduced, the number of
events where only light fragments appear to be dissoci-
ation products grows. At identical values Q, an increase
in the number of interacting nucleons leads to the
growth of the multiplicity of light fragments owing to
the dissociation of alpha-particle fragments into nucle-
ons. This suggests that processes occurring in specta-
tors depend on the number of interacting nucleons.

The spectators are compressed not only because of
the effect of a greater number of interacting projectile
nucleons but also because of the expansion of the par-
ticipant part of the projectile moderated down to stop-
ping in the target nucleus. The probability of the latter
processis expected to be sizable even at ultrarelativistic
energies. Thisisdueto alargefraction of the stoppings
of projectiles in heavy nuclei (according to data pre-
sented in [19], this fraction is about 8.5% in the inter-
actions of Si nuclei with heavy targets at a projectile
momentum of 200 GeV/c per projectile nucleon).
Within the pattern being considered, the spectator and
participant parts of nuclel are interrelated even in this
process because of finite dimensions of nuclei.

That the spectator density may undergo jumplike
changesis suggested by the datafrom [20] on thetrans-
verse-momentum distribution of alpha-particle frag-
ments formed in Au + Em interactions at a momentum
of 10.6 GeV/c per projectile nucleon. These data were
found there to be adequately fitted, at high transverse
momenta, to a superposition of two Rayleigh distribu-
tions with o, = 606 + 84 MeV/c and 0, = 1620 %
828 MeV/c.

It is of crucia importance to obtain strongly com-
pressed cold nuclear matter in order to observe, under
laboratory conditions, a phase transition from hadronic
matter to cold quark—gluon plasma (this phase transi-
tion is expected to occur at densities p = 3-5p,).
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Table5. Most probable channels of dissociation of Ne and Si spectators

Dissociation channel
Q 25 + Em 2Ne+Em
14 | p+Al 2p+C p+ta+B |a+C
3.33+063|284+059|1.98+049|1.73+0.46
13| p+C 2p+B
3.58+0.66 | 2.59 + 0.56
12 | 2p+a+0O| p+a+Be|l 2p+Ne p+B 3p+Be [2p+20+C
3.09+0.61|259+0.56|247+0.55|222+052|198+0.49|1.73 +0.46
11 | 3p+4a 5p + 3a p + Ne p+p+F | 2p+a+N
222+052(222+052|210+0.50|1.98+0.49|1.85+0.47
10 | 4p+ 30 6p + 2a a+0 a+p+N | p+F
3.21+0.62|1.73+0.46 4.21+040|219+0.29|2.06 +0.28
91| 3p+3a 5p + 2a a+N p+0O p+ta+C
2.72+057|272+057 257+031|219+0.29|1.93+1.27
8| 4p+2a 2p + 30 6p +a 2p + 30 a+C
4.07+£0.70| 259+ 0.56 | 1.85 + 0.47 1.99+0.28|1.74 +0.26
7| 3p+20 5p+a p+ 3a p+ 3a 3p+ 20
457 +0.74|2.84 £ 0.59 | 1.60 £ 0.44 244 +0.31|244+0.31
6| 4dp+a 2p+ 2a 6p 2p+ 20 4p + a
469 +0.75]|2.96 £ 0.60 | 1.85 £ 0.47 328+0.36|212+0.29
5| 3p+a 5p 3p+a p+2a
3.83+£0.68|2.96 £ 0.60 3.38+0.36|2.80+£0.33
4| 4p 2p+a 2p+a 2a
6.30 £0.87|5.18 £ 0.79 434+041|1.61+0.25
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Abstract—A large correlation of production and decay planes of the et 1T system in dissociation of a40-GeV/c
TC beam on nuclear targets was observed. The dependence of the correlation on atomic number, Feynman vari-
able, and transversal momentum, aswell as on invariant mass of the pion triple and neutral pion pair, wasinves-
tigated. It was shown that the phenomenon has a clear dynamical origin and resembles the single-spin asym-

metry behavior. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The measurement of polarization at high energiesis
a complicated problem since the observation of a spin
or total angular momentum projection is a nondirect
one as arule and explore features such as angular dis-
tribution in secondary scattering or in decay process.
For a strong interaction process, parity and Lorentz
invariance require that at least three momenta of parti-
cles (either spinless or spin-averaged) in afina state be
measured.

Some years ago, the concept of handedness was

introduced?) as ameasure of polarization of parent par-
tons (or decaying hadrons) [1]. It was defined as an
asymmetry of a process probability W with respect to a
spatid component of an axia 4-vector n, 0O

€nopkikok”, where ke is the 4-momentum of particle

(or asystem) in question (k = k; + k, + k3 + ...), with
respect to some directioni (n,=n - i)

_ W(n>0)-W(n <0) _
' W(n>0) +W(n;<0)

which was shown to be proportional to polarization P;
of the system (at least for spin 1/2 and spin 1), provided
the analyzing power a isnot zero. Thedirection i could
be chosen as longitudinal (L) with respect to the
momentum k or astransversal ones (T1 or T2).

In the previous publication [5], the attention was
drawn to the fact that in diffractive production of pion
triples [6]

a;P;, (D

T+A— (M) +A )

by a 40-GeV/c 1t beam from a nucleus A, a noticeable
asymmetry with respect to the triple production plane

* This article was submitted by the authorsin English.

D In fact, an idea similar to the handedness was earlier proposed in
works [2]. Its application to certain heavy quark decay was stud-
iedin[3]. A similar technique was a so studied in [4].

(transversal handedness H;,) was observed. This paper
is devoted to further experimental investigation of this
phenomenon. It includes new information on the depen-
dence of the transversal handedness on the variables:

(i) atomic number of the target;

(i) transversal momenta of the pion triple;

(iii) Feynman variable x: of the leading 1T;

(iv) invariant mass of thetriple;

(v) invariant mass of neutral pairs Tr'rt.

Also the statistics were considerably increased.

2. DEFINITIONS AND NOTATION
For reaction (2), let us define the normal to the plane
of production of a secondary pion triple (T, Tt TG, )

N = Var XV, 3)

where v, = k,/e, and v, = k3 /€5, are velocities of the
initial Tt beam and the center of mass of the triple in
laboratory frame, and indicesf and slabel fast and slow
1C's. The normal to the “ decay plane” of thetripleinits
center of massis defined as

n = (vi=v')x(v,-v"), “4)

where vy, or v+ arevelocities of thefast (sow) Tt or 1.
The transversal handedness according to (1) is?)

_ W(N [h>0)-W(N [h<0)
W(N[h>0)+W(N[h<0)

Two other components of the handedness connected
withn - vy, and n - (v5; x N) areforbidden by the parity
conservation in the strong interaction.

Hry &)

At is easy to show that this quantity isin fact Lorentz invariant.

1063-7788/00/6303-0445%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. The A dependence of the handedness.
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Fig. 2. The handedness dependence on X of the leading 1T

3. EXPERIMENTAL RESULTS AND DISCUSSION

In this work the experimental material of the Bolo-
gna-Dubna-Milan collaboration for diffraction pro-
duction of 40 GeV/c 1t into three pions was used. The
details of the experiment were presented in the works
[6]. Notice here that the admixture of nondiffractive
eventsin the used set of experimental datawaslessthan
1%.

The transversal handedness (5) was measured for a
wide sample of nuclear targets: °Be, °C, #Si, “Ti,
8Cu, 97Ag, ¥'Ta, and 2’Pb. The tota number of
selected events of pion triples with leading 1T was
about 250000.

The dependence of H; on the atomic number A is
presented in Fig. 1. One can see that the handedness
systematically decreases with increasing A, which
resembles a depolarization effect due to multiple scat-
tering. That the effect magnitude decreases approxi-
mately in inverse proportion to the radius of the nucleus
isan argument in support of this.

EFREMOV et al.

The value of the asymmetry (5) averaged over all
nuclei is

Hy, = (5.96%0.21)%. (6)

Statistically, this is highly reliable verification of the
existence of correlation of the triple production and
decay planesin process (2).

The values of two other asymmetries with respect to
correlations n - v, and n - (Vg; X N) were found to be
comparable to zero from the same statistical material:
H, =(0.25 + 0.21)% and H+, = (0.43 + 0.21)%, respec-
tively. Thisisby no means surprising sincethey arefor-
bidden by the parity conservation in process (2). Also,
they show the order of magnitude of systematic errors.

A natural question is to what extent the effect
observed is due to the kinematics or apparatus influ-
ence, in particular, due to acceptance of the experimen-
tal setup where the events have been registered. For this
aim, the Monte Carlo events of reaction (2) were gen-
erated with a constant mass spectrum of the 31t system
in the interval 0.6-2.5 GeV/c? and zero outside and
with the exponential decrease of thecrosssectionint' =
t — t,, with the slope (for beryllium) 40 (GeV/c)2
found experimentally. These events were traced
through the apparatus simulation with the same trigger
conditions as in [6] and the same selection of events
and show no transversal handedness Hyy,

HYL = (0.20+0.28)%. 7

For two other asymmetries, forbidden by the parity
conservation, the result was (0.00 + 0.28)% and (-0.14 +
0.28)%, respectively. Thus, the effect (6) cannot be
explained by the kinematics or apparatus influence.

To understand the nature of the effect observed, the
dependence of the handedness (5) on the Feynman vari-
able Xz = k/k, of the leading 1T, on the invariant mass of

the triple my; and its neutral subsystem m. and on the

triple transversal momentum k; was studied. From Fig. 2,
one can see that the handedness (5) increases with X,
which resembles the behavior of the single-spin asymme-
try (e.g., the pion asymmetry or the A polarization [7]).
The dependence of H;, on the triple invariant mass
(Fig. 3a) is especially interesting. It clearly indicates
two different sources of H, with comparable contribu-
tions: a resonance and nonresonance one. The reso-
nance contribution is clearly seen at the mass of
a,(1260) and 11,(1670) region and by all means is due
to a nonzero polarization of the resonances. The non-
resonance background could also be polarized, pro-
vided that the 31 system is predominantly in a state
with the total angular momentum J # 0, e.g., if aneutral
pair m. - was predominantly produced from p decay.

Some indication of this can be seen from Fig. 3b. Inthis
context, the growth of Hy, in the region of small mg,
i.e., in the region of small relative momenta of pions,
looks quite intriguing.
PHYSICS OF ATOMIC NUCLEI  Vol. 63
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Fig. 3. The handedness dependence on (a) ms,; and (b) m. -

A complicated picture of the k; dependence with a
sharp dip at k; = 0.05-0.07 GeV/c (Fig. 4) reflects by
all means the fact of interference of the resonance and
nonresonance processes in the triple production. With
further increase of ky, the handedness increases, which
resembles the single-spin asymmetry behavior too.

To check this assumption, the events with invariant
mass Mg, in the a; and T, resonance region 1.05—
1.80 GeV were excluded from further analysis. This,
however, does not lead us to a definite conclusion since,
for Be and C, the dip disappears, but it is conserved for
Si with some change of itsform and width. The average
value of the handedness stays at the same level 5-11%
with high statistical significance.

Notice aso that, in earlier study of reaction (2) at
45 GeV for the proton target at the hydrogen bubble
chamber, no angular dependence of the normal n (4) was
found, just as in the Regge pole exchange model, which
provides areasonable description of that experiment [8].

In conclusion, arather large handedness transversal
to the production plane was definitely observed in the

Hrpy, %
16
12
++
8 —+-
,+ +
4k +
s
0 0.1 0.2 0.3 0.4
kr, GeV/e

Fig. 4. The k- dependence of the handedness for a?2Si target.

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 3 2000

diffractive production of (TtTt'TT) triplesin the Tr-beam
dissociation region. The phenomenon has a clear
dynamical origin and in some features resembles the
single-spin asymmetry behavior. For a more detailed
study, apartial wave analysis of reaction (2) seems nec-
essary for determination of different spin states contrib-
uting to the investigated effect.
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Abstract—The formation of an antiprotonic hydrogen atom { pp} (protonium) in the ground state and in
excited states (nlm) in collisions of 1- to 250-keV antiprotons with hydrogen atoms is considered theoretically.
Partial cross sections (both differential and integrated ones) for this reaction are calculated for various values
of n, I, and m up to n ~ 100; cross sections summed over | and m are also obtained. Statistical (polarization)
tensors of the orbital angular momentum of protonium atoms are evaluated. Corrections due to strong proton—
antiproton interaction in the protonium ground (1) state are analyzed. © 2000 MAIK “ Nauka/l nterperiodica” .

1. INTRODUCTION

Investigation of antiprotonic atoms is a vigorously
devel oping branch of modern physics (for an overview,
see [1]). The majority of studies dealt with the states
formed as the result of the capture of stopped antipro-
tonsinto highly excited atomic orbits that was followed
by cascade transitions. In this process, the antiprotons
could miss low-lying states of antiprotonic atoms—
especialy in medium-mass and heavy atoms—because
of their absorption by nuclei from higher orbits. Conse-
guently, it seems interesting to study the formation of
antiprotonic atoms by antiprotons in flight.

Here, we consider theoretically the formation of the
simplest antiprotonic atom, protonium { pp}, in the

interaction of an antiproton p with a ground-state
hydrogen atom,

ﬁ+H(1S) _'{pp} nim T €, (D

n, I, and m being protonium quantum numbers. We per-
form our calculations within the first Born approxima-
tion in Coulomb interaction. This approximation is
quite accurate for incident-antiproton energies in the
range E = 1-250 keV (in laboratory frame) considered
here. For variousvalues of n, |, and mupton ~ 100, we
calculate partial cross sections for reaction (1), both
differential and integrated ones; we also determine the
cross section summed over | and m. In addition, we
derive the statistical tensors of the protonium orbital
angular momentum. We al so analyze corrections dueto
strong interaction in the protonium ground (1s) state.

For n=1and E = 50-250 keV, reaction (1) was con-
sidered by Roy and Deb [2], who disregarded strong-
interaction effects. Their study is not free, however,
from miscal culations, which those authors tried to cor-
rect in[3]. It should be noted that there are inaccuracies

T Deceased.

in [3] as well: the absolute values presented there for
the differential and integrated cross sections do not
comply with each other (possibly, thisis because there
were inconsistencies in units in which these cross sec-
tions were given).

At lower energies, the formation of mesic and anti-
protonic atoms was considered in a series of studies of
Korenman et al. (see [4] and references therein), who
calculated the integrated partial cross sections for
exotic-atom formation that were summed over m.

2. BASIC EQUATIONS
2.1. Born Approximation

In the first Born approximation, the amplitude of
reaction (1) has the form

T(ky, ki)
= Ekf’ ¢12|V23 + V3l|ki1 ¢23D: T(l) + T(Z),

where the subscripts 1, 2, and 3 are associated with the
particles p, p, and e, respectively; k; and k; stand for,
respectively, the proton and protonium 3-momenta in
the c.m. frame; ¢,; and ¢, are the hydrogen and proto-
nium wave functions, V,; and V;, arethe corresponding
Coulomb interaction potentials; and T and T® are
determined by the interactions V,; and V;,, respec-
tively.
The amplitude TV has the simple form

2)

2. 2
g, t Ky

2l

where §,, and ¢, are, respectively, the protonium and
hydrogen-atom wave functions in the momentum rep-
resentation; py = mmy/(m +m); K;; = ZZey/n; m (Ze)
is the mass (charge) of the particlei; and n isthe prin-

TO(ks, ki) = - bn@)ds(a), 3
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cipa quantum number. The relative momenta on the
right-hand side of (3) are?

1
Q1=ki—§kf1 d> = Aki—Ky,
“4)
A= 8 o
m, + mg

For the purely Coulomb interaction, the momen-
tum-representation wave function of the two-particlei—
j bound state characterized by the quantum numbers n,
[, and m has the form [5]

$(@) = Ru(a)Yim(d),

- - |
Rii() = No————
(" +Kjj

2? +5n(n - - 1)!}1/2” (21+5)/2

N = (2n)3/2[ m(n+1)! S '

where C|n+_|1+1 (x) are Gegenbauer polynomials. In this

study, we assume that the hydrogen target is in the
ground state.

The amplitude T® isgiven by
3

Tk, k) = (2L 55 (00) =G (D),
(ki ki) I(Zn)3¢12(q12)q§1¢23(p) ©)
Ji2 = 01—02*+P, Oz = q2—P.

Employing the explicit form of the Gegenbauer poly-
nomials [6], we express (6) as
(n+1)!

2 N = 312 512 %
T (kf,kl) 3211 K23 an(n_l_l)l(ZI +1)|

n-1-1 3 |
d’p SIP)
x a(n, 1)
kZO I(Zn)3(q§2 + Kiz)L

1 1 * /A
75— 3 im(d12),
Oa1(P° + K2s)

where n, |, and m are the protonium quantum numbers;
L =1+ k+ 2; and the coefficients a(n, |) are determined
by the recursion relations

)

2 (N+1+K)(n=1-K)

aO = 1! a'k = _ak—lK12 k(l + k+ 1/2) (8)
By applying the Feynman integral representation
1 _ (N1 + Np)!

AVigMec (N —1)!I(N,—1)!

DBelow, we employ the atomic system of unitsin which =e =
Mg (=My) = 1.
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1 1
N; -1 N,—1 N +Ny,—1 1
><Id0(10(l (1-ay) J'dO(ZO(2 Nl+—Nz+l’(9)
0 0 D

D =o,0,A+(1-0a;)a,B+(1-a,)C,

2 2 2.2 _ 2
Jp+Kp, B =p +Kym C=0y,

to the integrand on the right-hand side of (7), we can
recast theintegral in (7) with respect to p into the form

1

l, = L(L+1)(L+ Z)Id(xlo(i‘l(l—al)
0

A

L , (10)
+ d k 1 2 N
x (do,o5 "t Y (O1),
-!). 20> I(Zﬂ)3(K2+d)L+3q12 im(012)
where
d=a-b’
2 2 2 2(11)
a = 050,(q° +Kpp) +(1-0p)aKs + (1-05)0s,
b =a,0,g-(1-0,)d,, g = d;—0y,
k =p+bh.
Employing the well-known transformation
qllel*m(fhz)
—_ /\/E.[ Q|1k|2 (2' + 1)' vz
i Tersereavie

L+l =1,m,m,

X (1ymylomg| M) Y, (Q) Y, (K),
q12 = Q + k1
Q=9g-b = (1-0,0,)q;-0,(1-a,)q,,
where (aabplcy) stands for Clebsch—Gordan coeffi-
cients, we can perform integration in (10) first with

respect to k and then with respect to a,. Asaresult, we
obtain

L Arese)

P AT (L=-2)

Lo, (21 + 1)! v
X Z (-1) q1q2|:(2|1+1)!(2|2+1)!i|

l+lp=1

O N .0
X Dz (|1m1|2m2||m)Yl*lml(ql)Yr;mz(qZ)E

LMy

1

><Id0(10(k_1(1—0(1)|2+1 (13)
0

1
+ I +k+
U2+ wivy 21, + 1)

X
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xFyH, + 112,y —k=2,1,+ 3/2;
W _Wp

U= al(l_al)qz + alKiZ + (1—0(1)’(331

W = (0,9 + Q2)2,

where F,(a, b, b, ¢; x, y) is a hypergeometric function
of two variables [6]; in the case being considered, it
takes the form of afinite sum.

Eventually, the amplitude T® is expressed in terms
of a one-dimensional integral with respect to the vari-
able a,. If the quantization axis is aligned with the
3-momentum vector k;, the absolute value of the ampli-
tude T is independent of the azimuthal angle of the
3-momentum vector k;.

2.2. Multipole Expansion

In order to optimize an approximate calculation of
the cross sections, we will recast the amplitude T into a
different form. For this, we represent the right-hand
side of (2) astheintegral

ikt D3y 4
T(ky, k) = jdsrlzd‘“’rzae 05(r 1)
l Ik\ @l
- ry)e ,
r23%b23( 23)

wherer;; = r; —r; is the relative coordinate of the parti-
clesi and j, while p; is the coordinate of the particle i
with respect to the center of mass of the particlesj and

(14)

k(pl = l‘12 + )\1‘23 and p3 = —% rlz— l‘23). COI’]Slderlng that

the protonium size, which specifies, through the func-
tion ¢7, (r,,), the effective range of the variable in the

integral in (14), is much less than that of the hydrogen
atom, which is described by the function ¢(r,;), and
employing the constraint ry; = —(r;, + r,3), We can rep-
resent the sum of the potentias in (14) as a multipole
expansion in powers of the small ratio r,,/r,;. Specifi-
caly, we have

1 1

M3 r23

Z( 1)Lﬂlzd- Pu(fpFs), (15

r23

where P, stands for Legendre polynomials. The first
term on the right-hand side of (15) (L = 1) corresponds
to the dipole approximation.

In specific calculations, the infinite sum in (15) is
replaced by afinite one, with an upper limit L,,,, being
determined by the desired accuracy of cross-section
estimations. Substituting (15) into (14), we can approx-

AVAKOV et al.

imate T by T2 as

T=Ta1

12 2 (16)
= 4nz( ' z T @) TEN(@)),

M=-L

where

T(lz)(ch) Id "12‘5‘q1 12(l)lz("12)"12Y|_|\/|("12) (17)

(23)((12) = Id rzselqz “h(r 23)r12 TYiu(fs). (18)
In the coordinate representation, the Coulomb wave

functions of the i bound state with quantum numbers
n, |, and mare given by [5]

bij(ryy) = ianI(rij)Ylm(fij)!

Ru(rij) = n|(2K“|'ij)I('3‘_Kijrij
x®(=n+1+1,2l +2; 2K;r),

(19)

1 (n+1)!
(21 + 1) [Zn(n—l

vz 32
Ny = 1)!} (2Kij) )

where ®(a, c; x) is a confluent hypergeometric func-
tion; in the case being considered, it represents afinite
sum. Suppose that the hydrogen target is in the ground
state, which is described by the wave function

3/2

Hos —Ha3l23
r = —e (20)
¢23( 23) /\/_’—_[
From (18), we then obtain
j 1
T@(q,) = 4m|_u§/32gg_m_+uzs
2" q2D
JJo 1 fH 11D o] @D
ML+12) g’ 2720 g@g (L-1)'q,
* Yim(@)-

Since u; /qg < 1, the hypergeometric series on the
right-hand side of (21) converges fast.

Performing integration in (17) with respect to r,
and employing afinite-sum representation for the func-
tion &, which appears in expression (19) for the proto-
nium wave function ¢,(r,,), we can easily obtain

Ty = i'n 22'[:11 x 2K -9
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da'30/dQ x 108, arb. units
240 |
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d0350/dQ % 10'%, arb. units

b
(a) 6 (b)
200
4 -
2
160F oL
120 1 1 1 1 1 1 1 1 | 1 1 1 1
0 40 80 120 160 0 40 80 120 160
ec,rn.’ deg ec.m,’ deg

Fig. 1. (a) Partial differential cross section dos,(/dQ calculated at E = 50 keV with (curve /) the amplitudes TV and (curve 2) the
amplitude T®; (b) same cross section calculated with the summed amplitude T=T® + T@),

—(L+1+2)
2]
xmL+q—D ZiAA/2)\+1%(LO)\O|IO)
O K12|:J = 2

(22)

n-1-1
X (LMAVIM)Yi,@) 5 bi(n.1) TN+ +2)

k=0

XEIL+—D E}\ NA-N+1

A+ 32 —ﬁu
0O k3,0 0O 2 2

K12D
where N =1+ L + k+ 1 and the coefficients b,(n, ) are
determined by the recursion relations

- b -n+l+Kk
K1kl +k+ 1)

It should be emphasized that the hypergeometric func-
tion F in (22) reduces to afinite sum.

b, =1, b, (23)

3. RESULTS AND DISCUSSION
3.1. Differential and Total Cross Sections

Employing the above expressions for the amplitudes
T and T2, we have calculated the partial differential and
integrated cross section (do,,/dQ and G, respec-
tively) for reaction (1), which leads to protonium for-
mation in states that are characterized quantum num-
bers n, I, and m2 In addition, we have calculated the
Cross sections

0-nl = Zonlm1 O-n = Zo-nlm-
m m

Our calculations were performed for incident-antiproton
energies in the range E = 1-250 keV (in laboratory
frame).d

Ascan be seen from (2), the amplitude T is given by
the sum of two amplitudes representing two different
mechanisms of reaction (1). The amplitude T corre-

(24)

2We note that these cross sections depend only on |m.
3Presently, there are no relevant data.
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sponds to the pole mechanism of proton pickup by the
antiproton, while T describes protonium formation
via the exchange scattering of the incident antiproton
by the target electron (this mechanism can be repre-
sented by a triangle Feynman diagram). By way of
example, the cross sections doy,/dQ for n=3,1 =2,
andm|=0,1, 2at E=50keV are presented in Figs. 1-
3 as functions of the scattering angle 6 in the c.m.

frame. Figure la shows the cross sections da’y/dQ

and do'3) /dQ calculated with the amplitudes T and

T, respectively, while Fig. 1b displays the cross sec-
tion do;,,/dQ corresponding to the summed amplitude
T. It should be noted that the cross section do,,/dQ is

much smaller than each of the cross sections dofé)o /dQ

dcr(é’z%)/dQ x 1029, arb. units
8-
(@)
6F 1

4+
2|
0 1 1 1 1 1 1 1 1

das,,/dQ % 10%°, arb. units

30r ®)

20

10

1 1 1 1 1 1 1
0 40 80 120
eC.Il’l.’ deg

1
160

Fig. 2. Asin Fig. 1, but for the cross section dos,/dQ.
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Table 1. Partial cross sections opm(E) (inau.)

| Energy, keV

nm 1 10 50 100 150 200 250
100 1.22x1018 | 562x101 | 912x10716 | 472x1017 | 653x10718 | 148x1018 | 454x 10719
200 140%x 1070 | 234x104 | 326x1016 | 1.15x10%7 | 1.32x10%8 | 269x 10719 | 7.68x 1020
210 282x1012 | 1.12x10%2 | 430x10% | 571x1018 | 403x10%° | 591x10% | 1.31x 102
211 868x1011 | 154x1018 | 229x1017 | 264x10719 | 1.77x1020 | 254%x 102 | 556x 102
300 829x1010 | 760x104 | 121x10%6 | 390x1018 | 430x101° | 857x10% | 241 x 102
310 218x10° | 505%x1013 | 1.94x10%6 | 230x1018 | 156x101° | 223x10% | 489x 102
311 434x1010 | 812x101 | 972x107%8 | 1.03x1019 | 6.69x102 | 042x10%2 | 2.04x 102
320 1.09x101 | 1.05x1012 | 251x10Y | 1.35x1071° | 589x 102 | 625x 102 | 1.08x 102
321 152x10° | 1.73x1018 | 242x1018 | 121x102% | 515x1022 | 539x 102 | 9.27x 10
322 499%x1015 | 805x10% | 487x102% | 203x10% | 805x102° | 814x10%0 | 1.39x 10730
400 209x10° | 6.84x10 | 557x10Y | 1.73x1018 | 1.87x10%° | 3.70x 10 | 1.04x 1020
410 1.00x10° | 224x1018 | 943x10Y | 1.08x1078 | 7.16x102 | 1.02x102 | 222x 1024
411 206x1010 | 414x10* | 463x1018 | 476x1020 | 3.05x 102 | 427x10%2 | 9.22x 102
420 112x108 | 7.84x1018 | 1.65x10Y | 852x102% | 366x102 | 385%x10%2 | 6.65x 102
421 1.13x10° | 1.28x1018 | 156x1018 | 756x 102 | 3.18x1022 | 330%x102% | 566x 102
422 413x1015 | 566x102 | 3.07x102% | 1.25x10% | 492x102° | 497x10%0 | 842x 103!
430 122x10° | 240x1018 | 6.23x101 | 152x102 | 429x102 | 335x102% | 462x 102
431 891x10° | 451x10 | 833x10% | 195x10% | 541x102* | 420x102% | 574x10%
432 6.97x101 | 553x102 | 488x10% | 983x102% | 258x1030 | 194x 103 | 2.63x 1032
433 270x 1016 | 297x10%2 | 452x10% | 1.04x100 | 286x 1032 | 221x 1038 | 3.02x 103

and do'3), /dQ; this indicates that the two mechanisms

of the reaction under consideration interfere destruc-
tively. Figures 2 and 3 present the cross sections for

dc3,3/dQ x 10%°, arb. units

600 (a)
400
200
0
d0,/dQ x 1079, arb. units
f2r ®)
8 -
4 -
1 1 1 1 1 1 I}
0 40 80 120 160
ec.m.’ deg

Fig. 3. Asin Fig. 1, but for the cross section do3,,/dQ.

transitions into the (321) and (322) states, respectively.
From these figures, it can be seen that, at |m| # 0, the

Cross sections do%ﬁ /dQ have a peak, which becomes
narrower with increasing |m|. It can also be seen that the
interference of the amplitudes T and T is construc-
tive at |m| = 1 and destructive at |m| =2. The results of
the calculations for transitions into other protonium
states at various energies reveal that the shape of the
differential cross sections is weakly sensitive to varia-
tions in the quantum numbersnand I.

Table 1 quotes the integrated partial cross sections
Opm fOr the four lowest shells (n = 1-4) calculated with
the amplitude T (see Section 2.1). It can be seen that,
for E > 100 keV, the maximum values of g, at fixed
n are achieved for transitions to the | = O states. For E
<50 keV, Oy can peak either at | =1 or at | = 2, with
m always being zero. At fixed values of n and I, the
cross section oy, decreases with increasing |m|.
Among data presented in Table 1, thisis not so only at
E = 1 keV, in which case 0,5, > 043, Finaly, all the
cross sections decrease monotonically with increasing
energy.

A calculation of the cross sections according to the
expressions from Section 2.1 is disadvantageous in that
it consumes a great amount of machine time at large
values of n and I. The calculations can be considerably
simplified by using the multipole expansion described
in Section 2.2 (amplitude T#). Within this approach, the

PHYSICS OF ATOMIC NUCLEI  Vol. 63
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Table 2. Cross sectionsg,(E) (ina.u.)
Energy, keV

" 1 10 50 100 150 200 250
1 1.23x1018 | 562x1074 | 911x1016 | 472x 10 | 654x 1018 | 1.48x 10718 | 451 x 1019
2 317x101°| 1.45x1012 | 801 x107%6 | 1.77x 107 | 1.76 x 10718 | 3.33x 101 | 9.07 x 102
3 6.96x10° | 214x1012 | 3.64x 10716 | 656x 1018 | 6.06 x 1019 | 1.11x 101 | 2.96 x 1020
4 362x10° | 1.75x 1012 | 1.80x 10716 | 3.00x 1078 | 270x 10719 | 486x 102 | 1.28x 10720
5 9.06x108 | 1.24x1012 | 989x 107 | 1.59x 1018 | 1.41x 10719 | 254x 102 | 6.68 x 1072
6 151x107 | 866x 10718 | 596x 107 | 9.41x 1019 | 830x102% | 1.48x 102 | 3.90x 104
7 1.97x107 | 611x1018 | 385x 1077 | 6.00x 10719 | 527x 102 | 9.39x 102! | 247 x 102
8 223x107 | 443x1018 | 262x 107 | 405x101° | 355x 102 | 6.33x 102 | 1.66 x 1072
9 230x107 | 327x1013 | 1.86x 107 | 286x 101 | 250x 1020 | 445x 102 | 1.17 x 102
10 224x 107 | 247x1018 | 1.37x 107 | 209%x 1019 | 1.83x 10 | 325%x 102! | 852 x 1072
20 7.79%x108 | 349x10 | 1.75x 10718 | 265%x 102 | 2.31x 102! | 409%x 102 | 1.07 x 1022
30 247x10° | 1.06x10 | 521x10719 | 787x 102 | 6.84x10%2 | 1.21x 102 | 3.14x 102
40 112x108 | 450%x 10715 | 220x1071° | 3.32x 102 | 289x 102 | 513x 102 | 1.34x 102
50 6.84x10° | 231x10% | 1.13x 10719 | 1.70x 102 | 1.48x 102 | 262x 102 | 6.86 x 10724
60 403x10° | 1.34x1075 | 653x10% | 9.85x10% | 856%x 102 | 1.52x 102 | 397 x 10
70 257x10° | 845%x107%6 | 411x102 | 620x 102 | 539x 102 | 955x 102 | 250 x 1024
80 173x10° | 567x10%6 | 275x102° | 416x 1022 | 361 x 102 | 6.40x 102* | 1.67 x 10
90 123x10° | 398x 10716 | 1.94x102° | 292x 1022 | 254x 102 | 449x 102* | 1.18 x 10
100 8.96x1071°| 290x1016 | 141x102 | 213x10% | 1.85x 102 | 328x 102 | 857 x 102

accuracy of the calculations is determined by the num-
ber of terms, L,,,,, retained in the sum over L on the
right-hand side of (16). A comparison of the results of
calculations that rely on the amplitude T2 with those
that employ the exact amplitude T demonstrates that,
for the cross sections o, and g, the first (dipole) term
in expansion (16) (L., = 1) ensures a precision no
poorer than 1%. In order to achieve the same accuracy
in calculating the partial cross sections Oy, it is usu-
ally sufficient to taketwo terms (L., = 2), but there are
exceptions—for example, a 2% accuracy in Os,,
requiresL,,,, =4, inwhich case, however, the cross sec-
tion 03,, does not make noticeable contributions to o5,
and o;.

