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Abstract—An isotopic effect in the widths of giant dipole resonances is established on the basis of an
analysis of the latest systematics of photoabsorption cross sections for nuclei containing 12 to 65 nucleons.
This effect arises owing to isospin splitting of a giant resonance and is enhanced by its configuration

splitting. © 2004 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

The giant dipole resonance in nuclei has been
investigated for more than 50 years, and many aspects
of this important phenomenon in nuclear physics have
received quite a comprehensive study. Despite this,
there is still no definitive understanding of some of
its features, including the shape and width of a giant
dipole resonance in light nuclei (A < 60). In nuclei
from this mass region, a giant dipole resonance is
scattered over a rather wide energy region, and its
shape changes pronouncedly from one nucleus to
another. For example, a change of one to two in the
number of nucleons in a light nucleus can lead to a
change in the width of a giant dipole resonance by
a factor of 2 to 3. Concurrently, the overall shape of
the resonance changes drastically, so that one cannot
trace any regular dependence of the features being
discussed on the mass number A. Such behavior
of a giant dipole resonance in light nuclei is asso-
ciated with the fact that its properties are affected
by a number of factors, including, above all, config-
uration and isospin resonance splitting [1—3]. The
contributions of these factors are highly sensitive not
only to the total number of intranuclear nucleons
but also to the relationship between the numbers of
intranuclear protons and neutrons. In order to clarify
the factors affecting the shape and width of a giant
dipole resonance in light nuclei, it is necessary to
have reliable data on the cross sections for nuclear
photoabsorption in the photon-energy region extend-
ing up to about 40 MeV. The results reported in [4],
where the systematics of the cross sections for photon
absorption by A = 12—65 nuclei at photon energies
up to 40 MeV was compiled on the basis of a thorough
analysis of the entire body of available relevant in-
formation, opened a possibility for revealing the most
important factors affecting the width of a giant dipole
resonance in light nuclei. In the present study, the
photoabsorption cross sections quoted in [4] are used

to analyze the general features of a giant dipole reso-
nance in light nuclei, including its shape and width.

2. SYSTEMATICS OF PHOTOABSORPTION
CROSS SECTIONS AND GENERAL
FEATURES OF GIANT DIPOLE
RESONANCES IN LIGHT NUCLEI

The systematics of photon-absorption cross sec-
tions [4] was compiled on the basis of an analysis
of 40 photonuclear experiments that are the most
precise ones. [t includes the photon-absorption cross
sections for 31 nuclides containing 12 to 65 nucleons
(121314C 415N 1617180 19F 23N, 24.25.26) g,
ATA| 28.2930G; 3234G A0Ap 404244480, 4648

92Cr, 98,60Nji, 63.65Cu) and covers the photon-energy
region that extends up to 40 MeV and which is domi-
nated by a giant dipole resonance. For the majority
of nuclides, the photon-absorption cross sections
were obtained by summing the photonucleon cross
sections o (v, p), o(v,n), o(v,2n), and o(~,pn). For
12c 14N 160, 19F 27A] 28Sj and %°Ca, these were
directly measured photon-absorption cross sections.
By way of example, the photon-absorption cross
sections for carbon, oxygen, and calcium isotopes are
presented in Figs. 1-3.

This systematics of photon-absorption cross sec-
tions makes it possible to trace the variations in the
basic features of a giant dipole resonance over a broad
mass-number range (from 12 to 65), including light
Ip-, 1d2s-, and 1f2p-shell nuclei. We will analyze
the following features of giant dipole resonances: (i)
the integrated photoabsorption cross section, (ii) the
position of a giant dipole resonance on the energy
scale, and (iii) the width of a giant dipole resonance.

Let us consider these features successively.
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Fig. 1. Cross sections for photon absorption by carbon
isotopes. Here and in Figs. 2 and 3 below, the photon
energy is plotted along the abscissa.

The integrated photoabsorption cross section is
given by

The systematics of integrated cross sections over the
photon-energy region extending up to 40 MeV is pre-
sented in Fig. 4. For the mass-number dependence
of ¢, a linear approximation of the data in question
yields

oM = (=75 + 214) MeV mb, (2)

with the correlation factor being 0.993. The mean
deviation of the experimental points from this de-
pendence is 16 MeV mb, the actual relative devia-
tion nowhere exceeding 20%. The dependence in (2)
corresponds to the following formula for the electric-
dipole sum rule:

/a(E)dE _ 60%(1 +A). 3)
0

Here, A =0.33 is the correction to the classical
dipole sum rule (60N Z/A MeV mb) due to exchange
forces.
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Fig. 2. Cross sections for photon absorption by oxygen
isotopes.

The position of a giant dipole resonance on the
energy scale is traditionally characterized by its mean
energy (centroid). However, the energy E™#** cor-
responding to the maximum of the photoabsorption
cross section is more appropriate for the purposes
of our investigation, since it is much more sensitive
to the mechanism of giant-dipole-resonance forma-
tion. The energy E™2* can be determined by different
methods—for example, as the position of an individ-
ual experimental point at which the cross section is
maximal. In this case, however, statistical fluctua-
tions of experiments will have the strongest effect on
the value of E™a*,

In the region of a giant-dipole-resonance max-
imum, a number of cross sections (those for 28Si,
30Si, 52Cr, 9°Ni) develop a few rather narrow peaks
of commensurate magnitude. Other cross sections
(those for 1C, F, 23Na, 4°Ar) are scattered over
a rather broad energy interval, exhibiting no distinct
peak.

We used the following method to assess the po-
sition of the giant-dipole-resonance maximum. For a
maximum, we took the midpoint of the energy interval
5 MeV in width that made the greatest contribution
to the integrated cross section. In this case, a rather
large number of neighboring points (up to 25) were
involved in assessing the position of the giant-dipole-
resonance maximum, whereby the effect of statistical
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Fig. 3. Cross sections for photon absorption by calcium
isotopes.

fluctuations of individual points was leveled out al-
most completely. The choice of energy-interval width
is quite arbitrary in this procedure. For this width, we
took the value of 5 MeV, which corresponds to the
FWHM of the cross sections for photon absorption by
nuclei involving filled shells or subshells—that is, the
magic and semimagic nuclei of 12C, 160, 28Si, and
40Ca. In experiments having a not very high energy
resolution, the giant dipole resonance in such nuclei
assumes the form of a single resonance having a
rather regular form, its FWHM being minimal. In the
following, we will refer to the width of 5 MeV as a
magic width and to the corresponding energy interval
as the magic interval.

For all 31 nuclei, the data on E™®* are given
in Fig. 5. With increasing mass number A, E™&*
decreases, on average, from 24—27 MeV for carbon
isotopes to 17 or 18 MeV for copper isotopes. Against
the background of a rather smooth decrease in F™&*
with increasing mass number, there are local devi-
ations caused by different numbers of neutrons in
the nucleus of one element or another. This “isotopic
effect” is especially pronounced in the case of carbon,
nitrogen, oxygen, magnesium, and sulfur isotopes.
The isotopic effect in question will be discussed below
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Fig. 4. Photon-absorption cross sections integrated up to
40 MeV.
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Fig. 5. Energies corresponding to the maxima of photon-
absorption cross sections.

in connection with the problem of the giant-dipole-
resonance width.

3. DATA ON GIANT-DIPOLE-RESONANCE
WIDTH

Let us now consider data on the width of a giant
dipole resonance. For an individual resonance of reg-
ular Breit—Wigner shape, the width is usually defined
as its FWHM (it is denoted by I'). In the case of a
giant dipole resonance, however, we are dealing with
a complicated photoabsorption-cross-section curve
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Fig. 6. FWHMT for photon-absorption cross sections. Intervals of possible values are indicated for the majority of nuclei. The
most probable values (points) are given for five nuclei along with the respective errors.

formed by a set of overlapping narrower resonances
scattered over a broad energy region, so that a giant
dipole resonance has a shape that is highly dissim-
ilar to the shape of an individual resonance, even
the determination of the position of the giant-dipole-
resonance maximum being sometimes ambiguous. A
good illustration of the aforesaid is provided by the
photoabsorption cross sections for about half of the
nuclei subjected to analysis (*C, 80, F, 2Na,
2UMg, 20Mg, 30Sij, 328, 345, 0 48T 52Cr, BN,
6ONi, 93Cu). Only for some magic and semimagic
nuclei does the photoabsorption cross section have,
in the case of a not very high energy resolution, the
“correct” shape of an individual resonance (*2C, 160,
28Si,40Ca). The traditional concept of a giant-dipole-
resonance width is applicable to such nuclei—that is,
it can be defined as the FWHM T' of the respective
photoabsorption cross section.

We also used the concept of the width I for the
other nuclei, which are characterized by a compli-
cated form of a giant dipole resonance. By the width
I', we meant, in those cases, the width of that energy
range of a giant dipole resonance within which the
photoabsorption cross section decreased by a factor
of 2 in relation to its maximum value. All data on
the giant-dipole-resonance width determined in this
way are given in Fig. 6. [t can be seen that the giant-
dipole-resonance width is minimal for the magic and
semimagic nuclei of 12C, 160, 28Si, and “°Ca (as well
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as for 1*N). This width, I' ~ 5 MeV, is referred to as a
magic width. For the remaining nuclei, the width T" is
greater, by a factor of about 2 for the majority of them
and by a factor of 3 or greater for some other nuclei
(14C, 180, IQE 23Na).

Despite a considerable uncertainty in I" for some
nuclei, the data in Fig. 6 display a distinct isotopic
effect (dependence on the number of neutrons in the
isotopes of the same element), and one of the pur-
poses that we pursue in this study is to explain this
effect.

Since the notion of a width in the rigorous sense
that it has for an individual resonance is inapplicable
to giant dipole resonances in many (especially light)
nuclei, we attempted to specify a different quantity
that would have a clear mathematical meaning and
which would characterize the energy region of giant-
dipole-resonance spreading.

Having considered various versions, we found
such a quantity. It is physically adequate to the
giant-dipole-resonance width and reflects the most
important features of the variations that this width
suffers in response to the variation in the mass
number. This is the contribution to the integrated
photoabsorption cross section from a magic interval
of width 5 MeV in the region of the giant-dipole-
resonance maximum (the position of this 5-MeV
interval on the energy scale is chosen in such a way
that this contribution is maximal). Obviously, the
quantity introduced in this way, which is hereafter
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Fig. 7. Integrated-cross-section fractions As within an energy range of width 5 MeV in the region of the giant-dipole-

resonance maximum.
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Fig. 8. Minimum energy interval AE /5 lying in the region of the giant-dipole-resonance maximum and contributing one-half

to the integrated cross section for photoabsorption.

denoted by As, is directly related to the energy E™,
which was used above as the energy corresponding
to the giant-dipole-resonance maximum. In order to
clarify this point, we recall that E™#* is the midpoint
of the energy range having a width of 5 MeV and
making a dominant contribution to the respective
integrated cross section. Obviously, As and E™?* are
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related by the equation
E™ax 125 MeV

As =

Emax_2.5 MeV

40 MeV

a(E)dE/ / o(E)dE. (4)
0

The quantity Ay characterizes the width of the energy
region of giant-dipole-resonance spreading. Indeed,
the larger this width, the smaller the contribution that
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Table 1. Isotopic families

Number Number of neutrons
of protons
VA Z (Z+UZ+21Z+4Z+5\Z+T7\Z2+8
6 12¢ | 13¢ | 14¢
7 14N | 15N
3 160 | 170 | 180
12 24Mg 25Mg 26Mg
14 | 28Si| 29Si | 30Si
16 |38 1S
20 |%°Ca 2Ca | 4Ca **Ca
29 46Tj | 48Ti
28 %8N | 6ONi
29 63Cu | %°Cu

the integrated photoabsorption cross section receives
from the region around the giant-dipole-resonance
maximum. On the contrary, the smaller the quantity
I', the greater the integrated-cross-section fraction
that is grouped immediately around the giant-dipole-
resonance maximum. Thus, the quantities A5 and T’
can be interpreted as measures of the mirror reflec-
tions of the same phenomenon.

All data on Aj are given in Fig. 7, which shows
that, for the magic (semimagic) nuclei of 12C, 160,
and *°Ca, As = 0.41—0.45, which means that, for
these nuclei, the region of width I' ~ 5 MeV (where
the cross section decreases by a factor of 2 in relation
to the maximum value) contributes somewhat more
than 40% to the integrated photoabsorption cross
section. For the remaining nuclei, Aj is smaller, ly-
ing in the range 0.26—0.40. It is of importance that
isotopic effects clearly manifest themselves in As.

The use of the quantity As in the analysis instead
of I'' is advantageous in that the former has a clear
mathematical meaning [see Eq. (4)], the uncertainties
in it being much less than those in I". Ultimately, this
makes it possible to reveal and study subtler effects
associated with the giant-dipole-resonance width in
going from one nucleus to another, even if the giant
dipole resonance in these nuclei has a complicated
shape strongly dissimilar to that of an individual res-
onance.

In order to prove that the isotopic effect steadily
manifests itself in the giant-dipole-resonance width
for different definitions of this width, we also consid-
ered, for a width, the minimum (for each nucleus) en-
ergy interval AE) /o saturating half the photoabsorp-
tion cross section (integration region within 40 MeV).

PHYSICS OF ATOMIC NUCLEI
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In just the same way as Aj and E™?#* this quantity
has but a slight uncertainty. Figure 8 shows data
on AEj 5, which compellingly demonstrate all basis
features of the isotopic effect in the giant-dipole-
resonance width that were manifested both in I" and
in A5 (see Figs. 6 and 7, respectively).

4. ISOTOPIC EFFECT

Owing to the systematics presented in[4], we have
at our disposal photoabsorption cross sections for ten
chains of isotopes. These chains are listed in Table 1.

The chains in question include five isotopic dou-
blets (14’15N, 32,345, 46,48’1‘1, 58’60Ni, 63’65CU), four
isotopic triplets (121314C, 161718 24,2520 Mo
28,29,30G4) and one isotopic quartet (40:42:4448Ca),
So vast a systematics of data on isotopes makes it
possible to observe the isotopic effect in the giant-
dipole-resonance width clearly (Figs. 1—3, 6—8) and
to obtain deeper insight into this phenomenon. As
can be seen from these figures, the isotopic effect itself
in the giant-dipole-resonance width amounts to the
following features in the behavior of these widths:

(i) In the isotopic triplets where N =2, Z + 1,
and Z + 2 (carbon, oxygen, magnesium, and sili-
con), the giant dipole resonance becomes broader
with increasing number of neutrons, this broadening
in the heaviest isotope of the lightest isotopic triplets
(14C in the chain of carbon isotopes and 80 in the
chain of oxygen isotopes) going over to the splitting
of the respective giant dipole resonances into two
groups of transitions, a low-energy (10—20 MeV ) and
a high-energy (20—40 MeV) group. A trend toward
the broadening of a giant dipole resonance with in-
creasing number of neutrons can also be traced in the
isotopic doublets of nitrogen (141°N), sulfur (3%34S),
and titanium (4648Ti).

(ii) In the longest chain of calcium isotopes
(1042:44,48Ca) the broadening of the giant dipole
resonance with increasing number of neutrons is
observed from the magic nucleus of 4°Ca (where
the width is the smallest) to #*Ca (where the width
becomes the largest). As the number of neutrons
increases further (*®Ca), the giant-dipole-resonance
width decreases to values characteristic of 4>Ca.

(iii) An inverse trend toward a decrease in the
giant-dipole-resonance width with increasing num-
ber of neutrons is observed for the heaviest isotopic
doublets (58:6°Nji, 63:65Cy),

(iv) By and large, the scale of the isotopic effect
decreases with increasing mass number A. This effect
is seen most clearly in carbon, nitrogen, and oxygen
isotopes, where the width of the giant dipole reso-
nance in the heaviest isotope is larger than that in the
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lightest isotope (N = Z) by a factor of 1.5 to 3. In
the heaviest nuclei (titanium, nickel, copper), relative
isotopic changes decrease to 10—20%.

All of the aforementioned special features of the
isotopic effect in the width of a giant dipole resonance
can be explained in the most natural way by invoking
the concept of the isospin splitting of giant dipole
resonances [b, 6].

5. EXPLANATION OF THE ISOTOPIC
EFFECT

We recall that, in self-conjugate nuclei (N = Z),
there exists only one isospin branch of a giant dipole
resonance, that of isospin 7~ = 1. In N # Z nuclei,
the giant dipole resonance is split in isospin. If Ty =
(N — Z)/2is the ground-state isospin of the nucleus
being considered, then, upon the absorption of an
E'1 photon by this nucleus, two group of states (two
giant-dipole-resonance branches) are excited in it,
that of isospin T« = Ty and that of isospin T~ = Ty +
1. The centroid F of the TS branch lies higher than
the centroid E. of the T» branch; that is, there arises
the splitting of a giant dipole resonance in isospin, the
magnitude of this splitting being given by [6]

AE=B.-B.=(T+1),  (5)
where U is a constant that is related to the symmetry
energy. According to a major part of available data,
U ~ 60 MeV.

The cross sections o (F) and o~ (F) for the exci-
tation of the giant-dipole-resonance branches char-
acterized by the different isospin values satisfy the
relation [5]

S
/0>(E)dE /'0_<(E)dEi1—§T0A 2/3
E E T, —1 N §A_2/3 )
2

(6)

We will now show that the isospin splitting of a giant
dipole resonance may explain all those facets of the
isotopic effect in the widths of photoabsorption cross
sections that were listed in Section 4.

We begin by illustrating this statement for the
example of isotopic triplets. Special features of the
behavior of giant dipole resonances in the isotopes
entering into the composition of these triplets are
the most pronounced in the lightest nuclei—that is,
carbon and oxygen isotopes (see Figs. 1, 2). In self-
conjugate nuclei (N = Z), where Ty = 0, there is
only one isospin branch of a giant dipole resonance,
that of isospin TS =Tp+1=1; it is formed by
nucleon transitions from the closed-shell (closed-
subshell) core—this is the B branch, according to
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the terminology associated with the concept of the
configuration splitting of giant dipole resonances [1—
3]. ts FWHM value is T =5 to 6 MeV. In such nuclei
(12C, 190, Si, 40Ca), a giant dipole resonance is
completely determined by this single isospin branch;
therefore, it has the form of a resonance having a
minimum width of 5 to 6 MeV (see Fig. 9a).

Upon the addition of one neutron (whereby one
naturally arrives at an N =27+ 1 isotope), the
T. =Ty = 1/2 branch, formed by transitions from
a neutron-rich shell (this is the A branch, according
to the terminology associated with the concept of the
configuration splitting of giant dipole resonances), is
added to (see Fig. 9b) the main 7~ =Ty + 1 =3/2
isospin branch, formed by B transitions from the
closed-shell (closed-subshell) core. This excess is
insignificant for N = Z 41 nuclei (one neutron),
with the result that the relative contribution of the
T. branch is small in such nuclei [the factor 1/Ty
in (6)]. The T branch forms a so-called pygmy
resonance, which is strongly spread in energy and
is shifted toward lower energy with respect to the
T- branch by a value given by (5)—that is, by a few
megaelectronvolts. As a result, the total width of the
photoabsorption cross section increases (Fig. 9b).

Upon the addition of yet another neutron (that
is, upon a transition to an N = Z + 2 isotope), the
intensity of the T branch of a giant dipole resonance
(T = Tp = 1) increases sharply, with the result that
this branch saturates about half of the integrated
photoabsorption cross sections [the factor 1/7} in
Eq. (6)]. The T branch remains broad (it is widely
spread in energy). It is shifted still farther toward
lower energies with respect to the 75 branch (see
Fig. 9¢). The respective giant dipole resonance then
assumes the shape of a very broad two-humped curve
(this effect is the most pronounced in the cross sec-
tion for photoabsorption on a '4C nucleus).

[t can easily be seen that all of the aforementioned
effects manifest themselves in the triplets of carbon
and oxygen isotopes. We emphasize once again that
the T branch is formed by nucleon transitions from
unfilled outer shells but that the T branch is formed
predominantly by transitions from closed inner shells.
Therefore, the broadening of a giant dipole resonance
in non-self-conjugate nuclei belonging to isotopic
triplets is due to the concerted effect of the isospin and
configuration splitting of a giant dipole resonance.

The above explanation of the isotopic effect in

the width of a giant dipole resonance in the isotopic
triplets of carbon and oxygen is also applicable to the

isotopic triplets of the heavier nuclei of 242526 Mg and
28,2930Gj (Figs. 6—8), although the scale of the effect
there is much smaller (see below).
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Fig. 9. Qualitative illustration of the neutron-excess ef-
fect on the shape of the photoabsorption cross section.

The broadening of the photoabsorption cross sec-
tion for the heavier isotope in the nuclide pairs %1°N
and 3234S and, possibly, in 4648Ti is also associated
with the isospin splitting of a giant dipole resonance.

[t was indicated above that, in the longest chain of
calcium isotopes (4042:4448Ca) the width of a giant
dipole resonance first grows with increasing neutron
excess up to #*Ca, then decreasing in the heaviest
isotope of 8Ca. This trend also fits well in the con-
cept of the isospin splitting of a giant dipole reso-
nance. Indeed, a high neutron excess (such as that
in 4Ca) leads, owing to the factor 1/T in Eq. (6), to
a strong decrease in the fraction of the 7% component
in the giant dipole resonance, this component being
well offset in energy from the T. component [see
Eq. (5)]. Under such conditions, the width of a giant
dipole resonance is formed owing predominantly to
the width of one isospin component and is close to the
width of the giant dipole resonance in a self-conjugate
nucleus (although it remains larger than that by a
factor of 1.5).

Table 2. Experimental and model widths of giant dipole
resonances in carbon and calcium isotopes (in MeV)

I[sotopes |12C |13C | 1C |40Ca|*2Ca|*'Ca |*8Ca
Experiment| 6.0 | 9.7 |120| 6.2 | 6.9 | 7.8 | 6.8
Model 6.0[90(12.1| 60 | 6.8 | 74 | 6.5
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In the pairs of the heaviest nuclides, **%°Ni and
63.65Cu, the decrease in the width of a giant dipole
resonance upon going over to the heavy isotope may
also be associated with this circumstance.

The entire body of experimental information about
the widths of giant dipole resonances in the isotopic
chains being considered (see Figs. 6—8) suggests
that the scale of the isotopic effect decreases with
increasing mass number A. Obviously, this is because
the splitting AFE of isospin components of a giant
dipole resonance is in inverse proportion to the mass
number A [see Eq. (5)]. As a result, the isotopic effect
in the widths of giant dipole resonances is expected to
disappear for A > 70—80.

By employing Egs. (5) and (6), which follow from
the concept of the isospin splitting of a giant dipole
resonance, one can easily verify that this concept
makes it possible to reproduce the isotopic effect in
the widths of giant dipole resonances quantitatively.
Approximating the isospin components of a giant
dipole resonance by two Gaussian distributions and
choosing the positions of these distributions, E- and
E-, and their amplitudes in such a way as to ensure
fulfillment of relations (5) and (6), we can obtain, for
each isotope, a model expression for the photoab-
sorption cross section and determine its width. We
have implemented this procedure for the majority of
non-self-conjugate (N # Z) nuclei studied here. In
doing this, we set the widths (FWHM) of individual
Gaussian distributions to 6 MeV. It is this value that
characterizes the widths AE; /5 for the 12C and “°Ca
nuclei, whose photoabsorption cross sections, which
are formed by a single isospin component, are the
most narrow. For carbon and calcium isotopes, the
results obtained from the model calculations of the
giant-dipole-resonance widths are given in Table 2,
along with respective experimental values (Fig. 8).
It is obvious that our model calculation, which is
based on the concept of the isospin splitting of a giant
dipole resonance, reproduces quantitatively all of the
observed trends in the change in the widths of giant
dipole resonances in isotopic chains.

Thus, the concept of the isospin splitting of a giant
dipole resonance makes it possible to explain all basic
features in the widths of giant dipole resonances in the
isotopic chains of light nuclei. It should be empha-
sized that examples of a more detailed investigation
into the role of the isospin splitting of a giant dipole
resonance for individual nuclei or groups of nuclei
in the mass-number region being considered [7—17]
confirm our conclusions completely.

6. CONCLUSION

On the basis of an analysis of the latest data on
the shape of photoabsorption cross sections for ten
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isotopic chains, we have established the existence of
a distinct isotopic effect in the widths of giant dipole
resonances. This effect has been traced from carbon
to copper isotopes. The scale of the isotopic effect has
been found to decrease with increasing mass number
A. The effect itself is expected to disappear in nuclei of
mass number in the region A > 70—80. The isotopic
effect in the widths of giant dipole resonances is due
to the isospin splitting of a giant dipole resonance and
is enhanced by its configuration splitting.
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Abstract—Experimental data on two-step cascades initiated by thermal-neutron capture in 184186W and
190,192()s nuclei are analyzed from the point of view of prospects for improving the reliability of a model-
independent determination of the density of levels in a given interval of J™ and the radiative strength
functions for E'1 and M1 transitions exciting these levels in the region Fexe < B,. © 2004 MAIK “Nau-

ka/Interperiodica”.

1. INTRODUCTION

Until recently, the level density p = D~! and the
radiative strength function

k=T /(E3A*PDy) (1)

for an E'l or an M1 transition that is characterized
by the energy E, and the mean width I'y; and which
connects the states A and i were determined in the
range of the excitation energy Fex between about 1
to 2 MeV and the neutron binding energy B,, in a
nucleus of mass number A only from the evaporation
spectra for respective (p,n) reactions and from the
spectrum of primary gamma transitions. The main
flaw in these procedures is that they require employ-
ing model-dependent concepts of the penetrability of
the nuclear surface for evaporated nucleons [1] or a
model-dependent level density in determining radia-
tive strength functions [2].

The situation changed when it was shown in [3]
that the total radiative width Ty = (I"y;)m,; and the
intensity of two-step cascades, I,

Iy = Z(F)\i/<r)\i>m)\i) “nxi - (Lip/(Tip)may),
J,
(2)

connecting a compound state A with specific low-
lying nuclear levels f and exciting simultaneously
ny; = p;AE intermediate states ¢ from any interval
of width AFE can be reproduced in a calculation to
a precision on the same order of magnitude as the
experimental accuracy. This is possible only in the

“e-mail: suchovoj@nf . jinr.ru
*e-mail: khitrovent. jinr.ru

case where an infinite number of variations in the
level density and the radiative strength function such
that each of these makes it possible to reproduce I'y
and I, faithfully lie in a very narrow interval for any
photon energy and for any nuclear excitation energy
in the region Fexe < By,

In expression (2), summation is performed over
all possible values of J™ of the intermediate and fi-
nal levels of relevant cascades and, if necessary, over
both values of the spin of the compound state that
is excited by a thermal neutron. The known values
of J™ for the initial and final levels of the cascades
and the multipolarity selection rules determine unam-
biguously the interval of the spins and the parity of
levels that must be taken into account in the analysis.

In (2), the total radiative widths of the decaying
states A and i are represented as the product of the
spectrum-averaged partial width (I'y;) or (I';s) and
the number m = pAF of levels excited in their decay.
Here, averaging is performed over the spectrum of all
possible values of the partial widths with respect to
primary and secondary transitions participating in the
cascades and exciting my; and m;; levels, respec-
tively. This substitution is performed on the basis of
the theorem of mean with the aim of obtaining a clear
representation of the form of the experimentally mea-
sured dependences of I'y and I, on the parameters p
and k of the process being considered.

Unfortunately, the procedure proposed in [3] in-
volves, in addition to ordinary errors of any experi-
ment, two errors peculiar to this procedure:

(a) First, there is an error in breaking down [4]
the experimental spectrum of two-step cascades into
two mirror-symmetric parts that depend only on the

1063-7788/04/6704-0662$26.00 © 2004 MAIK “Nauka/Interperiodica”
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energy of the primary (FE1) and only on the energy of
the secondary ( Fy) gamma transition of a cascade.

(b) Second, there is an uncertainty that is asso-
ciated with the need for introducing some assump-
tion concerning the relationship between the radiative
strength functions for primary and secondary gamma
transitions of a cascade for photons of the same en-
ergy and multipolarity in the decay of the states A and
i, respectively.

[t should be considered that the degree to which
these uncertainties affect the level densities and ra-
diative strength functions determined in [3] obviously
becomes smaller with increasing statistics of useful
~7y coincidences.

2. ON THE DEGREE OF RELIABILITY
IN ASSESSING LEVEL DENSITIES
AND RADIATIVE STRENGTH FUNCTIONS

2.1. Contribution of the Error in Determining
the Cascade Intensity

All of the experimentally measured distributions of
cascade intensities are superpositions of some num-
bers of pairs of peaks having various intensities and a
“noise” band having zero mean (result of background
subtraction) [5]. In the case of rather vast statistics, it
is therefore possible in practice to single out, even in
any deformed nucleus, a few hundred pairs of resolved
intense peaks from any spectrum of two-photon cas-
cades connecting a compound state with a specific
low-lying level, this corresponding to 90 or more per-
cent of the intensity of cascades for which the energy
of the intermediate level is not greater than 0.585,,.
With the aid of the maximum-likelihood method, the
order in which gamma transitions follow each other
can be determined for these cascades [6], the energies
of the nuclear levels involved and the arrangement of
relevant transitions in the gamma-decay diagram be-
ing reliably established in doing this [7]. However, the
arrangement of the transitions can be determined only
in the case where the intermediate level of the cascade
is deexcited by at least two gamma transitions of
relatively high intensity; otherwise, it is impossible to
pinpoint, without resort to additional information, the
order in which the cascade photons follow each other.

After that, the intensities of the cascades arranged
in the decay diagram according to [6] that involve
transitions of energy in the region E; > 0.5B,, are
subtracted from experimental spectra [4]. The re-
maining part of the spectrum is predominantly a su-
perposition of the intensities of a large number of
cascades where the energy of a primary transition is
below 0.5B,, and a “noise” distribution having zero
mean value. An example of such a decomposition is
given in Fig. 1.
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Fig. 1. Section of the experimentally measured distribu-
tion of the intensities of two-step cascades to the 8°W
ground state versus the photon energy E, and that com-
ponent of this distribution which corresponds to detect-
ing only the primary transition of energy E1 = E, (the
oscillogram is shiited upward). In order to improve the
resolution, use is made of the numerical method proposed
in[8].

Since, for two-step cascades whose primary tran-
sitions are of energy in the region E; > 0.5B,, and
whose intensities and photon energies can be deter-
mined from the respective spectrum, the detection
threshold in the intensity I,, is nonzero, the proce-
dure developed in [4] may somewhat overestimate the
total intensity of cascades where F; < 0.5B, and,
accordingly, underestimate the cascade intensity for
symmetric energies of cascade photons by the same
value. Also, the situation is possible where the order
in which the photons involved follow each other is de-
termined incorrectly in some number of resolved cas-
cades. Such an error reduces the uncertainty being
considered and may even change its sign (if the total
intensity of cascades for which the order of transitions
was determined erroneously is quite large).

An estimate of the maximum relative error be-
ing considered does not exceed 25% for the bulk of
experimental data obtained at the Joint Institute for
Nuclear Research (JINR, Dubna) and is much less in
the latest experiments performed with a coincidence

spectrometer of higher efficiency at Rez [9]. This can
be seen from Fig. 2, which shows, for four nuclei
considered here (18%18TW, 19L.1930g) an example of
the approximation [10] of the cumulative sums of
the intensities of all cascades populating the same
intermediate level in a fixed excitation-energy interval
around 0.5B,,.



664 SUKHOVOJ, KHITROV

21y %

I 193OS

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0.5

|
0.5 0
IW’ %

Fig. 2. Cumulative sums I, of the intensities of cascades observed experimentally in 85187W and 1193 Qs (histograms)
for the energies of their intermediate levels between 2.5 and 2.75 MeV (percentage of the number of compound-state decays),
along with an approximated dependence (solid curves) and the dependence expected for the number of levels predicted by the
Fermi gas model [12] (dashed curves) for the same sum of cascade intensities.

The absolute value of the extrapolated dependence
for I,, = 0 determines the expected absolute value of
the intensity of unresolved weak cascades for which
the energy of their intermediate level lies in the inter-
val indicated above.

From an analysis of similar data obtained for other
intervals up to an excitation energy of about 2.8 MeV,
it follows that, in present-day experiments, the frac-
tion of the intensity of weak cascades where F7 >
0.5B,, that were not singled out in the spectrum and
which are therefore not arranged in the decay diagram
does not exceed a value of about 1% if the deviations
of the intensities of primary transitions from the mean
value are described by the Porter—Thomas distribu-
tion [11] (or by any other distribution characterized
by a smaller variance).

From the analysis presented in [10], it can also
be deduced that, in the excitation-energy range of
width 1.5 MeV (or even in a broader range), the
density of intermediate levels of the cascades involved
is much lower than that which is predicted by the
Fermi gas model [12]. This is suggested, in particular,
by a much faster growth of the cumulative sums of
cascade intensities calculated within this model with
allowance for a normalization to the total experi-
mental intensity. A still greater discrepancy between
these dependences is observed for the case where the
total intensity of cascades for the expected cumulative

sum is equal to the computed value, which is much
smaller.

[f, for the group of the strongest primary transi-
tions of cascades, the intensity I; known to date, re-
ported in the literature (see [13]), and used to normal-
ize I, does not involve sizable systematic errors (for
example, greater than 5 to 10%), the total intensity
obtained in accordance with [4] for two-step cascades
in B5187\W and 11930s and presented in Fig. 3

features an error not greater than 10% in each interval
of the excitation energy of their intermediate levels.
To some extent, this conclusion follows from the data
in the table, where, among other things, we list the
intensities measured for cascades in the ¥3:187W iso-
topes under different experimental conditions (geom-
etry of an experiment, spectrum of captured neutrons,

etc.) at JINR[19], in Riga [21], and at ReZ.

In order to verify whether the above conclusions
are unambiguous, the total intensities of cascades to
final levels that are members of the rotational band
built on the [510] 1 single-quasiparticle neutron state
are also presented in the table for all those even—odd
nuclei for which relevant experimental information is
available. In such a comparison, the possible effect of
the structure of the final levels of the cascades being
considered on the partial cascade-transition widths
must lead to a correlated change in I, in neighboring

PHYSICS OF ATOMIC NUCLEI Vol.67 No.4 2004
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Fig. 3. Intensity of two-step cascades as a function of the energy F1 of their primary transition (percentage of the number of
decays) along with the statistical errors (histograms). The solid lines represent the results of the calculations performed with
the aid of the models used in [12, 14, 15], while the points correspond to the spectrum of primary gamma transitions that is
expected for the same models of the level density and radiative strength functions.

nuclei. Not only is the fact that the total intensity of
cascades quoted in the table is not constant due to
the possible errors in experimental data, but it also re-
flects the individual features of the nuclei being stud-
ied. These features may be caused by a change in the
position of the [510] T state with respect to the Fermi
level and by the related variation in the coefficients
uw and v in the Bogolyubov canonical transformation,
these coefficients appearing in the matrix element of
the partial widths with respect to cascade transitions.
By way of example, we indicate that, from the de-
gree of the discrepancy between the approximating
dependence and the level density expected within the
Fermi gas model (Fig. 2), it immediately follows that
the level density is greater in tungsten isotopes than
in osmium isotopes, at least for Eeye < 3 MeV. Ac-
cordingly, the intensity of the cascades is lower in
tungsten isotopes than in osmium isotopes [this also
follows from expression (2)].

PHYSICS OF ATOMIC NUCLEI

Local deviations from a general trend may also be
considered as the maximum possible estimate of the
systematic error in determining the cascade intensity
in a specific nucleus. From the data presented in
the table, it follows that, even in the worst case, the
possible systematic error in determining I, will not
exceed 25—50% (unless the data presented in [13]
involve a systematic methodological error similar for
all nuclei).

A somewhat smaller estimate (about 20%) of the
error in part of the gamma-transition intensities I; re-
ported in [13] is obtained from their comparison with
the analogous data from measurements performed in
Budapest [24].

A simulation revealed that an error on this order
of magnitude does not introduce radical changes in
the results obtained according to [3] for the shape of
the excitation-energy dependence of the level density

Vol.67 No.4 2004
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Intensities of two-photon cascades to levels of the [510]1 band (percentage of the number of decays) according to
measurements in various experiments along with the results of respective calculations

Nucleus Ey, keV o 1ok Nucleus Ey, keV o 1ok
175Yh [16] 515 17.2(40) 74 1T9Hf[17] 375 15.5(16) 5.8
556 18.1(47) 6.7 421 16.5(21) 5.4

602 9.0(16) 3.1 476 7.6(6) 3.0

Sum 44(6) 17.2 Sum 40(3) 14.2
I8TH{[18] 0 15.2(20) 10.5 183\ [19] 0 13.3(11) 8.7
46 15.6(20) 11.0 46 10.2(7) 8.7

99 8.9(20) 5.2 99 1.4(2) 3.9

Sum 40(4) 26.7 Sum 24.9(24) 21.3
183y 0 11.1(7) 8.7 185\ [20] 23 11.0(6) 6.5
46 9.7(4) 8.7 93 12.0(7) 6.6

99 1.3] 3.9 188 3.8(2) 2.3

Sum 22.1(8) 21.3 Sum 26.8(9) 154
18T [21] 146 8.0(9) 6.3 187y 146 7.8(2) 6.3
205 8.3(12) 6.0 205 9.9(2) 6.0

305 4.9(15) 2.5 305 4.8(5) 2.5

Sum 21.2(21) 14.8 Sum 22.5(6) 14.8
19105 [22] 84 19.1(5) 3.8 19305 [23] 41 12.2(2) 5.6
142 7.5(3) 3.1 102 19.0(2) 5.1

272] 3.5(3) 1.3 296] 3.9(2) 2.0

Sum 30.1(7) 8.2 Sum 35.1(4) 12.7

Note: The quoted errors are purely statistical. There is no exact identification of the 5/2 level of the rotational band built on the
1/2[510] 1 state in osmium isotopes; presented in the table are the lowest levels of this spin, their structure not being determined

experimentally.

(Fig. 4) and for the shape of the dependence of the ra-
diative strength functions on the energy of the primary
gamma transition in the respective cascade (Fig. 5).
These statements were verified under the assumption
that the intensities of the cascades in the nuclei under
analysis were overestimated by 50%. For the sake
of comparison, the results of the simulation are also
given in Figs. 4 and 5.

The experimental intensity of the cascades is
determined by specific level-density and radiative-
strength-function values in the range of excitation
energies and gamma transitions under consideration.
The calculated intensity is determined by their mean
values. This circumstance calls for optimizing the
calculation with respect to the degree of possible
random local variations in the level density and
radiative strength functions.

PHYSICS OF ATOMIC NUCLEI

Basically, it is the need for including in the
analysis [3] a sizable local enhancement of radiative
strength functions in excitation-energy intervals
narrower than the summation interval AE that is
of prime practical interest. By using the procedure
developed in [3], this situation can be readily imple-
mented either for a group of closely spaced levels
associated with the cascades in question or even
for one primary transition that is the most intense
(for example, for the very intense cascade involving
the primary gamma transition of energy 5147 keV
and occurring in 1Os). This correction improves
considerably the convergence of the iterative process
constructed according to [3], but it leads to the
appearance of local variations in the radiative strength
functions (Fig. 5). In principle, such variations may
be due to a strong effect of the structure of the
levels that are connected by the gamma transition in

Vol.67 No.4 2004
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question on its width (and on the radiative strength
functions) rather than to random deviations of I;.
This possibility is suggested by Malov’s calculation
of the population of isomeric states [27]. From that
calculation, it follows that this process receives a
dominant contribution only from some of the excited
states, those whose wave functions involve sizable
phonon components. In principle, a similar mecha-
nism can also control the parameters of the cascade
gamma decay. The possibly equidistant character of
the excitation spectra that was found in all nuclei
studied to date [28] is indicative of the presence of
sizable phonon components in the wave function
for intermediate levels (at least in the most intense
cascades).

By and large, the experience gained from the anal-
ysis performed in [3] reveals that the possible non-
monotonic character of radiative strength functions
must be taken into account above all in even—odd
deformed nuclei and in near-magic nuclei where the
numbers of nucleons are of an arbitrary parity. The
data given in Figs. 4 and 5 were obtained with al-
lowance for the above refinement of the procedure
developed in [3]. The basic result of the analysis—
that is, the statement that the actual level density
is much lower than that which is predicted by the
Fermi gas model [12]—remains unchanged irrespec-
tive of whether one employs the procedure from [3]
with a smoothed radiative strength function or with
a radiative strength function similar to that which is
displayed in Fig. 5.

The conclusion that the actual level density does
not comply with the predictions of the Fermi gas
model [12] also follows from a comparison of the
experimentally observed cascade intensities with the
results of model calculations—in particular, from a
comparison of the distributions of I, with the cal-
culated spectra of primary transitions. The intensity
observed for W and °1:1930s in the form of two-
step cascades is 60 to 82% of the total intensity
of their primary transitions of energy in the region
E, > 0.52 MeV. Taking into account the intensities
of primary transitions to the ground state and the
intensities of cascades where one of the photons has
a low energy (such cascades were not included in the
data given in Fig. 3), we can find that the experimen-
tally unobservable intensity of primary transitions in
L193 (s constitutes approximately 10% of decays.
This experimentally unobservable intensity must be
distributed over a rather wide interval of energies of
the primary transitions in the cascades being con-
sidered. For E; < 3—4 MeV, the actual spectrum of
primary transitions in the two nuclei under study
therefore occurs between the cascade intensity and
the result of the model calculation for the dependence
in Fig. 3; moreover, it is rather close to I,,,. By way of
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example, we present in Fig. 3 a version of the distribu-
tion of the unobserved intensity of primary transitions
in the energy range of width 3 MeV, the intensity

added to I increasing linearly. On the basis of the
best currently available experimental information, this
example provides an independent argument in favor
of the statement that, in describing the properties
of heavy nuclei, the accuracy of model concepts like
thosein[12, 14, 15, 25, 26] is insufficient at excitation
energies in excess of Fexe ~ 1—2 MeV.

2.2. Role of Model Assumptions

The level-density values that are extracted from
experimental data with the aid of the procedures pro-
posed in [3] and [10] must comply with each other,
and this is indeed observed for many nuclei. The max-
imum disagreement is observed predominantly in the
region A > 180, this being so not only for the even—
odd nuclei considered here but also for even—even and
odd—odd nuclei. In this mass region, the procedure
used in [10] yields a level-density value somewhat
greater than that produced by the procedure from [3].
This is because, in some of the cascades not arranged
in the decay diagram according to [6], the energy of
the primary transition is less than the energy of the
secondary transition. In this case, the approximation
of the distribution of random cascade intensities on
the basis of the recipe from [10] accordingly leads to
an exaggerated estimate of the level density. However,
alternative explanations are also possible:

(i) There is a set of level-density and radiative-
strength-function values that make it possible to re-
produce I, and the level-density value from [10]
simultaneously, but which are not revealed by the
analysis based on the procedure from [3].

(ii) The assumptions adopted in [3] for the relation
between the radiative strength functions for primary
and secondary transitions of the cascade being con-
sidered call for a significant correction.

For tungsten and osmium isotopes, data on I,
were analyzed by using the procedure developed in[3]
and modified in such a way as to take into account a
constraint on the minimum value of the level density
at excitation energies below 2 to 3 MeV. In any case,
the functional dependence of the level density on the
excitation energy—we use this dependence to repro-
duce I,,—then develops a step at Feye ~ 5 MeV, this
step being more pronounced than that in Fig. 4. The
level density at this excitation-energy value proves to
be commensurate with that at the neutron-binding
energy B, or even exceeds it. But even in this case,
we were unable to reproduce the cascade intensities
in 110s faithfully. On the basis of the aforesaid, it is
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Fig. 4. Number N, of levels of both parities excited by primary dipole transitions in the interval of width 100 keV versus
the excitation energy Fe. The open circles represent the number of the experimentally observed intermediate levels of the
two-step cascades under study, while the histograms show their most probable values expected at zero cascade-detection
threshold [10]. The closed circles with error bars correspond to the most probable values satisfying relations (2) and complying
with the experimental value of the total radiative width of the respective compound state. The solid and dashed curves represent
the results of the calculations performed on the basis of the models proposed in [12]and [25], respectively, their parameters being
determined individually by fitting the experimental spacings between the respective neutron resonances. The closed triangles
correspond to the level density reproducing the values of I, from Fig. 3 that were reduced by a factor of 1.5.

natural to expect that a still more reliable determi-
nation of level densities and radiative strength func-
tions would require taking into account distinctions
between the energy dependences of radiative strength
functions for the primary and secondary transitions in
the respective cascades.

3. POSSIBLE EFFECT OF THE STRUCTURE
OF LEVELS INVOLVED IN A CASCADE
ON THE PARAMETERS
OF THE GAMMA-DECAY PROCESS
TO BE DETERMINED

From theoretical concepts, it follows that the
structure of a decaying level has the strongest ef-
fect on the gamma-decay probability at the lowest
excitation energies. As applied to the problem being
considered, this means that the partial-width ratio

R=T)/Ty; (3)

and, accordingly, the ratio of the radiative strength
functions for primary and secondary transitions of the
same multipolarity and energy may depend on E,. In
this case, the unavoidable systematic error in param-
eter values extracted from an analysis based on the
procedure proposed in [3] will depend on the degree of

PHYSICS OF ATOMIC NUCLEI

the deviation of R from a constant value. The possible
inclusion of new variables in such an analysis would
sharply increase the uncertainty in the values found
for the level density and radiative strength functions.
Therefore, we do not see at present a real possibility
for separately determining radiative strength func-
tions for primary and secondary transitions in the
cascades being considered (yet, it is possible in prin-
ciple to obtain information about two-step cascades
to their final levels for £y > 1 MeV).

[t should be noted that, if the width ratio R depends
only on the energy of the intermediate level i, being
independent of the photon energy, the parameters
determined in accordance with the method proposed
in [3] do not involve the systematic error considered
here.

But if R depends on E, strongly, the systematic
error in the constructed level density (Fig. 4) can be
compensated by the systematic error in the resulting
radiative strength functions (Fig. 5).

Two versions are possible here:

(a) With increasing E., the radiative strength
function for secondary transitions increases much
faster than that for primary transitions.

Vol.67 No.4 2004
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Fig. 5. Most probable sum k(E1) + k(M1) of the strength functions for E'1 and M1 transitions in radiative thermal-neutron
capture along with its uncertainty versus the energy F of the primary gamma transition in the cascade (closed circles). The
upper and lower curves correspond to the data based on the model concepts proposed in [14] and [26], respectively, in the
sum featuring the k(M 1) = const values normalized to the experimental result from [15]. The closed triangles represent the
radiative strength function reproducing the values of I, from Fig. 3 that were reduced by a factor of 1.5.

(b) With increasing E., the radiative strength
function for primary transitions increases much faster
than that for secondary transitions.

In the first case, the actual level density may prove
to be higher than that which is obtained on the basis
of an analysis performed by the method proposed
in [3], while, in the second case, the situation may be
inverse.

The total spectra of photons from the radiative
capture of thermal and fast neutrons were calculated
in [29] under various assumptions about the shape of
the £, dependence of the radiative strength functions
for primary and secondary transitions. This calcula-
tion revealed that, for almost all of the nuclei from
the mass region 114 < A < 200, version (b) provides
better agreement with experimental data than the
version that employs only the data from the analysis
in [3] for primary and secondary gamma transitions.
[t follows that the level density given in Fig. 4 reflects
the most general features of its dependence on the
excitation energy.

Nevertheless, an independent verification of this
statement is necessary. [t can be accomplished in the
following way: the deviation of the energy dependence
of the radiative strength functions for primary and
secondary transitions in the cascades being consid-
ered from that obtained in [3] under the condition

PHYSICS OF ATOMIC NUCLEI

I'yi/T'iy = const leads to a discrepancy between the
calculated and experimental intensities of the cas-
cades for various energies of their final levels. It is
necessary to consider here that, even for neighboring
final levels (their energies being denoted by Ey), the
intensities of the cascades may depend on the struc-
ture of their wave function or even only on their spin
(as can be seen from the table, this is indeed observed
in the 183W and 119305 isotopes).

With allowance for this circumstance, the ratios
of the experimental and calculated intensities of two-
step cascades in the W and 191:1930s nuclei versus
the energy Ey are given in Fig. 6 for the cases where
different level densities and radiative strength func-
tions are used in calculating the respective intensities.
(According to the experimental conditions, the energy
E; for '87W was not greater than 305 keV.)

The growth of the ratio I5"' /IS4 with increas-
ing Ey in the calculations with the level densities
and radiative strength functions from [3] means that
the photon-energy (E,) dependence of the radiative
strength functions for secondary transitions in the
respective cascades can have a shape that is closer
to that prescribed by the model concepts in [14, 15,
26] than the shape arising upon the application of the
procedure proposed in [3] (Fig. 5). But even in this
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Fig. 6. Ratio I55' /I3 as a function of E; for (open triangles) **>W, (open boxes) ***Os, and (open circles) ***Os according
to the calculations employing (left panel) the models from[12, 14, 15] and (right panel) the parameters given in Figs. 4 and 5.

case, its deviation averaged over the energy of the in-
termediate level of the cascade can hardly exceed two
for final-level energies around £y ~ 1 MeV. Although
the data in Fig. 6 cannot be directly extrapolated to
the region of higher values of Ey, not only would
the extension of the interval of E; make it possible
to fix the discrepancy between the theoretical and
experimental results, but this would also contribute to
solving the problem of more reliably determining level
densities and radiative strength functions by includ-
ing additional information in the respective analysis.

4. CONCLUSION

In dealing with processes involved in the cascade
gamma decay of compound states, the level densities
and radiative strength functions for respective gamma
transitions are basic quantities that control such pro-
cesses. A radically new procedure for simultaneously
determining these quantities was implemented at the
Laboratory for Neutron Physics (JINR, Dubna) [3].
In contrast to other existing procedures, it enables
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one to determine the level density within a fixed in-
terval of spins and has the highest sensitivity in the
region of its lowest values.

The results obtained previously in [3] may involve
a significant systematic error because of an insuffi-
cient accuracy of data accumulated to date on the
intensities of two-step cascades. New data [20, 23]

obtained with a high-efficiency spectrometer at Rez
made it possible to improve considerably the accuracy

in determining the dependence of I3 on the energy
of the primary transition in the respective cascade,
whereby the errors in the resulting level densities and
radiative strength functions were reduced.

In the case of ¥%187"W and 91:193Qs the val-
ues obtained in accordance with [3] for these basic
parameters of cascade gamma decay fully confirm
the discrepancies revealed previously between ex-
perimental data and generally accepted model con-
cepts, this concerning both level densities and radia-
tive strength functions:

Vol.67 No.4 2004
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(i) The observation of a steplike structure in the
energy dependence of the level density corroborates
the conclusion drawn previously that the idea of a
smooth variation of the properties of a nucleus as it
goes over from an “ordered” state to a state of “chaos”
is inapplicable.

(ii) The radiative strength functions for electric and
magnetic dipole transitions are also strongly affected
by the structure of the wave functions for the levels
excited by them. At primary-transition energies in
the region F; < 2 MeV, their most probable values
can even be less than those prescribed by the model
used in [26]. A considerable increase in the radiative
strength functions for cascade transitions exciting
nuclear levels in the region of the steplike structure
in the level density, along with data from [29] on
the possible large phonon components in their wave
functions, makes it possible to confirm, at a new
level, the main physical conclusion drawn previously:
at excitation energies below 3 to 4 MeV, nuclear
properties that manifest themselves experimentally in
thermal-neutron capture are determined primarily by
nuclear vibrations. At higher excitation energies, the
structure of the levels is likely to be controlled by the
quasiparticle components of their wave functions.
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Abstract—Measurement of the mixing parameter sin?(26;3) is one of the pressing problems in neutrino
physics. Projects of reactor experiments characterized by a sensitivity of sin®(263) ~ 0.01 are being
presently discussed. Almost all of them are based on the one reactor—two detectors scheme. Within this
methodological approach, one employs an NPP reactor of power about a few GW for an antineutrino source
and two detectors of identical configurations that are arranged at different distances from the reactor. In
such experiments, the systematic error may be about 1%, which ensures a precision of about 0.01. In the
present study, it is proposed to use, in a measurement of sin?(26;3), the existing SuperKamiokande (SK)
detector combined with its own antineutrino source, a nuclear reactor of low thermal power, about 300 MW
(low-power reactor, or LPR). Such an experiment can be performed within a rather short time. An analysis
that studied various detection mechanisms revealed that the LPR—SK combination would make it possible
to attain a sensitivity of sin?(2613) ~ 0.002. © 2004 MAIK “Nauka/Interperiodica”.

INTRODUCTION

Investigation of the mass structure of neutrinos
is one of the most important problems in neutrino
physics. Experiments devoted to searches for neutrino
oscillations provide an efficient tool for solving this
problem. In observing neutrino oscillations, one can
measure the parameters of the Pontecorvo—Maki—
Nakagawa—Sakata (PMNS) matrix [1, 2]—that is,
the mixing angles 602, 023, and 613 and the mass pa-
rameters Am3, = m3 — m?, AmZ, = m3 — m3, and
Am3, = Am3, + Am3,. Full information about the
parameters of this matrix would make it possible to
determine the structure of active neutrinos. In partic-
ular, the electron neutrino can be represented in the
form of a superposition of neutrino mass eigenstates
(v1,9,v3) that involves specific weight factors:

Ve = c0s 015 cos 01311 (1)
+ sin 615 cos O1315 + sin f13v3.

In recent years, some positive results were ob-
tained in experiments aimed at searches for the os-
cillations of atmospheric, solar, and reactor neutri-
nos. A global analysis of experimental data from Su-
perKamiokande [3], K2K [4] (atmospheric neutrinos),
CHOOZ [5], Palo Verde [6], and KamLAND [7] (re-
actor neutrinos) and all data on solar neutrinos [8],
including SNO results [9], made it possible to draw

“e-mail: starostin@vitepl.itep.ru

some conclusions concerning the mechanism of the
oscillations and to determine some of the parameters
of the PMNS matrix. Under the assumption of a
natural hierarchy of the neutrino masses (m; < mg <
ms), the results of this global analysis [10, 11] of the
aforementioned experiments are the following:

Am2, = Ami, = T1752 x 107° V2, (2)
sin?(2012) = 0.82170:9937.
Am2,, = Am3y ~ Amiy =373 x 1073 eV?,
sin?(2023) = 1709.

These data contain no information about a very
important element, the mixing angle 6;3. To date, only
a constraint on this parameter has been obtained from
the analysis of the CHOOZ data [5]:

sin?(26,3) < 0.14 (3)
(90% C.L.at Am? = 2.5 x 1073 eV?).

However, this is insufficient for obtaining answers
to a number of important questions in fundamental
physics. Apart from what is concerned with solving
the problem of reconstructing the structure of active
neutrinos [see Eq. (1)], the presence of a nonzero mix-
ing angle 03 is a necessary condition for the manifes-
tation of C'P violation in the lepton sector. Therefore,
it is of paramount importance to establish a nonzero
value of sin(26;3) or to strengthen constraints on it
at least by an order of magnitude.

1063-7788/04/6704-0672$26.00 © 2004 MAIK “Nauka/Interperiodica”
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Accelerator experiments employing either stan-
dard neutrino beams (K2K [4], MINOS [12]) or su-
perbeams (JHF—SuperKamiokande [13], NuMI[14])
and requiring much work and large expenditures were
proposed for solving this problem. However, a thor-
ough analysis revealed [15—17] that reactor experi-
ments provide better opportunities for achieving the
highest sensitivity to the parameter sin?(26;3). In
addition to a higher sensitivity, reactor experiments
are advantageous in that they are much cheaper and
make it possible to obtain a significant gain in the
time of measurements.

I. REACTOR EXPERIMENTS

In searches for reactor-antineutrino oscillations,
use is made of the inverse-beta-decay reaction

Ue+p—et +n. (4)

In this process, almost the entire neutrino en-
ergy, with the exception of the energy threshold
(1.804 MeV), is transferred to the product positron.
After the absorption of annihilation photons, the total
energy transfer increases by 2- 511 keV. Therefore,
the energy spectrum of reaction (4) in a scintillation
detector, where intrinsic energy thresholds do not
exceed a value of about 100 to 200 keV, begins at
about 1 MeV. In a Cherenkov detector, the intrinsic
threshold is determined by the kinetic energy of the
positron. We will return to the discussion of this issue
below.

The problem of separating the reaction in (4) from
the background is significantly simplified if use is
made of the method of delayed coincidences between
the signals from the detection of the product positron
and the product neutron. The time interval between
these events depends on the absorber used. If the neu-
tron is captured in water, the time of expectation of
the second event is about I ms, the deposited energy
being 2.2 MeV. But if gadolinium is employed for the
neutron absorber, the interval in question reduces to
100 ps, the total energy from the cascade of gamma
rays originating from neutron capture amounting to
about 8 MeV.