Table 2 lists the values of the cross section g, for
n < 100 that were calculated on the basis of expression
(16) with L., =3. AtE=1and 10 keV, o, peaksat n =
9 and 3, respectively. At higher energies, o, ismaximal
at n=1, showing amonotonic decrease with increasing
n. All values of o,(E) decrease monotonically as the
energy E isincreased.

To conclude this section, we would like to indicate
that, for reaction (1), we have tested the validity of the
well-known 1/n’ rule for the cross sections a,,. It turned
out that, at E = 1 keV, the decreasein o,, with increasing
n complies well with this rule from n = 60. At E =
10 keV, the 1/n? rule holds for n = 30. Finaly, the 1/n’
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behavior of the cross section g, at E = 250 keV set in
fromn=3.

3.2. Inclusion of Strong Interaction

In the above cal culations, we have taken no account
of strong proton—antiprotonic interaction. Its effect on
the features of the antiprotonic atomswas considered in
anumber of studies (see, for example, [7-9] and refer-
ences therein). In order to assess roughly the implica-
tions of this effect for the cross sections considered
here, we make use of the circumstance that the range of
strong interaction is much less than the protonium size.
In a rough approximation, we can assume that the
strong-interaction effect reduces to ashift of protonium
levels in relation to those in a purely Coulomb field.
According to experimental data reported in [1], this
shift issizable only for the protonium ground (1s) state,
AE,;, =-0.73 £ 0.04 keV. For other levels, itisnegligible.

The effect of strong proton—antiproton interaction
on the cross section for protonium formation in the
ground state (Nlm= 100) isillustrated in Table 3. There,
the cross section 0., differs from the cross section
0,00, Which was considered above, only in that, in the
matrix element (17), the purely Coulomb wave func-
tion of the protonium ground (1s) state, ¢,, = Ce™®", is

replaced by the function §,, = C(Kr)1-'e™": in these
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Table 3. Inclusion of strong interaction
Energy, keV olo
1 1.28
10 1.16
50 0.97
100 09
150 0.85
200 0.83
250 0.81
Table4. Statistical tensors pyg(l)
0 Energy, keV o]
nip P
0 1 | 10 | 50 | 100 | O™
px(l) | 0.66 |—094 |-12 | -1.24 1.41
Px(l) | -0.8 |-09 |-121 | -1.24 141
po(2) |-06 |-106 |11 | 112 12
Pa(2) | -1.08 | -1.49 | -1.53 | -1.54 1.6

expressions, C and C are normalization factors; k? =
m,e and K? = M€, € and € being, respectively, the
purely Coulomb binding energy of the ground (1s) state
and the experimental binding energy of the protonium
1sstate; and n = (1/137)(€my/2#iK ) = 1.03.9

The datain Table 3 show that the effect in question is
not negligible. Its magnitude and even sign (we imply
the difference 0,90 — 0,¢,) are dependent on energy.

3.3. Evaluation of Statistical Tensors for Reaction (1)

The results of our calculations revea that the cross
sections 0,y depend greatly on |m| (see Table 1). This
suggests a hoticeable alignment of the orbital angular
momentum | of the protonium for | # 0. This effect is
commonly described in terms of the statistical tensors
(see, for example, [10])

P(l)

= J21+1 Z -1)"""(m1 - m|kk)p,(m, m'), ()

m, m

where p(m, m) is the angular-momentum density
matrix satisfying the condition trp, = zmﬂ (mm=1.

4)Strictly speaking, the Coulomb level shifted owing to strong
interaction is described by the Whittaker function, but it differs

insignificantly from 4312 in the range of r values that make a sub-

stantial contribution to the matrix element of the process under
consideration.

AVAKOV et al.

If the system possesses cylindrical symmetry, asit does
in the case under consideration, the density matrix is
diagonal in m. By averaging the density matrix for reac-
tion (1) over the scattering angle, we can obtain

O-nlm
O-nl

Taking into account the definition in (25), we can con-
clude that, in the case of adiagonal density matrix, the
statistical tensors p, (1) vanish for kK #0. There is an
additional constraint on the density matrix: from the
relation o, _ = Oy it fOllows that py, (1) can be non-
zero only for even k.

For reaction (1), the statistical-tensor components
Pro(l) calculated according to (25) and (26) at n =2 and
3for energiesintherange E = 1-100 keV are presented
in Table 4. We note that the p,(l) values calculated for
energies of E = 100 keV virtually coincide with those
calculated at E = 100 keV; therefore, they are not pre-
sented here. The maximal possible values |py(1),.«| Sat-
isfying the definition in (25) are quoted in the last col-
umn of Table4. It can be seen that the computed va ues of
|po(D| are sufficiently close to the maximal possible ones.
It followsthat the angular distributions of photons emitted
from the excited states of protonium that are formed in
process (1) should be pronouncedly anisotropic.

pnl(ma ml) = 6mm‘ (26)
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Abstr act—We bosonize the Nambu—Jona-Lasinio quark model with separable nonlocal interactions in order
to derive a chiral U(3) x U(3) Lagrangian, containing, besides the usual meson fields, their first radial excita-
tions. The spontaneous breaking of chiral symmetry isgoverned by the Nambu—Jona-L asinio gap equation. The
first radial excitations of the kaon, K*, and ¢ are described with the help of two form factors. The decays
K*' — pK, K*' — K*17, K¥' — KT, ¢' — K*K, ' — KK ,K' — Kp, K' — K*11, and K' — K211
are considered, and a qualitative agreement of our results with the experimental data is found. © 2000 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

In our previous papers[1-3], the chiral quark model
of the Nambu—Jona-Lasinio (NJL) type with separable
nonlocal interactions was proposed. This model is a
nonlocal extension of the standard NJL model [4-9].
The first radial excitations of the scalar, pseudoscalar,
vector, and axial-vector mesons were described with
the help of the form factors corresponding to 3-dimen-
sional ground- and excited-state wave functions. The
meson masses, weak-decay constants, and a set of
decay widths of nonstrange mesons were calcul ated.

The theoretical foundations for the choice of poly-
nomial pion—quark form factors were discussed in [1],
and it was shown that we can choose these form factors
in such away that the mass-gap equation holdsits usual
form and has a solution with a constant constituent
guark mass. Moreover, the quark condensate is not
modified after including the excited statesin the model,
because the tadpol es, connected with the excited scalar
fields, vanish. Thus, in this approach, it is possible to
describe radially excited mesons above the usual NJL
vacuum, preserving the usual mechanism of chiral
symmetry breaking. Finally, it has been shown that one
can derive an effective meson Lagrangian for the
ground and excited meson states directly in terms of the
local fields and their derivatives. A nonlocal separable
interaction is defined in the Minkowski space in a 3-
dimensional (yet covariant) way, whereby form factors
depend only on the part of the quark—antiquark relative
momentum transverse to the meson momentum. This
ensures the absence of spurious relative-time excita-
tions [10].

* This article was submitted by the authorsin English.
** e-mail: volkov@thsunl.jinr.ru
*** e-mail: yudichev@thsunl.jinr.ru

In paper [2], the meson-mass spectrum for the
ground and excited pions, kaons, and the vector meson
nonet in the U(3) x U(3) model of this type has been
obtained. By fitting the meson-mass spectrum, al
parametersin thismodel arefixed. Thisthen allowsone
to describe al the strong, electromagnetic, and weak
interactions of these mesons without introducing any
new additional parameter.

In paper [3], it was shown that this model satisfacto-
rily describes two types of decay. This concerns the
strong decays like p —» 210 T — PTL, and p' — 21T
associated with divergent quark diagrams, as well as
the decays p' — wTttand w' — pTtdefined by anom-
alous quark diagrams. Here, we continue the similar
calculations for the description of the decay widths of
strange pseudoscalar and vector mesons.

In Section 2, we introduce the effective quark inter-
action in the separable approximation and describe its
bosonization. In Section 3, we derive the effective
Lagrangian for the pions and kaons and perform the
diagonalization procedure leading to the physical pion
and kaon ground and excited states. In Section 4, we
carry out the diagonalization for the K* and ¢ mesons.
In Section 5, we give the parameters of our model and
the masses of the ground and excited states of kaons,
K* and ¢ mesons, and the weak-decay constantsF, F;,
F«, and F.. In Section 6, we evaluate the decay widths
of the processesK*' —» K*11, K*' — pK, K*' — KT,
¢ — K*K,and ¢' —= KK . In Section 7, we calcul ate
the decay widths of the processed K' — pK, K' —»
K*m, and K' — K271t The results obtained are dis-
cussed in Section 8.

1063-7788/00/6303-0455%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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2. U@3) x U3) CHIRAL LAGRANGIAN
WITH THE EXCITED MESON STATES

We shall use a separableinteraction, which is till of
current—current form, but allows for nonlocal vertices
(form factors) in the definition of the quark currents,

L[a,q] = jd“xq(x)(ia—m°>q(x) +Lim, (1)

i = I‘“Z z[ 30915100 + 35,1091, (0)

a=0is )

- IR0 + I3H0 AT |
109 = [d%[d%A00FSi06 X x)A0),  (3)
i.109 = [d%[d %000 F7,i06 X, x)900), - (4)
5509 = [d%[d a0 FI0 X XA, (5)
3500 = [d'[d%a0) PR i x)a(). (©)

Here, nf is the current quark mass matrix (we suppose

that m, = my), j2p v a(X) denote, respectively, the
scalar, pseudoscalar, vector, and axia-vector currents
of the quark field; F{5(x; X, X)), i=1,...,N, areaset
of nonlocal scalar, pseudoscalar, vector, and axial-vec-
tor quark vertices (in general, momentum- and spin-
dependent), which will be specified below.

Upon bosonization, we obtain [1, 2]

Lbos(q1 q; o, (p1 Pv A)
= jd“xlfd“xzq(xl)[(raxz—m°)6<x1—xz)

8 N

+J‘d4xz Z (07 () Fs,i(X; X1, %)

a=0i=1

+ @) Fgi(% X1, %) + VI IFGT0G X0, %) (D)

+ A" “(x) Fa i (6 Xg, X)) 10(X2)

-[d XZ z[ (0%(%) + ¢f°(x))

a=0i=1
- 5(1; (VE¥00 + AT00) |

This Lagrangian describes a system of loca meson
fields, 07(X), ¢'(X), Vi'*(X), and A*"(x),i=1, ..., N,
which interact with the quarks through nonlocal verti-

ces. These fields are not yet to be associated with phys-
ical particles, which will be obtained after determining

VOLKOV, YUDICHEV

the vacuum and diagonalizing the effective meson
Lagrangian.
In order to describe the first radial excitations of
mesons (N = 2), we take the form factors (see [1]) as
F5 oK) = A*fR(K),  Foak) = iysh*fo(k),
Fubk) = YATFa(k), Fahk) = ysy"A"fo(K),
fI(k) = co(1+d.k?, )

where A2 are the Gell-Mann matrices. We consider here
the form factorsin the momentum space and in the rest
frame of the mesons (P,en = 0; k and P are the relative
and total momentum of the quark—antiquark pair). For
the ground states of the mesons, the functions

%K) = 1.
After integrating over the quark fields in (7), one
obtains the effective Lagrangian of the o2, a5, ¢, ¢,

Vit vt ATH, and A" fields:

®)

L@@ V. A5, V. A) = (0} + ¢+ .+ 3

= (V2+ A +Va+Aa)—|Ntr|og[|a7 m’
262

(10)
+ (05 +iVs®a + Y, Vi + VsV, AL
+(BatiVs@a) f2 + (v,Va + sy, Aa) FOA],
wherewehaveset 0, =0",0,=0, T, =T, T, = T, €tC.

Let us define the vacuum expectation of the o

fieldst
oL\ _
o0,
0

XtrJ' d*k 1 B
(2T[) (k- m’ + [6.0)

—iN,

(1)

[o,0) _
G, =0

[ ntroduce the new sigma fields whose vacuum expecta
tions are equal to zero

0, = O-‘a_ Db—.laL_eB (12)
and redefine the quark masses
m, = my— (0,03, (13)

Then eguation (11) can be rewritten in the form of the
usual gap equation
m, = my +8G,m,(m)

(i=ud,s), (14)

Dwe can derive this form of the gap equation only if the condition
(6,00 =Oisfulfilled (see [1-3] and equations (17)).
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where

;
(2T[) (m k)

(15)
and m; are the constituent quark masses.

3. THE EFFECTIVE LAGRANGIAN
FOR THE GROUND AND EXCITED STATES
OF THE PIONS AND KAONS

To describe the first excited states of all the meson
nonets, it is necessary to use three different slope

parameters d, in the form factors (k) [see (9)]:
fau (K) = Coy (1+dyk?),
fas (K) = Cos' (1+dyk?),
fe (k) = c”(1+dyk?).

Following our works [1, 2], we can fix the parameters
d,.» dus, @nd d by using the conditions

(16)

11%(my) +1;(m) = 0

1*(m) = 0,

1,*(my) = 0, )

where

1 m) = i jdkf e
@m(nt—K)

Equations (17) allow us to reduce the gap equations to
the form usual for the NJL model [see (14)] becausethe
tadpoles with the excited scalar externa field do not
contribute to the quark condensates and to the constitu-
ent quark masses.

Using (17), we abtain close values for al d,

(18)

dy, = 1784 GeV?, d,, = —1.7565 GeV ~,

19)
de, = —1.727 GeV™>.

Now, let us consider the free part of the Lagrangian
(10). For the pions and kaons, we obtain

2 7
%@ =35 T APKIPIGP). 20
i,j=la=1

Here,
3
a2 0.2 .
Z(cp.) = (m) +2mT,
a=1 (21)
2 2 2 2 _
(@) + (@) = 2K/K, (¢F) +(q) = 2K’K;.
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The quadratic form K{°(P) in (20) is obtained as
K'(P) = 8"K{i(P),
1. d'k

K{(P) = =8, = —iNtr
G 4
- {(211)

(22)
e

k+Sp-mg  K-2p-m

ivsf]|,

=I’nu(a: ,...,3); (23)

v 1),

m, and m, being the constituent quark masses (m, = m).
The integral (22) is evaluated by expanding in the
meson field momentum P. To order P2, one obtains

KLP) = Zi(P*-MP), K3,(P) = Z3(P*—M3),

K(P) = K5(P) = V(P =D%8)y-, ) 24
(A = ms_mu)1
where
78 = 4132, Z3=41,°Z, Vi=410Z,  (25)
M3 = (Z3) [——4(11(mq)+| 3 ))}
(26)
+Z_1A 6ab|b=4,...,7'

M3 = (Z8) [——4(11 (me) + 15 (i ))}
(27)

+Z7'A%

ab|b=4,...,7'

Here,Z=1-6mi/Mj =0.7and Z =1-T2-6m;/M; =

1 (see(32)), Z being the additional renormalization of the
ground pseudoscalar meson dtates, taking into account

the @ —~ A? transitions (see[2, 3)). 12, 1%, and I
denote the usual loop integrals arising in the momen-
tum expansion of the NJL quark determinant, but now
with zero, one, or two factors f,(k) [see equation (16)],
in the numerator [see (18) and below]:

2 (Mg My)

d'k  fak)...fak)
I (2m (M2 =IO (M2 = k%)

(28)
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After the renormalization of the meson fields
= (4zlm, m) 5 —81,(m) |
o = JZ'e, (29)
0
. - . m,
the part of the Lagrangian (20) describing the pions and = 2 , (40)
kaons takes the form 4Zmyl5(my, m,) G,
L@ = Lo m2 e M, = (@13m, m)” | 581y |
2 1 (30)
2 2 2
+ 20 P T, + (P =My Te], = (4Z1(m, mu))‘l[ =401, (m) + 1,(m)) |
1,2 2 2\, 2
L? = Z[(P*=MZ -A)K 0
2 “ ' 31y +(Z-1)a% = % (21 -1)A% (41)
+ (PP = Mg, —D%)KE+2r ((P* —A%)K, K], AM !
Here, = @m, m) " & -4 m) + 1) |
_va 1z
M= —== —. (32) 4. THE EFFECTIVE LAGRANGIAN
/\/lez Jl’;‘lz Z FOR THE GROUND AND EXCITED STATES
_ _ OF THE VECTOR MESONS
After the transformations of the meson fields The free part of the effective Lagrangian (10)
a _ a0y 0y .ar describing the ground and excited states of the vector
¢ = c05(0,—6a) ¢ —cos(0, +0.)¢; (33) Mesons hasthe form
¢° = Sin(8,—B) ¢ —Sin(8, + 83)¢5 2 8
W) = 5 5 T VERRVPIVIE), @)
the Lagrangians (30) and (31) take the diagonal forms 2 L & ! :
h
L@ = (P _MA)+ (P M2)2, 34y OC
zv“a = () +(p™) + 200",
L@ = (P MZ2)K?+= (P —~M&)K?. (35) @)
Here (V%) + (V) = 2K
vz =1 (VP + (V1) = 2K K, (V?f=(¢b
" 2-r and
(36) Hva 6” uv d k
- RVP) = — —iNtr
M2+ M2, 7 (M5~ M)+ (MM ], (F)=-5,9 [
Mik. k) = 2—11r2 [M§1+ MZ +20%(1-T2) x _______11 y“ff"v----————-l1 yeev), @
(1=T%) 37) k+5P—m k-5P-m;

V=1, f3V=flK).
To order P2, one obtains
Ri® = WIPG" —P'P" - g (MD)],

7 (M2 —M2 )2+ (@M M7

and
— 1 Mj)a_ Mig _ o
@n20 = |5-1———r), 20, = 20.+T, Ry® = W3[P’g"’ - P*P’ —g"' (M) ],
M 9 45)
2 vaa vaa

. 1+T
singg = |-, (39) = ya[Pzg“V—P“PV—gAzg“Vaa”|b=4_,_,7}.
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Here,
8 8 ff, _ 8. f.
VV611=§|§, \/\/§=§I2 , a—§|z, (46)
—a 2 3 2xab
(M1) = (WiGy) +30°0%|p-s.7 (4D
— 3
(M3)" = (W5Gy)  +350%6%)oy 7 (@48)
After renormalization of the meson fields
V= WA, (49)
we obtain the Lagrangians
1 v \Y \Y \Y
LY = —5[(g"P*-P*P" —g" My )plip}
(50)

+2r (g™ P* ~P"P")pip}
+(g"P°—P*P"—g"My,)p5p3],
LY = 21" P~ PP’ ~g" M )00}
+27 (" P* ~ P"P") 1} Gl
+(g"P° = P*P" — "My, ) 95031,
LE)

— 1 V2 \Y V|:B 2 2 *U, kv
= 5 PP - g A M G

(52)
+2rKD UVPZ_PHPV_g“VgAZ%:“K;V
+ %uvpz_ pHpY _gqugAz + Mi;%;HK;V]
Here,
M2 = 3 2 _ __ 3
L 8G,l(my, my)’ Ki — 8G,l(m, m)’
3 2 3
Y R A V | . —
B 7 8G,l,(my, my) P 8G, !5 (m,, m,) 3)
2 _ 3 2 _ 3
M T s mm T el m)
2l2 (M, My 8G,l (my, my
f
[,%(m;, m)
. 22 (54)

i,

i «/lg(mn mj)';fa(mi! m;)

After transformations of the vector meson fields, simi-

lar to (33) for the pseudoscalar mesons, the
Lagrangians (50)—(52) take the diagonal form
PHYSICS OF ATOMIC NUCLEl  Vol. 63 No. 3 2000
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L@ . = _%[(g“V(PZ— MZ) — P*PY) vy
' (55)
+(g"(P*=M2) - P*P") VY™,

where V2@ and V* are the physical ground- and excited-
state vector mesons

2 1
Mos = 2
2(1—|_p) (56)
x|:M51+MF2)2$/\/(Mfz)l_Mlzjz)z-i-(2M91M92r9)2i|’
2 1
Moo = =
2(1—|_¢) 57)

— 2
. |:M‘i1 + Mdz)z + /\/(Mil_ Miz) + (2M¢1M¢2r¢)2i|’

M2 _ 1 |:M2

o= L+ M2 +30%(1-T2)
KO KU 2(1_r|i|j) K: K3 K

(58)

- 2 2
+J(Mii—|v|§§) +(2MEM2.T ) }

5. MODEL PARAMETERS AND MESON MASSES

In the paper [2], there were obtained numerical esti-
mations for the model parameters, meson masses, and
weak-decay constantsin our model. Here, we only give
the values: the constituent quark massesarem, = my =
280 MeV, m, = 455 MeV; the cutoff parameter A\; =
1.03 GeV; the four-quark coupling constants G, =
3.47 GeV~? and G, = 12.5 GeV-?; the dope parametersin
theform factorsd,, = —1.784 GeV2, d, =—1.757 GeV~2,
ds=—1.727 GeV?; the external parametersin theform

factors ¢, = 1.37, ¢, = 1.32, ¢, = 1.45, ¢ = 1.54,
and ¢, = 1.41.

With the model parameters fixed, we obtain the
angles 6, and 6.

6, = 59.48°, @) = 50.12°, @, = 81.8°,

6, = 815°, B = 60.2°, Oy = 57.13°

o 0 -_— o -_— o
By = 84.7°, 6%, =5014°, @, = 68.4°,
6y = 57.13°,

(59)

and the meson masses are
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M, =136 MeV, M, =13GeV,
M, =768 MeV, M, = 1.49 GeV, 60
My = 496 MeV, My = 1.45 GeV, (60)
Mo =887 MeV, M, =1.479 GeV.
The experimental values are [11]
M®P = 134.9764 + 0.0006 MeV,
MZP = 1300+ 100 MeV,
ngp = 768.5+ 0.6 MeV,
(61)
Mg" = 1465 + 25 MeV,
Mexf = 493.677 + 0.016 MeV, My"= 1460 MeV,

exp = 891.59+ 0.24 MeV, M7 = 1412+ 12 MeV.

For the weak decay constants, we have

F. = 93 MeV,

F, = 0.57 MeV, o
« = 108 MeV = 1.16F (62)

Fr = 3.3 MeV.

Now, we can calculate the strong-decay widths of K'
and K*',

6. DECAYS K*' — Kp, K*' — K*TT,
K¥ — K, ¢' — K*K, AND ¢' — KK

In the framework of our model, the decay modes of
the excited strange vector mesons K*' and ¢' are repre-
sented by the triangle diagrams shownin Figs. 1 and 2.
When calculating these diagrams, we keep the lowest
possible dependence on the external momenta: squared
for the anomaly-type graphs and linear for another
type. We omit here the higher order momentum depen-
dence.

As has been mentioned in this paper, every vertex is
now momentum dependent and includes form factors
defined in Section 3 (see equation (16)). In Figs. 1 and
2, the presence of form factors is marked by black
shaded angles in vertices. Each black shaded vertex

K*(q) K(g) K(g)
TWp —q) p(p )

Fig. 1. The one-loop diagram set for the decays of K*'.
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with apseudoscal ar meson isimplied to contain thefol-
lowing linear combination for the ground state

. 0 - 0
_ .1 O{sn(ea+ea)+sn(ea—ea)fa} 63)

and for an excited state

0 0
flo 1 O[cos(ea+ea)+cos(ea 82) fa}. 6

where 8, and 6} arethe anglesdefined in Section 3 [see
equations (38) and (39)] and f, isone of theform factors
defined in Section 3 [equation (16)]. In the case of vec-
tor meson vertices, we have the same linear combina-
tions except that Z areto be replaced by W; (46), and

the related angles and form-factor parameters must be
chosen.

Now, we can calculate the decay widths of the
excited mesons. Let us start with the process K*' —»

K*11 The corresponding amplitude, T, _ (g, hasthe
form

Teo - kon = 9ko - kon€uwvapP APEH(PINE (@|N), (65)

where p and g are the momenta of the K*' and K*
mesons, respectively, and 9,y (o, IS the (dimen-

sional) coupling constant, which follows from the com-
bination of one-loop integrals

. 8mg
ko KOnr —

frofofx
x E’z

Note that in (66), the integrals I;"f are defined in the
sameway asin Section 3, equation (28), except that the
form factorsf in (28) are replaced by the expressions of
type (63) and (64). &, (p|A) and &,(q|A") are polarized
vector wave functions (A, A' = 1, 2, 3).

Using (63) and (64), we expand the above expres-

sion and rewrite it in terms of | defined in (28). The

m’—m? ©6)

frofkofr
(m) = 12" (m,, m)g

(@) (b)

K(q) K(q)
N N
u, d u, d
' +q) o' +q)
S )
K(p) K*(p)

Fig. 2. The one-loop diagram set for the decays of ¢'.
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result istoo lengthy, so we omit it here. For the param-
eters given in Section 5, we find

0o ko =4 Gev ™ (67)
and the decay width
2
M ko = 9_@4;1 “Tp|®= 90 MeV. (68)

Here? Ip|] is the 3-momentum of a produced particlein
the rest frame of the decaying meson. The lower limit
for this value coming from the experiment is ~91 +
9 MeV [11].

A similar calculation has to be performed for the
rest of the K*'-decay modes under consideration. The

coupling constant g, _ , is derived in the same way
asin (66), with the only differencethat f, and f. o are
to bereplaced by f, and f«. The corresponding ampli-

tude, Typ _ . takestheform

Teo ko = 9k - ko€mvasP A E(PINE (P—0|N), (69)

where p and g are the momenta of K*' and K mesons,
respectively, and

gKE| - Kp 2 2
S
(70)
Fuf

x5 omy - 137" (m,, myB

The corresponding decay width follows from (69) and
(70) viaintegration of the squared module of the decay
amplitude over the phase space of the final state

o = ol

KO - Kp —

(71)

For the parameters given in Section 5, one has

Okir - kp = 3 GeV (72)

Mo kp = 20 MeV. (73)
From the experiment, the upper limit for this processis
Mot kp <16+ 1.5 MeV.

The process K*' — Kr1tis described by the ampli-
tude

9

T = I%ﬁT(q—p)“Ep(p+q|A),

KO & Km

(74)

where p and g are the momenta of rtand K, and E“ isthe
K*" wave function. The coupling constant g, _ ., IS

2The value for |p| can be obtained from the formula |p| =
2 2\ 142 2
”\/(MKD_(MKD"- Mn) )(MKD_(MKD_MH) )/ZMKIj

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 3 2000

461
presented by the one-loop integral
fiofu
Oko - kn = 412 (my, my) =2, (75)
and the decay width is
Orcr_ P!’
Mo = =5 = 20 MeV. (76)
8TM,

The experimental valueis 15+ 5 MeV [11].

The mesons with hidden strangeness (¢') are treated
in the same way as K*'. We consider the two decay
modes. ¢' — KK* and ¢' —= KK . Their amplitudes
are

v N (77
Ty ko= Gk €mapp a8 (0 + aNE (A "

Ty kx = 19y _xc(P—0),E"(P+qN).  (78)
Here, &, and EV are the wave functions of the ¢' and K*
mesons, and p and g are the momenta of the K and K*
mesons. The related coupling constants are

_ 8m,
99 kx0T T
mg —m,
(79)
i frofe fy Frof
x Ho' e m 15" (m, myB
fy Frof
9y _ k= 412 P mY). (80)
Thus, the decay widths are estimated as
[y - ko= 90 MeV, (81)
o k=10 MeV. (82)

Unfortunately, there are no reliable data from the
experiment on the partial decay widthsfor ¢' — KK*

and ¢' —= KK except the total width of ¢' being esti-
mated as 150 £50 MeV [11]. However, the dominance
of the process ¢' — KK* is observed, which is in
agreement with our result.

7. DECAYS K' — K*11, K' — Kp,
AND K' — Knit

Following the scheme outlined in the previous sec-
tion, we first estimate the K' — K*mmand K' — Kp
decay widths (see Fig. 3). Their amplitudes are
(83)

Te o kon = 19 xodP+ Q)uEu(p—qp\),

igk - ko(P+ A Eu(P—alD).  (84)

Here, p is the momentum of K', g is the momentum of
T(K), and &, is the vector-meson wave function. The

Te o kp =
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K -9 K(q)

K<p<><] K<p><<]

pp-q

Fig. 3. The one-loop diagram set for the decays of K'.

(a) (b)
: o(K3) :j
< K(m)

Fig. 4. The one-loop diagram set for thedecay K' — K21L

coupling constants are

fifenfn
Ok - kon = 4l 7 (my, my, (85)

Ok - ko = 4125 (my, my. (86)

By calculating the integrals in the above formulas, we

have g,. o = -1.4 and g _ «, = —1.2. The decay
widths thereby are

M - ko= 100 MeV, (87)

Mk . kp =50 MeV. (88)

These processes have been seen in the experiment and
the decay widths are® [11]

re® o, 0109 MeV, (89)

Mk kp 034 MeV. (90)

The remaining decay K' — Krtrtinto three parti-
cles requires more complicated calculations. In this
case, one must consider abox diagram Fig. 4a and two

types of diagrams Fig. 4b with intermediate  and K}

resonances. The diagrams for resonant channels are
approximated with the use of the relativistic Breit—
Wigner function. The integration over the kinemati-
cally relevant range in the phase space for final states
gives

M

e 01 MeV. 91)

3)The accuracy of the measurements carried out for the decays of K'
isnot givenin [11].
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8. SUMMARY AND CONCLUSIONS

In the standard NJL model for the description of the
interaction of mesons, it is conventional to use the one-
loop quark approximation, where the external momen-
tum dependence in quark loops is neglected. This
allows one to obtain, in this approximation, the chiral
symmetric phenomenol ogical Lagrangian [4-9], which
givesagood description of the low-energy meson phys-
icsinthe energy range of an order of 1 GeV [12]. Inthis
paper, we have used asimilar method for describing the
interaction of the excited mesons. Insofar as the masses
of the excited mesons noticeably exceed 1 GeV, we
claim only a qualitative description rather than quanti-
tative agreement with the experiment. For the light
excited mesons, we have achieved results closer to the
experiment [3], while for heavier strange mesons we
are only in qualitative agreement with experimental
data. One should note that the description of all the
decays has been obtained without introducing new
parameters, besides those used for the description of
the mass spectrum.

In this work, we have shown that the dominant
decays of the excited vector mesons K*' and ¢' are the
decays K*' —= K*1(pK) and ¢' —= KK*, which go
through the triangle quark loops of the anomaly type.
These results are close to the experiment [11]. The

decays of the type K¥' —» Kmrand ¢' — KK, going
through the other (not anomaly type) quark diagrams,

have smaller decay widths, which is also in agreement
with the experiment.

On the other hand, the main decays of the K' meson
K'— K*11, K' — Kp, and K' —» Krtmtare described
by the quark diagrams, which are similar to those for
the decay 1 — pT1 (see [3]). The dominant decays
here are the decays K' — K*mand K' — Kp. These
results do not contradict (qualitatively) the recent
experimental data. So one can see that our model satis-
factorily describes not only the masses and weak-decay
constants of the radially excited mesons [1, 2] but also
their decay widths.

We would like to emphasize once more that we did
not use any additional parameter for description of the
decays (see aso [3]). The model istoo simpleto claim
a more exact quantitative description of the meson-
decay widths.

A similar calculation has also been made in the 3P,
potential model [13]. Nonlocal versions of chiral quark
models for the description of excited meson states have
also been considered in various works (see, for
instance, [7, 14]). In [15], a generalized NJL model
including arelativistic model of confinement was used
to study the radial excitations of pseudoscalar and vec-
tor mesons.

In our further work, we are going to describe the
masses and decay widths of the excited states of n and
n' mesons.

Vol. 63 No. 3
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ELEMENTARY PARTICLES AND FIELDS

Theory

Chiral SU(2) x SU(2) Modédl with Infrared Quark Confinement*
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Abstract—An SU(2) x SU(2) chiral quark model describing the properties and interaction of pions and scalar
and vector mesonsis considered. The confinement of quarksisintroduced in the model by means of an infrared
cut-off in the one-loop quark diagrams. This cutoff gives rise to the elimination of the unphysical thresholds of
the quark—antiquark pair production. The Tt-a, transitions are taken into account. The model conservesall low-

energy theorems. The masses of mesons and the widths of the decays p —= 2mand 0 — 2T are calculated.