In reactor experiments, oscillations are sought by
using the principle of departure: if an electron neu-
trino changes the flavor state (v, — v, ), it does not
manifest itself in the inverse-beta-decay reaction, this
leading to a change in the counting rate and, hence,
to the oscillation-induced distortion of the positron
spectrum of the reaction in (4). In the case where
mixing occurs between the mass eigenstates 14 and
v3, the probability of the v, — v, transition is given
by

~ sin?(2613) sin®(p), (5)
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where sin?(2613) is the mixing parameter, ¢ = 1.27 x
Am3,LE~!, Am3, is the mass parameter, E is the
antineutrino energy, and L is the distance from the
reactor to the detector used. The value of the mass
parameter is known from the results of the analysis
performed in [10, 11]: Am3, = 373 x 1073 eV2. The
optimum distance L for the observation of the v, —
v, transition is determined from the condition requir-
ing that the first maximum in expression (5) (¢ ~
m/2) be reachable. With allowance for the known
parameters, it is L ~ 2 km.

One cannot rule out the possibility that sin?(2613)
is much less than the experimental limit in (3). It fol-
lows that, even in the first new-generation reactor ex-
periments, a precision of about 1% would be required
for measuring the mixing angle 613. The required
statistical accuracy may be ensured by increasing the
detector mass. In the CHOOZ experiment, the target
for neutrinos had a mass of 5 t, while the statistical
error was 2.8%. For an accuracy of about 1% to be
achieved, the detector mass must therefore not be less
than 50 t. The reduction of the systematic error of
measurements presents a more serious problem. This
error receives contributions from the uncertainty in
determining the cross section for the reaction in (4),
the effect of the physical deterioration of the fuel ma-
terial and the corresponding change in the neutrino
flux, and the uncertainty in the detection efficiency for
neutrino events and in the number of protons in the
target. In the CHOOZ experiment, the systematic
error caused by these factors was 2.7%. In order to
reduce it, the authors of the Kr2Det project [15] pro-
posed the one reactor—two detectors method, which
is based on simultaneously using, in an experiment,
two detectors identical in size and configuration. One
of these, a “near” one, is positioned at a distance
of 100 to 150 m from the reactor used—that is, in
the region where the effect of neutrino oscillations
is negligible. It serves for measuring the undistorted
spectrum of positrons. The second, "far,” detector
is placed in the region that is the most efficient for
observing the oscillations in question (1000 to 2000 m
from the reactor). A signal suggesting the presence
of the oscillation effect and information about the
respective parameters can be obtained by comparing
the positron spectra from the near and the far detector.
For the case of identical detectors, the results of such
an analysis are independent of a precise knowledge
of the reactor parameters, the antineutrino spectrum,
and the concentration of hydrogen atoms in the tar-
get used, the distinctions between the detection ef-
ficiencies and between the effective volumes of the
detectors being readily taken into account. In this
way, one removes the main systematic effects. The
calculations performed in[15, 16] revealed that, in an
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Fig. 1. Limit on the sensitivity to the parameter sin®(2613) as a function of the integrated luminosity for various values of the

error in normalization, onorm, and of o, [17].

experiment performed according to the one reactor—
two detectors scheme, the systematic error would

not exceed 0.5%.

A comprehensive analysis of various approaches
aimed at reaching a sensitivity of sin?(26;3) < 0.01
was performed by Huber et al. [17], who also gave
preference to an experimental scheme involving a
near and a far detector simultaneously that differ only
in size. For the main characteristic of the experiment,
they took the integrated luminosity defined as £ =
detector mass [t] x thermal power of the reactor[GW]
x duration of the measurements [yr]. This made it
possible to perform an analysis for two classes of
facilities: Reactor-1 at the integrated luminosity of
L7 =400t GW yr and Reactor-II at the integrated
luminosity that is 20 times as great as that, £L;; =
8000 t GW yr. Two types of systematic error were
introduced: oyorm, Which is the total error including
uncertainties in the parameters of the neutrino flux
and in the parameters of the near and the far detector,
and o, which is the error in the energy calibration
of the detectors. In addition, fulfillment of some con-
ditions concerning the properties of the detectors was
required:

(i) In order to reduce the systematic error, the
near and the far detector must be identical, with the
exception of their volumes.

PHYSICS OF ATOMIC NUCLEI

(ii) The near detector is one-tenth as large as the
far one and is placed at a distance of about 100 to
170 m from the reactor, where the effect of oscillations
is negligible. The distance between the reactor and
the far detector is ten times as long as the distance
between the reactor and the near detector. In turn, the
counting rate in the near detector must be an order of
magnitude higher than that in the far detector.

An analysis made it possible to establish the
integrated-luminosity dependence of the limit on the
sensitivity in measuring sin?(263). It can be seen
from Fig. 1 [17] that, for £ > 10* t GW yr, the
sensitivity of the experiment in the measurements of
sin?(26,3) varies in proportion to £71/2 and is weakly
dependent on the systematic errors. Huber et al. [17]
attribute the reduction of the systematic effect to the
possibility of performing, in the case of vast statistics
(£ >10* t GW yr), high-precision measurements
of not only the oscillation-induced distortion of the
positron spectrum but also experimental parameters
that affect the systematic error.

As a more general result, it is indicated in [17] that
the limiting sensitivity of about 1072 to sin?(26;3)
can be obtained in experiments characterized by an
integrated luminosity of about 10° t GW yr. In or-
der to reach an integrated luminosity on this or-
der of magnitude, it would be necessary to have a
near and a far detector of weight 10® t and about

Vol.67 No.4 2004
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Fig. 2. Profile of [kenoyama mountain and the schematic arrangement of the reactor and the near and far detectors.

10* 1, respectively, and to conduct measurements
for five years at a reactor of thermal power about
3 GW. It should be emphasized that even the near
detector must have the dimensions and weight of the
KamLAND facility. Nevertheless, problems arising in
the creation of such detectors seem solvable from the
engineering and technological points of view. How-
ever, the deployment of an experimental facility of
such large dimensions under an operating reactor
would generate problems associated with the engi-
neering and civil safety of the reactor, so that solving
these problems (if this is possible in principle) would
require additional expenditures and additional time.

In order to reach a sensitivity of sin?(2613) < 0.01,
we propose here a different approach that would em-
ploy a facility of weight about or somewhat greater
than 10* t combined with its “own” antineutrino
source, for which one can take a nuclear reactor of
relatively low thermal power, about 300 MW (low-
power reactor, or LPR). The respective measurement
could be performed within a rather short time if use
was made of an LPR together with the existing Su-
perKamiokande ( SK) facility. As will be shown below,
the LPR—SK combination would make it possible to
obtain an integrated luminosity of about 10° t GW yr,
which corresponds to a sensitivity of sin?(26;3) ~
0.002.

The ensuing exposition is organized as follows. In
Section 2, we will describe the general scheme of the
LPR—SK experiment, touching upon the geometry of
this experiment and upon the general features of an
LPR and of a near and a far detector. In Section 3,
we will discuss various methods for recording reactor
antineutrinos in the SK detector. In Section 4, we will
present estimates of the sensitivity of the LPR—SK
experiment to sin?(26;3) for various modes of the SK
detector.

2. SCHEME OF THE EXPERIMENT

We will adhere to the one reactor—two detectors
scheme [15]. A near and a far detector must be iden-
tical, with the exception of their volumes. The near
detector is arranged in the region where the effect
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of neutrino oscillations is negligible. Specifically, we
consider the case where it is placed at distance of
about 150 m from the reactor at a depth of about
250 mwe. The far detector (SK [3, 18]) is situated in
the underground laboratory under Ikenoyama moun-
tain at an altitude of 370 m above sea level (Fig. 2).
The underground laboratory lies under 1000 m of
rock, which corresponds to the effective absorbing-
layer thickness of 2700 mwe. The shortest distances
from the underground laboratory to the surface are
2 to 3 km along the horizontal direction and less
than 1 km to a point at an altitude of 1400 m above
sea level. This profile makes it possible to choose an
optimum distance between the reactor situated at the
slope of the mountain and the far detector. As follows
from (5), the distance L necessary for observing the
oscillations in question depends on the averaged neu-
trino energy and, hence, on the energy threshold of
the detector. Below, we will consider various methods
for reducing thresholds at the SK. For the time being,
we will set the threshold to 3.8 MeV for the sake of
definiteness, this corresponding to L ~ 2 km. In order
to be within the conditions under which the sensitivity
in measuring sin?(260,3) varies in proportion to £=1/2,
the counting rate in the near detector must be an
order of magnitude higher than that in the far detector.
With allowance for the reactor—detector distances,
the mass of the near detector may be less than the
mass of the SK detector by a factor of about 20.

2 1. Low-Power Reactors

As an antineutrino source, we propose employing
a KLT-40S reactor facility involving two reactor
blocks of total thermal power 300 MW (2 - 150 MW)
that are equipped with a cooling system, an emer-
gency protection, and a spent-nuclear-fuel stor-
age [19]. Facilities of this type have been exploited in
the Soviet Union (presently the Russian Federation)
since 1959 as power stations for icebreakers. At
the present time, a project of floating atomic power
plants that are intended for use in the northern and
eastern regions of the Russian Federation [20] and
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on the seaboard of continental China [21] has been
developed on the basis of the KLT-408S.

Reactors of the PWR type are placed in a metal—
water shield tank and are equipped with an emergen-
cy-protection system satisfying all [AEA safeguards.
The equipment and control systems are enclosed by
an air tight casing. The duration of the reactor op-
erating period (to a new loading of the fuel material)
is 3 yr. The rate of water consumption is 2-250 =
500 m3/h. The KLT-40S facility satisfies the most
stringent seismic requirements (the admissible accel-
eration is 12g).

The minimum volume of the room for the deploy-
ment of the reactor facility alone is 25 x 25(H) x
30 m3. The full atomic-power-plant assembly, includ-
ing two steam-turbine setups and two steam genera-
tors, is placed in a hall of volume 25 x 25 x 70 m3. At
a weight of 62 t, the dimensions of the reactor vessel
are @2.93 x 5.35 m3. An atomic power plant based on
a KLT-40S can produce 520 GW h of electric power
per year. At a price of US $0.1/kW h, the total cost of
electric power per year will be about $50 million [22].

Yet another advantage of operation with one’s
“own” reactor is worthy of special note. Reactors of
the KLT-40S type admit easy control and possess a
low inertia. Within a scientific experiment, one can
preset an optimum relationship between the time of
measurements with an operating reactor (“on” mode)
and the time of measurements with a shut-down re-
actor (“off” mode), this making it possible to perform
high-precision measurements of the background.

2.2. SuperKamiokande Far Detector

The SK detector is intended for studying solar and
atmospheric neutrinos and the proton-decay process.
[ts operation is based on recording Cherenkov radi-
ation arising upon the propagation of a high-energy
charged particle through water. The SK detector is
a cylinder 39.3 m in diameter and 41.4 m in height
filled with water. Within the cylinder, metallic struc-
tures to which multiplier phototubes and an optically
nontransparent partition are fastened are arranged at
a distance of 2.5 m from its walls. The partition di-
vides the detector into an external (external detector)
and an internal (internal detector) part. The external
detector is viewed by 1885 multiplier phototubes of
diameter 20 cm. It serves as an active shield. The
internal detector is viewed by 11 146 multiplier pho-
totubes of diameter 50 cm. The total area covered
by the multiplier phototubes amounts to 40% of the
internal-detector surface. The active part of the in-
ternal detector serves as a target, its mass being
22500 t. Neutrino events in the internal detector
are determined by the number of actuated multiplier
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phototubes (in the absence of a signal in the external
detector). The resolution of the SK detector is 20.9%
for electrons of energy 4.89 MeV. The threshold for
analysis of events is 4.5 MeV. These data concern the
operation of the detector before the accident in the fall
of 2001, the so-called SKI phase.

The energy threshold of the detector used, Ey,, is
one of the main parameters in a reactor experiment.
[ts magnitude determines the spectrum of antineutri-
nos and their mean energy E,,. In turn, the spectrum
affects useful statistics, while F,, affects the optimum
reactor—detector distance (L), which also exerts in-
fluence on experimental statistics. In the operation
of the SK in the mode of a solar-neutrino detector,
the energy threshold for recording scattered electrons
exceeded 4.5 MeV. The magnitude of the threshold
was determined by a sharp growth of the background
with decreasing energy and by the sensitivity of the
multiplier phototubes.

The preservation of the threshold Ey,, for positrons
at a level of about 5 MeV in a reactor experiment
would lead to considerable losses of useful events
since, upon going over from the positron spectrum to
the antineutrino spectrum, the threshold will increase
further by 1.8 MeV, which is the threshold for the
inverse-beta-decay reaction (4). Moreover, neutron
capture in water with the emission of a 2.2-MeV
photon will not be recorded for Ey, > 4.5 MeV. As
a result, the problem of separating the reaction in (4)
from the background becomes much more involved. A
high threshold is an intrinsic drawback constraining
the SK potential in almost all experiments. In the
course of the restoration of the SK, the upgrade of the
instrumental equipment and of the respective soft-
ware is being performed with the aim of improving the
functioning of the trigger. Upon the completion of this
work, the detector will record scattered electrons of
kinetic energy above 2 MeV [23]. In the reactor exper-
iment, this will correspond to antineutrino energies
in the region E, > 3.8 MeV. The positron-detection
efficiency will be 60% of the highest possible effi-
ciency in reaction (4). In order to reduce the radiation
background, all multiplier phototubes will be covered
with a protecting film preventing the penetration of
radon to the sensitive volume of the detector [24].

2.3. Near Detector

According to the general scheme of the proposed
experiment, the near detector must be identical in
configuration to the far detector, the SKin the present
case. The near detector will be placed in the re-
gion where the effect of oscillations is negligible—
specifically, at a distance of about 100 to 170 m from
the reactor at a depth of 250 mwe. Its counting rate
must be an order of magnitude higher than that in
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the far detector. With allowance for this and for the
reactor—detector distances, the sensitive mass of the
near detector must be less than the SK mass by a
factor of about 20, which corresponds approximately
to 1000 t. At a depth of 250 mwe, the counting rate
in the active-shield system of the near detector due to
the charged component of cosmic rays will be about
300 events per second. At an anticoincidence-gate
duration of about 100 us, this counting rate in the
active shield will have no effect on the efficiency of
useful-event counting.

3. POSSIBLE METHODS FOR DETECTING
REACTOR ANTINEUTRINOS

In the proposed experiment based on the LPR—
two detectors scheme, a few methods can be used
for separating neutrino events:

(i) There is the standard mode of a water Cheren-
kov detector, in which case only positrons are de-
tected.

(ii) An aqueous solution of gadolinium salts is
used in the intrinsic volumes of the detectors. The
Cherenkov counter mode is not changed, but delayed
signals from neutron absorption are recorded in addi-
tion to positrons.

(iii) A scintillator is employed for a working
medium. The detectors operate as scintillation coun-
ters. Both positrons and neutrons are recorded.

For each of the aforementioned detection methods,
we will now consider in detail the parameters of the
experiment and the sensitivity that can be achieved in
measuring sin?(2613).

Standard mode of a water Cherenkov counter.
In the experiment that studied solar neutrinos with
the aid of the SK detector, use was made of elas-
tic electron—neutrino scattering. Neutrinos were
recorded by Cherenkov radiation from scattered elec-
trons. The energy threshold in the kinetic energy of
scattered electrons was about 4.5 MeV. This made it
possible to record only B-cycle solar neutrinos, whose
mean energy was about 8 MeV. Events associated
with solar neutrinos had an anisotropic distribution—
they were concentrated in a cone having an angle of
about 60° at the apex with respect to the axis directed
from the Sun. This angular asymmetry was used to
separate useful events from the background.

In going over to an experiment aimed at measuring
the parameter sin?(26:3), one must consider, first of
all, that, after the upgrade of the SK, the reduction of
the threshold for positrons will correspond to Ty, >
2 MeV, which, for antineutrino energies, rescales
to E, > 3.8 MeV. The reduction of the threshold,
along with an increase in useful statistics, will lead
to a sharp growth of the background. Relying on
the measurements of the SK background that were
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performed before the termination of the experiment at
the threshold values of 4.5, 5.0, 5.5, and 6.0 MeV [25]
and assuming that the increase in the background will
follow the same law at lower threshold values, we find
that the background will increase by three orders of
magnitude in response to the reduction of the thresh-
old from 5 to 2 MeV. According to our estimates, the

SK background may become about 6 x 10* events
per day. [t cannot be suppressed either by choosing
a specific direction in the distribution of positrons
or by using the method of delayed coincidences
between the signals from the product positron and the
product neutron. The former is inefficient because the
spectrum of reactor antineutrinos is much softer than
the spectrum of solar neutrinos originating from the
boron cycle. Therefore, positrons that are produced
by reactor antineutrinos in the inverse-beta-decay
process (4) will have a nearly isotropic distribution.
In order to make use of the method of delayed coin-
cidences, it is necessary to record both the positron
and the neutron from the reaction in (4). The capture
of a neutron in water leads to the production of a
2.2-MeV photon, which, in the the subsequent
Compton scattering, transfers only part of its energy
to the electron involved. Since the threshold of the
Cherenkov counter is such that Tj;, > 2 MeV, the
overwhelming majority of Compton electrons will not
be recorded.

In view of the aforesaid, the method of on—off mea-
surements seems the only way to separate product
positrons in the standard mode of a water Cherenkov
counter. Within this method, useful and background
events are collected in the on-mode, whereupon the
background is measured in the off-mode. The effect
is determined from the difference Nj = Non — Ny,
the accuracy of the measurements being determined

by the statistical error (ANeg = (N2, + N2)%° /Nej).
The total experimental time may reach five years, two
and a half years in the on-mode and two and a half
years in the off-mode. In the absence of oscillations,
the number of recorded positrons, N+, is determined
by the reactor power (0.3 GW), the distance between
the reactor and the far detector (2 km), the cross
section for the inverse-beta-decay reaction, the sen-
sitive volume of the detector (about 20 kt), and its
energy threshold (3.8 MeV). With allowance for the
aforementioned basic parameters of the experiment,
we have N+ ~ 800 events per day, which is almost
two orders of magnitude smaller than the expected
background. At this effect-to-background ratio, our
estimation of the statistical error of the experiment
yields a value of about 1.4%, which is much poorer
than that in [15—17]. Within the method being dis-
cussed, there are two possibilities for improving the

statistical accuracy to a value of about 0.1%:
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The first is to reduce the background by two orders
of magnitude. As was indicated above, work along
these lines is under way.

The second is to reduce the energy threshold for
positrons to Ty, > 1.5 MeV. This will make it pos-
sible to use the method of delayed coincidences and,
as a consequence, lead to a suppression of the back-
ground by three orders of magnitude.

Cherenkov detector employing an aqueous
solution of gadolinium salts. The possibility of
employing the SK detector to record neutrinos from
far reactors is being presently discussed [24]. An
acqueous solution of gadolinium salts is proposed
for use as a neutron absorber. As was indicated
above, the mean delay time between the signals
from the product positron and the product neutron
is about 100 ws in this case, the total energy of
the photon cascade arising upon neutron absorption
being about 8 MeV. According to the calculations
presented in [26], the photon-cascade energy visible
to the Cherenkov detector is approximately equal to
5 £ 2 MeV. For neutrons originating from the inverse-
beta-decay reaction (4) to be almost completely
absorbed (more than 90% of them), one would need
an aqueous solution of gadolinium concentration

about 0.1% or 100 t of gadolinium chloride (GdCls)
for the whole internal volume of the SK. The detection
of two events occurring in the same spatial region
(R < 3 m) within an interval of about 100 us, the
first and the second stemming, respectively, from a
positron of kinetic energy in the region Ty, > 2 MeV
and from a photon cascade of mean visible energy
5+ 2 MeV, must be a criterion for separating reactor
antineutrinos. Simple estimations reveal that the
above selection criteria are sufficient for suppressing
all forms of the radiation background by eight orders
of magnitude. Antineutrinos from far nuclear reactors
provide the only source of background that may affect
the accuracy of the experiment. The mean distance
from the SK detector to the surrounding atomic
power plants is about 175 km, their total thermal
power being about 70 GW [7]. For the SK detector,
the antineutrino-counting rate from far reactors is

about 17 events per day, which is about 2% of
the total antineutrino counting rate. The experience
gained from the experiments performed at Rovno [27],
CHOOZ [5], and KamLAND [7] revealed that the
antineutrino flux from far atomic power plants can be
monitored to within 2% by using data on the thermal
power of these plants. Therefore, the measurement
error associated with antineutrinos from far atomic
power plants will be negligible. Nonetheless, mea-
surements at the SK for antineutrinos from far atomic
power plants are of value in themselves. In particular,
they can be used to refine the mass parameter Am?,.
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In the Cherenkov detector mode, the overall statisti-
cal accuracy in measuring the parameter sin?(26;3)

is about 0.1% for the case of filling with an aqueous
solution of gadolinium salts.

Scintillation-detector mode. The use of a scin-
tillator for a working medium—that is, a transition
to the scintillation-detector mode in the SK—may be
the most radical solution to the problem of improving
the sensitivity of measurements. This will lead to
some positive changes in relation to the mode of a wa-
ter Cherenkov counter and the mode of a Cherenkov
counter featuring gadolinium. The energy threshold
of a scintillation detector will make it possible to mea-
sure the spectrum of positrons from the reaction in (4)
from about 0.8 MeV and, accordingly, the spectrum
of reactor antineutrinos from 1.8 MeV. The reduction
of the threshold will entail, first, an increase in the
number of recorded antineutrinos by a factor of 1.7
and, second, a corresponding decrease in the mean
antineutrino energy and a change in the optimum
distance between the reactor and the far detector from
L ~2kmto L ~ 1.7 km. In turn, this will lead to an
additional increase in the antineutrino flux by a factor
of 1.4.

The background will be determined by the purity
of a scintillator. In view of the expected rate of useful-
event counting (about 1900 events per day), the re-
quirements on the level of radioactive admixtures in
the scintillator employed may not be as stringent
as those in the KamLAND experiment. The use of
a scintillator combined with gadolinium may be an
alternative means for reducing the background. The
time of delay between the signals from the product
positron and the product neutron will become shorter
by a factor of 10, which will lead to the respective re-
duction of the background from random coincidences.
[t is therefore likely that the use of gadolinium will
make it possible to suppress the background to a level
at which it does not have an adverse effect on the
statistical error of the measurements.

4. ATTAINABLE SENSITIVITY
IN MEASURING sin2(26;3)

In considering various methods for detecting re-
actor antineutrinos, we did not go beyond the main
requirements for experiments of the one reactor—
two detectors type. This makes it possible to employ
the results of the analysis performed in [17] and to
determine the attainable limit in measurements of
sin?(2613) with respect to the integrated luminosity
L of an experiment. There are, however, two distinc-
tions between the parameters of the experiment in the
present study and those in [17], and it is necessary
to take these distinctions into account in evaluating
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the integrated luminosity. These are the distance be-
tween the reactor and the far detector and the range
of reactor-antineutrino energies. We recall that, in
determining £, Huber ef al.[17] set this distance and
this energy range to about 1.7 km and 1.8 < F,, <
8 MeV, respectively.

For various antineutrino-detection methods, the
table presents basic parameters of the experiment
proposed here for measuring sin?(26;3) with the aid
of an LPR. On the basis of these data, we have
calculated the integrated luminosity, the number N +
of recorded positrons, and the sensitivity of the exper-
iment. For the mode of a water Cherenkov counter
(WCC), we have considered only those cases (I, IT)
that ensure statistical accuracy at the level of 0.1%.
Mode [ corresponds to an on—off experiment at a
background level two orders of magnitude lower than
the present-day level of the background in the SK
detector. Mode Il implies the positron-energy thresh-
old corresponding to Ty, > 1.5 MeV, which makes
it possible to employ the method of delayed coinci-
dences, whereby one can reduce the background by
three orders of magnitude. In calculating the inte-
grated luminosity, we originally set £ = 22500 - 0.3 -
5=33750 t GW yr, whereupon we introduced cor-
rections for the reactor—detector distances, the time
of measurements in the on-mode, the energy thresh-
old for the o, spectrum, and the neutron-detection
efficiency. After that, the integrated luminosities in
the present study and in [17] corresponded to the
same number of recorded positrons and, accordingly,
the same statistical accuracy. The distance between
the reactor and the facility used was determined from
relation (5). As a rule, the antineutrino energy is
set to an averaged value that depends on the energy
threshold in the detector. This approach is justified for
experiments characterized by relatively low statistics
(L ~10% t GW yr), in which case the separation of
the effect of oscillations requires employing a wide
section of the antineutrino spectrum. At integrated
luminosities of £ > 10* t GW yr, there arises the pos-
sibility of observing, in a narrow region near the en-
ergy threshold, oscillation-induced distortions of the
spectrum (see Fig. 1 [17]). In this case, the reactor—
detector distance is determined by nearly threshold
values of the antineutrino energy. In estimating the
sensitivity for all detector modes, with the exception
of the Scintillation* mode, we have used the mean
antineutrino energy. Although this method of esti-
mation is quite straightforward and clear, it under-
estimates the results of experiments significantly at
L ~10* t GW yr. In the Scintillation* mode, where
the statistical accuracy makes it possible to single out
distortions of the antineutrino spectrum in the region
around 2 MeV quite reliably, the distance in question
can therefore be reduced from 1700 to 800 m.
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As can be seen from the table, the total number
N+ of recorded positrons exceeds 108 in all cases,
with the exception of that of the WCC I mode.
This corresponds to a statistical error not exceeding
0.1%. In experiments performed according to the one
reactor—two detectors scheme, the total system-
atic error (0gyst) in the measured parameter is not
expected to exceed a value of about 1%. Moreover,
the sensitivity in measuring the parameter sin?(26;3)
at integrated luminosities of £ > 10* t GW yr is
only slightly dependent on oy (see Fig. 1). Our
analysis revealed that, in an LPR—SK experiment,
the sensitivity in measuring sin?(2613) varies within
the range (2—8) x 1073, its specific value being
dependent on the detection method.

CONCLUSION

The CHOOZ experiment, which resulted in ob-
taining the constraint sin?(26;3) < 0.14(3), may be
considered as a starting point in determining the order
of magnitude of the parameter sin?(263). The sys-
tematic error in that experiment, Tsyst, Was 2.7%, and
its magnitude was the main factor that hindered the
improvement of the accuracy in similar reactor exper-
iments. In order to reduce the systematic error oy,
the authors of the Kr2Det project [15] proposed the
one reactor—two detectors method, which makes it
possible to remove the main sources of errors and to
reduce the total systematic error to a value of about
0.8%. This ensured the respective improvement of the
sensitivity in measuring sin?(2613). The study of Hu-
beret al.[17], who performed a comprehensive analy-
sis of various approaches aimed at reaching sensitivi-
ties of sin2(2¢913) < 0.01, may be considered as a next
step along these lines. They showed that, in the case
of vast statistics, the effect of systematic errors on the
sensitivity of such experiments becomes weaker and
that, at a luminosity of about 10, it is possible in prin-
ciple to reach a sensitivity of about 1072 to sin?(26;3).
In order to implement an experiment at this lumi-
nosity value in practice, it is necessary, however, to
deploy a huge underground detector facility within the
territory of an operating atomic power plant. Apart
from purely engineering difficulties, this can cause
serious problems associated with the radiation safety
and security of the respective atomic power plant.

In view of this, we have proposed here an al-
ternative approach to measuring sin?(260;3). This
approach, which can provide substantially easier and
faster ways to solving the problem of reaching a
sensitivity in the region sin?(2613) < 0.01, consists in
the following: without going beyond the one reactor—
two detectors scheme, one arranges, instead of
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Sensitivity of the LPR—SK experiment for various methods of reactor-antineutrino detection

Time in the

Dg}tggéor Distance, m on-mode, day/yr Threshold, MeV | £, kt GW yr | N.+ event/(5 yr) sin2(2913)
WCC 2000 180 3.8 7.3 6.8 x 10° <80x1073
WCC I 2000 300 3.3 14.8 1.4 x 108 <6.5x 1072
WCC + Gd 2000 300 3.8 12.0 1.1 x 10° <7.0x1073
Scintill. 1700 300 1.8 27.7 2.6 x 108 <5.0x1073
Scintill.* 800 300 1.8 125.0 11.7 x 108 <1.8x1073

creating an experimental facility near an operating
atomic power plant, a small-size nuclear reactor
of thermal power about 300 MW at an optimum
distance from a facility of weight about 10* t (far
detector). For such a facility, already an operating
one, we can take the SK water Cherenkov detector.
Since the SK detector was originally intended for
recording solar neutrinos and since it has a rather
high energy threshold, we have analyzed a few ap-
proaches ensuring the required sensitivity. As a result,
it has been shown that the use of an LPR together
with the SK detector in an experiment aimed at
measuring sin?(26013) will make it possible to attain
a sensitivity in the range (2—8) x 1073,

For the sake of convenience, we have discussed
an experiment that would employ a specific reactor
type (KLT-40S) and a specific detector (SK). In fact,
the proposed approach implies a rather free choice
of reactor facilities and neutrino detectors. For ex-
ample, the KamLAND facility, where sensitivities of
sin?(26013) < 0.01 are reachable without introducing
significant changes, can be used for a far detector.
The present study was devoted to solving only one of
the pressing experimental problems—the discussion
of questions concerning the use of small-size reac-
tors as sources of antineutrinos for other problems of

neutrino physics remained beyond its scope.!)
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Abstract—A narrow baryon resonance is observed in the invariant mass of the K2p system formed in
neutrino and antineutrino collisions with nuclei. The mass of the resonance is estimated at 1533 + 5 MeV.
The observed width is less than 20 MeV and is compatible with being entirely due to experimental
resolution. The statistical significance of the signal is near 6.7 standard deviations. Since the position
of the observed resonance does not match the mass of any known X*T states, we believe that it
arises from the neutrino production of the ©F pentaquark baryon. The analysis is based on the data
obtained in past neutrino experiments with big bubble chambers: WA21, WA25, WA59, E180, and E632.
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A narrow baryon resonance with mass near
1540 MeV and unnatural (positive) strangeness has
been recently detected in the K*n system formed
in the reaction yn — K™K ~n on carbon [1] and in
the K% system from the charge-exchange reaction
K*tn — K% in low-energy K*Xe collisions [2].
Similar observations have since been reported by two
other photoproduction experiments [3, 4]. This object,
referred to as ©1(1540), is tentatively interpreted as
the lightest member of an antidecuplet of pentaquark
baryons, as predicted some time ago in the framework
of the chiral soliton model [5]. This paper reports on a
search for formation of the ©T baryon in neutrino and
antineutrino collisions with protons, deuterons, and
neon nuclei.

We analyze the data collected by several neutrino
experiments with big bubble chambers—BEBC at
CERN and the 15-ift chamber at Fermilab. These
two bubble chambers were close to each other in
geometry, fiducial volume, and operating conditions,
and their data were collected and processed using
very similar techniques and algorithms. In the past,
this already allowed one to combine the neutrino data
collected with BEBC and the 15-it bubble chamber
for a number of physics analyses [6]. A database
compiled by one of us (A.A.) comprises some 120 000
v,- and ,-induced charged-current (CC) events
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and embraces the bulk of neutrino data collected with
BEBC (experiments WA21, WA25, and WAH9) and
a significant fraction of data collected with the 15-

ft bubble chamber?) (experiments E180 and E632).
Though obtained several decades ago, the neutrino
data from big bubble chambers are still unrivaled in
quality and completeness of physics information.

In the BEBC experiments WA21 (hydrogen fill),
WA25 (deuterium fill), and WA59 (neon—hydrogen
mix), the data were collected using essentially the
same wideband horn-focused beam, with mean en-
ergies of v,CC and v, CC events near 50 and 40 GeV,
respectively. The experiment E180 used the 15-ft
bubble chamber filled with a Ne—Hs mix and exposed
to a wideband antineutrino beam under conditions
very similar to WAS9. In the last bubble-chamber
experiment, E632 at Fermilab, the 15-ft chamber was
filled with a (lighter) Ne—Hs mix and exposed to a
neutrino beam with quadrupole-triplet focusing from
the Tevatron. In E632, mean energies of neutrino and
antineutrino events reached some 140 and 110 GeV,
respectively. Neutral-current (NC) interactions are
not systematically included in the database,® and
therefore our analysis is restricted to CC events with
pu >4 GeV. Total numbers and mean energies of
v, CC and 7,,CC events collected by the aforemen-
tioned experiments are summarized in the table. Fur-

DUnfortunately, our database does not include the biggest
neutrino sample from the 15-ft bubble chamber—that col-
lected by the vNe experiment E53 [7].

31n WAB9, the bulk of NC events were rejected at scanning
stage.
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Mean energies of v,- and 7,,-induced CC events, mean momenta of K2 mesons reconstructed by K — 777~ decays,
and the numbers of all measured CC events, of those with detected K% mesons, and of those featuring K mesons and

identified protons with momentum p, < 900 MeV

Experiment WA21 WA25 WAS9 E180 E632
(BEBC, (BEBC, (BEBC, (15-it chamber, | (15-ft chamber,
(chamber, fill) hydrogen) deuterium) Ne—Hs) Ne—Hs) Ne—Hs)

Neutrinos:
Mean E, [GeV] 48.8 51.8 56.8 52.2 136.8
Mean momentum of 5.7 5.7 4.5 3.4 7.7
detected K [GeV]
All measured CC events 18746 26 323 9753 882 5621
CC events with K 1050 1279 561 21 587
CC events with K2 and 82(78) 307 (128) 193 (193) 9(8) 229 (157)
identified protons

Antineutrinos:
Mean E, [GeV] 37.5 37.9 39.5 33.8 110.0
Mean momentum of 4.2 4.2 3.5 3.4 7.6
detected K2 [GeV]
All measured CC events 13155 16314 15693 5927 1190
CC events with K2 702 761 631 231 123
CC events with K2 and 45 (43) 116 (57) 185 (185) 56 (54) 49 (28)
identified protons

Note: The numbers in parentheses are for the additional selection of p, > 300 MeV. In the experiment E632, all neutrino events were

measured on part of the exposed film, and only those that showed K% — =

part of the film.

ther details on these neutrino experiments can be
found in [8].

Unlike charged kaons that are virtually indistin-
guishable from pions, neutral kaons are identified
in a bubble chamber by reconstructing the decays
K9 — ntr~. On average, the K°(K?) detection ef-
ficiency is near 25%. At the same time, protons with
momenta below ~ 1 GeV can be identified by the
stopping signature, bubble density, and variation of
track curvature in the magnetic field. Therefore, the
K% channel seems mandatory when searching for
formation of ©* in a bubble chamber. The numbers of
events featuring reconstructed K2 — 777~ decays
and identified protons with p, < 900 MeV, which are
used in this analysis, are quoted in the table for each
(anti)neutrino sample considered. The momenta of
protons identified in hydrogen, deuterium, and neon
are plotted in Fig. 1. In deuterium, the enhance-
ment at proton momenta below some 200 MeV is
due to spectator protons. For neon events with re-
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*rx~ and A° — prt candidates were measured on another

constructed K2 mesons and identified protons, mean
proton multiplicity is ~ 1.4.

For either fill, the m(K2p) distributions of ,CC
and v,,CC events are plotted separately in Fig. 2 and
combined in Fig. 3. Protons are selected in the mo-
mentum interval of 300 < p, < 900 MeV. The com-
bined v + v distribution for neon shows a distinct
enhancement at m(K2p) ~ 1530 MeV. No neutrino
events contribute twice or more to the peak region.
The peak survives the dropping of events that fea-
ture two or more identified protons with 300 < p, <
900 MeV [see the lower (open) histogram in the bot-
tom panel of Fig. 3]. The combined v + v distribution
for deuterium is also slightly enhanced in the same
mass region. The background in the peak region is
estimated by pairing a K2 from one event and a
proton from another event randomly selected in the
same v/v subsample. The thus obtained “random-
star” distribution is then normalized to the K2p mass
spectrum by the number of entries in the nonres-
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Fig. 1. Momenta of identified protons emitted in association with K mesons in v,CC and ,,CC collisions with hydrogen,
deuterium, and neon.
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Fig. 2. Invariant mass of the Kgp system formed in v,CC (on the left) and ,CC (on the right) collisions with hydrogen,
deuterium, and neon.
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Fig. 3. Invariant mass of the K%p system for the v/, CC and 7, CC events combined. The “random-star” background obtained
by pairing a K3 from one event and a proton from another event is depicted by dots. Dropping the events in neon that feature
two or more identified protons with 300 < p, < 900 MeV results in the lower (open) histogram in the bottom panel.

onant region of m(K2p) >2 GeV (see the dotted
histograms in Fig. 3). It is noteworthy that, apart
from the peak near 1530 MeV in the m(K3p) distri-
bution for neon, the random-star background fails to
reproduce a broad enhancement in the mass region
1650 < m(K2p) < 1850 MeV of the same spectrum.

The latter enhancement may be due to K% decays
of a number of excited ¥** states that populate this
mass region [9].

Figure 4 shows the m(K%p) distribution for the

neon and deuterium data combined. In two 10-MeV
bins between 1520 and 1540 MeV, we have 27 events
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with a background of ~ 8 events as estimated from
random K3p pairs (see the dotted histogram). The
statistical significance of the peak is thus near 6.7
standard deviations. It makes no sense to fit a signal
restricted to just two bins as in the top panel of Fig. 4,
so in the bottom panel we plot the same m(K2p)
distribution with bins shifted by 5 MeV. A fit of the
latter histogram to a Gaussian on top of the linear
background returns M = 1533 +5 MeV and o =
8.4 £ 2.0 MeV for the position and rms width of the
resonance, respectively. The rms width is found to be
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Fig. 4. Invariant mass of the K2p system for the neon and deuterium data combined. The dots depict the “random-star”
background. A fit of the same m(K3p) distribution but plotted with shifted bins is shown in the bottom panel.

consistent with experimental resolution on m(K2p)
estimated from live events in the peak (~ 8.5 MeV).

For neutrino and antineutrino events that con-
tribute to the peak region of 1510 < m(K2p) <
1550 MeV, mean values of E, (57 + 10 GeV) and Q>
(12.5 4+ 3.3 GeV?) are consistent with those for all
CC events with detected K3 mesons. Mean momen-
tum of the K3p system for peak events, (p(K2p)) =
1.08 £ 0.06 GeV, is much less than that of all detected
K? mesons (see table).

Unfortunately, neutrino data do not allow one to
determine the strangeness of the observed resonant
state with mass near 1533 MeV, as was done in [1—
4]. On the other hand, there are no known X** states
in this mass region. Therefore, we interpret the en-
hancement near 1533 MeV observed in the m(K23p)
distribution as a signal from formation of the ©F
baryon in neutrino and antineutrino collisions with
nuclei. The mass and width of this state are estimated

as M = 1533 £ 5 MeV and I' < 20 MeV, respectively.
The cross section of ©F production by neutrinos ap-
pears to increase with atomic number of the target
nucleus.
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Abstract—It is shown that experiments at an integrated luminosity of Ly, = 3 Ib~1 in the Tevatron Run II
will make it possible to collect about one million photon + jet events selected according to the criteria
proposed previously. Such statistics would allow one to cover the kinematical region that is specified by
the inequalities 2 x 1073 < z < 1.0 and 1.6 x 103 < Q2 < 2 x 10* (GeV/c)? and which was not studied
in previous experiments devoted to measuring proton structure functions. This region contains values of
Q? that are on average an order of magnitude higher than any ever attained in experiments at the HERA

collider. © 2004 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

Various parametrizations of the gluon distribution
in the proton at small values of z and large values
of the momentum transfer squared Q2 are often
employed to obtain theoretical predictions for the
production of new particles (Higgs boson, super-
symmetric particles) at the Tevatron. It is obvious
that, by supplementing a correct estimate of the
expected number of events necessary for this aim
with measurements of gluon distributions in the
same experiment at the Tevatron, one could obtain
a self consistent picture of the processes under study
[1,2].

In addition, we note that the approach that we
develop here makes it possible to determine the gluon
distribution in an as-yet-unexplored kinematical re-
gion.

The ensuing exposition is organized as follows. In
Section 2, the efficiency of suppression of background
events and the efficiency of selection of photon +
jet events are estimated on the basis of the selection
criteria proposed in [1, 2]. The values presented in
this article were obtained by using the PYTHIA 5.7
event generator [3]. The results of a full simulation
on the basis of the GEANT package with a sub-
sequent reconstruction of DO events can be found
in[4].1

An estimate of the number of signal events needed
for measuring, in the Run II, the gluon distribution in

“e-mail: dmv@nusun. jinr.ru
" e-mail: skachkov@cv. jinr.ru
YFor example, the use of information from a preshower detec-
tor, a tracker, and a calorimeter may substantially improve
the signal-to-background ratio obtained in Section 2.

the proton®) over various ranges of  and Q? is given
in Section 3.

2. SELECTION CRITERIA
AND BACKGROUND SUPPRESSION

To estimate the contribution of background pro-
cesses, we generated three samples of 40 million
events each with allowance for all QCD and Stan-
dard Model 2 — 2 partonic subprocesses incorpo-
rated in the PYTHIA package, these samples also
including signal direct photon + jet events caused
by the “Compton” scattering subprocess qg — q +
v and the “annihilation” subprocess ¢g — g + .
Each sample was obtained at a fixed value of the

minimum transverse momentum of partons,*) pipin

(pT" = 40, 70, 100 GeV/c), in the 2 — 2 hard fun-
damental subprocess.

We selected events involving one candidate for
a direct photon (denoted below as %) and one jet
whose transverse momentum satisfied the condition
Pft > 30 GeV/c.5 By a photon candidate, we here-
after mean not only a direct photon (49") but also

DThe expected number of events that was estimated on the
basis of similar selection criteria for photon + jet events
and which is needed for extracting the gluon distribution
from data on pp collisions at the LHC energies is given
in[2, 5].

3t was found that the contribution of the channel gg — g,
which is also possible, is negligible even at the Tevatron
energies.

HSee the CKIN(3) parameter in the PYTHIA package [3].

% Jets were singled out by means of the LUCELL jet finder
from the PYTHIA package.

1063-7788/04/6704-0688$26.00 © 2004 MAIK “Nauka/Interperiodica”
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Table 1. List of the selection criteria used (see also Tables 2 and 3)
1.(a) Pi > 40 GeV/c, (b) Pgel > 30 GeV/c, (¢) 7] < 2.5, (d) PMdr < 7 GeV/c"; 6. Agp < 17°;
2. P > pmin; 7. P /PY < 0.10;
3. Py < 1GeV/c™; 8. Pelust < 10 GeV/e;
4. P <2 GeV/e, €7 < 5%; 9. P <10 GeV/e.
5. —]Vjet =1
* Maximum value of the transverse momentum P; of a hadron in an electromagnetic-calorimeter cell containing a v*" candidate.

** Sum of the absolute values of P, in a ring: P;"" (R = 0.4) — PP"™(R = 0.2).

many other particles capable of generating a simi-
lar signal in the electromagnetic calorimeter.®) For
such particles, we considered electrons/positrons,
bremsstrahlung photons, and photons from meson
decays[1, 2].

The selection criteria employed in our study are
listed in Table 1.7) The first selection criterion in Ta-
ble 1 makes the preselection and involves four cuts.
These are the transverse-momentum cuts for (a) v
candidates and (b) jets, (¢) a cut determined by the
geometry of the DO electromagnetic calorimeter,®)
and (d) a cut that excludes 49 candidates accompa-
nied by energetic hadrons that fall within the cone of
radius R = ((An)? + (A¢)?)Y/? = 0.2 around the 4
candidate.

The second criterion selects events involving 4"
candidates whose transverse momentum P; is greater
than the threshold value pT'" used in the simulation of
these events. The third criterion imposes a restriction
on Pt‘r?ﬁlg = P — P, where Pl is the sum
of P, over all cells of the electromagnetic calorimeter
that are within the cone of radius R around the cell
involving the v4I" candidate being considered [6]. The
fourth criterion makes more stringent the condition
requiring that a photon candidate be isolated within
the cone of radius R = 0.7.

Criteria 1—4 (with the exception of the preselec-

tion criterion Ptjet > 30 GeV/c) are associated with
photon selection and may be referred to as photon
criteria.

The fifth criterion selects only one-jet events, while
the sixth criterion leaves only those events in which

®0ur simulation was performed for the geometry of the DO
detector.

Dnformation about the efficiency of each criterion can be
found in[1].

®1n Table 1 and in what follows, n = —In(tan(#/2)) is the
pseudorapidity defined in terms of the polar angle 6 reckoned
from the beam axis. We also use the azimuthal angle ¢
defined in the plane orthogonal to the beam axis.

PHYSICS OF ATOMIC NUCLEI

the photon and jet transverse momenta (with respect
to the beam axis) are opposite to each other—to be
more precise, the azimuthal angle between them is
required to be within the range ¢(v,jet) = 180° £
A¢, where A¢p < 17°. The seventh criterion con-
strains the value of the missing transverse momen-
tum PSS thereby reducing the background contri-
bution from the electroweak subprocesses qg — ¢’ +
W* and ¢§ — g + W followed by the decay W+ —
e*v (this background would lead to a sizable value of
Ptmiss [1])

The eighth and ninth criteria in Table 1 select
events where the cluster (minijet) transverse mo-
menta P! are low and where the absolute value
of the vector sum of the transverse momenta of all
recorded particles not belonging to the photon + jet
system (this quantity is denoted by P?"")? is less than
10 GeV/c.

For the aforementioned three samples of generated
events, Table 2 gives the numbers of signal and back-
ground events that survived the application of the
selection criteria 1—9. The “Preselection” row corre-
sponds to the first criterion, while the “After selection”
row presents the results obtained after the application
of criteria 1—9 from Table 1.

The origin of direct-photon candidates is shown
in Table 2 in more detail. Presented in the “~d
columns are the numbers of events that stem from the
subprocesses qg — q + v and gG§ — g + « and which
remain in each interval P after the application of
the preselection criterion and the selection criteria
2—9. Similarly, the numbers of background events
caused by photons emitted from quarks involved in
2 — 2 hard parton—parton interactions are given in
the “~Prems” column of Table 2 for the same levels of
selection. The numbers of events featuring photons

Vol. 67 No.4 2004

9More correct definitions of the quantities P! and PP are
given in [1, 2], where they were introduced as new physical
variables that may be useful in selecting events of clearer

topology.
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Table 2. Numbers of signal and background events left after the application of all selection criteria

Py, Criterion i prems Photons from meson decays (™) ot
GeV/e 0 0 w K
40 Preselection 18056 14466 152927 56379 17292 14318 2890
After selection 6238 686 824 396 112 104 24
70 Preselection 39340 63982 761926 269666 87932 63499 17562
After selection 8608 424 320 146 o8 36 64
100 Preselection 56764 111512 970710 346349 117816 91416 38872
After selection 11452 280 124 92 24 24 136
Table 3. Efficiencies and signal-to-background ratios (S/B) for selected events
PN GeV/e S B es, % B, % S/B S/\v/B
40 6238 2122 34.55£0.51 0.831 £0.018 2.9 135.4
70 8608 984 21.88£0.26 0.079 £ 0.003 8.8 274.4
100 11452 544 20.17£0.21 0.033 £0.001 21.1 491.0

from neutral-meson decays (specifically, 7°-, n-, w-
and K2-meson decays), ¥ events, are listed in the
respective columns of this table.

The numbers of events involving e* that pass
the selection criteria of Table 1 are given in the last
column of Table 2. It should be noted that, after all
selections, such events contribute 1% to the total
background at pT™" = 40 GeV/c and 25% at pT" =
100 GeV/c!'? (for more details, see[1]).

The numbers in Table 3 represent the information
from Tables 1 and 2 in a condensed form. The values
in the “S” and “B” columns represent the total num-
bers of signal and background events that passed the
selection criteria 1—9.

Thus, the application of the proposed set of criteria
leads to selecting photon + jet events of clean topol-
ogy, the contribution of background processes being
suppressed—that is, to events where a photon is well
isolated and where the activity of clusters beyond the

photon + jet system is suppressed.'!)

19 The contribution of e* events can be estimated by using the
efficiency of finding a track within the central region of the
DO detector (|n| < 0.9). As was determined in the Run 1[6],
this efficiency is 83%, in which case the fraction of 4 = et
events in the total background does not exceed 5% even for
P] > 100 GeV/c.

W Clusters are suppressed by the selection criteria based on the
Pst and PP cuts (see also [1, 2]).

[t should be emphasized that, in contrast to back-
grounds from other sources, the background asso-
ciated with bremsstrahlung photons is irremovable.
The number of such events must be thoroughly es-
timated for each interval of P, by using the particle
level of the simulation on the basis of event genera-
tors like PYTHIA, because the bremsstrahlung back-
ground becomes much greater than the contribution

from meson decays and the e* contribution as Pﬁ
grows [1, 2].

3. ESTIMATE OF THE EVENT RATE

Experimental investigation of processes involving
a direct photon and a jet in the final state provides
a better source of information about the gluon dis-
tribution in a hadron than investigation of inclusive-
photon production (“y+ X) [7—15], since, in the
latter case, the cross section is an integral of the
parton distributions f,(z., @?) (a denotes a quark or
a gluon), whereas, in the former case, the differential
cross section for the process pp — 4" + jet + X'12)
at Pget > 30 GeV/c (that is, in the region where k;

effects!'®) can be neglected) can be expressed in terms

PHYSICS OF ATOMIC NUCLEI

2Respective experimental data can be found in[16, 17].

3 That is, effects due to the internal motion of partons in the
proton, this motion being responsible for their transverse
momentum.

Vol. 67 No.4 2004
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Table 4. Rate of gg — ~4" + ¢ events for various Q2 and z intervals at L,y = 3 fb~!
Q?, x values of a parton All 2
(GeV/c)Q 0.001—0.005 0.005—0.01 0.01—0.05 0.05—0.1 0.1-0.5 0.5—1.0 0.001—-1.0

1600—2500 8582 56 288 245157 115870 203018 3647 632563
2500—4900 371 13514 119305 64412 119 889 3196 320 688
4900—8100 0 204 17 865 13514 26 364 1059 59007
8100—19600 0 0 3838 5623 11539 548 21549

1033 807

of the parton distributions as [1, 5, 10]

do
dmidnedP?

= Z xafa(xaa QQ)xbfb(xb’ QQ)
a,b

(1)

do
dt

(ab — 34),

where a,b=¢q,q,g and 3,4 =q,q,g,7v. The gluon
distribution f,(z,Q?) can be determined by using
formula (1) and the results of independent measure-
ments of the ¢, g distributions with allowance for the
efficiency of selection of ¥4 + jet events and for the
background contribution that passed the selection
criteria from Table 1.

Signal “gluon” events associated with the subpro-
cess qg — q + v and background events associated
with the subprocess ¢g — g + « can be selected with

0%, (GeV/c)?

10*E GlARun‘ II
g v+ jet
103 o
102 -
101 E
E HERA Fixed
collider target
1()0 L L/ il

Covvnnl A vl v vl b
104 1073 1072 107! 10°
X

Kinematical region of the variables z and Q? for the
process pp — v + jet.
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the same efficiencies by applying criteria 1—9 from
Table 1. Over the range 40 < P, < 140 GeV/c, the
contribution of the gluon subprocess is about 70 to
90%, but it decreases with increasing P, [1].

The Q2 = (P])? and x distributions of events as-
sociated with the gluon subprocess and selected by
criteria 1—8 from Table 1'*) are presented in Ta-
ble 4 for the Tevatron integrated luminosity of L;,; =
3 fb~L. The (z,Q?) kinematical diagram in the figure
shows the region that can be covered at the Tevatron
in Run II. From the figure and from Table 4, it can be
seen that experiments at the integrated luminosity of
Lini = 3 tb~! would make it possible to measure the
gluon distribution with high statistics!®) of photon +
jet events over a wide region of the variable x that
includes its small values. It is of particular importance
that such measurements can be performed at Q? val-
ues an order of magnitude greater than those attained
in experiments at the HERA collider.

4. CONCLUSION

[t has been shown that separation of photon + jet
events would make it possible to determine the gluon
distribution in the proton over the range 2 x 1073 <
x < 1.0for 1.6 x 10° < Q% < 2 x 10* (GeV/c)? at a
high statistical significance. At small x, the values of
Q? in this range are greater than those achieved in all
previous experiments.

It should be noted that, by extending to lower
values of 2 the region experimentally accessible at
the Tevatron with the aid of photon + jet events, one
could enhance the overlap with the region studied at
the HERA collider (see figure). This would make it
possible to test theoretical predictions based on an-
alytic solutions to the Dokshitzer—Gribov—Lipatov—
Altarelli—Parisi equations [18].

" The application of criterion 9 from Table 1 results in only a
20% increase in the signal-to-background ratio [1].

%That is, commensurate with statistics in fixed-target experi-
ments.
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Abstract—Directed (in-plane) flows of protons, pions, and projectile light fragments (d, ¢, *He, *He) have
been observed by investigating the dependence of the mean transverse momentum in the reaction plane
(p.) on the rapidity y in the c.m. system for CC collisions at a momentum of 4.2 GeV/c per nucleon. The
comparison of our in-plane-flow results of protons with flow data for various projectile/target configurations

was made using the scaled flow F; = F/(A}D/‘3 —|—A1T/‘3). F, demonstrates a common scaling behavior
for flow values from different systems. From azimuthal distributions of protons and 7= mesons, out-of-
plane (squeeze-out) flow effects have been observed and the parameter a, (the measure of the anisotropic
emission strength) has been extracted. The quark—gluon string model reproduces the experimental results

quite well. © 2004 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

Multiparticle azimuthal correlations are being in-
vestigated very intensively with the goal to study the
dynamics of relativistic nucleus collisions. The study
of this effect in terms of the collective flow variables
with respect to the reaction plane has turned out
to be especially fruitful. The collective emission of
particles occurs at the expansion stage of nuclear
matter through the short-range repulsion between
the nucleons at the expense of the compressional
energy concentrated in the high-density and temper-
ature overlap region of colliding nuclei. The collective
effects lead to characteristic, azimuthally asymmet-
ric sideward emission of the reaction products. The
analysis of the main characteristics of the collec-
tive flow allows one to obtain information about the
fundamental properties of nuclear matter, connected
particularly to the equation of state (EOS)[1].

Two different signatures of the collective flow have
been studied:

(a) the bounce-off of compressed matter in the
reaction plane [a sideward deflection of the spectator
fragments (“bounce-off”) as well as directed flow of

*This article was submitted by the authors in English.

DHigh Energy Physics Institute, Thilisi State University,
Thilisi, Georgia.

2Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.

“e-mail:  ida@sun20 .hepi.edu.ge, ichkhaidze@yahoo.
com

nucleons from the overlap region between the collid-
ing nuclei (participants) in the reaction plane (“side-
splash”), called sideward or directed flow];

(b) the squeeze-out of the participant matter out
of the reaction plane—elliptic flow.

The method proposed by Danielewicz and Odyniec
[2] has turned out to be the most convenient and fruit-
ful for the investigation of collective flow phenomena,
which allows one to determine the reaction plane
by using the transverse momenta of participating
protons. Lately, the method of Fourier expansion
of azimuthal particle distributions has been widely
used [3].

At present, the collective flow effects are being
investigated in a wide range of energies from several
hundred MeV up to hundreds of GeV. The majority
of experiments are carried out using the electronic
technique in 47 geometry, and only in the first ex-
periments at Berkeley and lately at Dubna did the
streamer chamber serve as the detector.

Collective flow of charged particles has been ob-
served experimentally for the first time at BEVALAC
by the Plastic Ball [4—6] and Streamer Chamber [7]
collaborations. It has been studied intensively at
Berkeley and GSI [8—13], at AGS [14—17], and at
CERN/SPS [18—21]. At RHIC (Relativistic Heavy
[on Collider) of BNL, the STAR Collaboration re-
cently reported the first results on the elliptic flow of
charged particles at midrapidity in AuAu collisions at

the energy v/Syny = 130 GeV [22].

At Dubna (JINR) in the 2-m Propane Bubble
Chamber, the shape of the individual events of CTa

1063-7788/04/6704-0693$26.00 © 2004 MAIK “Nauka/Interperiodica”
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Fig. 1. The momentum and transverse-momentum dis-
tributions of 7~ and 7+ mesons in CC collisions. Points:
(o) 7~ mesons; () 7T mesons, identified by ionization;
(A) 7T mesons, additional identification.

collisions at a momentum of 4.2 GeV/c per nucleon
has been studied in terms of the tensor of kinetic
energy (sphericity) [23]. It has been shown that the
angle between the axis of the ellipsoid and the beam
direction €y, is 12° for high-multiplicity events.

Flows of protons and 7~ mesons have been ob-
served at Dubna by the SKM-200-GIBS Collabora-
tion [24, 25] in central CNe and CCu collisions at a
momentum of 4.5 GeV/c per nucleon. In inelastic CC
collisions at a momentum of 4.2 GeV/c per nucleon
registered in the 2-m Propane Bubble Chamber, the
flow of protons has been obtained only on part of the
statistics [26]. The most complete experimental data

PHYSICS OF ATOMIC NUCLEI
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of collective flow effects are presented in the review
article [27].

2. EXPERIMENTAL DATA

In this paper the collective flows of protons, 7~
mesons, and projectile light fragments (d, ¢, *He,
4He) in CC collisions at a momentum of 4.2 GeV/c
per nucleon, registered in the 2-m Propane Bubble
Chamber of JINR, are studied.

The chamber was placed in a magnetic field of
1.5 T. The method of separation of CC collisions in
propane, the processing of the data, identification of
particles, and discussion of corrections are described
in detail in [28]. The experimental data, apart from
the unambiguously identified CC collisions with the
probability of we =1, contains the sample of CC
events with we = 0.21. In the study of the inclusive
characteristics of CC collisions, the distributions are
obtained for the whole of C—propane collisions, tak-
ing into account the weight factor we.

For the analysis of the collective flow of particles,
the experimental data contained 15692 unambigu-
ously identified CC.

The study of collective flow phenomenon needs
“event-by-event” analysis, which requires an exclu-
sive analysis of each individual collision. In this con-
nection, there has been a necessity to perform an
additional identification of 7™ mesons, since in the
propane chamber the 7™ mesons have been identified
in a narrow interval of momenta (up to 0.5 GeV/c).
The weight (probability) is defined statistically for
particles with the momentum p > 0.5 GeV/c with
which the particle satisfies the hypothesis of 7 me-
son or proton for the whole ensemble of CC colli-
sions. However, the group of particles has remained
with unseparated hypothesis (p, 7"), the most part of
which form the protons. The separation of the group
of CC collisions with we =1 and the necessity of
unambiguous separation of protons and 7 mesons
have led to the difference in the momentum distribu-
tions of 7~ and 7 mesons. To remove this difference,
a correction of the 7 -meson identification has been
carried out. The procedure has been performed sta-
tistically, based on the well-founded assumption that,
for symmetric nuclear collisions, the distributions of
7~ and 7+ mesons are similar.

In Fig. 1, the momentum and transverse momen-
tum distributions of 7~ and 7" mesons are presented
with the previous and additional identifications. One
can see from Fig. | that a small difference in the
momentum distribution of 7 mesons is removed.

Only participant protons have been selected for
the analysis. With this purpose, from the whole
ensemble of particles, the fragments of the target

Vol.67 No.4 2004
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(p < 0.3 GeV/c), projectile stripping fragments (p >
3 GeV/c and angle 0 < 4°), and also the light
fragments of the projectile with Z > 1 (3He, *He)
identified by ionization visually and Z = 1 (d, t) with
p > 5 GeV/c have been excluded.

The following restriction, the choice of events with
the number of participant protons Ny, > 4, is caused
by the necessity to obtain reliable results at low mul-
tiplicity. In consequence, from the inelastic CC col-
lisions, a group of 9490 semicentral collisions with
58 078 participant protons have been selected.

3. TRANSVERSE-FLOW ANALYSIS METHOD

The method of Danielewicz and Odyniec [2] has
been used for study of collective flow of protons, based
on the summation of the transverse momenta of se-
lected particles [2]. Most experimental data at ener-
gies below 4 GeV/nucleon have been analyzed by this
method. It gives satisfactory results even for small
available statistics obtained by the film detectors.

The reaction plane vector Q in each individual
event is defined only by the participant protons in the
c.m. system:

Q=) wipri (1)
i=1

where pr; is the transverse momentum of particle ;
the weight factor w; is taken as | for ¢; > 0 and —1
for y; < 0, where y; is the rapidity of particle 7; and
n is the number of participant protons in the event.
This choice leads to the result that the forward and
backward moving particles, which are azimuthally
anticorrelated if there is a collective transverse flow,
will contribute equally to Q.

The reaction plane is the plane containing the im-
pact parameter b and beam axis. Taking into account
that the definition of b experimentally is not possi-
ble, in the transverse momentum analysis method of
Danielewicz and Odyniec [2], the vector b is replaced
by Q. If one projects the transverse momentum of
each particle pp; onto the total momentum, autocor-
relations will arise, from which it will be very difficult
to extract true dynamic correlations. To remove the
autocorrelations, Danielewicz and Odyniec [2] pro-
posed to estimate the reaction plane for each particle
Jj, i.e., to project pp; onto the total vector of all other
particles in the same event:

Q; =) wipri. (2)
i#]
The transverse momentum of each particle in the
estimated reaction plane is calculated as

Py = 1Q; - pri/1Q}- (3)
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The dependence of the mean transverse momen-
tum of each particle in the reaction plane (p,) on
the rapidity y is constructed. The average transverse
momentum (p/,(y)) is obtained by averaging over all
events in the corresponding intervals of rapidity.

[t is known [4] that the estimated reaction plane
differs from the true one, due to the finite number
of particles in each event. The component p, in the
true reaction plane is systematically larger than the
component p/; in the estimated plane; hence,

(pa) = {ply)/(cos @), (4)

where ¢ is the angle between the estimated and true
planes. The correction factor k = 1/(cos ¢) is subject
to a large uncertainty, especially for low multiplicity.
In [2], the method for the definition of the correction
factor has been proposed. Each event is randomly
divided into two almost equal subevents, the vectors
Q1 and Q5 are constructed, and then the distribution
of the azimuthal angle between these two vectors is
plotted. The dispersion of this angular distribution
determines the discrepancy between the true and es-
timated reaction planes. The coefficient k£ depends
on the multiplicity in the event, and naturally the
correction is larger at low multiplicity. It is desirable to
group the events by the multiplicity intervals. Due to
the limited statistics, the coefficient in this paper has
been defined for the whole ensemble, averaged over all
the multiplicities: £ = 1.43 £ 0.8.

Figure 2 shows the dependence of the corrected
(pz(y)) on y for protons in CC collisions at a mo-
mentum of 4.2 GeV/c per nucleon. The data exhibits
S-shape behavior which demonstrates the collective-
transverse-momentum transfer between the back-
ward and forward hemispheres.

From the mean-transverse-momentum distribu-
tions, one can extract two main observables sensitive
to the EOS. One of them is the mean transverse mo-
mentum in the reaction plane in the forward rapidity
region (pg)y>0. Another equivalent observable is the
transverse flow F' determined by slope of the momen-
tum distribution at midrapidity (at the intersection
point y = 0), which was introduced by the Plastic-
Ball team [5]:

o 0l

o (5)

yc.m.:O

F'is a measure of the amount of collective transverse
momentum transfer in the reaction plane, i.e., inten-
sity of nuclear interactions.

This quantity was the subject of less experimental
bias than the maximum of p,, and it enabled one to
compare different reactions and results of different
experimental setups to each other. The straight line
in Fig. 2 is the result of the fit of experimental data
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Fig. 2. The dependence of (p»(y)) on y for protons in CC collisions in the c.m. system. Points: (o) the experimental data, (A)
QGSM generated data for fixed b = 2.65 fm, () events composed by randomly selected tracks from different events (within
the same multiplicity range). The solid line is the result of the linear approximation of experimental data in the interval of y from
—0.75 to 0.75. The solid curve for visual presentation of experimental events is the result of approximation by a fourth-order

polynomial.

in the rapidity-y interval (from —0.75 to 0.75). The
protons flow F' = 136 + 11 MeV/c. The value of F

is very similar to the result obtained at the SKM-
200-GIBS setup at JINR in central CNe collisions
at a momentum of 4.5 GeV/c per nucleon [24, 25]:
F =134412 MeV/c. The (p,) distribution for CC
collisions is more symmetric than for CNe interac-
tions (see Fig. 1 from [24] and Fig. 1a from [25]). It
is worth emphasizing that CC is the lightest system
of colliding nuclei in which the transverse (directed)
flow of protons has been observed.

To be convinced that the observed effect is due to
the manifestation of the dynamics of collisions, the
following checkup has been carried out. The events
have been composed by mixing randomly selected
tracks from different events (within the same mul-
tiplicity range) and then the flow has been defined
for these “mixed” events. One can see from Fig. 2
that, in these events, there is no correlation with the
reaction plane and particles are emitted isotropically
in the “mixed” events.

The mean transverse momentum in the reaction
plane in the forward rapidity region (p;)y~0 has been
calculated for protons and the value of (py)y~0 =

104 + 9 MeV/c has been obtained. In CC collisions,

PHYSICS OF ATOMIC NUCLEI

selected for the flow analysis, 4464 identified light
fragments with Z > 1 (3He, *He) and 4857 single-
charged particles with the momentum p > 5 GeV/c
have been detected, which are deuterons and tritons
with a large probability. As follows from our esti-
mates, the fraction of *He/4He and also t/d is the
same and equals 1/4. Averaged over light fragments,
the value of (py)y~0 has been obtained: (pg)y~0 =
140 + 20 MeV/c. Thus, the value of (D2)y>0 for light

fragments is 20—30% larger than for participant pro-
tons.

The experimental data of different particle flows
formed in heavy-ion collisions contain the whole in-
terval of available energies and a large set of colliding
nuclei Ap and Ay (ArKCl, CaCa, NbNb, CNe, CCu,
NiCu, CPb, ArBal,, ArPb, AuAu, PbPb, etc.). For
the investigation of energy dependence of flow values
for different projectile/target mass combinations, the
scaled variable Fy has been introduced [29], which
does not depend on the mass numbers of colliding
nuclei,

Fy=F/(AJ® + A7), (6)

In Fig. 3, the energy dependence of scaled flow Fj
of protons from different experiments is presented.

Vol.67 No.4 2004
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Fig. 3. Scaled flow values vs. beam energy per nucleon for different projectile/target systems. Points: (o) CC (this work);
(x) NbNb (Plastic Ball); (o) AuAu (Plastic Ball) [30]; (o) NiNi (FOPI) [9]; (¢) NiCu (EOS); (+) AuAu (EOS); (&) NiAu
(EOS)[13, 31]; (%) ArPb (Streamer Chamber); the value at £ = 1.08 A GeV represents the ArKCl Streamer Chamber [32,

33]; (6) CNe, CCu [25]; (*) AuAu (E-895)[16]; the value at =

10 A GeV represents AuAu from E-877 [15]. To improve the

distinction between data points at the same beam energy, some of the beam energy values have been shifted.

Figure 3 represents our result and the data from the
EOS [13, 31], E-895 [16], E-877 [15], FOPI [9],
and SKM-200-GIBS [25] experiments, along with
the values derived from the Plastic Ball [30] and the
Streamer Chamber experiments [32, 33] for a vari-
ety of energies and mass combinations. The point
F, = 29.7 + 2.4 MeV/c is obtained in this work. One
can see that the scaled flow F; follows, within the
uncertainties, a common trend with an initial step rise
and then a gradual decrease.

In view of the strong coupling between the nucleon
and pion, it is interesting to know whether pions also
have a collective flow behavior and how the pion flow
is related to the nucleon flow.

For this purpose, the reaction plane has been de-
fined for the participant protons and the transverse
momentum of each 7~ meson has been projected
onto this reaction plane. Figure 4 shows the depen-
dence of (p,) on rapidity y in the c.m. system for 7~
mesons in CC collisions. This dependence has the
same behavior as for the protons. The value of flow F’
for 7~ mesons is F' = 22.2 6.1 MeV/c. The straight
line in Fig. 4 shows the result of the fitting. The fit was
done in the interval of y from —0.6 to 0.6. This result

PHYSICS OF ATOMIC NUCLEI Vol.67 No.4 2004

is very close to the F of pions obtained at SKM-200-
GIBS in CNe collisions at 4.5 GeV/c per nucleon
(see Fig. la from [25]): F = 29 4 5 MeV/c.

The dependence of flow of pions F' on the trans-
verse momentum has been investigated. In Table 1,
the flows of pions in the whole interval of p7, 0 < ppr <
1.0 GeV/c, and in intervals of 0.1 < pp < 1.0 GeV/c,
0.15 < pr < 1.0 GeV/c, and 0.2 < pr < 1.0 GeV/c
are presented. The flow increases with pp from 22.2
up to 43.7 MeV/c. The flow of 7~ mesons in CC
collisions has been observed for the first time. For CC
collisions, flows of protons and pions are correlated
similarly as in CNe interactions [24, 25].

Several theoretical models of nucleus—nucleus
collisions at high energy have been proposed for
the description of the collective flow effects. The
relativistic transport model (ART 1.0) [34] and the
quark—gluon string model (QGSM) are widely used.
A detailed description and comparison of the QGSM
with collective flow effects observed in different exper-
iments over a wide energy range can be found in [35,
36]. It is worth mentioning that the QGSM satis-
factorily describes the spectra of secondary protons
and 7~ mesons in CC [37] and MgMg [38] collisions
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Fig. 4. The dependence of (p(y)) ony for 7~ mesons in CC collisions in the c.m. system. Points: (o) the experimental data,
(A) QGSM-generated data for fixed b = 2.65 fm. The solid line is the result of the linear approximation of experimental data in
the interval of y from —0.6 to 0.6. The solid curve for visual presentation of experimental events is the result of approximation

by a fourth-order polynomial.

at momenta of 4.2 and 4.5 GeV/c per nucleon,
respectively. The model also reproduces well the flow
of protons and 7~ mesons in CNe and CCu collisions
at p = 4.5 GeV/c per nucleon [24, 25]. In the present
paper, the QGSM was used for a comparison with
experimental data. We generated CC inelastic colli-
sions using the COLLI Monte Carlo generator [39].
At the first step, the version of the generation program
with unfixed impact parameter b was used; 50 000
inelastic CC collisions at a momentum of 4.2 GeV/c
were generated. From the b distribution, we obtained
the mean value (b) = 3.8 fm. Then, similarly as for
the experimental data, the selection criteria of partic-
ipant protons were applied to these events; namely,
the fragments of the target (p < 0.3 GeV/c) and
stripping fragments of the projectile (p >3 GeV/c
and angle 6 < 4°) were excluded. From the analysis
of generated events, the protons with deep angles
greater than 60° were additionally excluded, because
such vertical tracks were recorded with less efficiency
in the experiment. After selection of events with
the number of participant protons not less than 4,
for the analysis of the flow of protons, the group of
semicentral collisions with (b) = 2.65 fm survived.

PHYSICS OF ATOMIC NUCLEI

At the second step, 50000 semicentral CC col-
lisions were generated at a fixed impact parame-
ter (b) = 2.65 fm with superimposition of the above-
mentioned criteria during the generation of the col-
lisions. The dependence (p,(y)) on y for protons in
CC collisions generated for fixed and unfixed impact
parameters coincides within the errors.

In Fig. 2, the result of the analysis of the group of
generated events with (b) = 2.65 fm is presented, as
well as experimental data. One can see that the model
describes quite well the experimental data of pro-
tons in the central region and F,oq = 145 £ 9 MeV/c
(196 942 participant protons). From the QGSM, the
value of mean transverse momentum of protons in the
reaction plane in the forward rapidity region (ps)y>0

has been obtained: (p)y>o =114 £ 7 MeV/c.

The QGSM has also been used for comparison
with the pion flow in CC collisions. One can see from
Fig. 4 that the QGSM yields a flow signature similar
to the experimental data. The value of F', obtained

from the QGSM, is Fipoq = 23.2 + 3.0 MeV/c.

Vol.67 No.4 2004
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Table 1. The number of 7~ mesons N, and the values of the parameters F, ag, x?/N, and R for experimental (upper

value) and QGSM (lower value) events

pr, GeV/e N,- F, MeV/e as x?/N R

0<pr<10 20310 22.24+6.1 —0.037 £ 0.011 20/24 1.077 + 0.106
71014 23.24+3.0 —0.034 4+ 0.006 22/24 1.070 £ 0.063

0.1<pr<1.0 16898 270+ 7.1 —0.051 4+ 0.012 21/24 1.107 + 0.086
58963 29.1+ 3.5 —0.042 4+ 0.006 20/24 1.088 4 0.052

0.15<pr<1.0 13415 33.5+ 8.6 —0.067 4+ 0.013 14/24 1.144 +0.074
47410 34.4+ 4.1 —0.052 4+ 0.007 26/24 1.110 £ 0.050

02<pr<1.0 10208 43.7+10.2 —0.083 4+ 0.015 12/24 1.181 +0.071
36218 45.0+ 5.1 —0.062 4 0.008 27/24 1.132 4+ 0.050

Table 2. The number of participant protons Ny, and the values of the parameters as, x*/N, and R for experimental

(upper value) and QGSM (lower value) events

pr, GeV/c Npart as x2/N R

All pr 55752 —0.044 =+ 0.006 28/30 1.092 4+ 0.050
189676 —0.046 4 0.003 37/30 1.096 + 0.025

0.1<pr<1.5 53197 —0.059 4 0.007 35/30 1.125 4+ 0.045
180416 —0.068 + 0.003 34/30 1.146 4+ 0.013

02<pr<15 48 442 —0.067 4 0.007 33/30 1.144 + 0.040
169667 —0.072 4 0.003 36/30 1.155 4+ 0.016

03<pr<1.5 40057 —0.079 4 0.007 32/30 1.171 4 0.034
151257 —0.079 4 0.004 35/30 1.171 4+ 0.020

4. AZIMUTHAL ANISOTROPIC EMISSION
OF PROTONS AND PIONS

The preferential emission of particles in the di-
rection perpendicular to the reaction plane (i.e.,
“squeeze-out”) is particularly interesting since it is
the only way that nuclear matter might escape with-
out being rescattered by spectator remnants of the
projectile and target and is expected to provide direct
information on the hot and dense participant region
formed in high-energy nucleus—nucleus interactions.
This phenomenon, predicted by hydrodynamical cal-
culations [2], was clearly identified by the Plastic Ball
Collaboration.

In order to extend these investigations, we have
studied the azimuthal ¢ (cos¢ = p,/pr) distribu-
tions of the pions and protons with respect to the
reaction plane. The angle ¢ is the angle of the
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transverse momentum of each particle in the event
with respect to the reaction plane. The analysis
was restricted only to the midrapidity region by
applying a cut around the c.m. rapidity. Figure 5
shows the respective distribution for protons in CC
collisions obtained in central rapidity region |y| < 1.
The azimuthal angular distribution shows maxima
at ¢ = 90° and 270° with respect to the event plane.
These maxima are associated with preferential par-
ticle emission perpendicular to the reaction plane
(squeeze-out, or elliptic flow). Thus, a clear signature
of an out-of-plane signal (elliptic flow) is evidenced.

To treat the data in a quantitative way, the az-
imuthal distributions have been fitted by a polynomial:

dN/dp = ap(1 + ajcosp + agcos2p).  (7)



700
dN/dd
0f i L !
el RS
¢i%i¢ $‘$* + 4t i*¥
2300 - faF 4’* %// i
o] i |
CC(p, X)
1900 |
B T TR
600 | ‘*‘J{H%H } m %ﬂ
Wy 1 y
550 f
s00l- o, X)
4501
0 % 80 270 . 380
, deg

Fig. 5. The azimuthal distributions with respect to the
reaction plane of dN/dp for protons and 7~ mesons.
Points: (o) protons, (A) @~ mesons, and (x) QGSM-
generated data, respectively. The curves are the re-
sult of the approximation by dIN/de = ao(1 + aicosp +
a2co0s 2¢).

The anisotropy factor ay is negative for out-of-
plane enhancement (squeeze-out) and is the measure
of the strength of the anisotropic emission. The value
of the coefficient ag extracted from the azimuthal dis-
tribution of protons is as = —0.044 £ 0.006 (Table 2)
and of pions is ag = —0.037 & 0.011 (Table 1). The
dashed curves (Fig. 5) are the result of the fitting
by (7) of the experimental distributions. The QGSM
has been used for comparison with the experimental
results. The QGSM data for protons and pions at
fixed impact parameter b = 2.65 fm are also plotted
in Fig. 5 and the corresponding values of as extracted
from the QGSM data are listed in Tables 1 and 2. One
can see that the model describes the experimental
azimuthal distributions.
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Fig. 6. The dependence of the elliptic flow excitation func-
tion v on energy Ei, /A obtained for protons: (o) in CC
(this work), (x) FOPI[41], (o) MINIBALL, (¢) EOS [13],
(0) E-895 [16], (x) E-877 [15], and () NA49 [21], to-
gether with results for CNe, CCu [25](A).

The values of ay are used to quantify the ratio R of
the number of particles emitted in the perpendicular
direction to the number of particles emitted in the
reaction plane, which represents the magnitude of the
out-of-plane emission signal:

1—a2
1—|—a2'

A ratio R larger than unity implies a preferred out-
of-plane emission. The values of R for protons and
pions are listed in Tables 1 and 2. The dependence
of the azimuthal anisotropy on the transverse mo-
mentum has been investigated. One can see that as
and R increase for both protons and 7~ mesons with
increasing cutting limit applied to the transverse mo-
mentum. Our results on the transverse momentum
dependence of the azimuthal anisotropy in CC semi-
central collisions are consistent with the results of
SKM-200-GIBS for CNe and CCu central collisions
(see Fig. 3 from [25]).

In experiments E-895 [40], E-877 [15] at AGS,
and NA49 [21] at SPS (CERN), the elliptic flow
is typically studied at midrapidity and quantified in
terms of the second Fourier coefficient vy = (cos 2¢).
The Fourier coefficient vy is related to ao via the
equation vy = as /2. In Fig. 6 are presented the values
of v9 obtained for protons in CC (this work) and in
the FOPY [41], MINIBALL, EOS [13], E-895 [16],
E-877 [15], and NA49 [21] collaborations together
with results for CNe, CCu [25].

R:

(8)

5. CONCLUSIONS

The flow effects of protons, 7~ mesons, and pro-
jectile light fragments (d, t, He, *He) have been
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investigated in semicentral CC collisions at a mo-
mentum of 4.2 GeV/c per nucleon. The transverse-
momentum technique of Danielewicz and Odyniec [2]
was used for data analysis. Clear evidence of di-
rected (in-plane) and elliptic (out-of-plane, squeeze-
out) flow effects for protons and 7~ mesons has been
obtained.

(i) From the transverse-momentum distributions
of protons and 7~ mesons with respect to the reac-
tion plane, the flow F' (the measure of the collective
transverse-momentum transfer in the reaction plane)
has been extracted. For participant protons, the value
of F has been obtained: F = 136 + 11 MeV/c. The
mean transverse momentum of protons in the reac-
tion plane in the forward rapidity region y > 0 (pz)y>0
has been estimated: (p;),~0 = 104 +9 MeV/c.

(i) The comparison of our results on the proton
directed (in-plane) flow with flow data for various

projectile/target combinations was made using the

scaled flow Fys = F/(A}g/3 + AlT/3). F; demonstrates
a common scaling behavior for flow values from dif-
ferent systems.

(iii) The value of 7~ -meson flow F' is equal
to 22.24+6.1 MeV/c and increases up to 43.7 &
10.2 MeV/c with a rise of the cut applied to transverse
momentum of pions from 0 to 0.2 GeV/c. The flow of

7~ mesons is obtained for the first time for such a
light system as CC. In-plane flow of 7~ mesons is in
the same direction as for the protons.

(iv) The mean transverse momentum in the reac-
tion plane in the forward rapidity region y > 0 (pz)y>0
has been estimated for projectile light fragments (d, ¢,
3He, “He), assuming that the fraction of *He and *He,
and d and t is the same: (p;),~0 = 140 4 20 MeV/c.

(v) From the azimuthal distributions of protons
and 7~ mesons with respect to the reaction plane, the
parameter as (the measure of the anisotropic emis-
sion strength) has been extracted. The value of the
azimuthal anisotropy coefficient of protons is as =
—0.044 £ 0.006 and of pions is ag = —0.037 £ 0.011.
The anisotropy of 7~ mesons increases with the rise
of the cut applied to the transverse momentum. The
parameter az was defined for a light CC system also
for the first time.

(vi) All experimental results have been compared
with the predictions of the quark—gluon string model.
The model reproduces experimental data quite well.
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Abstract—Within a new relativistically invariant approach, the properties of proton clusters that are
formed together with A and K© particles in inelastic CC interactions at p = 4.2 GeV/c per nucleon are
investigated in the space of relative 4-velocities. The observed proton clusters are shown to be characterized
by high values of the mean kinetic energy of the protons in the cluster rest frame: (7},) = 100 £ 2 MeV.

© 2004 MAIK “Nauka/Interperiodica”.

INTRODUCTION

In the inclusive approach, which is traditionally
applied in describing multiparticle-production pro-
cesses, use is made of only a small part of information
about such processes.

In the present study, we apply the method pro-
posed in [1=5], which, in contrast to the inclusive
approach, enables us to incorporate the entire body of
information accessible in experiments in the descrip-
tion of multiparticle-production processes. The new
method also makes it possible to systematize compli-
cated pictures of relativistic nuclear interactions.

The present article reports on a continuation of
the series of studies initiated in [1—5] and devoted
to investigating the properties of baryon clusters in
various hadron—nucleus and nucleus—nucleus inter-
actions over a wide energy range by using the dimen-
sionless relativistically invariant quantities

bir, = — (& - p—k>2 = —(ui —wp)®, (1)

mi Mg
where p; and p; are the 4-momenta of the parti-

cles under consideration, while m; and m,, are their
masses.

Here, we study the formation and the properties of
proton clusters in inelastic CC interactions involving

the production of A and K° particles (CC A/ K),
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1. EXPERIMENTAL PROCEDURE

The experimental data used were obtained with
the aid of a 2-m propane bubble chamber irradiated
with a beam of protons and nuclei from the syn-
chrophasotron of the Laboratory of High Energies
at the Joint Institute for Nuclear Research (JINR,
Dubna). Here, we would like to highlight the follow-
ing methodological features of the experiment. The
lower detection threshold for protons in the cham-
ber was pj,, &~ 150 MeV/ec. Protons could be dis-
tinguished from 7% mesons by the range and spe-
cific ionization down to momentum values of pj,p &
800 MeV/c. The admixture of 7+ mesons among
positive particles did not exceed 10 to 15%. Accord-
ing to various estimates, the admixture of deuterons
and tritons among slow protons of momentum in the
region pr,, < 800 MeV/c did not exceed 10 to 15%
either [6, 7]. A detailed account of the procedure used
in processing events featuring V' particles was given
in [8].

A Lorentz-invariant method in 4-velocity space
was employed to single out proton clusters among all
inelastic AC interactions. Specifically, we minimized,
in events where the proton multiplicity satisfied the
condition n, > 4, the quantities

Ay =min [y (Va =) = Y (Vs — )], (2)

where V,, and Vj are the centers of the o and 3 clus-
ters [they are defined as the unit 4-vectors V(5 =

> ui/+/ (O u;)? derived from the condition requiring
that the quantity Y b; = — > (V) — us)* be mini-
mal] and

u@ = pfmy, ) = plJmy (3)

1063-7788/04/6704-0703$26.00 © 2004 MAIK “Nauka/Interperiodica”
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Fig. 1. Distribution of proton clusters with respect to
the variable byp in inelastic CC interactions. The line
represents a power-law fit in terms of Eq. (7).

are the 4-vectors of secondary baryons associated
with the o and g clusters, respectively.

Fragments of the target (pjp, < 300 MeV/c) and
the projectile (piap > 3 GeV/e, O < 4) were ex-
cluded from our analysis. In order to find the quantity
As with the aim of isolating two (or one) clusters in
each event where the multiplicity of selected protons
satisfied the condition n,, > 4, all possible partitions
of the particles into two groups were considered. It
was assumed that either two clusters or one cluster
and one positively charged particle were formed in an
event if the spacing b,z between the isolated groups
of baryons in 4-velocity space was not less than unity;
that is,

bap = —(Va — V3)? > 1. (4)

In order to specify the region of cluster formation,
we used the relativistically invariant variables x| and
xy1¢) characterizing the fraction of the 4-momenta of
colliding particles that is carried away by the clusters

a(B)
~my (Vaggyun)
el = ml(ulull) ®)
a(B)
_ M (Va(ﬁ)ul)
el = my(upuy) ®)

For m; and myj, we took the proton mass: m; =
my=mp = 0.931 MeV.

Large values of the variable xy correspond to
the target-fragmentation region, while large values
of the variable xj correspond to the projectile-
fragmentation region. In particular, it was assumed

PHYSICS OF ATOMIC NUCLEI
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that the clusters were formed in the beam-fragmenta-
tion region if xy; > xy. In this study, we explored
clusters in the target-fragmentation region (xy >
Ticl)-

Figure 1 shows the distribution of two clusters
«a and g formed in CC collisions versus the spacing
between the clusters in 4-velocity space (bqs). It can
be seen that, in the region b, > 3, this distribution is
adequately described by the power-law dependence

v _ 2 (7)
dbay BT

with the parameter value of m = 3.72 4+ 0.07, which
agrees with the behavior expected for nucleon clusters
[3]. This universal character of the dependence was
previously observed in experiments reported in [9, 10]
and devoted to studying the distribution of hadron jets
in soft hadron—hadron, hadron—nucleus, and deep-
inelastic v collisions and in e™e™ annihilation. The
parameter value was found to be m =~ 3 and to be
independent of either the interaction type or the in-
teraction energy for all collisions.

2. PROPERTIES OF THE INVARIANT
DISTRIBUTIONS F(b;) OF PROTONS
IN CLUSTERS AND OF THE INVARIANT
DISTRIBUTIONS F(by) OF CLUSTERS
WITH RESPECT TO THE TARGET
NUCLEUS

In order to study the properties of baryon clus-
ters, we analyzed the invariant F'(by) distributions of
protons in these clusters. These distributions can be
represented as

They have the following property: in the cluster
rest system (V,, = 0), the mean value (by) derived
from Eq. (8) is unambiguously related to the mean
kinetic energy of the protons in the cluster as

= (222

where E} and T} are, respectively, the total and the
kinetic energy of the protons in the cluster rest frame.

Thus, one can determine the mean “temperature”
of the protons in the clusters by analyzing the distri-
butions in (8).

In [5] and [10], the dependences F'(by) were in-
vestigated for, respectively, AC and ATa interactions
at pa = 4.2 GeV/c per nucleon. In pC (Ta) and dC
(Ta) collisions, the distributions of protons in clusters

F(b (8)
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Mean features of protons in clusters

Type of interaction Moglee\;l}lém Cluster of type 1 Cluster of type 2
(b1 (Ti)1, MeV (br)2 (Ty)2, MeV
pC 4.2 0.133 + 0.004 62 + 2 — -
dC 4.2A 0.147 + 0.002 67 +1 — -
aC 42A 0.147 + 0.008 67 +1 0.248 + 0.022 118+ 10
cC 42A 0.154 + 0.014 247 0.288 + 0.028 135413
pC 10 0.158 + 0.005 TA£2 — —
CC(mn) 42A — — 0.256 + 0.005 120+ 2
CCA/K 4.2A — — 0.213 4 0.004 100 + 2

Note: mn stands for multinucleonic.

with respect to the variable by, can be described by the
exponential form

F(bk) = alexp(—bk/(bk>1).

The mean values (bg); and the corresponding
mean temperatures are given in the table.

In contrast to what was observed in pC (Ta) and
dC (Ta) collisions, the dependence F'(by) in aC and
CC events is described by a linear combination of two
exponential functions; that is,

F(bg) = arexp(—bg/(bk)1) + a2eXP(—bk/(bk>2()lal)

with the mean values (by)1 and (bg)e differing from
each other by a factor close to 2 (see table). The
results suggest the formation of two types of proton
clusters in aC and CC collisions: clusters of type 1
have the same temperature as those formed in pC (Ta)
and dC (Ta) collisions, while clusters of type 2 have a
higher temperature (see table).

Below, we analyze the dependences F'(by) for
CCA/K events that involve the production of either
a A hyperon or a K meson. The dependences F(by,)
obtained experimentally for such CC interactions are
shown in Fig. 2. From this figure, it can be seen that,
in CCA/K events, the distributions of protons in clus-
ters with respect to the variable by are described by
an exponential dependence similar to that in Eq. (10)
with the mean value of (b;)2 = 0.213 £ 0.004 and the
corresponding temperature (Tj) = 100 + 2 MeV.

Thus, we see that, in contrast to all inelastic CC
interactions, which, as was stated above, involve the
formation of two types of clusters having different
temperatures [5], CCA/K events result in the forma-
tion of predominantly a single type of proton clusters
having a high temperature, this being caused by the
associated production of strange particles.

(10)
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In order to study the features of the formation
of proton clusters accompanied by the production of
strange particles (either a A hyperon or a K meson),
we explored the behavior of the invariant cross section
Ed3c/dp® as a function of the variable by, where
bl = — (Vi — upp)? (here, the index II refers to the
target nucleus). The function F(by) is taken in a
form similar to Eq. (8).

In [5], it was established that clusters formed in
nucleus—nucleus interactions with different temper-
atures are characterized by different distributions (or
spacings in 4-velocity space) with respect to the tar-
get nucleus or by different dependences on the vari-
able by¢|. Below, we display results characterizing the
behavior of the invariant functions F'(byy) for clusters
formed in CCA/K interactions.

It was found that the mean value of the quantity

F(by)

107! 3

T

[ 1 |
0 04 08 12 16
by

Fig. 2. Invariant function F(bs) for protons in clusters

formed in CCA/¥ collisions. The line represents an expo-
nential fit in terms of Eq. (10).
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Fig. 3. Invariant functions F'(z) for protons in clusters formed in () aC, (o) CC, and (A) CCA X interactions.

byl for proton clusters formed in CCMK interactions
is (b)) = 0.58 £ 0.02. Within the experimental er-
rors, this result agrees well with the value that was
obtained previously in [5, 11] for high-temperature
proton clusters formed in «C and CC interactions
({brre;) = 0.51 £ 0.05).

Thus, we can state that nucleon clusters having
different temperatures are characterized by different
spacings with respect to the target nucleus in the
space of relative 4-velocities, this in turn suggest-
ing different degrees of excitation of nuclear matter
in relativistic nuclear interactions. Low-temperature
nucleon clusters formed in «C and CC interactions
are characterized by the mean 4-velocity value of
(br1er) = 0.11—0.14 with respect to the target nucleus,
this being in good agreement with the slope param-
eter (by¢) = 0.14 £ 0.01 of the function F(by) for
nucleon clusters formed in pC collisions. Nucleon
clusters of higher temperature that are formed in aC,
CC and CCA/K interactions are characterized by a
higher 4-velocity with respect to the target nucleus:
{brre1) = 0.5—0.6 [12].

3. PROPERTIES OF THE INVARIANT
DISTRIBUTIONS F(zj) OF PROTONS
IN CLUSTERS
The variable xj, for protons from cluster « is de-
fined as

xy = bgi/bap = Ty, (12)

PHYSICS OF ATOMIC NUCLEI

where bﬁk = —(Vﬁ — u‘,j)2.

For bos > 1, the variable xj, in the rest system of
cluster a (V,, = 0) reduces to the light-cone variable
xy = uf, — ug,. Here, the z axis specifies the direc-
tion of the line connecting the centers of the clusters
Va and Vj in three-dimensional space. It follows that
the dependence of the invariant function F' on the
variable xj means the dependence on the direction of
the segment connecting the centers of the clusters V,
and V. In turn, this means that an isolated system
(cluster) must decay anisotropically in the cluster rest
frame with respect to the above direction.

The invariant function F'(zy) can be represented
in the form
2

Mm% bag

« / 1 dQ2 190
\/xkbaﬁ + (xkba/g)2/4 dxdQ) ’

Figure 3 shows the dependences F'(zy) obtained
experimentally for «C, CC, and CCA/K interactions.
It can be seen that the values of F'(xy) for the inter-
action types being considered agree within the errors;
that is, they are independent of the projectile atomic
weight. Previously, it was found that, in the momen-
tum range 4—40 GeV/c, F(x},) does not depend on
either the projectile atomic weight or the interaction
energy in pC, dC, and 7~ C collisions as well. It

Flay) = (13)
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should be noted that the dependences F(xy) for aC,

CC, and CCA/E interactions are broader than those
for pC and dC collisions. This is a manifestation of
the fact that aC, CC, and CCA/E interactions feature
baryon clusters of temperature higher than that in pC
and dC collisions.

CONCLUSIONS

The set of data on the properties of nucleon clus-
ters in events featuring strange particles that was
obtained in the present experiment and their com-
parison with the results obtained previously for the
properties of nucleon clusters formed in (p, d, o, C)C
interactions at the same energies without accompa-
nying strange particles enable us to draw the follow-
ing conclusions:

(i) Nucleon clusters characterized by a high mean
kinetic energy of protons in the cluster rest system,

(T,) = 100 + 2 MeV, are formed in CCA/X collisions

at a momentum of 4.2 GeV/c (this circumstance was
discovered for the first time).

(ii) The temperature and other features describing
the properties of proton clusters in events involv-
ing strange particles agree, within the errors, with
the respective features obtained previously in study-
ing high-temperature nucleon clusters in strange-
particle-free events induced by aC and CC interac-
tions at the same energies [5].
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Abstract—A phenomenological analysis of the channels of the production of three and four alpha particles
in 160p collisions at 3.25 GeV/c per nucleon is performed for the first time under conditions of 47
geometry. The experimentally observed azimuthal asymmetries and collinearity are described on the basis
of a phenomenological model that assumes that the excitation of the nucleus involved is peripheral and that
its decay is statistical. It is shown that the azimuthal asymmetries in question are due to the transverse
motion of the fragmenting nucleus. The mean transverse momentum of alpha particles and the collinearity
of their emission in the reaction plane are found to be independent of the transverse-momentum transfer to
the nucleus involved. © 2004 MAIK “Nauka/Interperiodica”.

INTRODUCTION

For '6Op interactions at 3.25 GeV/c per nucleon,
an analysis of the angular distributions of slow (7" <
10 MeV per nucleon) light fragments—2Hy, 3Hy, and
3Hey,—from these interactions in the rest frame of
the oxygen nucleus [1] revealed that their inclusive
cross sections increase in the limit | cos @] — 1. This
effect was interpreted on the basis of the assumption
that the fragmenting nucleus acquires an angular
momentum in the interaction with a target. In[2], an-
gular asymmetries and collinearities were observed in
the channels of the production of two and three alpha
particles in "2 CEm interactions at 4.5 GeV/c per nu-
cleon. This experimental fact and the discrepancy be-
tween the experimental transverse-momentum spec-
trum of alpha particles and the predictions of the sta-
tistical fragmentation model [3] were qualitatively in-
terpreted under the assumption that the fragmenting
nucleus acquires a transverse momentum,®) which
was used as a free parameter in the calculations per-
formed in [2], and, possibly, an angular momentum,
which was not taken into account in [2]. In order to
test an alternative physical pattern that could provide
a quantitative explanation, we therefore performed

DJoint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.

Dlnstitute of Nuclear Physics, Uzbek Academy of Sciences,
pos. Ulughbek, Tashkent, 702132 Republic of Uzbekistan.
“e-mail: olimov@uzsci.net

HWithin the phenomenological
model.

cylindrical-phase-space

experimental investigations, whose results were con-
trasted against the results of the respective original
Monte Carlo calculation that differed from the cal-
culation in [2]. The main distinctions consist in the
following: the law of energy—momentum conserva-
tion is taken into account in each event to a relative
precision of 1076 (see Appendix); events are gener-
ated in accordance with the experimental probability
of each exclusive channel (with the exception of that
which involves pions) of the breakup of the primary
nucleus; the components of the momentum transfer
to the fragmenting nucleus from the target proton are
generated in accordance with the Gaussian distribu-
tion; and, finally, the probability for the generation of
collinearity of the momentum vectors of two alpha
particles is taken into account in terms of a free model
parameter (see Appendix).

We have investigated the coefficients of azimuthal
asymmetry and collinearity,

A= (Necrj2 = Nesny2)/No<e<n, (1)

B = (Necr/a + Nessr/a — Ny ja<e<sn/a)/No<e<n
(2)

of the inclusive distribution with respect to the pair
azimuthal angle

gij = arccos[(p ; - pJ_j)/(pJ_’ipJ_j)]

between the transverse-momentum vectors of the ith
and the jth alpha particle from the same fragmen-
tation event (0 < e;; < ). We have also studied the

1063-7788/04/6704-0708$26.00 © 2004 MAIK “Nauka/Interperiodica”
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mean values of the coefficients of azimuthal asymme-
try and collinearity in individual 'Op events,

N
(@) = au/N. (3)
k=1
ap = Zcos(sij)/(nk(nk — 1),
i#]
N
(B)=>_B/N, (4)
k=1
B =Y cos(2ei;)/ (n(niy — 1))'/2,
i#]

where £ =1,2,... N and N is the number of events
where the multiplicity of alpha particles belonging to
the type being considered is ny = 3 or 4.

Before proceeding to describe relevant experimen-
tal data and the physical foundations of our Monte
Carlo calculation and to analyze the results obtained
for the features of the fragmentation process that are
being studied here, we will briefly list some basic
properties of the quantities defined in (1)—(4) [4].

(i) If the emission of alpha particles is statistically
independent and if their angular spectrum is isotropic,
it is natural to expect that A, B, («), and () assume
zero values and that the distribution with respect to
€i; is uniform in the interval [0, ].

(ii) Upon taking into account the law of energy—

momentum conservation, it turns out that A < 0,
(a) <0, B> 0, and(3) > 0. Concurrently, the dis-
tribution with respect to €;; develops a maximum for
€y — T.
(iii) A nonzero angular momentum of a fragment-
ing nucleus may lead to an increase in B and (f3)
in relation to their “kinematical input” values corre-
sponding to taking into account conservation laws for
the transverse motion of a disintegrating system.

The experimental data used were obtained by ex-
posing the 1-m hydrogen bubble chamber of the Lab-
oratory for High Energies (Joint Institute for Nuclear
Research, Dubna) to a beam of 16O nuclei accelerated
at the Dubna synchrophasotron to a momentum of
3.25 GeV/c per nucleon. The data sample subjected
to analysis in the present study consists of 11098
measured events of 'Op interactions. It should be
emphasized that the use of beams of accelerated light
nuclei in experiments with hydrogen bubble cham-
bers makes it possible to identify all projectile frag-
ments [5—7] by charge and mass. Under the con-
ditions of our experiment, recoil protons are rather
well identified by ionization up to momenta of about
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1.2 GeV/c. The admixture of positively charged pions
among singly charged positive particles of momen-
tum in the region P > 1.75 GeV/c (low boundary for
the separation of protons appearing as fragmentation
products) is negligible.

We have considered fully measured events that
involve three or four alpha particles in the final state.
For a fragment to be reliably identified by mass, its
measured-track length L must exceed 35 cm. If this
constraint is imposed on the measured-track lengths,
the accuracies in determining the fragment momenta
and emission angles are within 4% (relative error)
and 0.1°, respectively. The channels being considered
involve the production of singly and doubly charged
fragments whose mass number satisfies the condi-
tion A < 4. The mass separation of fragments was
performed on the basis of the measured values of
the respective momentum and charge. The momen-
tum distributions of singly and doubly charged frag-
ments have distinct maxima [5] at the values of P =
3.25 A GeV/c corresponding to hydrogen and helium
isotopes. In order to perform an eventual identifica-
tion of fragments by mass, we introduced the follow-
ing momentum intervals: singly charged fragments
of momentum in the regions P = 1.75—4.75 GeV/e,
P =4.75—-7.8 GeV/c,and P > 7.8 GeV/c were clas-
sified as 'H, 2H, and 3H, respectively, while doubly
charged fragments of momentum in the regions P <
10.8 GeV/cand P > 10.8 GeV/c were treated as 3He
and “He, respectively. For this choice of momentum
intervals for fragment separation, the admixture of
isotopes that have the closest mass values does not
exceed 4 to 5%.

EXPERIMENTAL RESULTS AND THEIR
DISCUSSION

Events featuring peripheral projectile—target in-
teractions, in which case the intranuclear-cascade
contribution can be disregarded, provide favorable
conditions for studying the structure of the pri-
mary nucleus and for assessing the transverse- and
angular-momentum transfers to this nucleus. As was
mentioned above, we therefore study the coefficients
of azimuthal asymmetry (A) and collinearity (B), o
and Gy, distributions in individual events, distributions
with respect to the difference of the azimuthal angles
of pairs of alpha particles, and transverse-momentum
distributions of alpha particles from **Op interactions
for channels involving three or four alpha particles in
the final state. The number of events in which three
or four alpha particles were present and in which the
kinematical features were measured for all charged
particles and fragments whose tracks had a length
satisfying the condition L > 35 cm proved to be 431.
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Fig. 1. Distribution with respect to the pair azimuthal
angle (e45) between the momenta of the ith and jth
alpha particles. The histograms represent the results of
the calculations performed on the basis of our Monte
Carlo model (solid-line histogram) with and (dashed-
line histogram) without allowance for the collinearity of
the momentum vectors of the alpha particles forming the
pair in question, the mean transverse momentum of the
fragmenting nucleus being (P.) = 0.24 GeV/c.

Figure | displays the distribution with respect to
the pair azimuthal angle (g;;) between the momenta
of the ith and jth alpha particles. As can be seen from
Fig. 1, the distribution with respect to the quantity
ei; is not isotropic—this distribution has a maximum
in the region of small angles (e;; < 10°), but, within
the statistical uncertainties, it becomes isotropic at
larger angles. The peak in the region ¢;; < 10° may
be indicative of the presence of collinear correlations
between the momenta in a pair of alpha particles.
In order to test this assumption, we introduced, as
a free parameter in our Monte Carlo calculations,
the probability for the emergence of events featuring
collinear momentum vectors in alpha-particle pairs
(see Appendix).

For the case where the mean transverse momen-
tum of the recoil nucleus is (P, ) = 0.24 GeV/c (the
choice of this value is discussed below), the his-
tograms in Fig. | represent the results of the calcu-
lations based on our Monte Carlo model that either
(solid-line histogram) take into account or (dashed-
line histogram) disregard the collinearity of the mo-
mentum vectors in the alpha-particle pair being con-
sidered. It can be seen that, in the case where the
collinearity in question is disregarded, the results of
the calculations disagree dramatically with experi-
mental data for g;; < 10°. On the other hand, the
best agreement between theoretical and experimen-
tal results is observed at the collinearity-emergence
probability of 20% (solid-line histogram).
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Fig. 2. Transverse-momentum distribution of alpha par-
ticles. The histograms represent the results of the cal-
culations for the cases where the mean transverse mo-
mentum of the fragmenting nucleus is set to (solid-line

histogram) 0.24 GeV/c or (dashed-line histogram) zero.

The values obtained for the coefficients of az-
imuthal asymmetry and collinearity on the basis of
experimental &;; distributions are A = 0.10 £ 0.03
and B = 0.12 £+ 0.03. The values calculated for these
quantities with allowance for collinearity proved to
be in agreement with their experimental counter-
parts within the statistical uncertainties: A = 0.09 +
0.03 and B =0.13 +£0.03. Without allowance for
collinearity, these coefficients proved to be compatible
with zero within the statistical uncertainties: A =
—0.03 £ 0.03 and B = 0.02 = 0.03. In the following,
a comparison of the results of model calculations with
experimental data is performed with allowance for
collinearity at a 20% level.

Figure 2 displays the transverse-momentum dis-
tribution of alpha particles. In this figure, the his-
tograms represent the results of the respective cal-
culations where the mean transverse momentum of
the fragmenting nucleus was set either to (solid-
line histogram) 0.24 GeV/c or to (dashed-line his-
togram) zero. It can be seen that the shape of
the calculated transverse-momentum distribution
depends only slightly on the transverse momentum
of the fragmenting nucleus. At (P, ) = 0.24 GeV/c,
the mean value of the transverse momenta of al-
pha particles that was calculated within our model
(0.165 4 0.001 GeV/c) agrees with its experimental
counterpart (0.166 & 0.004 GeV/c) within the sta-
tistical uncertainties. In response to the reduction of
the mean transverse momentum of the fragmenting
nucleus from (P, ) = 0.24 GeV/c to zero, the mean
transverse momentum of alpha particles decreases
only by 7 MeV/c. In view of this, the mean transverse
momentum of the fragmenting nucleus was assessed
not only by using the calculated values of the mean
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transverse momentum of alpha particles but also by
fitting the theoretical ay, and gy distributions to their
experimental counterparts.

Figures 3a and 3b show the experimental «; and
By, distributions in individual events of *Op interac-
tions. The respective mean values proved to be (a) =
0.12 £ 0.03 and () = 0.13 + 0.03.

These data suggest the existence of an azimuthal
asymmetry in alpha-particle emission and a trend
toward a collinearity of the transverse momenta of
emitted alpha particles in the plane orthogonal to the
beam axis. The collinearity observed in our experi-
ment may be due to a nonzero angular momentum of
the thermalized excited nucleus undergoing breakup.

In Figs. 3a and 3b, the histograms represent the
calculated distributions with respect to «ay and [
for the cases where the mean transverse momentum
of the fragmenting nucleus is (solid-line histograms)
0.24 GeV/c or (dashed-line histograms) zero. From
Fig. 3, it can be seen that, in either case, the calcu-
lated distributions with respect to «y and [y repro-
duce their experimental counterparts quite satisfac-
torily.

However, the mean value for the calculated distri-
bution with respect to oy, at (P,) = 0 proved to be
0.00 £ 0.03, which is compatible with the absence of
asymmetry; at the same time, the analogous mean
value for (P ) = 0.24 GeV/cis 0.12 £ 0.03, which is
indicative of a small azimuthal asymmetry complying
with the experimental value.

Figure 3b shows that the calculated distribution
with respect to [y is virtually independent of the
transverse momentum of the fragmenting nucleus.
The mean value for the calculated distribution with
respect to B proved to be 0.10 £ 0.03 for (P,) =0
and 0.13 £0.03 for (P.) = 0.24 GeV/c, this indi-
cating the presence of a small azimuthal collinearity,
which is in agreement with its experimental counter-
part.

The above experimental data were also compared
with the predictions of the cascade—fragmentation—
evaporation model [8], where use is made of the
intranuclear-cascade model [9, 10] combined with
a modification of the Fermi statistical model for
multiparticle production[11]. In this combined model,
it is assumed that the fragmenting nucleus consists
of a perfect Fermi gas. Upon the propagation of
the intranuclear cascade, a statistical equilibrium is
established in the nucleus, so that the probability of
each channel is proportional to the respective phase
space. For the light nucleus of 1O, Fermi breakup—
that is, an explosive disintegration of the nucleus—
is assumed within the model in question to be a
dominant mechanism of fragment formation. The
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Fig. 3. Distributions with respect to (a) ax and (b) Bk
in individual events of 8Op interactions. The histograms
represent the results of the respective calculations for the
cases where the mean transverse momentum of the frag-

menting nucleus is (solid-line histograms) 0.24 GeV/cor
(dashed-line histograms) zero.

basic results obtained from a comparison of exper-
imental data with the predictions of the cascade—
fragmentation—evaporation model are the following:

(a) The model cannot reproduce quantitatively ei-
ther the above distributions of particles and events
with respect to the quantities ;;, oy, B¢, and P
or the mean values (), (), and (P ). It underesti-
mates the azimuthal asymmetry ({«) = 0.01 & 0.02)
and overestimates the azimuthal collinearity by a fac-
tor of 3 (() = 0.39+£0.03). The model underesti-
mates the mean transverse momentum of alpha par-
ticles ((P.) = 0.153 £ 0.003 GeV/c); concurrently,
the theoretical transverse-momentum distribution of
alpha particles terminates at P; < 0.5 GeV/c, while
the experimental distribution extends to 1 GeV/c.

(b) Within the model, the cross sections for chan-

nels involving the production of three or four alpha
particles are suppressed by a factor greater than 2.5.
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The results of a phenomenological analysis of the
channels of "Op interaction at 3.25 GeV/c per nu-
cleon that result in the production of three or four
alpha particles can be briefly summarized as follows:

(i) The experimentally observed small azimuthal
anisotropy of alpha-particle emission in the plane
orthogonal to the beam axis is due to the transverse
motion of the fragmenting nucleus, the mean trans-
verse momentum acquired by the fragmenting nu-
cleus being (PL) = 0.24 GeV/c. In contrast to what
was obtained from the calculations reported in [2], this
transverse momentum has virtually no effect on the
mean transverse momentum of emitted alpha parti-
cles.

(ii) The angular momentum acquired by the frag-
menting nucleus is low, and it does not make a signif-
icant contribution to the experimentally observed az-
imuthal collinearity in the production of three or four
alpha particles. This is suggested by the agreement
between the results of our Monte Carlo calculations,
where the fragmenting nucleus is assumed to have no
angular momentum, and experimental data.

(iii) The evaporation process is dominant, while
the intranuclear cascade is suppressed, which is in-
dicative of a peripheral character of the exclusive (with
respect to fragments) channels of the production of
three and four alpha particles.

APPENDIX

Simulation of the Exclusive (with Respect
to Fragments) Channels of the Breakup
of Relativistic Oxygen Nuclei into Three

or Four Alpha Particles

It was assumed that, for events considered here, all
collisions between oxygen nuclei and protons are pe-
ripheral, an excited oxygen nucleus decaying isotrop-
ically in its rest frame into fragments. The genera-
tion of events was performed in accordance with the
probabilities of the experimentally observed exclu-
sive (with respect to fragments) channels of oxygen-
nucleus breakup that involve three or four alpha par-
ticles. The kinematical features of neutrons were as-
sumed to be identical to those of protons.

Following the assumption that the interactions in
question are peripheral, we proceeded as follows:

(i) The generation of the excited-oxygen-nucleus
mass M* was performed according to the formula

n
M* =" M;+ A,
=1

where M; stands for the fragment masses, A is a free
parameter that is related to the excitation energy, and
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r is a pseudorandom number that is uniformly dis-
tributed over the segment [0, 1]. The best agreement
between the results of the calculations and experi-
mental data was attained at A = 0.3.

(ii) The generation of all three components of the
160* momentum in the rest frame of the primary
nucleus was performed according to a Gaussian
distribution that is characterized by the root-mean-
square deviation oy, = v*(2/7)%° [GeV/c], where y
is a free parameter that takes into account the mean
transverse momentum acquired by the fragmenting
nucleus. The best agreement between the results of
the calculations and experimental data is obtained at
v =0.24 GeV/ec.

Following the assumption that the breakup of an
excited fragmenting nucleus is isotropic in its rest
frame, we further generate all three components of the
momentum of each fragment according to a Gaussian
distribution such that the respective root-mean-
square deviation is oj,e = (P1)(2/m)%% [GeV/c],
where (P, ) is the experimental value of the mean
transverse momentum of a fragment that belongs to
a given type.

In order to take into account the collinearity of
the momentum vectors in a pair of alpha particles,
we introduce, as an additional model parameter, the
collinearity of a pair of alpha particles in each event
with a probability of 20%, this parameter being de-
termined by fitting the calculated e;; distribution to
its experimental counterpart (see Fig. 1). The specific
procedure used here for this was as follows: after the
generation of the components of the momentum of
one alpha particle in a pair, the components of the
momentum of the other alpha particle were generated
within a range that admitted not more than a 4% dis-
tinction from the components of the momentum of the
first alpha particle, the difference of the components
of the momenta of the two particles being generated
uniformly within the mean relative error.

In order to ensure fulfillment of the momentum-
conservation law, all three momentum components
were subjected to the shift

Pm‘—>P;m'_(Px1+Px2+Px3+~~+Pztn)/nv
Py — Py — (Pp+Pp+Pp+...+ Py)/n,

PZZ—>PzZ—(PZ1+P22+Pz3++Pzn)/na

where i = 1,2,3,...,n and n is the number of frag-
ments in a given event. Additionally, we required that,
in the rest frame of the recoil nucleus, the energy-
conservation law be satisfied to the following accu-
racy:

[(Ey + Es
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+ B3+ ...+ Ep — Myya)*/(Mpue) 2 < 1076

Here, E; = (m? + (P.;)* + (Pg//i)Q + (P,)?)%5 is the
energy of the ith fragment; m; is the mass of the
ith fragment; and P), = o Py, P;i = aPy;, and P}, =
aP,; are the new components of the momentum of the
ith fragment that were obtained after multiplication
by the coefficient o, whose value was chosen in such
a way as to ensure fulfillment of the condition required
for the energy-conservation law to be satisfied.

Further, the components of the momenta of frag-
ments and their energies were transformed from the
excited-oxygen-nucleus rest frame K to the rest
frame Ky of the primary target proton. These two
reference frames are related to each other as follows.
In the reference frame Ky, we rotate the z¢ axis
in such a way that it becomes aligned with the 3-
momentum Pg of the excited oxygen nucleus and
denote this new axis by z’. We refer to the resulting
reference frame as K’. In this reference frame, we
choose the 3/ axis to be directed along the vector
product [z x zg]. Suppose that the reference frame K’
moves along the 2’ axis at the velocity 8 = Py/Ey,
where Ey and P are, respectively, the energy and the
3-momentum of the excited oxygen nucleus in the
reference frame K. The excited-nucleus rest frame
constructed in this way will be referred to as the
reference frame K.