© 2000 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

The Nambu—Jona-Lasinio (NJL) model is a conve-
nient semiphenomenologica quark model for the
description of low-energy meson physics [1-5]. Within
this model, the mechanism of spontaneous breaking of
chiral symmetry (SBCS) isrealized inasimpleand trans-
parent way, and the low-energy theorems are fulfilled.

Unfortunately, the ordinary NJL model fails to pre-
vent hadrons from decaying into free quarks, which
makes the realistic description of hadron properties on
their mass shell questionable. The exact solution of this
problem seems to be a very difficult task. However, dif-
ferent methods have been proposed for its solution [6—
10]. In the present work, we discuss a new approach
which issimilar to that suggested in [10] where an infra-
red (IR) cutoff has been used to develop a quark propa
gator without poles. In our approach, the quark propaga-
tor isof the usual form (with quasiparticle pole), but due
to the IR cutoff, the pole does not lie within the integra-
tion interval for the quark loops. This method of taking
into account the phenomenon of confinement isbased on
the idea of combining the NJL and bag models[11].

Thus, together with the ultraviolet (UV) cutoff,
which is necessary for the elimination of the UV diver-
gences, we introduce the IR cutoff and thereby divide
the momentum space into three domains. In Fig. 1,
these domains are represented in the coordinate space.

The first domain corresponds to short distances
(large momenta), where quarks are not confined and the
chiral symmetry is not spontaneously broken. This
domain is withdrawn by the UV cutoff A.

The second domain corresponds to long distances
(IR region), and here we have the confinement of
quarks. We truncate this region from the integration
over the internal momenta in quark loops, following
thereby the idea of the bag model. For this purpose, we
introduce a new parameter A.

* This article was submitted by the authorsin English.

Finaly, there remains only the third domain (A <
p? < A?), where SBCS takes place, the quark conden-
sate exists, and the quark loops have no imaginary
parts. In other words, quark—antiquark thresholds do
not appear when calculating quark loops even if the
mass of the decaying meson exceeds the effective mass
of the free quark—antiquark state. Therefore, we can use
guark propagators with constant, momentum indepen-
dent masses (constituent masses).

The first attempt to produce an NJL model of this
type has been made in [12], where only the scalar and
pseudoscalar mesons were considered. Now, we sug-
gest a more general version of this model where the
scalar, pseudoscalar, and vector mesons can be
described, and the possibility of 1a, transitions is
taken into account.

In Section 2, we give the effective chiral quark
Lagrangian and the gap equation describing SBCS. The
pion-mass formulais also deduced, and it is shown that
the pion isaGoldstone boson in the chiral limit. In Sec-

IR domain
Interaction
domain

Fig. 1. Three domains in the momentum space, defined by
the UV and IR cutoffs.

1063-7788/00/6303-0464%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Model parameters, the mass of the 0 meson and first decay width for different values of the ratio A/m of the IR cutoff to the

constituent quark mass

ANm m, MeV m®, MeV N, GeV Gy, GeV2 Gy, GeV2 —[g qlﬂB, MeV| Mg, MeV I, MeV
0.7 330 1.54 1.11 3.108 9.683 298 670 1280
0.8 310 1.58 1.13 2.967 8.629 296 630 970
0.9 300 1.49 1.18 2.698 8.949 302 608 830
1.0 290 1.45 1.21 2.555 9.222 304 590 721
1.1 280 1.37 1.26 2.339 9.322 309 570 614
1.2 270 1.32 1.33 2.079 9.273 318 550 536

tion 3, the scalar meson (o) isconsidered, and it isdem-
onstrated that the quark loop with two o-meson legs
does not have the imaginary part if we use the IR cut-
off. The model parameters are fitted in Section 4. There
we consider the decay p — 21t through the triangle
guark loop where the quark—antiquark threshold does
not appear when the IR cutoff is applied. In Section 5,
the o-meson mass and the decay 0 — 21t width are
estimated. In the last section, we discuss the obtained
results and give some proposals for applying this model
in the investigation of the behavior of mesons in a hot
and dense medium in the vicinity of the critical point.
Thevalues of the model parameters, the 6-meson mass,
and the 0 — 21t decay width are given in the table for
different values of A.

2. 9U(2) x SU(2) LAGRANGIAN, GAP EQUATION,
AND PION MASS FORMULA

Let us consider an U2) x SU2) NI model
defined by the Lagrangian

, G .
Eq = g0 ~m)q+ S(qa)” + (qiysea)’]
G M
— L@y, ta)” + (aysy,a)].

After the bosonization of the four-fermion model (1),
one obtainsits equivalent representation in terms of the
scalar (o), pseudoscalar (), vector (p,,), and axial-vec-
tor (a;,,) mesons

~2 2 2 2
O +mx +pu+a1

Frean = = Z55=+ 75,

(@3]

0 . ~ . O
—itrinfl + 1 [O+iyst O+t [pu+ystay, ] 0
0

0 Id—m

Here, the scalar fields o and ¢ satisfy the relation

—m’+5 = —m+a0,

3)
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where nf isthe current-quark mass, misthe constituent
guark mass, and the vacuum expectation of ¢ vanishes:
[6[4 = 0. Then, from the condition

o0& _
oL = 0, 4
60 o=0,mt=0 ( )
one obtains the gap equation®
m’ = m(1-8G,17"(m) = m(1-8G,1"(m) - o

= m+2G, g3,

where [0 is the quark condensate. 1®°(m) is
obtained from the A2-divergent integral

. N d’k
(m) = 4 —=
' (2n)“.rm2—k2—ie

by applying the three-dimensional UV (b = A) and IR
(a=A) cutoffs

(6)

A
N K?
IM(m) = — [dk=—
(21‘[)2-!- E() -
2
= Nem [x x2+1—ln(x+A/x2+1)]K\//r:,

81t

where E(k) = //k* + m* and N, is the number of colors.

Now, let us consider the free part of the Lagrangian
(2) for pion fieldsin the quark one-loop approximation
(see Fig. 2)?
9 = THL g0 (m -ap 12" mB
1 O

DHere, the dependence of the integral 1;(m) on A can be neglected
since (1) the value of the integra is defined by the UV cutoff A
and (2) 1;(m) does not depend on external momenta and, there-
fore, does not have theimaginary part. Hence, thereis no need for
an IR cutoff.

AThe braced expression can be written as 1/G; + M(p), where
M(p) is the polarization operator of the pion.
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Fig. 2. The quark-loop diagram for the polarization operator
of cand 1t

where I(ZM)(pZ, m) is a logarithmically growing inte-
gral:

. N
120" m) = —i—=

(2m)*

y d*k
I(mz—kz—is)(mz—(k—p)2—is)

)
N, K2

= —(dk—oooo

2n2.f E(4E° - p° +ig)

In order to express (8) through physical fields, we
renormalize the pions

n = g{Mpx',
6(M) =0(0) = [41970.m)] .

Here, as the pion mass M, is small, we can neglect
p2 ~ M2 in 198V(p% m) ;

(10)

19V, m) =190, m)

X _
- Mg oD -1 11

Moreover, an additional renormalization factor ./Z
appears for pions when we take into account the 1-a,
transitions [3]:

On = Ou/Z, Z7 = 1-6m/ M,

an

(12)

where M, = 1230 MeV is the mass of the a; meson.

Thus, we obtain the following expression for the pion
mass:

1

5 (13)

M; = g7 & - 819" (m) |
which can be given the form of the Gell-Mann—Oakes-
Renner relation

m° [0}
=

Fr

M2 = -2

(14)

VOLKOV, YUDICHEV

where the Goldberger—Treiman relation (21) and the
gap equation (5) have been used. We can see that this
pion-mass formulais in accordance with the Goldstone
theorem since, for m = 0, the pion mass vanishesand a
pion plays the role of the Goldstone boson.

3. THE 0 MESON AND IR CONFINEMENT

The free part of the Lagrangian (2) for the ¢ meson
in the one-loop approximation (see Fig. 2) has the fol-
lowing form:

2

o
CSBE;Z) = —E
(15)

x 5.% ~819V(m) —4(p” — a1 £V (p, M
) 0

After the renormalization of the o field

0 = gy(My)a', 6
0o(Mo) = [419V(M2, m)] ™,

we abtain the expression for the 0-meson mass

M2 = gf,(MU)[él— -8l (l“\)(m)} +4m’ = r’M% + 4,
' (17)
_ 9(My)
9(Mp)’
Now, let us consider more carefully the integral
127(p", m):

N, K
= —[dk .
2nzf E(4E*— M2 + ig)
A
When A = 0, this integral aquires an imaginary part.

Indeed, the integrand in (18) is singular when its
denominator is equal to zero:

AE° —MZ = 4K°—r’M2 = 0. (19)

The imaginary part appears if the singularity (k =
rM,/2) lieswithin the integration interval. Therefore, if
we apply the IR cutoff

A=cm, where c>rM,/2m, (20)

then A > k> A >rM,;/2 and the integral is real, which
is equivalent to the absence of the quark—antiquark
threshold, or confinement.

AN 2
19N (MZ, m)

(18)

4. MODEL PARAMETERS

In this model we have four input parameters [13]:
(1) the pion-decay constant F,= 92.4 MeV describ-
ing the weak-decay process T — v ;

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 3 2000
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(2) the p-meson-decay constant g, = 6.14 describ-
ing the decay p — 2TT,

(3) the pion mass M, = 140 MeV;

(4) the p-meson mass M, = 770 MeV.

The output parameters are

(1) the constituent quark mass m,

(2) the 3-momentum UV cutoff parameter A,

(3) the scalar (pseudoscalar) four-quark coupling
constant G,

(4) the vector (axia-vector) four-quark coupling
constant G,.

The IR cutoff A is an arbitrary parameter of our
model which isto satisfy the condition (20).

In order to fix the output parameters, we use thefol-
lowing four equations:

(1) The Goldberger—Treiman relation

M/ F, = 9{0) = g0)/Z. 1)

(2) The decay width of the process p — 21t The
amplitude of this processis of the form

Tooon = Ig" (p.—p)pd'T.  (22)

In the one-loop approximation (see Fig. 3), we obtain
the following expression for g;*:

g5® = Z7'g,(M)GAM)[4197(0, m) + A]

1/2
- [2 on) 0 A 3)
(M2, mg [1 + T m)},
-1/2
where g,(M,) = [ 19MM2, )} (see[3]) and A =

3 [ 2|\/|2D
8] ¥

3m

diagram (Fig. 3). Thefactor Z-! appears due to the T-a,
transitions (see [3]). From these two equations one can
find mand A.

(3) The coupling constant G, is defined by the mass
formula

0 is the finite part of the quark triangle

M = 07 5 -8 8" (m) | 4

(4) The coupling constant G, is found from the mass
formulafor M, [3]

_gMy) _ 3
P G, 8G,15" (M2, m)’

By means of the gap equation (5), we define the cur-
rent quark mass n.

M2

(25)
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Fig. 3. The triangle quark diagram describing the decay of
the p and 0 mesons into two pions.

5. THE o-MESON MASS
AND THE DECAY 0 — 2m

The mass of the o-meson is given by (17). Using
this formula for the IR cutoff A = m, we obtain )

M, = 590 MeV. (26)

The decay 0 — 211 occurs through the quark triangle
diagram (see Fig. 3). This diagram aso satisfies the
confinement condition (20) if we use the IR cutoff A =
m. The amplitude of the process 0 — 21thastheform

To . 2n = 8MY4(Mo)GoM,)
AN 2 (27)
x [19V(M2, m) + T (M,, M, m)]aT?,
where
T (Mg, M, m)
1 (28)
= E(Mi_ZMﬁ)IS(plv P2, M) 2. 2_ 2
and
. N,
[3(P, P2, M) = —i 2
(2m)
(29)

d'k
I(k —m)((k+ py)”=m’)((k—py)* - m")

Neglecting the external pion momenta in I;(p;, p,, M),
we obtain

. N, d’k
la(Py, P2 M) = -
3(P1, P2 M) (2H)4-r(k2—m2)3 32T[2I =
! (30)
_ NC +m2[| ~ m2[|3/2 .
sorem?| 0 A20 Fes

3)See table for different choices of the ratio A/m.



468

Then the decay width of the 0 meson isfound to be
2

30 m O
2T v F2e
@G(MU)FT[D

1+98)° 2
x (M—Z)A/MU _4M2= 720 MeV,
o

Mo_on =

€1y

where

T (Mg, M, m
|2 (Ol m)

Therefore, one can see that our estimates for the o-
meson mass and its decay width are in agreement with
the experimental data[13] (see dlso [14, 15]):

MS® = 400-1200 MeV, I'o® = 600-1000 MeV.(33)

From this, one can conclude that the NJL model with
the IR cutoff satisfies both of the low-energy theorems
together with SBCS and describes the low-energy
physics of the scalar, pseudoscalar, and vector mesons.

(32)

6. DISCUSSION AND CONCLUSION

In this paper, we have investigated the extension of
the NJL model for the light-nonstrange-meson sector of
QCD, where the interaction of u and d quarksis repre-
sented by four-fermion vertices and the phenomenon of
guark confinement istaken into account. Thisextension
of the NJL model describesthe propertiesof theT, p, and
0 mesons in good agreement with the experiment and
with the low-energy theorems. The model parameters
are obtained by fitting the model so that it reproduces
the experimental values of the pion and p-meson
masses, the pion-decay constant F,-, and the p —» 11t
decay constant g,. Moreover, it was shown that, for the
T, p, and o mesons, the nonphysical quark—antiquark
thresholds do not appear if the IR cutoff is applied.

The prediction of the o-meson mass and its decay
width for different values of IR cutoff is given in the
table, together with the model parameters. From this
table and the experimental data [13], one can conclude
that the parameter A is alowed to have values within
the interval 0.8 < A < 1.2. The value of the current-
guark mass turned out to be too low because, in our
model, the quark condensate exceeds its conventional
value—(250 MeV)3. This can be seen from (14).

Insofar as the NJL model is a semiphenomenologi-
cal model based on the effective chiral four-quark inter-
action mativated by QCD on the phenomenological
level, the introduction of quark confinement in our
model through IR cutoff (without considering the gluon
exchanges, instanton interactions, etc.) isin the spirit of
this model.

An important application of our model is the
description of the meson properties in a hot and dense

VOLKOV, YUDICHEV

medium. The standard NJL model has been aready
used for this purpose [5, 16, 17], where the temperature
dependence of the masses of quarks and mesons and of
the Yukawa coupling constants was found. The IR cut-
off A isexpressed through the constituent quark massm

(or the quark condensate [fqly), which is lowered

when the temperature (T) and chemical potential (L)
increase. Therefore, the IR cutoff will also reduce with
T and p. Thiswill at length result in the deconfinement
of quarks near the critical point. The temperature at
which deconfinement takes place can be found from the
condition [see aso (19)]

2

4EI20W_Mmeﬁon = : <O!

41+ )M = M geon < (34)
where E,,, is the lowest energy of the quark in the
guark loop. Then, for the pion, the temperature of

deconfinement follows from the condition (34)

M(TS) = M,/ 241+ ¢, (35)

Inthevicinity of the critical point, the constituent quark
mass is reduced with T too suddenly, and the pion mass
increases gradually (see [17]). Therefore, when the
constituent quark mass is as light as 40-50 MeV, the
decay of apion into free quarks becomes possible.

For the o meson, we obtain alower value of Tdee:

mM(TS) = M,r/c. (36)

The decay channel 0 — 2T1tis closed when M, <
2M, [see (31)] and then

M(Tg |, o) = ?Mnr 0100 MeV. (37)

Note that, first of al, the quark deconfinement
occurs for the p meson, where we have the lowest T
{see (34) and [17]}

M
—L __ =250 MeV.
2.J1+¢?

Thus, we come to the following picture. At low T
and |, the 0 meson isunstable sinceit hasalarge decay
width (31) into two pions. The pion is stable since el ec-
troweak-decay channels can be neglected here, in com-
parison to the strong ones. The p meson takes an inter-
mediate position between ¢ and 11, having the p —= 211
strong decay width 150 MeV. When T increases, an
extra channel emerges. p —» gq. At higher T, thereis
atemperature range where the decays of ¢ both into 21t

and into qq are forbidden, and the ¢ meson turns out to
beastable particle. For T > Tcd,eC, theo mesonisalowed
to decay into a qq pair, and only the pion remains sta-

ble. Finally, near the critical point, when T = Tf[ec, all
the particles decay into free quarks.

m(Ts™) = (38)

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 3 2000



CHIRAL SU(2) x SU(2) MODEL

The process of deconfinement isentirely reflectedin
the following sequence of inequalities

(39)

where we have four different temperatures separating
different phases. Therefore, one can see that the transi-
tion of the hadron matter to the quark—gluon plasma
occurs, not suddenly, but in a smooth manner.

In our further work, we are going to make a more
careful investigation of these processes, which can play
an important role for the explanation and prediction of
the signals coming from ultrarelativistic heavy-ion col-
lisons, as well as ensuring restoration to the chiral
symmetry and the quark deconfinement in the hadron
matter at the transition to the quark—gluon plasma. For
example, among the possible visible effects associated
with the quark deconfinement, there is the low-mass
dilepton enhancement observed by the CERES collab-
oration [18].

dec dec dec
Tp <Tc,t»2n<Tc <TT[1
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Magnetic Catalysis and Magnetic Oscillations
in the Nambu—-Jona-L asinio M odel
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Abstract—The phase structure of the four-dimensional Nambu—Jona-L asinio model in the presence of achem-
ical potential p and an external magnetic field H is investigated at comparatively small values of the bare cou-
pling constant (G < G,). It isshown that only for magnetic-field strengthsin excess of some critical value Hy()
does the magnetic field induce a spontaneous breakdown of chiral symmetry. On the phase portrait of the model,
there are infinitely many massless chiral-invariant phases; in addition, thereis one massive phase characterized
by spontaneously broken chiral invariance. It is because of this phase structure of the system that some physical
features of its ground state, including magnetization, pressure, and particle density, oscillate as H — 0.
Changes in the vacuum properties of the model are accompanied by first- or second-order phase transitions.

© 2000 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

A magnetic catalysis represents dynamical chiral-
symmetry (flavor-symmetry) breaking induced by an
external magnetic or an external chromomagnetic field.

For thefirst time, this property of auniform external
magnetic field was discovered in studying the (2 + 1)-
dimensional Gross-Neveu model featuring discrete
chiral symmetry [1, 2]. It iswell known [3] that, at H =
0, two phases are possible in this model. Of these, one
possesses chiral symmetry for G < G, where Gisabare
coupling constant; in the other, chiral invariance is
spontaneously broken for G > G.. Even at arbitrarily
small (but nonzero) values of H and arbitrary values of
G > 0, the model does not have, however, a symmetric
ground state, and chiral invariance is spontaneously
broken [1, 2].2 In [1], specia attention was of course
given to the case of G < G, where the magnetic field
causes a dynamical breakdown of chiral symmetry
even at arbitrarily small valuesof G. It wasshownin [4]
that an external chromomagnetic field leads to similar
consequences.

Later on, this effect was explained in [5, 6] by con-

sidering that, in an external magnetic field, the dimen-
sion of spacetime is effectively reduced (dimensional

T Deceased.
D Institute for High Energy Physics, Moscow oblast, Protvino,
142284 Russia.
* e-mail: kklim@mx.ihep.ru
) The analysis in [1] was performed in terms of the parameter g
such that 1/g = 1/g(m) — 2my/1t, where mis a normalization point
and g(m) is the renormalized coupling constant. The relation
between g and G has the form 1/g = 1/G - 1/G¢ [4]. It is clear
that, for g< 0 (g> 0), wehave G> G, (G < G,). Itisalso obvious
that g isindependent of either the normalization point of the the-
ory or the ultraviolet-cutoff parameter.

reduction), which enhances the role of infrared diver-
gences in the rearrangement of the vacuum. In those
studies, as well as in [7-10], it was proven ) that the
effect of magnetic catalysisis peculiar not only to var-
ious three-dimensiona models like the continuous-
symmetry Gross-Neveu model, QED,, and free-fer-
mion models but also to four-dimensional theorieslike
those that are based on the Nambu—Jona-Lasinio (NJL)
models. Of such four-dimensional theories, the sim-
plest oneisthat which is specified by the Lagrangian

N
Ly = Z qjkiéwk
! (1)

N 2 N 2
clO O O . O
+ m[mz gpd + DZ Plyswd |,
e UGS u
which isinvariant under the continuous chiral transfor-
mation
i0y,
W, — € P, (k=1,...,N). 2)
(In order that the nonperturbative method of 1/N expan-

sion could be used, we will consider the N-fermion ver-
sion of the NJL model.) It was shown in [11] that, at

3)The authors of [7, 9] assert that only the fact of an increase in the
dynamical fermion mass in the presence of an external magnetic
field was established in [1, 2]; that is, they are confident that only
the case of G > G, was considered in [1, 2]. In fact, the effect of
an external (chromo)magnetic field on the (2 + 1)-dimensional
Gross-Neveu model was studiedin[1, 2, 4] for arbitrary values of
the bare coupling constant. It was aso shown in those studies
that, at H # 0, chiral symmetry is spontaneously broken for all
G O (0, ), including the case of G < G, and the case of arbi-
trarily small positive values of G (magnetic catalysis of dynami-
cal symmetry breaking proper).

1063-7788/00/6303-0470$20.00 © 2000 MAIK “Nauka/Interperiodica’
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H = 0, the chiral symmetry (2) in the theory specified
by equation (1) is spontaneously broken (phase B)
when the coupling constant G exceedsthe critical value
G. (G> GY. If G < G, the vacuum of the modd is
invariant under transformations (2) (phase A). Under
the effect of an external magnetic field, the vacuum of
the phase B changes its symmetry properties at no val-
ues of H [12] A For G < G., however, the ground state
of the model ceases to be symmetric even at arbitrarily
small values of G and H [6]; that is, thereisno A phase
in the NJL model for H # 0 (effect of magnetic cataly-
sis). Within three-dimensional QED, a generalization
of the effect to the case of a nonuniform magnetic field
was performed in [14].

From quite general heuristic considerations, it fol-
lows that, in all probability, the effect of a magnetic
catalysisis universal—that is, it is expected to manifest
itself inthe majority of modelsfeaturing fermion fields.
In order to demonstrate this, we note that, for any quan-
tum system of fermions interacting with one another
and with other particlesin a chirally invariant way, the
effective fermion Lagrangian must involve aterm pro-
portional to G(I Y)>. (In order to find the effective
Lagrangian, it is sufficient to perform integration in the
generating functional for Green's functions with
respect to al fields, except for spinor ones.) By analogy
with the NJL model, we can therefore conclude that, in
the presence of a catalyst (external magnetic field),
chiral invariance will inevitably be broken in the sys-
tem at an arbitrarily small value of the effective con-
stant G. It goes without saying that, in each specific
model, the effect of magnetic catalysis has individual
features inherent in this model.

As amatter of fact, many physical processes occur
at nonzero values of temperature and particle-number
density; for this reason, much attention is given to the
dependence of the effect of magnetic catalysis on these
and on some other factors. By way of example, weindi-
cate that the effect of temperature, achemical potential,
and a magnetic field on the properties of the (2 + 1)-
dimensional Gross-Neveu model was considered in
[15, 16] and that the effect of temperature on the catal-
ysisin the NJL model and in QED, was studied in [8,
10, 17]; in addition, the concerted effect of gravity and
magnetic fields on the critical properties of variousthe-
ories featuring four-fermion interaction was analyzed
in[18, 19].

In the present article, we proceed aong the above
lines, pursuing further the investigation of magnetic

DThis is at odds with expectations based on the analogy with the
theory of superconductivity, where the symmetry of the model
must be restored with increasing H. Calculationsreveal that, in all
of the models listed above, the fermion mass grows with increas-
ing H; therefore, a transition to a chiral-symmetric, massless,
phase occurs at no value of the magnetic field H. Of particular
interest is the investigation performed in [13], where the growth
of the quark condensate with increasing external magnetic field
was proven within QCD, as well as within the generalized chiral
model, which describes the low-energy region of QCD.
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catalysis. Specifically, the properties of the vacuum of
the NJL theory whose Lagrangian is given by (1) are
considered here in the presence of achemical potential
K and a uniform external magnetic field H. On this
basis, it is shown that, with increasing magnetic field,
oscillations of pressure, magnetization (de Haas-Van
Alphen effect), and particle-number density (analog of
the Shubnikov—de Haas effect of electric-conductivity
oscillations in metals) may occur in the system.

2. u#0,H=0CASE
We begin by recalling the properties of the NJL
model (1) at p = 0. For this purpose, we consider,
instead of (1), the auxiliary Lagrangian

Ly = Bidy - (o, +ioyW - (G5 40D ()

(onthefield Y, we suppressed here, for the sake of sim-
plicity, the index k numbering fermion fields). On the
manifold specified by the equations of motion for aux-
iliary boson fields o, ,, the Lagrangianin (3) is equiva-
lent to the original Lagrangian (1).

In the leading order of 1/N expansion, the effective
action of the model is given by

exXP(iNSy(01,2)) = [DPDYexp(i jLod“x),

2, 2

4 01+ 0;

X—————-—
2G

—ilndet(id — 0, —iys0,).

Sui(0y2) = —Id @)

Further, we assume that the fields o, , are indepen-
dent of spacetime coordinates. By definition, we have

Sur(012) = ~Ver(0y,5) jd“x, 5)
where
2
V(01 5) = ZZ_G
(6)

+ 2iJ’(g—n")’4|n(z2 —pY) =V,(2)

with = = /o’ + a2.

Going over to the Euclidean metric (p, — ipy) in
the function appearing in (6) and introducing a L orentz
invariant cutoff (p*> < A?) in the domain of integration,
we obtain

2 1 O, 0
Vo(Z) = =-——— N\ InHL+ =
° 2G 1612 + A2
, @)
2¢2 o4 A0
+A%2 -3 '”%“;Dg
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The points of extrema of the function in (7) are deter-
mined by the equation
0Vy(2)
()2

=RF(2)

> Ure 2, 2 N
=E—==—-N+3IIn"l+=-=
arg G n% >?H

®)

From (8), it can be seen that, for G < G, = 41¢//A?, equa-
tion (8) does not have solutions, with the exception of
the trivial solution Z = 0; that is, fermions prove to be
massless in this case, and invariance under the chiral
transformations (2) is not violated.

If G > G, equation (8) has one nontrivial solution
corresponding to the global minimum of the potential
V,(2); this implies a spontaneous breakdown of chiral
symmetry and emergence of a nonzero fermion mass.

Let usnow assumethat p > 0. This case was consid-
ered in detail in [20], where the expression for the cor-
responding effective potential V,,(%) [the expression for
V,(2) isgivenin (7)] was obtai ned in the form

V() = Vo(3)
3 2 2 2 2 9
—21(";—11";39<u—dz =), )

with 8(x) being a Heaviside step function. Evaluating
the integral on the right-hand side of (9), we arrive at

B(p—=)010
16T [

2,312

Viu(2) = Vo(2) - u( z°)

(10)

2 |
— 23 =22+ n[(p + JpP-22) 127 0

It can easily be shown that, for G < G, and for any value
of W, the absolute minimum of the function in (10) is
always attained at the origin—that is, the symmetry
under the transformationsin (2) is not broken.

For G > G, previously unknown properties of the
NJL model were discovered in [20] on the basis of an
analysis of the point where the potential (10) attainsthe
absolute minimum. Among other things, it was shown
there that, at nonzero values of the chemical potential,
the state featuring massive fermions is described, in
that case, by two different phases that go over to each
other via a first-order phase transition. It was also
shownin [20] that the chiral symmetry of the model can
be restored by means of either afirst-order or a second-
order phase transition, depending on the values of the
model parameters. The phase portrait of the NJL model
was constructed in the (u, M) plane, where M is the
dynamical fermion massat 1 = 0, and it was found that
there are two tricritical points on this phase portrait.

VDOVICHENKO et al.

3. MAGNETIC CATALYSISATHZO0AND p=0

In a nonzero external magnetic field, the effective
potential of the NJL model can be derived by the well-
known proper-time method [21] or by no less elegant
methods relying on calculations in momentum space
[22]:

> 91—'— 9I—Sexp(—sz )coth(eHs).

ZGT[Z

Upon an identical transformation of this expression, we
arrive at

Vu(2) =

Vi(Z) = V() + Va(Z) + Z(32), (11)

where
2
Vo() = 2+ }f"—sexp( s77),
Z(2) = (eH)I exp(—sz?),

(12)

VH(Z) = i[zj’g—sexp(—sZ)

X [(eHs) coth(eHs) —1— (eH_3s)2}

Apart from an immaterial infinite term, which is inde-
pendent of Z, the potential Vy(X) in (12) is equal to the
functionin (6); therefore, the regularized expression for
V,(Z) has the form (7).

In just the same way asthe potential V(%) the inte-
gra Z(X) diverges at its lower limit. Upon isolating a
finite component in Z(Z) by means of identical transfor-
mationsin (12), we arrive at

(eH) ds
24rtJ

(eH) ds
24n2

Z(2) = (E‘XIO(—Sz ) — exp(-s\?))

exp(-s\’) (13)

(eH)
24n2 /\

(eH) ds
2413

where A\ appears to be the same cutoff parameter asin
(7). Asto thelast, divergent, termin (13), it contributes
to the renormalization of the el ectric charge eand to the
renormalization of the external magnetic field H; there-
fore, we disregard this term in the following (we are
dealing with asimilar situation in calculating the effec-
tive action in QED [21, 23], where it is aso necessary

exp( —sA )
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to renormalizeeand H in order to obtain afinite expres-
sion for the effective action).

The last potential in (12), V1 (2), features no diver-
gences; it can be evaluated easily by using standard
integralsthat are presented in [24]. Taking into account
(11)—<13), we obtain

Vu(Z) = Vo(2)

2 2 14
__(623:2) é&'(—l, x)—%[xz—x]lnx+XZ§ (9

where x = 2%/(2eH), {(v, x) is a generalized Riemann
zetafunction [25], and {'(-1, X) = d{(v, X)/dV | .The

v=-1
following relations [25] will be useful in the ensuing
calculations:

%(Z(v, X) = =v{(v+1, X)),

(15)

d 1

&Z(v, x)|V:0 InF(x)—éln(Zn).

With the aid of equations (14) and (15), we can find
easily that the point at which the potential V(%)
achieves the global minimum satisfies the equation

d _ 2 -
35 Vh(Z) = R{F(Z)—l(z)} =0,

where F(Z) is given by (8) and where

(16)

() = 2eHEINF () - 2in(2m) + x - 2(2x— 1) Inx ]
0 2 2 0
. (17
= I g;_s exp(—sz?)[eHscoth(eHs) — 1]
S
0

[the parameter x has been defined immediately after
equation (14)]. Now, it can be shown easily that, for
> [0 (0, +), the function I(Z) decreases monotonically
from +co to 0; on the contrary, the function F(Z)
increases monotonically, within this interval, from
412/G — N? to 41¢/G. For any nonzero value of the
external magnetic field H, there therefore exists a
unique nonzero function Z,(H) (both for G < G, and
G > Gp) such that it satisfies equation (16) and that it
corresponds to the global minimum of the potential
Vy(2). Physically, the solution denoted by 2, (H) repre-
sents a fermion mass [in Fig. 1, which illustrates the
case of G < G, it appears to be the point where the
graphs of the functions F(Z) and 1(Z) intersect].

Thus, we can seethat, for G < G, and H =0, the vac-
uum of the NJL model possesses chiral invariance, but
that, at arbitrarily small nonzero values of the mag-
netic-field strength, this symmetry is spontaneously
broken, which meansthat amagnetic field appearsto be
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418/G

4T8/G - N\?

5o(H) 5

Fig. 1. Graphs of the functions F(Z) and I(Z). The point of
their intersection determines a nontrivia solution to equa-
tion (16) for the points of extrema of the effective potential.
Errorsindicate the directionsin which the graph of the func-
tion I(X) is displaced when the external-magnetic-field
strength isincreased or decreased.

a catalyst of a spontaneous breakdown of invariance
under the chiral transformations (2) (thisresult wasfirst
obtained in [6]). In the following, the properties of the
vacuum of the model specified by equan on (1) will be
studied only in the case of G < G_.”)

Listed below are some properties of the function
>,(H). From the integral representation (17) of (%), it
follows that dl/0H > 0; at fixed values of %, the graph
of the function (%) are therefore shifted upward with
increasing H and downward (toward the Z axis) with
decreasing H (see Fig. 1). It is obvious that Z,(H) then
increases or decreases, respectively, since the graph of
the function F(Z) undergoes no changes; that is, Z,(H)
appears to be a monotonically increasing function of
the magnetic-field strength.

Let us now study the asymptotic behavior of this
function for H — 0. We assume that

To(H) — o, Z3(H)/(eH)—= o for H —»co. (18)

By using equations (8) and (17) and taking into account
(18), we find that, at large values of the magnetic-field
strength, the functions F and | are given by

F(Z,) =4TP/G, 1(Z,) = 4(eH)?/(1252).

It follows that, for H —» oo, the leading term in the
asymptotic expansion of the solution to the equation
F(Z)=1(X) isgiven by

G
12
[It can be seen easily that the solution in (19) satisfies
the conditionsin (18).]

In a similar way, we can determine the asymptotic
behavior of the solution Zy(H) for H — 0. Indeed, it
can be shown that, if only the leading terms in the

zy(H) =& (19)

91t was indicated in the Introduction that, for G > G, the symme-
try of the model under chiral transformations (2) is spontaneously
broken at any value of the magnetic-field strength [12].
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asymptotic expansions on the two sides of the equation
F(Z) = I(X) areretained under the conditionthat H —
0, — 0, and Z%/(eH) — 0, we arrive at an equation
whose solution

eH 0O 1@ Lo
Zo(H) = neXpE_eHDG 0

(20)

is consistent with the constraintsimposed in deriving it.
Hence, the expression on the right-side of (20) is pre-
cisely the leading term in the asymptotic expansion of
the nontrivial solution to the equation for the points of
extremain thelimit H — 0.

Thus, we conclude that, for G < G, even an arhi-
trarily small external magnetic field induces a spontane-
ous breakdown of chiral invariance in the NJL mode.

4. MAGNETIC CATALYSISATHZO0AND p#0

Supposethat G < G.and 1 £ 0. It iswell known that,
in contrast to a magnetic field, the chemical potential
facilitatesthe restoration of chiral symmetry. It isthere-
fore natural to expect that, at a fixed nonzero value of
M, the opposing trends due to the above two factors will
result in that only for magnetic fields whose strength
exceeds some finite threshold critical value H () will a
dynamical breakdown of symmetry under transforma-
tions (2) beinduced in the case being considered. If H <
H.(W), the chemical potential must have a more pro-
nounced effect on the vacuum; hence, chiral symmetry
is expected to be preserved. Below, these qualitative
considerations will be supported by acalculation of the
phase structure of the NJL model for H# 0and p £ 0.

The effective potentia in the three-dimensional
Gross-Neveu model was obtained in [16] at nonzero
values of an external magnetic field H, temperature T,
and the chemical potential . In asimilar way, we can
derive the effective potential in the model considered
here, that specified by equation (1), for nonzero values
of H, T, and u. Theresultis

TeH
\Y 2) = Vy(2)——
() = Vi(®) ==

<3 o fdpin{[L+ep(-BE )]
k=0

[1+exp(—B(ec—m)]},

where B = /T, 0 = 2 — 8y, & = 4/Z° + p° + 2eHk, and
the function V(%) isdefined in (11). Inthe limit T —
0, expression (21) takesthe form

VHp(z) = Vu(2)

" (22)
—%za ldp(u—sk)e(u—ek).
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Evaluating the integral in (22), we arrive at

Vi(Z) = V(2 —%goake(u—sk)

(23)
0 + J1 s |0
5! rz—si—siln[%}g

wheres, = /=% + 2eHk . With the aid of (16), the equa-
tion that determines the points of extrema of the poten-
tial (23) can be written as

0 Pl

35V = SFE-1G)

{uWuz—ﬂD_
—_— D_
S 0

(24)

+2eH N a,06(n-s)In
2

Our attention being focused on the phase structure of
the model specified by equation (1), each point of that
region of the (i, H) plane whereu = 0 and H = 0 must
be associated with some phase that is unambiguously
determined by the globa minimum of the potential
(23). The procedure that we believe to be optimal for
implementing this construction and which is dictated
by the structure of expressions (23) and (24) is as fol-
lows. We break down the above region of the (u, H)
plane into domains w, (1, H = 0) defined as

(1 H) = o
k=0 25)

o, = { (1, H): 2eHk < p® < 2eH (k + 1)}.

It isobviousthat, in the region w,, the quantitiesin (23)
and (24) receive contributions only from the first terms
in the corresponding sums; that two terms in each of
these sums—those that correspond to k = 0 and 1—are
nonzero in the region w,; and so on. (A similar
approach was adopted in studying the effective poten-
tials in the three-dimensional Gross-Neveu model for
M, H = 0 [16] and in the NJL model with a chemical
potential and one compactified spatial coordinate—that
IS, in spacetime of the form R® x S' [26, 27].)

Let us now consider the phase structure of the NJL
model in the region wy, under the condition G < G.. In
this case, equation (24), which determines the points of
extrema of the potential (23), takesthe form

5 [
—OF(2)-1(2)
n2
(26)
2 2
— 0
+ 2eH9(u—Z)In[“+— ““z} 5= 0.
2
0
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External-magnetic-field values H* at which the graph of the function 2y(H) intersects the boundary of the domain wy,
G./G 1.01 11 15 25 3 11 101
2eH*IN\? 11.97 13.12 18.18 30.64 36.84 135.65 1245.96

A numerical investigation of equation (26) reveals that,
for points of the region w, that lie above the curve L =
{(U, H) : u=Z,(H)}, the potential (23) attainsthe global
minimum at the point ~ = 0. From the asymptotic
behavior of the solution Z,(H) [see equations (19) and
(20)], it follows that, at sufficiently small values of the
magnetic-field strength, the curve L lies within the
region w,. However, it intersects the boundary of w, at
some value H* dependent on G and /A and goes beyond
this region. At some values of G and A, H*(G, A\) can
be determined easily on the basis of the data from the
table, whose upper and lower rows quote, respectively,
several values of the ratio G./G and the corresponding
values of 2eH*(G, N)/A2. It can be seen that, as G
approaches zero, the magnetic-field-strength value at
which the curve L leaves the region w, increases, the
parameter A\ being fixed. Specifically, we have

2eH* = 0(487.01...)(3‘1;
lim (2eH*) = (11.84...)A%.
G- G,

Assoon aswe reduce the value of 1 and intersect the
curve L within the region «y, the potential V(%)
develops a second nonzero, local, minimum—the point
>,(H)—which becomes the global minimum when p
decreases further. The critical chemical-potential value
M(H) at which the system goes over from the chiral-
invariant phase to a phase where chiral symmetry is
spontaneously broken is determined from the equation

Viu(0) = Vi (Ze(H)). (27)
In the region w,, it has the solution
He(H) = 2R [Va(0) = Vi(S(HNI™2 (28)

JeH

By integrating equation (16) with respect to = from 0 to
>,(H) and going over to thelimit H —» 0 in the result-
ing expression, we can find that the asymptotic behav-
ior of p(H) at small H is given by

1 @t o
He(H) = fe DD-ZeH cC

Thus, we can see that, in the model specified by
equation (1) and considered at G < G, the curve u =
M(H) divides the (i, H) plane into two regions. In the
first of these—that is, at p > p.(H)—the vacuum of the
system isinvariant under chiral transformations, while,
in the second—that is, at 1 < p(H)—the invariance of
the theory under the chiral transformations (2) is spon-
taneously broken. The two phases go over to each other
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via a first-order phase transition occurring upon the
intersection of the curve p= p(H) separating these
phases.

It is obvious that, at 1 = const and H < H () [here,
H. (W) is obtained by inverting the function p(H)], the
condition p > p(H) holds; that is, chiral symmetry is
not broken. The case of H > H, (1) corresponds to the
region where chiral symmetry is broken. At i = const,
this means that, for H > H (), an external magnetic
field catalyzes a spontaneous breakdown of invariance
under the chiral transformations (2).

It isalso interesting to note that, in the region below
the critical curve p = p(H), the order parameter—for
this, we can take either the fermion mass or the point of
the global minimum, %,(H)—is independent of p; in
other words, the amount of chiral-symmetry breaking
in the model by a magnetic field is independent here
of .

5. OSCILLATION PHENOMENA
ATHZ0AND p#0

In the preceding section, we have shown that, on the
(1, H) phase plane, the chiral-invariant ground state of
the NJL model specified by equation (1) correspondsto
points lying above the critical curve p = p(H). Single-
particle fermion excitations above this vacuum are
massless. At first glance, the properties of this vacuum
are weakly dependent on p and H, and that part of the
(1, H) planewhere pu > . (H) isentirely occupied by the
symmetric phase of the theory. But in fact, infinitely
many critical phenomenaoccur in the region g > p(H)
at an infinite number of pointsin response to variations
in external parameters. Thisis because the ground state
of the model changes abruptly its properties with
increasing W at fixed H or with decreasing H at fixed .
At the above points, there occur second-order phase
transitions that do not violate, however, the chiral
invariance of the vacuum. These critical phenomena
can manifest themselves as oscillations of pressure and
magneti zation; oscillations of the particle-number den-
sity in ground-state of the system are also possible in
this case. Below, we consider al these possibilities.

The state of thermodynamic equilibrium (ground
state) of any quantum field theory is unambiguously
characterized by the thermodynamic potential defined
as the value of the effective potential at the point of the
globa minimum. The thermodynamic potential coin-
cides with pressure in absolute value, differing from it
in sign (see Appendix). In the case considered here, the
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J2eH

Fig. 2. Phase portrait of the Nambu—Jona-L asinio model for
G < G,. Solid lines are those of second-order phase transi-
tions, while the dashed curveis drawn through the points of
first-order phase transitions. In the phase B, the chiral sym-
metry of the model is spontaneously broken, and fermions
have amass >,(H). In each of an infinite set of chiral invari-
ant phases Ay, A,...., fermions are massless.

expression for the thermodynamic potential Q(u, H) in
the region u > p(H) hasthe form

Q1 H) =V, (0) = Vul(0) - 75 5 0,6( ey
k=0

(29)
x { a1 —ex —egIn[ (S’ — €k + p)/e ]},

where g, = ./2eHK. It iswell known that, at the points
of first-order (second-order) phase transitions, the first-
order (second-order) partial derivative of the thermody-
namic potential with respect to one of the arguments
develops adiscontinuity, and so naturally do all the cor-
responding partial derivatives of orders higher than one
(two) with respect to the same argument. On the basis
of thiscriterion of phasetransitions, wewill analyzethe
phase structure of the model under investigation for g >
M(H). We will show that the boundaries between the
regions w, (25)—that is, the lines I, = {(u, H) : u =

J2eHk} (k=1, 2, ...)—represent the critical lines of
second-order phase transitions. In order to do this, we
will consider the function given by (29) in one of the

regions w,:

k
QM H)l,, = Q% = V()55 0,0(1—e)

(30)
(JH2—€?+L0}g
Ei D

0
X [ uz—e?—eﬂn{
0

Evaluating the first- and second-order derivatives of
expression (30) with respect to W, we obtain
0Q, 09,

Em o =0

(W H) - 1

€19

(W H) = Tyt
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0,

- 2

wh -1, (OH)
eHpu

o fii—e

The equality in (31) means that the first-order deriva-
tive of the thermodynamic potential Q with respect to
is continuous on all curves I,. From (32), it follows,
however, that a second-order phase transition occurs on
each line I, since the second-order derivative of the
thermodynamic potential with respect to 1 undergoes
there infinite jumps. Similarly, it can be shown that the
second-order derivatives 0°Q/(0H)? and 9*Q/0uoH are
also discontinuous (have infinite jumps) on each of the
curves|,.%

For the case of G < G, which isconsidered here, the
phase portrait of the model is depicted in Fig. 2, where
solid lines (lines |,) represent lines of second-order
phase transitions, while the dashed curveisthat of first-
order phasetransitions. In the phase B, chiral symmetry
is spontaneously broken, and fermions have a mass
>4(H). The figure also shows an infinite sequence of
massless chiral-invariant phases A, A,, ..., which gen-
erate oscillations of some physical quantities in the
model. We also note that, in the phase B, the fermion
density n = —-0Q/0du isidentically equal to zero. Upon
traversing the critical line (28), the fermion density n
undergoes ajump, taking afinite nonzero value.

Let us set 14 = congt. In the (U, H) plane, this corre-
sponds to the straight line that intersects the critical
curvesl,, ..., |, ... atthepointsH,, ..., H,, ..., respec-
tively. At 1 = const, we now consider the external-mag-
netic-field dependence of the particle-number density,
n(H), and of the magnetization of the system, m(H) =
—0Q/du. From the above properties of the thermody-
namic potential (29), it follows that the functions n(H)
and m(H) are continuousfor H = 0 and that their graphs
have characteristic cusps at an infinite number of the
points H,,.... Functions that behave in this way will
henceforth be referred to as oscillating functions. Thus,
we can say that, in the NJL model, the fermion concen-
tration n(H) and the magnetization m(H) of the ground
state oscillate as functions of the magnetic field.

Of course, smoother functions can also oscillate;
therefore, the above definition should be further clari-
fied. The point isthat, at zero temperature and nonzero
chemical potential, oscillations of physical quantities
usually satisfy this definition. Thisis because the num-
ber of the filled energy levels of the system that are
below the Fermi surface as a function of external
parameters has discontinuities at an infinite number of
points. By way of example, we indicate that, at zero

0°Q,
(op)®

JH) - 1
(W H) - 1y 32)

_oo.

—_—
H - €y

In the Appendix, we consider relations between the second-order
derivatives of the thermodynamic potential and thermodynamic
coefficients, the latter being determined, for the majority of sys-
tems, from an analysis of experimental data.
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temperature, the first-order derivatives of the magneti-
zation m(H) and the particle-number density n(H) of a
free fermion gas in an external magnetic field H with
respect to H have discontinuities at an infinite number
of points [28-30]. According to the above definition,
oscillating parameters of the NJL model include the
guark condensate, the fermion-number density, and the
critical curve of chiral phase transitions in the case
where one of the spatial coordinates is compactified
and where the compactification radius appears to be a
variable [27]. (Oscillations of various physical quanti-
ties become smoother at nonzero temperature, but this
caseis not considered here.)

It turns out that, in the NJL model, the oscillations
of the functions n(H) and m(H) can be obtained in an
explicit form. For this purpose, we make use of the
technique proposed in [30], where the oscillating com-
ponent of the thermodynamic potential of the relativis-
tic electron—positron gas was isolated exactly. This
technique is applicable to the thermodynamic potential
in the form (29). By analogy with what was done in
[30], we represent it as”)

Q(u, H) = Quon(Ks H) + Qo (L, H), (33)
where
u (eH)’
Quon = Vi(0) - o2 ar jdkaP(nky) (34)
/
Q. = 3,2 E,P;[':ESZ[Q(nkv)cos(nkwm@

(35)
+ P(T[kv) cos(Tikv —11/4) ]

with v = p2/(eH).

Expressions (34) and (35) involve the functions P(x)
and Q(x) that are related to the well-known Fresnel
integrals C(x) and S(x) [25] by the equations

C(x) = %+&[P(x)sinx+Q(x)cosx],

S(x) = %—&[P(x)cosx—Q(x)sinx].

For x — oo, the asymptotic expansions of these func-
tions are [25]

QM) = Dt

1 3. -3
P(x)= x 4x +.
From (35), it can be seen that the thermodynamic
potential of the NJL model, along with the pressure in
the system, oscillates at large values of the variable
(eH)™!, the frequency of these oscillations being p?/2.
Although the function Q(u, H) oscillates explicitly asa

NFor this, it is sufficient to make the electron mass tend to zero in
equation (19) from [30].
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function of H at aconstant value of the chemical poten-
tial, it does not belong to the class of oscillating func-
tions that was defined above. However, the partial
derivatives of this function with respect to u and H—
that is, the quantities n(H) and m(H)—belong to this
class and oscillate at large value of (eH)™!, the oscilla-
tion frequency being again p2/2. The explicit expres-
sions for the oscillating components of n(H) and m(H)
can be found by using equations (33)—(35), but we do
not present them here to avoid encumbering the article
with unwieldy expressions.

6. CONCLUSION

The effect of an external magnetic field on the NJL
model in the presence of a chemical potential has been
considered for G < G.. At u =0, arbitrarily small values
of the magnetic-field strength induce a spontaneous
breakdown of the chiral invariance of the model consid-
ered here[6], but, for pu # 0 and sufficiently small values
of H, it has been shown here that the system occursin
the symmetric state. As soon as the magnetic-field
strength achieves some critical value H. (), there
occurs a first-order phase transition from the massless
symmetric phase A, to the massive phase B (see phase
portrait of the model in Fig. 2), where the chiral sym-
metry is spontaneously broken (we can then say that a
dynamical breakdown of symmetry is induced by an
external magnetic field).

It has also been proven that, as the magnetic-field
strength is decreased at 1 = congt, there occurs an infi-
nite cascade of second-order phase transitions in the
system, each leaving the chiral properties of the ground
state of the model unchanged [that is, invariance under
the chiral transformations (2) is preserved]; at the same
time, thermodynamic features of the system like iso-
therma compressibility and magnetic susceptibility
undergo discontinuities (see Appendix). These critical
properties of the model areillustrated by its phase por-
trait in Fig. 2, where we can see an infinite number of
massless chiral-invariant phases A, (k=0, 1, 2, ...) in
the (1, H) plane. Owing to this phase structure, oscilla-
tions of the magnetization (de Haas-Van Alphen effect)
and oscillations of the fermion-number density in the
ground state (analog of the Shubnikov—de Haas effect,
which consistsin oscillations of the electric conductiv-
ity of metalsin external magnetic fields at low temper-
atures) can be observed in the NJL system as the mag-
netic-field strength tends to zero.
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APPENDIX

Thermodynamic Coefficients and Their Relation
to Q(u, H)

By thermodynamic coefficients, we mean expres-
sions of the form (0x/dy), ., wherex,y, z ... are ther-
modynamic features of the system like temperature T,
volume V, pressure p, the total number N of particles,
the total magnetization M, and an external magnetic
field H [29]. It is the jumps in thermodynamic coeffi-
cients that are used in practice to establish the occur-
rence of second-order phase transitions.

Supposethat T, V, H, and i (chemical potential) are
independent parameters of the system. The thermody-
namic potential (more precisaly, its density) then has
theform Q(u, T, H) = —-p=—p(y, T, H) [29, 31]. It fol-
lows that

—dQ = dp = ndp +sdT + mdH, (A.D)

where n = N/V is the particle-number density, s is the
density of the entropy, and m= M/V isthe density of the
magnetization. Here, we aim at establishing relations
between the second-order derivatives of the thermody-
namic potential Q(Y, T, H) and some thermodynamic
coefficients.

By definition, the isothermal compressibility is the
thermodynamic coefficient (supplemented with a fac-
tor V1)

_lpvg
VEBPDT, NH

which can be measured directly in many experiments
peculiar to the physics of condensed states [29, 31].
From (A.1), it followsthat n=-0Q/du and that, at con-
stant H and T, dp = ndu. Taking these relations into
account, we can reduce K+ to the form

Ky (A.2)

(o 1V L _1ra(Nm)
VLopLL VU nop Ly (A3)
_ 200 _ 2 2°Q . .
o1 Ch

that is, 0°Q/(0p)? is proportional to theisothermal com-
pressibility Ky of the system.

The magnetic susceptibility K, another thermody-
namic coefficient, is proportional to 8>Q/(0H)>. Indeed,
we have

a Q
(9H)?

mVHL oH

where we have used the definition of magnetic suscep-
tibility, theidentity M = mV, and therelation m=-0Q/0H
[which follows from (A.1)].

VDOVICHENKO et al.

Finally, we consider the thermodynamic coefficient
(OM/0p)1 y; w- It is obvious that

Mg _ _1p@(Vm)Q
VDOpDrVH VUnou L,
_ 10m _ 19°0
o~ OpoH’

where we have used, in just the same way asin deriving
(A.3), therelation dp = ndp.
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Abstract—In this paper, we investigate an SU(3) extension of the chiral quark—meson model. The spectra of
baryons with strangeness, charm, and bottom are considered within a“rigid oscillator” version of this model.
The similarity between the quark sector of the Lagrangian in the model and the Wess-Zumino term in the
Skyrme model is noted. The binding energies of baryonic systems with baryon numbers B = 2 and 3 possessing
strangeness or heavy flavor are al so estimated. Theresults arein good qualitative agreement with those obtained
previously in the chiral soliton (Skyrme) model. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The chiral soliton models, Skyrme model first of all
[1], are attractive because they are simple and elegant
and alow us to describe the properties of lowest bary-
onswith arather good accuracy. At the sametime, since
the quark degrees of freedom are excluded from the
beginning, the Skyrme model is not completely realis-
tic: itisgenerally believed that quarks should be explic-
itly present in the baryons. Consideration of more real-
istic models with explicit quark degrees of freedom
included in the Lagrangian seems to be necessary.

For the case of nonstrange baryons, thiswasdonein
[2-6] within the chira quark—meson (CQM) model,
where the mean-field approximation for the quark wave
functions was an important ingredient. From a theoret-
ical point of view, CQM models have an advantage that
there is no question about the choice of the termsin the
Lagrangian responsible for the stability of the soliton:
the stabilization is due to the quark—meson interaction.
Such models are minimal in the sense that only the sec-
ond-order termsin chiral-field derivatives are present in
the effective Lagrangian [2-5].

Here, we extend such models for the consideration
of baryons with strangeness, charm, and bottom for the
sector with B = 1, first of all. These degrees of freedom
are treated in the same manner as in the bound-state
approach to heavy flavors proposed in [7, 8] and a
“rigid oscillator” version of which was developed in
[9-11]. Within this model, the deviations of quark
fields and solitons into “strange” (“charm” or “bot-
tom”) directions are considered as small ones, and a
corresponding expansion of the Lagrangian is made.
The results obtained confirm the assumption concern-
ing the smallness of these deviations. Also, the defor-
mations according to, e.g., “cranking” [3] into the

* This article was submitted by the authorsin English.
D Department of Theoretical Physics, University of Madras,
Guindy Campus, 600025 Madras, India.

strange or other directions are neglected within the
rigid oscillator version of the model.

The sectors with B = 2 and 3 are aso briefly dis-
cussed. Previously, the question of existence of bary-
onic systems with strangeness different from zero was
a subject of intensive studies originated with papers
[12-15]. Some review of theoretical predictions,
mainly for the sector with B = 2, can be found in [16].
The question of whether a baryonic system with flavor
different from u and d exists is quite general. Charm,
bottom, or top quantum numbers are also of interest,
and their consideration can be performed in the frame-
work of chiral soliton models, in particular, the bound-
state approach to heavy flavors [7-10]. As was shown
recently within the rigid oscillator model, the baryonic
systems with charm or bottom have even more chances
to be stable with respect to strong interactions, in com-
parison with strange baryonic systems [11]. Here, we
present some estimates for the binding energies of the
lightest baryonic system with nontrivial flavor in the
chiral quark—meson model and show that these esti-
mates are in qualitative agreement with those obtained
in[10, 11].

In Section 2, we consider the SU(3) extension of the
chiral quark—meson Lagrangian. In the next section, we
give an explicit expression for the Hamiltonian of the
baryonic system in the leading order in N, in terms of
the flavor (antiflavor) excitation frequencies. In Section
4, the B = 1 sector is considered and hyperon—nucleon
mass differences are estimated, including the zero-
mode corrections of order 1/N.. In Section 5, the sec-
tors with B = 2 are discussed, and binding energies of
some few-baryonic systems are estimated.

1063-7788/00/6303-0480$20.00 © 2000 MAIK “Nauka/Interperiodica’
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2. U(3) EXTENSION OF THE CHIRAL
QUARK-MESON LAGRANGIAN

The SU(3) extension of the chiral quark—meson
Lagrangian density can be written in the following way
[2, 3]

P = iPoY —gF (P LUV, + PrUTW))
a — —
— 3 OF L PLL— V3R U W+ PrU(L-BA) W]

2 2 2

Fr b, FaMp
+—1—6trl I 16 tr(U+U -2)

(2)
, Foms —Famy
24

Fi—F2

+ —flzé-l‘tr(l—ﬁxg)(wul“ +1,M07).

Here, Wisatriplet of quark fields: (u, d, s), (u, d, ¢), or
(u, d, b); A arethe Gell-Mann matrices, U 0 SU(3) isa
unitary matrix incorporating chiral (meson) fields; and
l, = U9,U. In this model, F, is fixed at the physical
value, F,; = 186 MeV, and gF,, = 500 MeV appears as
the effective bare u- and d-quark masses. The interac-
tion between quarks is not considered explicitly, but it
is present in this mean-field description of the quarks
due to the quark—-meson coupling. Here, we have
included termsin the L agrangian which describe flavor
symmetry breaking (FSB) in bare constituent quark
masses, ~(F,§m§ - F,ZTmrz[), as well as in the quark—
meson coupling which is proportional to a parameter
0. The FSB in the meson sector of the Lagrangian is
of usual form and was sufficient to describe the mass
splittings of the octet and decuplet of baryons [17].
Here, we consider first a case of flavor symmetry in
decay constants, i.e., Fp = F,,. Even for realistic values
of Fp, thelast term in (1) is small and can be omitted
for estimates we are making here.

The importance of the quark sector of the
Lagrangian is that it reproduces the properties of the
Wess—-Zumino (WZ) term written in the simple form by
Witten [18]. First, the baryon number is given by this
term, and second, when the field W is turned into
“strange” or other direction, the quark Lagrangian
gives the contribution coinciding with that coming
from the WZ term in the Skyrme model [9, 10].

We shall consider the collective-coordinate rotation
of the quark field W and the meson fields incorporated
into the matrix U, in the spirit of the bound-state
approach to the description of strangeness proposed in
[7-9] and used in [10, 11]:

W(r, 1) = R(t)¥o(O(D)r), @
u(r,t) = RUOMNR(L), R(t) = AS(Y),

tr(1—./3Ag)(U+U"-2)
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where W, is originally a two-component spinor in the
(u, d) SU(2) subgroup; U, is the SU(2) soliton embed-
ded into SU(3) inthe usual way (into left upper corner);
A(t) O SU(2) describes SU(2) rotations; S(t) O SU(I)
describes rotations in the “strange,” “charm,” or “bot-
tom” direction; and O(t) describes rigid rotations in
coordinate space. To be more specific, we shall con-
sider the extension of the (u, d) SU(2) Skyrme model in
strange direction, when D isthe field of K mesons. But
it isevident that a similar extension can be made in the
charm or bottom directions al so:

S(t) = exp(i9(t)), () =

Da(t)Aa, (3)

2

a=4,..7

where A, are Gell-Mann matrices of (u, d, ), (u, d, ¢), or
(u, d, b) SU(3) groups. The (u, d, ¢) and (u, d, b) SU(3)
groups are quite similar to the (u, d, s) one. For the (u, d,
C) group, a simple redefinition of hypercharge should be

made. For the (u, d, s) group, wehave D, = (K* + K-)/ /2,
Ds = i(K* = K-)/ /2, etc. For the (u, d, ¢) group D, =
(D°+ D' )/ /2, etc.

Consider first the contribution due to the time
dependence of the collective rotationsin the quark sec-
tor of the Lagrangian:

- [%@aw}

=S W [.s S+ 2 S‘t[h)S+|(r m [9)}
q

Here, ® and Q are the vectors of angular velocities for
the isospin and usual space rotations, respectively,
defined in the standard way:

coll

)

ATA = —o*x/2, (jinokn = €ikmQm-

The field D is small in magnitude, of order 1/,/N,,
where N.. isthe number of colorsin QCD. Therefore, an
expansion of the matrix Sin D powers can be made.

Taking into account all thetermsup to O(1/N,), we can
represent &£, in the form

- _
Py~ ng['z(o D—DTD)%L%DTD—%rDTDcDE

+ %(m—ﬁ) BC—%((O &xD'D+ D' &xD) (5)

1—12D Dt (B +i(r mm)}w
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Here,

B = i(D'tD-D D) (5b)
isthe angular velocity of rotation in the “flavor” direc-
tion, D isthe doublet of heavy-meson fields, kaons, and
D or B mesons. Lagrangian (5a) does not depend on the
guark orientation in isospace or on their radial wave
functions, which are not the same for different quarks.
However, for arbitrary B, we always find the following
term containing the factor N., after summing over
quark colors and flavors and integrating with respect to
space coordinates:

NGBSyt t
= —=—X[{(D D-D'D)-(wD'ED)], (6)

L 2 5

q

which isvalid in any order ind? = 2D'D. It is assumed
in (6) that the quark wave functions W are properly nor-

malized, Ww'wd® = 1. This contribution coincides

with that obtained from the Wess—Zumino term in the
action in the bound-state approach of the topological
soliton (Skyrme) model [8-10].

The general parametrization of U, for the SU(2)
soliton we use here is given by U, = ¢ + 5t - n with
N, =Cq, Ny = SCp, Ny = &S, S = sinf, ¢; = cosf, etc. The
mass term in Lagrangian (1) can be calculated exactly,
without expansion in thefield D because the matrix Sis
S=1-i%sind/d - %1 - cosd)/d? with d? = tr%?;
Famg —Fam:

Ay =~ (1 g )], ™

The expansion of thisterm can be done easily up to any
order in d. The comparison of this expression with AL,,
within the collective-coordinate approach of the quan-
tization of SU(2) solitonsin SU(3) configuration space
allows us to deduce an equality sin’d = sin’v, where v
isthe angle of the A, rotation, or rotation into “ strange”
direction. The so-called strangeness (or flavor) content
of the quark fields can be calculated easily asC, = D'D.
It should be kept in mind that in the collective-coordi-
nate method the scalar strangeness content of the soli-
ton C, = (sin*v)/2.

Thetime-dependent part of the second-order termin
the Lagrangian density (1) dueto rotationsin the SU(3)
configuration space leads to the following contribution:

..t . . ..t .t
P, = 2r[SS +S'SUJS'SU, + AA +2ATASS
+S'A"Asuls'ATAsSU, + S'sulS ATAsU,
+sS'ATAsUlS sU, .

®)

Making an expansion of the matrix S and also adding
together contributions from the usual space rotations

KOPELIOVICH, SRIRAM

we obtain

~2(0'00'D- (DD’ (D'D)) + o EB/Z}
3 )

+s{[(@—B)’~ (o [h—P [h)?] + (3 fr (R)°
2 2 2 0

+ Sf (an,r m) + ZSf((’) D‘]ain)fik|er| D

O

The moments of inertia of the configuration can be
extracted easily from (9) as the coefficients in the qua-
dratic form in angular velocities of rotation.

Theinteraction of quarks and mesons gives the con-
tribution proportional to the new parameter o, after
integrating over space:

2
Lim:—aFEquTD%L—éDTD% (10)
where, according to [2, 3], E,,, < 0 isthe quark—meson
interaction energy.

Anexpression (9) can be simplified considerably for
spherically symmetrical configurations (hedgehogs)
for B=1, aswell asfor B = 2 solitons described by axi-
ally symmetrical configurations (see Sections 4 and 5
for details).

After some calculation, the Lagrangian of the chiral
guark—meson model in the lowest order in field D can
by written in the form below which is similar to that of
the bound state approximation to the topological soli-
ton model [7-10]:

St

.N.B C .t
—[FB(mé—mfr)+0(FEqm]DTD—|%(DTD—D D).

We have ignored the difference between Fy and F
through the last term in (1) in the above expression and
kept our former notation for the moment of inertia
under rotation into “strange,” “charm,” or “bottom”
direction ©, = ©, = O, = O [15] (the subscript ¢ indi-
cates the charm quantum number everywhere, exceptin
N,). In the present model, this moment of inertia has a
simple analytical form for an arbitrary initiad SU(2)
skyrmion, regardless of its symmetry properties:

2
s 3
@F'B = EJ‘(l_Cf)d r.

Note, that since the Skyrmeterm is absent in the CQM
model, this formulais especially simple. Some contri-
bution to © originates from deformations, or “crank-
ing” of the quark fieldsinto strange, or other directions,

(12)
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similar to the isotopic inertia @, [3], but it can be
neglected in the spirit of the rigid oscillator model.

The quantity I g defines the contribution of the mass
term in the Lagrangian (1),

E2
= ?"J'(l—cf)dsr, (13)

s0, the following relation isvalid in CQM:
g = 40 p. (14)

The term proportional to N.B in (11), which comes
from the quark sector here, is responsible for the split-
ting between excitation energies of strangeness and
antistrangeness (flavor and antiflavor in general case)
[8-10].