The components of the momentum of each ith
fragment and its energy in the reference frames K’
and K are related by the equations

Pg,cz:szu P'q;i:Pyia
P =4(P.i + BE;), E'=~(Ei+ BPz),
where y = Ey/M*, 3 = |Pg|/E°, and M* is the mass
of the excited oxygen nucleus. After transforming
the fragment-momentum components and fragment
energies from the reference frame K to the reference
frame K’, the momentum components were trans-

formed from the reference frame K’ to the rest frame
K of the primary target proton by using the formulas

0 __ / /A T
Py = =Py cosfcosp — P sinp — P,;sinf cos g,

Pyoi = —P/.cosfsinp + P;i cos p — P.,; sin §sin ¢,
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0 _ /. / .
P;;=—P,;sin — P, cos0, i=12,...,n,

where n is the number of fragments in an event and

cosf = — 20/(P20 + P;O + P30)0'5,

sinf = (1 — (cos#,)?)%5,

cos p = —Pyo /(P2 + Py20)0'5,
sing = —Pyo/(PZ + Py20)0'5'

Here, Py, Pyo, and P,q are the components of the
momentum of the excited oxygen nucleus in the rest
frame K of the primary target proton.
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Abstract—The momentum features of protons originating as fragments from '6Op interactions at
3.25 GeV/c per nucleon are analyzed for the first time under conditions of 47 geometry. It is found that
the mechanisms of the production of all protons traveling in the forward direction in the rest frame of
the fragmenting nucleus (with the exception of evaporated protons) do not depend on either the primary
energy or the target-nucleus type, this regularity being quite universal for the formation of such protons.
[t is shown that there is a strong correlation between the shape of the momentum spectrum of protons
appearing as fragments from such interactions, especially slow protons, and the degree of the excitation of

the fragmenting nucleus. © 2004 MAIK “Nauka/Interperiodica”.

INTRODUCTION

According to present-day theoretical concepts,
the formation of the lightest nuclear fragments (nu-
cleons) may occur at all stages of high-energy
hadron—nucleus interactions, including an intranu-
clear cascade, the decay of excited multinucleon
fragments, evaporation of an excited nucleus, and the
explosive breakup (Fermi breakup) of a thermalized
residual nucleus. The interaction of primary parti-
cles with intranuclear systems, where the spacings
between nucleons are very small (about or less than
| fm), may in principle lead to the formation of so-
called cumulative nucleons—that is, nucleons having
momenta that are forbidden by the conventional kine-
matics of particle scattering on a free nucleon. Reac-
tions involving the absorption of slow product pions
or slow resonances by few-nucleon systems may be
among mechanisms responsible for the production
of relatively energetic nucleons. Such reactions may
also lead to the production of cumulative protons
if the energy of the absorbed pion or resonance is
sufficiently high for this.

[t is well known that the inclusive cross section
for proton production in hadron—nucleus collisions is
commensurate with the inelastic reaction cross sec-
tion and that the majority of protons from such col-
lisions are formed at the initial stage of the reaction,
carrying primary information about the dynamics of
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the process. Since it is rather easy to identify sec-
ondary protons experimentally and to measure their
kinematical features, investigations in these realms
resulted in accumulating a vast body of data on their
inclusive yield in hadron—nucleus collisions at in-
termediate and high energies and in establishing a
number of physical regularities of their production. In
particular, it was shown that, at primary momenta
in the region Py >4 GeV/c, the multiplicity distri-
bution of protons is independent of primary energy
(see, for example, [1—3]) and that their mean mul-
tiplicity (n,) is weakly dependent on the primary-
particle type and, naturally, on the mass number of
the target nucleus [4], the A dependence of (n,)
varying with the proton momentum. The multiplicity
distribution of protons having momenta in the region
P > 0.2 GeV/c is satisfactorily described on the ba-
sis of a model that assumes that protons formed in
hadron—nucleus collisions are products of indepen-
dent knockout in the rescattering of primary and sec-
ondary particles [5—7]. The invariant structure func-
tion for protons (including slow, so-called evaporated,
protons)is satisfactorily described in terms of a three-
exponential dependence [6], this being so both in the
case where the kinetic energy is taken for the argu-
ment of this function, f(7'), and in the case where the
square of the total momentum appears as its argu-
ment, f(P?). The spectrum f(7T') for protons having
momenta in the region P > 0.2 GeV/c and traveling
within a rather narrow angular interval is satisfacto-
rily described by one exponential function, the slope
parameter, which is independent of primary energy,
being a function of the proton-emission angle [8].
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The majority of the aforementioned and other reg-
ularities of the formation of protons (including cumu-
lative protons) were obtained by using an electronic
procedure, predominantly in a narrow solid angle of
proton emission, this constraining the range of useful
information about the dynamics of the process being
considered. The remaining data come from tracking
instruments used in fixed-target experiments, the im-
possibility of recording slow (P < 120—140 MeV/c)
and identifying fast (P > 750—1250 MeV/c) protons
being a serious drawback of such methods. In view
of this, it would be of great interest to obtain new
experimental data where all charged particles (in-
cluding slow and, to the maximum possible degree,
fast protons) and nuclear fragments would be reliably
identified under conditions of 47 geometry. In this
respect, the conditions are the most favorable if a
nucleus is taken for a projectile, while a nucleon is
taken for a target.

The present study is devoted to exploring the yield
of protons in 1%Op interactions at a momentum of
3.25 GeV/c per projectile nucleon. The experimental
data used were obtained by exposing the 1-m hy-
drogen bubble chamber of the Laboratory for High
Energies at the Joint Institute for Nuclear Research
(JINR, Dubna) to relativistic 60 nuclei accelerated
at the Dubna synchrophasotron. The data sample
subjected to analysis consisted of 11098 measured
160p events. The homogeneity of the sample and
a low density of the working liquid in the chamber
made it possible to identify the charges of all sec-
ondary particles and fragments unambiguously and
to measure their momenta to a high precision. Since
the accuracy in determining the kinematical features
of fragments depends on the length L of the mea-
sured tracks, we will include in our analysis those
protons appearing as fragments for which L > 35 cm.
For such protons, the mean relative error in deter-
mining their momenta does not exceed 3.5%. The
distribution of singly charged fragments with respect
to x = 1/P has three maxima corresponding to the
hydrogen isotopes 'H, 2H, and 3H [9]. Positively
charged particles of momentum in the range P =
1.75—4.75 GeV/c were identified as protons. For this
separation, the admixture of positively charged pions
and deuterons among particles that we identified as
protons appearing as fragments did not exceed 3 to
49%. Other methodological aspects of our experiment
are described in [9—11]. In the following, the mo-
mentum and energy features of protons treated as
fragments are given in the antilaboratory reference
frame—that is, in the reference frame comoving with
the oxygen nucleus.
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Fig. 1. Momentum distributions of protons from ¢Op
interactions: (a) distributions for (histogram) all protons,
(closed circles) protons traveling in the forward direc-
tion, and (open circles) protons traveling in the backward
direction; (b) distributions for protons from four groups
of events (the numbers of the groups are indicated by
Roman numerals above each spectrum). Lines are drawn
for the clarity of the presentation.

EXPERIMENTAL DATA AND THEIR
DISCUSSION

In analyzing the spectra of the kinematical fea-
tures of protons appearing as nuclear fragments, use
is usually made of their distribution with respect to
the kinetic energy T'. In order to study the structural
features of the spectra in the region of low T, it is
more convenient, however, to represent data in the
form of the distribution of protons with respect to the
momentum P. The experimental semi-inclusive mo-



716

mentum spectra that we obtained for protons emitted
into the forward and the backward hemisphere are
displayed in Fig. la. In this figure, the histogram
represents the momentum distribution for all protons.

[t can be seen that, irrespective of the proton-
emission direction, the spectra have maxima in the
vicinity of the point P ~ 80 MeV/c and a distinct
peak in the interval P = 50—150 MeV/c, which cor-
responds to the kinetic-energy range T' = 5—20 MeV.
This range of kinetic energies is peculiar to pro-
tons appearing as fragments emitted by an inter-
mediate excited nucleus. In separating the mecha-
nisms responsible for proton production in hadron—
nucleus and nucleus—nucleus collisions at high ener-
gies, such protons are usually classified as evaporated
protons or products of Fermi breakup. It should be
emphasized, however, that, in studying the emission
of light fragments in 'Op interactions, it was previ-
ously shown in[12] that the Fermi breakup model [13]
is unable to describe the spectrum of protons in the
region T' < 50 MeV, especially underestimating the
yield of slow protons (7" < 10 MeV).

The momentum spectrum of protons emitted
into the forward hemisphere is rather hard and has
a shoulder in the momentum interval P = 250—
500 MeV /c; at the same time, the spectrum of protons
emitted into the backward hemisphere decreases
monotonically in this region. Possibly, this effect is
due to a significant distinction between the mech-
anisms responsible for the production of protons
traveling in the forward and in the backward direction.
The main contribution to the yield of fast protons
emitted into the forward hemisphere comes from
intranuclear-cascade processes, which, however,
contribute only slightly to the formation of protons
emitted into the backward hemisphere. Relatively
fast protons emitted into the backward hemisphere,
which are referred to as cumulative protons, may
be produced, in particular, in the decay of a two-
nucleon system in a nucleus via the absorption of a
slow pion by this system. The contributions of the
evaporation mechanism to the yields of forward and
backward produced protons may be considered to be
identical [14].

The yield of evaporated particles depends on the
mass number of the primary nucleus and on the de-
gree to which it disintegrates. The total charge of
multiply charged (multinucleon) fragments may serve
as a measure of the degree to which the primary
nucleus disintegrates. In this connection, the shape of
the momentum spectrum of protons may be expected
to be correlated with the total charge of multiply
charged fragments (Z > 2), and this can measure the
degree to which the primary nucleus disintegrates.
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In order to perform such an analysis, the set of rel-
evant events was broken down into four groups, the
results obtained via this partition being displayed in
Fig. 16, where the Roman numerals I, II, III, and
IV correspond to events in which the total charge
of multiply charged fragments is less than or equal
to 3, 4 and 5, 6, and 7, respectively. For the data to
be conveniently arranged within the same panel, the
numbers of events in groups [—III were multiplied by
factors that are indicated on the respective spectra in
Fig. 1b.

Figure 10 shows that there are distinct correla-
tions between the shape of the proton momentum
spectrum, especially in the region P < 250 MeV/c,
and the total charge of multiply charged fragments in
the final state. For groups I and I, one cannot notice
a clear-cut peak in the vicinity of the maximum of the
distribution, but such a peak begins to manifest itself
for group 11, albeit rather slightly. Clear-cut maxima
are observed in groups Il and [V, the respective peaks
in the spectra being quite distinct. The absence of a
peak at low momenta for groups I and II may also be
due to the dominant contribution of protons formed
owing to the intranuclear cascading of the primary
particle and secondary particles. Thus, one can state
that the shape of the proton momentum spectrum
depends, especially for protons of momentum in the
region P < 250 MeV/c, on the degree of the excita-
tion of the fragmenting nucleus.

In the momentum spectrum of protons from
groups III and 1V, there is a distinct shoulder in the
range P = 250—500 MeV/c, a structure similar to
that which was observed in the spectrum of forward
emitted protons. A similar behavior of the proton
momentum spectrum was previously observed in
712C interactions at 4, 5, and 40 GeV/c[15—19]; in
n'2C interactions at 7 GeV/c[19]; in p?°Ne collisions
at 300 GeV/c [6]; and in some other cases [20, 21].
This phenomenon, which shows a trend toward a
stronger manifestation for relatively light nuclei [22],
is caused by the presence of short-range correlations
between intranuclear nucleons [20, 23]. In principle,
one cannot rule out the possibility that the structure
observed in the proton momentum spectrum is due,
as was indicated above, to the absorption of slow
pions or slow resonances by few-nucleon systems

featuring short-range internucleon correlations [24—
26].

For all protons in Fig. 2a and for protons emitted
into the forward and the backward hemisphere in
Fig. 2b, we display the invariant structure function
f(p) = (E/ow)d3c/dp? versus the proton momen-
tum. The solid curves represent the results obtained
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by approximating our experimental data by the func-
tion

f(p) = a1 exp(=bip?) (1)
+ ag exp(—bop?) + az exp(—bsp?).

The dashed curves in Fig. 2a correspond to the con-
tributions of each individual term in expression (1).
[t can be seen that the function f(p) for protons
is satisfactorily described by the function in (1), the
fitted values of the parameters in (1) being given in
the table, along with the respective data from [6] for
p?%Ne interactions at 300 GeV/e.

By using the fitted parameter values from the table,
we have determined the proton fractions described by
each of the three terms in (1) for Op interactions.
The results proved to be 27.4 £ 0.5, 32.0 £ 0.6, and
40.6 + 0.7%. It follows that, in simulating nuclear-
fragmentation processes, the evaporation mechanism
of nucleon formation cannot be disregarded even for
nuclei as light as 60.

From the data presented in the table, we can see
the following:

(i) The slope parameter by is much greater for 16Op
than for p?°Ne interactions. In all probability, this is
because of different conditions of slow-neutron de-
tection in a hydrogen and in a neon—hydrogen bubble
chamber.

(ii) The value of the slope parameter b; for pro-
tons emitted into the backward hemisphere is ap-
proximately 1.3 times as great as that for protons
emitted into the forward hemisphere. The reliability
of the values obtained for the slope parameters b; is
suggested by the fact that, in response to the change
in the proton momentum from P ~ 25 MeV/cto P =
250 MeV/c, the value of the first exponential term
in expression (1) changes by nearly four orders of
magnitude.

(iii) For protons emitted into the forward hemi-
sphere, the value of the slope parameter by in 0p
interactions agrees within the statistical errors with
that for p?*Ne interactions.

(iv) Also, the values of the slope parameter b3 for
protons emitted into the forward hemisphere in the
above two types of interactions comply within the
statistical errors.

[t should be noted that, for protons emitted
into the forward hemisphere in p'2C interactions at
4.2 GeV/c [27], the approximation of the structure
function f(p) by expression (1) leads to the value of
by = 10.06 4 0.99 (GeV/c)~2 for the second slope pa-
rameter, this being in agreement within the statistical
errors with the respective values for *Op and p?°Ne
interactions (see table). Unfortunately, we cannot
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Fig. 2. Invariant structure function for protons versus
momentum in **Op interactions for (a) all protons and
(b) protons emitted at angles (closed circles) 0° < 8, <
90° and (closed triangles) 90° < 6,, < 180°. The solid
curves represent the results obtained by fitting the three-
exponential form in (1) to the data, while the dashed
curves /=3 correspond to the individual contributions of
the exponential terms in expression (1).

compare the value of the third slope parameter with
our data, since protons of momentum in the region
P > 750 MeV/c could not be identified in the exper-
iment reported in [27]. These results are compatible
with the experimental data of Bayukov et al. [8],
who studied the invariant structure function f(T)



718

BAZAROV et al.

Fitted values of the parameters in the approximation (1) of the invariant structure function for protons originating from
160p interactions at 3.25 GeV/c per nucleon and p?°Ne collisions at 300 GeV/c[6]

Interaction type
Parameters 60p p*°Ne
All protons |Forward emitted protons|Backward emitted protons| All protons |Forward emitted protons
ay 94.46 £+ 3.47 45.29 £ 2.17 49.45 + 2.88 50.11 £+ 2.44 20.53 £ 1.63
b1 126.1 + 3.8 111.9+ 4.1 149.7+ 8.4 56.66 £ 2.61 49.19 +4.29
az 4.55£0.30 1.80 £0.13 3.224+0.46 4.21+£0.42 1.934+0.43
by 14.57£0.91 9.83 £0.99 24.34£3.91 10.39 £ 0.92 10.19 £ 241
as 0.84 £+ 0.07 0.56 £+ 0.09 0.54+0.24 0.65+0.11 0.77+£0.15
bs 3.71+£0.12 3.28 £0.19 8.78 +1.23 3.12+£0.18 3.30£0.19
x?/NDF 1.35 1.12 0.72 1.41 1.01

for fast protons (7" > 70 MeV) emitted at various
angles in proton interactions with various nuclei (of
mass number ranging between A =6 and A = 124)
at 7.5 GeV/c. It turned out that, at a fixed proton
emission angle, the invariant structure function f(7')
is satisfactorily described by a single exponential, the
respective slope parameter being independent of the
mass number of the fragmenting nucleus within the
statistical errors.

Thus, we can conclude that the mechanism re-
sponsible for the formation of fast protons (especially
of those that are emitted into the forward hemisphere)
is universal—that is, it does not depend on either the
primary energy or the fragmenting-nucleus type.
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Abstract—It is shown that a parametric resonance may arise in neutrino oscillations in varying electro-
magnetic fields. For two types of electromagnetic fields—an amplitude-modulated electromagnetic wave
and a transverse magnetic field that is constant in time, but which has an amplitude periodically varying in
space—the probabilities of the v; < v; neutrino transitions are found, and it is shown that the probability
amplitudes increase with time for a specific choice of the parameters of external electromagnetic fields.
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INTRODUCTION

Since the theoretical prediction of the possibility of
neutrino oscillations in 1958 [1], numerous attempts
have been made to discover this phenomenon. De-
spite considerable advances in clarifying the problem
of solar and atmospheric neutrinos (see, for example,
the article of Bilenky [2], who considered the present-
day status of the problem of neutrino mixing and
oscillations), there is still no unambiguous corrobo-
ration of the existence of neutrino oscillations.

[t is well known that, along with the Mikheev—
Smirnov—Wolfenstein effect [3, 4] (and the analog of
this effect for the case of spin—flavor neutrino oscil-
lations [5, 6]), there can exist another mechanism of
the enhancement of neutrino oscillations, that which
is based on the parametric-resonance phenomenon
[7—15].

[t should be noted that the aforementioned mech-
anisms of the enhancement of neutrino oscillations
differ from each other drastically. In the case of the
Mikheev—Smirnov—Wolfenstein effect, the enhance-
ment of the amplitude of neutrino oscillations is due
to a specific choice of the parameters that describe
neutrinos and external conditions (for example, mat-
ter density). It should be emphasized that these pa-
rameters are assumed to be constant—or at least
slightly varying—along the neutrino path. Thus, one
can ensure that the effective mixing angle is close to
/4 even at a small mixing angle in a vacuum. But
in the case of a parametric resonance, the effective
mixing angle is not large in general. It is assumed,
however, that external parameters, such as the matter
density, vary periodically along the neutrino path. The

* . . .
e-mail: maxim_dvornikov@aport.ru
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e-mail: studenik@srd.sinp.msu.ru

enhancement of the probability of a neutrino transi-
tion from one state to another is achieved owing to
specific phase relations.

[n one of the pioneering studies [16] devoted to the
parametric-resonance phenomenon in elementary-
particle physics, neutron—antineutron oscillations
were studied in a periodically varying magnetic field.
Later, the approach formulated in [16] to consider the
emergence of a parametric resonance and the method
for deriving an approximate solution to the equation
describing the evolution of a two-level system were
used to study this phenomenon in neutrino oscilla-
tions (see, for example, [7]).

The emergence of a parametric resonance in neu-
trino oscillations in the case of a periodically varying
matter density has been repeatedly discussed in the
literature. First of all, we would like to recall the study
of Ermilova ef al. [7], who presented an approximate
solution to the equation describing the evolution of
a neutrino beam propagating through matter whose
density varies according to a harmonic law. A numer-
ical simulation of the propagation of a neutrino beam
through the Earth’s substance of variable density was
performed in [8]. For the case of neutrino propagation
in a medium of varying density, an analytic solution
to the respective equation was found in [9]. However,
the effective mixing angle and the effective oscillation
length were assumed to be only slightly different from
their counterparts in a vacuum. The article of Krastev
and Smirnov [10], who studied transitions between
neutrino states with allowance for both the Mikheev—
Smirnov—Wolfenstein effect and the parametric res-
onance and who additionally considered some astro-
physical applications, is also worthy of note.

The case where the matter density changes ab-
ruptly from one constant value to another deserves

1063-7788/04/6704-0719$26.00 © 2004 MAIK “Nauka/Interperiodica”
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particular attention since the Earth’s matter density
can be approximated by such a function. It is this
case that was recently discussed in [11, 12], where an
exact analytic solution to the equation describing the
evolution of the system of neutrinos was obtained for
a density profile of this type. It was found that only
one period and a half of the density variation are suf-
ficient for achieving a sizable probability of a neutrino
transition from one state to another. Thus, the results
of these investigations are of paramount importance
for exploring the propagation of solar and atmospheric
neutrinos through the Earth’s substance. In this con-
nection, we would also like to mention some recent
studies devoted to an analysis of new possibilities
that arise owing to the application of the neutrino-
tomography method to investigating the distribution
of the matter density in the Earth (see [13—15] and
references therein).

In the present study, the possibility of the emer-
gence of a parametric resonance in neutrino oscilla-
tions in a nonuniform electromagnetic field is con-
sidered for the first time. We address the case of
an electromagnetic field because, from the point of
view of experimentally investigating neutrino oscilla-
tions, it is much easier to create an electromagnetic
field of preset configuration than to obtain a similar
density profile. We consider an amplitude-modulated
electromagnetic wave and a magnetic field of the
planar-ondulator type—that is, a time-independent
transverse magnetic field whose amplitude changes
abruptly from one fixed value to another. It is shown
that, in the case of an amplitude-modulated electro-
magnetic wave and in the case of a magnetic field of
a planar-ondulator type, a parametric resonance ap-
pears for a specific choice of the parameters describ-
ing neutrinos, the electromagnetic field, and matter.
The possibility of the emergence of a parametric reso-
nance in cosmic microwave radiation is assessed. The
scheme of a possible experiment aimed at studying
neutrino oscillations under laboratory conditions is
proposed.

1. NEUTRINO OSCILLATIONS
IN THE FIELD OF AN ELECTROMAGNETIC
WAVE

First, we consider a parametric resonance in
the field of an amplitude-modulated electromagnetic
wave. Our consideration is based on the evolution
of the system of two neutrinos v = (v;4, ;) corre-
sponding to different helicity states and occurring in
the field of an electromagnetic wave characterized by
a frequency w and a circular polarization. We note
that the (vj4,v;—) states can in principle belong to
different neutrino generations (for i # j). We denote
by es the axis that is parallel to the direction of
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neutrino motion and by ¢ the angle between es
and the direction of wave propagation. In order to
describe the evolution of this system, it is necessary to
use the relativistically invariant approach developed
in[17].

The dynamical equation describing the evolution
of v can be written in the form of the Schrodinger
equation

Ov

i Huv. (1)
The expression for the Hamiltonian H is derived, as
in [17, 18], on the basis of an expansion in terms of

the small parameter /1 — 3% < 1 (S is the neutrino
velocity). This yields

H = —pos — A(t)(o1 cosyp — ogsing),  (2)

where A(t) = —uB(t)(1 — [ cos ¢), with B(t) being
the wave amplitude, which, in our case, depends on
time; ¢ = gwt(1 — (/Py) cos ¢) is the wave phase
depending on the wave velocity 5y in a medium (Gy <
1), the quantities g = 41 corresponding to two wave-
polarization states; x is the neutrino magnetic mo-
ment; p = Vei/2 — Am20/(4E) {here, E is the neu-
trino energy, Am? is the difference of the masses
squared between the v; and v; states, Vi is the dii-
ference of the effective potentials describing neutrino
interaction with the medium, and © is a function of
the vacuum mixing angle 6y, (the explicit form of
© for various types of v;_ < v;, transitions can be
found, for example, in[19])}; and o = (01,09, 03) are
the Pauli matrices. Here, we use the natural system of
units wherec = h = 1.

For an arbitrary form of the function B(t), serious
mathematical difficulties hinder attempts at obtaining
an analytic solution to Eq. (1). In view of this, we
will derive conditions under which a parametric res-
onance emerges in the case where the function B(t)
differs only slightly from a constant B (the case of an
amplitude-modulated electromagnetic wave); that is,

B(t) = B(1+hf(t)), (3)

where h is a small (|h| < 1) constant (its sign will be
fixed below) and f(¢) is an arbitrary bounded function
of time.

For the ensuing investigation, it is convenient to
introduce an evolution operator V' (¢) that relates the
state v(t) of a neutrino at an instant ¢ to its initial state
v(0): v(t) = V(t)v(0). By using the Hamiltonian in
the form (2) and the time dependence of the field
amplitude in the form (3), we find that V'(¢) satisfies
the equation

V(t) = ilpos + (A +ef(t)) (4)
X (o1 cosp — ogsin )|V (t),
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wheree = Ahand A = —uB(1 — S cos ¢). We seek a
solution to Eq. (4) in the form

V(t) - Ues (t)Ul(t)F(t)v (5>

where Us, (t) = exp(iosit/2) is the operator of ro-
tation about the axis es, while Uj(t) = exp(iclt) is
the operator of rotation about the axis 1= (4,0, p —
¢/2) Everywhere, we use the basis vectors ej 3,
the vector es being the unit vector aligned with the
neutrino velocity. We note that Uy (t) = Ue, (t)U)(t)
is a solution to Eq. (4) at € =0 (see [17]). For an
unknown operator F'(t), the use of Eq. (4) leads to
the equation

F(t) = ieH(t)F (t), (6)

where
He(t) = (oy (1) f (1),
Y2 = ngsin(2Q4),

y1 =1 —2n3sin*(Qt), (7)
Y3 = 2n1n3 sin2(Qt),
and n = nje; + ngey + nzez = 1/Q is a unit vector
(2 = [1)).

In order to investigate solutions to Eq. (6), we
apply the method developed in [18]. By using the

smallness of the parameter ¢, we will seek a solution
to Eq. (6) in the form

F=>Y er®, (8)
k=0

where F(©) =1 is an identity matrix. For the opera-
tors F(*)_we derive the recursion relation

t
FEHD () =4 / H.(7)F®)(7)dr. (9)
0

Omitting the details of the calculations, we will
present the result that is obtained for F' on the basis

of (8) and (9). To terms linear in e, we have
F(t) =1 +ic(ox(t)) + O(e?), (10)

where

Mﬂ—/&ﬁﬁﬁﬂr (11)
0

We note that the analogous approach to describing
neutrino oscillations in a medium of periodically vary-
ing density was discussed in [20].

For the probability of v;_ < v, neutrino transi-
tions, the application of formulas (5)—(11) yields

P(t) = |(vj4[Uey (UL F (8) i) |
= n?sin®(Qt) + 2eny sin(Qt) (21 (t) cos(Qt)

(12)
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+ n3xo (t) Sin(Qt)).

For the purposes of the ensuing investigation, we
specify the form of the function f(¢). It was indicated
in[11]that there is some analogy between the process
of neutrino oscillations and mechanical vibrations.
On the basis of this fact, we chose the function f(¢)
in the same form as in the analogous problem of a
parametric resonance in mechanical vibrations [21];
that is, f(t) = sin(29Qt). We note that € is a natural
frequency of a two-level vibrational system. As will be
seen below, it is precisely for this choice of the func-
tion f(t)—that is, in the case where the frequency of
f(t) is twice as high as the natural frequency—that a
parametric resonance manifests itself.

Let us find the probability of neutrino transitions
for this specific choice of f(t). After some simple
algebra, we arrive at

P(t) = [n% + enynit (13)

eny n3\ . . 9

+ O <1 5 ) mn(?Qt)} sin” ().

Here, we choose the sign of ¢ in such a way that
nie > 0 (hence, the sign of i is determined by the
relation nyAh > 0). In the bracketed expression on
the right-hand side of (13), there then appears a term
that grows linearly with time and which leads to an
increase in the transition probability. This result can
be interpreted as a manifestation of a parametric res-
onance.

We note that, from relation (13), it formally follows
that, at rather large values of the observation time
t, the transition probability P(t) may exceed unity.
In this connection, we recall that, in studying the
phenomenon of a parametric resonance in mechan-
ics, the amplitude of vibrations is an analog of the
transition probability. The respective approach in
mechanics is known to be applicable only at com-
paratively small amplitudes of vibrations. In accor-
dance with the physical meaning of our solution,
we can therefore conclude that, as in the case of
mechanical vibrations, relation (13) is valid for a
relatively small (say, about 10%) enhancement of
the transition probability. Unfortunately, the qual-
itative description proposed here for a parametric
resonance gives no way to investigate the exact
behavior of the transition probability near a value
of unity. However, the numerical simulation per-
formed in [7] for the case of the parametric resonance
arising in the process of neutrino interaction with
a medium of periodically varying density showed
that the transition probability asymptotically tends
to unity, so that the condition P(t) <1 always
holds.
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Let us estimate the characteristic time within
which a neutrino can go over from one type to another

with a probability of 10%. From relation (13), we
obtain

tCNO.l(Enl). (14)
Here, we assumed that n3 ~ 1. This choice of the
parameters will be explained below.

For the sake of comparison, we present the expres-
sion for the transition probability in the case where
there is no additional excitation (h = 0); that is,

P(0) o = sin®(26,5) sin? (lt) (5
Les

where Leg = 7/Q is the effective length of oscilla-
tions and sin?(205) = 12/(12 + 13) = Prax|n=o is the
maximum transition probability in the absence of
additional excitations. In studying a parametric res-
onance, the case where Ppax|p—o < 1—that is, the
case where there are virtually no transitions between
the two neutrino states (this corresponds to n3 ~
1)—is of particular interest. Choosing the specific
case where

|| = 0.1}, (16)

we find that Pyax|n—0 &~ 0.01—that is, the transition
probability cannot exceed 1% at any value of the
observation time. In the case where there is an ad-
ditional excitation (h # 0), the presence of the term
proportional to ¢ in the expression for the transition
probability makes it possible to reach values exceed-
ing 1%.

Let us estimate the value of z, = t. for the case
specified by (16). Setting |h| = 0.1, we obtain

N 10
1B~ Beos o)’

We note that, if the parameters describing the external
electromagnetic field, the medium, and neutrinos are
chosen in such a way as to correspond to relation (16),
the first and the third term in (13) can be disregarded
since they are much smaller than the second term.
Indeed, we have

Te

(17)

n?~0.01; |eninit.| ~ 0.1;
SLYPEAN (20t.)| ~ 4 x 1074
—_— —_ — 11 ~ .

QO 2 )" ¢

Thus, the enhancement of the transition probability is
due precisely to the parametric resonance.
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2. NEUTRINO OSCILLATIONS
IN THE FIELD OF A PLANAR ONDULATOR

Let us now consider neutrino oscillations in a
magnetic field of the planar-ondulator type. The dy-
namical equation describing the evolution of v is
identical to Eq. (1). The expression for the Hamilto-
nian H can be formally derived from relation (2) by
making the substitutions A(t) — pB(t) and w = 0.
The resulting expression can be written as

H = —pos — uB(t)oy. (18)

It was mentioned above that, in the case of a planar
ondulator, the amplitude of the magnetic field is a
periodic function; that is,

B(t): 317 0§t<T17 (19)
By, Th <t<Ti+1T,
Bt+T)=B(t), T=T +T, (20)

where Bj o are constants. It is obvious that the
Hamiltonian H(t) is also a periodic function that has
the same period T: H(t+T) = H(t). Additionally,
H(t) = H,ifte [O,Tl] and H(t) = Hyift e [Tl,T],
where H 5 are constant operators. By Uy o, we denote
the evolution operators for the intervals [0,77] and
[T, T, respectively. From the aforesaid, it can easily
be seen that

U, = exp(—iH,T,), a=1,2. (21)
Hence, the evolution operator per period has the form
Ur = UsU;. (22)

We introduce unit vectors as
n, = —(Fi,0,~) (23)

a

= (sin 26,0, — cos(26,)),

where E, = —uB,; w, = /p? + E2; and 0, is the
effective mixing angle, which takes into account the
effect of the medium and of the magnetic field. By
using formulas (19)—(23), we obtain the evolution
operator per period in the form

a=1,2,

Ur =Y —i(6X) = exp(—i(onx)®), (24)
where
Y = C1Cy — (n1 . n2)8182, (25)
X = s1c9n7 + S9cing — (111 X 1’12)8182,
® = arcsin X = arccosY, nyxy =X/X,
X =|X|.
Here, we have also used the notation
Sq¢ =SINQq, Cq =COSPq, GPg=wela, a=1,2.
(26)

Vol.67 No.4 2004



PARAMETRIC RESONANCE IN NEUTRINO OSCILLATIONS

We note that Y2 + X2 =1 since Ur is a unitary
operator. We rewrite the vector X in terms of the
components as

sicaFq saciEo 5189
X = < + P
w1 wo

~ [ S1€C §9C
< (5 )

The evolution operator over n periods can be obtained
by raising the operator Ur to the power n:

(27)

w12

Unr = exp(—i(onx )n®). (28)

The probability of a transition from the v;_ state to
the v, state within the time ¢ is determined by the
explicit form of the evolution operator:

P(t) = | [U@O)lvi-) .

Let us consider the case of t = nT. Taking into ac-
count formulas (24)—(26) and (28), we find from the
general formula (29) that P(t = nT') has the form

X?+ X3
P(T) = 5 +1;2 5
1 2 3
X+ X3 t
= ST g2 (el).
X2+ X3+ X3 T

Expression (30) is similar to the formula for the
transition probability in the case of oscillations in a
constant magnetic field. However, there is an impor-
tant distinction: in the case of a constant field, the
factor in front of the sine does not exceed sin?(26,),
which is in general small. In the case where By # Bs,
the relevant parameters can be chosen in such a
way that the factor in front of the sine reduces to
unity. This is a manifestation of the parametric-
resonance phenomenon. To demonstrate this, we
set

(29)

sin?(n®) (30)

2

X2 = <w+%> = 0. (31)
w1 w2

In this way, we do indeed arrive at the situation where

the transition probability may reach a value of unity

at some instants of time (see below).

Let us consider the situation where

(uBy)? = E2 < p° (32)

(this is the case of a rather weak magnetic field),
which is of interest for a possible experimental in-
vestigation of neutrino oscillations. By using rela-
tion (32), we then find that, in this case, g # 0 and
formula (31) is equivalent to the condition

¢+ ¢o =k, k€ N. (33)

PHYSICS OF ATOMIC NUCLEI

Vol.67 No.4 2004

723

By €, we denote the mean frequency of oscilla-
tions:

wlTl + CUQTQ
—r

The resonance condition (33) then reduces to the
form

Q= (34)

wp = 20k, (35)

where wp = 2 /T is the frequency of variations of
the magnetic-field amplitude. Formula (35) reflects
the well-known property of a parametric resonance:
it is excited in the case where the doubled natural
frequency 2Q2 is an integral multiple of the frequency
wp of variations of a parameter that characterizes the
vibrational system [21].

Let us discuss expression (30) for the transition
probability in more detail. If the resonance condi-
tion (33) is valid, the square of the absolute value of
the vector X can be written in the form

X2

res

1
= ?(S%E% + 8§E22 + 281E182E2(—1)k). (36)

By means of a procedure similar to that in [11], one
can show that

Ga = 7r/2+77ka7 (37)

where k, € Z, the additional condition k; + k9 >0
being valid, which follows from (33). Taking into ac-
count formulas (32) and (37), we find from (36) that

FE,—F
|X|res:' ! = 2
p

a=1,2,

< 1.

(38)

From formulas (38) and (25), it follows that ®.s ~
| X|res- If the resonance condition (33) holds, we have
the following result for the transition probability:

P(t = nT) = sin® @@)

= sin?(2n(0; — 62)).

(39)

Here, we have assumed that 6, < 1; therefore,
sin(26,) ~ 20,. We note that |p| = nk/T, whence it
follows that expression (39) can be rewritten in the

form
P(t =nT) = sin® (Mt> .

— (40)

[t can be seen from formula (40) that the maximum
enhancement of oscillations is achieved at & = 1. This
result, which is also well known in the theory of a
parametric resonance in mechanical vibrations [21],
highlights once again that the construction of corre-
sponding analogies is legitimate.
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CONCLUSION

In conclusion, we will discuss the possibility of
the emergence of a parametric resonance in some
periodically varying electromagnetic fields. We will
now estimate the quantity x. (the characteristic
distance over which a neutrino can go over from
one state to another with a probability of 10%)
for neutrino oscillations in the field of cosmic mi-
crowave radiation. We assume that this radiation
is amplitude-modulated, in which case the appli-
cation of the approach developed in Section 1 is
legitimate. We can see from (17) that the most
realistic values of x. are obtained if the neutrino
moves in antiphase to the electromagnetic wave
(at @ = m). In this case, the electromagnetic-wave
amplitude B can reach a strength of 107% G [17].
Setting p ~ 107 1%up, we find that z,. is about 1020 m,
which is commensurate with the galaxy size of
R ~ 3 x 10?0 m. Thus, we can conclude that, in
this case, a parametric-resonance-induced transition
of a neutrino from one state to another becomes
noticeable.

Let us now discuss a possible experiment aimed
at studying neutrino oscillations under laboratory
conditions through the observation of a 10% decrease
in the intensity of the primary neutrino beam. This
experiment could consist in transmitting a neutrino
beam through a chain of solenoids generating an
oppositely directed magnetic field that is constant in
time. In this case, it would therefore be necessary
to use the results presented in Section 2 of this
article, where we studied neutrino oscillations in
a magnetic field of the planar-ondulator type. We
consider transitions between states belonging to
different generations—for example, ve_ < v, 4. In
this situation, we can neglect the effects of neu-
trino interaction with medium particles—that is,
|p| ~ Am?©/(4E), which is natural for experimental
investigations into neutrino oscillations under terres-
trial conditions. We assume that 73 = 75 = D. From
relation (35), we then obtain the following expression
for D:
2rkE
Am20’
It was mentioned above that, in order to obtain the
maximum enhancement of oscillations, it is necessary
to set k = 1. Assuming that Am? = 1072 eV? F =
10* eV, and 6, = 0, we obtain D ~ 1 m. Further,

we set By = —Bs = B, in which case formula (39)
reduces to the form

P(nT) = sin®(4n0),

Am?
20 = uB .
o=/ (5E)

D= (41)

(42)

where

DVORNIKOV, STUDENIKIN

Setting 1 = 1075 and B = 107 G, we obtain 20 ~
2.3 x 107°. It follows that the transition probability
can be represented in the form

P(nT) ~ sin?(4.6 x 1075n). (43)

It can be seen from formula (43) that, at n ~ 7000,
the probability reaches the desired value.

The above estimates show that, at present, the
proposed experiment to study neutrino oscillations
under laboratory conditions can hardly be realized.!)
However, the characteristic dimensions obtained
for the proposed experimental setup, L =2nD =
14 km, inspire the hope that, in the future, the
development of experimental techniques will make
it possible to approach the realization of a similar
experiment.
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Abstract—An approach is developed that makes it possible to take into account the structure of bound
(nonlocal) matter fields in photodisintegration processes with allowance for the requirements of the
fundamental principles of covariance and gauge invariance. The approach is based on employing the local
U(1) gauge nature of an electromagnetic field, whose vector potential is identified with a connection that
performs a parallel transportation of matter-field operators in a fiber space with an interior charge symmetry

along “minimum” trajectories. © 2004 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

The calculation of Green’s functions—that is,
vacuum expectation values of chronologically ordered
products of interacting fields—is the basic problem of
quantum field theory. The use of functional methods
permits combining all Green’s functions into a gener-
ating functional, while the application of the reduction
technique makes it possible to establish relations
between Green’s functions and their contributions to
the respective element of the S matrix. This modern
approach to deriving matrix elements for various
processes is based on the use of Lagrangians for
interacting fields.

In contrast to what occurs in QED, the above
scheme becomes inapplicable in dealing with pho-
ton—nucleus interaction, since nuclei are strongly
bound composite systems, so that it is impossible to
formulate explicitly a Lagrangian that would describe
the breakup of such a composite system into its con-
stituents and, hence, to include an electromagnetic
field in the respective Lagrangian by going over to
covariant derivatives.

At present, there are no adequate theoretical ap-
proaches that could be used to study electromagne-
tic-field interaction with structural matter fields and
which are based, as QED, on fulfillment of the fun-
damental principles of covariance, gauge invariance,
and spacetime uniformity. As a result, reaction mech-
anisms that are unknown because of the incomplete-
ness of the theoretical pattern are usually supple-
mented with not very well validated ad hoc assump-
tions in describing and analyzing such processes, and

DKharkov Institute for Physics and Technology, Akademich-
eskaya ul. 1, Kharkov, 61108 Ukraine.
“e-mail: kasatkin@itl.net.ua

this leads to an unjustifiable overestimation of the
contributions from some exotic mechanisms.

In the present study, we propose a theoretical ap-
proach within which the problem formulated above
is solved without explicitly writing a Lagrangian for
a composite system. In developing this approach, it
is only assumed that two- and three-body Green’s
functions for interacting fields are known from the
outset as solutions to the relativistic Bethe—Salpeter
equation or as solutions to quasipotential equations.
[t will be shown that this is sufficient for construct-
ing the total amplitude for the process being consid-
ered (irrespective of the details of the electromagnetic
structure of our strongly bound composite system),
the requirements of covariance and gauge invariance
being satisfied in its matrix element if intranuclear
dynamics is taken consistently into account.

On the basis of the local gauge nature of an elec-
tromagnetic field and its geometric interpretation in
terms of the operator of a parallel transportation of
matter fields in a fiber space that possesses interior
charge symmetry and where the Abelian gauge group
U(1) is defined, two- and three-point Green’s func-
tions [1] for matter fields are introduced in such a way
that they are invariant under the transformations of
this group [2].

For particles of spin 0 and 1/2, the functional
derivatives of modified two- and three-point Green’s
functions with respect to the gauge-field vector
potential A, (r), which implements a parallel trans-
portation in the space featuring interior symmetry
along the minimum trajectory r(\) = (1 — Nz + Ay
(A €]0;1]) between the points at which the field
operators W(x) and ¥(y) are defined, make it pos-
sible to introduce, in the momentum representa-
tion, electromagnetic current vertices that describe

1063-7788/04/6704-0726$26.00 © 2004 MAIK “Nauka/Interperiodica”



FIELD-THEORY APPROACH TO THE DISINTEGRATION OF BOUND SYSTEMS

electromagnetic-field interaction with sources [2—
4]. Similar manipulations for the total three-point
Green’s function (which involves the respective ver-
tex operator, external legs, and two-point Green’s
functions) generate a gauge-invariant series for the
four-point Green’s function, this series consisting
of the sum of three single-particle-reducible four-
point Green’s functions (pole part) related by crossing
symmetry and a strongly connected (single-particle-
irreducible) four-point Green’s function (regular
part).

As a consequence of the principles of local gauge
invariance and spacetime uniformity, fulfillment of
Ward—Takahashi identities for the functional deriva-
tives of Green’s functions is ensured, which eventu-
ally leads to the exact conservation of the electromag-
netic current of the bound system being considered
with allowance for its structure and its subsequent
decay into constituents, irrespective of the explicit
functional form used for the vertex operator. This
property of the series obtained for four-point Green’s
functions and the subsequent application of the re-
duction technique to this series make it possible to
establish a relation between it and the respective S-
matrix element and to employ, in performing a nu-
merical analysis, solutions to various quasipotential
equations and to the exact Bethe—Salpeter equation
for the vertex operator.

In this connection, the concept of taking into ac-
count the contribution of meson-exchange currents
is treated in a novel way. Since a vertex function is a
solution to a quasipotential equation whose potential
is formed owing to exchanges of various mesons—
in the vertex operator, this is eventually manifested
in the degree of its decrease and in the character of
the curvature of a curve—the further use of the vertex
operator in the amplitude obtained on the basis of the
requirement of invariance under the transformations
of the local gauge group leads to automatically taking
into account all meson exchanges via the pole and the
regular part of the total amplitude. Indeed, the pole
part of the amplitude is determined by the absolute
values of the vertex function at each specific value
of its argument, while the regular part is controlled,
owing to the presence of the derivative of the vertex
operator in it, by the angle of slope of the tangent.
Therefore, such “inclusion” of virtual (unobservable)
meson exchanges is implemented via the vertex op-
erator and is strictly balanced with respect to taking
into account single-particle (pole) and multiparticle
(regular) mechanisms of the process being con-
sidered, the requirement of total-electromagnetic-
current conservation being rigorously respected.

[t is important to note that, in view of the condition
of S-matrix unitarity, the partition of diagrams into
gauge-closed classes obtained at the level of allowing
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for single-particle (generalized pole series) and multi-
particle (one-loop series and so on) mechanisms may
be considered, because of the absence of perturbation
theory in the strong-interaction coupling constant, as
a hierarchy of taking into account loop-mechanism
contributions that is consecutively refined with re-
spect to the generalized pole series that is based on a
local gauge invariance. The scheme of the argument
is as follows. At the level of a single-particle inter-
mediate state, the conditions of S-matrix unitarity
and of local gauge invariance lead to the appearance
of a generalized pole series of reaction mechanisms,
where, in addition to the pole (single-particle) mech-
anisms, multiparticle mechanisms (regular part of the
amplitude) are effectively taken into account, which,
taken together, ensure the exact electromagnetic-
current conservation, g,J/%" = qN[JBOl + J, %) =0,
apart from a component §.J,, that is purely transverse
with respect to the photon momentum g, 6J,,q,, = 0.
At the stage of considering a single-particle interme-
diate state, this component is naturally equal to zero.
By virtue of the principle of local gauge invariance, the
inclusion of a two-particle intermediate state in ad-
dition to a single-particle intermediate state leads to
the emergence of a gauge-closed one-loop set of di-
agrams that involves the conserved two-particle loop
[Ju]2 current, which, with respect to the generalized
pole set of diagrams, can be associated with the con-
served two-particle addition [J,]2 = 6J, taking into
account the contributions of the two-particle mech-
anisms to J,,®. Thus, the above procedure of taking
into account successive approximations on the basis
of the conditions of unitarity and gauge invariance
appears to be the partition of all diagrams into gauge-
closed sets corresponding to the inclusion of vari-
ous numbers of intermediate states, the total struc-
tural electromagnetic current being conserved—that

is, JOU= [+ TS [T+ i =
0, where ¢ = 1,...,n is the number of intermediate

states. Here, each term of the series for the current
satisfies the requirement g, [J,,]; = 0.

2. INVARIANCE OF GREEN’S FUNCTIONS
UNDER THE LOCAL GAUGE GROUP
OF TRANSFORMATIONS

In going over from the point z to the point x + dx,
the change of the orientation of a local rest frame for
the matter-field operators W(z) is correlated with the
gauge field A, (x). For the system of matter fields, a
local orientation of the reference frame in the space
of interior variables is immaterial; that is, the fields
U(x) and U(x)W¥(x) are physically indistinguishable.
Local gauge transformations of the vector potential of
an electromagnetic field, A, (z) — A, (z) = Au(z) +
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dua(x), do not change the properties of the system
either.

For “global” gauge transformations a(x) = const
of the U(1) group, the two-point Green’s func-
tion D(z,y) =i (T (¥(z)¥(y))) (¥(z) and ¥(z)
are complex-valued matter-field operators in the
Heisenberg representation and 7" is the operator of
chronological ordering) remains invariant under the
matter-field transformation

U(x) = V'(z) = U(z)e ",
U(x) — W' (x) = U(x)e, (1)
Au() = AL (2) = Au(@) + dualz) = Ap(),
where e is the gauge coupling constant that fixes the

relative scale of the interaction between the gauge
field and the matter field.

Upon the extension of the U(1) group to local
gauge transformations, in which case the phase a(x)
is an arbitrary real-valued function rather than a con-
stant, so that the transformations in (1) become

U(z) — V' (x) = U(zx)e @)
U(x) — U'(x) = U(z)e ), (2)
Ay(x) — Al (z) = Au(z) + dua(z),
the Green'’s function D(x, y) appears to be noninvari-
ant with respect to these transformations [1],

D(z,y) =i (T (¥(2)¥(y))) (3)
= D'(w,y) =i (T (W(@)e @eeWy(y))),

since the fields ¥(z) and ¥(y) in (3) are defined at
different spacetime points.

This situation can be remedied by invoking the
principle of local gauge invariance and the concept
of a parallel transportation [5] of the field ¥(x) from
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the point x to the point x + dx in the space with
interior symmetry, in which case the complex field
U(x) = e~ |¥(z)| remains unchanged, which
means that dx,,[0,, + ied,a(x)]¥(x) = 0. In terms of
a U(1) gauge field taken in the pure gauge A,(x) =

—(i/e)U(x)0,U " (z) = da(x)  with U(z) =
e~®) we have
dz, [0, +ieA,(x)|¥(z) =0, (4)

where the orientation of the local coordinate frame
is determined by the gauge field A, (z) = Af L, (for
Yang—Mills fields, the gauge field A}, (z) is an element
of a Lie algebra) at fixed generators L,. In the case
of an electromagnetic field, we have Af,(z) — A, (z)

and L, — 1.
Solving Eq. (4) for the field ¥(x) along the path S

that is defined by introducing the parameter 0 < A <
1, we find for any point z(\) that

U(z(N) = T (5)

A
« !exp <ie / dx%Au(x(X)))] ¥ (2(0)),

0
where T is the operator of ordering along the path S.

The two-point Green’s function that is invariant
under the local gauge transformations (2) of the U(1)
group is

y
ie [drpAu(r) _

D(a,y.{A}) = i <T (\P(w)e : \P(y)) >

(6)

[t can easily be proven that expression (6) is invariant
under the transformations in (2); indeed, we have

ie [ dryAj,(r)

D'(x,y, {A})—i<T (‘I”(flf)€ ’ ‘If’(y))>

. iefdru[Au(r)—i—@Ha(r)} ) _ iefdruAu(r)_
=i(T|W(z)e e v WU (y) ) =i(T|T()e ¥ U(y) |) = D(z,y.{A}),

where we have used the equality fyx dr,0,a(r) =

a(z) — a(y). It should be noted that, in the case
where «(r) is an operator [1], all transformations
performed above remain in force since one can make
any particular assumptions on the properties of an
arbitrary operator a(r) in the transformations in (2),
the only requirement to be satisfied being that these
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transformations change only the longitudinal part of
the photon propagator, in which case the eventual
physical result would remain unaffected.

We will further calculate the functional derivative
of expression (6) with respect to the vector potential

A, (r) by employing the equality 6A4,(r")/0A,(r) =
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1) (gpp is the metric tensor). We have

D(z,y,{A})

Gupd (1" —

J
A (r)

xT

= /dr S(r—1") <T( ()¥(y ))>

Y

A=0

Choosing the minimum trajectory connecting the
points z and y in the interior reference frame, r'(\) =
(1 — ANy + Az, and using the relation

y 1
dr! (A
/dr:ﬁ(r—r’) = /d)\ d)(\ )5(1”’()\) -r),

T 0

we obtain [3]

D(x,y,{A}) (7)

)
0A,(r) A0

1
~ie(w — ) [ drly = 7+ Ao~ DG, ).
0

By virtue of translation invariance (spacetime
uniformity), the two-point Green’s function depends
only on the difference of the 4-coordinates, D(z,y) =
D(z —y).

Upon going over to the momentum representa-
tion, the functional derivative (7)

Sy P (4D

eilar+pr—p'y) dxdydr
A=0

= ze/d)\/dxdydrei(q”mp/y)(x—y)u (8)

X8y —r+ Mz —y)|D(z —y)

in terms of the relative coordinate x — y = £ and the
c.m. coordinate X = (z +y)/2 assumes the form
A i(gr+pz—p'y)
5A D(z,y,{A}) Azoe dxdydr

1
= (2n)*(q +p — p)ie / d\ / dee P e D(¢).
0

Considering that

1 Le i€ (p+Aq)
i 0(p+Aq)u ’

we eventually obtain the following expression in the
momentum representation:

A i(gr+pz—p'y)
/6A D(z,y,{A}) e dxdydr

A=0
(9)
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1
= (2m)*(g+p—pe [ dr
/

0
apu(A)D(er Aq),

where p(A) = p + A\q.

Making the same manipulations for the exact
three-point Green’s function (vertex operator)

G(z,y,2) = i(T (B(2)P1(x)T2(y))),
which describes a transition of the charged composite
field B(z) having a charge ep to a state that is char-
acterized by the field operators Wy (x) and Wo(y) and
by the charges e; and e (e1 + e3 = ep), respectively,

and using a natural generalization of (6), we reduce
the three-point Green’s function (10) to the form

G(z,y,z,{A}) (11)
ie1 f roAp(T) _ ie2 ZdeAU(T) _
= i<T(B(z)e {d Al )\Ill(:c)e ?{ \Ilg(y))>,

which is invariant under the local gauge transforma-
tions (2).
The group of gauge transformations of the field

operators in (11)and of the vector potential A,(r) has
the form

B(z) — B(z)e Bz,

(10)

i)~ B,

Uy(y) — Ua(y)e'™ W, Au(r) — Au(r) + dua(r).

[t can easily be verified that expression (11) is
invariant under the transformations in (12).

We emphasize that, within the geometric treat-
ment of gauge fields, invariance under the transfor-
mations in (12) for various coupling constants e; (i =
B, 1,2) fixing the relative scale of the interaction be-
tween a gauge field and various matter fields in adjoint
space inevitably leads, by virtue of the principle of
local gauge invariance, to the relation e; + e = ep.
In other words, a local variation in the phases of
matter fields—they can be considered as coordinates
in charge space—is equivalent to the emergence of an
extra gauge field with an additive coupling constant,
which, in the conventional language in configuration
space, is associated with a charge.

Calculating, as before, the functional derivative of
the Green'’s function (11) with respect to 4,,(r),

G(x7 y7 z? {A})

0A,(r) A0

z

=i’e; /dr;gupﬂr’ -

T

r)G(z,y,2,{0})
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z

+ies [ b’ —r)G(r.y. 2 {0)),
Y

and parametrizing the minimum trajectories con-
necting the points  and y with the point z as 77, (\) =
(1 =Nz, + Az, and r,(A) = (1 = Nys + Azs, We
obtain

0G(z,y, 2, {A})

0AL(r)

(13)
A=0

1
= 42 {el(z —:r)u/d)\é(x —r+ Az —1x))

0

1
+ ea(z —y)u/dwy —r Az y))} G(z,y,2).
0

By performing a Fourier transformation in expres-
sion (13), we finally reduce the functional derivative of
the three-point Green’s function to the form

1

0
AN ——— A—1 ; A
0/ apu()\ — 1) {elG(pl + ( )Q7 p2;p + q)

(14)
+e2G(p1,p2+ (A —1)g;p+ )},

which is similar to that in (9). In expression (14),
we have omitted a delta function that reflects the
law of 4-momentum conservation. The momenta p,
p1, and py correspond to the fields B(z), ¥y(z), and
Uy (y), respectively, while the momentum ¢ corre-
sponds to the electromagnetic field A, (r). We note
that, for the first and the second term in the braced
expression on the right-hand side of (14), the law of
conservation of the total 4-momentum has the usual
formpi+A=1)g+po=p1+p2+A—1)g=p+
Ag; upon the cancellation of the term Ag appearing
on either side of this equality, we obviously arrive at
p1+p2=p+q.

The ensuing consideration will be performed in
the momentum representation. We “include” an elec-
tromagnetic field of polarization 4-vector ¢, and 4-
momentum g, in the Green’s function D(p) for a
scalar particle of momentum p and mass m in accor-
dance with expression (9); that is,

1

zeg, | dA\s—={D(p+Xq)},

0
(15)
Ipu(N)
where ze is the charge of the particle interacting with
the field.
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Owing to the fact that the photon polarization
vector is transverse, €,g, = 0 (¢> = 0), the ensuing
calculations are simplified upon the substitution

1
PN
0

1

Ipu(A) A Oqu

In[6], the integral operator (15) was used to ensure
the gauge invariance of the nonrelativistic amplitude
for the deuteron-photodisintegration process.

Considering that the direct and the inverse prop-
agator satisfy the relation DD~! = D='D =TI and
differentiating this relation with respect to ¢,, we
obtain 0D/8q, = —D x 9D~ /dq, x D. Expres-
sion (15) then takes the form

dA
Zef‘:u/T%{D
o
0

1
dA
= —zesu/ D(p + \q)
0

(p+ M)}

it (16)

“Hp+ A} D(p+ Ag).

The explicit form of the propagator for a scalar
particle, D(p) = 1/(p* — m? +40), makes it possible
to perform the respective differentiation, dD~1(p +
Aq)/0q,, = 2\p,; as a result, we obtain

1
zegy, /
2Apy

0
1
— _ee /@
uo Allp+ )2 —m +i0]2'

Representing the bracketed expression in the denom-
inator on the right-hand side of (17) in the form
(p+2q)2 —=m?+i0 = Aa+ (1 — \)b, wherea = (p+
q)? —m? +i0 and b = p?> — m? + 40, and calculating
the respective integral (we omit the factor —zee,, ), we
arrive at the relation

{D(p+ )} (17)

>*|§

M

d\ 2Ap,
0/7 [(p + Aq)2 — m2 + 0]
1
=(2p+g¢q M/d)\
0

Aa+ (1 - )\)b]2 (18)

D(p+q){(2p+ q)u} D(p).