3. FLAVOR EXCITATION FREQUENCIES

Asaresult of the canonical quantization procedure,
the Hamiltonian of the system including the terms of

order Nf takes aform similar to that in the topological
soliton models [9, 10]:

1 t
HB = MCI'B+4--—(§;—BI_I Mn
NZB?
[FBmD + 0 Eqm+16®F EJD D (15)

N.B
+i 55, B(D n-n'o),

2 2 . .

Mp =M — mn .A momentum I is conjugated canon-
ically to variable D [see (23) below]. Hamiltonian (15)
corresponds to the oscillator-type motion of the field D
against the background formed by the (u, d) SU(2) soli-
ton. A diagonalization of Hy can be done explicitly
according to [9, 10], and the normal-ordered Hamilto-
nian can be written as

Hg = My g+ Wr ga' @+ @ gh'b+O(1/N,), (16)

with a" and b" being the operators of creation of the
strangeness (i.e., antikaons) and the antistrangeness

(flavor and antiflavor) quantum number, wy ;z and @ g

being the frequencies of flavor (antiflavor) excitation. D
and I' arerelated to aand b inthe following way [9, 10]:

1 i ti
————(b +a’),
NNcBUE 8
I—Ii - ’\INCBMF,B(bi

2i

D' =
(17)
_aTi)
with
L, 5 172
Hep = [1+16(Mpl g+ OpEqy)OF 5/ (N.B)]
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For the lowest states, the values of D are small,

-1/4
D O[16F 3O gMp + NZB”]

and increase with |F| as (2|F| + 1)/2. As was noted in
[10], deviations of the field D from the vacuum
decrease with increasing mass mj,, as well as the num-
ber of colorsN,, and the method worksfor any m,—for
charm and bottom guantum numbers also.

The excitation frequencies w and @ are

N.B
We g = 80, (UFB 1),
(18)
_ N B
We g = ﬁ(uﬁs"‘l)

As was observed in [11], the difference g 5 — Wy 5 =
N.B/(40; ) coincides in the leading order in N, with
that obtained in the collective-coordinate approach [15].

To get an idea about the value of the parameter o,
we can use arelation between a:gF,, and the effective
guark mass:

(1+ag)gF=mg . (19)
Since the quark—meson interaction energy is nega-
tive—it leads to the stability of the whole configura-
tion—the term aE_, makes the flavor excitation fre-
guencies smaller. The relative role of this effect
decreases with increasing mass of the flavor and is
more important for strange baryons. For theB =1 con-
figuration, the quark—meson interaction energy E,,, =
-1.127 GeV [3]. For strange baryons to have bare con-
stituent strange quark mass greater than that of non-
strange quarks by about 0.2 GeV, we should take o, =
0.4. Similarly, we can obtain the crude estimates o, =
27anda, = 9.4.

The FSB in the flavor decay constants, i.e., the fact
that Fy/F, = 1.23and Fp/F,,=1.7 £ 0.2, should be taken
into account as well. In the Skyrme model, it leads to
the increase of the flavor excitation frequencies, which
modifiesthe spectra of flavored baryonsin better agree-
ment with data[19, 20], and |eads also to some changes
of the binding energies of baryonic system [11]. It was
mainly dueto the large contribution of the Skyrmeterm
in the Lagrangian to the inertia ©. Since the Skyrme
term in the CQM model under consideration is
absent—we obtain therelation 'y = 40 g asaresult—
the effect of FSB in decay constantsis of minor impor-
tance in the chiral quark—meson model.

The terms of the order NZ* in the Hamiltonian

depending on the angular velocities of rotations in the
isospin and the coordinate space, describing the zero-
mode contributions, are not crucial, but they are impor-
tant for numerical estimates of the baryon spectra. They
will be considered in the next sections.



4. B =1 HEDGEHOG AND ESTIMATES
OF BARYON SPECTRA

The B = 1 hedgehog configuration in the chiral
guark—meson model can be treated in the same manner
asinthetopological (Skyrme) model. The unit vector n
describing the chiral meson-field configuration isn =

f =r/r, and the spinor W, has the structure [2, 3]

0 G(NXn
Oo ChF(r)x,O

where ¥, is the hedgehog spinor

Wo =

1
A/é(ui —dr).

It can be examined for hedgehogs that the termsin (5)
that depend on the orientation of the quarks in isospin
and spin space, being proportional to t, make zero con-
tribution to the Lagrangian. Rotations in the iso- and
coordinate spaces are equival ent for hedgehogs, and the
contribution to the energy depends on one common
moment of inertia, O 5.

From equations (1), (6), (9), and (10) in Section 2,
we obtain the following expression for the Lagrangian
including all the terms up to O(1/N,):

Xn = (20)

Lt
L~—My+ 4®F[D D%L-%DTDE

——(D DD D—(D'D)*~(D D) )}+2e (o [B)
(21)

o 2 _2 t 2

+—2I ® —PB)° = (T'sMf + 0 Eq) D D%L—:—,)D DH
N,B N.B
= o 5~ D'D.

By means of this Lagrangian, we can introduce the
canonical variables

ool

D'

_ - 2 t~0 21K 4.1
= 4®F[D%L—§D DH-£p'6D+3D DD

+i(0;—20;)0 D —iO;p XD

} 22)

.N.B 2 .t
i -5D DED,
lpy = 0L/ 0®
N.B (23a)
= 0,0 + (20, — <°p"tD
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or
@T |] NcB@T t
o = Or+H - 550 =g D'tD. (23b)
where :Llis matrix element of the operator | = (b'th

— ata’)/ 2 taken between states with flavor F.
Using the relations

. .t .
—ipxD = 2D'DD-(D D+D'D)D
and
t . .t .

B> = 4D'DD'D—(D'D+D'DY’,
one can seethat L, I, and |, have essentially the same
structures asthe appropriate expressionsin[10]. Thisis
true for the Hamiltonian also, and we find that the 1/N,
zero-mode quantum correction to the energies of
hedgehogs in the CQM model has a structure which is
guite similar to the correction term in the Skyrme
model. It can be estimated according to the expression
[9, 10]

AEyN, =

1
s—[Ce T (T, +1
2®T’B[ F,B r( r ) (24)

+(1-cCee)l(1 +1) +(Cea—Cre)le(le +1)],
where | = I, is the isospin of the baryon or baryonic

system, T, is the quantity analogousto the “right” isos-
pin T, in the collective-coordinate approach [21, 22],

and T, =1,—I, the operator | » = %(bT‘Cb —ara),
Ors
Crg = 1——— -1),
F.B ZOF,BU—F,B(HF'B ) o5
~ CH
Crg = 1- —(U-FB 1).
eF B( F B)

In the case of antiflavor excitations, we have the same
formula (24), with the substitution g — —p in (25).
For example,

_ ]
Cep = 1+ —"— (Mt 1) (26)
O, BP-F B
According to (9), theisotopic inertiais
o, = Fr sdr 27)
T 6J. f ’

but it acquires the same contribution (about 30%) also
from the quark sector of the Lagrangian due to the
cranking procedure described in [3]. For numerical
estimates here, we take the value of ©; obtained in [3]
in the linear 0 model since the differences of all calcu-
lated quantities in the linear and nonlinear versions of
the 0 model are negligible.
PHYSICS OF ATOMIC NUCLEI  Vol. 63
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The excitation frequencies for flavor F, wg, antiflavor, @g, and the energy differences of baryons with different flavors and
the nucleon, in GeV; wg, are the flavor excitation frequences in the Skyrme model shown here for comparison

F W e O DO | AMA__n [ AMRP \ | AM;__y | AMZP | AMZ__y Cr
s 0.326 0.20 0.69 0.120 0.28 0.177 0.44 0.254 0.78 0.34
c 1.687 1.18 2.05 0.032 1.67 1.346 1.89 1.516 2.07 0.75
b 5.098 3.66 5.46 0.011 5.09 4702 5.32 -~ 5.47 0.90

Note: For B = 1 soliton, we use the values of mass M, = 1149 MeV, flavor inertia ©¢ = 2.06 GeV ™ [23], and isotopic inertia ©1 = 5.93 GeV
[3]. The estimate used here, D= (N.Bu)™, isvalid for the lowest state of oscillator with [F| = 0, i.e., for the nucleon.

Intherigid oscillator model, the states predicted are
not identified with definite SU(3) or SU(4) representa:
tions. However, it can be done, as shown in [10]. The
guantization condition (p + 29)/3 = B [21] for arbitrary
N, is changed to (p + 2q) = N.B + 3n,,, Where ng, is
the number of additional quark—antiquark pairs present
in the quantized states. For example, the state with B =
1,|F[=1,1=0, and ny =0 should belong to the octet
of (u,d, s), or (u, d, c), etc., SU(3) group if N, = 3 (see
also[10]). Inlimiting case ©r — o, (24) turnsinto the
expression obtained within the collective-coordinate
approach [15, 21]. In aredlistic case with O/ = 2.9,
the structure of (24) is more complicated.

We will first summarize the results for B = 1 in the
“rigid oscillator” approach to heavy flavors in CQM,
without including the effect of flavor symmetry break-
ing in the quark—meson couplings (that is, ag = 0). We
find that the excitation frequencies wy are, in genera,
higher than in the Skyrme model. This can be attributed
to the fact that the value of I'g in the present model is
higher than the same parameter in the Skyrme model.
The mass difference M, — M\ comes out to be 284 MeV
compared to the experimental value of 176 MeV. How-
ever, it is to be noted that the value of wsin the rigid
oscillator approach used here is close to the value of
315 MeV obtained in arandom phase approximation to
the CQM model with broken SU(3) [4].

It should be noted that the values of inertia obtained
within the chiral quark—meson model are close to those
obtained in the Skyrme model. For example, the flavor
inertia © = 1.86 GeV~ in the Skyrme model with
F,.=108 MeV and e = 4.84 (nucleon and A-isobar
masses arefitted), and O = 2.03 GeV, ©; =555 GeV*
in the Skyrme model version with F,, = 186 MeV and
e=4.12.

The Z baryons included in the table have F quan-
tum number and are truly exotic because they cannot be
made of N, valence quarks only: one qq pair is heeded

for this purpose. These states belong to the 10 repre-
sentation of the corresponding SU(3) (the upper state
with isospin | = 0). The mass of the state with S= +1,
which was calculated first in [24] within the collective-
coordinate approach of the quantization of zero modes
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inthe Skyrme model, was found to be ~740 MeV above
the nucleon. Later, this antistrange baryon was consid-
ered in moredetail in[25], where the M, — My mass dif-
ference was found to be ~590 MeV, a so within Skyrme
model, but with the additional assumption that the
N*(1710) resonance is the nonstrange component of
the antidecuplet of baryons. The CQM model predic-
tion for the S=+1 baryon (seetable) isin better agree-
ment with predictions of the collective-coordinate
method [16, 24].

The inclusion of FSB in the quark—meson coupling
improvesthe situation. We take the values of the param-
eter ap,tobea, =04, a, =27, and a, = 9.4, which
allow us to obtain the effective quark masses in the
Lagrangian close to the known values. Then, we obtain
w, =0.27 GeV, w, = 1.58 GeV, and w, = 4.97 GeV. The
values of the mass differences now are (in GeV)
AM, _y= 0.229(0.176), AMs_, = 0.371(0.254),

AM, _y = 1.57(1.346), AM; _, = 1.788(1.516),
AM,, _y =4.968(4.702), and AM; _y =5.196, where

the figuresin parentheses correspond to the experimen-
tal values. We see that the values are now in better
agreement with data. The difference of masses of exotic
Z baryons and the nucleon also is lowered dightly but
remains well above the threshold for strong decay:

AM,__y = 0.74,1.97, and 5.35 GeV for 8, ¢, and b

guantum numbers. A role of the ap term is lost with
increasing mass of the quark, as expected.

5. BINDING-ENERGY ESTIMATES
FOR DIBARYONS WITH STRANGENESS,
CHARM, AND BOTTOM

It wasshownin [5, 6] that in the chiral quark—meson
model there are bound states of solitonswith B =2 and
more, similar to the topological soliton models [26].
Therefore, one should expect the prediction of the
dibaryons, tribaryons, etc., with different values of fla-
vor quantum number, s, ¢, or b, stable against the strong
interactions, similar to the Skyrme model.

The structure of the toruslike configurations with
B = 2 should be described first. For B = 2, W, has the
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structure
w =0 G(P, X122
" Qo OFF(p, 2)Xy .0
where
1
X1

~ J2(1=cosBcosa)
x [sinaul —sinBe %t — (cosa — cosB)e”%d ! |
and

_ 1
- ~2(1 - cosBcosa) (28)

x[sinadt —sinBe”®ul + (cosa — cosB)e > %ut],

X2

r and z are cylindrical variables, 0 = arctan(r/z) is the
polar angle, and a is the angular profile of the soliton.
For o = 6, equation (28) is similar to the corresponding
expression (20) for the hedgehog.

In the B = 2 soliton, N, quarks are in the state x,; and
N, quarks are in the state x,. Similar considerations
apply for higher B. Then, equations (5) and (9) for the
Lagrangian are simplified substantialy; in particular,
the termsin (5) proportional to WtW cancel, similarly
to the hedgehog case.

In[6, 23], thefollowing values of the binding energy
of quark—meson solitons have been obtained: €, =
279 MeV, €3 = 226 MeV, and €, = 192 MeV for two,
three, and four baryons. These quantities can be com-
pared with the values of binding energy in the Skyrme
model, 72, 70, and 10 MeV, for smaller value of the
constant, F, = 108 MeV [26]. For F,, = 186 MeV and
e= 412, e, = 142 MeV. It makes sense to give the
binding energiesin units, e.q., of themassof theB=1
soliton: although the symmetry-violating masstermsin
the Lagrangian violate the scaling, such comparison
provides information which does not depend notice-
ably on the vaue of F,. In the CQM model, €, =
0.24M, €3 = 0.20M, and €, = 0.17M; to be compared
with 0.083, 0.081, and 0.012M, in the Skyrme
model [26].

Let us consider herethe statewithB=2and |F| =2
with the lowest value of isospin, | = 0, which can
belong to the 27-plet of the corresponding SU(3) group,
(u, d, s) or (u, d, ¢), etc. For 27-plet of dibaryons, we
have T, = 1; for antidecuplet, T, = 0. The quantum cor-
rection due to usual space rotations (also of order 1/N.)
is exactly of the same form as obtained in [15] (see[9,
10]). Since we are interested here in the lowest states,
we shall consider the baryonic systems with the lowest
allowed angular momentum, J=0forB=2,and J=3/2
for B = 3. The latter value is due to the constraint
because of symmetry properties of the configuration.
ThevalueJ = 1/2 isalowed for the configuration found

in[27].
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For the statewith B = |[F| = 2, its massis equal to [10]
M(B=227;Y=0,1 =00

(o
= My + 20 , + =2,
REC ¥

The binding energy of this state as a system of two Ay
particlesis

(29)

e(J27: Y=0,1 =00

3C1 Cro
= e, +2(We ; —W +—= =
2 ( F,1 F, 2) 4OT L GT, 5

As adways, we define the binding energies relative to
appropriate thresholds for the decay into B baryons,
nucleons, or flavored hyperons.

If the moments of inertia of the baryonic system at
small values of B are proportional to the baryon number
B, then the values of |, excitation frequencies wy, and
coefficients c would not depend on B at all. In this case,
the binding energy consisted only of its classical part
and some contribution from zero modes; the difference
of w's would not contribute. Within the CQM model,
the moments of inertiafor B = 2 have still not been cal-
culated. Therefore, we shall make a natural assumption
that the ratios of moments of inertiafor different values
of B in the CQM model are the same as in the Skyrme
mode! [26]. For B=2, O ,/O¢ ; =2.038 and O ,/O; | =
2.053[26].

With this assumption, we obtain the following
numerlcal Val Ues. 6/\/\(5:_2 = 029 GeV, €/\/\(C=2) =
0.31 GeV, and e\zp-— = 0.32 GeV from expression
(30). It should be compared with the binding energy of
the deuteron e = 351 MeV and the binding energy of
the NN scattering statewith J=0and isospin | = 1, and
ey = 321 MeV. After renormalization, which is neces-
sary to produce the NN scattering state on the right
place, i.e, near threshold, we find that the strange
dibaryon with s = -2 is unbound, but that it is close to
the threshold; charmed, as well as bottomed, dibaryons
are also unbound, but they are even closer to the ApAe
threshold. This renormalization procedure is justified
by the fact that a number of quantum effects like loop
corrections and nonzero-mode contributions have not
been, but should be taken into account (see also discus-
sion of Casimir energy in Conclusions). The binding
energy of the deuteron is 30 MeV instead of measured
2.23 MeV, so ~30 MeV is the uncertainty of our
approach.

The dibaryons with |F| = 1 should be considered
also. The lowest states belong to antidecuplet of corre-
sponding SU(3), (p, q) = (0, 3), and haveisospin| = 1/2.
They all are bound within the devel oped approach and
come close to the threshold, even unbound after the
renormalization procedure.

(30)

For 35 -plet of tribaryons, T, = 1/2 (for arbitrary (p, q)
irrep which the baryonic system belongsto T, = p/2 if
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Ngq = 0). | and T take the lowest possible values, 0 and
V2for |[F|=1,and 1/2, Ofor |F| = 2. The binding ener-
gies take the same order of magnitude as for the B = 2
case if we make a similar assumption on the behavior
of moments of inertia. But after renormalization, the
flavored states become unbound, although rather close
to thresholds.

Theseresultsarein qualitative agreement with those
obtained in the chiral soliton (topological) models.
However, it should be noted that in the Skyrme model
the quantized states with charm and bottom remain
bound after such renormalization [11].

6. CONCLUSIONS

We found that, as far as we are concerned with the
spectra of baryons, there is no difference of principle
between topological (Skyrme) soliton models and the
chiral quark meson model [2, 3]. The CQM modd is
moreredistic, but, asisusual for morereaistic models,
it involves an additional parameter a- which specifies
the flavor symmetry breaking in the sector of the
Lagrangian describing the quark—meson interaction.
When this parameter is omitted, the flavor excitation
frequencies are too large in comparison with the data
and with the topological Skyrme model also. Reason-
able values of this parameter make the excitation fre-
guencies smaller, in better agreement with data.

We have estimated the spectra of baryons with fla-
vor different from u and d in the simplest SU(3) exten-
sion of the chiral quark—meson model proposed in [2,
3]. One can note that the approach devel oped here—the
rigid oscillator version of the CQM mode—works
even better for ¢ and b flavor in comparison with
strangeness.

There are predictions of the baryonic systems with
B=2,3... andflavorss, ¢, and b similar to that in topo-
logical soliton (Skyrme) models [10, 11, 15]. In the
CQM model, due to the absence of the Skyrmetermin
the Lagrangian, after all the renormalization proce-
dures, the attraction of heavy flavors by (u, d) solitons
is somewhat weaker than in topological models. Simi-
lar predictions can also be made for systems with top-
number. However, because of the large width of the t
guark, the spectroscopy of the baryonic systems aswell
as hadrons containing the t quark will not be available,
most probably.

The apparent deficiency of the approach employed
in the present paper isthat the motion of the system into
the"strange,” “charm,” or “bottom” directionisconsid-
ered independently of other motions. Consideration of
the baryonic system with “mixed” flavorsis possiblein
principle, but it demands a more complicated treat-
ment, technically.

There is a difference between the rigid oscillator
version of the CQM model we considered here and the
collective-coordinate approach to soliton models
widely exploited previoudly. In the collective-coordi-
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nate approach to the zero modes of solitons with a
rigid- or a soft-rotator variant of the model, the masses
of baryons are usually considerably greater than in the
bound-state approach, when the Casimir energies are
not taken into account [28, 29]. One of the sources of
this difference is the presence of aterm of order N,./©y
in the zero-mode contribution to the rotation energy,
which is absent in the bound-state model. It was shown
recently by Walliser for the B = 1 sector within the
V(3) symmetrical (m, = m,) version of the Skyrme
model [29] that this large contribution is canceled
amost completely by the kaonic one-loop correction to
the zero-point Casimir energy, which is of the same

order of magnitude, Nf [29]. This correction has been

calculated recently aso within the bound-state
approach to the Skyrme model [30]. Taking into
account loop corrections to the energies of quantized
states is needed aso in the hybrid models similar to
CQM moddl.

Recently, it was shown within the Skyrme model
[31] that one should expect the existence of strange-
baryonic systems close to the strong decay threshold,
for baryon numbers up to 17. They are obtained by
means of quantization of bound SU(2) skyrmionsfound
previously in [27, 32]. The charmed baryonic systems
with B = 3, 4 were considered in [33] within apotential
approach. The B = 3 systems were found to be very
close to the threshold, and the B = 4 system was found
to be stable to the strong decay, with a binding energy
of ~10 MeV.

Experimental searches for the baryonic systems
with flavor different from u and d could shed more light
on the dynamics of heavy flavors in few-baryonic sys-
tems. The threshold for charm production on a free
nucleon is about 12 GeV, and for double charm it is
~25.2 GeV. For bottom production, the threshold on
nucleon is about 70 GeV. However, for nuclel as tar-
gets, the thresholds are much lowered due to two-step
processes with mesonsin intermediate states and due to
normal Fermi motion of nucleons inside the target
nucleus (see, e.g., [34]). Therefore, the production of
baryons or baryonic systems with charm and bottom
will be possible on accelerators with energy of several
tens of GeV.
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Abstract—Nonperturbative functions that parametrize off-diagonal hadronic matrix elements of the light-cone
leading-twist quark operators are considered. These functions are calculated within the proposed relativistic
quark model allowing for the nontrivia structure of the QCD vacuum, special attention being given to gauge
invariance. Hadrons are treated as bound states of quarks; strong-interaction quark—pion vertices are described
by effective interaction Lagrangians generated by instantons. The parameters of the instanton vacuum, such as
the effective radius of the instanton and the quark mass, are related to the vacuum expectation values of the
quark—gluon operators of the lowest dimension and to low-energy pion observables. © 2000 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

The distributions of quarks and gluons (or their
structure functions) that form hadrons play an impor-
tant role in investigations of the complicated hadron
structure. Perturbative QCD makesit possible to calcu-
late the Q? evolution of these functions by using opera-
tor-product expansion and renormalization-group
methods. However, the functions themsel ves cannot be
calculated from thefirst principles of QCD because the
problem of strong coupling has yet to be solved. This
situation gives strong incentives to devel oping effective
approaches that are based on the fundamental princi-
ples of QCD, on the one hand, and which enable a cal-
culation of features associated with long-distance
dynamics [1-4], on the other hand.

In recent years, much attention has been given to
quark distributions that parametrize asymmetric had-
ronic matrix elements [p'|...|p0(these distributions are
referred to as off-diagonal ones). Off-diagonal distribu-
tions generalize conventional quark distributions, car-
rying more information about the structure of particles
and providing alink between conventional distributions
measured in deep-inelastic scattering and elastic form
factors of hadrons.

In the present study, we cal cul ate off-diagonal quark
distributions in the pion that correspond to the leading
twist. We use an approach that represents the bosonized
version of the instanton-liquid model developed in [5—
7]. The model is based on nonlocal effective quark—
hadron Lagrangians, with nonlocality being generated
by instantons. The parameters of the instanton vacuum
(effective instanton size and quark mass) are deter-
mined in terms of low-energy pion observables and the
vacuum expectation values of quark—gluon operators of

D Ingtituto de Fisica Tedrica, UNESP, Rua Pamplona 145,
BR-01405-900 Sao Paulo, Brazil.

the lowest dimension. The quark—hadron (in particular,
guark—pion) coupling constants are calculated by using
the condition requiring that the renormalization con-
stant for hadron fields be equal to zero (composeteness
condition). This condition also guarantees fulfillment
of momentum sum rules. In formulating the model, we
pay specia attention to gauge invariance of
Lagrangians and of quark Green’s functions in the
external field of instantons and anti-instantons.

The proposed effective model is applicable up to

relative quark momentaof p ~ pgl =0.5-1 GeV. Quark
distributions are also determined for the renormaliza-

tion point p, ~ pgl.

2. DESCRIPTION OF THE MODEL

In dealing with hadronic processes in QCD, much
attention is given to studying the ground state of the
system. Presently, investigations into the intricate
structure of the vacuum most often rely either on
approaches employing the semiclassical approxima-
tion, or on approaches invoking the Wilson operator-
product expansion, or on lattice models. It is well
known that the gravest difficulty in applying semiclas-
sical approaches to (3 + 1)-dimensional Yang—Mills
theory is that the gas approximation cannot be used to
calculate the amplitude of the vacuum—vacuum transi-
tionsin the field of large-scale fluctuations of the QCD
vacuum. Since the dimensions of vacuum fluctuations
can be arbitrarily large in scale-invariant theories, the
density of media formed by pseudoparticles grows
indefinitely (infrared catastrophe). Diakonov and
Petrov [8] proposed an origina way to stabilize
pseudoparticle media. Their ideaamounted to using the
Feynman variational principle in calculating the QCD

1063-7788/00/6303-0489%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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partition function for atrial ansatz representing a super-
position of instantons and anti-instantons. As aresult, a
new small parameter (packing parameter) that charac-
terizes the stable media of pseudoparticles and which
coincides with the phenomenological parameter in the
instanton-liquid model [6, 7] isintroduced in a natural
way. In the present study, we develop some ideas pro-
posed by Diakonov and Petrov [5] in an attempt at con-
structing effective quark—hadron Lagrangians by
applying the bosonization procedure to the four-fer-
mion interaction generated by instantons.

A correct description of the vacuum in theform of a
stable medium consisting of instantons and anti-instan-
tonsis possible only in the strictly fixed singular gauge
where (anti)instantons decay at infinity sufficiently
fast. Within acompletely gauge-invariant approach (for
details, see sections that follow the present one), it is
possible, however, to go over to other gauges, if thisis
dictated by considerations of convenience.

The generating QCD functional (QCD partition
function in the Euclidean signature) can be represented
in the form [9]

Zoeo = [DUDY Cexp(-W'[T, w1)T (1)

where angular brackets denote averaging over the
ensemble of (anti)instantons and where the effective
fermion action is given by

exp(-W [T, ¢])

A | )
= eXp(J'dxm(X)iallJ(X))(im— K'T®, w])

with

K'T, @]
= dedyw(x)ié¢é(x))(¢é(y)iéw(y)>.

In (3), the notation ®,(x) is used for quark zero modes
of the Dirac operator in the externa field of an
(anti)instanton. Relation (2) describestheinteraction of
quarksviathe 't Hooft's vertex K' [10]. We assume that
the entire set of topological singularities is a stable
medium similar to a liquid with an average density
(ratio of the average size to the average distance
between the particles) of about 1/3 [5-8]. In other
words, a medium formed by pseudoparticles is quite
dilute. In addition, Diakonov and Petrov [8] showed
that, in the N, — o approximation, where N, is the
number of colors, the distribution of instantons with
respect to size p has a sharp delta-function peak near
the average instanton size p,; therefore, al instanton
sizes can be replaced by this average size. It follows
that, instead of taking an average over the entire ensem-
ble of pseudoparticles, we can perform independent
averaging over the position and orientation of an indi-
vidual (anti)instanton. The generating functiona (1)

3)

ANIKIN et al.

then assumes the form

Zow = [PUDYexp] IdXﬂJ(X)iéw(X)]
I\ - 00N @)
x Hm-K'[9, w5 Hm-K'[0, y]d |

where an overbar denotes averaging over an individual
(anti)instanton, while N, (N;) is the number of instan-
tons (anti-instantons). It follows that, by taking into
account the one-(anti)instanton contribution N, (N;)
times, we take effectively into account multi-instanton
configurations (effective one-instanton approximation)
if it is adopted that correlations between (anti)instan-
tons are small to the same degree as the medium pack-
ing parameter p/R (P isthe mean pseudoparticle size,
while R isthe mean distance between pseudoparticles)
and that, in the limit N, — o, the sizes of all
(anti)instantons can be taken to be equal to p (these are
basic approximations of our approach).

The functional in (4) generates a nonlocal 2N-fer-
mion vertex that, in the chiral limit, assumes the form

V'@ = _[d4z|(i)IdU|<i)|_| KOWuwl.  ®
f

For the particular case of two quark flavors, the
expression for the generating QCD functional (4) inthe
leading order in 1/N, is given by

Zoep = J'DEDDLIJeXp(—S), (6)
where
S = jdxw(x)iéw(x)
d'x...dVK(x, Xy, 1 2Nl

X (0T 00N Br(Y)T WL () + O
]

Here, 8= (1, it) isamatrix in flavor space, N. = 3isthe
number of quark colors, and

1+
Wry(X) = 2y5

W(x)

are quark fields of definite helicity. In the local limit,
this action functional reduces to the Nambu—-Jona-Las-
inio model (a model of spontaneously broken chiral
symmetry), which describes effectively low-energy
chiral dynamics. In contrast to the Nambu—Jona-Las-
inio model, however, the action functional in (7) hasthe

natural regularization parameter [3_1 ~ Ny SO that the
four-fermion coupling constant is expressed in terms of
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physical parameters and the density of the instanton—
anti-instanton medium. The action functional (7) is
invariant under the global group of chiral-symmetry
transformations, U, (Ny) O Ug(Ny); at the quantum level,
it describes the Adler—Bell-Jackiw anomaly breaking
Ua(1) symmetry.

The integral kernel of the four-quark interaction,
K(...), characterizes the region of nonlocality that is
induced by the interaction of quarks and antiquarks
with (anti)instantons. It isexpressed in terms of the pro-
file functions of quark zero modes, @, and depends on
the phenomenological parameters of the QCD vacuum
(n.=1fm*and p. = 1.6-2 GeV-!). We emphasize that
the mean instanton size p.. determines the dimension of
nonlocality and provides a natural cutoff parameter for
effective low-energy theory.

In order to ensure gauge invariance, we go over
from the conventional field functions to the Mandel-
stam field functions [11]:

W(x) — E(0, x)w(x),

X

E(0, x) = Pex %eQd A(Z)El ®
X) = Pexpll _[Zuu J

Here, Q = diag(2/3, -1/3, -1/3), A, isagaugefield, and
P denotes ordering along the trajectory. The gauge-
invariant quark Green’s function then assumestheform

S(xy) = [X)E(X y)P(y)U

= [DA[DTDYe N TETI) L C)

« epReoraa B
explieQdz,A (z
0 {““ 0

The functional integral in (9) is calculated by the
Laplace method near the one-instanton configuration;
as aresult, we obtain

S(xy)

o > o (10)
= tr, Pexp[leQJ'dzuAp(z)EnDo(x)qu(y)},
o 0

where Al'1 is the (anti)instanton field, while ®, is the

guark zero mode in an arbitrary gauge. The gauge-
invariant quark Green’s function (10) assumes the sim-
plest form in the axial gauge nA, = 0 (N, =y, — X,
because, in this gauge, the Schwinger factor E(X, y) is
equal to unity. In the coordinate frame where the
(anti)instanton is at the origin of coordinates and where
the vector x — y isaligned with thetime axisat x =y =
z, the P-ordered exponential reduces to an ordinary
exponential. The gauge function R(x) corresponding to
the transition from the regular gauge to the axial one
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was considered in detail elsewhere [12]. For the quark
zero modes ®g° in the axial gauge, we have

Py (X) = J20"(X)U" = J2e(X)R (X)U",

where

(1)

— P R = exp[it Xa(x)],
n(x2+p2)3/2

a(x) =

o(x) =

(12)
x| Xy

/XZ + p2 /XZ + p2
and U istherotation matrix in color space (the plussign

in the superscript on U corresponds to the instanton
configuration).

The nonlocal four-fermion action functional (7) is
linearized with the aid of auxiliary fieldsinterpreted as
meson fields. In theliterature, this procedureisreferred
to as bosonization.

Upon explicitly evaluating the integral with respect
to the (anti)instanton position, that part in the action
functional (7) which describes the interaction assumes
the following form in the momentum representation:

(?‘2_[“

X (D (k)T W(k2))(W(kg)TW(ky)).

Here, G = (N/V)! isthe coupling constant for the four-
fermion interaction, while isthe corresponding flavor
matrix. The functions f(k) represent normalized zero
modes in the momentum representation. For these, we
use the approximation (see[13])

f (k)
= 21p(2.25exp{ —p |k} —1.25exp{-3p.|k(}).

Making the relevant change of variables and going back
to the coordinate representation, we obtain the action
functional (13) in the form

arctan

'f(k)5(k1 ko + K3 —k,) 13)

(14)

& = GIdx(LIJ(x)FLP(x)) (15)

which the most convenient for linearization. In expres-
sion (15), we have introduced the notation

W(x) = [dpe e " H(p)w(p).

Without changing the dynamics of the system, we can
replace the action functional (15) by an alternative
action functional of the form

S¢]

= (4)_——Idep(x)+ gq)(x)LIJ(x)FLIJ(x)D (1o
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where we have redefined the coupling constant as g =
GN... Upon integration with respect to quark fields, the
generating functional can then be recast into the form
(for the sake of convenience, we formally go over to the
Minkowski signature)

Z[n,n,J]
= J'Dq) exp[—iN.S[] + iJ'dXJ(X)(I)(X)]’

A a7
S[¢] = 2—gj’dx¢ (x) +itrInG(x, y)

_ Ni dedyﬁ(x)e‘l(x, y)n(y),

where the symbol tr denotes the functional, group, and
spinor trace and

G(X,Y) = i0:3(x—Y) = (% ),
d(xy) = [dEOE)f(x-E)F(E-Y).

The auxiliary fields ¢ are interpreted as composite
meson fields. The transition to the action functional
(17) resulted in the rearrangement of the vacuum state
owing to a spontaneous breakdown of chiral symmetry
[14].

Inthelimit N,— oo, theintegral with respect to the
fields ¢ in (17) is calculated by the stationary-phase
method. In order to implement this, we must find a
solution ¢, to the equation

3939 = 0 (18)

and expand the action functional (17) in a functional
seriesin the vicinity of this solution as

Z[A,n, 3] = expBNcé[%]—%trln”S'wo]E

g [¢o] e

x exp[lN (19)
Z 3J" D

x expi [y a0 (SToal) I

Differentiating the generating functional (19) with
respect to the currents i, n, and J, we obtain the corre-
sponding Green's functions in various orders in 1/N..
By way of example, we indicate that the propagator of
thefield ¢ inthefirst order in 1/N. is

D(xy) =

133()3I(Y) | - - 520 00)

- —Nic(é'[%])'l(x, ),
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where
5 o]
500565 = 2%V
HE Y-8 -0 T(x-E)

(i0e,5(8,—&,) — (&1, £2))°

Instead of (17), it is more convenient to use, in
actual practice, the effective-action representation that
also describes the interaction of the composite fields
through quark loops, but which is based on the quark—
hadron Lagrangian of the ¢( ) type. For this, it is
necessary, however, to determine the physical coupling
constant for quark—hadron interaction. We will now
show theway in which this can be done. L et us consider

the amplitude Ty, _ g, for elastic fermion—fermion

scattering. We assume that fermion interaction results
in the formation of a boson (for example, pion) bound

state with the quantum numbers of the ( Y) pair. In
other words, apoleat p? = mf,l appearsin the amplitude

Tyy - gy - Inthe momentum representation, the elastic-
fermion-scattering amplitude has the form

Tow - gw OFD(P)T, 21)

where I stands for the corresponding flavor and Dirac
matrices, while D(p?) is the meson propagator [see
(20)]. In the momentum representation, this propagator
isgiven by

D(p") = —2—,

1-gM(p’)
n 2y _ d4k
() I(Zn)4i

x £2(K) F2(k + p)tr(ysS(K)YsS(k + p)).

Expanding the denominator in (22) in a Taylor series
near the physical meson mass, we can the recast the
el astic-fermion-scattering amplitude into the form

(22)

Toy - oy (23)

g
ar I
1 — gr(my) — (p° —mey)gn'(my) — N"(p)

Itisobviousfrom (23) that, in the meson Green’s func-
tion, the condition

1-gn(my) =0 (24)
corresponds to the pol e associated with the mass of the
physical particle. If, in addition, the pion mass in (24)
is set to zero, we arrive at the mass-gap equation,
thereby reproducing the Goldstone theorem.
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Let us recast the elastic-scattering amplitude into
the form

gz
M@y
AL
p —my

Toy - g Ul (25)

where the physical quark—meson coupling constant
gf,lw isgiven by
1
1 2 !
m'(my)
The last equality is usualy written in the form of the
compositeness condition [15-19]

Zy = 1—gugyeM'(My) = 0, 27)

where Z, is the constant of meson-field renormaliza-
tion. Physically, the condition Z,, = O implies that the
meson field is always in a dressed state. As a matter of
fact, the compositeness condition is equivaent to the
strong-coupling condition, becauseit determinesforces
responsible for the formation of bound states.

Thus, the proposed approach relies on effective
guark—meson Lagrangians written in the gauge-invari-
ant form

LX) = Ouag [ 080  (82) F(E2) D + &)
x E(x + &3, )T yMOYE(X, X — EW(X — &),

where I, is the flavor matrix corresponding to the
meson being considered and

Omgw = (26)

(28)

y

0 0

E(xy) = eXpDeQIdeA“(Z)D
O 0

X (29)

_1ns, 1.
Q = ég\ +ﬁx 0 = diag(2/3,-1/3,-1/3),

and on the connectivity condition (27), which makes it
possible to calculate the physical values of the quark—
hadron coupling constants and which plays an impor-
tant role in proving momentum sum rules for the distri-
butions of interest.

3. MODEL PARAMETERS

In this section, we will discuss model parameters.
Owing to a spontaneous breakdown of chiral symme-
try, the guark massisafunction of momentum; in other
words, it appears to be an effective mass. It can be
determined by solving the mass-gap equation
(Schwinger—Dyson equatlon)

d'k M(k) _ N

: (30)
I(zn) K+Mk 4N
2Hereafter, we use the Euclidean signature.
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where M(K) is the effective quark mass, while n; is the
instanton-medium density, which is expressed in terms
of M2(0)/G, G being the coupling constant for four-fer-
mion interaction. A solution to equation (30) can be
represented as

M(k) = M(0)f*(k) = Mf*(K). 31)

The quark condensate and the quark virtuality are
also important quantities. The former plays the role of
the order parameter in chiral-symmetry breaking; it is
determined as the nonperturbative part of the quark

propagator,

d’k

[gg0= I|mtrSF(x y) = —4N, J'(z ) % M(k)

+ M*(k) (32)

The latter specifies the mean value of the sguared
momentum of avirtual quark; itisgiven by (see[20, 21])

2 _ mD’q0_ K 2 MK

¢ oo EGQE[(ZT[)4 K® + M%(K)

In the approximation of a sufficiently dilute instan-
ton medium, the assumption that (K[~ )\é > MZ()\S)
does not lead to significant errors. Therefore, the
momentum dependence of the effective mass in the
denominator of the integrands in (32) and (33) can be
neglected against k’. At the same time, the use of
expression (31) for the effective mass in the numerators
of (32) and (33) leads to the quark-condensate and
quark-virtuality values of, respectively,
N.M 2 2
—C2 > and )\q = =
21U P, Pc
By using the values from (34) and expressing the
parameters of the instanton vacuum model in terms of
the fundamental QCD-vacuum parameters, we obtain

(33)

[ggt= - (34)

2 _ 2 417 o0
=< M, = —— (35)
Pe 7\5 a N, )\;

With aid of expressions (35), we can determine the
model parameters p. and M on the basis of the quark-
condensate value

o= —(230 MeV)®
and the quark-virtuality value

Ae = (0.4+0.2)~0.55% 0.05) GeV?,
which were obtained in [22-24]. Asaresult, we arrive at
p.~1.7GeV-l, M~0.3GeV.

Theglobal analysis of the vacuum and |ow-energy pion
properties from [13] confirms these estimates, setting
the following constraints on the above parameters:

pe=1.5-2.0 GeV-!, M =0.22-0.26 GeV.
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Fig. 1. Compton scattering of a virtua photon with a
momentum ¢ by a pion with a momentum p.

We note that the condition
n = M*(\)/A; <1,

which ensures the applicability of the dilute-medium
approximation, holds in the entire parameter region.

4. OFF-DIAGONAL DISTRIBUTIONS

Let us now consider the off-diagonal quark distribu-
tions that parametrize the asymmetric hadron matrix
elements of a nonperturbative origin. These matrix ele-
ments are used, for example, in studying hard exclusive
processes like elastic electroproduction. We will dwell
at some length on one such process, deep virtual Comp-
ton scattering represented in Fig. 1, where the pion,
with a momentum p, absorbs a virtual photon with a
momentum g, whereby areal photon with amomentum
g = q+r, is emitted, the remaining recoil pion having
the momentum p' = p — r. The momentum q is consid-
ered in the deep virtual kinematical region—that is, in
the Bjorken limit @ =-¢> — oandp-q — o at
finite Q%(p - o).

We distinguish two cases, t =0andt # 0, wheret =
r2. Let us first consider the more general second case.
The amplitude for the Compton scattering of a photon
on apion at the momentap and q in theinitial state and
the momenta p' and q' in the final state (see Fig. 1) is
given by

Tw(p, Q) = Idﬁldizdﬁsdh

xexp(igé; —iq&, +ip&;—ip'&,) (36)

y 5's
<6Au(£1)6Ap(€2)6M(n)(E3)6M(T[)(E.4)>O.

The scattering matrix has the conventional form

S= Texp(IIdX[ilfeff(X) + Len(¥)]). (37)
The Compton amplitudeis described by an entire set of
diagrams. The basic types of these are displayed in
Fig. 2. Diagrams of the 2c and 2d types are suppressed
in the Bjorken limit; therefore, we will restrict our con-
sideration to the 2a and 2b types. The main contribution
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0

@@

@

Fig. 2. Diagrams for the Compton scattering amplitude: (a)
main type and (b—d) additional types.

to the amplitude comes from the diagram in Fig. 2a,
and not from the diagram in Fig. 2b.

A general method for separating off-diagonal distri-
butionswas developed in[4, 25]. In the momentum rep-
resentation, the contribution of the diagram in Fig. 2ato
the reaction amplitude can be represented as

Omg i K £ 1((k= )Y F((k=1))
T[ 411

38)
xtr(ysSk - p)ysSK)Y, Sk + q)y,Sk~-r)).

In order to determine the asymptotic behavior at

large Q?, it is convenient to use the Sudakov variables.
For the lightlike vectors m, and n,,, we choose the vec-

tor of the target-pion momentum p, (p* = 0 for aGold-
stone particle) and i, = q/(p - q), where q' is the real-
photon momentum. The momentainvolved can then be
expanded as

mam

uv (p q)_

A O
U = _Zpu+(p|:q)np+qu1

plg = ply +t/2,

where C is the asymmetry parameter, which, in the
Bjorken limit, is an analog of the scaling variable

o4 2 Q
2pq ~ 2pg’
Introducing expansion (39) into (38) and perform-

ing invariant integration with respect to k, we arrive at
the expression

dk
J-4T[2| pv(k p! I'l) - pun Cl(k p, n)

2

(40)
+ ﬁuvaZ(k1 p1 ﬁ) + guvc3(k’ p, ﬁ),

wherel ,(k, p, ) and C(k, p, 1) (n=1, 2, 3) are some
typical functions. In the above expression, we have
omitted terms that are suppressed at large Q*. With the
PHYSICS OF ATOMIC NUCLEI  Vol. 63

No. 3 2000



OFF-DIAGONAL QUARK DISTRIBUTIONS IN PIONS

aid of therelation
1
Idi(é()?-kﬁ) =1,
-1
an integral representation of unity, we reduce the
amplitude to the form

Tuv(p’ s r) = (puﬁv + I;\lupv _guv)

IdX T _ —sz(x t).

By definition, the function (X, t), which appears in
expression (42) represents the contribution of the basic
diagrams to the off-diagona distribution of quarks in
the pion and has the form

(41)

(42)

1 grog £(K) F2(k =
o] prynat(OLAGSD

x f(k—r)tr(ysS(k— p)v53(k)nv5(k—f))
x S(X —kA) + (X — X).

The variable X in expressions (42) and (43) ranges
between zero and unity. Physically, it appearsto be the
common fraction of the initial-hadron momentum p. It
can be represented as alinear superposition of the con-
ventional fraction x of the momentum p for the case of
zero momentum transfer and the fraction y of the non-
zero momentum transfer r: X =xp + yr.

The contributions to the off-diagonal distribution
from the additional diagrams (see Fig. 2b) can be sin-
gled out in asimilar way. As aresult, we abtain

Fr(X 1) =

(43)

FX D) = 55 g"‘”j—f(k)f (k+p)

XJ’de'((k—rT)2+ r’1(1-1))
0 (44)

tr(ysS(YsS(k + p)) 2X - 3¢

x (3(X —k) + 8(X =T + k) + (X— X).

The structure integrals in (43) and (44) are calcu-
lated in the Euclidean signature, where the form factors
f(k?) are well defined. In this calculation, we also use
the a representation for the propagators that relies on
integral representations of the gamma and the delta
function,

[ +o00

1 _ i n-1_—aA - 1
= = r(n)'!)’daa e ', o(X) (21_[)4_

o ", 45)
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and the Laplace transform of the nonlocal vertex form
factors.

The eventual expressions for these functions in the
O representation are given in the Appendix. Integration
of the sum of thefunctionsin (43) and (44) with respect
to the common momentum fraction X yields the had-
ronic electromagnetic form factor (pion form factor in
the case under study); that is,

1

IdX(OJ?(x, t) + F2(X, 1)
(46)

1

= [AXF(X, 0 = Fo(0),
0

where the hadronic form factor is normalized to unity.
The behavior of the function F(t) (see Fig. 3) agrees
with experimental values; numerically, it virtually coin-
cides with the results of the calculations performed in
[26, 27].

In order to derive asymmetric distribution functions
(for the definition, see [4]), it is necessary to set the
squared momentum transfer in (43) and (44) to zero, t =
0. In this way, we obtain the family of functions ,(X)
depending on the asymmetry parameter { (in contrast
to the double distribution functions in [4], which are
universal and which are independent of (). It follows
from (46) that the function J;(X) satisfies the sum rule

1

Idx%(X) =1 (47)

and possesses the following properties. In the region
X = ¢, the parton returning to the hadron carries a posi-
tive fraction (X — Q)p of the primary-hadron momen-
tum. Therefore, the asymmetric function can be inter-
preted asafunction similar to the conventional distribu-
tion function. In the region X < ¢, the parton returning
to the hadron carries the negative momentum fraction
(X = Q)p; therefore, it can be interpreted as a parton
emitted by the final hadron and traveling together with
the parton that has |eft the initial hadron. If X is repre-
sented in the form X = Y, we can see that either parton
of the two emitted by the primary and the final hadron
carries a positive fraction of the momentum transfer r,

Y and Y, respectively. In this case, the asymmetric dis-
tribution function %,(X) is similar to the amplitude for
the decay of the bound state with total momentum r =
{pintotwo parts. In particul ar, we can show in amodel -
independent way that the asymmetric distribution of
guarks in the pion at { = 1 reduces to the pion wave
function. For this, we consider the hadronic matrix ele-
ment of an arbitrary operator that parametrizes the dis-
tribution functions:

C(p')|0(0)|m(p)Cd (48)
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Fr()
1.0

10
t, GeV?

Fig. 3. Electromagnetic form factor for the pion: (solid
curve) total contribution from the main and additiona dia-
grams and (dashed curve) contribution from the additional
diagrams.

Fz(X, t= 0)
1.5

1.0

0.5

-0.5 1 1 1 1 1

Fig. 4. Family of the curvesfor the asymmetric distribution
at various values of the asymmetry parameter ¢: (solid
curves) total contributionsfrom the main and additional dia-
gramsand (dashed curves) contributionsfrom the additional
diagrams.

By using the reduction relations and the PCAC theo-
rem, we arrive at
,2_ 2 o
P zfm"J'dxe'prOITa F()00)(p)T  (49)
mT[ Tt

At { = 1, the recoil-pion momentum p' is zero [see
equation (39)]; taking into account the result of com-
muting 0, with the chronological product, we therefore
find that the hadronic matrix element of an arbitrary
operator is given by

£ [0][95(0), 6(0)]|m(p)] (50)
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where 9.5 isthe axial charge. Using current algebra, we
can now substitute the electromagnetic current for
0(0), asisrequired in our case. Thisyields

1

7 [ty ()T(P)D = (), (51)

1L

where @, is the pion wave function. Thus, we have shown
that, if the asymmetry parameter ¢ isequal to unity—this
is equivalent to zero momentum of the final pion—the
asymmetric function %,(X) coincides with the pion wave
function. Figure 4 displays the graphs of the asymmetric
functions at various vaues of the parameter . It can be
seen that the contributions of the additiona diagrams
decrease with increasing asymmetry parameter { (we
recal| that the maximum contribution of the additiona dia-
grams corresponds to { = 0 and amounts to about 209%).

5. CONCLUSION

We have predicted general properties of the off-
diagonal distributions of valence quarks in the pion.
These off-diagonal distributions are of particular inter-
est because they relate conventional (diagonal) distri-
butions to hadron form factors. Our calculations have
been performed within the proposed model that relies
on gauge-invariant nonlocal guark—hadron
Lagrangians and on the compositeness condition,
which permits computing physical coupling constants
for quark interaction with hadrons. Nonlocal vertices
are fully generated by instantons and are characterized
by the mean instanton size. We have shown that, if
gauge invariance is strictly respected within the
approach used, parton sum rules for the distribution of
the total hadron momentum among valence quarks fol-
low from the compositeness condition. It has been
found that the parameters of the instanton vacuum,
such as the effective radius of the instanton and the
guark mass, are related to the vacuum expectation val-
ues of quark—gluon operators of the lowest dimension
and to low-energy pion observables.
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APPENDIX

Presented below for an arbitrary value of the asym-
metry parameter  are the parametric o representations

3Here, we have taken into account only the leading twist and
neglected the effects of the quark—gluon sea.
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for typical integralsin the expressions for quark distri-

X o, +05(1-t1
butions. X [G)(a3) exp%iigM2 —tw3;&)%
O3+ 03
We have 1
+ —
1 o +@(d4)expgi4M2—tra3g-l——9—3-(-:-Q%],
oJ“’Z(X t) = nqqéﬁz(a t), Qo3+ 0y
Z for the additional diagram in Fig. 2b.
where In the above expressions ?n(a) stands for the

Laplace transform of the form factor raised to the nth

9?(0, t) = %Idal...daﬁl(al)?2(0(2)?1(0(3)ea4M power, and we have a so introduced the notation
0

Op . = Op +. 40,
iM? 6(=0(1X—O(XZ—0(
y xe™" o(a,) D_tXO(M(OIl+6(1)D LT R TR T
O+ 030 U ap+ogg U & = a X +a X=¢ —a
27X T¥I-Xx T?
~M2 .
(1-0e™ 0@y 1 Oyly [ By = Uy 2 + Uggal —a
+ exp =—t(1 - X) ————— 3 1449 351 _ 21
-0 PT e T a,a g0 1-X " "¥1-X
L lt=X 1-7+X
00 al_ as X _GZ X _alv
1 ~ ~ ~
_Z[.dal"'dGSfl(al)fz(az)fl(a3) . 1(1 )-X 1-X
0, = — =X GZZ—X a,,
- - 0 X 1-1)-X —X
X(l Z)(l X)tGSSG)(zaS) as = —03Z( l_g( _ali_x_az,
(0 +055(1-0)) X (T X
0, = —04 o, as,.
0 a2 ~ 35014 O 1-¢+X 1-¢+X
X eXpe M7(0 45+ 03) —t(1— X) —————
P M (s @) =1 )0(14""3‘35(1—0D
for the main diagram in Fig. 2a and REFERENCES
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Abstract—The amplitude of the decay n' — 1Ty is derived in the soft limit of the current scheme of n—n'
mixing. The results are compared with experimental values of the phenomenological contribution additive to
the p-meson contribution. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

According to the precise results of the LEPTON-F
experiment [1], which studied the decay process
n' — TUTY, the inconsistencies found in afit of the
two-pion spectrum in terms of the purely p-meson-
decay contribution can be removed by supplementing it
with a constant additive term. A thorough reanalysis of
the relevant world data at CERN [2] confirmed this
conclusion. More recently, the Crystal Barrel measure-
ment [3] of the invariant-mass distribution of the two-
pion system from the decay processn' —» TUTCY pro-
vided further evidence for a nonresonance contribution
to this spectrum. The analysis of this process from [4]
yielded similar results.

It has long since been known that the amplitude of
the decay n' — 1Y is affected by the AVV and
AAAV chiral anomalies (see, for example, [5]). As a
result, this amplitude depends on the quark charges,
providing the possibility of determining (see [6] and
references therein) whether they are fractional [7] or
integral [8].

That the two-pion mass spectrum observed in the
decay process being discussed is dominated by the
p-meson contribution—in contrast to what occurs in
the two-photon decays of either n and n'—complicates
the use of the soft limit for the term generated by the
anomaly in the lowest order. In [6], the p-meson contri-
bution was taken into account by multiplying the low-
energy amplitude by the corresponding Breit—Wigner
factor. According to Benayoun et al. [2], it isthe non-p
term that must be identified with the anomal ous contri-
bution to the amplitude in the soft limit. (For adetailed
analysis of the p-meson contribution to n' decays, the
reader isreferred to[2].)

In the soft limit, the anomalous contributions to the
Ty decaysof either n and n' wereestimatedin[9] for
two theoretical schemes of n—n' mixing [10].

Assuming the current-mixing scheme, we derive
here the anomal ous contribution to the amplitude of the
decay n' — 11Ty and then compare our results with
experimental data quoted in[2, 3].

2. n-n' MIXING

The amplitude being discussed receives contribu-
tions from anomalies through the coupling of the
Heisenberg fieldsn and ' to the divergences of SU(3)-
octet and SU(3)-singlet currents. For the interpolating
fieldsn and ', we obtained [10]

1 EPSCOSG ——esmda

n-= 2|:F
ey
N = = DDssm(3+—cosda

where D, = a“Agf’ witha=8(0), AL° being octet (sin-
glet) currents ([Q| A§5 IN(MH(P)C= ip,fa); Fa=fa/cosB;
and 6 isthe mixing angle. In the so-called current-mix-
ing scheme, the quantity € in (1) is equal to m,/m,..

In using expressions of the type (1), weimply a sub-
traction of anomalous terms, whereby the Lorentz
invariant form factors of the divergences vanish in the

soft limit, so that we arrive at the anomal ous contribu-
tion in its pure form (apart from the sign).

3. BASIC FORMULAS

Theamplitude of thedecay n' — 1T TTY dependson
the decay constantsf; and f, and on the mixing angle 6;
these parameters can be inferred from the two-photon
widths of n and )'. From (1), we obtain

R, = PNH—»W)}”[&%“
n L,
r( —vyy)
= f—cose Jé esme
Fs

T [3rr(51n :vy\m

172 |jnﬂ[|3/2 @)
G‘n 0
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Table 1. Mixingangleand decay constants as obtained from
the measured n/n' — yyand J/y — n/n'y decay widths

6, deg ol folf -
~19.62 + 2.33 0.84 + 0.05 0.88 + 0.07

= rlgne+ Jé— cos8.
Fg
The parametersfy, f,,, and 6 can also be related to the

features of the decays J/yy — ny and JJ — n'y. Fol-
lowing [11], we assume that the radiative decays of J/{)
are determined primarily by ct annihilation into ggy.
For the cases being considered, the gluon pair occursin
apseudoscalar state. According to [10], the ratio of the
widths with respect to the decays J — n'y and
JY — ny can be expressed in terms of the corre-

sponding matrix elements [(I)|Gé [n'Uand [O|Gé [nCof
the gluon-anomaly operator GG = G,,,G"” [11]; that is,

R= [F(J/wq n'v)]”zz&a”cmz
rJ/g— ny)J Hp,0 L0
. mIGélnjmﬁ
0/GGIn
ﬁfocose+sf89ne
—ﬁfosn9+sf cosO’

3)

where Pn/Py = (1 - m /mJ/Lp)/(l -m /mJ/Lu)

The mixing angle and the decay constants can aso
be expressed interms of R,, R., and R. This was done
and discussed in [10]. The experimental data quoted in
[12] for thedecaysn/n' — yyand J/y — n/n'y make
it possible to obtain the estimates presented in Table 1.

Thevalue of 6 =-19.7° + 2.2° is consistent with the
estimate 6 = —(19°-20°) from [13].

We have also obtained the expressions

tan® = [2e(R, - 4R,R)]{5(¢’R, + R,R)
2 2 2 252 2 2\ 412 )
~[9(R,R-€°R;)" + 16(R: + €’R})(e° + RY)]},

f
f—: = R, + &R, tan®,

5
f —Rntane+sRn. ©®)

L -

fo /8¢

From (4), it follows that the mixing angle 8 depends
only on Rand on theratio R,/R,.

It should be emphasized that the above expressions
for the decay-width ratios—they have been used to esti-
mate the mixing angle 6 and the decay constants f; and
f—are not identical to those from [2] and from the ref-
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erences quoted therein, but they reduce to them upon
setting € = 1in (1)—5).

4. DEPENDENCE ON THE RENORMALIZATION
SCALE

The renormalization-group properties of the decay
constants f, and f; should be discussed separately. Since
our analysisisrestricted to thelowest order of QED, the
anomalous divergences Dg; and D, are virtually inde-
pendent of the QED renormalization point. However,
the effects of QCD renormalization cannot be
neglected: that the singlet current is not conserved—
that is, it shows an anomaly—rendersit strongly depen-
dent on the renormalization scale (the corresponding
anomalous dimension was found in [14]), whence it
follows that D, and f, are aso dependent on the renor-
malization scale.

Owing to amultiplicative character of renormaliza-
tion, the matrix element for D,, decay into 1Ty can be
represented in the form

G p,) T p_) Y (K) | Do (%) QO

= Z(u*/ %) Gn(p.) T p)Y(K) | Do(a®)| QT
whereq=p, + p_+ k.

The same factor Z(p?/g?) renormalizes f,(¢f) into
fo(u?). Sincethe expression for n' features only theratio
Dy/fy [see equation (1)], the amplitude of the decay

n' — 1Ty then proves to be independent of the
renormalization point.

(6)

Upon isolating the pole at mf]., the matrix element
@D, ()| Qs computed in the soft limit (g7 — 0),
whereasf,(g?) istaken at the point g* = mﬁ.. Itisusually
assumed that [mID,(0)|Q0= MTiDy(q)|QL) where
0o = 1 GeV. Sincethe ¢f? evolution of the factor Z(u?/g?)
isslow (its anomal ous dimension is on the order of 0(§
[14]), the difference between Dy(g5) and Dy(m;.) is
negligibly smal. We may conclude that
BTID(0)| QM) = ETEPy( i )| QTF(MY.).

The renormalization-invariant properties of some
other matrix elementsinvolving n'—in particular, those
of the amplitude for the decay n' — yy—have been
analyzed in [15].

5. DECAY n' — m'rry IN THE SOFT LIMIT

The amplitude for the decay of either n or ' into
11Ty has the Lorentz structure

M(n'— i(p.)T(p.)Y(K))

v oo o )
= EP(p+kv p—k)euvpcsuk pgp—
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Table 2. Experimental values of the extra additive term in
the resonance background for two assumed forms of this
background

E,, Gev3
Model
(2] (3l
M1 5.060 5 —4.46 + 0.51
M2 217540 ~1.78+ 0.53

where P =n or n' and " is the photon polarization vec-
tor. Using equation (1) and taking into account all com-
mentstoit, we are now ableto obtain E; in the soft limit
(contributions from the box and triangular anomalies
[5, 6]),

Ep(0) =

e [sineh/écoseg )
4T[2A/Z_’>f721D5F8 Fo O

where Ex(0) = Ep(0, 0) and € = 4110,
Substituting the parameter values quoted in Table 1
into (8), wefinally obtain

E,(0) = —4.17+0.57 GeV . 9)

In deriving this estimate, we employed the world-aver-
age data on the decay n — yy[12] and data on pro-
duction processes induced by the Primakoff mecha-
nism. By invoking only the data on the two-photon pro-
cesses, we obtain adightly lower estimate:

E(0) =-4.01£0.38 GeV~. (10)

The estimatesin (9) and (10) should be regarded as the
foremost results of the present analysis.

In[2, 3], the phenomenological parameter E, of the
contribution additive to the p-meson background,
which the authors of [2, 3] propose to identify with
E,, (0), depends on this background and was estimated
from the data for two schemes, M1 and M2 (see [2] for
details). The results obtained in this way for E, are
guoted in Table 2.

Our basic results as given by (9) and (10) were
obtained within the current-mixing scheme. Previously,
[9], we used the same scheme to derive the value of
Ep(o for the decay n — 1ty and obtained

E,(0)=-7.37£0.77 GeV~. (11)
Thisresult agreeswell with the estimate given in [16]:

|E,(0)] = 6.9+0.7 GeV ™. (12)

To conclude, we have derived the nonresonance
(anomalous) contribution to the amplitude of the decay
n' — 1Ty, The results are consistent with the empir-
ical estimates of the parameter E,, that assume the M1
scheme. The theoretical prediction obtained in the soft
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limit, which is rather far from the redlistic situation,
provesto be surprisingly close to the experimental esti-

mate of En..

NP

o M w

©

©

10

11
12.

13.

14.
15.

16.
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Abstract—In the work presented, the effect of electromagnetic interactions on the strangeness-conserving [3-
decay of baryons: neutron, 7 —»> p + ¢~ + V + Y, and hyperon, Z* —» N+ et 4 V(V) +Y, is visualized. The
polarized baryon decay studied, the total decay probability modification, as well as the modifications of the ¢*
spectrum and the angular distribution with respect to the polarization vector § of the initial baryon (coefficient
A), have been calculated. Dependence of the results on the value of the ultraviolet cut-off parameter A is eluci-
dated. The spectrum and yield of the y-radiation accompanying the [3-decay is acquired, with special attention
being paid to the infrared (soft-photon) radiation. The photon radiation of pions constituting the baryon’s “pion
cloud” is investigated. The radiative corrections to the total B-decay probability and to the electron energy and
angular distributions found in this work proves to be of pivotal importance for obtaining the main characteris-

tics of the weak interaction from experimental data processing. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION. THE CONCEPT
OF ELECTROMAGNETIC INTERACTIONS
IN B-DECAY

As charged particles are involved in B-decay, elec-
tromagnetic interactions are bound to be taken into
consideration in describing such phenomenon. y-radia-
tion accompanying the B-decay of neutron, hyperons,
and nuclei was investigated as far back as in the ‘fifties
[1, 2], and even in the ‘thirties [3]. In so far as a mere
bremsstrahlung of an outgoing electron (or positron)
with sufficiently large energy was considered in those
early works, the familiar perturbation theory in the fine
structure constant o was perfectly applicable in treating
such y-radiation and its influence on e*-spectra and the
total decay probability [4]. Afterwards, allowing for the
electromagnetic interactions having embraced the y-ra-
diation of any permitted energies including soft-photon
radiation, the general physical problem of the infrared
divergency emerged. An approach beyond the reach of
the common perturbation theory in o was to be pur-
sued, the virtual photons coming into the picture as
well. The relevant methods elaborated in the profound
works [5, 6] are to be consistently applied in treating
electromagnetic interactions in [3-decay. Aforemen-
tioned accounting for the virtual photons entails, in
turn, the onset of the ultraviolet divergence while calcu-
lating the radiative corrections to baryon (and nucleus)
[B-decay. Nowadays, Sirlin’s comprehensive investiga-
tions [7] in the framework of the Weinberg—Salam

* This article was submitted by the author in English.

** This paper, which was originally submitted by the author in
English, was first published in Physics of Atomic Nuclei, 1999,
vol. 62, no. 4, p. 648. Due to the errors made in the course of its
language editing and upon the author’s demand, this paper is
republished in its original version.

SU;(2) x U(1) gauge model [8] provide two rather dif-
ferent recipes for removing the ultraviolet divergence
that appears when treating the radiative 3-decay. After
all, baryons being far from to be point-like, its intrinsic
structure has an effect on the 3-decay, especially on the
radiative corrections to it, and this fact needs to be
properly accounted for [9, 10].

Thus, there exist nowadays several substantial
grounds and purposes for an inquiry into the radiative
corrections to baryon [3-decay.

(i) First, in so far as correct acquiring the Cabibbo—
Kobayashi—-Maskawa (CKM) [11] quark-mixing ma-
trix elements and invariant amplitudes (form-factors)
[12, 13], determining the weak interactions, from the
experimental data goes, the radiative corrections to
[B-decay have to be scrutinized. By now, the accuracy
of the most precise experimental data on decay proba-
bility and on the energy and angular lepton distribu-
tions is known to amount to =0.1% for neutron data
[14-22] and =2-3% for hyperon data [23]. Consequent-
ly, if the radiative corrections are strictly calculated, the
CKM-matrix elements and invariant amplitudes of
weak interactions can be disentangled, in the long run,
from the experimental data with the same high accura-
cy, which is substantial to comprehend to what extent
the weak interaction universality holds true [8, 11, 12].
What must be proclaimed from the very first is that we
focus solely on the radiative corrections themselves, all
other problems not associated with electromagnetic in-
teractions immediately being put aside, significant
though they may be in their own right. In particular, we
do not deal with the induced terms and the momentum-
transferred dependence of the form-factors (invariant
amplitudes) incorporated in the general effective weak
interaction Lagrangian [12, 13] (see the next Section).