Vol. 67 No.4 2004



FIELD-THEORY APPROACH TO THE DISINTEGRATION OF BOUND SYSTEMS 731

Thus, the inclusion of an electromagnetic field in
the two-particle propagator reproduces, for the in-
teraction between an electromagnetic and a charged

scalar field, the vertex function that is known in QED;
that is,

1
A
zez-:u/Taq {D(p+ A\g)} (19)
m
0

= —zeD(p+q){,(2p+ q)u} D(p).

The substitution ¢, — ¢, in (19) leads to the
Ward—Takahashi identity

qu(2p + Q)u = D_l(p + Q) - D_l(p)'

In the case of a spin-1/2 particle, the one-photon
insertion into the two-particle Green’s function S(p)
is made in the same way as in (15):

1

ver /@ﬂ
Mo A g,

1
dA
= —Z€€u/ S(p+ Ag)
0

(20)

{S(p+ )}

Y (21)

X 8i {S7Hp+Ag)} S(p+ M)

Au

Making use of the explicit form of the propaga-
tor S(p+ Aq) = 1/(p + A\§ — m +40), where all hat-
labeled 4-vectors are defined as p = p,v, (v, are
the 4x4 Dirac matrices), recalling that p? # m?2, and
introducing a and b in the denominator in just the
same way as in (18), we recast expression (21) into
the form

1
/dA(ﬁ+Ad+m)vu(ﬁ+Ad+m)
[(p+ Ag)? —m?+ iO]2

1
/d)\ .
J a 1—)\)b]

+ 92 (pul% — (qp)w> O/d)\ [Aa + (1)\— )\)b]2 } .

Calculating the relevant integrals and considering
that |a/b| ~ 1, we arrive at

1
0S(p+ Aq)
/d)\ Opu(N)

_ (P+q—m){—eeyu}(+q4—m)
7 0 — w7~ )

(22)

{(2pu(p +m) —by,)
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G+ a-m-eo) (14050 ) (6 m)
- (0 +@)? = m?P(p? — m?)?

stpva{-ene (14 5222) s

where 0., = (Va7 — Y Yu)/2. Finally, Eq. (21) for
the one-photon insertion into the Green’s function
leads to the following vertex function for the interac-
tion of an electromagnetic and a charged spinor field:

1

0S(p+ Aq)
eeﬂo/d)\iap()\)u

= S(p + Q){_eé—u(%t + O-lU/ql/S(p))}S(p)'

As in the case of a scalar field in (20), the substi-
tution e, — ¢, in (23) leads to the Ward—Takahashi
identity

(23)

Gg=5S"p+q) —S'(p) (24)
As an example of the use of expression (14), we

can consider a repeated inclusion of a photon having
a polarization 4-vector €, and a 4-momentum ¢, into
the three-point vertex function —zes/u(pl + p2)u

n [dXN O "
_zea,,/TW{zes P1+A=1)g +p2)y

"

+ zez, (1 +p2+ (A= 1) )} = =222,

this leading to the well-known (in QED) expres-
sion for the emission (absorption) of two electromag-
netic-field quanta by a charged scalar field at the same
point.

Let us now consider the insertion of an elec-
tromagnetic field into the total strongly connected
three-point propagator (see Fig. 1). The interaction
of an electromagnetic field with the total strongly
connected three-point Green’s function is imple-
mented by inserting it into the external legs (two-
point Green’s functions) and into the vertex function
itself (three-point Green’s function), the photon
exercising a continuous control over the “motion” of
the charge at all stages of evolution as the system
goes over from the in- to the out-state, suffering
qualitative and quantitative changes in the region of
strong interaction. The mathematical expression that
reflects the insertion of the electromagnetic field in
the strongly connected three-point vertex function
(Fig. 1) according to the rules specified by Egs. (9)
and (14) has the form

{D(p)G(p;p1,p2)D(P1)D(p2)} + {ecut  (25)
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G(p;pipy /D) gq
+ ool )

D(p) °\D(p2>

—_— o—oi

D(p) D(p+q) \

°

N

Fig. 1. Insertion of an electromagnetic field into the total stron

—o0 o eu °
P / %q/
q o—oQ) o
* °D(py—q *
N ) °\
u C
f-:ll q

gly connected three-point vertex function G(p1, p2; p). Diagrams

denoted by s, ¢, u, and ¢ correspond to Mandelstam’s terminology for reaction channels.

1
A0
- /78— (p+Aq)
x G(p+ q,p1ap2)D(P1)D(P2)
+D( )G(p;p1 — q,p2)

—€eguz /

0
+ D(p)G(p; p1,p2 — ¢)D(p1)

—eguz

dx 0
22D
X Oq,

1

(1 + (A= 1)(1)} D(p2)

D (p2+ (A — 1)(1)} + D(p)

o/

0

[21G(p 4+ Ag;p1 + (X — 1)g, p2)

X {—68

+ 22G(p+ Ag;p1,p2 + (A — 1)q)] }D(pl)D(pz),

where z1 and zo are the charges of the first and the
second product particle in units of e.

As the result of including the electromagnetic field
in the total three-point Green’s function (vertex op-
erator, external legs in the form of two-point Green’s
functions), we obtained a gauge-invariant series
for four-point Green’s functions, which consists
of the sum of three single-particle-reducible four-
point Green’s functions (pole part) related by cross-
ing symmetry and the strongly connected (single-
particle-irreducible) four-point Green’s function (reg-
ular part). Upon the application of the standard
recipe of quantum field theory [5] to the resulting
gauge-closed series of four-point Green’s functions,
it reduces to the corresponding S-matrix element,
and this makes it possible to calculate the photodisin-
tegration of strongly bound composite systems (nu-

clei) within a fully covariant description featuring an
exactly conserved electromagnetic structural current
and taking consistently into account the structure of
the composite system in question.

Let us demonstrate the gauge invariance of this
expression. Making the substitution €, — ¢, in ex-
pression (25) and evaluating thereupon the integrals
for the right-hand side, we obtain

—ze[D(p+q) — D(p)]
x G(p + q;p1,p2)D(p1)D(p2)
+ D(p)G(p;p1 — q,p2)
x [—ez1 (D(p1) — D(p1 — 9))] D(p
+ D(p)G(p;p1,p2 — q)D(p1)
x [—eza (D(p2) — D(p2 — q))]
—ez1D(p) [G(p+ ¢; p1,p2) — G(p;p1
x D(p1)D(p2)
—ezD(p) [G(p+ ¢;p1,p2) — G(p;p1,p2 — q)]
x D(p1)D(p2)-

Making use of the Ward—Takahashi identity (20)

1
]
e[D(p+q) — D(p)]
= —eD(p+q){2(pg)} D(p),

reducing in (26) the two-particle propagators appear-
ing (see Fig. 1) as external legs of the diagrams [that
is, multiplying expression (26) by the inverse propa-
gators D~1(p), D=Y(p1), and D~ (py)], replacing the
external legs of the diagrams by the corresponding
wave functions for free (on-shell) particles (in the
normalization adopted here, they are equal to unity for

(26)
2)

— q,p2)]

d\ 0
78— D(p+ M)}
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scalar fields), and taking into account the relation

1 1
D(PiQ)Z—Zi%

(p+q)? —m?
we obtain the contribution of the series of Feynman
diagrams to the S-matrix element in the form

ezG(p + q;p1,p2) — eaG(p;p1 — ¢, p2)
—e2G(p;p1,p2 — q)
—e(21 + 22)G(p + ¢; p1,p2)
+ ez1G(p; p1 — ¢, p2) + €22G(p; p1,p2 — q) = 0.

Therefore, expression (25) is gauge-invariant. It
is important to note that, in deriving the last equal-
ity, we nowhere used the explicit form of the vertex
function G(p; p1, p2), which describes the breakup of
the composite system into its constituents. Thus, one
can respect, without having any information about
the nature of a composite strongly interacting system,
the requirement of conservation of the total nuclear
electromagnetic current, knowing only, by virtue of
the general requirements of covariance and conserva-
tion laws, the functional dependence of the respective
vertex function.

The physical meaning of the diagram series in
Fig. 1 and of the respective mathematical expres-
sion (25) is the following. The three-point Green’s
function describes the transition of a strongly inter-
acting nuclear system to a state where it is char-
acterized by its constituents, the dynamical pattern
of this transition being realized in accordance with
the Bethe—Salpeter equation or its quasipotential
analogs. The presence of a photon introduces a
perturbation in the composite system and renders
the transition in question real; at the subsequent
instants, it only fixes electric-charge conservation at
all stages of the evolution, having no effect on strong
interaction.

In applying the developed approach to studying
the photodisintegration of nuclei, there arises the
problem of finding the explicit form of the argument
of the vertex function G(p; p1,p2), which describes a
relativistic bound state and its subsequent breakup
into constituents. A full description of this problem
requires solving the relativistic Bethe—Salpeter equa-
tion. Even for the deuteron, which is a very loosely
bound nuclear system, the description of a relativistic
bound state in terms of the Bethe—Salpeter equation
involves considerable difficulties. In view of this, use
is presently made of approaches that rely on solving
approximate Bethe—Salpeter equations, such as the
Logunov—Tavkhelidze, Kadyshevsky—Weinberg, and
Gross equations. In each specific approximation, so-
lutions to these equations make it possible to employ
the vertex function G(p; p1, p2) without violating the
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covariance and gauge invariance of the total ampli-
tude in (25). Here, we will dwell on this point at some
length. As is well known, solving the aforementioned
approximate equations reduces to projecting the
covariant Bethe—Salpeter equation onto a spacelike
hypersurface with the aim of imparting the traditional
probabilistic interpretation to the resulting solutions,
this implying that the vertex function G(p;p1,p2)
appears to be dependent only on the square of the
relative 3-momentum, G(p?). In view of this, it is
necessary to go over, in the formal dependence of
the vertex function, from covariant momenta to the
relative 3-momentum of product constituents.

By way of example, we will now apply this scheme
to the virtual breakup of a bound state at rest, its total
energy being denoted by W. We introduce a spacelike
4-vector K whose spatial component is equal to the
relative 3-momentum p; that is,

K =(0,p) or p?*=-K2% (27)

The relationship between the 4-vector K and the
vectors P, p1, and py of the bound-state vertex func-
tion can be represented as

K- (Pp2)p1 ~ (Pp1)

P2 P2 D2-

(28)

It is obvious that, for this choice of the 4-vector K,
the condition (K P) = 0 holds.

[t can easily be verified that the spacelike 4-vector
K constructed in this way satisfies the requirement
in (27); that is,

W E, W E,
K() - WEI - WEQ == 0,
WE WE
K:W;P‘FW;P:R (29)

where W = Fy + E5 (F1 and F, are the energies of
the constituents in their c.m. frame). The functional
dependence of the vertex function G(P;p1,p2) will
then have the form

G(P;p1,p2) = G(=K?) = G(p*).  (30)

Since, in (25), each term on the right-hand side
involves vertex functions at the corresponding val-
ues of the momenta, one can represent, with the aid
of (28), expressions for the relative momenta as

Py = 2R G 0. 61)
(P + APl + Ag)
(p+Arg?
+ A
= %(}7 + )‘Q)a — DP2a;



734

q.

i .
PN\’ Pi P1 Pi Pi AN D1
P1—4 o4

Pitq.
Fig. 2. Feynman diagrams describing the

bremsstrahlung in elastic scattering.

where pj = p; — ¢, and as

P+ Aq)(py + Aq)
(p+ Ag)?

(p + Ag)m
- m(pé +AQ)a

(p+ Ag)p1
= o T TN N9 A o)

Pla = ) (p+ M)
where p, = ps — g. Setting A =0 in (31) and (32),
we obtain the momentum for the vertex function in
the first term on the right-hand side of (25); setting
A = 1, we obtain the momenta for the vertex function
in the second and the third term on the right-hand
side of (25).

[t can easily be seen that the 4-momenta that
are defined in this way according to the generally
accepted terminology of the Mandelstam variables
and which relate, respectively, the first diagram in
Fig. 1 to the second one and the first diagram there to
the third one satisiy the relations P5{(\)(p + A\q)a =
P3N (@ +Ag)a =0.

We would like to highlight a situation that has
a general character for all light nuclei interacting
with an electromagnetic field. For incident-photon
energies below the meson-production threshold, the
ratio of the incident-photon energy ¢o to the target-
nucleus mass M does not exceed 0.1 even for the
deuteron, which is the lightest composite nucleus.

Further, we square the expression for the spacelike
4-momentum (31) and expand it in powers of qo/M.
As a result, we obtain

pe(a) = P (32)

P2(\) = P? - 2(1’;’22) (qP)A

(gp2)?
p/2

(¢'p2)(P'q)(ap2)
p/4
where P is the value of the relative momentum (31)
at A = 0. In this expansion, the first term does not
depend either on the photon energy or on the di-
rection of photon motion, while the second term is
proportional to the ratio go/M and depends on the
direction of final-particle emission. The next terms

A2+ 2

+2 N
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are of order (qo/M)?; of these, some depend on the
direction of final-particle emission, while others do
not. Retaining, in this expansion, only terms of the
first two types, we see that the momenta in (31) and
(32) can be represented in the form

/
PSI(A) = Py — A(pp%’;)qa, (33)
SU (p,pl)
Pa ()\) =P, + A p/2 -

For the 4-momenta defined in this way, we have

PP+ Aq)a # 0 and P(N)(p+ Ag)a # 0 in-
stead of (31) and (32). This simplification in the rep-
resentation (31), (32) of the relative 4-momenta per-
mits making, in the following, a number of significant
simplifications in studying specific processes.

As an illustration of inserting an electromagnetic
field into the four-point Green’s function, we consider
the bremsstrahlung of a photon with a 4-momentum
qu in the elastic scattering of scalar particles having
identical masses m, momenta p; and po, and charges
z1 and zy (Fig. 2).

In accordance with the above scheme of including
an electromagnetic field, the amplitude of the process
has the form

e (2p1 — q)e
M= 1{(19

r - 4 ;/7,
P - (p1 — q,p2; Py, P3)

(34)

2p1 + q)e
4T , : / +q, / (1—
(pl p2;pP1 T4 PQ)(pxl +q)2 —m2

(2p2 — q)e ;o
+ezy — T (p1,p2 — ¢ P,
€22 { (P2 — )2 — m? (p1,p2 — ¢;P1, Pa)

(2p + q)e
—|—F ’ 7 /7 /+ _ Nte @ 277
(pl b2;P1, D2 Q) (p’2 —|—q)2 —m2

1
d\
+egy / T{er[pl — Mg, pa;py + (1 = A)g, ph]
0
+ 220 [p1, p2 — Ag; P, P + (1= N)al},
where I' is the vertex function for this process.

By making the substitution £, — ¢, it can easily
be shown that expression (34) is gauge-invariant:

z1[=L(p1 — ¢, p2; P}, o) + T(p1, p2; Py + q,p'z<)35

+T(p1 — ¢, p2; 1, py) — T(p1, p2; 1 + ¢, Pb)]
+ 2o[—T(p1,p2 — ¢; 01, P5) + T'(p1, p2; P, P + q)
+ T(p1,p2 — ¢ 11, 12) — L(p1, p2; 1, Py + q)] = 0.
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The formal dependence of the vertex function I in
the form (34) on all 4-momenta reduces to depen-
dence on two relative 4-momenta. The matrix ele-
ment (34) can be used in further numerical calcula-
tions of elastic photon-emission (photon-absorption)
processes.

3. GENERAL APPROACH
TO THE PHOTODISINTEGRATION
OF A SCALAR COMPOSITE SYSTEM

We will illustrate the proposed approach by con-
structing a gauge-invariant amplitude that describes
the breakup of a composite nuclear system in photo-
disintegration reactions. Without restricting the gen-
erality in the conclusions drawn on the basis of the
proposed approach, we will consider only the photo-
disintegration of a scalar composite particle into two
scalar constituents of positive parity in the final state
in order to simplify the mathematical computations.

The Feynman diagrams corresponding to this pro-
cess are shown in Fig. 1.

In accordance with (25), the matrix element for the
process in question has the form

M= Y M.

1=s,t,u,c

(36)

The amplitudes corresponding to the s, ¢, and u pole
diagrams and the c contact diagram are given by

2 +
M, = ezeu%&(p +aip1p2), 5=+
2 —
M, = ez1e,Gy(p; p1 — q,m)(pli%)“, (37)
t—m
t=(p —q)%
(2p2 —q)
M, = ez9e,Gu(p; p1,p2 — Q)u_imguv
u=(p2 — q)%
1
d\ 0
M, = €€u/78—{21G (0" — Ag;p1 — Aq, p2)
du
0

(38)
+ 2G (p' — Ag;p1,p2 — M)},

where z, z1, and z, are the respective charges in units
of e; p is the momentum of the composite particle
undergoing breakup; p; and py are the momenta of
the product particles; p" = p+ ¢; M is the mass of
the composite particle; and m is the product-particle
mass (it is assumed to be identical for all of the
constituents).

Considering that (eq) =0 and expressing the
Mandelstam variables in terms of the scalar products
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Fig. 3. (a) Lowest order diagram for scalar nucleon—
nucleon interaction in the gy?>¢ model and (b) diagram
for the exchange current upon the inclusion of an electro-
magnetic field.

of vectors involved in this process, we recast the
amplitudes in (37) and (38) into the form

M, = ez@G(—PSQ), My = —ez (Epl)G(_PtQ)a

(qp) (gp1)
— s (ep2) _p2
M= 2(qm)G( ), o
1
dr 9
M, = 66“0/78—% (40)
x {21G (=P2(\)) + %G (—P%(\)},
where
P2 m? (p;§22)27 P2 m?_ (pgg)Q’

ﬁ:ﬁ—%ﬁ, (41)

B (' = Ag)pa)”

Pi) =m* = S

_ [(r = Ag)p1)?
Pa)=m == (42)

In order to perform further calculations, which will
be of a purely illustrative character, we will consider
two versions of the functional dependence of the ver-
tex function G(p?), which are treated as solutions
to two different hypothetical quasipotential equations
describing the breakup of the composite system into
constituents; that is,

N1€_5p2
G(p?) = 1

(D,
NQW (II),

(43)
where p is the relative 3-momentum in the final sys-
tem of product states, N; and Ny are normalization
factors ensuring the probabilistic interpretation of the
vertex function, and ¢ and ag are fixed parameters
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Fig. 4. Inclusion of an electromagnetic field in the exact strongly connected vertex function G. The thick lines indicate the

motion of an electric charge.

ensuring the similarity of G(p?) to the actual momen-
tum distribution of constituents in the bound nuclear
system.

We indicate that the distinction between the func-
tional dependences (I) and (II) in (43) is of funda-
mental importance and is caused by the fact that
the meson sector participating in the formation of
the quasipotential for the hypothetical equation de-
scribing the strong-interaction vertex is taken into
account to different degrees. We will dwell on this
point at some length. We consider scalar nucleons
(1) interacting in the ¢ channel through the exchange
of a charged scalar meson (), the Lagrangian for
nucleon—meson coupling being Liy; = g¢?¢. In the
lowest order in the coupling constant g, the amplitude
for NN — NN scattering (Fig. 3a) takes the form

VNN=NN (1. y _ 9
f (kr)

_k%—

where k; is the momentum of the respective meson
and p is its mass. Upon the substitution of this ex-
pression into formula (15), we obtain the correspond-
ing the electromagnetic current,

d\ 0
)\8

-1

[(kx + Aq)? — 1i°]

1
/ dx 9
A Oqu

Ju(kr,q) = eg /

—e 2 (Qkﬁ + Q)u
T2 =12 [(kr + )2

_MQ]'

[t is obvious that this current, corresponding to the
diagram in Fig. 3b, is nothing but a meson-exchange
current.

Following the same line of reasoning, we further
consider the inclusion of a photon in the vertex itself.
The exact strongly connected vertex function G can
be represented as the sum of an infinite series of

diagrams (Fig. 4), where the first term represents the
bare vertex (I'const ), While the second term takes into

account the exchange of a charged meson.

The insertion of an electromagnetic field into the
vertex function G takes into account photon interac-

tion both with the constituents of the bound state and
with mesons mediating the nuclear field. Denoting

the momenta of the participant particles as is shown
in Fig. 4 and including the electromagnetic field on
the left- and on the right-hand side of the series, we
arrive at

G(p+ Ag;p1 + Mg, p2)

1

1
d\ 0
2
= €g I, 1st/_—
cor / )\aqu

{/ (;ii‘l [(p1 +1— Ag)?

—m2 +40][12 — p2 +40][(p2 — 1)2 — m3 + 0]

+ / d'l 1 } .
2m) [(p1 + )2 — m2 +40][(1 — Aq)2 — 2 + i0][(p2 — 1)2 — m3 + i0]

2(p1 + l)y

d4l
— ed’T’ /
G Teonst | @) (o1 + 1)2 — m2 +i0)[(p1 + L — q)2 — m2 + i0][12 — % + i0][(p2 — )2 — m2 + i0)]
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2,

o/

where my and my are the masses of particles 1 and 2,
respectively, and p; and py are their momenta. Thus,
the mechanisms corresponding to final-state interac-
tion (Fig. 4a) and the exchange currents (Fig. 4b)
corresponding to those mediators of the interaction
that were originally included in the potentials de-
scribing the strongly connected vertex are taken into
account in the amplitudes for electromagnetic pro-
cesses, the exchange currents being strictly balanced
with other mechanisms in the total amplitude.

2m)4 [(p1 + 1)2 — m3 +i0][12 — p2

4. ANALYSIS
OF THE PHOTODISINTEGRATION
OF A COMPOSITE NUCLEAR SYSTEM
WITH ALLOWANCE FOR DYNAMICS
IN THE STRONG-INTERACTION VERTEX
FUNCTION

The total amplitude (36) for the process being
considered has a pole and a regular part. The pole
part is controlled exclusively by the absolute value
of the vertex function at each point of its argument.
The regular part of the amplitude is determined not
only by the absolute value of the vertex function, as
occurs in the pole diagrams, but also by the slope of
the tangent to the curve at each point of the vertex
function, since the integrand involves a derivative. In
view of this, the two distribution functions (43), which
were chosen above, will be studied here to reveal the
role of the distribution of the contributions of the pole
and the regular part to the total amplitude for each
of the above distribution functions individually and
the redistribution of these contributions in the total
amplitude.

Our numerical calculations will be performed in
the c.m. frame of primary particles, with the z axis
being aligned with the photon momentum q. In this
reference frame, the Lorentz condition (eq) =0 is
equivalent to the choice of the three-dimensional-
transverse gauge. If the xz coordinate plane is taken
to coincide with the reaction plane, the components
of the 4-momenta and of the polarization vector of
particles involved in the reaction have the following
form in the chosen reference frame:

q = (q070707|q|)7 Ex = (Oa ]-7 07 0)7
ey =1(0;0,1,0),

p:(Evoaov_‘q’)a plz(w
p2 = (w; —[p[sind, 0,

Performing differentiation with respect to the variable
qu in the integrand in expression (40) with allowance

(44)

psin®,0,|p] cos ),
— |p|cos V).
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+i0][(l+Q)2—M2+i0][(p2—l)2—m%+i0]}+m’

for (41) and (42) and considering that the condition
(ep) = 0 holds in the chosen reference frame, we re-
duce, for the distribution function (43-I), the total
matrix element for the process being considered to the
form

M = ViraN, {21 [(Epg)Jl — @@] (45)

(qp1)

(ep2)
(qp2) @u] } ’
where a = €2 /4,

D, = exp {6P82t()\ = 1)} )
®, =exp {6P2,(A=1)},

+22 |:(€p1)<]2 —

Jy = 25/d)\ p2 2 exp {5P2(V)},

J2—25/d)\

For the distribution function (43-1I), we similarly ob-
tain

M = ViraN, {21 [(EpQ)J

xp {0P, (V)]

| )

(qp1)
+22 |:(€p1)<]2 — —q)u:| }
1
e e 0
4
1
_ (0 — Aqg)p2 1
h= 2/d)\ (' = A0)* [a2 — PZ(N)]*
1
(0" — Aq)p1 1
e / T o

For the parameters in the distribution functions (43),
we choose the values of § =80 GeV™2 and of =
0.0094 GeV? in order that our distributions be sim-
ilar to actual momentum distributions in few-nucleon
bound states; also, we set the normalization factors
to N1 = 300 and Ny = 1.56 in order that the square
of distribution function be normalized to unity.

The dependence of the distribution functions on
the relative momentum in the range between 0 and

Vol. 67 No.4 2004
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Fig. 5. Vertex function versus momentum (momentum
distribution) according to the calculation on the basis of
(43).

0.6 GeV is shown in Fig. 5, where the solid and
the dotted curve correspond to the functions in (43-
[) and (43-11), respectively. The quantity G(p?) is
given in arbitrary units, which are immaterial for the
ensuing calculations. These distributions are rather
hard at low momenta and behave quite specifically in
the high-momentum region.

[t should be emphasized that, at a momentum of
about 0.15 GeV, the functions in question are equal
to each other, but they have different slopes of the
tangent to the curve. This value of the relative mo-
mentum in the product system corresponds to the
incident-photon energy of Elj‘b = 42 MeV in the lab-
oratory frame, which is associated with the target. In
order to reveal the role of the contact diagram in the
amplitude of the process being considered, the differ-
ential cross sections do(ElYab, ﬂ)/dQC_m, with respect

to angles were calculated here at this photon-energy
value. The results are given in Fig. 6.

From Fig. 6, it can be seen that, as might have
been expected, the values corresponding to the dotted

curves at the energy value of Elj‘b =42 MeV are

identical (in this figure and in the figures that fol-
low, the cross-section values are given in arbitrary
units). For the first distribution function (43-I), the
absolute value of the contact-diagram contribution
(dotted curves) to the total cross section saturates
28% of the total cross section, while the absolute
value of the pole-part contribution (dotted curve) is
23% of the total cross section. For the second distri-
bution function (43-1I), the respective contributions
are 7 and 52%. The regular-part contribution (dashed
curves) takes different values, despite the equality of
the absolute values of the vertex functions at this
point (Fig. 5). The mathematical reason for this is

PHYSICS OF ATOMIC NUCLEI

KASATKIN, KIRICHENKO

that the values of the derivatives of the vertex func-
tions at the point Elyab = 42 MeV are different, which
explains the different values of the differential cross
section calculated on the basis of the total amplitude
(solid curves). The physical meaning of this statement
is that, in the amplitude, the regular part, which is
responsible for the restoration of gauge invariance via
the dependence on the form of the vertex function,
actually takes into account different fractions of the
contribution from the meson sector of the strong-
interaction vertex.

We note that the cross-section fractions associ-
ated with gauge-noninvariant parts of the total am-
plitude (dotted and dashed curves) have no absolute
meaning, since their values depend on the choice of
gauge, whereas the total cross section is invariant
under gauge transformations, reflecting its absolute
character.

The surfaces of the differential cross section as a
function of the photon energy in the laboratory frame
and the cosine of the emission angle of a final particle
(x = cos¥) are shown in Fig. 7 for angles in the
range ¥ = 0—r and energies in the range Elj‘b = 10—
15 MeV. Surface / corresponds to the calculation per-
formed on the basis of the total matrix element; sur-
face 2 represents the cross section calculated with-
out including the regular part of the amplitude; and
surface 8 corresponds to the calculation that employs
only the regular part of the amplitude. The cross
sections in question were calculated either (Fig. 7a)
for z =2 and z; = 29 = 1 (for example, this may cor-
respond to the photodisintegration of a “He nucleus
into two scalar deuterons) or (Fig. 7b)forz = z; = 1
and z = 0 (this may be the case of deuteron photo-
disintegration into two scalar nucleons). The differ-
ence in the behavior of the differential cross sections
with respect to the variable z is due to the electric-
quadrupole character of real-photon absorption in the
case in Fig. 7a and its electric-dipole character in the
case in Fig. 7b.

As can be seen from Fig. 7, the fraction of the con-
tribution of the pole part of the amplitude in the total
amplitude remains invariable over the entire energy
range being considered. The quantitative hierarchy of
these contributions for the two different forms (43-1)
and (43-11) of the vertex function is analyzed below.

Let us consider the calculation of the energy de-
pendence of the differential cross section for the case
where a final particle is emitted at an angle of 45°.
The results of this calculation are given in Fig. 8. One
can see from Fig. 8 that, for the vertex function in the
form (43-1), the contribution of the contact diagram
is dominant from the energy of 40 MeV. But for the
vertex function in the form (43-I1), it is the pole part of
the amplitude that makes the main contribution to the

Vol. 67 No.4 2004
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Fig. 6. Differential cross sections at Elj‘h = 42 MeV in arbitrary units versus the emission angle of a final particle according
to calculations with (left panel) the vertex function in the form (43-1) and (right panel) the vertex function in the form (43-
II): (solid curves) results of the calculation with the total matrix element [Egs. (45) and (47)], (dotted curves) results of the

calculation that takes into account only the ¢ and u poles, and
only the contact diagram.

do lab
a0, v ¥

(dashed curves) results of the calculation that takes into account

do lab
T

(b)

100000+

Fig. 7. Differential cross section do/dS2em. versus the photon energy in the laboratory frame and the cosine of the emission
angle of a final particle (z = cos ) in the energy range between 10 and 15 MeV: (surfaces /) differential cross section calculated
on the basis of the total matrix element, (surfaces 2) differential cross section calculated on the basis of only the pole part of

the amplitude, and (surfaces 3) differential cross section cale

ulated on the basis of only the regular part of the amplitude. The

calculations were performed at (a) z =2 and z; = 22 = landat(b)z =21 = 1land z2 = 0.

cross section. The above trend toward the invariability
of the relationship between the contributions of the
contact and pole parts of the total amplitude per-
sists for the second form of the momentum distribu-
tion over the entire energy range under consideration.
From the above analysis of the two different model
forms (43-1) and (43-1I) of the vertex function, it
follows that both the total amplitude and the relation
between the individual contributions of the pole and

regular parts, which must be consistent with each
otherin view of the fundamental requirement of gauge
invariance, are highly sensitive to the choice of the
vertex function.

There naturally arises the question of whether
such a sensitivity of the cross section will be observed
with respect to a different relative 4-momentum that
is not spacelike this time and which appears as
a solution to some other hypothetical approximate
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Fig. 8. Differential cross sections at the product-particle emission angle of 9 = 45° versus energy according to the calculation
with (left panel) the vertex function in the form (43-I) and (right panel) the vertex function in the form (43-II): (solid curves)
cross sections calculated with the total matrix element [Egs. (45) and (47)], (dotted curves) cross sections calculated with
allowance for only the t and u poles, and (dashed curves) cross sections calculated with allowance for only the contact diagram.

Bethe—Salpeter equation under the condition that the
functional dependence of the vertex functions remains
unchanged. For this purpose, we choose the relative
4-momenta according to (33):

s s (pIPQ)
PSY(\) = PS5 — \ 2 o
/
Py =P+ )
As was indicated above, the inequalities

PN (p' — Ag)a # 0 and PS(\) (¢ — Ag)a # 0 hold
for the 4-momenta chosen in this way.

We note that, although the squares of the relative
4-momenta taken in the form (49) are not strictly
spacelike, they possess the following remarkable
property: irrespective of the explicit form of the vertex
function G(—P?), the integrand in (38) is a total dif-
ferential for this choice of the relative 4-momenta, this
making it possible to evaluate the respective integral
for the contact part of the amplitude analytically.

The choice of the momenta in the form (49) has
yet another advantage—namely, it admits a very sim-
ple representation of these momenta in terms of the
singularities of the pole amplitudes in (37); that is,

2 ¢t _M2
Py =2 - ad
2 _M2
P2y =2 1S —ad,
M2
where a3 = m? — o
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For the choice of the relative 4-momenta accord-
ing to (49), the matrix element in (36) assumes the

form
(ep) &) o p2)

= el 2—2G(—P?) — 2
M= { (qp)G( F) gp1) (50)
o
(EPs) 2 2 2
+ Cod [AG(-F) + 5G(-P) - s6(-P2)] |

its more compact expression being

M = ee, {Ml(}“’l) + M,gre@} , (51)
where M,SPOI) and M,Sreg) correspond to, respectively,
two upper lines and the lower line in (50).

In this representation of the matrix element, we
deliberately retained the Lorentz gauge in the expres-
sion for the total amplitude in order that the veri-
fication of its gauge invariance be clear. In the fol-
lowing, we will perform, as before, all calculations in
the reference frame chosen above. At first glance, the
presence of the factor (¢Ps) in the denominator of the
contact part of expression (50) leads to a singularity
there, since the scalar product (¢Ps) = — |q| |p| cos 9
vanishes at 19 = 90°. However, this is not so. In order
to demonstrate this, we represent the numerator in
the form

21G(=P?) + 22G(—P]) — 2G(-P?)
e (—Pf 4 oP2) (qPS)>

p/2
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(p'p1)
+ G (—P3 —2 e (gPs) ) — 2G(—P2)
and expand, in this expression, the vertex functions
G in Taylor series in the vicinity of the point —P?
with allowance for the equality z = 21 + 29. Since this
yields

2 1 (9) — 2apn)] U2 O ol

the (¢Ps) singularity is removed, which indicates that
the contact contribution to the amplitude in (50) is
regular for all values of the angle 9.

[t should be emphasized that the matrix ele-
ment (50) can be expressed in terms of the electro-
magnetic-field tensor Fy,, = €,q, — €,q, as

FuP
M = et {z Pu_c(—p? 52
(qPs) (gp) =F) (52)
DP1iu 2 P2y 2
—z G(—F7)—= G(—P;
apr) =F) *(ap2) ( )}
or as
M= ez, { M}, (53)
where
- Bl (ePs)
Ep=—F—"=¢€,— . 54
PRy T eyt O

From expression (54), it can be seen that the
gauge transformation €, — €, + nq, leaves &, un-
changed. The distinction between expressions (53)
and (51) is due to some fixed dynamical gauge trans-
formation, where the transformation parameter 7 is a
function of the dynamical variable P;:

n=n(Ps)=— EZZ:; :

The calculation of cross sections on the basis of
the matrix element (50) with the relative 4-momenta
in the form (49) leads to results that are very close to
those that are obtained from the respective calcula-
tion with the 4-momenta given by (41) and (42). The
distinctions between the angular and energy spectra
do not exceed 4% over the entire energy range con-
sidered here.

(55)

5. CONCLUSION

On the basis of respecting the fundamental prin-
ciples of covariance, local gauge invariance, and
spacetime uniformity, we have developed an approach
that extends the possibilities for applying QED to
a correct investigation of the photodisintegration
of strongly bound systems with allowance for their
internal structure.
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The approach is based on the use of the local
U(1)-gauge nature of an electromagnetic field, whose
vector potential is identified with a connection that
implements a parallel transportation of matter-field
operators in a fiber space featuring interior charge
symmetry along “minimum” trajectories.

The introduction of two- and three-point Green’s
functions that describe scalar and spinor fields and
which are invariant under the transformations of
the local gauge group U(1) and the subsequent
calculation of their functional derivatives with respect
to the vector potential of the gauge field have made
it possible to determine electromagnetic-current
vertex functions corresponding to electromagnetic-
field interaction with matter fields. It has been shown
that the construction of a generalized gauge-closed
amplitude is achieved by calculating the functional
derivative of the exact three-point Green’s function,
which is invariant under the transformations of the
U(1) group, with respect to the vector potential
Au(r) of the gauge field at zero strength of the
electromagnetic field. Upon the application of the
reduction technique to the resulting series of four-
point Green’s functions, this series is expressed in
terms of the respective contribution to the relevant .S-
matrix element. The electromagnetic structural cur-
rent constructed on the basis of the reduction series
of four-point Green’s functions in the momentum
representation is exactly conserved, irrespective of
the explicit functional form of the vertex operator,
this making it possible to use, for the vertex function,
solutions to quasipotential equations or solutions to
the exact covariant Bethe—Salpeter equation.

The regularities revealed in analyzing the pho-
todisintegration of a scalar system are of a general
character and are confirmed by specific calculations
performed for actual processes involving deuterons,
tritons, and 3He and *He nuclei [4, 7—9].
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Abstract—Rescattering corrections to the impulse approximation for the processes yd — 7%d and 7~ d —
7w~ d are discussed. It is shown that the rescattering effects give a nonnegligible contribution to the real
part of these amplitudes. At the same time, the contributions from the imaginary parts of impulse and
rescattering corrections drastically cancel each other. This cancellation means that the processes 7~ d —

0

79nn and yd — 7t nn/7~ pp, when the nucleon pair is in the spin triplet state, are strongly suppressed near

threshold as required by the Pauli principle. © 2004 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

The study of the reactions yd — 7%d and 7=d —
7~ d near threshold has attracted continuous atten-
tion in the past few decades. Moreover, the new
experimental data that appeared owing to the re-
cent success of accelerator technologies stimulate
increasing theoretical interest in this field. In this
paper, we would like to concentrate on the rescat-
tering effects (RE) and their role for these reactions.
Indeed, these effects are found to be important in
many of the theoretical investigations of the reaction
vd — 70d (see, e.g., [1—4]). However, recently in [5],
the discussion about the role of these effects was
renewed. In particular, it was emphasized in [5] that
the contribution from the two-step process ~vd —
7 pp — 7°d (see Fig. la) is totally compensated
by the loop corrections to the impulse approximation
(LCIA) (see Fig. 1b) according to the Pauli principle
for the intermediate two-nucleon states. Thus, the
rescattering effects in [5] do not contribute to the
process of coherent 7° photoproduction on a deuteron
near threshold. Obviously, this conclusion of [5]
disagrees with the results of other calculations per-
formed, e.g., in [1—4]. Let us discuss the arguments
of [5] in more detail:

(i) The final 7%d state has quantum numbers J* =
17 at low energies, where the pion is in the S wave
with respect to the deuteron. However, the only pos-
sible state of the system ppm™ with I =1s =0 is
0~ (here, [y is the orbital angular momentum of the

*This article was submitted by the authors in English.

Dinstitut fiir Kernphysik, Forschungszentrum Jiilich, GmbH,
Germany.

DInstitute of Theoretical and Experimental Physics, Bol’shaya
Cheremushkinskaya ul. 25, Moscow, 117259 Russia.

W . .
e-mail: tarasov@heron.itep.ru

pp system and Iy is the orbital momentum of the
pion relative to the pp system). Therefore, the S-wave
intermediate state ppr~ does not contribute to the
process yd — 7'd.

(ii) In other words, the contribution of the diagram
in Fig. la has to be compensated by the loop correc-
tions to the impulse approximation (Fig. 10) because
of antisymmetry of the wave function for the pair of
intermediate nucleons.

Note that the process yd — 7np — 7%d is al-
lowed by quantum numbers. However, the ampli-
tude yn — 7%n which contributes to this reaction is
~20 times smaller than the corresponding amplitude
for the charged pion production.

In this paper, we are going to discuss the role of
rescattering effects for the process of pion—deuteron
elastic scattering at low energies. The diagrams cor-
responding to RE and LCIA for the wd scattering
are very similar to the ones for the reaction yd —
md (see Fig. 1 and Figs. 2b and 2c). Therefore, we
will investigate the relevance of RE and the problem
of the cancellation of RE and LCIA performing the
calculation of the wd-scattering amplitude.

The md-scattering length was measured with a
high accuracy [6, 7] and its value coincides with the
theoretical predictions (see, e.g., [8—11]).

®)
y ™o

d

Fig. 1. Diagrams with intermediate negative pion rescat-
tering contributing to the process vd — 7°d.
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Fig. 2. Feynman diagrams contributing to the wd-scattering amplitude: (@) diagram of the first order on the w N potential;

(b, c) diagrams of the second order on the 7N potential.

In all these theoretical calculations, rescattering
effects (including the two-step charge-exchange pro-
cess m~p — m'n — w7 p) give a significant contri-
bution to the value of the pion—deuteron scattering
length.

In what follows, we will directly demonstrate that
the real part of the rescattering diagram (see Fig. 2¢)
gives a nonnegligible contribution to the pion—
deuteron scattering length. It is not compensated
by the real part of LCIA (see Fig. 2b). However, the
imaginary parts of RE and LCIA cancel each other.
This cancellation means that there is no contribution
to observables from the 7N N states forbidden by the
Pauli principle.

2. CALCULATION OF THE #d-SCATTERING
AMPLITUDE

Below, we use a simple potential approach for
the calculation of the wN-scattering amplitude.
This approach was already applied to the problem
of the determination of the wN-scattering length
in [9]. The model utilizes a pion—nucleon poten-
tial Vizn(p,q), which is required for solving the
Lippmann—Schwinger equation

T =V +VGT. (1)

The S-wave wN lengths by and b; are related to
the scattering length a, by the equation
(2)
where I and 7 are isospin operators for the pion and
nucleon, and by and by are isoscalar and isovector
scattering lengths. The analyses [9, 10] of the experi-
mental data [6, 7] show that the absolute values of b
and by are small compared to the typical scale of the
problem ~ p~! (where y is the pion mass). Note also
that by < by. Thus, the amplitude 7" in Eq. (1) may
be perturbatively expanded in terms of the potential
Ven (P, Q).

Following [9], we choose Vv in the S wave in the
separable form

VT(N(k7 q) = =

axN =bo+ 01T,

Ao+ MI-T)
2MmyN

9(k)g(q), (3)

PHYSICS OF ATOMIC NUCLEI

where g(k) = (2 + k?)7L, may = mu/(m+p), k
and q are the 3-momenta of the pion, and m is the
nucleon mass. The cutoff parameter ¢ characterizes
the range of the 7N forces, and usually it is varied
in the range 2.5u < ¢ <5u [9, 10]. The parameters
Ao and A; are chosen in such a way as to reproduce
the scattering lengths by and b;. In what follows, we
will calculate the pion—deuteron scattering amplitude
up to the second order in terms of the potential V.
With this accuracy, \g and Ay are equal to

A

_ €2 2

= 55 (b — S8 + D)),
C4 C

A= b (1= 520 — b))

Corrections to these expressions are of the order of
~O(b3,b3), which is negligible.

Let us calculate the pion—deuteron scattering
length using the potential V;x [see Eq. (3)].

Ao (4)

2.1. Single-Scattering Amplitude in the Born
Approximation
The diagram corresponding to this amplitude is
shown in Fig. 2a. The expression for the 7d amplitude

fT(rZ)V corresponding to the sum of two diagrams with
the scattering of a pion on a proton and neutron has
the form

PO p
md 2m)(1 + p/ma)

x / dpe2(p) Vy—p + Vool

Here, p4(p) is the deuteron wave function in the
momentum space with the normalization condition
[ dpg?(p) = (2m)3. Neglecting the small corrections
of the order of ~u/m, one may take the potential V' in
Eq. (5) out of the integral and then get

v c
fri =2 b0 — S(63 +20)]

(5)

(6)

This contribution is real, as it should be in the

Born approximation. Note also that the value fiév)
depends on the value of the parameter c.
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2.2. Single Scattering in the One-Loop
Approximation

The diagram for the one-loop correction to the
Born approximation is shown in Fig. 2b. We have to
calculate the sum of two diagrams with the scattering

f(l)VGV _ 2
md L4 p/mq

o (MK —pp\ o
d_pg ( )@d(p)

745

of a pion on a proton and neutron, taking into account
the sum over all intermediate states. The expression

HVGV
d

for the amplitude ffr corresponding to this sum

has the form

(A + M) I(Am = 0) + \TI(Am)], (7)

k —
d592 (7771 ad s + s)
m+ [

(Am) = / o oo

Here, k is the 3-momentum of the initial and final
pion, €4 is the deuteron binding energy, and Am =
My— + My —myo —m, = 3.3 MeV is the excess en-
ergy for the charge-exchange process 7~ p — 7%n in
the intermediate state. For the case of elastic rescat-
tering, Am = 0.

The integral in Eq. (7) is calculated numerically
for some values of the cutoff parameter c. In the limit
of large ¢, i.e., when ¢ > pu, and for u/m < 1, the
integral can be calculated analytically:

FOVEY _ (12 4+ 212) (8)

us

+ 2i [ko(Am = 0)(bg + b3) + ko(Am)b3]

where we introduced the notation k3 = k2 + 2uAm —
2ueq. Note that k < ¢ near the threshold.

Thus, in the limit of large ¢, the resulting contri-
bution from the impulse approximation (see Figs. 2a
and 2b) to the real part of the wd-scattering amplitude
is

Refly=fry +Refy) " =200 (9)

™

4
(2) . 4¢
Jra = (2m)5

dqidaspq(ai)ea(as

(2man)? / (k + )2 N P
2u 2m 2m 2u

(b5 — b1)J(Am = 0) — bTJ(Am)]

RCED; )

This is a naive but expected result for the real
part of the amplitude corresponding to the impulse
approximation. The values of RefT(rz)VGV for the

charge-exchange process m=d — n%mn — 7~d are
presented in the table for different values of parameter
c. Contrary to the real part of the loop amplitude,

the imaginary part of fT(r;)VGV [see Eq. (8)] does not
depend on ¢ as required by the unitarity.

Now, let us discuss the contribution to the pion—
deuteron scattering length from the double-scattering
process.

2.3. Double-Scattering Contribution

The double-scattering diagram is shown in Fig. 2c.
Performing the calculation, we have the following

integral for the double-scattering amplitude ffﬁi)
(see [9] for details):

)
J(Am) = / (k+q; —q2)?+ (,u/m)(q% + q%

In the limit of large ¢ and for u/m < 1, this inte-
gral is reduced to the following expression:

2
frd =205 ) (1)

efik-rJriko(Am:O)r

X / W2(r) dr
T

) ) efik-rJriko(Am)r

—2b1/\lld(r)fdr,
PHYSICS OF ATOMIC NUCLEI Vol.67 No.4 2004

P k+q—q2)
)+ 2u(eq — Am) — k2 —i0’

where Wy(r) is the deuteron wave function in the
coordinate space.

In the limit of small k£ and kg, i.e., near the thresh-
old, for the real part of f7(r2d), we get

Ref) :2(b3—2b%)<%> . (12)

d
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Real parts of the contributions from the diagrams shown in
Figs. 2b and 2¢ for the charge-exchange process

c Re f(l)VGV fm Ref@) fm
2 0.0199 —0.0084
34 0.0317 —0.0098
Ap 0.0435 —0.0104
51 0.0551 ~0.0107

This expression is well known as a static limit for
the double-scattering amplitude (see, e.g., [12] and
references therein).

The imaginary part of the amplitude fﬁl) (11)in

the same limit is

Imf2) = 2k (Am = 0)(B — b?) — 2ko(Am)b3.
(13)

Note that this contribution is negative, because b >
bo.

2.4. Total Pion—Deuteron Amplitude

Let us discuss the value for the total pion—
deuteron scattering amplitude in the limit of large
¢ (¢> ) and for u/m < 1. For the imaginary part
of the resulting amplitude in this limit from Eqgs. (8)
and (13), we get

Imfrq ~ 4ko(Am = 0)b3. (14)

Thus, we find that the contributions from LCIA
and RE to the imaginary part of the pion—deuteron
scattering amplitude cancel each other in the leading
order (i.e., terms ~b%). The nonvanishing part of
Imf,q is proportional to b3, which corresponds to the
elastic rescattering process 7~ d — 7 pn — 7 d.
Note that the imaginary parts of both expressions (8)
and (13) behave as two-particle phase space, i.e.,
proportional to kg ~ QY/2, where Q is the kinetic
energy of the intermediate 7NN system. However,
three-particle 7NN phase space should behave as
Q2. This paradox can be resolved if we remind
the reader that the approximation p/m < 1, which
implies that the kinetic energies of the intermediate
nucleons in Egs. (7) and (10) are neglected, was
used to obtain Egs. (8) and (13). This approximation
corresponds to the rescattering of pions on the fixed
centers. That is why the imaginary parts in Egs. (8)
and (13) behave as Q2. The result (14) means that
the only possible final state which can be formed in
the S wave in the process of deuteron disintegration
is pnm~ (with total spin S = 1 and isospin I = 0 for

PHYSICS OF ATOMIC NUCLEI
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a pair of nucleons). The virtual charge exchange does
not contribute to the imaginary part of the pion—
deuteron amplitude. This conclusion is in agreement
with the remark of [5].

At the same time, we would like to stress that
there is no complete cancellation between the real

parts of the amplitudes ffr}j)VGV and fT(FQ), i.e., the
resulting contribution from LCIA and RE to the real
part of the pion—deuteron scattering amplitude is not
small. This conclusion, which is also correct for the
process yd — mVd, is in contrast to the arguments
of [5]. As can be seen from Eq. (8), the expression for

Ref(1 vev depends linearly on the cutoff parameter ¢

for large values of ¢ and u/m < 1, whereas Refﬁl) in
the same limit is totally determined by the deuteron
wave function, i.e., independent of ¢ [see Eq. (12)].
Therefore, the cancellation of the real parts of the

amplitudes fT(rZ)VGV and fﬁl) cannot be achieved in
this limit (the value ¢ = 2(|1/7])q ~ 1.2 is obviously
not realistic).

In [9], we have calculated the sum of the real
parts of the diagrams presented in Fig. 2 varying
the parameter ¢ in the limits 2.5u < ¢ < 3.5u. The
results of our numerical calculation are shown in the
table for the case where ¢ varies in a larger range
and the terms ~O(u/m) are taken into account. In
the calculation, we use the purely hadronic values for
bo and by presented in[7], i.e., bg = —2.2 x 107 3m!
and by = 90.5 x 1073m_!. This table clearly confirms
the conclusion discussed above that the real parts of
the diagrams of Figs. 2b and 2¢ do not cancel each
other.

3. SUMMARY

We developed a consequent potential approach to
the problem of the calculation of the pion—deuteron
scattering length. The wd amplitude was calculated
with inclusion of terms of the second order with re-
spect to the pion—nucleon potential V. The proper
symmetrization of the wave function for the interme-
diate nucleons is taken into account automatically in
our approach.

We show that there is a significant cancellation of
the contributions from the imaginary parts of LCIA
(Fig. 2b) and RE (Fig. 2¢). This cancellation is ex-
pected. It simply reflects the fact that the process
n~d — 7'nn is strongly suppressed near threshold,
as required by the Pauli principle. However, no such
cancellations take place between the real parts of
these processes. The integrals for the real parts of
the amplitudes (7) and (10) are quite different. In
particular, they have a different dependence on the
cutoff parameter ¢ in the form factor. Therefore, we
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see no reasons for the cancellation of Reffrl,);/Gv and
2
Ref?,

The situation for the reaction vd — 7°d is quite
analogous to that discussed for the reaction 7d — nd.
There are no reasons for the cancellation of the real
parts of the diagrams shown in Figs. 1a and 16. This

conclusion is in agreement with the results of [1—4],
where rescattering effects are found to be important

for the reaction yd — 7%d.
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Abstract—A semiclassical quantization of the Skyrme model featuring a sixth-order term in the derivatives
of the chiral field in the Lagrangian is performed. The orbital, isotopic, interference, and flavor tensors of
inertia are calculated. For this version of the model, numerical calculations are performed for the excitation

energies of flavors in baryon systems. © 2004 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

The Skyrme model of baryons as chiral-field
solitons makes it possible to describe mesons and
baryons with the aid of the same effective La-
grangian [1], configurations characterized by different
baryon numbers being considered as solutions for
this effective Lagrangian that belong to different
topological classes.

A unitary matrix U(z) € SU(2),
U = @@ ™ — cos f +isin f(n- 1),
n? = 1,

that is expressed in terms of meson fields 7 and o
according to the relations 7w = (F/2)nsin f and o =
(Fr/2)cos f is a dynamical field of the model, the
constraint

w2 + 0% = const (1)
being satisfied.

The boundary condition U(|r| = oo, t) = 1 (which
corresponds to a physical vacuum) makes it possi-
ble to break down all field configurations U(r) into
topological classes according to the multiplicity of
the mapping of the space r € R? into the interior-
symmetry space—namely, a sphere of fixed radius in
the four-dimensional space (, o). There exists the
conserved [by virtue of the constraint (1)] topological
current

1
BH = mg””aﬁtrLyLaLﬁ, (2)

“e-mail: A.Shunderuk@umail .ru

which determines the topological charge

B = / B&3r,

the latter being coincident with the multiplicity of
mapping. The anti-Hermitian matrix L, = 8NUUT
is a left chiral derivative. The boundary condition
ensures that the topological charge B is an inte-
ger. From the physical point of view, the topological
charge B is identified with the baryon number of the
meson-field configuration [1].

In terms of the field U, the chirally symmetric
kinetic term in the meson Lagrangian,

Liin = %(@71’8“% + 0,00"0), (3)

has the form

F F
Liin = 1—6tr6HU8“UT = —1—6trLuL“. (4)

[t is well known that a static solution to the
Lagrange—Euler equation minimizes the energy
functional. However, the scale transformation r — ar
reveals that the energy functional corresponding to
the Lagrangian in (4) has no minimum. A soliton
can be stabilized by supplementing the Lagrangian
with higher order terms in derivatives. In order to
provide the possibility of performing a quantization,
it is necessary to include only the first derivatives of
the field U, with the power of the time derivative not
being higher than two.

So far, attention has been given primarily to the
original version of the Skyrme model [Sk(4)], where

1063-7788/04/6704-0748$26.00 © 2004 MAIK “Nauka/Interperiodica”
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the soliton is stabilized by a quartic term in the deriva-
tives,

1
Ly = ———tr[L,,L,J]% (5)
32e2, "
Within a different model version that satisfies the
aforementioned requirements, the Lagrangian in-
volves a sixth-order term in the derivatives [Sk(6)],

Lo = —cgtr|Ly, L)Ly, L% [La, L"), (6)

Previously, this Lagrangian has been investigated
only at the classical level [2]. In the present study, a
semiclassical quantization is performed.

The total Lagrangian of the model also involves a
chiral-symmetry-breaking mass term; that is,

where
F2 2
Lo = nglﬁtr(U—kUT —9). (8)

All qualitative properties of classical solutions (they
are discussed in the next section) are independent of
the presence of the mass term in view of the smallness
of the pion mass.

The generalized model involves the following four
constants: Fy, the pion decay constant; m,, the pion
mass; and egy and cg, free parameters that specify
the coefficients in front of the Sk(4) and Sk(6) terms,
respectively.

2. CLASSICAL SOLUTIONS

Numerical calculations revealed that the field con-
figurations of lowest energy possess different symme-
tries for different baryon numbers B. These are spher-
ical symmetry for B =1, axial symmetry for B =
2 [3], tetrahedral symmetry for B = 3, cubic symme-
try for B = 4 [4], etc. The symmetries of Skyrmions
for baryon numbers up to B = 22 inclusive were de-
termined in [5]. For B > 6, all of them, with the
exception of two cases, are formed by 12 pentagons
and 2B — 14 hexagons. Configurations of icosahe-
dral symmetry were recently found for greater baryon
numbers (B = 37, 47, 67, 97) [6]. Numerical calcu-
lations for B <5 within the Sk(6) version and the
mixed version of the model showed that Skyrmions
have the same symmetries in this case as well [2].
Within the Sk(6) version of the model, a toroidal
solution was found for the first time in [3].

In [7], a rational-map ansatz was proposed to
describe such solutions. The classical-mass values
obtained with the aid of this method agree to within
about 2% with the results of numerical calculations.

The basic idea of that approach is as follows. [t can
be assumed that the profile function f depends only
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on the distance to the Skyrmion center and that the
unit vector n depends only on angular variables; that
is,

Ur) = e (n0:0) T (9)

The function n(6, ¢) specifies the map having the
index A and transforming a unit two-dimensional
sphere in coordinate space into a unit two-dimen-
sional sphere in isospin space (S? — S2). In general,
we have N' = B for minimum-energy configurations
(this corresponds to the boundary conditions f(0) =
7, f(+00) = 0).