1063-7788/00/6303-0502%$20.00 © 2000 MAIK “Nauka/Interperiodica’



ON RADIATIVE CORRECTIONS

Even so, we restrict ourselves for the sake of definite-
ness to treating the strangeness-conserving semilepton-
ic decays of neutron, n —> p + ¢+ V +Y, and 2*-hy-
perons, X* —= A%+ ¢* + V(V ) + y only, to sidestep and
avoid, according to our lights, the highbrow discussion

about the peculiarities of CKM-matrix elements [11],
right-handed currents [24, 25], and so on.

During last three decades, many a calculation has
been pursuing the Sirlin’s simplified approach [9, 26,
27], treating the radiative corrections as a sum of the
so-called “model-dependent” (MD) and “model-inde-
pendent” (MI) parts, which had been managed, initial-
ly, to describe the electron spectrum modification in
neutron [3-decay and then was generalized to treat the
modifications of the total decay probability and the lep-
ton energy-angular distributions for neutron [28, 29]
and hyperons [30-32]. In this rather untenable han-
dling, the MI part renders some finite part of the radia-
tive corrections, independent of strong interactions, as
well as of the interactions mediated by vector bosons,
and is calculated for point-like baryons within the fa-
miliar (V — A) theory. The whole remnant, the MD part,
is suggested to be absorbed into the effective form-fac-
tors, causing their redefinition. The key point is that the
transition amplitude M is presumed to be a multiple of
M,, the uncorrected one. These main features of the
original treatment have been retained, though some im-
provements and generalizations were undertaken in
[33-35], with the explicit dependence of the MI part on
the ultraviolet cutoff parameter /A emerging instead of
the original mere redefinition of the effective ampli-
tudes. As our calculations do not utilize the aforesaid
simplifications, the results obtained prove to be rather
different. We shall trace the origin of these differences
in Sections 3, 4 and discuss their consequences in Sec-
tions 5, 7.

(i1) In studying the radiative corrections to baryon
[B-decay, the general physical problem of soft-photon
radiation emerges, which purports to be an important
feature of the phenomenon, especially for hyperon de-
cay, because of the large energy released. Treating the
infrared divergence and double-logarithmic asymptotic
behavior in radiative [-decay typifies the case of work-
ing beyond the usual perturbation theory in the fine
structure constant O [5, 6]. Thus, visualization of the
true behavior of the baryon radiative [3-decay probabil-
ity when the y-radiation energy tends to zero, offered in
Sections 4, 5, is of physical interest in its own right,
which warrants our plunge into radiative (-decay if
only for this reason. Certainly, we need this to repose
full confidence in the actual accuracy of our calcula-
tions as well.

(iii) Inquiring into the y-radiation accompanying
B-decay, one becomes conscious of the fact that side by
side with the familiar bremsstralung of outgoing
charged particles, there exists a y-radiation straightfor-
ward from baryon interior, as being due to the baryon
intrinsic structure, and, especially, due to the baryon’s
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internal pionic degrees of freedom. Thus, the study of
this phenomenon provides a tool for investigating the
baryon structure within the framework of low-energy
physics.

(iv) As far as treating the ultraviolet divergence is
concerned, we are to realize (see Section 5) what is the
sensitivity of the ultimate results of our calculations on
the choice of different prescriptions elaborated in Sir-
lin’s investigations [7].

All of the enumerated tasks (i)—(iv) being closely re-
lated to each other are of long-standing and ever-in-
creasing significance. Keeping in mind the aforesaid
agenda we make bold to launch our present study of the
radiative corrections to baryon (3-decay.

2. GENERAL LAGRANGIAN FORMULATION

First and foremost, we set out the general effective
Lagrangian (see [12, 13, 36-38]) relevant to describe
the strangeness-conserving baryon [3-decay,

n—p+e+V+y, ZF—=Nter+v(V)+y,

accounting for the electromagnetic interactions which
we are about to consider,

Line = Legrgiwt Ley + Loy + Ligw + L + Lgsginn (1)
where
G
Nz
x Wg(X)[ Vo 0y(A) + GwmOay Ol
+ (IR Y + 9ipUa)Y 1 Wei(¥)

renders the (V — A) baryon-lepton weak interaction, ¢
being the four-momentum transfer in 3-decaying. The
expression

Ley(x) = —eEDe(x)y“lpe(x)Au(x) (3)

stands for electromagnetic field interaction with lep-
tons and Ly, likewise, with baryons. The electro-weak
pion interactions are described by

(TXY (L +YIW(X)

Lemsin(X) =

@)

L) = (0,709 + €A T()
L@ = f /2505 (0" TE(X) + €A™ TE()),

where (a, b, ¢) = (1, 2, 3), whereas L= (1, 2, 3, 4), f;=
Srow =93 MeV, and

“)

G
Tijeyp(l + VS)lIJw

A" = ()

Lastly, the effective pion interaction with the three-

dp =eA, sl =

18]
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quark bag-baryon can be presented in the form [38]

1 d'g :
3T e (o © U@ V)

x (2(X)7) Wei(x) €™,

Lemin(¥) =

&)

— o N2p3D: . j1(aR)
u@) = 2N R311(|0R)JO(IDR)|Q| N

where N, R, p are the normalization factor, baryon-bag
radius, and quark momentum, respectively [38], and
Jrwwlfesa = 11/14 [12, 13]. In the aforesaid formulae
(2)-(5), the y-matrices are defined accordingly [36],
Ow = (YaVy — WYo)/2, and the system of units A =c =1

is adapted; Ws(x), Wgi(X) render baryon fields in the

initial and final states, and J,, Y, T, Au stand for the
electron (positron), (anti)neutrino, pion, and electro-
magnetic fields, respectively. The particle masses
(in MeV) occurring in (1)~(5) are M, = 938.2723,
M, =939.5656, M. = 11894, M__ = 11973, M , =
1115.6, m, = 13498, m. = 139.57 and m = m, =
0.5110 [37]. As we are inquiring into the strangeness-
conserving [3-decay only, we henceforth adapt, for our
numerical calculations, the effective value G = G =
GelV.a| = 1.1365(11) x 10 GeV~2 [11, 37, 39, 40],
where G =1.16639(2) x 10> Ge V-2 and G® are acquired
from the muon decay and super-allowed (0* — 0%)
nuclear Fermi transitions, respectively. Here, the radia-
tive corrections in both cases have been thoroughly
accounted for and disentangled, and |V,,| = 0.9744 %
0.001 is an element of the KM-matrix which mixes the
u-, d-quarks, related to the Cabibbo angle 6 by |V,,| =
cosB¢. We also prescribe for the effective amplitudes in

(2) the values gy = 1, g = 1.266 in the neutron decay

case [14], [21], and gy =0, gx = ~/2/3D, D = 0.74
[12, 13] for Z-hyperon one. However, as we shall treat
in our further calculations the relative radiative correc-
tions that is, the radiative corrections divided by the un-
corrected bulk decay probability, the G value itself does
not influence the results set forth anywhere, but in Sec-
tion 7.

The amplitudes gy, g4 determine the main bulk (V - A)
weak interaction, whereas gjp represents the induced

pseudoscalar, and gy = ([ —H¢)/2M; stands for

“weak magnetism,” where [;, |; are the anomalous
magnetic moments of initial and final baryons; for neu-

tron gwy =-3.70/2M,,. Certainly, as the ratio A/az M, is
known to be small enough even in the 2-decay case, ac-
counting for the ¢>-dependence of the effective form-
factors gy, g4, as well as retaining the terms with gy,
g, When calculating the radiative corrections to the
bulk B-decay process caused by g(0), g,(0) in equa-
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tion (2), would have provided superfiuous corrections
to corrections. Furthermore, the baryon mass is thought
to be so large that we have the right to neglect the bary-
on recoil, the final baryon velocity in the rest frame of
the initial baryon, and all of the quantities which are
multiples of the ratios g, /Mg, A/M g, m/Mp, (A=M; - M,
and m is electron mass). Thus, in (2), we abandon from
outset the weak magnetism and the induced pseudosca-
lar, and neglect the ¢*>-dependence of gy, g4. This does
not mean to say the additional corrections due to ac-
counting for the form-factors g>-dependence and the
terms with gww, g in (2) must be conceived as being
quite negligible. It is only that the evaluation of those
quantities is not our task here. However, when we try to
gain the correct values of the quantities G, g from ex-
perimental data processing, it will be necessary, of
course, to take into account side by side with the radia-
tive corrections all the others, as well, these second be-
ing comparable with the first and substantial in their
own right, especially in the case of 2-decay because of
the large mass difference A = M5 — M, = 80 MeV [37].

3. TRANSITION AMPLITUDES

The effective interactions (2), (3) are known to give
rise to both the real y-radiation of charged particles in-
volved in B-decaying and virtual photon exchanging
between them. The matrix elements of the transition
amplitude to be calculated are presented, to the lowest
order in electric charge e, by diagrams, as shown in
Figs. 1, 2. All of the notations in the figures, being
familiar, need not to be explained. The diagram a in
Figs. 1, 2 presents uncorrected bulk -decay, and b de-
scribes the common e*-bremsstrahlung. It is worth to
take the view of the fact that in the Z-decay case, in-
coming and outgoing charged particles interchange a
virtual photon, diagram d, Fig. 2, whereas the virtual
photon exchange holds in the neutron case between two
charged particles in the final state, diagram d, Fig. 1. In
so far as the baryon y-radiation presented by the dia-
grams c of the Figs. 1, 2 goes, one need not to take this
into account, with baryons masses being suggested to
be infinitely large (see discussion in the end of the pre-
vious Section 2).

Side by side with the aforesaid y-radiation which
has been treated in many papers, we allow for that
caused by the internal structure of the baryon, treated as
consisting of the heavy and tough three-quark bag and
a pion cloud surrounding it [38]. During [-decaying,
the correspondent interactions (3)—(5) carry the y-radi-
ation from the baryon interior into effect. We account
for the y-radiation of the relatively light particles, pions,
coming into picture, but not of the heavy three-quark bag
itself. To the lowest order in e, the corresponding graphs
of the transition amplitude are displayed in Fig. 3.

The diagrams a in Fig. 3 render the processes when
a charged or neutral virtual pion, having been emitted
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by the initial baryon, undergoes the -decay as follows:
™ —>T+er+V(V), T — O+ +V(V),

and then is reabsorbed by the baryon with producing
the final baryon state, a charged pion emitting a photon.
The [B-decay of the virtual pion and the photon emis-
sion occur in case b simultaneously:

TE =T+ e+ V(V) +Y,
T —= O+ e+ V) +Yy,

In the case presented in the diagram d, a virtual
charged pion emitted by the initial baryon emits a pho-
ton and suffers B-decay; in case ¢ [3-decay and y-radia-
tion occur simultaneously:

TE—ef+V(V)+V.

y-radiation directly from baryon interior is a subject
of great conceptual interest in its own right, irrespective
of how much it contributes to the total y-radiation ac-
companying 3-decay.

Now, we shall obtain the values of the matrix ele-
ments discussed above.

Renormalization of the outer charged particles
states, that is accounting for diagrams e, f'in Figs. 1, 2,
having been carried out, the uncorrected, zerothorder
in e, transition amplitude, presented by diagrams a,

G _ _
Mo = —=0pa)lou,(P.) Usi(P)hoUsi(P),  (6)
2
5 =Y (1+Y%), ho = va(@v+aay), (D
is known to be replaced by (see, for instance [36])
Mo=ME2+ME M2 = MEZY + 2%/ 2,
(8)

7z = —égﬁ[ln(/\/mi) +9/4+2In(A\/m)].

In (6), p,, py, P> Pyare the momenta of the electron, (an-
ti)neutrino, initial and final baryons, respectively, and
U,, Uy, Up;, Upyindicate their Dirac spinors. The photon
mass A is introduced, as usually, to treat the soft (infra-
red) y-radiation. The cut-off parameter /\, emerging ad
hoc in (8), formally prevents an ultraviolet divergence.
The up-to-date genuine treatment [7] of the ultraviolet
divergence and the respective /A values are properly
discussed later on.

The matrix element presented by diagrams d involv-
ing the internal photon line takes the form

,1_€c
(et .2
x (Ugr(po) (n5),aUgi(p) Fe(K).

Here, B =p and the “+” sign correspond to the neutron
decay case, where Bi = n, Bf = p, whereas B = ¥ and the

[T IS

sign correspond to the hyperon one, where Bi = Z*,

B _
My, =

Id4k(Ue(pe)9)MUv(pv))
9)
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Fig. 1. Diagrams describing the radiative neutron [3-decay,

n—=p+e +V +Y, to the lowest e-order.
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Fig. 2. The same as Fig. 1 for ¥* —» A+t +v(0)+ Y.
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f i
c d
Y v
e elq
Tt T
Y Y =—o
f i + f—

Fig. 3. Diagram describing the y-radiation of the virtual pi-
ons from the baryon interior during B-decaying, the triple
lines standing for the three-quark baryon-bag.
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Bf = N\°. The following notations are introduced in (9):
Fe(K) = 1/[(P*—m’ +i0)
x (Qg— Mg +i0)(K'=A* +i0)],

HA ~ n n
(h)" = v (Qp+ MY (gl + day),

(M) = YN(g5 + ghy*)(Qs + MY, (10)

P = P +mY (1 +YO),
P = pe_kv Qp = pp+kl
Q; = ps—k, O=0,y".

Obviously, to the first order in a, the expression (9)
lumps together all of the effects of the electromagnetic
interactions between charged particles involved in the
[B-decay, the so called “Coulomb corrections” being not
separated as against that what have been expounded in
some papers [41]. Let us emphasize that though the
outer baryons are nonrelativistic and even have the
negligible velocity, the virtual baryon in the intermedi-
ate state in diagrams d must be described by the relativ-
istic propagator

Q+M
Q*~M*+i0

because integrating over d*k in (9) involves arbitrarily
large values of the virtual photon momentum k and,
consequently, of the virtual baryon momentum Q. If
anything, it might be pertinent to point out that if we
had replaced the function G (11) by the nonrelativistic
value, the calculation of the radiative corrections to the
transition amplitudes and, thereafter, to the B-decay
probability would have reduced, for all intents and pur-
poses, to handling their so-called MI parts [26-35]
mentioned in Section 1 (see, also, the discussion below,
in Section 5).

The total amplitude of the bremsstrahlung is the
sum of the amplitudes presented by diagrams b, ¢ in
Figs. 1, 2. The contributions of baryon y-radiation, dia-
grams ¢, prove to be negligible because of the large
baryon mass (the vanishing baryon velocity), as was as-
serted above. The transition amplitude corresponding
to diagram b in Figs. 1, 2 is

G(Q) = (11)

Bl _ eG
Mlv - 72

X (0GP P ™ uy(py)) (Usr(P ) oo Usi(p),
(m1) = (1,23),

where € is the photon polarization vector.

Next, what we are to do now is to inquire for the
transition amplitudes describing the direct y-radiation
from baryon interior as being due to the pionic degrees

&

(12)
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of freedom of a baryon. After the due calculations uti-
lizing equations (4), (5), relativistic pion propagators
and nonrelativistic baryon propagators in the interme-
diate states, we obtain for the amplitude presented by
two diagrams a in Fig. 3 together:

MBED = | 1 e JE‘[
(2m)* (2f i)’ VK

x € (0P Az Uy(Py)) jd“klkiu(kl)u(ka

y (kS + K3) (K3 + K3)
(8 + Kyo—10E;) (005, — Kip—10)

x 1 (13)

(05— ko —i0) (w5 — k3o —i0)

(K +k3)(kz + kD)
(8 + kyo— i OE;) (w} — k3o —i0)

1
(w%—iio—ioxwés—kéo—ioj’
E«(P)—Ei(pr), & = E(P)—E(py).

Here, the indices i, f denote the initial and final sorts of
baryons (for neutron decay i = n, f = p, and for hyperon
decay i = 2*, f= A\), E is the baryon energy, P = p;— k;
is the momentum of an intermediate baryon. The fol-
lowing notations were also introduced in (13):

ks = ki +K, Kk, =k +Q,

O; =

Iy 2 2 2
ky = k1+kv Wnon = kn+mniv0’

where m,, m, are the masses of the charged and neutral
pion, respectively, Q = p, + p, is the sum of electron
and neutrino momenta, and K =Q + k=p, + p, + k. The
matrix element corresponding to diagram b in Fig. 3 re-
sults as

By _ . 1 e JZT
M = 1 4 2
(2m)*(2f pgrer)” k

x € (04pa) (#47) "uy(p,)) jd“klkiu(kl)u(kz)
5 1 (14)
[(& + ko — i 0E ) (why — kip—i0) (05 — ki —i0)

_ 1 }
(3, + ki —10E;) (00} — ki —i0) (o — Ky —i0) 1
the notations being the same as in (13).
The sum of the matrix elements presented by dia-
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grams c¢ and d in Fig. 3 appears to be

MED = e./2ru(K|)(Ugs(p) oK Ugi(p)))
"k (K*=m})

x [e”“”ue(pe)&iﬁquv(pv) (15)

| _ —
, & (2Q" + KN Q" (TP 4, u,(P.))
Q-m;
After all, lumping all of the terms of (6)-(15) to-
gether we are left with the corrected transition ampli-

tude accounting for electromagnetic interactions to the
lowest order in electric charge e:

M = Mg+ My + Mz + M2, (16)
where
MS = Mg+ My, (17)
is proportional to ¢?, whereas Mi(ll) and
Mz = Mg+ M)+ Migg (18)

are linear in e.

The physical nature of the phenomenon described
by the amplitude (18) being different from that de-
scribed by (8)—(12), the main features of (18) are also
unlike those of (8)-(12). Especially, by treating the y-
radiation described by (18), we do not encounter the
problems of infrared and ultraviolet divergences. Let us

also be conscious of the absence of the quantities gs,

g> in (18). The contribution of M (18) in the total
y-radiation turns out to be very small, rather negligi-
ble, when compared with that caused by the amplitude
MZB + MlBy. Nevertheless, the inquiry into Yy-radiation

associated with Mﬁ (18) is of a great conceptual inter-
est in its own right as being due to the intrinsic structure
of baryons. Therefore, we set forth this y-radiation sep-
arately after the main calculation of the radiative -de-
cay probability that makes allowance for the ampli-

tudes MZB + MlBy presented by Figs. 1, 2. The transition

amplitudes having been acquired, we are now in posi-
tion to calculate the decay probability accounting for
electromagnetic interactions.

4. THE B-DECAY PROBABILITY ACCOUNTING
FOR ELECTROMAGNETIC INTERACTIONS

The decay probability we take up to calculate is ex-
pressed through the square of the absolute value

2

'BU)|  _ [n,B B B(1)| 2
M2 = e+ M2+ w0 (19)
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which reduces in the first o-order to
[ - MY + MEME + MEME”
tot 0 o Mg oVIRr (20)

2
B(l) BL, ,B B, ,BU
+ M5 + Mg M3, + MgMS,.

Allowing for the polarizations of the various particles
involved in the process considered, we rewrite, as usu-
ally (see, for instance [36]), the terms incorporated in
(20), making use of the polarization matrices p,, Py, Pg;»
Pgs of the electron, neutrino, and the initial and final
baryons, respectively. The value of the first term in (20)
is, of course, well known,

2_G BB ;
MG = Ftrlperho puie TuTpdoapylonl,  (21)
and to gain the value of
[Mg Mg+ MgMR (22)

in (20) is straightforward according to equation (8).
The quantities hf}“, loq are defined in (6), (7), and, as
usual, a = Ya"y.

The fourth term in (20) is
2
—B —KB
X tr[ Perhoa PaiNop] tr[ pe P+ p, P '],

2
Ml =
(23)

where PH is defined by (10). With equations (9), (10)
being accounted for, the sum of the last two terms in

(20) can be presented in the following form

2 0
(M3)ir = (Mg M3, + MgMa, )i

2 .
_ a6 i
2 (2m

24)
A KFa(OI TS Sina + (T6"Sina) .

TH = tr[pg(hD)" pei(ht) 1,
Sina = PP pyl51.

As explained above, we study the decay of the po-
larized baryon at rest, the velocity of the final baryon
being considered as negligible. In this work, we inquire
into total decay probability, the y-radiation and electron
spectra, and electron angular distribution with respect
to the initial baryon polarization vector &, that is the
correlation between the vector § and the electron veloc-
ity v. All of the other correlations between the particles
involved in the B-decay and their polarizations, as well
as the neutrino and final baryon spectra, are unobserv-
able. Consequently, the aforesaid polarization matri-

(25)
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ces, (21)—(24), are given as follows: . A2 D 1 1
2,32 202 52 242

0100 0100 2k+)\2D<+)\ k+)\—v(k+)\)+v)\

Per = MBfEOO% Pei = MBi(l"'O"jS)EOO%L . (32)
1 IN + Ko —
: : 26) T A

e = (Pe+m)/2, p, = Py, kv JkE+ 2" | hZa i+ vl
and we evaluate the [3-decay probability integrated over te
the final baryon and (anti)neutrino momenta, and over W = W—k <= Epm 01,

the photon emission directions, and summarized over
the polarizations of all of the final particles.

As a matter of course, the quantity |M,[* in (20) is
well known to provide the uncorrected bulk baryon
[B-decay probability with the ¢* energy-momentum (€, p),

dwW® = dwlwp + (v [E)wz ], @27

where the following notations are introduced:

™ I

Wy = (28)

2
°= (g% +3(ad)", W = 293(g5 ).

The probability of y-radiation, accompanying the -de-

cay, with an absolute value of the momentum k = |Kk|
proves to be
dWi(e, p, ki A) = dWg (g, p, k; N)
+v EAWg (g, p, k; A) (29)
= dwdk[Wo, (g, p, k; A) +V CEWG (€, p, K; A)],
where
B _ 8020( th k _Qﬁ
Wo, = wg'S Ds[éB(p) FC R
(30)
k-2 O
+ S0 (p) + R() O
Wyo g
B Bo2Q
Wiv -
(31
O 1 Kk qwe | k= 2%0 O
x ¥ —_— + R (K
0 (p)LVZSL 20t o ®

Here, the following notations were introduced:

2 2
RK) = pinfA kvl
VoA vk NI

In so far as y-radiation with the energies k beyond
the infrared domain goes, 0 In(A/k) < 1, the familiar per-
turbation theory holds true, there is no reason for imposing
A in (29)—(32), and equations (30), (31) reduce to

A 20(00\, ki +
Woy = W' SR + Z—pslnEmeD 5(33)
i 20 1 1
W;, - Bo %gg( )[bv 2 kg (34)

which were handled long before in [1-4]. They proved
to be success in describing the experimental data of the
nuclei radiative [B-decay as far as y-radiation beyond
the infrared domain is concerned. The possibility of ob-
serving such photons in neutron B-decay was discussed
recently in [42]. As we shall become convinced after
due calculations, the main modifications of the total de-
cay probability, and of the electron energy and angular
distributions prove to be caused by soft (infrared) y-ra-
diation, k — 0, whereas the influence of emitting the
aforesaid “high energy” photons appears to be too
small.

The contribution to the decay probability caused by
(24) can be set as:

dW3,(, p; A, A) = dwWi (g, p; A, A)
= dW™B3 (¢, p; M)
+dw(Copy (€, P; A) + Ceay(E, P; N)),

(35)

with dw, dW?° from (27), the quantities B, C being ex-
pressed through integrals of the type

J’d4kFB(k) koks, (n,m=0,1), (36)

where the function Fj is defined in (9), (10). In the
course of treating these integrals, we utilize the validity
of the relations A/My; — 0, (A/Mp)In(A/Mg) — 0
which simplifies the calculations, as all of the integrals
(36), but those set out below, vanish thereby. Subse-

quently,
E_ } Bi| )

2000

= 2M, J’d KE (k) = iTe -~ [In(x)ln
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Fo=3(n(X))° - Fx-1) + * L,

Vo= Vi [(B—e—K)Z+ K]/ M,
2Mp[d'kkaFe() = Paly+Buolo,
51
|1=—IT[27€|I’\(X),

15 = m2 =2In(m/ Mg) + = |n(x)D

2M BIdAkFBkaB = _gaB(Ig_éo(JIZO)'

15 = —1[2(3/2+ 2In(A/ Mg)),

i

I =~ (37)

ia
Bay(€, p; A) = —[€(21°=1,) — 1],
211

B . _ ia 2r, B\2 B\2
Cozy(&: i A\) = 2_]_[3{—|1€V [(9v) +3(9a) ]

+21,[5(g%)” + 129903 + 15(g) ]
2 2
—215[2(gv)” + 3gvga+3(av) 1}
n i n,._.n n
Cer(e,ps N = _3{ —11€29a(9v —9a)
21
ny2 n_n ny2
+21,[3(9y) +49v9a—7(dn) ]
n\2 n_n ny2
=2l[(9v) +9v9a—2(94a) 1},
o . _ i, 52
eoy(& Py N) = 5_‘—_[_3(9A) {21,1&+ 4l —261,}.

Here, the Spens-function [43] is

F@ = IthIn(1+t).

The cut-off parameter /A emerging in equations (35) via
the integral | ZB from (37) prevents the ultraviolet diver-
gence in much the same way as above in (8).

The contributions from the first three terms in (20),
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if combined, result in
dWR(E p; A, A) = dWWi(E, p; A, A),
a
W = 1-—[2In(A/Mg) (38)
+4In(A/m) +9/2—-In(Mg/m)].
The sum of (24) and (38),
dW®e, p; A\, A
(e.p ) (39)

= dW3y (e, p; A, A) +dWEe, p; A, A),

gives the [B-decay probability with the e¢* energy-mo-
mentum (€, p), accounting for the electromagnetic cor-
rections to the a-order due to the virtual photons. It is
pertinent to rewrite the sum (39) as follows:

dW (e, p; A, A) = dW™(g, p)[1+ B, p; M)]

40)
+dw[Cs(e, p; A, 9y, 9n) + EVCE(E, p; A, 9y, 901,
where
B _ 207 p CAD, F6®) | 1, tMe 9]
B [SEI g+ >y %‘%I OO ZD}
o + 2 2
C3 = 5 2Py (%) +3(gh)
2 2
33(gs 7(g8
+ (4gA) +69A95+ (iv)
Hts(gv) +120305+ 90D |, @)
4 n n_ n
cr = E[[ 9u{8 ~Ga) 00, S+ o
13 n /\ n n
(EJAZ"'InD B%(QVZ—QAZ)}
5 4, +p0_31_g OA[
C; = —=( A)[ FPO_ 2 _oin EMZD]

The quantity B? in (40), (41) apparently does de-
pend on the artificially introduced “photon mass” A to
prevent the infrared divergence of equation (39). To
eliminate this dependence, the probability of y-radia-
tion (29) of momenta k less than some given value k,,,
k<k, <P -

k k

m

IdwyB = dw J’dkwyB(s, p, k: A,

m

(42)

is known to be added to (39), and, after all, we treat, in



510
o-order, the radiative decay probability

dWB(s, p; N\)
k,
" 43
= de(e,p;A,/\)+Idw$(e, p, K; A). )

It is expedient to present equation (42) in the following
form:

K K

dw[ J’dkwgy(s, p, ki A) + Idkw?y(s, p, k; )\)}
0 0

= dW™°B(, p, k,; ) (44)

+ dw[wgoéb(s, D, k) + WCie, p, kn)},

where
6 - i fen 1o
Co = 24 [ Tyl ©) + =5 PELr )
Woo 2ve’
d(’“—Zk myo }
Ci = %gg[ lzgr +ZZB+ K — 2K 0y0 |,

(45)

- %B:(x)—F(l/x)—In(1/x)|n%1_4vz%

—v+ %In(x) + F(v) = F(=v),

L= [(a-g)’—(A—e—k,))/3,

T, = K[(A—¢€)*/2+ K/ 4—2k (A—¢€)/3].

The expressions (29)—(31), (35), (37)-(41), (44),
and (45) having been substituted into (43), the proba-
bility of the B-decay with the ¢* energy-momentum
(g, p), accompanied by the y-radiation of energies & less
than some given value k,, k < k,, < AP — ¢, takes the
form

dWB(e, p; A) = dW(g, p)[1+ B(e, p, k)]
+dW[W5 Cofe, p, k) +V - W °Cele, p k) (46)

+Col€, P; A, G, OR) +V - ECele, p; A, g, g1,
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where

B = —§£| E? 0 Co = Cy+Cr, Ce = Ci+Cr,
47)
e = Za[f‘j 3{ 1 (3In(MB/m) 9/2)}

all the other quantities herein having been specified
above.

The cut-off parameter /A emerges in these expres-
sions to formally preclude the divergences occurring in
various integration over the virtual photon four-mo-
mentum d*k.

In the early works [9, 27], the cut-off mass A was
adapted to be of the nucleon mass order, A = M. Under
the assumption that weak interactions are mediated by
heavy vector bosons [44], the mass of these mesons
provided the effective cut-off A = My > M),

Here, it is instructive to take cognizance of the fact

that if the relation gy =—gj had been valid, the param-

eter A would have disappeared from the eventual result
(46), likewise in the case of [l-meson decay [45], in per-
fect agreement with the general assertion of [46].

Nowadays, after advent of the profound Sirlin’s
works [7], carried out in the framework of the SU(2); %
U(1) gauge model [8], we get two rather different reci-
pes for treating the ultraviolet divergence in the course
of calculating the radiative corrections. Working in the
framework of the effective lagrangian (2), we are not
on the point to discuss obtaining the results of [7]. We
just take for granted these results and only recall that,
first (according to [7]), if the simplest model of SU(2); %
U(1) symmetry breaking via the single Higgs isospinor
is used, the mass M, = 91 GeV will be substituted for
the cut-off A, and, secondly, in the case of arbitrary
symmetry breaking (via, for example, several Higgs
multiplets) the mass My, = 80 GeV is substituted for A.
In addition, the weak coupling constant G would be re-
placed by the corrected one,

G = G[l — %I n(cosew)}, (48)

but the correction to G amounts to no more than a few
hundredths of a percent (~0.01%). Our numerical cal-
culations in Section 5 show the dependence of the total
radiative corrections on the /\-value to be not negligi-
ble.

The radiative B-decay probability presented by (43),
(46) as the sum of the B-decay probability (39) includ-
ing virtual photons only, but no real y-radiation, and the
probability of one photon emission (42), turns out to be
divergent logarithmically when the boundary photon en-
ergy k,, in equations (46), (47) tends to zero, k,, — 0,
or(and) when the emitted electron energy € increases
infinitely, € — o0, v — 1. This manifests the well-
known fact that the familiar perturbation theory in d is
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not applicable to treat the infrared (soft) bremsstrahl-
ung, and the bremsstrahlung of an ultra-relativistic
electron (double-logarithmic asymptomatic) (see [5, 6,
36, 47]). To comprehend the -decay consistently ac-
counting for electromagnetic interactions, we are
drawn into considering the processes to arbitrary high
order in O, with infinite numbers of both real and virtu-
al photons which are displayed by the diagrams with in-
finite numbers of internal and external photon lines in
addition to those given in Figs. 1, 2, the final state being
specified by fixing the summary total y-radiation ener-
gy as less than the given value k,,. Thoroughly pursuing
the general treatment of the infrared divergence phe-
nomena step by step, as perfectly worked out in [39],
we express the arbitrarily high a-order infrared contri-
butions to the transition amplitudes and, consequently,
to the decay probability through the first order in o

quantities B, B, B, Cy, Cs, Co, C¢ (39)—(47). All of the
contributions having been summarized, we arrive, in-
stead of equation (46), at the eventual complete result

dWE(E, p, ks A) = dWWg(E, Ky A)
+ (v CB)dWWE(E, kp; A),

We = %[ ((g) +3(aD))
x (1+ Colg, p, k) + Co(A, 0%, O £ P)1,

e%(e, Ky)

(49)

WE = [29A(99 —gR)
x (1+ Cy(g, p, k) + Ce(A, 9%, O & P)1,

2
dw = %ap(AB—s)zd.s%, n=2 yv=P
2Tt 4an p €
where the infrared contributions arising from both real
and virtual photons are explicitly factored out in expo-
nential form. The exponent, emerging in (49) with the

quantity 9B from equation (47), governs the true infra-

red behavior of equation (49): Wg ¢ — 0, when the
boundary y-radiation energy k,, — 0. This means, in
accordance with the general theory [6, 36, 47], that
there is no [3-decay without the infrared y-radiation. For
now, we can deal with 3-decay accompanied by y-radi-
ation of arbitrary small energy.