By using the stereographic projection, a unit
sphere in coordinate space can be transformed into
a complex plane

z:tangeid’ (10)
and a unit sphere in isospin space can be transformed
into its own complex plane

2ReR 2ImR
nx:T’R‘Qa ny:T’R‘Qa (11)
1—|RP
T ITRE

In this case, R(z) will be a rational function of power

N

Considering that |dR/dz|? is the Jacobian of the
map z — R(z), one can easily prove that the index of
the map admits the integral representation

N = i/7‘2(8kn)2al§2
8T
dR ds,

_1/ 1+ 2> [dR[\® dS.
T ) \1+|R]?|dz|) (1+]|z[2)2

where (Oyn)? = (Oyn,On), k=1...3; dS, is an
area element on the complex plane; and df2 is a solid-
angle element in coordinate space,

4dS,
L+ [P
We use the following notation for the corresponding
integral with respect to angles:

(12)

dQ = (13)

1
F=— /7"4[3Z-n, Opn)2dQ (14)
8w
1/ 1+ 2> [dR[\"  dS.
o 1+ |R|? | d=z (1+]2)2)%

The Cauchy—Schwarz (Buniakowski’s) inequality for
the integrals A and < leads to & > N2; numeri-
cal calculations reveal that, for the minimum-energy
configurations, & ~ A2,
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fr)

Fig. 1. Profile functions obtained for rational-map multi-
Skyrmions at various baryon numbers by minimizing the
mass functional (15) within the Sk(6) version of the
model (A = 1): (curve /) numerical solution for B =1,
(curve 2) numerical solution for B = 17, and (curve 3)
analytic approximation for B = 17. The scale along the
radius was chosen to be 2/(Fre).

Let us choose 2/(Fre) for a unit of length and
312 F, e for a unit of energy (here, e = egrv/1 — A
with A/(1 — \)? = 48¢g F2el; ). At A =0, we arrive
at the original version of the Skyrme model [without
an Sk(6) term], while, at A =1, we obtain a pure
Sk(6) version [without an Sk(4) term]. In the latter

case, we have e = 1/1/48c F2.

In the limit m, = 0, the classical Skyrmion mass
obtained from (7) with the aid of a rational map and
reduced to a dimensionless form in the way outlined
above is given by [2, 8]

o0

1
Mc]as - 3_7_[_/

0

82 84
+ (1= N)s? <2Bf’2(r) + %T—J;) + )\%T—éfa(r)}dr.

{ (7“2 F2(r) + 2Bs§) (15)

The baryon-number density averaged over angles has
the form

pi(r) = 4w Br) = —22 3 /().

Hereaiter, we use the notation sy =sin f and ¢y =
cos f. The relevant integrals with respect to angles
were evaluated with the aid of formulas (12) and (14).
Thus, the problem of minimizing the classical mass
has been broken down into two independent prob-
lems: that of minimizing the integral & with respect
to the angles and that of minimizing the mass func-
tional (15), which depends only on the profile function

f(r).
Technically, the main difficulty consists in finding
the integral & and the specific form of the map of a

(16)
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sphere into a sphere. As was shown in[8, 9], the prob-
lem of minimizing the functional in (15) and study-
ing the basic features of multi-Skyrmions versus B
and < can be solved analytically to a high precision,
many features of multi-Skyrmions being only slightly
dependent on the angular distribution since & either
does not appear at all in the respective expressions

or appears only through the factor \/S/B?, which is
close to unity. The required substitution for the profile
function can be obtained on the basis of the fact that
the functional in (15) is a quadratic form. The result is

(r/ro)* — 1
(r/ro)b +1°
where b and rg are parameters that must be deter-
mined by minimizing the mass functional (15). It is

obvious that rg has the meaning of the Skyrmion
radius. At B > 1, it was found that

cos f = (17)

4.
ot gfgS P a2Ys (18)
M ( >
in the pure Sk(4) case ( 0) and that
,rmin ~ 4 8 bmin ~ 2\/E7 (19)

0”15

Mg}g‘s‘ 8 4/8
B 3rV15 B2
in the pure Sk(6) case (A = 1).

Since 3 ~ B2, the Skyrmion size is ro ~ VB,
while the classical mass is proportional to B. The
profile function f(r) and its analytic approximation
are depicted in Fig. 1.

From formulas (15) and (16), it directly follows
that the energy density and the baryon-number den-
sity are nonzero only in that region of space where
the profile function f(r) does actually change from
m to 0—that is, inside some spherical layer ro —
w/2 < r < rg+w/2, beyond which we have f(r <
ro —w/2) ~m and f(r > ro+ w/2) ~ 0. The layer
width w can be determined as the doubled distance
between the points where cos f = £1/2. This yields
w = 4(rp/b) In 3—that is, the result is independent of
B.

For Skyrmions of large baryon number, the mass
and the baryon charge are therefore concentrated
at the surface of a sphere whose radius grows with
increasing baryon number in proportion to v/B, the
layer width taking the same value for Skyrmions hav-
ing different baryon numbers (see Fig. 2). The mean
volume energy density within the layer,
Myjas/ (4mr3w), does not depend on B either [9, 10].
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3. SEMICLASSICAL QUANTIZATION

On the basis of each static solution U(r), one can
construct, with the aid of rotations in ordinary space
and in isospin space, an energy-degenerate family of
configurations U(r, A, R) = AU (Rr)Af, where A is
a unitary SU(2) matrix and R is an orthogonal O(3)
matrix. In performing quantization of these zero-
point modes, the model parameters R and A become
the dynamical variables R(¢) and A(t).

Upon the substitution of the field U(r,t) =
AU (R(t)r)Af(t) into the Lagrangian in (7), we
obtain the contribution of the rotational energy in the
form

Etotal = Mclas + Erota (20)

1 . 1
Eof = §®£bwawb + 0w, + 5@ngaQb,

where @éb is the isospin tensor of inertia; @gb is the
orbital tensor of inertia; @ifbt is the interference tensor
of inertia; and w, and ), are angular velocities,

ATA = —iw - T, (RRT)Zk = Eiijj.

Let us introduce the isospin and angular-momen-
tum operators (1; and J;, respectively) that are conju-
gate to the angular velocities w; and §2; via the linear
relations [11]

I;=0w;+ 00, J;=0/0;+0"w,
The isospin operators I; commute with the angular-

momentum operators J;; taken separately, they sat-
isfy the SU(2) commutation relations:

i, 1] = icijrdy, [Jis Jj] = igijk Tk

On the basis of the above, the derivation of the
energy spectrum is especially straightforward for
Skyrmions of large baryon number since numerical
calculations show that such Skyrmions are almost
spherically symmetric and since the interference
tensor of inertia is much smaller for them than the
isospin and orbital tensors of inertia. For B > 1, we
can therefore set

Ii = @15ijwj,

Ji =06,  (21)

1
Oy = g@ég‘])-

The rotational-energy operator is then expressed
in terms of the isospin operator and the angular-
momentum operator as
Lw; + J;Q; . I? n J? )

2 207 20,

Erot =
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0.08 |-
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0

Fig. 2. Volume energy density for rational-map multi-
Skyrmions, p}'@} = dM_j,s/dV, as a function of the radius
for various baryon numbers: (curve /) Sk(4) version, B =
17, and §/B? = 1.257; (curve 2) Sk(4) version, B = 67,
and &/ B? = 1.250; (curve 3) Sk(6) version, B = 17, and
¥/B? = 1.257; and (curve 4) Sk(6) version, B = 67, and
S/B? = 1.250. The energy density and the radius are
given in units of 32 Fre?/8 and 2/(Fxe), respectively.
The constant e can have different numerical values in
different versions of the model.

thus, the eventual form of the energy spectrum is

IT+1)  J(J+1)
Er;=M, .
1,J clas 2@[ 2@]

The contributions to the tensors of inertia from
the kinetic and Sk(4) terms of the Lagrangian were
calculated in [10] for arbitrary baryon numbers; in the
next section, these results will be supplemented with

the calculation of the contribution from the Sk(6)
term.

(22)

4. CALCULATION OF THE TENSORS
OF INERTIA

In the Sk(6) term, we now single out the part
depending on time derivatives. We have

tr(L,, L"][Ly, L[ Lq, L*]
= —tr[Ly, Lg][Lq, Lj][L;, Ly]
+ 3tr[Ly, Lg][Lq, Li][Lt, L),

(23)

where L; = 8]-UUT; the indices j, p, ¢ run through the
valuesof1...3:and L, = UUT. Substituting the field
U(r,t) into the Lagrangian with the aid of the equality

U= %AU(Rr)AT — AUA" 4 AU At

. (24)

+ AdLUeamQa(Rr), A

and going over from integration with respect to the
fixed coordinates r to integration with respect to the
coordinates R(t)r rotating with the body (we denote
them again r), we obtain

Sk(6) _

E = —3cg / tr[Ly, Ly)[Lg, L) [Lt, Ly)d°r, (25)

rot
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where we now have L; = [ATA, UlUT + hy Ly, with
hi = €kamarm, U(r) having the meaning of a clas-
sical solution.

The traceless anti-Hermitian matrices L and L;
are expanded in terms of the Pauli matrices as Ly =
1Ly, - 7 and L; = iL; - 7; therefore, we have

tr{Lp, Lg][Lq, Le][Lt, Ly (26)
= 8itr([Ly, Ly - 7)([Lg, Le] - 7)([L¢, L] - 7)
= —16([Ly, Lg], [Lg, Ly, [L¢, Ly))
= —16(Ly, Ly, L;)>.

Let us now calculate the chiral derivative with
respect to time, L;. The commutator appearing in it
can also be expanded in terms of the Pauli matrices:

[ATA, U] =

—%w~T,Cf+ian'T (27)

=isflw,n] -7 =isfN-7, N=[w,n].

In just the same way as in [12], we denote by a*
the vector a rotated about the vector n through an
angle (—f) according to the screwdriver rule. It can
easily be proven that, if a is orthogonal to n, then
(a-7)Ut =a*. 7, in which case [ATA,UJUt =
isfIN* - 7. Further, we have

Ly = Orfn+cyspOpn — s?c[n, okn] = A, (28)
where Ay, = O fn + s;0kn,
whence it follows that
L; = syIN" + hp Ay, = A7, (29)

where Ay = 5N + hyAy.

By using the invariance of a mixed product under
rotations, we can then simplify the ensuing calcula-
tions as follows:

(va qu Lt) =
We denote

(Ap, Ay AY) = (Ap, Ag, Ay). (30)

Xpgk = (Opfn, Oyn, Oyn) (31)
+ (O fn, Opn, Oyn) + (0, fn, Oxn, Opn).

The substitution of expressions (28) and (29) into the
mixed product (30) then yields

(Ap, Ag, Ay) = —sfc(w, Op fOmM —
+ S?thqua

OqfOpm)  (32)

where we have used the relation (9,n,9,n,N) =0,
which is valid by virtue of coplanarity—all three vec-
tors are orthogonal to n.

Upon squaring, we find according to formulas (25)
and (26) that

ensHO) _ / 192c65H (O f)20madimy  (33)
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— Ok f ka0 fOimy }dPr,
GibSk((S) /9606Sszqukpq5zam5kbn""m""nd 7,
61;1; Sk'( ) /96C6Sf( pfaqna

— 8qf8pna)quk€kbnrnd3r.

The total isospin tensor of inertia can be represented
as

The expressions for the total orbital and the interfer-
ence tensor of inertia can be obtained in a similar way.

Using rational maps and, therefore, taking into
account the orthogonality of spherical coordinates
(Ok fOkn = 0), we can simplify the respective expres-
sions, reducing them to the form

@iéSk((i)(RM) = /192668?ch2(T)amaambdg?”,
(34)

02 MO (RM) = / 192¢g54 (1)
% {120 = rars) (00, On]?
— 72(9,n)*(0,n0m) + r?(9ynd, n)(@bnﬁqn)}d3r
O " (RM)
:/19206531cf'2(r)(n, O, A1) Dy o€ imTnd>r.

It was indicated in [10] that the traces of the
isospin and orbital tensors of inertia (in the standard
Skyrme model) are expressed in terms of the profile
function f(r), the baryon number B, and the integral
& with respect to angles exclusively, this making it
possible to investigate, irrespective of the angular
distribution, the properties of multi-Skyrmions hav-
ing large baryon numbers (for example, the isoscalar
magnetic moment of a Skyrmion is proportional to
1/©y).

The above is valid for the Sk(6) contributions as
well. With allowance for all contributions, the mo-
ments of inertia [for the definition of ©(, see (21)]

are given by

ST} /{sfr + (1= N)s3(f?r* + Bs}) (35)

0
+ ABsf"}dr,
4 o0
0y = o /{BS?{'T2 +(1- )\)S?{'(BfQTQ + \sz)
0
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+ ASst 2 }dr.

These expressions were reduced to a dimensionless
form by the method described in Section 2 [the mo-

ment of inertia is measured in units of 1272 /(Fye?)].

Since & > B2, it can be found by analogy with [10]
that

®J—B@I:i(%—32)
97
x/s;lc((l—)\)—l—)\f'Q)erO,
0
seI—B@J:i(%—BQ)
97
></7“2s?c (L4 (1 =N f?)dr >0,

0

whence we obtain
(\

S
— > > .
B@[_@J_B@[

5. FLAVOR MOMENT OF INERTIA

[t is straightforward to include a third quark in the
Skyrme model—that is, to extend the symmetry to
the (u,d, s), (u,d,c), or (u,d,b) group. For this, one
must take the field U(r,t) in the form of an SU(3)
matrix. In this case, the classical SU(2) solution con-
sidered above takes the form

if (r)n(r)-T 0
Ur) = € .
0 1

In order to quantize deviations in the strange
(charm, beauty) direction in the vicinity of a classical
SU(2) solution, we consider the time-dependent field

U(r,t) = A()U(r)Af (1)

and introduce the SU(3) matrix A(¢) through the

relation ATA = —(i/2)vgAg, Where A\, are the Gell-
Mann matrices and a = 4, ..., 7. Further, we set

Vg4 — ’i1}5
V= )
Vg — U7

A= ! —'—0 v
2\ ytlo

The corresponding rotational energy takes the form

in which case

1
B = 505 [V (37)
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The objective of this section is to calculate the Sk(6)

contribution to the flavor moment of inertia @%0) (for
the quantization procedure, see [12, 13] and refer-
ences therein).

Let us introduce the notation
W=>1-U)W.
We then have

Lo = [ATA, 00T = —L (L‘ﬂ) . (38)
2\ wtlo
Since
iLg -1 0
Ly = t ,
010

the further calculations give

Lo L] = L 0 | @-nw
S S ) ’

(39)
(L, Ll L) = (40)
(L - H)WWIL; - 7) | 0
X )
0 ‘ WLy - 7)(L; - 7)W
tr[Ls, L) [Li, L) [ Le, Li] (41)

= oL 7L L] ) (L )W

The product of linear combinations of Pauli matrices
that appears in (41) is proportional to the identity
matrix; that is,

(Li - 7)([Li, L] - 7) (L - 7) = —i[L;, L J?

- _i[AiaAk]27
whence we obtain
1
tr[Li, Le[Li, Ll[Ln, Li] = =5 [Aq, A2 [ W2, (42)

where A; is given by (28). Upon using the general

formula (25) with allowance for (37), we find with the
aid of the equality [W|? = 2(1 — ¢f)|V|? that

o0)-SHO) _ / 6eo(1 — c7)s3 {200 2(0m)? (43)
+ 52[0m, Dn]? — 2(9 f@kn)2}d3r,

6;9) _ @;E)),kin + 6;9),519(4) + @;E)),Sk(&.
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For rational maps, the Sk(6) contribution is

e\ RMm) (44)

o0

2
= /487rc6(1 - Cf)S?c {QBf'Q(r) + ST—J;} dr.

0

The total moment of inertia reduced to a dimension-
less form in the same way as in (35) can be rewritten
as

o = L [ ¢y

F7 oum
0

(45)

X {8r2 + (L= A)(2r?f? + 4Bs?)
82
+As3 ( 2Bf? +S-L | bdr.
r

6. FLAVOR EXCITATION ENERGIES
WITHIN THE Sk(6) VERSION

By using the expression derived in the preceding
section for the flavor moment of inertia, one can cal-
culate the strangeness, charm, and bottom excita-
tion energies in nuclei (by analogy with the study of
Kopeliovich and Zakrzewski[14], who considered the
Sk(4) version of the model). For this, it is necessary
to take into account, in the Lagrangian, the flavor-
symmetry-breaking contribution

2,2 2,2
FDmD24 Fﬂmm[r(1 B \/g)\s)

Lrsp = (46)
F2 — F?
X (U+UT—2)+%U

x (UL + LU,

(1—v3Xg)

which proved to be sufficient for describing the mass
splitting in the octet and the decuplet of baryons [15].
In formula (46), Fp and mp are, respectively, the K-,
D-, or B-meson decay constant and mass.

Within the 1/N, expansion (N, is the number of
colors in QCD), the expression for the Hamiltonian
of the system characterized by a fixed baryon number
B has the form

Hp = My p +wrpala+wppbb+ O(1/N,),
(47)

where af and b are the corresponding creation
operators and wr p and Wr p are, respectively, the
strangeness and antistrangeness (flavor and anti-
flavor) excitation energies. Upon introducing the
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2

T

notation m% = (F3/F2)m?% —m2, the excitation

energies can be represented as [14]
prB —1
= N.B—
WF B c 8®F )
phrstl
8O

160p ~
LFB = \/1 + W(m%r + (Fj — F2)D),

(48)

wrB = N

where the new flavor moment of inertia O = @%0) +
(F%/F2? —1)T'/4 and the integrals

r= F?’% /(1 — cp)dPr, (49)

1

== /cf ((Of)* + sff(aknf) d3r (50)

4

are also functions of the baryon number B.

In view of the shell behavior of the classical solu-
tion at large B, the model is applicable only to light
nuclei. This drawback (from the phenomenological
point of view) can be associated, for example, with
the fact that, for large baryon numbers, the rational-
map ansatz (9) provides only a local minimum of the
energy functional rather than the absolute one. This
means that, at a specific critical value of the baryon
number, B, there may occur a phase transition
to configurations of the Skyrmion crystal type (for a
discussion on this issue, see [16]). It is known that
Byt > 22.

In the table, the strangeness, charm, and bot-
tom excitation energies are given for relatively small
baryon numbers. The strangeness excitation energies
appear to be 30 to 50 MeV greater in the Sk(6) model
version than in the Sk(4) case, which was considered
in [10]. For charm and bottom, the corresponding
values increase by 70 to 120 and 110 to 200 MeV,
respectively. The distinction between the two versions
of the model manifests itself most significantly here
in relatively low values of wg, w., and wy, for the
B =1 states in the Sk(6) version. On the whole,
the results of the calculation show that, in the Sk(6)
model version, the qualitative behavior of the flavor
excitation energies versus the baryon number of the
original SU(2) configuration is identical to that in the
Sk(4) case—namely, states of baryon numbers in the
range 4—11 are bound most strongly. This effect can
be understood on the basis of the following simple
considerations. The flavor excitation energy can be
represented as

; r
W ~ cons o5
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Features of multi-Skyrmions and strangeness, charm, and bottom excitation energies for configurations of various

baryon numbers B within the Sk(6) version of the model

B 0 Gev! I, Gev™! T, Gev™! ws, MeV we, MeV wp, MeV
1 2.28 6.08 15.8 336 1604 4920
2 4.95 14.0 24.7 346 1635 4980
3 7.35 20.7 30.4 342 1632 4970
4 8.94 24.5 33.7 328 1612 4950
5 11.8 32.8 38.3 334 1622 4960
6 14.1 39.3 41.6 332 1622 4960
7 15.4 42,5 43.5 324 1609 4950
8 18.5 51.6 47.0 330 1620 4960
9 21.1 59.2 49.7 331 1623 4960
10 23.5 65.8 52.0 331 1624 4970
11 26.1 73.6 54.4 332 1626 4970
12 28.3 80.0 56.3 332 1626 4970
13 30.8 87.2 58.2 332 1628 4970
14 34.0 96.9 60.6 335 1633 4980
15 36.8 105 62.5 336 1635 4980
16 39.3 113 64.2 336 1636 4980
17 41.4 118 65.5 335 1635 4980
22 56.4 164 73.9 342 1647 5000
67 213 662 119 366 1690 5060

Note: The model parameters are set to the values Fr = 186 MeV, e = 4.11, and m, = 138 MeV. In order to take into account flavor-
symmetry breaking in the decay constants, we set Fx /Fr = 1.22, Fp/Fr = 1.5, and Fg/F, = 2. For all B values, the numerical
results were obtained within the rational-map-ansatz approximation, in contrast to [ 10], where the results of a numerical minimization
of the three-dimensional mass functional are given up to B = 8 [for the Sk(4) version of the model].

where T' is proportional, according to (49), to the
volume of the entire Skyrmion, while ©r is propor-
tional in part to the Skyrmion volume (the kinetic-
term contribution) and in part to the volume of the
shell (the contribution of the Sk(4) and Sk(6) terms);
therefore, wp grows with increasing baryon number.
The values of wr for B =2 and 3 are greater than
those for larger baryon numbers because of a signif-
icant asymmetry of the toroidal and tetrahedral solu-
tions (this manifests itself in relatively large values of
/B2 for B = 2 and 3).

7. CONCLUSION

The tensors of inertia calculated within the chi-
ral soliton model featuring a sixth-order term in the
derivatives in the Lagrangian make it possible to find
the free parameters of the model.
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In both limiting cases considered here, Sk(4) (A =
0) and Sk(6) (A = 1), there is only one free parameter
e (in this version of the parametrization, the pion
decay constant is fixed by the experimental value of
F,. =186 MeV). From the above, one can derive, in
the Sk(6) case, the coefficient of the term involving
six derivatives in the Lagrangian; that is,

1

= U8F2Zet

(51)
By using the formula for the energy of the isospin-I
single-baryon state [17],

I(I+1)

Er = Mjas + TIB:la

(52)

the parameter e can be determined on the basis of
the mass difference between the delta particle and the
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nucleon,
_3
207=1"

In the SE(6) case, this yields e =4.11 and ¢ =
2.11 x 1072 GeV~2. This value of the parameter e
was used in numerically calculating flavor excitation
energies. The fact that the nucleon mass predicted by
formula (52) (1400 MeV) is closer to the experimental
value of 938 MeV is an appealing feature of the Sk(6)
version of the model; at the same time, the Sk(4)

version yields 1771 MeV for the nucleon mass at
e=4.12.

ma —Mmy =
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Abstract—Experimental data obtained by the BELLE Collaboration for inclusive J/v production in the

processes ete

— J/ +gg and ete” — J/1 + cc are discussed. These data are compared with the

predictions of perturbative QCD that were obtained by two methods, that which employs information
about the J/1 wave function and that which relies on the hypothesis of quark—hadron duality exclusively.
Both computational methods yield results that disagree with the experimental data considerably. The
dependence of the cross section for the process ete™ — J/1) + gg on the effective gluon mass is studied.
The cross section for the production of doubly charmed baryons Z%, is estimated. (© 2004 MAIK “Nau-

ka/Interperiodica”.

1. INTRODUCTION

At present, perturbative QCD (pQCD) makes it
possible to describe hard subprocesses in hadron pro-
duction adequately. The most pronounced advances
in employing pQCD have been made toward ob-
taining deeper insight into heavy-quark and heavy-
quarkonium production at high transverse momenta,
where, in accordance with the factorization theorem,
the process of heavy-hadron production can be bro-
ken down into two steps: (i) heavy-quark production
and (ii) the hadronization of product quarks. The
hadronization process can be described in terms of
a common factor that involves only a weak (log-
arithmic) dependence on pp. At low energies and
transverse momenta, factorization can be severely
violated because of final-state interactions. This is
suggested, for example, by the asymmetry in hadronic
production of different charged states of charmed par-
ticles. Since, at low energies and transverse momen-
ta, the factorization theorem is not more than an
approximation, we can expect significant deviations
in this region from the predictions based on pQCD
and the factorization theorem. Recent measurements
of ete™ annihilation at /s = 10.6 GeV that were
performed by the BELLE Collaboration [1] indicate
that the experimental values of the cross sections for
pair J/v¢ + n. production and for inclusive J/v + c¢
production are an order of magnitude larger than the
respective values predicted by pQCD [2, 3]. The shape
of some experimental differential cross sections for
the process J/1 + gg bears no resemblance to their

Dinstitute of Nuclear Physics, Moscow State University,
Vorob’evy gory, Moscow, 119899 Russia.

lnstitute for High Energy Physics, Protvino, Moscow oblast,
142284 Russia.

“e-mail: aber@ttk.ru

shape in pQCD. It was shown in [4] that allowance for
the electromagnetic contribution to J/v¢ + J/+ and
J/¢ + n. production may nearly double theoretical
values of the respective cross sections. Despite this,
the pQCD predictions remain inconsistent with ex-
perimental data on cécé production. In addition to the
disagreement between the theoretical and experimen-
tal values of the cross section, there is a discrepancy
for the relative rate of J/v production in the pro-
cesses ete™ — J/i +ccand ete” — J/¢ + gg[1]:
the experimental ratio of the .J/¢-production cross
sections,

o(J/¥ + ce)[o (/v + gg) = 0.5970 15 £ 0.12, (1)
is inconsistent with the pQCD prediction [3]
o(J/p 4 c€)/a(J/ + gg) ~ 0.1.

The cross sections o(J /9 + c¢) and o(J /¢ + gg)
are of the same order in a; over the energy range un-
der consideration, their ratio depends only slightly on
the scale or on model assumptions. In what follows,
we consider these disagreements between the pQCD
predictions and experimental data in more detail.

2. PROCESS ete™ — J/1 + ce

The experimental value of the cross section for the
process

ete” — J/ +ce (2)

was determined from data on the reactions etTe™ —
J/+ D%+ X and ete” — J/ + D*t + X. The
results were [1]

olete™ — J/1 + ce) (3)
= 1.1703% £ 0.26 pb and 0.74F9-23 4+ 0.19 pb,

1063-7788/04/6704-0757$26.00 © 2004 MAIK “Nauka/Interperiodica”
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Fig. 1. Feynman diagrams tem —

J/ + ce.

for the process e

respectively.

Theoretical estimates of the cross section for
process (2) are based on considering the pQCD
diagrams in Fig. 1. The amplitude of this process
can be represented as the product of the ampli-
tude for the hard production of two ¢¢ pairs and
the wave functions describing ¢¢ bound states and
taking into account the hadronization of the product
quark—antiquark pairs. The results of the calculations
performed by various authors [2, 3, 5] are in good

agreement with one another, amounting to®)
o(J/1h 4 ¢€) ~ 6 x 1072 pb, (4)

which is more than an order of magnitude smaller
than the experimental value in (3). The discrepancy
cannot be removed by increasing the cross section in
(4) through an increase in «g. There is every reason
to believe that the factorization hypothesis for the
matrix element is not responsible for this discrepancy,
because, as was shown in [2], the predictions rely-
ing on the factorization hypothesis agree well with
those obtained within the approach based on quark—
hadron duality, in which case neither the factorization
hypothesis nor bound-state wave functions are em-
ployed.

For example, the cross section calculated for the
production of a color-singlet ¢¢ pair to the same order
in as as o(J/¢y + cc) at 2m. < Moz < 2Mp- + AM
(AM ~0.5—1 GeV), as = 0.24, and m, = 1.4 GeV
is[2]

oes(AM = 0.5 GeV) = 0.13 pb, (5)

oes(AM = 1.0 GeV) = 0.16 pb. (6)

YHowever, the calculations performed recently in [6] with
as = 0.26 give a cross-section value that is nearly twice as
great.

BEREZHNOY, LIKHODED

This result should be compared with the sum of
the cross sections for the production of S-wave states
(including the production of resonance excitations),

o(Xn.) = 0.13 pb. (7)

A comparison of the results in (5)—(7) reveals that
the rough estimates of the cross section for process
(2) that are given in (5) and (6) and which are based
on duality are close to the value in (7), which was
obtained within a more rigorous approach. Although
these values, which were deduced within the different
approaches, agree with one another, each of them
is an order of magnitude less than the experimen-
tal value obtained by the BELLE Collaboration (see
above).

Yet another circumstance is also of importance.
According to our calculations at as = 0.24, m,
1.4 GeV, and /s = 10.6 GeV, the total cross section
for the production of two c¢ pairs is

o(ceee) = 0.237 pb,

(8)

which is only W,z = 2 x 1074 of the total cross sec-
tion for cc-pair production at the same energy. At
the Z%-boson peak, where the accessible energy is
an order of magnitude greater than that in the above
example, W,z amounts to 0.03. This behavior of the
probability for the production of an additional pairis in
good agreement with the pQCD predictions [7]. But
it should be noted that the value in (8) is smaller than
the experimental cross section for J/v + c¢ produc-
tion, this in turn suggesting a strong suppression of
the production of four D mesons.

The contribution of electromagnetic interactions

to the cross section for cécé production is about 2.5%
of the total cross section in (8),

oD (¢zee) ~ 6.6 x 1072 pb.

This cross section is several times smaller than
the cross section for the exclusive electromagnetic
production of pairs of S-wave states, the value of
the latter being taken from [4].*) This indicates that,
on one hand, such an estimate of the cross section
for exclusive pair production can be several times
greater than its true value and that, on the other hand,
the mechanism of cécé production in electromagnetic
interactions differs substantially from that in QCD.

YIn the recent study of Luchinsky [8], it was argued that the
cross section for the exclusive electromagnetic production of
pairs of S-wave states is only one-half of this value.

PHYSICS OF ATOMIC NUCLEI Vol.67 No.4 2004
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Fig. 2. Feynman diagrams for the process ete™ —

T/ + gg.

3. PROCESS ete™ — J/v + gg

Let us consider yet another important process
contributing to inclusive .J/1¢-meson production (see
Fig. 2),

ete” — J/Y +gg.

A detailed investigation of this process was performed
in[9].
Within the color-singlet model, the cross section

for this process at the interaction energy of /s =
10.6 GeV and oy = 0.24 is

o(J/¢ +gg) = 0.7 pb. (9)

By using the estimate of the cross section for
J /¢ + c¢ production within the same model, one ob-
tains the ratio

o(J/¢ +ce)/a(J/ + gg) = 6 x 1072/0.7 ~ 0('}6)

which is to be compared with the experimental value
in (1). From the theoretical point of view, it is evident
that the uncertainty in this ratio is less than the un-
certainty in each of the cross sections involved. The
reason is that the ratio in (10) is independent of the
nonrelativistic matrix element for the c¢ — J /1) tran-
sition; moreover, it is independent of the factorization
scale entering into o, because the leading contribu-
tions to the two processes are of the same order in as
and involve approximately equal virtualities.

However, a straightforward application of the
cross section for color-singlet production presents
some difficulties. It is well known that the pQCD
predictions (at least, in the leading approximation)
for the spectrum of the gg system are inconsistent
with experimental data at low invariant masses.
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Fig. 3. Distribution of the cross section for J/9 + gg
production in e*e™ annihilation with respect to the in-
variant mass mgg of the two-gluon system for (solid
curve) massless (mg = 0) and (dotted curve) massive
(mg = 1.18 GeV) gluons.

Recently, this discrepancy was clearly demonstrated
by considering the example of the photon spectrum
in the decay J/¢¥ — v+ gg. It was shown in [10]
that the inclusion of higher order corrections gives
rise to significant changes in the spectrum at low
invariant masses of the gg system. The introduction
of the effective gluon mass leads to the same results.
Following the ideas proposed in [11], we assigned the
gluon an effective mass of 1.18 GeV in order to take
into account corrections to the mass spectrum of the
gg system and to reproduce the photon spectrum in
the decay T — ~ + X faithfully. In the case under
consideration, the introduction of the gluon mass
shifts the spectrum of two-gluon masses mgy4 to
greater values, thereby reducing the cross section by a
factor greater than 2 (see Fig. 3). Therefore, the ratio
of the cross sections becomes

a(J/Y +ce)/a(J/Y + gg) = 0.2,

but this improvement does not remove the discrep-
ancy with the experimental data.

4. PRODUCTION OF DOUBLY CHARMED
BARYONS

In investigating events that involve two c¢ pairs,
proper attention must be given to studying the pro-
duction of doubly charmed baryons =¥.. The cross

—cc*
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Fig. 4. Momentum distribution of (ec)s diquarks pro-
duced in e*e™ annihilation.

section for =, + ¢c¢ production can be estimated by
the same two methods as those that were employed
in calculating the associated production of .J/v¢ + cc.
The first method is based on the factorization the-
orem. Within this approximation, the cross section
for £}, production can be represented as the product
of the cross section for hard cé-pair production and
a coefficient that takes into account the formation
of a cc diquark in the color-antitriplet state. In just
the same way as in the case of J/v production, this
coefficient is proportional to the square of the cc-
diquark wave function in the =, baryon. At high
energies of ete™ collisions, the cross section for cc-
diquark production can be represented in turn as the
product of the cross section for cé-pair production and
the ¢ — (cc)z + ¢ fragmentation function [12]. Unfor-
tunately, this asymptotic regime is not attained at the
energies of the BELLE measurements. Therefore, all
subleading terms must be taken into account. With
allowance for such terms, the cross section calculated
at ay = 0.24 is
o(Z,) = 0.15 £ 0.01 ph. (11)
A comparison with the cross section for the produc-
tion of a single c¢ pair gives
0(Zk,) /o ~ 1074 (12)

The uncertainty in this estimate is mainly due to the
uncertainty in the (cc)z-diquark wave function.

PHYSICS OF ATOMIC NUCLEI
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The second method for evaluating the cross sec-
tion for Z%. production is based on the hypothesis
of quark—hadron duality. In this approach, the cross
section for associated baryon production is deter-
mined by the formula

o(ete” — =X, + ce)
2me+AM d
o —
= / m((cc)g + ¢c)dM.
2me

For the two different energy intervals of duality, this
yields

Tee( AM = 0.5 GeV) = 0.1 pb, (13)

e AM = 1.0 GeV) = 0.17 pb.

For the luminosity of L = 103* em? s~1, the expected
rate of production of doubly charmed baryons is ap-
proximately 10%/year. The momentum distribution of
product (cc)3 diquarks is shown in Fig. 4.

Thus, we have shown that the inclusive cross
sections for J/v + c¢ and =¥, + ¢¢ production are
close in magnitude. Assuming that the large cross-
section value obtained in the BELLE experiment can
be explained theoretically, it is natural to expect that
the rate of production of doubly charmed baryons
is several times greater than the value predicted by
pQCD.
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Abstract—We have studied the three-quark systems in an effective Hamiltonian (EH) approach, which is
derived from QCD. The EH has the form of the nonrelativistic three-quark Hamiltonian with perturbative
Coulomb-like and nonperturbative string interactions and a specific mass term. After outlining the
approach, methods of calculating the baryon eigenenergies and some simple applications are explained
in detail. With only two parameters, the string tension o = 0.15 GeV? and the strong coupling constant
as = 0.39, we obtain a good description of the ground-state light and heavy baryons. Predictions of the
masses of doubly heavy baryons not discovered yet are also given. In particular, a mass of 3660 MeV for
the lightest =.. baryon is found by employing the hyperspherical formalism to the three-quark confining
potential with the string junction. © 2004 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

Doubly heavy baryons are baryons that contain
two heavy quarks, either cc, be, or bb. Their exis-
tence is a natural consequence of the quark model of
hadrons, and it would be surprising if they did not ex-
ist. In particular, data from the BaBar and Belle Col-
laborations at the SLAC and KEK B factories would
be good places to look for doubly charmed baryons.
Recently, the SELEX, the charm hadroproduction
experiment at Fermilab, reported a narrow state at
3519 + 1 MeV decaying in AT K~ n", consistent with
the weak decay of the doubly charmed baryon =7, [1].
The candidate is a 6.30 signal.

The SELEX result was recently critically dis-
cussed in [2]. Whether or not the state that SELEX
reports turns out to be the first observation of doubly
charmed baryons, studying their properties is impor-
tant for a full understanding of the strong interaction
between quarks.

Estimates for the masses and spectra of the
baryons containing two or more heavy quarks have
been considered by many authors [3]. The purpose of
this paper is to present a consistent treatment of the
results of the calculation!) of the masses and wave
functions of the doubly heavy baryons obtained in a
simple approximation within nonperturbative QCD.

The paper is organized as follows. In Section 2, we
briefly review the effective Hamiltonian (EH) method.

*This article was submitted by the authors in English.
“e-mail: trusov@heron.itep.ru
YA preview of this calculation has been done in [4].

In Section 3, we discuss the hyperspherical approach,
which is a very effective numerical tool to solve this
Hamiltonian. In Section 4, our predictions for the
ground-state spectra of doubly heavy baryons are
reported and a detailed comparison with the results
of other approaches is given. Section 5 contains our
conclusions.

2. THE EFFECTIVE HAMILTONIAN IN QCD

Starting from the QCD Lagrangian and assum-
ing the minimal-area law for the asymptotics of the
Wilson loop, the Hamiltonian of the 3¢ system in the
rest frame has been derived. The methodology of the
approach has been reviewed recently [5] and so will be
sketched here only briefly. The Y -shaped baryon wave
function has the form

By (z1, 22,73, X) (1)
= eaﬁ'yqa(xlaX)qﬂ(x%X)q’y(x?nX)a

where ¢(z;, X) is the extended operator of the ith
quark at a point z;; o, 3, v are the color indices; and
X = (0,X) is the equilibrium junction position (see
below). This is the only gauge-invariant configura-
tion possible for baryons. The starting point of the
approach is the Feynman—Schwinger representation
for the gauge-invariant Green’s function of the three

quarks propagating in the nonperturbative QCD vac-
uum,

3 o0
G(z,y) = ds; | Dziexp(—K;)W)p, (2)
0=11 / [ Driew 5

1063-7788/04/6704-0762$26.00 © 2004 MAIK “Nauka/Interperiodica”
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where @ = {21, 22, 23}, y = {y1, 92, y3}, 2 = 2i(s))
are the quark trajectories with z;(0) = z;, z;(T') = v,
while s; is the Fock—Schwinger proper time of the
ith quark. Angular brackets mean averaging over the
background field. The quantities K are the kinetic
energies of quarks, and all the dependence on the vac-
uum background field is contained in the generalized
Wilson loop W:

1 ik
W = 3‘€Z]k€lan tuImuk (3)
with
Up = Pexp ig/AH(x)d:r“ , (4)
C;
k=123

Here, P denotes the path-ordered product along the
path C; in Fig. 1, where the contours run over the
classical trajectories of static quarks. In this figure,
three quark lines start at junction X at time zero,
run in the time direction from 0 to 7" with the spatial
position of quarks fixed, and join again at junction ¥’
at time T'. There are three planes that are bounded,
respectively, by one quark line, two lines connecting
the junction and quark at ¢ =0 and ¢ =T, and the
connection line of two junctions. Under the minimal-
area-law assumption, the Wilson loop configuration
takes the form

<W>B X eXp(—J(Sl + 59 + 53)), (5)

where S; are the minimal areas inside the contours
formed by quarks and the string-junction trajectories
and o is the QCD string tension.

In Eq. (2), the role of the time parameter along
the trajectory of each quark is played by the Fock—
Schwinger proper time s;. The proper and real times
for each quark are related via a new quantity that
eventually plays the role of the dynamical quark mass.
The final result is the derivation of the EH [see Eq. (6)
below].

In contrast to the standard approach of the con-
stituent quark model, the dynamical masses m; are no
longer free parameters. They are expressed in terms

of the running masses m (Q2) defined at the appro-

priate hadronic scale of Q2 from the condition of the
minimum of the baryon mass as a function of m;.

Technically, this has been done using the ein-
bein (auxiliary fields) approach, which is proven to be
rather accurate in various calculations for relativistic
systems. Einbeins are treated as c-number variational
parameters: the eigenvalues of the EH are minimized
with respect to einbeins to obtain the physical spec-
trum. Such a procedure, first suggested in [6, 7],
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Fig. 1. Three-lobe Wilson loop.

provides a reasonable accuracy for the meson ground
states [8].

This method was already applied to study baryon
Regge trajectories [6] and very recently for computa-
tion of magnetic moments of light baryons [9]. The
essential point adopted in [4] is that it is very rea-
sonable that the same method should also hold for
hadrons containing heavy quarks. As in [9], we take
as the universal QCD parameter the string tension o.
We also include the perturbative Coulomb interaction
with the frozen strong coupling constant «.

From experimental point of view, a detailed dis-
cussion of the excited QQ'q states is probably prema-
ture. Therefore, we consider the ground-state baryons
without radial and orbital excitations, in which case
tensor and spin—orbit forces do not contribute per-
turbatively. Then, only the spin—spin interaction sur-
vives in the perturbative approximation. In what fol-
lows, we disregard the spin—spin interaction; then,
the EH has the following form:

m©?
H = Z

Here, Hy is the nonrelativistic kinetic energy operator
and V is the sum of the perturbative one-gluon-
exchange potential VC'

s
1<j Z]

+E Y Hy+ V. (6)

2mZ

where r;; are the distances between quarks and the
string potential Ving. The baryon mass is given by
the formula

Mp =min(H) + C, (7)

m;

where C' is the quark self-energy correction calcu-

lated in [10]:
20 i
- Z o~ (8)
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with 7 = 1 for ¢ quark,?) n = 0.88 for s quark, n =
0.234 for ¢ quark, and n = 0.052 for b quark.

The string potential calculated in [6] as the static
energy of the three heavy quarks was shown to be
consistent with that given by a minimum length con-
figuration of the strings meeting in a Y -shaped con-
figuration at a junction X:

= Jlmim (9>

where [y is the sum of the three distances |r;| be-
tween quarks and the string-junction point X. The
Y -shaped configuration was suggested long ago[11],
and since then it has been used repeatedly in many
dynamical calculations [12].

V;tring(rl , T2, 1‘3)

3. SOLVING THE THREE-QUARK
EQUATION

3.1. Jacobi Coordinates

The baryon wave function depends on the three-
body Jacobi coordinates

i
pij =[x
1] L

)\ij _ Hijk (miri + m;r; _ I‘k>
\/ u m; +m;

(4,7, k cyclic), where pu;; and ju;; . are the appropriate
reduced masses

i —Tj), (10)

(11)

mgm;
= 12
Hij m; +m;’ (12)
(mi + my)my,

Mgk = m; +mj —|—mk’

and p is an arbitrary parameter with the dimension
of mass which drops off in the final expressions. The
coordinate p;; is proportional to the separation of
quarks ¢ and j, and coordinate A;; is proportional to
the separation of quarks ¢ and j, and quark k. There
are three equivalent ways of introducing the Jacobi
coordinates, which are related to each other by linear
transformations with the coefficients depending on
quark masses, with the Jacobian equal to unity. In
what follows, we omit indices ¢, j.

In terms of the Jacobi coordinates, the kinetic
energy operator Hy is written as

1 [/ 02 0?2
HO“@(a—pﬁW)
1 8_2+58 K?(Q)
~ 2u \OR? ’

=55+
ROR R?
DHere and throughout the paper, g denotes a light quark u
ord.

(13)
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where R is the six-dimensional hyperradius,
B2 = p? 4 N2, (14)

Q furnishes five residuary angular coordinates, and
K?2(Q) is angular momentum operator whose eigen-
functions (hyperspherical harmonics) are

K*(Q)Yx) = —K(K + 4)Yg] (15)

with K being the grand orbital momentum. In terms
of Y[g1, the wave function ¢)(p, A) can be written in a
symbolic shorthand as

Zm<

In the hyperradial approximation, which we shall
use below, K = 0 and ¢ = ¢(R). Such a wave func-
tion is obviously completely symmetric under quark
permutations. Note that the centrifugal potential in
the Schrdodinger equation for the reduced radial func-

)Yk (2

tion x(R) = R%?yk (R) with a given K
(K +2)?-1/4
R2

is not zero even for K = 0.

The Coulomb potential can be expressed directly
in terms of Jacobi coordinates,

B 20432 Hij

1<j

§)
|%| (16)

while for the string potential the situation is not so
simple. We will construct it in the next section.

3.2. String-Junction Point

Now, we turn to the definition of the minimal
length string Y -shaped configuration. Let ¢, be the
angle between the line from quark ¢ to quark 7 and
that from quark j to quark k. One should distin-
guish two cases. In the first case, all ¢;; are smaller
than 120°, and the equilibrium junction position X
coincides with the so-called Torrichelli point of the
triangle at whose vertices three quarks are situated.
To find this point, consider a scalar function of a
point inside a triangle AABC, defined as a sum of
distances between this point and the triangle vertices:

L(r) = (17)

The position of the minimum of the function £ is
calculated from the condition d£/dr = 0, i.e.,

r—ry

r —ra|l+|r—rp|+|r—rol

r—rp

r —ras|  |r—rp|

= —njy—np-ng =0,
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where ny4 g ¢ are the unit vectors from the minimum
point directed to the vertices of the triangle. It follows
from Eq. (18) that this condition can be realized only
in the case where angles between vectors n4, np,
and n¢ are equal to 120°. If ¢, are all smaller than
120°, this point exists and is the unique one. From
this point, all sides of the triangle are seen at an angle
of 120°. In the second case, when ¢;;;, is equal to
or greater than 120°, the lowest energy configuration
has the junction at the position of quark j.

The geometrical construction of the Torrichelli
point is presented in Fig. 2. One should plot three
equilateral triangles AAFB, ABDC, and ACEA
on the sides of the initial triangle AABC'. It is easy to
prove the following statements:

The straight lines AD, BE, CF intersect at a
unique point 7

AD = BE = CF = AT + BT + CT;
/ATF = /BTF = /BTD = /CTD = /CTE
= /ATE = /3.

= <2)\ sin y + Hijik

and y is the angle between pand A, 0 < y < «. [t can
easily be seen that the dependence on m; in Eq. (20)
is apparent and X does not depend on quark masses,
just as it should be.

After definition of the string- junction point, one
can calculate the explicit expression for 12, in terms
of the Jacobi coordinates [15]. Introducing the vari-
able 6 = arctan(p/\), 0 < 6 < 7/2, one obtains for
the case p;;, < 120°

—m3) tan? 6
mima(mi —m3)
mg — My . tan 6 1
+ [ ———= cos x + V/3sin y + ,

+ m 12,3

mo ma
where m* = mymams/(my +mg +ms). If my =
meo = myg, this expression coincides with that derived
in [6]. When ;5 > 120°, the lowest energy configu-
ration has the junction at the position of quark j and

2. = uR? cos? 0(

2

Imin = Tij + Tjk, (22)
where
D H
ri2 = Rsinf, | , (23)
H12.3

r13 = Rcosf, | a
H12.3
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Now one can easily obtain an expression for a
radius-vector of the Torrichelli point in terms of the
lengths [; of the segments between this point and the
ith quark (segments AT, BT, CT on Fig. 2), and the
quark positions r; (points A, B, C' on Fig. 2)[13]:

. lolsry 4 l1lsre 4 l1lors
lols + 1113 + 11lo

(19)

An equivalent expression for X in terms of the center-
of-mass position R . and vectors p and A is[14]

X=Rem +ap+ G (20)

with
_1\/I<mj—mi_L4t—|—(3—t2)cotx>
2V pij \mi+my; /3 1412 ’
5= \/Mﬂzgk+\/u p 33—t
m; +m; 3pij 2Asin x 1 + 2’

where

Sthisih / Wcosy | Hiak T = )
Hig Hij MMy +m;

2m
X —tan2(9—|——tan6?cosx—|—1
ml mq

r93 = Rcosf H
H12,3

\/—tan29— —tan@cosx—l—l

The boundaries corresponding to the condition
©ijr, = 120° in the (x, #) plane are

1(2) (Fcos x —sin X/\/g)/m)7
(24)

f2(x) +4%)/2m),

t1(2)(x) = arctan(m

05(x) = arctan(ma(f(x) +
where
f(x) =1 —=3)cosx + (14 3)sinx/V3 (25)

and s = mj/mg. These boundaries are shown in
Fig. 3 for the case of equal quark masses.

For simplicity, the string junction point is often
chosen to coincide with the c¢.m. coordinate. In this

case,

(3., k)

\/umj | A (26)

strmg
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E

Fig. 2. The geometrical construction of the Torrichelli
point T for an arbitrary triangle AABC. The triangles
ANAFB, ABDC, and ACEA are equilateral.

(i, 7,k cyclic). Accuracy of this approximation that
greatly simplifies the calculations was discussed in [6,
15]. We shall comment on this point later on.

3.3. Hyperradial Approximation

Introducing the variable x = ,/uR and averag-
ing the interaction U = Vi + Viying over the six-
dimensional sphere ¢, one obtains the Schrodinger
equation for x(z):

d*x(x)
dx?

15
8x2
Because the wave function ¢ must be finite, at the
origin x(z) ~ O(x%/?) as x — 0. As x — oo, one can

neglect the Coulomb-like and centrifugal terms, and
Eq. (27) becomes

d*x(z)
dz2

This is the familiar Airy equation whose solution
Ai(z) behaves at infinity as

Ai(z) ~ %W_1/22_1/4 exp <—§zg/2> , (29)

Rez > 0.

+2 Eo—l—%—bx— x(z) = 0. (27)

z = (20)3 .

—2x(2) =0, (28)

In Eq. (27), Ey is the ground-state eigenvalue and

=Ry / Volry,rars)dQs,  (30)

1
b= R—\/ﬁ/vstring(rlar%rZS)dei-

Using expression (16) for the V¢, the coefficient a
can be easily calculated:

2a5 16
a= —
3 3w

> Vi | (31)

i<j
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cosB,3, <—1/2

cosBy; > —1/2

c0s0,3<—1/2 cosB3,<—1/2

0 173 2173 s

Fig. 3. The four regions in the (x, #) plane corresponding
to @ijr > 120° and @, < 120° for the case of equal
quark masses.

while the analytical result for the coefficient b cannot
be obtained except for the equal-quark-mass system
my = mgy = m3 = m, in which case a straightforward
calculation yields

4 ¢ 12V2
= —— — 2
b= _m( V34 ~ (32)
+ 3\/§ arccos 1) = 1.58L.
T 5 v/ m

On the contrary, in the approximation (26), the co-
efficient b can be found analytically for the case of
different quark masses. The result is

32 VMg k
b _ K
P

~ 715

(33)
(i,4:k)
(¢, 7, k cyclic).
Let us explain the numerical coefficients in (31)

and (33) in more detail. To this end, we introduce the
angle 0 as in (21 ) such that

p= Rsinf, X\ = Rcos¥, (34)
T
<0< =
0<0< 5"
and write the volume element d3pd®\ as
d3pd3\ (35)

= (47)?p*N2dpd) = (47)2 R’ sin® 0 cos® OdRdS.

The volume of the six-dimensional sphere is

w/2
Qg = (47)> / sin? 0 cos? 0dh = (47r)217T—6 = 7.
0

(36)
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Then averaging the Coulomb and string terms yields

w/2
N2 L2 [ singeostoan = 01
<p> = 7T3R(477) /schos 0do = R (37)
0
w/2
(\) = iR(4 )2/sin20cos30d9 32 R (38)
o 15w

0

Combining together expressions (16), (26), (30),
(37), and (38) leads to (31) and (33).

3.4. Analytic Results for Light Baryons

We can eliminate all dimensional parameters from
Eq. (27) by a substitution y = b'/3z, which leads us
to the equation

2 1
d—X—|—2<5—y+§——5> —0,  (39)

where

E=Eg 23, §=ab '/

The eigenvalue of Eq. (39) can be found using or-
dinary perturbation theory, the Coulomb term (—4d/y)
being considered as a small perturbation. This ap-
proximation works well for a nucleon containing three
light quarks with the running mass equal to zero. In
this case, there is only one dynamical quark mass m.
Thus, the task is greatly simplified and one can obtain
analytic expressions for m and Mp via two parame-
ters, o and «y, as expansions in powers of as.

Omitting the intermediate details outlined in the
Appendix, we quote here the result with accuracy up
to a2

m = /o -0.959(1 4 0.2700, + 0.117a2 + ... ),
(4

0)
Mp = /o -5.751(1 — 0.270as — 0.039a% + ...),
(41)
or
Mp = 6m(1 — 0.540as — 0.083a% +...) + C,
(42)

i.e., the Coulomb-like correction to Mp comprises
approximately 20 %.
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3.5. Semiclassical Solution

For the purpose of illustration, the problem is first
solved semiclassically rather than using quantum
mechanics. This approach is based on the well-
known fact that interplay between the centrifugal
term and the confining potential produces an effective
potential minimum specific to the three-body prob-
lem. The numerical solution of (27) for the ground-
state eigenenergy may be reproduced on a percent
level of accuracy by using the parabolic approxima-
tion [16] for the effective potential

a 15

U(z) = . + bx + 2
This approximation provides an analytical expres-
sion for the eigenenergy. The potential U(x) has the
minimum at a point x = z( defined by the condition

U’(CC()) = 0, i.e.,

bap + azg — 15/4 = 0. (43)
Expanding U(z) in the vicinity of the minimum, one
obtains

U(z) = U(zg) + %U”($0)($ —z0)%,

i.e., the potential of the harmonic oscillator with

the frequency w = /U"(z). Therefore, the ground-
state energy eigenvalue is

1
Ey ~ U(xo) + Jw- (44)

3.6. Variational Solution
Another method of solving Eq. (27) is the mini-

mization of the baryon energy using a simple varia-
tional ansatz

x(@) ~ a2 P (45)

where p is the variational parameter. Then, using the
three-quark Hamiltonian, one can get an approxi-
mate expression for the ground-state energy: Ey =~
mpin Ey(p), where

RN 15 /n1l

j— = 2 - - - s 5

Eo(p) = (x|H|x) = 3p a4\/;9+ "6 \@p'
(46)

3.7. Analytic Results for (Qud) Baryons

For the heavy quarks (@ = ¢ and b), the variation
in the values of their masses mg is marginal. This is
illustrated by the simple analytical results for (Qud)
baryons [17]. These results were obtained from the
approximate solution of equation

O0FEy(m1, ma, ms,p)
dp

=0, (47)
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Table 1. Summary of variational calculations for the vari-
ous baryon states in the approximation X = Ry,

Baryon mi mo ms FEy Mp
(qqq) 0.372 | 0.372 | 0.372 | 1.433 1.221
(gqs) 0.377 | 0.377 | 0415 | 1.404 1.314
(gss) 0.381 | 0.420 | 0.420 | 1.377 1.405
(sss) 0.424 | 0.424 | 0.424 | 1.350 1.493
(gqc) 0.424 | 0.424 | 1464 | 1.178 2.538
(gsc) 0.427 | 0.465 | 1.467 | 1.153 2.613
(ssc) 0.468 | 0.468 | 1.469 | 1.129 2.686
(qgb) 0.446 | 0.446 | 4.819 | 1.093 5.909
(gsb) 0.448 | 0.487 | 4.820 | 1.067 5.978
(ssb) 0.490 | 0.490 | 4.821 | 1.042 6.046
(gec) 0.459 | 1.498 | 1498 | 0.914 3.712
(scc) 0.499 | 1.499 | 1.499 | 0.890 3.777
(ged) 0477 | 1.524 | 4.834 | 0.793 7.021
(scb) 0.517 | 1.525 | 4.834 | 0.770 7.083
(qbd) 0.495 | 4.854 | 4.854 | 0.606 | 10.260
(sbd) 0.534 | 4.855 | 4.855 | 0.583 | 10.318

where Ey is given by Eq. (46) in the form of an
expansion in the small parameters

_ Vo

§=-0

Q

and ag,

(48)

(0)

where my,” is the heavy-quark running mass.

Omitting the intermediate steps, one obtains [17]

6/ 5
E0_3\/E<—) <1+A§—§Ba5+...>,
T

6\ /4
mq:\/E(%> (1—-A¢+ Bas+...), (50)
mg =mgy (1+0( 0%, a,8) +...),  (51)
where for the Gaussian variational ansatz (45)
- 1/4
A= v2-1 (§> ~ 0.24, (52)
2 T
po4tV2 6 o
18 us

Note that the corrections of the first order in & and a
are absent in expression (51) for mg. The accuracy of
this approximation is illustrated in Table 1 of [14].
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4. BARYON MASSES
4.1. Quark Dynamical Masses

We first calculate the dynamical masses m; re-
taining only the string potential in the EH (6). This
procedure is in agreement with the strategy adopted
in [9]. The masses m; are then obtained from the
equation

oMY
o, 0, (53)
where
(0) ° m(0)2 m;
MB = ; om; + 7 (54)

+ Eo(my, mg, mg; s = 0).

Then we add the one-gluon-exchange Coulomb po-
tential and solve Eq. (27) to obtain the ground-state
eigenvalues Ey(mi, ma, ms;ay) for a given as. The
physical mass Mp of a baryon is [10]

3 m§0)2 my -
=1

=+ Eo(ml,mg,mg; CMS) + C.

We use the values of parameters o = 0.15 GeV?
(this value has been found in a recent lattice study

[18]), s =0.39, m\) =0.009 GeV (q=u,d),

m§°> =0.17 GeV, méo) =1.4 GeV, and méo) =
4.8 GeV. The results for various baryons, obtained
using various approximations, are given in Tables 1—
3. Table 1 contains the results obtained using the
variational solution of Eq. (27) with the approximate
three-quark potential (26). In Table 2, the results ob-
tained using exact numerical solution of Eq. (27) and
the same approximation, X = R ., are presented.
Table 3 contains the results obtained by the numerical
integration of (27) with the three-quark potential in
the form (21), (22). Comparing the results of Tables |
and 2, we observe a good accuracy of the variational
solution: the difference between variational and exact
results for Mp does not exceed 10—15 MeV for all
baryons from the lightest to doubly heavy ones. The
approximation X = R . leads to an ~5% increase
in the coefficient b in (27) and, as a consequence, an
increase in the baryon masses by ~70 MeV.

Note that there is no good theoretical reason why
quark masses m; need to be the same in different
baryons. Inspection of Table 1 shows that the masses
of the light quarks (u, d, or s) are increased by
~100 MeV in going from light to heavy baryons.
The dynamical masses of light quarks my, 4.5 ~ /o ~
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Table 2. Summary of numerical calculations for the vari-
ous baryon states in the approximation X = Ry,

Baryon mi mo ms Ey Mp
(qq9) 0.372 | 0.372 | 0.372 | 1.427 1.212
(ggs) 0.376 | 0.376 | 0.415 | 1.398 1.306
(gss) 0.381 | 0.419 | 0.419 | 1.370 1.397
(sss) 0.423 | 0.423 | 0.423 | 1.344 1.485
(qqc) 0.424 | 0.424 | 1.464 | 1.170 2.530
(gsc) 0.426 | 0.465 | 1.466 | 1.146 2.604
(ssc) 0.467 | 0.467 | 1.468 | 1.122 2.677
(qqb) 0.445 | 0.445 | 4.820 | 1.085 5.900
(gsb) 0.448 | 0.487 | 4.820 | 1.059 5.970
(ssb) 0.488 | 0.488 | 4.820 | 1.035 6.037
(gce) 0.458 | 1.497 | 1.497 | 0.905 3.702
(scc) 0.497 | 1.498 | 1.498 | 0.882 3.767
(ged) 0.475 | 1.523 | 4.833 | 0.784 7.010
(scb) 0.515 | 1.523 | 4.837 | 0.760 7.072
(qbd) 0.490 | 4.850 | 4.850 | 0.596 | 10.245
(sbd) 0.530 | 4.856 | 4.856 | 0.571 | 10.303

400—500 MeV qualitatively agree with the results
of [19] obtained from the analysis of the heavy—light
ground-state mesons.

While studying Table 3 is sufficient to have an
appreciation of the accuracy of our predictions, a few
comments should be added. We expect the accuracy
of the baryon predictions to be ~ 5—10%, which is
partly due to the approximations employed in the
derivations of the EH itself [5] and partly due to the
error associated with the variational nature of the hy-
perspherical approximation. From this point of view,
the overall agreement with data is quite satisfactory.

1
For example, we get §(N+ A)theory = 1144 MeV

1
VS. §(N + A)exp = 1085 MeV (a 5% increase in as
would correctly give the (N, A) center of gravity),

1
Z(A + X 4+ 2¥%) = 1242 MeV vs. the experimental

value of 1267 MeV. We also find Eipeory = 1336 MeV
(without hyperfine splitting) vs. Eexp = 1315 MeV
and Etcheory = 2542 MeV vs. =5, = 2584 MeV. On

—=exp
the other hand, our study shows some difficulties in
reproducing the 2-hyperon mass.
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Table 3. Summary of numerical calculations for the var-
jous baryon states with exact treatment of the string-
junction point

Baryon | my ma ms Ey Mp
(qqq) | 0.362 | 0.362 | 0.362 | 1.392 | 1.144
(qqs) 0.367 | 0.367 | 0.407 | 1.362 1.242
(gss) 0.371 | 0.411 | 0411 | 1.335 1.336
(sss) | 0.415 | 0.415 | 0.415 | 1.307 | 1.426
(qq¢) | 0.406 | 0.406 | 1.470 | 1.142 | 2.464
(gse) 0.409 | 0.448 | 1471 | 1.116 2.542
(ssc) 0.452 | 0.452 | 1.473 | 1.090 2.621
(qqb) 0.425 | 0.425 | 4.825 | 1.054 5.823
(gsb) 0.429 | 0.469 | 4.826 | 1.026 5.903
(ssb) | 0.471 | 0.471 | 4.826 | 1.000 | 5975
(qec) | 0.444 | 1.494 | 1.494 | 0.876 | 3.659
(sce) 0.485 | 1.496 | 1.496 | 0.851 3.726
(ged) 0.465 | 1.512 | 4.836 | 0.753 6.969
(scb) 0.505 | 1.514 | 4.837 | 0.729 7.032
(qbd) 0.488 | 4.847 | 4.847 | 0.567 | 10.214
(sbd) 0.526 | 4.851 | 4.851 | 0.544 | 10.273

4.2. Doubly Heavy Baryons

In Table 4, we compare the spin-averaged masses
(computed without the spin—spin term) of the lowest
doubly heavy baryons to the predictions of other mod-
els [20—22] as well as variational calculations of [4]
for which the center-of-gravity of nonstrange baryons
and hyperons was essentially a free parameter. Most
of the recent predictions were obtained in a light
quark—heavy-diquark model [20, 21], in which case

the spin-averaged values are M = %(MUQ +2My5).

Table 4. Comparison of various predictions for ground-
state masses (in units of GeV) of doubly heavy baryons

Baryon | [15] | [4] | [20] | [21] | [22]
= 366 | 369 | 357 | 369 | 370
Qe 373 | 386 | 3.66 | 384 | 380
= 697 | 696 | 6.87 | 696 | 6.99
Qu 703 | 7.3 | 696 | 7.15 | 7.07
= | 1021 | 10.16 | 10.12 | 10.23 | 10.24
Qu, | 1027 | 1034 | 10.19 | 10.38 | 10.34
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Fig. 4. Mass of EY, as a function of the running c-quark mass for o = 0.15 and 0.17 GeV?2. Closed circles refer to the case

m® = 1.4 GeV.

Note that the wave function calculated in the hyper-
spherical approximation shows the marginal diquark
clustering in the doubly heavy baryons. This is pri-
marily a kinematic effect related to the fact that, in
this approximation, the difference between the vari-
ous mean values 7;; in a baryon is due to the fac-

tor \/1/pu;5, which varies between /2/m; for m; =
m; and /1/m; for m; < m;. In general, in spite
of the completely different physical picture, we find
a reasonable agreement within 100 MeV between
different predictions for the ground-state masses of
the doubly heavy baryons. Our prediction for M.,
is 3.66 GeV with the perturbative hyperfine splitting
Erey — Secu ~ 40 MeV.

—ccu

The change in o to 0.17 GeV? increases the mass
of .. by ~ 30 MeV. The hyperfine splitting with
the spin-1/2 states is calculated using Fermi—Breit
spin—spin interaction [23]. It produces an additional
shift of the 2., mass of ~—20 MeV. Note that the
mass of Z.. is rather sensitive to the value of the

running c-quark mass m (see Fig. 4).

5. CONCLUSIONS

We have outlined a novel approach to baryon spec-
troscopy that is based on a single framework of the
effective Hamiltonian that is consistent with QCD.
This model uses the stringlike picture of confinement
and perturbative one-gluon-exchange potential. The
main advantage of this work is demonstration of the
fact that it is possible to describe all the baryons in
terms of the only two parameters inherent to QCD,
namely, o and as.
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APPENDIX

The Approximate Calculation of the Mass
of the Three-Light-Quark System
in the Hyperspherical Formalism

Let us consider the case where each quark has a
zero current mass and the constituent mass m, which
is the same for all three quarks. Then the mass of
the system is the minimum of the function H(m):

M = minH(m), where?)

3m

H(m) = 5- + E, (A1)

and F is the energy level defined from the ordinary
Schrédinger equation [see Eq. (27)]:

d*x Bv/m ~y 15
EX o(py V0 2 ) =0
i " < T Jmo gz )X T
(A.2)
where
16v/2
5= 10V2 s so0la,, (A.3)
3
32v/6
N = 15[0—%1.6630. (A.4)
T

»For simplicity we omit here and below the corrections C.
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Let us replace the variable z by a dimensionless
variable y: y = (v2/m)"/%z. Then,

+2< 0 15

el gy
+ Y 8,2
where £ and § are dimensionless parameters:

Yy
1/3 o\ 1/3
) a=a(F)
Y

We will calculate the eigenvalues of Eq. (A.5)
using second-order perturbation theory, considering
the Coulomb term (—d/y) in the potential as a small
perturbation. The unperturbed equation is

d2f+2<

dy?
[t contains no physical parameters, so its solution is a
pure mathematical task. Let us denote the eigenval-
ues of Eq. (A.6) as {\;},

O< <M<y,

d2x

o )x—m (A5)

m

=5
v

~2
>f =0. (A6)

and the corresponding normalized eigenfunctions as
{fi(y)}. In what follows, we will use the notation

—+00

1
5=/?%M%£>&

n= ZZ; (0/ yfi(y)fo(?/)d?/) /()\i =), > 0.

The approximate numerical values of these parame-
ters are

Ao ~ 3.030, (A7)
¢ ~ 0.553, (A.8)
n ~ 0.028. (A.9)

The ground level of Eq. (A.5) can be approximately
calculated as follows:

E~ N — 06 — 6. (A.10)

The small parameter here is the ratio 6§/\g. To esti-
mate this quantity, one can solve the problem in the
zero approximation without the Coulomb term. Thus,

5%)\07
1/3

’Y_2 /

m M

7

1/3
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‘H has a single minimum, defined by the equation
OH/Om =0, i.e.,

3 1 _
5 — g)\o’)/2/3m 4/3 = O
Thus, m = (2X/9)%*/7, and finally
% _ B8 (m_2)1/3 _ 2% 0.360a
Ao Ao \ Y 3v/2Xg ’ 5

Foras = 0.4, one has 6§ /Mg ~ 0.14 < 1. This verifies
the correctness of using perturbation theory in this
problem.

Now, using Eq. (A.10), we can calculate the con-
stituent mass m and the mass of the state M. For the
2

energy level, we have
1/3 1/3
e () #= ()
m m
— (ym)'/? € —mf5*n.
[t is convenient to use the positive dimensionless
parameter ¢ = m'/3y~1/6 so that m = ,/7¢>. Then,

E = y(hoa™" - Béa - B°nd’),
and substituting it into Eq. (A.1), we find
_ 3
H = ﬁ(/\oq b - Beq + (5 —ﬁ%) q3> :

H has a single minimum, defined from the condi-
tion OH/0q|,_,, = 0, i.e.,
Ao
2

9 2 2
<§—35 n)qO—ﬁf—qO

After calculating ¢, one can find the constituent
mass m = /7¢} and the mass of the system M:

M:H(QO):¥(2AO >

— — B&ao
40
Equation (A.11) can be easily solved:
[ BE4V/B2E% + 2X0(9 — 65%n)
q0 9 632 .

On expanding the right-hand side of this equation
taking 3 as a small parameter

2

= 0. (A.11)

(A.12)

~ 1 -
o =g v, T\ T6) 7))
we easily get formulas for the constituent mass,
(2X)%/4 < £6
~ 1+ A.13
MENVITR R SN (A-13)

2
& .
16X 2

+( )#).
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and for the state mass,

~ s 2 (o &8
M~ /3(20) \/§<1 N N

52 n 2
a (48)\0 +6>5 )

Substituting into Egs. (A.13) and (A.14) numer-
ical values according to formulas (A.3), (A.4), and
(A.7)—(A.9), we obtain

m /o -0.959(1 + 0.270a; + 0.117a2%), (A.15)
M~ /o -5.751(1 — 0.270cs — 0.03902). (A.16)

For 0 = 0.15 GeV? and «; = 0.4, one has m ~
0.418 GeV and M =~ 1.973 GeV.
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Abstract—The Bethe—Salpeter equations for the quark—antiquark composite systems, ¢g, are written in
terms of spectral integrals. For the ¢gg mesons characterized by the mass M, spin J, and radial quantum
number n, the equations are presented for the following (n, M?) trajectories: 7, 1., ay, f1, ps, ws, hy, and

by. © 2004 MAIK “Nauka/Interperiodica” .

1. INTRODUCTION

The relativistic description of composite systems
was always an actual and challenging task. The most
frequently used technique, which takes into account
the relativism of the constituents, is the Bethe—
Salpeter equation [1]. But in the standard formulation
of the Bethe—Salpeter equation, when the Feynman
integration technique with mass-off-shell amplitudes
is used, one faces problems in describing multiparticle
channels and high-spin states. A more appropriate
technique for the high-spin composite systems is the
dispersion-relation approach, in particular, the most
developed N/D method [2]. However, our experience
and intuition are based on the consideration of the
potential-type interactions, i.e., those which are as-
sociated with the particle-exchange mechanism. In
terms of the N/D method, one can easily relate the
nearest left-hand side singularity of the N function
to the t-channel (or u-channel) meson-exchange
diagram, but the reconstruction of the full set of left-
hand singularities, when the interaction is given by
the particle exchange or potential forces, is not a
simple problem. Here, we present the Bethe—Salpeter
equation in terms of the spectral-integral technique,
which has advantages of both approaches discussed
above:

(i) In the spectral integrals, the mass-on-shell
amplitudes are used.

(ii) The interaction terms are written in the poten-
tial or particle-exchange form.

Moreover, in the spectral-integral technique, one
can use the energy-dependent forces as well.

*This article was submitted by the authors in English.
“e-mail: anisovich@thd.pnpi.spb.ru

In [3—5], the dispersion-relation approach was
applied to the description of the deuteron, a two-
nucleon composite system, by treating nucleon—
nucleon forces in terms of separable interactions. By
using the interaction in a separable form, one can
work with mass-on-shell amplitudes and meson-
exchange interactions. The expansion of the one-
meson exchange diagrams in a series of separable
interaction factors was developed in [6]. The prin-
cipal points in the transformation of the standard
Bethe—Salpeter equation to the dispersion-relation
representation for the case of separable vertices were
clarified in [7]. However, the representation of the
meson-exchange diagram as a finite set of separable
vertices works successfully for mesons with nonzero
mass only. For the long-range interaction, like con-
finement forces, the separable-vertex approach fails,
thus forcing us to use not the standard N/D method
but the spectral-integral technique.

The important ingredient of the dispersion relation
and spectral-integration methods is the moment-
operator expansion. The elements of the moment-
operator-expansion technique were presented in [3,
4, 8], and a systematic presentation of the technique
may be found in [9].

The Bethe—Salpeter equation in the spectral
integral representation is written here for quark—
antiquark systems. Our attention is focused on the
light-quark bound states, ¢q, where ¢ = u,d, s: for
the sake of simplicity, we consider here the systems
built by quark and antiquark with equal masses: ud,
ud, dd, s5. The treatment of heavy-quark composite
systems, c¢ and bb, can be performed similarly.

The necessity to deal with a full set of equations for
the light-quark composite systems is governed by the
rich information on the light-meson radiative decays
that appeared recently [10—12]. The radiative decay

1063-7788/04/6704-0773$26.00 © 2004 MAIK “Nauka/Interperiodica”
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data make it possible to restore the wave functions of
mesons involved in reactions. The corresponding rel-
ativistic technique based on the consideration of the
form-factor amplitudes in terms of the double spectral
integrals was developed in [13] for pseudoscalar ¢q
mesons, and it was generalized for scalar and tensor
qq mesons in [14]. Finding the meson wave func-
tions in the spectral-integral form (or in the light-
cone variables—see [13, 14] for details) opens the
way for direct reconstruction of the quark—antiquark
interactions. The spectral-integral representation of
the Bethe—Salpeter equation gives us the possibility
to find the interaction forces directly, provided the
masses and wave functions of composite systems are
known: this problem is discussed in Section 2 by
using a simplified example of composite particles with
spinless constituents.

For the reconstruction of ¢g forces, it is important
for the light-quark ¢g states to lie on linear trajec-
tories in the (n, M?) plane, where n is the radial
quantum number of the meson with mass M [15].
In more detail, the ¢ states can be classified, within
spectroscopic notation, as the n?5*1L ; levels, where
S, L, and J refer to the spin, orbital, and total momen-
ta, respectively. The analysis of spectra in the mass
region 1950—2400 MeV performed in [16] fixed more
than thirty new mesons which belong to the meson
groups with positive- and negative-charge parities
(C = +/—). Namely, for the (C = +) states, one has

1S0q7 — 7 mesons, n mesons, n’ mesons; (1)
'Dyqq — 79 mesons, 72 MESons;

3Py — ag mesons, fy mesons;

3Pyq§ —  ay mesons, f, mesons;

3P1ch — a1 mesons;

3Fyqd —  as mesons, fo mesons;

3F3ch —  ag mesons;

3F1q§ — a4 mesons, f; mesons;

and for the (C' = —) states,

381q7 —  p mesons, w mesons, ¢ mesons; (2)
3Diqq — p mesons;

3Dsqq — p3 Mesons;

'Piqg —  hy mesons, by mesons;

ngqq_ —  bg mesons.

The mesons measured in [16], as well as those ac-
cumulated in the compilation [17], being classified
versus radial quantum number n, can be put, with
sufficiently good accuracy, on linear trajectories in the
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(n, M?) plane:
M? = MZ + 1%(n — 1), n=1,2,3,..., (3)

with the universal slope pu? ~ 1.3 GeV? [15]. The
linearity of trajectories, leading and daughter ones,
was observed for the (J, M?) plane too [15].

The linearity of trajectories on the (n, M?) and
(J, M?) planes is in good agreement with large-r be-
havior of the confinement potential, V(r) ~ ar; e.g.,
see [7], where the calculation of ¢g states from the
groups (1) and (2) has been carried out.

At the same time, it is necessary to emphasize
that, for the low-mass states, one can expect a vi-
olation of the trajectory linearity. For example, the
m meson is just an exception that is not surprising
because of a particular role of the pion. The standard
explanation is that the pion, being a low-mass par-
ticle, is determined by the instanton-induced forces
(see [18, 19] and references therein), although one
cannot exclude an alternative modeling of the short-
range forces. The problem of short-range forces is
stressed by systematics of scalar states: the K-matrix
analysis of ww, KK, nn, and nn’ spectra [20] tells us
that the lightest scalar—isoscalar state belongs to the
flavor octet, but in the model calculations [18, 19], the
lightest state is close to the flavor singlet. We hope
that a precise reconstruction of the ¢ forces can be
facilitated by using the Bethe—Salpeter equation for
the ¢g states in the spectral-integral form.

Thus, we focus our attention on the reconstruction
of the ¢g interaction, on the basis of the following
triad:

(1) the Bethe—Salpeter equation in the spectral-
integral form,

(2) the linearity of trajectories on the (n, M?) and
(J, M?) planes,

(3) the use of wave functions for low- and modera-
te-mass ¢q states found in the study of meson radia-
tive decays.

The important point is that radiative decays can
give us information about meson wave functions
which are now studied in the mass region 1000—
1800 MeV: just the mesons from this region are
determined by short-r and intermediate-r forces, and
only the forces from this r region are not known
sufficiently well, thus being a subject of discussions
and hypotheses.

The paper is organized as follows. In Section 2,
we recall basic statements of the Bethe—Salpeter
equation written in terms of the standard Feyn-
man diagram technique, give the elements of the
dispersion-relation N/D method, and clarify the
interplay of these two methods by using separable
vertices. The spectral-integral representation of the

Vol. 67 No.4 2004
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ky k7 ky ky ky ki ki
ky k3 ky k3 ky ks ky
Fig. 1. Nonhomogeneous Bethe—Salpeter equation for

the scattering amplitude; dashed block is the interaction
kernel.

Bethe—Salpeter equation is also written for the case
of scalar constituents.

In Section 3, the ¢g system is considered: the
Bethe—Salpeter equations are written for the light-
quark mesons which belong to the following (n, M?)-
trajectories: ms, ny, ay, f1, ps, wy, hy,and b;.

In Appendices A, B, and C, the necessary aux-
iliary formulas are presented which were used for
deriving the equations. In Appendix D, we collect
equations which are rather cumbersome, these being
the Bethe—Salpeter equations for w, ¢, ao, and fo
trajectories.

2. SCALAR CONSTITUENTS:
DISPERSION-RELATION METHOD
AND THE BETHE—-SALPETER EQUATION
FOR COMPOSITE PARTICLES

In this section, we compare the Bethe—Salpeter
equation for composite particles written with the use
of Feynman diagrams with the equation in terms of
the dispersion relations with separable vertices. This
comparison gives us a guide for the transformation of
Bethe—Salpeter equation with separable vertices into
the spectral-integral Bethe—Salpeter equation with
arbitrary meson-exchange-type interaction.

To simplify the consideration, we deal here with
scalar particles as constituents.

2.1. Bethe—Salpeter Equation
in the Feynman Diagram Technique

Written in terms of the Feynman diagrams, the
nonhomogeneous Bethe—Salpeter equation in the
momentum representation reads

Ak, ko Ky ky) = V (K, ks K k) (4)
d*kydAk
————=2V (ky, ko; kY, k)
+/ 2(271_)4 ( 1, 2, R, 2)
(k| + K2 — P)
X
(m?2 — k2 —i0)(m? — k2 —i0)
x A(Ky, Ky; kY k).
It is shown in Fig. | in diagram form, and one can
see there the notation for particle momenta. In (4),
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Fig. 2. (a) Presentation of the scattering amplitude as
a set of ladder diagrams with the ¢-channel meson ex-
change interaction; (b, c¢) cuttings of the ladder diagrams;
(d) meson production processes which are determined by
ladder diagrams.

the constituents obey the momentum-conservation
constraint

kl—i-k‘Q:k‘i—l—k‘é:k‘i/—l—k‘g:P,

and V(ky, ko; K}, k) is the irreducible kernel, i.e.,
the block without two-particle intermediate states
(dashed block in Fig. 1).

The scattering amplitude A(ky, ko; kY, k5) deter-
mined by the Bethe—Salpeter Eq. (4) is the mass-
off-shell amplitude. Even if we set k? = k? = k3 =
KJ? = m? on the left-hand side of Eq. (4), the right-
hand side contains the amplitude A(k, kb; kY, kb)) for
KR £ m? K o m?.

Let us draw the kernel V' as a meson-exchange
diagram; then, by iterating Eq. (4), we represent
A(k1, ko; kY, KY) as an infinite set of ladder diagrams
of Fig. 2a. For further investigation, it is important
to fix intermediate states in the scattering amplitude.
The ladder diagrams have two-particle intermediate
states that can appear as real states at the c.m.
energies squared s = P? > 4m?, which corresponds
to the cutting of ladder diagrams across the lines
related to the constituents (see Fig. 2b).

Such a two-particle state manifests itself as a
singularity of the scattering amplitude at s = 4m?.
However, the amplitude A(ky, ko; kY, k%) considered
as a function of s has not only this singularity but also
an infinite set of singularities which correspond to the
ladder-diagram cuts across meson lines associated
with the forces: an example of such a cutting is shown
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Fig. 3. (a) Scattering amplitude near the pole related
to the bound state; (b) Bethe—Salpeter equation for the
bound state.

in Fig. 2c. The diagrams which appear after the cut-
ting procedure are the meson-production diagrams
(e.g., see Fig. 2d).

Thus, in the complex s plane, the amplitude
A(kn, ka; kY, KY) has the following singularity:

s = 4m?, (5)
which is related to the rescattering process. The other

singularities are related to the meson production pro-
cesses with cuts originating at

s = (2m + np)?, n=1,2,3,.... (6)
The four-point amplitude depends on six variables as
follows:
k%7k‘§7k‘/1/2’kg2’ (7>
s = (k1 + ko) = (K + k5)?,
t= (k1 —k{)* = (ka — k3)*.
The seventh variable u = (k1 — k%)? = (K} — k2)? is
not independent because of the relation
s+t+u=ki+ks+k?+ k> (8)

If the interaction creates a bound state, then the
infinite set of ladder diagrams should produce the
pole singularity in the amplitude. Near the pole, the
scattering amplitude is determined by diagrams of the
type in Fig. 3a, which means that, in graphical form,
the equation for composite system reads as Fig. 3b.
In terms of the Feynman integral, it is as follows:

A, dA k)
m@@m:/ﬂgwwmm1%>w>
4 / /
- P
X O (kg + ky ) A( iuké;P)’

(m2 — K2 — 0)(m2 — KZ — i0)

The homogeneous Bethe—Salpeter Eq. (9), like
the nonhomogeneous one, works upon the mass-off-
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shell amplitudes; the multimeson production chan-
nels in (9) exist, and they are strongly related to the
meson-exchange forces.

2.2. Scattering Amplitude
in the Dispersion-Relation N/ D Method

Let us summarize analytic properties of the dis-
cussed scattering amplitudes for two spinless parti-
cles (with the mass m) which interact through the
exchange of another spinless particle (with the mass
w) (Fig. 2a). This amplitude, A(s,t), has s- and ¢-
channel singularities. In the ¢ plane, there are sin-
gularities at t = p2,4p2,9u2, etc., which correspond
to one- or multimeson exchanges. In the s plane,
the amplitude has a singularity at s = 4m? (elas-
tic rescattering) and singularities at s = (2m + nu)?,
wheren = 1,2,. .., which corresponds to the produc-
tion of n mesons with the mass u. For the bound
state with mass M, there exists a pole singularity at
s = M?. If the mass of this bound state M > 2m, this
is a resonance, and the corresponding pole is located
on the second sheet of the complex s plane.

The dispersion-relation N/D method deals with
partial-wave amplitudes. The s-channel partial am-
plitudes depend on s only. They have all the s-channel
singularities of A(s,t), namely, the right-hand-side
singularities at s = M2, s =4m?, s= (2m + p)?,
and so on (see Fig. 4).

Left-hand-side singularities of the partial ampli-
tudes are related to the t-channel singularities of
A(s,t). The S-wave partial amplitude is equal to

1

Als) = [ Fals.e)

-1

(10)

where t(z) = —2(s/4 —m?)(1 — z) and z = cos¥.
The left-hand singularities correspond to

tz= 1) = (np)?, (11)

and they are located at s = 4m? — 2, s = 4m? — 4p2,
and so on.

The N/D method provides us with the possibility
to construct the relativistic two-particle scattering
amplitude in the region of low and intermediate ener-
gies, where multiparticle production processes are not
important; this region is shown in Fig. 4 by a dashed
line. If the threshold singularity at s = (2m + u)? is
not strong (one-meson production process is sup-
pressed), the region of partial amplitude under con-
sideration can be expanded up to the next threshold.

The unitarity condition for the partial-wave scat-
tering amplitude (we consider the S-wave amplitude
as an example) reads

Im A(s) = p(s)|A(s)[*. (12)

Vol. 67 No.4 2004
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Fig. 4. The partial-wave amplitude singularities in the complex-s plane.

Here, p(s) is the two-particle phase space integrated
at fixed s:

1 [s—4m?
) = [ deaPiki, 1) = 1o

, (13)

o6 s
1
= 5(27r)454(P — K —Kb)
K Ky
(2m)3 - 2K], (27)3 - 2K,

In the N/D method, the amplitude A(s) is repre-
sented as

(14)

where N(s) has left-hand singularities only, whereas
D(s) has right-hand ones only. So the N function
is real in the physical region, s > 4m?. The unitarity
condition can be rewritten as follows:

Im D(s) = —p(s)N(s). (15)
The solution to this equation is
[ ds' p(s)N(s) _
4m?

In Eq. (16), we suppose that CDD poles [21] are ab-
sent and we normalize N (s) by the condition D(s) —
lass — oo.

In principle, Eqgs. (14), (16) provide us with a
complete description of partial amplitude in the low-s
region: the amplitude is determined by the IV function
being a set of left-hand singularities which are due
to one-meson exchange (s = 4m? — p?), two-meson
exchange (s = 4m? — 4p2), and so on. The right-
hand singularities in Egs. (14), (16) are uncoupled to
the left-hand ones, opposite to the Feynman diagram
approach given by (4). It is important for the descrip-
tion of realistic processes to have the left-hand and
right-hand singularities uncoupled: a well-known ex-
ample provides us with the pn amplitude, with the
deuteron quantum numbers, where the production of
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pions is suppressed (right-hand singularity at s =
(2m + pr)? is weak), while the forces related to the
pion exchange are significant (left-hand singularity at
s = 4m? — u2 is strong).

2.3. N/D Method and Separable Interaction

The N/D method gives us the mass-on-shell par-
tial amplitude, provided the N function is known.
However, the IV functions have rather intricate prop-
erties: they depend on the total number of ¢- and
u-channel exchanges and do not obey the factor-
ization constraints; i.e., for different reactions, the
N functions may be independently different. As was
stressed above, the spectral-integral representation
for the Bethe—Salpeter equation, keeping the advan-
tages of the dispersion-relation method, is free from
this problem: it uses ¢t- and u-channel exchanges,
with universal interaction blocks.

As the first step in rewriting the Bethe—Salpeter
equation in the spectral-integral form, let us consider
separable interaction as an example. For this pur-
pose, we rewrite Egs. (14), (16) introducing the vertex
function

9(s) = V/N(s). (17)

Here, we assume that N(s) is positive (the cases
with negative N (s) or with changing-sign N (s) need
the introduction of several vertices). Thus, the partial
wave amplitude A(s) written in terms of the separable
vertex g(s) is given by the following series:

A(s) = g(s)[1 + B(s) + B?(s) + B3(s) 4+ - - ]g(s).
(18)

[ts graphical interpretation is shown by Fig. 5.

This set of diagrams can be rewritten in the form
of the Bethe—Salpeter equation:
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|ORE RS e

Fig. 5. Scattering amplitude in the dispersion-relation approach as a set of loop diagrams with separable vertices; there is no
energy conservation in the intermediate states, s # s’ # s”, and so on.

where A(s',s) is the energy-ofi-shell amplitude
which enters the intermediate state of the diagrams
of Fig. 5; one has for the energy-on-shell amplitude
A(s,s) = A(s). The interaction block is written as
follows:

V(s',s) = g(s")g(s). (20)

Therefore, the Bethe—Salpeter equation is to be ap-
plied for the amplitude A(s’, s); it reads

A(s',s) = g(s")g(s) + g(s")

[e.o]

dS”
< [ g
s

4m?2

(21)

(s")sp//(—s_”)sA(s”, s).

[f the bound state exists, the amplitude contains a
pole singularity at s = M?. Considering Eq. (21) near
the pole and neglecting the nonpole terms, we have
the following equation for the bound state vertex:

G(s', M?) = g(s) (22)
< [ F e
4m?
where

The Bethe—Salpeter equation (22) gives us a
guide for the consideration of the general case, when
the interaction is of the meson-exchange type. But
beforehand, we need to consider in more detail the
representation of the loop diagram.

2.4. Loop Diagram

the two-meson amplitude, so let us compare in detail

the dispersion and Feynman integral expressions for
B(s).

Namely, the Feynman expression for Bp(s), with
a special choice of separable interaction G(4k? +

4m?), is proven to be equal to the dispersion integral
representation, where the four-vector & is defined as
follows:

K — K3

2k = k1 — ko — 5 (kl—i-kg). (24)
In this section, we use the E)tal—momentum vector

P = ky + ko, so it is convenient to write here P2 but
not s.

The Feynman expression for the loop diagram
reads

1
(2m)i
d4k‘2G2(4(Pk‘2)2/P2 — 4]@‘% + 4m2)
/ (M2 — k2 —i0)(m? — (P — k)2 — i0)’

Bp(P?) = (25)

Since it is more convenient to treat a composite sys-
tem with light-cone variables, they are hereafter

1

k— \/5(1%0 — k22); (26)
1
ky = %(1@0 + ka22): ko = k7.

We choose the reference frame where Pr = 0. Then,

Pky = Py k_ + P_k,, (27)
The loop diagram B(s) plays the decisive role for
and Eq. (25) takes the form
2
1 - / - dkydk_dkr (28)
(2m)4i | (2kik— — mZ +40)(P?

Br(P?) =

where m2. = m? + kZ. It should be mentioned that, if

G =1, we can perform the integration over k_ right

PHYSICS OF ATOMIC NUCLEI

— 2(Pyk_ + P_ky) + 2ky k- — m2 +40)’

now, closing the integration contour around the pole
b m% — 10

Bl 2ky
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and we obtain the standard dispersion representation
for the Feynman loop graph (z = k4 /P4):

1 .
—2m1

1

— | Pky [ d

(2m)4i / T/ x2x(P2 —m2/z — P2z +i0)
0

779

oo due to G =1, and it is the function G which
makes Bp convergent in Eq. (25). Convergence of
the integral (30) can be restored by the subtraction
procedure.

For G # 1, some additional steps are needed to

ds dxdk. obtain the dispersion representation; namely, we in-
- / (s — P2 —i0) / 2(1— ) (30)  troduce new variables & and &
L Ols—m3/ls(1 = a)]) /°° dsp(s) Pik_ + P_k, = VP2, (31)
167 s 7(s — P2 —i0) P.k_ — P k. =VP2%_.
The dispersion integral (30) is divergent at s —  With these variables, Eq. (25) takes the form
1 G?(4(¢2 2))dédé_d*k
BF(P2) — 5 4./ 5 5 : ( (é-fjmT)) 254’ 5 - T - - - (32)
@2m)ti ) (€2 — €2 —m2 +i0)(P? — 2V P2, + €2 — €2 — m2 +i0)
— / di% / 2d¢_mG*(4(€2 +m73)) / . 5 T e+ 5 T
/ J g (@ v md) o)lEs — VPR — (€ +m}) + i)

The integration over &, is performed by closing the
integration contour in the upper half-plane, so the

o poles, €, = /€2 + i +i0 and €, = VPP —

\/€2 +m2 +1i0, contribute. The introduction of a

new variable s = 4(¢2 + m?2) yields

B T dsG?(s) 1 4m?
B = [ e 9

4m?2
which is the dispersion representation of Eq. (16).

Thus, the hypothesis of separable interaction
gives us an opportunity to solve the Bethe—Salpeter
equation easily. Within this hypothesis, we can use
different techniques: either Feynman integration, or
spectral-integral representation, or light-cone vari-
ables.

2.5. Spectral-Integral Representation
and Interaction Forces

The introduction of a separable interaction is not
the only way to make the Bethe—Salpeter equation
easily solvable. The main point in handling the
Bethe—Salpeter equation is to control the right-
hand-side singularities, especially those related to
multimeson production, at s= (2m 4+ p)?, s=
(2m +2u)?,..., and it is the spectral-integration
technique which enables us to control the multimeson
production processes.
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The spectral integral representation is based on
the following cornerstones: (i) constituent particles
in the intermediate states are mass-on-shell (kf? =
m? and k% = m? in Fig. 1); (ii) there is no energy
conservation in the interaction processes (s # s’ # s”
in Fig. 5).

Based on these statements, we consider potential
interaction, or the particle-exchange interaction, by
using the spectral-integral diagrams. Consider as an
example the interaction associated with the ¢-channel
exchange of a meson with the mass p:

I b= (k- k)%

V(klukll) = MQ — t’ (34)

In the c.m. system, which is the most convenient
for our consideration, we have for the four-momenta
of the constituent particles

k‘l—(k‘mk)_(?vn Z_m2>7

/ /
k= (kh,K) = <£,n/ 5 _m2> ’

where n? = n? = 1. The interaction block V (k1 k})
can be expanded in a series with respect to z = (n -
n’). In this way, we can obtain the interaction for
different partial waves. For example, the interaction in
the wave with the angular momentum L = 0 is equal

(39)
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to

1
Vo(s, s') = / %V(kl,k’l). (36)
21

Actually, Egs. (34)—(36) allow us to generalize the
procedure with the separable interaction considered
above. Indeed, expanding (36) in a series with respect
to orthogonal functions, one has

VOSS Zgn gn 7

which is a separable interaction in a generalized form,
assuming the choice of functions allows one to use
a restricted number of terms in (37). Separable in-
teraction taken in such a form was used in [3, 4]
for the description of nucleon—nucleon interactions
by considering the deuteron within the dispersion-
relation technique.

(37)

2.6. Spectral-Integral Representation
of the Bethe—Salpeter Equation for Composite
System

First, we consider the case of L =0 for scalar
constituents with equal masses, though not identical.
The bound system is treated as a composite system
of these constituents. Furthermore, the case L # 0 is
considered in detail.

2.6.1. Bethe—Salpeter equation for vertex
function with L =0. The equation for the vertex
composite system — constituents, shown graphi-
cally in Fig. 3b, reads

(e o] d/
= / %/d%(P’;ki,ké)

4m?

(38)

G(s)
s’ — M2 —i0’
where the phase space is determined by Eq. (13).
Scalar constituents are supposed to be not identical,
so we do not write an additional identity factor 1/2 in
the phase space.

Equation (38) written in the spectral-representa-
tion form deals with the energy off-shell states s’ =
(K + k5)? # M2, s = (k1 + k2)? # M?, and s # §';
the constituents are mass-on-shell, k72 =m? and
k2 = m?2. We can use the alternative expression for
the phase space

X V(klv kQ; ia ké)

Ao (P's ki k) = pls) 5 = dD(K), (39
k)
NNz
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where k = (k1 — ko)/2 and k' = (k] — k%) /2. Then,

/ ds’ / dd(k) (40)
4m?2
G(s")
/ S
XV(7 7(kk))s/_M2_20
In the c.m. system, (kk')=—k-kK and Vk2=

V—kZ =ik| and VK2 = /-K?2 =i[K|, so z =k
k'/(|k||k'|). The phase space and spectral integra-
tions can be written as follows:

[ famrias- [ 2

4m?

where k{ = vm? + k2. In the c.m. system, Eq. (38)
reads

dk’
66) = | g

dk’

R 4D

G(s)
s’ — M? -0
(42)
2.6.2. Bethe—Salpeter equation for the (L = 0)

wave function. Now consider the wave function of
the composite system,
G(s)

U = o

To this end, the identity transformation on Eq. (40)
should be done as follows:

Vs, s, —(k-K))

(43)

(s 22 S (44)

4m?2

Using wave functions, Eq. (44) can be written as
follows:

(s — M?)(s)

/ds /d¢)2
4m?

Finally, using k’? and k? instead of s’ and s, 1(s) —
1 (k?), we have

(4k* 4 4m?* — M*
B / dk’
(2m)3 kg

This is a basic equation for the set of states with
L = 0. The set is formed by levels with different radial
excitations n =1,2,3,..., and relevant wave func-
tions are as follows: 91 (k?), ¥2(k?), ¥3(k?), .. ..

(45)

(s, 8", (KE"))e(s).

)ib(k?)
V(s, s, —k-K)yK?).

(46)

Vol. 67 No.4 2004
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The wave functions are normalized and orthogonal

to each other. The normalization/orthogonality con-
dition reads

/ dk
(2m)3k
Here, d,,,, is the Kronecker symbol. Equation (47) is
due to the consideration of the charge form factors
of composite systems with the gauge-invariance re-
quirement imposed (see [13] for details). This normal-
ization/orthogonality condition looks as in quantum
mechanics.

Therefore, the Bethe—Salpeter equation for the S-
wave mesons reads

wn<k2)wn (k%) = 0pr. (47)

A(K* + m?)y (k) (48)
OodeQ
— [ E VR KGR (K7) = MF (),
0
where
oy LK
o(k”) = e (49)

The 9, (k?) presents a full set of wave functions which
are orthogonal and normalized:

/ LS

0

k%) (k (50)

)¢b(k2) = Oab-

The function Vo (k?,k'?) is the projection of potential
V (s, s, (kk')) on the S wave:
(s,s',—k-K').

(51)

Let us expand Vo (k?, k'?) with respect to a full set of

wave functions:
2
E q (k) ab

k2 k/2
where numerical coefficients U((z%) are defined by the
inverse transformation as follows:

dk2 dk’?
vy = — 1 (k)p(1?)

™
0

x Vo(k*, k) g(k)up (k).

Taking account of series (52), Eq. (48) is rewritten as

follows:
4(k% + m?), (K?) — Zw (k)
= Miwn<k2>.

Up(K?), (52)

(53)

(54)
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Such a transformation should be carried out on the
kinetic-energy term; it is also expanded in a series
with respect to a full set of wave functions:

4% +m?), (k%) = ZKW% k%),  (55)

where

Koo — / B () SIAACE + )i (1),
’ (56)

Finally, the Bethe—Salpeter equation takes the form
ZKna¢a k2 Z'U wa k2 M2¢n(k2)
(57)
(0) _ (0

We take into account that v,y = var .
Equation (57) is a standard homogeneous equa-

tion:
Z 5na¢a(k2) =

a

M (K?), (58)

with spq = Kna — UT(SZ). The values M? are defined as

zeros of the determinant

det|s — M?I| =0, (59)

where I is the unity matrix.

2.6.3. The Bethe—Salpeter equation for the
states with arbitrary angular momentum L. For
the wave function with arbitrary angular momentum

Q'Z)((rf))m---m (s), we use the following ansatz:

wETLL)),U'l---,UL (s) = Xl(tf-)--m (k) (s).  (60)

The momentum operator X,(Lf_)__,u (k) was introduced
in [9]; we recall its features in Appendix A.

The Bethe—Salpeter equation for the (L, n) state,
presented in a form similar to (48), reads

406+ m?)XE0 L, (k)i (%) — XED L, (k)

X/ deVL(s $)XT (K)o eP (K2) - (61)
0
= M2XD), (D (),
where
xXp) = [ SR, WP 62)
= a(L)(F?)* = a(L)(-K?)",
o(L) = @ a0)=1.  (63)
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The potential is expanded in a series with respect to

the product of operators X,(f,),,m (k:)X,(f)ML (k'), that
is,

Vis.s' (kKD = > X0, (k) (64)
Lypa...pr
X VL(sasl)X/(fl/.)..yL (k‘/),
X (K*)VL(s,s") XT (K?)
_ [ e dhe () 'k
_ / XD, RV (s, (b))
X ngf)z/L (k/)
Therefore, formula (61) reads as follows:
4 + m?)yP (k) (65)
- dk”? / 1.2 L 12y, (L) (1,2
V(5,5 L) (K)o kP (k)
0

= MR ().
As compared to (48), this equation contains the ad-
ditional factor X7 (k2); still, the same factor is in the

normalization condition, so it would be reasonable to
insert it into the phase space. Finally, we have

A+ mP)yiH (k%) (66)
it 2
- [ ST oL kP ()
0
= M2 (k?),
where
o1 (K?) = a(L)(K?) oK), (67)

Vi(s,s') = (=1)EVi(s, s).

The normalization condition for a set of wave func-
tions with orbital momentum L reads

dk? (L) (1,2 2\, (L) 1,2y
P ()0 (1) = G (68)
0
One can see that it is similar to the case of L =0,
the only difference consisting in the redefinition of the

phase space ¢ — ¢r. The Bethe—Salpeter equation
reads

D sy = Mp e (), (69)
with
st = KB — o), (70)
T dk? dk’
Uc(zi) = / 771#&” (k)¢ (k%)
0
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x Vi (s, s’)qﬁL(k/Q)lbéL)(k/Q)a

K32 = [ 0000000 40 + w2y 02,
0

Using radial-excitation levels, one can reconstruct
the potential in the L wave and, then, reconstruct,
with the help of (64), the t-dependent potential.

3. QUARK—ANTIQUARK COMPOSITE
SYSTEMS

For the ¢ system, the Bethe—Salpeter equation
for the wave function with the total momentum J, an-
gular momentum L = |J — S|, and quark—antiquark
spin S can be conventionally written as follows:

~(S.L,T
(s = MR (k) (71)
BE / n o (S,L,J) /
= / m‘/(s’s s (RED)W 5, (B,
where
1
k= §(k1 —kg),5 = (k1 + k), (72)

1
K = K — k). = (K + )2

The wave-function operator with fixed quantum
numbers is presented as

o~ S’ s
(k) = QWD (kw1 (1),

n

\/I}(S,L,J)
(n)pr-pg

(73)

where @ is the moment operator for the ¢g system.

The potential operator can be decomposed as fol-
lows:
Vis,s', (kk") = > V{7(s,s', (kk"))Or ® O,
I
(74)

where I = S,V, T, A, P is a full set of Dirac matrices
in the ¢ channel,

6[ = Ia ) iauua i7u757 V5- (75)

The potential operator V (s, s/, (kk')) can be de-
composed in the s channel by using the Fierz trans-
formation:

‘7(3, s’ (kK"))
=SS Vs, ', (kK)Cro(O ® O.),
I c

(76)
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where C, are coefficients of the Fierz matrix:

1 1 1 1 1
4 4 8 4 4
1 1
1 —= - —1
2 0 2
1
C=[3 0 —5 0 3| (77)
1 1
1 = 0 —= —1
2 2
i1 11
4 4 8 4 4
Denoting
Vels, ', (kK') = > V% (s, ', (kK))Cre,  (78)
I
we have
V(s,s', (kk')) (79)
=3 (0 ® O Vels, ', (kK)) = (I © 1)

X VS(S7 8/7 (kk/)) + (’YH ® ’YP«)VV(Sa 5/7 (kk/))
+ (o @ iouw)Vr(s, s, (kk'))
+ (1975 @ iu75)Va(s, s, (kE))
+ (75 ® VS)VP(Sv 8,7 (kk/))

Eq. (71) by the operator
@Eﬁ%‘?(lﬁ) and convolute over the spin-momentum
indices. After the redefinition V (s, ', (kk')) — (K} +
m/ )WV (s, s, (kk'))(—kb, +m’), one has

(s — M2)tr [@W’*’) (k) (k1 +m)

(R)p1...pug

Let us multiply

(80)
X QLI () (ks +m)|

- Ztr [ (o +m)QES =D (k) (— -l—m)]

3k
: / Ry

AT = (S,
x Oc(—Kh +m/ )Wl J)W(/a)} .

Here, we define m/ as k% = k4> = m'?>. We have four
states with the ¢g spins S =0 and S = 1:

(i)S=0,L=1J,

(iS=1,L=J+1,J,J —1.

These states are constructed from the operators [9]
as follows:

()t [y +m)

QW (k) = i X () ., (k) (81)
Q(l J+1 J) ( ) J_X(J+},L)J01(k) (82)
Q\E}f‘];ﬁ (k) = CavvarsVa PV1 ZISQJ;)“ T V3 (k), (83)
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QT (k) = (84)

TS,

Z(J 1) (k‘)

[i1. g 0
For these operators, the wave functions read
forJ =L+1,

‘/I;(I’J_LJ)( ) Q(IJ lJ( )Q,Z)(l‘] lJ)(kQ) (85)

(n)pa.pg By
forJ=L—-1,
1,J+1,J
BEIED () — QUL (k)41 (2); (86)

forS=1,L=J%+1,J,

= (1,(J£1),J

J—-1,J
D () = A8 (5 (k)

(m)p1...pg

= (1,J+1,J)
+ B3 . s (B

(87)

where A; and Bj are the mixing coefficients with j =
1, 2.

These wave functions are normalized as follows:

3k
/ (27T)3k0 (=1)

| 85 G
XA ), m( J(ky +m)

(88)

% "I)(S:Ljy«f)

(n)p1...pug (k)(—% +m)
= (_

1)J63’,36L;,,L]- 0.7,700 -

3.1. Equation for (S = 0, J = L) State
The equation for the state with S = 0, J = L reads
(s — MHXD (k) (89)

By

x tr {i% (ky + m)ins(—ka + m)} X,(jlj.)..w(k)

= X5, (k)

S, (Rt (i (R + )

X Fo(—Ry +m)| XD (690 (k7).
Now consider the left-hand side of Eq. (89). Using
the traces presented in Appendix B and convolution of

operators from Appendix C, we have

J
Xl(tl .)..ILJ (k)
X tr |:Z"}/5 (7{\1 + m)Z’YS(_E2 + m) Xl(l,{.)..[j'] (k)

J J
:X/gl?w(k)( 25)X( ) (k) = —2sa( )k

s
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The right-hand side of the equation is calculated in
two steps: first, we summarize with respect to ¢:

A(s, s, (kK"))
> Ad(s, s, (kE))Ve(s, s’

c=T,A,P

= Z tr [ﬁ’c@l + m)i%(—% + m)]

c=T,A,P

x tr [mg(k’ +m/)Fu(— kQ—i-m)} Ve(s,s

(90)
s (kK'))

' (KK)).

In Appendix B, the trace calculations are presented,
and the values A.(s, s', (kk")) are given. In this way,
the sum is written as follows

A(s, s', (kK'))
= ) Ads, s, (KK))Ve(s, s, (kK'))

c=T,A,P

= —4@[@1@3(8, s, (kK'))

+ dmm/Via(s, s', (kE')) + 8(kK )V (s, (kk’))] .

(91)

At the second step, the convolution of operators is
performed by using equations of Appendix C and
recurrent formulas for the Legendre polynomials

J+1
P,
27 +1 57112

which allows us to write the Bethe—Salpeter equation
in terms of the Legendre polynomials (recall that z =

(kk')/(VE2VE?) and VE2 = i\/s/4 — m2,
i\/s'/4 —m'?). For the exceptional case J =0, we

zPy(z) =

PJ+1(Z) +

set P_1(z) = 0. As a result, we get
Xl (R)As, ', (RRO) XD L () (92)

= a(J) (\/ﬁ\/ﬁ) (—4v/s8')

J+1

% [SQJ 1
+ (Vss'Vp(s, s, (kk'))

+ 4mm/Va(s, s, (kK'))) Py (2)

_1(2)Vr (s, §, (kk’))] .

Substituting the obtained expressions into Eq. (89),
we obtain

(s — M2)(~
[ d
= [ G

1
[8 S VIBVIRR () Vi (s, o (6K)

VEVE2Py i (2)Vr(s, 8, (kE'))

k’2

28)a ()R> ) (1)
Wssha(J) (ViEviz)”

(93)
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+ (VssVi(s, o, (1K)
+ dmm/'Va(s, 8, (k:k:’))) Py(2)
~1(2)

x Vip(s, s, (kk’))] PO (112,

k’2

Expanding the interaction block in the Legendre
polynomial series,

Vs, 8, (kK')) = Z V) (s, 8Py (2)
— Z V! (s

and integrating over angle variables on the right-
hand side by taking into account the standard nor-

oo " 1
malization condition [~ (dz/2)P3(z) = 1/(2J + 1),
we have finally

(94)

o(7) (~ViRVER) Py(2)

(s = M) (s)

- 7 k2 2

Am/'2

><[_8J+1

(95)

T €T + DRV (5, 8))

+ V&NV (s,8) + amm/ (V) (s, 8)

_ J _ NnirU-1 N (0,d,0) (o
3575760 — DT 6|00,

where

(96)

2 c
1 J
J’ a(J) ~
_ 2./ L2 — (J) /
><( Vk vk:) 2J+1VC (s,s)

a(J)

€)= 2T+1

(2J — 1!
(2J +1)-J!

3.1.1. Equation for the pion (M2,n) trajec-
tory. The pion states which belong to the pion

Vol. 67 No.4 2004
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(M?,n) trajectory obey the following equation:

a0 = [ Eoy o7 o)

4m?

[ k2k’2V1)( )+ VsV (s, )

+ 4m2%§°’<s,s’>] P00 ().

Recall that n is the radial quantum number, and
the following states with different n are located on
the discussed (M?2,n) trajectory: m(140) with n = 1,
m(1300) with n =2, 7(1800) with n =3, 7(2070)
with n = 4, 7(2360) with n = 5, and so on.

The wave functions of the states lying on the
(M?,n) trajectory satisfy the orthogonality/normali-
zation constraint

[ S0l 25000060080 (5) = b (98)

4m?2
The factor 2s is due to summing over the spin vari-
ables of quarks.

Expanding the interaction block over the full set
of radial wave functions, we can transform (97) into a
system of linear equations of the type of Eq. (58).

3.1.2. Equation for the n (M?2,n) trajectory.
The n states have two components, nn = (vt +
dd)/v/2 and s5. We write 1,, = cos ©,,nf + sin ©,,55
and 7/,, = —sin ©,nn + cos O, s5. For the lightest
mesons 7(550) and 7'(958), one has cos ©; =~ 0.8
and sin ©®1 ~ —0.6.

Correspondingly, we have two equations for the

wave functions which describe the nn and ss com-
ponents:

(s = M2uins

n(nn),n
T ds ,
= / —p(s)-

/
2/ [
s
4m?

+ Vss V((T?nﬂnn p(s,8)

(s)cos Oy, (99)

822 ()

(ni—nn), T(S’ § )

+4m2v<fi%n>/4<s78’>} Ul (s)) cos O,

T ds' s 8 1
+ / 7/)5(5’)-2\/ . [ 3ka’QV(i,S)Hm)T(s,s’)

4m?2
+ Vss V(s(le (s,
+ 4mm5v(<s SLM e )] wg(’fs On( ') sin O,
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where p;(s’) refers to the s3 phase space and /k2 =

iy/s'/4 —m2. The second equation, for the s5 com-
ponent, reads

(s — M2t (5)sin O, (100)
. r ds’ / s 8 2,.277(1) /
= [ Eo 22 - ST )
4m?2
0
+Vss Vm)lﬁss P(s, s')
~(0 0,0,0
+ 4mmSV((n%Hs§)’A(s, s')} wé(nﬁ)?n(s') cos O,

T dS, S/ 8 2712 (1)
+ / 7;)5(5').2\/5[ Sk:sk; V(SS_WS)T(S,S')

4m?
+ \/gvs(‘)s)*»ss P(57 5/)
0 0,0,0
+ 4’]’)’],2‘/(25)—»38) A(87 8,):| wé(ss) Z"L( ) Sln @
O?’?n(;) (s) and ¥ OS(;)O (s) sat-
isfy the normalization condition within an obvious

change of the integration region for the ss compo-
nent: 4m? — 4m?2.

The wave functions ¢

The following states are located on the n and 7’
(M?,n) trajectories:

(i) n trajectory: n(550) with n = 1, n(1295) with
n =2, n(1700) with n =3, n(2010) with n =4,
7(2320) with n = 5, and so on;

(ii) ' trajectory: /(958) with n = 1, n(1440) with
n = 2,1(1820) with n = 3, and so on.

3.1.3. Equation for the by (M?2,n) trajectory.
The equation for the states with S =0, L =1,J =1
reads

(s — M2)u D (s) (101)
o r ds’' / /22\/? 24 21.27-(2) /
= — / 7[)(5 ):IC g ; — gk k VT (S,S)

4m?

+V ss"N/(l)(s, s') + 4m2‘7f(11)(s, s")
(0,1,1)
=706 ),
The following states are located on the by (M?,n)

trajectories: b1(1235) with n =1, b;(1640) at n = 2,
b1(1970) with n = 3, b;(2210) with n = 4, and so on.
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The wave functions of the b; states lying on the

(M?,n) trajectory satisfy the orthogonality/normali-
zation constraint

ds
[ 5ol 26k 0l 60 5) = B
4m?2

(102)

3.1.4. Equation for the h; (M?2,n) trajec-
tory. The h; states have two components, nn =
(uti 4 dd)/+/2 and s5; we write hi,n = cos ©,nn +
sin ©,,s5. Correspondingly, we have two equations for
the wave-function nn component:

(s MQ)w(0 L) (s) cos O,

hi(nn),n

ds' 2
— k/2
/ o222
4m?2
|3
+Vss Vnn—mn) P(
— 8V ¥

(0,1,1)
(ni—nn),T ( ):| ¢h1(nn ),n

T ds 2 /s
o — s k/Q
/ T p (S ) S 3

4m?2

15

(s§—nn) P(

(103)

ka/QV((nQi_mn) T(S’ s')
) + 4m2‘/(5’br)z—>nn) A(S’ 8/)

(s') cos O,

kQ le ‘/(gi)ﬂnn) T (8, 8/)

+ Vss V
S\

(s§—nn), T

5,8 )+ 4mmSV((SS)Hm) (5,8
0,1,1)
55U,

where p;(s’) refers to the s5 phase space and /k2 =

iy/s'/4 —m2. For the s§ component, we have

(s')sin O,

(s — M2)¢h‘1§si>n(s) sin O, (104)
B ds’ ,22\/7
N / T Pk 3V s
4m?
% |: k2k/2‘/(§122b—>88) T(S’S/)

+Vss Vnn—>ss P(
— 8V

(0,1,1)
(nn—s3),T ( ):| ¢h1 (nn),m

- /oodj_ (2 2

2
4m?2

S, 5/) + 4mm5‘7(§zlf)z—>s§),A(87 5’)

(s') cos ©,,
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kQ k/2 ‘/(SSLSS) T (8, 8/)

[

+ Vs’V (ssass (8’ s ) + 4m2‘/(is)—>88) A(s’ 8/)
— 8‘7((52)—>ss (s, )] ¢;(27(1;i) (s')sin ©,,.

The wave functions @Z),(I(i’(lr’;_z)) ,(s) and ¢(0’18’;) (s) sat-

isfy the normalization condition within the obvious
change of the integration region for the s5 compo-
nent: 4m? — 4m?2.

The following states are located on the hy (M?,n)
trajectories:

(i) h1(1170) with n =1, h1(1600) with n =2,
h1(2000) with n =3, hq(2270) with n =4, and so
on;

(ii) h1(1390) with n =1, hq(1780) with n =2,
h1(2120) with n = 3, and so on.