Thus, we have acquired the baryon [3-decay proba-
bility (49) with the e* energy-momentum (€, p) accom-
panied by y-radiation of the summary total energy k less
than some given value k,,, k < k,,, the number of pho-
tons and the directions of their emissions being not
fixed. Certainly, the k,, value cannot exceed AP — €.
Having obtained the general result (49), we are able to
calculate the total B-decay probability, the electron en-
ergy and angular distributions, and the y-radiation spec-
trum and yield, which is what we turn to now.

PHYSICS OF ATOMIC NUCLEI  Vol. 63

No. 3 2000

511

5. THE TOTAL B-DECAY PROBABILITY
AND ELECTRON ENERGY-MOMENTUM
DISTRIBUTION

Before to discuss the numerical results obtained ac-
cording to equation (49), we are to visualize some fea-
tures of this. Let us note that the functions (40), (41),

Co(A\, 9V» Ga; & P, Ce(A, Gy, Oa; €, p) do incorporate
the cut-off A and quantities g\E;, gi, whereas éo (&, p,

k,), Ce (g, p, k,), B(g, k,) do not. Thus, our final ex-
pression (49) is seen to involve, firstly, the part which

shows the same familiar dependence on gs, gE\ as the
uncorrected bulk B-decay probability (27) does, and,

secondly, the part which appears to depend on gs , gi

via the functions Cy(A\, gs, gi; g, p), C:(A\, gs, gi; g,
p), (40), (11) in much more complicated way, as com-
pared to equation (27). This result appears immediately
from the straightforward calculations of (37), (36), (24)
and (8), (7), (38) which, in turn, are due to the diagrams
d, e, f in Figs. 1, 2 with internal photon lines. If the

quantities Co(A, 9y, Ga: & P), Ce(A, 9y, Ja; € p) in (49)
had been omitted and the exponent replaced by
exp(B) = 1 + B, our result (49) would have been re-
duced to one, corresponding at k,, = AP — €, to all intents
and purposes, to the so-called MI part of the radiative
corrections invented in [26] and applied to calculate the
modifications of the electron spectrum and total decay
probability [26, 31], and then to the electron angular
distribution modification as well [28-39, 32]. Accord-
ing to the key assertion of this approach, the remainder
of the radiative corrections after the MI part is re-
moved, the MD part, might affect, at most, the magni-

tudes of gs, gi only, these quantities being replaced
. B B IB IB
by primed ones, gy, Ja — Oy , Ja -

Some improvements of the original method of [26]
seem to be managed in [33, 34], where the well-known
renormalizations (8) and, consequently, the contribu-
tion of the (38) in decay probability were accounted for,

but the contributions to Cy(A, gs, gi; €, p), C:(\, gs,
gi; €, p) in equation (49) originating from equations

(24), (35), (37) were still neglected. The main general
feature of this approach [26-35] as a whole is that the

corrected transition amplitude (9) ng is thought to be
a multiple of uncorrected one Mg (6), and, consequent-
ly, the quantities Wg , W§B (49) are multiples of Wgo ,

W§B 0 (27), which is obviously not our case. Handy as

this very treatment is, we decided to refrain from it and
pursue calculating set forth along the work presented,
according to our lights. If anything, it is pertinent to re-
call that the authors of [30, 33, 34] themselves were in-
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clined to regard the separation of the MD and MI parts
and practically handling the MI parts only as being
rather untenable, and so do we.

We would like to mention that, unlike what was
adapted in some papers [26, 35, 41] until a little while
ago, our calculations lump together all of the radiative
corrections, without dividing them into the “Coulomb,”
“inner,” “outer.” Let us also note the |%B| value en-
hancement and, consequently, the increase of the devi-
ation of exp(B) from (1 + M), as being due to both tiny
small k,, — 0 and (or) sufficiently large electron en-
ergy € > m, which may be case in hyperons decay,
where € ~ 100 MeV > m at the end point of electron
spectrum.

Substituting the maximum k,, value at the given
electron energy €, k,,may) = AP — €, in the equation (49),
we arrive at the B-decay probability with the electron

energy-momentum (&, p), including the y-radiation of
all energies compatible to the given € value. The devi-

ations of the functions, Wg (&, p), W? (g, p) in (49)

from the W5° (€, p), We° (g, p) in (27) render the distinc-
tion between the corrected electron energy-momentum
distribution accounting for electromagnetic interac-
tions and the uncorrected one. The modification of the
electron spectrum integrated over the electron emission
directions dn is naturally reflected by the quantity

We (g, k,, = A% —¢)

St -1 = §0), (50)
(9v) +3(9a)
whereas the quantity
B _ AB
We(e k= A —s)_l _ §(s) 51)

B, B B

29a(9v —9a)
is pertinent to characterize the modification of the en-
ergy dependence of the electron angular distribution.
These § , § are presented in Fig. 4 by solid and short-
dashed lines, respectively, as functions of the electron
kinetic energy E = € — m for neutron decay, the upper
picture, and > -decay, the lower one. Both functions
S? , S? culminate at the beginning and the end of the
electron spectrum, that is, at £ = 0 and E = A? — m, their

mean values being $ =0.08, § = 0.06 for neutron de-

cay and § = § = 0.007 for 2~ decay. The numerical
results in the Figs. 4-6 are obtained for A = My,. The

§ , § enhancement at € — m, k,, —> AP —m is as

a matter of course, due to the increasing quota of the
y-radiation energy in the total energy release AB. As
seen, the corrected decay probability exceeds the un-
corrected one along all the electron energies E, except
for limiting case E — A% —m, € — AP, k,, —= 0,

where Wg — 0, WEB — 0, due to exp(B) — 0,
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Fig. 4. Quantities &, SE R AB (see text), for neutron and

2 "-hyperon decays as functions of electron kinetic energy
E = & — m. For the sake of simplicity, we have dropped the
superscripts “B” from the quantities in the pictures.

and we arrive at Sy, S — —1. This behavior may be
substantial in treating the phenomena, where just such
a limiting electron energy turns out to be of crucial im-
portance.

The uncorrected asymmetry factor of the electron
angular distribution A(E; is replaced by corrected one
AB(g, k,, = AP — €) accounting for the radiative correc-

tions,

20:(v=0a)  _
2

(9%) +3(gR)°

W (g, ky = A° —¢)

Wo (e, ky, = A% —¢)

AS =
(52)

= A%(e, k, = A°—¢),

which is presented in Fig. 4 by long-dashed lines for the
neutron and 2~ decays. The differences 0AZ = AP(g) —

AS amount to SA® = —1.9% for the neutron and 3A® =
1.8% for the > decay. It is to score under the disparate

dependencies of Ag and AP(€) on the quantities gs,
gi, as being due to the functions Cy(A\, gs , gi; £, p),
Ce(\, 99, Ga; € p)» (40), (41) in equation (49). Cer-
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0.10
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—0.05

—-0.10

—0.15

Fig. 5. Quantities P(E; (K 5 P? (S AB (k,,) (see text), for

neutron and > -hyperon decays as functions of k,,, the

boundary y-radiation energy (see text). For the sake of sim-
plicity, we have dropped the superscripts “B” from the
quantities in the pictures.

tainly, this fact is of the great importance for acquiring
g\E}, g,? from experimental data (see [14, 16, 22]).

Next, we inquire into the B-decay probability inte-
grated over the electron energy-momentum. Having at
our disposal equation (49), we treat the quantity

3 8 0

. [ dwW2(e, k) + [ dwWo(e, A°— )5

O m AB—km O
A® (53)
Wgoj'dw
m
_ B
—1 = Po(kp),

which determines the relative probability of the y-radi-
ation of the energies |k| less than the given k,, value,
k| <k, (0 <k, <P —m). The function Pg(k,) is plot-
ted in Fig. 5 by solid lines for neutron and >~ decay in
the upper and lower parts of the figure, respectively.
For the y-radiation of the energies k < k,,, we also
displayed in Fig. 5 (short-dashed lines) the relative
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E —>N+e+v+y) \
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K, MeV

Fig. 6. Differential relative spectra dW:/3 (K) /dk and yields

W\? (K) of electron bremsstrahlung for neutron and 2 ™-hy-

peron decays as functions of y-radiation energy k. For the
sake of simplicity, we have dropped the superscripts “B”
from the quantities in the pictures.

probability of the electron emission under the angle 6
(cosB = &v/V|&)) to the polarization vector § of the ini-
tial baryon,

[ —kn 2° O
EJ’ dwv W (e, k) + I dwv WECe, AB—e)E
|:| m AB—km D
AB
WEBOJ'dWV (54)
B
_1 = PPky).

As one can see, both functions (53), (54) show the very
steep growth with k,, at the extremely small k,,, within
the infrared domain, being varied rather negligibly
beyond that: for instance, in the neutron decay case

PG (k,, = 0) = 0, whereas Pg (k,, = 102 MeV) = Py (k,, =
A" — m). Thus, the radiative corrections to the 3-decay
prove to reach saturation at k,, < A? — m, or, approxi-

mately, in the infrared domain. So, we infer from this
Fig. 5, as well as from the previous one, that, in actual
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The modifications of the total B-decay probability W and
asymmetry factor of the ¢* angular distribution 8A for neu-
tron (n) and X -hyperon at various values of the ultraviolet
cut-off A\, My, Mz, My denoting W-, Z-bosons and nucleon
masses, respectively

n 2
N
My, My My My My My
OW,% | 794 | 8.05 | 504 | 050 | 0.55 |-1.70
0A, % |-1.86 |-1.91 |-0.47 1.74 1.77 | 0.70

fact, the crucial effect on the B-decay is just due to the
infrared y-radiation.

In Fig. 5, we also offer the asymmetry factor of the
electron angular distribution, averaged over the elec-
tron energy,

B

9_ WEE k)
2w, km)
B (55)
+ J' We(e. A" —¢) E((A —m) = A%K,),

Wo(s A® —s) 0

which is the contribution to the asymmetry of the elec-
tron angular distribution associated with the y-radiation
of the energies less than the given k,,. This quantity ap-
pears to be, as a matter of fact, independent of %,,, like-
wise (52) is of g, and, consequently, the modifications
OAP are as good as constant. Obviously, the relative
modification of the total decay probability SW? is given

simply by equation (53) at k,, = AP —m : SW? = Pg (A8 —m).

After all, the results summarized in Table emerge
from the calculations we have carried out.

In Table, we present the modifications of the total
decay probability W and asymmetry factor 0A (in per-
cents) for the neutron and 2 -hyperon cases calculated
at the various cut-off A values, My, M,, My, which
stand for W-, Z-bosons, and nucleon masses, respec-
tively. The results for 2* coincide with those for 2-, for
all intents and purposes; for example, instead of the da-
ta in Table, we have at A = My, the magnitudes dW =
0.56%, 6A = 1.70% for Z* case.

Let us expose the dependence of the results on the
ultraviolet cut-off parameter A. Certainly, the value
N\ = My, is understood nowadays as being not eligible.
Yet the relatively small differences between the results
for A = My, and A = M, prove to be very significant re-
flecting the uncertainties of principle occurring in the
present-day general approaches to treating the ultravi-
olet divergence [7] (recall the discussion above equa-
tion (48)).

BUNATIAN

Our results for W2, dA8 differ appreciably from
ones presented in [26, 28-35, 41]. In particular, for the
neutron case, our values OW” = 8%, dA" = 1.9% (see
Table) do not coincide apparently with the values dW" =
5%, 0A" = 0% asserted in those papers. This fact is
thought to be substantial in the course of processing the
up-to-date experimental data on the neutron lifetime
(see [14-20]), and electron angular distribution (see
[14, 17-22]). Keeping in mind the arguments set forth
in the discussion at the beginning of this Section, we
realize the origin of these noticeable distinctions. So,
we are not taken aback by this mismatch. If anything, it
is instructive to note that our values dW?2, 8AZ would
have come much closer to those of [28-35], if the cut-
off A had been equal to the nucleon mass M. It is not
surprising because the substantial pieces of the very

functions Co(A, Gy, Ga: & P). Ce(A, Gy a: € P). (40),
(41), depending on A via In(/A\/Mj), vanish at A = My,
for neutron case and become very small (negative) for 2.
Also for that matter, if we had omitted the term

T8(V/V) in the functions Co(g, p, K,), Cz(€, p, Ky),

(37), (46), (47), in the neutron case, the value OW”
would have been reduced to =4.6% instead of =8% in
Table. The difference amounting to =3.5% might be,
properly speaking, conceived as the “Coulomb correc-
tion”’, which would be in accordance with the assertions
of some previous papers [26, 29-35, 41].

The feasible consequence of our results for acquir-
ing the G, gy, g, values from processing the up-to-date
experimental data are discussed in Section 7. Now let
us proceed to the inquiry for the spectrum and yield of
the y-radiation accompanying 3-decay.

6. THE y-RADIATION SPECTRUM AND YIELD

The relative differential probability of y-radiation is
obtained simply by differentiating the aforesaid func-

tion Pg (k) (53) with respect to its argument k

dPg(k) _ 1
dk  2°
J'dwwg(s, p, k= AB—S)
(56)
) b 1, AWB(E P ) _ dWEK)
J dk  dk -

This quantity is presented in Fig. 6 by solid lines, the
domain of the extremely small k values, k — 0, set out
thoroughly in Fig. 5, escaping our attention here in
Fig. 6. The short-dashed lines render the calculation of
the same quantity, but merely in the framework of the
familiar perturbation theory in o [1-4, 42], that is ac-
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cording equation (33):

B_

dwik) _ 1 'B
dk - AP I dWWOV(el pl k) (57)
we? J’ dw "

descending from equations (49), (53), (56) when B < 1,
exp(B) — (1 +RB). In Fig. 6, beyond infrared asymp-
totic onset, the distinction between the solid and short-
dashed curves is virtually invisible for the neutron de-
cay, whereas the difference between these curves,
though being very small, is still observable in the 2 case.
It is due to sufficiently large A® = 82 MeV > m which
entails V=1 and & =5 (see (32)), in contrast to the neu-
tron case, where & < 1. Consequently, the 9B value for
the 2 decay is appreciably greater than for the neutron
decay, and, therefore, the replacement exp(B) —»
(1 + 9B) is valid in the neutron case with much better
accuracy than in the Z case.

Though the functions (56) and (57) coincide, as a
matter of fact, beyond the infrared domain, their infra-
red asymptotic behaviors prove to be significantly dif-
ferent:

B

dPS) _dWEK) 20 . oY
ak - ak ~mm ] Mg o G
dWBO(k) _g _
k{ (59)
g = Inlerpym ;o 20y
v Tt

Indeed, small as the positive quantity x is (even for the
> decay x = 0.02), the behaviors of (58) and (59) differ
crucially at small k. Though the both diverge at k — 0,
the first one has the integratable singularity, whereas
the second posses the singularity causing the logarith-
mic divergency by integrating over the y-energy k.

The yield of y-radiation can be estimated using the
quantity

AB

W, = I(dwﬁ‘/dk)dk (60)
k

drawn in the Fig. 6 by the long-dashed line and the

quantity Pg (k,») (53) presented in Fig. 5. The quantity

(60) renders the number of photons emitted in one
[B-decay event with the energies exceeding the given
value k. For instance, one can infer from these figures
that, in the neutron case, one photon with the energy k =
0.1 MeV is expected to be radiated along =103 B-decay
events, and one photon of the energy k = 10° MeV (op-
tical red photon energy) per =50 events. We can also
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expect in neutron decay case that the optical photons
yield to be one optical photon per =200 events. In the
> case, one can expect one photon with £ > 40 MeV, to
be emitted per =10° events.

Now, we proceed to expounding the spectrum and
yields of the y-radiation from interior of a baryon which
is brought into being by the baryon’s pionic degrees of
freedom, see Fig. 3, equations (13), (14), (15).

Though the ultraviolet divergence problem has been
perfectly solved [7] without allowing for baryon’s pi-
onic degrees of freedom, without virtual pion cloud,
these are known to be substantial to comprehend [3-de-

cay. The actual deviation g from gy, the appearance
of the amplitudes gp, g5y, and the dependence of all the
form-factors involved in the process on momentum
transfer are thought to be due to the pion degrees of
freedom. Certainly, these virtual pions give rise to the
real y-radiation in [3-decaying as well, which we have
been treating in this work. We are to inquire for the de-
sirable y-radiation spectrum, using the amplitudes
(13)—(15). As before, we evaluate the B-decay probabil-
ity, integrated over the final baryon and (anti)neutrino
momenta as well as photon and electron emission di-
rections, and summarized over the polarizations of all
final particles, the equation (26) being put to use. In the
course of calculating, the ratios

(mrr:r - mr[O) A_B
mT[O M B,

me

Mo

Q- k
Mg Mg
(see the definitions following (13)) occur which obvi-
ously are small. We simplify the calculations, retaining
only the terms linear in these ratios. Also, we replace in
equation (15) the quantity |K|* by its value averaged

~12
over angles between p,, py, kK, namely |[K|? — |K| =

00\2, + pi + K2, After a good deal of tedious work, we

are left with the electron and photon distributions ac-
counting for the processes presented in Fig. 3 by dia-
grams a plus b,

apkw, G

O0¢g4d 18
foBiT[Z

WSk, €)dedk =
2 2
x 128[§(V2 ~Vy/ 3 Roye(wf + &+ ) + i’

2
+,eQ),-2(3U; + (@, + £ -V

61)
+—|(V +V /S)gJ ——2(3U + (0, +€—K)V,)E
3 2 1 2 3 1 1 D

x(p*+ ewv)cov}dedk,

and by diagrams c plus d,
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-14 dW%dk
B aG’u %/ D 10 v
C
Wy( )(k1 8)d£dk~ (62) 10—16
(R [ -md)’
2, 2 2 .2 1018
x kpewy (p” + w;, + k7)dedk,
1072
where w, = AP — € — k and
10—22
L = J’dkkeuz(k)X-i’g“—yi*’-i’%‘i ~1.96,
0 w(y+w)
- J’dkk6u2(k)6E(k)y +54yoo+ 5400 - 2.O7AB,
5 w (y+w)
V, = J’dkk4u2(k)%)—+y3 ~17,
W (y + w) 0
107 E >N+ +v+y)
—11
u, = J’dkk4u2(k)6E(k)—§9—f—¥— 1.83A°, 10 e
W (Y + W) 0 10 20 30 40 50 60 70

= K+ mio, YK = K+ Mg =M,
APM,
JMZ + K
In Fig. 7, we present by solid lines the relative dif-
ferential spectrum of the y-radiation corresponding to
(61) plus (62):
W'(K) _ 1
dk 2’
Idwwg(s, p, k=A%—¢)

SE(K) =

(63)
AP -k
x J’ de[ WS (k, &) + Wk, €)].

The yield of the photons with energies exceeding
the given value £;

w3"(q>

W(K) = f d (64)

is depicted in Fig. 7 by the long-dashed lines. This y-ra-
diation apparently has no singularity at k — 0, and the
y-spectrum as a whole shows a quite different behavior
with k increasing as compared with the one set out in
Figs. 5, 6. In particular, the photons with the relatively
large energies are presented here, in Fig. 7, with much
more weight.

K, MeV

Fig. 7. Differential relative spectra dW:/3 "(K) /dk and yields

B . . -
Wy n(k) of virtual pion y-radiation (see text) for neutron

and 2 -hyperon decays as functions of y-radiation energy k.
For the sake of simplicity, we have dropped the superscripts
“B” by quantities in the pictures.

Though in the strangeness-conserving baryon [3-decay

considered here the quantities d W\E; "(K) /dk, WS "(K) in

Fig. 7 turn out to be small, rather negligible, as com-
pared to those presented in Fig. 6, they are thought,
nevertheless, to be of a great conceptual importance in
their own right. Having become conscious of the strong
dependence of these quantities on the energy A? re-
leased in the [3-decay, one may expect they will grow
up substantially and become immediately observable in
cases with greater A®, for instance, in hyperon strange-
ness-nonconserving [-decay (AS # 0), such as ¥* —
n+ et +y+Vv. We are on the point of studying in a sub-
sequent work the y-radiation of the virtual “pion cloud”
in such decays, where it may be expected to become
comparable to the electron bremsstrahlung.

Certainly, for now, allowing for thisintrinsic g-radia-
tion of virtual pions cannot ater the aforesaid results con-
cerning the decay probability and angular correlations.

7. CONCLUDING REMARKS

In conclusion, some remarks are thought to be rele-
vant and instructive. Let us recall the influence of elec-
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tromagnetic interactions on [-decay has been consid-
ered in the work presented solely, all the other correc-
tions to the main bulk B-decay process, described by
(2), had been put aside, important as they may be in
their own right to disentangle the g, g, values from
processing the up-to-date experimental data. For in-
stance, accounting for the finiteness of the baryon
mass, entailing, in turn, the weak magnetism and bary-
on recoil [48], is known to be necessary when treating
the electron angular distribution in polarized neutron

B-decay to deduce the precise gp/gy value [14, 16—

26]. Still more, such corrections are to be important in
treating hyperon decay. Thus, according to our lights,
we are not about to acquire the G, gy, g4 values from
processing experimental data immediately, yet we can
evaluate the G, g, modifications associated with the
modifications OW2, 8A? calculated above and given in
Table.

Let the “uncorrected” G, g, values have been ob-
tained from the experimental data on decay probability
Wep and the asymmetry coefficient A, without ac-
counting for OW2, A% from Table. The “corrected”
values

G =G(1+8), 0= ga(1+5y) (65)

are acquired from the same W, A, yet the modifica-

tions OW5, dA® have been allowed for. The general ex-
pressions (49), (53), (52) for the quantities W5, A8 be-

ing put to use, the equations for the quantities 6gB , O in

(65) are deduced rather simply. In the neutron decay
case, we have got

(G- DBO D)
30a t20,-1

3ga(ga-1) W

3gh +2dh-1 2

3y =

, (66)

5 = OA"

(67)

(It is to recall that according to the notations adapted in (2)
gy = 1.) If there were no other corrections to W, A" addi-

tion to ones given in Table, the corrections to G, g, ac-
cording to (66), (67) would be: 63 =0.47%, 0g =-4.4%.

Let us inquire into how the results gained in the cur-

rent work affect the values of G, gj acquired in some
papers (see [14, 21, 22]) from processing the up-to-date
experimental data, the values dA = 1% [48] and OW =
5.4% [28-35, 41] having been utilized. This quantity
OW is due to radiative corrections as our OW" is, yet the
0A has quite a different nature, as being due to allowing
for a finite baryon mass [48]. Thus, consequently, we

shall acquire the corrections to the G, g, values ob-
tained in [14, 21, 22], if we substitute in equations (66),
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(67) our OA" = —1.9%, and instead of our value OW" =
8%, the value reduced by the dW, that is, replacing

dW" —» (dW" — W) = 2.6%. So, we adapt the G, g
values of [14, 21, 22], as though they had been obtained
from experimental data immediately, without any cor-
rections, and the corrections must be calculated accord-
ing to equations (65), (66), (67) with these last 34", dW"

values. Then equations (65), (66), (67) give 63 =0.47%,
0; = —-1.7%, and, subsequently, the G = 1.1511(28) %

1075 GeV-2, gg =1.266 + 0.004 asserted, for instance, in
[21] are replaced by G = 1.1318(28) x 10~ GeV2, §i =

1.272 = 0.004. Let us remark that the last G value ap-
pears to be very close to one gained in [39, 40] (see al-
so [37]) from the nuclear super-allowed (0* — 0%) Fer-
mi transitions, namely G®° = Gg|V,,| = 1.1365(11) x
107> GeV~2, the deviation being only =0.4%.

In the case of Z-decay, as g\z, =0 (see (2)), the rela-
tion A, = -2/3 (1 + 0A%) holds, and we can consider

the modification of the product (Ggi) only. The equa-

tion for 6; , Og gives

5y = —dW -3, (68)
where dWZ, 8A* are given in Table. Certainly, to handle
hyperon decay, one ought to allow for the finiteness of
the baryon mass, likewise it has been done in [48] for
the neutron case, and also account for the form-factors

8(@*), 84(q*), 81p(4*), §wm(q®), as the momentum trans-
fer g is appreciable in this case, the plausible approach
from [38] being relevant here. In spite of the lack of ex-
perimental data on the strangeness-conserving 2-hy-
peron decays, we hope our results are thought to be in-
structive, the investigation of 2 decay with AS # 0 being
bound to be studied in another work.

In so far as the restrictions on the permissible G, g,
values go, the up-to-date situation is thought to be not
perfectly visualized. Indeed, if we had taken for grant-
ed that acquiring the quantity G = Gg|V,,| from the su-
per-allowed (0* — 0*) nuclear Fermi transitions had
been reliable to an accuracy better than 1% [40], the G
value would have proved to be fixed with the same pre-
cision. However, this is hardly the case in actual fact.
Nowadays, such a high precision in the theoretical
treatment of the 3-decay of complex nuclei (even of the
simplest aforesaid transitions) is known to be rather as
good as impossible because one ought to deal thereby
with the finite many-strong-interacting-fermion system
in all of its complexity. For instance, among others, the
following phenomena have to be strictly allowed for, to
an accuracy as good as ~1%: electron and photon re-
scattering with exciting intermediate (virtual) nuclei
complex states [4]; a knowledge of the precise values
of nuclear (many-body) various form-factors (elec-
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trons, photons, weak) with properly accounting for nu-
clear collective states; admixture of the axial-vector in-
teraction to the vector interaction via the re-scattering
processes; a thorough description of the nuclear charge
density and its alternation in [3-decaying, and so on.

For that matter, to acquire the G, g, values from
neutron 3-decay data processing solely, without plung-
ing into the nuclear many-body problem, is thought to
be preferable, as was argued a little while ago in [14,
17, 21], and we are there. Of course, beside dAZ, the ra-
diative corrections to the correlations between & and
Vv(0B), v and v(da) are very desirable, and we are about
to study these in a next work. Certainly, the identity
[V,ul? + |V + |V,u P = 1 inferred according to unitarity
of the Kobayashi—Maskawa matrix [11] must hold true
any way, yet its alignment and confirmation is beyond
our objective here, so far as we restricted ourselves in
this work from the very first by treating strangeness-
conserving decay solely. To inquire into the aforecited
identity, we ought to have launched into investigations
of the processes involving high generations of quarks.
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1. The mechanisms of nuclear fragmentation in had-
ron—ucleus and nucleus—nucleus collisions can be
studied by measuring the yields of various multinu-
cleon fragments emitted in these interactions. Our ear-
lier studies demonstrated that, in collisions with a pro-
ton target, a relativistic oxygen nucleus disintegrates
predominantly into alpha particles. We a so found that,
in those cases where all constituent nucleons were dis-
tributed among two or more multiply charged frag-
ments, the oxygen nucleus broke up either to four a
particles or to 1°C and “He [1-3].

In principle, a nucleus of oxygen may disintegrate
into unstable nuclei *He, 5Li, ®Be, and °B in their
ground or excited states. Although the binding energies
of these nuclei exceed 5 MeV per nucleon, they alow
8Be decay into two apha particles, "He and SLi decay
into an alpha particle and a nucleon, and °Be decay into
two a pha particles and a nucleon.

This article reports our new results on the breakup
of 180 into multiply charged fragments and, in particu-
lar, on the yield of the short-lived nucleus °Li in oxy-
gen—proton collisions at an incident momentum of
3.25 GeV/c per projectile nucleon. The data subjected
to the present analysis were collected by using the 1-m
hydrogen bubble chamber installed at the Joint Institute
for Nuclear Research (JNR, Dubna). The procedures
for data treatment, event reconstruction, and fragment-
mass separation were described in [1-3]. In all, over
11000 events of '°Op collisions were fully measured
and reconstructed.

2. Listed in the table are the measured cross sections
for those channels of 10 fragmentation where all con-
stituent nucleons are carried away by the multinucleon
fragments formed. Of all events in this category, more
than 80% feature only the even—even nuclei “*He and
12C among the fragments. A few detected candidates
for thefinal states *C*He, '2C*H?H, and 'C*H’H (one
per channel)—these are not listed in the table—yield an
upper limit of 80 pb on the total cross section for these
channels of 80 fragmentation.

D Joint Institute for Nuclear Research, Dubna, Moscow oblast,
141980 Russia

2) Institute of Nuclear Physics, Uzbek Academy of Sciences, pos.
Ulughbek, Tashkent, 702132 Uzbekistan.

The breakup of a '°O nucleus into multinucleon
fragments may proceed via a collective excitation
resulting from the diffractive elastic scattering of this
nucleus on a proton [4]. In principle, multinucleon
fragments may also be formed through the coalescence
of cascade nucleons or through a pickup reaction. In
this case, the excited residual nucleus characterized by
A < 14 may either break up into lighter multinucleon
fragments or remain intact, as is exemplified by the
final state “N’H.

In the “He!>C fragmentation channel, which has the
largest cross section, the azimuthal angle of the apha
particle proves to be correlated with that of the recoil
proton: these particles are preferentially emitted in
opposite directions. This suggests that the fragmentsin
guestion are formed through the quasi€elastic knockout
of an aphacluster from the 10 projectile.

3. The fragmentation of a0 nucleusinto an unsta-
ble nucleus3Li was sought by trying to detect the decay
’Li — o + p. {Thisisthe only allowed decay channel
for theground [(3/2)-, 1/2] state and for the first excited
[(1/2)-, 1/2] state of the SLi nucleus with an excitation
energy between 5 and 10 MeV, as well as a dominant
channel for higher excitations [5].}

Since projectile fragments are largely emitted with
small transverse momenta and, hence, at small emis-
sion angles in the laboratory frame (on the order of a
few degrees), no event-by-event reconstruction of the
decays°Li —= a + p is possible under the conditions
of our experiment. For this reason, the yield of SLi
nuclel was studied by comparing the distribution of the
angle between the alpha-particle and proton momenta,

Table
Breakup channel Cross section, mb
2C*He 6.61 + 0.66
‘He*He'HeHe 210+ 0.38
14N2H 147+0.29
®Li*HeHe’H 0.27£0.12
10B4He’H 0.16 £0.10

1063-7788/00/6303-0520$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Distribution of the angle between the alpha-particle and pro-
ton momenta.

Bup With the background distribution obtained with
allowance for fractions of individual topological chan-
nels (recall that the angular distributions of fragments
depend on these topological channels). The back-
ground distribution was constructed by pairing at ran-
dom an apha particle and a proton from different
events. It should be noted that azimuthal correlations of
akinematical origin may result from the breakup of an
excited residual nucleus. In order to take them into
account, the transverse momenta of the alpha particle
and the proton were determined preliminarily with
respect to the total transverse momentum of all frag-
ments detected in each event.

Theresults obtained in thisway areillustrated in the
figure. The background distribution (solid curve) was
normalized to the number of events for 6,, > 2°. It can
be seen that the background distribution crosely repro-
duces live events (points with error bars) at large
angles, but that a significant excess over the back-
ground distribution is observed at small angles, where
8, correlations are expected in the case of °Li produc-
tion in the ground state. The excess as afunction of 6,
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agrees well (B{?Ck 0.5) with the distribution calcul ated
for the breakup of the ground-state SLi nucleus with
allowance for the resonancewidth of ' = 1.5 MeV. The
sum of the background 6,, distribution and the com-
puted spectrum is represented by the dashed curve.

The cross section for SLi formation proved to be
o(’Li) = 8.4 £ 0.5 mb, which does not differ signifi-
cantly from the excitation-function values obtained in
[1] for stable isotopes of lithium:

o(°Li)=12.0x 1.1 mb and o(’Li)=9.6 £+ 1.0 mb.

An dternative approach to detecting the decay
°Li — O + p is to anayze the distribution of Q,, =
My, — Mg — M,,, where M, is the effective mass of the
ap system while M, and M, are, respectively, the
alpha-particleand the proton ma$ The Qqp Spectrumis
indeed enhanced with respect to the background distri-
bution in the region Q,, < 4 MeV. The mean vaue of
Qqp for the background-subtracted enhancement is esti-
mated at 2.14 + 0.17 MeV, which is consistent with the
amount of energy released in the ap decay of the
ground-state 5Li nucleus. The cross section for °Li for-
mation as derived from the magnitude of the Q,
enhancement, o(°Li) = 8.3 + 0.6 mb, compares welil
with the above estimate based on the 6, distribution.
That o(°Li) proves to be relatively large suggests that,
in 1%0p collisions, the unstable nucleus 5Li is largely
formed fromthe a clustersof the projectilenucleus[2, 3].
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