3.1.5. Equation for the my (M2,n) trajecto-

ries. The equation for the my states (S =0, L = 2,
J = 2)reads

(s — M?)p022)(s) (105)

[ ds 3 [5] 40 5 e
= / %p(s')kﬂlg %[—7k2k'2Vr}3)(8,5')

+ \/88"71&2)(3, s')+ 4m217f(‘2)(s, s")
~(1)
- 2.5 | 02226

The following states are located on the my (M?,n)
trajectory [15]: m2(1670) with n = 1, m(2005) with
n = 2, m3(2245) with n = 3, and so on.

The wave functions of the my states satisfy the
orthogonality/normalization constraint

[ d
| Soot 25002 (00 5) = b
4m?2
(106)
where «(2) is determined by Eq. (63).

3.1.6. Equation for the my (M2,n) trajec-
tory. The 7y states have two components, nn =
(utt + dd)/\/2 and s5. We write 1, = cos ©,n7 +
sin ©,,s5, and, correspondingly, we have two equa-
tions for the wave functions:

(s = M)yt

n2(nn),n

ds’ 3
— k/4 \/>
/ pls K

4m?
Vol. 67 No.4 2004

(s) cos Oy, (107)
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x [ Ve
7

(ni—nn), T(s’ S/)
+ Vss V(2

(ni—nn),P

32 ~1) N (0,2,2)
B E‘/(nﬁ—mﬁ),T(S’ § ) Q’Z)ng(nﬁ),n

T ds S s
N ) Ay

4m?2

4
[ )

(s,8") + 4m2Y7((nQ%Hm)’A(s, s')

(s') cos O,

—l-\/ssV

T s ) 0022 ()sine,

s,8") + 4mmSV((SS)Hm) (5,8

(s§—nn) P(

and

(s — M2y (s)sin0, (108)

12(s5)

w2

4m?
‘ [_

(nn—s3) P( ’

325 ) " [ (02:2)
B K‘QnﬁHSE),T(S’ § ):| 77bm(nﬁ),n

T ds 3 /s
— s k/4
+ / T p (8 ) S 5

4m?2

<[~
+ vss’ V(2

(s5—s8),P

325 " [ (022
o 5‘/(S§—>S.§),T(S7 § ):| 77b772(s§),n

4 ~
SRV (s8)

+ Vss V s') + 4mms‘7(fr_)l_)sg)714(s, s")

(s') cos O,

k2 kl2 ‘/(is)—nss) T (57 8/)

(s,8) + 4m2V((SS)_)SS) (5,8

(s') sin ©,,.

The wave functions w 2:2) ,,(s) and wfg’(i’;)n(s) sat-

o (i),
isfy the normalization condition (106), with obvious
change of the integration region for the ss compo-

nent: 4m? — 4m?2.

The following states are located on the iy (M?,n)
trajectory [15]: 172(1645) with n =1, 12(2030) with
n = 2, 12(2250) with n = 3, and so on.

3.1.7. Equation for the b3 (M2,n) trajectory.
The equation for the b3 mesons (S =0, L =3, J = 3)
is as follows:

(s = M%) (s)

bs,n

(109)
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< d / /
_—/—Smsw@,/i[ 56k2k’2v(4)( s)
T 7V s

4m?

+ \/85"71&3)(5, s") +4m V(S)( s")
72
O )

According to [15], the following states are located
on the b3 (M?,n) trajectory in the mass region below
2400 MeV: b3(2020) with n = 1, b3(2245) withn = 2,
and so on.

The wave functions of the states laying on the

(M?,n) trajectory satisfy the orthogonality/normali-
zation constraint

[d
[ Soe - 2500020 (9004027 5) = b

4m?

(110)
The factor «(3) is given by Eq. (63).

3.2. Equation for the (S = I, J = L) State
The equation for the (S = 1, J = L) state reads

J
(5 = M2)eg0000s Pon Z50) o) s (B) (111)
x tr [fyi(%l -+ m)fyﬁ (—kg + m)}
J
X atrnes Pes 2o e VU7 ()
J
= €8'vvavs Py Zl(/zl)u MJ,Vs(k)

thr{ kl +m ,m/( Eg—i—m)]

31./
% /%v‘;(s,s',(/ﬂy))
xtr[fya(k’—l—m) L(— k2+m)}

X Eartrtata Pes Zeo) o e (BVOSETD(s").

The left-hand side of the equation is calculated by
using the trace and operator convolutions given in
Appendices B and C:

J
€ suavavs Py Z500 ot () (112)
x tr [y (Fy +m)yg (< +m)
(7)
X 501515253]351 Z@M---/“,gg(k)

2 2T 43
N (J+1)3

As before, the right-hand side is calculated in two
steps.

alJ)kY.
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(i) We calculate traces:
B,@/O/ (87

= Y Bswls

c=T,AV,S

= Y[Rl miv (R m)
c=T,A,V,S

xtr[fya (K, +m/)Fa(— kQ—I—m)] V.(s,s'

s, (k)
s, (kK))Ve(s, s’

(113)
, (kK))

s (KE')).

Following the items presented in Appendix B, we
write

B,@'O/(Sasla (kk/)) :gé_’o/ 4Vss! (114)

X [\/QVV(S, s’y (kK')) + 8mm/Vrp(s, s, (kk'))

+ AVEVE22Vy (s, 8, (kk’))] + 64mm/ kg K

x Vs(s, s, (kk')) — 16k ks V/ss'Va(s, s', (kK'))

+16 [s’kﬂ%kl + sk ki + 42VE2VE? kﬁ/k’i]
x Vy (s, s, (kk")).

(ii) The convolutions of the trace factor
Bgo(s,s', (kk')) with angular momentum wave
functions are presented in Appendix C; we have

J
5/@’V1V2V3PV1 Z£2L)Ll"'NJ7V3(k) (115)
J
S, 3,7 (kk,))ga’&&ésp& Zg(Q,zl...M,gg (k,)

2
= a(J) (v k2vV k’2>J (—488/)7!]((!2]{]_’:’_1;33)
X [4 J
2J +1

+ (\/QVV(S, s’ (kK'))

+8mm'Vr(s, s, (kk'))) Ps(z)
J+1
2J +1

X Bﬁ/a/(

VEVE2 Py 1 (2)Va(s, 8, (kK))

+ 4 \/_\/k'TPJ 1( )VA(S s’ (kk ))}

Inserting these expressions into Eq. (111), we obtain
(s = M) (=2s")K> YD (s)  (116)
a3k’ J
— —4s5’ 2 12

/(277)3%( ss') (\/k—vk )

J
X [42J

+Vss'Vi (s, s, (kk')) Py (2)
+ 8mm'Vip(s, s, (kk')) Py (2)

k2 (2)Va(s, s, (kK"))
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J+1

4
* 2J +1

VEVE2 Py _1(2)Va(s, 8, (kK'))

X Q,Z)q(—LL(LJ) (S,).
Expanding the interaction block according to (94)
and integrating both sides over fil dz/2, we get

(s — M) (s) (117)
= [ oot
s S
4Am/?
J 1217 /
x [—42 e+ DR, )
+ Vs €(NV (s,8) + 8mm/€(N)V (s, 8")
J 1 < — / /
A = DV (s [l ().

The normalization condition for the (S =1, J = L)
wave functions reads

(J+1) (118)

4m?
D S 5) =

3.2.1. Equation for the a; (M?2,n) trajectory.
The aq states (S =1, L =1, J = 1) obey the Bethe—
Salpeter equation

(s = M) (s)

T ds o2
— b k/2__
/ GOl e

4m?

+ v ss’v‘ﬁl)(s, s')+ 8m217T(1)(s, s")

(119)

6 ~
[‘ HHVY (5,8

-8V, s’)} Yo ().

The following states are located on the a; (M?,n)
trajectory [15]: a1(1230) with n =1, a1(1640) with
n = 2,a1(1960) withn = 3, a1(2270) withn = 4, and
SO on.

The wave functions of the a; states satisfy the
orthogonality/normalization condition

/ds()k2 94220 25
s 8

4m?

a1 ()LD (s)

(120)

= St -

3.2.2. Equation for the a3 (M?2,n) trajectory.
For the ag mesons (S = 1, L = 3, J = 3), the Bethe—
Salpeter equation reads

(s — M2)pL33)(s) (121)

Vol. 67 No.4 2004
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ood, /
_ as /6§5_
- / 7_(_p(s)k‘ 78
4m?

+V ss"N/‘Sg)(s, s') + 8m2‘N/T(3)(s, s")

7 (2) ,3,
T ﬂwgi&(s').

[ - RO ()

Two ag states were seen: a3(2030) withn = 1 and
a3(2275) withn = 2[15].
The orthogonality/normalization constraint reads

ds 243
:IC6
/ T pls) 32

4m?

o305 ()3 (5) = G

(122)

3.3. Equations for the (S = 1,J = L £ 1) States

We have two equations for two states with S =1
and J =L +£1 for J > 0. The corresponding wave

A;B 0D gy

(npa...pg
(k) with j = 1,2. These wave functions

functions are denoted as

B )
are orthogonal to one another. Normalization and

orthogonality conditions give three constraints for
four mixing parameters A; and B;.

Each wave function obeys two equations:

(s = M)XT) (k) (123)
X tr [y Gk +m)yg (ks + m)]
(A Z(J 1) (k)w(l,J—l,J)(k_Q)

I p1pg
(J+1) (L,J+1,J) (1.2 (J+1)
+B; X (k)¢ (K%)= X0 0,5 (F)

Rt
thr[ kl—i—mvﬁ,( Eg—km)]

S, (K tr [ (R + )

x Bo(~Fy +m)] (4,2

o (k/)w(l J—1, J)(k/2)
+ BjX(J.Jil) (k)T HLD (72
and
(s—M)Z7) (k) (124)
X tr [’m (k1 -+ m)yg (ke + m)}
x (A 25070, k)T (k2
(Byus "D 02) = 2,07, ()

thr[ k1 +m vﬁ/( Eg—km)]

+B; X

gy
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K / / L /
x/(%)gk,vc(s,s,(kk))tr [ Ry + )
0

xﬁc<—%+m'>] (4 Zf;{ e R (k)

First, let us con51der (123); on the left-hand side
of (123), one has two convolutions:

XU Sotr 7k (B + m)yg (ke +m)| - (125)

2J +1

(J+1) _ 2(J+1)
% X (k) = 2a(J)k [ e

P pg o

s—|—4k2],

J+1 ~ ~
XS str [ (e + m)h (e 4+ m)|

(k) = 8a(J)k>F1),

The left-hand side of (124) also contains two convo-
lutions:

(J 1)
Z g8

% Z(J 1)

Ty et

(R)tr [t (o + m)yg (e +m)] - (126)

x X(HD (k) = 8a(J)k
Zﬁ{iﬁ,,ﬁ(k)tr [’Ya (kl + m)'}’é_( k2 + m)}
[2J +1
)

2(J+1).

XZ(J 1) :IC2(J 1)

Ty et

(k) = 2a(J s+ 4k:2} .

The right-hand sides of Eqs. (123) and (124) are de-
termined by convolutions of the trace factor
B (s, s, (kk")) [see Eqgs. (113) and (114)] with
angular-momentum wave functions; the correspond-

ing formulas are presented in Appendix C. Following
them, one has for the right-hand side of (123)

J
XU (k) Bya(s, s, (kK))
J+1
(k) = da(J) (m\/k’2)
X (|:2J+]. /58/(@‘/‘/(57 S/, (kk/))
J+1
+ 8mm'Vip(s, s, (kk')))
+4s/k2vv(8 8/ (kk/))+48k/2vv(s’s/)
J+1

16 ——
+ 2J +

(127)

% X(J—H)
pepge!

k2k’2vv(s s’ (kk’))]
x Pria(2) + [16mm’Vs<s7 S, (kK'))

+ 4%@&@(5, s, (kk’))] VE2VE2P; (2)

+ 1655 - 1k2k’2VV(s s’ (kk’))PJ_l(z)>

and

J+1
XLy (0) B s

s’ (kK)) (128)
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% Z(J 1)

B0

J+1
Pk
<[5+ 2T +1

n [—@VA(S, s, (kk')) + 4mm'Vs(s, ', (kk’))]

x VE2VE2P;(2) + [s' +4 k’2]

(k) = 16a(1)K (VE2VER) o

k2] K?Pria(2)V (s, s, (k)

2J +1
x k2Py_1(2)Vi/ (s, 8, (kk’))).

For the right-hand side of (124), one has

J—
2970 (k) Byw(s.s, (KK)  (129)
(J+1) _ 2 J-1
XD ) = 16000k (VIEVE)

J+1
g2t L
< ([

+ [—v s8'Va(s, s, (kk')) + 4mm'Vs(s,

x VE2VE2P;(2) + |:8+4

ka] kP (2)Vu (s, s, (kK'))

)

s', (kK"))

“|

2J+1

x K2 Py_1(2)Vir (s, s, (kk/))>

and
;Sf_;li)17g/(k)Bg/a/(8, 8,, (k‘k‘,)) ( 130)
J—1
x 2801 ) = 2a()) (VEEVI?)

J+1

5T k2k’2PJ+1(z)vv(s, s’ (kE))

< (105

+ [16mm’V5(s, s’ (kK))

V(s o, (kk’))] VIRV P (2)

+4v'ss’ S+
2 1
Jj_ Vss' (Vss'Vi (s, s

|
+ 8mm'Vip(s, s, (kk')))
+ 45'k*Vis (s, 8, (KK')) + 48K Vis (s, 8

s (kK'))

, (kK'))
+1657— 1k2k’2vv(s, s, (kk’))] PJl(z)>.

On the right-hand sides of Egs. (123) and (124), we
expand the interaction blocks in the Legendre poly-
nomial series (94) and integrate over angle variables

[, dz/2. As a result, Eq. (123) reads

(s — M?) [wgv”vt’)(/ﬂ?)Aj (131)

ANISOVICH et al.

2J+1
J+1

s+ 4k2>¢gl,f+1,J)(k2)Bj:|

(
[ ds / NI =1, (1,J—1,d) (1.2
?P(S)'g(—k )7 by T (KT A,

4m/2
« |:§(J + 1)( + 42‘{] k_2> k_/4v(J+1)(8 s )
+ §(J)\/§k'2VI§J)(s, s")
— Amm/ KNV (s,8) + €(T — 1)

X (s’ +4 k’2) 17‘(,‘]_1)(8, s’)}

T ds'
+ / 7[)(8,) . 2(—]€/2)J+1¢£ZI’J+1’J)(,I{JQ)B]

4m/2

2J+1

J+1

T €T + D)Vss VT

(s, o)

X [8mm

J+1
J+1

kaQ) V(J+1) (87 8/)

ss' + 4s'k? + 4sk’?

+§(J+1)(

J+1
1
+ 62J—|—1

— 16mm §(J)Y75£J)(s, s")
J 17 /
— 4J——|—]_§(J)\/§V’§J) (S, S )

+ 16

€ = DT s

The second Eq. (124) reads

(S_MQ)[(2J+1

X wq(—LLJ_LJ)(kQ)Aj + 4k4w7(ll,J+1,J)(k2)Bj:|

s+ 4k2>

7 ds’ _ _
x / 7p(sl) '2(—]€/2)J 1¢7(11,J 1’J)(,1€/2)Aj

Am/2

X [8mm/

+&(J —

2J+1

1)<2

J
1655 k:Qk’2> V(s 8)

&7 — D)Wss V™Y

J+1
J

(s,5)

ss' + 4s'k? + 4sk”

— 16mm f(J)ka:'Q‘N/S(J) (s,5")

Eas ; Le (VT2 (s, o)
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J+1

16
* 2J +1

§(T + DERAT T (s, s’)]

T ds
+ / 7[)(8,) ,8(_k./2)J+1 ;1,J+1,J)(kl2)Bj

4m/?

1
% |:£(J + 1)( + 42‘!]]—:_ 1k/2) k4V(J+1) (S, 8/)

+&(J)V ss’k2V1§J)(s, s")
— Amm'€(N)E2VE (s, 8) + £(T = 1)
J ~(J—
X <5 + 42] n 1k2>V‘§J 1)(8,8,):| .

Normalization and orthogonality conditions deter-
mined by Eq. (87) are as follows:

[ ool (spmnge)” s
4m2

2J +1
x 2a(J) (k%)Y (J%s + 4/8)
+ 2Aij,¢)£L1,J71,J)(k2)¢7(11,J+1,J) (,ICQ)
2
x 8a(J) (=KD 4 B2 (1T (1))

2J +1

_123\(J+1) A%2 —1

x 2a(J)(—k?) (7J+1s+ ” ,
J=12,

and

/ ds o(s )[A1A2 (w(lj 1J)(k2))2 (134)

4m?2
% 20(J)(—k2) =D (les + 4k2>
+ (A1 By + A By )y 0D (k2 )y (D (12)
2
x 8a(J)(—k2)UHY 1 B, B, (wél"]+1"]’(k2))

% 20(J)(—k2)+D) (ﬁs + 4/&) } ~0.

J+1

Let us emphasize again that all the above equa-
tions are written for the case J > 0.

3.3.1. Equation for the ag (M?,n) trajectory.
Forthe(S =1, L =1, J = 0) state, we have only one
level L = J + 1; the wave function of this state obeys
the equation

(s — M?)(s + 4k>)p L0 ()

ap,n

== [ ) )

Am/'2

(135)
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_ 1
X [ng\/ ss’VT(l)(s, s') + g(ss’ + 45'k? + 4sk™
+16K2E2) VM (s, 8') — 16m* V0 (s, ).

According to [15], the following states are located
on the ag (M?,n) trajectory: ag(980) with n =1,
ap(1520) with n = 2, a(1830) with n = 3, a¢(2120)
with n = 3, and so on.

The normalization reads

[ S0 (W0) 2K s+ a0) = 1.
e (136)

3.3.2. Equation for the fo (M?2,n) trajectory.
The fy states have two flavor components, nn and ss;
correspondingly, we have two equations for two wave
functions

(s — M?)(s + 42000
ds’' 1,1,0
- - / Zp(s) 2k

4m?

[ m?Vss' V(1

(n—nn),T

(s) cos Oy (137)

(s") cos O,

1
(s,8") + g(ss' + 45'K?
+ 4sk? + 16K2K2) VY

(nn—nn), V(S’ S )

16m2V( )

(nn—nn), S(S’ § )
T ds'
- / 7/)5( )

4m?2

2k 00 () sin 6,

ao(ss)

[ mmsV'ss Vsswm T(s,s’)

+ = (ss' +45'k* + 4sk”? + 16K>E?)

Wl

(s,8") — 16mm, V%

X V( : (s5—nn), S(s’ S/)

(s5—nn),V
and

s — M?)(s + 4k> 1/)(1’1’9)
ao(s3),n

[ ds' 1,1,0
—— [ o) 2l

4m?2

[mm\/gv

(s)sin O, (138)

(s') cos ©,,

1
(s,8") + §(88/ + 45'k?

(nn—s3),T

+ 4k + 16K2K2) V) (58

_ 16’m’mSV((T§2_>SS) 5(5,5")
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o d ’
— / —Sps( - k’2¢((l})(lsg (") sin©,
4m? "
5 1
|: 2 55 ‘/(ss—nss) T(S7 8/) + 5(58/ + 48/k§

+4sk? + 16k2K2)V) o U (s,9)

—16m2V) ) 55|

The following states are located on two fo (M?
trajectories [15]:

(i) fo(980) with n =1, fo(1500) with n =2,
f0(2005) with n = 3, f(2240) with n = 4, and so on;

(i) fo(1300) with n =1, fo(1750) with n =2,
f0(2105) with n = 3, f(2330) with n = 4, and so on.

3.3.3. Equation for the p (M2,n) trajectory.
The two equations read

(5 = 20%) |10 (),
+ @s + 4k2> P2 () J

;1)

(139)

T ds
= [ o) sl )4
4m?
i § 2 1477(2) /
X [10 <5—|—3k: )k: Vi (s,s")

- %\/Qk’QXN/(l)(s,sl) m? K2V (s, 8')
+ (s + 3kl2> V(O)(s,s’)]

T ds ,
+ / 7,0(5)‘

4m?2

1 -
X [m238VSs’VT(2)(s, sy + 1—30 (;ss’ + 45'k?

2k/4w£37,3,1) (SI)BJ

—1—4816‘,2 ka/2) V( )(8’ S/)

16 ~ -
—m?= VS(I (s,8") — gv ss’[//(ll)(s, s')
16 ~
and

(s — M?) [(35 +4k2)p 0D (5) A; (140)

+ 4k L2 (s )Bj}
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T ds
= [ Epe) 2000 )4,

4m?

X [24m2v 88/‘77(10)(8, s+ (355’

+45'K? + 4sk? + 6k2k’2) Vs, )

216

TR (5,8) = VIR 5.

+ Ek4k'4v‘£2)(s, 8/):|

oodsl ’ 14,(1,2,1) ¢ ot
+ [ el - sk (s) By

4m?

3 8 ~(2)
X [1—0 <5' + gk:Q) k5 (s,8')

+%@k2ﬁgl)(s,s') m? 3k2v<1)( ')
+ (s + 3k2> V(O)(s,s’)].

The following states are located on the p (M?,n)
trajectories [15]:

(i) p(770) with n = 1, p(1450) with n = 2, p(1830)
with n = 3, p(2110) with n = 4, and so on;

(i) p(1700) with n =1, p(1990) with n =2,
p(2285) with n = 3, and so on.

The normalization and orthogonality conditions
are as follows:

/“mﬁﬂ%@@ﬁ

4m?

2(3s +4k%)  (141)

—|—2A B¢(101 ( )¢(1,2,1 ( )8]€4

+B2(¢(121 ( ))2 2k_4< 8—|—4k‘2>:| :1’
J=12,

and

/“mpmwwww (142)

4m?2
x 2(3s + 4k?) + (A1 By + A2 B1)y (L0 (s)
x S (s) - 8k + By Ba(y i (s))?

x 2k* (;s +4k;2> ] =0.
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APPENDIX A
Angular-Momentum Operators

Here, we present the angular-momentum operator

X,(flg,,,m_lm(k:) and briefly recall its properties; a
full presentation of the angular-momentum operators
can be found in [9].

The operator XF(LQLQ,,_MLAHL(I{) is constructed by
using relative momentum of mesons in the space
orthogonal to the total momentum P:

P,P,
1 1 1 v
kﬂ = k’/gVM’ gV,U‘ = gVN _ . N’

guw = (1,-1,-1,-1).

In the c.m. system, where P = (P, P) = (/s,0), the

vector k1 is spacelike: k*+ = (0, k). We determine the

operator X\, .. ., (k) as symmetrical and trace-

less. [t is easy to construct it for the lowest values of
L=0123:

(A.1)

0) __ 1) _ gL
xO=1 XM=k (A.2)
3 1
2 1 5.1 1N\2 1
Xﬁ(tl)m = E(kulk/u - g(k ) gu1u2)’
5 (ki)2

3 _ N

Xl(n)mus 9 kulkuz kus T 5

1 1 1 1 1 1
X (guwz kus + gmuskuz + guzuskm)] :

Correspondingly, the generalization of Xﬁf_)__% for

L > 1 reads

X{2 s = K 250 (A.3)
L
2L —1
L—1 _ L—1 1
Zﬁ(Ll---IL)Lva - 1,2 <Z Xﬁ(bl---ﬂz—lui-&-l---ﬂLguia
=1

L
2 L oy (I—1)
9L — 1 Z g#iﬂjXﬂl~~~Hi—1#i+1~~~Mjfll/«j+1~~~/$LOl :

i,j=1
1<j
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[t is seen that the operator Xﬁ(f,)u___uklm(k) con-
structed in accordance with (A.3) is symmetrical,

L L
Xﬁ(Ll-)--H‘i---Nj---NL = Xl(lll-)--ﬂj---/ii---HL’ <A4)
and it works in the space orthogonal to P:

The angular-momentum operator X,(f,),,m is trace-
less over any two indices:

L 1 L _
Xk(tl-)--ui---uj---ML - guilt]’X( ) =0.

(R ERNTY T )
(A.6)

The tracelessness property given by (A.6) is obvious

for the lowest order operators entering (A.2), for ex-
2
ample, g .. X\, = 0 (recall that gt gt = 3).
The convolution equality reads
X(L) kL _ (k,i)2X(L—1)

H1.---PL KL K1---pp—1"

Gpipj

(A7)

Using (A.7), we rewrite the recurrent equation (A.3)
in the form
201

L
X = 12 (A8)
L
1 L—1
X ZkuiX/(il---HZ—lﬂiJrlmﬂL
i=1

C2(kH)? i L x(z-2)
72 i e i i1 g1 1L

i,j=1
i<j

On the basis of this recurrent equation and taking

into account the tracelessness of Xﬁ(Lf_)__HL, one can
write the normalization condition for the moment-L
operator as follows:

xtHxE (k) =a@)(5)E, (A9)
Lol—1  (eL-—1)!
all) = lHl o

The iteration of (A.8) gives us the following expres-
sion for the operator X,(Lf),,m :

. (2L — 1)l
Xy (k) = (A.10)
132
11 L1 1 (k )
X [kulkuzkuskm ek, — 9L — 1

1 1.1 1
X (glil H2 klts ku4 o kuL

+ glfluskltklh T kj/: + )
(k)
(2L — 1)(2L — 3)
o P o

M5 He KL

+

1 1
X (guwzgusm
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L 1 g1l
T 9y 2 G o Fyia P -

i
sk )+
One can introduce a projection operator OL) [F
for the partial wave with the angular momentum L.
The operator is defined by the following relations:

X (ko -t = X1 (k), (A.11)
Of1--HL Q01+ OL = Ol -IIL

For the sets of indices pi...up and vy ...vg, the

operator O has all the properties of the operator X (1):

it is symmetrical and traceless,
f1fi2 B — OH2P1-HL — (YH1H2-PL
OV1V2...I/L - OV1V2...1/L - OV2V1...I/L Y

Hip-..pbp K12 UL
OV1V2...I/L - Oll11/1...1/L - O

(A.12)

The projection operator O can be constructed as a
product of the operators X,Sf)ML(k)X,SIL),,L(k) inte-
grated over angular variables of the momentum k=,
so we have a convolution of the (2L + 1)-dimensional
vectors, which provide us with an irreducible repre-

sentation of the Lorentz group in the k*/|k*| space.
Thus,

E(L)OM 1 —

vy...vy,

1 a . I
(kL)2L/EXp(al.)..uL(k)Xﬁl.)..yL(k)a
(A.13)

where (L) is a normalization factor fixed below. Us-
ing the definition of the projection operator Op} 1L,
we have
1 L
Ky -k Ol = mXil.)..yL(k)-
This equation represents the basic property of the op-

erator: it projects any index-L operator into a partial-
wave operator with the angular momentum L.

(A.14)

Multiplying  Eq. (A.13) by the product
L L
Xt un (@ X550 (@), we get
§DXS L, @X5),, @) (A15)
1al
z
= ()P (1) [ SRR,

1
which gives the normalization constant in (A.13):
a(L) (2L — 1!
L)= = .
3¢ 2L+1 (2L +1)-L!

Summation in the projection operator over upper and
lower indices performed in (A.13) gives us the follow-
ing reduction formula:

(A.16)

2L +1

OFr-HL—1kL
2L —1

M1l —1
Vi VLD — 0

vi.Vp—1 *

(A.17)
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Likewise, the summation over all indices gives us
Oht-HL = 2F 41, (A.18)

fi1...pL,
which can be proven using formula (A.13). On the
basis of Eq. (A.14), one gets

L prepn—1 _ (L
X;(Ll.)..H‘L,ULLOVll---VL{‘—Il - Xlgl.)..l/LfluL' (Alg)
Generally, one can write
L i L
Xk(ﬂl-).ﬂiui+1---liLoﬁll---#i - Xﬁl-)--ViNi+1NL' (A'QO)
APPENDIX B

Traces of the Loop Diagrams

Here, we present the traces which are used for
the calculations of loop diagrams. Recall that, in the
spectral-integral representation, there is no energy
conservation, s # s, where P2 = s and P"? = ', but
all constituents are mass-on-shell:

ki =ky=m?  K?=kF=m">
The following notation is used for the quark momenta:
1 1
ky, = §(k1 - k?)yv kly - E(k{ - ké)l/a (Bl)

1 L i L
ki =kugy, = kpu, kllt = klygw = k;,r

We follow the definition of matrices:

v5 = —iy" 124,

1
Oy = 5 [’Y/L'YV] .
Traces for the S = 0 States

For the S =0 states, we have the following
nonzero traces:

Tp = tr[ivs (k] + m/)ys(—ky +m')] = 2is’, (B.2)
T = tr [ivs (K + m')ivuys(—ky +m)]
= —4m'Pl:,
Ty = tr [ins (k) +m/)ioy, (—ky +m')]
= —42‘6/“,045130/‘16%,
and
Tp = tr[ivs(—ka + m)ys (k1 + m)] = 2is,
Ta = tr[ivs(—ko +m)iv,ys (k1 +m)]
=4mpP,,
Tr = trivs(—ke + m)io, (k1 + m)]
= di€apPaks.

(B.3)

The convolutions of the traces Ap = (TpTp),
Ay = (TaT)), Ar = (TrT}.) are equal to

Ap = —4s5,
Ay = —16mm/(PP'),
Ar = —32(PP")(kK').

(B.4)
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Traces for the S = I States The convolutions for the S = 1 states read
J J
For the S = 1 states, the traces are equal to Xp(u;)u'“uj(k)Xp(Lll)u“'ltJ(k/) (C.2)
J
TS = tr [y (K + m)I(~ky +m))]  (B5) = a()) (VEVE?) Py(2).
= 8m'kl,, Analogous convolutions for S = 1 states are writ-
ten as follows:
!/ 170 ! / /
Ty = tr s (O + )b+ XU axURD g (Cs)
puip2- g3 H1p2- g :
= 2(ga Ms +4k., kllt) o ) i
A/ !
T) =tr ['Yi/( i+m’)imﬂ5(—kz+m’)} “T+1 <\/— b ) [\/—AP”“( 2ksha
=4 o pey K, Pla \/ﬁ
Co'naffat’p + \/k_/BPJJJrl( )k‘%k‘& + CPJ,J+1(Z)kﬁk:x

T} = tr {’yol/(kll +m')iou (—ky + m')]

VE2+/ 1
— 4m/2 |:gl/ P/ g P,i| + DPJJ+1( )kﬁk + ( k/ )EPJJ+1( )gﬁa:|7
o'v a'p

and XU B2 (K (C.4)
Ts =tr[yg (ke +m) (s +m)|  (BS) _ a() 1 (vevie)’ [@ Ap, (Yo
= 8mikg, J k2 vVE2Z T
Ty = tr [ Vi (—k2 + m)y (k1 + m)} + %(BPJ,Jﬂ(z) — (27 + 1) Ay (2)) kK,
= 2 gz + 4kgky) - (Cpy o (2) = (20 +1)By (2) ks,
Ty =tr |:’)/é(—k2 + m)iy,ys(k1 + m)] + DPJ’JH(z)k’ﬁka + (\/ﬁ\/ﬁ) EPJ’JH(z)géa] ,

= _4€ﬁpa’ﬂ’ka/P,3/7

(J-1) (J-1) /
Tr =tr |:’Yé'(—k'2 +m)ioy, (ki + m)} 2y uJ,ﬁ(k)Zl““? ok ) (C.5)

= 4mi [gé‘MPV — gé‘VPN} . J}_ 1 a(J) <\/_\/k_/>

k2
The corresponding convolutions B, = (T.T7) read X [ﬁ(APJ,JJrl(Z) — (2] +1)A;(2))kgka
(Bg)ﬁ/a/ = 64mm/kﬁ/k:g,, (B.7) Vk2
+ —=(B z) — (20 + 1) A (2))kjsk,,
(BV)ﬂ’o/ =4 [ss/gé/a, —|—4S/k‘[@/k‘a/ + 48k£;/k'/a/ \/ﬁ( PJ’J-H( ) ( ) J( )) p
Ny (2J 4+ 1)
+ 16(kk kg kL] | +(Cpy i (2) + JinJ(Z)

(Ba)ga = —16(PP') [kb/k:a/ - (kk’)gg-,a,} ,

—2(2J + 1)BJ(Z)) kgkl, + Dp, ., (2)kska
(BT)ﬁ/a/ = 32(PP,)mm,gﬁl,a, J,J+1 Ié]

+ (\/k_Q\/k_/Q)EPJ,JH (Z)gﬁla:| )

APPENDIX C
J
Convolutions of the Trace Factors €Bv1vavs Py Zz(/zx)n---m,us (k)€ax, A2A3P>/\1 (C.6)

Here, we present the convolutions of the angular- Z>(\J) () = (2J + 3)2a(J)
momentum factors. We work with kﬁ = ngVLM =k, 2y As (J+1)3

dk’L—k = k! and introd J-1
an VGiie = K an Tedne x (VIEVER)T (PP | - VIEVER (22 - 1)

(kk')
=, (C.1)
VEVE? X DPJ,J+1(Z) + ZEPJ,J+1(Z))gé_a - DPJ,J+1(Z)
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v k,2 \/ﬁ ! 1./ /

+ (ZDPJ,J+1(Z) + EPJ,J+1(Z))'IC, ka] )

J J
XS (B)eamvavs Py Z5 s oy s ) (C.T)
2J +3 -1
= a(J) (\/ﬁ k/2> APJ,J+1(Z)€aP’kk"

J+1
Here,
APJ,J+1(Z) = BPJ,J+1(Z) (C.8)
_ 22P(r) + [J2% = (J +2)] Prja(z)
(1—22)2 ’
1— )22+ (J+1)] Py(z
Oty = LD 0] 2t
N (2] +1)2% — (2] + 3)] 2Py41(2)
1 —2p |
J+2)22 — J| Pj(z) — 22P, z
DPJ,J+1(Z) = [( ) (1]_(;(2)2 J+1( )7
_ 2zPj(z) = Pry1(2)
Ep,;;..(2) = 2 - Zé];—l )
A, = PJ+1(f)__Z§PJ(Z)’
B, — PJ(Z);_ZZJH(Z)’

EqP'kk! = Ea/gwjplﬁk'p’k”j.

We also need more complicated convolutions,

namely, for the factors K5X£{:21~?~m,8(k) X
XS, a(k) Ky, where K = k, K:
J+1 J+1
ko XD )X e (K ko (C.9)

= Ka(J) (VI2VE?) P,

J+1 J+1
k,@X( ) (k)Xﬁ(u:z)";ua(k/)k/

Hip2 g B el
= o()) (VE2VAP) b,

J+1 J+1
kXD )X (KR,

= K%a(J) (VI2VE?) T pae),

J+1 J+1
KoX D )X e (B ke

pip2epg B

= o) (ViEviE)
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731 ) -

J+1 J+1
fé_O‘Xl(LlNT?'NJ/@(k.)X/(LlN?)"MJOé(k‘/)

= ijlla(J) (\/ﬁ\/ﬁ) o Pjyi1(2);

for the factors KgXl(L‘f:;?.Wﬁ(k)ZL{;QI.)..W,a(k’)Ka:

N [2J+1 J PJ(Z):| ’

kXD zZ D (K )ke  (C.10)

Bipzep B
= k‘4Oz(J) (\/k_2\/ﬁ> - PJ_l(z),

J+1 J—1
ko XD ()25 (KR,

Hip2 g B e’
= k2a(J) (\//?\/W)JPJ(Z),

J+1 J-1
k‘/ﬁXl(u:Q-?-uJﬂ(k‘)Z/(LIHZ')“HJva(k/)k(,y

= o) (VIEVER) T P ),

J4+1 J—1
kXD B) 2 s 0K

= Ka()) (VIEVE?) Py(2)

e J+1 J—1
X K2 s a(K) = 0;

for the factors KﬁZ/(L{;;_)_W’ﬁ(k)Zg;;.)..W,a(k’)Ka:

J—1 J—1
ko2l D )2 0 (K o

= Ka()) (VIEVE?) P ),

J—1 J—1
ko Z\T D SR 2 iy (KK,

= a(7) (VE2VAZ) Py (2),

J—1 J—1
Koz )2 e e (KK,

H1p2 g8
_ 1.2 \/—2,/ 2 /=1
=k*a(J) ( VE2VE Py_1(z),

J—1 J—1
ko2 D )2 (K ke = o)

X (\/ﬁ\/kTQ)J [2J;— 1ZPJ—1(Z) — J—Ij—lpJ(Z)} )

(C.11)

L J—1 J—1
T2y i 8V 2 1,0 (K

= 2J; 1a(J) (\/ﬁ\/ﬁ) - Pjy_1(2);

and for the factors nggylyg,,sPylZﬁj&l...mm(k) x
EaA1)\2)\3P>/\1Z>(\‘2]2““.MJ7>\3(k/)Ka:
k‘ﬁﬁﬁuwmjspul ZIE;]F)Ll"'NJ,VS(k)Ga)\I)\Q)QP)/q (C]Q)
x 2 Kk =0,

Vol. 67 No.4 2004



QUARK—ANTIQUARK C
J
P, Zl£2/)u ‘g ,V3 (k)ea)q)\z)\sp)/q

(k )ka = 07

kﬂ €Bvivav3

« 7

A2p1 g A3

J
kée,@VlVQVSPVl Zl(’2/)141"'MJ7V3 (k)ea)q )\2)\3P)/\1

() N —
Z>\2u1 T3 (k )ka =0,

J)

/ ( /
kﬁeﬁV1V2V3PV1 ZV2M1"'H17V3 (k)EOé)q >\2>\3P)\1

(2J +3)?
T

) [2Ps(2) = Prya(2)],
g,é_aeﬁVlVQVBPVI ZV2N1"'NJ7V3 (k)EOé)q A2A3 P>/\1

(J) o J(@2J+ 3)?
X Z)\le...ﬂj,)\g(k‘/) - (J + 1)3 Oé(J)

v (\/ﬁ\//??)J(PP')PJ(z).

()
X Z)\QM

< (Vievie)

MJJ\S( /) o =

(PP
(J)

APPENDIX D

The Bethe—Salpeter Equations for thew, ¢, ay,
and fy Trajectories

Here, we present the Bethe—Salpeter equations
for the w, ¢, ag, and f> trajectories. Though the ex-
plicit form of these equations is rather cumbersome,
the investigation of these trajectories is informative
for the reconstruction of quark—antiquark forces.

Equations for the ay (M?,n) Trajectories

The following states are located on two (n, M?)
trajectories for the ag states M < 2400 MeV [15]:

(i) a2(1320) with n =1, a2(1660) with n =2,
a2(1950) with n = 3, a2(2255) with n = 4;

(ii) ag trajectory: a2(2030) with n = 1, a2(2310)
with n = 2.

Correspondingly, we have two coupled equations
for two wave functions:

(5 = 282) [ 40{ER2 6),
# (o) vl o,

T ds
[ ot skt
4m?

5

12 ~
X [ﬂ (s + €k2> k’4V‘53)(s, s')

+ %VSs’k’QVf)(s,s’)

(D.1)

(s)A;
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— ngkQYN/‘ém(s, s')

1
+3( + W) V(l)(s,s')]
ds’
- / (') 2Kl
4m?
?\/88/‘77(13)

1
<

5
X <§ss’ + 48'k% + 45k +

797

(s')B;

(‘97 5,) + 5

14
4 ~
€8k2k’2> Vi(s, ')

24 ~

Vs (s,

32 ~
+ 1—5V‘§1)(s, 5')]

4 -
- g\/QV/(f) (s,s")

and
5
(s = M?) [ (58 + W) Vi (9)4;  (D2)
+ 4k L3 (s )B]}
T ds’
= [ Zpls) 2R ),
4m?

2 - 1

X [mQEO\/ ss’VT(l)(s, s') + 3 (gssl + 45'k?
+dsk? 4 32 ka’2> Vi (s, )

224

ST (5,8) = 2VEIRIETL 5.

+ 7k4k’4‘~/‘53)(5, 8/):|
e GR
4m?2
12
154 (s’ + gka) k4V( )(s,s’)
3 ~(2
+ 1—0\/ss’k2Vf§ )(s,s) m? k2VS( )(

X |:—
L (s + §k2> v )(5,8/)}

The normalization and orthogonality conditions read

3
/ 9 s >[A2<wg51f>

4m?

(s')Bj

s')

() - 20(2)(~K?) (D.3)
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x<;w4ﬁ>+2&BW&f()%¥2()
x 8a/(2)(—k9) + B2 ({137 (5))?
X 20(2)(—K°) (gs + 4k2) ] ~1
and

/d5<ﬂm@w®¥<»2 (D.4)

4’”1 20(2)(—k?) (55 + 4k;2>

+ (A1 B2 + A B ()05 ()
x 8a(2)(—k°) + BiBa(v4,57) (5))* - 20(2) (—K°)

5
X (§s+4k2)} = 0.

Equations for the w and ¢ (M?,n) Trajectories

We have four trajectories in this sector with the fol-
lowing states located on the (n, M?) trajectories [15]:

(i) S-wave dominant states: w(780) with n =1,
w(1420) with n = 2, w(1800) with n = 3, w(2150)
with n = 4;

(ii) D-wave dominant states: w(1640) with n = 1,
w(1920) with n = 2, w(2295) with n = 3;

(iii) S-wave dominant states: ¢(1020) with n = 1,
$(1660) with n = 2, ¢(1950) with n = 3;

(iv) D-wave dominant states: ¢(1700) withn = 1.

Correspondingly, we have four coupled equations
for four wave functions.

The first one reads as follows:

(s — M?) [w&gj))n(smj cos O, (D.5)

3 1,2,1
+ (58 + 4k2) wu()(nﬁ))m(s)Bj cos O/,

dS (1,0, 1
4m?2

3 8 2\ ;452
XEEG+§k>Mmemv“5)

\/55 k’QV((nln_mn) ne s

(8 Ajcos O,

4
o _m2k/2v(s’blr_)z—>nﬁ) S(S’ 5/)

4 ~
+ (s’ + gka) V((:T_)l_mﬁ)’v(s,s’)]

PHYSICS OF ATOMIC NUCLEI

o0

s [ Lo

4m?2

(1,2,1)
w(nn),n

2k AL (s")B; cos ©),

|: 55 Vnn—mn T(S’ S/)

2
+ i (;ss' + 45"k + 45k + %kaQ)

~(2 16 ~1
X ‘/((nr)z%nﬁ),v(s’ 8,) 2 ‘/((nr)zﬂnn) S(s § )
2 Jaa v 77(0)
B g 88/‘/(nﬁ—>nﬁ),A(8 ) 3 ‘/(nn—mn) V(S’ 8/)
0o s
+ —8,05( ) - 8¢(1’011) (s)A;sin©,
T w(s3),n J
4m2
3 2\ 1.477(2) /
<10\ + - k ks Vies—nn), v(s,s)

\/88 k:'2V

(s5—nn),A (57 8/)

4
o gmmsk‘?v(ilgﬁnﬁ),s(s’ § )

4 -
+ (s’ + gkf) V(S‘)S)Hnn),v(s,s’)}

x /
[ ) 2 ()8 s,
4m?2 "
[mms V'ss V(fs_mn) (8, s')
3 (3 32
+ 10 (—ss +48'K* + 4sk? + k2k;2>
16 ~1
XV (08) = mma Vi (s, )
16 ~
_ _\/55 ‘/(ils—n’m) A(s7 5’) + 31/(22)_)”7_1)7‘/(5, 5/)] ;

the second one:

w(s3)

(s — MQ)[ W 1°1>n( )A, sin ©,,
3 .
+ (55 + 41@3) @bil(fg)lzz(s)Bj sin @;l]

= [ e salte,

4m?

(s")A; cos O,

3 8 2
X [E (s + 3k2) k’4V(§”)l_)SS) V(s,s’)
88 k/2‘/(nn—>ss) A(s’ S/)

Vol. 67 No.4 2004



QUARK—-ANTIQUARK COMPOSITE SYSTEMS 799

4 ~
- §mmsk/2v(§zlf)z—>s§),s(‘9’ s") X |24m?Vss’ VT?T)HM) (s,8) + (388/ + 45'k?
ARA0) ~
+ <5/ —+ §kj/ ) ‘/(nﬁ_)sg)7v(8,5/) + 48k‘l2 + ?kaQ) V*((T(L)%Hnﬁ) V(S,Sl)
ds’ 16 1
n / (s - 202 (5B cos @, mP SRRV s(5)
7'[' b
4m?2
) \/ 12KV m_ﬂm) A(s,S/)
[mms Vss V(Tmﬁss (375’) 16
k4k/4‘/(51271—>nn) V(S’ 8/):|
3 (3
+ 10 (—ss + 48’2 + 4sk™ + k?k'2>
ds’ / 4 (1,2,1) /
x V%) (5,8") —mm B (s,8) * / T P B Gy (1) By c0s Oy
(nfi—s5),V\?? 83 "(nn—ss),5\7 Am?2
2 ~(1 16 0 3 8 (2
VI g ) 4 T (58] S ETCER L
s ds’ - /1.2 (2 ~ !
[ ) sl )4, sme, 3V Vinnm (%)
7'[' b
42 22270 ()
3 nn—nn ’
X |:i <S + §k§) k/4‘/(i2s)—>ss) V(87 8/) 4 2\ 17(0) /
10 3 s+ §k Vinii—niy,v (5:5)
2 / [e’¢)
SYSIETL ) 4(s.) B e
4 . + / ?ps( s')- w SS) ( )A;sin©,,
- gmzkfv(i;—wg) S(S’ 8/) 4m?
T ( Sk‘?) ‘7(2(;)—&95),\/(8’ 8,):| |:24mm5 ss'V, (Ss~>nn (87 S/) + <388/
o] 16 ~
ds’ 1.2 2 195272 77(0) /
i / —Sps( oF k/4¢(1,828,)1 (')B; sin ©), +4s'k" 4 4sk + 3 kK >V(85Hnn)’v(s,s)
T
m 1
e o mmS§k2k/2V(is)—>nn) S(S’ $ )
—Vss' V(2 s, 8
|: (s575%) T( ) \/_k2k/2 ss—mn) A(S’ 8/)
43 §83 + 45’2 + 4sk? + 32122 16 4 @)
10 30 k k/ ‘/(ss—mn) V(878/):|
=(2) N 250 / 00
X V(s§—>s§) V(Sa S ) mg 3 ‘/(ss—>ss) S(S’ s ) ds’ M, (1,2,1) . /
[ ) S ()8 s,
58 ‘/(slsLss (S’ 8/) + ?‘A}(S?—*Sg) V(S’ 8,):| ; 4m?2 "
3 8
the third one: [10 ( + 3/‘3;2) k4v((ss)—>nn) v (s, s')
1,0,1
(s — M?)[(3s + 4k2)¢£(nﬁ)),n(8) (D.7) \/gkz Ssam) (s,8)
. 4 (17271) . /
x Ajcos©, + 4k ww(nﬁ)m(s)B] cos 0] — mm kQV(SS)_mn) (5,8
ds' 1,01) ;. -
= [ Soote)- 200, )4y s, (54 59) Ty 9]

4m?2

PHYSICS OF ATOMIC NUCLEI Vol.67 No.4 2004



800 ANISOVICH et al.

and the fourth equation:
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Equations for the fy (n, M?) Trajectories

The f, mesons lay on the following four trajecto-
ries in the (n, M?) plane [15]:

(i) dominantly P-wave states: f5(1285) with n =
1, f2(1640) at n = 2, £2(1950) with n = 3, f»(2210)
with n = 4;

(ii) dominantly P-wave states: f3(1525) with n =
1, £2(1790) with n = 2;

(iii) dominantly F'-wave states: f2(2020) withn =
1, £2(2290) with n = 2;

(iv) dominantly F'-wave state: f5(2200) with n =
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Vacuum Stability in Nambu—Jona-Lasinio Models
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Abstract—In Nambu—Jona-Lasinio models for a dynamical breakdown of chiral symmetry, unrenormal-
ized divergences hinder a direct comparison of vacuum energies of different solutions. The choice of a
stable vacuum in the presence of several solutions to the equations for fermion masses can nevertheless
be performed since, for unstable states, tachyons appear in the spectrum of composite scalar bosons.

© 2004 MAIK “Nauka/Interperiodica”.

The Nambu—Jona-Lasinio model provides a unique
four-dimensional example of the formation of a
relativistic condensate and fermion masses upon a
dynamical breakdown of chiral symmetry [1]. The
Nambu—Jona-Lasinio system is being widely used to
simulate mechanisms proposed for explaining phe-
nomena that occur in the real world—the emergence
of a light-flavor quark condensate in QCD (for an
overview, see [2] and references therein), the dynami-
cal breakdown of weak symmetry, and the generation
of fermion masses in models involving the composite
Higgs boson of the Standard Model [3]—and to
study the possible phase transitions in multiflavor
models [4].

These considerations are based on the unrenor-
malized four-fermion Nambu—Jona-Lasinio interac-
tion [see formula (1) below]. It can be treated as an
effective interaction that describes the dynamics of
the system at energies below some value M. The
results depend on M, and the cutoff M is a real phys-
ical constant for the Nambu—Jona-Lasinio system.
Because of divergences, we must restrict ourselves
to contributions constructed from one or (maximally)
two ([5]) loops, this being equivalent to consider-
ing systems featuring a large number of components
(“flavors,” N.) of fermions.

A phase transition associated with the breakdown
of chiral symmetry means that the system moves to a
new stable vacuum and to a minimum of the effective
potential energy. For the unrenormalized interaction,
it is not possible, however, to calculate the potential
energy reliably, so that stability must be established
indirectly. In their pioneering study, Y. Nambu and
G. Jona-Lasinio [1] proposed employing, as a crite-
rion of stability, the shift of the cellar of free fermions
as they acquire mass. However, this shift diverges
quadratically, and the Nambu—Jona-Lasinio system
is a system of interacting particles.

For multiflavor systems, the gap equations that
determine fermion masses admit many solutions,
which correspond to various versions of chiral-
symmetry breaking. In a phase transition, it is pos-
sible that only some of the fermions acquire mass
simultaneously. A system may involve a few Nambu—
Jona-Lasinio four-fermion interactions [4, 6], and
some of them may be subcritical.

In this study, it will be shown that, in such sys-
tems, the stability of a vacuum upon the transition
can be established (in the same N, > 1 approxima-
tion) by studying the properties of composite bosons
formed by fermion—antifermion pairs.

In order to clarify this point, we consider the
Nambu—Jona-Lasinio model of Ny chiral (R, L)
fermions ¢%;(x) and qf,(x) (i =1,2,..., Ny is the
flavor index; ¢ =1,2,..., N. > 1) invariantly inter-
acting with one another [Ur(Ny) x Ur(Ny)][4]:

Vo) = Glafaas) (andi) - (D

In the leading (in NN.) approximation, the equation
for fermion masses that is conventional for Nambu—
Jona-Lasinio models has the form

d'p _m

o GN,
Y 8x2 w2 m? —p?

(2)

The right-hand side of this equation is the contribu-
tion of the diagram in Fig. la. It is this equation that
is referred to as a gap equation. The integral in (2)
implies some cutoff of the quadratic divergence, qual-
itative properties of solutions to the Nambu—Jona-
Lasinio equation being independent of the cutoff.

The existence of an m; # 0 solution to Eq. (2)
implies the breakdown of chiral symmetry and the
transition to a new vacuum involving a condensate
(Grqr)- This is possible only at rather large values
of G. In order to prove this, one can calculate the
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(a)
m;
! ! i i
k k
Li G Ri

805
(b)

Fig. 1. Diagrams for (a) the fermion mass and () the fermion scattering amplitude.

integral in (2) for some cutoff. The simplest version
leads to the known expression [1—4]

GN_.M? 2 M2
m; = my (1 il ln—2), (3)
m,

82 M? :
whence one can see that the condition GN.M? /872 >
1 is necessary for the existence of m; # 0 solutions.

However, a solution to Eq. (2) could impart mass
only to part of fermions (n), this corresponding to the
breakdown of the chiral group:

Ur(Ng)UL(Ny) (4)
— UR(Nf - n)UL(Nf - n)UR+L(n).

Such a transition is accompanied by the appearance
of massless Goldstone scalars whose number is

2N7 —2(Ny —n)® —n® = n(4Ny —3n).  (5)

Let us study the question of which fermions form
Goldstone particles and the question of whether all
transitions in (4) are possible.

For this purpose, we consider the expression for
the amplitude describing the scattering of a fermion
on an antifermion with given helicities. In the leading
(in N.) approximation, the amplitude is equal to the
contribution of the sum of diagrams belonging to the
type in Fig. 1b. [t is convenient to analyze the dimen-
sionless amplitude B(q), factoring out the quantity
G. The one-loop contribution written in the form of
the R, L helicity matrix of initial—final particles [ac-
cording to (1), antiparticles have the opposite helicity]
then takes the form

Anra:(9) = A1(9)0a1as + A2(9)00; —as (6)
a=R,L;
{A1(q); A2(q)} = _GN

872

e {pQ—qZQ;mlmQ}
% )] - 6]
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Here, the quantities A; and A, are calculated at
arbitrary masses of constituent particles—this will
simplify the ensuing exposition.

The dimensionless amplitude B is obviously given
by

B(g) = (1 - A(@) ™" (7)
[t can easily be seen that any element of the matrix B
involves the expressions [1 — Ay(q) = Aa(q)]1 in the
denominator. The zeros of these expressions define
the scalar (or pseudoscalar) bosons of the model. We
rewrite the numerators in the integrands on the right-
hand side of (6) as
2

2 _ O _1 A
b 4im1m2_2[( 2) ml} (8)

2 2 2

In the expressions 1 — A; + As, we replace unity by
the ratio of the right-hand side of Eq. (2) to m;. At
m; = m, which is a solution to the gap equation, we
obtain

41 [(p+ Q)Q - m%} + Ly £ mo)2.

_ GN.

1— Ai(q) £ As(q) = 672

d4p
X/W—Q{

(9)

1 _ 1
mE =Pt md— (p - §)°

We note that, in (9), there are no quadratically
divergent integrals. The arbitrariness induced by the
cutoff reduces to a constant.

Let us introduce the notation

1 m3 — m?
1‘1,2—§<1—|—7

(10)
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1 m2 —m?2 2 m?2
+4/= 1+#> + —,
\/4< -¢° —q*

and calculate four dimensional integrals with respect
to pin (9). We have

I(m1,ma,q) (11)
/d4p 1
N 7T2’L q 2 q 2
i (o-3) ] [+ )]
M? 1 —
=In +r+ i lnm
mimesy 2 meo
Tr1 — T2 1 (1 — .’El).’EQ
2 (1 —.’EQ).’El

In the linearly divergent integral, we single out the
part depending on my and mo; that is,

1
§+I1(m1,m2,Q) (12)
:/@(q—%)q
% ¢ (mi—p?)[mi—(p—q)?
1 —1
:—+(1—:c1—:c2)+:c1(1—:c1)lnx1
2 T
.CC2—1

1-— 1 .
+Il?2( 5122) n 7

[t can easily be seen that the substitution m; < mao
leads to x1 <> 1 — z9. The function [ is symmetric
under the substitution mi < mo, while the function
I; is antisymmetric. The quantity r simulates the
dependence on the cutoff factor; for example, the use

of the cutoff factor (M?2/(M? + p?))™ in the integrals
in (11) and (12) leads to r = 371 k. It is this
cutoff that leads to the term 1/2 in formula (12). At

spacelike g% < 0, the functions I and I, are real-
valued.

For the quantity under study in (9), we obtain
1= Ai(q) + Az(q)

_ GNe {(m% — m2)I (m,’ml, 2)

(13)

1672 2
+ (m% — m2)I (m,mg, g)
+ [(m1 £ mg)2 — q2]I(m17m27 q)

2
q q q
__1 I(’ ’_> I(’ ’_>} ’
4{+1mm12+1mm22

Further, we consider the possible versions of the am-
plitudes.

(i) Scattering of massive fermions, m = my = msa,
and I; = 0. For any (i, k) pair from n massive flavors,

there exists one massive boson (Griqrr + dreqri)/ V2
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and one massless particle (riqrr — Grrqri)/(V/24),
i,k <mn. In all, there arise here n? massive and n?
massless scalar—pseudoscalar particles.

(ii) Scattering of massive fermions on massless
ones, m = my and my = 0 [here, A2(q) = 0]:

1—-Ai(q)
B GNC{ o [1 (im0, g) ~ I(m,0,9)]

(14)

1672
— @I(m,0,q) % [1 s (m,o, %)} }

For ¢> — 0, I1(m,0,0) = —(1/2) and I(m,0,0) =
= In(M?/m?) + r, so that we have a zero in formula
(14) in this limit. These are real Goldstone particles
with positive residues. Their composition is the fol-
lowing:

qRiqLks GLkGRi> GLi9REs GREYLi; (15)

1=1,2,...,n, k=n+1,...,Ny.

In all, there arise here 4n(NNy — n) massless boso